Rainfall simulation in education
NASA Astrophysics Data System (ADS)
Peters, Piet; Baartman, Jantiene; Gooren, Harm; Keesstra, Saskia
2016-04-01
Rainfall simulation has become an important method for the assessment of soil erosion and soil hydrological processes. For students, rainfall simulation offers an year-round, attractive and active way of experiencing water erosion, while not being dependent on (outdoors) weather conditions. Moreover, using rainfall simulation devices, they can play around with different conditions, including rainfall duration, intensity, soil type, soil cover, soil and water conservation measures, etc. and evaluate their effect on erosion and sediment transport. Rainfall simulators differ in design and scale. At Wageningen University, both BSc and MSc student of the curriculum 'International Land and Water Management' work with different types of rainfall simulation devices in three courses: - A mini rainfall simulator (0.0625m2) is used in the BSc level course 'Introduction to Land Degradation and Remediation'. Groups of students take the mini rainfall simulator with them to a nearby field location and test it for different soil types, varying from clay to more sandy, slope angles and vegetation or litter cover. The groups decide among themselves which factors they want to test and they compare their results and discuss advantage and disadvantage of the mini-rainfall simulator. - A medium sized rainfall simulator (0.238 m2) is used in the MSc level course 'Sustainable Land and Water Management', which is a field practical in Eastern Spain. In this course, a group of students has to develop their own research project and design their field measurement campaign using the transportable rainfall simulator. - Wageningen University has its own large rainfall simulation laboratory, in which a 15 m2 rainfall simulation facility is available for research. In the BSc level course 'Land and Water Engineering' Student groups will build slopes in the rainfall simulator in specially prepared containers. Aim is to experience the behaviour of different soil types or slope angles when (heavy) rain occurs. The MSc level course 'Fundamentals of Land Management' students carry out a hands-on practical in which they compare soil type and design and evaluate the effect of soil and water conservation measures. Also, MSc thesis research is being carried out using this facility. For instance, the distribution and movement of pesticide Glyphosate with sediment transportation was being quantified using the rainfall simulation facility.
Lunar regolith and structure mechanics
NASA Technical Reports Server (NTRS)
Barnes, Frank; Ko, Hon-Yim; Sture, Stein; Carter, Tyrone R.; Evenson, Kraig A.; Nathan, Mark P.; Perkins, Steve W.
1991-01-01
The topics are presented in viewgraph form and include the following: modeling of regolith-structure interaction in extraterrestrial constructed facilities; densification of lunar soil simulant; and vibration assisted penetration of lunar soil simulant.
ISRU Soil Mechanics Vacuum Facility: Soil Bin Preparation and Simulant Strength Characterization
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie; Wilkinson, Allen
2012-01-01
Testing in relevant environments is key to exploration mission hardware development. This is true on both the component level (in early development) and system level (in late development stages). During ISRU missions the hardware will interface with the soil (digging, roving, etc) in a vacuum environment. A relevant test environment will therefore involve a vacuum chamber with a controlled, conditioned simulant bed. However, in earth-based granular media, such as lunar soil simulant, gases trapped within the material pore structures and water adsorbed to all particle surfaces will release when exposed to vacuum. Early vacuum testing has shown that this gas release can occur violently, which loosens and weakens the simulant, altering the consolidation state. The Vacuum Facility #13, a mid-size chamber (3.66m tall, 1.5m inner diameter) at the NASA Glenn Research Center has been modified to create a soil mechanics test facility. A 0.64m deep by 0.914m square metric ton bed of lunar simulant was placed under vacuum using a variety of pumping techniques. Both GRC-3 and LHT-3M simulant types have been used. An electric cone penetrometer was used to measure simulant strength properties at vacuum including: cohesion, friction angle, bulk density and shear modulus. Simulant disruptions, caused by off gassing, affected the strength properties, but could be mitigated by reducing pump rate. No disruptions were observed at pressures below 2.5Torr, regardless of the pump rate. However, slow off gassing of the soil lead to long test times, a full week, to reach 10-5Torr. This work highlights the need for robotic machine-simulant hardware and operations in vacuum to expeditiously perform (sub-)systems tests.
Intrusion of Soil Water through Pipe Cracks
This report describes a series of experiments conducted at U.S. EPA’s Test and Evaluation Facility in 2013-2014 to study the intrusion of contaminated soil water into a pipe crack during simulated backflow events. A test rig was used consisting of a 3’ x 3’ x 3’ acrylic soil bo...
NASA Astrophysics Data System (ADS)
Alizadehtazi, B.; Montalto, F. A.
2013-12-01
Rain drop impact causes soil crust formation which, in turn, reduces infiltration rates and increases runoff, contributing to soil erosion, downstream flooding and non point source pollutant loads. Unprotected soil surfaces (e.g. without vegetation canopies, mulch, or other materials), are more susceptible to crust formation due to the higher kinetic energy associated with raindrop impact. This impulse breaks larger soil aggregates into smaller particles and disperses soil from its original position. The displaced soil particles self-stratify, with finer particles at the top forming the crust. By contrast, soil that is protected by vegetation canopies and mulch layers is less susceptible to crust formation, since these surfaces intercept raindrops, dissipating some of their kinetic energy prior to their impact with the soil. Very little research has sought to quantify the effect that canopies and mulch can have on this phenomenon. This presentation presents preliminary findings from ongoing study conducted using rainfall simulator to determine the ability of new urban vegetation and mulch to minimize soil crust formation. Three different scenarios are compared: a) bare soil, b) soil with mulch cover, and c) soil protected by vegetation canopies. Soil moisture, surface penetration resistance, and physical measurements of the volume of infiltrate and runoff are made on all three surface treatments after simulated rainfall events. The results are used to discuss green infrastructure facility maintenance and design strategies, namely whether heavily vegetated GI facilities require mulching to maintain infiltration capacity.
A Center for Extraterrestrial Engineering and Construction (CETEC)
NASA Technical Reports Server (NTRS)
Leigh, Gerald G.
1992-01-01
A group of knowledgeable scientists and engineers in New Mexico has recognized the need for such a testing capability and has proposed a project to evelop an extraterrestrial surface simulation facility. A group of universities, national laboratories, and private industrial firms is proposing to establish a Center for Extraterrestrial Engineering and Construction (CETEC) and to develop large extraterrestrial surface simulation facilities in which this needed testing can be realistically performed. The CETEC is envisioned to be both a center of knowledge and data regarding engineering, construction, mining, and material process operations on extraterrestrial bodies and a set of extraterrestrial surface simulation facilities. The primary CETEC facility is proposed to be a large domed building made of steel reinforced concrete with more than one acre of test floor area covered with several feet of simulated lunar soil and dust. Various aspects of the project are presented in viewgraph form.
The Impact of Solar Arrays on Arid Soil Hydrology: Some Numerical Simulations
NASA Astrophysics Data System (ADS)
Luo, Y.; Berli, M.; Koonce, J.; Shillito, R.; Dijkema, J.; Ghezzehei, T. A.; Yu, Z.
2016-12-01
Hot deserts are prime locations for solar energy generation but also recognized as particularly fragile environments. Minimizing the impact of facility-scale solar installations on desert environments is therefore of increasing concern. This study focuses on the impact of photovoltaic solar arrays on the water balance of arid soil underneath the array. The goal was to explore whether concentrated rainwater infiltration along the solar panel drip lines would lead to deeper infiltration and an increase in soil water storage in the long term. A two-dimensional HYDRUS model was developed to simulate rainwater infiltration into the soil within a photovoltaic solar array. Results indicate that rainwater infiltrates deeper below the drip lines compared to the areas between solar panels but only for coarse textured soil. Finer-textured soils redistribute soil moisture horizontally and the concentrating effect of solar panels on rainwater infiltration appears to be small.
NASA Astrophysics Data System (ADS)
Hu, Dawei; Li, Leyuan; Liu, Hui; Zhang, Houkai; Fu, Yuming; Sun, Yi; Li, Liang
It is necessary to process inedible plant biomass into soil-like substrate (SLS) by bio-compost to realize biological resource sustainable utilization. Although similar to natural soil in structure and function, SLS often has uneven water distribution adversely affecting the plant growth due to unsatisfactory porosity, permeability and gravity distribution. In this article, SLS plant-growing facility (SLS-PGF) were therefore rotated properly for cultivating lettuce, and the Brinkman equations coupled with laminar flow equations were taken as governing equations, and boundary conditions were specified by actual operating characteristics of rotating SLS-PGF. Optimal open-control law of the angular and inflow velocity was determined by lettuce water requirement and CFD simulations. The experimental result clearly showed that water content was more uniformly distributed in SLS under the action of centrifugal and Coriolis force, rotating SLS-PGF with the optimal open-control law could meet lettuce water requirement at every growth stage and achieve precise irrigation.
An Experimental Study of Contaminant Intrusion Through Pipe Cracks
This report describes a series of experiments conducted at U.S. EPA’s Test and Evaluation Facility in 2013-2014 to study the intrusion of contaminated soil water into a pipe crack during simulated backflow events. A test rig was used consisting of a 3’ x 3’ x 3’ acrylic soil bo...
Development and Testing of an ISRU Soil Mechanics Vacuum Test Facility
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie E.; Wilkinson, R. Allen
2014-01-01
For extraterrestrial missions, earth based testing in relevant environments is key to successful hardware development. This is true for both early component level development and system level integration. For In-Situ Resource Utilization (ISRU) on the moon, hardware must interface with the surface material, or regolith, in a vacuum environment. A relevant test environment will therefore involve a vacuum chamber with a controlled, properly conditioned bed of lunar regolith simulant. However, in earth-based granular media, such as lunar regolith simulant, gases trapped within the material pore structures and water adsorbed to all particle surfaces will release when exposed to vacuum. Early vacuum testing has shown that this gas release can occur violently, which loosens and weakens the simulant, altering the consolidation state. A mid-size chamber (3.66 m tall, 1.5 m inner diameter) at the NASA Glenn Research Center has been modified to create a soil mechanics test facility. A 0.64 m deep by 0.914 m square metric ton bed of lunar simulant was placed under vacuum using a variety of pumping techniques. Both GRC-3 and LHT-3M simulant types were used. Data obtained from an electric cone penetrometer can be used to determine strength properties at vacuum including: cohesion, friction angle, bulk density and shear modulus. Simulant disruptions, caused by off-gassing, affected the strength properties, but could be mitigated by reducing pump rate. No disruptions were observed at pressures below 2.5 Torr, regardless of the pump rate. The slow off-gassing of the soil at low pressure lead to long test times; a full week to reach 10(exp -5) Torr. Robotic soil manipulation would enable multiple ISRU hardware test within the same vacuum cycle. The feasibility of a robotically controlled auger and tamper was explored at vacuum conditions.
Spalding, B P; Spalding, I R
2001-01-15
Strontium-90 is a major hazardous contaminant of radioactive wastewater and its processing sludges at many Department of Energy (DOE) facilities. In the past, such contaminated wastewater and sludge have been disposed in soil seepage pits, lagoons, or cribs often under highly perturbed alkaline conditions (pH > 12) where 90Sr solubility is low and its adsorption to surrounding soil is high. As natural weathering returns these soils to near-neutral or slightly acidic conditions, the adsorbed and precipitated calcium and magnesium phases, in which 90Sr is carried, change significantly in both nature and amounts. No comprehensive computational method has been formulated previously to quantitatively simulate the dynamics of 90Sr in the soil-groundwater environment under such dynamic and wide-ranging conditions. A computational code, the Hydrologic Utility Model for Demonstrating Integrated Nuclear Geochemical Environmental Responses (HUMDINGER), was composed to describe the changing equilibria of 90Sr in soil based on its causative chemical reactions including soil buffering, pH-dependent cation-exchange capacity, cation selectivity, and the precipitation/dissolution of calcium carbonate, calcium hydroxide, and magnesium hydroxide in response to leaching groundwater characteristics including pH, acid-neutralizing capacity, dissolved cations, and inorganic carbonate species. The code includes a simulation of one-dimensional transport of 90Sr through a soil column as a series of soil mixing cells where the equilibrium soluble output from one cell is applied to the next cell. Unamended soil leaching and highly alkaline soil treatments, including potassium hydroxide, sodium silicate, and sodium aluminate, were simulated and compared with experimental findings using large (10 kg) soil columns that were leached with 90Sr-contaminated groundwater after treatment. HUMDINGER's simulations were in good agreement with dynamic experimental observations of soil exchange capacity, exchangeable cations, total 90Sr, and pH values of layers within the soil columns and of column effluents.
Arthur, Jonathan M.; Johnson, Michael J.; Mayers, C. Justin; Andraski, Brian J.
2012-11-13
This report describes micrometeorological, evapotranspiration, and soil-moisture data collected since 2006 at the Amargosa Desert Research Site adjacent to a low-level radio-active waste and hazardous chemical waste facility near Beatty, Nevada. Micrometeorological data include precipitation, solar radiation, net radiation, air temperature, relative humidity, saturated and ambient vapor pressure, wind speed and direction, barometric pressure, near-surface soil temperature, soil-heat flux, and soil-water content. Evapotranspiration (ET) data include latent-heat flux, sensible-heat flux, net radiation, soil-heat flux, soil temperature, air temperature, vapor pressure, and other principal energy-budget data. Soil-moisture data include periodic measurements of volumetric water-content at experimental sites that represent vegetated native soil, devegetated native soil, and simulated waste disposal trenches - maximum measurement depths range from 5.25 to 29.25 meters. All data are compiled in electronic spreadsheets that are included with this report.
NASA Astrophysics Data System (ADS)
Cai, Gaochao; Vanderborght, Jan; Langensiepen, Matthias; Schnepf, Andrea; Hüging, Hubert; Vereecken, Harry
2018-04-01
How much water can be taken up by roots and how this depends on the root and water distributions in the root zone are important questions that need to be answered to describe water fluxes in the soil-plant-atmosphere system. Physically based root water uptake (RWU) models that relate RWU to transpiration, root density, and water potential distributions have been developed but used or tested far less. This study aims at evaluating the simulated RWU of winter wheat using the empirical Feddes-Jarvis (FJ) model and the physically based Couvreur (C) model for different soil water conditions and soil textures compared to sap flow measurements. Soil water content (SWC), water potential, and root development were monitored noninvasively at six soil depths in two rhizotron facilities that were constructed in two soil textures: stony vs. silty, with each of three water treatments: sheltered, rainfed, and irrigated. Soil and root parameters of the two models were derived from inverse modeling and simulated RWU was compared with sap flow measurements for validation. The different soil types and water treatments resulted in different crop biomass, root densities, and root distributions with depth. The two models simulated the lowest RWU in the sheltered plot of the stony soil where RWU was also lower than the potential RWU. In the silty soil, simulated RWU was equal to the potential uptake for all treatments. The variation of simulated RWU among the different plots agreed well with measured sap flow but the C model predicted the ratios of the transpiration fluxes in the two soil types slightly better than the FJ model. The root hydraulic parameters of the C model could be constrained by the field data but not the water stress parameters of the FJ model. This was attributed to differences in root densities between the different soils and treatments which are accounted for by the C model, whereas the FJ model only considers normalized root densities. The impact of differences in root density on RWU could be accounted for directly by the physically based RWU model but not by empirical models that use normalized root density functions.
NASA Astrophysics Data System (ADS)
Alizadehtazi, B.; Montalto, F. A.; Sjoblom, K.
2014-12-01
Raindrop impulses applied to soils can break up larger soil aggregates into smaller particles, dispersing them from their original position. The displaced particles can self-stratify, with finer particles at the top forming a crust. Occurrence of this phenomenon reduces the infiltration rate and increases runoff, contributing to downstream flooding, soil erosion, and non point source pollutant loads. Unprotected soil surfaces (e.g. without vegetation canopies, mulch, or other materials), are more susceptible to crust formation due to the higher kinetic energy associated with raindrop impact. By contrast, soil that is protected by vegetation canopies and mulch layers is less susceptible to crust formation, since these surfaces intercept raindrops, dissipating some of their kinetic energy prior to their impact with the soil. Within this context, this presentation presents preliminary laboratory work conducted using a rainfall simulator to determine the ability of new urban vegetation and mulch to minimize soil crust formation. Three different scenarios are compared: a) bare soil, b) soil with mulch cover, and c) soil protected by vegetation canopies. Soil moisture, surface penetration resistance, and physical measurements of the volume of infiltrate and runoff are made on all three surface treatments after simulated rainfall events. The results are used to develop recommendations regarding surface treatment in green infrastructure (GI) system designs, namely whether heavily vegetated GI facilities require mulching to maintain infiltration capacity.
2012-07-30
CAPE CANAVERAl, Fla. - Robert Mueller, left, explains differences in lunar, Martian and Earth soil using simulants to Dr. Mason Peck, NASA's chief Technologist, during a tour of the Space Life Sciences Laboratory at Kennedy. Peck toured the lab facility during a visit to the space center. Photo credit: NASA/Frankie Martin
2012-07-30
CAPE CANAVERAl, Fla. - Robert Mueller, left, explains differences in lunar, Martian and Earth soil using simulants to Dr. Mason Peck, NASA's chief Technologist, during a tour of the Space Life Sciences Laboratory at Kennedy. Peck toured the lab facility during a visit to the space center. Photo credit: NASA/Frankie Martin
Atmospheric release model for the E-area low-level waste facility: Updates and modifications
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The atmospheric release model (ARM) utilizes GoldSim® Monte Carlo simulation software (GTG, 2017) to evaluate the flux of gaseous radionuclides as they volatilize from E-Area disposal facility waste zones, diffuse into the air-filled soil pores surrounding the waste, and emanate at the land surface. This report documents the updates and modifications to the ARM for the next planned E-Area PA considering recommendations from the 2015 PA strategic planning team outlined by Butcher and Phifer.
Lunar Polar Environmental Testing: Regolith Simulant Conditioning
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie
2014-01-01
As ISRU system development approaches flight fidelity, there is a need to test hardware in relevant environments. Extensive laboratory and field testing have involved relevant soil (lunar regolith simulants), but the current design iterations necessitate relevant pressure and temperature conditions. Including significant quantities of lunar regolith simulant in a thermal vacuum chamber poses unique challenges. These include facility operational challenges (dust tolerant hardware) and difficulty maintaining a pre-prepared soil state during pump down (consolidation state, moisture retention).For ISRU purposes, the regolith at the lunar poles will be of most interest due to the elevated water content. To test at polar conditions, the regolith simulant must be doped with water to an appropriate percentage and then chilled to cryogenic temperatures while exposed to vacuum conditions. A 1m tall, 28cm diameter bin of simulant was developed for testing these simulant preparation and drilling operations. The bin itself was wrapped with liquid nitrogen cooling loops (100K) so that the simulant bed reached an average temperature of 140K at vacuum. Post-test sampling was used to determine desiccation of the bed due to vacuum exposure. Depth dependent moisture data is presented from frozen and thawed soil samples.Following simulant only evacuation tests, drill hardware was incorporated into the vacuum chamber to test auguring techniques in the frozen soil at thermal vacuum conditions. The focus of this testing was to produce cuttings piles for a newly developed spectrometer to evaluate. This instrument, which is part of the RESOLVE program science hardware, detects water signatures from surface regolith. The drill performance, behavior of simulant during drilling, and characteristics of the cuttings piles will be offered.
NASA Astrophysics Data System (ADS)
Illangasekare, T. H.; Trautz, A. C.; Howington, S. E.; Cihan, A.
2017-12-01
It is a well-established fact that the land and atmosphere form a continuum in which the individual domains are coupled by heat and mass transfer processes such as bare-soil evaporation. Soil moisture dynamics can be simulated at the representative elementary volume (REV) scale using decoupled and fully coupled Darcy/Navier-Stokes models. Decoupled modeling is an asynchronous approach in which flow and transport in the soil and atmosphere is simulated independently; the two domains are coupled out of time-step via prescribed flux parameterizations. Fully coupled modeling in contrast, solves the governing equations for flow and transport in both domains simultaneously with the use of coupling interface boundary conditions. This latter approach, while being able to provide real-time two-dimensional feedbacks, is considerably more complex and computationally intensive. In this study, we investigate whether fully coupled models are necessary, or if the simpler decoupled models can sufficiently capture soil moisture dynamics under varying land preparations. A series of intermediate-scale physical and numerical experiments were conducted in which soil moisture distributions and evaporation estimates were monitored at high spatiotemporal resolutions for different heterogeneous packing and soil roughness scenarios. All experimentation was conducted at the newly developed Center for Experimental Study of Subsurface Environmental Processes (CESEP) wind tunnel-porous media user test-facility at the Colorado School of. Near-surface atmospheric measurements made during the experiments demonstrate that the land-atmosphere coupling was relatively weak and insensitive to the applied edaphic and surface conditions. Simulations with a decoupled multiphase heat and mass transfer model similarly show little sensitivity to local variations in atmospheric forcing; a single, simple flux parameterization can sufficiently capture the soil moisture dynamics (evaporation and redistribution) as long as the subsurface conditions (i.e., heterogeneity) are properly described. These findings suggest that significant improvements to simulations results should not be expected if fully coupled modeling were adopted in scenarios of weak land-atmosphere coupling in the context of bare soil evaporation.
Preparation of a Frozen Regolith Simulant Bed for ISRU Component Testing in a Vacuum Chamber
NASA Technical Reports Server (NTRS)
Klenhenz, Julie; Linne, Diane
2013-01-01
In-Situ Resource Utilization (ISRU) systems and components have undergone extensive laboratory and field tests to expose hardware to relevant soil environments. The next step is to combine these soil environments with relevant pressure and temperature conditions. Previous testing has demonstrated how to incorporate large bins of unconsolidated lunar regolith into sufficiently sized vacuum chambers. In order to create appropriate depth dependent soil characteristics that are needed to test drilling operations for the lunar surface, the regolith simulant bed must by properly compacted and frozen. While small cryogenic simulant beds have been created for laboratory tests, this scale effort will allow testing of a full 1m drill which has been developed for a potential lunar prospector mission. Compacted bulk densities were measured at various moisture contents for GRC-3 and Chenobi regolith simulants. Vibrational compaction methods were compared with the previously used hammer compaction, or "Proctor", method. All testing was done per ASTM standard methods. A full 6.13 m3 simulant bed with 6 percent moisture by weight was prepared, compacted in layers, and frozen in a commercial freezer. Temperature and desiccation data was collected to determine logistics for preparation and transport of the simulant bed for thermal vacuum testing. Once in the vacuum facility, the simulant bed will be cryogenically frozen with liquid nitrogen. These cryogenic vacuum tests are underway, but results will not be included in this manuscript.
Ye, Xinxin; Kang, Shenghong; Wang, Huimin; Li, Hongying; Zhang, Yunxia; Wang, Guozhong; Zhao, Huijun
2015-05-30
Natural diatomite was modified through facile acid treatment and ultrasonication, which increased its electronegativity, and the pore volume and surface area achieved to 0.211 cm(3) g(-1) and 76.9 m(2) g(-1), respectively. Modified diatomite was investigated to immobilize the potential toxic elements (PTEs) of Pb, Cu and Cd in simulated contaminated soil comparing to natural diatomite. When incubated with contaminated soils at rates of 2.5% and 5.0% by weight for 90 days, modified diatomite was more effective in immobilizing Pb, Cu and Cd than natural diatomite. After treated with 5.0% modified diatomite for 90 days, the contaminated soils showed 69.7%, 49.7% and 23.7% reductions in Pb, Cu and Cd concentrations after 0.01 M CaCl2 extraction, respectively. The concentrations of Pb, Cu and Cd were reduced by 66.7%, 47.2% and 33.1% in the leaching procedure, respectively. The surface complexation played an important role in the immobilization of PTEs in soils. The decreased extractable metal content of soil was accompanied by improved microbial activity which significantly increased (P<0.05) in 5.0% modified diatomite-amended soils. These results suggested that modified diatomite with micro/nanostructured characteristics increased the immobilization of PTEs in contaminated soil and had great potential as green and low-cost amendments. Copyright © 2015 Elsevier B.V. All rights reserved.
Soil Erosion Study on the Chinese Loess Plateau
NASA Astrophysics Data System (ADS)
Hu, Yaxian; Guo, Shengli; Kuhn, Nikolaus
2017-04-01
The Chinese Loess Plateau, because of its highly erodible loess soils and hilly topography, has been extensively studied by soil scientists and geomorphologists. As a research hotspot, there are five national-level field stations across the Loess Plateau, with hundreds of erosion plots set up with various sizes, lengths, slope angles and vegetation covers. In addition, huge indoor rain simulation facilities exist in in different institutes which can provide rainfall simulations under a wide range of controlled conditions. Consequently, national-level restoration projects have achieved tremendous improvements in curbing soil erosion and improving regional agro-ecosystem, mostly by afforestation and soil rehabilitation. However, when implementing the advanced techniques and models that have been widely applied in the rest of the world, there are often regional considerations, which demand new approaches to overcome. One example are the unintentional impacts of restoration efforts, such as the establishment of apple orchards. Over 20 years, they have caused an increase in soil erodibility and lowered local ground water levels. Neither before the introduction of this landscape rehabilitation technique, nor now, has the impact of intensive fruit production been systematically studied, despite lending itself to systematic experiments. The lack of research is attributed to the general idea that trees protect soils and improve environmental services. This presentation identifies several such specific regional environmental issues associated with soil erosion on the Loess Plateau and discusses strategies to avoid missing important research questions.
Crash Testing and Simulation of a Cessna 172 Aircraft: Pitch Down Impact Onto Soft Soil
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jackson, Karen E.
2016-01-01
During the summer of 2015, NASA Langley Research Center conducted three full-scale crash tests of Cessna 172 (C-172) aircraft at the NASA Langley Landing and Impact Research (LandIR) Facility. The first test represented a flare-to-stall emergency or hard landing onto a rigid surface. The second test, which is the focus of this paper, represented a controlled-flight-into-terrain (CFIT) with a nose-down pitch attitude of the aircraft, which impacted onto soft soil. The third test, also conducted onto soil, represented a CFIT with a nose-up pitch attitude of the aircraft, which resulted in a tail strike condition. These three crash tests were performed for the purpose of evaluating the performance of Emergency Locator Transmitters (ELTs) and to generate impact test data for model validation. LS-DYNA finite element models were generated to simulate the three test conditions. This paper describes the model development and presents test-analysis comparisons of acceleration and velocity time-histories, as well as a comparison of the time sequence of events for Test 2 onto soft soil.
Photodegradation of selected organics on Mars
NASA Astrophysics Data System (ADS)
ten Kate, I. L.; Boosman, A.; Fornaro, T.; King, H. E.; Kopacz, K. A.; Wolthers, M.
2017-09-01
At least as much as 2.4 million kg of unaltered organic material is estimated to be delivered to the Martian surface each year. However, intense UV irradiation and the highly oxidizing and acidic nature of Martian soil cause degradation of organic compounds. Here we present first results obtained with the recently developed PALLAS facility at Utrecht University. This facility is specifically designed to simulate planetary and asteroid surface conditions to study the photocatalytic properties of relevant planetary minerals. Our results tentatively show degradation of several compounds and preservation of others.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oden, L.L.; O`Connor, W.K.; Turner, P.C.
1993-11-19
This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc meltingmore » furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.« less
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Raychowdhury, Prishati; Gundlapalli, Prabhakar
2015-06-01
Design of critical facilities such as nuclear power plant requires an accurate and precise evaluation of seismic demands, as any failure of these facilities poses immense threat to the community. Design complexity of these structures reinforces the necessity of a robust 3D modeling and analysis of the structure and the soil-foundation interface. Moreover, it is important to consider the multiple components of ground motion during time history analysis for a realistic simulation. Present study is focused on investigating the seismic response of a nuclear containment structure considering nonlinear Winkler-based approach to model the soil-foundation interface using a distributed array of inelastic springs, dashpots and gap elements. It is observed from this study that the natural period of the structure increases about 10 %, whereas the force demands decreases up to 24 % by considering the soil-structure interaction. Further, it is observed that foundation deformations, such as rotation and sliding are affected by the embedment ratio, indicating an increase of up to 56 % in these responses for a reduction of embedment from 0.5 to 0.05× the width of the footing.
Experimental facility for testing nuclear instruments for planetary landing missions
NASA Astrophysics Data System (ADS)
Golovin, Dmitry; Mitrofanov, Igor; Litvak, Maxim; Kozyrev, Alexander; Sanin, Anton; Vostrukhin, Andrey
2017-04-01
The experimental facility for testing and calibration of nuclear planetology instruments has been built in the frame of JINR and Space Research Institute (Moscow) cooperation. The Martian soil model from silicate glass with dimensions 3.82 x 3.21 m and total weight near 30 tons has been assembled in the facility. The glass material was chosen for imitation of dry Martian regolith. The heterogeneous model has been proposed and developed to achieve the most possible similarity with Martian soil in part of the average elemental composition by adding layers of necessary materials, such as iron, aluminum, and chlorine. The presence of subsurface water ice is simulated by adding layers of polyethylene at different depths inside glass model assembly. Neutron generator was used as a neutron source to induce characteristic gamma rays for testing active neutron and gamma spectrometers to define elements composition of the model. The instrumentation was able to detect gamma lines attributed to H, O, Na, Mg, Al, Si, Cl, K, Ca and Fe. The identified elements compose up to 95 wt % of total mass of the planetary soil model. This results will be used for designing scientific instruments to performing experiments of active neutron and gamma ray spectroscopy on the surface of the planets during Russian and international missions Luna-Glob, Luna-Resource and ExoMars-2020.
Firoozi, Ali Akbar; Taha, Mohd Raihan; Mir Moammad Hosseini, S M; Firoozi, Ali Asghar
2014-01-01
Deformation of quay walls is one of the main sources of damage to port facility while liquefaction of backfill and base soil of the wall are the main reasons for failures of quay walls. During earthquakes, the most susceptible materials for liquefaction in seashore regions are loose saturated sand. In this study, effects of enhancing the wall width and the soil improvement on the behavior of gravity quay walls are examined in order to obtain the optimum improved region. The FLAC 2D software was used for analyzing and modeling progressed models of soil and loading under difference conditions. Also, the behavior of liquefiable soil is simulated by the use of "Finn" constitutive model in the analysis models. The "Finn" constitutive model is especially created to determine liquefaction phenomena and excess pore pressure generation.
Taha, Mohd Raihan; Mir Moammad Hosseini, S. M.
2014-01-01
Deformation of quay walls is one of the main sources of damage to port facility while liquefaction of backfill and base soil of the wall are the main reasons for failures of quay walls. During earthquakes, the most susceptible materials for liquefaction in seashore regions are loose saturated sand. In this study, effects of enhancing the wall width and the soil improvement on the behavior of gravity quay walls are examined in order to obtain the optimum improved region. The FLAC 2D software was used for analyzing and modeling progressed models of soil and loading under difference conditions. Also, the behavior of liquefiable soil is simulated by the use of “Finn” constitutive model in the analysis models. The “Finn” constitutive model is especially created to determine liquefaction phenomena and excess pore pressure generation. PMID:25126595
Electrical Grounding - a Field for Geophysicists and Electrical Engineers Partnership
NASA Astrophysics Data System (ADS)
Freire, P. F.; Pane, E.; Guaraldo, N.
2012-12-01
Technology for designing ground electrodes for high-voltage direct current transmission systems (HVDC) has being using in the last years, deep soil models based on a wide range of geophysical methods. These models shall include detailed representation of shallow soil, down to 100 meters, in order to allow the evaluation of the soil conditions where the ground electrodes will be buried. Also deep soil models are needed, to be used for the interference studies, which shall represent a soil volume of about 15 km deep and a surface area of about 15 to 30 km radius. Large facilities for power plants (hydroelectric and wind farms, for example) and industrial complexes (such as petrochemical plants) has become usual at the current stage of Brazil industrialization. Grounding mats for these facilities are made of a buried cooper mesh, interconnected to a wide variety of metallic masses, such as steel reinforced concrete foundations, ducts in general etc. These grounding systems may present dimensions with the order of hundreds of meters, and, at least in Brazil, are usually calculated by using electrical resistivity soil models, based on short spacing Wenner measurements (with maximum spacing of about 64 m.). The soil model shall be the best possible representation of the environment in which the grounding electrodes are immersed, for the purpose of calculation of resistance or for digital simulation. The model to be obtained is limited by the amount and quality of soil resistivity measurements are available, and the resources to be used in the calculations and simulations. Geophysics uses a wide range of technologies for exploring subsoil, ranging from surface measurements to wells logging - seismic, gravimetric, magnetic, electrical, electromagnetic and radiometric. The electrical and electromagnetic methods includes various measurement techniques (Wenner, Schlumberger, TDEM, Magneto-telluric etc.), which together allow the development of complex resistivity soil models, layered stratified or showing lateral variations, ranging down to several tens of kilometers deep, reaching the crust-mantle interface (typically with the order of 30-40 km). This work aims to analyze the constraints of the current soil models being used for grounding electrodes design, and suggests the need of a soil modeling methodology compatible with large grounding systems. Concerning the aspects related to soil modeling, electrical engineers need to get aware of geophysics resources, such as: - geophysical techniques for soil electrical resistivity prospection (down to about 15 kilometers deep); and - techniques for converting field measured data, from many different geophysical techniques, into adequate soil models for grounding grid simulation. It is also important to equalize the basic knowledge for the professionals that are working together for the specific purpose of soil modeling for electrical grounding studies. The authors have experienced the situation of electrical engineers working with geophysicists, but it was not clear for the latter the effective need of the electrical engineers, and for the engineers it was unknown the available geophysical resources, and also, what to do convert the large amount of soil resistivity data into a reliable soil model.
Survival of a microbial soil community under Martian conditions
NASA Astrophysics Data System (ADS)
Hansen, A. A.; Noernberg, P.; Merrison, J.; Lomstein, B. Aa.; Finster, K. W.
2003-04-01
Because of the similarities between Earth and Mars early history the hypothesis was forwarded that Mars is a site where extraterrestrial life might have and/or may still occur(red). Sample-return missions are planned by NASA and ESA to test this hypothesis. The enormous economic costs and the logistic challenges of these missions make earth-based model facilities inevitable. The Mars simulation system at University of Aarhus, Denmark allows microbiological experiments under Mars analogue conditions. Thus detailed studies on the effect of Mars environmental conditions on the survival and the activity of a natural microbial soil community were carried out. Changes in the soil community were determined with a suite of different approaches: 1) total microbial respiration activity was investigated with 14C-glucose, 2) the physiological profile was investigated by the EcoLog-system, 3) colony forming units were determined by plate counts and 4) the microbial diversity on the molecular level was accessed with Denaturing Gradient Gel Electrophoresis. The simulation experiments showed that a part of the bacterial community survived Martian conditions corresponding to 9 Sol. These and future simulation experiments will contribute to our understanding of the possibility for extraterrestrial and terrestrial life on Mars.
Establishing a NORM based radiation calibration facility.
Wallace, J
2016-05-01
An environmental radiation calibration facility has been constructed by the Radiation and Nuclear Sciences unit of Queensland Health at the Forensic and Scientific Services Coopers Plains campus in Brisbane. This facility consists of five low density concrete pads, spiked with a NORM source, to simulate soil and effectively provide a number of semi-infinite uniformly distributed sources for improved energy response calibrations of radiation equipment used in NORM measurements. The pads have been sealed with an environmental epoxy compound to restrict radon loss and so enhance the quality of secular equilibrium achieved. Monte Carlo models (MCNP),used to establish suitable design parameters and identify appropriate geometric correction factors linking the air kerma measured above these calibration pads to that predicted for an infinite plane using adjusted ICRU53 data, are discussed. Use of these correction factors as well as adjustments for cosmic radiation and the impact of surrounding low levels of NORM in the soil, allows for good agreement between the radiation fields predicted and measured above the pads at both 0.15 m and 1 m. Copyright © 2016 Elsevier Ltd. All rights reserved.
Developing a Hydrologic Assessment Tool for Designing Bioretention in a watershed
NASA Astrophysics Data System (ADS)
Baek, Sangsoo; Ligaray, Mayzonee; Park, Jeong-Pyo; Kwon, Yongsung; Cho, Kyung Hwa
2017-04-01
Continuous urbanization has negatively impacted the ecological and hydrological environments at the global, regional, and local scales. This issue was addressed by developing Low Impact Development (LID) practices to deliver better hydrologic function and improve the environmental, economic, social and cultural outcomes. This study developed a modeling software to simulate and optimize bioretentions among LID in a given watershed. The model calculated a detailed soil infiltration process in bioretention with hydrological conditions and hydraulic facilities (e.g. riser and underdrain) and also generated an optimized plan using Flow Duration Curve (FDC). The optimization result from the simulation demonstrated that the location and size of bioretention, as well as the soil texture, are important elements for an efficient bioretention. We hope that the developed software in this study could be useful for establishing an appropriate scheme of LID installment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rockhold, Mark L.; White, Mark D.; Freeman, Eugene J.
This letter report documents initial numerical analyses conducted by PNNL to provide support for a feasibility study on decommissioning of the canyon buildings at Hanford. The 221-U facility is the first of the major canyon buildings to be decommissioned. The specific objective of this modeling effort was to provide estimates of potential rates of migration of residual contaminants out of the 221-U facility during the first 40 years after decommissioning. If minimal contaminant migration is predicted to occur from the facility during this time period, then the structure may be deemed to provide a level of groundwater protection that ismore » essentially equivalent to the liner and leachate collection systems that are required at conventional landfills. The STOMP code was used to simulate transport of selected radionuclides out of a canyon building, representative of the 221-U facility after decommissioning, for a period of 40 years. Simulation results indicate that none of the selected radionuclides that were modeled migrated beyond the concrete structure of the facility during the 40-year period of interest. Jacques (2001) identified other potential contaminants in the 221-U facility that were not modeled, however, including kerosene, phenol, and various metals. Modeling of these contaminants was beyond the scope of this preliminary effort due to increased complexity. Simulation results indicate that contaminant release from the canyon buildings will be diffusion controlled at early times. Advection is expected to become much more important at later times, after contaminants have diffused out of the facility and into the surrounding soil environment. After contaminants have diffused out of the facility, surface infiltration covers will become very important for mitigating further transport of contaminants in the underlying vadose zone and groundwater.« less
The MICE facility - a new tool to study plant-soil C cycling with a holistic approach.
Studer, Mirjam S; Künzli, Roland; Maier, Reto; Schmidt, Michael W I; Siegwolf, Rolf T W; Woodhatch, Ivan; Abiven, Samuel
2017-06-01
Plant-soil interactions are recognized to play a crucial role in the ecosystem response to climate change. We developed a facility to disentangle the complex interactions behind the plant-soil C feedback mechanisms. The MICE ('Multi-Isotope labelling in a Controlled Environment') facility consists of two climate chambers with independent control of the atmospheric conditions (light, CO 2 , temperature, humidity) and the soil environment (temperature, moisture). Each chamber holds 15 plant-soil systems with hermetical separation of the shared above ground (shoots) from the individual belowground compartments (roots, rhizosphere, soil). Stable isotopes (e.g. 13 C, 15 N, 2 H, 18 O) can be added to either compartment and traced within the whole system. The soil CO 2 efflux rate is monitored, and plant material, leached soil water and gas samples are taken frequently. The facility is a powerful tool to improve our mechanistic understanding of plant-soil interactions that drive the C cycle feedback to climate change.
Documenting Surface and Sub-surface Volatiles While Drilling in Frozen Lunar Simulant
NASA Technical Reports Server (NTRS)
Roush, T. L.; Cook, A. M.; Colaprete, A.; Bielawski, R.; Fritzler, E.; Benton, J.; White, B.; Forgione, J.; Kleinhenz, J.; Smith, J.;
2017-01-01
NASA's Resource Prospector (RP) mission is intended to characterize the three-dimensional nature of volatiles in lunar polar regions and permanently shadowed regions. RP is slated to carry two instruments for prospecting purposes. These include the Neutron Spectrometer System (NSS) and Near-Infrared Volatile Spectrometer System (NIRVSS). A Honybee Robotics drill (HRD) is intended to sample to depths of 1 m, and deliver a sample to a crucible that is processed by the Oxygen Volatile Extraction Node (OVEN) where the soil is heated and evolved gas is delivered to the gas chromatograph / mass spectrometer of the Lunar Advanced Volatile Analysis system (LAVA). For several years, tests of various sub-systems have been undertaken in a large cryo-vacuum chamber facility (VF-13) located at Glenn Research Center. In these tests a large tube (1.2 m high x 25.4 cm diameter) is filled with lunar simulant, NU-LHT-3M, prepared with known abundances of water. There are thermo-couples embedded at different depths, and also across the surface of the soil tube. The soil tube is placed in the chamber and cooled with LN2 as the pressure is reduced to approx.5-6x10(exp -6) Torr. Here we discuss May 2016 tests where two soil tubes were prepared and placed in the chamber. Also located in the chamber were 5 crucibles, an Inficon mass spectrometer, and a trolly permitting x-y translation, where the HRD and NIRVSS, were mounted. The shroud surrounding the soil tube was held at different temperatures for each tube to simulate a warm and cold lunar environment.
A Cost Framework for the Economic Feasibility of Wide-Scale Biochar Production
NASA Astrophysics Data System (ADS)
Pourhashem, G.; Masiello, C. A.; Medlock, K. B., III
2017-12-01
Biochar is a product of biomass pyrolysis, one of the main thermal pathways of producing biofuels. In addition to sequestering carbon, biochar's soil application helps sustainable agriculture by enhancing soil's structure and ecological functions, as well as lowering NO release from fertilized soils. However, wide-scale biochar land amendment has been limited in part due to its high cost. To examine biochar's cost dynamics, we develop a comprehensive framework for a representative biochar production facility and identify system inputs that are the key drivers of cost and profitability. We assess the production cost of fast and slow pyrolysis-biochar considering a range of parameters e.g. biomass type, process design and scale. We analyzed techno-economic cost data for producing biochar using simulated data from academic literature, and active producer data collected under confidentiality agreement. The combined approach was used to enhance the depth of the dataset and allowed for a reasonable check on published simulated data. Fast and slow pyrolysis have different biofuel and biochar yields and profit. A slow pyrolysis facility recovers its expenses mainly through biochar sale while a fast pyrolysis facility generates its primary revenue through biofuel sale, largely considering biochar a byproduct. Unlike fast pyrolysis that has received most attention in techno-economic studies, publicly available techno-economic data of slow pyrolysis is sparse. This limits the ability to run a thorough cost-benefit analysis to inform the feasibility of wider adoption of biochar for capturing its carbon sequestration and broader environmental benefits. Our model allows for consideration of various market-based policy instruments and can be used as an analytical decision making tool for investors and policy makers to estimate the cost and optimum facility size. This dynamic framework can also be adapted to account for the availability of new data as technology improves and industry evolves. Our study helps identify pyrolysis pathways that are most economically suitable for scaling up biochar production for ecosystem carbon storage and environmental improvement. Finally, we discuss the market development or policy strategies that can make biochar an attractive environmental mitigation tool for decision makers.
Using Numerical Modeling to Simulate Space Capsule Ground Landings
NASA Technical Reports Server (NTRS)
Heymsfield, Ernie; Fasanella, Edwin L.
2009-01-01
Experimental work is being conducted at the National Aeronautics and Space Administration s (NASA) Langley Research Center (LaRC) to investigate ground landing capabilities of the Orion crew exploration vehicle (CEV). The Orion capsule is NASA s replacement for the Space Shuttle. The Orion capsule will service the International Space Station and be used for future space missions to the Moon and to Mars. To evaluate the feasibility of Orion ground landings, a series of capsule impact tests are being performed at the NASA Langley Landing and Impact Research Facility (LandIR). The experimental results derived at LandIR provide means to validate and calibrate nonlinear dynamic finite element models, which are also being developed during this study. Because of the high cost and time involvement intrinsic to full-scale testing, numerical simulations are favored over experimental work. Subsequent to a numerical model validated by actual test responses, impact simulations will be conducted to study multiple impact scenarios not practical to test. Twenty-one swing tests using the LandIR gantry were conducted during the June 07 through October 07 time period to evaluate the Orion s impact response. Results for two capsule initial pitch angles, 0deg and -15deg , along with their computer simulations using LS-DYNA are presented in this article. A soil-vehicle friction coefficient of 0.45 was determined by comparing the test stopping distance with computer simulations. In addition, soil modeling accuracy is presented by comparing vertical penetrometer impact tests with computer simulations for the soil model used during the swing tests.
Biochar from Pyrolysis of Biosolids for Nutrient Adsorption and Turfgrass Cultivation.
Carey, D E; McNamara, P J; Zitomer, D H
2015-12-01
At water resource recovery facilities, nutrient removal is often required and energy recovery is an ever-increasing goal. Pyrolysis may be a sustainable process for handling wastewater biosolids because energy can be recovered in the py-gas and py-oil. Additionally, the biochar produced has value as a soil conditioner. The objective of this work was to determine if biochar could be used to adsorb ammonia from biosolids filtrate and subsequently be applied as a soil conditioner to improve grass growth. The maximum carrying capacity of base modified biochar for NH3-N was 5.3 mg/g. Biochar containing adsorbed ammonium and potassium was applied to laboratory planters simulating golf course putting greens to cultivate Kentucky bluegrass. Planters that contained nutrient-laden biochar proliferated at a statistically higher rate than planters that contained biosolids, unmodified biochar, peat, or no additive. Nutrient-laden biochar performed as well as commercial inorganic fertilizer with no statistical difference in growth rates. Biochar from digested biosolids successfully immobilized NH3-N from wastewater and served as a beneficial soil amendment. This process offers a means to recover and recycle nutrients from water resource recovery facilities.
Soil Water and Temperature System (SWATS) Instrument Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, David R.
2016-04-01
The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models tomore » determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oden, L.L.; O`Conner, W.K.; Turner, P.C.
1993-11-19
This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc meltingmore » furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.« less
ECOUL: an interactive computer tool to study hydraulic behavior of swelling and rigid soils
NASA Astrophysics Data System (ADS)
Perrier, Edith; Garnier, Patricia; Leclerc, Christian
2002-11-01
ECOUL is an interactive, didactic software package which simulates vertical water flow in unsaturated soils. End-users are given an easily-used tool to predict the evolution of the soil water profile, with a large range of possible boundary conditions, through a classical numerical solution scheme for the Richards equation. Soils must be characterized by water retention curves and hydraulic conductivity curves, the form of which can be chosen among different analytical expressions from the literature. When the parameters are unknown, an inverse method is provided to estimate them from available experimental flow data. A significant original feature of the software is to include recent algorithms extending the water flow model to deal with deforming porous media: widespread swelling soils, the volume of which varies as a function of water content, must be described by a third hydraulic characteristic property, the deformation curve. Again, estimation of the parameters by means of inverse procedures and visualization facilities enable exploration, understanding and then prediction of soil hydraulic behavior under various experimental conditions.
Corwin, Dennis L.; Yemoto, Kevin; Clary, Wes; Banuelos, Gary; Skaggs, Todd H.; Lesch, Scott M.
2017-01-01
Though more costly than petroleum-based fuels and a minor component of overall military fuel sources, biofuels are nonetheless strategically valuable to the military because of intentional reliance on multiple, reliable, secure fuel sources. Significant reduction in oilseed biofuel cost occurs when grown on marginally productive saline-sodic soils plentiful in California’s San Joaquin Valley (SJV). The objective is to evaluate the feasibility of oilseed production on marginal soils in the SJV to support a 115 ML yr−1 biofuel conversion facility. The feasibility evaluation involves: (1) development of an Ida Gold mustard oilseed yield model for marginal soils; (2) identification of marginally productive soils; (3) development of a spatial database of edaphic factors influencing oilseed yield and (4) performance of Monte Carlo simulations showing potential biofuel production on marginally productive SJV soils. The model indicates oilseed yield is related to boron, salinity, leaching fraction, and water content at field capacity. Monte Carlo simulations for the entire SJV fit a shifted gamma probability density function: Q = 68.986 + gamma (6.134,5.285), where Q is biofuel production in ML yr−1. The shifted gamma cumulative density function indicates a 0.15–0.17 probability of meeting the target biofuel-production level of 115 ML yr−1, making adequate biofuel production unlikely. PMID:29036925
Joy, Stacey R; Bartelt-Hunt, Shannon L; Snow, Daniel D; Gilley, John E; Woodbury, Bryan L; Parker, David B; Marx, David B; Li, Xu
2013-01-01
Due to the use of antimicrobials in livestock production, residual antimicrobials and antimicrobial resistance genes (ARGs) could enter the environment following the land application of animal wastes and could further contaminate surface and groundwater. The objective of this study was to determine the effect of various manure land application methods on the fate and transport of antimicrobials and ARGs in soil and runoff following land application of swine manure slurry. Swine manure slurries were obtained from facilities housing pigs that were fed chlortetracyline, tylosin or bacitracin and were land applied via broadcast, incorporation, and injection methods. Three rainfall simulation tests were then performed on amended and control plots. Results show that land application methods had no statistically significant effect on the aqueous concentrations of antimicrobials in runoff. However, among the three application methods tested broadcast resulted in the highest total mass loading of antimicrobials in runoff from the three rainfall simulation tests. The aqueous concentrations of chlortetracyline and tylosin in runoff decreased in consecutive rainfall events, although the trend was only statistically significant for tylosin. For ARGs, broadcast resulted in significantly higher erm genes in runoff than did incorporation and injection methods. In soil, the effects of land application methods on the fate of antimicrobials in top soil were compound specific. No clear trend was observed in the ARG levels in soil, likely because different host cells may respond differently to the soil environments created by various land application methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, J.; Kannan, K.; Cheng, J.
2008-11-15
Electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11,400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148,000 pg/g dry weight for workshop-floor dust, and 854more » to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/Fs via soil/dust ingestion and dermal exposure were 2 orders of magnitude higher in people at e-waste recycling facilities than in people at the chemical industrial site, implying greater health risk for humans from dioxin exposures at e-waste recycling facilities. The calculated TEQ exposures for e-waste workers from dust and soil ingestion alone were 2-3 orders of magnitude greater than the exposures from soils in reference locations. 37 refs., 1 fig., 2 tabs.« less
Constitutive Soil Properties for Unwashed Sand and Kennedy Space Center
NASA Technical Reports Server (NTRS)
Thomas, Michael A.; Chitty, Daniel E.; Gildea, Martin L.; T'Kindt, Casey M.
2008-01-01
Accurate soil models are required for numerical simulations of land landings for the Orion Crew Exploration Vehicle. This report provides constitutive material models for one soil, unwashed sand, from NASA Langley's gantry drop test facility and three soils from Kennedy Space Center (KSC). The four soil models are based on mechanical and compressive behavior observed during geotechnical laboratory testing of remolded soil samples. The test specimens were reconstituted to measured in situ density and moisture content. Tests included: triaxial compression, hydrostatic compression, and uniaxial strain. A fit to the triaxial test results defines the strength envelope. Hydrostatic and uniaxial tests define the compressibility. The constitutive properties are presented in the format of LS-DYNA Material Model 5: Soil and Foam. However, the laboratory test data provided can be used to construct other material models. The four soil models are intended to be specific to the soil conditions discussed in the report. The unwashed sand model represents clayey sand at high density. The KSC models represent three distinct coastal sand conditions: low density dry sand, high density in-situ moisture sand, and high density flooded sand. It is possible to approximate other sands with these models, but the results would be unverified without geotechnical tests to confirm similar soil behavior.
NASA Astrophysics Data System (ADS)
Shvetsov, V. N.; Dubasov, P. V.; Golovin, D. V.; Kozyrev, A. S.; Krylov, A. R.; Krylov, V. A.; Litvak, M. L.; Malakhov, A. V.; Mitrofanov, I. G.; Mokrousov, M. I.; Sanin, A. B.; Timoshenko, G. N.; Vostrukhin, A. A.; Zontikov, A. O.
2017-07-01
The results of the Dynamic Albedo of Neutrons (DAN) instrument ground tests in the passive mode of operation are presented in comparison with the numerical calculations. These test series were conducted to support the current surface measurements of DAN onboard the MSL Curiosity rover. The instrument sensitivity to detect thin subsurface layers of water ice buried at different depths in the analog of Martian soil has been evaluated during these tests. The experiments have been done with a radioisotope Pu-Be neutron source (analog of the MMRTG neutron source onboard the Curiosity rover) and the Martian soil model assembled from silicon-rich window glass pane. Water ice layers were simulated with polyethylene sheets. All experiments have been performed at the test facility built at the Joint Institute for Nuclear Research (Dubna, Russia).
NASA Astrophysics Data System (ADS)
Albrecht, Achim; Miquel, Stephan
2015-04-01
Performance assessments for surface nuclear waste disposal facilities require simulation of transfer processes from the waste canisters to a reference group living near-by. Such simulations need to be extended over several hundred to hundred thousand years, depending on waste type, restraining possibilities to represent short term system complexity and variability. Related modelling can be simplified as long as processes are represented conservatively with assessment endpoints estimated larger compared to more realistic modelling approaches. The indicators are doses for radionuclides (RN) and risk factors for toxic chemicals (TC, i.e. heavy metals, nitrate). We discuss a new simulation tool (SCM-Andra-multilayer-model, SAMM) that, among others, allows to model situations where RN/TC move through a soil profile characterised by temporal undersaturation and root growth (soil-plant subsystem of the biosphere model compared to the adjacent saturated geosphere). SAMM describes all relevant transfer and reaction processes (advection, diffusion, root transport, radioactive decay, chemical reactions incl. sorption - desorption) using well known differential equations solved numerically within MATLAB with scenario description and parameterisation defined in Excel sheets. With this conservative approach in mind, we apply global parameters for which the solid-solution (Kd) or soil-to-plant (TF) distribution coefficients are the most relevant. Empirical data are available for homogeneous situations, such as one compartment pot experiments, but rare for entire soil profiles. Similarly soil hydrology, in particular upward and downward advective fluxes are modelled using an empirical approach solely based on key soil hydrological parameters (precipitation, evapotranspiration, irrigation, water table level) and the soil porosity. Variability of soil hydrology in space and time, likely to change drastically even on hourly bases (i.e. intense precipitation event) or within a single column (i.e. preferential flow and capillary rise) is nonetheless represented by annual averages. Changing water saturation and associated variability in redox conditions, RN/TC speciation and mobility, represents an example, where the simulation abilities with SAMM are beyond our capacity of in situ observation and measurement, restricting of course our efforts of validation. The latter is thus limited to simpler cases with parameter values stable within the soil column or throughout time. The study of more complex situations is possible with the SAMM simulation tool. For illustration, we give at least two examples, one for a RN and one for a TC; we evaluate the species initially present as well as the daughter RN and the product of reactivity of the TC. Focus is given to situations where RN/TC are present at the base of a soil column; simulation end points are concentrations at the soil surface and for specified agricultural plant species. Dose and risk calculations based on these data are carried out in classical food chain assessment tools. These illustrations are for generic sites and situations for which at least a minor component of upward advective movement is considered, keeping in mind the conservative approach mentioned above.
Modeling soil organic carbon stocks and changes in Spain using the GEFSOC system
NASA Astrophysics Data System (ADS)
Álvaro-Fuentes, Jorge; Easter, Mark; Cantero-Martínez, Carlos; Paustian, Keith
2010-05-01
Currently, there is little information about soil organic carbon (SOC) stocks in Spain. To date the effects of land-use and soil management on SOC stocks in Spain have been evaluated in experimental fields under certain soil and climate conditions. However, these field experiments do not account for the spatial variability in management, cropping systems and soil and climate characteristics that exist in the whole territory. More realistic approaches like ecosystem-level dynamic simulation systems linked to geographic information systems (GIS) allow better assessments of SOC stocks at a regional or national level. The Global Environmental Facility Soil Organic Carbon (GEFSOC) system was recently built for this purpose (Milne et al., 2007) and it incorporates three widely used models for estimating SOC dynamics: (a) the Century ecosystem model; (b) the RothC soil C decomposition model; and (c) the Intergovernmental Panel on Climate Change (IPCC) method for assessing soil C at regional scales. We modeled 9.5 Mha in northeast Spain using the GEFSOC system to predict SOC stocks and changes comprising: pasture, forest, cereal-fallow, cereal monoculture, orchards, rice, irrigated land and grapes and olives. The spatial distribution of the different land use categories and their change over time was obtained from the European Corine database and from Spanish census data on land use from 1926 to 2007. At the same time, current and historical management information was collected from different sources in order to have a fairly well picture of changes in land use and management for this area. Soil parameters needed by the system were obtained from the European soil map (1 km x 1 km) and climate data was produced by the Meteorology State Agency (Ministry of the Environment and Rural and Marine Environs of Spain). The SOC stocks simulated were validated with SOC values from the European SOC map and from other national studies. Modeled SOC results suggested that spatial-based approaches are crucial for quantify SOC stocks and changes in Spain.
NASA Technical Reports Server (NTRS)
Lam, Chiu-Wing; James, John T.; Latch, Judith N.; Hamilton, Raymond F Jr; Holian, Andrij
2002-01-01
Volcanic ashes from Arizona and Hawaii, with chemical and mineral properties similar to those of lunar and Martian soils, respectively, are used by the National Aeronautics and Space Administration (NASA) to simulate lunar and Martian environments for instrument tests. NASA needs toxicity data on these volcanic soils to assess health risks from potential exposures of workers in facilities where these soil simulants are used. In this study we investigated the acute effects of lunar soil simulant (LSS) and Martian soil simulant (MSS), as a complement to a histopathological study assessing their subchronic effects (Lam et al., 2002). Fine dust of LSS, MSS, TiO(2), or quartz suspended in saline was intratracheally instilled into C57Bl/6J mice (4/group) in single doses of 0.1 mg/mouse or 1 mg/mouse. The mice were euthanized 4 or 24 h after the dust treatment, and bronchoalveolar lavage fluid (BALF) was obtained. Statistically significant lower cell viability and higher total protein concentration in the BALF were seen only in mice treated with the high dose of quartz for 4 h and with the high dose of MSS or quartz for 24 h, compared to mice treated only with saline. A significant increase in the percentage of neutrophils was not observed with any dust-treated group at 4 h after the instillation, but was observed after 24 h in all the dust-treated groups. This observation indicates that these dusts were not acutely toxic and the effects were gradual; it took some time for neutrophils to be recruited into and accumulate significantly in the lung. A statistically significant increase in apoptosis of lavaged macrophages from mice 4 h after treatment was found only in the high-dose silica group. The overall results of this study on the acute effects of these dusts in the lung indicate that LSS is slightly more toxic than TiO(2), and that MSS is comparable to quartz. These results were consistent with the subchronic histopathological findings in that the order of severity of lung toxicity was TiO(2) < LSS < MSS < quartz.
NASA Technical Reports Server (NTRS)
Gallo, Christopher A.; Agui, Juan H.; Creager, Colin M.; Oravec, Heather A.
2012-01-01
An Excavation System Model has been written to simulate the collection and transportation of regolith on the moon. The calculations in this model include an estimation of the forces on the digging tool as a result of excavation into the regolith. Verification testing has been performed and the forces recorded from this testing were compared to the calculated theoretical data. The Northern Centre for Advanced Technology Inc. rovers were tested at the NASA Glenn Research Center Simulated Lunar Operations facility. This testing was in support of the In-Situ Resource Utilization program Innovative Partnership Program. Testing occurred in soils developed at the Glenn Research Center which are a mixture of different types of sands and whose soil properties have been well characterized. This testing is part of an ongoing correlation of actual field test data to the blade forces calculated by the Excavation System Model. The results from this series of tests compared reasonably with the predicted values from the code.
Biodegradation of N-nitrosodimethylamine in soil from a water reclamation facility
Bradley, Paul M.; Carr, Steve A.; Baird, Rodger B.; Chapelle, Francis H.
2005-01-01
The potential introduction of N-nitrosodimethylamine (NDMA) into groundwater during water reclamation activities poses a significant risk to groundwater drinking supplies. Greater than 54% biodegradation of N-[methyl-14C]NDMA to 14CO2 or to 14CO2 and 14CH4 was observed in soil from a water reclamation facility under oxic or anoxic conditions, respectively. Likewise, biodegradation was significant in microcosms containing soil with no history of NDMA contamination. These results indicate that aerobic and anaerobic biodegradation of NDMA may be an effective component of NDMA attenuation in water reclamation facility soils.
NASA Astrophysics Data System (ADS)
Krzyśko-Łupicka, Teresa; Cybulska, Krystyna; Kołosowski, Paweł; Telesiński, Arkadiusz; Sudoł, Adam
2017-11-01
Survival of microorganisms in soils from treatment facility and landfill of wooden railway sleepers contaminated with creosote oil as well as in two types of soils with different content of organic carbon, treated with creosote oil vapors, was assessed. Microbiological assays including determination of: the biomass of living microorganisms method and the number of proteolytic, lipolytic and amylolytic microorganisms were carried out under laboratory conditions. Chromatography analysis of the soil extract from railway sleepers treatment facility was performed using GC/MS. The highest biomass and the number of tested microorganisms were determined in soils from wooden railway sleepers landfill, while the lowest in soil from the railway sleepers treatment facility. Vapors of creosote oil, regardless of the soil type, significantly increased only the number of lipolytic bacteria.
Johnson Space Center's Regenerative Life Support Systems Test Bed
NASA Technical Reports Server (NTRS)
Barta, D. J.; Henninger, D. L.
1996-01-01
The Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for human testing of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. The facility supports NASA's Advanced Life Support (ALS) Program. The facility is comprised of two large scale plant growth chambers, each with approximately 11 m2 growing area. The root zone in each chamber is configurable for hydroponic or solid media plant culture systems. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), is capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in a planetary surface habitat; the other chamber, the Ambient Pressure Growth Chamber (APGC) operates at ambient atmospheric pressure. The air lock of the VPGC is currently being outfitted for short duration (1 to 15 day) human habitation at ambient pressures. Testing with and without human subjects will focus on 1) integration of biological and physicochemical air and water revitalization systems; 2) effect of atmospheric pressure on system performance; 3) planetary resource utilization for ALS systems, in which solid substrates (simulated planetary soils or manufactured soils) are used in selected crop growth studies; 4) environmental microbiology and toxicology; 5) monitoring and control strategies; and 6) plant growth systems design. Included are descriptions of the overall design of the test facility, including discussions of the atmospheric conditioning, thermal control, lighting, and nutrient delivery systems.
Johnson Space Center's Regenerative Life Support Systems Test Bed
NASA Astrophysics Data System (ADS)
Barta, D. J.; Henninger, D. L.
1996-01-01
The Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for human testing of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. The facility supports NASA's Advanced Life Support (ALS) Program. The facility is comprised of two large scale plant growth chambers, each with approximately 11 m^2 growing area. The root zone in each chamber is configurable for hydroponic or solid media plant culture systems. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), is capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in a planetary surface habitat; the other chamber, the Ambient Pressure Growth Chamber (APGC) operates at ambient atmospheric pressure. The air lock of the VPGC is currently being outfitted for short duration (1 to 15 day) human habitation at ambient pressures. Testing with and without human subjects will focus on 1) integration of biological and physicochemical air and water revitalization systems; 2) effect of atmospheric pressure on system performance; 3) planetary resource utilization for ALS systems, in which solid substrates (simulated planetary soils or manufactured soils) are used in selected crop growth studies; 4) environmental microbiology and toxicology; 5) monitoring and control strategies; and 6) plant growth systems design. Included are descriptions of the overall design of the test facility, including discussions of the atmospheric conditioning, thermal control, lighting, and nutrient delivery systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing Ma; Rudolf Addink; Sehun Yun
2009-10-01
In this study, 11 2,3,7,8-substituted PBDD/Fs and 10 polybrominated diphenyl ether (PBDE) congeners were determined in electronic shredder waste, workshop-floor dust, soil, and leaves (of plants on the grounds of the facility) from a large-scale electronic wastes (e-waste) recycling facility and in surface soil from a chemical-industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) as well as agricultural areas in eastern China. Total PBDD/F concentrations in environmental samples were in the range of 113-818 pg/g dry wt (dw) for leaves, 392-18,500 pg/g dw for electronic shredder residues, 716-80,0000 pg/g dw for soil samples, andmore » 89,600-14,3000 pg/g dw for workshop-floor dust from the e-waste recycling facility and in a range from nondetect (ND) to 427 pg/g dw in soil from the chemical-industrial complex. The highest mean concentrations of total PBDD/Fs were found in soil samples and workshop-floor dust from the e-waste recycling facility. The dioxin-like toxic equivalent (measured as TEQ) concentrations of PBDD/Fs were greater than the TEQs of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) reported in our previous study for the same set of samples. The concentrations of PBDFs were several orders of magnitude higher than the concentrations of PBDDs in samples from the e-waste facility or from soil from the chemical-industrial complex. A significant correlation was found between the concentrations of {Sigma}PBDD/Fs and {Sigma}PBDEs (r = 0.769, p < 0.01) and between SPBDD/Fs and the previously reported SPCDD/F concentrations (r = 0.805, p < 0.01). The estimated daily human intakes of TEQs contributed by PBDD/Fs via soil/dust ingestion and dermal exposures in e-waste recycling facilities were higher than the intakes of TEQs contributed by PCDD/Fs, calculated in our previous study. 45 refs., 2 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Angulo-Martinez, Marta; Alastrué, Juan; Moret-Fernández, David; Beguería, Santiago; López, Mariví; Navas, Ana
2017-04-01
Rainfall simulation experiments were carried out in order to study soil crust formation and its relation with soil infiltration parameters—sorptivity (S) and hydraulic conductivity (K)—on four common agricultural soils with contrasted properties; namely, Cambisol, Gypsisol, Solonchak, and Solonetz. Three different rainfall simulations, replicated three times each of them, were performed over the soils. Prior to rainfall simulations all soils were mechanically tilled with a rototiller to create similar soil surface conditions and homogeneous soils. Rainfall simulation parameters were monitored in real time by a Thies Laser Precipitation Monitor, allowing a complete characterization of simulated rainfall microphysics (drop size and velocity distributions) and integrated variables (accumulated rainfall, intensity and kinetic energy). Once soils dried after the simulations, soil penetration resistance was measured and soil hydraulic parameters, S and K, were estimated using the disc infiltrometry technique. There was little variation in rainfall parameters among simulations. Mean intensity and mean median diameter (D50) varied in simulations 1 ( 0.5 bar), 2 ( 0.8 bar) and 3 ( 1.2 bar) from 26.5 mm h-1 and 0.43 mm (s1) to 40.5 mm h-1 and 0.54 mm (s2) and 41.1 mm h-1 and 0.56 mm for (s3), respectively. Crust formation by soil was explained by D50 and subsequently by the total precipitation amount and the percentage of silt and clay in soil, being Cambisol and Gypsisol the soils that showed more increase in penetration resistance by simulation. All soils showed similar S values by simulations which were explained by rainfall intensity. Different patterns of K were shown by the four soils, which were explained by the combined effect of D50 and intensity, together with soil physico-chemical properties. This study highlights the importance of monitoring all precipitation parameters to determine their effect on different soil processes.
Ma, Jing; Addink, Rudolf; Yun, Sehun; Cheng, Jinping; Wang, Wenhua; Kannan, Kurunthachalam
2009-10-01
The formation and release of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) from the incineration of electronic wastes (e-waste) that contain brominated flame retardants (BFRs) are a concern. However, studies on the determination of PBDD/Fs in environmental samples collected from e-waste recycling facilities are scarce. In this study, 11 2,3,7,8-substituted PBDD/Fs and 10 polybrominated diphenyl ether (PBDE) congeners were determined in electronic shredder waste, workshop-floor dust soil, and leaves (of plants on the grounds of the facility) from a large-scale e-waste recycling facility and in surface soil from a chemical-industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) as well as agricultural areas in eastern China. Total PBDD/F concentrations in environmental samples were in the range of 113-818 pg/g dry wt (dw) for leaves, 392-18500 pg/g dw for electronic shredder residues, 716-800000 pg/g dw for soil samples, and 89600-pg/g dw for workshop-floor dust from the e-waste recycling facility and in a range from nondetect (ND) to 427 pg/g dw in soil from the chemical-industrial complex. The highest mean concentrations of total PBDD/Fs were found in soil samples and workshop-floor dust from the e-waste recycling facility. The dioxin-like toxic equivalent (measured as TEQ) concentrations of PBDD/Fs were greater than the TEQs of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) reported in our previous study for the same set of samples. The concentrations of PBDFs were several orders of magnitude higher than the concentrations of PBDDs in samples from the e-waste facility or from soil from the chemical-industrial complex. A significant correlation was found between the concentrations of sigmaPBDD/Fs and sigmaPBDEs (r = 0.769, p < 0.01) and between sigmaPBDD/Fs and the previously reported sigmaPCDD/F concentrations (r = 0.805, p < 0.01). The estimated daily human intakes of TEQs contributed by PBDD/Fs via soil/dust ingestion and dermal exposures in e-waste recycling facilities were higher than the intakes of TEQs contributed by PCDD/ Fs, calculated in our previous study.
NASA Astrophysics Data System (ADS)
KIM, H.; Lee, D. K.; Yoo, S.
2014-12-01
As regional torrential rains become frequent due to climate change, urban flooding happens very often. That is why it is necessary to prepare for integrated measures against a wide range of rainfall. This study proposes introduction of effective rainwater management facilities to maximize the rainwater runoff reductions and recover natural water circulation for unpredictable extreme rainfall in apartment complex scale. The study site is new apartment complex in Hanam located in east of Seoul, Korea. It has an area of 7.28ha and is analysed using the EPA-SWMM and STORM model. First, it is analyzed that green infrastructure(GI) had efficiency of flood reduction at the various rainfall events and soil characteristics, and then the most effective value of variables are derived. In case of rainfall event, Last 10 years data of 15 minutes were used for analysis. A comparison between A(686mm rainfall during 22days) and B(661mm/4days) knew that soil infiltration of A is 17.08% and B is 5.48% of the rainfall. Reduction of runoff after introduction of the GI of A is 24.76% and B is 6.56%. These results mean that GI is effective to small rainfall intensity, and artificial rainwater retarding reservoir is needed at extreme rainfall. Second, set of target year is conducted for the recovery of hydrological cycle at the predevelopment. And an amount of infiltration, evaporation, surface runoff of the target year and now is analysed on the basis of land coverage, and an arrangement of LID facilities. Third, rainwater management scenarios are established and simulated by the SWMM-LID. Rainwater management facilities include GI(green roof, porous pavement, vegetative swale, ecological pond, and raingarden), and artificial rainwater. Design scenarios are categorized five type: 1)no GI, 2)conventional GI design(current design), 3)intensive GI design, 4)GI design+rainwater retarding reservoir 5)maximized rainwater retarding reservoir. Intensive GI design is to have attribute value to obtain the maximum efficiency for each GI facility with in-depth experts interviews. Climate change scenario is also used to set the capacity of the rainwater management facilities considering the extreme precipitation. These all scenarios are not only simulated for calculating the hydrological balance but analysed the cost for each scenarios effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Thomas J.; Klein, Stephen A.; Ma, Hsi -Yen
Several independent measurements of warm-season soil moisture and surface atmospheric variables recorded at the ARM Southern Great Plains (SGP) research facility are used to estimate the terrestrial component of land-atmosphere coupling (LAC) strength and its regional uncertainty. The observations reveal substantial variation in coupling strength, as estimated from three soil moisture measurements at a single site, as well as across six other sites having varied soil and land cover types. The observational estimates then serve as references for evaluating SGP terrestrial coupling strength in the Community Atmospheric Model coupled to the Community Land Model. These coupled model components are operatedmore » in both a free-running mode and in a controlled configuration, where the atmospheric and land states are reinitialized daily, so that they do not drift very far from observations. Although the controlled simulation deviates less from the observed surface climate than its free-running counterpart, the terrestrial LAC in both configurations is much stronger and displays less spatial variability than the SGP observational estimates. Preliminary investigation of vegetation leaf area index (LAI) substituted for soil moisture suggests that the overly strong coupling between model soil moisture and surface atmospheric variables is associated with too much evaporation from bare ground and too little from the vegetation cover. Lastly, these results imply that model surface characteristics such as LAI, as well as the physical parameterizations involved in the coupling of the land and atmospheric components, are likely to be important sources of the problematical LAC behaviors.« less
Phillips, Thomas J.; Klein, Stephen A.; Ma, Hsi -Yen; ...
2017-10-13
Several independent measurements of warm-season soil moisture and surface atmospheric variables recorded at the ARM Southern Great Plains (SGP) research facility are used to estimate the terrestrial component of land-atmosphere coupling (LAC) strength and its regional uncertainty. The observations reveal substantial variation in coupling strength, as estimated from three soil moisture measurements at a single site, as well as across six other sites having varied soil and land cover types. The observational estimates then serve as references for evaluating SGP terrestrial coupling strength in the Community Atmospheric Model coupled to the Community Land Model. These coupled model components are operatedmore » in both a free-running mode and in a controlled configuration, where the atmospheric and land states are reinitialized daily, so that they do not drift very far from observations. Although the controlled simulation deviates less from the observed surface climate than its free-running counterpart, the terrestrial LAC in both configurations is much stronger and displays less spatial variability than the SGP observational estimates. Preliminary investigation of vegetation leaf area index (LAI) substituted for soil moisture suggests that the overly strong coupling between model soil moisture and surface atmospheric variables is associated with too much evaporation from bare ground and too little from the vegetation cover. Lastly, these results imply that model surface characteristics such as LAI, as well as the physical parameterizations involved in the coupling of the land and atmospheric components, are likely to be important sources of the problematical LAC behaviors.« less
Ma, Jing; Kannan, Kurunthachalam; Cheng, Jinping; Horii, Yuichi; Wu, Qian; Wang, Wenhua
2008-11-15
Environmental pollution arising from electronic waste (e-waste) disposal and recycling has received considerable attention in recent years. Treatment, at low temperatures, of e-wastes that contain polyvinylchloride and related polymers can release polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Although several studies have reported trace metals and polybrominated diphenyl ethers (PBDEs) released from e-waste recycling operations, environmental contamination and human exposure to PCDD/Fs from e-waste recycling operations are less well understood. In this study, electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total PCDD/ Fs including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148000 pg/g dry weight for workshop-floor dust, and 854 to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil (44.5-531 pg/g dry wt) from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels (3.44-33.8 pg/g dry wt) of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/ Fs via soil/dust ingestion and dermal exposure (2.3 and 0.363 pg TEQ/kg bw/day for children and adults, respectively) were 2 orders of magnitude higher in people at e-waste recycling facilities than in people at the chemical industrial site (0.021 and 0.0053 pg TEQ/kg bw/day for children and adults, respectively), implying greater health risk for humans from dioxin exposures at e-waste recycling facilities. The calculated TEQ exposures for e-waste workers from dust and soil ingestion alone were 2-3 orders of magnitude greater than the exposures from soils in reference locations.
Integrated Disposal Facility FY 2012 Glass Testing Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Eric M.; Kerisit, Sebastien N.; Krogstad, Eirik J.
2013-03-29
PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Keymore » activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.« less
Microwave Extraction of Water from Lunar Regolith Simulant
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C.; Kaukler, William
2007-01-01
Nearly a decade ago the DOD Clementine lunar orbital mission obtained data indicating that the permanently shaded regions at the lunar poles may have permanently frozen water in the lunar soil. Currently NASA's Robotic Lunar Exploration Program, RLEP-2, is planned to land at the lunar pole to determine if water is present. The detection and extraction of water from the permanently frozen permafrost is an important goal for NASA. Extraction of water from lunar permafrost has a high priority in the In-Situ Resource Utilization, ISRU, community for human life support and as a fuel. The use of microwave processing would permit the extraction of water without the need to dig, drill, or excavate the lunar surface. Microwave heating of regolith is potentially faster and more efficient than any other heating methods due to the very low thermal conductivity of the lunar regolith. Also, microwaves can penetrate into the soil permitting water removal from deep below the lunar surface. A cryogenic vacuum test facility was developed for evaluating the use of microwave heating and water extraction from a lunar regolith permafrost simulant. Water is obtained in a cryogenic cold trap even with soil conditions below 0 C. The results of microwave extraction of water experiments will be presented.
Elemental Concentrations in Urban Green Stormwater Infrastructure Soils.
Kondo, Michelle C; Sharma, Raghav; Plante, Alain F; Yang, Yunwen; Burstyn, Igor
2016-01-01
Green stormwater infrastructure (GSI) is designed to capture stormwater for infiltration, detention, evapotranspiration, or reuse. Soils play a key role in stormwater interception at these facilities. It is important to assess whether contamination is occurring in GSI soils because urban stormwater drainage areas often accumulate elements of concern. Soil contamination could affect hydrologic and ecosystem functions. Maintenance workers and the public may also be exposed to GSI soils. We investigated soil elemental concentrations, categorized as macro- and micronutrients, heavy metals, and other elements, at 59 GSI sites in the city of Philadelphia. Non-GSI soil samples 3 to 5 m upland of GSI sites were used for comparison. We evaluated differences in elemental composition in GSI and non-GSI soils; the comparisons were corrected for the age of GSI facility, underlying soil type, street drainage, and surrounding land use. Concentrations of Ca and I were greater than background levels at GSI sites. Although GSI facilities appear to accumulate Ca and I, these elements do not pose a significant human health risk. Elements of concern to human health, including Cd, Hg, and Pb, were either no different or were lower in GSI soils compared with non-GSI soils. However, mean values found across GSI sites were up to four times greater than soil cleanup objectives for residential use. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles
NASA Astrophysics Data System (ADS)
Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar
2016-04-01
Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more detail to gain additional information on the trigger of the enhanced ice nucleation activity of soil dust. References Rogers (1988): Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies Steinke et al. (In preparation for submission): Ice nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina and Germany
Chen, Hualin; Arocena, Joselito M; Li, Jianbing; Thring, Ronald W; Zhou, Jiangmin
2012-12-01
Leather tanneries around the world, including China, introduce chromium (Cr) and other metals into the environment. In China, the population pressure compels the utilization of every piece of available land for food production. In this study, we investigated the content, leachability and possible storage sinks for Cr and other metals in soils around facilities of leather industry in southern China. It was found that Cr in soils impacted by tannery can be as high as 2484 mg Cr kg⁻¹ soil, and the mean contents of other metals such as Zn (214 mg Zn kg⁻¹ soil), Cd (5.4 mg Cd kg⁻¹ soil), As (17 mg As kg⁻¹ soil) exceeded the soil quality standards and guidelines in China and Canada. Simulated leaching studies (i.e., Synthetic Precipitation Leaching Procedure) indicated that these soils could release Cr and other metals in concentrations above the environmental quality guidelines and standards for water in China and Canada. As a result, the mobility of metals from these soils can potentially contaminate both groundwater and surface water. We also found differential leachability of metals with soil properties such as total metal and total carbon contents. Principal component analysis of the total contents of 32 elements showed that the possible major sinks for Cr are organic matter and oxides of Fe/Mn/Al, while sulfates and phosphates are potential storage of Cd, Zn, Cu and Pb. The information obtained from this study can be valuable for the restoration of ecosystem functions (i.e., food production) in the study area.
Compound-specific isotope analysis (CSIA) for assessing pesticide dynamics in soil and vadose zone
NASA Astrophysics Data System (ADS)
Torrentó, Clara; Bakkour, Rani; Melsbach, Aileen; Ponsin, Violaine; Lihl, Christina; Prasuhn, Volker; Hofstetter, Thomas B.; Elsner, Martin; Hunkeler, Daniel
2017-04-01
A lysimeter facility was used to study long-term pesticide fate and transport through two different soils. The present investigation focuses on some commonly and worldwide used herbicides for weed control on corn (atrazine, acetochlor and metolachlor) and sugar beet (chloridazon), together with their main degradation products. Since some degradation products are found more frequently and at higher concentrations that their parent compounds, there is growing environmental concern. The fate of these metabolites is, however, not well-understood. Twelve weighing lysimeters filled with two typical arable soils in Switzerland (a well-drained sandy loam cambisol developed from a stony alluvium-"gravel soil"- and a poorly-drained loam cambisol developed from moraine deposits -"moraine soil"-) were cropped with corn in the first and third seasons, and sugar beet in the second one. Three types of experiments were performed: (1) herbicides application at the surface simulating the common application scenario, (2) herbicides injection at a depth of 40 cm for simulating high preferential transport through the topsoil and assessing the dynamics below the root zone, and (3) metabolites (2,6-dichlorobenzamide, desphenylchloridazon and desethylatrazine) application at the surface to simulate rapid generation of transformation products from the parent compounds. Leachate was collected and the concentration of the applied substances and main degradation products was determined. Since assessing transport and fate of micropollutants in the environment is extremely difficult because transformation processes are slow and may not become evident from analysis of concentrations, multi-element (C, N, Cl) compound-specific isotope analysis (CSIA) is also being used. With both surface application and depth injection, compound breakthrough by preferential as well as matrix flow was observed. A few days after their application, significant infiltration of the herbicides took place by preferential flow, bypassing the sorption and degradation capacity of the soil matrix. Thereafter, the main movement was through the soil matrix and thus, the longer residence time of the herbicides in the soil zone enhanced degradation and due to the high mobility of the metabolites, they were detected in the leachates. Breakthrough of the applied metabolites was also observed. For most of the cases, concentrations were higher in the leachates of the gravel soil than in the moraine soil. Preliminary results of C and N isotope signatures of the target compound in the leachates show significant isotope enrichment trends in acetochlor and metolachlor and less evident in atrazine, confirming the occurrence of degradation processes.
Strategic Investment Plan Fiscal Year 1993.
1993-09-01
Groundwater ........................ 283 Heavy Metals in Soils, Sludges, Sediments and Water .................... 321 Energetics in Soils and Groundwater...technologies and tools to achieve a design for reconfiguring existing PEP production facilities into agile factories which will reduce total life cycle wastes...facilities. When use of existing facilities is not practical, a special demonstration testbed may be built. The factory design will then be developed
Simulating the Impact Response of Three Full-Scale Crash Tests of Cessna 172 Aircraft
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Littell, Justin D.; Annett, Martin S.; Stimson, Chad M.
2017-01-01
During the summer of 2015, a series of three full-scale crash tests were performed at the Landing and Impact Research Facility located at NASA Langley Research Center of Cessna 172 aircraft. The first test (Test 1) represented a flare-to-stall emergency or hard landing onto a rigid surface. The second test (Test 2) represented a controlled-flight- into-terrain (CFIT) with a nose down pitch attitude of the aircraft, which impacted onto soft soil. The third test (Test 3) also represented a CFIT with a nose up pitch attitude of the aircraft, which resulted in a tail strike condition. Test 3 was also conducted onto soft soil. These crash tests were performed for the purpose of evaluating the performance of Emergency Locator Transmitters and to generate impact test data for model calibration. Finite element models were generated and impact analyses were conducted to simulate the three impact conditions using the commercial nonlinear, transient dynamic finite element code, LS-DYNA®. The objective of this paper is to summarize test-analysis results for the three full-scale crash tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Youlong; Ek, Michael; Sheffield, Justin
2013-02-25
Soil temperature can exhibit considerable memory from weather and climate signals and is among the most important initial conditions in numerical weather and climate models. Consequently, a more accurate long-term land surface soil temperature dataset is needed to improve weather and climate simulation and prediction, and is also important for the simulation of agricultural crop yield and ecological processes. The North-American Land Data Assimilation (NLDAS) Phase 2 (NLDAS-2) has generated 31-years (1979-2009) of simulated hourly soil temperature data with a spatial resolution of 1/8o. This dataset has not been comprehensively evaluated to date. Thus, the ultimate purpose of the presentmore » work is to assess Noah-simulated soil temperature for different soil depths and timescales. We used long-term (1979-2001) observed monthly mean soil temperatures from 137 cooperative stations over the United States to evaluate simulated soil temperature for three soil layers (0-10 cm, 10-40 cm, 40-100 cm) for annual and monthly timescales. We used short-term (1997-1999) observed soil temperature from 72 Oklahoma Mesonet stations to validate simulated soil temperatures for three soil layers and for daily and hourly timescales. The results showed that the Noah land surface model (Noah LSM) generally matches observed soil temperature well for different soil layers and timescales. At greater depths, the simulation skill (anomaly correlation) decreased for all time scales. The monthly mean diurnal cycle difference between simulated and observed soil temperature revealed large midnight biases in the cold season due to small downward longwave radiation and issues related to model parameters.« less
Calábria, Jaqueline Alves de Almeida; Cota, Stela Dalva Santos; de Morais, Gustavo Ferrari; Ladeira, Ana Cláudia Queiroz
2017-11-01
To be used as backfilling materials in radioactive waste disposal facilities, a natural material must have a suitable permeability, mechanical properties and a high sorption capacity for radionuclides. Also important when considering a material as a backfill is the effect of its interaction with the alkaline solution generated from concrete degradation. This solution promotes mineralogical alterations that result in significant changes in the material key properties influencing its performance as a safety component of the repository. This paper presents results of an investigation on the effect of alkaline interaction under a low temperature on cesium retention properties of a local soil being considered suitable as a backfill for the Brazilian near surface disposal facility. A sample of the Brazilian soil was mixed with an alkaline solution, simulating the pore water leached in the first stage of cement degradation, during 1, 7, 14 and 28 days. The experiments were conducted under low temperature (25 °C) aiming to evaluate similar conditions found on a low and intermediate level radioactive waste disposal installation. A non-classical isotherm sorption model was fitted to sorption data obtained from batch experiments, for unaltered and altered samples, providing parameters that allowed us to assess the effect of the interaction on material quality as Cs sorbent. The sorption parameters obtained from the data-fitted isotherm were used then to estimate the corresponding retardation factor (R). Alkaline interaction significantly modified the soil sorption properties for Cs. The parameter Q, related to the maximum sorption capacity, as well as the affinity parameter (K) and the retardation coefficients became significantly smaller (about 1000 times for the R coefficient) after pretreatment with the simulated alkaline solutions. Moreover, the increase in n-values, which is related with the energy distribution width and heterogeneity of surface site energies, demonstrated that the adsorbent surface became more homogenous as a consequence of the alkaline alteration. Together these results suggest that cementitious leachate has a profound effect on Cs retention and should be accounted for estimating radionuclide retention in radioactive waste disposal systems containing cementitious materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
A mechanistic diagnosis of the simulation of soil CO2 efflux of the ACME Land Model
NASA Astrophysics Data System (ADS)
Liang, J.; Ricciuto, D. M.; Wang, G.; Gu, L.; Hanson, P. J.; Mayes, M. A.
2017-12-01
Accurate simulation of the CO2 efflux from soils (i.e., soil respiration) to the atmosphere is critical to project global biogeochemical cycles and the magnitude of climate change in Earth system models (ESMs). Currently, the simulated soil respiration by ESMs still have a large uncertainty. In this study, a mechanistic diagnosis of soil respiration in the Accelerated Climate Model for Energy (ACME) Land Model (ALM) was conducted using long-term observations at the Missouri Ozark AmeriFlux (MOFLUX) forest site in the central U.S. The results showed that the ALM default run significantly underestimated annual soil respiration and gross primary production (GPP), while incorrectly estimating soil water potential. Improved simulations of soil water potential with site-specific data significantly improved the modeled annual soil respiration, primarily because annual GPP was simultaneously improved. Therefore, accurate simulations of soil water potential must be carefully calibrated in ESMs. Despite improved annual soil respiration, the ALM continued to underestimate soil respiration during peak growing seasons, and to overestimate soil respiration during non-peak growing seasons. Simulations involving increased GPP during peak growing seasons increased soil respiration, while neither improved plant phenology nor increased temperature sensitivity affected the simulation of soil respiration during non-peak growing seasons. One potential reason for the overestimation of the soil respiration during non-peak growing seasons may be that the current model structure is substrate-limited, while microbial dormancy under stress may cause the system to become decomposer-limited. Further studies with more microbial data are required to provide adequate representation of soil respiration and to understand the underlying reasons for inaccurate model simulations.
NASA Astrophysics Data System (ADS)
Silverstone, S.; Nelson, M.; Alling, A.; Allen, J. P.
During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation of "Hoyt" Soy Beans, (experiment #1) USU Apogee Wheat (experiment #2) and TU-82-155 sweet potato (experiment #3) using a 5.37 m 2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching, returning crop residues to the soil after each experiment and increasing soil biota by introducing worms, soil bacteria and mycorrhizae fungi. High soil pH of the original soil appeared to be a factor affecting the first two experiments. Hence, between experiments #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. This resulted in lowering the initial pH of 8.0-6.7 at the start of experiment #3. At the end of the experiment, the pH was 7.6. Soil nitrogen and phosphorus has been adequate, but some chlorosis was evident in the first two experiments. Aphid infestation was the only crop pest problem during the three experiments and was handled using an introduction of Hyppodamia convergens. Experimentation showed there were environmental differences even in this 1200 cubic foot ecological system facility, such as temperature and humidity gradients because of ventilation and airflow patterns which resulted in consequent variations in plant growth and yield. Additional humidifiers were added to counteract low humidity and helped optimize conditions for the sweet potato experiment. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth ® facility (Silverstone et al., Development and research program for a soil-based bioregenerative agriculture system to feed a four person crew at a Mars base, Advances in Space Research 31(1) (2003) 69-75; Allen and Alling, The design approach for Mars On Earth ®, a biospheric closed system testing facility for long-term space habitation, American Institute of Aeronautics and Astronautics Inc., IAC-02-IAA.8.2.02, 2002).
TECHNICAL GUIDANCE DOCUMENT: QUALITY ASSURANCE AND QUALITY CONTROL FOR WASTE CONTAINMENT FACILITIES
This Technical Guidance Document provides comprehensive guidance on procedures for quality assurance and quality control for waste containment facilities. he document includes a discussion of principles and concepts, compacted soil liners, soil drainage systems, geosynthetic drai...
TECHNICAL GUIDANCE DOCUMENT: QUALITY ASSURANCE AND QUALITY CONTROL FOR WASTE CONTAINMENT FACILITIES
This Technical Guidance Document provides comprehensive guidance on procedures for quality assurance and quality control for waste containment facilities. The document includes a discussion of principles and concepts, compacted soil liners, soil drainage systems, geosynthetic dr...
Optimizing the Hydrological and Biogeochemical Simulations on a Hillslope with Stony Soil
NASA Astrophysics Data System (ADS)
Zhu, Q.
2017-12-01
Stony soils are widely distributed in the hilly area. However, traditional pedotransfer functions are not reliable in predicting the soil hydraulic parameters for these soils due to the impacts of rock fragments. Therefore, large uncertainties and errors may exist in the hillslope hydrological and biogeochemical simulations in stony soils due to poor estimations of soil hydraulic parameters. In addition, homogenous soil hydraulic parameters are usually used in traditional hillslope simulations. However, soil hydraulic parameters are spatially heterogeneous on the hillslope. This may also cause the unreliable simulations. In this study, we obtained soil hydraulic parameters using five different approaches on a tea hillslope in Taihu Lake basin, China. These five approaches included (1) Rossetta predicted and spatially homogenous, (2) Rossetta predicted and spatially heterogeneous), (3) Rossetta predicted, rock fragment corrected and spatially homogenous, (4) Rossetta predicted, rock fragment corrected and spatially heterogeneous, and (5) extracted from observed soil-water retention curves fitted by dual-pore function and spatially heterogeneous (observed). These five sets of soil hydraulic properties were then input into Hydrus-3D and DNDC to simulate the soil hydrological and biogeochemical processes. The aim of this study is testing two hypotheses. First, considering the spatial heterogeneity of soil hydraulic parameters will improve the simulations. Second, considering the impact of rock fragment on soil hydraulic parameters will improve the simulations.
Experimental Simulations to Understand the Lunar and Martian Surficial Processes
NASA Astrophysics Data System (ADS)
Zhao, Y. Y. S.; Li, X.; Tang, H.; Li, Y.; Zeng, X.; Chang, R.; Li, S.; Zhang, S.; Jin, H.; Mo, B.; Li, R.; Yu, W.; Wang, S.
2016-12-01
In support with China's Lunar and Mars exploration programs and beyond, our center is dedicated to understand the surficial processes and environments of planetary bodies. Over the latest several years, we design, build and optimize experimental simulation facilities and utilize them to test hypotheses and evaluate affecting mechanisms under controlled conditions particularly relevant to the Moon and Mars. Among the fundamental questions to address, we emphasize on five major areas: (1) Micrometeorites bombardment simulation to evaluate the formation mechanisms of np-Fe0 which was found in lunar samples and the possible sources of Fe. (2) Solar wind implantation simulation to evaluate the alteration/amorphization/OH or H2O formation on the surface of target minerals or rocks. (3) Dusts mobility characteristics on the Moon and other planetary bodies by excitation different types of dust particles and measuring their movements. (4) Mars basaltic soil simulant development (e.g., Jining Martian Soil Simulant (JMSS-1)) and applications for scientific/engineering experiments. (5) Halogens (Cl and Br) and life essential elements (C, H, O, N, P, and S) distribution and speciation on Mars during surficial processes such as sedimentary- and photochemical- related processes. Depending on the variables of interest, the simulation systems provide flexibility to vary source of energy, temperature, pressure, and ambient gas composition in the reaction chambers. Also, simulation products can be observed or analyzed in-situ by various analyzer components inside the chamber, without interrupting the experimental conditions. In addition, behavior of elements and isotopes during certain surficial processes (e.g., evaporation, dissolution, etc.) can be theoretically predicted by our theoretical geochemistry group with thermodynamics-kinetics calculation and modeling, which supports experiment design and result interpretation.
Potential soil cleanup objectives for nitrogen-containing fertilizers at agrichemical facilities
Roy, W.R.; Krapac, I.G.
2006-01-01
Accidental and incidental chemical releases of nitrogen-containing fertilizers occur at retail agrichemical facilities. Because contaminated soil may threaten groundwater quality, the facility may require some type of site remediation. The purpose of this study was to apply the concepts of the Soil Screening Levels of the U.S. Environmental Protection Agency to derive soil cleanup objectives (SCO) that are protective of groundwater quality in Illinois for nitrogen as nitrate and as ammonium. The Soil Screening Levels are based on the solute transport mechanisms of sorption, volatilization, and groundwater dilution, and the contaminant-specific groundwater cleanup objective used to derive the SCO. Because nitrate is relatively unreactive, only groundwater dilution could be taken into account in the derivation of a SCO. Using a default groundwater objective for potable groundwater, an SCO of 38 mg N-NO3/kg was derived. For ammonium, however, the extent of sorption was measured using an uncontaminated, surface-soil sample (0 to 15 cm) of 10 different soil types that occur in Illinois and three gravel-fill samples from three different agrichemical facilities. Using a default groundwater objective, an SCO was derived for each soil type. The median SCO was 989 mg N-NH4/kg. The SCO calculated for each of the 10 soil and 3 fill samples was positively correlated with cation exchange capacity, clay content, and surface area. It was concluded that this approach can be used to derive either default of site-specific SCOs for nitrogen as nitrate and as ammonium for chemical releases. Copyright ?? Taylor & Francis Group, LLC.
UV-Resistant Non-Spore-Forming Bacteria From Spacecraft-Assembly Facilities
NASA Technical Reports Server (NTRS)
Venkateswaran, Kasthuri
2008-01-01
Four species of non-spore-forming bacteria collected from clean-room surfaces in spacecraft-assembly facilities could survive doses of ultraviolet (UV) radiation that would suffice to kill most known cultivable bacterial species. In a previous study, high UV resistance was found in spores of the SAFR-032 strain of Bacillus pumilus, as reported in "Ultraviolet- Resistant Bacterial Spores," NASA Tech Briefs, Vol. 31, No. 9 (September 2007), page 94. These studies are parts of a continuing effort to understand the survival of hardy species of bacteria under harsh conditions, and develop means of sterilizing spacecraft to prevent biocontamination of Mars that could in turn interfere with future life detection missions. The four species investigated were Arthrobacter sp. KSC_Ak2i, Microbacterium schleiferi LMA_AkK1, Brevundimonas diminuta KSC_Ak3a, and Sphingomonas trueperi JSC_Ak7-3. In the study, cells of these species were mixed into Atacama Desert soil (to elucidate the shadowing effect of soil particles) and the resulting mixtures were tested both in solution and in a desiccated state under simulated Martian atmospheric and UV conditions. The UV-survival indices of Arthrobacter sp. and Microbacterium schleiferi were found to be comparable to those of Bacillus pumilus spores.
[Simulation of cropland soil moisture based on an ensemble Kalman filter].
Liu, Zhao; Zhou, Yan-Lian; Ju, Wei-Min; Gao, Ping
2011-11-01
By using an ensemble Kalman filter (EnKF) to assimilate the observed soil moisture data, the modified boreal ecosystem productivity simulator (BEPS) model was adopted to simulate the dynamics of soil moisture in winter wheat root zones at Xuzhou Agro-meteorological Station, Jiangsu Province of China during the growth seasons in 2000-2004. After the assimilation of observed data, the determination coefficient, root mean square error, and average absolute error of simulated soil moisture were in the ranges of 0.626-0.943, 0.018-0.042, and 0.021-0.041, respectively, with the simulation precision improved significantly, as compared with that before assimilation, indicating the applicability of data assimilation in improving the simulation of soil moisture. The experimental results at single point showed that the errors in the forcing data and observations and the frequency and soil depth of the assimilation of observed data all had obvious effects on the simulated soil moisture.
Ultrasonic frequency selection for aqueous fine cleaning
NASA Technical Reports Server (NTRS)
Becker, Joann F.
1995-01-01
A study was conducted to evaluate ultrasonic cleaning systems for precision cleaning effectiveness for oxygen service hardware. This evaluation was specific for Rocketdyne Division of Rockwell Aerospace alloys and machining soils. Machining lubricants and hydraulic fluid were applied as soils to standardized complex test specimens designed to simulate typical hardware. The study consisted of tests which included 20, 25, 30, 40, 50, and 65 kHz ultrasonic cleaning systems. Two size categories of cleaning systems were evaluated, 3- to 10-gal laboratory size tanks and 35- to 320-gal industrial size tanks. The system properties of cavitation, frequency vs. cleaning effectiveness, the two types of transducers, and the power level of the system vs. size of the cleaning tank were investigated. The data obtained from this study was used to select the ultrasonic tanks for the aqueous fine clean facility installed at Rocketdyne.
Ultrasonic frequency selection for aqueous fine cleaning
NASA Technical Reports Server (NTRS)
Becker, Joann F.
1994-01-01
A study was conducted to evaluate ultrasonic cleaning systems for precision cleaning effectiveness for oxygen service hardware. This evaluation was specific for Rocketdyne Div. of Rockwell Aerospace alloys and machining soils. Machining lubricants and hydraulic fluid were applied as soils to standardized complex test specimens designed to simulate typical hardware. The study consisted of tests which included 20, 25, 30, 40, 50, and 65 kHz ultrasonic cleaning systems. Two size categories of cleaning systems were evaluated, 3- to 10-gal laboratory size tanks and 35- to 320-gal industrial size tanks. The system properties of cavitation; frequency vs. cleaning effectiveness; the two types of transducers; and the power level of the system vs. size of the cleaning tank were investigated. The data obtained from this study was used to select the ultrasonic tanks for the aqueous fine clean facility installed at Rocketdyne.
A drill-soil system modelization for future Mars exploration
NASA Astrophysics Data System (ADS)
Finzi, A. E.; Lavagna, M.; Rocchitelli, G.
2004-01-01
This paper presents a first approach to the problem of modeling a drilling process to be carried on in the space environment by a dedicated payload. Systems devoted to work in space present very strict requirements in many different fields such as thermal response, electric power demand, reliability and so on. Thus, models devoted to the operational behaviour simulation represent a fundamental help in the design phase and give a great improvement in the final product quality. As the required power is the crucial constraint within drilling devices, the tool-soil interaction modelization and simulation are finalized to the computation of the power demand as a function of both the drill and the soil parameters. An accurate study of the tool and the soil separately has been firstly carried on and, secondly their interaction has been analyzed. The Dee-Dri system, designed by Tecnospazio and to be part of the lander components in the NASA's Mars Sample Return Mission, has been taken as the tool reference. The Deep-Drill system is a complex rotary tool devoted to the soil perforation and sample collection; it has to operate in a Martian zone made of rocks similar to the terrestrial basalt, then the modelization is restricted to the interaction analysis between the tool and materials belonging to the rock set. The tool geometric modelization has been faced by a finite element approach with a Langrangian formulation: for the static analysis a refined model is assumed considering both the actual geometry of the head and the rod screws; a simplified model has been used to deal with the dynamic analysis. The soil representation is based on the Mohr-Coulomb crack criterion and an Eulerian approach has been selected to model it. However, software limitations in dealing with the tool-soil interface definition required assuming a Langrangian formulation for the soil too. The interaction between the soil and the tool has been modeled by extending the two-dimensional Nishimatsu's theory for rock cutting for rotating perforation tools. A fine analysis on f.e.m. element choice for each part of the tool is presented together with static analysis results. The dynamic analysis results are limited to the first impact phenomenon between the rock and the tool head. The validity of both the theoretical and numerical models is confirmed by the good agreement between simulation results and data coming from the experiments done within the Tecnospazio facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombard, K.H.
1994-08-01
The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing newmore » and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays.« less
10 CFR 55.46 - Simulation facilities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Simulation facilities. 55.46 Section 55.46 Energy NUCLEAR... Simulation facilities. (a) General. This section addresses the use of a simulation facility for the... applicants for operator and senior operator licenses. (b) Commission-approved simulation facilities and...
10 CFR 55.46 - Simulation facilities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Simulation facilities. 55.46 Section 55.46 Energy NUCLEAR... Simulation facilities. (a) General. This section addresses the use of a simulation facility for the... applicants for operator and senior operator licenses. (b) Commission-approved simulation facilities and...
10 CFR 55.46 - Simulation facilities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Simulation facilities. 55.46 Section 55.46 Energy NUCLEAR... Simulation facilities. (a) General. This section addresses the use of a simulation facility for the... applicants for operator and senior operator licenses. (b) Commission-approved simulation facilities and...
10 CFR 55.46 - Simulation facilities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Simulation facilities. 55.46 Section 55.46 Energy NUCLEAR... Simulation facilities. (a) General. This section addresses the use of a simulation facility for the... applicants for operator and senior operator licenses. (b) Commission-approved simulation facilities and...
10 CFR 55.46 - Simulation facilities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Simulation facilities. 55.46 Section 55.46 Energy NUCLEAR... Simulation facilities. (a) General. This section addresses the use of a simulation facility for the... applicants for operator and senior operator licenses. (b) Commission-approved simulation facilities and...
Climate change in safety assessment of a surface disposal facility
NASA Astrophysics Data System (ADS)
Leterme, B.
2012-04-01
The Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS) aims to develop a surface disposal facility for LILW-SL in Dessel (North-East of Belgium). Given the time scale of interest for the safety assessment (several millennia), a number of parameters in the modelling chain near field - geosphere - biosphere may be influenced by climate change. The present study discusses how potential climate change impact was accounted for the following quantities: (i) near field infiltration through the repository earth cover, (ii) partial pressure of CO2 in the water infiltrating the cover and draining the concrete, and (iii) groundwater recharge in the vicinity of the site. For these three parameters, the impact of climate change is assessed using climatic analogue stations, i.e. stations presently under climatic conditions corresponding to a given climate state. Results indicate that : (i) Using Gijon (Spain) as representative analogue station for the next millennia, infiltration at the bottom of the soil layer towards the modules of the facility is expected to increase (from 346 to 413 mm/y) under a subtropical climate. Although no colder climate is foreseen in the next 10 000 years, the approach was also tested with analogue stations for a colder climate state. Using Sisimiut (Greenland) as representative analogue station, infiltration is expected to decrease (109 mm/y). (ii) Due to changes of the partial pressure of CO2 in the soil water, cement degradation is estimated to occur more rapidly under a warmer climate. (iii) A decrease of long-term annual average groundwater recharge by 12% was simulated using Gijon representative analogue (from 314 to 276 mm), although total rainfall was higher (947 mm) in the warmer climate compared to the current temperate climate (899 mm). For a colder climate state, groundwater recharge simulated for the representative analogue Sisimiut showed a decrease by 69% compared to current climate conditions. The advantages and weaknesses of using analogue stations are also discussed.
Hanford Site near-facility environmental monitoring annual report, calendar year 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkins, C.J.
1998-07-28
Near-facility environmental monitoring provides a means to measure the impacts of operations, waste management, and remediation activities on the environment adjacent to facilities and ensure compliance with local, state, and federal environmental regulations. Specifically, near-facility environmental monitoring monitors new and existing sites, processes, and facilities for potential impacts and releases; fugitive emissions and diffuse sources associated with contaminated areas, facilities (both active and those undergoing surveillance and maintenance), and environmental restoration activities. External radiation, ambient air particulates, ground and surface water, soil, sediment, and biota (plants and animals) are sampled or monitored. Parameters include, as appropriate, radionuclides; radiation fields; chemicalmore » or physical constituents, such as nitrates; pH; and water temperature. All ambient air results were below the US Department of Energy (DOE) Derived Concentration Guides (DCGs). Groundwater concentrations at the two wells at the 107-N Facility were below both the DOE DCG and US Environmental Protection Agency Interim Drinking Water Standards for gamma emitting radionuclides. Soil and vegetation results were generally within historic ranges and mostly below the Accessible Soil Concentration limits (included in HNF-PRO-454, Inactive Waste Sites) with the exception of one soil sampling location at 1 00 N Area. External radiation fields continued an overall downward trend. Surface water disposal unit samples (water, sediment, and aquatic vegetation) showed radionuclide concentrations below their respective DCG and Accessible Soil Concentration limits. The 100 N Area Columbia river shoreline springs results were below DCGs with the exception of one Sr concentration. More than 4,600 ha (11,300 acres) of radiologically controlled areas were surveyed in 1997, approximately the same as in 1996.« less
A mathematical model to predict the effect of heat recovery on the wastewater temperature in sewers.
Dürrenmatt, David J; Wanner, Oskar
2014-01-01
Raw wastewater contains considerable amounts of energy that can be recovered by means of a heat pump and a heat exchanger installed in the sewer. The technique is well established, and there are approximately 50 facilities in Switzerland, many of which have been successfully using this technique for years. The planning of new facilities requires predictions of the effect of heat recovery on the wastewater temperature in the sewer because altered wastewater temperatures may cause problems for the biological processes used in wastewater treatment plants and receiving waters. A mathematical model is presented that calculates the discharge in a sewer conduit and the spatial profiles and dynamics of the temperature in the wastewater, sewer headspace, pipe, and surrounding soil. The model was implemented in the simulation program TEMPEST and was used to evaluate measured time series of discharge and temperatures. It was found that the model adequately reproduces the measured data and that the temperature and thermal conductivity of the soil and the distance between the sewer pipe and undisturbed soil are the most sensitive model parameters. The temporary storage of heat in the pipe wall and the exchange of heat between wastewater and the pipe wall are the most important processes for heat transfer. The model can be used as a tool to determine the optimal site for heat recovery and the maximal amount of extractable heat. Copyright © 2013 Elsevier Ltd. All rights reserved.
A Local Vision on Soil Hydrology (John Dalton Medal Lecture)
NASA Astrophysics Data System (ADS)
Roth, K.
2012-04-01
After shortly looking back to some research trails of the past decades, and touching on the role of soils in our environmental machinery, a vision on the future of soil hydrology is offered. It is local in the sense of being based on limited experience as well as in the sense of focussing on local spatial scales, from 1 m to 1 km. Cornerstones of this vision are (i) rapid developments of quantitative observation technology, illustrated with the example of ground-penetrating radar (GPR), and (ii) the availability of ever more powerful compute facilities which allow to simulate increasingly complicated model representations in unprecedented detail. Together, they open a powerful and flexible approach to the quantitative understanding of soil hydrology where two lines are fitted: (i) potentially diverse measurements of the system of interest and their analysis and (ii) a comprehensive model representation, including architecture, material properties, forcings, and potentially unknown aspects, together with the same analysis as for (i). This approach pushes traditional inversion to operate on analyses, not on the underlying state variables, and to become flexible with respect to architecture and unknown aspects. The approach will be demonstrated for simple situations at test sites.
Andraski, Brian J.; Fisher, Jeffrey M.; Prudic, David E.; Trask, N.J.; Stevens, P.R.
1991-01-01
A low-level radioactive-waste disposal facility in the Amargosa Desert of Nevada, about 17 km southeast of Beatty and 169 km northwest of Las Vegas, has been operating since 1962. This was the first commercially operated radioactive waste disposal facility in the United States. Wastes at the facility are emplaced in 2 to 15-m deep trenches and covered by backfilling with previously excavated materials. Annual precipitation in the area averages about 112 mm. Vegetation is sparse with creosote bush (Larrea tridentata) being the dominant species. Soils in the area are skeletal and are underlain by more than 170 m of unconsolidated alluvial-fan, fluvial, and ephemeral-lake deposits. Depth to water is about 85 m.Initial field investigations (1976-1980) included monitoring of soil-water content and water potential in an unvegetated soil profile, and collection of meteorological data at the disposal facility. Design of additional hydrogeologic investigations and long-term studies of soil-water movement in a vegetated soil profile began in 1982 and field data collection has been ongoing since 1984. Studies to evaluate the modifying effects of trench construction on the natural site environment and to determine changes in trench structural stability began in 1987. Design of studies to measure gas and vapor movement in the trenches at the facility began in 1989.
Evaluating management-induced soil salinization in golf courses in semi-arid landscapes
NASA Astrophysics Data System (ADS)
Young, J.; Udeigwe, T. K.; Weindorf, D. C.; Kandakji, T.; Gautam, P.; Mahmoud, M. M. A.
2015-01-01
Site-specific information on land management practices are often desired to make better assertions of their environmental impacts. A study was conducted in Lubbock, TX, in the Southern High Plains of the United States, an area characterized by semi-arid climatic conditions, to (1) examine the potential management-induced alteration in soil salinity indicators in golf course facilities and (2) develop predictive relationships for a more rapid soil salinity examination within these urban landscape soils using findings from portable x-ray fluorescence (PXRF) spectrometer. Soil samples were collected from the managed (well irrigated) and non-managed (non irrigated) areas of seven golf course facilities at 0-10, 10-20, and 20-30 cm depths, and analyzed for a suite of chemical properties. Among the extractable cations, sodium (Na) was significantly (p < 0.05) higher in the managed zones of all the golf facilities. Soil electrical conductivity (EC), exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR), parameters often used in characterizing soil salinity and sodicity, were in most part significantly (p < 0.05) higher in the managed areas. Water quality report collected over a 22-year period (1991-2013, all years not available) indicated a gradual increase in pH, EC, SAR, total alkalinity, and extractable ions, thus, supporting the former findings. Findings from the PXRF suggested possible differences in chemical species and sources that contribute to salinity between the managed and non-managed zones. PXRF quantified Cl and S, and to a lesser extent Ca, individually and collectively explained 23-85% of the variability associated with soil salinity at these facilities.
Evaluating management-induced soil salinization in golf courses in semi-arid landscapes
NASA Astrophysics Data System (ADS)
Young, J.; Udeigwe, T. K.; Weindorf, D. C.; Kandakji, T.; Gautam, P.; Mahmoud, M. A.
2015-04-01
Site-specific information on land management practices are often desired to make better assessments of their environmental impacts. A study was conducted in Lubbock, Texas, in the Southern High Plains of the United States, an area characterized by semi-arid climatic conditions, to (1) examine the potential management-induced alterations in soil salinity indicators in golf course facilities and (2) develop predictive relationships for a more rapid soil salinity examination within these urban landscape soils using findings from a portable X-ray fluorescence (PXRF) spectrometer. Soil samples were collected from managed (well irrigated) and non-managed (non-irrigated) areas of seven golf course facilities at 0-10, 10-20, and 20-30 cm depths and analyzed for a suite of chemical properties. Among the extractable cations, sodium (Na) was significantly (p < 0.05) higher in the managed zones of all the golf facilities. Soil electrical conductivity (EC), exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR), parameters often used in characterizing soil salinity and sodicity, were for the most part significantly (p < 0.05) higher in the managed areas. Water quality reports collected over a 22-year period (1991-2013, all years not available) indicated a gradual increase in pH, EC, SAR, total alkalinity, and extractable ions, thus supporting the former findings. Findings from the PXRF suggested possible differences in chemical species and sources that contribute to salinity between the managed and non-managed zones. PXRF-quantified Cl and S, and to a lesser extent Ca, individually and collectively explained 23-85% of the variability associated with soil salinity at these facilities.
NASA Astrophysics Data System (ADS)
Nyckowiak, Jedrzej; Lesny, Jacek; Haas, Edwin; Juszczak, Radoslaw; Kiese, Ralf; Butterbach-Bahl, Klaus; Olejnik, Janusz
2014-05-01
Modeling of nitrous oxide emissions from soil is very complex. Many different biological and chemical processes take place in soils which determine the amount of emitted nitrous oxide. Additionaly, biogeochemical models contain many detailed factors which may determine fluxes and other simulated variables. We used the LandscapeDNDC model in order to simulate N2O emissions, crop yields and soil physical properties from mineral cultivated soils in Poland. Nitrous oxide emissions from soils were modeled for fields with winter wheat, winter rye, spring barley, triticale, potatoes and alfalfa crops. Simulations were carried out for the plots of the Brody arable experimental station of Poznan University of Life Science in western Poland and covered the period 2003 - 2012. The model accuracy and its efficiency was determined by comparing simulations result with measurements of nitrous oxide emissions (measured with static chambers) from about 40 field campaigns. N2O emissions are strongly dependent on temperature and soil water content, hence we compared also simulated soil temperature at 10cm depth and soil water content at the same depth with the daily measured values of these driving variables. We compared also simulated yield quantities for each individual experimental plots with yield quantities which were measured in the period 2003-2012. We conclude that the LandscapeDNDC model is capable to simulate soil N2O emissions, crop yields and physical properties of soil with satisfactorily good accuracy and efficiency.
Using molecular-scale tracers to investigate transport of agricultural pollutants in soil and water
NASA Astrophysics Data System (ADS)
Lloyd, C.; Michaelides, K.; Chadwick, D.; Dungait, J.; Evershed, R. P.
2012-12-01
We explore the use of molecular-scale tracers to investigate the transport of potential pollutants due to the application of slurry to soil. The molecular-scale approach allows us to separate the pollutants which are moved to water bodies through sediment-bound and dissolved transport pathways. Slurry is applied to agricultural land to as a soil-improver across a wide-range of topographic and climatic regimes, hence a set of experiments were designed to assess the effect of changing slope gradient and rainfall intensity on the transport of pollutants. The experiments were carried out using University of Bristol's TRACE (Test Rig for Advancing Connectivity Experiments) facility. The facility includes a dual axis soil slope (6 x 2.5 x 0.3 m3) and 6-nozzle rainfall simulator, which enables the manipulation of the slope to simulate different slope gradient and rainfall scenarios. Cattle slurry was applied to the top 1 metre strip of the experimental soil slope followed by four rainfall simulations, where the gradient (5° & 10°) and the rainfall intensity (60 & 120 mm hr-1) were co-varied. Leachate was sampled from different flow pathways (surface, subsurface and percolated) via multiple outlets on the slope throughout the experiments and soil cores were taken from the slope after each experiment. Novel tracers were used to trace the pollutants in both dissolved and sediment-bound forms. Fluorescence spectroscopy was used to trace dissolved slurry-derived material via water flow pathways, as the slurry was found to have a distinct signature compared with the soil. The fluorescence signatures of the leachates were compared with those of many organic compounds in order to characterise the origin of the signal. This allowed the assessment of the longevity of the signal in the environment to establish if it could be used as a robust long-term tracer of slurry material in water or if would be subject to transform processes through time. 5-βstanols, organic compounds unique to ruminant faeces, were used to trace the transport of sediment-bound pollutants from the slurry which could be transported into water bodies via erosion processes. The results showed that contributions of potential pollutants from the surface and subsurface flow pathways and from the eroded sediment differ according to slope gradient and rainfall intensity. Therefore, as the contribution of each of these pathways changes in response to rainfall and slope gradient, the pollution risk also changes accordingly, as different organic compounds are mobilised at varying rates. Rapid hydrological response to rainfall results in erosion and surface transport of sediment-bound and dissolved pollutants, creating an immediate contamination threat. However, conditions resulting in a slower hydrological response and the predominance of flow percolation over surface runoff results in higher rates of dissolved pollutant transport through the soil layers which risks contamination of subsurface and deeper ground-water systems. These experiments provide insight into the pathways and timing of contaminant transport with potential implications for understanding contamination risk from the transfer of slurry from land to water bodies. Understanding this threat is critical at a time when pressure is on to develop land-management strategies to reduce pollution alongside maintaining food security.
Silverstone, S; Nelson, M; Alling, A; Allen, J P
2005-01-01
During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation of "Hoyt" Soy Beans, (experiment #1) USU Apogee Wheat (experiment #2) and TU-82-155 sweet potato (experiment #3) using a 5.37 m2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching, returning crop residues to the soil after each experiment and increasing soil biota by introducing worms, soil bacteria and mycorrhizae fungi. High soil pH of the original soil appeared to be a factor affecting the first two experiments. Hence, between experiments #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. This resulted in lowering the initial pH of 8.0-6.7 at the start of experiment #3. At the end of the experiment, the pH was 7.6. Soil nitrogen and phosphorus has been adequate, but some chlorosis was evident in the first two experiments. Aphid infestation was the only crop pest problem during the three experiments and was handled using an introduction of Hyppodamia convergens. Experimentation showed there were environmental differences even in this 1200 cubic foot ecological system facility, such as temperature and humidity gradients because of ventilation and airflow patterns which resulted in consequent variations in plant growth and yield. Additional humidifiers were added to counteract low humidity and helped optimize conditions for the sweet potato experiment. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth(R) facility (Silverstone et al., Development and research program for a soil-based bioregenerative agriculture system to feed a four person crew at a Mars base, Advances in Space Research 31(1) (2003) 69-75; Allen and Alling, The design approach for Mars On Earth(R), a biospheric closed system testing facility for long-term space habitation, American Institute of Aeronautics and Astronautics Inc., IAC-02-IAA.8.2.02, 2002). c2005 Published by Elsevier Ltd on behalf of COSPAR.
Simulating soil phosphorus dynamics for a phosphorus loss quantification tool.
Vadas, Peter A; Joern, Brad C; Moore, Philip A
2012-01-01
Pollution of fresh waters by agricultural phosphorus (P) is a water quality concern. Because soils can contribute significantly to P loss in runoff, it is important to assess how management affects soil P status over time, which is often done with models. Our objective was to describe and validate soil P dynamics in the Annual P Loss Estimator (APLE) model. APLE is a user-friendly spreadsheet model that simulates P loss in runoff and soil P dynamics over 10 yr for a given set of runoff, erosion, and management conditions. For soil P dynamics, APLE simulates two layers in the topsoil, each with three inorganic P pools and one organic P pool. It simulates P additions to soil from manure and fertilizer, distribution among pools, mixing between layers due to tillage and bioturbation, leaching between and out of layers, crop P removal, and loss by surface runoff and erosion. We used soil P data from 25 published studies to validate APLE's soil P processes. Our results show that APLE reliably simulated soil P dynamics for a wide range of soil properties, soil depths, P application sources and rates, durations, soil P contents, and management practices. We validated APLE specifically for situations where soil P was increasing from excessive P inputs, where soil P was decreasing due to greater outputs than inputs, and where soil P stratification occurred in no-till and pasture soils. Successful simulations demonstrate APLE's potential to be applied to major management scenarios related to soil P loss in runoff and erosion. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
JMSS-1: a new Martian soil simulant
NASA Astrophysics Data System (ADS)
Zeng, Xiaojia; Li, Xiongyao; Wang, Shijie; Li, Shijie; Spring, Nicole; Tang, Hong; Li, Yang; Feng, Junming
2015-05-01
It is important to develop Martian soil simulants that can be used in Mars exploration programs and Mars research. A new Martian soil simulant, called Jining Martian Soil Simulant (JMSS-1), was developed at the Lunar and Planetary Science Research Center at the Institute of Geochemistry, Chinese Academy of Sciences. The raw materials of JMSS-1 are Jining basalt and Fe oxides (magnetite and hematite). JMSS-1 was produced by mechanically crushing Jining basalt with the addition of small amounts of magnetite and hematite. The properties of this simulant, including chemical composition, mineralogy, particle size, mechanical properties, reflectance spectra, dielectric properties, volatile content, and hygroscopicity, have been analyzed. On the basis of these test results, it was demonstrated that JMSS-1 is an ideal Martian soil simulant in terms of chemical composition, mineralogy, and physical properties. JMSS-1 would be an appropriate choice as a Martian soil simulant in scientific and engineering experiments in China's Mars exploration in the future.
Yi, S.; Li, N.; Xiang, B.; Wang, X.; Ye, B.; McGuire, A.D.
2013-01-01
Soil surface temperature is a critical boundary condition for the simulation of soil temperature by environmental models. It is influenced by atmospheric and soil conditions and by vegetation cover. In sophisticated land surface models, it is simulated iteratively by solving surface energy budget equations. In ecosystem, permafrost, and hydrology models, the consideration of soil surface temperature is generally simple. In this study, we developed a methodology for representing the effects of vegetation cover and atmospheric factors on the estimation of soil surface temperature for alpine grassland ecosystems on the Qinghai-Tibetan Plateau. Our approach integrated measurements from meteorological stations with simulations from a sophisticated land surface model to develop an equation set for estimating soil surface temperature. After implementing this equation set into an ecosystem model and evaluating the performance of the ecosystem model in simulating soil temperature at different depths in the soil profile, we applied the model to simulate interactions among vegetation cover, freeze-thaw cycles, and soil erosion to demonstrate potential applications made possible through the implementation of the methodology developed in this study. Results showed that (1) to properly estimate daily soil surface temperature, algorithms should use air temperature, downward solar radiation, and vegetation cover as independent variables; (2) the equation set developed in this study performed better than soil surface temperature algorithms used in other models; and (3) the ecosystem model performed well in simulating soil temperature throughout the soil profile using the equation set developed in this study. Our application of the model indicates that the representation in ecosystem models of the effects of vegetation cover on the simulation of soil thermal dynamics has the potential to substantially improve our understanding of the vulnerability of alpine grassland ecosystems to changes in climate and grazing regimes.
Dust storms on Mars: Considerations and simulations
NASA Technical Reports Server (NTRS)
Greeley, R.; White, B. R.; Pollack, J. B.; Iverson, J. D.; Leach, R. N.
1977-01-01
Aeolian processes are important in modifying the surface of Mars at present, and appear to have been significant in the geological past. Aeolian activity includes local and global dust storms, the formation of erosional features such as yardangs and depositional features such as sand dunes, and the erosion of rock and soil. As a means of understanding aeolian processes on Mars, an investigation is in progress that includes laboratory simulations, field studies of earth analogs, and interpretation of spacecraft data. This report describes the Martian Surface Wind Tunnel, an experimental facility established at NASA-Ames Research Center, and presents some results of the general investigation. Experiments dealing with wind speeds and other conditions required for the initiation of particle movement on Mars are described and considerations are given to the resulting effectiveness of aeolian erosion.
Arsenic and mercury in the soils of an industrial city in the Donets Basin, Ukraine
Conko, Kathryn M.; Landa, Edward R.; Kolker, Allan; Kozlov, Kostiantyn; Gibb, Herman J.; Centeno, Jose; Panov, Boris S.; Panov, Yuri B.
2013-01-01
Soil and house dust collected in and around Hg mines and a processing facility in Horlivka, a mid-sized city in the Donets Basin of southeastern Ukraine, have elevated As and Hg levels. Surface soils collected at a former Hg-processing facility had up to 1300 mg kg−1 As and 8800 mg kg−1 Hg; 1M HCl extractions showed 74–93% of the total As, and 1–13% of the total Hg to be solubilized, suggesting differential environmental mobility between these elements. In general, lower extractability of As and Hg was seen in soil samples up to 12 km from the Hg-processing facility, and the extractable (1M HCl, synthetic precipitation, deionized water) fractions of As are greater than those for Hg, indicating that Hg is present in a more resistant form than As. The means (standard deviation) of total As and Hg in grab samples collected from playgrounds and public spaces within 12 km of the industrial facility were 64 (±38) mg kg−1 As and 12 (±9.4) mg kg−1 Hg; all concentrations are elevated compared to regional soils. The mean concentrations of As and Hg in dust from homes in Horlivka were 5–15 times higher than dust from homes in a control city. Estimates of possible exposure to As and Hg through inadvertent soil ingestion are provided.
Controls on surface soil drying rates observed by SMAP and simulated by the Noah land surface model
NASA Astrophysics Data System (ADS)
Shellito, Peter J.; Small, Eric E.; Livneh, Ben
2018-03-01
Drydown periods that follow precipitation events provide an opportunity to assess controls on soil evaporation on a continental scale. We use SMAP (Soil Moisture Active Passive) observations and Noah simulations from drydown periods to quantify the role of soil moisture, potential evaporation, vegetation cover, and soil texture on soil drying rates. Rates are determined using finite differences over intervals of 1 to 3 days. In the Noah model, the drying rates are a good approximation of direct soil evaporation rates, and our work suggests that SMAP-observed drying is also predominantly affected by direct soil evaporation. Data cover the domain of the North American Land Data Assimilation System Phase 2 and span the first 1.8 years of SMAP's operation. Drying of surface soil moisture observed by SMAP is faster than that simulated by Noah. SMAP drying is fastest when surface soil moisture levels are high, potential evaporation is high, and when vegetation cover is low. Soil texture plays a minor role in SMAP drying rates. Noah simulations show similar responses to soil moisture and potential evaporation, but vegetation has a minimal effect and soil texture has a much larger effect compared to SMAP. When drying rates are normalized by potential evaporation, SMAP observations and Noah simulations both show that increases in vegetation cover lead to decreases in evaporative efficiency from the surface soil. However, the magnitude of this effect simulated by Noah is much weaker than that determined from SMAP observations.
NASA Astrophysics Data System (ADS)
Kim, M. S.; Onda, Y.; Kim, J. K.
2015-01-01
SHALSTAB model applied to shallow landslides induced by rainfall to evaluate soil properties related with the effect of soil depth for a granite area in Jinbu region, Republic of Korea. Soil depth measured by a knocking pole test and two soil parameters from direct shear test (a and b) as well as one soil parameters from a triaxial compression test (c) were collected to determine the input parameters for the model. Experimental soil data were used for the first simulation (Case I) and, soil data represented the effect of measured soil depth and average soil depth from soil data of Case I were used in the second (Case II) and third simulations (Case III), respectively. All simulations were analysed using receiver operating characteristic (ROC) analysis to determine the accuracy of prediction. ROC analysis results for first simulation showed the low ROC values under 0.75 may be due to the internal friction angle and particularly the cohesion value. Soil parameters calculated from a stochastic hydro-geomorphological model were applied to the SHALSTAB model. The accuracy of Case II and Case III using ROC analysis showed higher accuracy values rather than first simulation. Our results clearly demonstrate that the accuracy of shallow landslide prediction can be improved when soil parameters represented the effect of soil thickness.
NASA Technical Reports Server (NTRS)
Hutcheson, Linton; Butler, Todd; Smith, Mike; Cline, Charles; Scruggs, Steve; Zakhia, Nadim
1987-01-01
An experimental procedure was devised to investigate the effects of the lunar environment on the physical properties of simulated lunar soil. The test equipment and materials used consisted of a vacuum chamber, direct shear tester, static penetrometer, and fine grained basalt as the simulant. The vacuum chamber provides a medium for applying the environmental conditions to the soil experiment with the exception of gravity. The shear strength parameters are determined by the direct shear test. Strength parameters and the resistance of soil penetration by static loading will be investigated by the use of a static cone penetrometer. In order to conduct a soil experiment without going to the moon, a suitable lunar simulant must be selected. This simulant must resemble lunar soil in both composition and particle size. The soil that most resembles actual lunar soil is basalt. The soil parameters, as determined by the testing apparatus, will be used as design criteria for lunar soil engagement equipment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wharton, Sonia; Simpson, Matthew; Osuna, Jessica
The Weather Research and Forecasting (WRF) model is used to investigate choice of land surface model (LSM) on the near-surface wind profile, including heights reached by multi-megawatt wind turbines. Simulations of wind profiles and surface energy fluxes were made using five LSMs of varying degrees of sophistication in dealing with soil-plant-atmosphere feedbacks for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) Central Facility in Oklahoma. Surface-flux and wind-profile measurements were available for validation. The WRF model was run for three two-week periods during which varying canopy and meteorological conditions existed. Themore » LSMs predicted a wide range of energy-flux and wind-shear magnitudes even during the cool autumn period when we expected less variability. Simulations of energy fluxes varied in accuracy by model sophistication, whereby LSMs with very simple or no soil-plant-atmosphere feedbacks were the least accurate; however, the most complex models did not consistently produce more accurate results. Errors in wind shear also were sensitive to LSM choice and were partially related to the accuracy of energy flux data. The variability of LSM performance was relatively high, suggesting that LSM representation of energy fluxes in the WRF model remains a significant source of uncertainty for simulating wind turbine inflow conditions.« less
NASA Astrophysics Data System (ADS)
Rodrigo Comino, Jesús; Iserloh, Thomas; Morvan, Xavier; Malam Issa, Oumarou; Naisse, Christophe; Keesstra, Saskia; Cerdà, Artemi; Prosdocimi, Massimo; Arnáez, José; Lasanta, Teodoro; Concepción Ramos, María; José Marqués, María; Ruiz Colmenero, Marta; Bienes, Ramón; Damián Ruiz Sinoga, José; Seeger, Manuel; Ries, Johannes B.
2016-04-01
Small portable rainfall simulators are considered as a useful tool to analyze soil erosion processes in cultivated lands. European research groups of Spain (Valencia, Málaga, Lleida, Madrid and La Rioja), France (Reims) or Germany (Trier) have used different rainfall simulators (varying in drop size distribution and fall velocities, kinetic energy, plot forms and sizes, and field of application)to study soil loss, surface flow, runoff and infiltration coefficients in different experimental plots (Valencia, Montes de Málaga, Penedès, Campo Real and La Rioja in Spain, Champagne in France and Mosel-Ruwer valley in Germany). The measurements and experiments developed by these research teams give an overview of the variety in the methodologies with rainfall simulations in studying the problem of soil erosion and describing the erosion features in different climatic environments, management practices and soil types. The aim of this study is: i) to investigate where, how and why researchers from different wine-growing regions applied rainfall simulations with successful results as a tool to measure soil erosion processes; ii) to make a qualitative comparison about the general soil erosion processes in European terroirs; iii) to demonstrate the importance of the development a standard method for soil erosion processes in vineyards, using rainfall simulators; iv) and to analyze the key factors that should be taken into account to carry out rainfall simulations. The rainfall simulations in all cases allowed knowing the infiltration capacity and the susceptibility of the soil to be detached and to generate sediment loads to runoff. Despite using small plots, the experiments were useful to analyze the influence of soil cover to reduce soil erosion and to make comparison between different locations or the influence of different soil characteristics.
Preduction of Vehicle Mobility on Large-Scale Soft-Soil Terrain Maps Using Physics-Based Simulation
2016-08-02
PREDICTION OF VEHICLE MOBILITY ON LARGE-SCALE SOFT- SOIL TERRAIN MAPS USING PHYSICS-BASED SIMULATION Tamer M. Wasfy, Paramsothy Jayakumar, Dave...NRMM • Objectives • Soft Soils • Review of Physics-Based Soil Models • MBD/DEM Modeling Formulation – Joint & Contact Constraints – DEM Cohesive... Soil Model • Cone Penetrometer Experiment • Vehicle- Soil Model • Vehicle Mobility DOE Procedure • Simulation Results • Concluding Remarks 2UNCLASSIFIED
Black, R R; Meyer, C P; Touati, A; Gullett, B K; Fiedler, H; Mueller, J F
2011-05-01
Release of PCDD and PCDF from biomass combustion such as forest and agricultural crop fires has been nominated as an important source for these chemicals despite minimal characterisation. Available emission factors that have been experimentally determined in laboratory and field experiments vary by several orders of magnitude from <0.5 μg TEQ (t fuel consumed)(-1) to >100 μg TEQ (t fuel consumed)(-1). The aim of this study was to evaluate the effect of experimental methods on the emission factor. A portable field sampler was used to measure PCDD/PCDF emissions from forest fires and the same fuel when burnt over a brick hearth to eliminate potential soil effects. A laboratory burn facility was used to sample emissions from the same fuels. There was very good agreement in emission factors to air (EF(Air)) for forest fuel (Duke Forest, NC) of 0.52 (range: 0.40-0.79), 0.59 (range: 0.18-1.2) and 0.75 (range: 0.27-1.2) μg TEQ(WHO2005) (t fuel consumed)(-1) for the in-field, over a brick hearth, and burn facility experiments, respectively. Similarly, experiments with sugarcane showed very good agreement with EF(Air) of 1.1 (range: 0.40-2.2), 1.5 (range: 0.84-2.2) and 1.7 (range: 0.34-4.4) μg TEQ (t fuel consumed)(-1) for in-field, over a brick hearth, open field and burn facility experiments respectively. Field sampling and laboratory simulations were in good agreement, and no significant changes in emissions of PCDD/PCDF could be attributed to fuel storage and transport to laboratory test facilities. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wever, Nander; Comola, Francesco; Bavay, Mathias; Lehning, Michael
2017-08-01
The assessment of flood risks in alpine, snow-covered catchments requires an understanding of the linkage between the snow cover, soil and discharge in the stream network. Here, we apply the comprehensive, distributed model Alpine3D to investigate the role of soil moisture in the predisposition of the Dischma catchment in Switzerland to high flows from rainfall and snowmelt. The recently updated soil module of the physics-based multilayer snow cover model SNOWPACK, which solves the surface energy and mass balance in Alpine3D, is verified against soil moisture measurements at seven sites and various depths inside and in close proximity to the Dischma catchment. Measurements and simulations in such terrain are difficult and consequently, soil moisture was simulated with varying degrees of success. Differences between simulated and measured soil moisture mainly arise from an overestimation of soil freezing and an absence of a groundwater description in the Alpine3D model. Both were found to have an influence in the soil moisture measurements. Using the Alpine3D simulation as the surface scheme for a spatially explicit hydrologic response model using a travel time distribution approach for interflow and baseflow, streamflow simulations were performed for the discharge from the catchment. The streamflow simulations provided a closer agreement with observed streamflow when driving the hydrologic response model with soil water fluxes at 30 cm depth in the Alpine3D model. Performance decreased when using the 2 cm soil water flux, thereby mostly ignoring soil processes. This illustrates that the role of soil moisture is important to take into account when understanding the relationship between both snowpack runoff and rainfall and catchment discharge in high alpine terrain. However, using the soil water flux at 60 cm depth to drive the hydrologic response model also decreased its performance, indicating that an optimal soil depth to include in surface simulations exists and that the runoff dynamics are controlled by only a shallow soil layer. Runoff coefficients (i.e. ratio of rainfall over discharge) based on measurements for high rainfall and snowmelt events were found to be dependent on the simulated initial soil moisture state at the onset of an event, further illustrating the important role of soil moisture for the hydrological processes in the catchment. The runoff coefficients using simulated discharge were found to reproduce this dependency, which shows that the Alpine3D model framework can be successfully applied to assess the predisposition of the catchment to flood risks from both snowmelt and rainfall events.
Simulation of Soil Frost and Thaw Fronts Dynamics with Community Land Model 4.5
NASA Astrophysics Data System (ADS)
Gao, J.; Xie, Z.
2016-12-01
Freeze-thaw processes in soils, including changes in frost and thaw fronts (FTFs) , are important physical processes. The movement of FTFs affects soil water and thermal characteristics, as well as energy and water exchanges between land surface and the atmosphere, and then the land surface hydrothermal process. In this study, a two-directional freeze and thaw algorithm for simulating FTFs is incorporated into the community land surface model CLM4.5, which is called CLM4.5-FTF. The simulated FTFs depth and soil temperature of CLM4.5-FTF compared well with the observed data both in D66 station (permafrost) and Hulugou station (seasonally frozen soil). Because the soil temperature profile within a soil layer can be estimated according to the position of FTFs, CLM4.5 performed better in soil temperature simulation. Permafrost and seasonally frozen ground conditions in China from 1980 to 2010 were simulated using the CLM4.5-FTF. Numerical experiments show that the spatial distribution of simulated maximum frost depth by CLM4.5-FTF has seasonal variation obviously. Significant positive active-layer depth trends for permafrost regions and negative maximum freezing depth trends for seasonal frozen soil regions are simulated in response to positive air temperature trends except west of Black Sea.
[Application of spatially explicit landscape model in soil loss study in Huzhong area].
Xu, Chonggang; Hu, Yuanman; Chang, Yu; Li, Xiuzhen; Bu, Renchang; He, Hongshi; Leng, Wenfang
2004-10-01
Universal Soil Loss Equation (USLE) has been widely used to estimate the average annual soil loss. In most of the previous work on soil loss evaluation on forestland, cover management factor was calculated from the static forest landscape. The advent of spatially explicit forest landscape model in the last decade, which explicitly simulates the forest succession dynamics under natural and anthropogenic disturbances (fire, wind, harvest and so on) on heterogeneous landscape, makes it possible to take into consideration the change of forest cover, and to dynamically simulate the soil loss in different year (e.g. 10 years and 20 years after current year). In this study, we linked a spatially explicit landscape model (LANDIS) with USLE to simulate the soil loss dynamics under two scenarios: fire and no harvest, fire and harvest. We also simulated the soil loss with no fire and no harvest as a control. The results showed that soil loss varied periodically with simulation year, and the amplitude of change was the lowest under the control scenario and the highest under the fire and no harvest scenario. The effect of harvest on soil loss could not be easily identified on the map; however, the cumulative effect of harvest on soil loss was larger than that of fire. Decreasing the harvest area and the percent of bare soil increased by harvest could significantly reduce soil loss, but had no significant effects on the dynamic of soil loss. Although harvest increased the annual soil loss, it tended to decrease the variability of soil loss between different simulation years.
Simulation of Martian surface conditions and dust transport
NASA Astrophysics Data System (ADS)
Nørnberg, P.; Merrison, J. P.; Finster, K.; Folkmann, F.; Gunnlaugsson, H. P.; Hansen, A.; Jensen, J.; Kinch, K.; Lomstein, B. Aa.; Mugford, R.
2002-11-01
The suspended atmospheric dust which is also found deposited over most of the Martian globe plays an important (possibly vital) role in shaping the surface environment. It affects the weather (solar flux), water transport and possibly also the electrical properties at the surface. The simulation facilities at Aarhus provide excellent tools for studying the properties of this Martian environment. Much can be learned from such simulations, supporting and often inspiring new investigations of the planet. Electrical charging of a Mars analogue dust is being studied within a wind tunnel simulation aerosol. Here electric fields are used to extract dust from suspension. Although preliminary the results indicate that a large fraction of the dust is charged to a high degree, sufficient to dominate adhesion/cohesion processes. A Mars analogue dust layer has been shown to be an excellent trap for moisture, causing increased humidity in the soil below. This allows the possibility for liquid water to be stable close to the surface (less than 10 cm). This is being investigated in an environment simulator where heat and moisture transport can be studied through layers of Mars analogue dust.
NASA Astrophysics Data System (ADS)
Yi, S.; Li, N.; Xiang, B.; Wang, X.; Ye, B.; McGuire, A. D.
2013-07-01
surface temperature is a critical boundary condition for the simulation of soil temperature by environmental models. It is influenced by atmospheric and soil conditions and by vegetation cover. In sophisticated land surface models, it is simulated iteratively by solving surface energy budget equations. In ecosystem, permafrost, and hydrology models, the consideration of soil surface temperature is generally simple. In this study, we developed a methodology for representing the effects of vegetation cover and atmospheric factors on the estimation of soil surface temperature for alpine grassland ecosystems on the Qinghai-Tibetan Plateau. Our approach integrated measurements from meteorological stations with simulations from a sophisticated land surface model to develop an equation set for estimating soil surface temperature. After implementing this equation set into an ecosystem model and evaluating the performance of the ecosystem model in simulating soil temperature at different depths in the soil profile, we applied the model to simulate interactions among vegetation cover, freeze-thaw cycles, and soil erosion to demonstrate potential applications made possible through the implementation of the methodology developed in this study. Results showed that (1) to properly estimate daily soil surface temperature, algorithms should use air temperature, downward solar radiation, and vegetation cover as independent variables; (2) the equation set developed in this study performed better than soil surface temperature algorithms used in other models; and (3) the ecosystem model performed well in simulating soil temperature throughout the soil profile using the equation set developed in this study. Our application of the model indicates that the representation in ecosystem models of the effects of vegetation cover on the simulation of soil thermal dynamics has the potential to substantially improve our understanding of the vulnerability of alpine grassland ecosystems to changes in climate and grazing regimes.
Geosynthetics in geoenvironmental engineering
Müller, Werner W; Saathoff, Fokke
2015-01-01
Geosynthetics are planar polymeric products, which are used in connection with soil, rock or other soil-like materials to fulfill various functions in geoenvironmental engineering. Geosynthetics are of ever-growing importance in the construction industry. Sealing of waste storage facilities to safely prevent the emission of wastewater, landfill gas and contaminated dust as well as the diffusion of pollutants into the environment and coastal protection against storms and floods and reconstruction after natural disaster are important fields of application. We will give an overview of the various geosynthetic products. Two examples of the material problems related to geosynthetics are discussed in detail: the effect of creep on the long-term performance of geocomposite drains and the numerical simulation of the interaction of soil with geogrids. Both issues are of importance for the use of these products in landfill capping systems. The various functions, which geosynthetics may fulfill in the protection of coastal lines, are illustrated by case studies. The geosynthetic market is evaluated and economical and environmental benefits, as well as environmental side effects related to the use of geosynthetics, are discussed. PMID:27877792
Geosynthetics in geoenvironmental engineering.
Müller, Werner W; Saathoff, Fokke
2015-06-01
Geosynthetics are planar polymeric products, which are used in connection with soil, rock or other soil-like materials to fulfill various functions in geoenvironmental engineering. Geosynthetics are of ever-growing importance in the construction industry. Sealing of waste storage facilities to safely prevent the emission of wastewater, landfill gas and contaminated dust as well as the diffusion of pollutants into the environment and coastal protection against storms and floods and reconstruction after natural disaster are important fields of application. We will give an overview of the various geosynthetic products. Two examples of the material problems related to geosynthetics are discussed in detail: the effect of creep on the long-term performance of geocomposite drains and the numerical simulation of the interaction of soil with geogrids. Both issues are of importance for the use of these products in landfill capping systems. The various functions, which geosynthetics may fulfill in the protection of coastal lines, are illustrated by case studies. The geosynthetic market is evaluated and economical and environmental benefits, as well as environmental side effects related to the use of geosynthetics, are discussed.
Can plants grow on Mars and the moon: a growth experiment on Mars and moon soil simulants.
Wamelink, G W Wieger; Frissel, Joep Y; Krijnen, Wilfred H J; Verwoert, M Rinie; Goedhart, Paul W
2014-01-01
When humans will settle on the moon or Mars they will have to eat there. Food may be flown in. An alternative could be to cultivate plants at the site itself, preferably in native soils. We report on the first large-scale controlled experiment to investigate the possibility of growing plants in Mars and moon soil simulants. The results show that plants are able to germinate and grow on both Martian and moon soil simulant for a period of 50 days without any addition of nutrients. Growth and flowering on Mars regolith simulant was much better than on moon regolith simulant and even slightly better than on our control nutrient poor river soil. Reflexed stonecrop (a wild plant); the crops tomato, wheat, and cress; and the green manure species field mustard performed particularly well. The latter three flowered, and cress and field mustard also produced seeds. Our results show that in principle it is possible to grow crops and other plant species in Martian and Lunar soil simulants. However, many questions remain about the simulants' water carrying capacity and other physical characteristics and also whether the simulants are representative of the real soils.
Can Plants Grow on Mars and the Moon: A Growth Experiment on Mars and Moon Soil Simulants
Wamelink, G. W. Wieger; Frissel, Joep Y.; Krijnen, Wilfred H. J.; Verwoert, M. Rinie; Goedhart, Paul W.
2014-01-01
When humans will settle on the moon or Mars they will have to eat there. Food may be flown in. An alternative could be to cultivate plants at the site itself, preferably in native soils. We report on the first large-scale controlled experiment to investigate the possibility of growing plants in Mars and moon soil simulants. The results show that plants are able to germinate and grow on both Martian and moon soil simulant for a period of 50 days without any addition of nutrients. Growth and flowering on Mars regolith simulant was much better than on moon regolith simulant and even slightly better than on our control nutrient poor river soil. Reflexed stonecrop (a wild plant); the crops tomato, wheat, and cress; and the green manure species field mustard performed particularly well. The latter three flowered, and cress and field mustard also produced seeds. Our results show that in principle it is possible to grow crops and other plant species in Martian and Lunar soil simulants. However, many questions remain about the simulants' water carrying capacity and other physical characteristics and also whether the simulants are representative of the real soils. PMID:25162657
NASA Astrophysics Data System (ADS)
Yatheendradas, S.; Vivoni, E.
2007-12-01
A common practice in distributed hydrological modeling is to assign soil hydraulic properties based on coarse textural datasets. For semiarid regions with poor soil information, the performance of a model can be severely constrained due to the high model sensitivity to near-surface soil characteristics. Neglecting the uncertainty in soil hydraulic properties, their spatial variation and their naturally-occurring horizonation can potentially affect the modeled hydrological response. In this study, we investigate such effects using the TIN-based Real-time Integrated Basin Simulator (tRIBS) applied to the mid-sized (100 km2) Sierra Los Locos watershed in northern Sonora, Mexico. The Sierra Los Locos basin is characterized by complex mountainous terrain leading to topographic organization of soil characteristics and ecosystem distributions. We focus on simulations during the 2004 North American Monsoon Experiment (NAME) when intensive soil moisture measurements and aircraft- based soil moisture retrievals are available in the basin. Our experiments focus on soil moisture comparisons at the point, topographic transect and basin scales using a range of different soil characterizations. We compare the distributed soil moisture estimates obtained using (1) a deterministic simulation based on soil texture from coarse soil maps, (2) a set of ensemble simulations that capture soil parameter uncertainty and their spatial distribution, and (3) a set of simulations that conditions the ensemble on recent soil profile measurements. Uncertainties considered in near-surface soil characterization provide insights into their influence on the modeled uncertainty, into the value of soil profile observations, and into effective use of on-going field observations for constraining the soil moisture response uncertainty.
Evaluation and implementation of a soil blending application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honerlah, H.; Sendra, D.; Zafran, A.
2007-07-01
With the Nuclear Regulatory Commission (NRC) issuing guidance on the 'Use of Intentional Mixing of Contaminated Soil' (SECY-04-0035) dated 1 March 2004, an opportunity to blend higher level radiologically contaminated soils with that of lower activity from the Colonie Formerly Utilized Sites Remedial Action Program (FUSRAP) site became available. Shaw Environmental, under contract with United States Army Corps of Engineers (USACE) to remediate the Colonie site, was tasked to blend soils of higher radioactivity (> 6.29 Bq/g or 170 pCi/g) concentration with soils of lower radioactivity concentration (< 6.29 Bq/g or 170 pCi/g). A mass balance formula approach was usedmore » to determine the proper soil blending ratio. This blending process enabled soils to meet the Waste Acceptance Criteria (WAC) of a specific disposal facility. All blended waste streams were treated to stabilize lead, removing the hazardous waste code D008, and to meet appropriate Resource Conservation Recovery Act (RCRA) requirements and land disposal restrictions. The initial blending on-site was conducted with a 2,485 m{sup 3} (3,250 yd{sup 3}) stockpile of higher concentration soils being blended with lower concentration soils. The lower concentration soils were excavated, staged and sampled into 191 m{sup 3} (250 yd{sup 3}) stockpiles. The ratio for this blending was based on the average radiological concentration of the large stockpile being blended and average concentrations of the individual 191 m{sup 3} (250 yd{sup 3}) piles of lower radiological concentration using a mass balance approach. Once a new 191 m{sup 3} (250 yd{sup 3}) stockpile was created with blended soils it was sampled to insure it met the WAC of Facility A. After the large stockpile had been successfully blended and additional in-situ soils of higher concentration were excavated, they were blended using a similar mass balance approach. For the newly excavated soils, each of the individual piles radiological concentrations was used to determine the specific blending ratio. The blending process took place to lower the disposal costs for the project. By sending the soils to Facility A (RCRA part C permitted) vs. Facility B (Part 61 NRC licensed), a cost savings of over 1.56 million dollars was realized. Prior to commencing the blending of soils, USACE coordinated discussions with appropriate state and federal governmental organizations. (authors)« less
Comparison of Numerical Modeling Methods for Soil Vibration Cutting
NASA Astrophysics Data System (ADS)
Jiang, Jiandong; Zhang, Enguang
2018-01-01
In this paper, we studied the appropriate numerical simulation method for vibration soil cutting. Three numerical simulation methods, commonly used for uniform speed soil cutting, Lagrange, ALE and DEM, are analyzed. Three models of vibration soil cutting simulation model are established by using ls-dyna.The applicability of the three methods to this problem is analyzed in combination with the model mechanism and simulation results. Both the Lagrange method and the DEM method can show the force oscillation of the tool and the large deformation of the soil in the vibration cutting. Lagrange method shows better effect of soil debris breaking. Because of the poor stability of ALE method, it is not suitable to use soil vibration cutting problem.
Zhang, Ying; Wang, Pengjie; Wang, Lei; Sun, Guoqiang; Zhao, Jiaying; Zhang, Hui; Du, Na
2015-02-15
The current study investigates the existence of 15 phthalate esters (PAEs) in surface soils (27 samples) collected from 9 different facility agriculture sites in the black soil region of northeast China, during the process of agricultural production (comprising only three seasons spring, summer and autumn). Concentrations of the 15 PAEs detected significantly varied from spring to autumn and their values ranged from 1.37 to 4.90 mg/kg-dw, with a median value of 2.83 mg/kg-dw. The highest concentration of the 15 PAEs (4.90 mg/kg-dw) was determined in summer when mulching film was used in the greenhouses. Probably an increase in environmental temperature was a major reason for PAE transfer from the mulching film into the soil and coupled with the increased usage of chemical fertilizers in greenhouses. Results showed that of the 15 PAEs, di(2-ethylhexyl) phthalate(DEHP), di-n-butyl phthalate (DBP), diethyl phthalate (DEP) and dimethyl phthalate (DMP) were in abundance with the mean value of 1.12 ± 0.22, 0.46 ± 0.05, 0.36 ± 0.04, and 0.17 ± 0.01 mg/kg-dw, respectively; and their average contributions in spring, summer, and autumn ranged between 64.08 and 90.51% among the 15 PAEs. The results of Principal Component Analysis (PCA) indicated the concentration of these four main PAEs significantly differed among the facility agricultures investigated, during the process of agricultural production. In comparison with foreign and domestic results of previous researches, it is proved that the black soils of facility agriculture in northeast China show higher pollution situation comparing with non-facility agriculture soils. Copyright © 2014 Elsevier B.V. All rights reserved.
Air modelling as an alternative to sampling for low-level radioactive airborne releases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgenstern, M.Y.; Hueske, K.
1995-05-01
This paper describes our efforts to assess the effect of airborne releases at one DOE laboratory using air modelling based on historical data. Among the facilities affected by these developments is Los Alamos National Laboratory (LANL) in New Mexico. RCRA, as amended by the Hazardous and Solid Waste Amendments (HSWA) in 1984, requires all facilities which involve the treatment, storage, and disposal of hazardous waste obtain a RCRA/HSWA waste facility permit. LANL complied with CEARP by initiating a process of identifying potential release sites associated with LANL operations prior to filing a RCRA/HSWA permit application. In the process of preparingmore » the RCRA/HSWA waste facility permit application to the U.S. Environmental Protection Agency (EPA), a total of 603 Solid Waste Management Units (SWMUs) were identified as part of the requirements of the HSWA Module VIH permit requirements. The HSWA Module VIII permit requires LANL to determine whether there have been any releases of hazardous waste or hazardous constituents from SWMUs at the facility dating from the 1940`s by performing a RCRA Facility Investigation to address known or suspected releases from specified SWMUs to affected media (i.e. soil, groundwater, surface water, and air). Among the most troublesome of the potential releases sites are those associated with airborne radioactive releases. In order to assess health risks associated with radioactive contaminants in a manner consistent with exposure standards currently in place, the DOE and LANL have established Screening Action Levels (SALs) for radioactive soil contamination. The SALs for each radionuclide in soil are derived from calculations based on a residential scenario in which individuals are exposed to contaminated soil via inhalation and ingestion as well as external exposure to gamma emitters in the soil. The applicable SALs are shown.« less
NASA Astrophysics Data System (ADS)
Adziz, Mohd Izwan Abdul; Siong, Khoo Kok
2018-04-01
Recently, the Long Term Storage Facility (LTSF) in Bukit Kledang, Perak, Malaysia, has been upgraded to repository facility upon the completion of decontamination and decommissioning (D&D) process. Thorium waste and contaminated material that may contain some minor amounts of thorium hydroxide were disposed in this facility. This study is conducted to determine the concentrations of gross alpha and gross beta radioactivities in soil samples collected around the repository facility. A total of 12 soil samples were collected consisting 10 samples from around the facility and 2 samples from selected residential area near the facility. In addition, the respective dose rates were measured 5 cm and 1 m above the ground by using survey meter with Geiger Muller (GM) detector and Sodium Iodide (NaI) detector. Soil samples were collected using hand auger and then were taken back to the laboratory for further analysis. Samples were cleaned, dried, pulverized and sieved prior to analysis. Gross alpha and gross beta activity measurements were carried out using gas flow proportional counter, Canberra Series 5 XLB - Automatic Low Background Alpha and Beta Counting System. The obtained results show that, the gross alpha and gross beta activity concentration ranged from 1.55 to 5.34 Bq/g with a mean value of 3.47 ± 0.09 Bq/g and 1.64 to 5.78 Bq/g with a mean value of 3.49 ± 0.09 Bq/g, respectively. These results can be used as an additional data to represent terrestrial radioactivity baseline data for Malaysia environment. This estimation will also serve as baseline for detection of any future related activities of contamination especially around the repository facility area.
Simulation of salinity effects on past, present, and future soil organic carbon stocks.
Setia, Raj; Smith, Pete; Marschner, Petra; Gottschalk, Pia; Baldock, Jeff; Verma, Vipan; Setia, Deepika; Smith, Jo
2012-02-07
Soil organic carbon (SOC) models are used to predict changes in SOC stocks and carbon dioxide (CO(2)) emissions from soils, and have been successfully validated for non-saline soils. However, SOC models have not been developed to simulate SOC turnover in saline soils. Due to the large extent of salt-affected areas in the world, it is important to correctly predict SOC dynamics in salt-affected soils. To close this knowledge gap, we modified the Rothamsted Carbon Model (RothC) to simulate SOC turnover in salt-affected soils, using data from non-salt-affected and salt-affected soils in two agricultural regions in India (120 soils) and in Australia (160 soils). Recently we developed a decomposition rate modifier based on an incubation study of a subset of these soils. In the present study, we introduce a new method to estimate the past losses of SOC due to salinity and show how salinity affects future SOC stocks on a regional scale. Because salinity decreases decomposition rates, simulations using the decomposition rate modifier for salinity suggest an accumulation of SOC. However, if the plant inputs are also adjusted to reflect reduced plant growth under saline conditions, the simulations show a significant loss of soil carbon in the past due to salinization, with a higher average loss of SOC in Australian soils (55 t C ha(-1)) than in Indian soils (31 t C ha(-1)). There was a significant negative correlation (p < 0.05) between SOC loss and osmotic potential. Simulations of future SOC stocks with the decomposition rate modifier and the plant input modifier indicate a greater decrease in SOC in saline than in non-saline soils under future climate. The simulations of past losses of SOC due to salinity were repeated using either measured charcoal-C or the inert organic matter predicted by the Falloon et al. equation to determine how much deviation from the Falloon et al. equation affects the amount of plant inputs generated by the model for the soils used in this study. Both sets of results suggest that saline soils have lost carbon and will continue to lose carbon under future climate. This demonstrates the importance of both reduced decomposition and reduced plant input in simulations of future changes in SOC stocks in saline soils.
Lunar soil properties and soil mechanics
NASA Technical Reports Server (NTRS)
Mitchell, J. K.; Houston, W. N.; Hovland, H. J.
1972-01-01
The study to identify and define recognizable fabrics in lunar soil in order to determine the history of the lunar regolith in different locations is reported. The fabric of simulated lunar soil, and lunar soil samples are discussed along with the behavior of simulated lunar soil under dynamic and static loading. The planned research is also included.
The moisture response of soil heterotrophic respiration: Interaction with soil properties.
USDA-ARS?s Scientific Manuscript database
Soil moisture-respiration functions are used to simulate the various mechanisms determining the relations between soil moisture content and carbon mineralization. Soil models used in the simulation of global carbon fluxes often apply simplified functions assumed to represent an average moisture-resp...
Coupling Landform Evolution and Soil Pedogenesis - Initial Results From the SSSPAM5D Model
NASA Astrophysics Data System (ADS)
Willgoose, G. R.; Welivitiya, W. D. D. P.; Hancock, G. R.; Cohen, S.
2015-12-01
Evolution of soil on a dynamic landform is a crucial next step in landscape evolution modelling. Some attempts have been taken such as MILESD by Vanwalleghem et al. to develop a first model which is capable of simultaneously evolving both the soil profile and the landform. In previous work we have presented physically based models for soil pedogenesis, mARM and SSSPAM. In this study we present the results of coupling a landform evolution model with our SSSPAM5D soil pedogenesis model. In previous work the SSSPAM5D soil evolution model was used to identify trends of the soil profile evolution on a static landform. Two pedogenetic processes, namely (1) armouring due to erosion, and (2) physical and chemical weathering were used in those simulations to evolve the soil profile. By incorporating elevation changes (due to erosion and deposition) we have advanced the SSSPAM5D modelling framework into the realm of landscape evolution. Simulations have been run using elevation and soil grading data of the engineered landform (spoil heap) at the Ranger Uranium Mine, Northern Territory, Australia. The results obtained for the coupled landform-soil evolution simulations predict the erosion of high slope areas, development of rudimentary channel networks in the landform and deposition of sediments in lowland areas, and qualitatively consistent with landform evolution models on their own. Examination of the soil profile characteristics revealed that hill crests are weathering dominated and tend to develop a thick soil layer. The steeper hillslopes at the edge of the landform are erosion dominated with shallow soils while the foot slopes are deposition dominated with thick soil layers. The simulation results of our coupled landform and soil evolution model provide qualitatively correct and timely characterization of the soil evolution on a dynamic landscape. Finally we will compare the characteristics of erosion and deposition predicted by the coupled landform-soil SSSPAM landscape simulator, with landform evolution simulations using a static soil.
Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations
Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T.; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P.; Rötter, Reimund P.; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank
2016-01-01
We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations. PMID:27055028
Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations.
Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P; Rötter, Reimund P; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank
2016-01-01
We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.
NASA Technical Reports Server (NTRS)
Robock, Alan; Vinnikov, Konstantin YA.; Schlosser, C. Adam; Speranskaya, Nina A.; Xue, Yongkang
1995-01-01
Soil moisture observations in sites with natural vegetation were made for several decades in the former Soviet Union at hundreds of stations. In this paper, the authors use data from six of these stations from different climatic regimes, along with ancillary meteorological and actinometric data, to demonstrate a method to validate soil moisture simulations with biosphere and bucket models. Some early and current general circulation models (GCMs) use bucket models for soil hydrology calculations. More recently, the Simple Biosphere Model (SiB) was developed to incorporate the effects of vegetation on fluxes of moisture, momentum, and energy at the earth's surface into soil hydrology models. Until now, the bucket and SiB have been verified by comparison with actual soil moisture data only on a limited basis. In this study, a Simplified SiB (SSiB) soil hydrology model and a 15-cm bucket model are forced by observed meteorological and actinometric data every 3 h for 6-yr simulations at the six stations. The model calculations of soil moisture are compared to observations of soil moisture, literally 'ground truth,' snow cover, surface albedo, and net radiation, and with each other. For three of the stations, the SSiB and 15-cm bucket models produce good simulations of seasonal cycles and interannual variations of soil moisture. For the other three stations, there are large errors in the simulations by both models. Inconsistencies in specification of field capacity may be partly responsible. There is no evidence that the SSiB simulations are superior in simulating soil moisture variations. In fact, the models are quite similar since SSiB implicitly has a bucket embedded in it. One of the main differences between the models is in the treatment of runoff due to melting snow in the spring -- SSiB incorrectly puts all the snowmelt into runoff. While producing similar soil moisture simulations, the models produce very different surface latent and sensible heat fluxes, which would have large effects on GCM simulations.
USDA-ARS?s Scientific Manuscript database
In situ measurements of soil moisture are invaluable for calibrating and validating land surface models and satellite-based soil moisture retrievals. In addition, long-term time series of in situ soil moisture measurements themselves can reveal trends in the water cycle related to climate or land co...
NASA Astrophysics Data System (ADS)
Mapfumo, Emmanuel; Chanasyk, David S.; Willms, Walter D.
2004-10-01
Grazing is common in the foothills fescue grasslands and may influence the seasonal soil-water patterns, which in turn determine range productivity. Hydrological modelling using the soil and water assessment tool (SWAT) is becoming widely adopted throughout North America especially for simulation of stream flow and runoff in small and large basins. Although applications of the SWAT model have been wide, little attention has been paid to the model's ability to simulate soil-water patterns in small watersheds. Thus a daily profile of soil water was simulated with SWAT using data collected from the Stavely Range Sub-station in the foothills of south-western Alberta, Canada. Three small watersheds were established using a combination of natural and artificial barriers in 1996-97. The watersheds were subjected to no grazing (control), heavy grazing (2.4 animal unit months (AUM) per hectare) or very heavy grazing (4.8 AUM ha-1). Soil-water measurements were conducted at four slope positions within each watershed (upper, middle, lower and 5 m close to the collector drain), every 2 weeks annually from 1998 to 2000 using a downhole CPN 503 neutron moisture meter. Calibration of the model was conducted using 1998 soil-water data and resulted in Nash-Sutcliffe coefficient (EF or R2) and regression coefficient of determination (r2) values of 0.77 and 0.85, respectively. Model graphical and statistical evaluation was conducted using the soil-water data collected in 1999 and 2000. During the evaluation period, soil water was simulated reasonably with an overall EF of 0.70, r2 of 0.72 and a root mean square error (RMSE) of 18.01. The model had a general tendency to overpredict soil water under relatively dry soil conditions, but to underpredict soil water under wet conditions. Sensitivity analysis indicated that absolute relative sensitivity indices of input parameters in soil-water simulation were in the following order; available water capacity > bulk density > runoff curve number > fraction of field capacity (FFCB) > saturated hydraulic conductivity. Thus these data were critical inputs to ensure reasonable simulation of soil-water patterns. Overall, the model performed satisfactorily in simulating soil-water patterns in all three watersheds with a daily time-step and indicates a great potential for monitoring soil-water resources in small watersheds.
Probabilistic Modeling of Settlement Risk at Land Disposal Facilities - 12304
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foye, Kevin C.; Soong, Te-Yang
2012-07-01
The long-term reliability of land disposal facility final cover systems - and therefore the overall waste containment - depends on the distortions imposed on these systems by differential settlement/subsidence. The evaluation of differential settlement is challenging because of the heterogeneity of the waste mass (caused by inconsistent compaction, void space distribution, debris-soil mix ratio, waste material stiffness, time-dependent primary compression of the fine-grained soil matrix, long-term creep settlement of the soil matrix and the debris, etc.) at most land disposal facilities. Deterministic approaches to long-term final cover settlement prediction are not able to capture the spatial variability in the wastemore » mass and sub-grade properties which control differential settlement. An alternative, probabilistic solution is to use random fields to model the waste and sub-grade properties. The modeling effort informs the design, construction, operation, and maintenance of land disposal facilities. A probabilistic method to establish design criteria for waste placement and compaction is introduced using the model. Random fields are ideally suited to problems of differential settlement modeling of highly heterogeneous foundations, such as waste. Random fields model the seemingly random spatial distribution of a design parameter, such as compressibility. When used for design, the use of these models prompts the need for probabilistic design criteria. It also allows for a statistical approach to waste placement acceptance criteria. An example design evaluation was performed, illustrating the use of the probabilistic differential settlement simulation methodology to assemble a design guidance chart. The purpose of this design evaluation is to enable the designer to select optimal initial combinations of design slopes and quality control acceptance criteria that yield an acceptable proportion of post-settlement slopes meeting some design minimum. For this specific example, relative density, which can be determined through field measurements, was selected as the field quality control parameter for waste placement. This technique can be extended to include a rigorous performance-based methodology using other parameters (void space criteria, debris-soil mix ratio, pre-loading, etc.). As shown in this example, each parameter range, or sets of parameter ranges can be selected such that they can result in an acceptable, long-term differential settlement according to the probabilistic model. The methodology can also be used to re-evaluate the long-term differential settlement behavior at closed land disposal facilities to identify, if any, problematic facilities so that remedial action (e.g., reinforcement of upper and intermediate waste layers) can be implemented. Considering the inherent spatial variability in waste and earth materials and the need for engineers to apply sound quantitative practices to engineering analysis, it is important to apply the available probabilistic techniques to problems of differential settlement. One such method to implement probability-based differential settlement analyses for the design of landfill final covers has been presented. The design evaluation technique presented is one tool to bridge the gap from deterministic practice to probabilistic practice. (authors)« less
Wu, Wei; Hu, Jia; Wang, Jinqi; Chen, Xuerong; Yao, Na; Tao, Jing; Zhou, Yi-Kai
2015-03-01
Here, a novel technique is described for the extraction and quantitative determination of six phthalate esters (PAEs) from soils by gas purge microsyringe extraction and gas chromatography. Recovery of PAEs ranged from 81.4% to 120.3%, and the relative standard deviation (n=6) ranged from 5.3% to 10.5%. Soil samples were collected from roadsides, farmlands, residential areas, and non-cultivated areas in a non-industrialized region, and from the same land-use types within 1 km of an electronics manufacturing facility (n=142). Total PAEs varied from 2.21 to 157.62 mg kg(-1) in non-industrialized areas and from 8.63 to 171.64 mg kg(-1) in the electronics manufacturing area. PAE concentrations in the non-industrialized area were highest in farmland, followed (in decreasing order) by roadsides, residential areas, and non-cultivated soil. In the electronics manufacturing area, PAE concentrations were highest in roadside soils, followed by residential areas, farmland, and non-cultivated soils. Concentrations of dimethyl phthalate (DMP), diethyl phthalate (DEP), and di-n-butyl phthalate (DnBP) differed significantly (P<0.01) between the industrial and non-industrialized areas. Principal component analysis indicated that the strongest explanatory factor was related to DMP and DnBP in non-industrialized soils and to butyl benzyl phthalate (BBP) and DMP in soils near the electronics manufacturing facility. Congener-specific analysis confirmed that diethylhexyl phthalate (DEHP) was a predictive indication both in the non-industrialized area (r(2)=0.944, P<0.01) and the industrialized area (r(2)=0.860, P<0.01). The higher PAE contents in soils near the electronics manufacturing facility are of concern, considering the large quantities of electronic wastes generated with ongoing industrialization. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Dongdong; She, Dongli
2018-06-01
Current physically based erosion models do not carefully consider the dynamic variations of soil properties during rainfall and are unable to simulate saline-sodic soil slope erosion processes. The aim of this work was to build upon a complete model framework, SSEM, to simulate runoff and erosion processes for saline-sodic soils by coupling dynamic saturated hydraulic conductivity Ks and soil erodibility Kτ. Sixty rainfall simulation rainfall experiments (2 soil textures × 5 sodicity levels × 2 slope gradients × 3 duplicates) provided data for model calibration and validation. SSEM worked very well for simulating the runoff and erosion processes of saline-sodic silty clay. The runoff and erosion processes of saline-sodic silt loam were more complex than those of non-saline soils or soils with higher clay contents; thus, SSEM did not perform very well for some validation events. We further examined the model performances of four concepts: Dynamic Ks and Kτ (Case 1, SSEM), Dynamic Ks and Constant Kτ (Case 2), Constant Ks and Dynamic Kτ (Case 3) and Constant Ks and Constant Kτ (Case 4). The results demonstrated that the model, which considers dynamic variations in soil saturated hydraulic conductivity and soil erodibility, can provide more reasonable runoff and erosion prediction results for saline-sodic soils.
Production and feeding strategies for phosphorus management on dairy farms.
Rotz, C A; Sharpley, A N; Satter, L D; Gburek, W J; Sanderson, M A
2002-11-01
Long-term accumulation of soil phosphorus (P) is becoming a concern on some watersheds heavily populated with animal feeding facilities, including dairy farms. Management changes in crop production and feeding may help reduce the accumulation of excess P, but farm profitability must be maintained or improved to assure adoption of such changes. Whole-farm simulation was used to evaluate the long-term effects of changes in feeding, cropping, and other production strategies on P loading and the economics of 100-cow and 800-cow dairy farms in southeastern New York. Simulated farms maintained a long-term P balance if the following occurred: 1) animals were fed to meet recommended minimum amounts of dietary P, 2) the cropping strategy and land base supplied all of the forage needed, 3) all animals were fed a high forage diet, and 4) replacement heifers were produced on the farm to utilize more forage. The most easily implemented change was to reduce the supplemental mineral P fed to that required to meet current NRC recommended amounts, and this provided an annual increase in farm profit of about $22/cow. Intensifying the use of grassland and improving grazing practices increased profit along with a small reduction in excess P. Conversion from dairy production to heifer raising or expansion from 100 cows to a 250-cow "state-of-the-art" confinement facility (with a 70% increase in land area) were also profitable options. These options provided a long-term P balance for the farm as long as the production and use of forage was maximized and minimum dietary P amounts were those recommended by the NRC. Thus, management changes can be made to prevent the long-term accumulation of soil P on dairy farms while improving farm profitability.
Evaluation of the Performance of the Mars Environmental Compatibility Assessment Electrometer
NASA Technical Reports Server (NTRS)
Mantovani, James G.
2002-01-01
The Mars Environmental Compatibility Assessment (MECA) electrometer is an instrument that was designed jointly by researchers at the Jet Propulsion Laboratory and the Kennedy Space Center, and is intended to fly on a future space exploration mission of the surface of Mars. The electrometer was designed primarily to study (1) the electrostatic interaction between the Martian soil and five different types of insulators, which are attached to the electrometer, as the electrometer is rubbed over the Martian soil. The MECA/Electrometer is also capable of measuring (2) the presence of charged particles in the Martian atmosphere, (3) the local electric field strength, and (4) the local temperature. The goal of the research project described in this report was to test and evaluate the measurement capabilities of the MECA/Electrometer under simulated Martian surface conditions using facilities located in the Labs and Testbeds Division at the Kennedy Space Center. The results of this study indicate that the Martian soil simulant can triboelectrically charge up the insulator surface. However, the maximum charge buildup did not exceed 18% of the electrometer's full-range sensitivity when rubbed vigorously, and is more likely to be as low as 1% of the maximum range when rubbed through soil. This indicates that the overall gain of the MECA/Electrometer could be increased by a factor of 50 if measurements at the 50% level of full-range sensitivity are desired. The ion gauge, which detects the presence of charged particles, was also evaluated over a pressure range from 10 to 400 Torr (13 to 533 mbar). The electric field sensor was also evaluated. Although the temperature sensor was not evaluated due to project time constraints, it was previously reported to work properly.
Evaluation of The Performance of The Mars Environmental Compatibility Assessment Electrometer
NASA Technical Reports Server (NTRS)
Mantovani, James G.
2001-01-01
The Mars Environmental Compatibility Assessment (MECA) electrometer is an instrument that was designed jointly by researchers at the Jet Propulsion Laboratory and the Kennedy Space Center, and is intended to fly on a future space exploration mission of the surface of Mars. The electrometer was designed primarily to study (1) the electrostatic interaction between the Martian soil and five different types of insulators, which are attached to the electrometer, as the electrometer is rubbed over the Martian soil. The MECA/Electrometer is also capable of measuring (2) the presence of charged particles in the Martian atmosphere, (3) the local electric field strength, and (4) the local temperature. The goal of the research project described in this report was to test and evaluate the measurement capabilities of the MECA/Electrometer under simulated Martian surface conditions using facilities located in the Labs and Testbeds Division at the Kennedy Space Center. The results of this study indicate that the Martian soil simulant can triboelectrically charge up the insulator surface. However, the maximum charge buildup did not exceed 18% of the electrometer's full-range sensitivity when rubbed vigorously, and is more likely to be as low as 1% of the maximum range when rubbed through soil. This indicates that the overall gain of the MECA/Electrometer could be increased by a factor of 50 if measurements at the 50% level of full-range sensitivity are desired. The ion gauge, which detects the presence of charged particles, was also evaluated over a pressure range from 10 to 400 Torr (13 to 533 mbar). The electric field sensor was also evaluated. Although the temperature sensor was not evaluated due to project time constraints, it was previously reported to work properly.
Wang, Lingqing; Liang, Tao; Chong, Zhongyi; Zhang, Chaosheng
2011-01-01
Through leaching experiments and simulated rainfall experiments, characteristics of vertical leaching of exogenous rare earth elements (REEs) and phosphorus (P) and their losses with surface runoff during simulated rainfall in different types of soils (terra nera soil, cinnamon soil, red soil, loess soil, and purple soil) were investigated. Results of the leaching experiments showed that vertical transports of REEs and P were relatively low, with transport depths less than 6 cm. The vertical leaching rates of REEs and P in the different soils followed the order of purple soil > terra nera soil > red soil > cinnamon soil > loess soil. Results of the simulated rainfall experiments (83 mm h⁻¹) revealed that more than 92% of REEs and P transported with soil particles in runoff. The loss rates of REEs and P in surface runoff in the different soil types were in the order of loess soil > terra nera soil > cinnamon soil > red soil > purple soil. The total amounts of losses of REEs and P in runoff were significantly correlated.
Bioremediation of diesel and lubricant oil-contaminated soils using enhanced landfarming system.
Wang, Sih-Yu; Kuo, Yu-Chia; Hong, Andy; Chang, Yu-Min; Kao, Chih-Ming
2016-12-01
Lubricant and diesel oil-polluted sites are difficult to remediate because they have less volatile and biodegradable characteristics. The goal of this research was to evaluate the potential of applying an enhanced landfarming to bioremediate soils polluted by lubricant and diesel. Microcosm study was performed to evaluate the optimal treatment conditions with the addition of different additives (nutrients, addition of activated sludge from oil-refining wastewater facility, compost, TPH-degrading bacteria, and fern chips) to enhance total petroleum hydrocarbon (TPH) removal. To simulate the aerobic landfarming biosystem, air in the microcosm headspace was replaced once a week. Results demonstrate that the additives of activated sludge and compost could result in the increase in soil microbial populations and raise TPH degradation efficiency (up to 83% of TPH removal with 175 days of incubation) with initial (TPH = 4100 mg/kg). The first-order TPH degradation rate reached 0.01 1/d in microcosms with additive of activated sludge (mass ratio of soil to inocula = 50:1). The soil microbial communities were determined by nucleotide sequence analyses and 16S rRNA-based denatured gradient gel electrophoresis. Thirty-four specific TPH-degrading bacteria were detected in microcosm soils. Chromatograph analyses demonstrate that resolved peaks were more biodegradable than unresolved complex mixture. Results indicate that more aggressive remedial measures are required to enhance the TPH biodegradation, which included the increase of (1) microbial population or TPH-degrading bacteria, (2) biodegradable carbon sources, (3) nutrient content, and (4) soil permeability. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Barrere, Mathieu; Domine, Florent; Decharme, Bertrand; Morin, Samuel; Vionnet, Vincent; Lafaysse, Matthieu
2017-09-01
Climate change projections still suffer from a limited representation of the permafrost-carbon feedback. Predicting the response of permafrost temperature to climate change requires accurate simulations of Arctic snow and soil properties. This study assesses the capacity of the coupled land surface and snow models ISBA-Crocus and ISBA-ES to simulate snow and soil properties at Bylot Island, a high Arctic site. Field measurements complemented with ERA-Interim reanalyses were used to drive the models and to evaluate simulation outputs. Snow height, density, temperature, thermal conductivity and thermal insulance are examined to determine the critical variables involved in the soil and snow thermal regime. Simulated soil properties are compared to measurements of thermal conductivity, temperature and water content. The simulated snow density profiles are unrealistic, which is most likely caused by the lack of representation in snow models of the upward water vapor fluxes generated by the strong temperature gradients within the snowpack. The resulting vertical profiles of thermal conductivity are inverted compared to observations, with high simulated values at the bottom of the snowpack. Still, ISBA-Crocus manages to successfully simulate the soil temperature in winter. Results are satisfactory in summer, but the temperature of the top soil could be better reproduced by adequately representing surface organic layers, i.e., mosses and litter, and in particular their water retention capacity. Transition periods (soil freezing and thawing) are the least well reproduced because the high basal snow thermal conductivity induces an excessively rapid heat transfer between the soil and the snow in simulations. Hence, global climate models should carefully consider Arctic snow thermal properties, and especially the thermal conductivity of the basal snow layer, to perform accurate predictions of the permafrost evolution under climate change.
NASA Astrophysics Data System (ADS)
Lloyd, Charlotte; Michaelides, Katerina; Evershed, Richard; Chadwick, David; Dungait, Jennifer
2010-05-01
We explore the use of organic biomarkers as tracers for different components of livestock-derived organic matter (LD-OM) at two different spatial scales. We conducted six small-scale rainfall simulation experiments on a 30 × 30 × 30 cm soil lysimeter, following an application of bovine slurry at a rate of 5 l m-2. Throughout the experiment timed samples of leachate from the base of the lysimeter were collected, then soil cores were taken following the rainfall simulation. These samples were analysed in order to identify the most suitable biomarkers to trace dissolved and sediment-bound LD-OM respectively. The results showed that ammonium was an important tracer compound for dissolved LD-OM, along with other key low molecular weight compounds such as carbohydrates and amino acids. Analysis of the soil cores confirmed that compounds 5-β sigmastanol and 5-β epistigmastanol (5-β stanols) could be used very effectively to trace the sediment-bound and colloidal component of LD-OM. These specific organic compounds, which are identifiable by GC/MS analysis, only occur due to biohydrogenation of plant sterols in a ruminant gut, providing a unique opportunity to trace bovine faecal matter via sediment pathways. These tracers were then applied to a larger 3-D hillslope system by using University of Bristol's TRACE (Test Rig for Advancing Connectivity Experiments) facility. TRACE is a large-scale dual axis soil-slope measuring 6 m long × 2.5 m wide × 0.3 m deep accompanied by a 6-nozzle rainfall simulator. In these experiments slurry was only applied to the top 1 m section of the hillslope, in order to trace how the LD-OM was transported in the soil system. The slope allows the collection of leachate from the soil surface, from lateral through-flow and infiltrated water which reached the soil base (indicating deeper pathways). This enabled the distinction between LD-OM transported via different hydrological pathways. Soil cores were also taken across the soil surface and analysed for 5-β stanols, this allowed the spatial distribution of LD-OM to be determined following the rainfall event. The results showed that not only is LD-OM transported on the surface of the hillslope via overland flow, but the dissolved component infiltrates through the soil profile and is transported via deeper hydrological flowpaths. 5-β stanol analysis showed that soil erosion processes were extremely important, as LD-OM was found downslope of the application area and in eroded material lost from the base of the experimental hillslope. These experiments provided new insights into how LD-OM interacts with the soil-water system and allows quantification of the contamination risk posed. This is important as 90 million tonnes of LD-OM is applied to land annually in the UK. It is well known that there is a potential for contamination of water courses by nitrate, ammonium and other faecal-derived pollutants such as E. Coli through runoff from treated land. Pollution from LD-OM has now been shown to extend to the contamination of subsurface pathways and potentially groundwater resources.
CO2 migration in the vadose zone: experimental and numerical modelling of controlled gas injection
NASA Astrophysics Data System (ADS)
gasparini, andrea; credoz, anthony; grandia, fidel; garcia, david angel; bruno, jordi
2014-05-01
The mobility of CO2 in the vadose zone and its subsequent transfer to the atmosphere is a matter of concern in the risk assessment of the geological storage of CO2. In this study the experimental and modelling results of controlled CO2 injection are reported to better understanding of the physical processes affecting CO2 and transport in the vadose zone. CO2 was injected through 16 micro-injectors during 49 days of experiments in a 35 m3 experimental unit filled with sandy material, in the PISCO2 facilities at the ES.CO2 centre in Ponferrada (North Spain). Surface CO2 flux were monitored and mapped periodically to assess the evolution of CO2 migration through the soil and to the atmosphere. Numerical simulations were run to reproduce the experimental results, using TOUGH2 code with EOS7CA research module considering two phases (gas and liquid) and three components (H2O, CO2, air). Five numerical models were developed following step by step the injection procedure done at PISCO2. The reference case (Model A) simulates the injection into a homogeneous soil(homogeneous distribution of permeability and porosity in the near-surface area, 0.8 to 0.3 m deep from the atmosphere). In another model (Model B), four additional soil layers with four specific permeabilities and porosities were included to predict the effect of differential compaction on soil. To account for the effect of higher soil temperature, an isothermal simulation called Model C was also performed. Finally, the assessment of the rainfall effects (soil water saturation) on CO2 emission on surface was performed in models called Model D and E. The combined experimental and modelling approach shows that CO2 leakage in the vadose zone quickly comes out through preferential migration pathways and spots with the ranges of fluxes in the ground/surface interface from 2.5 to 600 g·m-2·day-1. This gas channelling is mainly related to soil compaction and climatic perturbation. This has significant implications to design adapted detection and monitoring strategies of early leakage in commercial CO2 storage. The presence of soils with different compactions at surface influences the CO2 dispersion. The inclusion of soils with different permeability, porosity and liquid saturation results in preferential pathways. The formation of preferential pathways in the soil and hot spots on the surface has commonly been observed in natural systems where deep CO2 fluxes interact with shallow aquifers. Increase of ambient temperature increases CO2 fluxes intensity whereas rainfall decreases CO2 emission in gas phase and trap it as aqueous species in the porous media of the soil. A good accuracy has been obtained for surface CO2 fluxes location and intensity between experimental and modelling results taking into account the selected equation of state, the soil characteristics and the operational conditions. Phenomena of compaction and preferential pathways located only in the first centimetres of the soil can explain the heterogeneity of CO2 fluxes in the 16 m2 surface area of PISCO2 experimental platform.
Impacts of iron and steelmaking facilities on soil quality.
Strezov, Vladimir; Chaudhary, Chandrakant
2017-12-01
Iron and steel are highly important materials used in a wide range of products with important contribution to the economic development. The processes for making iron and steel are energy intensive and known to contribute to local pollution. Deposition of the metals may also have adverse impacts on soil quality, which requires detailed assessment. The aim of this study was to investigate the impacts of iron and steelmaking facilities on the local soil quality. Soil samples were collected in the vicinity of two steelmaking sites in Australia, one based on blast furnace steelmaking operation, while the second site was based on electric arc furnace steel recycling. The soil samples were compared to a background site where no industrial impact is expected. The soil collected near industrial facilities contained larger toxic metal contents, however this concentration for all priority metals was within the Australian National Environmental Protection Measure guidelines for the acceptable recreational soil quality. When compared to the international soil quality guidelines, some of the soils collected near the industrial sites, particularly near the blast furnace operated steelmaking, exceeded the arsenic, iron and manganese (according to United States Environmental Protection Agency guidelines) and chromium, copper and nickel concentrations (according to the Canadian guidelines). The work further provided a novel environmental assessment model taking into consideration the environmental and health impacts of each element. The environmental assessment revealed most significant contribution of manganese, followed by titanium, zinc, chromium and lead. Titanium was the second most important contributor to the soil quality, however this metal is currently not included in any of the international soil quality guidelines. Copyright © 2017 Elsevier Ltd. All rights reserved.
J.W. Van Sambeek; Robert L. McGraw; John M. Kabrick; Mark V. Coggeshall; Irene M. Unger; Daniel C. Dey
2007-01-01
Information about the flood tolerance of most plants has been obtained from either observations following natural floods or pot studies with amended soils. To better evaluate and compare flood tolerance among hardwood seedlings and ground covers for use in riparian buffer and bottomland plantings, a large outdoor facility with natural floodplain soils is needed where...
Shakofsky, S.M.
1995-01-01
In order to assess the effect of filled waste disposal trenches on transport-governing soil properties, comparisons were made between profiles of undisturbed soil and disturbed soil in a simulated waste trench. The changes in soil properties induced by the construction of a simulated waste trench were measured near the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL) in the semi-arid southeast region of Idaho. The soil samples were collected, using a hydraulically- driven sampler to minimize sample disruption, from both a simulated waste trench and an undisturbed area nearby. Results show that the undisturbed profile has distinct layers whose properties differ significantly, whereas the soil profile in the simulated waste trench is. by comparison, homogeneous. Porosity was increased in the disturbed cores, and, correspondingly, saturated hydraulic conductivities were on average three times higher. With higher soil-moisture contents (greater than 0.32), unsaturated hydraulic conductivities for the undisturbed cores were typically greater than those for the disturbed cores. With lower moisture contents, most of the disturbed cores had greater hydraulic conductivities. The observed differences in hydraulic conductivities are interpreted and discussed as changes in the soil pore geometry.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-24
... Fuel Cycle Facility in Festus, Missouri authorizing alternative disposal of soil and soil-like wastes... Code of Federal Regulations (10 CFR), of an additional 22,000 m\\3\\ (cubic meters) of soil and soil-like... for disposal of dewatered sanitary sludge as soil-like material. The licensee holds NRC License No...
Soil and Crop management: Lessons from the laboratory biosphere 2002-2004
NASA Astrophysics Data System (ADS)
Silverstone, S.; Nelson, M.; Alling, A.; Allen, J.
During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation with "Hoyt" Soy Beans, USU Apogee Wheat and TU-82-155 sweet potato using a 5.37 m2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching and returning crop residues to the soil after each experiment. Between experiment #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. Soil analyses for all three experiments are presented to show how the soils have changed with time and how the changes relate to crop selection and rotation, soil selection and management, water management and pest control. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth facility.
Wright, W.G.; Powell, J.D.
1990-01-01
Fuel-oil constituents in the soil and groundwater at the Fort Lee Petroleum Training Facility near Petersburg, Virginia, were studied by the U.S. Geological Survey (USGS) in cooperation with the Department of Defense, U.S. Army. The study included installation of 25 groundwater monitoring wells and description of groundwater flow patterns of the shallow-aquifer system underlying the facility. Soil and groundwater samples were collected to determine the concentrations of fuel-oil constituents and to determine the potential for off-site migration of the constituents. Total petroleum hydrocarbon concentrations up to 18,400 mg/km were reported in soil samples. Concentrations of benzene in water from wells at the facility were up to 130 micrograms per liter (ug/L), and concentrations of ethylbenzene and xylene were up to 54 and 120 ug/L, respectively. Potential exists for off-site migration of the contaminants and migration of contaminants downward to deeper aquifers. Further investigations of these potential contamination-migration pathways are warranted. Risk identification at the Petroleum Training Facility cannot be properly addressed because the distribution of the fuel-oil constituents has not been fully characterized. Preliminary identification of risk, however is presented by an examination of toxicity data for the chemical constituents reported in the groundwater at the facility. Concentrations of constituents were compared to the maximum contaminant levels (MCLs) for drinking water established by the U.S. Environmental Protection Agency (USEPA). Concentrations of benzene in water from wells at the facility exceed the USEPA 's 5 ug/L MCL by as much as 26 times. Sufficient data are not available to fully design the remedial-action plan for the facility; however, general responses to contamination of the type associated with the facility include no-action, monitoring, institutional controls, removal, and treatment. (USGS)
Elemental Concentrations in Urban Green Stormwater Infrastructure Soils
Michelle C. Kondo; Raghav Sharma; Alain F. Plante; Yunwen Yang; Igor Burstyn
2016-01-01
Green stormwater infrastructure (GSI) is designed to capture stormwater for infiltration, detention, evapotranspiration, or reuse. Soils play a key role in stormwater interception at these facilities. It is important to assess whether contamination is occurring in GSI soils because urban stormwater drainage areas often accumulate elements of concern. Soil contamination...
Simulation and validation of concentrated subsurface lateral flow paths in an agricultural landscape
NASA Astrophysics Data System (ADS)
Zhu, Q.; Lin, H. S.
2009-08-01
The importance of soil water flow paths to the transport of nutrients and contaminants has long been recognized. However, effective means of detecting concentrated subsurface flow paths in a large landscape are still lacking. The flow direction and accumulation algorithm based on single-direction flow algorithm (D8) in GIS hydrologic modeling is a cost-effective way to simulate potential concentrated flow paths over a large area once relevant data are collected. This study tested the D8 algorithm for simulating concentrated lateral flow paths at three interfaces in soil profiles in a 19.5-ha agricultural landscape in central Pennsylvania, USA. These interfaces were (1) the interface between surface plowed layers of Ap1 and Ap2 horizons, (2) the interface with subsoil water-restricting clay layer where clay content increased to over 40%, and (3) the soil-bedrock interface. The simulated flow paths were validated through soil hydrologic monitoring, geophysical surveys, and observable soil morphological features. The results confirmed that concentrated subsurface lateral flow occurred at the interfaces with the clay layer and the underlying bedrock. At these two interfaces, the soils on the simulated flow paths were closer to saturation and showed more temporally unstable moisture dynamics than those off the simulated flow paths. Apparent electrical conductivity in the soil on the simulated flow paths was elevated and temporally unstable as compared to those outside the simulated paths. The soil cores collected from the simulated flow paths showed significantly higher Mn content at these interfaces than those away from the simulated paths. These results suggest that (1) the D8 algorithm is useful in simulating possible concentrated subsurface lateral flow paths if used with appropriate threshold value of contributing area and sufficiently detailed digital elevation model (DEM); (2) repeated electromagnetic surveys can reflect the temporal change of soil water storage and thus is a useful indicator of possible subsurface flow path over a large area; and (3) observable Mn distribution in soil profiles can be used as a simple indicator of water flow paths in soils and over the landscape; however, it does require sufficient soil sampling (by excavation or augering) to possibly infer landscape-scale subsurface flow paths. In areas where subsurface interface topography varies similarly with surface topography, surface DEM can be used to simulate potential subsurface lateral flow path reasonably so the cost associated with obtaining depth to subsurface water-restricting layer can be minimized.
Interaction of vesicular-arbuscular mycorrhizal fungi with erosion in an oxisol.
Habte, M; Fox, R L; Aziz, T; El-Swaify, S A
1988-04-01
The development of vesicular-arbuscular mycorrhizal (VAM) symbiosis was monitored in Leucaena leucocephala grown in an Oxisol subjected to incremental simulated erosion. The density of VAM infective propagules in the soil diminished as the level of simulated erosion (removal of surface soil) was increased from 0 to 50 cm. The level of infection on L. leucocephala roots observed at harvest was not significantly influenced by simulated erosion unless removal of surface soil exceeded 25 cm. Inoculation of this soil and the uneroded soil with Glomus aggregatum enhanced the early onset of infection but did not significantly influence the level of infection observed at the time of harvest. Simulated erosion in excess of 7.5 cm of surface soil removal significantly delayed the development of VAM effectiveness monitored in terms of the P status of L. leucocephala subleaflets and also curtailed the level of maximum effectiveness observed. Decreases in VAM effectiveness were significantly correlated with decreases in soil chemical constituents. However, VAM effectiveness in a soil subjected to 30 cm of surface soil removal was not restored to a significant extent unless the soil was amended with P, even though other nutrients were restored to sufficiency levels. Our results demonstrate that the development of VAM effectiveness is the phase of the VAM symbiosis that is most adversely influenced by simulated erosion and that this effect appears to be caused primarily by insufficient P in the soil solution.
A Novel Source of DOC and DON to Watershed Soils
NASA Astrophysics Data System (ADS)
Aitkenhead-Peterson, J. A.
2017-12-01
A source of dissolved organic carbon (DOC) and nitrogen (DON) to soils and groundwater is that emanating from decomposing mammals. Although there is an increase in human donor facilities (body farms) in the USA and in mass mortality events (MME) worldwide, this injection of DOC and DON into watershed soils has received little attention. Studies at two human donor facilities in Texas, USA have revealed that the purge fluid associated with decomposition is extremely high in DOC and DON and migrates down the soil profile. Two studies were carried out 1) The southeast Texas Applied Forensic Science (STAFS) facility on an Alfisol with a saturated hydraulic conductivity of 331 mm hr-1 and 83% sand and 2) the Forensic Anthropology Research Facility (FARF) on Mollisols with a saturated hydraulic conductivity of 3.6-9.7 mm hr-1 and 28-33% sand. The numbers of days since donors were laid in the environment ranged from 219-680 d at STAFS and 306-960 d at FACTS. Purge can occur between 5 and 30 d dependent on the time of year the body is placed and the resultant phenomenon is termed cadaver decomposition island (CDI). Soil cores were taken at 5 cm increments to a depth of 30 cm in the sandy soil and 15 cm in the clayey/rocky soil. In the sandy soils, DOC concentrations were significantly higher in all the CDI soils when compared to control soils at depths of 15, 20, 25 and 30 cm and ranged from 121.7 µg g-1 (30 cm) to 167.6 µg g-1 (15 cm) in control soils and 461.9 µg g-1 (30 cm) to 660.4 µg g-1 (15 cm) in CDI soils, representing a three- to four-fold increase in DOC relative to control soils. DON in all CDI soils was not significantly higher than control soils until 30 cm depth and ranged from 9.9-32.3 µg g-1 in CDI soils and 121.7 µg g-1 in control soil, representing a two- to seven-fold increase in DON relative to control soils. DOC concentrations in control soils at the FARF site at 15 cm ranged 215-365 µg g-1 while in the CDI soils DOC was higher (range: 270-1175 µg g-1 and average: 567 µg g-1) suggesting a two-fold increase. DON at the FARF site at 15 cm ranged 9.5-10.4 µg g-1 in control soils while in the CDI soils the range was higher (range: 5.6-86.6; average: 38.7 µg g-1). This study highlights the implications for what could be expected during MMEs especially those which exceed 1,000's of deaths in creating hotspots of organic C and organic N across the landscape.
NASA Astrophysics Data System (ADS)
Trautz, A.; Smits, K. M.; Illangasekare, T. H.; Schulte, P.
2014-12-01
The purpose of this study is to investigate the impacts of soil conditions (i.e. soil type, saturation) and atmospheric forcings (i.e. velocity, temperature, relative humidity) on the momentum, mass, and temperature boundary layers. The atmospheric conditions tested represent those typically found in semi-arid and arid climates and the soil conditions simulate the three stages of evaporation. The data generated will help identify the importance of different soil conditions and atmospheric forcings with respect to land-atmospheric interactions which will have direct implications on future numerical studies investigating the effects of turbulent air flow on evaporation. The experimental datasets generated for this study were performed using a unique climate controlled closed-circuit wind tunnel/porous media facility located at the Center for Experimental Study of Subsurface Environmental Processes (CESEP) at the Colorado School of Mines. The test apparatus consisting of a 7.3 m long porous media tank and wind tunnel, were outfitted with a sensor network to carefully measure wind velocity, air and soil temperature, relative humidity, soil moisture, and soil air pressure. Boundary layer measurements were made between the heights of 2 and 500 mm above the soil tank under constant conditions (i.e. wind velocity, temperature, relative humidity). The soil conditions (e.g. soil type, soil moisture) were varied between datasets to analyze their impact on the boundary layers. Experimental results show that the momentum boundary layer is very sensitive to the applied atmospheric conditions and soil conditions to a much less extent. Increases in velocity above porous media leads to momentum boundary layer thinning and closely reflect classical flat plate theory. The mass and thermal boundary layers are directly dependent on both atmospheric and soil conditions. Air pressure within the soil is independent of atmospheric temperature and relative humidity - wind velocity and soil moisture effects were observed. This data provides important insight into future work of accurately modeling the exchange processes associated with evaporation under various turbulent atmospheric conditions.
Adsorption and degradation of 14C-bisphenol A in a soil trench.
Shen, Jian; Wang, Xin-Ze; Zhang, Zhen; Sui, Yan-Ming; Wu, Hai-Lu; Feng, Ji-Meng; Tong, Xin-Nan; Zhang, Zhen-Yu
2017-12-31
Bisphenol A (BPA) has caused widespread concern among scholars as a result of its estrogenic toxicity. It exists mainly in natural waters, sediments, and soil, as well as sewage and wastewater sludge. Considering that BPA is a common environmental pollutant that is removed along with chemical oxygen demand (COD), nitrogen, and phosphorus in drainage treatment systems, it is important to research the fate of BPA in sewage treatment systems. In this research, laboratory batch experiments on soil degradation and adsorption were conducted with 14 C-BPA, aiming to discuss the transport and degradation characteristics of BPA in both simulated facilities and a soil trench. Based on the experimental results, the Freundlich model could be applied to fit the isothermal adsorption curve of the BPA in soil. A low mobility characteristic of BPA was discovered. The mineralization rate of BPA was fast and that of the reaction showed small fluctuations. After degradation, 21.3 and 17.7% of the BPA groups (the experimental group treated with ammonia oxidase (AMO) inhibitor and the control group) were converted into 14 CO 2 , respectively. This indicates that the nitrification and degradation of BPA had a certain competitive relationship. Besides, nitrification did not significantly affect the soil residue of BPA. Through the soil trench test, the average removal rate of BPA in the soil trench was 85.5%. 14 CO 2 was discharged via the mineralization of BPA, accounting for 2.5% of the initial input. BPA easily accumulated in the bottom soil of the soil trench. BPA and its metabolites in the effluent accounted for 14.5% of the initial dosage. The residual extractable BPA and its metabolites in the soil accounted for 51.3%, and the remaining part of the unextractable residue represented 19.8% of the initial radioactive dosage. Copyright © 2017 Elsevier B.V. All rights reserved.
Soil Moisture under Different Vegetation cover in response to Precipitation
NASA Astrophysics Data System (ADS)
Liang, Z.; Zhang, J.; Guo, B.; Ma, J.; Wu, Y.
2016-12-01
The response study of soil moisture to different precipitation and landcover is significant in the field of Hydropedology. The influence of precipitation to soil moisture is obvious in addition to individual stable aquifer. With data of Hillsborough County, Florida, USA, the alluvial wetland forest and ungrazed Bahia grass that under wet and dry periods were chosen as the research objects, respectively. HYDRUS-3D numerical simulation method was used to simulate soil moisture dynamics in the root zone (10-50 cm) of those vegetation. The soil moisture response to precipitation was analyzed. The results showed that the simulation results of alluvial wetland forest by HYDRUS-3D were better than that of the Bahia grass, and for the same vegetation, the simulation results of soil moisture under dry period were better. Precipitation was more in June, 2003, the soil moisture change of alluvial wetland forest in 10-30 cm soil layer and Bahia grass in 10 cm soil layer were consistent with the precipitation change conspicuously. The alluvial wetland forest soil moisture declined faster than Bahia grass under dry period, which demonstrated that Bahia grass had strong ability to hold water. Key words: alluvial wetland forest; Bahia grass; soil moisture; HYDRUS-3D; precipitation
Evaluation of commercially available aqueous batch immersion cleaning products. Technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevilacqua, P.; Clark, K.G.
1996-01-10
With the production of Class I Ozone Depleting Substances scheduled to cease in January 1996, it has become necessary to identify suitable replacements for chlorofluorocarbon (CFC-113, Freon 113) vapor degreasing operations currently used to clean avionics components in Navy aircraft maintenance facilities. In this study, one potential option, the use of aqueous cleaning agents, was explored. Commercially available industrial aqueous cleaning agents were evaluated for cleaning capability on simulated operational soils and effects on aircraft materials. Two cleaning agents, Armakleen 2001 and Crest ABS 901, were recommended as a result of this work, and a Military Specification was drafted outliningmore » performance requirements.« less
NASA Astrophysics Data System (ADS)
Güntel, Berna; Acar, Altay
2016-10-01
In June 2011, a heavy rainfall triggered a number of rockfalls from steep slopes and on slopes made of soft to loose soils capped by inhomogeneous hard rock blocks and masses in the Düziçi Town of Osmaniye Province in Turkey. Large rock blocks had damaged 15 prefabricated hotel rooms whereas the slope movement blocked the major road between Duzigi and hot spring facilities at numerous locations along 280 m. This paper describes remedial measures and design recommended according to the modelling process based on the collection of data and simulation of rockfall with Rocscience RockFall 5.0 software.
Hossain, M A; Furumai, H; Nakajima, F
2009-01-01
Accumulation of heavy metals at elevated concentration and potential of considerable amount of the accumulated heavy metals to reach the soil system was observed from earlier studies in soakaways sediments within an infiltration facility in Tokyo, Japan. In order to understand the competitive adsorption behaviour of heavy metals Zn, Ni and Cu in soil, competitive batch adsorption experiments were carried out using single metal and binary metal combinations on soil samples representative of underlying soil and surface soil at the site. Speciation analysis of the adsorbed metals was carried out through BCR sequential extraction method. Among the metals, Cu was not affected by competition while Zn and Ni were affected by competition of coexisting metals. The parameters of fitted 'Freundlich' and 'Langmuir' isotherms indicated more intense competition in underlying soil compared to surface soil for adsorption of Zn and Ni. The speciation of adsorbed metals revealed less selectivity of Zn and Ni to soil organic matter, while dominance of organic bound fraction was observed for Cu, especially in organic rich surface soil. Compared to underlying soil, the surface soil is expected to provide greater adsorption to heavy metals as well as provide greater stability to adsorbed metals, especially for Cu.
Williamson, Tanja N.; Lee, Brad D.; Schoeneberger, Philip J.; McCauley, W. M.; Indorante, Samuel J.; Owens, Phillip R.
2014-01-01
Soil Survey Geographic Database (SSURGO) data are available for the entire United States, so are incorporated in many regional and national models of hydrology and environmental management. However, SSURGO does not provide an understanding of spatial variability and only includes saturated hydraulic conductivity (Ksat) values estimated from particle size analysis (PSA). This study showed model sensitivity to the substitution of SSURGO data with locally described soil properties or alternate methods of measuring Ksat. Incorporation of these different soil data sets significantly changed the results of hydrologic modeling as a consequence of the amount of space available to store soil water and how this soil water is moved downslope. Locally described soil profiles indicated a difference in Ksat when measured in the field vs. being estimated from PSA. This, in turn, caused a difference in which soil layers were incorporated in the hydrologic simulations using TOPMODEL, ultimately affecting how soil water storage was simulated. Simulations of free-flowing soil water, the amount of water traveling through pores too large to retain water against gravity, were compared with field observations of water in wells at five slope positions along a catena. Comparison of the simulated data with the observed data showed that the ability to model the range of conditions observed in the field varied as a function of three soil data sets (SSURGO and local field descriptions using PSA-derived Ksat or field-measured Ksat) and that comparison of absolute values of soil water storage are not valid if different characterizations of soil properties are used.
Mini rainfall simulation for assessing soil erodibility
NASA Astrophysics Data System (ADS)
Peters, Piet; Palese, Dina; Baartman, Jantiene
2016-04-01
The mini rainfall simulator is a small portable rainfall simulator to determine erosion and water infiltration characteristics of soils. The advantages of the mini rainfall simulator are that it is suitable for soil conservation surveys and light and easy to handle in the field. Practical experience over the last decade has shown that the used 'standard' shower is a reliable method to assess differences in erodibility due to soil type and/or land use. The mini rainfall simulator was used recently in a study on soil erosion in olive groves (Ferrandina-Italy). The propensity to erosion of a steep rain-fed olive grove (mean slope ~10%) with a sandy loam soil was evaluated by measuring runoff and sediment load under extreme rain events. Two types of soil management were compared: spontaneous grass as a ground cover (GC) and tillage (1 day (T1) and 10 days after tillage (T2)). Results indicate that groundcover reduced surface runoff to approximately one-third and soil-losses to zero compared with T1. The runoff between the two tilled plots was similar, although runoff on T1 plots increased steadily over time whereas runoff on T2 plots remained stable.
NASA Astrophysics Data System (ADS)
Kumar, R.; Samaniego, L. E.; Livneh, B.
2013-12-01
Knowledge of soil hydraulic properties such as porosity and saturated hydraulic conductivity is required to accurately model the dynamics of near-surface hydrological processes (e.g. evapotranspiration and root-zone soil moisture dynamics) and provide reliable estimates of regional water and energy budgets. Soil hydraulic properties are commonly derived from pedo-transfer functions using soil textural information recorded during surveys, such as the fractions of sand and clay, bulk density, and organic matter content. Typically large scale land-surface models are parameterized using a relatively coarse soil map with little or no information on parametric sub-grid variability. In this study we analyze the impact of sub-grid soil variability on simulated hydrological fluxes over the Mississippi River Basin (≈3,240,000 km2) at multiple spatio-temporal resolutions. A set of numerical experiments were conducted with the distributed mesoscale hydrologic model (mHM) using two soil datasets: (a) the Digital General Soil Map of the United States or STATSGO2 (1:250 000) and (b) the recently collated Harmonized World Soil Database based on the FAO-UNESCO Soil Map of the World (1:5 000 000). mHM was parameterized with the multi-scale regionalization technique that derives distributed soil hydraulic properties via pedo-transfer functions and regional coefficients. Within the experimental framework, the 3-hourly model simulations were conducted at four spatial resolutions ranging from 0.125° to 1°, using meteorological datasets from the NLDAS-2 project for the time period 1980-2012. Preliminary results indicate that the model was able to capture observed streamflow behavior reasonably well with both soil datasets, in the major sub-basins (i.e. the Missouri, the Upper Mississippi, the Ohio, the Red, and the Arkansas). However, the spatio-temporal patterns of simulated water fluxes and states (e.g. soil moisture, evapotranspiration) from both simulations, showed marked differences; particularly at a shorter time scale (hours to days) in regions with coarse texture sandy soils. Furthermore, the partitioning of total runoff into near-surface interflows and baseflow components was also significantly different between the two simulations. Simulations with the coarser soil map produced comparatively higher baseflows. At longer time scales (months to seasons) where climatic factors plays a major role, the integrated fluxes and states from both sets of model simulations match fairly closely, despite the apparent discrepancy in the partitioning of total runoff.
The implementation of sea ice model on a regional high-resolution scale
NASA Astrophysics Data System (ADS)
Prasad, Siva; Zakharov, Igor; Bobby, Pradeep; McGuire, Peter
2015-09-01
The availability of high-resolution atmospheric/ocean forecast models, satellite data and access to high-performance computing clusters have provided capability to build high-resolution models for regional ice condition simulation. The paper describes the implementation of the Los Alamos sea ice model (CICE) on a regional scale at high resolution. The advantage of the model is its ability to include oceanographic parameters (e.g., currents) to provide accurate results. The sea ice simulation was performed over Baffin Bay and the Labrador Sea to retrieve important parameters such as ice concentration, thickness, ridging, and drift. Two different forcing models, one with low resolution and another with a high resolution, were used for the estimation of sensitivity of model results. Sea ice behavior over 7 years was simulated to analyze ice formation, melting, and conditions in the region. Validation was based on comparing model results with remote sensing data. The simulated ice concentration correlated well with Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and Ocean and Sea Ice Satellite Application Facility (OSI-SAF) data. Visual comparison of ice thickness trends estimated from the Soil Moisture and Ocean Salinity satellite (SMOS) agreed with the simulation for year 2010-2011.
Scenario Analysis of Soil and Water Conservation in Xiejia Watershed Based on Improved CSLE Model
NASA Astrophysics Data System (ADS)
Liu, Jieying; Yu, Ming; Wu, Yong; Huang, Yao; Nie, Yawen
2018-01-01
According to the existing research results and related data, use the scenario analysis method, to evaluate the effects of different soil and water conservation measures on soil erosion in a small watershed. Based on the analysis of soil erosion scenarios and model simulation budgets in the study area, it is found that all scenarios simulated soil erosion rates are lower than the present situation of soil erosion in 2013. Soil and water conservation measures are more effective in reducing soil erosion than soil and water conservation biological measures and soil and water conservation tillage measures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... means testing conducted to verify a simulation facility's performance as compared to actual or predicted... which a simulation facility's control room configuration, system control arrangement, and design data... of a facility and to direct the licensed activities of licensed operators. Simulation facility means...
Code of Federal Regulations, 2012 CFR
2012-01-01
... means testing conducted to verify a simulation facility's performance as compared to actual or predicted... which a simulation facility's control room configuration, system control arrangement, and design data... of a facility and to direct the licensed activities of licensed operators. Simulation facility means...
Code of Federal Regulations, 2011 CFR
2011-01-01
... means testing conducted to verify a simulation facility's performance as compared to actual or predicted... which a simulation facility's control room configuration, system control arrangement, and design data... of a facility and to direct the licensed activities of licensed operators. Simulation facility means...
Soil erodibility variability in laboratory and field rainfall simulations
NASA Astrophysics Data System (ADS)
Szabó, Boglárka; Szabó, Judit; Jakab, Gergely; Centeri, Csaba; Szalai, Zoltán
2017-04-01
Rainfall simulation experiments are the most common way to observe and to model the soil erosion processes in in situ and ex situ circumstances. During modelling soil erosion, one of the most important factors are the annual soil loss and the soil erodibility which represent the effect of soil properties on soil loss and the soil resistance against water erosion. The amount of runoff and soil loss can differ in case of the same soil type, while it's characteristics determine the soil erodibility factor. This leads to uncertainties regarding soil erodibility. Soil loss and soil erodibility were examined with the investigation of the same soil under laboratory and field conditions with rainfall simulators. The comparative measurement was carried out in a laboratory on 0,5 m2, and in the field (Shower Power-02) on 6 m2 plot size where the applied slope angles were 5% and 12% with 30 and 90 mm/h rainfall intensity. The main idea was to examine and compare the soil erodibility and its variability coming from the same soil, but different rainfall simulator type. The applied model was the USLE, nomograph and other equations which concern single rainfall events. The given results show differences between the field and laboratory experiments and between the different calculations. Concerning for the whole rainfall events runoff and soil loss, were significantly higher at the laboratory experiments, which affected the soil erodibility values too. The given differences can originate from the plot size. The main research questions are that: How should we handle the soil erodibility factors and its significant variability? What is the best solution for soil erodibility determination?
Evaluating Soil Carbon Sequestration in Central Iowa
NASA Astrophysics Data System (ADS)
Doraiswamy, P. C.; Hunt, E. R.; McCarty, G. W.; Daughtry, C. S.; Izaurralde, C.
2005-12-01
The potential for reducing atmospheric carbon dioxide (CO2) concentration through landuse and management of agricultural systems is of great interest worldwide. Agricultural soils can be a source of CO2 when not properly managed but can also be a sink for sequestering CO2 through proper soil and crop management. The EPIC-CENTURY biogeochemical model was used to simulate the baseline level of soil carbon from soil survey data and project changes in soil organic carbon (SOC) under different tillage and crop management practices for corn and soybean crops. The study was conducted in central Iowa (50 km x 100 km) to simulate changes in soil carbon over the next 50 years. The simulations were conducted in two phases; initially a 25-year period (1971-1995) was simulated using conventional tillage practices since there was a transition in new management after 1995. In the second 25-year period (1996-2020), four different modeling scenarios were applied namely; conventional tillage, mulch tillage, no-tillage and no-tillage with a rye cover crop over the winter. The model simulation results showed potential gains in soil carbon in the top layers of the soil for conservation tillage. The simulations were made at a spatial resolution of 1.6 km x 1.6 km and mapped for the study area. There was a mean reduction in soil organic carbon of 0.095 T/ha per year over the 25-year period starting with 1996 for the conventional tillage practice. However, for management practices of mulch tillage, no tillage and no tillage with cover crop there was an increase in soil organic carbon of 0.12, 0.202 and 0.263 T/ha respectively over the same 25-year period. These results are in general similar to studies conducted in this region.
Variations of measured and simulated soil-loss amounts in a semiarid area in Turkey.
Hacisalihoğlu, Sezgin
2010-06-01
The main goal of this research was soil-loss determination and comparison of the plot measurement results with simulation model (universal soil loss equation (USLE)) results in different land use and slope classes. The research took place in three different land-use types (Scotch pine forest, pasture land, and agricultural land) and in two different slope classes (15-20%, 35-40%). Within six measurement stations (for each land-use type and slope class-one station), totally 18 measurement plots have been constituted, and soil-loss amount measurements have been investigated during the research period (3 years along). USLE simulation model is used in these measurement plots for calculation the soil-loss amounts. The results pointed out that measured (in plots) and simulated (with USLE) soil-loss amounts differ significantly in each land-use type and slope class.
Remotely sensed soil moisture input to a hydrologic model
NASA Technical Reports Server (NTRS)
Engman, E. T.; Kustas, W. P.; Wang, J. R.
1989-01-01
The possibility of using detailed spatial soil moisture maps as input to a runoff model was investigated. The water balance of a small drainage basin was simulated using a simple storage model. Aircraft microwave measurements of soil moisture were used to construct two-dimensional maps of the spatial distribution of the soil moisture. Data from overflights on different dates provided the temporal changes resulting from soil drainage and evapotranspiration. The study site and data collection are described, and the soil measurement data are given. The model selection is discussed, and the simulation results are summarized. It is concluded that a time series of soil moisture is a valuable new type of data for verifying model performance and for updating and correcting simulated streamflow.
DOT National Transportation Integrated Search
2008-03-01
The main objective of this study was to determine the most beneficial and cost-effective accelerated load facility that can be used in conjunction with LTRCs Accelerated Load Facility (ALF). The facility will be used primarily for conducting preli...
BIOACCESSIBILITY OF ARSENIC( V )BOUND TO FERRIHYDRITE USING A SIMULATED GASTROINTESTINAL SYSTEM
The risk posed from incidental ingestion of arsenic-contaminated soil may depend on sorption of arsenate (As(V)) to oxide surfaces in soil. Arsenate sorbed to ferrihdrite, a model soil mineral, was used to simulate possible effects on ingestion of soil contaminated with As(V) sor...
Communication Systems Simulation Laboratory (CSSL): Simulation Planning Guide
NASA Technical Reports Server (NTRS)
Schlesinger, Adam
2012-01-01
The simulation process, milestones and inputs are unknowns to first-time users of the CSSL. The Simulation Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their engineering personnel in simulation planning and execution. Material covered includes a roadmap of the simulation process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, facility interfaces, and inputs necessary to define scope, cost, and schedule are included as an appendix to the guide.
Systems Engineering Simulator (SES) Simulator Planning Guide
NASA Technical Reports Server (NTRS)
McFarlane, Michael
2011-01-01
The simulation process, milestones and inputs are unknowns to first-time users of the SES. The Simulator Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their engineering personnel in simulation planning and execution. Material covered includes a roadmap of the simulation process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, facility interfaces, and inputs necessary to define scope, cost, and schedule are included as an appendix to the guide.
NASA Astrophysics Data System (ADS)
Chiroux, Robert Charles
The objective of this research was to produce a three dimensional, non-linear, dynamic simulation of the interaction between a hyperelastic wheel rolling over compactable soil. The finite element models developed to produce the simulation utilized the ABAQUS/Explicit computer code. Within the simulation two separate bodies were modeled, the hyperelastic wheel and a compactable soil-bed. Interaction between the bodies was achieved by allowing them to come in contact but not to penetrate the contact surface. The simulation included dynamic loading of a hyperelastic, rubber tire in contact with compactable soil with an applied constant angular velocity or torque, including a tow load, applied to the wheel hub. The constraints on the wheel model produced a straight and curved path. In addition the simulation included a shear limit between the tire and soil allowing for the introduction of slip. Soil properties were simulated using the Drucker-Prager, Cap Plasticity model available within the ABAQUS/Explicit program. Numerical results obtained from the three dimensional model were compared with related experimental data and showed good correlation for similar conditions. Numerical and experimental data compared well for both stress and wheel rut formation depth under a weight of 5.8 kN and a constant angular velocity applied to the wheel hub. The simulation results provided a demonstration of the benefit of three-dimensional simulation in comparison to previous two-dimensional, plane strain simulations.
Assimilating soil moisture into an Earth System Model
NASA Astrophysics Data System (ADS)
Stacke, Tobias; Hagemann, Stefan
2017-04-01
Several modelling studies reported potential impacts of soil moisture anomalies on regional climate. In particular for short prediction periods, perturbations of the soil moisture state may result in significant alteration of surface temperature in the following season. However, it is not clear yet whether or not soil moisture anomalies affect climate also on larger temporal and spatial scales. In an earlier study, we showed that soil moisture anomalies can persist for several seasons in the deeper soil layers of a land surface model. Additionally, those anomalies can influence root zone moisture, in particular during explicitly dry or wet periods. Thus, one prerequisite for predictability, namely the existence of long term memory, is evident for simulated soil moisture and might be exploited to improve climate predictions. The second prerequisite is the sensitivity of the climate system to soil moisture. In order to investigate this sensitivity for decadal simulations, we implemented a soil moisture assimilation scheme into the Max-Planck Institute for Meteorology's Earth System Model (MPI-ESM). The assimilation scheme is based on a simple nudging algorithm and updates the surface soil moisture state once per day. In our experiments, the MPI-ESM is used which includes model components for the interactive simulation of atmosphere, land and ocean. Artificial assimilation data is created from a control simulation to nudge the MPI-ESM towards predominantly dry and wet states. First analyses are focused on the impact of the assimilation on land surface variables and reveal distinct differences in the long-term mean values between wet and dry state simulations. Precipitation, evapotranspiration and runoff are larger in the wet state compared to the dry state, resulting in an increased moisture transport from the land to atmosphere and ocean. Consequently, surface temperatures are lower in the wet state simulations by more than one Kelvin. In terms of spatial pattern, the largest differences between both simulations are seen for continental areas, while regions with a maritime climate are least sensitive to soil moisture assimilation.
Ma, Jing; Horii, Yuichi; Cheng, Jinping; Wang, Wenhua; Wu, Qian; Ohura, Takeshi; Kannan, Kurunthachalam
2009-02-01
Chlorinated polycyclic aromatic hydrocarbons (CIPAHs) are a class of halogenated contaminants found in the urban atmosphere; they have toxic potential similar to that of dioxins. Information on the sources of CIPAHs is limited. In this study, concentrations of 20 CIPAHs and 16 parent PAHs were measured in electronic wastes, workshop-floor dust, vegetation, and surface soil collected from the vicinity of an electronic waste (e-waste) recycling facility and in surface soil from a chemical industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant), and agricultural areas in central and eastern China. High concentrations of SigmaCIPAHs were found in floor dust (mean, 103 ng/g dry wt), followed in order of decreasing concentration by leaves (87.5 ng/g drywt), electronic shredder waste (59.1 ng/g dry wt), and soil (26.8 ng/g dry wt) from an e-waste recycling facility in Taizhou. The mean concentration of SigmaCIPAHs in soil from the chemical industrial complex (88 ng/g dry wt) was approximately 3-fold higher than the concentration in soil from e-waste recycling facilities. The soils from e-waste sites and industrial areas contained mean concentrations of SigmaCIPAHs 2 to 3 orders of magnitude higher than the concentrations in agricultural soils (ND-0.76 ng/g), suggesting that e-waste recycling and chlorine-chemical industries are potential emission sources of CIPAHs. The profiles of CIPAHs in soil and dust were similar to a profile that has been reported previously for fly ash from municipal solid waste incinerators (6-CIBaP was the predominant compound), but the profiles in vegetation and electronic shredder waste were different from those found in fly ash. Concentrations of 16 parent PAHs were high (150-49,700 ng/g) in samples collected from the e-waste recycling facility. Significant correlation between SigmaCIPAH and SigmaPAH concentrations suggests that direct chlorination of parent PAHs is the major pathway of formation of CIPAHs during e-waste recycling operations. Dioxin-like toxic equivalency quotients (TEQs) for CIPAHs and PAHs in samples were calculated on the basis of relative potencies reported for CIPAHs and PAHs. The highest mean TEQ concentrations of CIPAHs (518 pg-TEQ/g) were found for workshop-floor dust, followed by leaves (361 pg-TEQ/g), electronic shredder waste (308 pg-TEQ/g), soil from the chemical industrial complex (146 pg-TEQ/g), and soil from the sites of the e-waste recycling facility (92.3 pg-TEQ/g). With one exception, the floor dust samples, the TEQ concentrations of CIPAHs found in multiple environmental matrices in this study were higher than the TEQ concentrations of PCDD/Fs in the same samples reported in our earlier study.
NASA Astrophysics Data System (ADS)
Schuerger, Andrew C.; Golden, D. C.; Ming, Doug W.
2012-11-01
Six Mars analog soils were created to simulate a range of potentially biotoxic geochemistries relevant to the survival of terrestrial microorganisms on Mars, and included basalt-only (non-toxic control), salt, acidic, alkaline, aeolian, and perchlorate rich geochemistries. Experiments were designed to simulate the dry-deposition of Mars soils onto spacecraft surfaces during an active descent landing scenario with propellant engines. Six eubacteria were initially tested for tolerance to desiccation, and the spore-former Bacillus subtilis HA101 and non-spore former Enterococcus faecalis ATCC 29212 were identified to be strongly resistant (HA101) and moderately resistant (29212) to desiccation at 24 °C. Furthermore, tests with B. subtilis and E. faecalis demonstrated that at least 1 mm of Mars analog soil was required to fully attenuate the biocidal effects of a simulated Mars-normal equatorial UV flux. Biotoxicity experiments were conducted under simulated Martian conditions of 6.9 mbar, -10 °C, CO2-enriched anoxic atmosphere, and a simulated equatorial solar spectrum (200-1100 nm) with an optical depth of 0.1. For B. subtilis, the six analog soils were found, in general, to be of low biotoxicity with only the high salt and acidic soils exhibiting the capacity to inactivate a moderate number of spores (<1 log reductions) exposed 7 days to the soils under simulated Martian conditions. In contrast, the overall response of E. faecalis to the analog soils was more dramatic with between two and three orders of magnitude reductions in viable cells for most soils, and between six and seven orders of magnitude reductions observed for the high-salt soil. Results suggest that Mars soils are likely not to be overtly biotoxic to terrestrial microorganisms, and suggest that the soil geochemistries on Mars will not preclude the habitability of the Martian surface.
An efficient soil water balance model based on hybrid numerical and statistical methods
NASA Astrophysics Data System (ADS)
Mao, Wei; Yang, Jinzhong; Zhu, Yan; Ye, Ming; Liu, Zhao; Wu, Jingwei
2018-04-01
Most soil water balance models only consider downward soil water movement driven by gravitational potential, and thus cannot simulate upward soil water movement driven by evapotranspiration especially in agricultural areas. In addition, the models cannot be used for simulating soil water movement in heterogeneous soils, and usually require many empirical parameters. To resolve these problems, this study derives a new one-dimensional water balance model for simulating both downward and upward soil water movement in heterogeneous unsaturated zones. The new model is based on a hybrid of numerical and statistical methods, and only requires four physical parameters. The model uses three governing equations to consider three terms that impact soil water movement, including the advective term driven by gravitational potential, the source/sink term driven by external forces (e.g., evapotranspiration), and the diffusive term driven by matric potential. The three governing equations are solved separately by using the hybrid numerical and statistical methods (e.g., linear regression method) that consider soil heterogeneity. The four soil hydraulic parameters required by the new models are as follows: saturated hydraulic conductivity, saturated water content, field capacity, and residual water content. The strength and weakness of the new model are evaluated by using two published studies, three hypothetical examples and a real-world application. The evaluation is performed by comparing the simulation results of the new model with corresponding results presented in the published studies, obtained using HYDRUS-1D and observation data. The evaluation indicates that the new model is accurate and efficient for simulating upward soil water flow in heterogeneous soils with complex boundary conditions. The new model is used for evaluating different drainage functions, and the square drainage function and the power drainage function are recommended. Computational efficiency of the new model makes it particularly suitable for large-scale simulation of soil water movement, because the new model can be used with coarse discretization in space and time.
2014-06-01
use and camping facilities, a boat launch and mooring area, sanitary facilities, and wells for drinking water at Conestoga Reservoir. Additional...gently sloping to very steep, well drained, loamy clay soils that formed in glacial till. The Sharpsburg series is a deep, moderately drained soil...Unfortunately, due to the number of potential sources ( sanitary wastewater, storm water, Conestoga Reservoir Rehabilitation Project U.S. Army Corps of
NASA Astrophysics Data System (ADS)
Nunes, João Pedro; Catarina Simões Vieira, Diana; Keizer, Jan Jacob
2017-04-01
Fires impact soil hydrological properties, enhancing soil water repellency and therefore increasing the potential for surface runoff generation and soil erosion. In consequence, the successful application of hydrological models to post-fire conditions requires the appropriate simulation of the effects of soil water repellency on soil hydrology. This work compared three approaches to model soil water repellency impacts on soil hydrology in burnt eucalypt and pine forest slopes in central Portugal: 1) Daily approach, simulating repellency as a function of soil moisture, and influencing the maximum soil available water holding capacity. It is based on the Thornthwaite-Mather soil water modelling approach, and is parameterized with the soil's wilting point and field capacity, and a parameter relating soil water repellency with water holding capacity. It was tested with soil moisture data from burnt and unburnt hillslopes. This approach was able to simulate post-fire soil moisture patterns, which the model without repellency was unable to do. However, model parameters were different between the burnt and unburnt slopes, indicating that more research is needed to derive standardized parameters from commonly measured soil and vegetation properties. 2) Seasonal approach, pre-determining repellency at the seasonal scale (3 months) in four classes (from none to extreme). It is based on the Morgan-Morgan-Finney (MMF) runoff and erosion model, applied at the seasonal scale and is parameterized with a parameter relating repellency class with field capacity. It was tested with runoff and erosion data from several experimental plots, and led to important improvements on runoff prediction over an approach with constant field capacity for all seasons (calibrated for repellency effects), but only slight improvements in erosion predictions. In contrast with the daily approach, the parameters could be reproduced between different sites 3) Constant approach, specifying values for soil water repellency for the three years after the fire, and keeping them constant throughout the year. It is based on a daily Curve Number (CN) approach, and was incorporated directly in the Soil and Water Assessment Tool (SWAT) model and tested with erosion data from a burnt hillslope. This approach was able to successfully reproduce soil erosion. The results indicate that simplified approaches can be used to adapt existing models for post-fire simulation, taking repellency into account. Taking into account the seasonality of repellency seems more important to simulate surface runoff than erosion, possibly since simulating the larger runoff rates correctly is sufficient for erosion simulation. The constant approach can be applied directly in the parameterization of existing runoff and erosion models for soil loss and sediment yield prediction, while the seasonal approach can readily be developed as a next step, with further work being needed to assess if the approach and associated parameters can be applied in multiple post-fire environments.
NASA Astrophysics Data System (ADS)
Guimberteau, M.; Ducharne, A.; Ciais, P.; Boisier, J. P.; Peng, S.; De Weirdt, M.; Verbeeck, H.
2014-06-01
This study analyzes the performance of the two soil hydrology schemes of the land surface model ORCHIDEE in estimating Amazonian hydrology and phenology for five major sub-basins (Xingu, Tapajós, Madeira, Solimões and Negro), during the 29-year period 1980-2008. A simple 2-layer scheme with a bucket topped by an evaporative layer is compared to an 11-layer diffusion scheme. The soil schemes are coupled with a river routing module and a process model of plant physiology, phenology and carbon dynamics. The simulated water budget and vegetation functioning components are compared with several data sets at sub-basin scale. The use of the 11-layer soil diffusion scheme does not significantly change the Amazonian water budget simulation when compared to the 2-layer soil scheme (+3.1 and -3.0% in evapotranspiration and river discharge, respectively). However, the higher water-holding capacity of the soil and the physically based representation of runoff and drainage in the 11-layer soil diffusion scheme result in more dynamic soil water storage variation and improved simulation of the total terrestrial water storage when compared to GRACE satellite estimates. The greater soil water storage within the 11-layer scheme also results in increased dry-season evapotranspiration (+0.5 mm d-1, +17%) and improves river discharge simulation in the southeastern sub-basins such as the Xingu. Evapotranspiration over this sub-basin is sustained during the whole dry season with the 11-layer soil diffusion scheme, whereas the 2-layer scheme limits it after only 2 dry months. Lower plant drought stress simulated by the 11-layer soil diffusion scheme leads to better simulation of the seasonal cycle of photosynthesis (GPP) when compared to a GPP data-driven model based on eddy covariance and satellite greenness measurements. A dry-season length between 4 and 7 months over the entire Amazon Basin is found to be critical in distinguishing differences in hydrological feedbacks between the soil and the vegetation cover simulated by the two soil schemes. On average, the multilayer soil diffusion scheme provides little improvement in simulated hydrology over the wet tropical Amazonian sub-basins, but a more significant improvement is found over the drier sub-basins. The use of a multilayer soil diffusion scheme might become critical for assessments of future hydrological changes, especially in southern regions of the Amazon Basin where longer dry seasons and more severe droughts are expected in the next century.
Ecohydrology of Graciosa semi-natural grasslands: water use and evapotranspiration partition
NASA Astrophysics Data System (ADS)
Paço, Teresa A.; Paredes, Paula; Azevedo, Eduardo B.; Madruga, João S.; Pereira, Luís S.
2016-04-01
Semi-natural grasslands are a main landscape of Graciosa and other Islands of Azores. The present study aims at calibrate and validate the soil water balance model SIMDualKc for those grasslands aiming at assessing the dynamics of soil water and evapotranspiration. This objective relates with the need to improve knowledge on the ecohydrology of grasslands established in (volcanic) Andosols. This model adopts the dual crop coefficient approach to compute daily crop evapotranspiration (ETc) and to perform its partition into transpiration (T) and soil evaporation (Es). The application refers to a semi-natural grassland sporadically sowed with ryegrass (Lolium multiflorum Lam.). Model calibration and validation were performed comparing simulated against observed grassland evapotranspiration throughout two periods in consecutive years. Daily ET values were derived from eddy covariance data collected at the Eastern North Atlantic (ENA) facility of the ARM programme (established and supported by the U.S. Department of Energy with the collaboration of the local government and University of the Azores), at Graciosa, Azores (Portugal). Various statistical performance indicators were used to assess model accuracy and results show a good adequacy of the model for predicting vegetation ET in such conditions. Surface flux energy balance was also evaluated throughout the observation period (2014-2016). The ratio Es/ET shows that soil evaporation is much small than T/ET due to high soil cover by vegetation. The model was then applied to contrasting climatic conditions (dry vs. wet years) to assess related impacts on water balance components and grassland transpiration.
NASA Astrophysics Data System (ADS)
Ito, Y.; Noborio, K.
2015-12-01
In Japan, soil disinfection with hot water has been popular since the use of methyl bromide was restricted in 2005. Decreasing the amount of hot water applied may make farmers reduce the operation cost. To determine the appropriate amount of hot water needed for soil disinfection, HYDRUS-2D was evaluated. A field experiment was conducted and soil water content and soil temperature were measured at 5, 10, 20, 40, 60, 80 and 100 cm deep when 95oC hot water was applied. Irrigation tubing equipped with drippers every 30 cm were laid at the soil surface, z=0 cm. An irrigation rate for each dripper was 0.83 cm min-1 between t=0 and 120 min, and thereafter it was zero. Temperature of irrigation water was 95oC. Total simulation time with HYDRUS-2D was 720 min for a homogeneous soil. A simulating domain was selected as x=60 cm and z=100 cm. A potential evaporation rate was assumed to be 0 cm min-1 because the soil surface was covered with a plastic sheet. The boundary condition at the bottom was free drainage and those of both sides were no-flux conditions. Hydraulic properties and bulk densities measured at each depth were used for simulation. It was assumed that there was no organic matter contained. Soil thermal properties were adopted from previous study and HYDRUS 2D. Simulated temperatures at 5, 10, 20 and 40 cm deep agreed well with those measured although simulated temperatures at 60, 80, and 100 cm deep were overly estimated. Estimates of volumetric water content at 5 cm deep agreed well with measured values. Simulated values at 10 to 100 cm deep were overly estimated by 0.1 to 0.3 (m3 m-3). The deeper the soil became, the more the simulated wetting front lagged behind the measured one. It was speculated that water viscosity estimated smaller at high temperature might attributed to the slower advances of wetting front simulated with HYDRUS 2-D.
NASA Technical Reports Server (NTRS)
1983-01-01
A 20 ft vertical spin tunnel, a 30 by 60 ft tunnel, a 7 by 10 ft high speed tunnel, a 4 by 7 meter tunnel, an 8 ft transonic pressure tunnel, a transonic dynamics tunnel, a 16 ft transonic tunnel, a national transonic facility, a 0.3 meter transonic cryogenic tunnel, a unitary plan wind tunnel, a hypersonic facilities complex, an 8 ft high temperature tunnel, an aircraft noise reduction lab, an avionics integration research lab, a DC9 full workload simulator, a transport simulator, a general aviation simulator, an advanced concepts simulator, a mission oriented terminal area simulation (MOTAS), a differential maneuvering simulator, a visual/motion simulator, a vehicle antenna test facility, an impact dynamics research facility, and a flight research facility are all reviewed.
NASA Astrophysics Data System (ADS)
Vergnes, Jean-Pierre; Decharme, Bertrand; Habets, Florence
2014-05-01
Groundwater is a key component of the global hydrological cycle. It sustains base flow in humid climate while it receives seepage in arid region. Moreover, groundwater influences soil moisture through water capillary rise into the soil and potentially affects the energy and water budget between the land surface and the atmosphere. Despite its importance, most global climate models do not account for groundwater and their possible interaction with both the surface hydrology and the overlying atmosphere. This study assesses the impact of capillary rise from shallow groundwater on the simulated water budget over France. The groundwater scheme implemented in the Total Runoff Integrated Pathways (TRIP) river routing model in a previous study is coupled with the Interaction between Soil Biosphere Atmosphere (ISBA) land surface model. In this coupling, the simulated water table depth acts as the lower boundary condition for the soil moisture diffusivity equation. An original parameterization accounting for the subgrid elevation inside each grid cell is proposed in order to compute this fully-coupled soil lower boundary condition. Simulations are performed at high (1/12°) and low (0.5°) resolutions and evaluated over the 1989-2009 period. Compared to a free-drain experiment, upward capillary fluxes at the bottom of soil increase the mean annual evapotranspiration simulated over the aquifer domain by 3.12 % and 1.54 % at fine and low resolutions respectively. This process logically induces a decrease of the simulated recharge from ISBA to the aquifers and contributes to enhance the soil moisture memory. The simulated water table depths are then lowered, which induces a slight decrease of the simulated mean annual river discharges. However, the fully-coupled simulations compare well with river discharge and water table depth observations which confirms the relevance of the coupling formalism.
Virtual geotechnical laboratory experiments using a simulator
NASA Astrophysics Data System (ADS)
Penumadu, Dayakar; Zhao, Rongda; Frost, David
2000-04-01
The details of a test simulator that provides a realistic environment for performing virtual laboratory experimentals in soil mechanics is presented. A computer program Geo-Sim that can be used to perform virtual experiments, and allow for real-time observations of material response is presented. The results of experiments, for a given set of input parameters, are obtained with the test simulator using well-trained artificial neural-network-based soil models for different soil types and stress paths. Multimedia capabilities are integrated in Geo-Sim, using software that links and controls a laser disc player with a real-time parallel processing ability. During the simulation of a virtual experiment, relevant portions of the video image of a previously recorded test on an actual soil specimen are dispalyed along with the graphical presentation of response from the feedforward ANN model predictions. The pilot simulator developed to date includes all aspects related to performing a triaxial test on cohesionless soil under undrained and drained conditions. The benefits of the test simulator are also presented.
NASA Astrophysics Data System (ADS)
Vanderborght, Jan; Priesack, Eckart
2017-04-01
The Soil Model Development and Intercomparison Panel (SoilMIP) is an initiative of the International Soil Modeling Consortium. Its mission is to foster the further development of soil models that can predict soil functions and their changes (i) due to soil use and land management and (ii) due to external impacts of climate change and pollution. Since soil functions and soil threats are diverse but linked with each other, the overall aim is to develop holistic models that represent the key functions of the soil system and the links between them. These models should be scaled up and integrated in terrestrial system models that describe the feedbacks between processes in the soil and the other terrestrial compartments. We propose and illustrate a few steps that could be taken to achieve these goals. A first step is the development of scenarios that compare simulations by models that predict the same or different soil services. Scenarios can be considered at three different levels of comparisons: scenarios that compare the numerics (accuracy but also speed) of models, scenarios that compare the effect of differences in process descriptions, and scenarios that compare simulations with experimental data. A second step involves the derivation of metrics or summary statistics that effectively compare model simulations and disentangle parameterization from model concept differences. These metrics can be used to evaluate how more complex model simulations can be represented by simpler models using an appropriate parameterization. A third step relates to the parameterization of models. Application of simulation models implies that appropriate model parameters have to be defined for a range of environmental conditions and locations. Spatial modelling approaches are used to derive parameter distributions. Considering that soils and their properties emerge from the interaction between physical, chemical and biological processes, the combination of spatial models with process models would lead to consistent parameter distributions correlations and could potentially represent self-organizing processes in soils and landscapes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Like, D.E.; Klein, R.M.
1985-11-01
The authors removed intact soil columns from the Harwood (550 to 790 m), Transition (790 to 1050 m), and Conifer (1050 to 1160 m) ecological zones of Camels Hump Mountain, Vermont, treated them with simulated acid rain (pH 4.0) or nonacidic (pH 5.6) rain, and examined the percolates for ammonium and nitrate ions. Nitrification in soils from all three ecosystems was unaffected by acidic treatments, but mineralization was stimulated by acidic treatment of soil from the Transition Zone. Irrespective of treatment, Conifer Zone soils released less nitrate than did either Transition or Hardwood Zone soils. Soil columns from the Hardwoodmore » Zone were treated with acidic or nonacidic simulated rainfall supplemented with nitrate, ammonium, or both N sources. NO3-N in percolates increased when acidic simulated rain was supplemented with ammonium ion or both ammonium and nitrate ions. Efflux of NH4-N was unaffected by supplementing precipitation with either ammonium or nitrate ions.« less
A demonstration of the Toronto Harbour Commissioners' (THC) Soil Recycle Treatment Train was performed under the Superfund Innovative Technology Evaluation (SITE) Program at a pilot plant facility in Toronto, Ontario, Canada. The Soil Recycle Treatment Train, which consists of s...
UNDERSTANDING PLANT-SOIL RELATIONSHIPS USING CONTROLLED ENVIRONMENT FACILITIES
Although soil is a component of terrestrial ecosystems, it is comprised of a complex web of interacting organisms, and therefore, can be considered itself as an ecosystem. Soil microflora and fauna derive energy from plants and plant residues and serve important functions in mai...
Information and Complexity Measures Applied to Observed and Simulated Soil Moisture Time Series
USDA-ARS?s Scientific Manuscript database
Time series of soil moisture-related parameters provides important insights in functioning of soil water systems. Analysis of patterns within these time series has been used in several studies. The objective of this work was to compare patterns in observed and simulated soil moisture contents to u...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, C.; Mutch, S.; Padgett, D.
An investigation was conducted at the Naval Air Facility located in El Centro (NAFEC), to determine the vertical and horizontal extent of hydrocarbon contamination at the facilities fuel farm. The fuel products are the result of tank and pipeline leakage, past tank cleaning, and past disposal of fuel dispensing and filter cleaning practices. Subsurface soil and groundwater data was collected via soil borings, monitoring wells, and CPT probes. Soil, groundwater, and analytical data were integrated using the LYNX geoscience modeling system (GMS). Interactive sessions with the data visualizer helped guide the modeling and identify data gaps. Modeling results indicate amore » continuous surface confining clay layer to a depth of about 12 to 15 ft. Groundwater is confined beneath this clay layer and monitoring wells indicate about 3 to 5 ft of artesian head. Hydrocarbon contamination is concentrated within this clay layer from about 5 to 12 ft below the ground surface. Residual fuel products located in the groundwater are attributed to slow leakage through the confirming clay layer. LYNX was also used to compute volumes of contaminated soil to aid in remediation cost analysis. Preliminary figures indicate about 60,000 yards[sup 3] of contaminated soil. Since the contamination is primarily confined to relatively impermeable clayey soils, site remediation will likely be ex-situ land farming.« less
Numerical Simulation of Ground Coupling of Low Yield Nuclear Detonation
2010-06-01
Without nuclear testing, advanced simulation and experimental facilities, such as the National Ignition Facility ( NIF ), are essential to assuring...in planning future experimental work at NIF . 15. NUMBER OF PAGES 93 14. SUBJECT TERMS National Ignition Facility, GEODYN, Ground Coupling...simulation and experimental facilities, such as the National Ignition Facility ( NIF ), are essential to assuring safety, reliability, and effectiveness
NASA Astrophysics Data System (ADS)
Niroula, Sundar; Halder, Subhadeep; Ghosh, Subimal
2018-06-01
Real time hydrologic forecasting requires near accurate initial condition of soil moisture; however, continuous monitoring of soil moisture is not operational in many regions, such as, in Ganga basin, extended in Nepal, India and Bangladesh. Here, we examine the impacts of perturbation/error in the initial soil moisture conditions on simulated soil moisture and streamflow in Ganga basin and its propagation, during the summer monsoon season (June to September). This provides information regarding the required minimum duration of model simulation for attaining the model stability. We use the Variable Infiltration Capacity model for hydrological simulations after validation. Multiple hydrologic simulations are performed, each of 21 days, initialized on every 5th day of the monsoon season for deficit, surplus and normal monsoon years. Each of these simulations is performed with the initial soil moisture condition obtained from long term runs along with positive and negative perturbations. The time required for the convergence of initial errors is obtained for all the cases. We find a quick convergence for the year with high rainfall as well as for the wet spells within a season. We further find high spatial variations in the time required for convergence; the region with high precipitation such as Lower Ganga basin attains convergence at a faster rate. Furthermore, deeper soil layers need more time for convergence. Our analysis is the first attempt on understanding the sensitivity of hydrological simulations of Ganga basin on initial soil moisture conditions. The results obtained here may be useful in understanding the spin-up requirements for operational hydrologic forecasts.
NASA Technical Reports Server (NTRS)
Baker, David R.; Lynn, Barry H.; Boone, Aaron; Tao, Wei-Kuo; Simpson, Joanne
2000-01-01
Idealized numerical simulations are performed with a coupled atmosphere/land-surface model to identify the roles of initial soil moisture, coastline curvature, and land breeze circulations on sea breeze initiated precipitation. Data collected on 27 July 1991 during the Convection and Precipitation Electrification Experiment (CAPE) in central Florida are used. The 3D Goddard Cumulus Ensemble (GCE) cloud resolving model is coupled with the Goddard Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model, thus providing a tool to simulate more realistically land-surface/atmosphere interaction and convective initiation. Eight simulations are conducted with either straight or curved coast-lines, initially homogeneous soil moisture or initially variable soil moisture, and initially homogeneous horizontal winds or initially variable horizontal winds (land breezes). All model simulations capture the diurnal evolution and general distribution of sea-breeze initiated precipitation over central Florida. The distribution of initial soil moisture influences the timing, intensity and location of subsequent precipitation. Soil moisture acts as a moisture source for the atmosphere, increases the connectively available potential energy, and thus preferentially focuses heavy precipitation over existing wet soil. Strong soil moisture-induced mesoscale circulations are not evident in these simulations. Coastline curvature has a major impact on the timing and location of precipitation. Earlier low-level convergence occurs inland of convex coastlines, and subsequent precipitation occurs earlier in simulations with curved coastlines. The presence of initial land breezes alone has little impact on subsequent precipitation. however, simulations with both coastline curvature and initial land breezes produce significantly larger peak rain rates due to nonlinear interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquis Childs
1999-09-01
Material Disposal Area G (Area G) is at Technical Area 54 at Los Alamos National Laboratory (LANL). Area G has been the principal facility for the disposal of low-level, solid-mixed, and transuranic waste since 1957. It is currently LANL's primary facility for radioactive solid waste burial and storage. As part of the annual environmental surveillance effort at Area G, surface soil samples are collected around the facility's perimeter to characterize possible radionuclide movement off the site through surface water runoff During 1998, 39 soil samples were collected and analyzed for percent moisture, tritium, plutonium-238 and 239, cesium-137 and americium-241. Tomore » assess radionuclide concentrations, the results from these samples are compared with baseline or background soil samples collected in an undisturbed area west of the active portion Area G. The 1998 results are also compared to the results from analogous samples collected during 1996 and 1997 to assess changes over this time in radionuclide activity concentrations in surface soils around the perimeter of Area G. The results indicate elevated levels of all the radionuclides assessed (except cesium-137) exist in Area G perimeter surface soils vs the baseline soils. The comparison of 1998 soil data to previous years (1996 and 1997) indicates no significant increase or decrease in radionuclide concentrations; an upward or downward trend in concentrations is not detectable at this time. These results are consistent with data comparisons done in previous years. Continued annual soil sampling will be necessary to realize a trend if one exists. The radionuclide levels found in the perimeter surface soils are above background but still considered relatively low. This perimeter surface soil data will be used for planning purposes at Area G, techniques to prevent sediment tm.nsport off-site are implemented in the areas where the highest radionuclide concentrations are indicated.« less
Interaction of Sr-90 with site candidate soil for demonstration disposal facility at Serpong
NASA Astrophysics Data System (ADS)
Setiawan, Budi; Mila, Oktri; Safni
2014-03-01
Interaction of radiostrontium (Sr-90) with site candidate soil for demonstration disposal facility to be constructed in the near future at Serpong has been done. This activity is to anticipate the interim storage facility at Serpong nuclear area becomes full off condition, and show to the public how radioactive waste can be well managed with the existing technology. To ensure that the location is save, a reliability study of site candidate soil becomes very importance to be conducted through some experiments consisted some affected parameters such as contact time, effect of ionic strength, and effect of Sr+ ion in solution. Radiostrontium was used as a tracer on the experiments and has role as radionuclide reference in low-level radioactive waste due to its long half-live and it's easy to associate with organism in nature. So, interaction of radiostrontium and soil samples from site becomes important to be studied. Experiment was performed in batch method, and soil sample-solution containing radionuclide was mixed in a 20 ml of PE vial. Ratio of solid: liquid was 10-2 g/ml. Objective of the experiment is to collect the specific characteristics data of radionuclide sorption onto soil from site candidate. Distribution coefficient value was used as indicator where the amount of initial and final activities of radiostrontium in solution was compared. Result showed that equilibrium condition was reached after contact time 10 days with Kd values ranged from 1600-2350 ml/g. Increased in ionic strength in solution made decreased of Kd value into soil sample due to competition of background salt and radiostrontium into soil samples, and increased in Sr ion in solution caused decreased of Kd value in soil sample due to limitation of sorption capacity in soil samples. Fast condition in saturated of metal ion into soil samples was reached due to a simple reaction was occurred.
Initial experimental results from the Laboratory Biosphere closed ecological system facility
NASA Astrophysics Data System (ADS)
Alling, A.; Allen, J.; Dempster, W.; Nelson, M.; Silverstone, S.; van Thillo, M.
Results from the closure and initial closed ecological system research in the "Laboratory Biosphere" facility in Santa Fe, New Mexico (USA) will be presented. The facility was initially sealed in April 2002; and the first crop experiments with soybeans commenced in May 2002. The Laboratory Biosphere was created by the team which invented, built and operated Biosphere 2 during its years of closed ecological system functioning (1991-94) and is a testbed to build upon the lessons learned. It is an opportunity to continue experiments with a sustainable soil based agriculture system unlike most bioregenerative systems which use hydroponic systems dependent on a supply of nutrient solution. Because of the small volume of the system (34-45 m3), developing mechanisms to keep parameters like carbon dioxide within acceptable limits will be critical. Recycle of nutrients within the system to maintain soil fertility; and the ability of the inherent complex ecology of soils and a soil bed reactor to handle trace gas buildups are primary research goals. Other research goals are determination of short and long-term exchanges between soil, plants and atmosphere, especially for carbon dioxide, oxygen, nitrogen, NOX, and methane, impact of cultivation (tillage) on soil/atmospheric exchanges., investigation and development of strategies to return nutrients to the soil to maintain fertility, e.g. shredding biomass vs. composting, impact on soil chemistry of returning leachate water to the soil as irrigation water. The microbiological status of soils prior to experiments and over time will allow measurement of changes in microbial diversity and the determination of the role of soil microbes in biogeochemical cycles. Integration of automated sensor and control in the system with real-time modeling has importance for operation, research and educational outreach programs. The Laboratory Biosphere is intended to test and develop a "cybersphere" (network of shared intelligence) that may be scaled up for natural ecosystems and the global environment.
Source Identification of Zn Contamination around a Zn-smelting Facility in Korea
NASA Astrophysics Data System (ADS)
Lee, S.; Jeon, S. K.
2016-12-01
With massive production of Zn for various industrial purposes, Zn release into the environment becomes highly possible, some of which might require a proper countermeasure depending on the residual concentration in environmental media. In order to set up an effective countermeasure, identification of contaminant source should be essential for determining the target object to be managed, and delineating the extent of necessary remedial work. In this study, we focus on a Zn-smelting facility located in eastern Korea where Zn concentrations in surrounding soils have been reported to exceed the contamination criteria. An abandoned mine which had been explored for Zn ores was located adjacent to the facility, and background concentration of Zn in the area was naturally high. The objective of the present study is to identify the major source of Zn contamination in the area, and to estimate the relative contributions of multiple sources, if so. In order to achieve these goals, we analyzed and compared the stable isotope ratios of Pb in the soil samples collected at different distances from the facility and the Zn concentrates (ZnS, sphalerite) of raw material in the facility. The Pb isotope ratios were further investigated by performing sequential extraction for each sample and comparing the isotopes ratios observed in each fraction of soil. In addition, possible presence of ZnS in the samples, which could be an evidence of Zn contamination by the smelting facility, was estimated by X-ray diffraction (XRD) analysis and scanning electron microscopy equipped with energy dispersive X-ray spectrometry (SEM-EDS) after separating the soil sample into the fractions with different particle sizes
NASA Astrophysics Data System (ADS)
Ajami, H.; Sharma, A.
2016-12-01
A computationally efficient, semi-distributed hydrologic modeling framework is developed to simulate water balance at a catchment scale. The Soil Moisture and Runoff simulation Toolkit (SMART) is based upon the delineation of contiguous and topologically connected Hydrologic Response Units (HRUs). In SMART, HRUs are delineated using thresholds obtained from topographic and geomorphic analysis of a catchment, and simulation elements are distributed cross sections or equivalent cross sections (ECS) delineated in first order sub-basins. ECSs are formulated by aggregating topographic and physiographic properties of the part or entire first order sub-basins to further reduce computational time in SMART. Previous investigations using SMART have shown that temporal dynamics of soil moisture are well captured at a HRU level using the ECS delineation approach. However, spatial variability of soil moisture within a given HRU is ignored. Here, we examined a number of disaggregation schemes for soil moisture distribution in each HRU. The disaggregation schemes are either based on topographic based indices or a covariance matrix obtained from distributed soil moisture simulations. To assess the performance of the disaggregation schemes, soil moisture simulations from an integrated land surface-groundwater model, ParFlow.CLM in Baldry sub-catchment, Australia are used. ParFlow is a variably saturated sub-surface flow model that is coupled to the Common Land Model (CLM). Our results illustrate that the statistical disaggregation scheme performs better than the methods based on topographic data in approximating soil moisture distribution at a 60m scale. Moreover, the statistical disaggregation scheme maintains temporal correlation of simulated daily soil moisture while preserves the mean sub-basin soil moisture. Future work is focused on assessing the performance of this scheme in catchments with various topographic and climate settings.
Peng, Chi; Wang, Meie; Chen, Weiping
2016-09-01
A pollutant accumulation model (PAM) based on the mass balance theory was developed to simulate long-term changes of heavy metal concentrations in soil. When combined with Monte Carlo simulation, the model can predict the probability distributions of heavy metals in a soil-water-plant system with fluctuating environmental parameters and inputs from multiple pathways. The model was used for evaluating different remediation measures to deal with Cd contamination of paddy soils in Youxian county (Hunan province), China, under five scenarios, namely the default scenario (A), not returning paddy straw to the soil (B), reducing the deposition of Cd (C), liming (D), and integrating several remediation measures (E). The model predicted that the Cd contents of soil can lowered significantly by (B) and those of the plants by (D). However, in the long run, (D) will increase soil Cd. The concentrations of Cd in both soils and rice grains can be effectively reduced by (E), although it will take decades of effort. The history of Cd pollution and the major causes of Cd accumulation in soil were studied by means of sensitivity analysis and retrospective simulation. Copyright © 2016 Elsevier Ltd. All rights reserved.
A simple analytical infiltration model for short-duration rainfall
NASA Astrophysics Data System (ADS)
Wang, Kaiwen; Yang, Xiaohua; Liu, Xiaomang; Liu, Changming
2017-12-01
Many infiltration models have been proposed to simulate infiltration process. Different initial soil conditions and non-uniform initial water content can lead to infiltration simulation errors, especially for short-duration rainfall (SHR). Few infiltration models are specifically derived to eliminate the errors caused by the complex initial soil conditions. We present a simple analytical infiltration model for SHR infiltration simulation, i.e., Short-duration Infiltration Process model (SHIP model). The infiltration simulated by 5 models (i.e., SHIP (high) model, SHIP (middle) model, SHIP (low) model, Philip model and Parlange model) were compared based on numerical experiments and soil column experiments. In numerical experiments, SHIP (middle) and Parlange models had robust solutions for SHR infiltration simulation of 12 typical soils under different initial soil conditions. The absolute values of percent bias were less than 12% and the values of Nash and Sutcliffe efficiency were greater than 0.83. Additionally, in soil column experiments, infiltration rate fluctuated in a range because of non-uniform initial water content. SHIP (high) and SHIP (low) models can simulate an infiltration range, which successfully covered the fluctuation range of the observed infiltration rate. According to the robustness of solutions and the coverage of fluctuation range of infiltration rate, SHIP model can be integrated into hydrologic models to simulate SHR infiltration process and benefit the flood forecast.
Controllability of runoff and soil loss from small plots treated by vinasse-produced biochar.
Sadeghi, Seyed Hamidreza; Hazbavi, Zeinab; Harchegani, Mahboobeh Kiani
2016-01-15
Many different amendments, stabilizers, and conditioners are usually applied for soil and water conservation. Biochar is a carbon-enriched substance produced by thermal decomposition of organic material in the absence of oxygen with the goal to be used as a soil amendment. Biochar can be produced from a wide range of biomass sources including straw, wood, manure, and other organic wastes. Biochar has been demonstrated to restore soil fertility and crop production under many conditions, but less is known about the effects of its application on soil erosion and runoff control. Therefore, a rainfall simulation study, as a pioneer research, was conducted to evaluate the performance of the application of vinasse-produced biochar on the soil erosion control of a sandy clay loam soil packed in small-sized runoff 0.25-m(2) plots with 3 replicates. The treatments were (i) no biochar (control), (ii) biochar (8 tha(-1)) application at 24h before the rainfall simulation and (iii) biochar (8 tha(-1)) application at 48 h before the rainfall simulation. Rainfall was applied at 50 mm h(-1) for 15 min. The mean change of effectiveness in time to runoff could be found in biochar application at 24 and 48 h before simulation treatment with rate of +55.10% and +71.73%, respectively. In addition, the mean runoff volume 24 and 48 h before simulation treatments decreased by 98.46% and 46.39%, respectively. The least soil loss (1.12 ± 0.57 g) and sediment concentration (1.44 ± 0.48 gl(-1)) occurred in the biochar-amended soil treated 48 h before the rainfall simulation. In conclusion, the application of vinasse-produced biochar could effectively control runoff and soil loss. This study provided a new insight into the effects of biochar on runoff, soil loss, and sediment control due to water erosion in sandy clay loam soils. Copyright © 2015 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Simulation of vertical soil hydrology is a critical component of simulating even more complex soil water dynamics in space and time, including land-atmosphere and subsurface interactions. The AgroEcoSystem (AgES) model is defined here as a single land unit implementation of the full AgES-W (Watershe...
Koebernick, Nicolai; Huber, Katrin; Kerkhofs, Elien; Vanderborght, Jan; Javaux, Mathieu; Vereecken, Harry; Vetterlein, Doris
2015-01-01
Split root experiments have the potential to disentangle water transport in roots and soil, enabling the investigation of the water uptake pattern of a root system. Interpretation of the experimental data assumes that water flow between the split soil compartments does not occur. Another approach to investigate root water uptake is by numerical simulations combining soil and root water flow depending on the parameterization and description of the root system. Our aim is to demonstrate the synergisms that emerge from combining split root experiments with simulations. We show how growing root architectures derived from temporally repeated X-ray CT scanning can be implemented in numerical soil-plant models. Faba beans were grown with and without split layers and exposed to a single drought period during which plant and soil water status were measured. Root architectures were reconstructed from CT scans and used in the model R-SWMS (root-soil water movement and solute transport) to simulate water potentials in soil and roots in 3D as well as water uptake by growing roots in different depths. CT scans revealed that root development was considerably lower with split layers compared to without. This coincided with a reduction of transpiration, stomatal conductance and shoot growth. Simulated predawn water potentials were lower in the presence of split layers. Simulations showed that this was related to an increased resistance to vertical water flow in the soil by the split layers. Comparison between measured and simulated soil water potentials proved that the split layers were not perfectly isolating and that redistribution of water from the lower, wetter compartments to the drier upper compartments took place, thus water losses were not equal to the root water uptake from those compartments. Still, the layers increased the resistance to vertical flow which resulted in lower simulated collar water potentials that led to reduced stomatal conductance and growth. PMID:26074935
Effect of grain size distribution on stress-strain behavior of lunar soil simulants
NASA Astrophysics Data System (ADS)
Monkul, Mehmet Murat; Dacic, Amina
2017-08-01
Geotechnical behavior of the lunar soils is important for engineering analyses regarding various aspects of the future extraterrestrial settlement plans including lunar exploration and construction. Many lunar soil simulants had been produced so far, in order to resemble lunar soils and conduct such analyses. The goal of this study is to investigate how and to what extent the variations in the grain size distribution of different lunar soil simulants affect their shear strength and volume change behaviors, both of which are quite important for constitutive modeling and geotechnical design. Static simple shear tests were conducted on four lunar soil simulants that were reproduced in terms of original gradation characteristics. The results indicate that various gradational parameters, such as mean grain size, coefficient of uniformity and fines content influence the shear strength, the amount of volumetric dilatancy, and the rate of dilatancy of simulant specimens in different levels when they were compared at the same density or void ratio. The possible reasons behind such different levels of influence were also discussed by focusing on the initial fabric of specimens achieved before shearing and the interaction between silt and sand matrices in the simulants.
Numerical Simulation of Rocket Exhaust Interaction with Lunar Soil
NASA Technical Reports Server (NTRS)
Liever, Peter; Tosh, Abhijit; Curtis, Jennifer
2012-01-01
This technology development originated from the need to assess the debris threat resulting from soil material erosion induced by landing spacecraft rocket plume impingement on extraterrestrial planetary surfaces. The impact of soil debris was observed to be highly detrimental during NASA s Apollo lunar missions and will pose a threat for any future landings on the Moon, Mars, and other exploration targets. The innovation developed under this program provides a simulation tool that combines modeling of the diverse disciplines of rocket plume impingement gas dynamics, granular soil material liberation, and soil debris particle kinetics into one unified simulation system. The Unified Flow Solver (UFS) developed by CFDRC enabled the efficient, seamless simulation of mixed continuum and rarefied rocket plume flow utilizing a novel direct numerical simulation technique of the Boltzmann gas dynamics equation. The characteristics of the soil granular material response and modeling of the erosion and liberation processes were enabled through novel first principle-based granular mechanics models developed by the University of Florida specifically for the highly irregularly shaped and cohesive lunar regolith material. These tools were integrated into a unique simulation system that accounts for all relevant physics aspects: (1) Modeling of spacecraft rocket plume impingement flow under lunar vacuum environment resulting in a mixed continuum and rarefied flow; (2) Modeling of lunar soil characteristics to capture soil-specific effects of particle size and shape composition, soil layer cohesion and granular flow physics; and (3) Accurate tracking of soil-borne debris particles beginning with aerodynamically driven motion inside the plume to purely ballistic motion in lunar far field conditions. In the earlier project phase of this innovation, the capabilities of the UFS for mixed continuum and rarefied flow situations were validated and demonstrated for lunar lander rocket plume flow impingement under lunar vacuum conditions. Applications and improvements to the granular flow simulation tools contributed by the University of Florida were tested against Earth environment experimental results. Requirements for developing, validating, and demonstrating this solution environment were clearly identified, and an effective second phase execution plan was devised. In this phase, the physics models were refined and fully integrated into a production-oriented simulation tool set. Three-dimensional simulations of Apollo Lunar Excursion Module (LEM) and Altair landers (including full-scale lander geometry) established the practical applicability of the UFS simulation approach and its advanced performance level for large-scale realistic problems.
Formation of Nanophase Iron in Lunar Soil Simulant for Use in ISRU Studies
NASA Technical Reports Server (NTRS)
Liu, Yang; Taylor, Lawrence A.; Hill, Eddy; Day, James D. M.
2005-01-01
For the prospective return of humans to the Moon and the extensive amount of premonitory studies necessary, large quantities of lunar soil simulants are required, for a myriad of purposes from construction/engineering purposes all the way to medical testing of its effects from ingestion by humans. And there is only a limited and precious quantity of lunar soil available on Earth (i.e., Apollo soils) - therefore, the immediate need for lunar soil simulants. Since the Apollo era, there have been several simulants; of these JSC-1 (Johnson Space Center) and MLS-1 (Minnesota Lunar Simulant) have been the most widely used. JSC-1 was produced from glassy volcanic tuff in order to approximate lunar soil geotechnical properties; whereas, MLS-1 approximates the chemistry of Apollo 11 high-Ti soil, 10084. Stocks of both simulants are depleted, but JSC-1 has recently gone back into production. The lunar soil simulant workshop, held at Marshall Space Flight Center in January 2005, identified the need to make new simulants for the special properties of lunar soil, such as nanophase iron (np-Fe(sup 0). Hill et al. (2005, this volume) showed the important role of microscale Fe(sup 0) in microwave processing of the lunar soil simulants JSC-1 and MLS-1. Lunar soil is formed by space weathering of lunar rocks (e.g., micrometeorite impact, cosmic particle bombardment). Glass generated during micrometeorite impact cements rock and mineral fragments together to form aggregates called agglutinates, and also produces vapor that is deposited and coats soil grains. Taylor et al. (2001) showed that the relative amount of impact glass in lunar soil increases with decreasing grain size and is the most abundant component in lunar dust (less than 20 micrometer fraction). Notably, the magnetic susceptibility of lunar soil also increases with the decreasing grain size, as a function of the amount of nanophase-sized Fe(sup 0) in impact-melt generated glass. Keller et al. (1997, 1999) also discovered the presence of abundant np-Fe(sup 0) particles in the glass patinas coating most soil particles. Therefore, the correlation of glass content and magnetic susceptibility can be explained by the presence of the np-Feo particles in glass: small particles contain relatively more np-Fe(sup 0) as glass coatings because the surface area versus mass ratio of the grain size is so increased. The magnetic properties of lunar soil are important in dust mitigation on the Moon (Taylor et al. 2005). Thus material simulating this property is important for testing mitigation methods using electromagnetic field. This np- Fe(sup 0) also produces a unique energy coupling to normal microwaves, such as present in kitchen microwave ovens. Effectively, a portion of lunar soil placed in a normal 2.45 GHz oven will melt at greater than 1200 C before your tea will boil at 100 C, a startling and new discovery reported by Taylor and Meek (2004, 2005). Several methods have been investigated in attempts to make nanophase-sized Feo dispersed within silicate glass; like in the lunar glass. We have been successful in synthesizing such a product and continue to improve on our recipe. We have performed extensive experimentation on this subject to date. Ultimately it will probably be necessary to add this np-Fe(sup 0) bearing silicate glass to lunar soil stimulant, like JSC-1, to actually produce the desired magnetic and microwave coupling properties for use in appropriate ISRU experimentation.
New estimation method of neutron skyshine for a high-energy particle accelerator
NASA Astrophysics Data System (ADS)
Oh, Joo-Hee; Jung, Nam-Suk; Lee, Hee-Seock; Ko, Seung-Kook
2016-09-01
A skyshine is the dominant component of the prompt radiation at off-site. Several experimental studies have been done to estimate the neutron skyshine at a few accelerator facilities. In this work, the neutron transports from a source place to off-site location were simulated using the Monte Carlo codes, FLUKA and PHITS. The transport paths were classified as skyshine, direct (transport), groundshine and multiple-shine to understand the contribution of each path and to develop a general evaluation method. The effect of each path was estimated in the view of the dose at far locations. The neutron dose was calculated using the neutron energy spectra obtained from each detector placed up to a maximum of 1 km from the accelerator. The highest altitude of the sky region in this simulation was set as 2 km from the floor of the accelerator facility. The initial model of this study was the 10 GeV electron accelerator, PAL-XFEL. Different compositions and densities of air, soil and ordinary concrete were applied in this calculation, and their dependences were reviewed. The estimation method used in this study was compared with the well-known methods suggested by Rindi, Stevenson and Stepleton, and also with the simple code, SHINE3. The results obtained using this method agreed well with those using Rindi's formula.
2005-05-24
of Intent to Dispose of Soil Contaminated by Virgin Petroleum or equivalent form would be completed. The proposed Wing HQ Facility would include the...quadrant of the base. The overhead feeder, which includes some underground segments , is operated as a closed double loop system and serves the...weekends, weather, and holidays ). Using data from the National Oceanic and Atmospheric Administration, the average soil percent moisture was estimated
1996-10-01
construction of facilities to mix saline water with fly ash from power plants to neutralize mine leachate ; • construction of facilities to produce...developing another new approach to soil remediation called Phytoremediation . The Institute is hopeful that this project will be instrumental in cleaning...million. Phytoremediation uses certain types of plants to stabilize, mineralize and remove the heavy metals in the soil through root uptake. The
NASA Astrophysics Data System (ADS)
Gebler, S.; Hendricks Franssen, H.-J.; Kollet, S. J.; Qu, W.; Vereecken, H.
2017-04-01
The prediction of the spatial and temporal variability of land surface states and fluxes with land surface models at high spatial resolution is still a challenge. This study compares simulation results using TerrSysMP including a 3D variably saturated groundwater flow model (ParFlow) coupled to the Community Land Model (CLM) of a 38 ha managed grassland head-water catchment in the Eifel (Germany), with soil water content (SWC) measurements from a wireless sensor network, actual evapotranspiration recorded by lysimeters and eddy covariance stations and discharge observations. TerrSysMP was discretized with a 10 × 10 m lateral resolution, variable vertical resolution (0.025-0.575 m), and the following parameterization strategies of the subsurface soil hydraulic parameters: (i) completely homogeneous, (ii) homogeneous parameters for different soil horizons, (iii) different parameters for each soil unit and soil horizon and (iv) heterogeneous stochastic realizations. Hydraulic conductivity and Mualem-Van Genuchten parameters in these simulations were sampled from probability density functions, constructed from either (i) soil texture measurements and Rosetta pedotransfer functions (ROS), or (ii) estimated soil hydraulic parameters by 1D inverse modelling using shuffle complex evolution (SCE). The results indicate that the spatial variability of SWC at the scale of a small headwater catchment is dominated by topography and spatially heterogeneous soil hydraulic parameters. The spatial variability of the soil water content thereby increases as a function of heterogeneity of soil hydraulic parameters. For lower levels of complexity, spatial variability of the SWC was underrepresented in particular for the ROS-simulations. Whereas all model simulations were able to reproduce the seasonal evapotranspiration variability, the poor discharge simulations with high model bias are likely related to short-term ET dynamics and the lack of information about bedrock characteristics and an on-site drainage system in the uncalibrated model. In general, simulation performance was better for the SCE setups. The SCE-simulations had a higher inverse air entry parameter resulting in SWC dynamics in better correspondence with data than the ROS simulations during dry periods. This illustrates that small scale measurements of soil hydraulic parameters cannot be transferred to the larger scale and that interpolated 1D inverse parameter estimates result in an acceptable performance for the catchment.
NASA Astrophysics Data System (ADS)
Henneberg, Olga; Ament, Felix; Grützun, Verena
2018-05-01
Soil moisture amount and distribution control evapotranspiration and thus impact the occurrence of convective precipitation. Many recent model studies demonstrate that changes in initial soil moisture content result in modified convective precipitation. However, to quantify the resulting precipitation changes, the chaotic behavior of the atmospheric system needs to be considered. Slight changes in the simulation setup, such as the chosen model domain, also result in modifications to the simulated precipitation field. This causes an uncertainty due to stochastic variability, which can be large compared to effects caused by soil moisture variations. By shifting the model domain, we estimate the uncertainty of the model results. Our novel uncertainty estimate includes 10 simulations with shifted model boundaries and is compared to the effects on precipitation caused by variations in soil moisture amount and local distribution. With this approach, the influence of soil moisture amount and distribution on convective precipitation is quantified. Deviations in simulated precipitation can only be attributed to soil moisture impacts if the systematic effects of soil moisture modifications are larger than the inherent simulation uncertainty at the convection-resolving scale. We performed seven experiments with modified soil moisture amount or distribution to address the effect of soil moisture on precipitation. Each of the experiments consists of 10 ensemble members using the deep convection-resolving COSMO model with a grid spacing of 2.8 km. Only in experiments with very strong modification in soil moisture do precipitation changes exceed the model spread in amplitude, location or structure. These changes are caused by a 50 % soil moisture increase in either the whole or part of the model domain or by drying the whole model domain. Increasing or decreasing soil moisture both predominantly results in reduced precipitation rates. Replacing the soil moisture with realistic fields from different days has an insignificant influence on precipitation. The findings of this study underline the need for uncertainty estimates in soil moisture studies based on convection-resolving models.
POTENTIAL REUSE OF PETROLEUM-CONTAMINATED SOIL: A DIRECTOR OF PERMITTED RECYCLING FACILITIES
Soil contaminated by virgin petroleum products leaking from underground storage tanks is a pervasive problem In the United States. conomically feasible disposal of such soil concerns the responsible party (RP), whether the RP Ia one individual small business owner a group of owne...
POTENTIAL REUSE OF PETROLEUM-CONTAMINATED SOIL: A DIRECTORY OF PERMITTED RECYCLING FACILITIES
Soil contaminated by virgin petroleum products leaking from underground storage tanks Is a pervasive problem in the United States. Economically feasible disposal of such soil concerns the responsible party (RP), whether the RP is one individual small business owner, a group o...
Orion Landing Simulation Eight Soil Model Comparison
NASA Technical Reports Server (NTRS)
Mark, Stephen D.
2009-01-01
LS-DYNA finite element simulations of a rigid Orion Crew Module (CM) were used to investigate the CM impact behavior on eight different soil models. Ten different landing conditions, characterized by the combination of CM vertical and horizontal velocity, hang angle, and roll angle were simulated on the eight different soils. The CM center of gravity accelerations, pitch angle, kinetic energy, and soil contact forces were the outputs of interest. The simulation results are presented, with comparisons of the CM behavior on the different soils. The soils analyzed in this study can be roughly categorized as soft, medium, or hard, according to the CM accelerations that occur when landing on them. The soft group is comprised of the Carson Sink Wet soil and the Kennedy Space Center (KSC) Low Density Dry Sand. The medium group includes Carson Sink Dry, the KSC High Density In-Situ Moisture Sand and High Density Flooded Sand, and Cuddeback B. The hard soils are Cuddeback A and the Gantry Unwashed Sand. The softer soils were found to produce lower peak accelerations, have more stable pitch behavior, and to be less sensitive to the landing conditions. This investigation found that the Cuddeback A soil produced the highest peak accelerations and worst stability conditions, and that the best landing performance was achieved on the KSC Low Density Dry Sand.
Index of Nuclear Weapon Effects Simulators. Sanitized
1983-06-01
124 TRESTLE Facility ..................................................... 125 Vertical EMP Simulator ( VEMPS ...82171 SIMULATOR: Vertical EMP Simulator ( VEMPS ) TYPE: EMP AGENCY: US Army LOCATION: HOL1.0’od ridge, V, Research Facility POINT OF CONTACT...DESCRIPTION: The VEMPS facility is I radiating elect, asettc pulse (EMP) stilateor used to expose test obJects to the simulated effects of high altitude EIP
NASA Astrophysics Data System (ADS)
Exbrayat, J.-F.; Pitman, A. J.; Abramowitz, G.
2014-03-01
Recent studies have identified the first-order parameterization of microbial decomposition as a major source of uncertainty in simulations and projections of the terrestrial carbon balance. Here, we use a reduced complexity model representative of the current state-of-the-art parameterization of soil organic carbon decomposition. We undertake a systematic sensitivity analysis to disentangle the effect of the time-invariant baseline residence time (k) and the sensitvity of microbial decomposition to temperature (Q10) on soil carbon dynamics at regional and global scales. Our simulations produce a range in total soil carbon at equilibrium of ~ 592 to 2745 Pg C which is similar to the ~ 561 to 2938 Pg C range in pre-industrial soil carbon in models used in the fifth phase of the Coupled Model Intercomparison Project. This range depends primarily on the value of k, although the impact of Q10 is not trivial at regional scales. As climate changes through the historical period, and into the future, k is primarily responsible for the magnitude of the response in soil carbon, whereas Q10 determines whether the soil remains a sink, or becomes a source in the future mostly by its effect on mid-latitudes carbon balance. If we restrict our simulations to those simulating total soil carbon stocks consistent with observations of current stocks, the projected range in total soil carbon change is reduced by 42% for the historical simulations and 45% for the future projections. However, while this observation-based selection dismisses outliers it does not increase confidence in the future sign of the soil carbon feedback. We conclude that despite this result, future estimates of soil carbon, and how soil carbon responds to climate change should be constrained by available observational data sets.
NASA Astrophysics Data System (ADS)
Exbrayat, J.-F.; Pitman, A. J.; Abramowitz, G.
2014-12-01
Recent studies have identified the first-order representation of microbial decomposition as a major source of uncertainty in simulations and projections of the terrestrial carbon balance. Here, we use a reduced complexity model representative of current state-of-the-art models of soil organic carbon decomposition. We undertake a systematic sensitivity analysis to disentangle the effect of the time-invariant baseline residence time (k) and the sensitivity of microbial decomposition to temperature (Q10) on soil carbon dynamics at regional and global scales. Our simulations produce a range in total soil carbon at equilibrium of ~ 592 to 2745 Pg C, which is similar to the ~ 561 to 2938 Pg C range in pre-industrial soil carbon in models used in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). This range depends primarily on the value of k, although the impact of Q10 is not trivial at regional scales. As climate changes through the historical period, and into the future, k is primarily responsible for the magnitude of the response in soil carbon, whereas Q10 determines whether the soil remains a sink, or becomes a source in the future mostly by its effect on mid-latitude carbon balance. If we restrict our simulations to those simulating total soil carbon stocks consistent with observations of current stocks, the projected range in total soil carbon change is reduced by 42% for the historical simulations and 45% for the future projections. However, while this observation-based selection dismisses outliers, it does not increase confidence in the future sign of the soil carbon feedback. We conclude that despite this result, future estimates of soil carbon and how soil carbon responds to climate change should be more constrained by available data sets of carbon stocks.
Matching soil grid unit resolutions with polygon unit scales for DNDC modelling of regional SOC pool
NASA Astrophysics Data System (ADS)
Zhang, H. D.; Yu, D. S.; Ni, Y. L.; Zhang, L. M.; Shi, X. Z.
2015-03-01
Matching soil grid unit resolution with polygon unit map scale is important to minimize uncertainty of regional soil organic carbon (SOC) pool simulation as their strong influences on the uncertainty. A series of soil grid units at varying cell sizes were derived from soil polygon units at the six map scales of 1:50 000 (C5), 1:200 000 (D2), 1:500 000 (P5), 1:1 000 000 (N1), 1:4 000 000 (N4) and 1:14 000 000 (N14), respectively, in the Tai lake region of China. Both format soil units were used for regional SOC pool simulation with DeNitrification-DeComposition (DNDC) process-based model, which runs span the time period 1982 to 2000 at the six map scales, respectively. Four indices, soil type number (STN) and area (AREA), average SOC density (ASOCD) and total SOC stocks (SOCS) of surface paddy soils simulated with the DNDC, were attributed from all these soil polygon and grid units, respectively. Subjecting to the four index values (IV) from the parent polygon units, the variation of an index value (VIV, %) from the grid units was used to assess its dataset accuracy and redundancy, which reflects uncertainty in the simulation of SOC. Optimal soil grid unit resolutions were generated and suggested for the DNDC simulation of regional SOC pool, matching with soil polygon units map scales, respectively. With the optimal raster resolution the soil grid units dataset can hold the same accuracy as its parent polygon units dataset without any redundancy, when VIV < 1% of all the four indices was assumed as criteria to the assessment. An quadratic curve regression model y = -8.0 × 10-6x2 + 0.228x + 0.211 (R2 = 0.9994, p < 0.05) was revealed, which describes the relationship between optimal soil grid unit resolution (y, km) and soil polygon unit map scale (1:x). The knowledge may serve for grid partitioning of regions focused on the investigation and simulation of SOC pool dynamics at certain map scale.
Zhang, Liming; Yu, Dongsheng; Shi, Xuezheng; Xu, Shengxiang; Xing, Shihe; Zhao, Yongcong
2014-01-01
Soil organic carbon (SOC) models were often applied to regions with high heterogeneity, but limited spatially differentiated soil information and simulation unit resolution. This study, carried out in the Tai-Lake region of China, defined the uncertainty derived from application of the DeNitrification-DeComposition (DNDC) biogeochemical model in an area with heterogeneous soil properties and different simulation units. Three different resolution soil attribute databases, a polygonal capture of mapping units at 1∶50,000 (P5), a county-based database of 1∶50,000 (C5) and county-based database of 1∶14,000,000 (C14), were used as inputs for regional DNDC simulation. The P5 and C5 databases were combined with the 1∶50,000 digital soil map, which is the most detailed soil database for the Tai-Lake region. The C14 database was combined with 1∶14,000,000 digital soil map, which is a coarse database and is often used for modeling at a national or regional scale in China. The soil polygons of P5 database and county boundaries of C5 and C14 databases were used as basic simulation units. Results project that from 1982 to 2000, total SOC change in the top layer (0–30 cm) of the 2.3 M ha of paddy soil in the Tai-Lake region was +1.48 Tg C, −3.99 Tg C and −15.38 Tg C based on P5, C5 and C14 databases, respectively. With the total SOC change as modeled with P5 inputs as the baseline, which is the advantages of using detailed, polygon-based soil dataset, the relative deviation of C5 and C14 were 368% and 1126%, respectively. The comparison illustrates that DNDC simulation is strongly influenced by choice of fundamental geographic resolution as well as input soil attribute detail. The results also indicate that improving the framework of DNDC is essential in creating accurate models of the soil carbon cycle. PMID:24523922
NASA Astrophysics Data System (ADS)
Wiß, Felix; Stacke, Tobias; Hagemann, Stefan
2014-05-01
Soil moisture and its memory can have a strong impact on near surface temperature and precipitation and have the potential to promote severe heat waves, dry spells and floods. To analyze how soil moisture is simulated in recent general circulation models (GCMs), soil moisture data from a 23 model ensemble of Atmospheric Model Intercomparison Project (AMIP) type simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are examined for the period 1979 to 2008 with regard to parameterization and statistical characteristics. With respect to soil moisture processes, the models vary in their maximum soil and root depth, the number of soil layers, the water-holding capacity, and the ability to simulate freezing which all together leads to very different soil moisture characteristics. Differences in the water-holding capacity are resulting in deviations in the global median soil moisture of more than one order of magnitude between the models. In contrast, the variance shows similar absolute values when comparing the models to each other. Thus, the input and output rates by precipitation and evapotranspiration, which are computed by the atmospheric component of the models, have to be in the same range. Most models simulate great variances in the monsoon areas of the tropics and north western U.S., intermediate variances in Europe and eastern U.S., and low variances in the Sahara, continental Asia, and central and western Australia. In general, the variance decreases with latitude over the high northern latitudes. As soil moisture trends in the models were found to be negligible, the soil moisture anomalies were calculated by subtracting the 30 year monthly climatology from the data. The length of the memory is determined from the soil moisture anomalies by calculating the first insignificant autocorrelation for ascending monthly lags (insignificant autocorrelation folding time). The models show a great spread of autocorrelation length from a few months in the tropics, north western Canada, eastern U.S. and northern Europe up to few years in the Sahara, the Arabian Peninsula, continental Eurasia and central U.S. Some models simulate very long memory all over the globe. This behavior is associated with differences between the models in the maximum root and soil depth. Models with shallow roots and deep soils exhibit longer memories than models with similar soil and root depths. Further analysis will be conducted to clearly divide models into groups based on their inter-model spatial correlation of simulated soil moisture characteristics.
NASA Astrophysics Data System (ADS)
Votrubova, Jana; Vogel, Tomas; Dohnal, Michal; Dusek, Jaromir
2015-04-01
Coupled simulations of soil water flow and associated transport of substances have become a useful and increasingly popular tool of subsurface hydrology. Quality of such simulations is directly affected by correctness of its hydraulic part. When near-surface processes under vegetation cover are of interest, appropriate representation of the root water uptake becomes essential. Simulation study of coupled water and heat transport in soil profile under natural conditions was conducted. One-dimensional dual-continuum model (S1D code) with semi-separate flow domains representing the soil matrix and the network of preferential pathways was used. A simple root water uptake model based on water-potential-gradient (WPG) formulation was applied. As demonstrated before [1], the WPG formulation - capable of simulating both the compensatory root water uptake (in situations when reduced uptake from dry layers is compensated by increased uptake from wetter layers), and the root-mediated hydraulic redistribution of soil water - enables simulation of more natural soil moisture distribution throughout the root zone. The potential effect on heat transport in a soil profile is the subject of the present study. [1] Vogel T., M. Dohnal, J. Dusek, J. Votrubova, and M. Tesar. 2013. Macroscopic modeling of plant water uptake in a forest stand involving root-mediated soil-water redistribution. Vadose Zone Journal, 12, 10.2136/vzj2012.0154. The research was supported by the Czech Science Foundation Project No. 14-15201J.
The SCITEAS experiment: Optical characterizations of sublimating icy planetary analogues
NASA Astrophysics Data System (ADS)
Pommerol, A.; Jost, B.; Poch, O.; El-Maarry, M. R.; Vuitel, B.; Thomas, N.
2015-05-01
We have designed and built a laboratory facility to investigate the spectro-photometric and morphologic properties of different types of ice-bearing planetary surface analogs and follow their evolution upon exposure to a low pressure and low temperature environment. The results obtained with this experiment are used to verify and improve our interpretations of current optical remote-sensing datasets. They also provide valuable information for the development and operation of future optical instruments. The Simulation Chamber for Imaging the Temporal Evolution of Analogue Samples (SCITEAS) is a small thermal vacuum chamber equipped with a variety of ports and feedthroughs that permit both in-situ and remote characterizations as well as interacting with the sample. A large quartz window located directly above the sample is used to observe its surface from outside with a set of visible and near-infrared cameras. The sample holder can be easily and quickly inserted and removed from the chamber and is compatible with the other measurement facilities of the Laboratory for Outflow Studies of Sublimating Materials (LOSSy) at the University of Bern. We report here on the results of two of the first experiments performed in the SCITEAS chamber. In the first experiment, fine-grained water ice mixed with dark organic and mineral matter was left to sublime in vacuum and at low temperature, simulating the evolution of the surface of a comet nucleus approaching the Sun. We observed and characterized the formation and evolution of a crust of refractory organic and mineral matter at the surface of the sample and linked the evolution of its structure and texture to its spectro-photometric properties. In the second experiment, a frozen soil was prepared by freezing a mixture of smectite mineral and water. The sample was then left to sublime for 6 h to simulate the loss of volatiles from icy soil at high latitudes on Mars. Colour images were produced using the definitions of the filters foreseen for the CaSSIS imager of the Exomars/TGO mission in order to prepare future science operations.
The impact of non-isothermal soil moisture transport on evaporation fluxes in a maize cropland
NASA Astrophysics Data System (ADS)
Shao, Wei; Coenders-Gerrits, Miriam; Judge, Jasmeet; Zeng, Yijian; Su, Ye
2018-06-01
The process of evaporation interacts with the soil, which has various comprehensive mechanisms. Multiphase flow models solve air, vapour, water, and heat transport equations to simulate non-isothermal soil moisture transport of both liquid water and vapor flow, but are only applied in non-vegetated soils. For (sparsely) vegetated soils often energy balance models are used, however these lack the detailed information on non-isothermal soil moisture transport. In this study we coupled a multiphase flow model with a two-layer energy balance model to study the impact of non-isothermal soil moisture transport on evaporation fluxes (i.e., interception, transpiration, and soil evaporation) for vegetated soils. The proposed model was implemented at an experimental agricultural site in Florida, US, covering an entire maize-growing season (67 days). As the crops grew, transpiration and interception became gradually dominated, while the fraction of soil evaporation dropped from 100% to less than 20%. The mechanisms of soil evaporation vary depending on the soil moisture content. After precipitation the soil moisture content increased, exfiltration of the liquid water flow could transport sufficient water to sustain evaporation from soil, and the soil vapor transport was not significant. However, after a sufficient dry-down period, the soil moisture content significantly reduced, and the soil vapour flow significantly contributed to the upward moisture transport in topmost soil. A sensitivity analysis found that the simulations of moisture content and temperature at the soil surface varied substantially when including the advective (i.e., advection and mechanical dispersion) vapour transport in simulation, including the mechanism of advective vapour transport decreased soil evaporation rate under wet condition, while vice versa under dry condition. The results showed that the formulation of advective soil vapor transport in a soil-vegetation-atmosphere transfer continuum can affect the simulated evaporation fluxes, especially under dry condition.
NASA Technical Reports Server (NTRS)
Changsheng, LI; Frolking, Steve; Frolking, Tod A.
1992-01-01
Simulations of N2O and CO2 emissions from soils were conducted with a rain-event driven, process-oriented model (DNDC) of nitrogen and carbon cycling processes in soils. The magnitude and trends of simulated N2O (or N2O + N2) and CO2 emissions were consistent with the results obtained in field experiments. The successful simulation of these emissions from the range of soil types examined demonstrates that the DNDC will be a useful tool for the study of linkages among climate, soil-atmosphere interactions, land use, and trace gas fluxes.
Analysis Results for Lunar Soil Simulant Using a Portable X-Ray Fluorescence Analyzer
NASA Technical Reports Server (NTRS)
Boothe, R. E.
2006-01-01
Lunar soil will potentially be used for oxygen generation, water generation, and as filler for building blocks during habitation missions on the Moon. NASA s in situ fabrication and repair program is evaluating portable technologies that can assess the chemistry of lunar soil and lunar soil simulants. This Technical Memorandum summarizes the results of the JSC 1 lunar soil simulant analysis using the TRACeR III IV handheld x-ray fluorescence analyzer, manufactured by KeyMaster Technologies, Inc. The focus of the evaluation was to determine how well the current instrument configuration would detect and quantify the components of JSC-1.
Computational Electromagnetics (CEM) Laboratory: Simulation Planning Guide
NASA Technical Reports Server (NTRS)
Khayat, Michael A.
2011-01-01
The simulation process, milestones and inputs are unknowns to first-time users of the CEM Laboratory. The Simulation Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their engineering personnel in simulation planning and execution. Material covered includes a roadmap of the simulation process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, facility interfaces, and inputs necessary to define scope, cost, and schedule are included as an appendix to the guide.
Design data package and operating procedures for MSFC solar simulator test facility
NASA Technical Reports Server (NTRS)
1981-01-01
Design and operational data for the solar simulator test facility are reviewed. The primary goal of the facility is to evaluate the performance capacibility and worst case failure modes of collectors, which utilize either air or liquid transport media. The facility simulates environmental parameters such as solar radiation intensity, solar spectrum, collimation, uniformity, and solar attitude. The facility also simulates wind conditions of velocity and direction, solar system conditions imposed on the collector, collector fluid inlet temperature, and geometric factors of collector tilt and azimuth angles. Testing the simulator provides collector efficiency data, collector time constant, incident angle modifier data, and stagnation temperature values.
NASA Astrophysics Data System (ADS)
Noh, Seong Jin; An, Hyunuk; Kim, Sanghyun
2015-04-01
Soil moisture, a critical factor in hydrologic systems, plays a key role in synthesizing interactions among soil, climate, hydrological response, solute transport and ecosystem dynamics. The spatial and temporal distribution of soil moisture at a hillslope scale is essential for understanding hillslope runoff generation processes. In this study, we implement Monte Carlo simulations in the hillslope scale using a three-dimensional surface-subsurface integrated model (3D model). Numerical simulations are compared with multiple soil moistures which had been measured using TDR(Mini_TRASE) for 22 locations in 2 or 3 depths during a whole year at a hillslope (area: 2100 square meters) located in Bongsunsa Watershed, South Korea. In stochastic simulations via Monte Carlo, uncertainty of the soil parameters and input forcing are considered and model ensembles showing good performance are selected separately for several seasonal periods. The presentation will be focused on the characterization of seasonal variations of model parameters based on simulations with field measurements. In addition, structural limitations of the contemporary modeling method will be discussed.
Comparison of point-source pollutant loadings to soil and groundwater for 72 chemical substances.
Yu, Soonyoung; Hwang, Sang-Il; Yun, Seong-Taek; Chae, Gitak; Lee, Dongsu; Kim, Ki-Eun
2017-11-01
Fate and transport of 72 chemicals in soil and groundwater were assessed by using a multiphase compositional model (CompFlow Bio) because some of the chemicals are non-aqueous phase liquids or solids in the original form. One metric ton of chemicals were assumed to leak in a stylized facility. Scenarios of both surface spills and subsurface leaks were considered. Simulation results showed that the fate and transport of chemicals above the water table affected the fate and transport of chemicals below the water table, and vice versa. Surface spill scenarios caused much less concentrations than subsurface leak scenarios because leaching amounts into the subsurface environment were small (at most 6% of the 1 t spill for methylamine). Then, simulation results were applied to assess point-source pollutant loadings to soil and groundwater above and below the water table, respectively, by multiplying concentrations, impact areas, and durations. These three components correspond to the intensity of contamination, mobility, and persistency in the assessment of pollutant loading, respectively. Assessment results showed that the pollutant loadings in soil and groundwater were linearly related (r 2 = 0.64). The pollutant loadings were negatively related with zero-order and first-order decay rates in both soil (r = - 0.5 and - 0.6, respectively) and groundwater (- 1.0 and - 0.8, respectively). In addition, this study scientifically defended that the soil partitioning coefficient (K d ) significantly affected the pollutant loadings in soil (r = 0.6) and the maximum masses in groundwater (r = - 0.9). However, K d was not a representative factor for chemical transportability unlike the expectation in chemical ranking systems of soil and groundwater pollutants. The pollutant loadings estimated using a physics-based hydrogeological model provided a more rational ranking for exposure assessment, compared to the summation of persistency and transportability scores in the chemical ranking systems. In the surface spill scenario, the pollutant loadings were zeros for all chemicals, except methylamine to soil whose pollutant loading was smaller than that in the subsurface leak scenario by 4 orders of magnitude. The maximum mass and the average mass multiplied by duration in soil greatly depended on leaching fluxes (r = 1.0 and 0.9, respectively), while the effect of leaching fluxes diminished below the water table. The contribution of this work is that a physics-based numerical model was used to quantitatively compare the subsurface pollutant loading in a chemical accident for 72 chemical substances, which can scientifically defend a simpler and more qualitative assessment of pollutant loadings. Besides, this study assessed pollutant loadings to soil (unsaturated zone) and groundwater (saturated zone) all together and discussed their interactions.
NASA Astrophysics Data System (ADS)
Ranatunga, T.
2016-12-01
Modeling of fate and transport of fecal bacteria in a watershed is generally a processed based approach that considers releases from manure, point sources, and septic systems. Overland transport with water and sediments, infiltration into soils, transport in the vadose zone and groundwater, die-off and growth processes, and in-stream transport are considered as the other major processes in bacteria simulation. This presentation will discuss a simulation of fecal indicator bacteria (E.coli) source loading and in-stream conditions of a non-tidal watershed (Cedar Bayou Watershed) in South Central Texas using two models; Spatially Explicit Load Enrichment Calculation Tool (SELECT) and Soil and Water Assessment Tool (SWAT). Furthermore, it will discuss a probable approach of bacteria source load reduction in order to meet the water quality standards in the streams. The selected watershed is listed as having levels of fecal indicator bacteria that posed a risk for contact recreation and wading by the Texas Commission of Environmental Quality (TCEQ). The SELECT modeling approach was used in estimating the bacteria source loading from land categories. Major bacteria sources considered were, failing septic systems, discharges from wastewater treatment facilities, excreta from livestock (Cattle, Horses, Sheep and Goat), excreta from Wildlife (Feral Hogs, and Deer), Pet waste (mainly from Dogs), and runoff from urban surfaces. The estimated source loads were input to the SWAT model in order to simulate the transport through the land and in-stream conditions. The calibrated SWAT model was then used to estimate the indicator bacteria in-stream concentrations for future years based on H-GAC's regional land use, population and household projections (up to 2040). Based on the in-stream reductions required to meet the water quality standards, the corresponding required source load reductions were estimated.
NASA Astrophysics Data System (ADS)
Obriejetan, Michael; Rauch, Hans Peter; Florineth, Florin
2013-04-01
Erosion control systems consisting of technical and biological components are widely accepted and proven to work well if installed properly with regard to site-specific parameters. A wide range of implementation measures for this specific protection purpose is existent and new, in particular technical solutions are constantly introduced into the market. Nevertheless, especially vegetation aspects of erosion control measures are frequently disregarded and should be considered enhanced against the backdrop of the development and realization of adaptation strategies in an altering environment due to climate change associated effects. Technical auxiliaries such as geotextiles typically used for slope protection (nettings, blankets, turf reinforcement mats etc.) address specific features and due to structural and material diversity, differing effects on sediment yield, surface runoff and vegetational development seem evident. Nevertheless there is a knowledge gap concerning the mutual interaction processes between technical and biological components respectively specific comparable data on erosion-reducing effects of technical-biological erosion protection systems are insufficient. In this context, an experimental arrangement was set up to study the correlated influences of geotextiles and vegetation and determine its (combined) effects on surface runoff and soil loss during simulated heavy rainfall events. Sowing vessels serve as testing facilities which are filled with top soil under application of various organic and synthetic geotextiles and by using a reliable drought resistant seed mixture. Regular vegetational monitoring as well as two rainfall simulation runs with four repetitions of each variant were conducted. Therefore a portable rainfall simulator with standardized rainfall intensity of 240 mm h-1 and three minute rainfall duration was used to stress these systems on different stages of plant development at an inclination of 30 degrees. First results show significant differences between the systems referring to sediment yield and runoff amount respectively vegetation development.
NASA Astrophysics Data System (ADS)
Ranatunga, T.
2017-12-01
Modeling of fate and transport of fecal bacteria in a watershed is a processed based approach that considers releases from manure, point sources, and septic systems. Overland transport with water and sediments, infiltration into soils, transport in the vadose zone and groundwater, die-off and growth processes, and in-stream transport are considered as the other major processes in bacteria simulation. This presentation will discuss a simulation of fecal indicator bacteria source loading and in-stream conditions of a non-tidal watershed (Cedar Bayou Watershed) in South Central Texas using two models; Spatially Explicit Load Enrichment Calculation Tool (SELECT) and Soil and Water Assessment Tool (SWAT). Furthermore, it will discuss a probable approach of bacteria source load reduction in order to meet the water quality standards in the streams. The selected watershed is listed as having levels of fecal indicator bacteria that posed a risk for contact recreation and wading by the Texas Commission of Environmental Quality (TCEQ). The SELECT modeling approach was used in estimating the bacteria source loading from land categories. Major bacteria sources considered were, failing septic systems, discharges from wastewater treatment facilities, excreta from livestock (Cattle, Horses, Sheep and Goat), excreta from Wildlife (Feral Hogs, and Deer), Pet waste (mainly from Dogs), and runoff from urban surfaces. The estimated source loads from SELECT model were input to the SWAT model, and simulate the bacteria transport through the land and in-stream. The calibrated SWAT model was then used to estimate the indicator bacteria in-stream concentrations for future years based on regional land use, population and household forecast (up to 2040). Based on the reductions required to meet the water quality standards in-stream, the corresponding required source load reductions were estimated.
Estimation of Regional Net CO2 Exchange over the Southern Great Plains
NASA Astrophysics Data System (ADS)
Biraud, S. C.; Riley, W. J.; Fischer, M. L.; Torn, M. S.; Cooley, H. S.
2004-12-01
Estimating spatially distributed ecosystem CO2 exchange is an important component of the North American Carbon Program. We describe here a methodology to estimate Net Ecosystem Exchange (NEE) over the Southern Great Plains, using: (1) data from the Department Of Energy's Atmospheric Radiation Measurement (ARM) sites in Oklahoma and Kansas; (2) meteorological forcing data from the Mesonet facilities; (3) soil and vegetation types from 1 km resolution USGS databases; (4) vegetation status (e.g., LAI) from 1 km satellite measurements of surface reflectance (MODIS); (5) a tested land-surface model; and (6) a coupled land-surface and meteorological model (MM5/ISOLSM). This framework allows us to simulate regional surface fluxes in addition to ABL and free troposphere concentrations of CO2 at a continental scale with fine-scale nested grids centered on the ARM central facility. We use the offline land-surface and coupled models to estimate regional NEE, and compare predictions to measurements from the 9 Extended Facility sites with eddy correlation measurements. Site level comparisons to portable ECOR measurements in several crop types are also presented. Our approach also allows us to extend bottom-up estimates to periods and areas where meteorological forcing data are unavailable.
NASA Technical Reports Server (NTRS)
Cheng, R. Y. K.
1977-01-01
The aircraft structural crash behavior and occupant survivability for aircraft crashes on a soil surface was studied. The results of placement, compaction, and maintenance of two soil test beds are presented. The crators formed by the aircraft after each test are described.
Biotreatability studies conducted in our laboratory used soils from two former wood-treatment facilities to evaluate the use of in situ bioventing and biosparging applications for their potential ability to remediate soil and groundwater containing creosote. The combination of ph...
40 CFR 61.342 - Standards: General.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the facility, such as the excavation of contaminated soil, pumping and treatment of groundwater, and the recovery of product from soil or groundwater, are not included in the calculation of total annual...
NASA Astrophysics Data System (ADS)
Pla-Sentís, Ildefonso; Nacci, Silvana
2010-05-01
Rainfall simulation has been used as a practical tool for evaluating the interaction of falling water drops on the soil surface, to measure both stability of soil aggregates to drop impact and water infiltration rates. In both cases it is tried to simulate the effects of natural rainfall, which usually occurs at very different, variable and erratic rates and intensities. One of the main arguments against the use of rainfall simulators is the difficulty to reproduce the size, final velocity and kinetic energy of the drops in natural rainfall. Since the early 70´s we have been developing and using different kinds of rainfall simulators, both at laboratory and field levels, and under tropical and Mediterranean soil and climate conditions, in flat and sloping lands. They have been mainly used to evaluate the relative effects of different land use and management, including different cropping systems, tillage practices, surface soil conditioning, surface covers, etc. on soil water infiltration, on runoff and on erosion. Our experience is that in any case it is impossible to reproduce the variable size distribution and terminal velocity of raindrops, and the variable changes in intensity of natural storms, under a particular climate condition. In spite of this, with the use of rainfall simulators it is possible to obtain very good information, which if it is properly interpreted in relation to each particular condition (land and crop management, rainfall characteristics, measurement conditions, etc.) may be used as one of the parameters for deducing and modelling soil water balance and soil moisture regime under different land use and management and variable climate conditions. Due to the possibility for a better control of the intensity of simulated rainfall and of the size of water drops, and the possibility to make more repeated measurements under very variable soil and land conditions, both in the laboratory and specially in the field, the better results have been obtained with small size 500-1000 cm2, easily dismantled, drop former simulators, than with larger, nozzle, or more sophisticated equipments. In this contribution there are presented some of the rainfall simulators developed and used by the main author, and some of the results obtained in different studies of practical problems under tropical and Mediterranean conditions. References Pla, I.,G.Campero, y R.Useche.1974.Physical degradación of agricultural soils in the Western Plains of Venezuela. "Trans.10th Int.Cong.Soil.Sci.Soc". 1:231-240. .Moscú Pla, I. 1975.Effects of bitumen emulsion and polyacrilamide on some physical properties of Venezuelan soils. En "Soil Sci. Soc. Am. Special Publication"• 7. 35-46. Madison. Wisconsin . (USA). Pla, I. 1977.Aggregate size and erosion control on sloping land treated with hydrophobic bitumen emulsion."Soil Conservation and Management in the Humid Tropics".109-115. John Wiley & Sons. Pla, I.1981.Simuladores de lluvia para el estudio de relaciones suelo-agua bajo agricultura de secano en los trópicos. Rev. Fac. Agron. XII(1-2):81-93.Maracay (Venezuela) Pla, I. 1986.A routine laboratory index to predict the effects of soil sealing on soil and water conservation. En "Assesment of Soil Surface Sealing and Crusting". 154-162.State Univ. of Ghent.Gante (Bélgica Pla, I., M.C. Ramos, S. Nacci, F. Fonseca y X. Abreu. 2005. Soil moisture regime in dryland vineyards of Catalunya (Spain) as influenced by climate, soil and land management. "Integrated Soil and Water Management for Orchard Development". FAO Land and Water Bulletin 10. 41-49. Roma (Italia).
2017-03-24
between the capabilities of these two soil conditions will need to be taken into account when designing the facility. Problem Statement The IPCC claims...ability to plan foundation designs and mitigation techniques for changing soil characteristics. 9 II. Literature Review...AFB will be constructed on permafrost soils. Golder Associates (2016) states in their design report, If permafrost soils are encountered, two of the
Small scale rainfall simulators: Challenges for a future use in soil erosion research
NASA Astrophysics Data System (ADS)
Ries, Johannes B.; Iserloh, Thomas; Seeger, Manuel
2013-04-01
Rainfall simulation on micro-plot scale is a method used worldwide to assess the generation of overland flow, soil erosion, infiltration and interrelated processes such as soil sealing, crusting, splash and redistribution of solids and solutes. The produced data are of great significance not only for the analysis of the simulated processes, but also as a source of input-data for soil erosion modelling. The reliability of the data is therefore of paramount importance, and quality management of rainfall simulation procedure a general responsibility of the rainfall simulation community. This was an accepted outcome at the "International Rainfall Simulator Workshop 2011" at Trier University. The challenges of the present and near future use of small scale rainfall simulations concern the comparability of results and scales, the quality of the data for soil erosion modelling, and further technical developments to overcome physical limitations and constraints. Regarding the high number of research questions, different fields of application, and due to the great technical creativity of researchers, a large number of different types of rainfall simulators is available. But each of the devices produces a different rainfall, leading to different kinetic energy values influencing soil surface and erosion processes. Plot sizes are also variable, as well as the experimental simulation procedures. As a consequence, differing runoff and erosion results are produced. The presentation summarises the three important aspects of rainfall simulations, following a processual order: 1. Input-factor "rain" and its calibration 2. Surface-factor "plot" and its documentation 3. Output-factors "runoff" and "sediment concentration" Finally, general considerations about the limitations and challenges for further developments and applications of rainfall simulation data are presented.
Lü, Si-Dan; Chen, Wei-Ping; Wang, Mei-E
2012-12-01
In order to promote safe irrigation with reclaimed water and prevent soil salinisation, the dynamic transport of salts in urban soils of Beijing under irrigation of reclaimed water was simulated by ENVIRO-GRO model in this study. The accumulation trends and profile distribution of soil salinity were predicted. Simultaneously, the effects of different soil properties and plants on soil water-salt movement and salt accumulation were investigated. Results indicated that soil salinity in the profiles reached uniform equilibrium conditions by repeated simulation, with different initial soil salinity. Under the conditions of loam and clay loam soil, salinity in the profiles increased over time until reaching equilibrium conditions, while under the condition of sandy loam soil, salinity in the profiles decreased over time until reaching equilibrium conditions. The saturated soil salinity (EC(e)) under equilibrium conditions followed an order of sandy loam < loam < clay loam. Salt accumulations in Japan euonymus and Chinese pine were less than that in Blue grass. The temporal and spatial distributions of soil salinity were also different in these three types of plants. In addition, the growth of the plants was not influenced by soil salinity (except clay loam), but mild soil salinization occurred under all conditions (except sandy loam).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terusaki, Stanley; Gallegos, Gretchen; MacQueen, Donald
2012-10-02
LLNL Site 300 has applied to renew the permits for its Explosives Waste Treatment Facility (EWTF), Explosives Waste Storage Facility (EWSF) and Building 883 Storage Facility. As a part of the permit renewal process, the Department of Toxic Substances Control (DTSC) requested LLNL to obtain soil samples in order to conduct a scoping-level ecological risk assessment pursuant to the Department of Toxic Substances Control, Guidance for Ecological Risk Assessment at Hazardous Waste Sites and Permitted Facilities, Part A: Overview, July 4, 1996. As stated in the guidance document, the scoping-level ecological risk assessment provides a framework to determine the potentialmore » interaction ecological receptors and chemicals of concern from hazardous waste treatment operations in the area of EWTF.« less
30 CFR 585.701 - What must I include in my Facility Design Report?
Code of Federal Regulations, 2014 CFR
2014-07-01
... design or installation, e.g., oceanographic and soil reports including the results of the surveys... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What must I include in my Facility Design... Facility Design, Fabrication, and Installation Reports § 585.701 What must I include in my Facility Design...
30 CFR 585.701 - What must I include in my Facility Design Report?
Code of Federal Regulations, 2013 CFR
2013-07-01
... design or installation, e.g., oceanographic and soil reports including the results of the surveys... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What must I include in my Facility Design... Facility Design, Fabrication, and Installation Reports § 585.701 What must I include in my Facility Design...
30 CFR 585.701 - What must I include in my Facility Design Report?
Code of Federal Regulations, 2012 CFR
2012-07-01
... design or installation, e.g., oceanographic and soil reports including the results of the surveys... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What must I include in my Facility Design... Facility Design, Fabrication, and Installation Reports § 585.701 What must I include in my Facility Design...
A simulation study of scene confusion factors in sensing soil moisture from orbital radar
NASA Technical Reports Server (NTRS)
Ulaby, F. T. (Principal Investigator); Dobson, M. C.; Moezzi, S.; Roth, F. T.
1983-01-01
Simulated C-band radar imagery for a 124-km by 108-km test site in eastern Kansas is used to classify soil moisture. Simulated radar resolutions are 100 m by 100 m, 1 km by 1km, and 3 km by 3 km. Distributions of actual near-surface soil moisture are established daily for a 23-day accounting period using a water budget model. Within the 23-day period, three orbital radar overpasses are simulated roughly corresponding to generally moist, wet, and dry soil moisture conditions. The radar simulations are performed by a target/sensor interaction model dependent upon a terrain model, land-use classification, and near-surface soil moisture distribution. The accuracy of soil-moisture classification is evaluated for each single-date radar observation and also for multi-date detection of relative soil moisture change. In general, the results for single-date moisture detection show that 70% to 90% of cropland can be correctly classified to within +/- 20% of the true percent of field capacity. For a given radar resolution, the expected classification accuracy is shown to be dependent upon both the general soil moisture condition and also the geographical distribution of land-use and topographic relief. An analysis of cropland, urban, pasture/rangeland, and woodland subregions within the test site indicates that multi-temporal detection of relative soil moisture change is least sensitive to classification error resulting from scene complexity and topographic effects.
2011-05-01
expense. Recycling materials such as paper , cardboard, glass, and plastic would be collected and recycled at an off-installation facility per Grand...available in the NRCS’s web soil survey (NRCS 2010). Most of the soils that were rated for construction limitations are considered to be somewhat to...and accepts paper , glass, plastic, cardboard, metal cans, and compost from all installation facilities (GFAFB 2008e). Additional recycling efforts
Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013
Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir
2015-01-29
A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.
Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska
Zhuang, Q.; McGuire, A.D.; O'Neill, K. P.; Harden, J.W.; Romanovsky, V.E.; Yarie, J.
2003-01-01
In this study, the dynamics of soil thermal, hydrologic, and ecosystem processes were coupled to project how the carbon budgets of boreal forests will respond to changes in atmospheric CO2, climate, and fire disturbance. The ability of the model to simulate gross primary production and ecosystem respiration was verified for a mature black spruce ecosystem in Canada, the age-dependent pattern of the simulated vegetation carbon was verified with inventory data on aboveground growth of Alaskan black spruce forests, and the model was applied to a postfire chronosequence in interior Alaska. The comparison between the simulated soil temperature and field-based estimates during the growing season (May to September) of 1997 revealed that the model was able to accurately simulate monthly temperatures at 10 cm (R > 0.93) for control and burned stands of the fire chronosequence. Similarly, the simulated and field-based estimates of soil respiration for control and burned stands were correlated (R = 0.84 and 0.74 for control and burned stands, respectively). The simulated and observed decadal to century-scale dynamics of soil temperature and carbon dynamics, which are represented by mean monthly values of these variables during the growing season, were correlated among stands (R = 0.93 and 0.71 for soil temperature at 20- and 10-cm depths, R = 0.95 and 0.91 for soil respiration and soil carbon, respectively). Sensitivity analyses indicate that along with differences in fire and climate history a number of other factors influence the response of carbon dynamics to fire disturbance. These factors include nitrogen fixation, the growth of moss, changes in the depth of the organic layer, soil drainage, and fire severity.
Howard Evan Canfield; Vicente L. Lopes
2000-01-01
A process-based, simulation model for evaporation, soil water and streamflow (BROOK903) was used to estimate soil moisture change on a semiarid rangeland watershed in southeastern Arizona. A sensitivity analysis was performed to select parameters affecting ET and soil moisture for calibration. Automatic parameter calibration was performed using a procedure based on a...
Modeling Water Redistribution in a Near-Surface Arid Soil
NASA Astrophysics Data System (ADS)
Luo, Y.; Ghezzehei, T. A.; Berli, M.; Dijkema, J.; Koonce, J.
2017-12-01
Desert soils cover about one third of the Earth's land surface and play an important role in the ecology and hydrology of arid environments. Despite their large extend, relatively little is known about their near-surface (top centimeters to meter) water dynamics. Recent studies by Koonce (2016) and Dijkema et al. (2017) shed light on the water dynamics of near-surface arid soil but also revealed some of the challenges to simulate the water redistribution in arid soils. The goal of this study was to improve water redistribution simulations in near-surface arid soils by employing more advanced hydraulic conductivity functions. Expanding on the work by Dijkema et al. (2017), we used a HYDRUS-1D model with different hydraulic conductivity functions to simulate water redistribution within the soil as a function of precipitation, evaporation and drainage. Model calculations were compared with measured data from the SEPHAS weighing lysimeters in Boulder City, NV. Preliminary results indicate that water redistribution simulations of near-surface arid soils can be improved by using hydraulic conductivity functions that can capture capillary, film and vapor flow, like for example the Peter-Durner-Iden (PDI) model.
New Mexico Tech landmine, UXO, IED detection sensor test facility: measurements in real field soils
NASA Astrophysics Data System (ADS)
Hendrickx, Jan M. H.; Alkov, Nicole; Hong, Sung-ho; Van Dam, Remke L.; Kleissl, Jan; Shannon, Heather; Meason, John; Borchers, Brian; Harmon, Russell S.
2006-05-01
Modeling studies and experimental work have demonstrated that the dynamic behavior of soil physical properties has a significant effect on most sensors for the detection of buried land mines. An outdoor test site has been constructed allowing full control over soil water content and continuous monitoring of important soil properties and environmental conditions. Time domain reflectometry sensors and thermistors measure soil water1 content and temperature, respectively, at different depths above and below the land mines as well as in homogeneous soil away from the land mines. During the two-year operation of the test-site, the soils have evolved to reflect real field soil conditions. This paper compares visual observations as well as ground-penetrating radar and thermal infrared measurements at this site taken immediately after construction in early 2004 with measurements from early 2006. The visual observations reveal that the 2006 soil surfaces exhibit a much higher spatial variability due to the development of mini-reliefs, "loose" and "connected" soil crusts, cracks in clay soils, and vegetation. Evidence is presented that the increased variability of soil surface characteristics leads to a higher natural spatial variability of soil surface temperatures and, thus, to a lower probability to detect landmines using thermal imagery. No evidence was found that the soil surface changes affect the GPR signatures of landmines under the soil conditions encountered in this study. The New Mexico Tech outdoor Landmine Detection Sensor Test Facility is easily accessible and anyone interested is welcome to use it for sensor testing.
NASA Technical Reports Server (NTRS)
1993-01-01
A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).
Nimmo, J.R.; Perkins, K.S.
2008-01-01
Soil structural disturbance influences the downward flow of water that percolates deep enough to become aquifer recharge. Data from identical experiments in an undisturbed silt-loam soil and in an adjacent simulated waste trench composed of the same soil material, but disturbed, included (1) laboratory- and field-measured unsaturated hydraulic properties and (2) field-measured transient water content profiles through 24 h of ponded infiltration and 75 d of redistribution. In undisturbed soil, wetting fronts were highly diffuse above 2 m depth, and did not go much deeper than 2 m. Darcian analysis suggests an average recharge rate less than 2 mm/year. In disturbed soil, wetting fronts were sharp and initial infiltration slower; water moved slowly below 2 m without obvious impediment. Richards' equation simulations with realistic conditions predicted sharp wetting fronts, as observed for disturbed soil. Such simulations were adequate for undisturbed soil only if started from a post-initial moisture distribution that included about 3 h of infiltration. These late-started simulations remained good, however, through the 76 d of data. Overall results suggest the net effect of soil disturbance, although it reduces preferential flow, may be to increase recharge by disrupting layer contrasts. ?? Springer-Verlag 2007.
Carbon dioxide efflux from a 550 m3 soil across a range of soul temperatues
Ramesh Murthy; Kevin L. Griffin; Stanley J. Zarnoch; Philip M. Dougherty; Barbara Watson; Joost Van Haren; Randy L. Patterson; Tilka Mahato
2003-01-01
Because of scaling problems point measurements of soil CO2 efflux on a small volume of soil may not necessarily reflect an overall community response. The aim of this study was to test this hypothesis in the Biosphere 2 facility and achieve the following broad goals: (1) investigate soil net CO2 exchangeâtemperature...
EFFECTS OF ELECTROOSMOSIS ON SOIL TEMPERATURE AND HYDRAULIC HEAD: II. NUMERICAL SIMULATION
A numerical model to simulate the distributions of voltage, soil temperature, and hydraulic head during the field test of electroosmosis was developed. The two-dimensional governing equations for the distributions of voltage, soil temperature, and hydraulic head within a cylindri...
40 CFR 792.45 - Test system supply facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Test system supply facilities. 792.45 Section 792.45 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... facilities. (a) There shall be storage areas, as needed, for feed, nutrients, soils, bedding, supplies, and...
NASA Astrophysics Data System (ADS)
Kim, J. K.; Kim, M. S.; Yang, D. Y.
2017-12-01
Sediment transfer within hill slope can be changed by the hydrologic characteristics of surface material on hill slope. To better understand sediment transfer of the past and future related to climate changes, studies for the changes of soil erosion due to hydrological characteristics changes by surface materials on hill slope are needed. To do so, on-situ rainfall simulating test was conducted on three different surface conditions, i.e. well covered with litter layer condition (a), undisturbed bare condition (b), and disturbed bare condition (c) and these results from rainfall simulating test were compared with that estimated using the Limburg Soil Erosion Model (LISEM). The result from the rainfall simulating tests showed differences in the infiltration rate (a > b > c) and the highest soil erosion rate was occurred on c condition. The result from model also was similar to those from rainfall simulating tests, however, the difference from the value of soil erosion rate between two results was quite large on b and c conditions. These results implied that the difference of surface conditions could change the surface runoff and soil erosion and the result from the erosion model might significantly underestimate on bare surface conditions rather than that from rainfall simulating test.
Performance of Boeing LRV wheels in a lunar soil simulant. Report 1: Effect of wheel design and soil
NASA Technical Reports Server (NTRS)
Green, A. J.; Melzer, K.
1971-01-01
Six versions of the wire mesh wheel were laboratory tested in a lunar soil simulant, consisting of a crushed basalt with a grainsize distribution similar to that of samples collected during Apollo 11 and 12 flights, to determine their relative performance. The consistency of the soil was varied to cover a range of cohesive and frictional properties to simulate soil conditions assumed to exist on the moon. Programmed-slip and constant-slip tests conducted with the single wheel dynamometer system showed that the performance of the wheel covered with a metal chevron tread over 50 percent of its contact surface was slightly superior to that of other tread designs.
Ran, Yu; Xie, Jianli; Xu, Xiaoya; Li, Yong; Liu, Yapeng; Zhang, Qichun; Li, Zheng; Xu, Jianming; Di, Hongjie
2017-01-01
Methane (CH 4 ) is a potent greenhouse gas, and soil can both be a source and sink for atmospheric CH 4 . It is not clear how future climate change may affect soil CH 4 emissions and related microbial communities. The aim of this study was to determine the interactive effects of a simulated warmer and drier climate scenarios and the application of different nitrogen (N) sources (urea and manure) on CH 4 emissions and related microbial community abundance in a vegetable soil. Greenhouses were used to control simulated climate conditions which gave 2.99 °C warmer and 6.2% lower water content conditions. The field experiment was divided into two phases. At the beginning of phase II, half of the greenhouses were removed to study possible legacy effects of the simulated warmer and drier conditions. The responses in methanogen and methanotroph abundance to a simulated climate change scenario were determined using real-time PCR. The results showed that the simulated warmer and drier conditions in the greenhouses significantly decreased CH 4 emissions largely due to the lower soil moisture content. For the same reason, CH 4 emissions of treatments in phase I were much lower than the same treatments in phase II. The abundance of methanotrophs showed a more significant response than methanogens to the simulated climate change scenario, increasing under simulated drier conditions. Methanogenic community abundance remained low, except where manure was applied which provided a source of organic C that stimulated methanogen growth. Soil moisture content was a major driver for methanotroph abundance and strongly affected CH 4 emissions. The application of N source decreased CH 4 emissions probably because of increased methanotrophic activity. CH 4 emissions were positively correlated to methanogenic abundance and negatively correlated to methanotrophic abundance. These results demonstrate that projected future climate change conditions can have a feedback impact on CH 4 emissions from the soil by altering soil conditions (particularly soil moisture) and related microbial communities.
Simulating root-induced rhizosphere deformation and its effect on water flow
NASA Astrophysics Data System (ADS)
Aravena, J. E.; Ruiz, S.; Mandava, A.; Regentova, E. E.; Ghezzehei, T.; Berli, M.; Tyler, S. W.
2011-12-01
Soil structure in the rhizosphere is influenced by root activities, such as mucilage production, microbial activity and root growth. Root growth alters soil structure by moving and deforming soil aggregates, affecting water and nutrient flow from the bulk soil to the root surface. In this study, we utilized synchrotron X-ray micro-tomography (XMT) and finite element analysis to quantify the effect of root-induced compaction on water flow through the rhizosphere to the root surface. In a first step, finite element meshes of structured soil around the root were created by processing rhizosphere XMT images. Then, soil deformation by root expansion was simulated using COMSOL Multiphysics° (Version 4.2) considering the soil an elasto-plastic porous material. Finally, fluid flow simulations were carried out on the deformed mesh to quantify the effect of root-induced compaction on water flow to the root surface. We found a 31% increase in water flow from the bulk soil to the root due to a 56% increase in root diameter. Simulations also show that the increase of root-soil contact area was the dominating factor with respect to the calculated increase in water flow. Increase of inter-aggregate contacts in size and number were observed within a couple of root diameters away from the root surface. But their influence on water flow was, in this case, rather limited compared to the immediate soil-root contact.
Neural network simulation of soil NO3 dynamic under potato crop system
NASA Astrophysics Data System (ADS)
Goulet-Fortin, Jérôme; Morais, Anne; Anctil, François; Parent, Léon-Étienne; Bolinder, Martin
2013-04-01
Nitrate leaching is a major issue in sandy soils intensively cropped to potato. Modelling could test and improve management practices, particularly as regard to the optimal N application rates. Lack of input data is an important barrier for the application of classical process-based models to predict soil NO3 content (SNOC) and NO3 leaching (NOL). Alternatively, data driven models such as neural networks (NN) could better take into account indicators of spatial soil heterogeneity and plant growth pattern such as the leaf area index (LAI), hence reducing the amount of soil information required. The first objective of this study was to evaluate NN and hybrid models to simulate SNOC in the 0-40 cm soil layer considering inter-annual variations, spatial soil heterogeneity and differential N application rates. The second objective was to evaluate the same methodology to simulate seasonal NOL dynamic at 1 m deep. To this aim, multilayer perceptrons with different combinations of driving meteorological variables, functions of the LAI and state variables of external deterministic models have been trained and evaluated. The state variables from external models were: drainage estimated by the CLASS model and the soil temperature estimated by an ICBM subroutine. Results of SNOC simulations were compared to field data collected between 2004 and 2011 at several experimental plots under potato cropping systems in Québec, Eastern Canada. Results of NOL simulation were compared to data obtained in 2012 from 11 suction lysimeters installed in 2 experimental plots under potato cropping systems in the same region. The most performing model for SNOC simulation was obtained using a 4-input hybrid model composed of 1) cumulative LAI, 2) cumulative drainage, 3) soil temperature and 4) day of year. The most performing model for NOL simulation was obtained using a 5-input NN model composed of 1) N fertilization rate at spring, 2) LAI, 3) cumulative rainfall, 4) the day of year and 5) the percentage of clay content. The MAE was 22% for SNOC simulation and 23% for NOL simulation. High sensitivity to LAI suggests that the model may take into account field and sub-field spatial variability and support N management. Further studies are needed to fully validate the method, particularly in the case of NOL simulation.
EnergySolution's Clive Disposal Facility Operational Research Model - 13475
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nissley, Paul; Berry, Joanne
2013-07-01
EnergySolutions owns and operates a licensed, commercial low-level radioactive waste disposal facility located in Clive, Utah. The Clive site receives low-level radioactive waste from various locations within the United States via bulk truck, containerised truck, enclosed truck, bulk rail-cars, rail boxcars, and rail inter-modals. Waste packages are unloaded, characterized, processed, and disposed of at the Clive site. Examples of low-level radioactive waste arriving at Clive include, but are not limited to, contaminated soil/debris, spent nuclear power plant components, and medical waste. Generators of low-level radioactive waste typically include nuclear power plants, hospitals, national laboratories, and various United States government operatedmore » waste sites. Over the past few years, poor economic conditions have significantly reduced the number of shipments to Clive. With less revenue coming in from processing shipments, Clive needed to keep its expenses down if it was going to maintain past levels of profitability. The Operational Research group of EnergySolutions were asked to develop a simulation model to help identify any improvement opportunities that would increase overall operating efficiency and reduce costs at the Clive Facility. The Clive operations research model simulates the receipt, movement, and processing requirements of shipments arriving at the facility. The model includes shipment schedules, processing times of various waste types, labor requirements, shift schedules, and site equipment availability. The Clive operations research model has been developed using the WITNESS{sup TM} process simulation software, which is developed by the Lanner Group. The major goals of this project were to: - identify processing bottlenecks that could reduce the turnaround time from shipment arrival to disposal; - evaluate the use (or idle time) of labor and equipment; - project future operational requirements under different forecasted scenarios. By identifying processing bottlenecks and unused equipment and/or labor, improvements to operating efficiency could be determined and appropriate cost saving measures implemented. Model runs forecasting various scenarios helped illustrate potential impacts of certain conditions (e.g. 20% decrease in shipments arrived), variables (e.g. 20% decrease in labor), or other possible situations. (authors)« less
NASA Astrophysics Data System (ADS)
Ciampalini, Rossano; Kendon, Elizabeth; Constantine, José Antonio; Schindewolf, Marcus; Hall, Ian
2017-04-01
Climate change is expected to have a significant impact on the hydrological cycle, twenty-first century climate change simulations for Great Britain forecast an increase of surface runoff and flooding frequency. Once quality and resolution of the simulated rainfall deeply influence the results, we adopted rainfall simulations issued of a high-resolution climate model recently carried out for extended periods (13 years for present-day and future periods 2100) at 1.5 km grid scale over the south of the United Kingdom (simulations, which for the future period use the Intergovernmental Panel on Climate Change RCP 8.5 scenario, Kendon et al., 2014). We simulated soil erosion with 3D soil erosion model Schmidt (1990) on two catchments of Great Britain: the Rother catchment (350 km2) in West Sussex, England, because it has reported some of the most erosive events observed during the last 50 years in the UK, and the Conwy catchment (628 Km2) in North Wales, which is extremely resilient to soil erosion because of the abundant natural vegetation. Estimation of changes in soil moisture, saturation deficit as well as vegetation cover at daily time step have been done with the Joint UK Land Environment Simulator (JULES) (Best et al, 2011). Our results confirm the Rother catchment is the most erosive, while the Conwy catchment is the more resilient to soil erosion. Sediment production is perceived increase in both cases for the end of the century (27% and 50%, respectively). Seasonal disaggregation of the results revels that, while the most part of soil erosion is produced in winter months (DJF), the higher soil erosion variability for future periods is observed in summer (JJA). This behaviour is supported by the rainfall simulation analyse which highlighted this dual behaviour in precipitations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spears, Robert Edward; Coleman, Justin Leigh
Currently the Department of Energy (DOE) and the nuclear industry perform seismic soil-structure interaction (SSI) analysis using equivalent linear numerical analysis tools. For lower levels of ground motion, these tools should produce reasonable in-structure response values for evaluation of existing and new facilities. For larger levels of ground motion these tools likely overestimate the in-structure response (and therefore structural demand) since they do not consider geometric nonlinearities (such as gaping and sliding between the soil and structure) and are limited in the ability to model nonlinear soil behavior. The current equivalent linear SSI (SASSI) analysis approach either joins the soilmore » and structure together in both tension and compression or releases the soil from the structure for both tension and compression. It also makes linear approximations for material nonlinearities and generalizes energy absorption with viscous damping. This produces the potential for inaccurately establishing where the structural concerns exist and/or inaccurately establishing the amplitude of the in-structure responses. Seismic hazard curves at nuclear facilities have continued to increase over the years as more information has been developed on seismic sources (i.e. faults), additional information gathered on seismic events, and additional research performed to determine local site effects. Seismic hazard curves are used to develop design basis earthquakes (DBE) that are used to evaluate nuclear facility response. As the seismic hazard curves increase, the input ground motions (DBE’s) used to numerically evaluation nuclear facility response increase causing larger in-structure response. As ground motions increase so does the importance of including nonlinear effects in numerical SSI models. To include material nonlinearity in the soil and geometric nonlinearity using contact (gaping and sliding) it is necessary to develop a nonlinear time domain methodology. This methodology will be known as, NonLinear Soil-Structure Interaction (NLSSI). In general NLSSI analysis should provide a more accurate representation of the seismic demands on nuclear facilities their systems and components. INL, in collaboration with a Nuclear Power Plant Vender (NPP-V), will develop a generic Nuclear Power Plant (NPP) structural design to be used in development of the methodology and for comparison with SASSI. This generic NPP design has been evaluated for the INL soil site because of the ease of access and quality of the site specific data. It is now being evaluated for a second site at Vogtle which is located approximately 15 miles East-Northeast of Waynesboro, Georgia and adjacent to Savanna River. The Vogtle site consists of many soil layers spanning down to a depth of 1058 feet. The reason that two soil sites are chosen is to demonstrate the methodology across multiple soil sites. The project will drive the models (soil and structure) using successively increasing acceleration time histories with amplitudes. The models will be run in time domain codes such as ABAQUS, LS-DYNA, and/or ESSI and compared with the same models run in SASSI. The project is focused on developing and documenting a method for performing time domain, non-linear seismic soil structure interaction (SSI) analysis. Development of this method will provide the Department of Energy (DOE) and industry with another tool to perform seismic SSI analysis.« less
Space Simulation, 7th. [facilities and testing techniques
NASA Technical Reports Server (NTRS)
1973-01-01
Space simulation facilities and techniques are outlined that encompass thermal scale modeling, computerized simulations, reentry materials, spacecraft contamination, solar simulation, vacuum tests, and heat transfer studies.
1984-12-01
5 Background Objective Approach Scope of Work Organization 2 SUMMARY OF ENVIRONMENTAL CONDITIONS AT MASIRAH ISLAND ................. 7 Soil ...CONDITIONS AT MASIRAH ISLAND Soil Resistivity Values for the soil resistivity at this location are not readily avail- able. It is, however, considered...to be a very aggressive soil with high amounts of chlorides and sulfates, which can be converted to corrosive sul- -. fides. Soil samples will be
NASA Astrophysics Data System (ADS)
Kuhn, Nikolaus J.
2015-04-01
The 2015 UN Year of Soils (IYS), implemented by the FAO, aims to increase awareness and understanding of the importance of soil for food security and essential ecosystem functions. The IYS has six specific objectives, ranging from raising the awareness among civil society and decision makers about the profound importance of soils, to the development of policies supporting the sustainable use of the non-renewable soil resource. For scientists and academic teachers using experiments to study soil erosion processes, two objectives appear of particular relevance. First is need for the rapid capacity enhancement for soil information collection and monitoring at all levels (global, regional and national). While at first glance, this objective appears to relate mostly to traditional mapping, sampling and monitoring, the threat of large-scale soil loss, at least with regards to their ecosystem services, illustrates the need for approaches of studying soils that avoids such irreversible destruction. Relying on often limited data and their extrapolation does not cover this need for soil information because rapid change of the drivers of change itself carry the risk of unprecedented soil reactions not covered by existing data sets. Experiments, on the other hand, offer the possibility to simulate and analyze future soil change in great detail. Furthermore, carefully designed experiments may also limit the actual effort involved in collecting the specific required information, e.g. by applying tests designed to study soil system behavior under controlled conditions, compared to field monitoring. For rainfall simulation, experiments should therefore involve the detailed study of erosion processes and include detailed recording and reporting of soil and rainfall properties. The development of a set of standardised rainfall simulations would widen the use data collected by such experiments. A second major area for rainfall simulation lies in the the education of the public about the crucial role soil plays in food security, climate change adaptation and mitigation, essential ecosystem services, poverty alleviation and sustainable development. While erosion monitoring and modeling, as well as erosion risk assessment maps provide a solid foundation for decision makers, the attention of the public for "dirt" is often much easier to achieve by setting up a rainfall simulation experiment that illustrates the connection between a process, such as rainfall and runoff observed in daily life, and its causes and consequences. Exploring the potential of rainfall simulation experiments as an outreach tool should therefore be part of the soil science, geomorphology and hydrology community during the IYS 2015 and beyond.
Trace elements in soil and biota in confined disposal facilities for dredged material
Beyer, W.N.; Miller, G.; Simmers, J.W.
1990-01-01
We studied the relation of trace element concentrations in soil to those in house mice (Mus musculus), common reed (Phragmites australis) and ladybugs (Coccinella septempunctata) at five disposal facilities for dredged material. The sites had a wide range of soil trace element concentrations, acid soils and a depauperate fauna. They were very poor wildlife habitat because they were dominated by the common reed. Bioassay earthworms exposed to surface soils from three of the five sites died, whereas those exposed to four of five soils collected a meter deep survived, presumably because the deeper, unoxidized soil, was not as acid. Concentrations of Ni and Cr in the biota from each of the sites did not seem to be related to the concentrations of the same elements in soil. Although Pb, Zn and Cu concentrations in biota were correlated with those in soil, the range of concentrations in the biota was quite small compared to that in soil. The concentrations of Pb detected in mice were about as high as the concentrations previously reported in control mice from other studies. Mice from the most contaminated site (530 ppm Pb in soil) contained only slightly more Pb (8 ppm dry wt) than did mice (2-6 ppm dry wt) from sites containing much less Pb (22-92 ppm in soil). Despite the acid soil conditions, very little Cd was incorporated into food chains. Rather, Cd was leaching from the surface soil. We concluded that even the relatively high concentrations of trace elements in the acid dredged material studied did not cause high, concentrations of trace elements in the biota.
Resuspension of soil as a source of airborne lead near industrial facilities and highways.
Young, Thomas M; Heeraman, Deo A; Sirin, Gorkem; Ashbaugh, Lowell L
2002-06-01
Geologic materials are an important source of airborne particulate matter less than 10 microm aerodynamic diameter (PM10), but the contribution of contaminated soil to concentrations of Pb and other trace elements in air has not been documented. To examine the potential significance of this mechanism, surface soil samples with a range of bulk soil Pb concentrations were obtained near five industrial facilities and along roadsides and were resuspended in a specially designed laboratory chamber. The concentration of Pb and other trace elements was measured in the bulk soil, in soil size fractions, and in PM10 generated during resuspension of soils and fractions. Average yields of PM10 from dry soils ranged from 0.169 to 0.869 mg of PM10/g of soil. Yields declined approximately linearly with increasing geometric mean particle size of the bulk soil. The resulting PM10 had average Pb concentrations as high as 2283 mg/kg for samples from a secondary Pb smelter. Pb was enriched in PM10 by 5.36-88.7 times as compared with uncontaminated California soils. Total production of PM10 bound Pb from the soil samples varied between 0.012 and 1.2 mg of Pb/kg of bulk soil. During a relatively large erosion event, a contaminated site might contribute approximately 300 ng/m3 of PM10-bound Pb to air. Contribution of soil from contaminated sites to airborne element balances thus deserves consideration when constructing receptor models for source apportionment or attempting to control airborne Pb emissions.
40 CFR 279.45 - Used oil storage at transfer facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... containment system from migrating out of the system to the soil, groundwater, or surface water. (e) Secondary... into the containment system from migrating out of the system to the soil, groundwater, or surface water... system to the soil, groundwater, or surface water. (g) Labels. (1) Containers and aboveground tanks used...
40 CFR 279.45 - Used oil storage at transfer facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... containment system from migrating out of the system to the soil, groundwater, or surface water. (e) Secondary... into the containment system from migrating out of the system to the soil, groundwater, or surface water... system to the soil, groundwater, or surface water. (g) Labels. (1) Containers and aboveground tanks used...
40 CFR 279.45 - Used oil storage at transfer facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... containment system from migrating out of the system to the soil, groundwater, or surface water. (e) Secondary... into the containment system from migrating out of the system to the soil, groundwater, or surface water... system to the soil, groundwater, or surface water. (g) Labels. (1) Containers and aboveground tanks used...
40 CFR 279.45 - Used oil storage at transfer facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... containment system from migrating out of the system to the soil, groundwater, or surface water. (e) Secondary... into the containment system from migrating out of the system to the soil, groundwater, or surface water... system to the soil, groundwater, or surface water. (g) Labels. (1) Containers and aboveground tanks used...
40 CFR 279.45 - Used oil storage at transfer facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... containment system from migrating out of the system to the soil, groundwater, or surface water. (e) Secondary... into the containment system from migrating out of the system to the soil, groundwater, or surface water... system to the soil, groundwater, or surface water. (g) Labels. (1) Containers and aboveground tanks used...
40 CFR 264.251 - Design and operating requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... any migration of wastes out of the pile into the adjacent subsurface soil or ground water or surface... adjacent subsurface soil or ground water or surface water) during the active life of the facility. The... attenuative capacity and thickness of the liners and soils present between the pile and ground water or...
40 CFR 264.251 - Design and operating requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... any migration of wastes out of the pile into the adjacent subsurface soil or ground water or surface... adjacent subsurface soil or ground water or surface water) during the active life of the facility. The... attenuative capacity and thickness of the liners and soils present between the pile and ground water or...
40 CFR 264.251 - Design and operating requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... any migration of wastes out of the pile into the adjacent subsurface soil or ground water or surface... adjacent subsurface soil or ground water or surface water) during the active life of the facility. The... attenuative capacity and thickness of the liners and soils present between the pile and ground water or...
Glass fiber processing for the Moon/Mars program: Center director's discretionary fund final report
NASA Technical Reports Server (NTRS)
Tucker, D. S.; Ethridge, E.; Curreri, P.
1992-01-01
Glass fiber has been produced from two lunar soil simulants. These two materials simulate lunar mare soil and lunar highland soil compositions, respectively. Short fibers containing recrystallized areas were produced from the as-received simulants. Doping the highland simulant with 8 weight percent B2-O3 yielded a material which could be spun continuously. The effects of lunar gravity on glass fiber formation were studied utilizing NASA's KC-135 aircraft. Gravity was found to play a major role in final fiber diameter.
76 FR 20052 - Notice of Issuance of Regulatory Guide
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-11
... Guide 1.149, ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License..., ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License Examinations, and... simulation facility for use in operator and senior operator training, license examination operating tests...
75 FR 29785 - Draft Regulatory Guide: Issuance, Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-27
... Guide, DG-1248, ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License..., ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License Examinations, and... or acceptance of a nuclear power plant simulation facility for use in operator and senior operator...
NASA Astrophysics Data System (ADS)
Wu, Mousong; Sholze, Marko
2017-04-01
We investigated the importance of soil moisture data on assimilation of a terrestrial biosphere model (BETHY) for a long time period from 2010 to 2015. Totally, 101 parameters related to carbon turnover, soil respiration, as well as soil texture were selected for optimization within a carbon cycle data assimilation system (CCDAS). Soil moisture data from Soil Moisture and Ocean Salinity (SMOS) product was derived for 10 sites representing different plant function types (PFTs) as well as different climate zones. Uncertainty of SMOS soil moisture data was also estimated using triple collocation analysis (TCA) method by comparing with ASCAT dataset and BETHY forward simulation results. Assimilation of soil moisture to the system improved soil moisture as well as net primary productivity(NPP) and net ecosystem productivity (NEP) when compared with soil moisture derived from in-situ measurements and fluxnet datasets. Parameter uncertainties were largely reduced relatively to prior values. Using SMOS soil moisture data for assimilation of a terrestrial biosphere model proved to be an efficient approach in reducing uncertainty in ecosystem fluxes simulation. It could be further used in regional an global assimilation work to constrain carbon dioxide concentration simulation by combining with other sources of measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nitzsche, Olaf; Thierfeldt, Stefan; Hummel, Lothar
2013-07-01
This paper presents aspects of site decommissioning and clearance of a former fuel fabrication facility (development and production of fuel assemblies for research reactors and HTR) at Hanau (Germany). The main pathways for environmental contamination were deposition on soil surface and topsoil and pollution of deep soil and the aquifer by waste water channel leakage. Soil excavation could be done by classical excavator techniques. An effective removal of material from the saturated zone was possible by using advanced drilling techniques. A large amount of demolished building structure and excavated soil had to be classified. Therefore the use of conveyor detectormore » was necessary. Nearly 100000 Mg of material (excavated soil and demolished building material) were disposed of at an underground mine. A remaining volume of 700 m{sup 3} was classified as radioactive waste. Site clearance started in 2006. Groundwater remediation and monitoring is still ongoing, but has already provided excellent results by reducing the remaining Uranium considerably. (authors)« less
Pull-out testing facility for geosynthetics.
DOT National Transportation Integrated Search
1992-11-01
The considerable increase in using geosynthetics in soil reinforcement made it necessary to develop methods of measuring the interaction properties and modeling load transfer in reinforced-soil structures. The large number of factors that influence t...
2010-12-01
Soil Survey Geographic database USDA U.S. Department of Agriculture USLE Universal Soil Loss Equation USPED Unit-Stream-Power Erosion and...2003). A suite of models has been developed to simulate soil erosion and deposition, ranging from empirical (e.g., USLE and MUSLE at http... Soil Erosion and Deposition 4.4.1 USPED The algorithm for the simulation of soil erosion in USPED is similar to that of the USLE or RUSLE model
NASA Astrophysics Data System (ADS)
Cannon, K.; Britt, D. T.; Smith, T. M.; Fritsche, R. F.; Covey, S. D.; Batcheldor, D.; Watson, B.
2017-12-01
Powerful instruments, that include CheMin and SAM on the MSL Curiosity rover, have provided an unprecedented look into the mineral, chemical, and volatile composition of Martian soils. Interestingly, the bulk chemistry of the Rocknest windblown soil is a close match to similar measurements from the Spirit and Opportunity rovers, suggesting the presence of a global basaltic soil component. The Martian regolith is likely composed of this global soil mixed with locally to regionally derived components that include alteration products and evolved volcanic compositions. Without returned soil samples, researchers have relied on terrestrial simulants to address fundamental Mars science, habitability, in-situ resource utilization, and hardware for future exploration. However, these past simulants have low fidelity compared to actual Martian soils: JSC Mars-1a is an amorphous palagonitic material with spectral similarities to Martian dust, not soil, and Mojave Mars is simply a ground up terrestrial basalt chosen for its convenient location. Based on our experience creating asteroid regolith simulants, we are developing a high fidelity Martian soil simulant (Mars Global) designed ab initio to match the mineralogy, chemistry, and volatile contents of the global basaltic soil on Mars. The crystalline portion of the simulant is based on CheMin measurements of Rocknest and includes plagioclase, two pyroxenes, olivine, hematite, magnetite, anhydrite, and quartz. The amorphous portion is less well constrained, but we are re-creating it with basaltic glass, synthetic ferrihydrite, ferric sulfate, and carbonates. We also include perchlorate and nitrate salts based on evolved gas analyses from the SAM instrument. Analysis and testing of Mars Global will include physical properties (shear strength, density, internal friction angle), spectral properties, magnetic properties, and volatile release patterns. The simulant is initially being designed for NASA agricultural studies, but applications include studies of habitability, toxicity, and in-situ resource utilization, among others. Through a partnership with Deep Space Industries we intend to produce industrial quantities of Mars Global from consistently maintained feedstocks, making it available to researchers, engineers, and educators.
Tsangaratos, P; Kallioras, A; Pizpikis, Th; Vasileiou, E; Ilia, I; Pliakas, F
2017-12-15
Managed Aquifer Recharge is a wide-spread well-established groundwater engineering method which is largely seen as sound and sustainable solution to water scarcity hydrologically sensitive areas, such as the Circum Mediterranean. The process of site selection for the installation of a MAR facility is of paramount importance for the feasibility and effectiveness of the project itself, especially when the facility will include the use of waters of impaired quality as a recharge source, as in the case of Soil-Aquifer-Treatment systems. The main objective of this study is to present the developed framework of a multi-criteria Decision Support System (DSS) that integrates within a dynamic platform the main groundwater engineering parameters associated with MAR applications together with the general geographical features which determine the effectiveness of such a project. The proposed system will provide an advanced coupled DSS-GIS tool capable of handling local MAR-related issues -such as hydrogeology, topography, soil, climate etc., and spatially distributed variables -such as societal, economic, administrative, legislative etc., with special reference to Soil-Aquifer-Treatment technologies. Copyright © 2017 Elsevier B.V. All rights reserved.
Motion Imagery and Robotics Application (MIRA): Standards-Based Robotics
NASA Technical Reports Server (NTRS)
Martinez, Lindolfo; Rich, Thomas; Lucord, Steven; Diegelman, Thomas; Mireles, James; Gonzalez, Pete
2012-01-01
This technology development originated from the need to assess the debris threat resulting from soil material erosion induced by landing spacecraft rocket plume impingement on extraterrestrial planetary surfaces. The impact of soil debris was observed to be highly detrimental during NASA s Apollo lunar missions and will pose a threat for any future landings on the Moon, Mars, and other exploration targets. The innovation developed under this program provides a simulation tool that combines modeling of the diverse disciplines of rocket plume impingement gas dynamics, granular soil material liberation, and soil debris particle kinetics into one unified simulation system. The Unified Flow Solver (UFS) developed by CFDRC enabled the efficient, seamless simulation of mixed continuum and rarefied rocket plume flow utilizing a novel direct numerical simulation technique of the Boltzmann gas dynamics equation. The characteristics of the soil granular material response and modeling of the erosion and liberation processes were enabled through novel first principle-based granular mechanics models developed by the University of Florida specifically for the highly irregularly shaped and cohesive lunar regolith material. These tools were integrated into a unique simulation system that accounts for all relevant physics aspects: (1) Modeling of spacecraft rocket plume impingement flow under lunar vacuum environment resulting in a mixed continuum and rarefied flow; (2) Modeling of lunar soil characteristics to capture soil-specific effects of particle size and shape composition, soil layer cohesion and granular flow physics; and (3) Accurate tracking of soil-borne debris particles beginning with aerodynamically driven motion inside the plume to purely ballistic motion in lunar far field conditions.
Soil Erosion Study through Simulation: An Educational Tool.
ERIC Educational Resources Information Center
Huber, Thomas P.; Falkenmayer, Karen
1987-01-01
Discusses the need for education about soil erosion and advocates the use of the Universal Soil Loss Equation (USLE) to show the impacts of human and natural action on the land. Describes the use of a computer simulated version of the USLE in several environmental and farming situations. (TW)
Simulating maize yield and biomass with spatial variability of soil field capacity
USDA-ARS?s Scientific Manuscript database
Spatial variability in field soil water and other properties is a challenge for system modelers who use only representative values for model inputs, rather than their distributions. In this study, we compared simulation results from a calibrated model with spatial variability of soil field capacity ...
USDA-ARS?s Scientific Manuscript database
Computer Monte-Carlo (MC) simulations (Geant4) of neutron propagation and acquisition of gamma response from soil samples was applied to evaluate INS system performance characteristic [sensitivity, minimal detectable level (MDL)] for soil carbon measurement. The INS system model with best performanc...
Godde, Cécile M; Thorburn, Peter J; Biggs, Jody S; Meier, Elizabeth A
2016-01-01
Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical, and chemical properties. The review of literature pertaining to soil organic carbon (SOC) dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate, and farming practices on SOC. We undertook a modeling study with the Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates, and farming practices (crop rotations, and management within rotations, such as fertilization, tillage, and residue management) in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil-climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model's outputs to determinate the relative contributions of soil parameters, climate, and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66, 18, and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat-chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (QLD, Australia) on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O) emissions and nitrate leaching in farming systems. The transposition of contrasting soils and climates in our simulations revealed the importance of the climate constraints on SOC.
A laboratory rainfall simulator to study the soil erosion and runoff water
NASA Astrophysics Data System (ADS)
Cancelo González, Javier; Rial, M. E.; Díaz-Fierros, Francisco
2010-05-01
The soil erosion and the runoff water composition in some areas affected by forest fires or submitted to intensive agriculture are an important factor to keep an account, particularly in sensitive areas like estuary and rias that have a high importance in the socioeconomic development of some regions. An understanding of runoff production indicates the processes by which pollutants reach streams and also indicates the management techniques that might be uses to minimize the discharge of these materials into surface waters. One of the most methodology implemented in the soil erosion studies is a rainfall simulation. This method can reproduce the natural soil degradation processes in field or laboratory experiences. With the aim of improve the rainfall-runoff generation, a laboratory rainfall simulator which incorporates a fan-like intermittent water jet system for rainfall generation were modified. The major change made to the rainfall simulator consist in a system to coupling stainless steel boxes, whose dimensions are 12 x 20 x 45 centimeters, and it allows to place soil samples under the rainfall simulator. Previously these boxes were used to take soil samples in field with more of 20 centimeters of depth, causing the minimum disturbance in their properties and structure. These new implementations in the rainfall simulator also allow collect water samples of runoff in two ways: firstly, the rain water that constituted the overland flow or direct runoff and besides the rain water seeps into the soil by the process of infiltration and contributed to the subsurface runoff. Among main the variables controlled in the rainfall simulations were the soil slope and the intensity and duration of rainfall. With the aim of test the prototype, six soil samples were collected in the same sampling point and subjected to rainfall simulations in laboratory with the same intensity and duration. Two samples will constitute the control test, and they were fully undisturbed, and four samples were subjected to controlled burnings with different fire severity: two samples burnt to 250°C and the other two samples burnt to 450°C. Preliminary laboratory data of soil erosion and surface and subsurface runoff were obtained. The water parameters analysed were: pH, electrical conductivity, temperature (in the moment of sampling) and suspended sediments, ammonium, nitrates, total nitrogen (Kjeldahl method), within 24 hours after sampling.
Development of Inspection and Investigation Techniques to Prepare Debris Flow in Urban Areas
NASA Astrophysics Data System (ADS)
Seong, Joo-Hyun; Jung, Min-Hyeong; Park, Kyung-Han; An, Jai-Wook; Kim, Jiseong
2017-04-01
Due to the urban development, various facilities are located in mountainous areas near the city, and the damage to the occurrence of the debris flow is increasing in the urban area. However, quantitative inspection and investigation techniques are not sufficient for preparing debris flow in the urban area around the world. Therefore, in this study, we developed the debris flow inspection and investigation techniques, which are suitable for urban characteristics, regarding the soil hazard prevention and restoration in urban area. First, the inspection and investigation system is divided into the daily occurrence and the occurrence of the soil hazard event, and the inspection / investigation flow chart were developed based on the kind of inspection and correspondence required for each situation. The types of inspections applied in this study were determined as daily inspection, regular inspections, special emergency inspection, damage emergency inspection and In-depth safety inspection. The management agency, term of inspection, objects to be inspected, and contents of inspection work were presented according to type of each inspection. The daily inspection routinely checks for signs of collapse and conditions of facilities in urban areas which show vulnerability for soil hazard and that are conducted from the management agency. In the case of regular inspection, an expert for soil hazards regularly conducts detailed visual surveys on mountainous areas, steep slopes, prevention facilities and adjacent facilities in vulnerable areas. On the other hand, it was decided that the emergency inspection is carried out in the event of the occurrence of vulnerable element or soil hazards. Acknowledgement This study was conducted with the research iund support by the constructiontechnology research project of the Ministry of Land, Infrastructure and Transport (project number 16SCIP-B069989-04)
Economic Impact of Water Allocation on Agriculture in the Lower Chattahoochee River Basin
NASA Technical Reports Server (NTRS)
Limaye, Ashutosh S.; Paudel, Krishna P.; Musleh, Fuad; Cruise, James F.; Hatch, L. Upton
2004-01-01
The relative value of irrigation water was assessed for three important crops (corn, cotton, and peanuts) grown in the southeastern United States. A decision tool was developed with the objective of allocating limited available water among competing crops in a manner that would maximize the economic returns to the producers. The methodology was developed and tested for a hypothetical farm located in Henry County, Alabama in the Chattahoochee river basin. Crop yield - soil moisture response functions were developed using Monte Carlo simulated data for cotton, corn, and peanuts. A hydrologic model was employed to simulate runoff over the period of observed rainfall the county to provide inflows to storage facilities that could be used as constraints for the optimal allocation of the available water in the face of the uncertainty of future rainfall and runoff. Irrigation decisions were made on a weekly basis during the critical water deficit period in the region. An economic optimization model was employed with the crop responses, and soil moisture functions to determine the optimum amount of water place on each crop subject to the amount of irrigation water availability and climatic uncertainty. The results indicated even small amounts of irrigation could significantly benefit farmers in the region if applied judiciously. A weekly irrigation sequence was developed that maintained the available water on the crops that exhibited the most significant combination of water sensitivity and cash value.
Improved simulation of poorly drained forests using Biome-BGC.
Bond-Lamberty, Ben; Gower, Stith T; Ahl, Douglas E
2007-05-01
Forested wetlands and peatlands are important in boreal and terrestrial biogeochemical cycling, but most general-purpose forest process models are designed and parameterized for upland systems. We describe changes made to Biome-BGC, an ecophysiological process model, that improve its ability to simulate poorly drained forests. Model changes allowed for: (1) lateral water inflow from a surrounding watershed, and variable surface and subsurface drainage; (2) adverse effects of anoxic soil on decomposition and nutrient mineralization; (3) closure of leaf stomata in flooded soils; and (4) growth of nonvascular plants (i.e., bryophytes). Bryophytes were treated as ectohydric broadleaf evergreen plants with zero stomatal conductance, whose cuticular conductance to CO(2) was dependent on plant water content. Individual model changes were parameterized with published data, and ecosystem-level model performance was assessed by comparing simulated output to field data from the northern BOREAS site in Manitoba, Canada. The simulation of the poorly drained forest model exhibited reduced decomposition and vascular plant growth (-90%) compared with that of the well-drained forest model; the integrated bryophyte photosynthetic response accorded well with published data. Simulated net primary production, biomass and soil carbon accumulation broadly agreed with field measurements, although simulated net primary production was higher than observed data in well-drained stands. Simulated net primary production in the poorly drained forest was most sensitive to oxygen restriction on soil processes, and secondarily to stomatal closure in flooded conditions. The modified Biome-BGC remains unable to simulate true wetlands that are subject to prolonged flooding, because it does not track organic soil formation, water table changes, soil redox potential or anaerobic processes.
NASA Astrophysics Data System (ADS)
Bonfante, Antonello; Alfieri, Silvia Maria; Agrillo, Antonietta; Dragonetti, Giovanna; Mileti, Antonio; Monaco, Eugenia; De Lorenzi, Francesca
2013-04-01
In the last years many research works have been addressed to evaluate the impact of future climate on crop productivity and plant water use at different spatial scales (global, regional, field) by means of simulation models of agricultural crop systems. Most of these approaches use estimated soil hydraulic properties, through pedotransfer functions (PTF). This choice is related to soil data availability: soil data bases lack measured soil hydraulic properties, but generally they contain information that allow the application of PTF . Although the reliability of the predicted future climate scenarios cannot be immediately validated, we address to evaluate the effects of a simplification of the soil system by using PTF. Thus we compare simulations performed with measured soil hydraulic properties versus simulations carried out with estimated properties. The water regimes resulting from the two procedures are evaluated with respect to crop adaptability to future climate. In particular we will examine if the two procedures bring about different seasonal and spatial variations in the soil water regime patterns, and if these patterns influence adaptation options. The present case study uses the agro-hydrological model SWAP (soil-water-atmosphere and plant) and studies future adaptability of grapevine. The study area is a viticultural area of Southern Italy (Valle Telesina, BN) devoted to the production of high quality wines (DOC and DOCG), and characterized by a complex geomorphology and pedology. The future climate scenario (2021-2050) was constructed applying statistical downscaling techniques to GCMs scenarios. The moisture regime for 25 soils of the selected study area was calculated by means of SWAP model, using both measured and estimated soil hydraulic properties. In the simulation, the upper boundary conditions were derived from the regional climate scenarios. Unit gradient in soil water potential was set as lower boundary condition. Crop-specific input data and model parameters were estimated on the basis of scientific literature and assumed to be generically representative of the species. From the output of the simulation runs, the relative evapotranspiration deficit (or Crop Water Stress Index - CWSI) of the soil units was calculated. Since CWSI is considered an important indicator of the qualitative grapevine responses, its pattern in both simulation procedures has been evaluated. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xiaofeng; Schimel, Joshua; Thornton, Peter E
2014-01-01
Microbial assimilation of soil organic carbon is one of the fundamental processes of global carbon cycling and it determines the magnitude of microbial biomass in soils. Mechanistic understanding of microbial assimilation of soil organic carbon and its controls is important for to improve Earth system models ability to simulate carbon-climate feedbacks. Although microbial assimilation of soil organic carbon is broadly considered to be an important parameter, it really comprises two separate physiological processes: one-time assimilation efficiency and time-dependent microbial maintenance energy. Representing of these two mechanisms is crucial to more accurately simulate carbon cycling in soils. In this study, amore » simple modeling framework was developed to evaluate the substrate and environmental controls on microbial assimilation of soil organic carbon using a new term: microbial annual active period (the length of microbes remaining active in one year). Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality (lower C:N ratio) leads to higher ratio of microbial carbon to soil organic carbon and vice versa. Increases in microbial annual active period from zero stimulate microbial assimilation of soil organic carbon; however, when microbial annual active period is longer than an optimal threshold, increasing this period decreases microbial biomass. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global dataset at the biome-level. The modeling framework of microbial assimilation of soil organic carbon and its controls developed in this study offers an applicable ways to incorporate microbial contributions to the carbon cycling into Earth system models for simulating carbon-climate feedbacks and to explain global patterns of microbial biomass.« less
Evaluating the spatial distribution of water balance in a small watershed, Pennsylvania
NASA Astrophysics Data System (ADS)
Yu, Zhongbo; Gburek, W. J.; Schwartz, F. W.
2000-04-01
A conceptual water-balance model was modified from a point application to be distributed for evaluating the spatial distribution of watershed water balance based on daily precipitation, temperature and other hydrological parameters. The model was calibrated by comparing simulated daily variation in soil moisture with field observed data and results of another model that simulates the vertical soil moisture flow by numerically solving Richards' equation. The impacts of soil and land use on the hydrological components of the water balance, such as evapotranspiration, soil moisture deficit, runoff and subsurface drainage, were evaluated with the calibrated model in this study. Given the same meteorological conditions and land use, the soil moisture deficit, evapotranspiration and surface runoff increase, and subsurface drainage decreases, as the available water capacity of soil increases. Among various land uses, alfalfa produced high soil moisture deficit and evapotranspiration and lower surface runoff and subsurface drainage, whereas soybeans produced an opposite trend. The simulated distribution of various hydrological components shows the combined effect of soil and land use. Simulated hydrological components compare well with observed data. The study demonstrated that the distributed water balance approach is efficient and has advantages over the use of single average value of hydrological variables and the application at a single point in the traditional practice.
The WEPP Model Application in a Small Watershed in the Loess Plateau
Han, Fengpeng; Ren, Lulu; Zhang, Xingchang; Li, Zhanbin
2016-01-01
In the Loess Plateau, soil erosion has not only caused serious ecological and environmental problems but has also impacted downstream areas. Therefore, a model is needed to guide the comprehensive control of soil erosion. In this study, we introduced the WEPP model to simulate soil erosion both at the slope and watershed scales. Our analyses showed that: the simulated values at the slope scale were very close to the measured. However, both the runoff and soil erosion simulated values at the watershed scale were higher than the measured. At the slope scale, under different coverage, the simulated erosion was slightly higher than the measured. When the coverage is 40%, the simulated results of both runoff and erosion are the best. At the watershed scale, the actual annual runoff of the Liudaogou watershed is 83m3; sediment content is 0.097 t/m3, annual erosion sediment 8.057t and erosion intensity 0.288 t ha-1 yr-1. Both the simulated values of soil erosion and runoff are higher than the measured, especially the runoff. But the simulated erosion trend is relatively accurate after the farmland is returned to grassland. We concluded that the WEPP model can be used to establish a reasonable vegetation restoration model and guide the vegetation restoration of the Loess Plateau. PMID:26963704
Dugan, Jack T.; Zelt, Ronald B.
2000-01-01
Ground-water recharge and consumptive-irrigation requirements in the Great Plains and adjacent areas largely depend upon an environment extrinsic to the ground-water system. This extrinsic environment, which includes climate, soils, and vegetation, determines the water demands of evapotranspiration, the availability of soil water to meet these demands, and the quantity of soil water remaining for potential ground-water recharge after these demands are met. The geographic extent of the Great Plains contributes to large regional differences among all elements composing the extrinsic environment, particularly the climatic factors. A soil-water simulation program, SWASP, which synthesizes selected climatic, soil, and vegetation factors, was used to simulate the regional soil-water conditions during 1951-80. The output from SWASP consists of several soil-water characteristics, including surface runoff, infiltration, consumptive water requirements, actual evapotranspiration, potential recharge or deep percolation under various conditions, consumptive irrigation requirements, and net fluxes from the ground-water system under irrigated conditions. Simulation results indicate that regional patterns of potential recharge, consumptive irrigation requirements, and net fluxes from the ground-water system under irrigated conditions are largely determined by evapotranspiration and precipitation. The local effects of soils and vegetation on potential recharge cause potential recharge to vary by more than 50 percent in some areas having similar climatic conditions.
Soil Biogeochemistry in the Ent DGVM
NASA Astrophysics Data System (ADS)
Kharecha, P. A.; Kiang, N. Y.; Aleinov, I.; Moorcroft, P.; Koster, R.
2007-12-01
As the global climate continues to warm in the 21st century, it will be vital to assess the degree of carbon cycle feedbacks from the terrestrial biosphere, particularly the soil. Global soil carbon stocks, which amount to approximately double the carbon stored in vegetation, could provide either positive or negative climate feedbacks, depending on a given ecosystem's response to warming. To predict changes in net terrestrial CO2 fluxes and belowground organic carbon storage, we have developed and evaluated a soil biogeochemistry submodel for the Ent dynamic global vegetation model currently being tested within the GISS GCM. It is a modified version of the soil submodel in the CASA biosphere model (Potter et al., Glob. Biogeoch. Cyc. 7, 1993). We have enhanced it to allow for explicit depth structure (2 soil layers, 0-30 cm and 30-100 cm), first-order inter-layer (vertical) soil organic carbon transport, and a variable-Q10 temperature dependence for soil microbial respiration. We have tested the soil model in numerous offline runs. To spin up the simulated carbon pools offline, we conducted multi-century runs using meteorological and ecological data from various FLUXNET field sites that represent 7 of the 8 GISS GCM plant functional types: tundra, grassland, shrubland, savanna, deciduous forest, evergreen needleleaf forest, and tropical rainforest (the eighth, cropland, will be dealt with in a separate study). We then compare the magnitudes of the simulated spun-up soil pools to soil carbon stock data from these field sites as well as the biome-aggregated data from Post et al. (Nature 317, 1985). Net ecosystem CO2 fluxes and soil respiration are also compared to site-specific measurements where available. Preliminary results suggest that simulated fluxes are reasonably close to measured values, but simulated carbon storage tends to be lower than the measurements. In addition to site-specific comparisons, we discuss the broader implications of our results, e.g., the effects of including explicit depth structure and inter-layer soil carbon transport on simulated soil respiration, carbon storage, and estimation of the global carbon budget.
40 CFR 270.20 - Specific part B information requirements for land treatment facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... control soil pH; (iii) Enhancement of microbial or chemical reactions; (iv) Control of moisture content..., physical, and chemical characteristics of the wastes, including their potential to migrate through soil or...
IN SITU BIOREMEDIATION STRATEGIES FOR ORGANIC WOOD PRESERVATIVES
Laboratory biotreatability studies evaluated the use of bioventing and biosparging plus groundwater circulation (UVB technology) for their potential abililty to treat soil and groundwater containing creosote and pentachlorophenol. Soils from two former wood-treatment facilities w...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallegos, Gretchen M.; Terusaki, Stan H.
2013-12-01
An ecological risk assessment is required as part of the Resource Recovery and Conservation Act (RCRA) permit renewal process for Miscellaneous Units subject to 22 CCR 66270.23. This risk assessment is prepared in support of the RCRA permit renewal for the Explosives Waste Treatment Facility (EWTF) at Site 300 of the Lawrence Livermore National Laboratory (LLNL). LLNL collected soil samples and used the resulting data to produce a scoping-level ecological risk assessment pursuant to the Department of Toxic Substances Control, Guidance for Ecological Risk Assessment at Hazardous Waste Sites and Permitted Facilities, Part A: Overview, July 4, 1996. The scoping-levelmore » ecological risk assessment provides a framework to determine the potential interaction between ecological receptors and chemicals of concern from hazardous waste treatment operations in the area of EWTF. A scoping-level ecological risk assessment includes the step of conducting soil sampling in the area of the treatment units. The Sampling Plan in Support of the Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory, (Terusaki, 2007), outlines the EWTF project-specific soil sampling requirements. Soil samples were obtained and analyzed for constituents from four chemical groups: furans, explosives, semi-volatiles and metals. Analytical results showed that furans, explosives and semi-volatiles were not detected; therefore, no further analysis was conducted. The soil samples did show the presence of metals. Soil samples analyzed for metals were compared to site-wide background levels, which had been developed for site -wide cleanup activities pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Total metal concentrations from 28 discrete soil samples obtained in the EWTF area were all below CERCLA-developed background levels. Therefore, following DTSC 1996 guidance, the EWTF hazardous waste treatment units exit the ecological risk evaluation process upon completion of the requirements of a scoping-level assessment report. This summary report documents that the requirements of a scoping-level assessment have been met.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... and some soils are contaminated by such hazardous wastes. These treatment standards are also found in § 268.40, and are described in detail in § 268.42, Table 1. These wastes, and soils contaminated with... waste or soil contaminated with a waste, that displays a hazardous characteristic of ignitability...
Code of Federal Regulations, 2010 CFR
2010-07-01
... and some soils are contaminated by such hazardous wastes. These treatment standards are also found in § 268.40, and are described in detail in § 268.42, Table 1. These wastes, and soils contaminated with... waste or soil contaminated with a waste, that displays a hazardous characteristic of ignitability...
Code of Federal Regulations, 2011 CFR
2011-07-01
... and some soils are contaminated by such hazardous wastes. These treatment standards are also found in § 268.40, and are described in detail in § 268.42, Table 1. These wastes, and soils contaminated with... waste or soil contaminated with a waste, that displays a hazardous characteristic of ignitability...
Code of Federal Regulations, 2014 CFR
2014-07-01
... and some soils are contaminated by such hazardous wastes. These treatment standards are also found in § 268.40, and are described in detail in § 268.42, Table 1. These wastes, and soils contaminated with... waste or soil contaminated with a waste, that displays a hazardous characteristic of ignitability...
Code of Federal Regulations, 2012 CFR
2012-07-01
... and some soils are contaminated by such hazardous wastes. These treatment standards are also found in § 268.40, and are described in detail in § 268.42, Table 1. These wastes, and soils contaminated with... waste or soil contaminated with a waste, that displays a hazardous characteristic of ignitability...
Determining erosion relevant soil characteristics with a small-scale rainfall simulator
NASA Astrophysics Data System (ADS)
Schindewolf, M.; Schmidt, J.
2009-04-01
The use of soil erosion models is of great importance in soil and water conservation. Routine application of these models on the regional scale is not at least limited by the high parameter demands. Although the EROSION 3D simulation model is operating with a comparable low number of parameters, some of the model input variables could only be determined by rainfall simulation experiments. The existing data base of EROSION 3D was created in the mid 90s based on large-scale rainfall simulation experiments on 22x2m sized experimental plots. Up to now this data base does not cover all soil and field conditions adequately. Therefore a new campaign of experiments would be essential to produce additional information especially with respect to the effects of new soil management practices (e.g. long time conservation tillage, non tillage). The rainfall simulator used in the actual campaign consists of 30 identic modules, which are equipped with oscillating rainfall nozzles. Veejet 80/100 (Spraying Systems Co., Wheaton, IL) are used in order to ensure best possible comparability to natural rainfalls with respect to raindrop size distribution and momentum transfer. Central objectives of the small-scale rainfall simulator are - effectively application - provision of comparable results to large-scale rainfall simulation experiments. A crucial problem in using the small scale simulator is the restriction on rather small volume rates of surface runoff. Under this conditions soil detachment is governed by raindrop impact. Thus impact of surface runoff on particle detachment cannot be reproduced adequately by a small-scale rainfall simulator With this problem in mind this paper presents an enhanced small-scale simulator which allows a virtual multiplication of the plot length by feeding additional sediment loaded water to the plot from upstream. Thus is possible to overcome the plot length limited to 3m while reproducing nearly similar flow conditions as in rainfall experiments on standard plots. The simulator is extensively applied to plots of different soil types, crop types and management systems. The comparison with existing data sets obtained by large-scale rainfall simulations show that results can adequately be reproduced by the applied combination of small-scale rainfall simulator and sediment loaded water influx.
Applications and requirements for real-time simulators in ground-test facilities
NASA Technical Reports Server (NTRS)
Arpasi, Dale J.; Blech, Richard A.
1986-01-01
This report relates simulator functions and capabilities to the operation of ground test facilities, in general. The potential benefits of having a simulator are described to aid in the selection of desired applications for a specific facility. Configuration options for integrating a simulator into the facility control system are discussed, and a logical approach to configuration selection based on desired applications is presented. The functional and data path requirements to support selected applications and configurations are defined. Finally, practical considerations for implementation (i.e., available hardware and costs) are discussed.
A multi-scale ''soil water structure'' model based on the pedostructure concept
NASA Astrophysics Data System (ADS)
Braudeau, E.; Mohtar, R. H.; El Ghezal, N.; Crayol, M.; Salahat, M.; Martin, P.
2009-02-01
Current soil water models do not take into account the internal organization of the soil medium and, a fortiori, the physical interaction between the water film surrounding the solid particles of the soil structure, and the surface charges of this structure. In that sense they empirically deal with the physical soil properties that are all generated from this soil water-structure interaction. As a result, the thermodynamic state of the soil water medium, which constitutes the local physical conditions, namely the pedo-climate, for biological and geo-chemical processes in soil, is not defined in these models. The omission of soil structure from soil characterization and modeling does not allow for coupling disciplinary models for these processes with soil water models. This article presents a soil water structure model, Kamel®, which was developed based on a new paradigm in soil physics where the hierarchical soil structure is taken into account allowing for defining its thermodynamic properties. After a review of soil physics principles which forms the basis of the paradigm, we describe the basic relationships and functionality of the model. Kamel® runs with a set of 15 soil input parameters, the pedohydral parameters, which are parameters of the physically-based equations of four soil characteristic curves that can be measured in the laboratory. For cases where some of these parameters are not available, we show how to estimate these parameters from commonly available soil information using published pedotransfer functions. A published field experimental study on the dynamics of the soil moisture profile following a pounded infiltration rainfall event was used as an example to demonstrate soil characterization and Kamel® simulations. The simulated soil moisture profile for a period of 60 days showed very good agreement with experimental field data. Simulations using input data calculated from soil texture and pedotransfer functions were also generated and compared to simulations of the more ideal characterization. The later comparison illustrates how Kamel® can be used and adapt to any case of soil data availability. As physically based model on soil structure, it may be used as a standard reference to evaluate other soil-water models and also pedotransfer functions at a given location or agronomical situation.
NASA Astrophysics Data System (ADS)
van Walsum, P. E. V.
2011-11-01
Climate change impact modelling of hydrologic responses is hampered by climate-dependent model parameterizations. Reducing this dependency was one of the goals of extending the regional hydrologic modelling system SIMGRO with a two-way coupling to the crop growth simulation model WOFOST. The coupling includes feedbacks to the hydrologic model in terms of the root zone depth, soil cover, leaf area index, interception storage capacity, crop height and crop factor. For investigating whether such feedbacks lead to significantly different simulation results, two versions of the model coupling were set up for a test region: one with exogenous vegetation parameters, the "static" model, and one with endogenous simulation of the crop growth, the "dynamic" model WOFOST. The used parameterization methods of the static/dynamic vegetation models ensure that for the current climate the simulated long-term average of the actual evapotranspiration is the same for both models. Simulations were made for two climate scenarios. Owing to the higher temperatures in combination with a higher CO2-concentration of the atmosphere, a forward time shift of the crop development is simulated in the dynamic model; the used arable land crop, potatoes, also shows a shortening of the growing season. For this crop, a significant reduction of the potential transpiration is simulated compared to the static model, in the example by 15% in a warm, dry year. In consequence, the simulated crop water stress (the unit minus the relative transpiration) is lower when the dynamic model is used; also the simulated increase of crop water stress due to climate change is lower; in the example, the simulated increase is 15 percentage points less (of 55) than when a static model is used. The static/dynamic models also simulate different absolute values of the transpiration. The difference is most pronounced for potatoes at locations with ample moisture supply; this supply can either come from storage release of a good soil or from capillary rise. With good supply of moisture, the dynamic model simulates up to 10% less actual evapotranspiration than the static one in the example. This can lead to cases where the dynamic model predicts a slight increase of the recharge in a climate scenario, where the static model predicts a decrease. The use of a dynamic model also affects the simulated demand for surface water from external sources; especially the timing is affected. The proposed modelling approach uses postulated relationships that require validation with controlled field trials. In the Netherlands there is a lack of experimental facilities for performing such validations.
Runoff of small rocky headwater catchments: Field observations and hydrological modeling
NASA Astrophysics Data System (ADS)
Gregoretti, C.; Degetto, M.; Bernard, M.; Crucil, G.; Pimazzoni, A.; De Vido, G.; Berti, M.; Simoni, A.; Lanzoni, S.
2016-10-01
In dolomitic headwater catchments, intense rainstorms of short duration produce runoff discharges that often trigger debris flows on the scree slopes at the base of rock cliffs. In order to measure these discharges, we placed a measuring facility at the outlet (elevation 1770 m a.s.l.) of a small, rocky headwater catchment (area ˜0.032 km2, average slope ˜320%) located in the Venetian Dolomites (North Eastern Italian Alps). The facility consists of an approximately rectangular basin, ending with a sharp-crested weir. Six runoff events were recorded in the period 2011-2014, providing a unique opportunity for characterizing the hydrological response of the catchment. The measured hydrographs display impulsive shapes, with an abrupt raise up to the peak, followed by a rapidly decreasing tail, until a nearly constant plateau is eventually reached. This behavior can be simulated by means of a distributed hydrological model if the excess rainfall is determined accurately. We show that using the Soil Conservation Service Curve-Number (SCS-CN) method and assuming a constant routing velocity invariably results in an underestimated peak flow and a delayed peak time. A satisfactory prediction of the impulsive hydrograph shape, including peak value and timing, is obtained only by combining the SCS-CN procedure with a simplified version of the Horton equation, and simulating runoff routing along the channel network through a matched diffusivity kinematic wave model. The robustness of the proposed methodology is tested through a comparison between simulated and observed timings of runoff or debris flow occurrence in two neighboring alpine basins.
A 2D simulation model for urban flood management
NASA Astrophysics Data System (ADS)
Price, Roland; van der Wielen, Jonathan; Velickov, Slavco; Galvao, Diogo
2014-05-01
The European Floods Directive, which came into force on 26 November 2007, requires member states to assess all their water courses and coast lines for risk of flooding, to map flood extents and assets and humans at risk, and to take adequate and coordinated measures to reduce the flood risk in consultation with the public. Flood Risk Management Plans are to be in place by 2015. There are a number of reasons for the promotion of this Directive, not least because there has been much urban and other infrastructural development in flood plains, which puts many at risk of flooding along with vital societal assets. In addition there is growing awareness that the changing climate appears to be inducing more frequent extremes of rainfall with a consequent increases in the frequency of flooding. Thirdly, the growing urban populations in Europe, and especially in the developing countries, means that more people are being put at risk from a greater frequency of urban flooding in particular. There are urgent needs therefore to assess flood risk accurately and consistently, to reduce this risk where it is important to do so or where the benefit is greater than the damage cost, to improve flood forecasting and warning, to provide where necessary (and possible) flood insurance cover, and to involve all stakeholders in decision making affecting flood protection and flood risk management plans. Key data for assessing risk are water levels achieved or forecasted during a flood. Such levels should of course be monitored, but they also need to be predicted, whether for design or simulation. A 2D simulation model (PriceXD) solving the shallow water wave equations is presented specifically for determining flood risk, assessing flood defense schemes and generating flood forecasts and warnings. The simulation model is required to have a number of important properties: -Solve the full shallow water wave equations using a range of possible solutions; -Automatically adjust the time step and keep it as large as possible while maintaining the stability of the flow calculations; -Operate on a square grid at any resolution while retaining at least some details of the ground topography of the basic grid, the storage, and the form roughness and conveyance of the ground surface; -Account for the overall average ground slope for particular coarse cells; -Have the facility to refine the grid locally; -Have the facility to treat ponds or lakes as single, irregular cells; -Permit prescribed inflows and arbitrary outflows across the boundaries of the model domain or internally, and sources and sinks at any interior cell; -Simulate runoff for spatial rainfall while permitting infiltration; -Use ground surface cover and soil type indices to determine surface roughness, interception and infiltration parameters; -Present results at the basic cell level; -Have the facility to begin a model run with monitored soil moisture data; -Have the facility to hot-start a simulation using dumped data from a previous simulation; -Operate with a graphics cards for parallel processing; -Have the facility to link directly to the urban drainage simulation software such as SWMM through an Open Modelling Interface; -Be linked to the Netherlands national rainfall database for continuous simulation of rainfall-runoff for particular polders and urban areas; -Make the engine available as Open Source together with benchmark datasets; PriceXD forms a key modelling component of an integrated urban water management system consisting of an on-line database and a number of complementary modelling systems for urban hydrology, groundwater, potable water distribution, wastewater and stormwater drainage (separate and combined sewerage), wastewater treatment, and surface channel networks. This will be a 'plug and play' system. By linking the models together, confidence in the accuracy of the above-ground damage and construction costs is comparable to the below-ground costs. What is more, PriceXD can be used to examine additional physical phenomenon such as the interaction between flood flows and flows to and from inlets distributed along the pipes of the underground network, and to optimize the removal of blockages and improve asset management. Finally, PriceXD is already an integral component on a number of operational projects and platforms, including the MyWater distributed platform and the HydroNET web portal, where it is already applied to realistic case studies on the Netherlands (namely the Rijnland area), facilitating the access to both the model execution and results, by abstracting most of the complexity out of the model setup and configuration.
Study of the water transportation characteristics of marsh saline soil in the Yellow River Delta.
He, Fuhong; Pan, Yinghua; Tan, Lili; Zhang, Zhenhua; Li, Peng; Liu, Jia; Ji, Shuxin; Qin, Zhaohua; Shao, Hongbo; Song, Xueyan
2017-01-01
One-dimensional soil column water infiltration and capillary adsorption water tests were conducted in the laboratory to study the water transportation characteristics of marsh saline soil in the Yellow River Delta, providing a theoretical basis for the improvement, utilization and conservation of marsh saline soil. The results indicated the following: (1) For soils with different vegetation covers, the cumulative infiltration capacity increased with the depth of the soil layers. The initial infiltration rate of soils covered by Suaeda and Tamarix chinensis increased with depth of the soil layers, but that of bare soil decreased with soil depth. (2) The initial rate of capillary rise of soils with different vegetation covers showed an increasing trend from the surface toward the deeper layers, but this pattern with respect to soil depth was relatively weak. (3) The initial rates of capillary rise were lower than the initial infiltration rates, but infiltration rate decreased more rapidly than capillary water adsorption rate. (4) The two-parameter Kostiakov model can very well-simulate the changes in the infiltration and capillary rise rates of wetland saline soil. The model simulated the capillary rise rate better than it simulated the infiltration rate. (5) There were strong linear relationships between accumulative infiltration capacity, wetting front, accumulative capillary adsorbed water volume and capillary height. Copyright © 2016 Elsevier B.V. All rights reserved.
Ma, Xingyu; Zhao, Cancan; Gao, Ying; Liu, Bin; Wang, Tengxu; Yuan, Tong; Hale, Lauren; Nostrand, Joy D Van; Wan, Shiqiang; Zhou, Jizhong; Yang, Yunfeng
2017-08-01
Aeolian soil erosion and deposition have worldwide impacts on agriculture, air quality and public health. However, ecosystem responses to soil erosion and deposition remain largely unclear in regard to microorganisms, which are the crucial drivers of biogeochemical cycles. Using integrated metagenomics technologies, we analysed microbial communities subjected to simulated soil erosion and deposition in a semiarid grassland of Inner Mongolia, China. As expected, soil total organic carbon and plant coverage were decreased by soil erosion, and soil dissolved organic carbon (DOC) was increased by soil deposition, demonstrating that field simulation was reliable. Soil microbial communities were altered (p < .039) by both soil erosion and deposition, with dramatic increase in Cyanobacteria related to increased stability in soil aggregates. amyA genes encoding α-amylases were specifically increased (p = .01) by soil deposition and positively correlated (p = .02) to DOC, which likely explained changes in DOC. Surprisingly, most of microbial functional genes associated with carbon, nitrogen, phosphorus and potassium cycling were decreased or unaltered by both erosion and deposition, probably arising from acceleration of organic matter mineralization. These divergent responses support the necessity to include microbial components in evaluating ecological consequences. Furthermore, Mantel tests showed strong, significant correlations between soil nutrients and functional structure but not taxonomic structure, demonstrating close relevance of microbial function traits to nutrient cycling. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Khodayar, S.; Sehlinger, A.; Feldmann, H.; Kottmeier, C.
2015-12-01
The impact of soil initialization is investigated through perturbation simulations with the regional climate model COSMO-CLM. The focus of the investigation is to assess the sensitivity of simulated extreme periods, dry and wet, to soil moisture initialization in different climatic regions over Europe and to establish the necessary spin up time within the framework of decadal predictions for these regions. Sensitivity experiments consisted of a reference simulation from 1968 to 1999 and 5 simulations from 1972 to 1983. The Effective Drought Index (EDI) is used to select and quantify drought status in the reference run to establish the simulation time period for the sensitivity experiments. Different soil initialization procedures are investigated. The sensitivity of the decadal predictions to soil moisture initial conditions is investigated through the analysis of water cycle components' (WCC) variability. In an episodic time scale the local effects of soil moisture on the boundary-layer and the propagated effects on the large-scale dynamics are analysed. The results show: (a) COSMO-CLM reproduces the observed features of the drought index. (b) Soil moisture initialization exerts a relevant impact on WCC, e.g., precipitation distribution and intensity. (c) Regional characteristics strongly impact the response of the WCC. Precipitation and evapotranspiration deviations are larger for humid regions. (d) The initial soil conditions (wet/dry), the regional characteristics (humid/dry) and the annual period (wet/dry) play a key role in the time that soil needs to restore quasi-equilibrium and the impact on the atmospheric conditions. Humid areas, and for all regions, a humid initialization, exhibit shorter spin up times, also soil reacts more sensitive when initialised during dry periods. (e) The initial soil perturbation may markedly modify atmospheric pressure field, wind circulation systems and atmospheric water vapour distribution affecting atmospheric stability conditions, thus modifying precipitation intensity and distribution even several years after the initialization.
Godde, Cécile M.; Thorburn, Peter J.; Biggs, Jody S.; Meier, Elizabeth A.
2016-01-01
Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical, and chemical properties. The review of literature pertaining to soil organic carbon (SOC) dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate, and farming practices on SOC. We undertook a modeling study with the Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates, and farming practices (crop rotations, and management within rotations, such as fertilization, tillage, and residue management) in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil–climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model’s outputs to determinate the relative contributions of soil parameters, climate, and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66, 18, and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat–chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (QLD, Australia) on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O) emissions and nitrate leaching in farming systems. The transposition of contrasting soils and climates in our simulations revealed the importance of the climate constraints on SOC. PMID:27242862
Differential thermal analysis of lunar soil simulant
NASA Technical Reports Server (NTRS)
Tucker, D.; Setzer, A.
1991-01-01
Differential thermal analysis of a lunar soil simulant, 'Minnesota Lunar Simulant-1' (MLS-1) was performed. The MLS-1 was tested in as-received form (in glass form) and with another silica. The silica addition was seen to depress nucleation events which lead to a better glass former.
Simulated permafrost soil thermal dynamics during 1960-2009 in eight offline processed-based models
NASA Astrophysics Data System (ADS)
Peng, S.; Gouttevin, I.; Krinner, G.; Ciais, P.
2013-12-01
Permafrost soil thermal dynamics not only determine the status of permafrost, but also have large impacts on permafrost organic carbon decomposition. Here, we used eight processed based models that participated in the Vulnerability Permafrost Carbon Research Coordination Network (RCN) project to investigate: (1) the trends in soil temperature at different depths over the northern hemisphere permafrost region during the past five decades, and (2) which factors drive trends and inter-annual variability of permafrost soil temperature? The simulated annual soil temperature at 20cm increases by ~0.02 °C per year from 1960 to 2009 (ranging from 0.00 °C per year in CoLM to 0.04 °C per year in ISBA). Most models simulated more warming of soil in spring and winter than in summer and autumn, although there were different seasonal trends in different models. Trends in soil temperature decrease with soil depth in all models. To quantify the contributions of various factors (air temperature, precipitation, downward longwave radiation etc.) to trends and inter-annual variation in soil temperature, we ran offline models with detrended air temperature, precipitation, downward longwave radiation, respectively. Our results suggest that both annual air temperature and downward longwave radiation significantly correlate with annual soil temperature. Moreover, trend in air temperature and downward longwave radiation contribute 30% and 60% to trends in soil temperature (0 - 200cm), respectively, during the period 1960-2009. Spatial distributions of trend in annual soil temperature at 20cm from R01 simulations of (a) CLM4, (b) CoLM, (c) ISBA, (d) JULES, (e) LPJ_GUESS, (f) ORCHIDEE, (g) UVic and (h) UW-VIC during the period 1960-2009.
ForCent Model Development and Testing using the Enriched Background Isotope Study (EBIS) Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parton, William; Hanson, Paul J; Swanston, Chris
The ForCent forest ecosystem model was developed by making major revisions to the DayCent model including: (1) adding a humus organic pool, (2) incorporating a detailed root growth model, and (3) including plant phenological growth patterns. Observed plant production and soil respiration data from 1993 to 2000 were used to demonstrate that the ForCent model could accurately simulate ecosystem carbon dynamics for the Oak Ridge National Laboratory deciduous forest. A comparison of ForCent versus observed soil pool 14C signature (? 14C) data from the Enriched Background Isotope Study 14C experiment (1999-2006) shows that the model correctly simulates the temporal dynamicsmore » of the 14C label as it moved from the surface litter and roots into the mineral soil organic matter pools. ForCent model validation was performed by comparing the observed Enriched Background Isotope Study experimental data with simulated live and dead root biomass ? 14C data, and with soil respiration ? 14C (mineral soil, humus layer, leaf litter layer, and total soil respiration) data. Results show that the model correctly simulates the impact of the Enriched Background Isotope Study 14C experimental treatments on soil respiration ? 14C values for the different soil organic matter pools. Model results suggest that a two-pool root growth model correctly represents root carbon dynamics and inputs to the soil. The model fitting process and sensitivity analysis exposed uncertainty in our estimates of the fraction of mineral soil in the slow and passive pools, dissolved organic carbon flux out of the litter layer into the mineral soil, and mixing of the humus layer into the mineral soil layer.« less
Ruttens, A; Adriaensen, K; Meers, E; De Vocht, A; Geebelen, W; Carleer, R; Mench, M; Vangronsveld, J
2010-05-01
A soil column leaching experiment was used to gain insight into the long-term metal immobilization capacity of cyclonic ashes (CAH) compared to lime (LIME). Twenty six years of rainfall were simulated. Initially, all amended soils were brought to an equal soil pH. This was done to obtain optimal conditions for the detection of metal immobilization mechanisms different from just a pH effect. During the simulation period, soil pH in all treatments decreased in parallel. However, the evolution of metal mobility and phytoavailability showed a clearly distinct pattern. The strong reduction in metal immobilizing efficiency observed in the lime treatment at the end of the simulation period was much less pronounced, or even absent, in the CAH treatments. Moreover, metal accumulation in plants grown on the CAH amended soil was significantly lower compared to the untreated and the lime treated soil. CAH + SS treatment delivered the strongest reductions in metal mobility and bioavailability. Copyright 2009 Elsevier Ltd. All rights reserved.
[Development of APSIM (agricultural production systems simulator) and its application].
Shen, Yuying; Nan, Zhibiao; Bellotti, Bill; Robertson, Michael; Chen, Wen; Shao, Xinqing
2002-08-01
Soil-crop simulator model is an effective tool for providing decision on agricultural management. APSIM (Agricultural Production Systems Simulator) was developed to simulate the biophysical process in farming system, and particularly in the economic and ecological features of the systems under climatic risk. The current literatures revealed that APSIM could be applied in wide zone, including temperate continental, temperate maritime, sub-tropic and arid climate, and Mediterranean climates, with the soil type of clay, duplex soil, vertisol, silt sandy, silt loam and silt clay loam. More than 20 crops have been simulated well. APSIM is powerful on describing crop structure, crop sequence, yield prediction, and quality control as well as erosion estimation under different planting pattern.
A space debris simulation facility for spacecraft materials evaluation
NASA Technical Reports Server (NTRS)
Taylor, Roy A.
1987-01-01
A facility to simulate the effects of space debris striking an orbiting spacecraft is described. This facility was purchased in 1965 to be used as a micrometeoroid simulation facility. Conversion to a Space Debris Simulation Facility began in July 1984 and it was placed in operation in February 1985. The facility consists of a light gas gun with a 12.7-mm launch tube capable of launching 2.5-12.7 mm projectiles with a mass of 4-300 mg and velocities of 2-8 km/sec, and three target tanks of 0.067 m, 0.53 a m and 28.5 a m. Projectile velocity measurements are accomplished via pulsed X-ray, laser diode detectors, and a Hall photographic station. This facility is being used to test development structural configurations and candidate materials for long duration orbital spacecraft. A summary of test results are also described.
Zhao, Mengxin; Xue, Kai; Wang, Feng; Liu, Shanshan; Bai, Shijie; Sun, Bo; Zhou, Jizhong; Yang, Yunfeng
2014-01-01
Despite microbes' key roles in driving biogeochemical cycles, the mechanism of microbe-mediated feedbacks to global changes remains elusive. Recently, soil transplant has been successfully established as a proxy to simulate climate changes, as the current trend of global warming coherently causes range shifts toward higher latitudes. Four years after southward soil transplant over large transects in China, we found that microbial functional diversity was increased, in addition to concurrent changes in microbial biomass, soil nutrient content and functional processes involved in the nitrogen cycle. However, soil transplant effects could be overridden by maize cropping, which was attributed to a negative interaction. Strikingly, abundances of nitrogen and carbon cycle genes were increased by these field experiments simulating global change, coinciding with higher soil nitrification potential and carbon dioxide (CO2) efflux. Further investigation revealed strong correlations between carbon cycle genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycle genes and nitrification. These findings suggest that changes of soil carbon and nitrogen cycles by soil transplant and cropping were predictable by measuring microbial functional potentials, contributing to a better mechanistic understanding of these soil functional processes and suggesting a potential to incorporate microbial communities in greenhouse gas emission modeling. PMID:24694714
2010-12-01
nitrogen SSURGO Soil Survey Geographic database USDA U.S. Department of Agriculture USLE Universal Soil Loss Equation USPED Unit-Stream-Power...Zaluski et al., 2003). A suite of models has been developed to simulate soil erosion and deposition, ranging from empirical (e.g., USLE and MUSLE at http...Estimating Soil Erosion and Deposition 4.4.1 USPED The algorithm for the simulation of soil erosion in USPED is similar to that of the USLE or RUSLE
Quantitative modeling of soil genesis processes
NASA Technical Reports Server (NTRS)
Levine, E. R.; Knox, R. G.; Kerber, A. G.
1992-01-01
For fine spatial scale simulation, a model is being developed to predict changes in properties over short-, meso-, and long-term time scales within horizons of a given soil profile. Processes that control these changes can be grouped into five major process clusters: (1) abiotic chemical reactions; (2) activities of organisms; (3) energy balance and water phase transitions; (4) hydrologic flows; and (5) particle redistribution. Landscape modeling of soil development is possible using digitized soil maps associated with quantitative soil attribute data in a geographic information system (GIS) framework to which simulation models are applied.
Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century
NASA Astrophysics Data System (ADS)
Ruosteenoja, Kimmo; Markkanen, Tiina; Venäläinen, Ari; Räisänen, Petri; Peltola, Heli
2018-02-01
Projections for near-surface soil moisture content in Europe for the 21st century were derived from simulations performed with 26 CMIP5 global climate models (GCMs). Two Representative Concentration Pathways, RCP4.5 and RCP8.5, were considered. Unlike in previous research in general, projections were calculated separately for all four calendar seasons. To make the moisture contents simulated by the various GCMs commensurate, the moisture data were normalized by the corresponding local maxima found in the output of each individual GCM. A majority of the GCMs proved to perform satisfactorily in simulating the geographical distribution of recent soil moisture in the warm season, the spatial correlation with an satellite-derived estimate varying between 0.4 and 0.8. In southern Europe, long-term mean soil moisture is projected to decline substantially in all seasons. In summer and autumn, pronounced soil drying also afflicts western and central Europe. In northern Europe, drying mainly occurs in spring, in correspondence with an earlier melt of snow and soil frost. The spatial pattern of drying is qualitatively similar for both RCP scenarios, but weaker in magnitude under RCP4.5. In general, those GCMs that simulate the largest decreases in precipitation and increases in temperature and solar radiation tend to produce the most severe soil drying. Concurrently with the reduction of time-mean soil moisture, episodes with an anomalously low soil moisture, occurring once in 10 years in the recent past simulations, become far more common. In southern Europe by the late 21st century under RCP8.5, such events would be experienced about every second year.
Debalke, Serkadis; Worku, Amare; Jahur, Nejat; Mekonnen, Zeleke
2013-11-01
Soil transmitted helminth infections are among the most common human infections. They are distributed throughout the world with high prevalence rates in tropical and sub-tropical countries mainly because of lack of adequate sanitary facilities, inappropriate waste disposal systems, lack of safe water supply, and low socio-economic status. A comparative cross sectional study was conducted from December 2011 to June 2012 to determine and assess the prevalence of soil transmitted helminths and their associated factors among government and private primary school children. Stool samples were collected from 369 randomly selected children and examined microscopically for eggs of soil transmitted helminth following McMaster techniques. Soil samples were collected from different parts of the school compound and microscopic examination was performed for eggs of the helminths using sodium nitrate flotation technique. The overall prevalence rate of soil transmitted helminth infections in private and government schools was 20.9% and 53.5% respectively. T. trichiura was the most common soil transmitted helminth in both schools while hookworm infections were identified in government school students only. Type of school and sex were significantly associated with soil transmitted helminth. Soil contamination rate of the school compounds was 11.25% with predominant parasites of A. lumbricoides. Higher prevalence of soil transmitted helminth infection was found among government school students. Thus, more focus, on personal hygiene and sanitary facilities, should be given to children going to government schools.
NASA Astrophysics Data System (ADS)
Vanderborght, J.; Javaux, M.; Couvreur, V.; Schröder, N.; Huber, K.; Abesha, B.; Schnepf, A.; Vereecken, H.
2013-12-01
Plant roots play a crucial role in several key processes in soils. Besides their impact on biogeochemical cycles and processes, they also have an important influence on physical processes such as water flow and transport of dissolved substances in soils. Interaction between plant roots and soil processes takes place at different scales and ranges from the scale of an individual root and its directly surrounding soil or rhizosphere over the scale of a root system of an individual plant in a soil profile to the scale of vegetation patterns in landscapes. Simulation models that are used to predict water flow and solute transport in soil-plant systems mainly focus on the individual plant root system scale, parameterize single-root scale phenomena, and aggregate the root system scale to the vegetation scale. In this presentation, we will focus on the transition from the single root to the root system scale. Using high resolution non-invasive imaging techniques and methods, gradients in soil properties and states around roots and their difference from the bulk soil properties could be demonstrated. Recent developments in plant sciences provide new insights in the mechanisms that control water fluxes in plants and in the adaptation of root properties or root plasticity to changing soil conditions. However, since currently used approaches to simulate root water uptake neither resolve these small scale processes nor represent processes and controls within the root system, transferring this information to the whole soil-plant system scale is a challenge. Using a simulation model that describes flow and transport processes in the soil, resolves flow and transport towards individual roots, and describes flow and transport within the root system, such a transfer could be achieved. We present a few examples that illustrate: (i) the impact of changed rhizosphere hydraulic properties, (ii) the effect of root hydraulic properties and root system architecture, (iii) the regulation of plant transpiration by root-zone produced plant hormones, and (iv) the impact of salt accumulation at the soil-root interface on root water uptake. We further propose a framework how this process knowledge could be implemented in root zone simulation models that do not resolve small scale processes.
Numerical Investigations of Moisture Distribution in a Selected Anisotropic Soil Medium
NASA Astrophysics Data System (ADS)
Iwanek, M.
2018-01-01
The moisture of soil profile changes both in time and space and depends on many factors. Changes of the quantity of water in soil can be determined on the basis of in situ measurements, but numerical methods are increasingly used for this purpose. The quality of the results obtained using pertinent software packages depends on appropriate description and parameterization of soil medium. Thus, the issue of providing for the soil anisotropy phenomenon gains a big importance. Although anisotropy can be taken into account in many numerical models, isotopic soil is often assumed in the research process. However, this assumption can be a reason for incorrect results in the simulations of water changes in soil medium. In this article, results of numerical simulations of moisture distribution in the selected soil profile were presented. The calculations were conducted assuming isotropic and anisotropic conditions. Empirical verification of the results obtained in the numerical investigations indicated statistical essential discrepancies for the both analyzed conditions. However, better fitting measured and calculated moisture values was obtained for the case of providing for anisotropy in the simulation model.
Retrospective reconstruction of Iodine-131 distribution through the analysis of Iodine-129
NASA Astrophysics Data System (ADS)
Matsuzaki, Hiroyuki; Muramatsu, Yasuyuki; Ohno, Takeshi; Mao, Wei
2017-09-01
Iodine-131 distribution released from the Fukushima Dai-ichi Nuclear Power Plant accident was reconstructed through the iodine-129 measurements. From nearly 1,000 surface soil samples iodine was extracted by the pyro hydrolysis method. Extracted iodine was then mixed with carrier, purified and finally collected as silver iodide. Silver iodide sample was pressed into the cathode holder and set at the ion source of the MALT facility, The University of Tokyo. The isotopic ratio 129I/127I was measured by means of Accelerator Mass Spectrometry. From 129I data obtained, 131I deposition map was constructed. There observed various fine structures in the map which could not estimated neither by the simulation nor 137Cs distribution.
Effects of simulated warming on soil respiration to XiaoPo lake
NASA Astrophysics Data System (ADS)
Zhao, Shuangkai; Chen, Kelong; Wu, Chengyong; Mao, Yahui
2018-02-01
The main flux of carbon cycling in terrestrial and atmospheric ecosystems is soil respiration, and soil respiration is one of the main ways of soil carbon output. This is of great significance to explore the dynamic changes of soil respiration rate and its effect on temperature rise, and the correlation between environmental factors and soil respiration. In this study, we used the open soil carbon flux measurement system (LI-8100, LI-COR, NE) in the experimental area of the XiaoPo Lake wetland in the Qinghai Lake Basin, and the Kobresia (Rs) were measured, and the soil respiration was simulated by simulated temperature (OTC) and natural state. The results showed that the temperature of 5 cm soil was 1.37 °C higher than that of the control during the experiment, and the effect of warming was obvious. The respiration rate of soil under warming and natural conditions showed obvious diurnal variation and monthly variation. The effect of warming on soil respiration rate was promoted and the effect of precipitation on soil respiration rate was inhibited. Further studies have shown that the relationship between soil respiration and 5 cm soil temperature under the control and warming treatments can be described by the exponential equation, and the correlation analysis between the two plots shows a very significant exponential relationship (p < 0.001). The warming treatment not only increased the Q10 value of soil respiration rate, but also increased the sensitivity of soil respiration rate. The relationship between soil respiration and soil moisture can be explained by the quadratic linear equation (p < 0.05). It can be concluded that under the condition of sufficient rainfall, the soil temperature is the main influencing factor of soil respiration in this region.
NASA Astrophysics Data System (ADS)
Dostal, Tomas; Devaty, Jan
2013-04-01
The paper presents results of surface runoff, soil erosion and sediment transport modeling using Erosion 3D software - physically based mathematical simulation model, event oriented, fully distributed. Various methods to simulate technical soil-erosion conservation measures were tested, using alternative digital elevation models of different precision and resolution. Ditches and baulks were simulated by three different approaches, (i) by change of the land-cover parameters to increase infiltration and decrease flow velocity, (ii) by change of the land-cover parameters to completely infiltrate the surface runoff and (iii) by adjusting the height of the digital elevation model by "burning in" the channels of the ditches. Results show advantages and disadvantages of each approach and conclude suitable methods for combinations of particular digital elevation model and purpose of the simulations. Further on a set of simulations was carried out to model situations before and after technical soil-erosion conservation measures application within a small catchment of 4 km2. These simulations were focused on quantitative and qualitative assessment of technical soil-erosion control measures impact on soil erosion off-site effects within urban areas located downstream of intensively used agricultural fields. The scenarios were built upon a raster digital elevation model with spatial resolution of 3 meters derived from LiDAR 5G vector point elevation data. Use of this high-resolution elevation model allowed simulating the technical soil-erosion control measures by direct terrain elevation adjustment. Also the structures within the settlements were emulated by direct change in the elevation of the terrain model. The buildings were lifted up to simulate complicated flow behavior of the surface runoff within urban areas, using approach of Arévalo (Arévalo, 2011) but focusing on the use of commonly available data without extensive detailed editing. Application of the technical soil-erosion control measures induced strong change in overall amount of eroded/deposited material as well as spatial erosion/deposition patterns within the settlement areas. Validation of modeled scenarios and effects on measured data was not possible as no real runoff event was recorded in the target area so the conclusions were made by comparing the different modeled scenarios. Advantages and disadvantages of used approach to simulate technical soil-erosion conservation measures are evaluated and discussed as well as the impact of use of high-resolution elevation data on the intensity and spatial distribution of soil erosion and deposition. Model approved ability to show detailed distribution of damages over target urban area, which is very sensitive for off-site effects of surface runoff, soil erosion and sediment transport and also high sensitivity to input data, especially to DEM, which affects surface runoff pattern and therefore intensity of harmful effects. Acknowledgement: This paper has been supported by projects: Ministry of the interior of the CR VG 20122015092, and project NAZV QI91C008 TPEO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mike Lewis
2014-02-01
This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2012, through October 31, 2013. The report contains, as applicable, the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2013 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plantmore » and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. However, soil samples were collected in October from soil monitoring unit SU-014101.« less
NASA Astrophysics Data System (ADS)
Bechini, Luca; Marino Gallina, Pietro; Geromel, Gabriele; Corti, Martina; Cavalli, Daniele
2015-04-01
High amounts of nitrogen are available per unit area in regions with intensive livestock operations. In swine farms, pig slurries are frequently incorporated in the soil together with maize stalks. Simulation models may help to understand nitrogen dynamics associated with animal manure and crop residue decomposition in the soil, and to support the definition of best management practices. The objective of this work was to test the ability of different models to simulate CO2 emissions and nitrogen mineralisation during a laboratory incubation (under optimal soil water content and constant temperature) of maize stalks (ST) and pig slurry (PS). A loam soil was amended with labelled (15N) or unlabelled maize stalks and pig slurries, in the presence of ammonium sulphate (AS). These treatments were established: unfertilised soil; ST15 + AS + PS; ST + AS15 + PS; and ST + AS + PS15. During 180 days, we measured CO2 emissions; microbial biomass C, N, and 15N; and soil mineral N (SMN and SM-15N). Three models of increasing complexity were calibrated using measured data. The models were two modifications of ICBM 2B/N (Kätterer and Andrén, 2001) and CN-SIM (Petersen et al., 2005). The three models simulated rather accurately the emissions of CO2 throughout the incubation period (Relative Root Mean Squared Error, RRMSE = 8-25). The simplest model (with one pool for ST and one for PS) strongly overestimated SMN immobilisation from day 3 to day 21, both in the treatments with AS15 and PS15 (RRMSE = 27-30%). The other two models represented rather well the dynamics of SMN in the soil (RRMSE = 21-25%), simulating a fast increase of nitrate concentration in the first days, and slower rates of nitrification thereafter. Worse performances were obtained with all models for the simulation of SM-15N in the treatment with ST15 (RRMSE = 64-104%): experimental data showed positive mineralization of stalk-derived N from the beginning of the incubation, while models strongly underestimated ST15 mineralisation until day 7. Due to model structure, trade-offs exist between a good simulation of CO2 emissions and a good simulation of SMN. Therefore, simulation performances of the three models are a compromise between the errors in the simulation of C and N dynamics. Thus, some models (especially the simplest one), overestimated or underestimated SMN to match CO2 measurements. This preliminary work emphasised the importance of testing models with both C and N measurements. This reduced the risk of obtaining model parameters suitable for the simulation of N (or opposite C) dynamics that lead to unrealistic simulation of C (or N) decomposition. The use of 15N-labelled materials will help to improve models for the simulation of added organic matter decomposition. Kätterer, T., Andrén, O., 2001. The ICBM family of analytically solved models of soil carbon, nitrogen and microbial biomass dynamics'descriptions and application examples. Ecol. Model. 136, 191-207. doi:10.1016/S0304-3800(00)00420-8. Petersen, B.M., Jensen, L.S., Hansen, S., Pedersen, A., Henriksen, T.M., Sørensen, P., Trinsoutrot-Gattin, I., Berntsen, J., 2005. CN-SIM: a model for the turnover of soil organic matter. II. Short-term carbon and nitrogen development. Soil Biol. Biochem. 37, 375-393. doi:10.1016/j.soilbio.2004.08.007.
Effect of train vibration on settlement of soil: A numerical analysis
NASA Astrophysics Data System (ADS)
Tiong, Kah-Yong; Ling, Felix Ngee-Leh; Talib, Zaihasra Abu
2017-10-01
The drastic development of transit system caused the influence of ground-borne vibrations induced by train on ground settlement became concern problem nowadays. The purpose of this study is to investigate soil settlement caused by train vibration. To facilitate this study, computer simulation of soil dynamic response using commercial finite element package - PLAXIS 2D was performed to simulate track-subgrade system together with dynamic train load under three different conditions. The results of simulation analysis established the facts that the soil deformation increased with raising in water level. This phenomenon happens because the increasing water level not only induced greater excess pore water pressure but also reduced stiffness of soil. Furthermore, the simulation analysis also deduced that the soil settlement was reduced by placing material with high stiffness between the subgrade and the ballast layer since material with high stiffness was able to dissipate energy efficiently due to its high bearing capacity, thus protecting the subgrade from deteriorating. The simulation analysis result also showed that the soil dynamic response increased with the increase in the speed of train and a noticeable amplification in soil deformation occurred as the train speed approaches the Rayleigh wave velocity of the track subgrade system. This is due to the fact that dynamic train load depend on both the self-weight of the train and the dynamic component due to inertial effects associated with the train speed. Thus, controlling the train speeds under critical velocity of track-subgrade system is able to ensure the safety of train operation as it prevents track-ground resonance and dramatic ground.
Nuclear thermal source transfer unit, post-blast soil sample drying system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiser, Ralph S.; Valencia, Matthew J
Los Alamos National Laboratory states that its mission is “To solve national security challenges through scientific excellence.” The Science Undergraduate Laboratory Internship (SULI) programs exists to engage undergraduate students in STEM work by providing opportunity to work at DOE facilities. As an undergraduate mechanical engineering intern under the SULI program at Los Alamos during the fall semester of 2016, I had the opportunity to contribute to the mission of the Laboratory while developing skills in a STEM discipline. I worked with Technology Applications, an engineering group that supports non-proliferation, counter terrorism, and emergency response missions. This group specializes in toolmore » design, weapons engineering, rapid prototyping, and mission training. I assisted with two major projects during my appointment Los Alamos. The first was a thermal source transportation unit, intended to safely contain a nuclear thermal source during transit. The second was a soil drying unit for use in nuclear postblast field sample collection. These projects have given me invaluable experience working alongside a team of professional engineers. Skills developed include modeling, simulation, group design, product and system design, and product testing.« less
Shuttle mission simulator baseline definition report, volume 1
NASA Technical Reports Server (NTRS)
Burke, J. F.; Small, D. E.
1973-01-01
A baseline definition of the space shuttle mission simulator is presented. The subjects discussed are: (1) physical arrangement of the complete simulator system in the appropriate facility, with a definition of the required facility modifications, (2) functional descriptions of all hardware units, including the operational features, data demands, and facility interfaces, (3) hardware features necessary to integrate the items into a baseline simulator system to include the rationale for selecting the chosen implementation, and (4) operating, maintenance, and configuration updating characteristics of the simulator hardware.
Simulating eroded soil organic carbon with the SWAT-C model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xuesong
The soil erosion and associated lateral movement of eroded carbon (C) have been identified as a possible mechanism explaining the elusive terrestrial C sink of ca. 1.7-2.6 PgC yr(-1). Here we evaluated the SWAT-C model for simulating long-term soil erosion and associated eroded C yields. Our method couples the CENTURY carbon cycling processes with a Modified Universal Soil Loss Equation (MUSLE) to estimate C losses associated with soil erosion. The results show that SWAT-C is able to simulate well long-term average eroded C yields, as well as correctly estimate the relative magnitude of eroded C yields by crop rotations. Wemore » also evaluated three methods of calculating C enrichment ratio in mobilized sediments, and found that errors associated with enrichment ratio estimation represent a significant uncertainty in SWAT-C simulations. Furthermore, we discussed limitations and future development directions for SWAT-C to advance C cycling modeling and assessment.« less
USDA-ARS?s Scientific Manuscript database
Traditional dryland crop management includes fallow and intensive tillage, which have reduced soil organic carbon (SOC) over the past century raising concerns regarding soil health and sustainability. The objectives of this study were to: 1) use CQESTR, a process-based C model, to simulate SOC dynam...
USDA-ARS?s Scientific Manuscript database
The impact of climate change on soil organic carbon (SOC) stocks in no-till (NT) and conventionally-tilled (CT) agricultural systems is poorly understood. The objective of this study was to simulate the impact of projected climate change (air temperature and precipitation) on SOC to 50 cm soil depth...
D.W. Johnson; R.B. Susfalk; P.F. Brewer; W.T. Swank
1999-01-01
Effects of reduced deposition of N, S, and CB on nutrient pools, fluxes, soil, and soil solution chemistry were simulated for two Appalachian forest ecosystems using the nutrient cycling model. In the extremely acidic, N- and S-saturated red spruce (Picea rubens (Sarg.)) forest (Nolan Divide), reducing
D.J. Nicolsky; V.E. Romanovsky; G.G. Panteleev
2008-01-01
A variational data assimilation algorithm is developed to reconstruct thermal properties, porosity, and parametrization of the unfrozen water content for fully saturated soils. The algorithm is tested with simulated synthetic temperatures. The simulations are performed to determine the robustness and sensitivity of algorithm to estimate soil properties from in-situ...
NASA Astrophysics Data System (ADS)
Taha, M. P. M.; Drew, G. H.; Tamer Vestlund, A.; Aldred, D.; Longhurst, P. J.; Pollard, S. J. T.
Actinomycetes are the dominant bacteria isolated from bioaerosols sampled at composting facilities. Here, a novel method for the isolation of actinomycetes is reported, overcoming masking of conventional agar plates, as well as reducing analysis time and costs. Repeatable and reliable actinomycetes growth was best achieved using a soil compost media at an incubation temperature of 44 °C and 7 days' incubation. The results are of particular value to waste management operators and their advisors undertaking regulatory risk assessments that support environmental approvals for compost facilities.
Hale, Sarah E; Arp, Hans Peter H; Slinde, Gøril Aasen; Wade, Emma Jane; Bjørseth, Kamilla; Breedveld, Gijs D; Straith, Bengt Fredrik; Moe, Kamilla Grotthing; Jartun, Morten; Høisæter, Åse
2017-03-01
Aqueous film-forming foams (AFFF) containing poly- and perfluoroalkyl substances (PFAS) used for firefighting have led to the contamination of soil and water at training sites. The unique physicochemical properties of PFAS results in environmental persistency, threatening water quality and making remediation of such sites a necessity. This work investigated the role of sorbent amendment to PFAS contaminated soils in order to immobilise PFAS and reduce mobility and leaching to groundwater. Soil was sampled from a firefighting training facility at a Norwegian airport and total and leachable PFAS concentrations were quantified. Perfluorooctanesulfonic acid (PFOS) was the most dominant PFAS present in all soil samples (between 9 and 2600 μg/kg). Leaching was quantified using a one-step batch test with water (L/S 10). PFOS concentrations measured in leachate water ranged between 1.2 μg/L and 212 μg/L. Sorbent amendment (3%) was tested by adding activated carbon (AC), compost soil and montmorillonite to selected soils. The extent of immobilisation was quantified by measuring PFAS concentrations in leachate before and after amendment. Leaching was reduced between 94 and 99.9% for AC, between 29 and 34% for compost soil and between 28 and 40% for the montmorillonite amended samples. Sorbent + soil/water partitioning coefficients (K D ) were estimated following amendment and were around 8 L/kg for compost soil and montmorillonite amended soil and ranged from 1960 to 16,940 L/kg for AC amended soil. The remediation of AFFF impacted soil via immobilisation of PFAS following sorbent amendment with AC is promising as part of an overall remediation strategy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Renduo; Wood, A Lynn; Enfield, Carl G; Jeong, Seung-Woo
2003-01-01
Stochastical analysis was performed to assess the effect of soil spatial variability and heterogeneity on the recovery of denser-than-water nonaqueous phase liquids (DNAPL) during the process of surfactant-enhanced remediation. UTCHEM, a three-dimensional, multicomponent, multiphase, compositional model, was used to simulate water flow and chemical transport processes in heterogeneous soils. Soil spatial variability and heterogeneity were accounted for by considering the soil permeability as a spatial random variable and a geostatistical method was used to generate random distributions of the permeability. The randomly generated permeability fields were incorporated into UTCHEM to simulate DNAPL transport in heterogeneous media and stochastical analysis was conducted based on the simulated results. From the analysis, an exponential relationship between average DNAPL recovery and soil heterogeneity (defined as the standard deviation of log of permeability) was established with a coefficient of determination (r2) of 0.991, which indicated that DNAPL recovery decreased exponentially with increasing soil heterogeneity. Temporal and spatial distributions of relative saturations in the water phase, DNAPL, and microemulsion in heterogeneous soils were compared with those in homogeneous soils and related to soil heterogeneity. Cleanup time and uncertainty to determine DNAPL distributions in heterogeneous soils were also quantified. The study would provide useful information to design strategies for the characterization and remediation of nonaqueous phase liquid-contaminated soils with spatial variability and heterogeneity.
2007-05-04
TITLE AND SUBTITLE Nonlinear Acoustic Landmine Detection: Profiling Soil Surface Vibrations and Modeling Mesoscopic Elastic Behavior 6. AUTHOR(S...project report; no. 352 (2007) NONLINEAR ACOUSTIC LANDMINE DETECTION: PROFILING SOIL SURFACE VIBRATIONS AND MODELING MESOSCOPIC ELASTIC... model (Caughey 1966). Nonlinear acoustic landmine detection experiments are performed in the anechoic chamber facility using both a buried acrylic
USDA-ARS?s Scientific Manuscript database
The effect dirt-floored broiler houses have on the underlying native soil and the potential for contamination of the ground water by leaching under the foundation of these houses is an understudied area. No research could be found in the literature which followed alterations in soil parameters from...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eriksen, W.H.; Emborg, C.
1978-10-01
Soil microflora were exposed to long-term (18 months) gamma irradiation in an open-air facility at three different doses, 15, 150, and 1500 krads/18 months. The radiation resistance increased at all doses when compared with the radiation resistance of the microflora from soil shielded from the irradiation with a lead wall.
SWATS: Diurnal Trends in the Soil Temperature Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, David; Theisen, Adam
During the processing of data for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ARMBE2D Value-Added Product (VAP), the developers noticed that the SWATS soil temperatures did not show a decreased temporal variability with increased depth with the new E30+ Extended Facilities (EFs), unlike the older EFs at ARM’s Southern Great Plains (SGP) site. The instrument mentor analyzed the data and reported that all SWATS locations have shown this behavior but that the magnitude of the problem was greatest at EFs E31-E38. The data were analyzed to verify the initial assessments of: 1. 5 cmmore » SWATS data were valid for all EFs and 15 cm soil temperature measurements were valid at all EFs other than E31-E38, 2. Use only nighttime SWATS soil temperature measurements to calculate daily average soil temperatures, 3. Since it seems likely that the soil temperature measurements below 15cm were affected by the solar heating of the enclosure at all but E31-38, and at all depths below 5cm at E31-38, individual measurements of soil temperature at these depths during daylight hours, and daily averages of the same, can ot be trusted on most (particularly sunny) days.« less
Global Soil Information Facilities - Component Worldgrids.org
NASA Astrophysics Data System (ADS)
Reuter, H. I.; Hengl, T.
2012-04-01
GSIF (Global Soil Information Facilities) is ISRIC's framework for production of open soil data. It has been inspired by global environmental data initiatives (e.g. oneGeology, GBIF). The main practical motivation for GSIF is to build cyber-infrastructure to collate legacy (i.e., historic) soil data currently under threat of being lost forever and to generate new soil information. The objective of the component worldgrids is a (de)-central repository for collecting, storing, accessing and interacting with gridded data sets of global soil covariate data for production mapping, while being part of a larger GSIF. It is the physical implementation of the expectation that ISRIC would lead and coordinate a project to assemble a core data set of global environmental covariates to (partly) support local efforts to produce global soil property maps. Currently over 100 layers with a 5 and 1 km resolution with a global coverage can be accessed via www.worldgrids.org. Three different functionalities are implemented to extract data in an OGC complained matter: i) single point overlay ii) mass point overlay; iii) zone grid overlay with reporting of different statistical parameters. The presentation will focus on datasets, functionalities, access via the R-project and ArcGIS globalsoilmap.net Toolbox as well on future enhancements to the worldgrids platform.
NASA Astrophysics Data System (ADS)
Sinclair Yemini, Francis; Chenu, Claire; Monga, Olivier; Vieuble Gonond, Laure; Juarez, Sabrina; Pihneiro, Marc; otten, Wilfred; Garnier, Patricia
2014-05-01
Contaminant degradation by microorganisms is very variable in soils because of the very heterogeneous spatial relationship of contaminant/degraders. Repacked Soil columns were carried out to study the degradation of 2,4D pesticide labelled with C14 for different scenarios of microorganisms and pesticide initial location. Measurements of global C14-CO2 emission and C14 distribution in the soil column showed that the initial location play a crucial rule on the dissipation of the pollutant. Experiments were simulated using a 3D model able to model microbial degradation and substrate diffusion between aggregates by considering explicitly the 3D structure of soil from CT images. The initial version of the model (Monga et al., 2008) was improved in order to simulate diffusion in samples of large size. Partial differential equations were implemented using freefem++ solver. The model simulates properly the dynamics of 2,4D in the column for the different initial situations. CT images of the same soil but using undisturbed structure instead of repacked aggregates were also carried out. Significant differences of the simulated results were observed between the repacked and the undisturbed soil. The conclusion of our work is that the heterogeneity of the soil structure and location of pollutants and decomposers has a very strong influence on the dissipation of pollutants.
NASA Astrophysics Data System (ADS)
Ciampalini, Rossano; Kendon, Elizabeth; Constantine, José Antonio; Schindewolf, Marcus; Hall, Ian
2016-04-01
Twenty-first century climate change simulations for Great Britain reveal an increase in heavy precipitation that may lead to widespread soil loss and reduced soil carbon stores by increasing the likelihood of surface runoff. We find the quality and resolution of the simulated rainfall used to drive soil loss variation can widely influence the results. Hourly high definition rainfall simulations from a 1.5km resolution regional climate model are used to examine the soil erosion response in two UK catchments. The catchments have different sensitivity to soil erosion. "Rother" in West Sussex, England, reports some of the most erosive events that have been observed during the last 50 years in the UK. "Conwy" in North Wales, is resilient to soil erosion because of the abundant natural vegetation cover and very limited agricultural practises. We modelled with Erosion3D to check variations in soil erosion as influenced by climate variations for the periods 1996-2009 and 2086-2099. Our results indicate the Rother catchment is the most erosive, while the Conwy catchment is confirmed as the more resilient to soil erosion. The values of the reference-base period are consistent with the values of those locally observed in the previous decades. A soil erosion comparison for the two periods shows an increasing of sediment production (off-site erosion) for the end of the century at about 27% in the Rother catchment and about 50% for the Conwy catchment. The results, thanks to high-definition rainfall predictions, throw some light on the effect of climatic change effects in Great Britain.
INCINERATION TREATMENT OF ARSENIC-CONTAMINATED SOIL
An incineration test program was conducted at the U.S. Environmental Protection Agency's Incineration Research Facility to evaluate the potential of incineration as a treatment option for contaminated soils at the Baird and McGuire Superfund site in Holbrook, Massachusetts. The p...
A novel representation of chalk hydrology in a land surface model
NASA Astrophysics Data System (ADS)
Rahman, Mostaquimur; Rosolem, Rafael
2016-04-01
Unconfined chalk aquifers contain a significant portion of water in the United Kingdom. In order to optimize the assessment and management practices of water resources in the region, modelling and monitoring of soil moisture in the unsaturated zone of the chalk aquifers are of utmost importance. However, efficient simulation of soil moisture in such aquifers is difficult mainly due to the fractured nature of chalk, which creates high-velocity preferential flow paths in the unsaturated zone. In this study, the Joint UK Land Environment Simulator (JULES) is applied on a study area encompassing the Kennet catchment in Southern England. The fluxes and states of the coupled water and energy cycles are simulated for 10 consecutive years (2001-2010). We hypothesize that explicit representation for the soil-chalk layers and the inclusion of preferential flow in the fractured chalk aquifers improves the reproduction of the hydrological processes in JULES. In order to test this hypothesis, we propose a new parametrization for preferential flow in JULES. This parametrization explicitly describes the flow of water in soil matrices and preferential flow paths using a simplified approach which can be beneficial for large-scale hydrometeorological applications. We also define the overlaying soil properties obtained from the Harmonized World Soil Database (HWSD) in the model. Our simulation results are compared across spatial scales with measured soil moisture and river discharge, indicating the importance of accounting for the physical properties of the medium while simulating hydrological processes in the chalk aquifers.
Beyer, W.N.; Stafford, C.
1993-01-01
Soils derived from dredged material were collected, together with earthworms from nine confined disposal facilities located in the Great Lakes Region. These samples were analyzed for 18 elements, 11 organochlorine pesticides, PCBs, and 24 polycyclic aromatic hydrocarbons. The concentrations detected in earthworms were evaluated in terms of their potential hazard to wildlife, which for the sake of the evaluation were assumed to prey entirely either on earthworms or on other soil invertebrates having similar concentrations. The soil concentrations (dry wt.) of the contaminants of greatest concern were < 1.9 to 32 ppm Cd, < 0.053 to 0.94 ppm Hg, 4.6 to 550 ppm Pb, and < 0.1 to 1.0 ppm PCBs. The concentrations in earthworms (dry wt., ingested soil included) were as high as 91 ppm Cd, 1.6 ppm Hg, 200 ppm Pb, and 1.8 ppm PCBs. Based on laboratory toxicity studies of relatively sensitive species, and on concentration factors calculated from the earthworm and soil data, we estimated that lethal or serious sublethal effects on wildlife might be expected at concentrations of 10 ppm Cd, 3 ppm Hg, 670 ppm Pb, and 1.7 ppm PCBs in alkaline surface soils derived from dredged material. Concentrations of polycyclic aromatic hydrocarbons in earthworms were well below those in soil.
A Numerical Model to Assess Soil Fluxes from Meteoric 10Be Data
NASA Astrophysics Data System (ADS)
Campforts, B.; Govers, G.; Vanacker, V.; Vanderborght, J.; Smolders, E.; Baken, S.
2015-12-01
Meteoric 10Be may be mobile in the soil system. The latter hampers a direct translation of meteoric 10Be inventories into spatial variations in erosion and deposition rates. Here, we present a spatially explicit 2D model that allows us to simulate the behaviour of meteoric 10Be in the soil system. The Be2D model is then used to analyse the potential impact of human-accelerated soil fluxes on meteoric 10Be inventories. The model consists of two parts. A first component deals with advective and diffusive mobility of meteoric 10Be within the soil profile including particle migration, chemical leaching and bioturbation, whereas a second component describes lateral soil (and meteoric 10Be) fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering and lateral soil fluxes from creep, water and tillage erosion. Model simulations show that meteoric 10Be inventories can indeed be related to erosion and deposition, across a wide range of geomorphological and pedological settings. However, quantification of the effects of vertical mobility is essential for a correct interpretation of the observed spatial patterns in 10Be data. Moreover, our simulations suggest that meteoric 10Be can be used as a tracer to unravel human impact on soil fluxes when soils have a high retention capacity for meteoric meteoric 10Be. Application of the Be2D model to existing data sets shows that model parameters can reliably be constrained, resulting in a good agreement between simulated and observed meteoric 10Be concentrations and inventories. This confirms the suitability of the Be2D model as a robust tool to underpin quantitative interpretations of spatial variability in meteoric 10Be data for eroding landscapes.
NASA Astrophysics Data System (ADS)
Campforts, Benjamin; Vanacker, Veerle; Vanderborght, Jan; Baken, Stijn; Smolders, Erik; Govers, Gerard
2016-04-01
Meteoric 10Be allows for the quantification of vertical and lateral soil fluxes over long time scales (103-105 yr). However, the mobility of meteoric 10Be in the soil system makes a translation of meteoric 10Be inventories into erosion and deposition rates complex. Here, we present a spatially explicit 2D model simulating the behaviour of meteoric 10Be on a hillslope. The model consists of two parts. The first component deals with advective and diffusive mobility of meteoric 10Be within the soil profile, and the second component describes lateral soil and meteoric 10Be fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering as well as downslope fluxes of soil due to creep, water and tillage erosion. Synthetic model simulations show that meteoric 10Be inventories can be related to erosion and deposition across a wide range of geomorphological and pedological settings. Our results also show that meteoric 10Be can be used as a tracer to detect human impact on soil fluxes for soils with a high affinity for meteoric 10Be. However, the quantification of vertical mobility is essential for a correct interpretation of the observed variations in meteoric 10Be profiles and inventories. Application of the Be2D model to natural conditions using data sets from the Southern Piedmont (Bacon et al., 2012) and Appalachian Mountains (Jungers et al., 2009; West et al., 2013) allows to reliably constrain parameter values. Good agreement between simulated and observed meteoric 10Be concentrations and inventories is obtained with realistic parameter values. Furthermore, our results provide detailed insights into the processes redistributing meteoric 10Be at the soil-hillslope scale.
Meta-modeling soil organic carbon sequestration potential and its application at regional scale.
Luo, Zhongkui; Wang, Enli; Bryan, Brett A; King, Darran; Zhao, Gang; Pan, Xubin; Bende-Michl, Ulrike
2013-03-01
Upscaling the results from process-based soil-plant models to assess regional soil organic carbon (SOC) change and sequestration potential is a great challenge due to the lack of detailed spatial information, particularly soil properties. Meta-modeling can be used to simplify and summarize process-based models and significantly reduce the demand for input data and thus could be easily applied on regional scales. We used the pre-validated Agricultural Production Systems sIMulator (APSIM) to simulate the impact of climate, soil, and management on SOC at 613 reference sites across Australia's cereal-growing regions under a continuous wheat system. We then developed a simple meta-model to link the APSIM-modeled SOC change to primary drivers, i.e., the amount of recalcitrant SOC, plant available water capacity of soil, soil pH, and solar radiation, temperature, and rainfall in the growing season. Based on high-resolution soil texture data and 8165 climate data points across the study area, we used the meta-model to assess SOC sequestration potential and the uncertainty associated with the variability of soil characteristics. The meta-model explained 74% of the variation of final SOC content as simulated by APSIM. Applying the meta-model to Australia's cereal-growing regions reveals regional patterns in SOC, with higher SOC stock in cool, wet regions. Overall, the potential SOC stock ranged from 21.14 to 152.71 Mg/ha with a mean of 52.18 Mg/ha. Variation of soil properties induced uncertainty ranging from 12% to 117% with higher uncertainty in warm, wet regions. In general, soils in Australia's cereal-growing regions under continuous wheat production were simulated as a sink of atmospheric carbon dioxide with a mean sequestration potential of 8.17 Mg/ha.
NASA Astrophysics Data System (ADS)
Wanders, N.; Bierkens, M. F. P.; de Jong, S. M.; de Roo, A.; Karssenberg, D.
2014-08-01
Large-scale hydrological models are nowadays mostly calibrated using observed discharge. As a result, a large part of the hydrological system, in particular the unsaturated zone, remains uncalibrated. Soil moisture observations from satellites have the potential to fill this gap. Here we evaluate the added value of remotely sensed soil moisture in calibration of large-scale hydrological models by addressing two research questions: (1) Which parameters of hydrological models can be identified by calibration with remotely sensed soil moisture? (2) Does calibration with remotely sensed soil moisture lead to an improved calibration of hydrological models compared to calibration based only on discharge observations, such that this leads to improved simulations of soil moisture content and discharge? A dual state and parameter Ensemble Kalman Filter is used to calibrate the hydrological model LISFLOOD for the Upper Danube. Calibration is done using discharge and remotely sensed soil moisture acquired by AMSR-E, SMOS, and ASCAT. Calibration with discharge data improves the estimation of groundwater and routing parameters. Calibration with only remotely sensed soil moisture results in an accurate identification of parameters related to land-surface processes. For the Upper Danube upstream area up to 40,000 km2, calibration on both discharge and soil moisture results in a reduction by 10-30% in the RMSE for discharge simulations, compared to calibration on discharge alone. The conclusion is that remotely sensed soil moisture holds potential for calibration of hydrological models, leading to a better simulation of soil moisture content throughout the catchment and a better simulation of discharge in upstream areas. This article was corrected on 15 SEP 2014. See the end of the full text for details.
Study of sandy soil grain-size distribution on its deformation properties
NASA Astrophysics Data System (ADS)
Antropova, L. B.; Gruzin, A. V.; Gildebrandt, M. I.; Malaya, L. D.; Nikulina, V. B.
2018-04-01
As a rule, new oil and gas fields' development faces the challenges of providing construction objects with material and mineral resources, for example, medium sand soil for buildings and facilities footings of the technological infrastructure under construction. This problem solution seems to lie in a rational usage of the existing environmental resources, soils included. The study was made of a medium sand soil grain-size distribution impact on its deformation properties. Based on the performed investigations, a technique for controlling sandy soil deformation properties was developed.
Relation between L-band soil emittance and soil water content
NASA Technical Reports Server (NTRS)
Stroosnijder, L.; Lascano, R. J.; Van Bavel, C. H. M.; Newton, R. W.
1986-01-01
An experimental relation between soil emittance (E) at L-band and soil surface moisture content (M) is compared with a theoretical one. The latter depends on the soil dielectric constant, which is a function of both soil moisture content and of soil texture. It appears that a difference of 10 percent in the surface clay content causes a change in the estimate of M on the order of 0.02 cu m/cu m. This is based on calculations with a model that simulates the flow of water and energy, in combination with a radiative transfer model. It is concluded that an experimental determination of the E-M relation for each soil type is not required, and that a rough estimate of the soil texture will lead to a sufficiently accurate estimate of soil moisture from a general, theoretical relationship obtained by numerical simulation.
Evaluation of Long-term Soil Moisture Proxies in the U.S. Great Plains
NASA Astrophysics Data System (ADS)
Yuan, S.; Quiring, S. M.
2016-12-01
Soil moisture plays an important role in land-atmosphere interactions through both surface energy and water balances. However, despite its importance, there are few long-term records of observed soil moisture for investigating long-term spatial and temporal variations of soil moisture. Hence, it is necessary to find suitable approximations of soil moisture observations. 5 drought indices will be compared with simulated and observed soil moisture over the U.S. Great Plains during two time periods (1980 - 2012 and 2003 - 2012). Standardized Precipitation Index (SPI), Standardized Precipitation-Evapotranspiration Index (SPEI), Palmer Z Index (zindex) and Crop Moisture Index (CMI) will be calculated by PRISM data. The soil moisture simulations will be derived from NLDAS. In situ soil moisture will be obtained from North American Soil Moisture Database. The evaluation will focus on three main aspects: trends, variations and persistence. The results will support further research investigating long-term variations in soil moisture-climate interactions.
Soil warming response: field experiments to Earth system models
NASA Astrophysics Data System (ADS)
Todd-Brown, K. E.; Bradford, M.; Wieder, W. R.; Crowther, T. W.
2017-12-01
The soil carbon response to climate change is extremely uncertain at the global scale, in part because of the uncertainty in the magnitude of the temperature response. To address this uncertainty we collected data from 48 soil warming manipulations studies and examined the temperature response using two different methods. First, we constructed a mixed effects model and extrapolated the effect of soil warming on soil carbon stocks under anticipated shifts in surface temperature during the 21st century. We saw significant vulnerability of soil carbon stocks, especially in high carbon soils. To place this effect in the context of anticipated changes in carbon inputs and moisture shifts, we applied a one pool decay model with temperature sensitivities to the field data and imposed a post-hoc correction on the Earth system model simulations to integrate the field with the simulated temperature response. We found that there was a slight elevation in the overall soil carbon losses, but that the field uncertainty of the temperature sensitivity parameter was as large as the variation in the among model soil carbon projections. This implies that model-data integration is unlikely to constrain soil carbon simulations and highlights the importance of representing parameter uncertainty in these Earth system models to inform emissions targets.
Is soil moisture initialization important for seasonal to decadal predictions?
NASA Astrophysics Data System (ADS)
Stacke, Tobias; Hagemann, Stefan
2014-05-01
The state of soil moisture can can have a significant impact on regional climate conditions for short time scales up to several months. However, focusing on seasonal to decadal time scales, it is not clear whether the predictive skill of global a Earth System Model might be enhanced by assimilating soil moisture data or improving the initial soil moisture conditions with respect to observations. As a first attempt to provide answers to this question, we set up an experiment to investigate the life time (memory) of extreme soil moisture states in the coupled land-atmosphere model ECHAM6-JSBACH, which is part of the Max Planck Institute for Meteorology's Earth System Model (MPI-ESM). This experiment consists of an ensemble of 3 years simulations which are initialized with extreme wet and dry soil moisture states for different seasons and years. Instead of using common thresholds like wilting point or critical soil moisture, the extreme states were extracted from a reference simulation to ensure that they are within the range of simulated climate variability. As a prerequisite for this experiment, the soil hydrology in JSBACH was improved by replacing the bucket-type soil hydrology scheme with a multi-layer scheme. This new scheme is a more realistic representation of the soil, including percolation and diffusion fluxes between up to five separate layers, the limitation of bare soil evaporation to the uppermost soil layer and the addition of a long term water storage below the root zone in regions with deep soil. While the hydrological cycle is not strongly affected by this new scheme, it has some impact on the simulated soil moisture memory which is mostly strengthened due to the additional deep layer water storage. Ensemble statistics of the initialization experiment indicate perturbation lengths between just a few days up to several seasons for some regions. In general, the strongest effects are seen for wet initialization during northern winter over cold and humid regions, while the shortest memory is found during northern spring. For most regions, the soil moisture memory is either sensitive to wet or to dry perturbations, indicating that soil moisture anomalies interact with the respective weather pattern for a given year and might be able to enhance or dampen extreme conditions. To further investigate this effect, the simulations will be repeated using JSBACH with prescribed meteorological forcing to better disentangle the direct effects of soil moisture initialization and the atmospheric response.
Modelling crop yield, soil organic C and P under variable long-term fertilizer management in China
NASA Astrophysics Data System (ADS)
Zhang, Jie; Xu, Guang; Xu, Minggang; Balkovič, Juraj; Azevedo, Ligia B.; Skalský, Rastislav; Wang, Jinzhou; Yu, Chaoqing
2016-04-01
Phosphorus (P) is a major limiting nutrient for plant growth. P, as a nonrenewable resource and the controlling factor of aquatic entrophication, is critical for food security and human future, and concerns sustainable resource use and environmental impacts. It is thus essential to find an integrated and effective approach to optimize phosphorus fertilizer application in the agro-ecosystem while maintaining crop yield and minimizing environmental risk. Crop P models have been used to simulate plant-soil interactions but are rarely validated with scattered long-term fertilizer control field experiments. We employed a process-based model named Environmental Policy Integrated Climate model (EPIC) to simulate grain yield, soil organic carbon (SOC) and soil available P based upon 8 field experiments in China with 11 years dataset, representing the typical Chinese soil types and agro-ecosystems of different regions. 4 treatments, including N, P, and K fertilizer (NPK), no fertilizer (CK), N and K fertilizer (NK) and N, P, K and manure (NPKM) were measured and modelled. A series of sensitivity tests were conducted to analyze the sensitivity of grain yields and soil available P to sequential fertilizer rates in typical humid, normal and drought years. Our results indicated that the EPIC model showed a significant agreement for simulating grain yields with R2=0.72, index of agreement (d)=0.87, modeling efficiency (EF)=0.68, p<0.01 and SOC with R2=0.70, d=0.86, EF=0.59, and p<0.01. EPIC can well simulate soil available P moderately and capture the temporal changes in soil P reservoirs. Both of Crop yields and soil available were found more sensitive to the fertilizer P rates in humid than drought year and soil available P is closely linked to concentrated rainfall. This study concludes that EPIC model has great potential to simulate the P cycle in croplands in China and can explore the optimum management practices.
Soler, C M Tojo; Bado, V B; Traore, K; Bostick, W McNair; Jones, J W; Hoogenboom, G
2011-10-01
In recent years, simulation models have been used as a complementary tool for research and for quantifying soil carbon sequestration under widely varying conditions. This has improved the understanding and prediction of soil organic carbon (SOC) dynamics and crop yield responses to soil and climate conditions and crop management scenarios. The goal of the present study was to estimate the changes in SOC for different cropping systems in West Africa using a simulation model. A crop rotation experiment conducted in Farakô-Ba, Burkina Faso was used to evaluate the performance of the cropping system model (CSM) of the Decision Support System for Agrotechnology Transfer (DSSAT) for simulating yield of different crops. Eight crop rotations that included cotton, sorghum, peanut, maize and fallow, and three different management scenarios, one without N (control), one with chemical fertilizer (N) and one with manure applications, were studied. The CSM was able to simulate the yield trends of various crops, with inconsistencies for a few years. The simulated SOC increased slightly across the years for the sorghum-fallow rotation with manure application. However, SOC decreased for all other rotations except for the continuous fallow (native grassland), in which the SOC remained stable. The model simulated SOC for the continuous fallow system with a high degree of accuracy normalized root mean square error (RMSE)=0·001, while for the other crop rotations the simulated SOC values were generally within the standard deviation (s.d.) range of the observed data. The crop rotations that included a supplemental N-fertilizer or manure application showed an increase in the average simulated aboveground biomass for all crops. The incorporation of this biomass into the soil after harvest reduced the loss of SOC. In the present study, the observed SOC data were used for characterization of production systems with different SOC dynamics. Following careful evaluation of the CSM with observed soil organic matter (SOM) data similar to the study presented here, there are many opportunities for the application of the CSM for carbon sequestration and resource management in Sub-Saharan Africa.
Descriptive and sensitivity analyses of WATBALI: A dynamic soil water model
NASA Technical Reports Server (NTRS)
Hildreth, W. W. (Principal Investigator)
1981-01-01
A soil water computer model that uses the IBM Continuous System Modeling Program III to solve the dynamic equations representing the soil, plant, and atmospheric physical or physiological processes considered is presented and discussed. Using values describing the soil-plant-atmosphere characteristics, the model predicts evaporation, transpiration, drainage, and soil water profile changes from an initial soil water profile and daily meteorological data. The model characteristics and simulations that were performed to determine the nature of the response to controlled variations in the input are described the results of the simulations are included and a change that makes the response of the model more closely represent the observed characteristics of evapotranspiration and profile changes for dry soil conditions is examined.
NASA Technical Reports Server (NTRS)
Field, Richard T.
1990-01-01
SOILSIM, a digital model of energy and moisture fluxes in the soil and above the soil surface, is presented. It simulates the time evolution of soil temperature and moisture, temperature of the soil surface and plant canopy the above surface, and the fluxes of sensible and latent heat into the atmosphere in response to surface weather conditions. The model is driven by simple weather observations including wind speed, air temperature, air humidity, and incident radiation. The model intended to be useful in conjunction with remotely sensed information of the land surface state, such as surface brightness temperature and soil moisture, for computing wide area evapotranspiration.
Obtaining soil hydraulic parameters from data assimilation under different climatic/soil conditions
USDA-ARS?s Scientific Manuscript database
Obtaining reliable soil hydraulic properties is essential to correctly simulating soil water content (SWC), which is a key component of countless applications such as agricultural management, soil remediation, aquifer protection, etc. Soil hydraulic properties can be measured in the laboratory; howe...
Simulating tracer transport in variably saturated soils and shallow groundwater
USDA-ARS?s Scientific Manuscript database
The objective of this study was to develop a realistic model to simulate the complex processes of flow and tracer transport in variably saturated soils and to compare simulation results with the detailed monitoring observations. The USDA-ARS OPE3 field site was selected for the case study due to ava...
GEODE : In situ planetary compact geochemistry facility
NASA Astrophysics Data System (ADS)
Angrilli, F.; Guizzo, G. P.; Bibring, J. P.; Fulchignoni, M.; Marinangeli, L.
2001-11-01
The purpose of this compact and miniaturised facility is to analyse the composition and physical properties of soils and rocks of the planetary surfaces. This type of assemblage would be suitable for the Mercury and Mars Scout missions (though under different environmental conditions) which require a very lightweight scientific package. In fact, ought to the very small dimensions of this facility, it can be easily allocated either inside a microrover or on a robotic arm of a lander. The scientific experiments we propose to be onboard the facility are: XMAP (x-ray diffractometer and fluorescence), MPE (magnetic properties experiment), VIRCUI (visible and infrared close-up imager). XMAP will perform mineralogical and chemical analysis directly on the sample surface. It will allow to define the textural and petro-mineralogical characteristics of the rocks and thus information of the past environment conditions. MPE will provide answers on the magnetic phase of particles and minerals which are responsible for the magnetisation of the soil. It can perform repeated measurements in different sites or generate variable field intensity and collect particles with different sizes. VIRCUI is a multifunction microscope that can perform visible and infrared analysis of the soil and at the same time it is a support for the MPE experiment; moreover VIRCUI can also be useful for the navigation of a microrover.
NASA Technical Reports Server (NTRS)
Fogleman, Guy (Editor); Huntington, Judith L. (Editor); Schwartz, Deborah E. (Editor); Fonda, Mark L. (Editor)
1989-01-01
An overview of the Gas-Grain Simulation Facility (GGSF) project and its current status is provided. The proceedings of the Gas-Grain Simulation Facility Experiments Workshop are recorded. The goal of the workshop was to define experiments for the GGSF--a small particle microgravity research facility. The workshop addressed the opportunity for performing, in Earth orbit, a wide variety of experiments that involve single small particles (grains) or clouds of particles. The first volume includes the executive summary, overview, scientific justification, history, and planned development of the Facility.
NASA Technical Reports Server (NTRS)
Roush, Ted L.; Colaprete, Anthony; Kleinhenz, Julie; Cook, Amanda
2017-01-01
NASA's Resource Prospector (RP) mission intends to visit a lunar polar region to characterize the volatile distribution. Part of the RP payload, the Near-infrared Volatile Spectrometer System (NIRVSS) is a spectrometer operating from 1600-3400 nm that provides sensitivity to water ice, and other volatiles. For multiple years, the NIRVSS system has been incorporated into on-going RP payload testing in a cryogenic vacuum facility at Glenn Research Center. Soil tubes of lunar simulants, prepared with known amounts of water, are placed in the vacuum chamber and cooled to cryogenic temperatures (soil temperatures of 110-170 K) and placed under low vacuum (a few x 10(exp -6) Torr). During these tests NIRVSS continuously measures spectra of soil cuttings emplaced onto the surface by a drill. Real time processing of NIRVSS spectra produces two spectral parameters associated with water ice absorption features near 2000 and 3000 nm that can be used to inform decision making activities such as delivery of the soil to a sealable container. Post-test collection and analyses of the soils permit characterization the water content as a function of depth. These water content profiles exhibit the characteristics of a vacuum desiccation zone to depths of about 40 cm. Subsequent to completion of the tests, NIRVSS spectra are processed to produce two spectral parameters associated with water ice absorption features near 2000 and 3000 nm. These features can be evaluated as a function of time, and correlated with drill depth, and other measurements, throughout the drilling activities. Until now no effort was attempted to quantitatively relate these parameters to water abundance. This is the focus of our efforts to be presented.
NASA Astrophysics Data System (ADS)
Roush, T. L.; Colaprete, A.; Kleinhenz, J.; Cook, A.
2017-12-01
NASA's Resource Prospector (RP) mission intends to visit a lunar polar region to characterize the volatile distribution. Part of the RP payload, the Near-infrared Volatile Spectrometer System (NIRVSS) is a spectrometer operating from 1600-3400 nm that provides sensitivity to water ice, and other volatiles. For multiple years, the NIRVSS system has been incorporated into on-going RP payload testing in a cryogenic vacuum facility at Glenn Research Center. Soil tubes of lunar simulants, prepared with known amounts of water, are placed in the vacuum chamber and cooled to cryogenic temperatures (soil temperatures of 110-170° K) and placed under low vacuum (a few x 10-6 Torr). During these tests NIRVSS continuously measures spectra of soil cuttings emplaced onto the surface by a drill. Real time processing of NIRVSS spectra produces two spectral parameters associated with water ice absorption features near 2000 and 3000 nm that can be used to inform decision-making activities such as delivery of the soil to a sealable container. Post-test collection and analyses of the soils permit characterization the water content as a function of depth. These water content profiles exhibit the characteristics of a vacuum desiccation zone to depths of about 40 cm. Subsequent to completion of the tests, NIRVSS spectra are processed to produce two spectral parameters associated with water ice absorption features near 2000 and 3000 nm. These features can be evaluated as a function of time, and correlated with drill depth, and other measurements, throughout the drilling activities. Until now no effort was attempted to quantitatively relate these parameters to water abundance. This is the focus of our efforts to be presented.
Martin, Jerry W; Moore, Philip A; Li, Hong; Ashworth, Amanda J; Miles, Dana M
2018-03-01
Ammonia (NH) scrubbers reduce amounts of NH and dust released from animal rearing facilities while generating nitrogen (N)-rich solutions, which may be used as fertilizers. The objective of this study was to determine the effects of various NH scrubber solutions on forage yields, N uptake, soil-test phosphorus (P), and P runoff. A small plot study was conducted using six treatments: (i) an unfertilized control, (ii) potassium bisulfate (KHSO) scrubber solution, (iii) aluminum sulfate [Al(SO) ⋅14HO, alum] scrubber solution, (iv) sodium bisulfate (NaHSO) scrubber solution, (v) sulfuric acid (HSO) scrubber solution, and (vi) ammonium nitrate (NHNO) fertilizer. The scrubber solutions were obtained from ARS Air Scrubbers attached to commercial broiler houses. All N sources were applied at a rate of 112 kg N ha. Plots were harvested approximately every 4 wk and soil-test P measurements were made, then a rainfall simulation study was conducted. Cumulative forage yields were greater ( < 0.05) for KHSO (7.6 Mg ha) and NaHSO (7.5 Mg ha) scrubber solutions than for alum (6.7 Mg ha) or HSO (6.5 Mg ha) scrubber solutions or for NHNO (6.9 Mg ha). All N sources resulted in higher yields than the control (5.1 Mg ha). The additional potassium in the KHSO treatment likely resulted in higher yields. Although Mehlich-III-extractable P was not affected, water-extractable P in soil was lowered by the alum-based scrubber solution, which also resulted in lower P runoff. This study demonstrates that N captured using NH scrubbers is a viable N fertilizer. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
One-dimensional simulation of temperature and moisture in atmospheric and soil boundary layers
NASA Technical Reports Server (NTRS)
Bornstein, R. D.; Santhanam, K.
1981-01-01
Meteorologists are interested in modeling the vertical flow of heat and moisture through the soil in order to better simulate the vertical and temporal variations of the atmospheric boundary layer. The one dimensional planetary boundary layer model of is modified by the addition of transport equations to be solved by a finite difference technique to predict soil moisture.
On Simulating the Mid-western-us Drought of 1988 with a GCM
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Mocko, D. M.; Lau, William K.-M.; Atlas, R.
2002-01-01
The primary cause of the midwestern North American drought in the summer of 1988 has been identified to be the La Nina SST anomalies. Yet with the SST anomalies prescribed, this drought has not been simulated satisfactorily by any general circulation model. Seven simulation-experiments, each containing an ensemble of 4-sets of simulations, were conducted with the GEOS GCM for both 1987 and 1988. All simulations started from January 1 and continued through the end of August. In the first baseline case, Case 1, only the SST anomalies and some vegetation parameters were prescribed, while everything else (such as soil moisture, snow-cover, and clouds) was interactive. The GCM did produce some of the circulation features of a drought over North America, but they could only be identified on the planetary scales. The 1988 minus 1987 precipitation differences show that the GCM was successful in simulating reduced precipitation in the mid-west, but the accompanying circulation anomalies were not well simulated, leading one to infer that the GCM has simulated the drought for the wrong reason. To isolate the causes for this unremarkable circulation, analyzed winds and soil moisture were prescribed in Case 2 and Case 3 as continuous updates by direct replacement of the GCM-predicted fields. These cases show that a large number of simulation biases emanate from wind biases that are carried into the North American region from surroundings regions. Inclusion of soil moisture also helps to ameliorate the strong feedback, perhaps even stronger than that of the real atmosphere, between soil moisture and precipitation. Case 2 simulated one type of surface temperature anomaly pattern, whereas Case 3 with the prescribed soil moisture produced another.
USING PLANTS TO REMEDIATE PETROLEUM-CONTAMINATED SOIL: PROJECT CONTINUATION
Crude oil contamination of soil often occurs adjacent to wellheads and storage facilities. Phytoremediation is a promising tool that can be used to remediate such sites and uses plants and agronomic techniques to enhance biodegradation of hydrocarbons. This project has conduct...
Johnson Space Center's regenerative life support systems test bed
NASA Technical Reports Server (NTRS)
Henninger, Donald L.; Tri, Terry O.; Barta, Daniel J.; Stahl, Randal S.
1991-01-01
The Regenerative Life Support System (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for the evaluation of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. When completed, the facility will be comprised of two large scale plant growth chambers, each with approximately 10 m(exp 2) growing area. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), will be capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in Lunar or Martian habitats; the other chamber, the Ambient Pressure Growth Chamber (APGC) will operate at ambient atmospheric pressure. The root zone in each chamber will be configurable for hydroponic or solid state media systems. Research will focus on: (1) in situ resource utilization for CELSS systems, in which simulated lunar soils will be used in selected crop growth studies; (2) integration of biological and physicochemical air and water revitalization systems; (3) effect of atmospheric pressure on system performance; and (4) monitoring and control strategies.
Europlanet Research Infrastructure: Planetary Simulation Facilities
NASA Astrophysics Data System (ADS)
Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.
2008-09-01
EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of pressures and temperatures and through provision of external UV light and or electrical discharge can be used to form the well known Titan Aerosol species, which can subsequently be analysed using one of several analytical techniques (UV-Vis, FTIR and mass spectrometry). Simulated surfaces can be produced (icy surfaces down to 15K) and subjected to a variety of light and particles (electron and ion) sources. Chemical and physical changes in the surface may be explored using remote spectroscopy. Planetary Simulation chamber for low density atmospheres INTA-CAB The planetary simulation chamber-ultra-high vacuum equipment (PSC-UHV) has been designed to study planetary surfaces and low dense atmospheres, space environments or any other hypothetic environment at UHV. Total pressure ranges from 7 mbar (Martian conditions) to 5x10-9 mbar. A residual gas analyzer regulates gas compositions to ppm precision. Temperature ranges from 4K to 325K and most operations are computer controlled. Radiation levels are simulated using a deuterium UV lamp, and ionization sources. 5 KV electron and noble-gas discharge UV allows measurement of IR and UV spectra and chemical compositions are determined by mass spectroscopy. Planetary Simulation chamber for high density planetary atmospheres at INTA-CAB The facility allows experimental study of planetary environments under high pressure, and was designed to include underground, seafloor and dense atmosphere environments. Analytical capabilities include Raman spectra, physicochemical properties of materials, e.a. thermal conductivity. P-T can be controlled as independent variables to allow monitoring of the tolerance of microorganisms and the stability of materials and their phase changes. Planetary Simulation chamber for icy surfaces at INTA-CAB This chamber is being developed to the growth of ice samples to simulate the chemical and physical properties of ices found on both planetary bodies and their moons. The goal is to allow measurement of the physical properties of ice samples formed under planetary conditions to assess how rheology varies with pressure and temperature and grain size to gain a far better understanding of how tectonics may operate on icy moons. Hot planetary surfaces simulation chamber at DLR The planetary simulation chamber is to study the behaviour of planetary analogue materials on the surface of hot (airless) bodies in the solar system. Samples can be heated up to temperatures of 500°C simulating conditions found on the surface of Mercury and Venus. This enables highly accurate thermal emission measurements using the integrated infrared spectrometer and calibrated sources. Thermal gradients can be applied to samples to simulate diurnal thermal cycles and examine thermal stresses in materials. The chamber can be placed under vacuum or purged with gas. In addition, to the high temperature chamber a number of further planetary simulation chambers are available equipped with LIBS and Raman-spectroscopy equipment. Dust analogue simulation chamber at INAF/OACN This facility produces and characterises dust analogues (arc discharge, laser ablation, grinding of minerals, ices) in a variety of simulation chambers under variable pressure (10-6 - 10-3 mbar), temperature (80 - 330 K) and gas composition. Dust and analogues are characterised by a variety of Spectroscopic (absorption, transmission, diffuse-specular reflectance) and imaging techniques (SEM) and can be subjected to thermal annealing, ion bombardment and UV irradiation. Dust accelerator facility at Max Planck Institüt Nuclear Physics, Heidelberg. This facility allows the investigation of hypervelocity dust impacts onto various materials. Dust grain materials from nano to micron sizes are accelerated using a 2 MV Vande- Graaff to velocities between 1 and 60 km/s comparable to the planetary rings of the giant gas planets and impact ejecta processes on the surface of small bodies (asteroids, comets) as well as moons and planetary surfaces. Potential phenomena for study include dust charging, dust magentosphere interactions, dust impact flashes and the possibility of obtaining compositional measurements of impact plasma plumes. Mars surface simulation Laboratory, Aberystwyth University. A Planetary Analogue Terrain Laboratory facilitates comprehensive mission operations emulation experiments designed to interpret and maximise scientific data return from robotic instruments. This facility includes Mars Soil Simulant and `science target' rocks that have been fully characterised. The terrain also has an area for sub-surface sampling. An Access Grid Node allows simulation of remote control operation and diminishes the need for direct onsite attendance. PAT Lab has a large selection of software tools for rover, robot arm and instrument modelling and simulation, and for the processing and visualisation of captured instrument data. Instrument motion is measured using a Vicon motion capture system with a resolution < 0.1 mm. Dusty wind tunnel at Aarhus University, Denmark The Aarhus wind tunnel simulates wind driven dust exposure on Mars. This allows study into analogue materials, dust/surface processes, meteorological condition and microbiological survival under Martian conditions. The multipurpose facility is used to quantify dust deposition (i.e. on optical surfaces, electrical or mechanical components) and examine the operation of instrumentation in dusty/windy environment under Martian conditions (pressure, gas composition & temperature). This includes calibration of wind flow instrumentation and dust sensors.
CQESTR Simulation of Soil Organic Matter Dynamics in Long-term Agricultural Experiments across USA
NASA Astrophysics Data System (ADS)
Gollany, H.; Liang, Y.; Albrecht, S.; Rickman, R.; Follett, R.; Wilhelm, W.; Novak, J.
2009-04-01
Soil organic matter (SOM) has important chemical (supplies nutrients, buffers and adsorbs harmful chemical compounds), biological (supports the growth of microorganisms and micro fauna), and physical (improves soil structure and soil tilth, stores water, and reduces surface crusting, water runoff) functions. The loss of 20 to 50% of soil organic carbon (SOC) from USA soils after converting native prairie or forest to production agriculture is well documented. Sustainable management practices for SOC is critical for maintaining soil productivity and responsible utilization of crop residues. As crop residues are targeted for additional uses (e.g., cellulosic ethanol feedstock) developing C models that predict change in SOM over time with change in management becomes increasingly important. CQESTR, pronounced "sequester," is a process-based C balance model that relates organic residue additions, crop management and soil tillage to SOM accretion or loss. The model works on daily time-steps and can perform long-term (100-year) simulations. Soil organic matter change is computed by maintaining a soil C budget for additions, such as crop residue or added amendments like manure, and organic C losses through microbial decomposition. Our objective was to simulate SOM changes in agricultural soils under a range of soil parent materials, climate and management systems using the CQESTR model. Long-term experiments (e.g. Champaign, IL, >100 yrs; Columbia, MO, >100 yrs; Lincoln, NE, 20 yrs) under various tillage practices, organic amendments, crop rotations, and crop residue removal treatments were selected for their documented history of the long-term effects of management practice on SOM dynamics. Simulated and observed values from the sites were significantly related (r2 = 94%, P < 0.001) with slope not significantly different from 1. Recent interest in crop residue removal for biofuel feedstock prompted us to address that as a management issue. CQESTR successfully simulated a substantial decline in SOM with 90% of crop residue removal for 50 years under various rotations at Columbia, MO and Champaign, IL. An increase in SOM following addition of manure was also well simulated. However, the model underestimated SOM for a fertilized treatment at Columbia. We estimated that a minimum of 8.0 Mg/ha/yr of crop residue and organic amendments (4.0 Mg C ha/yr) was required to prevent a decline in SOM at the Morrow Plots in Champaign, IL. More studies are needed to evaluate the CQESTR model's performance in predicting the amount of crop residue required to maintain the SOM concentration in different soils under a wide range of management and climatic conditions. Given the high correlation of simulated and observed SOM changes, CQESTR can be used to consider a wide range of scenarios before making recommendations or implementing proposed changes. CQESTR in conjunction with the local conditions can guide planning and development of sustainable crop and soil management practices.
NASA Technical Reports Server (NTRS)
Contreras, Michael T.; Trease, Brian P.; Bojanowski, Cezary; Kulakx, Ronald F.
2013-01-01
A wheel experiencing sinkage and slippage events poses a high risk to planetary rover missions as evidenced by the mobility challenges endured by the Mars Exploration Rover (MER) project. Current wheel design practice utilizes loads derived from a series of events in the life cycle of the rover which do not include (1) failure metrics related to wheel sinkage and slippage and (2) performance trade-offs based on grouser placement/orientation. Wheel designs are rigorously tested experimentally through a variety of drive scenarios and simulated soil environments; however, a robust simulation capability is still in development due to myriad of complex interaction phenomena that contribute to wheel sinkage and slippage conditions such as soil composition, large deformation soil behavior, wheel geometry, nonlinear contact forces, terrain irregularity, etc. For the purposes of modeling wheel sinkage and slippage at an engineering scale, meshfree nite element approaches enable simulations that capture su cient detail of wheel-soil interaction while remaining computationally feasible. This study implements the JPL wheel-soil benchmark problem in the commercial code environment utilizing the large deformation modeling capability of Smooth Particle Hydrodynamics (SPH) meshfree methods. The nominal, benchmark wheel-soil interaction model that produces numerically stable and physically realistic results is presented and simulations are shown for both wheel traverse and wheel sinkage cases. A sensitivity analysis developing the capability and framework for future ight applications is conducted to illustrate the importance of perturbations to critical material properties and parameters. Implementation of the proposed soil-wheel interaction simulation capability and associated sensitivity framework has the potential to reduce experimentation cost and improve the early stage wheel design proce
Activity and stability of a complex bacterial soil community under simulated Martian conditions
NASA Astrophysics Data System (ADS)
Hansen, Aviaja Anna; Merrison, Jonathan; Nørnberg, Per; Aagaard Lomstein, Bente; Finster, Kai
2005-04-01
A simulation experiment with a complex bacterial soil community in a Mars simulation chamber was performed to determine the effect of Martian conditions on community activity, stability and survival. At three different depths in the soil core short-term effects of Martian conditions with and without ultraviolet (UV) exposure corresponding to 8 Martian Sol were compared. Community metabolic activities and functional diversity, measured as glucose respiration and versatility in substrate utilization, respectively, decreased after UV exposure, whereas they remained unaffected by Martian conditions without UV exposure. In contrast, the numbers of culturable bacteria and the genetic diversity were unaffected by the simulated Martian conditions both with and without UV exposure. The genetic diversity of the soil community and of the colonies grown on agar plates were evaluated by denaturant gradient gel electrophoresis (DGGE) on DNA extracts. Desiccation of the soil prior to experimentation affected the functional diversity by decreasing the versatility in substrate utilization. The natural dominance of endospores and Gram-positive bacteria in the investigated Mars-analogue soil may explain the limited effect of the Mars incubations on the survival and community structure. Our results suggest that UV radiation and desiccation are major selecting factors on bacterial functional diversity in terrestrial bacterial communities incubated under simulated Martian conditions. Furthermore, these results suggest that forward contamination of Mars is a matter of great concern in future space missions.
Wang, De-Gao; Yang, Meng; Qi, Hong; Sverko, Ed; Ma, Wan-Li; Li, Yi-Fan; Alaee, Mehran; Reiner, Eric J; Shen, Li
2010-09-01
The distribution of dechloranes, a group of chlorinated flame retardants, were investigated in air, soil, and sediment around a newly discovered Dechlorane Plus (DP) production facility in China (Anpon). To date, the only known DP manufacturing plant is located in Niagara Falls, NY (OxyChem). Dechloranes including DP, Dechlorane (Mirex), and the recently discovered Dechlorane 602 (Dec 602) were detected in air, soil, and sediment, while Dechlorane 603 and Dechlorane 604 were below detection limit in all matrices. DP air concentrations near the facility ranged from 7737 to 26 734 pg m(-3), the greatest reported thus far. Soil concentrations in the same area for DP, Dechlorane, and Dec 602 were 1490+/-3580 ng g(-1), 81.6+/-96.5 ng g(-1), and 7.24+/-13.2 ng g(-1) dry weight, respectively. Interestingly, lower concentrations of DP (4.93+/-4.34 ng g(-1)), Dechlorane (30.2+/-19.9 ng g(-1)), and Dec 602 (2.14+/-2.23 ng g(-1)) were found in sediment from a nearby canal. Spatial trends of Dechlorane and Dec 602 in soil were similar to DP, implying that the DP manufacturing plant may also be a source of these other flame retardants. DP soil concentrations surrounding the facility decreased by an order of magnitude within 7.5 km. The syn-DP fractional abundance (fsyn) value (0.40) for the commercial DP product manufactured at Anpon was slightly higher than that (0.20-0.36) produced by OxyChem. The fsyn value in most air samples was largely similar to the Chinese commercial DP mixture, while most soil and sediment abundances were lower, suggesting a stereoselective depletion of syn-DP.
NASA Astrophysics Data System (ADS)
Delon, C.; Mougin, E.; Serça, D.; Grippa, M.; Hiernaux, P.; Diawara, M.; Galy-Lacaux, C.; Kergoat, L.
2014-08-01
This work is an attempt to provide seasonal variation of biogenic NO emission fluxes in a sahelian rangeland in Mali (Agoufou, 15.34° N, 1.48° W) for years 2004, 2005, 2006, 2007 and 2008. Indeed, NO is one of the most important precursor for tropospheric ozone, and the contribution of the Sahel region in emitting NO is no more considered as negligible. The link between NO production in the soil and NO release to the atmosphere is investigated in this study, by taking into account vegetation litter production and degradation, microbial processes in the soil, emission fluxes, and environmental variables influencing these processes, using a coupled vegetation-litter decomposition-emission model. This model includes the Sahelian-Transpiration-Evaporation-Productivity (STEP) model for the simulation of herbaceous, tree leaf and fecal masses, the GENDEC model (GENeral DEComposition) for the simulation of the buried litter decomposition, and the NO emission model for the simulation of the NO flux to the atmosphere. Physical parameters (soil moisture and temperature, wind speed, sand percentage) which affect substrate diffusion and oxygen supply in the soil and influence the microbial activity, and biogeochemical parameters (pH and fertilization rate related to N content) are necessary to simulate the NO flux. The reliability of the simulated parameters is checked, in order to assess the robustness of the simulated NO flux. Simulated yearly average of NO flux ranges from 0.69 to 1.09 kg(N) ha-1 yr-1, and wet season average ranges from 1.16 to 2.08 kg(N) ha-1 yr-1. These results are in the same order as previous measurements made in several sites where the vegetation and the soil are comparable to the ones in Agoufou. This coupled vegetation-litter decomposition-emission model could be generalized at the scale of the Sahel region, and provide information where little data is available.
NASA Astrophysics Data System (ADS)
Delon, C.; Mougin, E.; Serça, D.; Grippa, M.; Hiernaux, P.; Diawara, M.; Galy-Lacaux, C.; Kergoat, L.
2015-01-01
This work is an attempt to provide seasonal variation of biogenic NO emission fluxes in a sahelian rangeland in Mali (Agoufou, 15.34° N, 1.48° W) for years 2004-2008. Indeed, NO is one of the most important precursor for tropospheric ozone, and the contribution of the Sahel region in emitting NO is no more considered as negligible. The link between NO production in the soil and NO release to the atmosphere is investigated in this study, by taking into account vegetation litter production and degradation, microbial processes in the soil, emission fluxes, and environmental variables influencing these processes, using a coupled vegetation-litter decomposition-emission model. This model includes the Sahelian-Transpiration-Evaporation-Productivity (STEP) model for the simulation of herbaceous, tree leaf and fecal masses, the GENDEC model (GENeral DEComposition) for the simulation of the buried litter decomposition and microbial dynamics, and the NO emission model (NOFlux) for the simulation of the NO release to the atmosphere. Physical parameters (soil moisture and temperature, wind speed, sand percentage) which affect substrate diffusion and oxygen supply in the soil and influence the microbial activity, and biogeochemical parameters (pH and fertilization rate related to N content) are necessary to simulate the NO flux. The reliability of the simulated parameters is checked, in order to assess the robustness of the simulated NO flux. Simulated yearly average of NO flux ranges from 0.66 to 0.96 kg(N) ha-1 yr-1, and wet season average ranges from 1.06 to 1.73 kg(N) ha-1 yr-1. These results are in the same order as previous measurements made in several sites where the vegetation and the soil are comparable to the ones in Agoufou. This coupled vegetation-litter decomposition-emission model could be generalized at the scale of the Sahel region, and provide information where little data is available.
How model and input uncertainty impact maize yield simulations in West Africa
NASA Astrophysics Data System (ADS)
Waha, Katharina; Huth, Neil; Carberry, Peter; Wang, Enli
2015-02-01
Crop models are common tools for simulating crop yields and crop production in studies on food security and global change. Various uncertainties however exist, not only in the model design and model parameters, but also and maybe even more important in soil, climate and management input data. We analyze the performance of the point-scale crop model APSIM and the global scale crop model LPJmL with different climate and soil conditions under different agricultural management in the low-input maize-growing areas of Burkina Faso, West Africa. We test the models’ response to different levels of input information from little to detailed information on soil, climate (1961-2000) and agricultural management and compare the models’ ability to represent the observed spatial (between locations) and temporal variability (between years) in crop yields. We found that the resolution of different soil, climate and management information influences the simulated crop yields in both models. However, the difference between models is larger than between input data and larger between simulations with different climate and management information than between simulations with different soil information. The observed spatial variability can be represented well from both models even with little information on soils and management but APSIM simulates a higher variation between single locations than LPJmL. The agreement of simulated and observed temporal variability is lower due to non-climatic factors e.g. investment in agricultural research and development between 1987 and 1991 in Burkina Faso which resulted in a doubling of maize yields. The findings of our study highlight the importance of scale and model choice and show that the most detailed input data does not necessarily improve model performance.
Validation of SWEEP for creep, saltation, and suspension in a desert-oasis ecotone
NASA Astrophysics Data System (ADS)
Pi, H.; Sharratt, B.; Feng, G.; Lei, J.; Li, X.; Zheng, Z.
2016-03-01
Wind erosion in the desert-oasis ecotone can accelerate desertification, but little is known about the susceptibility of the ecotone to wind erosion in the Tarim Basin despite being a major source of windblown dust in China. The objective of this study was to test the performance of the Single-event Wind Erosion Evaluation Program (SWEEP) in simulating soil loss as creep, saltation, and suspension in a desert-oasis ecotone. Creep, saltation, and suspension were measured and simulated in a desert-oasis ecotone of the Tarim Basin during discrete periods of high winds in spring 2012 and 2013. The model appeared to adequately simulate total soil loss (ranged from 23 to 2272 g m-2 across sample periods) according to the high index of agreement (d = 0.76). The adequate agreement of the SWEEP in simulating total soil loss was due to the good performance of the model (d = 0.71) in simulating creep plus saltation. The SWEEP model, however, inadequately simulated suspension based upon a low d (⩽0.43). The slope estimates of the regression between simulated and measured suspension and difference of mean suggested that the SWEEP underestimated suspension. The adequate simulation of creep plus saltation thus provides reasonable estimates of total soil loss using SWEEP in a desert-oasis environment.
Soil Organic Matter (SOM): Molecular Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, Amity
Molecular simulation is a powerful tool used to gain an atomistic, molecular, and nanoscale level understanding of the structure, dynamics, and interactions from adsorption on minerals and assembly in aggregates of soil organic matter (SOM). Given the importance of SOM fate and persistence in soils and the current knowledge gaps, applications of atomistic scale simulations to study the complex compounds in SOM and their interactions in self-assembled aggregates composed of different organic matter compounds and with mineral surfaces of different types common in soils are few and far between. Here, we describe various molecular simulation methods that are currently inmore » use in various areas and applicable to SOM research, followed by a brief survey of specific applications to SOM research and an illustration with our own recent efforts in this area. We conclude with an outlook and the challenges for future research in this area.« less
Zhang, Kefeng; Bosch-Serra, Angela D.; Boixadera, Jaume; Thompson, Andrew J.
2015-01-01
Agro-hydrological models have increasingly become useful and powerful tools in optimizing water and fertilizer application, and in studying the environmental consequences. Accurate prediction of water dynamics in such models is essential for models to produce reasonable results. In this study, detailed simulations were performed for water dynamics of rainfed winter wheat and barley grown under a Mediterranean climate over a 10-year period. The model employed (Yang et al., 2009. J. Hydrol., 370, 177-190) uses easily available agronomic data, and takes into consideration of all key soil and plant processes in controlling water dynamics in the soil-crop system, including the dynamics of root growth. The water requirement for crop growth was calculated according to the FAO56, and the soil hydraulic properties were estimated using peto-transfer functions (PTFs) based on soil physical properties and soil organic matter content. Results show that the simulated values of soil water content at the depths of 15, 45 and 75 cm agreed with the measurements well with the root of the mean squared errors of 0.027 cm3 cm-3 and the model agreement index of 0.875. The simulated seasonal evapotranspiration (ET) ranged from 208 to 388 mm, and grain yield was found to correlate with the simulated seasonal ET in a linear manner within the studied ET range. The simulated rates of grain yield increase were 17.3 and 23.7 kg ha-l for every mm of water evapotranspired for wheat and barley, respectively. The good agreement of soil water content between measurement and simulation and the simulated relationships between grain yield and seasonal ET supported by the data in the literature indicates that the model performed well in modelling water dynamics for the studied soil-crop system, and therefore has the potential to be applied reliably and widely in precision agriculture. Finally, a two-staged approach using inverse modelling techniques to further improve model performance was discussed. PMID:26098946
Zhang, Kefeng; Bosch-Serra, Angela D; Boixadera, Jaume; Thompson, Andrew J
2015-01-01
Agro-hydrological models have increasingly become useful and powerful tools in optimizing water and fertilizer application, and in studying the environmental consequences. Accurate prediction of water dynamics in such models is essential for models to produce reasonable results. In this study, detailed simulations were performed for water dynamics of rainfed winter wheat and barley grown under a Mediterranean climate over a 10-year period. The model employed (Yang et al., 2009. J. Hydrol., 370, 177-190) uses easily available agronomic data, and takes into consideration of all key soil and plant processes in controlling water dynamics in the soil-crop system, including the dynamics of root growth. The water requirement for crop growth was calculated according to the FAO56, and the soil hydraulic properties were estimated using peto-transfer functions (PTFs) based on soil physical properties and soil organic matter content. Results show that the simulated values of soil water content at the depths of 15, 45 and 75 cm agreed with the measurements well with the root of the mean squared errors of 0.027 cm(3) cm(-3) and the model agreement index of 0.875. The simulated seasonal evapotranspiration (ET) ranged from 208 to 388 mm, and grain yield was found to correlate with the simulated seasonal ET in a linear manner within the studied ET range. The simulated rates of grain yield increase were 17.3 and 23.7 kg ha(-l) for every mm of water evapotranspired for wheat and barley, respectively. The good agreement of soil water content between measurement and simulation and the simulated relationships between grain yield and seasonal ET supported by the data in the literature indicates that the model performed well in modelling water dynamics for the studied soil-crop system, and therefore has the potential to be applied reliably and widely in precision agriculture. Finally, a two-staged approach using inverse modelling techniques to further improve model performance was discussed.
NASA Astrophysics Data System (ADS)
Jiao, Huiqing; Zhao, Chengyi; Sheng, Yu; Chen, Yan; Shi, Jianchu; Li, Baoguo
2017-04-01
Water shortage and soil salinization increasingly become the main constraints for sustainable development of agriculture in Southern Xinjiang, China. Mulched drip irrigation, as a high-efficient water-saving irrigation method, has been widely applied in Southern Xinjiang for cotton production. In order to analyze the reasonability of describing the three-dimensional soil water and salt transport processes under mulched drip irrigation with a relatively simple two-dimensional model, a field experiment was conducted from 2007 to 2015 at Aksu of Southern Xinjiang, and soil water and salt transport processes were simulated through the three-dimensional and two-dimensional models based on COMSOL. Obvious differences were found between three-dimensional and two-dimensional simulations for soil water flow within the early 12 h of irrigation event and for soil salt transport in the area within 15 cm away from drip tubes during the whole irrigation event. The soil water and salt contents simulated by the two-dimensional model, however, agreed well with the mean values between two adjacent emitters simulated by the three-dimensional model, and also coincided with the measurements as corresponding RMSE less than 0.037 cm3 cm-3 and 1.80 g kg-1, indicating that the two-dimensional model was reliable for field irrigation management. Subsequently, the two-dimensional model was applied to simulate the dynamics of soil salinity for five numerical situations and for a widely adopted irrigation pattern in Southern Xinjiang (about 350 mm through mulched drip irrigation during growing season of cotton and total 400 mm through flooding irrigations before sowing and after harvesting). The simulation results indicated that the contribution of transpiration to salt accumulation in root layer was about 75% under mulched drip irrigation. Moreover, flooding irrigations before sowing and after harvesting were of great importance for salt leaching of arable layer, especially in bare strip where drip irrigation water hardly reached, and thus providing suitable root zone environment for cotton. Nevertheless, flooding irrigation should be further optimized to enhance water use efficiency.
Thomas, Matthew A.; Mirus, Benjamin B.; Collins, Brian D.; Lu, Ning; Godt, Jonathan W.
2018-01-01
Rainfall-induced shallow landsliding is a persistent hazard to human life and property. Despite the observed connection between infiltration through the unsaturated zone and shallow landslide initiation, there is considerable uncertainty in how estimates of unsaturated soil-water retention properties affect slope stability assessment. This source of uncertainty is critical to evaluating the utility of physics-based hydrologic modeling as a tool for landslide early warning. We employ a numerical model of variably saturated groundwater flow parameterized with an ensemble of texture-, laboratory-, and field-based estimates of soil-water retention properties for an extensively monitored landslide-prone site in the San Francisco Bay Area, CA, USA. Simulations of soil-water content, pore-water pressure, and the resultant factor of safety show considerable variability across and within these different parameter estimation techniques. In particular, we demonstrate that with the same permeability structure imposed across all simulations, the variability in soil-water retention properties strongly influences predictions of positive pore-water pressure coincident with widespread shallow landsliding. We also find that the ensemble of soil-water retention properties imposes an order-of-magnitude and nearly two-fold variability in seasonal and event-scale landslide susceptibility, respectively. Despite the reduced factor of safety uncertainty during wet conditions, parameters that control the dry end of the soil-water retention function markedly impact the ability of a hydrologic model to capture soil-water content dynamics observed in the field. These results suggest that variability in soil-water retention properties should be considered for objective physics-based simulation of landslide early warning criteria.
Trade study comparing specimen chamber servicing methods for the Space Station Centrifuge Facility
NASA Technical Reports Server (NTRS)
Calvisi, Michael L.; Sun, Sidney C.
1991-01-01
The Specimen Chamber Service Unit, a component of the Space Station Centrifuge Facility, must provide a clean enclosure on a continuing basis for the facility's plant, rodent and primate specimens. The specimen chambers can become soiled and can require periodic servicing to maintain a clean environment for the specimens. Two methods of servicing the specimen chambers are discussed: washing the chambers with an on-board washer, or disposing of the soiled chambers and replacing them with clean ones. Many of these issues are addressed by developing several servicing options, using either cleaning or replacement as the method of providing clean specimen chambers, and then evaluating each option according to a set of established quantitative and qualitative criteria. Disposing and replacing the Specimen Chambers is preferable to washing them.
NASA Astrophysics Data System (ADS)
Shi, Y.; Davis, K. J.; Eissenstat, D. M.; Kaye, J. P.; Duffy, C.; Yu, X.; He, Y.
2014-12-01
Belowground carbon processes are affected by soil moisture and soil temperature, but current biogeochemical models are 1-D and cannot resolve topographically driven hill-slope soil moisture patterns, and cannot simulate the nonlinear effects of soil moisture on carbon processes. Coupling spatially-distributed physically-based hydrologic models with biogeochemical models may yield significant improvements in the representation of topographic influence on belowground C processes. We will couple the Flux-PIHM model to the Biome-BGC (BBGC) model. Flux-PIHM is a coupled physically-based land surface hydrologic model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Because PIHM is capable of simulating lateral water flow and deep groundwater, Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. The coupled Flux-PIHM-BBGC model will be tested at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). The abundant observations, including eddy covariance fluxes, soil moisture, groundwater level, sap flux, stream discharge, litterfall, leaf area index, above ground carbon stock, and soil carbon efflux, make SSHCZO an ideal test bed for the coupled model. In the coupled model, each Flux-PIHM model grid will couple a BBGC cell. Flux-PIHM will provide BBGC with soil moisture and soil temperature information, while BBGC provides Flux-PIHM with leaf area index. Preliminary results show that when Biome- BGC is driven by PIHM simulated soil moisture pattern, the simulated soil carbon is clearly impacted by topography.
Herrmann, Frank; Baghdadi, Nicolas; Blaschek, Michael; Deidda, Roberto; Duttmann, Rainer; La Jeunesse, Isabelle; Sellami, Haykel; Vereecken, Harry; Wendland, Frank
2016-02-01
We used observed climate data, an ensemble of four GCM-RCM combinations (global and regional climate models) and the water balance model mGROWA to estimate present and future groundwater recharge for the intensively-used Thau lagoon catchment in southern France. In addition to a highly resolved soil map, soil moisture distributions obtained from SAR-images (Synthetic Aperture Radar) were used to derive the spatial distribution of soil parameters covering the full simulation domain. Doing so helped us to assess the impact of different soil parameter sources on the modelled groundwater recharge levels. Groundwater recharge was simulated in monthly time steps using the ensemble approach and analysed in its spatial and temporal variability. The soil parameters originating from both sources led to very similar groundwater recharge rates, proving that soil parameters derived from SAR images may replace traditionally used soil maps in regions where soil maps are sparse or missing. Additionally, we showed that the variance in different GCM-RCMs influences the projected magnitude of future groundwater recharge change significantly more than the variance in the soil parameter distributions derived from the two different sources. For the period between 1950 and 2100, climate change impacts based on the climate model ensemble indicated that overall groundwater recharge will possibly show a low to moderate decrease in the Thau catchment. However, as no clear trend resulted from the ensemble simulations, reliable recommendations for adapting the regional groundwater management to changed available groundwater volumes could not be derived. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Guenette, Kris; Hernandez-Ramirez, Guillermo
2017-04-01
Achieving resiliency in agroecosystems may be accomplished through the incorporation of contemporary management systems and the diversification of crop rotations with pulse crops, such as controlled traffic farming (CTF) and faba beans (Vicia faba L.). As these practices become more common in the Canadian Prairies, it is imperative to have a well-rounded understanding of how faba beans interact with the soil-plant-atmosphere continuum in conditions found in contemporary management systems. Simulated field conditions emulated soil compaction found in both the trafficked and un-trafficked areas of a CTF system, in which the presence of high water availability was shown to offset the negative results of large applications of compactive effort. Furthermore, low water availability exacerbated differences in plant responses between compaction treatments. The simulated treatment of 1.2 gcm-3 coupled with high water content yielded the most optimal results for most measured parameters, with a contrasting detrimental treatment of 1.4 gcm-3 at low water availability. The simulated field conditions were further bridged through an analysis of two commercial sites in Alberta, Canada that compared both trafficked and un-trafficked soil properties. Soil properties such as available nitrogen (AN), pH, soil total nitrogen (STN), soil organic carbon (SOC), bulk density, macroporosity, soil quality S-Index, plant available water capacity (PAWC) and unsaturated hydraulic conductivity (Km) were analysed and compared among trafficked and un-trafficked areas. The measured soil physical and hydraulic properties of bulk density, macroporosity, S-Index, PAWC and Km were shown to be heavily influenced by the CTF traffic regime, while soil nutrient properties of AN, pH, STN SOC were determined to be dependent on both management and landscape features.
NASA Technical Reports Server (NTRS)
Clement, W. F.; Allen, R. W.; Heffley, R. K.; Jewell, W. F.; Jex, H. R.; Mcruer, D. T.; Schulman, T. M.; Stapleford, R. L.
1980-01-01
The NASA Ames Research Center proposed a man-vehicle systems research facility to support flight simulation studies which are needed for identifying and correcting the sources of human error associated with current and future air carrier operations. The organization of research facility is reviewed and functional requirements and related priorities for the facility are recommended based on a review of potentially critical operational scenarios. Requirements are included for the experimenter's simulation control and data acquisition functions, as well as for the visual field, motion, sound, computation, crew station, and intercommunications subsystems. The related issues of functional fidelity and level of simulation are addressed, and specific criteria for quantitative assessment of various aspects of fidelity are offered. Recommendations for facility integration, checkout, and staffing are included.
Applicability of five models to simulate water infiltration into soil with added biochar
USDA-ARS?s Scientific Manuscript database
As a soil amendment, biochar can reduce soil bulk density, increase soil porosity, and alter soil aggregates and thus affect the infiltration. Researchers have proposed and revised several theoretical models to describe the process of soil infiltration. Although these models have been successfully u...
Code of Federal Regulations, 2010 CFR
2010-07-01
... decontamination levels set forth in this policy as constituting adequate cleanup of PCBs. (2) “Standards” refers to the numerical decontamination levels set forth in this policy. Residential/commercial areas means... designated agent (e.g., a facility manager or foreman). Soil means all vegetation, soils and other ground...
V.A. III Technical Information #1030. Revised.
ERIC Educational Resources Information Center
Texas A and M Univ., College Station. Vocational Instructional Services.
Instructional materials provided for five areas of agricultural education: animal science, soil science, plant science, agricultural mechanics, and agricultural management. Animal science consists of four units on animal reproduction, livestock, wildlife, and livestock facilities. The three units on soil science are reading and interpreting soil…
NASA Astrophysics Data System (ADS)
Hu, Guojie; Wu, Xiaodong; Zhao, Lin; Li, Ren; Wu, Tonghua; Xie, Changwei; Pang, Qiangqiang; Cheng, Guodong
2017-08-01
Soil temperature plays a key role in hydro-thermal processes in environments and is a critical variable linking surface structure to soil processes. There is a need for more accurate temperature simulation models, particularly in Qinghai-Xizang (Tibet) Plateau (QXP). In this study, a model was developed for the simulation of hourly soil surface temperatures with air temperatures. The model incorporated the thermal properties of the soil, vegetation cover, solar radiation, and water flux density and utilized field data collected from Qinghai-Xizang (Tibet) Plateau (QXP). The model was used to simulate the thermal regime at soil depths of 5 cm, 10 cm and 20 cm and results were compared with those from previous models and with experimental measurements of ground temperature at two different locations. The analysis showed that the newly developed model provided better estimates of observed field temperatures, with an average mean absolute error (MAE), root mean square error (RMSE), and the normalized standard error (NSEE) of 1.17 °C, 1.30 °C and 13.84 %, 0.41 °C, 0.49 °C and 5.45 %, 0.13 °C, 0.18 °C and 2.23 % at 5 cm, 10 cm and 20 cm depths, respectively. These findings provide a useful reference for simulating soil temperature and may be incorporated into other ecosystem models requiring soil temperature as an input variable for modeling permafrost changes under global warming.
Responses of plant available water and forest productivity to variably layered coarse textured soils
NASA Astrophysics Data System (ADS)
Huang, Mingbin; Barbour, Lee; Elshorbagy, Amin; Si, Bing; Zettl, Julie
2010-05-01
Reforestation is a primary end use for reconstructed soils following oil sands mining in northern Alberta, Canada. Limited soil water conditions strongly restrict plant growth. Previous research has shown that layering of sandy soils can produce enhanced water availability for plant growth; however, the effect of gradation on these enhancements is not well defined. The objective of this study was to evaluate the effect of soil texture (gradation and layering) on plant available water and consequently on forest productivity for reclaimed coarse textured soils. A previously validated system dynamics (SD) model of soil moisture dynamics was coupled with ecophysiological and biogeochemical processes model, Biome-BGC-SD, to simulate forest dynamics for different soil profiles. These profiles included contrasting 50 cm textural layers of finer sand overlying coarser sand in which the sand layers had either a well graded or uniform soil texture. These profiles were compared to uniform profiles of the same sands. Three tree species of jack pine (Pinus banksiana Lamb.), white spruce (Picea glauce Voss.), and trembling aspen (Populus tremuloides Michx.) were simulated using a 50 year climatic data base from northern Alberta. Available water holding capacity (AWHC) was used to identify soil moisture regime, and leaf area index (LAI) and net primary production (NPP) were used as indices of forest productivity. Published physiological parameters were used in the Biome-BGC-SD model. Relative productivity was assessed by comparing model predictions to the measured above-ground biomass dynamics for the three tree species, and was then used to study the responses of forest leaf area index and potential productivity to AWHC on different soil profiles. Simulated results indicated soil layering could significantly increase AWHC in the 1-m profile for coarse textured soils. This enhanced AWHC could result in an increase in forest LAI and NPP. The increased extent varied with soil textures and vegetative types. The simulated results showed that the presence of 50 cm of coarser graded sand overlying 50 cm of finer graded sand is the most effective reclaimed prescription to increase AWHC and forest productivity among the studied soil profiles.
Luo, Y.; He, C.; Sophocleous, M.; Yin, Z.; Hongrui, R.; Ouyang, Z.
2008-01-01
SWAT, a physically-based, hydrological model simulates crop growth, soil water and groundwater movement, and transport of sediment and nutrients at both the process and watershed scales. While the different versions of SWAT have been widely used throughout the world for agricultural and water resources applications, little has been done to test the performance, variability, and transferability of the parameters in the crop growth, soil water, and groundwater modules in an integrated way with multiple sets of field experimental data at the process scale. Using an multiple years of field experimental data of winter wheat (Triticum aestivum L.) in the irrigation district of the Yellow River Basin, this paper assesses the performance of the plant-soil-groundwater modules and the variability and transferability of SWAT2000. Comparison of the simulated results by SWAT to the observations showed that SWAT performed quite unsatisfactorily in LAI predictions during the senescence stage, in yield predictions, and in soil-water estimation under dry soil-profile conditions. The unsatisfactory performance in LAI prediction might be attributed to over-simplified senescence modeling; in yield prediction to the improper computation of the harvest index; and in soil water under dry conditions to the exclusion of groundwater evaporation from the soil water balance in SWAT. In this paper, improvements in crop growth, soil water, and groundwater modules in SWAT were implemented. The saturated soil profile was coupled to the oscillating groundwater table. A variable evaporation coefficient taking into account soil water deficit index, groundwater depth, and crop root depth was used to replace the fixed coefficient in computing groundwater evaporation. The soil water balance included the groundwater evaporation. The modifications improved simulations of crop evapotranspiration and biomass as well as soil water dynamics under dry soil-profile conditions. The evaluation shows that the crop growth and soil water components of SWAT could be further refined to better simulate the hydrology of agricultural watersheds. ?? 2008 Elsevier B.V. All rights reserved.
Zhang, Xubo; Xu, Minggang; Liu, Jian; Sun, Nan; Wang, Boren; Wu, Lianhai
2016-02-01
Accurate modelling of agricultural management impacts on greenhouse gas emissions and the cycling of carbon and nitrogen is complicated due to interactions between various processes and the disturbance caused by field management. In this study, a process-based model, the Soil-Plant-Atmosphere Continuum System (SPACSYS), was used to simulate the effects of different fertilisation regimes on crop yields, the dynamics of soil organic carbon (SOC) and total nitrogen (SN) stocks from 1990 to 2010, and soil CO2 (2007-2010) and N2O (2007-2008) emissions based on a long-term fertilisation experiment with a winter-wheat (Triticum Aestivum L.) and summer-maize (Zea mays L.) intercropping system in Eutric Cambisol (FAO) soil in southern China. Three fertilisation treatments were 1) unfertilised (Control), 2) chemical nitrogen, phosphorus and potassium (NPK), and 3) NPK plus pig manure (NPKM). Statistical analyses indicated that the SPACSYS model can reasonably simulate the yields of wheat and maize, the evolution of SOC and SN stocks and soil CO2 and N2O emissions. The simulations showed that the NPKM treatment had the highest values of crop yields, SOC and SN stocks, and soil CO2 and N2O emissions were the lowest from the Control treatment. Furthermore, the simulated results showed that manure amendment along with chemical fertiliser applications led to both C (1017 ± 470 kg C ha(-1) yr(-1)) and N gains (91.7 ± 15.1 kg N ha(-1) yr(-1)) in the plant-soil system, while the Control treatment caused a slight loss in C and N. In conclusion, the SPACSYS model can accurately simulate the processes of C and N as affected by various fertilisation treatments in the red soil. Furthermore, application of chemical fertilisers plus manure could be a suitable management for ensuring crop yield and sustaining soil fertility in the red soil region, but the ratio of chemical fertilisers to manure should be optimized to reduce C and N losses to the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
InterFacility communications technical document 1.1
DOT National Transportation Integrated Search
1996-04-01
InterFacility (IF) communications allows 2 adjacent air traffic control (ATC) facilities to communicate with each other. IF is simulated in TGF to allow whatever lab we are responding to (ARTS/NAS) to simulate communications with one or more adjacent...
NASA Astrophysics Data System (ADS)
Tits, Mia; Hermans, Inge; Elsen, Annemie; Vandendriessche, Hilde
2010-05-01
Soil organic matter (SOM) is an important parameter of the quality of arable land. At the global scale, agricultural soils are considered to be a major sink of carbon dioxide. Results of thousands of soil analyses carried out annually by the Soil Service of Belgium have shown that carbon stocks in Flemish agricultural land have dwindled in the past decades, and this in spite of the increased use of animal manure from intensive livestock holdings. In the framework of the improvement of the SOM content and at the same time the idea of organic waste recycling ("cradle to cradle"-principle), a long-term field experiment with household waste compost (HWC) was set up in 1997 by the Soil Service of Belgium. In this trial different HWC application rates and timings were realized yearly, in order to investigate its nutritive value for arable crops, its effect on crop yield and its long-term effect on soil fertility, pH and soil organic matter content. Yearly data on crop rotation, crop development and yield as well as soil and HWC analyses were obtained for each trial treatment. Climatic data were obtained from nearby weather stations. Also in the context of the SOM-problem, the Soil Service of Belgium and the University of Ghent have developed, at the request of the Flemish government, the C-simulator, a simple but efficient interactive tool to assist farmers with the carbon stock management on their arable land. By providing input on the current carbon status of a particular field, the crop rotation and the (organic) fertiliser plan, the program calculates the expected evolution of the soil organic carbon over a thirty year period. By consulting comparative lists of characteristics of different crops and organic manures the farmer can adjust his strategy for a more efficient organic matter management. The calculations of the C-simulator are based on the RothC model, which was calibrated for Flemish conditions through an extensive literature study. Specific data on the characteristics of plant residues of most common arable crops and organic fertilisers used in Flanders were obtained from the Soil Service of Belgium database and from literature. Based on a series of test runs, four initial RothC carbon pool distributions were developed for relevant soil-rotation combinations in Flanders. The objective of our study was twofold: firstly, both the calibrated RothC-model and the C-simulator were validated using the data of the long-term HWC-trial. Secondly, the C-simulator was used to simulate future carbon evolution in the different HWC-trial treatments, in order to obtain a deeper insight in the built-up of soil carbon by the use of HWC.
NASA Astrophysics Data System (ADS)
Ajami, H.; Sharma, A.; Lakshmi, V.
2017-12-01
Application of semi-distributed hydrologic modeling frameworks is a viable alternative to fully distributed hyper-resolution hydrologic models due to computational efficiency and resolving fine-scale spatial structure of hydrologic fluxes and states. However, fidelity of semi-distributed model simulations is impacted by (1) formulation of hydrologic response units (HRUs), and (2) aggregation of catchment properties for formulating simulation elements. Here, we evaluate the performance of a recently developed Soil Moisture and Runoff simulation Toolkit (SMART) for large catchment scale simulations. In SMART, topologically connected HRUs are delineated using thresholds obtained from topographic and geomorphic analysis of a catchment, and simulation elements are equivalent cross sections (ECS) representative of a hillslope in first order sub-basins. Earlier investigations have shown that formulation of ECSs at the scale of a first order sub-basin reduces computational time significantly without compromising simulation accuracy. However, the implementation of this approach has not been fully explored for catchment scale simulations. To assess SMART performance, we set-up the model over the Little Washita watershed in Oklahoma. Model evaluations using in-situ soil moisture observations show satisfactory model performance. In addition, we evaluated the performance of a number of soil moisture disaggregation schemes recently developed to provide spatially explicit soil moisture outputs at fine scale resolution. Our results illustrate that the statistical disaggregation scheme performs significantly better than the methods based on topographic data. Future work is focused on assessing the performance of SMART using remotely sensed soil moisture observations using spatially based model evaluation metrics.
Modelling Soil Heat and Water Flow as a Coupled Process in Land Surface Models
NASA Astrophysics Data System (ADS)
García González, Raquel; Verhoef, Anne; Vidale, Pier Luigi; Braud, Isabelle
2010-05-01
To improve model estimates of soil water and heat flow by land surface models (LSMs), in particular in the first few centimetres of the near-surface soil profile, we have to consider in detail all the relevant physical processes involved (see e.g. Milly, 1982). Often, thermal and iso-thermal vapour fluxes in LSMs are neglected and the simplified Richard's equation is used as a result. Vapour transfer may affect the water fluxes and heat transfer in LSMs used for hydrometeorological and climate simulations. Processes occurring in the top 50 cm soil may be relevant for water and heat flux dynamics in the deeper layers, as well as for estimates of evapotranspiration and heterotrophic respiration, or even for climate and weather predictions. Water vapour transfer, which was not incorporated in previous versions of the MOSES/JULES model (Joint UK Land Environment Simulator; Cox et al., 1999), has now been implemented. Furthermore, we also assessed the effect of the soil vertical resolution on the simulated soil moisture and temperature profiles and the effect of the processes occurring at the upper boundary, mainly in terms of infiltration rates and evapotranspiration. SiSPAT (Simple Soil Plant Atmosphere Transfer Model; Braud et al., 1995) was initially used to quantify the changes that we expect to find when we introduce vapour transfer in JULES, involving parameters such as thermal vapour conductivity and diffusivity. Also, this approach allows us to compare JULES to a more complete and complex numerical model. Water vapour flux varied with soil texture, depth and soil moisture content, but overall our results suggested that water vapour fluxes change temperature gradients in the entire soil profile and introduce an overall surface cooling effect. Increasing the resolution smoothed and reduced temperature differences between liquid (L) and liquid/vapour (LV) simulations at all depths, and introduced a temperature increase over the entire soil profile. Thermal gradients rather than soil water potential gradients seem to cause temporal and spatial (vertical) soil temperature variability. We conclude that a multi-soil layer configuration may improve soil water dynamics, heat transfer and coupling of these processes, as well as evapotranspiration estimates and land surface-atmosphere coupling. However, a compromise should be reached between numerical and process-simulation aspects. References: Braud I., A.C. Dantas-Antonino, M. Vauclin, J.L. Thony and P. Ruelle, 1995b: A Simple Soil Plant Atmo- sphere Transfer model (SiSPAT), Development and field verification, J. Hydrol, 166: 213-250 Cox, P.M., R.A. Betts, C.B. Bunton, R.L.H. Essery, P.R. Rowntree, and J. Smith (1999), The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim. Dyn., 15, 183-203. Milly, P.C.D., 1982. Moisture and heat transport in hysteric inhomogeneous porous media: a matric head- based formulation and a numerical model, Water Resour. Res., 18:489-498
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallegos, A.F.; Gonzales, G.J.; Bennett, K.D.
1997-06-01
The Endangered Species Act and the Record of Decision on the Dual Axis Radiographic Hydrodynamic Test Facility at the Los Alamos National Laboratory require protection of the American peregrine falcon. A preliminary risk assessment of the peregrine was performed using a custom FORTRAN model and a geographical information system. Estimated doses to the falcon were compared against toxicity reference values to generate hazard indices. Hazard index results indicated no unacceptable risk to the falcon from the soil ingestion pathway, including a measure of cumulative effects from multiple contaminants that assumes a linear additive toxicity type. Scaling home ranges on themore » basis of maximizing falcon height for viewing prey decreased estimated risk by 69% in a canyons-based home range and increased estimated risk by 40% in a river-based home range. Improving model realism by weighting simulated falcon foraging based on distance from potential nest sites decreased risk by 93% in one exposure unit and by 82% in a second exposure unit. It was demonstrated that choice of toxicity reference values can have a substantial impact on risk estimates. Adding bioaccumulation factors for several organics increased partial hazard quotients by a factor of 110, but increased the mean hazard index by only 0.02 units. Adding a food consumption exposure pathway in the form of biomagnification factors for 15 contaminants of potential ecological concern increased the mean hazard index to 1.16 ({+-} 1.0), which is above the level of acceptability (1.0). Aroclor-1254, dichlorodiphenyltrichlorethane (DDT) and dichlorodiphenylethelyne (DDE) accounted for 81% of the estimated risk that includes soil ingestion and food consumption Contaminant pathways and a biomagnification component. Information on risk by specific geographical location was generated, which can be used to manage contaminated areas, falcon habitat, facility siting, and/or facility operations. 123 refs., 10 figs., 2 tabs.« less
, through soil-structure interaction, to structural response. New computer simulation tools are necessary to of structures and soils to investigate challenging problems in soil-structure-foundation interaction including foundations and soils is used to study the effects of soil liquefaction and permanent
40 CFR 265.31 - Maintenance and operation of facility.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., soil, or surface water which could threaten human health or the -environment. ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Maintenance and operation of facility. 265.31 Section 265.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID...
Biosolids impact soil phosphorus accountability, fractionation, and potential environmental risk.
Ippolito, J A; Barbarick, K A; Norvell, K L
2007-01-01
Biosolids land application rates are typically based on crop N requirements but can lead to soil P accumulation. The Littleton/Englewood, Colorado, wastewater treatment facility has supported biosolids beneficial-use on a dryland wheat-fallow agroecosystem site since 1982, with observable soil P concentration increases as biyearly repeated biosolids applications increased from 0, 6.7, 13, 27, to 40 Mg ha(-1). The final study year was 2003, after which P accountability, fractionation, and potential environmental risk were assessed. Between 93 and 128% of biosolids-P added was accounted for when considering conventional tillage soil displacement, grain removal, and soil adsorption. The Fe-P fraction dominated all soil surface P fractions, likely due to an increase in amorphous Fe-oxide because Fe2(SO4)3 was added at the wastewater treatment facility inflow for digester H2S reduction. The Ca-P phase dominated all soil subsurface P fractions due to calcareous soil conditions. A combination of conventional tillage, drought from 1999 to 2003, and repeated and increasing biosolids application rates may have forced soil surface microorganism dormancy, reduction, or mortality; thus, biomass P reduction was evident. Subsurface biomass P was greater than surface biomass, possibly due to protection against environmental and anthropogenic variables or to increased dissolved organic carbon inputs. Even given years of biosolids application, the soil surface had the ability to sorb additional P as determined by shaking the soil in an excessive P solution. Biosolids-application regulations based on the Colorado Phosphorus Index would not impede current site practices. Proper monitoring, management, and addition of other best management practices are needed for continued assurance that P movement off-site does not become a major issue.
Computer simulation of a space SAR using a range-sequential processor for soil moisture mapping
NASA Technical Reports Server (NTRS)
Fujita, M.; Ulaby, F. (Principal Investigator)
1982-01-01
The ability of a spaceborne synthetic aperture radar (SAR) to detect soil moisture was evaluated by means of a computer simulation technique. The computer simulation package includes coherent processing of the SAR data using a range-sequential processor, which can be set up through hardware implementations, thereby reducing the amount of telemetry involved. With such a processing approach, it is possible to monitor the earth's surface on a continuous basis, since data storage requirements can be easily met through the use of currently available technology. The Development of the simulation package is described, followed by an examination of the application of the technique to actual environments. The results indicate that in estimating soil moisture content with a four-look processor, the difference between the assumed and estimated values of soil moisture is within + or - 20% of field capacity for 62% of the pixels for agricultural terrain and for 53% of the pixels for hilly terrain. The estimation accuracy for soil moisture may be improved by reducing the effect of fading through non-coherent averaging.
Efficient Meshfree Large Deformation Simulation of Rainfall Induced Soil Slope Failure
NASA Astrophysics Data System (ADS)
Wang, Dongdong; Li, Ling
2010-05-01
An efficient Lagrangian Galerkin meshfree framework is presented for large deformation simulation of rainfall-induced soil slope failure. Detailed coupled soil-rainfall seepage equations are given for the proposed formulation. This nonlinear meshfree formulation is featured by the Lagrangian stabilized conforming nodal integration method where the low cost nature of nodal integration approach is kept and at the same time the numerical stability is maintained. The initiation and evolution of progressive failure in the soil slope is modeled by the coupled constitutive equations of isotropic damage and Drucker-Prager pressure-dependent plasticity. The gradient smoothing in the stabilized conforming integration also serves as a non-local regularization of material instability and consequently the present method is capable of effectively capture the shear band failure. The efficacy of the present method is demonstrated by simulating the rainfall-induced failure of two typical soil slopes.
NASA Technical Reports Server (NTRS)
Banin, A.; Margulies, L.
1983-01-01
An experimental comparison of palagonites and a smectite (montmorillonite) was performed in a simulation of the Viking Biology Labelled Release (LR) experiment in order to judge which mineral is a better Mars soil analog material (MarSAM). Samples of palagonite were obtained from cold weathering environments and volcanic soil, and the smectite was extracted from Wyoming Bentonite and converted to H or Fe types. Decomposition reaction kinetics were examined in the LR simulation, which on the Lander involved interaction of the martian soil with organic compounds. Reflectance spectroscopy indicated that smectites bearing Fe(III) in well-crystallized sites are not good MarSAMS. The palagonites did not cause the formate decomposition and C-14 emission detected in the LR, indicating that palagonites are also not good MarSAMS. Smectites, however, may be responsible for ion exchange, molecular adsorption, and catalysis in martian soil.
S-World: A high resolution global soil database for simulation modelling (Invited)
NASA Astrophysics Data System (ADS)
Stoorvogel, J. J.
2013-12-01
There is an increasing call for high resolution soil information at the global level. A good example for such a call is the Global Gridded Crop Model Intercomparison carried out within AgMIP. While local studies can make use of surveying techniques to collect additional techniques this is practically impossible at the global level. It is therefore important to rely on legacy data like the Harmonized World Soil Database. Several efforts do exist that aim at the development of global gridded soil property databases. These estimates of the variation of soil properties can be used to assess e.g., global soil carbon stocks. However, they do not allow for simulation runs with e.g., crop growth simulation models as these models require a description of the entire pedon rather than a few soil properties. This study provides the required quantitative description of pedons at a 1 km resolution for simulation modelling. It uses the Harmonized World Soil Database (HWSD) for the spatial distribution of soil types, the ISRIC-WISE soil profile database to derive information on soil properties per soil type, and a range of co-variables on topography, climate, and land cover to further disaggregate the available data. The methodology aims to take stock of these available data. The soil database is developed in five main steps. Step 1: All 148 soil types are ordered on the basis of their expected topographic position using e.g., drainage, salinization, and pedogenesis. Using the topographic ordering and combining the HWSD with a digital elevation model allows for the spatial disaggregation of the composite soil units. This results in a new soil map with homogeneous soil units. Step 2: The ranges of major soil properties for the topsoil and subsoil of each of the 148 soil types are derived from the ISRIC-WISE soil profile database. Step 3: A model of soil formation is developed that focuses on the basic conceptual question where we are within the range of a particular soil property at a particular location given a specific soil type. The soil properties are predicted for each grid cell based on the soil type, the corresponding ranges of soil properties, and the co-variables. Step 4: Standard depth profiles are developed for each of the soil types using the diagnostic criteria of the soil types and soil profile information from the ISRIC-WISE database. The standard soil profiles are combined with the the predicted values for the topsoil and subsoil yielding unique soil profiles at each location. Step 5: In a final step, additional soil properties are added to the database using averages for the soil types and pedo-transfer functions. The methodology, denominated S-World (Soils of the World), results in readily available global maps with quantitative pedon data for modelling purposes. It forms the basis for the Global Gridded Crop Model Intercomparison carried out within AgMIP.
Simulating the fate of water in field soil crop environment
NASA Astrophysics Data System (ADS)
Cameira, M. R.; Fernando, R. M.; Ahuja, L.; Pereira, L.
2005-12-01
This paper presents an evaluation of the Root Zone Water Quality Model(RZWQM) for assessing the fate of water in the soil-crop environment at the field scale under the particular conditions of a Mediterranean region. The RZWQM model is a one-dimensional dual porosity model that allows flow in macropores. It integrates the physical, biological and chemical processes occurring in the root zone, allowing the simulation of a wide spectrum of agricultural management practices. This study involved the evaluation of the soil, hydrologic and crop development sub-models within the RZWQM for two distinct agricultural systems, one consisting of a grain corn planted in a silty loam soil, irrigated by level basins and the other a forage corn planted in a sandy soil, irrigated by sprinklers. Evaluation was performed at two distinct levels. At the first level the model capability to fit the measured data was analyzed (calibration). At the second level the model's capability to extrapolate and predict the system behavior for conditions different than those used when fitting the model was assessed (validation). In a subsequent paper the same type of evaluation is presented for the nitrogen transformation and transport model. At the first level a change in the crop evapotranspiration (ETc) formulation was introduced, based upon the definition of the effective leaf area, resulting in a 51% decrease in the root mean square error of the ETc simulations. As a result the simulation of the root water uptake was greatly improved. A new bottom boundary condition was implemented to account for the presence of a shallow water table. This improved the simulation of the water table depths and consequently the soil water evolution within the root zone. The soil hydraulic parameters and the crop variety specific parameters were calibrated in order to minimize the simulation errors of soil water and crop development. At the second level crop yield was predicted with an error of 1.1 and 2.8% for grain and forage corn, respectively. Soil water was predicted with an efficiency ranging from 50 to 95% for the silty loam soil and between 56 and 72% for the sandy soil. The purposed calibration procedure allowed the model to predict crop development, yield and the water balance terms, with accuracy that is acceptable in practical applications for complex and spatially variable field conditions. An iterative method was required to account for the strong interaction between the different model components, based upon detailed experimental data on soils and crops.
Numerical and experimental approaches to simulate soil clogging in porous media
NASA Astrophysics Data System (ADS)
Kanarska, Yuliya; LLNL Team
2012-11-01
Failure of a dam by erosion ranks among the most serious accidents in civil engineering. The best way to prevent internal erosion is using adequate granular filters in the transition areas where important hydraulic gradients can appear. In case of cracking and erosion, if the filter is capable of retaining the eroded particles, the crack will seal and the dam safety will be ensured. A finite element numerical solution of the Navier-Stokes equations for fluid flow together with Lagrange multiplier technique for solid particles was applied to the simulation of soil filtration. The numerical approach was validated through comparison of numerical simulations with the experimental results of base soil particle clogging in the filter layers performed at ERDC. The numerical simulation correctly predicted flow and pressure decay due to particle clogging. The base soil particle distribution was almost identical to those measured in the laboratory experiment. To get more precise understanding of the soil transport in granular filters we investigated sensitivity of particle clogging mechanisms to various aspects such as particle size ration, the amplitude of hydraulic gradient, particle concentration and contact properties. By averaging the results derived from the grain-scale simulations, we investigated how those factors affect the semi-empirical multiphase model parameters in the large-scale simulation tool. The Department of Homeland Security Science and Technology Directorate provided funding for this research.
Multimodel Simulation of Water Flow: Uncertainty Analysis
USDA-ARS?s Scientific Manuscript database
Simulations of soil water flow require measurements of soil hydraulic properties which are particularly difficult at the field scale. Laboratory measurements provide hydraulic properties at scales finer than the field scale, whereas pedotransfer functions (PTFs) integrate information on hydraulic pr...
NASA Astrophysics Data System (ADS)
Legates, David R.; Junghenn, Katherine T.
2018-04-01
Many local weather station networks that measure a number of meteorological variables (i.e. , mesonetworks) have recently been established, with soil moisture occasionally being part of the suite of measured variables. These mesonetworks provide data from which detailed estimates of various hydrological parameters, such as precipitation and reference evapotranspiration, can be made which, when coupled with simple surface characteristics available from soil surveys, can be used to obtain estimates of soil moisture. The question is Can meteorological data be used with a simple hydrologic model to estimate accurately daily soil moisture at a mesonetwork site? Using a state-of-the-art mesonetwork that also includes soil moisture measurements across the US State of Delaware, the efficacy of a simple, modified Thornthwaite/Mather-based daily water balance model based on these mesonetwork observations to estimate site-specific soil moisture is determined. Results suggest that the model works reasonably well for most well-drained sites and provides good qualitative estimates of measured soil moisture, often near the accuracy of the soil moisture instrumentation. The model exhibits particular trouble in that it cannot properly simulate the slow drainage that occurs in poorly drained soils after heavy rains and interception loss, resulting from grass not being short cropped as expected also adversely affects the simulation. However, the model could be tuned to accommodate some non-standard siting characteristics.
Indian LSSC (Large Space Simulation Chamber) facility
NASA Technical Reports Server (NTRS)
Brar, A. S.; Prasadarao, V. S.; Gambhir, R. D.; Chandramouli, M.
1988-01-01
The Indian Space Agency has undertaken a major project to acquire in-house capability for thermal and vacuum testing of large satellites. This Large Space Simulation Chamber (LSSC) facility will be located in Bangalore and is to be operational in 1989. The facility is capable of providing 4 meter diameter solar simulation with provision to expand to 4.5 meter diameter at a later date. With such provisions as controlled variations of shroud temperatures and availability of infrared equipment as alternative sources of thermal radiation, this facility will be amongst the finest anywhere. The major design concept and major aspects of the LSSC facility are presented here.
Soil Temperature and Moisture Profile (STAMP) System Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, David R.
The soil temperature and moisture profile system (STAMP) provides vertical profiles of soil temperature, soil water content (soil-type specific and loam type), plant water availability, soil conductivity, and real dielectric permittivity as a function of depth below the ground surface at half-hourly intervals, and precipitation at one-minute intervals. The profiles are measured directly by in situ probes at all extended facilities of the SGP climate research site. The profiles are derived from measurements of soil energy conductivity. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are alsomore » useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil. The STAMP system replaced the SWATS system in early 2016.« less
NASA Astrophysics Data System (ADS)
Bastola, S.; Dialynas, Y. G.; Arnone, E.; Bras, R. L.
2014-12-01
The spatial variability of soil, vegetation, topography, and precipitation controls hydrological processes, consequently resulting in high spatio-temporal variability of most of the hydrological variables, such as soil moisture. Limitation in existing measuring system to characterize this spatial variability, and its importance in various application have resulted in a need of reconciling spatially distributed soil moisture evolution model and corresponding measurements. Fully distributed ecohydrological model simulates soil moisture at high resolution soil moisture. This is relevant for range of environmental studies e.g., flood forecasting. They can also be used to evaluate the value of space born soil moisture data, by assimilating them into hydrological models. In this study, fine resolution soil moisture data simulated by a physically-based distributed hydrological model, tRIBS-VEGGIE, is compared with soil moisture data collected during the field campaign in Turkey river basin, Iowa. The soil moisture series at the 2 and 4 inch depth exhibited a more rapid response to rainfall as compared to bottom 8 and 20 inch ones. The spatial variability in two distinct land surfaces of Turkey River, IA, reflects the control of vegetation, topography and soil texture in the characterization of spatial variability. The comparison of observed and simulated soil moisture at various depth showed that model was able to capture the dynamics of soil moisture at a number of gauging stations. Discrepancies are large in some of the gauging stations, which are characterized by rugged terrain and represented, in the model, through large computational units.
Yi, Shuhua; McGuire, A. David; Harden, Jennifer; Kasischke, Eric; Manies, Kristen L.; Hinzman, Larry; Liljedahl, Anna K.; Randerson, J.; Liu, Heping; Romanovsky, Vladimir E.; Marchenko, Sergey S.; Kim, Yongwon
2009-01-01
Soil temperature and moisture are important factors that control many ecosystem processes. However, interactions between soil thermal and hydrological processes are not adequately understood in cold regions, where the frozen soil, fire disturbance, and soil drainage play important roles in controlling interactions among these processes. These interactions were investigated with a new ecosystem model framework, the dynamic organic soil version of the Terrestrial Ecosystem Model, that incorporates an efficient and stable numerical scheme for simulating soil thermal and hydrological dynamics within soil profiles that contain a live moss horizon, fibrous and amorphous organic horizons, and mineral soil horizons. The performance of the model was evaluated for a tundra burn site that had both preburn and postburn measurements, two black spruce fire chronosequences (representing space-for-time substitutions in well and intermediately drained conditions), and a poorly drained black spruce site. Although space-for-time substitutions present challenges in model-data comparison, the model demonstrates substantial ability in simulating the dynamics of evapotranspiration, soil temperature, active layer depth, soil moisture, and water table depth in response to both climate variability and fire disturbance. Several differences between model simulations and field measurements identified key challenges for evaluating/improving model performance that include (1) proper representation of discrepancies between air temperature and ground surface temperature; (2) minimization of precipitation biases in the driving data sets; (3) improvement of the measurement accuracy of soil moisture in surface organic horizons; and (4) proper specification of organic horizon depth/properties, and soil thermal conductivity.
Survey of aircraft icing simulation test facilities in North America
NASA Technical Reports Server (NTRS)
Olsen, W.
1981-01-01
A survey was made of the aircraft icing simulation facilities in North America: there are 12 wind tunnels, 28 engine test facilities, 6 aircraft tankers and 14 low velocity facilities, that perform aircraft icing tests full or part time. The location and size of the facility, its speed and temperature range, icing cloud parameters, and the technical person to contact are surveyed. Results are presented in tabular form. The capabilities of each facility were estimated by its technical contact person. The adequacy of these facilities for various types of icing tests is discussed.
Toxicity of Lunar and Martian Dust Simulants to Alveolar Macrophages Isolated from Human Volunteers
NASA Technical Reports Server (NTRS)
Latch, Judith N.; Hamilton, Raymond F., Jr.; Holian, Andrij; James, John T.
2007-01-01
NASA is planning to build a habitat on the Moon and use the Moon as a stepping stone to Mars. JSC-1, an Arizona volcanic ash that has mineral properties similar to lunar soil, is used to produce lunar environments for instrument and equipment testing. NASA is concerned about potential health risks to workers exposed to these fine dusts in test facilities. The potential toxicity of JSC-1 and a Martian soil simulant (JSC-Mars-1, a Hawaiian volcanic ash) was evaluated using human alveolar macrophages (HAM) isolated from volunteers; titanium dioxide and quartz were used as reference dusts. This investigation is a prerequisite to studies of actual lunar dust. HAM were treated in vitro with these test dusts for 24 h; assays of cell viability and apoptosis showed that JSC-1 and TiO2 were comparable, and more toxic than saline control, but less toxic than quartz. HAM treated with JSC-1 or JSC-Mars 1 showed a dose-dependent increase in cytotoxicity. To elucidate the mechanism by which these dusts induce apoptosis, we investigated the involvement of the scavenger receptor (SR). Pretreatment of cells with polyinosinic acid, an SR blocker, significantly inhibited both apoptosis and necrosis. These results suggest HAM cytotoxicity may be initiated by interaction of the dust particles with SR. Besides being cytotoxic, silica is known to induce shifting of HAM phenotypes to an immune active status. The immunomodulatory effect of the simulants was investigated. Treatment of HAM with either simulant caused preferential damage to the suppressor macrophage subpopulation, leading to a net increase in the ratio of activator (RFD1+) to suppressor (RFD1+7+) macrophages, a result similar to treatment with silica. It is recommended that appropriate precautions be used to minimize exposure to these fine dusts in large-scale engineering applications.
Closely Spaced Independent Parallel Runway Simulation.
1984-10-01
facility consists of the Central Computer Facility, the Controller Laboratory, and the Simulator Pilot Complex. CENTRAL COMPUTER FACILITY. The Central... Computer Facility consists of a group of mainframes, minicomputers, and associated peripherals which host the operational and data acquisition...in the Controller Laboratory and convert their verbal directives into a keyboard entry which is transmitted to the Central Computer Complex, where
The influence of small-mammal burrowing activity on water storage at the Hanford Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landeen, D.S.
This paper summarizes the activities that were conducted in support of the long-term surface barrier development program by Westinghouse Hanford Company to determine the degree that small-mammal burrow systems affect the loss or retention of water in the soils at the Hanford Site in Washington state. An animal intrusion lysimeter facility was constructed, consisting of two outer boxes buried at grade, which served as receptacles for six animal intrusion lysimeters. Small burrowing animals common the Hanford Site were introduced over a 3- to 4-month period. Supplemental precipitation was added monthly to three of the lysimeters with a rainfall simulator (rainulator).more » Information collected from the five tests indicated that (1) during summer months, water was lost in all the lysimeters, including the supplemental precipitation added with the rainulator; and (2) during winter months, all lysimeters gained water. The data indicate little difference in the amount of water stored between control and animal lysimeters. The overall water loss was attributed to surface evaporation, a process that occurred equally in control and treatment lysimeters. Other causes of water loss are a result of (1) constant soil turnover and subsequent drying, and (2) burrow ventilation effects. This suggests that burrow systems will not contribute to any significant water storage at depth and, in fact, may enhance the removal of water from the soil.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krokosz, M.; Sefano, J.
1993-08-01
This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Alaska Army National Guard property known as Camp Carroll Training Center, located on the Fort Richardson Army facility near Anchorage, Alaska. Preliminary assessments of federal facilities are being conducted to compile the information necessary for the completion of preremedial activities and to provide a basis for establishing, corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, types and quantities ofmore » hazardous substances used, the nature and amounts of wastes generated or stored at the facility, and potential pathways by which contamination could affect public health and the environment. The primary environmentally significant operations (ESOs) associated with the property are (1) the Alaska Air National Guard storage area behind Building S57112 (Organizational Maintenance Shop [OMS] 6); (2) the state of Alaska maintenance facility and the soil/tar-type spill north of the state of Alaska maintenance facility; (3) the waste storage area adjacent to OMS 6; (4) the contaminated area from leaking underground storage tanks (USTs) and the oil-water separator; and (5) soil staining in the parking area at the Camp Carroll Headquarters Building. Camp Carroll appears to be in excellent condition from an environmental standpoint, and current practices are satisfactory. Argonne recommends that the Alaska Department of Military Affairs consider remediation of soil contamination associated with all storage areas, as well as reviewing the practices of other residents of the facility. Argonne also recommends that the current methods of storing waste material behind Building S57112 (OMS 6) be reviewed for alternatives.« less
Simulation of mass storage systems operating in a large data processing facility
NASA Technical Reports Server (NTRS)
Holmes, R.
1972-01-01
A mass storage simulation program was written to aid system designers in the design of a data processing facility. It acts as a tool for measuring the overall effect on the facility of on-line mass storage systems, and it provides the means of measuring and comparing the performance of competing mass storage systems. The performance of the simulation program is demonstrated.
A coupled approach for the three-dimensional simulation of pipe leakage in variably saturated soil
NASA Astrophysics Data System (ADS)
Peche, Aaron; Graf, Thomas; Fuchs, Lothar; Neuweiler, Insa
2017-12-01
In urban water pipe networks, pipe leakage may lead to subsurface contamination or to reduced waste water treatment efficiency. The quantification of pipe leakage is challenging due to inaccessibility and unknown hydraulic properties of the soil. A novel physically-based model for three-dimensional numerical simulation of pipe leakage in variably saturated soil is presented. We describe the newly implemented coupling between the pipe flow simulator HYSTEM-EXTRAN and the groundwater flow simulator OpenGeoSys and its validation. We further describe a novel upscaling of leakage using transfer functions derived from numerical simulations. This upscaling enables the simulation of numerous pipe defects with the benefit of reduced computation times. Finally, we investigate the response of leakage to different time-dependent pipe flow events and conclude that larger pipe flow volume and duration lead to larger leakage while the peak position in time has a small effect on leakage.
NASA Astrophysics Data System (ADS)
Bonan, G. B.; Wieder, W. R.
2012-12-01
Decomposition is a large term in the global carbon budget, but models of the earth system that simulate carbon cycle-climate feedbacks are largely untested with respect to litter decomposition. Here, we demonstrate a protocol to document model performance with respect to both long-term (10 year) litter decomposition and steady-state soil carbon stocks. First, we test the soil organic matter parameterization of the Community Land Model version 4 (CLM4), the terrestrial component of the Community Earth System Model, with data from the Long-term Intersite Decomposition Experiment Team (LIDET). The LIDET dataset is a 10-year study of litter decomposition at multiple sites across North America and Central America. We show results for 10-year litter decomposition simulations compared with LIDET for 9 litter types and 20 sites in tundra, grassland, and boreal, conifer, deciduous, and tropical forest biomes. We show additional simulations with DAYCENT, a version of the CENTURY model, to ask how well an established ecosystem model matches the observations. The results reveal large discrepancy between the laboratory microcosm studies used to parameterize the CLM4 litter decomposition and the LIDET field study. Simulated carbon loss is more rapid than the observations across all sites, despite using the LIDET-provided climatic decomposition index to constrain temperature and moisture effects on decomposition. Nitrogen immobilization is similarly biased high. Closer agreement with the observations requires much lower decomposition rates, obtained with the assumption that nitrogen severely limits decomposition. DAYCENT better replicates the observations, for both carbon mass remaining and nitrogen, without requirement for nitrogen limitation of decomposition. Second, we compare global observationally-based datasets of soil carbon with simulated steady-state soil carbon stocks for both models. The models simulations were forced with observationally-based estimates of annual litterfall and model-derived climatic decomposition index. While comparison with the LIDET 10-year litterbag study reveals sharp contrasts between CLM4 and DAYCENT, simulations of steady-state soil carbon show less difference between models. Both CLM4 and DAYCENT significantly underestimate soil carbon. Sensitivity analyses highlight causes of the low soil carbon bias. The terrestrial biogeochemistry of earth system models must be critically tested with observations, and the consequences of particular model choices must be documented. Long-term litter decomposition experiments such as LIDET provide a real-world process-oriented benchmark to evaluate models and can critically inform model development. Analysis of steady-state soil carbon estimates reveal additional, but here different, inferences about model performance.
ISRU 3D printing for habitats and structures on the Moon
NASA Astrophysics Data System (ADS)
Cowley, Aidan
2016-07-01
In-situ-resource utilisation (ISRU) in combination with 3D printing may evolve into a key technology for future exploration. Setting up a lunar facility could be made much simpler by using additive manufacturing techniques to build elements from local materials - this would drastically reduce mission mass requirements and act as an excellent demonstrator for ISRU on other planetary bodies. Fabricating structures and components using Lunar regolith is an area of interest for ESA, as evidenced by past successful General Studies Program (GSP) and ongoing technology development studies. In this talk we detail a number of projects looking into the behavior of Lunar regolith simulants, their compositional variants and approaches to sintering such material that are under-way involving EAC, ESTEC and DLR. We report on early studies into utilizing conventional thermal sintering approaches of simulants as well as microwave sintering of these compositions. Both techniques are candidates for developing a 3D printing methodology using Lunar regolith. It is known that the differences in microwave effects between the actual lunar soil and lunar simulants can be readily ascribed to the presence of nanophase metallic Fe, native to Lunar regolith but lacking in simulants. In compostions of simulant with increased Illmenite (FeTiO3) concentrations, we observe improved regolith response to microwave heating, and the readily achieved formation of a glassy melt in ambient atmosphere. The improved response relative to untreated simulant is likely owing to the increased Fe content in the powder mix.
This paper primarily addresses remediation of contaminated soils and waste deposits at defunct lead-acid battery recycling sites (LBRS) via immobilization and separation processes. efunct LBRS is a facility at which battery breaking, secondary lead smelting, or both operations we...
BIOTROL SOIL WASHING SYSTEM FOR TREATMENT OF A WOOD PRESERVING SITE - APPLICATIONS ANALYSIS REPORT
The report analyzes the results of the SITE Program demonstration of BioTrol's Soil Washing System at the MacGillis & Gibbs wood treatment facility in New Brighton, MN. The contaminants of primary interest are pentachlorophenol (penta) and polynuclear aromatic hydrocarbons (PAHs)...
Evaluation of HCMM data for assessing soil moisture and water table depth. [South Dakota
NASA Technical Reports Server (NTRS)
Moore, D. G.; Heilman, J. L.; Tunheim, J. A.; Westin, F. C.; Heilman, W. E.; Beutler, G. A.; Ness, S. D. (Principal Investigator)
1981-01-01
Soil moisture in the 0-cm to 4-cm layer could be estimated with 1-mm soil temperatures throughout the growing season of a rainfed barley crop in eastern South Dakota. Empirical equations were developed to reduce the effect of canopy cover when radiometrically estimating the soil temperature. Corrective equations were applied to an aircraft simulation of HCMM data for a diversity of crop types and land cover conditions to estimate the soil moisture. The average difference between observed and measured soil moisture was 1.6% of field capacity. Shallow alluvial aquifers were located with HCMM predawn data. After correcting the data for vegetation differences, equations were developed for predicting water table depths within the aquifer. A finite difference code simulating soil moisture and soil temperature shows that soils with different moisture profiles differed in soil temperatures in a well defined functional manner. A significant surface thermal anomaly was found to be associated with shallow water tables.
NASA Astrophysics Data System (ADS)
Chadburn, Sarah E.; Krinner, Gerhard; Porada, Philipp; Bartsch, Annett; Beer, Christian; Belelli Marchesini, Luca; Boike, Julia; Ekici, Altug; Elberling, Bo; Friborg, Thomas; Hugelius, Gustaf; Johansson, Margareta; Kuhry, Peter; Kutzbach, Lars; Langer, Moritz; Lund, Magnus; Parmentier, Frans-Jan W.; Peng, Shushi; Van Huissteden, Ko; Wang, Tao; Westermann, Sebastian; Zhu, Dan; Burke, Eleanor J.
2017-11-01
It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that an improved simulation of photosynthesis would also lead to an improved simulation of soil carbon stocks. However, the stocks are also influenced by soil carbon burial (e.g. through cryoturbation) and the rate of heterotrophic respiration, which depends on the soil physical state. More detailed below-ground measurements are needed to fully evaluate biological and physical soil processes. Furthermore, even if these processes are well modelled, the soil carbon profiles cannot resemble peat layers as peat accumulation processes are not represented in the models. Thus, we identify three priority areas for model development: (1) dynamic vegetation including (a) climate and (b) nutrient limitation effects; (2) adding moss as a plant functional type; and an (3) improved vertical profile of soil carbon including peat processes.
Mixture and method for simulating soiling and weathering of surfaces
Sleiman, Mohamad; Kirchstetter, Thomas; Destaillats, Hugo; Levinson, Ronnen; Berdahl, Paul; Akbari, Hashem
2018-01-02
This disclosure provides systems, methods, and apparatus related to simulated soiling and weathering of materials. In one aspect, a soiling mixture may include an aqueous suspension of various amounts of salt, soot, dust, and humic acid. In another aspect, a method may include weathering a sample of material in a first exposure of the sample to ultraviolet light, water vapor, and elevated temperatures, depositing a soiling mixture on the sample, and weathering the sample in a second exposure of the sample to ultraviolet light, water vapor, and elevated temperatures.
NASA Astrophysics Data System (ADS)
Peeters, L.; Crosbie, R. S.; Doble, R.; van Dijk, A. I. J. M.
2012-04-01
Developing a continental land surface model implies finding a balance between the complexity in representing the system processes and the availability of reliable data to drive, parameterise and calibrate the model. While a high level of process understanding at plot or catchment scales may warrant a complex model, such data is not available at the continental scale. This data sparsity is especially an issue for the Australian Water Resources Assessment system, AWRA-L, a land-surface model designed to estimate the components of the water balance for the Australian continent. This study focuses on the conceptualization and parametrization of the soil drainage process in AWRA-L. Traditionally soil drainage is simulated with Richards' equation, which is highly non-linear. As general analytic solutions are not available, this equation is usually solved numerically. In AWRA-L however, we introduce a simpler function based on simulation experiments that solve Richards' equation. In the simplified function soil drainage rate, the ratio of drainage (D) over storage (S), decreases exponentially with relative water content. This function is controlled by three parameters, the soil water storage at field capacity (SFC), the drainage fraction at field capacity (KFC) and a drainage function exponent (β). [ ] D- -S- S = KF C exp - β (1 - SFC ) To obtain spatially variable estimates of these three parameters, the Atlas of Australian Soils is used, which lists soil hydraulic properties for each soil profile type. For each soil profile type in the Atlas, 10 days of draining an initially fully saturated, freely draining soil is simulated using HYDRUS-1D. With field capacity defined as the volume of water in the soil after 1 day, the remaining parameters can be obtained by fitting the AWRA-L soil drainage function to the HYDRUS-1D results. This model conceptualisation fully exploits the data available in the Atlas of Australian Soils, without the need to solve the non-linear Richards' equation for each time-step. The spatial distribution of long term recharge and baseflow obtained with a 30 year simulation of historic data using this parameterisation, corresponds well with the spatial patterns of groundwater recharge inferred from field measurements.
Transpiration and root development of urban trees in structural soil stormwater reservoirs.
Bartens, Julia; Day, Susan D; Harris, J Roger; Wynn, Theresa M; Dove, Joseph E
2009-10-01
Stormwater management that relies on ecosystem processes, such as tree canopy interception and rhizosphere biology, can be difficult to achieve in built environments because urban land is costly and urban soil inhospitable to vegetation. Yet such systems offer a potentially valuable tool for achieving both sustainable urban forests and stormwater management. We evaluated tree water uptake and root distribution in a novel stormwater mitigation facility that integrates trees directly into detention reservoirs under pavement. The system relies on structural soils: highly porous engineered mixes designed to support tree root growth and pavement. To evaluate tree performance under the peculiar conditions of such a stormwater detention reservoir (i.e., periodically inundated), we grew green ash (Fraxinus pennsylvanica Marsh.) and swamp white oak (Quercus bicolor Willd.) in either CUSoil or a Carolina Stalite-based mix subjected to three simulated below-system infiltration rates for two growing seasons. Infiltration rate affected both transpiration and rooting depth. In a factorial experiment with ash, rooting depth always increased with infiltration rate for Stalite, but this relation was less consistent for CUSoil. Slow-drainage rates reduced transpiration and restricted rooting depth for both species and soils, and trunk growth was restricted for oak, which grew the most in moderate infiltration. Transpiration rates under slow infiltration were 55% (oak) and 70% (ash) of the most rapidly transpiring treatment (moderate for oak and rapid for ash). We conclude this system is feasible and provides another tool to address runoff that integrates the function of urban green spaces with other urban needs.
NASA Astrophysics Data System (ADS)
Pandey, V.; Srivastava, P. K.
2018-04-01
Change in soil moisture regime is highly relevant for agricultural drought, which can be best analyzed in terms of Soil Moisture Deficit Index (SMDI). A macroscale hydrological model Variable Infiltration Capacity (VIC) was used to simulate the hydro-climatological fluxes including evapotranspiration, runoff, and soil moisture storage to reconstruct the severity and duration of agricultural drought over semi-arid region of India. The simulations in VIC were performed at 0.25° spatial resolution by using a set of meteorological forcing data, soil parameters and Land Use Land Cover (LULC) and vegetation parameters. For calibration and validation, soil parameters obtained from National Bureau of Soil Survey and Land Use Planning (NBSSLUP) and ESA's Climate Change Initiative soil moisture (CCI-SM) data respectively. The analysis of results demonstrates that most of the study regions (> 80 %) especially for central northern part are affected by drought condition. The year 2001, 2002, 2007, 2008 and 2009 was highly affected by agricultural drought. Due to high average and maximum temperature, we observed higher soil evaporation that reduces the surface soil moisture significantly as well as the high topographic variations; coarse soil texture and moderate to high wind speed enhanced the drying upper soil moisture layer that incorporate higher negative SMDI over the study area. These findings can also facilitate the archetype in terms of daily time step data, lengths of the simulation period, various hydro-climatological outputs and use of reasonable hydrological model.
NASA Astrophysics Data System (ADS)
Schindewolf, Marcus; Schultze, Nico; Amorim, Ricardo S. S.; Schmidt, Jürgen
2015-04-01
The corridor along the Brazilian Highway 163 in the Southern Amazon is affected by radical changes in land use patterns. In order to enable a model based assessment of erosion risks on different land use and soil types a transportable disc type rainfall simulator is applied to identify the most important infiltration and erosion parameters of the EROSION 3D model. Since particle detachment highly depends on experimental plot length, a combined runoff supply is used for the virtually extension of the plot length to more than 20 m. Simulations were conducted on the most common regional land use, soil management and soil types for dry and wet runs. The experiments are characterized by high final infiltration rates (0.3 - 2.5 mm*min^-1), low sediment concentrations (0.2-6.5 g*L^-1) and accordingly low soil loss rates (0.002-50 Kg*m^-2), strongly related to land use, applied management and soil type. Ploughed pastures and clear cuts reveal highest soil losses whereas croplands are less affected. Due to higher aggregate stabilities Ferrasols are less endangered than Acrisols. Derived model parameters are plausible, comparable to existing data bases and reproduce the effects of land use and soil management on soil loss. Thus it is possible to apply the EROSION 3D soil loss model in Southern Amazonia for erosion risk assessment and scenario simulation under changing climate and land use conditions.
Martin, Derek; Cockell, Charles S
2015-02-01
Investigations of other planetary bodies, including Mars and icy moons such as Enceladus and Europa, show that they may have hosted aqueous environments in the past and may do so even today. Therefore, a major challenge in astrobiology is to build facilities that will allow us to study the geochemistry and habitability of these extraterrestrial environments. Here, we describe a simulation facility (PELS: Planetary Environmental Liquid Simulator) with the capability for liquid input and output that allows for the study of such environments. The facility, containing six separate sample vessels, allows for statistical replication of samples. Control of pressure, gas composition, UV irradiation conditions, and temperature allows for the precise replication of aqueous conditions, including subzero brines under martian atmospheric conditions. A sample acquisition system allows for the collection of both liquid and solid samples from within the chamber without breaking the atmospheric conditions, enabling detailed studies of the geochemical evolution and habitability of past and present extraterrestrial environments. The facility we describe represents a new frontier in planetary simulation-continuous flow-through simulation of extraterrestrial aqueous environments.
JSC Mars-1 Martian Soil Simulant: Melting Experiments and Electron Microprobe Studies
NASA Technical Reports Server (NTRS)
Carpenter, P.; Sebille, L.; Boles, W.; Chadwell, M.; Schwarz, L.
2003-01-01
JSC Mars-1 has been developed as a Martian regolith simulant, and is the <1 mm size fraction of a palagonitic tephra (a glassy volcanic ash altered at low temperatures) from Pu'u Nene cinder cone on the Island of Hawaii. The Mars-1 simulant forms the basis for numerous terrestrial studies which aim to evaluate the suitability of Martian soil for materials processing. Martian soil may be sintered to form building materials for construction, and also melted or reacted to extract metals for various uses, as well as oxygen for life support.
AmeriFlux Measurement Component (AMC) Instrument Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reichl, Ken; Biraud, Sebastien C.
2016-04-01
An AMC system was installed at the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility North Slope of Alaska (NSA) Barrow site, also known as NSA C1 at the ARM Data Archive, in August 2012. A second AMC system was installed at the third ARM Mobile Facility deployment at Oliktok Point, also known as NSA M1. This in situ system consists of 12 combination soil temperature and volumetric water content (VWC) reflectometers and one set of upwelling and downwelling photosynthetically active radiation (PAR) sensors, all deployed within the fetch of the Eddy Correlation Flux Measurement System.more » Soil temperature and VWC sensors placed at two depths (10 and 30 cm below the vegetation layer) at six locations (or microsites) allow soil property inhomogeneity to be monitored across a landscape.« less
Pattern Effects of Soil on Photovoltaic Surfaces
Burton, Patrick D.; Hendrickson, Alex; Ulibarri, Stephen Seth; ...
2016-06-06
The texture or patterning of soil on PV surfaces may influence light capture at various angles of incidence (AOI). Accumulated soil can be considered a microshading element, which changes with respect to AOI. Laboratory deposition of simulated soil was used to prepare test coupons for simultaneous AOI and soiling loss experiments. A mixed solvent deposition technique was used to consistently deposit patterned test soils onto glass slides. Transmission decreased as soil loading and AOI increased. Dense aggregates significantly decreased transmission. But, highly dispersed particles are less prone to secondary scattering, improving overall light collection. In order to test AOI losses on relevant systems, uniform simulated soil coatings were applied to split reference cells to further examine this effect. Finally, the measured optical transmission and area coverage correlated closely to the observedmore » $$I_{{rm SC}}$$. Angular losses were significant at angles as low as 25°.« less
Schmid, Wolfgang; Dogural, Emin; Hanson, Randall T.; Kadir, Tariq; Chung, Francis
2011-01-01
Two hydrologic models, MODFLOW with the Farm Process (MF-FMP) and the Integrated Water Flow Model (IWFM), are compared with respect to each model’s capabilities of simulating land-use hydrologic processes, surface-water routing, and groundwater flow. Of major concern among the land-use processes was the consumption of water through evaporation and transpiration by plants. The comparison of MF-FMP and IWFM was conducted and completed using a realistic hypothetical case study. Both models simulate the water demand for water-accounting units resulting from evapotranspiration and inefficiency losses and, for irrigated units, the supply from surface-water deliveries and groundwater pumpage. The MF-FMP simulates reductions in evapotranspiration owing to anoxia and wilting, and separately considers land-use-related evaporation and transpiration; IWFM simulates reductions in evapotranspiration related to the depletion of soil moisture. The models simulate inefficiency losses from precipitation and irrigation water applications to runoff and deep percolation differently. MF-FMP calculates the crop irrigation requirement and total farm delivery requirement, and then subtracts inefficiency losses from runoff and deep percolation. In IWFM, inefficiency losses to surface runoff from irrigation and precipitation are computed and subtracted from the total irrigation and precipitation before the crop irrigation requirement is estimated. Inefficiency losses in terms of deep percolation are computed simultaneously with the crop irrigation requirement. The seepage from streamflow routing also is computed differently and can affect certain hydrologic settings and magnitudes ofstreamflow infiltration. MF-FMP assumes steady-state conditions in the root zone; therefore, changes in soil moisture within the root zone are not calculated. IWFM simulates changes in the root zone in both irrigated and non-irrigated natural vegetation. Changes in soil moisture are more significant for non-irrigated natural vegetation areas than in the irrigated areas. Therefore, to facilitate the comparison of models, the changes in soil moisture are only simulated by IWFM for the natural vegetation areas, and soil-moisture parameters in irrigated regions in IWFM were specified at constant values . The IWFM total simulated changes in soil moisture that are related to natural vegetation areas vary from stress period to stress period but are small over the entire two-year period of simulation. In the hypothetical case study, IWFM simulates more evapotranspiration and return flows and less streamflow infiltration than MF-FMP. This causes more simulated surface-water diversions upstream and less simulated water available to downstream farms in IWFM compared to MF-FMP. The evapotranspiration simulated by the two models is well correlated even though the quantity is different. The different approaches used to simulate soil moisture, evapotranspiration, and inefficient losses yield different results for deep percolation and pumpage. In IWFM, deep percolation is a function of soil moisture; therefore, the constant soil-moisture requirement for irrigated regions, assumed for this comparison, results in a constant deep percolation rate. This led to poor correlation with the variable deep percolation rates simulated in MF-FMP, where the deep percolation rate, a fraction of inefficiency losses from precipitation and irrigation, is a function of quasi-steady state infiltration for each soil type and a function of groundwater head. Similarly, the larger simulated evapotranspiration in IWFM is mainly responsible for larger simulated groundwater pumpage demands and related lower groundwater levels in IWFM compared to MF-FMP. Because of the differences in features between MF-FMP and IWFM, the user may find that for certain hydrologic settings one model is better suited than the other. The performance of MF-FMP and IWFM in this particular hypothetical test case, with a fixed framework composed of common initial and boundary conditions and input parameter values, does not necessarily predict the performance of MF-FMP and IWFM in a real-world situation with variable framework and parameter values. These differences may affect the evaluation of policies, projects, or water-balance analysis for some hydrologic settings. Generally, both models are powerful tools that simulate a connected system of aquifer, stream networks, land surface, root zone, and runoff processes. MF-FMP simulated the hypothetical test case in about 4 minutes compared to about 58 minutes for IWFM.
40 CFR 264.31 - Design and operation of facility.
Code of Federal Regulations, 2014 CFR
2014-07-01
....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...
40 CFR 264.31 - Design and operation of facility.
Code of Federal Regulations, 2012 CFR
2012-07-01
....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...
40 CFR 264.31 - Design and operation of facility.
Code of Federal Regulations, 2013 CFR
2013-07-01
....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...
40 CFR 264.31 - Design and operation of facility.
Code of Federal Regulations, 2011 CFR
2011-07-01
....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...
40 CFR 160.45 - Test system supply facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Test system supply facilities. 160.45 Section 160.45 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... be storage areas, as needed, for feed, nutrients, soils, bedding, supplies, and equipment. Storage...
36 CFR 228.108 - Surface use requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... by the authorized Forest officer. (3) The operator must: (i) Control soil erosion and landslides; (ii...; (iv) Reshape and revegetate disturbed areas; (v) Remove structures, improvements, facilities and..., facilities, improvements, and equipment located on the area of operation in a safe and neat manner and in...
López-Vizcaíno, R; Risco, C; Isidro, J; Rodrigo, S; Saez, C; Cañizares, P; Navarro, V; Rodrigo, M A
2017-01-01
This work describes the application electrokinetic fence technology to a soil polluted with herbicides in a large prototype containing 32 m 3 of soil. It compares performance in this large facility with results previously obtained in a pilot-scale mockup (175 L) and with results obtained in a lab-scale soil column (1 L), all of them operated under the same driving force: an electric field of 1.0 V cm -1 . Within this wide context, this work focuses on the effect on inorganic species contained in soil and describes the main processes occurring in the prototype facility, as well as the differences observed respect to the lower scale plants. Thus, despite the same processes can be described in the three plants, important differences are observed in the evolution of the current intensity, moisture and conductivity. They can be related to the less important electroosmotic fluxes in the larger facilities and to the very different distances between electrodes, which lead to very different distribution of species and even to a very different evolution of the resulting current intensity. 2-D maps of the main species at different relevant moments of the test are discussed and important information is drawn from them. Ions depletion from soil appears as a very important problem which should be prevented if the effect of natural bioremediation and/or phytoremediation on the removal or organics aims to be accounted. Copyright © 2016 Elsevier Ltd. All rights reserved.
Man-Vehicle Systems Research Facility - Design and operating characteristics
NASA Technical Reports Server (NTRS)
Shiner, Robert J.; Sullivan, Barry T.
1992-01-01
This paper describes the full-mission flight simulation facility at the NASA Ames Research Center. The Man-Vehicle Systems Research Facility (MVSRF) supports aeronautical human factors research and consists of two full-mission flight simulators and an air-traffic-control simulator. The facility is used for a broad range of human factors research in both conventional and advanced aviation systems. The objectives of the research are to improve the understanding of the causes and effects of human errors in aviation operations, and to limit their occurrence. The facility is used to: (1) develop fundamental analytical expressions of the functional performance characteristics of aircraft flight crews; (2) formulate principles and design criteria for aviation environments; (3) evaluate the integration of subsystems in contemporary flight and air traffic control scenarios; and (4) develop training and simulation technologies.
Designing efficient nitrous oxide sampling strategies in agroecosystems using simulation models
Debasish Saha; Armen R. Kemanian; Benjamin M. Rau; Paul R. Adler; Felipe Montes
2017-01-01
Annual cumulative soil nitrous oxide (N2O) emissions calculated from discrete chamber-based flux measurements have unknown uncertainty. We used outputs from simulations obtained with an agroecosystem model to design sampling strategies that yield accurate cumulative N2O flux estimates with a known uncertainty level. Daily soil N2O fluxes were simulated for Ames, IA (...
Yuan Yuan; Thomas Meixner; Mark E. Fenn; Jirka Simunek
2011-01-01
Soil water dynamics and drainage are key abiotic factors controlling losses of atmospherically deposited N in Southern California. In this paper soil N leaching and trace gaseous emissions simulated by the DAYCENT biogeochemical model using its original semi‐dynamic water flow module were compared to that coupled with a finite element transient water flow...
Hartman, M.D.; Baron, Jill S.; Ojima, D.S.
2007-01-01
Atmospheric deposition of sulfur and nitrogen species have the potential to acidify terrestrial and aquatic ecosystems, but nitrate and ammonium are also critical nutrients for plant and microbial productivity. Both the ecological response and the hydrochemical response to atmospheric deposition are of interest to regulatory and land management agencies. We developed a non-spatial biogeochemical model to simulate soil and surface water chemistry by linking the daily version of the CENTURY ecosystem model (DayCent) with a low temperature aqueous geochemical model, PHREEQC. The coupled model, DayCent-Chem, simulates the daily dynamics of plant production, soil organic matter, cation exchange, mineral weathering, elution, stream discharge, and solute concentrations in soil water and stream flow. By aerially weighting the contributions of separate bedrock/talus and tundra simulations, the model was able to replicate the measured seasonal and annual stream chemistry for most solutes for Andrews Creek in Loch Vale watershed, Rocky Mountain National Park. Simulated soil chemistry, net primary production, live biomass, and soil organic matter for forest and tundra matched well with measurements. This model is appropriate for accurately describing ecosystem and surface water chemical response to atmospheric deposition and climate change. ?? 2006 Elsevier B.V. All rights reserved.
2001-06-01
B12 6. Former Wood Treatment Facility, Sonoma County , CA . . . . . . . . . . . . . . . . . . . . . B12 7. San Francisco Bay Sites, CA...aromatic hydrocarbons (PAHs) to below regulatory limits. Site: Former Wood Treatment Facility, Sonoma County , CA Technology: Ozone Summary: An array...manufacturing facility, located in Sonoma County , California (Clayton, 2000b). Primary contaminants are pentachlorophenol (PCP) and creosote (i.e., polycyclic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Xitian; Yang, Zong-Liang; Xia, Youlong
2014-12-27
This study assesses the hydrologic performance of four land surface models (LSMs) for the conterminous United States using the North American Land Data Assimilation System (NLDAS) test bed. The four LSMs are the baseline community Noah LSM (Noah, version 2.8), the Variable Infiltration Capacity (VIC, version 4.0.5) model, the substantially augmented Noah LSM with multiparameterization options (hence Noah-MP), and the Community Land Model version 4 (CLM4). All four models are driven by the same NLDAS-2 atmospheric forcing. Modeled terrestrial water storage (TWS), streamflow, evapotranspiration (ET), and soil moisture are compared with each other and evaluated against the identical observations. Relativemore » to Noah, the other three models offer significant improvements in simulating TWS and streamflow and moderate improvements in simulating ET and soil moisture. Noah-MP provides the best performance in simulating soil moisture and is among the best in simulating TWS, CLM4 shows the best performance in simulating ET, and VIC ranks the highest in performing the streamflow simulations. Despite these improvements, CLM4, Noah-MP, and VIC exhibit deficiencies, such as the low variability of soil moisture in CLM4, the fast growth of spring ET in Noah-MP, and the constant overestimation of ET in VIC.« less
Models Robustness for Simulating Drainage and NO3-N Fluxes
NASA Astrophysics Data System (ADS)
Jabro, Jay; Jabro, Ann
2013-04-01
Computer models simulate and forecast appropriate agricultural practices to reduce environmental impact. The objectives of this study were to assess and compare robustness and performance of three models -- LEACHM, NCSWAP, and SOIL-SOILN--for simulating drainage and NO3-N leaching fluxes in an intense pasture system without recalibration. A 3-yr study was conducted on a Hagerstown silt loam to measure drainage and NO3-N fluxes below 1 m depth from N-fertilized orchardgrass using intact core lysimeters. Five N-fertilizer treatments were replicated five times in a randomized complete block experimental design. The models were validated under orchardgrass using soil, water and N transformation rate parameters and C pools fractionation derived from a previous study conducted on similar soils under corn. The model efficiency (MEF) of drainage and NO3-N fluxes were 0.53, 0.69 for LEACHM; 0.75, 0.39 for NCSWAP; and 0.94, 0.91for SOIL-SOILN. The models failed to produce reasonable simulations of drainage and NO3-N fluxes in January, February and March due to limited water movement associated with frozen soil and snow accumulation and melt. The differences between simulated and measured NO3-N leaching and among models' performances may also be related to soil N and C transformation processes embedded in the models These results are a monumental progression in the validation of computer models which will lead to continued diffusion across diverse stakeholders.
NASA Technical Reports Server (NTRS)
Mocko, David M.; Sud, Y. C.
2000-01-01
Refinements to the snow-physics scheme of SSiB (Simplified Simple Biosphere Model) are described and evaluated. The upgrades include a partial redesign of the conceptual architecture to better simulate the diurnal temperature of the snow surface. For a deep snowpack, there are two separate prognostic temperature snow layers - the top layer responds to diurnal fluctuations in the surface forcing, while the deep layer exhibits a slowly varying response. In addition, the use of a very deep soil temperature and a treatment of snow aging with its influence on snow density is parameterized and evaluated. The upgraded snow scheme produces better timing of snow melt in GSWP-style simulations using ISLSCP Initiative I data for 1987-1988 in the Russian Wheat Belt region. To simulate more realistic runoff in regions with high orographic variability, additional improvements are made to SSiB's soil hydrology. These improvements include an orography-based surface runoff scheme as well as interaction with a water table below SSiB's three soil layers. The addition of these parameterizations further help to simulate more realistic runoff and accompanying prognostic soil moisture fields in the GSWP-style simulations. In intercomparisons of the performance of the new snow-physics SSiB with its earlier versions using an 18-year single-site dataset from Valdai Russia, the version of SSiB described in this paper again produces the earliest onset of snow melt. Soil moisture and deep soil temperatures also compare favorably with observations.
The effect of elevated CO2 and temperature on nutrient uptake by plants grown in basaltic soil
NASA Astrophysics Data System (ADS)
Villasenor Iribe, E.; Dontsova, K.; Juarez, S.; Le Galliard, J. F.; Chollet, S.; Llavata, M.; Massol, F.; Barré, P.; Gelabert, A.; Daval, D.; Troch, P.; Barron-Gafford, G.; Van Haren, J. L. M.; Ferrière, R.
2017-12-01
Mineral weathering is an important process in soil formation. The interactions between the hydrologic, geologic and atmospheric cycles often determine the rate at which weathering occurs. Elements and nutrients weathered from the soil by water can be removed from soils in the runoff and seepage, but they can also remain in situ as newly precipitated secondary minerals or in biomass as a result of plant uptake. Here we present data from an experiment that was conducted at the controlled environment facility, Ecotron Ile-de-France (Saint-Pierre-les-Nemours, France) that studied mineral weathering and plant growth in granular basaltic material with high glass content that is being used to simulate soil in large scale Biosphere 2 Landscape Evolution Observatory (LEO) project. The experiment used 3 plant types: velvet mesquite (Prosopis velutina), green spangletop (Leptochloa dubia), and alfalfa (Medicago sativa), which were grown under varying temperature and CO2 conditions. We hypothesized that plants grown under warmer, higher CO2 conditions would have larger nutrient concentrations as more mineral weathering would occur. Results of plant digestions and analysis showed that plant concentrations of lithogenic elements were significantly influenced by the plant type and were different between above- and below-ground parts of the plant. Temperature and CO2 treatment effects were less pronounced, but we observed significant temperature effect on plant uptake. A number of major and trace elements showed increase in concentration with increase in temperature at elevated atmospheric CO2. Effect was observed both in the shoots and in the roots, but more significant differences were observed in the shoots. Results presented here indicate that climate change would have strong effect on plant uptake and mobility of weathered elements during soil formation and give further evidence of interactions between abiotic and biological processes in terrestrial ecosystems.
NASA Astrophysics Data System (ADS)
Muñoz-Rojas, Miriam; Erickson, Todd E.; Martini, Dylan C.; Dixon, Kingsley W.; Merritt, David J.
2016-06-01
Land degradation affects 10-20 % of drylands globally. Intensive land use and management, large-scale disturbances such as extractive operations, and global climate change, have contributed to degradation of these systems worldwide. Restoring these damaged environments is critical to improving ecosystem services and functions, conserve biodiversity, and contribute to climate resilience, food security, and landscape sustainability. Here, we present a case study on plant species of the mining intensive semi-arid Pilbara region in Western Australia that examines the effects of climate and soil factors on the restoration of drylands. We analysed the effects of a range of rainfall and temperature scenarios and the use of alternative soil materials on seedling recruitment of key native plant species from this area. Experimental studies were conducted in controlled environment facilities where conditions simulated those found in the Pilbara. Soil from topsoil (T) stockpiles and waste materials (W) from an active mine site were mixed at different proportions (100 % T, 100 % W, and two mixes of topsoil and waste at 50 : 50 and 25 : 75 ratios) and used as growth media. Our results showed that seedling recruitment was highly dependent on soil moisture and emergence was generally higher in the topsoil, which had the highest available water content. In general, responses to the climate scenarios differed significantly among the native species which suggest that future climate scenarios of increasing drought might affect not only seedling recruitment but also diversity and structure of native plant communities. The use of waste materials from mining operations as growth media could be an alternative to the limited topsoil. However, in the early stages of plant establishment successful seedling recruitment can be challenging in the absence of water. These limitations could be overcome by using soil amendments but the cost associated to these solutions at large landscape scales needs to be assessed and proven to be economically feasible.
Effect of micro-topography and undrained shear strength on soil erosion
NASA Astrophysics Data System (ADS)
Todisco, Francesca; Vergni, Lorenzo; Vinci, Alessandra; Torri, Dino
2017-04-01
An experiment to evaluate the effect of the pre-event soil surface conditions on the dynamics of the interrill erosion process was performed at the Masse experimental station (Italy) in a replicated 1mx1m plot, located in a 16% slope in a silt-clay-loam soil equipped with a nozzle-type rainfall simulator. Two experiments was performed, each experiment started from a just ploughed bare surface and included 3 simulations (I, II and III in the first experiment and IV, V and VI in the second experiment) carried out in the range of few days. A 30 min pre-wetting phase ensures almost constant initial soil moisture (mean=31%, CV=5%) and bulk density (mean=1.3 g/cm3, CV=3%). Rainfall intensity was maintained constant (mean=67mm/h, CV=2.7%). The independent variables were the initial soil surface conditions that, progressively modified by the rainfall runoff process, were different for the three subsequent simulations. The soil surface initial and final micro-topography and undrained shear strength, T, were monitored through photogrammetric surveys (with I-Phone 6plus) and Torvane test (with pocket-torvane, obliged shear surface at 0.5 cm from soil surface, plate diameter 5 cm, 0.2186 full scale complete revolution 360°, test done on saturated soil surface, with water standing at the surface). Runoff, Q, runoff coefficient, Qr, soil loss, SL and sediment concentration, C, were measured every 5 min. The particle size distribution were also determined. During the simulations Q increases monotonically with typically concave trend. Almost similar consideration can be made for the other variables. A higher frequency of the roughness, RR, (i.e. vertical distance between the surface and a reference horizontal plane, obtained by removing the slope effect) lower than a fixed amount, was measured at the final than the initial step of each simulation and within the single experiment between successive simulations. Therefore, the roughness decreases along with the Q, SL and C increase. In general in the simulations equidistant from the plowing (I-IV, II-V, III-VI) the dynamic of Q, SL and C relative to the second experiment are slightly above that of the first experiment. Actually it is observed that although the frequency distributions of the initial RR of the first simulation of each experiment (I and IV) almost overlap, a higher frequency of the RR lower than a fixed amount was measured in the second experiment (the RR-V >RR-II and the RR-VI>RR-III). Higher T values were often measured at the final than the initial step of each simulation due to sealing and crusting processes associated with the surface smoothness. These and other results open interesting scenarios in the study of the dynamics of the erosion process with particular reference to the relationship between the characteristics of the soil surface and the climatic and hydrological forcing both at event and intra-event time scale. In addition, some results offer discussion points relative to the dynamics of the soil erodibility, showing that the concentration behavior cannot be fully explained by the runoff dynamics.
NASA Astrophysics Data System (ADS)
Bodí, Merche B.; Cerdà, Artemi; Doerr, Stefan H.; Mataix-Solera, Jorge
2010-05-01
Vegetative ash formed during forest wildfires often blankets the ground. Some studies have found the ash layer to increases infiltration by storing rainfall and protecting the underlying soil from sealing (Cerdà, and Doerr, 2008; Woods and Balfour, 2008), but at the same time, others identified it as a potential cause of increased overland flow due to sealing the soil pores or crusting (Mallik et al., 1984; Onda et al., 2008). The variability in the effects of ash depends mainly on the ash type and temperature of combustion, ash thickness and soil type (Kinner and Moody, 2007; Larsen et al., 2009). In order to study the effect of the ash layer on the soil hydrology and soil erosion under i) intense thunderstorms, ii) wettable and water repellent soil and iii) different ash thicknesses, rainfall simulation experiments were performed in a small plot (0.09 m2) in order to reach the highest accuracy. The simulator comprises a constant head tank of 40x40 cm with 190 hypodermic needles of 0.5 mm. A randomization screen served to break up the raindrops and ensure random drop landing positions (Kamphorst, 1987). The average of the intensities applied in the experiment was 82.5 ± 4.13 mm h-1 during 40 minutes. In order to verify the constancy of the intensity it was measured before and after each simulation. The rainfall was conducted in a metal box of 30x30 cm within 1 m of distance from the randomization screen. The slope of the box was set at 10° (17%). It is designed to collect overland flow and subsurface flow through the soil. Each rainfall simulation was conducted on 3 cm of both wettable and water repellent soil (WDPT>7200s). They are the same soil but one transformed into hydrophobic. The treatments carried out are: a) bare soil, b) 5 mm of ash depth, c) 15 mm of ash depth and d) 30 mm of ash depth, with three replicates. The ash was collected from a wildfire and the thicknesses are in the range of the reported in the literature. The first replicate was used for analysis of water repellency, infiltration pattern and ash incorporation into the soil and the other replicates are used for a second rainfall, one after 24 hours and the other after being dried 4 days in the oven at 25°C. In total there were 40 simulations. Overland flow and subsurface drainage were collected at 1-minute intervals and the forms was stored every 5 min to allow determination of sediment concentrations, yield and erosion rates. The experiment was completed with the installation of two moisture sensors at 1.5 cm of the soil and four splash cups that allowed determining the splash detachment at the end on the simulation. The importance in this series of experiments is the reproducibility and comparison of the different thicknesses of ash with the wettable and repellent soil. The results demonstrate that ash is a key factor on the post-fire soil erosion and hydrology and that rainfall simulation is a key tool to improve knowledge on low frequency - high magnitude events. References Cerdà, A. and Doerr, S.H., 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74: 256-263. Kamphorst, A., 1987. A small rainfall simulator for the determination of soil erodibility. Neth J Agric Sci 35, pp. 407-415. Kinner, D.A. and Moody, J.A., 2007. Infiltration and runoff measurements on steep burned hillslope using a rainfall simulator with variable rain intensities, U.S. Department of the Interior U.S. Geological Survey. Larsen, I.J. et al., 2009. Causes of post-fire runoff and erosion: water repellency, cover, or soil sealing? Soil Science SOciety American Journal 73: 1393-1407. Mallik, A.U., Gimingham, C.H. and Rahman, A.A., 1984. Ecological effects of heater burning. I. Water infiltration, moisture retention and porosity of surface soil. Journal of Ecology, 72: 767-776. Onda, Y., Dietrich, W.E. and Booker, F., 2008. Evolution of overland flow after a severe forest fire, Point Reyes, California. Catena, 72: 13-20. Woods, S.W. and Balfour, V., 2008. The effect of ash on runoff and erosion after a forest wildfire, Montana, U.S.A. International Journal of Wildland Fire, 17(5): 535-548.
NASA Technical Reports Server (NTRS)
Mocko, David M.; Kumar, S. V.; Peters-Lidard, C. D.; Tian, Y.
2011-01-01
This presentation will include results from data assimilation simulations using the NASA-developed Land Information System (LIS). Using the ensemble Kalman filter in LIS, two satellite-based soil moisture products from the AMSR-E instrument were assimilated, one a NASA-based product and the other from the Land Parameter Retrieval Model (LPRM). The domain and land-surface forcing data from these simulations were from the North American Land Data Assimilation System Phase-2, over the period 2002-2008. The Noah land-surface model, version 3.2, was used during the simulations. Changes to estimates of land surface states, such as soil moisture, as well as changes to simulated runoff/streamflow will be presented. Comparisons over the NLDAS domain will also be made to two global reference evapotranspiration (ET) products, one an interpolated product based on FLUXNET tower data and the other a satellite- based algorithm from the MODIS instrument. Results of an improvement metric show that assimilating the LPRM product improved simulated ET estimates while the NASA-based soil moisture product did not.
A computer program for the simulation of heat and moisture flow in soils
NASA Technical Reports Server (NTRS)
Camillo, P.; Schmugge, T. J.
1981-01-01
A computer program that simulates the flow of heat and moisture in soils is described. The space-time dependence of temperature and moisture content is described by a set of diffusion-type partial differential equations. The simulator uses a predictor/corrector to numerically integrate them, giving wetness and temperature profiles as a function of time. The simulator was used to generate solutions to diffusion-type partial differential equations for which analytical solutions are known. These equations include both constant and variable diffusivities, and both flux and constant concentration boundary conditions. In all cases, the simulated and analytic solutions agreed to within the error bounds which were imposed on the integrator. Simulations of heat and moisture flow under actual field conditions were also performed. Ground truth data were used for the boundary conditions and soil transport properties. The qualitative agreement between simulated and measured profiles is an indication that the model equations are reasonably accurate representations of the physical processes involved.
A new approach to predict soil temperature under vegetated surfaces.
Dolschak, Klaus; Gartner, Karl; Berger, Torsten W
2015-12-01
In this article, the setup and the application of an empirical model, based on Newton's law of cooling, capable to predict daily mean soil temperature ( T soil ) under vegetated surfaces, is described. The only input variable, necessary to run the model, is a time series of daily mean air temperature. The simulator employs 9 empirical parameters, which were estimated by inverse modeling. The model, which primarily addresses forested sites, incorporates the effect of snow cover and soil freezing on soil temperature. The model was applied to several temperate forest sites, managing the split between Central Europe (Austria) and the United States (Harvard Forest, Massachusetts; Hubbard Brook, New Hampshire), aiming to cover a broad range of site characteristics. Investigated stands differ fundamentally in stand composition, elevation, exposition, annual mean temperature, precipitation regime, as well as in the duration of winter snow cover. At last, to explore the limits of the formulation, the simulator was applied to non-forest sites (Illinois), where soil temperature was recorded under short cut grass. The model was parameterized, specifically to site and measurement depth. After calibration of the model, an evaluation was performed, using ~50 % of the available data. In each case, the simulator was capable to deliver a feasible prediction of soil temperature in the validation time interval. To evaluate the practical suitability of the simulator, the minimum amount of soil temperature point measurements, necessary to yield expedient model performance was determined. In the investigated case 13-20 point observations, uniformly distributed within an 11-year timeframe, have been proven sufficient to yield sound model performance (root mean square error <0.9 °C, Nash-Sutcliffe efficiency >0.97). This makes the model suitable for the application on sites, where the information on soil temperature is discontinuous or scarce.
A protocol for conducting rainfall simulation to study soil runoff.
Kibet, Leonard C; Saporito, Louis S; Allen, Arthur L; May, Eric B; Kleinman, Peter J A; Hashem, Fawzy M; Bryant, Ray B
2014-04-03
Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff.
A Protocol for Conducting Rainfall Simulation to Study Soil Runoff
Kibet, Leonard C.; Saporito, Louis S.; Allen, Arthur L.; May, Eric B.; Kleinman, Peter J. A.; Hashem, Fawzy M.; Bryant, Ray B.
2014-01-01
Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff. PMID:24748061
La-oxides as tracers for PuO{sub 2} to simulate contaminated aerosol behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, L.C.; Newton, G.J.; Cronenberg, A.W.
1994-04-01
An analytical and experimental study was performed on the use of lanthanide oxides (La-oxides) as surrogates for plutonium oxides (PuO{sub 2}) during simulated buried waste retrieval. This study determined how well the La-oxides move compared to PuO{sub 2} in aerosolized soils during retrieval scenarios. As part of the analytical study, physical properties of La-oxides and PuO{sub 2}, such as molecular diameter, diffusivity, density, and molecular weight are compared. In addition, an experimental study was performed in which Idaho National Engineering Laboratory (INEL) soil, INEL soil with lanthanides, and INEL soil with plutonium were aerosolized and collected in filters. Comparison ofmore » particle size distribution parameters from this experimental study show similarity between INEL soil, INEL soil with lanthanides, and INEL soil with plutonium.« less
Space technology test facilities at the NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Gross, Anthony R.; Rodrigues, Annette T.
1990-01-01
The major space research and technology test facilities at the NASA Ames Research Center are divided into five categories: General Purpose, Life Support, Computer-Based Simulation, High Energy, and the Space Exploraton Test Facilities. The paper discusses selected facilities within each of the five categories and discusses some of the major programs in which these facilities have been involved. Special attention is given to the 20-G Man-Rated Centrifuge, the Human Research Facility, the Plant Crop Growth Facility, the Numerical Aerodynamic Simulation Facility, the Arc-Jet Complex and Hypersonic Test Facility, the Infrared Detector and Cryogenic Test Facility, and the Mars Wind Tunnel. Each facility is described along with its objectives, test parameter ranges, and major current programs and applications.
Balkhair, Khaled S
2017-03-01
Pathogenic bacteria, that enter surface water bodies and groundwater systems through unmanaged wastewater land application, pose a great risk to human health. In this study, six soil column experiments were conducted to simulate the vulnerability of agricultural and urban field soils for fecal bacteria transport and retention under saturated and unsaturated flow conditions. HYDRUS-1D kinetic attachment and kinetic attachment-detachment models were used to simulate the breakthrough curves of the experimental data by fitting model parameters. Results indicated significant differences in the retention and drainage of bacteria between saturated and unsaturated flow condition in the two studied soils. Flow under unsaturated condition retained more bacteria than the saturated flow case. The high bacteria retention in the urban soil compared to agricultural soil is ascribed not only to the dynamic attachment and sorption mechanisms but also to the greater surface area of fine particles and low flow rate. All models simulated experimental data satisfactorily under saturated flow conditions; however, under variably saturated flow, the peak concentrations were overestimated by the attachment-detachment model and underestimated by the attachment model with blocking. The good match between observed data and simulated concentrations by the attachment model which was supported by the Akaike information criterion (AIC) for model selection indicates that the first-order attachment coefficient was sufficient to represent the quantitative and temporal distribution of bacteria in the soil column. On the other hand, the total mass balance of the drained and retained bacteria in all transport experiments was in the range of values commonly found in the literature. Regardless of flow conditions and soil texture, most of the bacteria were retained in the top 12 cm of the soil column. The approaches and the models used in this study have proven to be a good tool for simulating fecal bacteria transport under a variety of initial and boundary flow conditions, hence providing a better understanding of the transport mechanism of bacteria as well as soil removal efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.
The report presents and evaluates the extensive database from the SITE Program demonstration at the MacGillis and Gibbs wood treatment facility in New Brighton, MN. Soil washing and segregation, biotreatment of contaminated process water, and biodegradation of a slurry of the con...
18 CFR 380.15 - Siting and maintenance requirements.
Code of Federal Regulations, 2011 CFR
2011-04-01
... rights-of-way and the construction of facilities on their property, so long as the result is consistent... rights-of-way, soil stability and protection of natural vegetation and adjacent resources should be taken... to minimize soil erosion. Upon abandonment, the road area should be restored and stabilized without...
A field study to determine the ability of selected lignin-degrading fungi to remediate soil contaminated with creosote was performed at a wood-treating facility in south central Mississippi in the autumn of 1991. The effects of solid-phase bioremediation with Phanerochaete sordid...
This paper primarily addresses remediation of contaminated soils and waste deposits at defunct lead-acid battery recycling sites (LBRS) via immobilization and separation processes. A defunct LBRS is a facility at which battery breaking, secondary lead smelting, or both operations...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., drainage, and other soil and water conservation and use facilities. (6) Loans to acquire and develop grazing land for livestock of an association of members. (7) Loans in areas designated by the Soil... and to contribute to economic improvement of the area. (8) Loans to protect and develop land and water...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., drainage, and other soil and water conservation and use facilities. (6) Loans to acquire and develop grazing land for livestock of an association of members. (7) Loans in areas designated by the Soil... and to contribute to economic improvement of the area. (8) Loans to protect and develop land and water...
This report presents the results of a treatability study of rotary kiln incineration of a synthetic "Superfund soil" bearing a wide range of chemical contaminants typically occurring at Superfund sites. This surrogate soil is referred to as a synthetic analytical reference ...
USDA-ARS?s Scientific Manuscript database
The objective of this study was to evaluate soil nutrient loading and depth distributions of extractable nitrogen (N), phosphorus (P), and potassium (K) after long-term, continuous annual surface-applications of anaerobically-digested Class B biosolids at a municipal recycling facility in central Te...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-24
... facility at the Site, where soil, sediment, and water have been contaminated with hazardous substances such as volatile organic compounds and heavy metals. The proposed Consent Decree requires ITT Corporation... response costs. The remedial action consists of disposal of contaminated soil and sediment, bioremediation...
Composted manure application promotes long-term invasion of semi-arid rangeland by Bromus tectorum
USDA-ARS?s Scientific Manuscript database
Composted organic matter derived from sewage treatment facilities or livestock manure from feedlots is often applied to rangelands of western North America to increase soil fertility, forage production, forage quality, and soil carbon (C) storage. This practice can have a number of undesirable side ...
Environmental assessment for the Plating Shop Replacement, Y-12 Plant, Oak Ridge, Tennessee
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-03-01
The existing of Y-12 Plant Plating Shop provides vital support functions for the US Department of Energy (DOE) Defense Programs operations. In addition to weapon component plating, the facility performs other plating services to support existing operations for the Y-12 Plant, other DOE facilities, and other federal agencies. In addition, the facility would also provide essential deplating services for weapons reclamation and teardown. The existing Y-12 Plant Plating Shop is presently located in a structure which is rapidly deteriorating and obsolete. The existing building structure was originally designed to house a steam plant, not chemical plating operations. As such, vaporsmore » from plating operations have deteriorated the structure to a point where a new facility is needed for continued safe operations. The potential environmental impacts of the proposed action was anticipated to be minimal and would affect no environmentally sensitive areas. Some short-term construction- and demolition-related effects would occur in an already highly industrialized setting. These include temporarily disturbing 72,000 square feet of land for the new plating shop and related site preparation activities, constructing a permanent building on part of the area, and using 80 construction personnel over a period of 18 months for site preparation and construction. Demolition effects vary depending on the environmentally suitable option selected, but they could involve as much as 262 cubic yards of concrete rubble and approximately 1600 cubic yards of soil disposed as waste. Either 1600 cubic yards of fresh soil or 1850 yards of clay and fresh soil could be required. Soil erosion would be minimal. Approximately 20 construction personnel would be involved for 12 months in demolition activities.« less
NASA Technical Reports Server (NTRS)
Lin, D. S.; Wood, E. F.; Famiglietti, J. S.; Mancini, M.
1994-01-01
Spatial distributions of soil moisture over an agricultural watershed with a drainage area of 60 ha were derived from two NASA microwave remote sensors, and then used as a feedback to determine the initial condition for a distributed water balance model. Simulated hydrologic fluxes over a period of twelve days were compared with field observations and with model predictions based on a streamflow derived initial condition. The results indicated that even the low resolution remotely sensed data can improve the hydrologic model's performance in simulating the dynamics of unsaturated zone soil moisture. For the particular watershed under study, the simulated water budget was not sensitive to the resolutions of the microwave sensors.
Kinetic energy of rainfall simulation nozzles
USDA-ARS?s Scientific Manuscript database
Different spray nozzles are used frequently to simulate natural rain for soil erosion and chemical transport, particularly phosphorous (P), studies. Oscillating VeeJet nozzles are used mostly in soil erosion research while constant spray FullJet nozzles are commonly used for P transport. Several ch...
Decomposition by ectomycorrhizal fungi alters soil carbon storage in a simulation model
Moore, J. A. M.; Jiang, J.; Post, W. M.; ...
2015-03-06
Carbon cycle models often lack explicit belowground organism activity, yet belowground organisms regulate carbon storage and release in soil. Ectomycorrhizal fungi are important players in the carbon cycle because they are a conduit into soil for carbon assimilated by the plant. It is hypothesized that ectomycorrhizal fungi can also be active decomposers when plant carbon allocation to fungi is low. Here, we reviewed the literature on ectomycorrhizal decomposition and we developed a simulation model of the plant-mycorrhizae interaction where a reduction in plant productivity stimulates ectomycorrhizal fungi to decompose soil organic matter. Our review highlights evidence demonstrating the potential formore » ectomycorrhizal fungi to decompose soil organic matter. Our model output suggests that ectomycorrhizal activity accounts for a portion of carbon decomposed in soil, but this portion varied with plant productivity and the mycorrhizal carbon uptake strategy simulated. Lower organic matter inputs to soil were largely responsible for reduced soil carbon storage. Using mathematical theory, we demonstrated that biotic interactions affect predictions of ecosystem functions. Specifically, we developed a simple function to model the mycorrhizal switch in function from plant symbiont to decomposer. In conclusion, we show that including mycorrhizal fungi with the flexibility of mutualistic and saprotrophic lifestyles alters predictions of ecosystem function.« less