Use of calcium/aluminum ratios as indicators of stress in forest ecosystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cronan, C.S.; Grigal, D.F.
1995-03-01
The calcium/aluminum (Ca/Al) molar ratio of the soil solution provides a valuable measurement endpoint or ecological indicator for identification of approximate thresholds beyond which the risk of forest damage from Al stress and nutrient imbalances increases. The Ca/Al ratio can also be used as an indicator to assess forest ecosystem changes over time in response to acidic deposition, forest harvesting, or other processes contributing to acid soil infertility. Based on a critical review of literature on Al stress, we estimate that there is a 50:50 risk of adverse impacts on tree growth or nutrition when the soil solution Ca/Al ratiomore » is as low as 1.0, a 75% risk when the soil solution ratio is as low as 0.5, and nearly a 100% risk when the soil solution Ca/Al molar ratio is as low as 0.2. The Ca/Al ratio of the soil solution can be corroborated with other complementary indices.« less
Sorption-Desorption and Transport of TNT and RDX in Soils
1994-05-01
thesoil (jtg/g) dissolved chemicals in the soil solution (Selim C = solute concentration in solution (4g/ mL) 1992), is Kd = distribution coefficient...solute species was Smax 1 + WC assumed tobe preselntin the soil solution phase (C) and in four phases representing solute retained by where co and Smnx...types of surfaces, although it is cals in the soil solution (Selim et al. 1976, Jardine et not necessary to have a priori knowledge of the al. 1985
Etou, Mayumi; Masaki, Yuka; Tsuji, Yutaka; Saito, Tomoyuki; Bai, Shuqin; Nishida, Ikuko; Okaue, Yoshihiro; Yokoyama, Takushi
2011-01-01
From the viewpoint of the phytotoxicity and mobility of Al(3+) released from soil minerals due to soil acidification, the interaction between Al(3+) and acrylic acid (AA) and polyacrylic acid (PAA) as a model compound of fulvic acid was investigated. The interaction was examined at pH 3 so as to avoid the hydrolysis of Al(3+). The interaction between Al(3+) and AA was weak. However, the interaction between Al(3+) and PAA was strong and depended on the initial (COOH in PAA)/Al molar ratio (R(P)) of the solution. For the range of 1/R(P), the interaction between Al(3+) and PAA can be divided into three categories: (1) 1:1 Al-PAA-complex (an Al(3+) combines to a carboxyl group), (2) intermolecular Al-PAA-complex (an Al(3+) combines to more than 2 carboxyl groups of other Al-PAA-complexes) in addition to the 1:1 Al-PAA-complex and (3) precipitation of intermolecular complexes. In conclusion, R(P) is an important factor affecting the behavior of Al(3+) in acidic soil solution.
Minocha, R.; Shortle, W.C.; Lawrence, G.B.; David, M.B.; Minocha, S.C.
1997-01-01
Forest trees are constantly exposed to various types of natural and anthropogenic stressors. A major long-term goal of our research is to develop a set of early physiological and biochemical markers of stress in trees before the appearance of visual symptoms. Six red spruce (Picea rubens Sarg.) stands from the northeastern United States were selected for collection of soil and foliage samples. All of the chosen sites had soil solution pH values below 4.0 in the Oa horizon but varied in their geochemistry. Some of these sites were apparently under some form of environmental stress as indicated by a large number of dead and dying red spruce trees. Samples of soil and needles (from apparently healthy red spruce trees) were collected from these sites four times during a two-year period. The needles were analyzed for perchloric acid-soluble polyamines and exchangeable inorganic ions. Soil and soil solution samples from the Oa and B horizons were analyzed for their exchange chemistry. The data showed a strong positive correlation between Ca and Mg concentrations in the needles and in the Oa horizon of the soil. However, needles from trees growing on relatively Ca-rich soils with a low exchangeable Al concentration and a low Al:Ca soil solution ratio had significantly lower concentrations of putrescine and spermidine than those growing on Ca-poor soils with a high exchangeable Al concentration and a high Al:Ca soil solution in the Oa horizon. The magnitude of this change was several fold higher for putrescine concentrations than for spermidine concentrations. Neither putrescine nor spermidine were correlated with soil solution Ca, Mg, and Al concentrations in the B horizon. The putrescine concentrations of the needles always correlated significantly with exchangeable Al (r2=0.73, p???0.05) and still solution Al:Ca ratios (r2=0.91, p???0.01) of the Oa horizon. This suggests that in conjunction with soil chemistry, putrescine and/or spermidine may be used as a potential early indicator of Al stress before the appearance of visual symptoms in red spruce trees.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavan, M.A.; Bingham, F.T.; Pratt, P.F.
1982-01-01
A greenhouse experiment was conducted with six acid soils from southern Brazil to investigate the effect of available Al on growth and mineral nutrition of coffee (Coffea arabica L.) seedlings. Coffee seedlings were grown for 7 months in pots containing soil treated with varying amounts of CaCO/sub 3/ up to twice the lime equivalent, and amounts of MgCO/sub 3/ and CaSO/sub 4/ x 2H/sub 2/O equal to the lime equivalent. Leaf samples were collected immediately before harvesting the seedlings and analyzed for Ca and Al. At this time, soil was collected from each pot and analyzed for exchangeable cations andmore » soluble ions. The chemical composition of the soil solution was used as input data for a computer program (GEOCHEM) to chemically speciate Al in the soil solutions. Shoot and root weights were correlated with KCl-exchangeable Al of soil, percent Al saturation of soil, the concentrations of total Al (Al/sub t/) and Al/sup 3 +/ (calculated), and the activity of Al/sup 3 +/ (calculated) in the soil solution. Growth reductions of the seedlings correlated best with the Al/sup 3 +/ activity value. The toxicity threshold for the Al/sup 3 +/ activity was approximately 4.0 x 10/sup -6/. Leaf Al concentrations likewise correlated best with Al/sup 3 +/ activity. Threshold leaf Al concentrations of approximately 62 and 100 ..mu..g/g, respectively, were observed for reduction in root and shoot growth.« less
Yang, Jae E; Lee, Wi-Young; Ok, Yong Sik; Skousen, Jeffrey
2009-10-01
Acid deposition has caused detrimental effects on tree growth near industrial areas of the world. Preliminary work has indicated that concentrations of NO(3-), SO(4)(2-), F( - ) and Al in soil solutions were 2 to 33 times higher in industrial areas compared to non-industrial areas in Korea. This study evaluated soil nutrient bioavailability and nutrient contents of red pine (Pinus thunbergii) needles in forest soils of industrial and non-industrial areas of Korea. Results confirm that forest soils of industrial areas have been acidified mainly by deposition of sulfate, resulting in increases of Al, Fe and Mn and decreases of Ca, Mg and K concentrations in soils and soil solutions. In soils of industrial areas, the molar ratios of Ca/Al and Mg/Al in forest soils were <2, which can lead to lower levels and availability of nutrients for tree growth. The Ca/Al molar ratio of Pinus thunbergii needles on non-industrial sites was 15, while that of industrial areas was 10. Magnesium concentrations in needles of Pinus thunbergii were lower in soils of industrial areas and the high levels of acid cations such as Al and Mn in these soils may have antagonized the uptake of base cations like Mg. Continued acidification can further reduce uptake of base cations by trees. Results show that Mg deficiency and high concentrations of Al and Mn in soil solution can be limiting factors for Pinus thunbergii growth in industrial areas of Korea.
Dynamics of NH4 and NO3 in Cropped Soils Irrigated with Wastewater. A Field Study.
1980-06-01
concentrations in the soil solution . It was also assumed that the plants (forage grasses) had no preference for either form (S. Barber, personal...spring. Movement of NH -N in soil solution to4 depths of 150 cm in the same soils has been reported (Iskandar et al. 1976, Jenkins et al. 1978) and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, G.T.; Kanna, P.K.; Beese, F.
A shallow slightly acid Terra fusca (Rendolls) soil derived from triassic limestone contains substantial amounts of sulfate. Under high sulfate input, low pH and high salt input this soil can further retain sulfate. Soil chemical data indicate that this soil contains exchangeable Al and H. This finding and the analysis of the equilibrium soil solutions from batch and percolation studies indicate that the retention of sulfate can be described by an equilibrium solid/solution phase of the type Al(OH)SO4 (aluminum hydroxy sulfate). Under similar experimental conditions of solution composition and concentration, Freundlich type adsorption/desorption isotherms and the general solute transport equationmore » can describe the retention and transport of sulfate in this soil.« less
Pociecha, Maja; Lestan, Domen
2010-02-15
Electrocoagulation with an Al sacrificial anode was tested for the separation of chelant and heavy metals from a washing solution obtained after leaching Pb (3200 mg kg(-1)), Zn (1100 mg kg(-1)), and Cd (21 mg kg(-1)) contaminated soil with EDTA. In the electrochemical process, the sacrificial anode corroded to release Al(3+) which served as coagulant for precipitation of chelant and metals. A constant current density of 16-128 mAc m(-2) applied between the Al anode and the stainless-steel cathode removed up to 95% Pb, 68% Zn and 66% Cd from the soil washing solution. Approximately half of the initial EDTA remained in the washing solution after treatment, up to 16.3% of the EDTA was adsorbed on Al coagulant and precipitated, the rest of the EDTA was degraded by anodic oxidation. In a separate laboratory-scale remediation experiment, we leached a soil with 40 mmol EDTA per kg of soil and reused the washing solution (after electrocoagulation) in a closed loop. It removed 53% of Pb, 26% of Zn and 52% of Cd from the soil. The discharge solution was clear and colourless, with pH 7.52 and 170 mg L(-1) Pb, 50 mg L(-1) Zn, 1.5 mg L(-1) Cd and 11 mM EDTA.
Electrochemical EDTA recycling after soil washing of Pb, Zn and Cd contaminated soil.
Pociecha, Maja; Kastelec, Damijana; Lestan, Domen
2011-08-30
Recycling of chelant decreases the cost of EDTA-based soil washing. Current methods, however, are not effective when the spent soil washing solution contains more than one contaminating metal. In this study, we applied electrochemical treatment of the washing solution obtained after EDTA extraction of Pb, Zn and Cd contaminated soil. A sacrificial Al anode and stainless steel cathode in a conventional electrolytic cell at pH 10 efficiently removed Pb from the solution. The method efficiency, specific electricity and Al consumption were significantly higher for solutions with a higher initial metal concentration. Partial replacement of NaCl with KNO(3) as an electrolyte (aggressive Cl(-) are required to prevent passivisation of the Al anode) prevented EDTA degradation during the electrolysis. The addition of FeCl(3) to the acidified washing solution prior to electrolysis improved Zn removal. Using the novel method 98, 73 and 66% of Pb, Zn and Cd, respectively, were removed, while 88% of EDTA was preserved in the treated washing solution. The recycled EDTA retained 86, 84 and 85% of Pb, Zn and Cd extraction potential from contaminated soil, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.
Acid mist and soil Ca and Al alter the mineral nutrition and physiology of red spruce
P.G. Schaberg; D.H. DeHayes; G.J. Hawley; G.R. Strimbeck; J.R. Cumming; P.F. Murakami; C.H. Borer
2000-01-01
We examined the effects and potential interactions of acid mist and soil solution Ca and Al treatments on foliar cation concentrations, membrane-associated Ca (mCa), ion leaching, growth, carbon exchange, and cold tolerance of red spruce (Picea rubens Sarg.) saplings. Soil solution Ca additions increased foliar Ca and Zn concentrations, and increased...
Manoharan, V; Loganathan, P; Tillman, R W; Parfitt, R L
2007-02-01
A greenhouse study was conducted to determine if concentrations of fluoride (F), which would be added to acid soils via P fertilisers, were detrimental to barley root growth. Increasing rates of F additions to soil significantly increased the soil solution concentrations of aluminium (Al) and F irrespective of the initial adjusted soil pH, which ranged from 4.25 to 5.48. High rates of F addition severely restricted root growth; the effect was more pronounced in the strongly acidic soil. Speciation calculations demonstrated that increasing rates of F additions substantially increased the concentrations of Al-F complexes in the soil. Stepwise regression analysis showed that it was the combination of the activities of AlF2(1+) and AlF(2+) complexes that primarily controlled barley root growth. The results suggested that continuous input of F to soils, and increased soil acidification, may become an F risk issue in the future.
Umemura, Tomonari; Usami, Yosuke; Aizawa, Sho-ichi; Tsunoda, Kin-ichi; Satake, Ken-ichi
2003-12-30
The level of dissolved aluminum and its chemical forms in soil solutions consecutively collected by a porous cup vacuum sampler were monitored over a period from January 2001 to December 2001 at a Japanese cedar (Cryptomeria japonica) forestry area susceptible to acid deposition to characterize current soil dynamics and to evaluate potential tree damages. Distinction and characterization of Al species with differential toxicities were performed by two complementary speciation techniques; cation-exchange HPLC with fluorometric detection using 8-hydroxyquinoline-5-sulfonic acid (HQS) and size-fractionation/inductively coupled plasma atomic emission spectrometry (ICP-AES). The concentrations of free Al (mainly Al3+ and Al(OH)2+) and inert Al (existing as the complexed and/or colloidal forms) ranged between 0-150 microM and 10-50 microM, respectively. The concentrations of inert Al were mostly below 40 microM during an annual cycle and showed no marked seasonal variation, while free Al concentrations showed a clear tendency to increase in the spring and summer seasons (in the period from April to August) probably due to the enhanced activity of microbial nitrification and the resultant soil acidification. Major cations and anions were also regularly determined and their seasonal changes were correlated with that of the dissolved Al concentration. Correlations between total Al (mainly existing as free Al) and the related species (and environmental conditions) were as follows: Al and Mg (R=0.96, P<0.01), Al and Ca (R=0.97, P<0.01), Al and NO3- (R=0.68, P<0.01), Al and temperature (R=0.68, P<0.01), Al and solution pH (R=-0.61, P<0.01), solution pH and NO3- (R=-0.65, P<0.01).
NASA Astrophysics Data System (ADS)
Merino, Carolina; Matus, Francisco; Fontaine, Sebastien
2016-04-01
Aluminium (Al) and it influence on the mineralization of dissolved organic matter (DOM) and thus on carbon (C) sequestration in forest soils is poorly understood. We hypothesized that an addition of Al to the soil solution beyond a molar Al:C ratio of 0.1, induces precipitation of the organic matter which leads to an excess Al in the soil solution causing an inhibitory effect for growing microorganisms. We investigated the effect of Al concentrations for the potential of C biodegradation at different Al:C ratios from DOM and Ah mineral soil horizons from two temperate rain forest soils from southern Chile. Dissolved organic matter and surface mineral horizons were incubated with initial molar Al:C ratio from 0.08 to 1.38 found under at field conditions. Mineralization was quantified by measurement of C-CO2 evolved during 15 days. Increasing the initial Al:C ratio > 0.12, led to a considerable reduction in mineralization (up to 70%). For Al:C ratio < 0.12, the mineralization rates from DOM and mineral soils were unaffected. Consequently, there would be a considerable reduction in the biodegradation of DOM and thus an increased in the C sequestration in mineral soils with molar Al:C ratio > 0.12. The observed DOM losses in the stream water of pristine southern forests can be explained by increasing the bioavailability of organic C for Al:C ratio < 0.12. Aluminium concentration had a marked effect at the spectral ART-FTIR bands assigned to cellulose-like and aromatic compounds in Ah mineral soil, diminishing the mineralization. The present results were also confirmed by the Al fluorescence using a confocal microscopy.
Barbiero, Laurent; Berger, Gilles; Rezende Filho, Ary T; Meunier, Jean-François; Martins-Silva, Elisângela R; Furian, Sonia
2016-01-01
Recent studies have focused on the formation of authigenic clays in an alkaline soil system surrounding lakes of the Nhecolândia region, Pantanal wetland. The presence of trioctahedral Mg-smectites (stevensite and saponite types), which requires low Al and Fe contents in the soil solution for its formation, contrasts with the neoformation of dioctahedral Fe-mica (glauconite, and Fe-illite), which instead requires solutions relatively enriched in Al and Fe. This study aims to understand the conditions of co-existence of both, Mg-smectite and Fe-mica a common clay association in former or modern alkaline soil systems and sediments. The study was carried out along an alkaline soil catena representative of the region. The soil organization revealed that Mg-smectite occur in top soil close to the lake, whereas Fe-mica dominate in the clay fraction of deeper greenish horizons a few meters apart. We propose here that this spatial distribution is controlled by the lateral transfer of Fe and Al with organic ligands. Alkaline organic rich solutions (DOC up to 738 mg L-1) collected in the watertable were centrifuged and filtered through membranes of decreasing pore size (0.45 μm, 0.2 μm, 30 KDa, 10 KDa, 3 KDa) to separate colloidal and dissolved fractions. Fe, Al, Si, Mg and K were analysed for each fraction. Although the filtration had no influence on Si and K contents, almost 90% of Fe (up to 2.3 mg L-1) and Al (up to 7 mg L-1) are retained at the first cutoff threshold of 0.45μm. The treatment of the same solutions by oxygen peroxide before filtration shows that a large proportion of Fe and Al were bonded to organic colloids in alkaline soil solution at the immediate lake border, allowing Mg-smectite precipitation. The fast mineralization of the organic matter a few meters apart from the lake favors the release of Fe and Al necessary for Fe-mica neoformation. In comparison with chemical and mineralogical characteristics of alkaline environments described in the literature, the study suggests that the co-existence of trioctahedral Mg-smectite and dioctahedral Fe-mica should be regarded as a standard occurrence in alkaline soil systems with organic rich waters.
Meunier, Jean-François; Martins-Silva, Elisângela R.; Furian, Sonia
2016-01-01
Recent studies have focused on the formation of authigenic clays in an alkaline soil system surrounding lakes of the Nhecolândia region, Pantanal wetland. The presence of trioctahedral Mg-smectites (stevensite and saponite types), which requires low Al and Fe contents in the soil solution for its formation, contrasts with the neoformation of dioctahedral Fe-mica (glauconite, and Fe-illite), which instead requires solutions relatively enriched in Al and Fe. This study aims to understand the conditions of co-existence of both, Mg-smectite and Fe-mica a common clay association in former or modern alkaline soil systems and sediments. The study was carried out along an alkaline soil catena representative of the region. The soil organization revealed that Mg-smectite occur in top soil close to the lake, whereas Fe-mica dominate in the clay fraction of deeper greenish horizons a few meters apart. We propose here that this spatial distribution is controlled by the lateral transfer of Fe and Al with organic ligands. Alkaline organic rich solutions (DOC up to 738 mg L-1) collected in the watertable were centrifuged and filtered through membranes of decreasing pore size (0.45 μm, 0.2 μm, 30 KDa, 10 KDa, 3 KDa) to separate colloidal and dissolved fractions. Fe, Al, Si, Mg and K were analysed for each fraction. Although the filtration had no influence on Si and K contents, almost 90% of Fe (up to 2.3 mg L-1) and Al (up to 7 mg L-1) are retained at the first cutoff threshold of 0.45μm. The treatment of the same solutions by oxygen peroxide before filtration shows that a large proportion of Fe and Al were bonded to organic colloids in alkaline soil solution at the immediate lake border, allowing Mg-smectite precipitation. The fast mineralization of the organic matter a few meters apart from the lake favors the release of Fe and Al necessary for Fe-mica neoformation. In comparison with chemical and mineralogical characteristics of alkaline environments described in the literature, the study suggests that the co-existence of trioctahedral Mg-smectite and dioctahedral Fe-mica should be regarded as a standard occurrence in alkaline soil systems with organic rich waters. PMID:27463379
NASA Astrophysics Data System (ADS)
Toomsoo, Avo; Jürgens, Meit; Kõlli, Raimo; Künnapas, Allan; Albre, Imbi; Tõnutare, Tõnu; Rodima, Ako
2017-04-01
Only small percentage of soil total phosphorus is easily exchangeable between solid and solution phase. Plants are able to assimilate P from environment only in the form of orthophosphate ions (H2PO4- and HPO42-) from soil solution. Deficit of P in soil solution prevents plant normal growth and decreases yield quantity and quality. The excess of P in soil solution causes the pollution of environment and eutrophication of water bodies. Therefore it is important to give to the plant producers the correct fertilization recommendations. Lot of analytical methods are developed for the determination of plant available P in soils. In the Baltic Sea region seven different soils' P analysis methods in use. Each method has its own gradation and often there is more than one gradation for the same method depending from agroecological conditions. For agricultural soils in Estonia there are soil P status gradations according to Mehlich 3, DL and AL methods. Phosphate content in soil can be determined by molybdate method Vis-spectrometrically. Very often for analysis of soils' P content also ICP-OES, ICP-MS and also MP-AES instrumental methods are used The aim of our work was to investigate the possibility of using MP-AES for determination of plant available P in soil by DL method and also to compare how the analysed soils are distributed to M3, AL and DL fertilizer requirement groups according to the P content.
Sequential Desorption of Nitroaromatic Compounds (NAC) from Soils
2005-03-01
the soil solution . Weissmahr et al. [20] suggest an electron donor acceptor (EDA) complex between oxygens of the siloxane surface of the clays and the...release of NACs into the soil solution . At high pH values desorption is superimposed by NACs hydrolysis. Therefore, in- creasing pH values impedes the...presented demonstrate that both the cation present in the soil solution and its concentration may affect the desorption behavior of NACs in contaminated soils
Effect of aluminum, zinc, copper, and lead on the acid-base properties of water extracts from soils
NASA Astrophysics Data System (ADS)
Motuzova, G. V.; Makarychev, I. P.; Petrov, M. I.
2013-01-01
The potentiometric titration of water extracts from the upper horizons of taiga-zone soils by salt solutions of heavy metals (Pb, Cu, and Zn) showed that their addition is an additional source of the extract acidity because of the involvement of the metal ions in complexation with water-soluble organic substances (WSOSs). At the addition of 0.01 M water solutions of Al(NO3)3 to water extracts from soils, Al3+ ions are also involved in complexes with WSOSs, which is accompanied by stronger acidification of the extracts from the upper horizon of soddy soils (with a near-neutral reaction) than from the litter of bog-podzolic soil (with a strongly acid reaction). The effect of the Al3+ hydrolysis on the acidity of the extracts is insignificantly low in both cases. A quantitative relationship was revealed between the release of protons and the ratio of free Cu2+ ions to those complexed with WSOSs at the titration of water extracts from soils by a solution of copper salt.
Kuo, S; Lai, M S; Lin, C W
2006-12-01
Soil washing is considered a useful technique for remediating metal-contaminated soils. This study examined the release edges of Cd, Zn, Ni, Cr, Cu or Pb in two contaminated rice soils from central Taiwan. The concentrations exceeding the trigger levels established by the regulatory agency of Taiwan were Cu, Zn, Ni and Cr for the Ho-Mei soil and Pb for the Nan-Tou soil. Successive extractions with HCl ranging from 0 to 0.2 M showed increased release of the heavy metals with declining pH, and the threshold pH value below which a sharp increase in the releases of the heavy metals was highest for Cd, Zn, and Ni (pH 4.6 to 4.9), intermediate for Pb and Cu (3.1 to 3.8) and lowest for Fe (2.1), Al (2.2) and Cr (1.7) for the soils. The low response slope of Ni and Cr particularly for the rice soils make soil washing with the acid up to the highest concentration used ineffective to reduce their concentrations to below trigger levels. Although soil washing with 0.1 M HCl was moderately effective in reducing Cu, Pb, Zn and Cd, which brought pH of the soils to 1.1+/-0.1 (S.D.), the concurrent release of large quantities of Fe and Al make this remediation technique undesirable for the rice soils containing high clay. Successive washings with 0.01 M HCl could be considered an alternative as the dissolution of Fe and Al was minimal, and between 46 to 64% of Cd, Zn, and Cu for the Ho-Mei soil and 45% of Pb in the Na-Tou soil were extracted after four successive extractions with this dilute acid solution. The efficacy of Cd extraction improved if CaCl2 was added to the acid solution. The correlation analysis revealed that Cr extracted was highly correlated (P < 0.001) with Fe extracted, whereas the Cu, Ni, Zn, Cd or Pb extracted was better correlated (P < 0.001) with Al than with Fe extracted. It is possible that the past seasonal soil flooding and drainage in the soils for rice production was conducive to incorporating Cr within the structure of Fe oxide, thereby making them extremely insoluble even in 0.2 M HCl solution. The formation of solid solution of Ni with Al oxide was also possible, making it far less extractable than Cd, Zn, Cu, or Pb with the acid concentrations used.
Zhao, Yuanyuan; Wendling, Laura A; Wang, Changhui; Pei, Yuansheng
2015-08-01
Fe/Al drinking water treatment residuals (WTRs), ubiquitous and non-hazardous by-products of drinking water purification, are cost-effective adsorbents for glyphosate. Given that repeated glyphosate applications could significantly decrease glyphosate retention by soils and that the adsorbed glyphosate is potentially mobile, high sorption capacity and stability of glyphosate in agricultural soils are needed to prevent pollution of water by glyphosate. Therefore, we investigated the feasibility of reusing Fe/Al WTR as a soil amendment to enhance the retention capacity of glyphosate in two agricultural soils. The results of batch experiments showed that the Fe/Al WTR amendment significantly enhanced the glyphosate sorption capacity of both soils (p<0.001). Up to 30% of the previously adsorbed glyphosate desorbed from the non-amended soils, and the Fe/Al WTR amendment effectively decreased the proportion of glyphosate desorbed. Fractionation analyses further demonstrated that glyphosate adsorbed to non-amended soils was primarily retained in the readily labile fraction (NaHCO3-glyphosate). The WTR amendment significantly increased the relative proportion of the moderately labile fraction (HCl-glyphosate) and concomitantly reduced that of the NaHCO3-glyphosate, hence reducing the potential for the release of soil-adsorbed glyphosate into the aqueous phase. Furthermore, Fe/Al WTR amendment minimized the inhibitory effect of increasing solution pH on glyphosate sorption by soils and mitigated the effects of increasing solution ionic strength. The present results indicate that Fe/Al WTR is suitable for use as a soil amendment to prevent glyphosate pollution of aquatic ecosystems by enhancing the glyphosate retention capacity in soils. Copyright © 2015. Published by Elsevier B.V.
1994-07-01
atmosphere. The chemical solute is absorbed with water from soil solution into the 8 epidermis which contains the "apparent free space" of the root tissue...cortex cells of the root. It accounts for most of the water and solute movement from the soil solution to the endodermis (Lindstrom et al., 1991:130...gas. In general, the higher the vapor pressure, the more likely a chemical will volatilize from the soil solution to air-filled soil pores and/or the
Liu, Juxiu; Zhou, Guoyi; Zhang, Deqiang
2007-05-01
Soil metal dynamics are affected by acid deposition. Little knowledge is available about the process in the lateritic soils under the monsoon forest in south China. Samplings of Acmera acuminatissima, Cryptocarya concinna and Schima superba were grown from October, 2000 to July, 2002 in pots with a natural acid lateritic forest soil from Dinghushan. Pots were watered weekly with an acid solution (pH 3.05, 3.52, 4.00 or 4.40) or with tap water. Fe, Mn, Cu and Al were measured in soils, leachates and sapling leaves. Soil extractable Fe and leachate Al and Mn concentrations increased with a decreasing treatment pH. Soil reactive Al exhibited the opposite trend and decreased over time. The Ca/Al and Mg/ (Al+Mn) ratios did not decrease in the leaves of Schima superba, but decreased with a decreasing treatment pH for Cryptocaria concinna. Both ratios only decreased in the pH 3.05 treatment for Acmena Cu will not be toxic for plants since soil extractable Cu was not high and Fe will not be toxic either given that its root uptake was inhibited by Mn. Acid rains will lead to increased Mn and Al mobility in soil. Cryptocaria concinna will be the most sensible species to these changes (nutrient deficiency and direct Mn toxicity), while Schima superba should retain a good growth.
Cui, Jian; Zhou, Jing; Peng, Ying; Chan, Andrew; Mao, Jingdong
2015-12-01
A detailed study on the solution chemistry of red soil in South China is presented. Data are collected from two simulated column-leaching experiments with an improved setup to evaluate the effects of atmospheric N deposition (ADN) composition and ADN flux on agricultural soil acidification using a (15)N tracer technique and an in situ soil solution sampler. The results show that solution pH values decline regardless of the increase of the NH4(+)/NO3(-) ratio in the ADN composition or ADN flux, while exchangeable Al(3+), Ca(2+), Mg(2+), and K(+) concentrations increase at different soil depths (20, 40, and 60 cm). Compared with the control, ADN (60 kg per ha per year N, NH4(+)/NO3(-) ratio of 2 : 1) decreases solution pH values, increases solution concentrations of NO3(-)-N, Al(3+), Ca(2+) and Mg(2+) at the middle and lower soil depths, and promotes their removal. NH4(+)-N was not detected in red soil solutions of all the three soil layers, which might be attributed to effects of nitrification, absorption and fixation in farmland red soil. Some of the NO3(-)-N concentrations at 40-60 cm soil depth exceed the safe drinking level of 10 mg L(-1), especially when the ADN flux is beyond 60 kg ha(-1) N. These features are critical for understanding the ADN agro-ecological effects, and for future assessment of ecological critical loads of ADN in red soil farmlands.
Pannatier, Elisabeth Graf; Luster, Jörg; Zimmermann, Stephan; Blaser, Peter
2005-10-15
In a previous study, a rapid acidification of soil solution was observed between 1987 and 1997 in a cryptopodzolic soil in southern Switzerland despite a reduction in acidic deposition. The molar ratio of base nutrient cations to aluminum (BC/Al) in the soil solution was used to assess acidification. The monitoring of the soil solution chemistry was continued at the same site between 1998 and 2003 to find out how long the delay in reaction to reduced deposition would last and whether the BC/Al ratios would recover. The reevaluation of all data collected during the 16-year observation period showed no clear improvement in the BC/Al ratios, except below the litter layer where the ratios greatly increased after 1998. Initial signs of recovery were also detected in the mineral horizons, the ratios stabilizing in the second part of the observation period. Sulfate concentrations decreased significantly below the litter mat in response to decreased S deposition. BC concentrations markedly declined below the litter layer and in the mineral horizons, which was attributed to the depletion of the BC exchangeable pool as a result of continued acidic deposition.
Development of a Distributed Source Contaminant Transport Model for ARAMS
2005-09-01
runoff as a result of rainfall. The transfer of dissolved chemicals from the soil solution to overland flow is a rate-limited process ERDC/EL TN-ECMI...boundary layer that separates the stagnant soil solution and the moving overland flow (Wallach et al. 1988, 1989). Dissolution. Some chemicals may...layer (L/T) The mass transfer coefficient relates solute flux across the soil surface interface to the difference in concentration between the soil
NASA Astrophysics Data System (ADS)
Padhi, S.; Tokunaga, T.
2017-12-01
Adsorption of fluoride (F) on soil can control the mobility of F and subsequent contamination of groundwater. Hence, accurate evaluation of adsorption equilibrium is a prerequisite for understanding transport and fate of F in the subsurface. While there have been studies for the adsorption behavior of F with respect to single mineral constituents based on surface complexation models (SCM), F adsorption to natural soil in the presence of complexing agents needs much investigation. We evaluated the adsorption processes of F on a natural granitic soil from Tsukuba, Japan, as a function of initial F concentration, ionic strength, and initial pH. A SCM was developed to model F adsorption behavior. Four possible surface complexation reactions were postulated with and without including dissolved aluminum (Al) and Al-F complex sorption. Decrease in F adsorption with the increase in initial pH was observed in between the initial pH range of 4 to 9, and a decrease in the rate of the reduction of adsorbed F with respect to the increase in the initial pH was observed in the initial pH range of 5 to 7. Ionic strength variation in the range of 0 to 100mM had insignificant effect on F removal. Changes in solution pH were observed by comparing the solution before and after F adsorption experiments. At acidic pH, the solution pH increased, whereas at alkaline pH, the solution pH decreased after equilibrium. The SCM including dissolved Al and the adsorption of Al-F complex can simulate the experimental results quite successfully. Also, including dissolved Al and the adsorption of Al-F complex to the model explained the change in solution pH after F adsorption.
Zia, Afia; van den Berg, Leon; Ahmad, Muhammad Nauman; Riaz, Muhammad; Zia, Dania; Ashmore, Mike
2018-05-31
A significant body of knowledge suggests that soil solution pH and dissolved organic carbon (DOC) strongly influence metal concentrations and speciation in porewater, however, these effects vary between different metals. This study investigated the factors influencing soil and soil solution concentrations of copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn) under field conditions in upland soils from UK having a wide range of pH, DOC and organic matter contents. The study primarily focussed on predicting soil and soil solution metal concentrations from the data on total soil metal concentrations (HNO 3 extracts) and soil and soil solution properties (pH, DOC and organic matter content). We tested the multiple regression models proposed by Tipping et al. (2003) to predict heavy metal concentrations in soil solutions and the results indicated a better fit (higher R 2 values) in both studies for Pb compared to the Zn and Cu concentrations. Both studies observed consistent negative relationships of metals with pH and loss on ignition (LOI) suggesting an increase in soil solution metal concentrations with increasing acidity. The positive relationship between Pb concentrations in porewater and HNO 3 extracts was similar for both studies, however, similar relationships were not found for the Zn and Cu concentrations because of the negative coefficients for these metals in our study. The results of this study conclude that the predictive equations of Tipping et al. (2003) may not be applicable to the field sites where the range of DOC and metal concentrations is much lower than their study. Our study also suggests that the extent to which metals are partitioned into soil solution is lower in soils with a higher organic matter contents due to binding of these metals to soil organic matter. Copyright © 2018 Elsevier Ltd. All rights reserved.
Natural colloidal P and its contribution to plant P uptake.
Montalvo, Daniela; Degryse, Fien; McLaughlin, Mike J
2015-03-17
Phosphorus (P) bioavailability depends on its concentration and speciation in solution. Andisols and Oxisols have very low soil solution concentration of free orthophosphate, as they contain high concentrations of strongly P-sorbing minerals (Al/Fe oxyhydroxides, allophanes). Free orthophosphate is the form of P taken up by plants, but it is not the only P species present in the soil solution. Natural colloidal P (P associated with Al, Fe, and organic matter of sizes ranging from 1 to 1000 nm) constitutes an important fraction of soil solution P in these soils; however, its availability has not been considered. We measured the uptake of P by wheat (Triticum aestivum) from radiolabeled nonfiltered (colloid-containing) and 3-kDa filtered (nearly colloid-free) soil-water extracts from Andisols and Oxisols. In the Andisol extracts, P uptake was up to 5-fold higher from the nonfiltered solutions than the corresponding 3-kDa filtered solutions. In the Oxisol extract, no difference in P uptake between both solutions was observed. Also the diffusional flux of P as measured with the DGT technique was larger in the nonfiltered than in the 3-kDa filtered solutions. Our results suggest that colloidal P from Andisols is not chemically inert and contributes to plant uptake of P.
Eldhuset, Toril D; Lange, Holger; de Wit, Helene A
2006-10-01
Toxic effects of aluminium (Al) on Picea abies (L.) Karst. (Norway spruce) trees are well documented in laboratory-scale experiments, but field-based evidence is scarce. This paper presents results on fine root growth and chemistry from a field manipulation experiment in a P. abies stand that was 45 years old when the experiment started in 1996. Different amounts of dissolved aluminium were added as AlCl3 by means of periodic irrigation during the growing season in the period 1997-2002. Potentially toxic concentrations of Al in the soil solution were obtained. Fine roots were studied from direct cores (1996) and sequential root ingrowth cores (1999, 2001, 2002) in the mineral soil (0-40 cm). We tested two hypotheses: (1) elevated concentration of Al in the root zone leads to significant changes in root biomass, partitioning into fine, coarse, living or dead fractions, and distribution with depth; (2) elevated Al concentration leads to a noticeable uptake of Al and reduced uptake of Ca and Mg; this results in Ca and Mg depletion in roots. Hypothesis 1 was only marginally supported, as just a few significant treatment effects on biomass were found. Hypothesis 2 was supported in part; Al addition led to increased root concentrations of Al in 1999 and 2002 and reduced Mg/Al in 1999. Comparison of roots from subsequent root samplings showed a decrease in Al and S over time. The results illustrated that 7 years of elevated Al(tot) concentrations in the soil solution up to 200 microM are not likely to affect root growth. We also discuss possible improvements of the experimental approach.
1986-06-01
Mycorrhizae. II. Altered Levels of Gibberellin-like Substances and Abscisic Acid in the Host Plant," Canadian Journal of Botany, Vol 60, pp 468-471...application of lime is required to neutralize the acidity before revegetation efforts are undertaken (Gupta et al. 1978; Hunt et al. 1978; Yu et al. 1978...Hoeppel et al. 1978). Phosphorus 29. The form in which phosphorus exists in soils varies with the pH of the soil solution. In acidic soils, H 2P04 ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourg, I.C.; Sposito, G.
Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculationmore » (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).« less
Vondráčková, Stanislava; Száková, Jiřina; Drábek, Ondřej; Tejnecký, Václav; Hejcman, Michal; Müllerová, Vladimíra; Tlustoš, Pavel
2015-01-01
High Al resistance of Rumex obtusifolius together with its ability to accumulate Al has never been studied in weakly acidic conditions (pH > 5.8) and is not sufficiently described in real soil conditions. The potential elucidation of the role of organic acids in plant can explain the Al tolerance mechanism. We established a pot experiment with R. obtusifolius planted in slightly acidic and alkaline soils. For the manipulation of Al availability, both soils were untreated and treated by lime and superphosphate. We determined mobile Al concentrations in soils and concentrations of Al and organic acids in organs. Al availability correlated positively to the extraction of organic acids (citric acid < oxalic acid) in soils. Monovalent Al cations were the most abundant mobile Al forms with positive charge in soils. Liming and superphosphate application were ambiguous measures for changing Al mobility in soils. Elevated transport of total Al from belowground organs into leaves was recorded in both lime-treated soils and in superphosphate-treated alkaline soil as a result of sufficient amount of Ca available from soil solution as well as from superphosphate that can probably modify distribution of total Al in R. obtusifolius as a representative of "oxalate plants." The highest concentrations of Al and organic acids were recorded in the leaves, followed by the stem and belowground organ infusions. In alkaline soil, R. obtusifolius is an Al-hyperaccumulator with the highest concentrations of oxalate in leaves, of malate in stems, and of citrate in belowground organs. These organic acids form strong complexes with Al that can play a key role in internal Al tolerance but the used methods did not allow us to distinguish the proportion of total Al-organic complexes to the free organic acids.
Lawrence, G.B.; David, M.B.
1997-01-01
Elevated concentrations of soluble Al can impair tree growth and be toxic to aquatic biota, but effects of acidic deposition on Al solubility in forest soils are only partially understood because of complex interactions with H+ and organic matter. We therefore evaluated Al solubility in two red spruce stands in eastern Maine, one of which received dry (NH4)2SO4 at a rate of 1800 equiv ha-1 yr-1 during 19891995. Samples of soil (Spodosol Oa and Bh horizons) and soil solution were collected on five dates from 1992 to 1995. The treatment elevated nitrification, causing an increase in acid input that led to inorganic Al concentrations of greater than 60 ??mol L-1 in both the Oa and Bh horizons. Solubility of Al was also lower in the Bh horizon of the treated stand than in the reference stand, a response related to higher DOC concentrations in the treated stand. Concentrations of CuCl2 and pyrophosphate-extractable Al were higher in the Oa horizon of the treated watershed than the reference stand, a result of accelerated weathering of mineral particles caused by lower solution pH in the treated stand (3.47) than in the reference stand (3.69). Dissolved Al concentrations in these soils are the result of complex mechanisms through which mineral matter, organic matter, and pH interact to control Al solubility; mechanisms that are not incorporated in current Al solubility models.
NASA Astrophysics Data System (ADS)
Opfergelt, S.; Williams, H. M.; Cornelis, J. T.; Guicharnaud, R. A.; Georg, R. B.; Siebert, C.; Gislason, S. R.; Halliday, A. N.; Burton, K. W.
2017-11-01
Incipient warming of peatlands at high latitudes is expected to modify soil drainage and hence the redox conditions, which has implications for Fe export from soils. This study uses Fe isotopes to assess the processes controlling Fe export in a range of Icelandic soils including peat soils derived from the same parent basalt, where Fe isotope variations principally reflect differences in weathering and drainage. In poorly weathered, well-drained soils (non-peat soils), the limited Fe isotope fractionation in soil solutions relative to the bulk soil (Δ57Fesolution-soil = -0.11 ± 0.12‰) is attributed to proton-promoted mineral dissolution. In the more weathered poorly drained soils (peat soils), the soil solutions are usually lighter than the bulk soil (Δ57Fesolution-soil = -0.41 ± 0.32‰), which indicates that Fe has been mobilised by reductive mineral dissolution and/or ligand-controlled dissolution. The results highlight the presence of Fe-organic complexes in solution in anoxic conditions. An additional constraint on soil weathering is provided by Si isotopes. The Si isotope composition of the soil solutions relative to the soil (Δ30Sisolution-soil = 0.92 ± 0.26‰) generally reflects the incorporation of light Si isotopes in secondary aluminosilicates. Under anoxic conditions in peat soils, the largest Si isotope fractionation in soil solutions relative to the bulk soil is observed (Δ30Sisolution-soil = 1.63 ± 0.40‰) and attributed to the cumulative contribution of secondary clay minerals and amorphous silica precipitation. Si supersaturation in solution with respect to amorphous silica is reached upon freezing when Al availability to form aluminosilicates is limited by the affinity of Al for metal-organic complexes. Therefore, the precipitation of amorphous silica in peat soils indirectly supports the formation of metal-organic complexes in poorly drained soils. These observations highlight that in a scenario of decreasing soil drainage with warming high latitude peatlands, Fe export from soils as Fe-organic complexes will increase, which in turn has implications for Fe transport in rivers, and ultimately the delivery of Fe to the oceans.
Du, Yu-Mei; Tian, Jiang; Liao, Hong; Bai, Chang-Jun; Yan, Xiao-Long; Liu, Guo-Dao
2009-06-01
Stylosanthes spp. (stylo) is one of the most important pasture legumes used in a wide range of agricultural systems on acid soils, where aluminium (Al) toxicity and phosphorus (P) deficiency are two major limiting factors for plant growth. However, physiological mechanisms of stylo adaptation to acid soils are not understood. Twelve stylo genotypes were surveyed under field conditions, followed by sand and nutrient solution culture experiments to investigate possible physiological mechanisms of stylo adaptation to low-P acid soils. Stylo genotypes varied substantially in growth and P uptake in low P conditions in the field. Three genotypes contrasting in P efficiency were selected for experiments in nutrient solution and sand culture to examine their Al tolerance and ability to utilize different P sources, including Ca-P, K-P, Al-P, Fe-P and phytate-P. Among the three tested genotypes, the P-efficient genotype 'TPRC2001-1' had higher Al tolerance than the P-inefficient genotype 'Fine-stem' as indicated by relative tap root length and haematoxylin staining. The three genotypes differed in their ability to utilize different P sources. The P-efficient genotype, 'TPRC2001-1', had superior ability to utilize phytate-P. The findings suggest that possible physiological mechanisms of stylo adaptation to low-P acid soils might involve superior ability of plant roots to tolerate Al toxicity and to utilize organic P and Al-P.
NASA Astrophysics Data System (ADS)
Gangloff, Sophie; Stille, Peter; Pierret, Marie-Claire; Weber, Tiphaine; Chabaux, François
2014-04-01
Dissolved Organic Carbon (DOC) plays an important role in the behavior of major and trace elements in the soil and influences their transfer from soil to soil solution. The first objective of this study is to characterize different organic functional groups for the Water Extractable Organic Carbon (WEOC) fractions of a forest soil as well as their evolution with depth. The second objective is to clarify the influence of these organic functional groups on the migration of the trace elements in WEOC fractions compared to those in the soil solution obtained by lysimeter plates. All experiments have been performed on an acidic forest soil profile (five depths in the first meter) of the experimental spruce parcel in the Stengbach catchment. The Infra-red spectra of the freeze-dried WEOC fractions show a modification of the molecular structure with depth, i.e. a decrease of the polar compounds such as polysaccharides and an increase of the less polar hydro-carbon functional groups with a maximum value of the aromaticity at 30 cm depth. A Hierarchical Ascending Classification (HAC) of the evolution of Water Extractable Chemical Elements (WECE) with the evolution of the organic functional groups in the organic matter (OM) enriched soil compartments permits recognition of relationships between trace element behavior and the organic functional group variations. More specifically, Pb is preferentially bound to the carboxylic acid function of DOC mainly present in the upper soil compartment and rare earth elements (REE) show similar behavior to Fe, V and Cr with a good affinity to carboxy-phenolic and phenolic groups of DOC. The experimental results show that heavy REE compared to light REE are preferentially bound to the aromatic functional group. This different behavior fractionates the REE pattern of soil solutions at 30 cm depth due to the here observed aromaticity enrichment of DOC. These different affinities for the organic functional groups of the DOC explain some aspects of the behavior of trace elements in soil solutions and in the soil profile but, also the competition between trace elements in complexation with DOC. The results of this study are important for the understanding of the mobility and the migration of pollutants (as heavy metals or radionuclides) as well as nutrients in natural ecosystems. WE PrN/YbN is constant between 3 and 16 cm depth whereas SS PrN/YbN slightly decreases from 0.80 at 5 cm depth to 0.74 at 10 cm depth. This results from Pr (LREE) enrichment in the soil solution of the upper soil compartment caused by vegetation controlled LREE recycling and/or atmospheric depositions (see above). WE PrN/YbN and SS PrN/YbN show similar depth dependent distributions including the enrichment at 30 cm depth. It results from Yb depletion at this depth and enrichment in the deeper soil compartment compared to Pr. Similar to Marsac et al. (2012, 2013) one might suggest that there is competition between Fe3+, Al3+ and REE for the binding with DOC. They have a high affinity with the same organic functional groups which is confirmed by the classification scheme (Fig. 8). The studies of Marsac et al. suggest that at acidic pH and low metal/DOC ratios, Fe3+and Al3+ compete more with HREE than LREE; moreover, at high metal/DOC ratios and acidic pH, Al3+ competes with LREE. The Fig. 13 showing the variations of WECEN for Al and Fe in function of WECEN LREE and HREE confirms Marsac et al.’s observations. The slope of the extrapolation line resulting from WECEN Al and HREE values remains rather unchanged for the OM depleted and enriched soil compartments; thus, the change in the metal/DOC ratio in the soil does not change the extraction behavior of Al and HREE. However, the WECEN Fe strongly increase compared to the corresponding HREE values in the OM enriched compartment pointing to the competition between Fe and HREE. Alternatively, one observes that the WECEN Fe and LREE values in the OM enriched compartment plot on the extrapolation line derived from OM depleted soil samples. Thus, in this case, the change in the metal/DOC ratio does not affect the extraction behavior of Fe and LREE. However, the WECEN values for Al and corresponding LREE of samples from the OM enriched soil compartment plot below the extrapolation line and point to the competition between Al and LREE. These results are also in agreement with the REE distribution pattern of the soil solutions from the same site which are at greater depth LREE depleted (Stille et al., 2009).
Vondráčková, Stanislava; Száková, Jiřina; Drábek, Ondřej; Tejnecký, Václav; Hejcman, Michal; Müllerová, Vladimíra; Tlustoš, Pavel
2015-01-01
Background and Aims High Al resistance of Rumex obtusifolius together with its ability to accumulate Al has never been studied in weakly acidic conditions (pH > 5.8) and is not sufficiently described in real soil conditions. The potential elucidation of the role of organic acids in plant can explain the Al tolerance mechanism. Methods We established a pot experiment with R. obtusifolius planted in slightly acidic and alkaline soils. For the manipulation of Al availability, both soils were untreated and treated by lime and superphosphate. We determined mobile Al concentrations in soils and concentrations of Al and organic acids in organs. Results Al availability correlated positively to the extraction of organic acids (citric acid < oxalic acid) in soils. Monovalent Al cations were the most abundant mobile Al forms with positive charge in soils. Liming and superphosphate application were ambiguous measures for changing Al mobility in soils. Elevated transport of total Al from belowground organs into leaves was recorded in both lime-treated soils and in superphosphate-treated alkaline soil as a result of sufficient amount of Ca available from soil solution as well as from superphosphate that can probably modify distribution of total Al in R. obtusifolius as a representative of “oxalate plants.” The highest concentrations of Al and organic acids were recorded in the leaves, followed by the stem and belowground organ infusions. Conclusions In alkaline soil, R. obtusifolius is an Al-hyperaccumulator with the highest concentrations of oxalate in leaves, of malate in stems, and of citrate in belowground organs. These organic acids form strong complexes with Al that can play a key role in internal Al tolerance but the used methods did not allow us to distinguish the proportion of total Al-organic complexes to the free organic acids. PMID:25880431
Refining cotton-wick method for 15N plant labelling.
NASA Astrophysics Data System (ADS)
Fustec, Joëlle; Mahieu, Stéphanie
2010-05-01
The symbiosis Fabaceae/Rhizobiaceae plays a critical role in the nitrogen cycle. It gives the plant the ability to fix high amounts of atmospheric N. A part of this N can be transferred to the soil via rhizodeposition. The contribution of Fabaceae to the soil N pool is difficult to measure, since it is necessary for assessing N benefits for other crops, for soil biological activity, and for reducing water pollution in sustainable agriculture (Fustec, 2009). The aim of this study was to test and improve the reliability of the 15N cotton-wick method for measuring the soil N derived from plant rhizodeposition (Mahieu et al., 2007). The effects of the concentration of the 15N-urea labelling solution and of the feeding frequency (continuous or pulses) on the assessment of nitrogen rhizodeposition were studied in two greenhouse experiments using the field pea (Pisum sativum L.) and the non-nodulating isoline P2. The plant parts and the soil were prepared for 15N:14N measurements for assessing N rhizodeposition (Mahieu et al., 2009). The fraction of plants' belowground nitrogen allocated to rhizodeposition in both Frisson pea and P2 was 20 to more than 50% higher when plants were labelled continuously than when they were labelled using fortnightly pulses. Our results suggested that when 15N root enrichment was high, nitrogen rhizodeposition was underestimated only for plants that were 15N-fed by fortnightly pulses, and not in plants 15N-fed continuously. This phenomenon was especially observed for plants relying on symbiotic N fixation for N acquisition; it may be linked to the concentration of the labelling solution. In conclusion, N rhizodeposition assessment was strongly influenced by the 15N-feeding frequency and the concentration of the labelling solution. The estimation of N rhizodeposition was more reliable when plants were labelled continuously with a dilute solution of 15N urea. Fustec et al. 2009. Agron. Sustain. Dev., DOI 10.1051/agro/2009003, in press. Mahieu et al. 2007. Plant Soil 295, 193-205. Mahieu et al. 2009. Soil Biol. Biochem. 41, 2236-2243.
Qiu, Qingyan; Wu, Jianping; Liang, Guohua; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang
2015-05-01
Acid rain is an environmental problem of increasing concern in China. In this study, a laboratory leaching column experiment with acid forest soil was set up to investigate the responses of soil and soil solution chemistry to simulated acid rain (SAR). Five pH levels of SAR were set: 2.5, 3.0, 3.5, 4.0, and 4.5 (as a control, CK). The results showed that soil acidification would occur when the pH of SAR was ≤3.5. The concentrations of NO₃(-)and Ca(2+) in the soil increased significantly when the pH of SAR fell 3.5. The concentration of SO₄(2-) in the soil increased significantly when the pH of SAR was <4.0. The effects of SAR on soil solution chemistry became increasingly apparent as the experiment proceeded (except for Na(+) and dissolved organic carbon (DOC)). The net exports of NO₃(-), SO₄(2-), Mg(2+), and Ca(2+) increased about 42-86% under pH 2.5 treatment as compared to CK. The Ca(2+) was sensitive to SAR, and the soil could release Ca(2+) through mineral weathering to mitigate soil acidification. The concentration of exchangeable Al(3+) in the soil increased with increasing the acidity of SAR. The releases of soluble Al and Fe were SAR pH dependent, and their net exports under pH 2.5 treatment were 19.6 and 5.5 times, respectively, higher than that under CK. The net export of DOC was reduced by 12-29% under SAR treatments as compared to CK. Our results indicate the chemical constituents in the soil are more sensitive to SAR than those in the soil solution, and the effects of SAR on soil solution chemistry depend not only on the intensity of SAR but also on the duration of SAR addition. The soil and soil solution chemistry in this region may not be affected by current precipitation (pH≈4.5) in short term, but the soil and soil leachate chemistry may change dramatically if the pH of precipitation were below 3.5 and 3.0, respectively.
Watanabe, Toshihiro; Jansen, Steven; Osaki, Mitsuru
2006-12-01
Plants growing in acid sulphate soils are subject to high levels of Al availability, which may have effects on the growth and distribution of these species. Although Fe availability is also high in acid sulphate soils, little is known about the effect of Fe on the growth of native plants in these soils. Two species dominating this soil type in Asia, viz. Melastoma malabathricum and Miscanthus sinensis were grown hydroponically in a nutrient solution with different concentrations of Al and Fe. Melastoma malabathricum is found to be sensitive to Fe (40 and 100 microm). Application of 500 microm Al, however, completely ameliorates Fe toxicity and is associated with a decrease of Fe concentration in shoots and roots. The primary reason for the Al-induced growth enhancement of M. malabathricum is considered to be the Al-induced reduction of toxic Fe accumulation in roots and shoots. Therefore, Al is nearly essential for M. malabathricum when growing in acid sulphate soils. In contrast, application of both Fe and Al does not reduce the growth of M. sinensis, and Al application does not result in lower shoot concentrations of Fe, suggesting that this grass species has developed different mechanisms for adaptation to acid sulphate soils.
Role of acid and aluminum-rich media in the growth and nutrition of Pacific Northwest conifers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, P.J.
1983-01-01
Forest soils of coastal Washington and Oregon tend to be very acidic with large accumulations of organic matter. Yet the productivity of forest species on these sites can attain record levels. The effect of acid and aluminum-rich media on the growth and nutrition of Pacific Northwest conifer species was investigated for western hemlock, Douglas-fir, western redcedar, and Sitka spruce. The four different types of growth media utilized were solution cultures, sand cultures, mineral soils, and forest floor organic matter. Hydroponic nutrient solutions and sand cultures were used in experiments designed to differentiate the effect of aluminum ions from the hydrogenmore » ions generated by hydrolysis of Al/sup 3 +/. Relative to agronomic plants, all the conifers were found tolerant of the acid solutions and high levels of aluminum. Species differed in their relative tolerance to H/sup +/ and Al/sup 3/ ions. Western hemlock seedling growth was superior to Douglas-fir in the acidified soils and forest floor media, while Ca(OH)/sub 2/ amendment favored Douglas-fir. The marginal increase in western hemlock growth in N + P treated soils was highest in acidified soils. Western hemlock exhibited an ability to absorb nutrients in the presence of excess solution H/sup +/ ions, maintain growth with low tissue requirements of Ca and Mg, and accumulate high levels of aluminum in its roots and foliage without major adverse effect. These attributes are considered to make western hemlock the most acid and Al-tolerant of the four Pacific Northwest forest species studied. Western redcedar was second in acid tolerance to western hemlock. This species' ability to accumulate Ca minimized Al absorption and H/sup +/ damage to its roots.« less
The response of soil solution chemistry in European forests to decreasing acid deposition.
Johnson, James; Graf Pannatier, Elisabeth; Carnicelli, Stefano; Cecchini, Guia; Clarke, Nicholas; Cools, Nathalie; Hansen, Karin; Meesenburg, Henning; Nieminen, Tiina M; Pihl-Karlsson, Gunilla; Titeux, Hugues; Vanguelova, Elena; Verstraeten, Arne; Vesterdal, Lars; Waldner, Peter; Jonard, Mathieu
2018-03-31
Acid deposition arising from sulphur (S) and nitrogen (N) emissions from fossil fuel combustion and agriculture has contributed to the acidification of terrestrial ecosystems in many regions globally. However, in Europe and North America, S deposition has greatly decreased in recent decades due to emissions controls. In this study, we assessed the response of soil solution chemistry in mineral horizons of European forests to these changes. Trends in pH, acid neutralizing capacity (ANC), major ions, total aluminium (Al tot ) and dissolved organic carbon were determined for the period 1995-2012. Plots with at least 10 years of observations from the ICP Forests monitoring network were used. Trends were assessed for the upper mineral soil (10-20 cm, 104 plots) and subsoil (40-80 cm, 162 plots). There was a large decrease in the concentration of sulphate (SO42-) in soil solution; over a 10-year period (2000-2010), SO42- decreased by 52% at 10-20 cm and 40% at 40-80 cm. Nitrate was unchanged at 10-20 cm but decreased at 40-80 cm. The decrease in acid anions was accompanied by a large and significant decrease in the concentration of the nutrient base cations: calcium, magnesium and potassium (Bc = Ca 2+ + Mg 2+ + K + ) and Al tot over the entire dataset. The response of soil solution acidity was nonuniform. At 10-20 cm, ANC increased in acid-sensitive soils (base saturation ≤10%) indicating a recovery, but ANC decreased in soils with base saturation >10%. At 40-80 cm, ANC remained unchanged in acid-sensitive soils (base saturation ≤20%, pHCaCl2 ≤ 4.5) and decreased in better-buffered soils (base saturation >20%, pHCaCl2 > 4.5). In addition, the molar ratio of Bc to Al tot either did not change or decreased. The results suggest a long-time lag between emission abatement and changes in soil solution acidity and underline the importance of long-term monitoring in evaluating ecosystem response to decreases in deposition. © 2018 John Wiley & Sons Ltd.
Qian, Linbo; Chen, Baoliang; Chen, Mengfang
2016-01-01
Replacing biosilicon and biocarbon in soil via biochar amendment is a novel approach for soil amelioration and pollution remediation. The unique roles of silicon (Si)-rich biochar in aluminum (Al) phytotoxicity alleviation have not been discovered. In this study, the alleviation of Al phytotoxicity to wheat plants (root tips cell death) by biochars fabricated from rice straw pyrolyzed at 400 and 700 °C (RS400 and RS700) and the feedstock (RS100) were studied using a slurry system containing typical acidic soils for a 15-day exposure experiment. The distributions of Al and Si in the slurry solution, soil and plant root tissue were monitored by staining methods, chemical extractions and SEM-EDS observations. We found that the biological sourced silicon in biochars served dual roles in Al phytotoxicity alleviation in acidic soil slurry. On one hand, the Si particles reduced the amount of soil exchangeable Al and prevented the migration of Al to the plant. More importantly, the Si released from biochars synchronously absorbed by the plants and coordinated with Al to form Al-Si compounds in the epidermis of wheat roots, which is a new mechanism for Al phytotoxicity alleviation in acidic soil slurry by biochar amendment. In addition, the steady release of Si from the rice straw-derived biochars was a sustainable Si source for aluminosilicate reconstruction in acidic soil. PMID:27385598
NASA Astrophysics Data System (ADS)
Qian, Linbo; Chen, Baoliang; Chen, Mengfang
2016-07-01
Replacing biosilicon and biocarbon in soil via biochar amendment is a novel approach for soil amelioration and pollution remediation. The unique roles of silicon (Si)-rich biochar in aluminum (Al) phytotoxicity alleviation have not been discovered. In this study, the alleviation of Al phytotoxicity to wheat plants (root tips cell death) by biochars fabricated from rice straw pyrolyzed at 400 and 700 °C (RS400 and RS700) and the feedstock (RS100) were studied using a slurry system containing typical acidic soils for a 15-day exposure experiment. The distributions of Al and Si in the slurry solution, soil and plant root tissue were monitored by staining methods, chemical extractions and SEM-EDS observations. We found that the biological sourced silicon in biochars served dual roles in Al phytotoxicity alleviation in acidic soil slurry. On one hand, the Si particles reduced the amount of soil exchangeable Al and prevented the migration of Al to the plant. More importantly, the Si released from biochars synchronously absorbed by the plants and coordinated with Al to form Al-Si compounds in the epidermis of wheat roots, which is a new mechanism for Al phytotoxicity alleviation in acidic soil slurry by biochar amendment. In addition, the steady release of Si from the rice straw-derived biochars was a sustainable Si source for aluminosilicate reconstruction in acidic soil.
Simplified Model for Prediction of Nitrogen Behavior in Land Treatment of Wastewater,
1980-04-01
exchange process was assumed to be instantaneous, soil solution (pg/cm3) whet eas nitrification and denitrification processes Y o=lcolution ofgN0 3) were...of the first-order kinetic type (Selim et al. 1976 Y = concentration of NO3 -N in and Selim and Iskandar 1978). A distribution coeffi- soil solution (pg...ammonium and ni- are needed in order to maintain the continuity of trate in the soil solution . Therefore the rate of N up- NH 4 -N and N0 3-N
An evaluation of different soil washing solutions for remediating arsenic-contaminated soils.
Wang, Yiwen; Ma, Fujun; Zhang, Qian; Peng, Changsheng; Wu, Bin; Li, Fasheng; Gu, Qingbao
2017-04-01
Soil washing is a promising way to remediate arsenic-contaminated soils. Most research has mostly focused on seeking efficient extractants for removing arsenic, but not concerned with any changes in soil properties when using this technique. In this study, the removal of arsenic from a heavily contaminated soil employing different washing solutions including H 3 PO 4 , NaOH and dithionite in EDTA was conducted. Subsequently, the changes in soil physicochemical properties and phytotoxicity of each washing technique were evaluated. After washing with 2 M H 3 PO 4 , 2 M NaOH or 0.1 M dithionite in 0.1 M EDTA, the soil samples' arsenic content met the clean-up levels stipulated in China's environmental regulations. H 3 PO 4 washing decreased soil pH, Ca, Mg, Al, Fe, and Mn concentrations but increased TN and TP contents. NaOH washing increased soil pH but decreased soil TOC, TN and TP contents. Dithionite in EDTA washing reduced soil TOC, Ca, Mg, Al, Fe, Mn and TP contents. A drastic color change was observed when the soil sample was washed with H 3 PO 4 or 0.1 M dithionite in 0.1 M EDTA. After adjusting the soil pH to neutral, wheat planted in the soil sample washed by NaOH evidenced the best growth of all three treated soil samples. These results will help with selecting the best washing solution when remediating arsenic-contaminated soils in future engineering applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Solubility of aluminum and silica in Spodic horizons as affected by drying and freezing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonsson, M.; Berggren, D.; Gustafsson, J.P.
The release of toxic Al{sup 3+} is one of the most serious consequences of anthropogenic soil acidification. Therefore, the mechanisms controlling Al solubility have been a topic of intense research for more than a decade. For convenience, soil samples are often dried before storage and experimental use. However, the literature offers examples of drying that results in changes in pH, solubility of organic matter, and dissolution rates of Al. In this study, the authors examined the solubility of Al and Si in fresh soil and in soil that had been dried or deep-frozen. Five Spodosol B horizon soils were subjectedmore » to batch titrations, where portions of each soil were equilibrated with solutions with varying concentrations of acid or base added. Extractions with acid oxalate and Na pyrophosphate indicated the presence of imogolite-type materials (ITM) in three of the soils. In the other two soils most secondary solid-phase Al was associated with humic substances. Deep-freezing did not significantly change pH nor the concentration of Al or Si as compared with fresh soil. Drying, on the other hand, yielded pH increases of up to 0.3 units at a given addition of acid or base, whereas Al{sup 3+} changed only slightly, implying a higher Al solubility in all of the soils. Furthermore, dissolved silica increased by up to 200% after drying, except in a soil that almost completely lacked oxalate-extractable Si. The authors suggest that drying enhanced the dissolution of ITM by disrupting soil organic matter, thus exposing formerly coated mineral surfaces. In the soil where dissolved Si did not change with drying, it has been demonstrated that Al-humus complexes controlled Al solubility. They suggest that fissures in the organic material caused by drying may have exposed formerly occluded binding sites that had a higher Al saturation than had sites at the surface of humus particles.« less
NASA Astrophysics Data System (ADS)
Evans, A.
2015-12-01
Soil solution anionic composition can impact both plant and microbial activity in alpine tundra soils by altering biochemical cycling within the soil, either through base cation leaching, or shifts in aluminum controlling solid phases. Although anions play a critical role in the aqueous speciation of metals, relatively few high altitude field studies have examined their impact on aluminum controlling solid phases and aluminum speciation in soil water. For this study, thirty sampling sites were selected on Trail Ridge Road in Rocky Mountain National Park, Estes Park, CO, and sampled during July, the middle of the growing season. Sampling elevations ranged from approximately 3560 - 3710 m. Soil samples were collected to a depth of 15.24 cm, and the anions were extracted using a 2:1 D.I. water to soil ratio. Filtered extracts were analyzed using IC and ICP-MS. Soil solution NO3- concentrations were significantly higher for sampling locations east of Iceberg Pass (EIBP) (mean = 86.94 ± 119.8 mg/L) compared to locations west of Iceberg Pass (WIBP) (mean 1.481 ± 2.444 mg/L). Both F- and PO43- soil solution concentrations, 0.533 and 0.440 mg/L, respectively, were substantially lower, for sampling sites located EIBP, while locations WIBP averaged 0.773 and 0.829 mg/L respectively, for F- and PO43-. Sulfate concentration averaged 3.869 ± 3.059 mg/L for locations EIBP, and 3.891 ± 3.1970 for locations WIBP. Geochemical modeling of Al3+ in the soil solution indicated that a suite of aluminum hydroxyl sulfate minerals controlled Al3+ activity in the alpine tundra soil, with shifts between controlling solid phases occurring in the presence of elevated F- concentrations.
Angela M Happel; William E. Sharpe
2004-01-01
Soil acidity, nutrient deficient soils, lack of light penetration, herbivory, and understory competition are the major obstacles encountered in regenerating and sustaining northern red oak. Changes in soils that may occur during soil acidifi- cation include: reduced soil pH, increased availability of aluminum (Al) and manganese (Mn), loss of base cations due to...
NASA Astrophysics Data System (ADS)
Tamrat, Wuhib Zewde; Rose, Jérôme; Grauby, Olivier; Doelsch, Emmanuel; Levard, Clément; Chaurand, Perrine; Basile-Doelsch, Isabelle
2018-05-01
Because of their large surface area and reactivity, nanometric-size soil mineral phases have a high potential for soil organic matter stabilization, contaminant sorption or soil aggregation. In the literature, Fe and Al phases have been the main targets of batch-synthesized nanomineral studies while nano-aluminosilicates (Al and Si phases) have been mainly studied in Andic soils. In the present work, we synthesized secondary nanophases of Fe, Al and Si. To simulate a system as close as possible to soil conditions, we conducted laboratory simulations of the processes of (1) biotite alteration in acidic conditions producing a Al Si Fe Mg K leachate solution and (2) the following neoformation of secondary nanophases by titrating the leachate solution to pH 4.2, 5 and 7. The morphology of the nanophases, their size, crystallinity and chemistry were characterized by TEM-EDX on single particles and their local atomic structure by EXAFS (Extended X-ray Absorption Fine Structure) at the Fe absorption K-edge. The main nanophases formed were amorphous particles 10-60 nm in size whose composition (dominated by Fe and Si) was strongly controlled by the pH conditions at the end of the titration. At pH 4.2 and pH 7, the structure of the nanophases was dominated by the polymerization of Fe, which was hindered by Al, Si, Mg and K. Conversely, at pH 5, the polymerization of Fe was counteracted by precipitation of high amounts of Si. The synthetized nanophases were estimated to be rather analogous to nanophases formed in natural biotite-bearing soils. Because of their small size and potential high surface reactivity, the adsorption capacities of these nanophases with respect to the OM should be revisited in the framework of soil C storage.
Wang, Lianfeng; Pan, Genxing; Shi, Shengli; Zhang, Lehua; Huang, Mingxing
2003-10-01
Different depths of soils under 6 tree stands in Lushan Botany Garden were sampled and water-digested at room temperature. The dissolved aluminum and organic carbon were then determined by colorimetry, using 8-hydroxylquilin and TOC Analyzer, respectively. The results indicated that even derived from a naturally identical soil type, the test soils exhibited a diverse solution chemistry, regarding with the Al speciation. The soil solutions under Japanese cedar, giant arborvitae and tea had lower pH values and higher contents of soluble aluminum than those under Giant dogwood, azalea and bamboo. Under giant arborvitae, the lowest pH and the highest content of total soluble aluminum and monomeric aluminum were found in soil solution. There was a significant correlation between soluble aluminum and DOC, which tended to depress the accumulation of toxic monomeric aluminum. The 6 tree stands could be grouped into 2 categories of solution chemistry, according to aluminum mobilization.
Hovsepyan, Anna; Bonzongo, Jean-Claude J
2009-05-15
The potential of readily available and non-hazardous waste material, aluminum drinking water treatment residuals (Al-WTRs), to efficiently sorb and immobilize mercury (Hg) from aqueous solutions was evaluated. Al-WTR samples with average specific surface area of 48m(2)/g and internal micropore surface area of 120m(2)/g were used in a series of batch sorption experiments. Obtained sorption isotherms indicated a strong affinity of Hg for Al-WTRs. Using the Langmuir adsorption model, a relatively high maximum sorption capacity of 79mg Hg/g Al-WTRs was determined. Sorption kinetic data was best fit to a pseudo-first-order model, while the use of the Weber-Morris and Bangham models suggested that the intraparticle diffusion could be the rate-limiting step. Also, Al-WTRs effectively immoblized Hg in the pH range of 3-8. The results from these short-term experiments demonstrate that Al-WTRs can be effectively used to remove Hg from aqueous solutions. This ability points to the potential of Al-WTRs as a sorbent in soil remediation techniques based on Hg-immobilization.
de Souza, Edna Santos; Fernandes, Antonio Rodrigues; de Souza Braz, Anderson Martins; Sabino, Lorena Lira Leite; Alleoni, Luís Reynaldo Ferracciú
2015-01-01
The Trans-Amazonian Highway (TAH) is located in the northern region of Brazil, comprising a border region where agricultural, mining, and logging activities are the main activities responsible for fostering economic development, in addition to large hydroelectric plants. Such activities lead to environmental contamination by potentially toxic elements (PTEs). Environmental monitoring is only possible through the determination of element contents under natural conditions. Many extraction methods have been proposed to determine PTEs' bioavailability in the soil; however, there is no consensus about which extractor is most suitable. In this study, we determined the contents of PTEs in soils in the surroundings of TAH after mineral extraction with diethylenetriaminepentaacetic acid-triethanolamine (DTPA-TEA), Mehlich I, and Mehlich III solutions. Soil samples were collected in areas of natural vegetation in the vicinity of TAH in the state of Pará, Brazil. Chemical attributes and particle size were determined, besides concentrations of Fe, Al, Mn, and Ti by sulfuric acid digestion, Si after alkaline solution attack, and poorly crystalline Fe, Al, and "free" Fe oxides. Mehlich III solution extracted greater contents from Fe, Al, and Pb as compared to Mehlich I and DTPA-TEA and similar contents from Cd, Mn, Zn, and Cu. Significant correlations were found between concentrations of PTEs and the contents of Fe and Mn oxides as well as organic carbon and soil cation exchange capacity. Contents of Cu, Mn, Fe, and Zn by the three methods were positively correlated.
USDA-ARS?s Scientific Manuscript database
Aluminum (Al) toxicity is an important abiotic stress that affects soybean production in acidic soils. Development of Al-tolerant cultivars is an efficient and environmentally friendly solution to the problem. Effective selection of Al-tolerant genotypes in applied breeding requires an understanding...
Lee, Seyong; Ko, Il-Won; Yoon, In-Ho; Kim, Dong-Wook; Kim, Kyoung-Woong
2018-03-24
Colloid mobilization is a significant process governing colloid-associated transport of heavy metals in subsurface environments. It has been studied for the last three decades to understand this process. However, colloid mobilization and heavy metal transport in soil solutions have rarely been studied using soils in South Korea. We investigated the colloid mobilization in a variety of flow rates during sampling soil solutions in sand columns. The colloid concentrations were increased at low flow rates and in saturated regimes. Colloid concentrations increased 1000-fold higher at pH 9.2 than at pH 7.3 in the absence of 10 mM NaCl solution. In addition, those were fourfold higher in the absence than in the presence of the NaCl solution at pH 9.2. It was suggested that the mobility of colloids should be enhanced in porous media under the basic conditions and the low ionic strength. In real field soils, the concentrations of As, Cr, and Pb in soil solutions increased with the increase in colloid concentrations at initial momentarily changed soil water pressure, whereas the concentrations of Cd, Cu, Fe, Ni, Al, and Co lagged behind the colloid release. Therefore, physicochemical changes and heavy metal characteristics have important implications for colloid-facilitated transport during sampling soil solutions.
Evaluation of the interaction between plant roots and preferential flow paths
NASA Astrophysics Data System (ADS)
Zhang, Yinghu; Niu, Jianzhi; Zhang, Mingxiang; Xiao, Zixing; Zhu, Weili
2017-04-01
Introduction Preferential flow causing environmental issues by carrying contaminants to the groundwater resources level, occurs throughout the world. Soil water flow and solute transportation via preferential flow paths with little resistance could bypass soil matrix quickly. It is necessary to characterize preferential flow phenomenon because of its understanding of ecological functions of soil, including the degradation of topsoil, the low activity of soil microorganisms, the loss of soil nutrients, and the serious source of pollution of groundwater resources (Brevik et al., 2015; Singh et al., 2015). Studies on the interaction between plant roots and soil water flow in response to preferential flow is promising increasingly. However, it is complicated to evaluate soil hydrology when plant roots are associated with the mechanisms of soil water flow and solute transportation, especially preferential flow (Ola et al., 2015). Root channels formed by living/decayed plant roots and root-soil interfaces affect soil hydrology (Tracy et al., 2011). For example, Jørgensen et al. (2002) stated that soil water flow was more obvious in soil profiles with plant roots than in soil profiles without plant roots. The present study was conducted to investigate the interaction between plant roots and soil water flow in response to preferential flow in stony soils. Materials and methods Field experiments: field dye tracing experiments centered on experimental plants (S. japonica Linn, P. orientalis (L.) Franco, and Q. dentata Thunb) were conducted to characterize the root length density, preferential flow paths (stained areas), and soil matrix (unstained areas). Brilliant Blue FCF (C.I. Food Blue 2) as dye solution (50 L) was applied to the experimental plots. Laboratory analyses: undisturbed soil columns (7-cm diameter, 10 cm high) obtained from soil depths of 0-20, 20-40, and 40-60 cm, respectively, were conducted with breakthrough curves experiments under different conditions maintaining (1) a constant hydraulic head of 1ṡ0 cm of water with various solution concentrations of 0ṡ5, 1ṡ0, and 1ṡ5 g L-1, and (2) a constant solution concentration of 1ṡ0 g L-1 with various hydraulic heads of 0ṡ5, 1ṡ0, and 1ṡ5 cm of water, and those columns were conducted under saturated and unsaturated soil conditions, respectively. The effluent samples were measured with an ultraviolet spectrometer subsystem to determine the relative concentration. The plant root-water interaction (PRWI) was recognized as an indicator of the influences of plant roots on soil water flow. Results Our study showed that (1) fine plant roots in preferential flow paths decreased with soil depth and was mostly recorded in the upper soil layers to a depth of 20 cm for all experimental plots. The root length density of preferential flow paths made up at least 50% of the total root length density at each soil depth; (2) preferential flow effects were most apparent on soil water flow at the 0-20-cm soil depth compared with the other depths (20-40 and 40-60 cm); (3) positive correlations between fine plant roots and the plant root-water interaction (PRWI) were observed. References Brevik EC, Cerdà A, Mataix-Solera J, Pereg L, Quinton JN, Six J, Van Oost K. 2015. The interdisciplinary nature of SOIL. SOIL 1: 117-129. DOI: 10.5194/soil-1-117-2015. Singh YP, Nayak AK, Sharma DK, Singh G, Mishra VK, Singh D. 2015. Evaluation of Jatropha curcas genotypes for rehabilitation of degraded sodic lands. Land Degradation & Development 26(5): 510-520. DOI: 10.1002/ldr.2398. Ola A, Dodd IC, Quinton JN. 2015. Can we manipulate root system architecture to control soil erosion? SOIL 1: 603-612. DOI: 10.5194/soild-2-265-2015. Tracy SR, Black CR, Roberts JA, Mooney SJ. 2011. Soil compaction: a review of past and present techniques for investigating effects on root growth. Journal of the Science of Food & Agriculture 91: 1528-1537. DOI: 10.1002/jsfa.4424. Jørgensen PR, Hoffmann M, Kistrup JP, Bryde C, Bossi R, Villholth KG. 2002. Preferential flow and pesticide transport in a clay-rich till: field, laboratory, and modeling analysis. Water Resources Research 38: 1246-1261. DOI: 10.1029/2001WR000494.
Carvalho, Geraldo; Schaffert, Robert Eugene; Malosetti, Marcos; Viana, Joao Herbert Moreira; Menezes, Cicero Bezerra; Silva, Lidianne Assis; Guimaraes, Claudia Teixeira; Coelho, Antonio Marcos; Kochian, Leon V; van Eeuwijk, Fred A; Magalhaes, Jurandir Vieira
2015-12-17
Aluminum (Al) toxicity damages plant roots and limits crop production on acid soils, which comprise up to 50% of the world's arable lands. A major Al tolerance locus on chromosome 3, AltSB, controls aluminum tolerance in sorghum [Sorghum bicolor (L.) Moench] via SbMATE, an Al-activated plasma membrane transporter that mediates Al exclusion from sensitive regions in the root apex. As is the case with other known Al tolerance genes, SbMATE was cloned based on studies conducted under controlled environmental conditions, in nutrient solution. Therefore, its impact on grain yield on acid soils remains undetermined. To determine the real world impact of SbMATE, multi-trait quantitative trait loci (QTL) mapping in hydroponics, and, in the field, revealed a large-effect QTL colocalized with the Al tolerance locus AltSB, where SbMATE lies, conferring a 0.6 ton ha(-1) grain yield increase on acid soils. A second QTL for Al tolerance in hydroponics, where the positive allele was also donated by the Al tolerant parent, SC283, was found on chromosome 9, indicating the presence of distinct Al tolerance genes in the sorghum genome, or genes acting in the SbMATE pathway leading to Al-activated citrate release. There was no yield penalty for AltSB, consistent with the highly localized Al regulated SbMATE expression in the root tip, and Al-dependent transport activity. A female effect of 0.5 ton ha(-1) independently demonstrated the effectiveness of AltSB in hybrids. Al tolerance conferred by AltSB is thus an indispensable asset for sorghum production and food security on acid soils, many of which are located in developing countries. Copyright © 2016 Carvalho et al.
Pannatier, Elisabeth Graf; Thimonier, Anne; Schmitt, Maria; Walthert, Lorenz; Waldner, Peter
2011-03-01
Trends in atmospheric acid deposition and in soil solution acidity from 1995 or later until 2007 were investigated at several forest sites throughout Switzerland to assess the effects of air pollution abatements on deposition and the response of the soil solution chemistry. Deposition of the major elements was estimated from throughfall and bulk deposition measurements at nine sites of the Swiss Long-Term Forest Ecosystem Research network (LWF) since 1995 or later. Soil solution was measured at seven plots at four soil depths since 1998 or later. Trends in the molar ratio of base cations to aluminum (BC/Al) in soil solutions and in concentrations and fluxes of inorganic N (NO(3)-N + NH(4)-N), sulfate (SO(4)-S), and base cations (BC) were used to detect changes in soil solution chemistry. Acid deposition significantly decreased at three out of the nine study sites due to a decrease in total N deposition. Total SO(4)-S deposition decreased at the nine sites, but due to the relatively low amount of SO(4)-S load compared to N deposition, it did not contribute to decrease acid deposition significantly. No trend in total BC deposition was detected. In the soil solution, no trend in concentrations and fluxes of BC, SO(4)-S, and inorganic N were found at most soil depths at five out of the seven sites. This suggests that the soil solution reacted very little to the changes in atmospheric deposition. A stronger reduction in base cations compared to aluminum was detected at two sites, which might indicate that acidification of the soil solution was proceeding faster at these sites.
Synthesis of Sol-Gel Precursors for Ceramics from Lunar and Martian Soil Simulars
NASA Technical Reports Server (NTRS)
Sibille, L.; Gavira-Gallardo, J. A.; Hourlier-Bahloul, D.
2004-01-01
Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report initial results on the production of sol-gel precursors for ceramic products using mineral resources available in martian or lunar soil. The presence of SO2, TiO2, and Al2O3 in both martian (44 wt.% SiO2, 1 wt.% TiO2, 7 wt.% Al2O3) and lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from lunar and martian soil simulars. Clear solutions of sol-gel precursors have been obtained by dissolution of silica from lunar soil similar JSC-1 in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Similarly, sol-gel solutions produced from martian soil simulars reveal higher contents of iron oxides. Characterization of the precursor molecules and efforts to further concentrate and hydrolyze the products to obtain gel materials will be presented for evaluation as ceramic precursors.
Synthesis of Sol-Gel Precursors for Ceramics from Lunar and Martian Soil Simulars
NASA Technical Reports Server (NTRS)
Sibille, L.; Gavira-Gallardo, J. A.; Hourlier-Bahloul, D.
2003-01-01
Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report initial results on the production of sol-gel precursors for ceramic products using mineral resources available in martian or lunar soil. The presence of SiO2, TiO2, and Al2O3 in both martian (44 wt.% SiO2, 1 wt.% TiO2,7 wt.% Al2O3) and lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from lunar and martian soil simulars. Clear solutions of sol-gel precursors have been obtained by dissolution of silica from lunar soil simular in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Similarly, sol-gel solutions produced from martian soil simulars reveal higher contents of iron oxides. The elemental composition and structure of the precursor molecules were characterized. Further concentration and hydrolysis of the products was performed to obtain gel materials for evaluation as ceramic precursors.
Taghipour, M; Jalali, M
2013-07-01
Organic acid has been related to nutrient mobilization, mainly in phosphorus (P) insoluble utilization, and therefore enhances P bioavailability. In this study, we examined the effect of low-molecular-weight organic acids (malic, citric, and oxalic acids) on P release of some calcareous soils from western Iran. Fractionation and speciation of P in the soil solution were studied at the initial and final P release. Significantly different quantities of P were extracted by the organic acids. On average the maximum (1,554.9 mg kg(-1)) and the minimum (1,260.5 mg kg(-1)) P were extracted by 10 mM oxalic and malic acid, respectively. Power equation described well P release. In the initial stage of P release, the solution samples in soils were supersaturated with respect to hydroxyapatite and β-TCP. At the end of P release, all solutions were undersaturated with phosphate minerals. The percentage of Fe-Al oxide fraction generally increased after P release, while carbonate and residual P fractions were decreased in all organic acids. Compared with the native soils, adding malic and citric acids had no effect on Fe-Al oxide fraction, but oxalic acid significantly reduced this fraction.
NASA Astrophysics Data System (ADS)
Wei, Wei; Wu, Xin-qiang; Ke, Wei; Xu, Song; Feng, Bing; Hu, Bo-tao
2017-09-01
Electrochemical corrosion behavior of a thermal-sprayed Ni-Al-coated Q235 steel was investigated in the simulated soil solutions at different pH values using measurements of potentiodynamic polarization curves and electrochemical impedance spectroscopy as well as surface analyses including x-ray diffraction analysis, scanning electron microscope equipped with an energy-dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy. The results showed that the corrosion resistance of the Ni-Al-coated Q235 steel was dependent on the pH of the test solution. From pH = 3.53 to pH = 4.79, the corrosion resistance of the coated steel increased rapidly. In the pH range from 4.79 to 12.26, the corrosion resistance exhibited no significant change. At pH 13.25, the corrosion resistance of the sample was found to decrease. The calculated corrosion rate of Ni-Al-coated Q235 steel was lower than that of the uncoated Q235 steel and galvanized steel in all the test solutions. Over a wide range of pH values, the Ni-Al-coated Q235 steel exhibited extremely good corrosion resistance. The experimental data together with the potential-pH diagrams provided a basis for a detailed discussion of the related corrosion mechanisms of the coated steel.
Maejima, Eriko; Osaki, Mitsuru; Wagatsuma, Tadao; Watanabe, Toshihiro
2017-05-01
High aluminum (Al) concentration in soil solution is the most important factor restricting plant growth in acidic soils. However, various plant species naturally grow in such soils. Generally, they are highly tolerant to Al, but organic acid exudation, the most common Al tolerance mechanism, cannot explain their tolerance. Lower phospholipid and higher sterol proportions in root plasma membrane enhance Al tolerance. Other cellular components, such as cell walls and phenolics, may also be involved in Al tolerance mechanisms. In this study, the relationships between these cellular components and the Al tolerance mechanisms in Melastoma malabathricum and Melaleuca cajuputi, both highly Al-tolerant species growing in strongly acidic soils, were investigated. Both species contained lower proportions of phospholipids and higher proportions of sterols in roots, respectively. Concentrations of phenolics in roots of both species were higher than that of rice; their phenolics could form chelates with Al. In these species, phenolic concentrations and composition were the same irrespective of the presence or absence of Al in the medium, suggesting that a higher concentration of phenolics is not a physiological response to Al but a constitutive characteristic. These characteristics of cellular components in roots may be cooperatively involved in their high Al tolerance. © 2016 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.
NASA Astrophysics Data System (ADS)
Baigorri, Roberto; Urrutia, Óscar; Erro, Javier; Pazos-Pérez, Nicolás; María García-Mina, José
2016-04-01
Natural Organic Matter (NOM) and the NOM fraction present in soil solution (dissolved organic matter: DOM) are currently considered as fundamental actors in soil fertility and crop mineral nutrition. Indeed, decreases in crop yields as well as soil erosion are closely related to low values of NOM and, in fact, the use of organic amendments as both soil improvers and plant growth enhancers is very usual in countries with soils poor in NOM. This role of NOM (and DOM) seems to be associated with the presence of bio-transformed organic molecules (humic substances) with high cation chelating-complexing ability. In fact, bioavailable micronutrients with metallic character in soil solutions of alkaline and calcareous soils are forming stable complexes with DOM. This beneficial action of DOM also concerns other plant nutrients such as inorganic phosphate (Pi). Among the different mechanisms involved in the beneficial action of DOM on P bioavailability, the possible formation of poly-nuclear complexes including stable chemical bonds between negative binding sites in humic substances and Pi through metal bridges in soil solution might be relevant, especially in acidic soils. In fact, several studies have proven that these complexes can be obtained in the laboratory and are very efficient in prevent Pi soil fixation and improve Pi root uptake. However, clear experimental evidence about their presence in soil solutions of natural and agronomical soil ecosystems has not published yet. We present here experimental results supporting the real presence of stable Pi-metal-Humic (PMH) complexes in the soil solution of several acidic soils. The study is based on the physico-chemical characterization (31P-NMR, FTIR, TEM-EDAX, ICP-OES) of the DOM fraction isolated by ultrafiltration from the soil solution of several representative acidic soils. In average, more than 60 % of Pi was found in the soil solution humic fraction forming stable humic-metal (Fe, Al) complexes.
Synthesis and properties of mecoprop-intercalated layered double hydroxide
NASA Astrophysics Data System (ADS)
Ahmed Khan, Modabber; Choi, Choong-Lyeal; Lee, Dong-Hoon; Park, Man; Lim, Bu-Kug; Lee, Jong-Yoon; Choi, Jyung
2007-08-01
This study carried out to elucidate the synthesis of MCPP LDH hybrid, release pattern of MCPP from MCPP LDH hybrid and their properties. MCPP LDH hybrid was synthesized from MCPP and Mg Al complex. Release pattern of MCPP from MCPP LDH hybrid was slower in distilled water and soil solution but it was slower in distilled water than soil solution. MCPP LDH hybrid has shown more stable condition than CO32- form of LDH in thermal and acidic condition. Therefore, MCPP LDH hybrid would lead as functional and benign pesticide to minimize the harmful effects on soil environment by bulk herbicides.
Li, Jiuyu; Xu, Renkou
2007-02-01
Low-molecular-weight (LMW) organic acids may be adsorbed by soils and the adsorption could affect their biodegradation and efficiency in many soil processes. In the present study, the adsorption of phthalic acid and salicylic acid and their effect on the exchangeable Al capacity of variable-charge soils were investigated. The results indicated that phthalic acid and salicylic acid were adsorbed by four variable-charge soils to some extent, oxisols showed a greater adsorption capacity for organic acids than ultisols, and the ability of the four variable-charge soils to adsorb the organic acids at different pH generally followed the order Kunming oxisol > Xuwen oxisol > Jinxian ultisol > Lechang ultisol, which was closely related to their content of free iron oxides and amorphous iron and aluminum oxides. The adsorption of organic acids induced a decrease in the zeta potentials of soils and oxides. Goethite has greater adsorption capacity for organic acid than Xuwen oxisol and the adsorption of organic acids resulted in a bigger decrease in the zeta potential of goethite suspensions. After free iron oxides were removed, less organic acid was adsorbed by Xuwen oxisol and no change was observed in zeta potential for the soil suspension after organic acid was added. The presence of phthalic acid increased the capacity of exchangeable Al and the increment in the four variable-charge soils also followed the order Kunming oxisol > Xuwen oxisol > Lechang ultisol and Jinxian ultisol. The presence of salicylic acid increased the capacity of exchangeable Al in Kunming oxisol, Xuwen oxisol, and Jinxian ultisol, but decreased it in Lechang ultisol due to less adsorption of the acid and formation of soluble Al-salicylate complexes in solution. After free iron oxides were removed, less effect of organic acid on exchangeable Al was observed for Xuwen oxisol, which further confirmed that the iron oxides played a significant role in organic acid adsorption and had a consequent effect on the capacity of exchangeable Al in variable-charge soils. Therefore, the higher the content of iron oxides, the greater the adsorption of organic acids by soils and the greater the increase in soil exchangeable Al induced by the organic acids.
NASA Astrophysics Data System (ADS)
Sokolova, T. A.; Tolpeshta, I. I.; Izosimova, Yu. G.
2017-06-01
The profile distributions of oxalate- and pyrophosphate-soluble Al compounds and oxalate-soluble Si compounds in the main horizons of pale-podzolic soils of the Central Forest Reserve and the fractions <1. 1-5, and >5 μm have been considered. In the clay-eluvial part of soil profile, the content of these compounds is differentiated by the eluvial-illuvial type with a clear accumulation in the EL horizon compared to the AEL horizon. This distribution is largely ensured by their differentiation in the clay and fine silt fractions, while an accumulative distribution of mobile Al compounds is observed in fractions >5 μm. The high correlation between the Al and Si contents in the Tamm extracts from the clay and fine silt fractions with the (Alox-Alpy)/Siox molar ratios, which are in the range of 1-3 in the EL horizon, confirms that mobile compounds are accumulated in these fractions in the form of amorphous aluminosilicates. In the AEL and EL horizons, an additional amount of Al can pass into the oxalate solution from the fine fractions due to the dissolution of Al hydroxide interlayers of soil chlorites. The eluvial-illuvial distribution of mobile Al and Si compounds typical for Al-Fe-humus podzols within the clay-illuvial part of profiles of the soils under study can be considered as an example of superimposed evolution.
Soil processes at Emerald Lake Watershed. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lund, L.J.; Brown, A.D.; Lueking, M.A.
1987-04-20
The objectives of the Soils Processes research at Emerald Lake Watershed (ELW) were to assess physical, chemical and biological processes contributing to the production or consumption of acidity in soils and to assess the net effect of soil processes on surface-water quality in an alpine watershed. Most of the N and S in ELW soils is stored in organic forms. Most of the soil P is present in nearly insoluble mineral forms. The ELW soils can adsorb only small quantities of sulfate, thus their capacity for buffering acid additions by sulfate adsorption is low. Concentrations of Al, Ca, Mg, K,more » and Na in both soil solution and stream samples reflected patterns of mineral weathering in the watershed. Summer CO/sub 2/ concentrations in the soils were high enough to increase soil solution acidity and influence the speciation of dissolved elements. The overall chemistry of stream waters reflects the mineral composition of soils and rocks at ELW.« less
NASA Astrophysics Data System (ADS)
Aparicio, Virginia; Costa, José; Domenech, Marisa; Castro Franco, Mauricio
2013-04-01
Predicting how solutes move through the unsaturated zone is essential to determine the potential risk of groundwater contamination (Costa et al., 1994). The estimation of the spatial variability of solute transport parameters, such as velocity and dispersion, enables a more accurate understanding of transport processes. Apparent electrical conductivity (ECa) has been used to characterize the spatial behavior of soil properties. The objective of this study was to characterize the spatial variability of soil transport parameters at field scale using ECa measurements. ECa measurements of 42 ha (Tres Arroyos) and 50 ha (Balcarce) farms were collected for the top 0-30 cm (ECa(s)) soil using the Veris® 3100. ECa maps were generated using geostatistical interpolation techniques. From these maps, three general areas were delineated, named high, medium, and low ECa zones. At each zone, three sub samples were collected. Soil samples were taken at 0-30 cm. Clay content and organic matter (OM) was analyzed. The transport assay was performed in the laboratory using undisturbed soil columns, under controlled conditions of T ° (22 ° C).Br- determinations were performed with a specific Br- electrode. The breakthrough curves were fitted using the model CXTFIT 2.1 (Toride et al., 1999) to estimate the transport parameters Velocity (V) and Dispersion (D). In this study we found no statistical significant differences for V and D between treatments. Also, there were no differences in V and D between sites. The average V and D value was 9.3 cm h-1 and 357.5 cm2 h-2, respectively. Despite finding statistically significant differences between treatments for the other measured physical and chemical properties, in our work it was not possible to detect the spatial variability of solute transport parameters.
Liang, Cuiyue; Piñeros, Miguel A.; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V.; Liao, Hong
2013-01-01
Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function. PMID:23341359
Liang, Cuiyue; Piñeros, Miguel A; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V; Liao, Hong
2013-03-01
Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function.
Mohammadi, Mohammad Hossein; Vanclooster, Marnik
2012-05-01
Solute transport in partially saturated soils is largely affected by fluid velocity distribution and pore size distribution within the solute transport domain. Hence, it is possible to describe the solute transport process in terms of the pore size distribution of the soil, and indirectly in terms of the soil hydraulic properties. In this paper, we present a conceptual approach that allows predicting the parameters of the Convective Lognormal Transfer model from knowledge of soil moisture and the Soil Moisture Characteristic (SMC), parameterized by means of the closed-form model of Kosugi (1996). It is assumed that in partially saturated conditions, the air filled pore volume act as an inert solid phase, allowing the use of the Arya et al. (1999) pragmatic approach to estimate solute travel time statistics from the saturation degree and SMC parameters. The approach is evaluated using a set of partially saturated transport experiments as presented by Mohammadi and Vanclooster (2011). Experimental results showed that the mean solute travel time, μ(t), increases proportionally with the depth (travel distance) and decreases with flow rate. The variance of solute travel time σ²(t) first decreases with flow rate up to 0.4-0.6 Ks and subsequently increases. For all tested BTCs predicted solute transport with μ(t) estimated from the conceptual model performed much better as compared to predictions with μ(t) and σ²(t) estimated from calibration of solute transport at shallow soil depths. The use of μ(t) estimated from the conceptual model therefore increases the robustness of the CLT model in predicting solute transport in heterogeneous soils at larger depths. In view of the fact that reasonable indirect estimates of the SMC can be made from basic soil properties using pedotransfer functions, the presented approach may be useful for predicting solute transport at field or watershed scales. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohammadi, Mohammad Hossein; Vanclooster, Marnik
2012-05-01
Solute transport in partially saturated soils is largely affected by fluid velocity distribution and pore size distribution within the solute transport domain. Hence, it is possible to describe the solute transport process in terms of the pore size distribution of the soil, and indirectly in terms of the soil hydraulic properties. In this paper, we present a conceptual approach that allows predicting the parameters of the Convective Lognormal Transfer model from knowledge of soil moisture and the Soil Moisture Characteristic (SMC), parameterized by means of the closed-form model of Kosugi (1996). It is assumed that in partially saturated conditions, the air filled pore volume act as an inert solid phase, allowing the use of the Arya et al. (1999) pragmatic approach to estimate solute travel time statistics from the saturation degree and SMC parameters. The approach is evaluated using a set of partially saturated transport experiments as presented by Mohammadi and Vanclooster (2011). Experimental results showed that the mean solute travel time, μt, increases proportionally with the depth (travel distance) and decreases with flow rate. The variance of solute travel time σ2t first decreases with flow rate up to 0.4-0.6 Ks and subsequently increases. For all tested BTCs predicted solute transport with μt estimated from the conceptual model performed much better as compared to predictions with μt and σ2t estimated from calibration of solute transport at shallow soil depths. The use of μt estimated from the conceptual model therefore increases the robustness of the CLT model in predicting solute transport in heterogeneous soils at larger depths. In view of the fact that reasonable indirect estimates of the SMC can be made from basic soil properties using pedotransfer functions, the presented approach may be useful for predicting solute transport at field or watershed scales.
Variable Charge Soils: Mineralogy and Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qafoku, Nik; Van Ranst, Eric; Noble, Andrew
2003-11-01
Soils rich in particles with amphoteric surface properties in the Oxisols, Ultisols, Alfisols, Spodosols and Andisols orders (1) are considered variable charge soils (2). The term “variable charge” is used to describe organic and inorganic soil constituents with reactive surface groups whose charge varies with pH, ionic concentration and composition of the soil solution. Such groups are the surface carboxyl, phenolic and amino functional groups of organic materials in soils, and surface hydroxyl groups of Fe and Al oxides, allophane and imogolite. The hydroxyl surface groups are also present on edges of some phyllosilicate minerals such as kaolinite, mica, andmore » hydroxyl-interlayered vermiculite. The variable charge is developed on the surface groups as a result of adsorption or desorption of ions that are constituents of the solid phase, i.e., H+, and the adsorption or desorption of solid-unlike ions that are not constituents of the solid. Highly weathered soils usually undergo isoeletric weathering and reach a “zero net charge” stage during their development. They have a slightly acidic to acidic soil solution pH, which is close to either point of zero net charge (PZNC) (3) or point of zero salt effect (PZSE) (3). They are characterized by high abundances of minerals with a point of zero net proton charge (PZNPC) (3) at neutral and slightly basic pHs; the most important being Fe and Al oxides and allophane. Under acidic conditions, the surfaces of these minerals are net positively charged. In contrast, the surfaces of permanent charge phyllosilicates are negatively charged regardless of ambient conditions. Variable charge soils therefore, are heterogeneous charge systems. The coexistence and interactions of oppositely charged surfaces or particles confers a different pattern of physical and chemical behavior on the soil, relatively to a homogeneously charged system of temperate regions. In some variable charge soils (Oxisols and some Ultisols developed on ferromagnesian-rich parent materials) the surfaces of phyllosilicates are coated to a lesser or greater extent by amorphous or crystalline, oppositely charged nanoparticles of Fe and Al oxides. These coatings exhibit a high reactive surface area and help cementing larger particles with one another. As a result of these electrostatic interactions, stable microaggregates that are difficult to disperse are formed in variable charge soils. Most of highly weathered soils have reached the “advanced stage” of Jackson-Sherman weathering sequence that is characterized by the removal of Na, K, Ca, Mg, and Fe(II), the presence of Fe and Al polymers, and very dilute soil solutions with an ionic strength (IS) of less than 1 mmol L-1. The inter-penetration or overlapping of the diffuse double layers on oppositely charged surfaces may occur in these dilute systems. These diffuse layer interactions may affect the magnitude of the effective charge, i.e., the counter-ion charge (4). In addition, salt adsorption, which is defined as the simultaneous adsorption in equivalent amounts of the cation and anion of an electrolyte with no net release of other ions into the soil solution, appears to be a common phenomenon in these soils. They act as cation- and anion-exchangers and as salt-sorbers. The magnitude of salt adsorption depends strongly on initial IS in the soil solution and the presence in appreciable amounts of oppositely charged surfaces. Among the authors that have made illustrious contributions towards a better understanding of these fascinating soil systems are S. Matson, R.K. Schofield, van Olphen, M.E. Sumner, G.W. Thomas, G.P. Gillman, G. Uehara, B.K.G. Theng, K. Wada, N.J. Barrow, J.W. Bowden, R.J. Hunter and G. Sposito. This entry is mainly based on publications by these authors.« less
Molecular regulation of aluminum resistance and sulfur nutrition during root growth.
Alarcón-Poblete, Edith; Inostroza-Blancheteau, Claudio; Alberdi, Miren; Rengel, Zed; Reyes-Díaz, Marjorie
2018-01-01
Aluminum toxicity and sulfate deprivation both regulate microRNA395 expression, repressing its low-affinity sulfate transporter ( SULTR2;1 ) target. Sulfate deprivation also induces the high-affinity sulfate transporter gene ( SULTR12 ), allowing enhanced sulfate uptake. Few studies about the relationships between sulfate, a plant nutrient, and aluminum, a toxic ion, are available; hence, the molecular and physiological processes underpinning this interaction are poorly understood. The Al-sulfate interaction occurs in acidic soils, whereby relatively high concentrations of trivalent toxic aluminum (Al 3+ ) may hamper root growth, limiting uptake of nutrients, including sulfur (S). On the other side, Al 3+ may be detoxified by complexation with sulfate in the acid soil solution as well as in the root-cell vacuoles. In this review, we focus on recent insights into the mechanisms governing plant responses to Al toxicity and its relationship with sulfur nutrition, emphasizing the role of phytohormones, microRNAs, and ion transporters in higher plants. It is known that Al 3+ disturbs gene expression and enzymes involved in biosynthesis of S-containing cysteine in root cells. On the other hand, Al 3+ may induce ethylene biosynthesis, enhance reactive oxygen species production, alter phytohormone transport, trigger root growth inhibition and promote sulfate uptake under S deficiency. MicroRNA395, regulated by both Al toxicity and sulfate deprivation, represses its low-affinity Sulfate Transporter 2;1 (SULTR2;1) target. In addition, sulfate deprivation induces High Affinity Sulfate Transporters (HAST; SULTR1;2), improving sulfate uptake from low-sulfate soil solutions. Identification of new microRNAs and cloning of their target genes are necessary for a better understanding of the role of molecular regulation of plant resistance to Al stress and sulfate deprivation.
Liyun, Yang; Ping, Xu; Maomao, Yang; Hao, Bai
2017-02-01
This study examined the characteristics of nitrate removal from aqueous solution by steel slag and the feasibility of using steel slag as a soil additive to remove nitrate. Steel slag adsorbents were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM) and infrared spectrum (IR spectrum). Adsorption isotherms and kinetics were also analysed. Various parameters were measured in a series of batch experiments, including the sorbent dose, grain size of steel slag, reaction time, initial concentration of nitrate nitrogen, relationship between Al, Fe and Si ions leached from the steel slag and residual nitrate in the aqueous solution. The nitrate adsorbing capacity increased with increasing amounts of steel slag. In addition, decreasing the grain diameter of steel slag also enhanced the adsorption efficiency. Nitrate removal from the aqueous solution was primarily related to Al, Fe, Si and Mn leached from the steel slag. The experimental data conformed to second-order kinetics and the Freundlich isothermal adsorption equation, indicating that the adsorption of nitrate by steel slag is chemisorption under the action of monolayer adsorption. Finally, it was determined that using steel slag as a soil additive to remove nitrate is a feasible strategy.
Denning, A. Scott; Baron, Jill S.; Mast, M. Alisa; Arthur, Mary
1991-01-01
Intensive sampling of a stream draining an alpine-subalpine basin revealed that depressions in pH and acid neutralizing capacity (ANC) of surface water at the beginning of the spring snowmelt in 1987 and 1988 were not accompanied by increases in strong acid anions, and that surface waters did not become acidic (ANC<0). Samples of meltwater collected at the base of the snowpack in 1987 were acidic and exhibited distinct ‘pulses’ of nitrate and sulfate. Solutions collected with lysimeters in forest soils adjacent to the stream revealed high levels of dissolved organic carbon (DOC) and total Al. Peaks in concentration of DOC, Al, and nutrient species in the stream samples indicate a flush of soil solution into the surface water at the beginning of the melt. Infiltration of meltwater into soils and spatial heterogeneity in the timing of melting across the basin prevented stream and lake waters from becoming acidic.
When interflow also percolates: downslope travel distances and hillslope process zones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, C. Rhett; Bitew, Menberu; Du, Enhao
2014-02-17
In hillslopes with soils characterized by deep regoliths, such as Ultisols,Oxisols, and Alfisols, interflow occurs episodically over impeding layers near and parallel to the soil surface such as low-conductivity B horizons (e.g.Newman et al., 1998; Buttle andMcDonald, 2002; Du et al., In Review), till layers (McGlynn et al., 1999; Bishop et al., 2004), hardpans (McDaniel et al., 2008), C horizons (Detty and McGuire, 2010), and permeable bedrock (Tromp van Meerveld et al., 2007). As perched saturation develops within and above these impeding but permeable horizons, flow moves laterally downslope, but the perched water also continues to percolate through the impedingmore » horizon to the unsaturated soils and saprolite below. Perched water and solutes will eventually traverse the zone of perched saturation above the impeding horizon and then enter and percolate through the impeding horizon. In such flow situations, only lower hillslope segments with sufficient downslope travel distance will deliver water to the riparian zone within the time scale of a storm.farther up the slope, lateral flow within the zone of perched saturation. will act mainly to shift the point of percolation (location where a water packet leaves the downslope flow zone in the upper soil layer and enters the impeding layer) down the hillslope from the point of infiltration. In flatter parts of the hillslope or in areas with little contrast between the conductivities of the upper and impeding soil layers, lateral flow distances will be negligible.« less
Oulehle, Filip; Hofmeister, Jenýk; Cudlín, Pavel; Hruska, Jakub
2006-11-01
During the 1990s the emissions of SO(2) fell dramatically by about 90% in the Czech Republic; the measured throughfall deposition of sulphur to a spruce forest at Nacetín in the Ore Mts. decreased from almost 50 kg ha(-1) in 1994 to 15 kg ha(-1) in 2005. The throughfall flux of Ca decreased from 17 kg ha(-1) in 1994 to 9 kg ha(-1) in 2005; no change was observed for Mg. The deposition of nitrogen ranged between 15 and 30 kg ha(-1) with no statistically significant trend in the period 1994-2005. The desorption of previously stored sulphur and the decrease of Ca deposition are the main factors controlling the recovery of soil solution. The pH of the soil solution at a depth of 30 cm remains unchanged, and the Al concentration decreased from 320 micromol l(-1) in 1997 to 140 micromol l(-1) in 2005. The enhanced leaching of base cations relative to no acidified conditions has continued, although the Ca concentration decreased from 110 microeq l(-1) in 1997 to 25 microeq l(-1) in 2005 in the mineral soil solution at 30 cm depth. This dramatic change was not observed for Mg concentration in soil solution, because its deposition remained stable during the observed period. Similar patterns were observed in the deeper soil solution at 90 cm. The reduction in Ca availability resulted in lower uptake by tree assimilatory tissues, measured as concentration in needles. Since 2005, the leaching of nitrate observed in soil solution at 30 cm depth has disappeared. By 2003 a similar situation occurred at 90 cm. Higher incorporation into the trees after 1997 could be an important factor. With respect to the formerly high sulphur deposition and consequently released aluminium, which could have negatively influenced the biotic immobilization driven by microbes and fungi, the recovery may have positively impacted and therefore improved retention in the ecosystem during recent years. The delay in the successful retention of nitrogen in the ecosystem was probably caused by the high mineralization of organic matter after improvement of chemical parameters in the organic horizon (increase in pH and decrease in Al concentration). It seems that high mineralization of stored organic matter after decades of high acidic deposition could be an important factor affecting the high losses of nitrogen in spruce forest ecosystems.
NASA Astrophysics Data System (ADS)
Velasco-Molina, Marta; Berns, Anne E.; Macias, Felipe; Knicker, Heike
2013-04-01
Climatic conditions of subtropical and tropical regions support fast carbon (C) mineralization, and thus an accelerated degradation of soil organic matter (SOM) if compared to temperate region (Sánchez & Logan, 1992). However, even in those regions, there are still soil horizons that show notable C accumulation. Examples for the latter are umbric horizons in typical tropical soils, such as Ferralsols. The occurrence of this soils with thick umbric epipedons (× 100 cm thickness) in areas of South Brazil is a paradox, that still needs a better understanding (Marques et al., 2011), in particular since the processes that are responsible for the thickness and darkness of the umbric horizons are of special interest with respect to the role of soils as carbon sink. One major contributor to SOM stabilization represents the soil mineral phase. Therefore the main goal of this work its to study the impact of this factor on the SOM sequestration in Umbric Ferralsols from Atibaia, Campinas (São Paulo State) and Chapecó (Santa Catarina State) developed under different environmental conditions. With this objective the mineral fractions have been isolated by selective extraction of iron and aluminium oxides with different extracting solutions (sodium pyrophosphate, ammonium oxalate and dithionite-citrate-bicarbonate solution) and related to SOM quality and quantity. The latter was studied by the use of solid-state cross polarisation (CPMAS) 13C NMR spectroscopy after demineralization with hydrofluoric acid (Gonçalves et al., 2003). Quantification of the NMR spectra was performed by integration of the respective chemical shift regions under consideration of the contribution of spinning side bands. For our study the following regions were distinguished (Knicker & Lüdemann, 1995): alkyl C (0-45 ppm), N-alkyl C (45-60ppm), O-alkyl C (60-110 ppm), aryl C (110-160 ppm), carbonyl C (160-245 ppm). Preliminary results show that, the minimum vertical variation of total Fe into the profile is classical in Ferralsols and the behavior of Al points to the high presence of gibbsite in the clay fractions of the deeper horizon of the Campinas soils. The (AlP+FeP)/C ratios, obtained after extraction of the Al and Fe forms with a sodium pyrophosphate solution, were above 0.03 throughout the studied profile. According to Nierop et al. (2002) this points towards the existence of organic-metallic compounds. Most tentatively, they precipitated due to saturation of adsorption site. The solid-state 13C NMR spectra of the Chapecó samples showed that the preserved organic C is dominated by a alkyl C in lipids and amino acids (45 - 0 ppm). Other major intensities are observed between 110 and 45 ppm, in the region of O/N-alkyl C (carbohydrates, amino acids) and carboxyl C (220 to 160 ppm). The missing of a clear signal in the region between 160 and 110 ppm (signal derives from aromatic or olefinic C) indicates that in this soil lignin has minor contributions to its aromatic C content.
Structure and composition of Fe-OM co-precipitates that form in soil-derived solutions
NASA Astrophysics Data System (ADS)
Fritzsche, Andreas; Schröder, Christian; Wieczorek, Arkadiusz K.; Händel, Matthias; Ritschel, Thomas; Totsche, Kai U.
2015-11-01
Iron oxides represent a substantial fraction of secondary minerals and particularly affect the reactive properties of natural systems in which they formed, e.g. in soils and sediments. Yet, it is still obscure how transient conditions in the solution will affect the properties of in situ precipitated Fe oxides. Transient compositions, i.e. compositions that change with time, arise due to predominant non-equilibrium states in natural systems, e.g. between liquid and solid phases in soils. In this study, we characterize Fe-OM co-precipitates that formed in pH-neutral exfiltrates from anoxic topsoils under transient conditions. We applied soil column outflow experiments, in which Fe2+ was discharged with the effluent from anoxic soil and subsequently oxidized in the effluent due to contact with air. Our study features three novel aspects being unconsidered so far: (i) the transient composition of soil-derived solutions, (ii) that pedogenic Fe oxides instead of Fe salts serve as major source for Fe2+ in soil solution and (iii) the presence of exclusively soil-derived organic and inorganic compounds during precipitation. The experiments were carried out with two topsoil materials that differed in composition, texture and land use. Derived from Mössbauer spectroscopy, broad distributions in quadrupole splittings (0-2 mm s-1) and magnetic hyperfine fields (35-53 T) indicated the presence of low-crystalline ferrihydrite and even lower crystalline Fe phases in all Fe-OM co-precipitates. There was no unequivocal evidence for other Fe oxides, i.e. lepidocrocite and (nano)goethite. The Fe-OM co-precipitates contained inorganic (P, sulfate, silicate, Al, As) and organic compounds (proteins, polysaccharides), which were concurrently discharged from the soils. Their content in the Fe-OM co-precipitates was controlled by their respective concentration in the soil-derived solution. On a molar basis, OC and Fe were the main components in the Fe-OM co-precipitates (OC/Fe ratio = 0.5-2). The elemental composition of the Fe-OM co-precipitates was in accordance with the sequential precipitation of Fe(III)phosphates/arsenates prior to the formation of ferrihydrite. This explains decreasing Si contents in the Fe-OM co-precipitates with increasing availability of P. With respect to constant mean quadrupole splittings and slightly decreasing mean magnetic hyperfine fields, increasing contents of OC, P and Al in the Fe-OM co-precipitates did not further increase the structural disorder of the Fe polyhedra, while the crystallite interactions slightly decreased. Scanning electron microscopy and dynamic light scattering revealed the coincidental presence of variably sized aggregates and a considerable amount of Fe-OM co-precipitates, which remained dispersed in solution for months. Thus, variably composed Fe-OM co-precipitates with highly diverse aggregate sizes and comparably constant poor crystallinity can be expected after the oxidation of Fe2+ in transient, soil-derived solutions.
A review of the calculation procedure for critical acid loads for terrestrial ecosystems.
van der Salm, C; de Vries, W
2001-04-23
Target loads for acid deposition in the Netherlands, as formulated in the Dutch environmental policy plan, are based on critical load calculations at the end of the 1980s. Since then knowledge on the effect of acid deposition on terrestrial ecosystems has substantially increased. In the early 1990s a simple mass balance model was developed to calculate critical loads. This model was evaluated and the methods were adapted to represent the current knowledge. The main changes in the model are the use of actual empirical relationships between Al and H concentrations in the soil solution, the addition of a constant base saturation as a second criterion for soil quality and the use of tree species-dependant critical Al/base cation (BC) ratios for Dutch circumstances. The changes in the model parameterisation and in the Al/BC criteria led to considerably (50%) higher critical loads for root damage. The addition of a second criterion in the critical load calculations for soil quality caused a decrease in the critical loads for soils with a median to high base saturation such as loess and clay soils. The adaptation hardly effected the median critical load for soil quality in the Netherlands, since only 15% of the Dutch forests occur on these soils. On a regional scale, however, critical loads were (much) lower in areas where those soils are located.
Martin, Jerry W; Moore, Philip A; Li, Hong; Ashworth, Amanda J; Miles, Dana M
2018-03-01
Ammonia (NH) scrubbers reduce amounts of NH and dust released from animal rearing facilities while generating nitrogen (N)-rich solutions, which may be used as fertilizers. The objective of this study was to determine the effects of various NH scrubber solutions on forage yields, N uptake, soil-test phosphorus (P), and P runoff. A small plot study was conducted using six treatments: (i) an unfertilized control, (ii) potassium bisulfate (KHSO) scrubber solution, (iii) aluminum sulfate [Al(SO) ⋅14HO, alum] scrubber solution, (iv) sodium bisulfate (NaHSO) scrubber solution, (v) sulfuric acid (HSO) scrubber solution, and (vi) ammonium nitrate (NHNO) fertilizer. The scrubber solutions were obtained from ARS Air Scrubbers attached to commercial broiler houses. All N sources were applied at a rate of 112 kg N ha. Plots were harvested approximately every 4 wk and soil-test P measurements were made, then a rainfall simulation study was conducted. Cumulative forage yields were greater ( < 0.05) for KHSO (7.6 Mg ha) and NaHSO (7.5 Mg ha) scrubber solutions than for alum (6.7 Mg ha) or HSO (6.5 Mg ha) scrubber solutions or for NHNO (6.9 Mg ha). All N sources resulted in higher yields than the control (5.1 Mg ha). The additional potassium in the KHSO treatment likely resulted in higher yields. Although Mehlich-III-extractable P was not affected, water-extractable P in soil was lowered by the alum-based scrubber solution, which also resulted in lower P runoff. This study demonstrates that N captured using NH scrubbers is a viable N fertilizer. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Soil-solution chemistry in a low-elevation spruce-fir ecosystem, Howland, Maine
Fernandez, Ivan J.; Lawrence, Gregory B.; Son, Yowhan
1995-01-01
Soil solutions were collected monthly by tension and zero-tension lysimeters in a low-elevation red spruce stand in east-central Maine from May 1987 through December 1992. Soil solutions collected by Oa tension lysimeters had higher concentrations of most constituents than the Oa zero-tension lysimeters. In Oa horizon soil solutions growing season concentrations for SO4, Ca, and Mg averaged 57, 43, and 30 μmol L−1 in tension lysimeters, and 43, 28, and 19 μmol L−1 in zero-tension lysimeters, respectively. Because tension lysimeters remove water held by the soil at tensions up to 10 kPa, solutions are assumed to have more time to react with the soil compared to freely draining solutions collected by zero-tension lysimeters. Solutions collected in the Bs horizon by both types of collectors were similar which was attributed to the frequency of time periods when the water table was above the Bs lysimeters. Concentrations of SO4 and NO3 at this site were lower than concentrations reported for most other eastern U.S. spruce-fir sites, but base cation concentrations fell in the same range. Aluminum concentrations in this study were also lower than reported for other sites in the eastern U.S. and Ca/Al ratios did not suggest inhibition of Ca uptake by roots. Concentrations of SO4, Ca, K, and Cl decreased significantly in both the Oa and Bs horizons over the 56-month sampling period, which could reflect decreasing deposition rates for sulfur and base cations, climatic influences, or natural variation. A longer record of measured fluxes will be needed to adequately define temporal trends in solution chemistry and their causes.
Tóth, Brigitta; Lévai, L; Kovács, B; Varga, Mária Borbélyné; Veres, Szilvia
2013-03-01
Biofertilizers are used to improve soil fertility and plant production in sustainable agriculture. However, their applicability depends on several environmental parameters. The aim of our study was to evaluate the effect of free-living bacteria containing fertilizer on the growth of cucumber (Cucumis sativus L. cvs. Delicates) under aluminium (Al) stress. Different responses to Al stress of cucumber growth parameters were examined in terms of root elongation and physiological traits, such as Spad index (relative chlorophyll value), biomass accumulation of root and shoot, Al uptake and selected element contents (Fe, Mn, Zn, Mg) of leaves and root. The applied bacteria containing biofertilizer contains Azotobacter chroococcum and Bacillus megaterium. The dry weights of cucumber shoots and roots decreased in line with the increasing Al concentration. Due to different Al treatments (10-3 M, 10-4 M) higher Al concentration was observed in the leaves, while the amounts of other elements (Fe, Mn, Zn, Mg) decreased. This high Al content of the leaves decreased below the control value when biofertilizer was applied. In the case of the roots the additional biofertilizer treatments compensated the effect of Al. The relative chlorophyll content was reduced during Al-stress in older plants and the biofertilizer moderated this effect. The root/shoot ratio was decreased in all the Al-treatments in comparison to the control. The living bacteria containing fertilizer also had a modifying effect. The root/shoot ratio increased at the 10-4 M Al2(SO4)2 + biofertilizer and 10-4 M Al(NO3)3 + biofertilizer treatments compared to the control and Al-treatments. According to our results the biofertilizer is an alternative nutrient supply for replacing chemical fertilizers because it enhances dry matter production. Biofertilizer usage is also offered under Al polluted environmental conditions. Although, the nutrient solution is a clean system where we can examine the main processes without other effects of natural soils. The soil can modify the results, e.g. the soil-born microorganisms affect nutrient availability, and also can modify the harmful effects of different heavy metals. The understanding of basic processes will help us to know more about the soil behaviour.
Implementation of Solute Transport in the Vadose Zone into the `HYDRUS Package for MODFLOW'
NASA Astrophysics Data System (ADS)
Simunek, J.; Beegum, S.; Szymkiewicz, A.; Sudheer, K. P.
2017-12-01
The 'HYDRUS package for MODFLOW' was developed by Seo et al. (2007) and Twarakavi et al. (2008) to simultaneously evaluate transient water flow in both unsaturated and saturated zones. The package, which is based on the HYDRUS-1D model (Šimůnek et al., 2016) simulating unsaturated water flow in the vadose zone, was incorporated into MODFLOW (Harbaugh et al., 2000) simulating saturated groundwater flow. The HYDRUS package in the coupled model can be used to represent the effects of various unsaturated zone processes, including infiltration, evaporation, root water uptake, capillary rise, and recharge in homogeneous or layered soil profiles. The coupled model is effective in addressing spatially-variable saturated-unsaturated hydrological processes at the regional scale, allowing for complex layering in the unsaturated zone, spatially and temporarily variable water fluxes at the soil surface and in the root zone, and with alternating recharge and discharge fluxes (Twarakavi et al., 2008). One of the major limitations of the coupled model was that it could not be used to simulate at the same time solute transport. However, solute transport is highly dependent on water table fluctuations due to temporal and spatial variations in groundwater recharge. This is an important concern when the coupled model is used for analyzing groundwater contamination due to transport through the unsaturated zone. The objective of this study is to integrate the solute transport model (the solute transport part of HYDRUS-1D for the unsaturated zone and MT3DMS (Zheng and Wang, 1999; Zheng, 2009) for the saturated zone) into an existing coupled water flow model. The unsaturated zone component of the coupled model can consider solute transport involving many biogeochemical processes and reactions, including first-order degradation, volatilization, linear or nonlinear sorption, one-site kinetic sorption, two-site sorption, and two-kinetic sites sorption (Šimůnek and van Genuchten, 2008). Due to complex interactions at the groundwater table, certain modifications of the pressure head (compared to the original coupling) and solute concentration profiles were incorporated into the HYDRUS package. The developed integrated model is verified using HYDRUS-2D and analyzed for its computational time requirements.
VARIABLE CHARGE SOILS: MINERALOGY AND CHEMISTRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Ranst, Eric; Qafoku, Nikolla; Noble, Andrew
2016-09-19
Soils rich in particles with amphoteric surface properties in the Oxisols, Ultisols, Alfisols, Spodosols and Andisols orders (1) are considered to be variable charge soils (2) (Table 1). The term “variable charge” is used to describe organic and inorganic soil constituents with reactive surface groups whose charge varies with pH and ionic concentration and composition of the soil solution. Such groups are the surface carboxyl, phenolic and amino functional groups of organic materials in soils, and surface hydroxyl groups of Fe and Al oxides, allophane and imogolite. The hydroxyl surface groups are also present on edges of some phyllosilicate mineralsmore » such as kaolinite, mica, and hydroxyl-interlayered vermiculite. The variable charge is developed on the surface groups as a result of adsorption or desorption of ions that are constituents of the solid phase, i.e., H+, and the adsorption or desorption of solid-unlike ions that are not constituents of the solid phase. Highly weathered soils and subsoils (e.g., Oxisols and some Ultisols, Alfisols and Andisols) may undergo isoelectric weathering and reach a “zero net charge” stage during their development. They usually have a slightly acidic to acidic soil solution pH, which is close to either the point of zero net charge (PZNC) (3) or the point of zero salt effect (PZSE) (3). They are characterized by high abundances of minerals with a point of zero net proton charge (PZNPC) (3) at neutral and slightly basic pHs; the most important being Fe and Al oxides and allophane. Under acidic conditions, the surfaces of these minerals are net positively charged. In contrast, the surfaces of permanent charge phyllosilicates are negatively charged regardless of ambient conditions. Variable charge soils therefore, are heterogeneous charge systems.« less
Relationship between the Al Resistance of Grasses and their Adaptation to an Infertile Habitat
Poozesh, Vahid; Cruz, Pablo; Choler, Philippe; Bertoni, Georges
2007-01-01
Background and Aims Original data on Al resistance, relative growth rate and leaf traits of five European grasses as well as literature data on Al resistance, habitat preference and traits of grasses were considered to determine whether (a) Al resistance is correlated to a growth conservative strategy and (b) species occurrence could be useful to assess Al toxicity in meadows on acid soils. Methods The Al resistance of 15 species was represented by the Al activity in nutrient solution that resulted in a 50 % decrease in root length, {Al3+}50, or, for published values, in root or plant biomass. The correlations between Al resistance and acidity or nitrogen indices and the correlation between Al resistance and selected traits (relative growth rate, leaf dry matter content, specific leaf area and leaf thickness) were calculated. Principal component analysis was used for the characterization of the relationships between Al resistance and measured traits. Key Results The {Al3+}50 values of the resistant species Molinia caerulea and Sieglingia decumbens were 13 and 26 µm {Al3+}50, respectively. The known Al resistance of 15 species that were mainly of the intermediate strategy competitor–stress tolerator–ruderal (C-S-R) type and of the S type was correlated with Ellenberg's nitrogen and acidity indices. For the whole set of species, the correlation between Al resistance and traits was not significant. Conclusion The Al resistance of the C-S-R species was variable and independent of their traits. S-type species, adapted to acid soils and with traits of conservative strategy, displayed Al resistance. The large difference in Al resistance between grasses may help assess Al soil toxicity by using the abundance of grasses. PMID:17452383
Relationship between the Al resistance of grasses and their adaptation to an infertile habitat.
Poozesh, Vahid; Cruz, Pablo; Choler, Philippe; Bertoni, Georges
2007-05-01
Original data on Al resistance, relative growth rate and leaf traits of five European grasses as well as literature data on Al resistance, habitat preference and traits of grasses were considered to determine whether (a) Al resistance is correlated to a growth conservative strategy and (b) species occurrence could be useful to assess Al toxicity in meadows on acid soils. The Al resistance of 15 species was represented by the Al activity in nutrient solution that resulted in a 50 % decrease in root length, [Al(3+)](50), or, for published values, in root or plant biomass. The correlations between Al resistance and acidity or nitrogen indices and the correlation between Al resistance and selected traits (relative growth rate, leaf dry matter content, specific leaf area and leaf thickness) were calculated. Principal component analysis was used for the characterization of the relationships between Al resistance and measured traits. The [Al(3+)](50) values of the resistant species Molinia caerulea and Sieglingia decumbens were 13 and 26 microm [Al(3+)](50), respectively. The known Al resistance of 15 species that were mainly of the intermediate strategy competitor-stress tolerator-ruderal (C-S-R) type and of the S type was correlated with Ellenberg's nitrogen and acidity indices. For the whole set of species, the correlation between Al resistance and traits was not significant. The Al resistance of the C-S-R species was variable and independent of their traits. S-type species, adapted to acid soils and with traits of conservative strategy, displayed Al resistance. The large difference in Al resistance between grasses may help assess Al soil toxicity by using the abundance of grasses.
Gbondo-Tugbawa, Solomon S; Driscoll, Charles T
2002-11-15
The 1970 and 1990 Amendments of the Clean Air Act (CAAA) have resulted in a decline in acidic deposition in the northeastern United States. Results from the application of a biogeochemical model (PnET-BGC) at the Hubbard Brook Experimental Forest in New Hampshire suggest that, without the implementation of the CAAAs, soil base saturation and soil solution molar Ca/Al ratio would decrease to values below 6% and 1.0, respectively, while S would continue to accumulate in organic matter and adsorbed pools at rates of 2 and 3 kg of S ha(-1) yr(-1), respectively. This scenario of conditions without the CAAAs was projected to result in higher stream concentrations of SO4(2-), NO3-, and Ca2+; monomeric Al; pH below 4.8; and acid-neutralizing capacity (ANC) less than -15 microequiv L(-1). The implementation of the CAAAs has led to a slight improvement in the soil base saturation, while recovery of soil solution Ca/Al cannot be fully assessed because of variability in observed values. Our evaluation of the relative benefits of the 1970 and 1990 CAAAs indicate that although the magnitude of the cumulative decrease in strong acid deposition was greater following the 1970 CAAA as compared to the 1990 CAAA, the extent of ecosystem recovery relative to the changes in acidic deposition suggests that the 1990 CAAA was also beneficial. The slow recovery rates might be the result of a legacy of chemical effects of acidic deposition for the last 150 years and suggests that additional controls in emissions might be required to show significant changes.
Chemistry and phytotoxicity of arsenic in soils. II. Effects of time and phosphorus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woolson, E.A.; Axley, J.H.; Kearney, P.C.
Arsenate from sodium arsenate changes to less soluble compounds in soils with time. To study these changes, the arsenic soluble in 1N NH/sub 4/Cl, 0.5N NH/sub 4/F, 0.1N NaOH, and 0.5N H/sub 2/SO/sub 4/ solutions was determined. These dissolved arsenates, were designated as WS-As (water soluble, Al-As, Fe-As, or Ca-As, respectively. The percent of WS-As present was proportional to As added and inversely proportional to time, and to the Fe and Al content. Fe-As was the predominant form of As in Hagerstown silty clay loam while Al-As predominated in Lakeland loamy sand. Growth of corn (Zea mays) increased with increasemore » in time of As incubation in the soil before planting. Arsenic phytotoxicity and As in the plant were altered by P additions. Arsenic residues in the Lakeland soil became more phytotoxic, while residues in the Hagerstown soil became less phytotoxic with P additions. This plant response was related to the availability of As and P in these soils. Leaching with 0.05 M KH/sub 2/PO/sub 4/ removed 77% of the total As from a contaminated Dunkirk fine sand. The distribution of the forms of As in this soil changed during leaching. 26 references, 3 figures, 4 tables.« less
NASA Astrophysics Data System (ADS)
Dror, I.; Stepka, Z.; Berkowitz, B.
2016-12-01
As a consequence of their growing use in a range of electronic and industrial applications, increasing amounts of technology critical elements (TCEs) are being released to the environment. Currently, little is known about their fate and potential environmental impact. We report here on the adsorption of TCEs on sand and soil in the presence of selected nanoparticles (NPs). TCEs were tested within three different mixtures containing (i) rare earth elements (REEs), (ii) Ge, Pd, Ru and Ir together with Mo, Sb, Sn and Ti, and (iii) In, Sc, Th, Y and Yb together with a variety of other metals. The NPs examined for their suspending properties were: Al2O3, SiO2, CeO2, ZnO, Ag, Au, carbon dots and montmorillonite. Each NP was examined with each TCE solution mixture separately and with added humic acid. A clear difference was observed between REEs (and In, Sc), and the other TCEs. All REEs (and In, Sc) completely adsorb on soil and sand. For sand and soil, the presence of most NPs, alone, does not increase TCE concentrations in solution. For sand, addition of humic acid, with or without NPs, yields approximately the same increase in TCE concentration in solution (>80%). For soil solutions, presence of both NPs and humic acid increases TCE concentrations up to 500% more than any other combination tested, yielding 20% of added TCE amount. The other TCEs tested (mixtures (ii) and (iii)) adsorb less strongly to soil and sand, and unlike the REEs no general trend can be identified. For Al2O3, SiO2, CeO2, ZnO, carbon dots and montmorillonite, the increased concentrations of TCEs in the presence of NPs and humic acid were similar. This indicates that the observed effect depends on the presence of NPs and their surface coating rather than on the type of NP. Ag and Au NPs, however, reduce adsorption of TCEs to sand even when humic acid is absent. For example, Ag NPs reduce adsorption of REEs by >90% and Au NPs by 10%. For REEs, increased solution concentrations are correlated directly to humic acid concentration, with and without NPs in suspension, while for other TCEs, humic acid concentration within the tested range has no effect. This work demonstrates that a combination of NPs and humic acid has the potential to serve as a vehicle for TCE transport in the soil-water environment.
Comparative assessment of the methods for exchangeable acidity measuring
NASA Astrophysics Data System (ADS)
Vanchikova, E. V.; Shamrikova, E. V.; Bespyatykh, N. V.; Zaboeva, G. A.; Bobrova, Yu. I.; Kyz"yurova, E. V.; Grishchenko, N. V.
2016-05-01
A comparative assessment of the results of measuring the exchangeable acidity and its components by different methods was performed for the main mineral genetic horizons of texturally-differentiated gleyed and nongleyed soddy-podzolic and gley-podzolic soils of the Komi Republic. It was shown that the contents of all the components of exchangeable soil acidity determined by the Russian method (with potassium chloride solution as extractant, c(KCl) = 1 mol/dm3) were significantly higher than those obtained by the international method (with barium chloride solution as extractant, c(BaCl2) = 0.1 mol/dm3). The error of the estimate of the concentration of H+ ions extracted with barium chloride solution equaled 100%, and this allowed only qualitative description of this component of the soil acidity. In the case of the extraction with potassium chloride, the error of measurements was 50%. It was also shown that the use of potentiometric titration suggested by the Russian method overestimates the results of soil acidity measurement caused by the exchangeable metal ions (Al(III), Fe(III), and Mn(II)) in comparison with the atomic emission method.
NASA Astrophysics Data System (ADS)
Biggs, T. W.; Dunne, T.; Holmes, K.; Martinelli, L. A.
2001-12-01
Topography plays an important role in determining soil properties, stream solute concentrations and landscape denudation rates. Stallard (1985) suggested that catchment denudation rates should depend on soil thickness. Areas with low slopes are limited by the rate of transport of sediment, and typically contain thick soils that prevent interaction of stream waters with underlying bedrock [Stallard 1985]. Steep areas typically have thin soils, but a lower hydrologic residence time that may prevent soil water from coming into thermodynamic equilibrium with the soil-rock complex. In a survey of streams in the Brazilian Amazon basin, Biggs et al. (2001) found that stream solute concentrations correlate with soil cation contents in the humid tropics, but the mechanism underlying the correlation has not been determined. We combine chemical analyses of water samples from ~40 different streams with soil surveys, geology maps, and a 100m resolution DEM to examine the relationship between topography, rock type, soil cation contents, and stream solute concentrations in the Brazilian Amazon state of Rondônia. The basins are all more than 60% forested at the time of stream sampling and lie on granite-gneiss rocks, tertiary sediments, or sandstone. The catchment-averaged slope correlates positively with both soil cation contents and stream concentrations of P, Na, Ca, Mg, K, Si, ANC, and pH. Though we have no data about the relationship between soil depth and average slope, we assume an inverse correlation, so the data demonstrates that thick soils yield lower solute concentrations. Stream concentrations of Ca, Mg, ANC and pH reach a maximum at intermediate average slopes (3 degrees), suggesting that denudation rates may increase with slope up to a maximum, when the catchment becomes limited by the weathering rate of the basement rock. Catchments on mica-schists or mafic rocks have low average slopes and higher concentrations of Ca, Mg, Si, ANC, and pH than catchments on granite-gneiss, tertiary sediments or sandstone.
NASA Astrophysics Data System (ADS)
Egbi, Courage Davidson; Akiti, Tetteh Thomas; Osae, Shiloh; Dampare, Samuel Boakye; Abass, Gibrilla; Adomako, Dickson
2017-05-01
Leachate generated by open solid waste disposal sites contains substances likely to contaminate groundwater. The impact of potential contaminants migrating from leachate on groundwater can be quantified by monitoring their concentration and soil properties at specific points in the unsaturated zone. In this study, physical and chemical analyses were carried out on leachate, soil and water samples within the vicinity of the municipal solid waste disposal site at Abloradjei, a suburb of Accra, Ghana. The area has seen a massive increase in population and the residents depend on groundwater as the main source of water supply. Results obtained indicate alkaline pH for leachate and acidic conditions for unsaturated zone water. High EC values were recorded for leachate and unsaturated zone water. Major ions (Ca2+, Na+, Mg2+, K+, NO3 -, SO4 2-, Cl-, PO4 3- were analysed in leachate, unsaturated zone water, soil solution and groundwater while trace metals (Al, Fe, Cu, Zn, Pb) were analysed in both soil and extracted soil solution. Concentrations of major ions were high in all samples indicating possible anthropogenic origin. Mean % gravel, % sand, % clay, bulk density, volumetric water content and porosity were 28.8, 63.93, 6.6, 1 g cm-3, 35 and 62.7 %, respectively. Distribution of trace elements showed Kd variation of Al > Cu > Fe > Pb > Zn in the order of sequential increasing solubility. It was observed that the quality of groundwater is not suitable for drinking.
NASA Astrophysics Data System (ADS)
Yousfi, Ammar; Mechergui, Mohammed
2016-04-01
The seepage face is an important feature of the drainage process when recharge occurs to a permeable region with lateral outlets. Examples of the formation of a seepage face above the downstream water level include agricultural land drained by ditches. Flow problem to these drains has been investigated extensively by many researchers (e.g. Rubin, 1968; Hornberger et al. 1969; Verma and Brutsaert, 1970; Gureghian and Youngs, 1975; Vauclin et al., 1975; Skaggs and Tang, 1976; Youngs, 1990; Gureghian, 1981; Dere, 2000; Rushton and Youngs, 2010; Youngs, 2012; Castro-Orgaz et al., 2012) and may be tackled either using variably saturated flow models, or the complete 2-D solution of Laplace equation, or using the Dupuit-Forchheimer approximation; the most widely accepted methods to obtain analytical solutions for unconfined drainage problems. However, the investigation reported by Clement et al. (1996) suggest that accounting for the seepage face alone, as in the fully saturated flow model, does not improve the discharge estimate because of disregarding flow the unsaturated zone flow contribution. This assumption can induce errors in the location of the water table surface and results in an underestimation of the seepage face and the net discharge (e.g. Skaggs and Tang, 1976; Vauclin et al., 1979; Clement et al., 1996). The importance of the flow in the unsaturated zone has been highlighted by many authors on the basis of laboratory experiments and/or numerical experimentations (e.g. Rubin, 1968; Verma and Brutsaert, 1970; Todsen, 1973; Vauclin et al., 1979; Ahmad et al., 1993; Anguela, 2004; Luthin and Day, 1955; Shamsai and Narasimhan, 1991; Wise et al., 1994; Clement et al., 1996; Boufadel et al., 1999; Romano et al., 1999; Kao et al., 2001; Kao, 2002). These studies demonstrate the failure of fully saturated flow models and suggested that the error made when using these models not only depends on soil properties but also on the infiltration rate as reported by Kao et al. (2001). In this work, a novel solution based on theoretical approach will be adapted to incorporate both the seepage face and the unsaturated zone flow contribution for solving ditch drained aquifers problems. This problem will be tackled on the basis of the approximate 2D solution given by Castro-Orgaz et al. (2012). This given solution yields the generalized water table profile function with a suitable boundary condition to be determined and provides a modified DF theory which permits as an outcome the analytical determination of the seepage face. To assess the ability of the developed equation for water-table estimations, the obtained results were compared with numerical solutions to the 2-D problem under different conditions. It is shown that results are in fair agreement and thus the resulting model can be used for designing ditch drainage systems. With respect to drainage design, the spacings calculated with the newly derived equation are compared with those computed from the DF theory. It is shown that the effect of the unsaturated zone flow contribution is limited to sandy soils and The calculated maximum increase in drain spacing is about 30%. Keywords: subsurface ditch drainage; unsaturated zone; seepage face; water-table, ditch spacing equation
NASA Astrophysics Data System (ADS)
Dages, Cecile; Samouelian, Anatja; Lanoix, Marthe; Dollinger, Jeanne; Chakkour, Sara; Chovelon, Gabrielle; Trabelsi, Khouloud; Voltz, Marc
2015-04-01
Ditches are involved in the transfer of pesticide to surface and groundwaters (e.g. Louchart et al., 2001). Soil horizons underlying ditch beds may present specific soil characteristics compared to neighbouring field soils due to erosion/deposition processes, to the specific biological activities (rooting dynamic and animal habitat) in the ditches (e.g. Vaughan et al., 2008) and to management practices (burning, dredging, mowing,...). Moreover, in contrast to percolation processes in field soils that can be assumed to be mainly 1D vertical, those occurring in the ditch beds are by essence 2D or even 3D. Nevertheless, due to a lake of knowledge, these specific aspects of transfer within ditch beds are generally omitted for hydrological simulation at the catchment scale (Mottes et al., 2014). Accordingly, the aims of this study were i) to characterize subsurface solute transfer through ditch beds and ii) to determine equivalent hydraulic parameters of the ditch beds for use in catchment scale hydrological simulations. A complementary aim was to evaluate the error in predictions performed when percolation in ditches is assumed to be similar to that in the neighbouring field soil. First, bromide transfer experiments were performed on undisturbed soil column (15 cm long with a 15 cm inner-diameter), horizontally and vertically sampled within each soil horizon underlying a ditch bed and within the neighboring field. Columns were sampled at the Roujan catchment (Hérault, France), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). Second, for each column, a set of parameters was determined by inverse optimization with mobile-immobile or dual permeability models, with CXTFIT (Toride et al., 1999) or with HYDRUS (Simunek et al., 1998). Third, infiltration and percolation in the ditch was simulated by a 2D flow domain approach considering the 2D variation in hydraulic properties of the cross section of a ditch bed. Last, equivalent 1D simulation parameters were seeked for mimicking the 2D infiltration intensities and patterns. The results obtained are presented and discussed based on the consistency of the simulated hydrograms, chemograms and seasonal solute losses during a series of intense infiltration events representing a typical Mediterranean climatic sequence in autumn. Mottes C., Lesueur-Jannoyer M., Le Bail M., Malézieux E., 2014. Pesticide transfer models in crop and watershed systems: a review. Agron. Sustain. Dev 34:229-250. Louchart, X., Voltz, M., Andrieux, P. and Moussa, R., 2001. Herbicide Transport to Surface Waters at Field and Watershed Scales in a Mediterranean Vineyard Area. J Environ Qual 30 (3): 982-991. Vaughan RE, Needelman BA, Kleinman PJA, Rabenhorst MC (2008) Morphology and Characterization of Ditch Soils at an Atlantic Coastal Plain Farm. Soil Sci. Soc. Am. J. 72:660. doi:10.2136/sssaj2006.0102 Simlnek, J., Šejna, M., van Genuchten, M.Th., 1998. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Version 2.0, IGWMC-TPS-70. International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado. 202 pp Toride, N., Leij, F.J., van Genuchten, M.T., 1999. The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments. Version 2.1. US Salinity Laboratory, Agricultural Research Service US Department of Agriculture, Riverside, California, Research Report, vol. 137. Voltz M., et Albergel, J. 2002. OMERE : Observatoire Méditerranéen de l'Environnement Rural et de l'Eau - Impact des actions anthropiques sur les transferts de masse dans les hydrosystémes méditerranéens ruraux. Proposition d'Observatoire de Recherche en Environnement
Modeling metal binding to soils: the role of natural organic matter.
Gustafsson, Jon Petter; Pechová, Pavlina; Berggren, Dan
2003-06-15
The use of mechanistically based models to simulate the solution concentrations of heavy metals in soils is complicated by the presence of different sorbents that may bind metals. In this study, the binding of Zn, Pb, Cu, and Cd by 14 different Swedish soil samples was investigated. For 10 of the soils, it was found that the Stockholm Humic Model (SHM) was able to describe the acid-base characteristics, when using the concentrations of "active" humic substances and Al as fitting parameters. Two additional soils could be modeled when ion exchange to clay was also considered, using a component additivity approach. For dissolved Zn, Cd, Ca, and Mg reasonable model fits were produced when the metal-humic complexation parameters were identical for the 12 soils modeled. However, poor fits were obtained for Pb and Cu in Aquept B horizons. In two of the soil suspensions, the Lund A and Romfartuna Bhs, the calculated speciation agreed well with results obtained by using cation-exchange membranes. The results suggest that organic matter is an important sorbent for metals in many surface horizons of soils in temperate and boreal climates, and the necessity of properly accounting for the competition from Al in simulations of dissolved metal concentrations is stressed.
Influence of pH on wetting kinetics of a pine forest soil
NASA Astrophysics Data System (ADS)
Amer, Ahmad; Schaumann, Gabriele; Diehl, Dörte
2014-05-01
Water repellent properties of organic matter significantly alter soil water dynamics. Various environmental factors control appearance and breakup of repellency in soil. Beside water content and temperature also pH exerts an influence on soil water repellency although investigations achieved partly ambiguous results; some found increasing repellency with increasing pH (Terashima et al. 2004; Duval et al. 2005), other with decreasing pH (Karnok et al. 1993; Roper 2005) and some found repellency maxima at intermediate pH and an increase with decreasing and with increasing pH (Bayer and Schaumann 2007; Diehl et al. 2010). The breakup of repellency may be observed via the time dependent sessile drop contact angle (TISED). With water contact time, soil-water contact angle decreases until complete wetting is reached. Diehl and Schaumann (2007) calculated the activation energy of the wetting process from the rate of sessile drop wetting obtained at different temperatures and draw conclusions on chemical or physical nature of repellency. The present study aims at the influence of pH on the wetting kinetics of soil. Therefore, TISED of soil was determined as a function of pH and temperature. We used upper soil samples (0 - 10 cm) from a pine forest in the southwest of Germany (Rheinland-Pfalz). Samples were air-dried, sieved < 1.0 mm and pH was modified by NH3 and HCl gas (Diehl et al. 2010) and measured electrometrically in 0.01 M CaCl2 solution. TISED measurements (2007)were conducted at 10, 20 and 30 oC using OCA 15 Contact Angle Meter (Dataphysics, Germany) on three replications for each soil sample. Apparent work of adhesion was calculated, plotted vs. time and mathematically fitted using double exponential function. Rate constants of wetting were used to determine the activation energy by Arrhenius equation. First results indicated that despite comparable initial contact angles, pH alteration strongly changed the wetting rate suggesting maximum wetting resistance at the natural pH of 4.3 and decreasing wetting resistance at lower and at higher pH. The poster will present further current results of the ongoing study and discuss the activation energy of the wetting process in dependence of artificially altered soil pH. References: Bayer, J. V. and G. E. Schaumann (2007). Hydrol. Processes 21(17): 2266 - 2275. Diehl, D., J. V. Bayer, et al. (2010). Geoderma 158(3-4): 375-384. Diehl, D. and G. E. Schaumann (2007). Hydrol. Processes 21(17): 2255 - 2265. Duval, J. F. L., K. J. Wilkinson, et al. (2005). Environ Sci Technol 39(17): 6435-6445. Karnok, K. A., E. J. Rowland, et al. (1993). Agron J 85(5): 983-986. Roper, M. M. (2005). Aust J Soil Res 43: 803-810. Terashima, M., M. Fukushima, et al. (2004). Colloids and Surfaces, A: Physicochemical and Engineering Aspects 247(1-3): 77-83.
Soil fluoride fractions and their bioavailability to tea plants (Camellia sinensis L.).
Yi, Xiaoyun; Qiao, Sha; Ma, Lifeng; Wang, Jie; Ruan, Jianyun
2017-10-01
Drinking teas containing high fluoride (F) imposes fluorosis risk. The soil F bioavailability is an important factor influencing its uptake and contents in teas. The present work was conducted to investigate F fractions in soil and their bioavailability to tea plants. Tea seedlings were cultivated on 6 typical soils treated with a mixture consisting of dolomite, lime, peat and KCl at variable rates in the pot experiment. Soils and young shoots were collected in pairs from 63 sites of 21 plantations in a field experiment. Soil fluoride was sequentially separated into hot water soluble [Formula: see text], exchangeable [Formula: see text] (by 1 mol L -1 MgCl 2 , pH = 7.0), F bound to Mn and Fe hydroxides [F (oxides,s) ], and organic matter [F (OM,s) ] or extracted independently by water [Formula: see text] or 0.01 mol L -1 CaCl 2 solution [Formula: see text]. Averaged [Formula: see text], [Formula: see text], F (oxides,s) and F (OM,s) accounted for 51, 14, 5 and 30 % of the total sequential extracts, respectively. There were significant correlations among [Formula: see text], [Formula: see text] and F (OM,s) . Fluoride contents in leaves correlated with [Formula: see text] (r = 0.71, p < 0.001), [Formula: see text] (r = 0.93, p < 0.001) and F (OM,s) (r = 0.69, p < 0.01) but not other fractions in the pot experiment and with [Formula: see text] (r = 0.43-0.57, p < 0.001) and [Formula: see text] (r = 0.42-0.79, p < 0.001) in the field experiment. It was concluded that 0.01 M CaCl 2 extractable fluoride can be a good indicator of soil F bioavailability to tea plants. The significant correlations among some of the F fractions suggested that F in solution, AlF complexes (AlF 2 + , AlF 2+ ) and those bound to organic matter likely represent the available pools to tea plants.
NASA Astrophysics Data System (ADS)
Leitner, Daniel; Bodner, Gernot; Raoof, Amir
2013-04-01
Understanding root-soil interactions is of high importance for environmental and agricultural management. Root uptake is an essential component in water and solute transport modeling. The amount of groundwater recharge and solute leaching significantly depends on the demand based plant extraction via its root system. Plant uptake however not only responds to the potential demand, but in most situations is limited by supply form the soil. The ability of the plant to access water and solutes in the soil is governed mainly by root distribution. Particularly under conditions of heterogeneous distribution of water and solutes in the soil, it is essential to capture the interaction between soil and roots. Root architecture models allow studying plant uptake from soil by describing growth and branching of root axes in the soil. Currently root architecture models are able to respond dynamically to water and nutrient distribution in the soil by directed growth (tropism), modified branching and enhanced exudation. The porous soil medium as rooting environment in these models is generally described by classical macroscopic water retention and sorption models, average over the pore scale. In our opinion this simplified description of the root growth medium implies several shortcomings for better understanding root-soil interactions: (i) It is well known that roots grow preferentially in preexisting pores, particularly in more rigid/dry soil. Thus the pore network contributes to the architectural form of the root system; (ii) roots themselves can influence the pore network by creating preferential flow paths (biopores) which are an essential element of structural porosity with strong impact on transport processes; (iii) plant uptake depend on both the spatial location of water/solutes in the pore network as well as the spatial distribution of roots. We therefore consider that for advancing our understanding in root-soil interactions, we need not only to extend our root models, but also improve the description of the rooting environment. Until now there have been no attempts to couple root architecture and pore network models. In our work we present a first attempt to join both types of models using the root architecture model of Leitner et al., (2010) and a pore network model presented by Raoof et al. (2010). The two main objectives of coupling both models are: (i) Representing the effect of root induced biopores on flow and transport processes: For this purpose a fixed root architecture created by the root model is superimposed as a secondary root induced pore network to the primary soil network, thus influencing the final pore topology in the network generation. (ii) Representing the influence of pre-existing pores on root branching: Using a given network of (rigid) pores, the root architecture model allocates its root axes into these preexisting pores as preferential growth paths with thereby shape the final root architecture. The main objective of our study is to reveal the potential of using a pore scale description of the plant growth medium for an improved representation of interaction processes at the interface of root and soil. References Raoof, A., Hassanizadeh, S.M. 2010. A New Method for Generating Pore-Network Models. Transp. Porous Med. 81, 391-407. Leitner, D, Klepsch, S., Bodner, G., Schnepf, S. 2010. A dynamic root system growth model based on L-Systems. Tropisms and coupling to nutrient uptake from soil. Plant Soil 332, 177-192.
Kinetic study on removal of heavy metal ions from aqueous solution by using soil.
Lim, Soh-Fong; Lee, Agnes Yung Weng
2015-07-01
In the present study, the feasibility of soil used as a low-cost adsorbent for the removal of Cu(2+), Zn(2+), and Pb(2+) ions from aqueous solution was investigated. The kinetics for adsorption of the heavy metal ions from aqueous solution by soil was examined under batch mode. The influence of the contact time and initial concentration for the adsorption process at pH of 4.5, under a constant room temperature of 25 ± 1 °C were studied. The adsorption capacity of the three heavy metal ions from aqueous solution was decreased in order of Pb(2+) > Cu(2+) > Zn(2+). The soil was characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopic-energy dispersive X-ray (SEM-EDX), and Brunauer, Emmett, and Teller (BET) surface area analyzer. From the FTIR analysis, the experimental data was corresponded to the peak changes of the spectra obtained before and after adsorption process. Studies on SEM-EDX showed distinct adsorption of the heavy metal ions and the mineral composition in the study areas were determined to be silica (SiO2), alumina (Al2O3), and iron(III) oxide (FeO3). A distinct decrease of the specific surface area and total pore volumes of the soil after adsorption was found from the BET analysis. The experimental results obtained were analyzed using four adsorption kinetic models, namely pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion. Evaluating the linear correlation coefficients, the kinetic studies showed that pseudo-second-order equation described the data appropriable than others. It was concluded that soil can be used as an effective adsorbent for removing Cu(2+), Zn(2+), and Pb(2+) ions from aqueous solution.
Stepka, Zane; Dror, Ishai; Berkowitz, Brian
2018-01-01
As a consequence of their growing use in electronic and industrial products, increasing amounts of technology critical elements (TCEs) are being released to the environment. Currently little is known about the fate of many of these elements. Initial research on their potential environmental impact identifies TCEs as emerging contaminants. TCE movement in the environment is often governed by water systems. Research on "natural" waters so far demonstrates that TCEs tend to be associated with suspended particulate matter (SPM), which influences TCE aqueous concentrations (here: concentration of TCEs in dissolved form and attached to SPM) and transport. However, the relative potential of different types of SPM to interact with TCEs is unknown. Here we examine the potential of various types of particulate matter, namely different nanoparticles (NPs; Al 2 O 3, SiO 2 , CeO 2 , ZnO, montmorillonite, Ag, Au and carbon dots) and humic acid (HA), to impact TCE aqueous concentrations in aqueous solutions with soil and sand, and thus influence TCE transport in soil-water environments. We show that a combination of NPs and HA, and not NPs or HA individually, increases the aqueous concentrations of TCEs in soil solutions, for all tested NPs regardless of their type. TCEs retained on SPM, however, settle with time. In solutions with sand, HA alone is as influential as NPs+HA in keeping TCEs in the aqueous phase. Among NPs, Ag-NPs and Au-NPs demonstrate the highest potential for TCE transport. These results suggest that in natural soil-water environments, once TCEs are retained by soil, their partitioning to the aqueous phase by through-flowing water is unlikely. However, if TCEs are introduced to soil-water environments as part of solutions rich in NPs and HA, it is likely that NP and HA combinations can increase TCE stability in the aqueous phase and prevent their retention on soil and sand, thus facilitating TCE transport. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhou, Gaofeng; Delhaize, Emmanuel; Zhou, Meixue; Ryan, Peter R
2013-08-01
Aluminium is toxic in acid soils because the soluble Al(3+) inhibits root growth. A mechanism of Al(3+) tolerance discovered in many plant species involves the release of organic anions from root apices. The Al(3+)-activated release of citrate from the root apices of Al(3+)-tolerant genotypes of barley is controlled by a MATE gene named HvAACT1 that encodes a citrate transport protein located on the plasma membrane. The aim of this study was to investigate whether expressing HvAACT1 with a constitutive promoter in barley and wheat can increase citrate efflux and Al(3+) tolerance of these important cereal species. HvAACT1 was over-expressed in wheat (Triticum aestivum) and barley (Hordeum vulgare) using the maize ubiquitin promoter. Root apices of transgenic and control lines were analysed for HvAACT1 expression and organic acid efflux. The Al(3+) tolerance of transgenic and control lines was assessed in both hydroponic solution and acid soil. Increased HvAACT1 expression in both cereal species was associated with increased citrate efflux from root apices and enhanced Al(3+) tolerance, thus demonstrating that biotechnology can complement traditional breeding practices to increase the Al(3+) tolerance of important crop plants.
NASA Astrophysics Data System (ADS)
Muñoz-Rojas, Miriam; Bateman, Amber; Erickson, Todd E.; Turner, Shane; Merritt, David J.
2017-04-01
Global environmental changes and other anthropogenic impacts are rapidly transforming the structure and functioning of ecosystems worldwide. These changes are leading to land degradation with an estimated 25 % of the global land surface being affected. Landscape-scale restoration of these degraded ecosystems has therefore been recognised globally as an international priority. In the resource-rich biodiverse semi-arid Pilbara region of north-west Western Australia hundreds of thousands of hectares are disturbed due to established and emerging iron-ore mine operations. At this scale, the need to develop cost-effective large-scale solutions to restore these landscapes becomes imperative to preserve biodiversity and achieve functionality and sustainability of these ecosystems. The Restoration Seedbank Initiative (RSB) (http://www.plants.uwa.edu.au/ research/restoration-seedbank-initiative) is a five-year multidisciplinary research project that aims to build knowledge and design strategies to restore mine-impacted landscapes in the Pilbara and other arid and semi-arid landscapes worldwide (Kildiseheva et al., 2016). The RSB comprises four research programs that focus on seedbank management and curation, seed storage, seed enhancement, and the use of alternative soil substrates (soil or growing medium program) respectively. These multi-disciplinary programs address the significant challenges of landscape scale restoration in arid systems. In the soil program we follow an integrated approach that includes the characterization of undisturbed ecosystems, assessment of restored soils with the use of soil quality indicators, and design of alternative soil substrates to support the establishment of native plant communities. A series of glasshouse studies and field trials have been conducted in the last three years to advance our knowledge on soil limitations and to provide solutions to effectively overcome these challenges in arid ecosystem restoration. These studies include (i) the determination of ecophysiological indicators influencing drought responses of arid native plants in reconstructed soils (Bateman et al, 2016), ii) the analysis of the influence of climate and edaphic factors in the recruitment of arid zone seedlings (Muñoz-Rojas et al., 2016a) and (ii) the evaluation of soil physicochemical and microbiological indicators to assess functionality of restored soils in degraded semiarid ecosystems (Muñoz-Rojas et al., 2016b). Here, we summarize our latest results in the soil program of the RSB, and propose recommendations for integrating soil science in cost-effective landscape-scale restoration practices in ecosystems worldwide. References Bateman A, Lewandrowski W, Stevens J, Muñoz-Rojas M (2016b) Ecophysiological indicators to assess drought responses of arid zone native seedlings in reconstructed soils. Land Degradation & Development, in press, DOI: 10.1002/ldr.2660. Kildisheva OA, Erickson TE, Merritt DJ, Dixon KW (2016), Setting the scene for dryland recovery: an overview and key findings from a workshop targeting seed-based restoration. Restoration Ecology 24, S36-S42. Muñoz-Rojas M, Erickson TE, Dixon KW, Merritt DJ (2016) Soil quality indicators to assess functionality of restored soils in degraded semiarid ecosystems. Restoration Ecology 24, S43-S52. DOI: 10.1111/rec.12368 Muñoz-Rojas M, Erickson TE, Martini DC, Dixon KW, Merritt DJ (2016a) Climate and soil factors influencing seedling recruitment of plant species used for dryland restoration. SOIL 2, 287-298. DOI: 10.5194/soil-2016-25
2011-08-05
rates with an identical film thickness value . Our results indicated that breakthrough curves at concentrations less than the compound’s solubility...soil microorganisms , respectively (Clausen et al., 2006). Consequently, the risk of contamination to aquifers beneath military operational ranges was...RDX sorption was carried out in the e 0-60 mg/L and 0-15 mg/L respectively. 0.5 g soil was added to 30 mL solutions of TNT and RDX adjusted for
White, A.F.; Schulz, M.S.; Vivit, D.V.; Blum, A.E.; Stonestrom, David A.; Harden, J.W.
2005-01-01
Although long-term changes in solid-state compositions of soil chronosequences have been extensively investigated, this study presents the first detailed description of the concurrent hydrochemical evolution and contemporary weathering rates in such sequences. The most direct linkage between weathering and hydrology over 3 million years of soil development in the Merced chronosequence in Central California relates decreasing permeability and increasing hydrologic heterogeneity to the development of secondary argillic horizons and silica duripans. In a highly permeable, younger soil (40 kyr old), pore water solutes reflect seasonal to decadal-scale variations in rainfall and evapotranspiration (ET). This climate signal is strongly damped in less permeable older soils (250 to 600 kyr old) where solutes increasingly reflect weathering inputs modified by heterogeneous flow. Elemental balances in the soils are described in terms of solid state, exchange and pore water reservoirs and input/output fluxes from precipitation, ET, biomass, solute discharge and weathering. Solute mineral nutrients are strongly dependent on biomass variations as evidenced by an apparent negative K weathering flux reflecting aggradation by grassland plants. The ratios of solute Na to other base cations progressively increase with soil age. Discharge fluxes of Na and Si, when integrated over geologic time, are comparable to solid-state mass losses in the soils, implying similar past weathering conditions. Similarities in solute and sorbed Ca/Mg ratios reflect short-term equilibrium with the exchange reservoir. Long-term consistency in solute ratios, when contrasted against progressive decreases in solid-state Ca/Mg, requires an additional Ca source, probably from dry deposition. Amorphous silica precipitates from thermodynamically-saturated pore waters during periods of high evapotranspiration and result in the formation of duripans in the oldest soils. The degree of feldspar and secondary gibbsite and kaolinite saturation varies both spatially and temporally due to the seasonality of plant-respired CO2 and a decrease in organically complexed Al. In deeper pore waters, K-feldspar is in equilibrium and plagioclase is about an order of magnitude undersaturated. Hydrologic heterogeneity produces a range of weathering gradients that are constrained by solute distributions and matrix and macropore flow regimes. Plagioclase weathering rates, based on precipitation-corrected Na gradients, vary between 3 and 7 ?? 10-16 mol m-2 s-1. These rates are similar to previously determined solid-state rates but are several orders of magnitude slower than for experimental plagioclase dissolution indicating strong inhibitions to natural weathering, partly due to near-equilibrium weathering reactions. Copyright ?? 2005 Elsevier Ltd.
Ash, Christopher; Tejnecký, Václav; Borůvka, Luboš; Drábek, Ondřej
2016-04-01
Low-molecular-mass organic acids (LMMOA) are of key importance for mobilisation and fate of metals in soil, by functioning as ligands that increase the amount of dissolved metal in solution or by dissociation of metal binding minerals. Column leaching experiments were performed on soil polluted with As and Pb, in order to determine the specificity of LMMOA related release for individual elements, at varying organic acid concentrations. Acetic, citric and oxalic acids were applied in 12h leaching experiments over a concentration range (0.5-25 mM) to soil samples that represent organic and mineral horizons. The leaching of As followed the order: oxalic>citric>acetic acid in both soils. Arsenic leaching was attributed primarily to ligand-enhanced dissolution of mineral oxides followed by As released into solution, as shown by significant correlation between oxalic and citric acids and content of Al and Fe in leaching solutions. Results suggest that subsurface mineral soil layers are more vulnerable to As toxicity. Leaching of Pb from both soils followed the order: citric>oxalic>acetic acid. Mineral soil samples were shown to be more susceptible to leaching of Pb than samples characterised by a high content of organic matter. The leaching efficiency of citric acid was attributed to formation of stable complexes with Pb ions, which other acids are not capable of. Results obtained in the study are evidence that the extent of As and Pb leaching in contaminated surface and subsurface soil depends significantly on the types of carboxylic acid involved. The implications of the type of acid and the specific element that can be mobilised become increasingly significant where LMMOA concentrations are highest, such as in rhizosphere soil. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ash, Christopher; Tejnecký, Václav; Borůvka, Luboš; Drábek, Ondřej
2016-04-01
Low-molecular-mass organic acids (LMMOA) are of key importance for mobilisation and fate of metals in soil, by functioning as ligands that increase the amount of dissolved metal in solution or by dissociation of metal binding minerals. Column leaching experiments were performed on soil polluted with As and Pb, in order to determine the specificity of LMMOA related release for individual elements, at varying organic acid concentrations. Acetic, citric and oxalic acids were applied in 12 h leaching experiments over a concentration range (0.5-25 mM) to soil samples that represent organic and mineral horizons. The leaching of As followed the order: oxalic > citric > acetic acid in both soils. Arsenic leaching was attributed primarily to ligand-enhanced dissolution of mineral oxides followed by As released into solution, as shown by significant correlation between oxalic and citric acids and content of Al and Fe in leaching solutions. Results suggest that subsurface mineral soil layers are more vulnerable to As toxicity. Leaching of Pb from both soils followed the order: citric > oxalic > acetic acid. Mineral soil samples were shown to be more susceptible to leaching of Pb than samples characterised by a high content of organic matter. The leaching efficiency of citric acid was attributed to formation of stable complexes with Pb ions, which other acids are not capable of. Results obtained in the study are evidence that the extent of As and Pb leaching in contaminated surface and subsurface soil depends significantly on the types of carboxylic acid involved. The implications of the type of acid and the specific element that can be mobilised become increasingly significant where LMMOA concentrations are highest, such as in rhizosphere soil.
NASA Astrophysics Data System (ADS)
Pohlmeier, Andreas; Vanderborght, Jan; Haber-Pohlmeier, Sabina; Wienke, Sandra; Vereecken, Harry; Javaux, Mathieu
2010-05-01
Combination of experimental studies with detailed deterministic models help understand root water uptake processes. Recently, Javaux et al. developed the RSWMS model by integration of Doussańs root model into the well established SWMS code[1], which simulates water and solute transport in unsaturated soil [2, 3]. In order to confront RSWMS modeling results to experimental data, we used Magnetic Resonance Imaging (MRI) technique to monitor root water uptake in situ. Non-invasive 3-D imaging of root system architecture, water content distributions and tracer transport by MR were performed and compared with numerical model calculations. Two MRI experiments were performed and modeled: i) water uptake during drought stress and ii) transport of a locally injected tracer (Gd-DTPA) to the soil-root system driven by root water uptake. Firstly, the high resolution MRI image (0.23x0.23x0.5mm) of the root system was transferred into a continuous root system skeleton by a combination of thresholding, region-growing filtering and final manual 3D redrawing of the root strands. Secondly, the two experimental scenarios were simulated by RSWMS with a resolution of about 3mm. For scenario i) the numerical simulations could reproduce the general trend that is the strong water depletion from the top layer of the soil. However, the creation of depletion zones in the vicinity of the roots could not be simulated, due to a poor initial evaluation of the soil hydraulic properties, which equilibrates instantaneously larger differences in water content. The determination of unsaturated conductivities at low water content was needed to improve the model calculations. For scenario ii) simulations confirmed the solute transport towards the roots by advection. 1. Simunek, J., T. Vogel, and M.T. van Genuchten, The SWMS_2D Code for Simulating Water Flow and Solute Transport in Two-Dimensional Variably Saturated Media. Version 1.21. 1994, U.S. Salinity Laboratory, USDA, ARS: Riverside, California. 2. Javaux, M., et al., Use of a Three-Dimensional Detailed Modeling Approach for Predicting Root Water Uptake. Vadose Zone J., 2008. 7(3): p. 1079-1088. 3. Schröder, T., et al., Effect of Local Soil Hydraulic Conductivity Drop Using a Three Dimensional Root Water Uptake Model. Vadose Zone J., 2008. 7(3): p. 1089-1098.
NASA Astrophysics Data System (ADS)
Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel
2013-04-01
Understanding transport of solutes/contaminants through unsaturated soil in the shallow subsurface is vital to assess groundwater quality, nutrient cycling or to plan remediation projects. Alternating precipitation and evaporation conditions causing upward and downward flux with differing flow paths, changes in saturation and related structural heterogeneity make the description of transport in the unsaturated zone near the soil-surface a complex problem. Preferential flow paths strongly depend, among other things, on the saturation of a medium. Recent studies (e.g. Bechtold et al., 2011) showed lateral flow and solute transport during evaporation conditions (upward flux) in vertically layered sand columns. Results revealed that during evaporation water and solute are redistributed laterally from coarse to fine media deeper in the soil, and towards zones of lowest hydraulic head near to the soil surface. These zones at the surface can be coarse or fine grained depending on saturation status and evaporation flux. However, if boundary conditions are reversed and precipitation is applied, the flow field is not reversed in the same manner, resulting in entirely different transport patterns for downward and upward flow. Therefore, considering net-flow rates alone is misleading when describing transport in the shallow unsaturated zone. In this contribution, we analyze transport of a solute in the shallow subsurface to assess effects resulting from the superposition of heterogeneous soil structures and dynamic flow conditions on various spatial scales. Two-dimensional numerical simulations of unsaturated flow and transport in heterogeneous porous media under changing boundary conditions are carried out using a finite-volume code coupled to a particle tracking algorithm to quantify solute transport and leaching rates. In order to validate numerical simulations, results are qualitatively compared to those of a physical experiment (Bechtold et al., 2011). Numerical simulations differ in lateral scale reaching from 0.2 m to 1.5 m, while the height of the domain is kept constant to 1.5m. Strong material heterogeneity is realized through vertical layers of coarse and fine sand. Both materials remain permanently under liquid-flow-dominated ('stage1') evaporation conditions. Spatial moments as well as the dilution index (Kitanidis, 1994) are used for quantification of transport behaviour. Results show that, while all simulations led to anomalous transport, infiltration-evaporation cycles lead to faster solute leaching rates than solely infiltration at the same net-infiltration rate in both homogeneous and heterogeneous media. Flow and transport-paths significantly differed between infiltration and evaporation, resulting in lateral water fluxes and hence lateral solute transport. Variation of the width of the model domain shows faster leaching rates for domains with small horizontal extent.
Zhou, Gaofeng; Delhaize, Emmanuel; Zhou, Meixue; Ryan, Peter R.
2013-01-01
Background and Aims Aluminium is toxic in acid soils because the soluble Al3+ inhibits root growth. A mechanism of Al3+ tolerance discovered in many plant species involves the release of organic anions from root apices. The Al3+-activated release of citrate from the root apices of Al3+-tolerant genotypes of barley is controlled by a MATE gene named HvAACT1 that encodes a citrate transport protein located on the plasma membrane. The aim of this study was to investigate whether expressing HvAACT1 with a constitutive promoter in barley and wheat can increase citrate efflux and Al3+ tolerance of these important cereal species. Methods HvAACT1 was over-expressed in wheat (Triticum aestivum) and barley (Hordeum vulgare) using the maize ubiquitin promoter. Root apices of transgenic and control lines were analysed for HvAACT1 expression and organic acid efflux. The Al3+ tolerance of transgenic and control lines was assessed in both hydroponic solution and acid soil. Key Results and Conclusions Increased HvAACT1 expression in both cereal species was associated with increased citrate efflux from root apices and enhanced Al3+ tolerance, thus demonstrating that biotechnology can complement traditional breeding practices to increase the Al3+ tolerance of important crop plants. PMID:23798600
Baquy, M Abdulaha-Al; Li, Jiu-Yu; Shi, Ren-Yong; Kamran, Muhammad Aqeel; Xu, Ren-Kou
2018-03-01
Low soil pH and aluminum (Al) toxicity induced by soil acidification are the main obstacles in many regions of the world for crop production. The purpose of this study was to reveal the mechanisms on how the properties of the soils derived from different parent materials play role on the determination of critical soil pH and Al concentration for soybean crops. A set of soybean pot experiment was executed in greenhouse with a soil pH gradient as treatment for each of four soils to fulfill the objectives of this study. The results indicated that plant growth parameters were affected adversely due to Al toxicity at low soil pH level in all soils. The critical soil pH varied with soil type and parent materials. They were 4.38, 4.63, 4.74, and 4.95 in the Alfisol derived from loss deposit, and the Ultisols derived from Quaternary red earth, granite, and Tertiary red sandstone, respectively. The critical soil exchangeable Al was 2.42, 1.82, 1.55, and 1.44 cmol c /kg for the corresponding soils. At 90% yield level, the critical Al saturation was 6.94, 10.36, 17.79, and 22.75% for the corresponding soils. The lower critical soil pH and Al saturation, and higher soil exchangeable Al were mainly due to greater soil CEC and exchangeable base cations. Therefore, we recommended that critical soil pH, soil exchangeable Al, and Al saturation should be considered during judicious liming approach for soybean production.
Life's Impact on the Soil Production Function
NASA Astrophysics Data System (ADS)
Harrison, Emma; Willenbring, Jane; Brocard, Gilles
2016-04-01
Soil melds life and lithology, but the top-down production of soil by the incorporation of organic matter has typically been viewed through a lens of soil biogeochemistry and the bottom-up weathering of bedrock viewed from a geomorphologic perspective. We merge these perspectives by developing a variation on the classic geomorphological soil production function [1] that accounts for the influence of top-down soil production by additions of organic material. In the classic view [1], production rate of soil from bedrock weathering is a function of the thickness of the soil horizon. Under steady state conditions, this thickness is controlled by a constant coefficient of diffusion and by the hillslope curvature. Across the globe, equilibrium landscapes can be hard to find. We explore the many ways that biota influence the upper soil horizons and move the soil-hillslope system out of steady state using measurements of in situ 10Be at depth in soil profiles. Our empirical case study is in the Luquillo Critical Zone Observatory of northeastern Puerto Rico, where long term ecological monitoring suggests an average of 375 m My-1 of litter fall [2] and as much as 17.5 m My-1 of dust [3] is contributed to the forest floor. This substantial volume of material forms an active surficial layer, functionally increasing the residence time of grains deeper in the soil profile. Litter recycling influences the cosmogenic dose rate to be higher by increasing the residence time of grains and to be lower by increasing environmental shielding. In unconstrained systems, probabilistic modeling can determine a range of solutions for the ages of grains determined with 10Be depth profiles[4]. We compare the probabilistic outcomes to actual measurements of the in situ 10Be at depth in soil profiles from the Luquillo Mountains. Life living in the soil, rather than on it, is of equal importance in the Luquillo Mountains. On average, the soil is occupied by 200 individual earthworms per m2 [5]. The depth of soil mixing in the soil profiles we collect is shown by the homogenization of 10Be concentrations in grains. Mixing changes the residence time of grains in soil. The length of this residence time is a critical component in the rate of weathering reactions, the mechanism by which material is lost to chemical dissolution and leaching. Additionally, mixing may drive the value of the diffusion coefficient, which determines the flux of sediment out of the soil mantle in the geomorphic soil production function. Life actively impacts the soil-hillslope system, and quantifying these effects is an essential modification of a fundamental paradigm in the geomorphology of soil-mantled landscapes. [1] Heimsath et al. 1997. Nature 388:358-361 [2] Zou et al., 1995. Forest Ecol. and Management 78:147-157 [3] Pett-Ridge et al., 2009. Geochim. Cosmochim. Acta 73:25-43 [4] Hidy et al. 2010. Geochem. Geophys., Geosys. 11 [5] González et al. 2007. Eur. J. Soil Biol. 43:S24-S32
Shao, Yuanhu; Zhang, Weixin; Liu, Zhanfeng; Sun, Yuxin; Chen, Dima; Wu, Jianping; Zhou, Lixia; Xia, Hanping; Neher, Deborah A; Fu, Shenglei
2012-11-01
Both soil nematodes and microorganisms have been shown to be sensitive bioindicators of soil recovery in metal-contaminated habitats; however, the underlying processes are poorly understood. We investigated the relationship among soil microbial community composition, nematode community structure and soil aluminum (Al) content in different vegetated aluminum-rich ecosystems. Our results demonstrated that there were greater soil bacterial, fungal and arbuscular mycorrhizal fungal biomass in Syzygium cumini plantation, greater abundance of soil nematodes in Acacia auriculiformis plantation, and greater abundance of soil predatory and herbivorous nematodes in Schima wallichii plantation. The concentration of water-soluble Al was normally greater in vegetated than non-vegetated soil. The residual Al and total Al concentrations showed a significant decrease after planting S. cumini plantation onto the shale dump. Acid extractable, reducible and oxidisable Al concentrations were greater in S. wallichii plantation. Stepwise linear regression analysis suggests the concentrations of water-soluble Al and total Al content explain the most variance associated with nematode assembly; whereas, the abundance of early-successional nematode taxa was explained mostly by soil moisture, soil organic C and total N rather than the concentrations of different forms of Al. In contrast, no significant main effects of either Al or soil physico-chemical characteristics on soil microbial biomass were observed. Our study suggests that vegetation was the primary driver on soil nematodes and microorganisms and it also could regulate the sensitivity of bio-indicator role mainly through the alteration of soil Al and physico-chemical characteristics, and S. cumini is effective for amending the Al contaminated soils.
NASA Astrophysics Data System (ADS)
Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel; Vanderborght, Jan
2016-04-01
Quantification of flow and solute transport in the shallow subsurface adjacent to the atmosphere is decisive to prevent groundwater pollution and conserve groundwater quality, to develop successful remediation strategies and to understand nutrient cycling. In nature, due to erratic precipitation-evaporation patterns, soil moisture content and related hydraulic conductivity in the vadose zone are not only variable in space but also in time. Flow directions and flow paths locally change between precipitation and evaporation periods. This makes the identification and description of solute transport processes in the vadose zone a complex problem. Recent studies (Lehmann and Or, 2009; Bechtold et al., 2011a) focused on the investigation of upward transport of solutes during evaporation in heterogeneous soil columns, where heterogeneity was introduced by a sharp vertical material interface between two types of sand. Lateral solute transport through the interface in both (lateral) directions was observed at different depths of the investigated soil columns. Following recent approaches, we conduct two-dimensional numerical simulations in a similar setup which is composed of two sands with a sharp vertical material interface. The investigation is broadened from the sole evaporation to combined precipitation-evaporation cycles in order to quantify transport processes resulting from the combined effects of heterogeneous soil structure and dynamic flow conditions. Simulations are performed with a coupled finite volume and random walk particle tracking algorithm (Ippisch et al., 2006; Bechtold et al., 2011b). By comparing scenarios with cyclic boundary conditions and stationary counterparts with the same net flow rate, we found that duration and intensity of precipitation and evaporation periods potentially have an influence on lateral redistribution of solutes and thus leaching rates. Whether or not dynamic boundary conditions lead to significant deviations in the transport behavior depends on the magnitude of the flow rates and hydraulic conductivity curves of the materials. Based on the unsaturated hydraulic conductivity at the intersection point of conductivity curves, we are able to define an estimate of flow rates at which the dynamic of the upper boundary condition significantly alters preferential flow paths through the system. If flow rates are low, with regard to the materials hydraulic conductivity at the intersection point, the influence of dynamic boundary conditions is small. If flow rates are in the range of the unsaturated hydraulic conductivity at intersection, solute is trapped in the fine material during upwards transport, which results in a more pronounced tailing. For flow rates exceeding the intersection conductivity, a redistribution at the soil surface can occur. References: Bechtold, M., S. Haber-Pohlmeier, J. Vanderborght, A. Pohlmeier, T.P.A. Ferré and H. Veerecken. 2011a. Near-surface solute redistribution during evaporation. Geophys. Res. Lett., 38, L17404, doi:10.1029/2011GL048147. Bechtold, M., J. Vanderborght, O. Ippisch and H. Vereecken. 2011b. Efficient random walk particle tracking algorithm for advective dispersive transport in media with discontinuous dispersion coefficients and water contents. Water Resour. Res., 47, W10526, doi: 10.1029/2010WR010267. Ippisch O., H.-J. Vogel and P. Bastian. 2006. Validity limits fort he van Genuchten-Mualem model and implications for parameter estimation and numerical simulation. Adv. Water Resour., 29, 1780-1789, doi: 10.1016/j.advwateres.2005.12.011. Lehmann, P. and D. Or. 2009. Evaporation and capillary coupling across vertical textural contrasts in porous media. Phys. Rev. E, 80, 046318, doi:10.1103/PhysRevE.80.046318.
Effect of Aluminum Treatment on Proteomes of Radicles of Seeds Derived from Al-Treated Tomato Plants
Okekeogbu, Ikenna; Ye, Zhujia; Sangireddy, Sasikiran Reddy; Li, Hui; Bhatti, Sarabjit; Hui, Dafeng; Zhou, Suping; Howe, Kevin J.; Fish, Tara; Yang, Yong; Thannhauser, Theodore W.
2014-01-01
Aluminum (Al) toxicity is a major constraint to plant growth and crop yield in acid soils. Tomato cultivars are especially susceptible to excessive Al3+ accumulated in the root zone. In this study, tomato plants were grown in a hydroponic culture system supplemented with 50 µM AlK(SO4)2. Seeds harvested from Al-treated plants contained a significantly higher Al content than those grown in the control hydroponic solution. In this study, these Al-enriched tomato seeds (harvested from Al-treated tomato plants) were germinated in 50 µM AlK(SO4)2 solution in a homopiperazine-1,4-bis(2-ethanesulfonic acid) buffer (pH 4.0), and the control solution which contained the buffer only. Proteomes of radicles were analyzed quantitatively by mass spectrometry employing isobaric tags for relative and absolute quantitation (iTRAQ®). The proteins identified were assigned to molecular functional groups and cellular metabolic pathways using MapMan. Among the proteins whose abundance levels changed significantly were: a number of transcription factors; proteins regulating gene silencing and programmed cell death; proteins in primary and secondary signaling pathways, including phytohormone signaling and proteins for enhancing tolerance to abiotic and biotic stress. Among the metabolic pathways, enzymes in glycolysis and fermentation and sucrolytic pathways were repressed. Secondary metabolic pathways including the mevalonate pathway and lignin biosynthesis were induced. Biological reactions in mitochondria seem to be induced due to an increase in the abundance level of mitochondrial ribosomes and enzymes in the TCA cycle, electron transport chains and ATP synthesis. PMID:28250376
Issues of upscaling in space and time with soil erosion models
NASA Astrophysics Data System (ADS)
Brazier, R. E.; Parsons, A. J.; Wainwright, J.; Hutton, C.
2009-04-01
Soil erosion - the entrainment, transport and deposition of soil particles - is an important phenomenon to understand; the quantity of soil loss determines the long term on-site sustainability of agricultural production (Pimental et al., 1995), and has potentially important off-site impacts on water quality (Bilotta and Brazier, 2008). The fundamental mechanisms of the soil erosion process have been studied at the laboratory scale, plot scale (Wainwright et al., 2000), the small catchment scale (refs here) and river basin scale through sediment yield and budgeting work. Subsequently, soil erosion models have developed alongside and directly from this empirical work, from data-based models such as the USLE (Wischmeier and Smith, 1978), to ‘physics or process-based' models such as EUROSEM (Morgan et al., 1998) and WEPP (Nearing et al., 1989). Model development has helped to structure our understanding of the fundamental factors that control soil erosion process at the plot and field scale. Despite these advances, however, our understanding of and ability to predict erosion and sediment yield at the same plot, field and also larger catchment scales remains poor. Sediment yield has been shown to both increase and decrease as a function of drainage area (de Vente et al., 2006); the lack of a simple relationship demonstrates complex and scale-dependant process domination throughout a catchment, and emphasises our uncertainty and poor conceptual basis for predicting plot to catchment scale erosion rates and sediment yields (Parsons et al., 2006b). Therefore, this paper presents a review of the problems associated with modelling soil erosion across spatial and temporal scales and suggests some potential solutions to address these problems. The transport-distance approach to scaling erosion rates (Wainwright, et al., 2008) is assessed and discussed in light of alternative techniques to predict erosion across spatial and temporal scales. References Bilotta, G.S. and Brazier, R.E., 2008. Understanding the influence of suspended solids on water quality and aquatic biota. Water Research, 42(12): 2849-2861. de Vente, J., Poesen, J., Bazzoffi, P., Van Ropaey, A.V. and Verstraeten, G., 2006. Predicting catchment sediment yield in Mediterranean environments: the importance of sediment sources and connectivity in Italian drainage basins. Earth Surface Processes And Landforms, 31: 1017-1034. Morgan, R.P.C. et al., 1998. The European soil erosion model (EUROSEM): a dynamic approach for predicting sediment transport from fields to small catchments. Earth Surface Processes And Landforms, 23: 527-544. Nearing, M. A., G. R. Foster, L. J. Lane, and S. C. Finkner. 1989. A process-based soil erosion model for USDA Water Erosion Prediction Project technology. Trans. ASAE 32(5): 1587-1593. Parsons, A.J., Brazier, R.E., Wainwright, J. and Powell, D.M., 2006a. Scale relationships in hillslope runoff and erosion. Earth Surface Processes and Landforms, 31(11): 1384-1393. Parsons, A.J., Wainwright, J., Brazier, R.E. and Powell, D.M., 2006b. Is sediment delivery a fallacy? Earth Surface Processes and Landforms, 31(10): 1325-1328. Pimental, D. et al., 1995. Environmental and economic costs of soil erosion and conservation benefits. Science, 267:1117-1122. Wainwright, J., Parsons, A.J. and Abrahams, A.D., 2000. Plot-scale studies of vegetation, overland flow and erosion interactions: case studies from Arizona and New Mexico. Hydrological Processes, 14(16-17): 2921-2943. Wischmeier, W.H. and Smith, D.D., 1978. Predicting rainfall erosion losses - a guide for conservation planning., 537.
Implications of tree species for gross soil nitrate dynamics in forests
NASA Astrophysics Data System (ADS)
Björsne, Anna-Karin; Gundersen, Per; Rütting, Tobias
2017-04-01
Tree species have an impact on soil properties and nutrient cycling in forest ecosystems (Legout et al., 2016; Staelens et al., 2012). Several studies have investigated the nitrate (NO_3) dynamics in soil and compared tree species (Lovett et al., 2004; Andrianarisoa et al., 2010). However, most studies investigate only potential net nitrification (PNN), which does not show the real dynamics in the soil. In this study we have investigated gross N dynamics in a common garden experiment in Denmark. The aim of the study was to understand how gross dynamics of NO3 processes differ in soil with different tree species. Soil from plots with Norway spruce (Picea abies) and beech (Fagus sylvatica) was sampled. 15N isotopes were used to trace the activities in the soil and numerical modelling to calculate gross rates. Nitrous oxide (N_2O) losses from the incubated soils were also measured. The preliminary results show low NO3 concentration in Picea soil, while a steady nitrification and consumption of NO_3, which indicates a small NO3 pool with fast turnover. In Fagus soil the NO3 concentration is much higher, which could be explained by the low NO3 consumption rates, leading to a build-up of NO3 in the soil. The N_2O fluxes from Fagus soil are also higher, indicating larger N losses. These results show the significance of tree species and suggest what long-term effects it could have on the soil N retention. Andrianarisoa, K. S., Zeller, B., Poly, F., Siegenfuhr, H., Bienaimé, S., Ranger, J., and Dambrine, E.: Control of Nitrification by Tree Species in a Common-Garden Experiment, Ecosystems, 13, 1171-1187, 10.1007/s10021-010-9390-x, 2010. Legout, A., van der Heijden, G., Jaffrain, J., Boudot, J.-P., and Ranger, J.: Tree species effects on solution chemistry and major element fluxes: A case study in the Morvan (Breuil, France), For. Ecol. Manage., 378, 244-258, http://dx.doi.org/10.1016/j.foreco.2016.07.003, 2016. Lovett, G. M., Weathers, K. C., Arthur, M. A., and Schultz, J. C.: Nitrogen cycling in a northern hardwood forest: Do species matter?, Biogeochemistry, 67, 289-308, 10.1023/B:BIOG.0000015786.65466.f5, 2004. Staelens, J., Rütting, T., Huygens, D., de Schrijver, A., Müller, C., Verheyen, K., and Boeckx, P.: In situ gross nitrogen transformations differ between temperate deciduous and coniferous forest soils, Biogeochemistry, 108, 259-277, 10.1007/s10533-011-9598-7, 2012.
Dmitriev, Alexey A.; Krasnov, George S.; Rozhmina, Tatiana A.; Kishlyan, Natalya V.; Zyablitsin, Alexander V.; Sadritdinova, Asiya F.; Snezhkina, Anastasiya V.; Fedorova, Maria S.; Yurkevich, Olga Y.; Muravenko, Olga V.; Bolsheva, Nadezhda L.; Kudryavtseva, Anna V.; Melnikova, Nataliya V.
2016-01-01
About 30% of the world's ice-free land area is occupied by acid soils. In soils with pH below 5, aluminum (Al) releases to the soil solution, and becomes highly toxic for plants. Therefore, breeding of varieties that are resistant to Al is needed. Flax (Linum usitatissimum L.) is grown worldwide for fiber and seed production. Al toxicity in acid soils is a serious problem for flax cultivation. However, very little is known about mechanisms of flax resistance to Al and the genetics of this resistance. In the present work, we sequenced 16 transcriptomes of flax cultivars resistant (Hermes and TMP1919) and sensitive (Lira and Orshanskiy) to Al, which were exposed to control conditions and aluminum treatment for 4, 12, and 24 h. In total, 44.9–63.3 million paired-end 100-nucleotide reads were generated for each sequencing library. Based on the obtained high-throughput sequencing data, genes with differential expression under aluminum exposure were revealed in flax. The majority of the top 50 up-regulated genes were involved in transmembrane transport and transporter activity in both the Al-resistant and Al-sensitive cultivars. However, genes encoding proteins with glutathione transferase and UDP-glycosyltransferase activity were in the top 50 up-regulated genes only in the flax cultivars resistant to aluminum. For qPCR analysis in extended sampling, two UDP-glycosyltransferases (UGTs), and three glutathione S-transferases (GSTs) were selected. The general trend of alterations in the expression of the examined genes was the up-regulation under Al stress, especially after 4 h of Al exposure. Moreover, in the flax cultivars resistant to aluminum, the increase in expression was more pronounced than that in the sensitive cultivars. We speculate that the defense against the Al toxicity via GST antioxidant activity is the probable mechanism of the response of flax plants to aluminum stress. We also suggest that UGTs could be involved in cell wall modification and protection from reactive oxygen species (ROS) in response to Al stress in L. usitatissimum. Thus, GSTs and UGTs, probably, play an important role in the response of flax to Al via detoxification of ROS and cell wall modification. PMID:28066475
Adhikari, Dinesh; Jiang, Tianyi; Kawagoe, Taiki; Kai, Takamitsu; Kubota, Kenzo; Araki, Kiwako S; Kubo, Motoki
2017-12-04
Improvement of phosphorus circulation in the soil is necessary to enhance phosphorus availability to plants. Phosphorus circulation activity is an index of soil's ability to supply soluble phosphorus from organic phosphorus in the soil solution. To understand the relationship among phosphorus circulation activity; bacterial biomass; pH; and Fe, Al, and Ca concentrations (described as mineral concentration in this paper) in agricultural soil, 232 soil samples from various agricultural fields were collected and analyzed. A weak relationship between phosphorus circulation activity and bacterial biomass was observed in all soil samples ( R ² = 0.25), and this relationship became significantly stronger at near-neutral pH (6.0-7.3; R ² = 0.67). No relationship between phosphorus circulation activity and bacterial biomass was observed at acidic (pH < 6.0) or alkaline (pH > 7.3) pH. A negative correlation between Fe and Al concentrations and phosphorus circulation activity was observed at acidic pH ( R ² = 0.72 and 0.73, respectively), as well as for Ca at alkaline pH ( R ² = 0.64). Therefore, bacterial biomass, pH, and mineral concentration should be considered together for activation of phosphorus circulation activity in the soil. A relationship model was proposed based on the effects of bacterial biomass and mineral concentration on phosphorus circulation activity. The suitable conditions of bacterial biomass, pH, and mineral concentration for phosphorus circulation activity could be estimated from the relationship model.
NASA Astrophysics Data System (ADS)
Kurniawan, Syahrul; Corre, Marife D.; Rahayu Utami, Sri; Veldkamp, Edzo
2015-04-01
In the last two decades, Sumatra, Indonesia is experiencing rapid expansion of oil palm and rubber plantations by conversion of rainforest. This is evident from the 2.9 thousand km2 decrease in forest area in this region over the last 15 years. Such rapid land-use change necessitates assessment of its environmental impacts. Our study was aimed to assess the impact of forest conversion to oil palm and rubber plantations on nutrient leaching losses. Land-use conversion increases nutrient leaching losses due to changes in vegetation litter input, rooting depth, nutrient cycling and management (e.g. fertilization) practices. Our study area was in Jambi Province, Sumatra, Indonesia. We selected two soil landscapes in this region: loam and clay Acrisol soils. At each soil landscape, we investigated four land-use systems: lowland secondary rainforest, secondary forest with regenerating rubber (referred here as jungle rubber), rubber (7-17 years old) and oil palm plantations (9-16 years old). Each land use in each soil landscape was represented by four sites as replicates, totaling to 32 sites. We measured leaching losses using suction lysimeters installed at 1.5-m soil depth, which was well below the rooting depth, with bi-weekly to monthly sampling from February to December 2013. In general, the loam Acrisol landscape, particularly the forest and oil palm plantations, had lower soil solution pH and higher leaching fluxes of dissolved organic N, Na, Ca, Mg, total Al, total S and Cl than the clay Acrisol of the same land uses (all P ≤ 0.05). Among land uses in the loam Acrisol landscape, oil palm had lower soil solution pH and higher leaching fluxes of NH4+, NO3-, dissolved organic C, total P, total S and Cl than rubber plantation whereas forest and jungle rubber showed intermediate fluxes (all P ≤ 0.05, except P ≤ 0.09 for total P); oil palm had also higher Na, Ca, Mg and total Al leaching fluxes than all the other land uses (all P ≤ 0.05, except P ≤ 0.09 for Na and Mg). In the clay Acrisol landscape, oil palm showed higher leaching losses of dissolved organic C and Ca than forest whereas jungle rubber and rubber plantation had intermediate fluxes; oil palm had also higher Na, Mg and total Si leaching losses than all the other land uses (all P ≤ 0.05). The low soil solution pH, which was negatively correlated with total Al, and large mineral N and total P leaching losses in oil palm were due to N and P fertilization, and the large base cation losses were attributable to liming and ash from biomass burning. Such increased nutrient leaching losses with forest conversion to oil palm plantation calls for improved management to minimize losses and its effects on ground water quality.
Bradová, Monika; Tejnecký, Václav; Borůvka, Luboš; Němeček, Karel; Ash, Christopher; Šebek, Ondřej; Svoboda, Miroslav; Zenáhlíková, Jitka; Drábek, Ondřej
2015-11-01
Aluminium (Al) speciation is a characteristic that can be used as a tool for describing the soil acidification process. The question that was answered is how tree species (beech vs spruce) and type of soil horizon affect Al speciation. Our hypotesis is that spruce and beech forest vegetation are able to modify the chemical characteristics of organic horizon, hence the content of Al species. Moreover, these characteristics are seasonally dependent. To answer these questions, a detailed chromatographic speciation of Al in forest soils under contrasting tree species was performed. The Jizera Mountains area (Czech Republic) was chosen as a representative mountainous soil ecosystem. A basic forestry survey was performed on the investigated area. Soil and precipitation samples (throughfall, stemflow) were collected under both beech and spruce stands at monthly intervals from April to November during the years 2008-2011. Total aluminium content and Al speciation, pH, and dissolved organic carbon were determined in aqueous soil extracts and in precipitation samples. We found that the most important factors affecting the chemistry of soils, hence content of the Al species, are soil horizons and vegetation cover. pH strongly affects the amount of Al species under both forests. Fermentation (F) and humified (H) organic horizons contain a higher content of water extractable Al and Al(3+) compared to organo-mineral (A) and mineral horizons (B). With increasing soil profile depth, the amount of water extractable Al, Al(3+) and moisture decreases. The prevailing water-extractable species of Al in all studied soils and profiles under both spruce and beech forests were organically bound monovalent Al species. Distinct seasonal variations in organic and mineral soil horizons were found under both spruce and beech forests. Maximum concentrations of water-extractable Al and Al(3+) were determined in the summer, and the lowest in spring.
NASA Astrophysics Data System (ADS)
Périard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean
2013-04-01
Certain contaminants may travel faster through soils when they are sorbed to subsurface colloidal particles. Indeed, subsurface colloids may act as carriers of some contaminants accelerating their translocation through the soil into the water table. This phenomenon is known as colloid-facilitated contaminant transport. It plays a significant role in contaminant transport in soils and has been recognized as a source of groundwater contamination. From a mechanistic point of view, the attachment/detachment of the colloidal particles from the soil matrix or from the air-water interface and the straining process may modify the hydraulic properties of the porous media. Šimůnek et al. (2006) developed a model that can simulate the colloid-facilitated contaminant transport in variably saturated porous media. The model is based on the solution of a modified advection-dispersion equation that accounts for several processes, namely: straining, exclusion and attachement/detachement kinetics of colloids through the soil matrix. The solutions of these governing, partial differential equations are obtained using a standard Galerkin-type, linear finite element scheme, implemented in the HYDRUS-2D/3D software (Šimůnek et al., 2012). Modeling colloid transport through the soil and the interaction of colloids with the soil matrix and other contaminants is complex and requires the characterization of many model parameters. In practice, it is very difficult to assess actual transport parameter values, so they are often calibrated. However, before calibration, one needs to know which parameters have the greatest impact on output variables. This kind of information can be obtained through a sensitivity analysis of the model. The main objective of this work is to perform local and global sensitivity analyses of the colloid-facilitated contaminant transport module of HYDRUS. Sensitivity analysis was performed in two steps: (i) we applied a screening method based on Morris' elementary effects and the one-at-a-time approach (O.A.T); and (ii), we applied Sobol's global sensitivity analysis method which is based on variance decompositions. Results illustrate that ψm (maximum sorption rate of mobile colloids), kdmc (solute desorption rate from mobile colloids), and Ks (saturated hydraulic conductivity) are the most sensitive parameters with respect to the contaminant travel time. The analyses indicate that this new module is able to simulate the colloid-facilitated contaminant transport. However, validations under laboratory conditions are needed to confirm the occurrence of the colloid transport phenomenon and to understand model prediction under non-saturated soil conditions. Future work will involve monitoring of the colloidal transport phenomenon through soil column experiments. The anticipated outcome will provide valuable information on the understanding of the dominant mechanisms responsible for colloidal transports, colloid-facilitated contaminant transport and, also, the colloid detachment/deposition processes impacts on soil hydraulic properties. References: Šimůnek, J., C. He, L. Pang, & S. A. Bradford, Colloid-Facilitated Solute Transport in Variably Saturated Porous Media: Numerical Model and Experimental Verification, Vadose Zone Journal, 2006, 5, 1035-1047 Šimůnek, J., M. Šejna, & M. Th. van Genuchten, The C-Ride Module for HYDRUS (2D/3D) Simulating Two-Dimensional Colloid-Facilitated Solute Transport in Variably-Saturated Porous Media, Version 1.0, PC Progress, Prague, Czech Republic, 45 pp., 2012.
Piatek, K.B.; Mitchell, M.J.; Silva, S.R.; Kendall, C.
2005-01-01
To determine whether NO3- concentration pulses in surface water in early spring snowmelt discharge are due to atmospheric NO 3-, we analyzed stream ??15N-NO 3- and ??18O-NO3- values between February and June of 2001 and 2002 and compared them to those of throughfall, bulk precipitation, snow, and groundwater. Stream total Al, DOC and Si concentrations were used to indicate preferential water flow through the forest floor, mineral soil, and ground water. The study was conducted in a 135-ha subcatchment of the Arbutus Watershed in the Huntington Wildlife Forest in the Adirondack Region of New York State, U.S.A. Stream discharge in 2001 increased from 0.6 before to 32.4 mm day-1 during snowmelt, and element concentrations increased from 33 to 71 ??mol L-1 for NO3-, 3 to 9 ??mol L-1 for total Al, and 330 to 570 ??mol L-1 for DOC. Discharge in 2002 was variable, with a maximum of 30 mm day-1 during snowmelt. The highest NO3-, Al, and DOC concentrations were 52, 10, and 630 ??mol L -1, respectively, and dissolved Si decreased from 148 ??mol L -1 before to 96 ??mol L-1 during snowmelt. Values of ??15N and ??18O of NO3- in stream water were similar in both years. Stream water, atmospherically- derived solutions, and groundwaters had overlapping ??15N- NO3- values. In stream and ground water, ??18O-NO3- values ranged from +5.9 to +12.9??? and were significantly lower than the +58.3 to +78.7??? values in atmospheric solutions. Values of ??18O-NO3- indicating nitrification, increase in Al and DOC, and decrease in dissolved Si concentrations indicating water flow through the soil suggested a dilution of groundwater NO3- by increasing contributions of forest floor and mineral soil NO3- during snowmelt. ?? Springer 2005.
Characterization of P status in forest soils: stocks, fluxes and models
NASA Astrophysics Data System (ADS)
Achat, D. L.; Morel, C.; Bakker, M.; Augusto, L.; Gallet-Budynek, A.; Gonzalez, M.; Jonard, M.
2010-12-01
Phosphorus (P) is a critical limiting factor of plant growth and production in many ecosystems, which often require to be fertilized. However, there is an increasing concern regarding appropriate local and global management of phosphorus resources, since the existing finite phosphate reserves are rapidly being depleted. This implies to understand what processes (biological, physico-chemical) are governing soil P availability in agroecosystems, and in particular in forests, which will be increasingly managed for their C-sink potential in the future. We characterized the P status in forest soils of the largest managed pine forest in Europe (Landes of Gascogne, southwest of France) using isotopic and extraction methods, as well as modelling approaches. Total P concentration in topsoils were extremely low, ranging from 7 to 195 mg Pkg-1. The concentration of phosphate ions in solution decreased with depth and was related to the Al and Fe oxide content, which controlled the diffusion of P from the soil solid phase to the solution. The gross amount of diffusive P in one week as determined by 32P isotopic dilution in batch experiments was low, ranging from 0.2 to 52 mg P kg-1 in the topsoil layer, and could be predicted by pedotransfer functions built on the Al and Fe oxide and soil organic matter contents. Organic P represented 80% of total P in litter and 60% in the surface mineral soil layer, suggesting a higher contribution of biological processes to soil P cycling. Biological mineralization of organic P was quantified using a long-term incubation study (154 days) of a low-sorbing soil labelled with 33P, associated with a batch experiment with 32P labelled soil: gross mineralization of dead soil organic matter and diffusive phosphate P were low (<1 mg kg-1 ) compared to the remineralization of microbial P (14mg kg-1). A modelling approach combined to these isotopic measurements showed that 80 % of microbial P turned over very quickly (5-9 days), while 20% turned over in more than 100 days. An additional long-term incubation (517 days) monitoring changes in the different P pools also showed that organic P mineralization produced a 600-5000% increase in the soil solution P i.e. the readily plant-available P. Therefore soil micro-organisms and organic P transformations potentially played a major role in the bioavailability and cycling of P in this managed forest ecosystem relatively to physico-chemical processes, especially in the most organic soil layers, where fine root length density was the highest. The integration of these different processes in a predictive model allowed to correctly simulate the P uptake by pine seedlings in a pot experiment. The results of this work suggest that predictive tools that integrate the different mechanisms governing soil P availability could be used for long-term management of forest ecosystems.
Land-use and fire drive temporal patterns of soil solution chemistry and nutrient fluxes.
Potthast, Karin; Meyer, Stefanie; Crecelius, Anna C; Schubert, Ulrich S; Tischer, Alexander; Michalzik, Beate
2017-12-15
Land-use type and ecosystem disturbances are important drivers for element cycling and bear the potential to modulate soil processes and hence ecosystem functions. To better understand the effect of such drivers on the magnitude and temporal patterns of organic matter (OM) and associated nutrient fluxes in soils, continuous flux monitoring is indispensable but insufficiently studied yet. We conducted a field study to elucidate the impact of land-use and surface fires on OM and nutrient fluxes with soil solution regarding seasonal and temporal patterns analyzing short (<3months) and medium-term (3-12months) effects. Control and prescribed fire-treated topsoil horizons in beech forests and pastures were monitored biweekly for dissolved and particulate OM (DOM, POM) and solution chemistry (pH value, elements: Ca, Mg, Na, K, Al, Fe, Mn, P, S, Si) over one post-fire year. Linear mixed model analyses exhibited that mean annual DOM and POM fluxes did not differ between the two land-use types, but were subjected to strong seasonal patterns. Fire disturbance significantly lowered the annual soil solution pH in both land-uses and increased water fluxes, while DOC fluxes remained unaffected. A positive response of POC and S to fire was limited to short-term effects, while amplified particulate and dissolved nitrogen fluxes were observed in the longer run and co-ocurred with accelerated Ca and Mg fluxes. In summary, surface fires generated stronger effects on element fluxes than the land-use. Fire-induced increases in POM fluxes suggest that the particulate fraction represent a major pathway of OM translocation into the subsoil and beyond. With regard to ecosystem functions, pasture ecosystems were less prone to the risk of nutrient losses following fire events than the forest. In pastures, fire-induced base cation export may accelerate soil acidification, consequently exhausting soil buffer systems and thus may reduce the resilience to acidic depositions and disturbances. Copyright © 2017 Elsevier B.V. All rights reserved.
Exchangeable hydrogen explains the pH of spodosol Oa horizons
Ross, D.S.; David, M.B.; Lawrence, G.B.; Bartlett, R.J.
1996-01-01
The chemistry of extremely acid Oa horizons does not conform to traditional pH, Al, and base saturation relationships. Results from two separate studies of northeastern U.S. forested soils were used to investigate relationships between pH in water or dilute salt solutions and other soil characteristics. In Oa horizons with pH below 4, soil pH in dilute CaCl2 solution was correlated with exchangeable H+ measured either by titration (r = -0.88, P = 0.0001, n = 142) or by electrode (r = -0.89, P = 0.0001, n = 45). Exchangeable H+ expressed as a percentage of the cation-exchange capacity (CEC) was linear with pH and showed similar slopes for data from both studies. For all samples, pHw = 4.21 - 1.80 x H+/CEC (R2 = 0.69, n = 194). The reciprocal of the H+/CEC ratio is base saturation with Al added to the bases. Because of the low pH, exchangeable Al does not appear to behave as an acid. Exchangeable H+ remains an operationally defined quantity because of the difficulty in separating exchange and hydrolysis reactions. In a variety of neutral-salt extractants, concentration of H+ were correlated with 0.1 M BaCl2-exchangeable H+ (r > 0.91, P = 0.0001, n = 26) regardless of the strength of the extract. Nine successive extractions with 0.33 mM CaCl2 removed more H+ than was removed by single batch extractions with either 1 M KCl or 0.1 M BaCl2 (average H+ of 70, 43, and 49 mmol kg-1, respectively for 26 samples). The data showed little difference in the chemical behavior of Oa horizons from a variety of geographical sites and vegetation types.
Liu, Wei; Ji, Hongli; Kerr, Philip; Wu, Yonghong; Fang, Yanming
2015-11-01
The loss of phosphorus from agricultural intensive areas can cause ecological problems such as eutrophication in downstream surface waters. Therefore, the purpose of this study is to control the phosphorus loss using environmentally benign soil amendments, viz, ferrous sulfate (FES), aluminum sulfate (ALS), and polyacrylamide (PAM). The phosphorus concentration changes in soil and leaching solution, the morphological index of plant (including stem and root), and root activity and quality (represented by chlorophyll and soluble sugar) at different growth stages of cabbage (Brassica oleracea L. var. capitata L.) were monitored in a pilot experiment. Phosphorus contents in soil and runoff were also investigated in field experiments cultivated with corn (Zea mays L.). The results show that the application of these amendments improved the phosphorus uptake by cabbage and corn, resulting in the enhanced morphologies of root and stem as well as the root activity at the early and middle stages of cabbage growth. The soil total phosphorus and available phosphorus in soils treated with FES, ALS, and PAM declined, resulting in lower concentrations of phosphorus in the leachate and the soil runoff. During the use of the soil amendments, the cabbage quality measures, determined as chlorophyll and soluble sugar in leaves, were not significantly different from those in the control. It is suggested that the application of these soil amendments is safe for cabbage production under single season cropping conditions, and the use of these three amendments is a promising measure to reduce phosphorus loss in intensive agricultural areas.
Simulation of infiltration and redistribution of intense rainfall using Land Surface Models
NASA Astrophysics Data System (ADS)
Mueller, Anna; Verhoef, Anne; Cloke, Hannah
2016-04-01
Flooding from intense rainfall (FFIR) can cause widespread damage and disruption. Numerical Weather Prediction (NWP) models provide distributed information about atmospheric conditions, such as precipitation, that can lead to a flooding event. Short duration, high intensity rainfall events are generally poorly predicted by NWP models, because of the high spatiotemporal resolution required and because of the way the convective rainfall is described in the model. The resolution of NWP models is ever increasing. Better understanding of complex hydrological processes and the effect of scale is important in order to improve the prediction of magnitude and duration of such events, in the context of disaster management. Working as part of the NERC SINATRA project, we evaluated how the Land Surface Model (LSM) components of NWP models cope with high intensity rainfall input and subsequent infiltration problems. Both in terms of the amount of water infiltrated in the soil store, as well as the timing and the amount of surface and subsurface runoff generated. The models investigated are SWAP (Soil Water Air Plant, Alterra, the Netherlands, van Dam 1997), JULES (Joint UK Land Environment Simulator a component of Unified Model in UK Met Office, Best et al. 2011) and CHTESSEL (Carbon and Hydrology- Tiled ECMWF Scheme for Surface Exchanges over Land, Balsamo et al. 2009) We analysed the numerical aspects arising from discontinuities (or sharp gradients) in forcing and/or the model solution. These types of infiltration configurations were tested in the laboratory (Vachaud 1971), for some there are semi-analytical solutions (Philip 1957, Parlange 1972, Vanderborght 2005) or reference numerical solutions (Haverkamp 1977, van Dam 2000, Vanderborght 2005). The maximum infiltration by the surface, Imax, is in general dependent on atmospheric conditions, surface type, soil type, soil moisture content θ, and surface orographic factor σ. The models used differ in their approach to describe and deal with this top boundary condition definition. All three LSMs discretise the spatial derivative in the Richards equation (∂/∂z) using central finite differences, which is a 2nd order method, that according to Godunov's theorem is non-monotone. It is prone to producing non-physical oscillations in the solution. We performed a mesh and timestep dependence study for hypothetical soil columns and showed the presence of the oscillations in Jules and SWAP solutions. We also investigated the rainfall/runoff partition and redistribution in case of intense rainfall using these three models.
NASA Astrophysics Data System (ADS)
Schuerger, Andrew C.; Ming, Doug W.; Golden, D. C.
2017-07-01
The search for an extant microbiota on Mars depends on exploring sites that contain transient or permanent liquid water near the surface. Examples of possible sites for liquid water may be active recurring slope lineae (RSL) and fluid inclusions in ice or salt deposits. The presence of saline fluids on Mars will act to depress the freezing points of liquid water to as low as ‒60 °C, potentially permitting the metabolism and growth of halophilic microorganisms to temperatures significantly below the freezing point of pure water at 0 °C. In order to predict the potential risks of forward contamination by Earth microorganisms to subsurface sites on Mars with liquid brines, experiments were designed to characterize the short-term survival of two bacteria in aqueous soil solutions from six analog soils. The term ''soil'' is used here to denote any loose, unconsolidated matrix with no implications for the presence or absence of organics or biology. The analog soils were previously described (Schuerger et al., 2012, Planetary Space Sci., 72, 91-101), and represented crushed Basalt (benign control), Salt, Acid, Alkaline, Aeolian, and Phoenix analogs on Mars. The survival rates of spores of Bacillus subtilis and vegetative cells of Enterococcus faecalis were tested in soil solutions from each analog at 24, 0, or ‒70 °C for time periods up to 28 d. Survival of dormant spores of B. subtilis were mostly unaffected by incubation in the aqueous extracts of all six Mars analogs. In contrast, survival rates of E. faecalis cells were suppressed by all soil solutions when incubated at 24 °C but improved at 0 and ‒70 °C, except for assays in the Salt and Acid soil solutions in which most cells were killed. Results suggest that Earth microorganisms that form spores may persist in liquid brines on Mars better than non-spore forming species, and thus, spore-forming species may pose a potential forward contamination risk to sites with liquid brines.
NASA Astrophysics Data System (ADS)
Matthews, G. Peter
2010-05-01
This presentation will concern the understanding of soil water repellancy and wettability at a fundamental level, and the difficulties of relating the very small, micron scale at which the repellancy and wettability characteristics are produced to the much larger, field scale at which they are normally observed. The presentation will not be a review of past work, but rather will concentrate on recent publications, publications in press, and speculative considerations which may lead to future work in this area. There are three fundamental components of water repellancy - the nature of the soil surfaces themselves, the effect of organic matter and microbiologically produced substances, and the topology of the resultant surfaces. The effects of hydrophobic surfaces will be illustrated by a consideration of the wettability of substances such as commercially produced talc grades. The faces of these platey mineral particles are hydrophobic, whereas their edges are hydrophilic, and the combination not only causes water repellency in itself, but also causes unusual adsorption effects from aqueous solution. The effect of organic matter on soil wettability has been widely studied, often by core-scale wettability experiments. It will be shown how a consideration of micro-wetting effects has led to a more robust data analysis method for such studies (Matthews, G. P. et al, European J.Soil Sci., 2008). Traditionally wetting fronts are assumed to advance in proportion to the square root of time (as predicted by the Washburn equation), but micro-modelling shows that, once inertial effects are taken into account, low-volume fingers of wetting fluid track through porous substances in advance of the observed Washburn wetting front (Bodurtha, P. et al, J.Colloid Interface Sci., 2005). The effects of micro-topology are also well known (Ridgway, C. J. et al, J.Colloid Interface Sci., 2001), but need to be integrated and upscaled, as described below. Soil water repellency is not only dependant on the soil mineral characteristics, surface topology and organic matter content, but is also influenced by microbiological activity. The production of hydrophobic microbial biomass and exudates alter the hydrological characteristics of soil (Chan, K. Y., Soil Sci.Soc.Am.J., 1992) and strengthen the bonds between soil particles. Amongst these are extracellular polymeric substances (EPS), which are produced as a result of microbial activity and increase during periods of substrate utilisation and microbial growth (Hallett, P. D. et al, European J.Soil Sci., 1999). They form part of a wide spectrum of soil organic species, many produced by the soil's bacterial and fungal biomass. EPS provides a living protective membrane between changing hydrological conditions and the micro-organisms. It comprises polysaccharides and smaller amounts of protein, lipids and humic substances, with masses ranging from 103 to 108 kDaltons (Allison, D. G. et al, Fems Microbiology Letters, 1998). The small amounts of EPS in soil have a disproportionately large effect on soil hydraulic properties, and the response of EPS to major perturbations, such as wetting and drying cycles, has recently been well characterised (Or, D. et al, Vadose Zone J, 2007). Therefore, as will be described, the use of EPS as an analogue to the wider range of organic species can lead to an understanding of climatic effects on soil wettability. The upscaling of the effects from micron to field scale requires a highly detailed modelling approach, using a dual -porous void structure model (a modification of the previous ‘Pore-Cor' model) which takes into account both the soil micro-matrix and the macroscopic percolation and wetting pathways (Laudone, G. M. et al, European J.Soil Sci., submitted). Super-hydrophobicity in natural materials (the ‘lotus' effect) and man-made materials (micro-structured arrays) will also be explained and illustrated, and the condition under which super-hydrophobicity can flip to super-wettability. Super-hydrophobicity gives an unusual insight into the less extreme examples of water repellancy found in many soils.
A novel technique to determine cobalt exchangeability in soils using isotope dilution.
Wendling, Laura A; Kirby, Jason K; McLaughlin, Michael J
2008-01-01
The environmental risk posed by Co contamination is largely a function of its oxidation state. Our objective was to assess the potential biological availability of Co and the reactions and fate of soluble Co(II) after addition to soils with varying physical and chemical characteristics. A potential risk in quantifying exchangeable Co in soils using isotope dilution techniques is the possible presence of two species of Co in soil solution and adsorbed on soil solid phases [Co(II) and Co(III)], coupled with the possibility that when an isotope of Co is added it may undergo a change in oxidation state during the measurement phase. In this study, we have utilized an isotope dilution technique with cation exchange and high-performance liquid chromatography-inductively coupled plasma-mass spectrometry to determine the isotopically exchangeable Co fraction in several soils with varying characteristics such as differing Al, Fe, and Mn oxide content; pH; and organic carbon content. The application of the cation exchange procedure adjusts measurements of isotopically exchangeable Co to correct for the presence of non-exchangeable 57Co not in equilibrium with the solution phase. Results indicated that oxidation of added 57Co(II) to 57Co(III) or precipitation of 57Co(II) may occur on the surfaces of some soils, particularly those with a high pH or substantial quantities of Mn oxide minerals. No detectable Co(III)(aq) was found in the aqueous extracts of the soils examined.
You Don't Need Richards'... A New General 1-D Vadose Zone Solution Method that is Reliable
NASA Astrophysics Data System (ADS)
Ogden, F. L.; Lai, W.; Zhu, J.; Steinke, R. C.; Talbot, C. A.
2015-12-01
Hydrologic modelers and mathematicians have strived to improve 1-D Richards' equation (RE) solution reliability for predicting vadose zone fluxes. Despite advances in computing power and the numerical solution of partial differential equations since Richards first published the RE in 1931, the solution remains unreliable. That is to say that there is no guarantee that for a particular set of soil constitutive relations, moisture profile conditions, or forcing input that a numerical RE solver will converge to an answer. This risk of non-convergence renders prohibitive the use of RE solvers in hydrological models that need perhaps millions of infiltration solutions. In lieu of using unreliable numerical RE solutions, researchers have developed a wide array of approximate solutions that more-or-less mimic the behavior of the RE, with some notable deficiencies such as parameter insensitivity or divergence over time. The improved Talbot-Ogden (T-O) finite water-content scheme was shown by Ogden et al. (2015) to be an extremely good approximation of the 1-D RE solution, with a difference in cumulative infiltration of only 0.2 percent over an 8 month simulation comparing the improved T-O scheme with a RE numerical solver. The reason is that the newly-derived fundamental flow equation that underpins the improved T-O method is equivalent to the RE minus a term that is equal to the diffusive flux divided by the slope of the wetting front. Because the diffusive flux has zero mean, this term is not important in calculating the mean flux. The wetting front slope is near infinite (sharp) in coarser soils that produce more significant hydrological interactions between surface and ground waters, which also makes this missing term 1) disappear in the limit, and, 2) create stability challenges for the numerical solution of RE. The improved T-O method is a replacement for the 1-D RE in soils that can be simulated as homogeneous layers, where the user is willing to neglect the effects of soil water diffusivity. This presentation emphasizes the transformative nature of the improved T-O finite water-content solution, and highlights the benefits of the methods' reliability in high-resolution large watershed simulations in the high performance computing environment, and discusses coupling of the soil matrix and non-Darcian macropores.
Green-Ampt approximations: A comprehensive analysis
NASA Astrophysics Data System (ADS)
Ali, Shakir; Islam, Adlul; Mishra, P. K.; Sikka, Alok K.
2016-04-01
Green-Ampt (GA) model and its modifications are widely used for simulating infiltration process. Several explicit approximate solutions to the implicit GA model have been developed with varying degree of accuracy. In this study, performance of nine explicit approximations to the GA model is compared with the implicit GA model using the published data for broad range of soil classes and infiltration time. The explicit GA models considered are Li et al. (1976) (LI), Stone et al. (1994) (ST), Salvucci and Entekhabi (1994) (SE), Parlange et al. (2002) (PA), Barry et al. (2005) (BA), Swamee et al. (2012) (SW), Ali et al. (2013) (AL), Almedeij and Esen (2014) (AE), and Vatankhah (2015) (VA). Six statistical indicators (e.g., percent relative error, maximum absolute percent relative error, average absolute percent relative errors, percent bias, index of agreement, and Nash-Sutcliffe efficiency) and relative computer computation time are used for assessing the model performance. Models are ranked based on the overall performance index (OPI). The BA model is found to be the most accurate followed by the PA and VA models for variety of soil classes and infiltration periods. The AE, SW, SE, and LI model also performed comparatively better. Based on the overall performance index, the explicit models are ranked as BA > PA > VA > LI > AE > SE > SW > ST > AL. Results of this study will be helpful in selection of accurate and simple explicit approximate GA models for solving variety of hydrological problems.
NASA Astrophysics Data System (ADS)
Abou Jaoudé, R.; Pricop, A.; Laffont-Schwob, I.; Prudent, P.; Rabier, J.; Masotti, V.; de Dato, G.; De Angelis, P.
2012-04-01
The rapid growth of population, the increased urbanisation and the expansion of industrial activities have provoked an augmented occurrence of soil contamination by heavy-metals. Important sources of contamination are industrial, mining and military infrastructures, which are often abandoned without performing the appropriate reclamation work. In the Mediterranean Basin, where coastal areas are largely affected by human overexploitation, the use of species able to tolerate heavy-metals and other abiotic stresses may represent a low-cost solution for phytoremediation in these harsh environments. Tamarix gallica L. is a widespread species in coastal Mediterranean areas, showing a high adaptability to different environments and a high tolerance of adversity. With the objective of testing local species as candidates for phytoremediation practices in heavy-metal contaminated coastal soils, cuttings of T. gallica from a wild population around Marseille (France) were planted in pots containing: 1) control soil (loamy soil and sand (2/1)), 2) half-polluted soil (loamy soil, sand and heavy-metal polluted soil (1/1/1)), and 3) polluted soil (sand and heavy-metal polluted soil (1/2)). The contaminated soils were collected in the surrounding of a former lead industry of Marseille littoral and characterised by the presence of Fe, Pb, Zn, As and Al. After three months from planting, leaf functionality was evaluated by measuring leaf gas exchanges, leaf chlorophyll fluorescence and, chlorophyll, phenols, flavonoids and anthocyanins contents. SEM observations coupled to EDXS analysis were used to determine elements (Pb, As and Al) presence and location on the leaf surface and in leaf and root tissues. T. gallica was moderately affected by the presence of heavy-metals in the soil treatments. In fact, a reduction in stomatal conductance was only observed in plants grown in the polluted soil. This reduction did not cause a significant decrease in CO2 assimilation rates. Moreover, the presence of Al on the root surface was observed in plants grown in polluted soils; this element was not detected in leaf tissues or in the leaf extruded material, suggesting a phytostabilization effect for this element. In conclusion, T. gallica could be a potential candidate for phytoremediation practices. Nevertheless, field experiments will be necessary to assess growth performances and phytoremediation potential of this species in heavy-metal polluted areas.
Why plants grow poorly on very acid soils: are ecologists missing the obvious?
Kidd, P S; Proctor, J
2001-04-01
Factors associated with soil acidity are considered to be limiting for plants in many parts of the world. This work was undertaken to investigate the role of the toxicity of hydrogen (H(+)) which seems to have been underconsidered by ecologists as an explanation of the reduced plant growth observed in very acid soils. Racial differences are reported in plant growth response to increasing acidity in the grass Holcus lanatus L. (Yorkshire-fog) and the tree Betula pendula Roth (Silver Birch). Soils and seeds were collected from four Scottish sites which covered a range of soils from acid (organic and mineral) to more base-rich. The sites and their pH (1:2.5 fresh soil:0.01 M CaCl(2)) were: Flanders Moss (FM), pH 3.2+/-0.03; Kippenrait Glen (KP), pH 4.8+/- 0.05; Kinloch Rannoch (KR), pH 6.1+/-0.16; and Sheriffmuir (SMM), pH 4.3+/-0.11. The growth rates of two races of H. lanatus, FM and KP, and three races of B. pendula (SMM, KP and KR) were measured in nutrient solution cultures at pH 2.0 (H. lanatus only), 3.0, 4.0, 5.0, and 5.6. Results showed races from acid organic soils (FM) were H(+)-tolerant while those from acid mineral soils (SMM) were Al(3+)-tolerant but not necessarily H(+)-tolerant. These results confirmed that populations were separately adapted to H(+) or Al(3+) toxicity and this was dependent upon the soil characteristics at their site of collection. The fact of plant adaptation to H(+) toxicity supports the view that this is an important factor in very acid soils.
NASA Astrophysics Data System (ADS)
González-Torre, Iván; Losada, Juan Carlos; Falconer, Ruth; Hapca, Simona; Tarquis, Ana M.
2015-04-01
Soil structure may be defined as the spatial arrangement of soil particles, aggregates and pores. The geometry of each one of these elements, as well as their spatial arrangement, has a great influence on the transport of fluids and solutes through the soil. Fractal/Multifractal methods have been increasingly applied to quantify soil structure thanks to the advances in computer technology (Tarquis et al., 2003). There is no doubt that computed tomography (CT) has provided an alternative for observing intact soil structure. These CT techniques reduce the physical impact to sampling, providing three-dimensional (3D) information and allowing rapid scanning to study sample dynamics in near real-time (Houston et al., 2013a). However, several authors have dedicated attention to the appropriate pore-solid CT threshold (Elliot and Heck, 2007; Houston et al., 2013b) and the better method to estimate the multifractal parameters (Grau et al., 2006; Tarquis et al., 2009). The aim of the present study is to evaluate the effect of the algorithm applied in the multifractal method (box counting and box gliding) and the cube size on the calculation of generalized fractal dimensions (Dq) in grey images without applying any threshold. To this end, soil samples were extracted from different areas plowed with three tools (moldboard, chissel and plow). Soil samples for each of the tillage treatment were packed into polypropylene cylinders of 8 cm diameter and 10 cm high. These were imaged using an mSIMCT at 155keV and 25 mA. An aluminium filter (0.25 mm) was applied to reduce beam hardening and later several corrections where applied during reconstruction. References Elliot, T.R. and Heck, R.J. 2007. A comparison of 2D and 3D thresholding of CT imagery. Can. J. Soil Sci., 87(4), 405-412. Grau, J, Médez, V.; Tarquis, A.M., Saa, A. and Díaz, M.C.. 2006. Comparison of gliding box and box-counting methods in soil image analysis. Geoderma, 134, 349-359. González-Torres, Iván. Theory and application of multifractal analysis methods in images for the study of soil structure. Master thesis, UPM, 2014. Houston, A.N.; S. Schmidt, A.M. Tarquis, W. Otten, P.C. Baveye, S.M. Hapca. Effect of scanning and image reconstruction settings in X-ray computed tomography on soil image quality and segmentation performance. Geoderma, 207-208, 154-165, 2013a. Houston, A, Otten, W., Baveye, Ph., Hapca, S. Adaptive-Window Indicator Kriging: A Thresholding Method for Computed Tomography, Computers & Geosciences, 54, 239-248, 2013b. Tarquis, A.M., R.J. Heck, D. Andina, A. Alvarez and J.M. Antón. Multifractal analysis and thresholding of 3D soil images. Ecological Complexity, 6, 230-239, 2009. Tarquis, A.M.; D. Giménez, A. Saa, M.C. Díaz. and J.M. Gascó. Scaling and Multiscaling of Soil Pore Systems Determined by Image Analysis. Scaling Methods in Soil Systems. Pachepsky, Radcliffe and Selim Eds., 19-33, 2003. CRC Press, Boca Ratón, Florida. Acknowledgements First author acknowledges the financial support obtained from Soil Imaging Laboratory (University of Gueplh, Canada) in 2014.
NASA Astrophysics Data System (ADS)
Bateman, J. B.; Fendorf, S. E.; Vitousek, P.
2017-12-01
Iron (Fe) and Aluminum (Al) are major components of volcanic soils, and strongly influence the stability of soil carbon (C). The stability of Fe and Al phases is dictated by the redox conditions and pH of soils, respectively. The water balance of a soil, defined as annual precipitation minus evapotranspiration, ultimately controls pH and redox conditions. Consequently, we hypothesize that water balance influences Fe/Al solid phase dynamics in volcanic soils when the climatic regime has persisted on timescales of 20 ky. To test this hypothesis, we collected soils from a naturally occurring water balance gradient on the windward side of Mauna Kea Volcano in Hawaii, across which water balance ranges from -1270 mm/y to +2000 mm/y. Sampling included complete soil profiles, and 30 cm surface soil samples. We determined the solid phases of Fe/Al with selective extractions and total C via combustion. Extracted Fe/Al were then partitioned into operational pools: organically bound, amorphous, crystalline, primary mineral, primary glass, and residual. All soils in the study were acidic, with pH between 3.4 and 6.4. Soil C varied considerably across the gradient, from <1% C to >15% C by weight. Across sites, soil pH, Fe in primary minerals and glasses, and residual Al are negatively correlated with water balance, while soil C, organic Fe and Al, and crystalline Fe correlated positively with water balance. Organically bound Al increases linearly with water balance, while organically bound Fe is uncorrelated with water balance in soils where water balance is negative and is positively correlated with water balance in wetter sites. These results show that soils developing from the same parent material, though under different water balance regimes, range from lightly weathered ash deposits with little C accumulation in the driest regions, to heavily weathered soils composed of crystalline Fe, organic matter, and organically bound Fe/Al in the wettest regions. Al appears to be the primary stabilizer for organic matter in many of these soils, though Fe plays a role when both water availability and soil C are high. The pattern of organic Fe/Al indicate that pH is a stronger controller on C storage in these soils when water balance is low or negative, and that redox reactions become increasingly important as water balance becomes more positive.
Zhang, Fan; Luo, Wensui; Parker, Jack C; Spalding, Brian P; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua
2008-11-01
Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This studywas undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cation exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/ dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO4(2-) for contaminated sediments indicated close agreement suggesting that the model could potentially be used to predictthe acid-base behavior of the sediment-solution system under variable pH conditions.
The effects of fire temperatures on water soluble heavy metals.
NASA Astrophysics Data System (ADS)
Pereira, P.; Ubeda, X.; Martin, D. A.
2009-04-01
Fire ash are majority composed by base cations, however the mineralized organic matter, led also available to transport a higher quantity of heavy metals that potentially could increase a toxicity in soil and water resources. The amount availability of these elements depend on the environment were the fire took place, burning temperature and combusted tree specie. The soil and water contamination from fire ash has been neglected, because the majority of studies are focused on base cations dynamic. Our research, beside contemplate major elements, is focused in to study the behavior of heavy metals released from ash slurries created at several temperatures under laboratory environment, prescribed fires and wildland fires. The results presented in these communication are preliminary and study the presence of Aluminium (Al3+), Manganese (Mn2+), Iron (Fe2+) and Zinc (Zn2+) of ash slurries generated in laboratory environment at several temperatures (150°, 200°, 250°, 300°, 350°, 400°,450°, 500°, 550°C) from Quercus suber, Quercus robur, Pinus pinea and Pinus pinaster and from a low medium temperature prescribed fire in a forest dominated Quercus suber trees. We observed that ash produced at lower and medium temperatures (<300-400°C) released in water higher contents of Al3+ than unburned sample, especially in Quercus species and Mn2+ in Pinus ashes. Fe2+ and Zn2+ showed a reduced concentration in test solution in relation to unburned sample at all temperatures of exposition. In the results obtained from prescribed fire, we identify a higher release of Al3+ and a decrease of the remain elements. The solubilization of these elements are related with pH levels and ash calcite content, because their ability to capture ions in solution. Moreover, the amount and the type of ions released in relation to unburned sample vary in each specie. In this study Al3+ release is related with Quercus species and Mn2+ with Pinus species. Fire ashes can be an environmental problem, because at long term can increase soil acidity. After all base cations have being leached, pH values decrease, and the heavy metals remaining in the ash are easily transported with unknown impacts on soil and water resources. Research is needed in the study at long term of the effects of fire in metals accumulation in soil resources, and all these aspects will be discussed. Keywords: Fire ash, heavy metals, Quercus suber, Quercus robur, Pinus pinea, Pinus pinaster, prescribed fire, pH, Calcite
Data harmonization of environmental variables: from simple to general solutions
NASA Astrophysics Data System (ADS)
Baume, O.
2009-04-01
European data platforms often contain measurements from different regional or national networks. As standards and protocols - e.g. type of measurement devices, sensors or measurement site classification, laboratory analysis and post-processing methods, vary between networks, discontinuities will appear when mapping the target variable at an international scale. Standardisation is generally a costly solution and does not allow classical statistical analysis of previously reported values. As an alternative, harmonization should be envisaged as an integrated step in mapping procedures across borders. In this paper, several harmonization solutions developed under the INTAMAP FP6 project are presented. The INTAMAP FP6 project is currently developing an interoperable framework for real-time automatic mapping of critical environmental variables by extending spatial statistical methods to web-based implementations. Harmonization is often considered as a pre-processing step in statistical data analysis workflow. If biases are assessed with little knowledge about the target variable - in particular when no explanatory covariate is integrated, a harmonization procedure along borders or between regionally overlapping networks may be adopted (Skøien et al., 2007). In this case, bias is estimated as the systematic difference between line or local predictions. On the other hand, when covariates can be included in spatial prediction, the harmonization step is integrated in the whole model estimation procedure, and, therefore, is no longer an independent pre-processing step of the automatic mapping process (Baume et al., 2007). In this case, bias factors become integrated parameters of the geostatistical model and are estimated alongside the other model parameters. The harmonization methods developed within the INTAMAP project were first applied within the field of radiation, where the European Radiological Data Exchange Platform (EURDEP) - http://eurdep.jrc.ec.europa.eu/ - has been active for all member states for more than a decade (de Cort and de Vries, 1997). This database contains biases because of the different networks processes used in data reporting (Bossew et al., 2007). In a comparison study, monthly averaged Gamma dose measurements from eight European countries were using the methods described above. Baume et al. (2008) showed that both methods yield similar results and can detect and remove bias from the EURDEP database. To broaden the potential of the methods developed within the INTAMAP project, another application example taken from soil science is presented in this paper. The Carbon/Nitrogen (C/N) ratio of forest soils is one of the best predictors for evaluating soil functions such as used in climate change issues. Although soil samples were analyzed according to a common European laboratory method, Carré et al. (2008) concluded that systematic errors are introduced in the measurements due to calibration issues and instability of the sample. The application of the harmonization procedures showed that bias could be adequately removed, although the procedures have difficulty to distinguish real differences from bias.
Microbial mobilization of cesium from illite: Role of organic acids and siderophores
NASA Astrophysics Data System (ADS)
Hazotte, Alice; Peron, Olivier; Abdelouas, Abdesselam; Lebeau, Thierry
2015-04-01
Understanding the behavior of cesium (Cs) in soils and geological formations is interesting in the context of nuclear accidents and nuclear waste disposals. Indeed, this radionuclide with a 30-years half-life can contaminate crops and more generally the food chain. Cs with properties similar to potassium is known to be strongly accumulated in the clays of upper soil horizons. While excavation of contaminated soil cannot be feasible for the whole contaminated surfaces (huge volumes to be cleaned-up), in situ methods could provide a sustainable and low cost solution. Phytoextraction is one of a few solutions for in situ remediation of soils contaminated by trace elements and it preserves the quality of agricultural soils. However, many improvements are still needed to enhance phytoextraction effectiveness. The combination of bioaugmentation (soil inoculation with exogenous microorganisms) with phytoextraction is likely to increase the bioaccessibility of radionuclides and their accumulation in plants. The role of bacteria on soil-pollutants can be direct (direct metal complexation) and/or indirect (weathering of clays adsorbing Cs). This study aims to provide more specifically a mechanistic understanding of the bacterial mobilization of Cs from soil with the prospect of soil bioremediation. Bacterial metabolites of Pseudomonas fluorescens (ATCC 17400) were supplied to illite spiked with 0.1 and 1 mM of Cs. Purified siderophores including pyoverdine from P. fluorescens, or the whole metabolites from the bacterial culture supernatant were compared to low molecular weight organic acids (LMWOA) (citric and oxalic acids) at 0.04 mM, or synthetic chelants, i.e., acetohydroxamic acid (AHA) and desferrioxamine mesylate (DFOM) ranging from 50 µM up to 250 µM. The release of Cs and the structural alteration of illite (release of Al, Fe and Si) were monitored. When compared to the control, no release of Cs from illite was observed with LMWOA. On the contrary, a slight release of Cs was shown with AHA and DFOM (9 % and 22 %, respectively). The highest release was shown with the bacterial supernatant and the purified pyoverdine (39 % and 43 %, respectively). The purified pyoverdine and the bacterial metabolites were also able to complex Fe from illite and to a lesser extent Al. These results demonstrated that Cs is likely to be indirectly released from illite by P. fluorescens producing chelating agents involved in its alteration.
Löfgren, Stefan; Gustafsson, Jon Petter; Bringmark, Lage
2010-12-01
Numerous studies report increased concentrations of dissolved organic carbon (DOC) during the last two decades in boreal lakes and streams in Europe and North America. Recently, a hypothesis was presented on how various spatial and temporal factors affect the DOC dynamics. It was concluded that declining sulphur deposition and thereby increased DOC solubility, is the most important driver for the long-term DOC concentration trends in surface waters. If this recovery hypothesis is correct, the DOC levels should increase both in the soil solution as well as in the surrounding surface waters as soil pH rises and the ionic strength declines due to the reduced input of SO(4)(2-) ions. In this project a geochemical model was set up to calculate the net humic charge and DOC solubility trends in soils during the period 1996-2007 at two integrated monitoring sites in southern Sweden, showing clear signs of acidification recovery. The Stockholm Humic Model was used to investigate whether the observed DOC solubility is related to the humic charge and to examine how pH and ionic strength influence it. Soil water data from recharge and discharge areas, covering both podzols and riparian soils, were used. The model exercise showed that the increased net charge following the pH increase was in many cases counteracted by a decreased ionic strength, which acted to decrease the net charge and hence the DOC solubility. Thus, the recovery from acidification does not necessarily have to generate increasing DOC trends in soil solution. Depending on changes in pH, ionic strength and soil Al pools, the trends might be positive, negative or indifferent. Due to the high hydraulic connectivity with the streams, the explanations to the DOC trends in surface waters should be searched for in discharge areas and peat lands. Copyright © 2010 Elsevier B.V. All rights reserved.
Ad-/desorption behavior of Sulfadiazine on soil and soil components
NASA Astrophysics Data System (ADS)
Meng, N.; Lewandowski, H.; Kasteel, R.; Narres, H.-D.; Klumpp, E.; Vereecken, H.
2009-04-01
Sulfadiazine [4-amino-N-(2-pyrimidinyl)benzene sulfonamide, SDZ] belongs to the widely used antibacterial veterinary pharmaceuticals which reach the environment by the application of manure. Therefore the adsorption and desorption behavior of 14C labeled sulfadiazine was investigated with different inorganic soil components including Al2O3, goethite, illite and compared with air-dried topsoil. The batch sorption experiments with Al2O3and soil were performed in natural pH-values (8.2 and 7.5, negatively charged SDZ). Experiments with illite and goethite were done with pH-values of 4.2 and 6.8 (natural pH of illite and goethite, neutral and partly negatively charged SDZ) and also done in buffer solution about pH 8 for comparing the adsorption on all adsorbents in same pH range. The adsorption isotherms on all sorbents are strongly nonlinear and can be fitted well by the Freundlich equation. From the initial slope of the isotherm the partition coefficient Kd could be determined. The adsorption of SDZ on illite at pH 4.2 and on goethite at pH 6.8 has higher Kd-values than at pH 8, which demonstrates that the negative charge of SDZ obstructs the adsorption. The desorption isotherms show hysteresis effects for all adsorbents. The strong hysteresis was found for goethite and soil indicates strongly physical or chemical binding. On the other hand, the low hysteresis effect for Al2O3 and illite indicates the weak binding of the adsorbed SDZ. The properties of the inorganic matrix and especially the charges of the inorganic compounds in relation to the charge of SDZ are important parameters for the sorption process. The data could be described by modeling with different sorption rates and sites.
Levia, Delphis F; Shiklomanov, Alexey N; Van Stan, John T; Scheick, Carrie E; Inamdar, Shreeram P; Mitchell, Myron J; McHale, Patrick J
2015-07-01
Ca/Al molar ratios are commonly used to assess the extent of aluminum stress in forests. This is among the first studies to quantify Ca/Al molar ratios for stemflow. Ca/Al molar ratios in bulk precipitation, throughfall, stemflow, litter leachate, near-trunk soil solution, and soil water were quantified for a deciduous forest in northeastern MD, USA. Data were collected over a 3-year period. The Ca/Al molar ratios in this study were above the threshold for aluminum stress (<1). Fagus grandifolia Ehrh. (American beech) had a median annual stemflow Ca/Al molar ratio of 15.7, with the leafed and leafless values of 12.4 and 19.2, respectively. The corresponding Ca/Al molar ratios for Liriodendron tulipifera L. (yellow poplar) were 11.9 at the annual time scale and 11.9 and 13.6 for leafed and leafless periods, respectively. Bayesian statistical analysis showed no significant effect of canopy state (leafed, leafless) on Ca/Al molar ratios. DOC was consistently an important predictor of calcium, aluminum, and Ca/Al ratios. pH was occasionally an important predictor of calcium and aluminum concentrations, but was not a good predictor of Ca/Al ratio in any of the best-fit models (of >500 examined). This study supplies new data on Ca/Al molar ratios for stemflow from two common deciduous tree species. Future work should examine Ca/Al molar ratios in stemflow of other species and examine both inorganic and organic aluminum species to better gauge the potential for, and understand the dynamics of, aluminum toxicity in the proximal area around tree boles.
WATSFAR: numerical simulation of soil WATer and Solute fluxes using a FAst and Robust method
NASA Astrophysics Data System (ADS)
Crevoisier, David; Voltz, Marc
2013-04-01
To simulate the evolution of hydro- and agro-systems, numerous spatialised models are based on a multi-local approach and improvement of simulation accuracy by data-assimilation techniques are now used in many application field. The latest acquisition techniques provide a large amount of experimental data, which increase the efficiency of parameters estimation and inverse modelling approaches. In turn simulations are often run on large temporal and spatial domains which requires a large number of model runs. Eventually, despite the regular increase in computing capacities, the development of fast and robust methods describing the evolution of saturated-unsaturated soil water and solute fluxes is still a challenge. Ross (2003, Agron J; 95:1352-1361) proposed a method, solving 1D Richards' and convection-diffusion equation, that fulfil these characteristics. The method is based on a non iterative approach which reduces the numerical divergence risks and allows the use of coarser spatial and temporal discretisations, while assuring a satisfying accuracy of the results. Crevoisier et al. (2009, Adv Wat Res; 32:936-947) proposed some technical improvements and validated this method on a wider range of agro- pedo- climatic situations. In this poster, we present the simulation code WATSFAR which generalises the Ross method to other mathematical representations of soil water retention curve (i.e. standard and modified van Genuchten model) and includes a dual permeability context (preferential fluxes) for both water and solute transfers. The situations tested are those known to be the less favourable when using standard numerical methods: fine textured and extremely dry soils, intense rainfall and solute fluxes, soils near saturation, ... The results of WATSFAR have been compared with the standard finite element model Hydrus. The analysis of these comparisons highlights two main advantages for WATSFAR, i) robustness: even on fine textured soil or high water and solute fluxes - where Hydrus simulations may fail to converge - no numerical problem appears, and ii) accuracy of simulations even for loose spatial domain discretisations, which can only be obtained by Hydrus with fine discretisations.
Ulén, Barbro; Etana, Ararso; Lindström, Bodil
2012-01-01
Phosphorus (P) leaching from agricultural soils is a serious environmental concern. Application of aluminium water treatment residuals (Al-WTRs) at a rate of 20 Mg ha(-1) to clay soils from central Sweden significantly increased mean topsoil P sorption index (PSI) from 4.6 to 5.5 μmol kg(-1) soil. Mean degree of P saturation in ammonium lactate extract (DPS-AL) significantly decreased from 17 to 13%, as did plant-available P (P-AL). Concentrations of dissolved reactive P (DRP) decreased by 10-85% in leaching water with Al-WTR treatments after exposure of topsoil lysimeters to simulated rain. Soil aggregate stability (AgS) for 15 test soils rarely improved. Three soils (clay loam, silty loam and loam sand) were tested in greenhouse pot experiments. Aluminium-WTR application of 15 or 30 ton ha(-1) to loam sand and a clay loam with P-AL values of 80-100 mg kg(-1) soil significantly increased growth of Italian ryegrass when fertilised with P but did not significantly affect growth of spring barley on any soil. Al-WTR should only be applied to soils with high P fertility where improved crop production is not required.
Effects of Air Drying on Soil Available Phosphorus in Two Grassland Soils
NASA Astrophysics Data System (ADS)
Schaerer, M.; Frossard, E.; Sinaj, S.
2003-04-01
Mobilization of P from the soil to ground and surface water is principally determined by the amount of P in the soil and physico-chemical as well as biological processes determining the available P-pool that is in equilibrium with soil solution. Soil available P is commonly estimated on air dry soil using a variety of methods (extraction with water, dilute acids and bases, anion exchange resin, isotopic exchange or infinite sinks). Recently, attempts have been made to use these measurements to define the potential for transport of P from soil to water by overland flow or subsurface flow. The effect of air drying on soil properties in general, and plant nutrient status in particular, have been subject of a number of studies. The main objective of this paper was to evaluate the effect of air-drying on soil properties and available P. For this experiment, grassland soils were sampled on two study sites located on slopes in the watershed of Lake Greifensee, 25 km south-east of Zurich. Both soils (0-4 cm depth) are rich in P with 1.7 and 1.3 g kg-1 total P at site I and site II, respectively. The concentrations on isotopically exchangeable P within 1 minute (E1min, readily available P) for the same depth were also very high, 58 and 27 mg P kg soil-1 for the site I and II, respectively. In the present study both field moist and air dried soil samples were analyzed for microbial P (Pmic), resin extractable P (P_r), isotopically exchangeable P (E1min) and amorphous Al and Fe (Alox, Feox). Generally, the microbial P in field moist soils reached values up to 120 mg P/kg soil, whereas after drying they decreased by 73% in average for both soils. On the contrary to Pmic, available P estimated by different methods strongly increased after drying of the soil samples. The concentration of phosphate ions in the soil solution c_p, E1min and P_r were 4.2, 2.2 and 2 times higher in dry soils than in field moist soils. The increase in available P shows significant semilogarithmic correlations with the decrease in microbial P (r^2 = 0.66, r^2 = 0.53 and r^2 = 0.75 respectively for c_p, E(1 min) and resin P). The parameter R_0/r1min from the isotopic exchange approach, which is well correlated with the soil P fixing capacity, generally decreased after drying. Drying of the soil significantly modifies soil properties that control P availability, such as amorphous Fe- and Al-oxides. The amount of Feox and Alox was decreased by 3 and 6% respectively. It can be concluded that drying of the soils leads a strong increase in available P as estimated by different methods. The observed available P increase is mainly related to a modification of both soil chemistry and biology. Especially for grassland soils with a high organic matter content and microbial biomass, available P measurements on dry soil seem to overestimate the available P mainly due to a release of microbial P.
miR319, miR390, and miR393 Are Involved in Aluminum Response in Flax (Linum usitatissimum L.)
Zyablitsin, Alexander V.; Rozhmina, Tatiana A.; Speranskaya, Anna S.; Sadritdinova, Asiya F.
2017-01-01
Acid soils limit agricultural production worldwide. Major reason of crop losses in acid soils is the toxicity of aluminum (Al). In the present work, we investigated expression alterations of microRNAs in flax (Linum usitatissimum L.) plants under Al stress. Flax seedlings of resistant (TMP1919 and G1071/4_k) and sensitive (Lira and G1071/4_o) to Al cultivars and lines were exposed to AlCl3 solution for 4 and 24 hours. Twelve small RNA libraries were constructed and sequenced using Illumina platform. In total, 97 microRNAs from 18 conserved families were identified. miR319, miR390, and miR393 revealed expression alterations associated with Al treatment of flax plants. Moreover, for miR390 and miR393, the alterations were distinct in sensitive and resistant to Al genotypes. Expression level changes of miR319 and miR390 were confirmed using qPCR analysis. In flax, potential targets of miR319 are TCPs, miR390–TAS3 and GRF5, and miR393–AFB2-coding transcripts. TCPs, TAS3, GRF5, and AFB2 participate in regulation of plant growth and development. The involvement of miR319, miR390, and miR393 in response to Al stress in flax was shown here for the first time. We speculate that these microRNAs play an important role in Al response via regulation of growth processes in flax plants. PMID:28299328
miR319, miR390, and miR393 Are Involved in Aluminum Response in Flax (Linum usitatissimum L.).
Dmitriev, Alexey A; Kudryavtseva, Anna V; Bolsheva, Nadezhda L; Zyablitsin, Alexander V; Rozhmina, Tatiana A; Kishlyan, Natalya V; Krasnov, George S; Speranskaya, Anna S; Krinitsina, Anastasia A; Sadritdinova, Asiya F; Snezhkina, Anastasiya V; Fedorova, Maria S; Yurkevich, Olga Yu; Muravenko, Olga V; Belenikin, Maxim S; Melnikova, Nataliya V
2017-01-01
Acid soils limit agricultural production worldwide. Major reason of crop losses in acid soils is the toxicity of aluminum (Al). In the present work, we investigated expression alterations of microRNAs in flax ( Linum usitatissimum L.) plants under Al stress. Flax seedlings of resistant (TMP1919 and G1071/4_k) and sensitive (Lira and G1071/4_o) to Al cultivars and lines were exposed to AlCl 3 solution for 4 and 24 hours. Twelve small RNA libraries were constructed and sequenced using Illumina platform. In total, 97 microRNAs from 18 conserved families were identified. miR319, miR390, and miR393 revealed expression alterations associated with Al treatment of flax plants. Moreover, for miR390 and miR393, the alterations were distinct in sensitive and resistant to Al genotypes. Expression level changes of miR319 and miR390 were confirmed using qPCR analysis. In flax, potential targets of miR319 are TCPs, miR390-TAS3 and GRF5, and miR393-AFB2-coding transcripts. TCPs, TAS3, GRF5, and AFB2 participate in regulation of plant growth and development. The involvement of miR319, miR390, and miR393 in response to Al stress in flax was shown here for the first time. We speculate that these microRNAs play an important role in Al response via regulation of growth processes in flax plants.
NASA Astrophysics Data System (ADS)
Ulén, Barbro; Djodjic, Faruk; Etana, Araso; Johansson, Göran; Lindström, Jan
2011-03-01
SummaryA refined version of a conditional phosphorus risk index (PRI) for P losses to waters was developed based on monitoring and analyses of PRI factors from an agricultural catchment in Sweden. The catchment has a hummocky landscape of heavy glacial till overlying moraine and an overall balanced soil P level. Single P source factors and combinations of factors were tested and discussed together with water movement and water management factors important for catchments dominated by drained clay soils. An empirical relationship was established (Pearson correlation coefficient 0.861, p < 0.001) between phosphorus sorption index (PSI-CaCl 2), measured in a weak calcium chloride solution, and iron (Fe-AL) aluminium (Al-AL) and phosphorus (P-AL) in soil extract with acid ammonium lactate. Differing relationships were found for a field that had not received any manure in the last 15 years and a field that had received chicken litter very recently. In addition, a general relationship (Pearson correlation coefficient 0.839, p < 0.001) was found between the ratio of phosphorus extracted from fresh soil in water (Pw) to PSI-CaCl 2 and the degree of phosphorus saturation in lactate extract (DPS-AL). One exception was a single field, representing 7% of agricultural land in the catchment, that had been treated with glyphosate shortly before soil sampling. Saturated hydraulic conductivity (SHC) in heavy clay in contact with the moraine base (at 1 m depth) was on average 0.06 m day -1. In clay not in contact with moraine, SHC was significantly lower (mean 0.007 m day -1). A reduction in the present tile drain spacing (from 14-16 m to 11 m) is theoretically required to maintain satisfactory water discharge and groundwater level. Up to 10% of the arable land was estimated to be a potential source area for P, based on different indices. Parts of a few fields close to farm buildings (1% of total arable land) were identified as essential P source areas, with high DPS-AL values and low PSI-CaCl 2 values throughout the soil profile. A further 2% of arable land was identified as potential important transport areas, based on visible surface water rills or frequent water-ponded conditions. Fields comprising 10% of the total arable land in the catchment should be re-drained in the near future to improve water infiltration and avoid unnecessary channelised water flow. The need for an improved PRI for erosion and water transport is discussed.
NASA Astrophysics Data System (ADS)
Maubec, Nicolas; Pauwels, Hélène; Noël, Hervé; Bourrat, Xavier
2015-04-01
Knowledge of the behavior of heavy metals, such as copper and zinc in sediments, is a key factor to improve the management of rivers. The mobility of these metals, which may be harmful to the environment, depends directly on their concentration and speciation , which in turn depend on physico-chemical parameters such as mineralogy of the sediment fraction, pH, redox potential, salinity etc ... (Anderson et al., 2000; Sterckeman et al., 2004; Van Oort et al., 2008). Several methods based on chemical extractions are currently applied to assess the behavior of heavy metals in soils and sediments. Among them, sequential extraction procedure is widely used in soil and sediment science and provides details about the origin, biological and physicochemical availability, mobilization and transports of trace metals elements. It is based on the use of a series of extracting reagents to extract selectively heavy metals according to their association within the solid phase (Cornu and Clozel, 2000) including the following different fraction : exchangeable, bound to carbonates, associated to oxides (reducible fraction), linked to organic matter and sulfides (oxidizable fraction) as well as silicate minerals so called residual fraction (Hickey and Kittrick, 1984; Tessier et al., 1979). Consequently sequential extraction method is expected to simulate a lot of potential natural and anthropogenic modifications of environmental conditions (Arey et al., 1999; Brannon and Patrick, 1987; Hickey and Kittrick, 1984; La Force et al., 1999; Tessier et al., 1979). For three decades, a large number of protocols has been proposed, characterized by specific reagents and experimental conditions (concentrations, number of steps, extraction orders and solid/solution ratio) (Das et al., 1995; Gomez Ariza et al., 2000; Quevauviller et al., 1994; Rauret, 1998; Tack and Verloo, 1995), but it appeared that several of them suffer from a lack of selectivity of applied reagents: besides target ones, some of them are able to leach several solid phases. In this context, the aim of the present study is to investigate the effectiveness and the selectivity of different reagents for metal extraction from target geochemical fraction. It is based on solid analyses with the use of X-ray diffraction and a scanning electron microscopy (SEM) coupled to a microRaman spectrometer in conjunction with chemical analyses of extracting solutions at each step. This methodology provides the opportunity to assess more accurately the effect of each reagent. The study focuses on extraction of Cu and Zn from sediment samples collected at two sites from river banks and characterized by presence of Quartz, Feldspar K, Micas, Kaolinite but with differences regarding accessory phases (pyrite, organic matter, iron oxy- hydroxide, calcite). The interaction of the samples with eight different reagents was assessed and compared (Ca(NO3)2 and CaCl2 for the exchangeable fraction; buffered solutions of sodium acetate/acetic acid at pH = 5.5 and pH = 5 for the acido-soluble fraction; hydroxylamine hydrochloride and a solution of ammonium oxalate/oxalic acid for reducible fraction; hydrogen peroxide and sodium hypochlorite for the oxidizable fraction. In-depth characterization of solid residue at each step allowed proposing the best protocol for both metals. Anderson, P., Davidson, C. M., Duncan, A. L., Littlejohn, D., Ure, A. M., and Garden, L. M. (2000). Column leaching and sorption experiments to assess the mobility of potentially toxic elements in industrially contaminated land. Journal of Environmental Monitoring, 2. Arey, J. S., Seaman, J. C., and Bertsch, P. M. (1999). Immobilization of uranium in contaminated sediments by hydroxyapatite addition. Environmental Science & Technology, 33, 337-342. Brannon, J. M., and Patrick, W. H. (1987). Fixation, transformation, and mobilization of arsenic in sediments.Environmental Science & Technology, 21, 450-459. Cornu, S., and Clozel, B. (2000). Extractions séquentielles et spéciation des éléments trace métalliques dans les sols naturels. Analyse critique. 7, 179-189. Das, A. K., Chakraborty, R., Cervera, M. L., and Delaguardia, M. (1995). Metal speciation in solid matrices. Talanta, 42. Gomez Ariza, J. L., Giraldez, I., Sanchez-Rodas, D., and Morales, E. (2000). Selectivity assessment of a sequential extraction procedure for metal mobility characterization using model phases. Talanta, 52, 545-554. Hickey, M. G., and Kittrick, J. A. (1984). Chemical partitioning of cadmium, copper, nickel and zinc in soils and sediments containing high-levels of heavy metals. Journal of Environmental Quality, 13, 372-376. La Force, M. J., Fendorf, S., Li, G. C., and Rosenzweig, R. F. (1999). Redistribution of trace elements from contaminated sediments of Lake Coeur d'Alene during oxygenation. Journal of Environmental Quality, 28, 1195-1200. Quevauviller, P., Rauret, G., Muntau, H., Ure, A. M., Rubio, R., Lopezsanchez, J. F., Fiedler, H. D., and Griepink, B. (1994). Evaluation of a sequential extraction procedure for the determination of extractable trace-metal contents in sediments. Fresenius Journal of Analytical Chemistry, 349. Rauret, G. (1998). Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta, 46(3), 449-455. Sterckeman, T., Douay, F., Baize, D., Fourrier, H., Proix, N., and Schvartz, C. (2004). Factors affecting trace element concentrations in soils developed on recent marine deposits from northern France. Applied Geochemistry, 19. Tack, F. M. G., and Verloo, M. G. (1995). Chemical speciation and fraéctination in soil and sediment heavy-metal analysis - a review. International Journal of Environmental Analytical Chemistry, 59, 225-238. Tessier, A., Campbell, P. G. C., and Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace-metals. Analytical Chemistry, 51. Van Oort, F., Jongmans, A. G., Lamy, I., Baize, D., and Chevallier, P. (2008). Impacts of long-term waste-water irrigation on the development of sandy Luvisols: consequences for metal pollutant distributions. European Journal of Soil Science, 59.
Kelly, Charlene N.; Peltz, Christopher D.; Stanton, Mark R.; Rutherford, David W.; Rostad, Colleen E.
2014-01-01
Waste rock piles from historic mining activities remain unvegetated as a result of metal toxicity and high acidity. Biochar has been proposed as a low-cost remediation strategy to increase soil pH and reduce leaching of toxic elements, and improve plant establishment. In this laboratory column study, biochar made from beetle-killed pine wood was assessed for utility as a soil amendment by mixing soil material from two mine sites collected near Silverton, Colorado, USA with four application rates of biochar (0%, 10%, 20%, 30% vol:vol). Columns were leached seven times over 65 days and leachate pH and concentration of toxic elements and base cations were measured at each leaching. Nutrient availability and soil physical and biological parameters were determined following the incubation period. We investigated the hypotheses that biochar incorporation into acidic mine materials will (1) reduce toxic element concentrations in leaching solution, (2) improve soil parameters (i.e. increase nutrient and water holding capacity and pH, and decrease compaction), and (3) increase microbial populations and activity. Biochar directly increased soil pH (from 3.33 to 3.63 and from 4.07 to 4.77 in the two materials) and organic matter content, and decreased bulk density and extractable salt content in both mine materials, and increased nitrate availability in one material. No changes in microbial population or activity were detected in either mine material upon biochar application. In leachate solution, biochar increased base cations from both materials and reduced the concentrations of Al, Cd, Cu, Pb, and Zn in leachate solution from one material. However, in the material with greater toxic element content, biochar did not reduce concentrations of any measured dissolved toxic elements in leachate and resulted in a potentially detrimental release of Cd and Zn into solution at concentrations above that of the pure mine material. The length of time of effectiveness and specific sorption by biochar is variable by element and the toxic element concentration and acidity of the initial mine material.
How ISCO Can Interfere in Soil Pore Distribution and Solute Transport
NASA Astrophysics Data System (ADS)
Favero, M.; Freitas, J. G.; Furquim, S. A. C.; Thomson, N. R.; Cooper, M.
2016-12-01
Recently in situ chemical oxidation (ISCO) has been a remedy of choice for sites contaminated with organic compounds. However, the impact of the chemical oxidant on soil properties and, therefore, on solute transport and remediation efficiency still lacks understanding. This research effort sought to evaluate the changes in soil physical properties and solute transport behavior in a typical tropical soil (Oxisol) resulting from exposure to persulfate. The Oxisol used had a microaggregate structure, resulting in a relatively high hydraulic conductivity despite the high clay content (67%). One-dimensional laboratory experiments were performed using a saturated undisturbed column. The injection of an ideal tracer (bromide), a reactive tracer (phenol) and persulfate (12 ± 1 gL-1 for 30 d) were performed consecutively. The tracer tests were repeated following persulfate injection. Transport parameters (longitudinal dispersivity: αL and retardation factor: R) and the effective porosity (ne) were obtained by fitting the breakthrough curves with an analytical solution for one-dimensional transport. Micromorphological analyses of porosity were conducted on impregnated soil blocks from control and oxidized systems. The bromide and phenol tracer test data yielded αL of 2.431 ± 0.002 cm, ne of 41.99 ± 1.52 %, R of 1.10, and a first-order decay rate coefficient of 6.5x10-5 min-1 prior to persulfate exposure. The effluent persulfate concentration stabilized at C/Co of 0.8 after 4 d of injection and the breakthrough was delayed relative to bromide. Concurrent with the breakthrough of persulfate, the pH decreased and a progressive release of Al (III) over the first 4 d with subsequent stabilization were observed. Following persulfate exposures the hydraulic conductivity increased about one-order of magnitude. Micromorphological analysis showed that persulfate produced alterations in poroids types, with an increase of complex packing voids. It was verified that persulfate promotes the dissolution of soil minerals, and likely affects the microaggregates structure of the Oxisol, resulting in formation of preferential paths and changing the flux patterns within the soil column.
NASA Astrophysics Data System (ADS)
Di Prima, Simone; Bagarello, Vincenzo; Iovino, Massimo
2017-04-01
Simple infiltration experiments carried out in the field allow an easy and inexpensive way of characterizing soil hydraulic behavior, maintaining the functional connection of the sampled soil volume with the surrounding soil. The beerkan method consists of a three-dimensional (3D) infiltration experiment at zero pressure head (Haverkamp et al., 1996). It uses a simple annular ring inserted to a depth of about 0.01 m to avoid lateral loss of the ponded water. Soil disturbance is minimized by the limited ring insertion depth. Infiltration time of small volumes of water repeatedly poured on the confined soil are measured to determine the cumulative infiltration. Different algorithms based on this methodology (the so-called BEST family of algorithms) were developed for the determination of soil hydraulic characteristic parameters (Bagarello et al., 2014a; Lassabatere et al., 2006; Yilmaz et al., 2010). Recently, Bagarello et al. (2014b) developed a Simplified method based on a Beerkan Infiltration run (SBI method) to determine saturated soil hydraulic conductivity, Ks, by only the transient phase of a beerkan infiltration run and an estimate of the α* parameter, expressing the relative importance of gravity and capillary forces during an infiltration process (Reynolds and Elrick, 1990). However, several problems yet arise with the existing BEST-algorithms and the SBI method, including (i) the need of supplementary field and laboratory measurements (Bagarello et al., 2013); (ii) the difficulty to detect a linear relationship between I / √t and √t in the early stage of the infiltration process (Bagarello et al., 2014b); (iii) estimation of negative Ks values for hydrophobic soils (Di Prima et al., 2016). In this investigation, a new Simplified method based on the analysis of the Steady-state Beerkan Infiltration run (SSBI method) was proposed and tested. In particular, analytical data were generated to simulate beerkan infiltration experiments for six contrasting soils (sand, S; loamy sand, LS; sandy loam, SAL; loam, L; silt loam, SIL and silty clay loam, SCL) from UNSODA database and different initial water contents. Comparison with other existing procedures were also carried out. The SSBI method allowed accurate estimation of saturated soil hydraulic conductivity of both field and analytically generated data. For analytically generated data, the most accurate predictions were obtained with the method 2 by Wu et al. (1999) for the S and LS soils (prediction errors not exceeding 3.8%) and with the SSBI method for the other four soils (error < 3.7%). Therefore, this last method performed better than the other tested methods in most cases. The analysis of the field data supported the usability of the SSBI method in different environments and conditions to obtain an acceptable prediction of Ks, i.e. similar to the one that can be obtained with the BEST-steady algorithm (Bagarello et al., 2014a). Finally, this investigation yielded encouraging signs on the applicability of the SSBI method for a trustworthy estimation of Ks by the near steady-state phase of a beerkan infiltration run. REFERENCES Bagarello, V., Castellini, M., Di Prima, S., Giordano, G., Iovino, M., 2013. Testing a Simplified Approach to Determine Field Saturated Soil Hydraulic Conductivity. Procedia Environmental Sciences 19, 599-608. doi:10.1016/j.proenv.2013.06.068 Bagarello, V., Di Prima, S., Iovino, M., 2014a. Comparing Alternative Algorithms to Analyze the Beerkan Infiltration Experiment. Soil Science Society of America Journal 78, 724. doi:10.2136/sssaj2013.06.0231 Bagarello, V., Di Prima, S., Iovino, M., Provenzano, G., 2014b. Estimating field-saturated soil hydraulic conductivity by a simplified Beerkan infiltration experiment. Hydrological Processes 28, 1095-1103. doi:10.1002/hyp.9649 Di Prima, S., Lassabatere, L., Bagarello, V., Iovino, M., Angulo-Jaramillo, R., 2016. Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma 262, 20-34. doi:10.1016/j.geoderma.2015.08.006 Haverkamp, R., Arrúe, J., Vandervaere, J., Braud, I., Boulet, G., Laurent, J., Taha, A., Ross, P., Angulo-Jaramillo, R., 1996. Hydrological and thermal behaviour of the vadose zone in the area of Barrax and Tomelloso (Spain): Experimental study, analysis and modeling. Project UE n. EV5C-CT 92, 00-90. Lassabatere, L., Angulo-Jaramillo, R., Soria Ugalde, J.M., Cuenca, R., Braud, I., Haverkamp, R., 2006. Beerkan Estimation of Soil Transfer Parameters through Infiltration Experiments—BEST. Soil Science Society of America Journal 70, 521. doi:10.2136/sssaj2005.0026 Reynolds, W.D., Elrick, D.E., 1990. Ponded Infiltration From a Single Ring: I. Analysis of Steady Flow. Soil Science Society of America Journal 54, 1233. doi:10.2136/sssaj1990.03615995005400050006x Wu, L., Pan, L., Mitchell, J., Sanden, B., 1999. Measuring Saturated Hydraulic Conductivity using a Generalized Solution for Single-Ring Infiltrometers. Soil Science Society of America Journal 63, 788. doi:10.2136/sssaj1999.634788x Yilmaz, D., Lassabatere, L., Angulo-Jaramillo, R., Deneele, D., Legret, M., 2010. Hydrodynamic Characterization of Basic Oxygen Furnace Slag through an Adapted BEST Method. Vadose Zone Journal 9, 107. doi:10.2136/vzj2009.0039
Sorption of the Aircraft Deicing Fluid Component Methyl-Benzotriazole in Soil
1999-03-01
Atlas , Ronald M., Bartha , Richard, Microbial Ecology : Fundamentals and Applications. Benjamin Cummings: Redwood City, 1993. Ball, William P., Roberts...cell; transfer of substances from one medium to another [ Atlas and Bartha , 533; Fetter, 117]. (2) The process by which a compound in solution or...oxygen, low redox potential. [ Atlas and Bartha , 534; Schwarzenbach et al, 410] Aromatic compound - Carbon skeletons containing aromatic benzene ring and
Wu, Jun; Wu, Minjie; Li, Chunping; Yu, Guanghui
2014-01-01
The binding characteristics of organic ligands and minerals in fulvic acids (FAs) with Al are essential for understanding soil C sequestration, remain poorly understood. In this study, Fourier transform infrared (FTIR) spectroscopy combined with two-dimensional correlation spectroscopy (2DCOS) analysis was applied for the first time to explore the binding of Al with organic ligands and minerals in soil FAs. For these analyses, two contrasting treatments were selected from a long-term (i.e., 22-year) fertilization experiment: chemical (NPK) fertilization and swine manure (SM) fertilization. The results showed that the long-term application of organic and inorganic fertilizers to soils had little effect on the compositions of the fluorescent substances and organic ligands in the soil FAs. However, long-term SM fertilization increased the weathered Al and Si concentrations in the soil FAs compared with long-term chemical fertilization. Furthermore, organic ligands in the soil FAs were mainly bound with Al in the NPK treatment, whereas both organic ligands and minerals (Al-O-Si, Si-O) were bound with Al under the M fertilization conditions. Both transmission electron microscopy (TEM) images and X-ray diffraction spectra demonstrated that amorphous and short-range-ordered nanominerals were abundant in the soil FAs from the SM plot in contrast to the soil FAs from the NPK plot. This result illustrates the role nanominerals play in the preservation of soil FAs by during long-term organic fertilization. In summary, the combination of FTIR and 2D correlation spectroscopy is a promising approach for the characterization of the binding capability between soil FAs and Al, and a better understanding FA-Al binding capability will greatly contribute to global C cycling. PMID:25137372
NASA Astrophysics Data System (ADS)
van der Ploeg, Martine; de Rooij, Gerrit
2014-05-01
Periods of soil water deficit often occur within a plant's life cycle, even in temperate deciduous and rain forests (Wilson et al. 2001, Grace 1999). Various experiments have shown that roots are able to sense the distribution of water in the soil, and produce signals that trigger changes in leaf expansion rate and stomatal conductance (Blackman and Davies 1985, Gollan et al. 1986, Gowing et al. 1990 Davies and Zhang 1991, Mansfield and De Silva 1994, Sadras and Milroy 1996). Partitioning of water and air in the soil, solute distribution in soil water, water flow through the soil, and water availability for plants can be determined according to the distribution of the soil water potential (e.g. Schröder et al. 2013, Kool et al. 2014). Understanding plant water uptake under dry conditions has been compromised by hydrological instrumentation with low accuracy in dry soils due to signal attenuation, or a compromised measurement range (Whalley et al. 2013). Development of polymer tensiometers makes it possible to study the soil water potential over a range meaningful for studying plant responses to water stress (Bakker et al. 2007, Van der Ploeg et al. 2008, 2010). Polymer tensiometer data obtained from a lysimeter experiment (Van der Ploeg et al. 2008) were used to analyse day-night fluctuations of soil moisture in the vicinity of maize roots. To do so, three polymer tensiometers placed in the middle of the lysimeter from a control, dry and very dry treatment (one lysimeter per treatment) were used to calculate water content changes over 12 hours. These 12 hours corresponded with the operation of the growing light. Soil water potential measurements in the hour before the growing light was turned on or off were averaged. The averaged value was used as input for the van Genuchten (1980) model. Parameters for the model were obtained from laboratory determination of water retention, with a separate model parameterization for each lysimeter setup. Results show daily fluctuations in water content changes, with both root water uptake and root water excretion. The magnitude of the water content change was in the same order for all treatments, thus suggesting compensatory uptake. References Bakker G, Van der Ploeg MJ, de Rooij GH, Hoogendam CW, Gooren HPA, Huiskes C, Koopal LK and Kruidhof H. New polymer tensiometers: Measuring matric pressures down to the wilting point. Vadose Zone J. 6: 196-202, 2007. Blackman PG and Davies WJ. Root to shoot communication in maize plants of the effects of soil drying. J. Exp. Bot. 36: 39-48, 1985. Davies WJ and Zhang J. Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 55-76, 1991. Gollan T, Passioura JB and Munns R. Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leafs. Aust. J. Plant Physiol. 13: 459-464, 1986. Gowing DJG, Davies WJ and Jones HG. A Positive Root-sourced Signal as an Indicator of Soil Drying in Apple, Malus x domestica Borkh. J. Exp. Bot. 41: 1535-1540, 1990. Grace J. Environmental controls of gas exchange in tropical rain forests. In: Press, M.C, J.D. Scholes and M.G. Barker (ed.). Physiological plant ecology: the 39th Symposium of the British Ecological Society. Blackwell Science, United Kingdom, 1999. Kool D, Agam N, Lazarovitch N, Heitman JL, Sauer TJ, Ben-Gal A. A review of approaches for evapotranspiration partitioning. Agricultural and Forest Meteorology 184: 56- 70, 2014. Mansfield TA and De Silva DLR. Sensory systems in the roots of plants and their role in controlling stomatal function in the leaves. Physiol. Chem. Phys. & Med. 26: 89-99, 1994. Sadras VO and Milroy SP. Soil-water thresholds for the responses of leaf expansion and gas exchange: a review. Field Crops Res. 47: 253-266, 1996. Schröder N, Lazarovitch N, Vanderborcht J, Vereecken H, Javaux M. Linking transpiration reduction to rhizosphere salinity using a 3D coupled soil-plant model. Plant Soil 2013, doi: 10.1007/s11104-013-1990-8 Van der Ploeg MJ, Gooren HPA, Bakker G and de Rooij GH. Matric potential measurements by polymer tensiometers in cropped lysimeters under water-stressed conditions. Vadose Zone J. 7:1048-1053, 2008. Van der Ploeg MJ, Gooren HPA, Bakker G, Hoohendam CW, Huiskes C, Koopal LK, Kruidhof H and de Rooij GH. Polymer tensiometers with ceramic cones: direct observations of matric pressures in drying soils. Hydrology and Earth System Sciences 14, 1787-1799, 2010. Van Genuchten MTh. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44: 892-898, 1980. Wilson KB, Baldocchi DD and Hanson PJ. Leaf age affects the seasonal pattern of photosysnthetic capacity and net ecosystem exchange of carbon in a deciduous forest. Plant, cell and the environment 24: 571-583, 2001. Whalley WR, Ober ES, Jenkins M. Measurement of the matric protential of soil water in the rhzosphere. J. Exp. Bot. 64(13) 3951-3963, 2013.
Wacquant, J P; Picard, J Baus
1992-10-01
Dittrichia (ex Inula) viscosa is a ruderal species that has recently become an invading plant in the northwest Mediterranean basin. A previous study failed to demonstrate the occurrence of morphologically differentiated ecotypes among populations of the species but suggested the existence of nutritional ecotypes. This latter possibility is examined here by comparing the ability of plants from contrasting habitats to control cation accumulation balance. Dittrichia viscosa plants, from eight siliceous habitats and nine calcareous habitats of southern France and neighbouring Spain and Italy, were cloned and grown together hydroponically with a solution simulating an acid soil with an aluminium constraint. Two independent hydroponic units containing solution supplemented with two levels of Al were used (2 Al levels x17 populations x3 genotypes x3 replicates). The growth and cation content (K, Ca, Mg and Na) of plant shoots and the chemical composition of the soil of each habitat were analysed. At the high Al level (1.1MM), populations differed in K, Ca and Mg plant proportions. Two groups could be distinguished: one containing all but one siliceous populations and the other containing all but one calcareous populations. Plants of the siliceous group accumulated proportionally more K and less Ca, and had better growth, than plants of the calcareous group, in the same way as calcifuge and calcicole species when grown on acid soil. At the lowest Al level (0.37MM), differences between siliceous and calcareous populations were less marked. The results suggest that differences in the ability of plants to control K and Ca balance, which appear to be of adaptive significance, could have arisen through selection, and that Dittrichia viscosa has evolved calcifuge and calcicole nutritional ecotypes in siliceous and calcareous habitats respectively. Various degrees of calcifugy, and to a lesser extent of calcicoly, can thus be suggested to occur among the studied populations, some in relation to the intensity of mineral stress in the natural habitats. So far, only functional traits have provided evidence of ecotypic differentiations within Dittrichia viscosa.
Su, Jeng-Yan; Syu, Chien-Hui; Lee, Dar-Yuan
2018-02-15
Limited information exists on the effects of emerging contaminants gallium (Ga) and indium (In) on rice plant growth. This study investigated the effects on growth and uptake of Ga and In by rice plants grown in soils with different properties. Pot experiment was conducted and the rice seedlings were grown in two soils of different pH (Pc and Cf) spiked with various Ga and In concentrations. The results showed concentrations of Ga, In, and Al in soil pore water increased with Ga- or In-spiking in acidic Pc soils, significantly decreasing growth indices. According to the dose-response curve, we observed that the EC 50 value for Ga and In treatments were 271 and 390mgkg -1 in Pc soils, respectively. The context of previous hydroponic studies suggests that growth inhibition of rice seedlings in Ga-spiked Pc soils is mainly due to Al toxicity resulting from enhanced Al release through competitive adsorption of Ga, rather than from Ga toxicity. In-spiked Pc soils, both In and Al toxicity resulted in growth inhibition, while no such effect was found in Cf soils due to the low availability of Ga, In and Al under neutral pH conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Growth and survival of cowpea rhizobia in acid, aluminum-rich soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartel, P.G.; Alexander, M.
1983-01-01
A study was undertaken to determine whether Al-sensitive cowpea Rhizobium survives in acid, Al-rich soils. The lower pH limit for growth of 20 strains in a defined liquid medium varied from pH 4.2 to less than pH 3.6. The mean lower limit for growth was pH 3.9. Several of the strains clumped in this medium at pH 4.5. Of 11 strains that were tested for tolerance to high levels of Al in a defined liquid medium at pH 4.5, nine tolerated 75 ..mu..M Al, and the other two were sensitive to levels above 15 ..mu..M. Three strains, one Al-tolerant, onemore » Al-sensitive, and one Al-tolerant or Al-sensitive depending on the presence of vitamins in the medium, were selected for studies in Al-rich sterile and nonsterile soils. These rhizobia did not survive in soils of less than pH 4.7 sterilized by /sup 60/Co irradiation. When inoculated into sterile soil at pH 4.7, the consistently sensitive strain initially failed to proliferate and then grew slowly, but populations of the other two rhizobia increased rapidly. No consistent relationship was found between the Al tolerance of these three rhizobia and their growth and survival in four acid, Al-rich soils. The data suggest that Al is of minor importance to growth and survival of cowpea Rhizobium strains in acid soils. 16 references, 4 figures, 1 table.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fan; Parker, Jack C.; Luo, Wensui
2008-01-01
Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This study was undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cationmore » exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO{sub 4}{sup 2-} for contaminated sediments indicated close agreement, suggesting that the model could potentially be used to predict the acid-base behavior of the sediment-solution system under variable pH conditions.« less
NASA Astrophysics Data System (ADS)
Fleury, Guillaume; Del Nero, Mirella; Barillon, Rémi
2017-01-01
We addressed the effects of mineral surface properties (kaolinite versus Al-oxide) on the sorption-driven fractionation of a soil fulvic acid (FA) at acidic pH, mainly by means of ESI(-)-FTMS analysis of initial and supernatant solutions of FA sorption batch experiments. The MS data provided clear molecular-scale evidence of distinct mechanisms and molecular parameters controlling the FA fractionation upon its sorption on clay and oxide surfaces, respectively. Identification of sorbing and not-sorbing FA compounds in kaolinite-solution systems revealed a weak fractionation among members of sbnd CO2 series of aliphatics or not-condensed aromatics (NCAs) at pH 3.8, and almost no sorption of poorly-oxygenated polycyclic aromatic compounds (PACs) and NCAs. This first molecular-scale description of a FA fractionation in a clay-solution system suggests that H-bonding with low affinity sites (aluminol/silanol) on the basal planes of the clay particles is the main mechanism of sorption. Due to the predominance of such weak and poorly-selective mechanism, the sorption of aliphatic and NCA molecules bearing oxygenated functionalities was prevented at pH 5, due to dissolved Al competing successfully for their coordination. In contrast, a strong FA fractionation was observed onto alumina, with a preferential retention of PACs and highly-oxygenated aliphatics and NCAs. The major part of the poorly oxygenated aliphatics was left in solution. The sorption degree of NCAs and aliphatics was strongly correlated with molecular acidity. For PACs and poorly-oxygenated NCAs, the sorption was driven by reactions of surface ligand exchange (for the most oxygenated compounds) or by hydrophobic interactions (for the least oxygenated compounds).
Effect of coexisting Al(III) ions on Pb(II) sorption on biochars: Role of pH buffer and competition.
Yang, Yuxi; Zhang, Weihua; Qiu, Hao; Tsang, Daniel C W; Morel, Jean-Louis; Qiu, Rongliang
2016-10-01
Biochar is being widely considered as a promising amendment agent for immobilizing heavy metals in contaminated acidic soils, where plenty of soluble Al(III) ions exist. In view of uncertain significance of the effects of coexisting Al(III) on Pb(II) sorption by biochars, this study used kenaf core biochar (KB550; high carbon, low ash) and sewage sludge biochar (SB550; low carbon, high ash) pyrolyzed at 550 °C to elucidate the influence of coexisting Al(III) species and biochars' mineral components on Pb(II) immobilization conducted in aqueous solution with initial pHs of 3.0-4.5. Results showed that Al(III) reduced Pb(II) sorption on KB550 primarily via pH buffering against biochar alkalinity, thus inhibiting lead carbonate formation. In contrast, the reduction on SB550 mainly resulted from direct competition for sorption sites, especially on Fe-rich phengite 2M1 and metakaolinite. Because of Pb-P precipitation and Pb-K interlayer exchange, the residual Pb(II) adsorption capacity resistant to coexisting Al(III) was 3-5 times higher on SB550 than on KB550. The Pb-K interlayer exchange was enhanced by lower pH and coexisting Al(III), while Pb-P precipitation was the dominant Pb(II) sorption mechanism on SB550 resistant to Al(III) buffering and competition at higher pH. Application of these two biochars as amendments confirmed that the mineral-rich SB550 was more suitable for Pb(II) immobilization in acidic soils with high levels of extractable Al(III). Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Rao, M. N.; McKay, David S.
2004-01-01
Impact-melt glasses containing Martian atmospheric gases in Mars meteorite EET79001 are formed from Martian soil fines that had undergone meteoroid-comminution and aeolian sorting accompanied by chemical weathering near Mars surface. Using SiO2 and SO3 as proxy for silicates and salts respectively in Mars soils, we find that SiO2 and SO3 correlate negatively with FeO and MgO and positively with Al2O3 and CaO in these glasses, indicating that the mafic and felsic components are depleted and enriched relative to the bulk host (Lith A/B) respectively as in the case of Moon soils. Though the overall pattern of mineral fractionation is similar between the soil fines on Mars and Moon, the magnitudes of the enrichments/depletions differ between these sample-suites because of pervasive aeolian activity on Mars. In addition to this mechanical processing, the Martian soil fines, prior to impact-melting, have undergone acid-sulfate dissolution under oxidizing/reducing conditions. The S03 content in EET79001,507 (Lith B) glass is approx.18% compared to < 2% in EET79001, 506 (Lith A). SiO2 and SO3 negatively correlate with each other in ,507 glasses similar to Pathfinder soils. The positive correlation found between FeO and SO3 in ,507 glasses as well as Pathfinder rocks and soils is consistent with the deposition of ferric-hydroxysulfate on regolith grains in an oxidizing environment. As in the case of Pathfinder soils, the Al 2O3 vs SiO2 positive correlation and FeO VS S102 negative correlation observed in ,507 glasses indicate that SiO2 from the regolith is mobilized as soluble silicic acid at low pH. The large off-set in the end-member FeO abundance ( SO3=0) between Pathfinder soil-free rock and sulfur-free rock in ,507 glass precursors suggests that the soils comprising the ,507 glasses contain much larger proportion of fine-grained Martian soil fraction that registers strong mafic depletion relative to Lith B. This inference is strongly supported by the Al2O3 - SO3 negative correlation observed in both ,507 glasses and pathfinder soils. Furthermore, the flat MgO-SO3 correlation observed in the case of ,507 glasses shows that the solubilized MgSO4 is mobilized by the aqueous solutions leaving behind the rock-residue with approx.2-3% MgO. This value is similar to the approx.2% MgO found for the soil-free rock at the Pathfinder site. The EET79001 ,506 glasses, in contrast, show that Al2O3 and CaO positively correlate with SO3 indicating that Al is precipitated as amorphous hydroxysulfate at relatively high pH. The FeO - SO3 negative correlation observed in ,506 glasses yields an end-member FeO abundance of approx.21% for the sulfur-free rock, which is consistent with the 22% FeO deduced for the Viking soil-free rock. Further, the FeO and MgO negative correlation with S03 observed in ,506 glasses indicates that the divalent Fe and Mg released from ferromagnesian minerals by acid sulfate dissolution are mobilized away from the reaction sites as soluble sulfates under reducing environment. A similar negative correlation between FeO and SO3 and a positive correlation between Al2O3 and SO3 found in Viking soils suggest that they also had undergone acid-sulfate dissolution under relatively reducing conditions.
Porras, Rachel C.; Hicks Pries, Caitlin E.; McFarlane, Karis J.; ...
2017-05-13
Soil organic carbon (SOC) can be stabilized via association with iron (Fe) and aluminum (Al) minerals. Fe and Al can be strong predictors of SOC storage and turnover in soils with relatively high extractable metals content and moderately acidic to circumneutral pH. Here we test whether pedogenic Fe and Al influence SOC content and turnover in soils with low Fe and Al content and acidic pH. In soils from four sites spanning three soil orders, we quantified the amount of Fe and Al in operationally-defined poorly crystalline and organically-complexed phases using selective chemical dissolution applied to the soil fraction containingmore » mineral-associated carbon. We evaluated the correlations of Fe and Al concentrations, mean annual precipitation (MAP), mean annual temperature (MAT), and pH with SOC content and 14C-based turnover times. We found that poorly crystalline Fe and Al content predicted SOC turnover times (p < 0.0001) consistent with findings of previous studies, while organically-complexed Fe and Al content was a better predictor of SOC concentration (p < 0.0001). Greater site-level MAP (p < 0.0001) and colder site-level MAT (p < 0.0001) were correlated with longer SOC turnover times but were not correlated with SOC content. Our results suggest that poorly crystalline Fe and Al effectively slow the turnover of SOC in these acidic soils, even when their combined content in the soil is less than 2% by mass. However, in the strongly acidic Spodosol, organo-metal complexes tended to be less stable resulting in a more actively cycling mineral-associated SOC pool.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porras, Rachel C.; Hicks Pries, Caitlin E.; McFarlane, Karis J.
Soil organic carbon (SOC) can be stabilized via association with iron (Fe) and aluminum (Al) minerals. Fe and Al can be strong predictors of SOC storage and turnover in soils with relatively high extractable metals content and moderately acidic to circumneutral pH. Here we test whether pedogenic Fe and Al influence SOC content and turnover in soils with low Fe and Al content and acidic pH. In soils from four sites spanning three soil orders, we quantified the amount of Fe and Al in operationally-defined poorly crystalline and organically-complexed phases using selective chemical dissolution applied to the soil fraction containingmore » mineral-associated carbon. We evaluated the correlations of Fe and Al concentrations, mean annual precipitation (MAP), mean annual temperature (MAT), and pH with SOC content and 14C-based turnover times. We found that poorly crystalline Fe and Al content predicted SOC turnover times (p < 0.0001) consistent with findings of previous studies, while organically-complexed Fe and Al content was a better predictor of SOC concentration (p < 0.0001). Greater site-level MAP (p < 0.0001) and colder site-level MAT (p < 0.0001) were correlated with longer SOC turnover times but were not correlated with SOC content. Our results suggest that poorly crystalline Fe and Al effectively slow the turnover of SOC in these acidic soils, even when their combined content in the soil is less than 2% by mass. However, in the strongly acidic Spodosol, organo-metal complexes tended to be less stable resulting in a more actively cycling mineral-associated SOC pool.« less
Soil water content plays an important role in soil-atmosphere exchange of carbonyl sulfide (OCS)
NASA Astrophysics Data System (ADS)
Yi, Zhigang; Behrendt, Thomas; Bunk, Rüdiger; Wu, Dianming; Kesselmeier, Jürgen
2016-04-01
Carbonyl sulfide (OCS) is a quite stable gas in the troposphere and is transported up to the stratosphere, where it contributes to the sulfate aerosol layer (Crutzen 1976). The tropospheric concentration seems to be quite constant, indicating a balance between sinks and sources. Recent work by Sandoval-Soto et al. (2005) demonstrated the enormous strength of the vegetation sink and the urgent needs to understand the sinks and sources. The role of soils is a matter of discussion (Kesselmeier et al., 1999; Van Diest and Kesselmeier, 2008; Maseyk et al., 2014; Whelan et al., 2015). To better understand the influence of soil water content and OCS mixing ratio on OCS fluxes, we used an OCS analyzer (LGR COS/CO Analyzer 907-0028, Los Gatos, CA, USA) coupled with automated soil chamber system (Behrendt et al., 2014) to measure the OCS fluxes with a slow drying of four different types of soil (arable wheat soil in Mainz, blueberry soil in Waldstein, spruce soil in Waldstein and needle forest soil in Finland). Results showed that OCS fluxes as well as the optimum soil water content for OCS uptake varied significantly for different soils. The net production rates changed significantly with the soil drying out from 100% to about 5% water holding capacity (WHC), implying that soil water content play an important role in the uptake processes. The production and uptake processes were distinguished by the regression of OCS fluxes under different OCS mixing ratios. OCS compensation points (CP) were found to differ significantly for different soil types and water content, with the lowest CP at about 20% WHC, implying that when estimating the global budgets of OCS, especially for soils fluxes, soil water content should be taken into serious consideration. References Crutzen, P. J. 1976, Geophys. Res. Lett., 3, 73-76. Sandoval-Soto, L. et al., 2005, Biogeosciences, 2, 125-132. Kesselmeier, J. et al., 1999, J. Geophys. Res., 104, 11577-11584. Van Diest, H. and Kesselmeier, J. 2008, Biogeosciences, 5, 475-483. Maseyk, K. et al., 2014, PNAS, 111, No 25, 9064-9069. Whelan, M. E., and Rhew, R., C. 2015, J. Geophys. Res., 120, 54-62. Behrendt, T. et al., 2014, Biogeosciences, 11, 5463-5492.
Chemical evaluation of soil-solution in acid forest soils
Lawrence, G.B.; David, M.B.
1996-01-01
Soil-solution chemistry is commonly studied in forests through the use of soil lysimeters.This approach is impractical for regional survey studies, however, because lysimeter installation and operation is expensive and time consuming. To address these problems, a new technique was developed to compare soil-solution chemistry among red spruce stands in New York, Vermont, New Hampshire, Maine. Soil solutions were expelled by positive air pressure from soil that had been placed in a sealed cylinder. Before the air pressure was applied, a solution chemically similar to throughfall was added to the soil to bring it to approximate field capacity. After the solution sample was expelled, the soil was removed from the cylinder and chemically analyzed. The method was tested with homogenized Oa and Bs horizon soils collected from a red spruce stand in the Adirondack Mountains of New York, a red spruce stand in east-central Vermont, and a mixed hardwood stand in the Catskill Mountains of New York. Reproducibility, effects of varying the reaction time between adding throughfall and expelling soil solution (5-65 minutes) and effects of varying the chemical composition of added throughfall, were evaluated. In general, results showed that (i) the method was reproducible (coefficients of variation were generally < 15%), (ii) variations in the length of reaction-time did not affect expelled solution concentrations, and (iii) adding and expelling solution did not cause detectable changes in soil exchange chemistry. Concentrations of expelled solutions varied with the concentrations of added throughfall; the lower the CEC, the more sensitive expelled solution concentrations were to the chemical concentrations of added throughfall. Addition of a tracer (NaBr) showed that the expelled solution was a mixture of added solution and solution that preexisted in the soil. Comparisons of expelled solution concentrations with concentrations of soil solutions collected by zero-tension and tension lysimetry indicated that expelled solution concentrations were higher than those obtained with either type of lysimeter, although there was less difference with tension lysimeters than zero-tension lysimeters. The method used for collection of soil solution should be taken into consideration whenever soil solution data are being interpreted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartel, P.G.; Whelan, A.M.; Alexander, M.
1983-01-01
A study was undertaken to determine whether the reduced nodulation of cowpeas (Vigna unguiculata (L.) Walp) grown in certain acid, Alrich soils resulted from the poor survival of the potentially infective rhizobia. Two strains of Rhizobium capable of nodulating cowpeas were used. The lowest pH for growth in defined liquid medium was 4.2 for one strain and 3.9 for the other. Only the latter was Al tolerant and could grow in a defined liquid medium containing 50 ..mu..M KAl(SO/sub 4/)/sub 2/. The survival of the bacteria and their ability to nodulate cowpeas in three soils were measured after the soilsmore » were amended with Ca or Al salts to give pH values ranging from 5.7 to 4.1 and extractable-Al concentrations from < 0.1 to 3.7 cmol(p/sup +/)/kg of soil. Only small differences in survival in 7 or 8 weeks were noted between the two strains. Plants inoculated with the Al-sensitive strain bore significantly fewer nodules in the more acid, Al-rich soils than in the same soils with higher pH values and less extractable Al. No significant reduction in nodule number was evident for plants inoculated with the Al-tolerant strain and grown in the more acid, Al-rich soils compared to cowpeas grown in the same soils with higher pH values and less extractable Al. It is suggested that the Al content of soil is not a major factor in the survival of cowpea rhizobia but that it does have a significant effect on nodulation. 24 references, 3 figures, 2 tables.« less
Chiou, C.T.; Shoup, T.D.; Porter, P.E.
1985-01-01
Mechanistic roles of soil humus and soil minerals and their contributions to soil sorption of nonionic organic compounds from aqueous and organic solutions are illustrated. Parathion and lindane are used as model solutes on two soils that differ greatly in their humic and mineral contents. In aqueous systems, observed sorptive characteristics suggest that solute partitioning into the soil-humic phase is the primary mechanism of soil uptake. By contrast, data obtained from organic solutions on dehydrated soil partitioning into humic phase and adsorption by soil minerals is influenced by the soil-moisture content and by the solvent medium from which the solute is sorbed. ?? 1985.
NASA Astrophysics Data System (ADS)
Gosch, D. L.; Dontsova, K.; Chorover, J.; Ferré, T.; Taylor, S.
2010-12-01
During military operations, a small fraction of propellant mass is not consumed during firing and is deposited onto the ground surface (Jenkins et al., 2006). Soluble propellant constituents can be released from particulate residues into the environment. Propellant constituents of interest for this study are nitroglycerine (NG), 2,4-dinitrotoluine (2,4-DNT), 2,6-dinitrotoluine (2,6-DNT), and nitroguanidine (NQ). The goal of this work is to determine fate and transport parameters for these constituents in three soils that represent a range of geographic locations and soil properties. This supports a companion study that looks at dissolution of NG, 2,4-DNT, 2,6-DNT, and NQ from fired and unfired solid propellant formulations and their transport in soils. The three soils selected for the study are Catlin silt loam (fine-silty, mixed, mesic, superactive Oxyaquic Argiudoll), Plymouth sandy loam (mesic, coated Typic Quartzipsamment), and Sassafras loam (fine loamy, siliceous, mesic Typic Hapudult). Two of these soils, Plymouth sandy loam and Sassafras loam, were collected on military installations. Linear adsorption coefficients and transformation rates of propellant constituents were determined in batch kinetic experiments. Soils were mixed with propellant constituent solutions (2 mg L-1) at 4:1 solution/soil mass ratio and equilibrated for 0, 1, 2, 6, 12, 24, 48, and 120 hr at which time samples were centrifuged and supernatant solutions were analyzed for target compounds by high performance liquid chromatography (HPLC) using U.S. EPA Method 8330b for NG, 2,4-DNT, and 2,6-DNT, and Walsh (1989) method for NQ. Adsorption and transformation of propellant constituents were determined from the decrease in solution concentration of these compounds. It was determined that all studied compounds were subjected to sorption by the solid phase and degradation. Catlin soil, with finer texture and high organic matter content, influenced solution concentration of NG, 2,4-DNT, 2,6-DNT, and NQ to the greatest extent. Estimated fate and transport parameters will support ongoing release and column transport studies and will allow environmental managers on military installations to better estimate potential for propellant constituent transport off-site. Jenkins, T.F., A.D. Hewitt, C.L. Grant, S. Thiboutot, G. Ampleman, M.E. Walsh, T.A. Ranney, C.A. Ramsey, A.J. Palazzo, and J.C. Pennington. 2006. Identity and distribution of residues of energetic compounds at army live-fire training ranges. Chemosphere 63:1280-1290. Walsh, M.E. 1989. Analytical Methods for Determining Nitroguanidine in Soil and Water. Special Report 89-35. U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH.
Morel, Marie-Christine; Spadini, Lorenzo; Brimo, Khaled; Martins, Jean M F
2014-05-15
Sulfamethoxazole (SMX) is a persistent sulfonamide antibiotic drug used in the veterinary and human medical sectors and is widely detected in natural waters. To better understand the reactive transport of this antibiotic in soil, the speciation of the SMX-Cu(II)-H(+) system in solution and the combined sorption of these components in a natural vineyard soil were investigated by acid-base titrimetry and infrared spectroscopy. Cu(II) is considered to represent a strongly complexing trace element cation (such as Cd(2+), Zn(2+), Pb(2+), Ni(2+), etc.) in comparison to more prevalent but more weakly binding cations (such as Ca(2+) and Mg(2+)). Titrimetric studies showed that, relative to other antibiotics, such as tetracycline, SMX is a weak copper chelating agent and a weak soil sorbent at the soil pH (pH6). However, the sorption of SMX in soil increases strongly (by a factor of 6) in the presence of copper. This finding strongly supports the hypothetical formation of ternary SMX-Cu-soil complexes, especially considering that copper is dominantly sorbed in a state at pH6. The data were successfully modelled with PhreeqC assuming the existence of binary and ternary surface complexes in equilibrium with aqueous Cu, SMX and Cu-SMX complexes. It is thought that other strongly complexing cations present on the surface of reactive organic and mineral soil phases, such as Cd(II), Ni(II), Zn(II), Pb(II), Fe(II/III), Mn(II/IV) and Al(III), affect the solid/solution partitioning of SMX. This study thus suggests that surface-adsorbed cations significantly increase the sorption of SMX. Copyright © 2014 Elsevier B.V. All rights reserved.
Knight, B P; Chaudri, A M; McGrath, S P; Giller, K E
1998-01-01
A rapid method for extracting soil solutions using porous plastic soil-moisture samplers was combined with a cation resin equilibration based speciation technique to look at the chemical availability of metals in soil. Industrially polluted, metal sulphate amended and sewage sludge treated soils were used in our study. Cadmium sulphate amended and industrially contaminated soils all had > 65% of the total soil solution Cd present as free Cd2+. However, increasing total soil Cd concentrations by adding CdSO4 resulted in smaller total soil solution Cd. Consequently, the free Cd2+ concentrations in soil solutions extracted from these soils were smaller than in the same soil contaminated by sewage sludge addition. Amendment with ZnSO4 gave much greater concentrations of free Zn2+ in soil solutions compared with the same soil after long-term Zn contamination via sewage sludge additions. Our results demonstrate the difficulty in comparing total soil solution and free metal ion concentrations for soils from different areas with different physiochemical properties and sources of contamination. However, when comparing the same Woburn soil, Cd was much less available as Cd2+ in soil solution from the CdSO4 amended soils compared with soil contaminated by about 36 years of sewage sludge additions. In contrast, much more Zn was available in soil solution as free Zn2+ in the ZnSO4 amended soils compared with the sewage sludge treated soils.
Residual Explosives Criteria for Treatment of Area P Soil, Louisiana Army Ammunition Plant
1988-03-11
sorbed explosive in soil and water held in soil pores (called the soil solution ). Moreover, equilibrium is presumed to exist between soil slut’rion and...at a soil concentration of a pollutant equal to the product, water o’lub-iiLy*KKd. The soil solution could not become more saturated if the soil...to real behavior. More likely, as the soil solution approaches saturation, the relation between soil and soil solution concentration becomes non-linear
NASA Astrophysics Data System (ADS)
Bini, Claudio; Maleci, Laura
2014-05-01
Serpentine soils have relatively high concentrations of PTEs (e.g., Co, Cr, Cu, Fe, Ni) but generally low amounts of major nutrients. They often bear a distinctive vegetation, and a frequently-used approach to understanding serpentine ecology and environmental hazard has been the chemical analysis of soils and plants. Long-term studies on aspects of serpentine soils and their vegetation provide results on total concentrations, or on plant-available fractions, of soil elements which counteract ecological conditions. For example, there is evidence of Ni toxicity at Ni-concentration >0.3 mg/L in the soil solution (Johnston and Proctor, 1981). The serpentine vegetation differs from the conterminous non-serpentine areas, being often endemic, and showing macroscopic physionomical characters such as dwarfism, prostrate outcome, glaucescence and glabrescence, leaves stenosis, root shortening (what Jenny, 1980, called "the serpentine syndrome"). Similarly, at microscopic level cytomorphological characteristics of the roots and variations in biochemical parameters such as LPO and phenols have been recorded in serpentine native vegetation (Giuliani et al., 2008). Light microscopy observations showed depressed mitotic activity in the meristematic zone, and consequent reduced root growth (Gabbrielli et al., 1990) The metal content of plants growing on serpentine soils at sites with different microclimatic conditions has been examined by several authors (e.g. Bini et al., 1993; Dinelli and Lombini, 1996) . A preferential Ni distribution in epidermis and sclerenchima has been observed in the stem of Alyssum bertoloni, a well known Ni-accumulator plant (Vergnano Gambi, 1975). The different tolerance mechanisms responsible for plant adaption to high concentrations of PTEs in serpentine soils can be related to the capacity of plants either to limit metal uptake and translocation or to accumulate metals in non toxic forms. The majority of serpentine species (e.g. Silene italica) tend to limit metal absorption to roots so that leaf concentration is generally low; only a few species (e.g. Alyssum bertoloni) are able to accumulate metals in their shoots and leaves. The hypothesis that the cell wall could constitute a barrier against the penetration of PTEs inside the plant tissues is supported by metabolic modifications that make possible plant tolerance to very high metal concentrations, and to low levels of essential nutrients such as P, K, N, Ca, Mn. This vegetation, therefore, is of great interest for the study of resistant mechanisms to PTEs penetration, and therefore could be useful in remediation of metal-contaminated soils. References Bini C., Angelone M., Vaselli O., Coradossi N. (1993) - Pedochemical evolution and trace elements availability to plants in ophiolitic soils. Sci. Tot. Environ ,129, 291-309. Dinelli E., Lombini A. (1996) - Metal distribution in plants growing on copper mine spoils in Northern Apennines, Italy: the evaluation of seasonal variations. Applied Geochem, 11: 375-385. Gabbrielli R. Pandolfini T., Vergnano O., Palandri M.R. (1990) - Comparison of two serpentine species with different nickel tolerance strategies. Plant and Soil, 122: 271-277. Jenny H. (1980) - The soil resource. Springer Verlag, N.Y. Johnston W.R., Proctor J. (1981) - Growth of serpentine and non-serpentine races of Festuca rubra in solutions simulating the chemical conditions in a toxic serpentine soil. J. Ecol., 69, 3, 855-869. Giuliani C., Pellegrino R., Tirillini B., Maleci L. (2008) - Micromorphological and chimical characterization of Stachys recta L. subsp. serpentini (Fiori) Arrigoni in comparison to S. recta subsp. recta (Lamiaceae). Flora, 203: 376-385. Vergnano Gambi O. (1975) - La vegetazione delle serpentine: aspetti ecologici e fisiologici. Inf. Bot. Ital., 7: 344-348. (in Italian)
Role of Organic Acids in Bioformation of Kaolinite: Results of Laboratory Experiments
NASA Astrophysics Data System (ADS)
Bontognali, T. R. R.; Vasconcelos, C.; McKenzie, J. A.
2012-04-01
Clay minerals and other solid silica phases have a broad distribution in the geological record and greatly affect fundamental physicochemical properties of sedimentary rocks, including porosity. An increasing number of studies suggests that microbial activity and microbially produced organic acids might play an important role in authigenic clay mineral formation, at low temperatures and under neutral pH conditions. In particular, early laboratory experiments (Linares and Huertas, 1971) reported the precipitation of kaolinite in solutions of SiO2 and Al2O3 with different molar ratios SiO2/Al2O3, together with fulvic acid (a non-characterized mixture of many different acids containing carboxyl and phenolate groups) that was extracted from peat soil. Despite many attempts, these experiments could not be reproduced until recently. Fiore et al. (2011) hypothesized that the non-sterile fulvic acid might have contained microbes that participated in the formation of kaolinite. Using solutions saturated with Si and Al and containing oxalate and/or mixed microbial culture extracted from peat-moss soil, they performed incubation experiments, which produced kaolinite exclusively in solutions containing oxalate and microbes. We proposed to test the role of specific organic acids for kaolinite formation, conducting laboratory experiments at 25˚C, with solutions of sodium silicate, aluminum chloride and various organic compounds (i.e. EDTA, citric acid, succinic acid and oxalic acid). Specific organic acids may stabilize aluminum in octahedral coordination positions, which is crucial for the initial nucleation step. In our experiments, a poorly crystalline mineral that is possibly a kaolinite precursor formed exclusively in the presence of succinic acid. In experiments with other organic compounds, no incorporation of Al was observed, and amorphous silica was the only precipitated phase. In natural environments, succinic acid is produced by a large variety of microbes as an intermediate product of the tricarboxylic acid cycle. Our results demonstrate, for the first time, that the formation of a specific clay mineral (proto-kaolinite) occurs in the presence of a specific organic compound (succinic acid). This implies that microbial species capable of excreting succinate among their EPS may promote authigenic kaolinite formation at low temperature and neutral pH. This biological degradation process might play a crucial role for the formation of authigenic kaolinite, which is a widespread clay mineral in sedimentary environments. Fiore, S., Dumontet, S., Huertas, F.J., and Pasquale, V., 2011. Bacteria-induced crystallization of kaolinite. Applied Clay Science, 53:566-571. Linares, J., and Huertas, F., 1971. Kaolinite: Synthesis at room temperature. Science 171: 896-897.
NASA Astrophysics Data System (ADS)
Iacobellis, V.; Gioia, A.; Milella, P.; Satalino, G.; Balenzano, A.; Mattia, F.
2012-04-01
Over the last years, a vast number of experimental and theoretical studies has widely demonstrated the sensitivity of SAR data to soil moisture content, however, operational services integrating SAR measurements into land process models are not yet available. Important progresses in this field are expected, on the one hand, from SAR missions characterized by a short revisiting time, such as the COSMO-SkyMed or the forthcoming Sentinel-1 and ALOS-2 missions, on the other hand, from a strong effort in implementing hydrological models able to reproduce the dynamic of soil moisture content of the top layer (5 cm depth) of soil. With this latter purpose, we used the DREAM model [Manfreda et al., 2005], realized in a GIS-based approach, that explicitly takes into account the spatial heterogeneity of hydrological processes. The DREAM model carries out continuous hydrological simulations using the daily and the hourly scales. The distinctive feature of the model, which consists of evaluating the lateral flow through a water content redistribution weighted by the topographic index, was preserved. The latter provided the basis for the nested implementation of the Richard equation which has been used for evaluating vertical flows in the top soil layer (5cm).The Richard routine exploits the numerical solution proposed by Simunek et al. [2009] and runs, for each cell of the river basin, in a sub-module of 60 minutes with a vertical (i.e. depth) and temporal resolution of 1 cm and 1 s, respectively. The model was applied to the portion of the Celone at Foggia San Severo river basin downstream the San Giusto Dam, which is a tributary of the Candelaro river, in Puglia region (Southern Italy). Over this area quasi-dense time series of ALOS/PALSAR ScanSAR WB1 and COSMO-SkyMedStripMap images were acquired in 2007 and 2010, respectively. The SAR data have been used to derive time-series of soil moisture maps by means of the SMOSAR software developed for Sentinel-1 data [Balenzano et al., 2011; Mattia et al., 2011; Balenzano et al., 2012] and adapted to the X- [Mattia et al., 2012] and L-band [Satalino et al., 2010]. First results are promising, showing that the model is able to reproduce the general trend and has a good sensitivity to rainfall inputs. Such a kind of results open wide perspectives for model calibration/validation with external data as well as for assessing the proposed modelling structure, providing strong enhancements in terms of model scientific validation [e.g. Biondi et al. 2011]. ACKNOWLEDGEMENT The research in this paper is supported by the Italian Space Agency under contract n. I/051/09/0. COSMO-SkyMed data were provided by ©ASI in the framework of ©CSK AO 2161,PALSAR data were supplied in the framework of JAXA RA 13 & ESA ALOS ADEN AO 3597.
NASA Astrophysics Data System (ADS)
Quiers, M.; Gateuille, D.; Perrette, Y.; Naffrechoux, E.; David, B.; Malet, E.
2017-12-01
Soils are a key compartments of hydrosystems, especially in karst aquifers which are characterized by fast hydrologic responses to rainfalls. In steady state, soils are efficient filters preventing karst water from pollutions. But agricultural or forestry land uses can alter or even reverse the role of soils. Thus , soils can act as pollution sources rather than pollution filters. In order to manage water quality together with man activities in karst environment, the development of new tools and procedures designed to monitor the fate of soil organic matter are needed. This study reports two complementary methods applied in a moutain karst system impacted by anthropic activities and environmental stresses. A continuous monitoring of water fluorescence coupled with punctual sampling was analyzed by chemiometric methods and allowed to discriminate the type of organic matter transferred through the karst system along the year (winter / summer) and hydrological stages. As a main result, the modelisation of organic carbone fluxes is dominated by a colloidal or particulate part during highwaters, and a main part dissolved in solution during low water, demonstrating the change of organic carbone source. To confirm this result, a second method was used based on the observation of Polycyclic Aromatic Hydrocarbons (PAH) profiles. Two previous studies (Perrette et al 2013, Schwarz et al 2011) led to opposite conclusions about the fate of PAH from soil to groundwaters. This opposition leads to a potential use of PAH profiles (low molecular weight less hydrophobic ones versus high molecular weight more hydrophobic ones) as an indicator of soil erosion. We validate that use by the anaylsis of these PAH profiles for low and high waters (floods). These results demonstrate if needed the high vulnerability of karst system to soil erosion, and propose a new proxy to record soils erosion in groundwaters and in natural archives as stalagmites or sediments.
2010-04-01
this heterogeneity, for the purpose of predicting water flow and reactive transport behavior at the field scale, has proven quite difficult. This...potential (soil water pressure) at the outlet and at offset points in response injections at different inlet pressure heads. 13 Task 2: Development...preferential pathways (Wu et al., 1993). A viable solution to this problem is to supply water under tension using an inflatable borehole
Screening of faba bean (Vicia faba L.) accessions to acidity and aluminium stresses
Stoddard, Frederick L.
2017-01-01
Background Faba bean is an important starch-based protein crop produced worldwide. Soil acidity and aluminium toxicity are major abiotic stresses affecting its production, so in regions where soil acidity is a problem, there is a gap between the potential and actual productivity of the crop. Hence, we set out to evaluate acidity and aluminium tolerance in a range of faba bean germplasm using solution culture and pot experiments. Methods A set of 30 accessions was collected from regions where acidity and aluminium are or are not problems. The accessions were grown in solution culture and a subset of 10 was grown first in peat and later in perlite potting media. In solution culture, morphological parameters including taproot length, root regrowth and root tolerance index were measured, and in the pot experiments the key measurements were taproot length, plant biomass, chlorophyll concentration and stomatal conductance. Result Responses to acidity and aluminium were apparently independent. Accessions Dosha and NC 58 were tolerant to both stress. Kassa and GLA 1103 were tolerant to acidity showing less than 3% reduction in taproot length. Aurora and Messay were tolerant to aluminium. Babylon was sensitive to both, with up to 40% reduction in taproot length from acidity and no detectable recovery from Al3+ challenge. Discussion The apparent independence of the responses to acidity and aluminium is in agreement with the previous research findings, suggesting that crop accessions separately adapt to H+ and Al3+ toxicity as a result of the difference in the nature of soil parent materials where the accession originated. Differences in rankings between experiments were minor and attributable to heterogeneity of seed materials and the specific responses of accessions to the rooting media. Use of perlite as a potting medium offers an ideal combination of throughput, inertness of support medium, access to leaves for detection of their stress responses, and harvest of clean roots for evaluation of their growth. PMID:28194315
Screening of faba bean (Vicia faba L.) accessions to acidity and aluminium stresses.
Belachew, Kiflemariam Y; Stoddard, Frederick L
2017-01-01
Faba bean is an important starch-based protein crop produced worldwide. Soil acidity and aluminium toxicity are major abiotic stresses affecting its production, so in regions where soil acidity is a problem, there is a gap between the potential and actual productivity of the crop. Hence, we set out to evaluate acidity and aluminium tolerance in a range of faba bean germplasm using solution culture and pot experiments. A set of 30 accessions was collected from regions where acidity and aluminium are or are not problems. The accessions were grown in solution culture and a subset of 10 was grown first in peat and later in perlite potting media. In solution culture, morphological parameters including taproot length, root regrowth and root tolerance index were measured, and in the pot experiments the key measurements were taproot length, plant biomass, chlorophyll concentration and stomatal conductance. Responses to acidity and aluminium were apparently independent. Accessions Dosha and NC 58 were tolerant to both stress. Kassa and GLA 1103 were tolerant to acidity showing less than 3% reduction in taproot length. Aurora and Messay were tolerant to aluminium. Babylon was sensitive to both, with up to 40% reduction in taproot length from acidity and no detectable recovery from Al 3+ challenge. The apparent independence of the responses to acidity and aluminium is in agreement with the previous research findings, suggesting that crop accessions separately adapt to H + and Al 3+ toxicity as a result of the difference in the nature of soil parent materials where the accession originated. Differences in rankings between experiments were minor and attributable to heterogeneity of seed materials and the specific responses of accessions to the rooting media. Use of perlite as a potting medium offers an ideal combination of throughput, inertness of support medium, access to leaves for detection of their stress responses, and harvest of clean roots for evaluation of their growth.
Estimating Surface Soil Moisture in a Mixed-Landscape using SMAP and MODIS/VIIRS Data
NASA Astrophysics Data System (ADS)
Tang, J.; Di, L.; Xiao, J.
2017-12-01
Soil moisture, a critical parameter of earth ecosystem linking land surface and atmosphere, has been widely applied in many application (Di, 1991; Njoku et al. 2003; Western 2002; Zhao et al. 2014; McColl et al. 2017) from regional to continental or even global scale. The advent of satellite-based remote sensing, particular in the last two decades, has proven successful for mapping the surface soil moisture (SSM) from space (Petropoulos et al. 2015; Kim et al. 2015; Molero et al. 2016). The current soil moisture products, however, is not able to fully characterize the spatial and temporal variability of soil moisture at mixed landscape types (Albergel et al. 2013; Zeng et al. 2015). In this research, we derived the SSM at 1-km spatial resolution by using sensor observation and high-level products from SMAP and MODIS/VIIRS as well as metrorological, landcover, and soil data. Specifically, we proposed a practicable method to produce the originally planned SMAP L3_SM_A with comparable quality by downscaling the SMAP L3_SM_P product through a proved method, the geographically weighted regression method at mixed landscape in southern New Hampshire. This estimated SSM was validated using the Soil Climate Analysis Network (SCAN) from Natural Resources Conservation Service (NRCS) of United States Department of Agriculture (USDA).
Pyrolysis temperature influences ameliorating effects of biochars on acidic soil.
Wan, Qing; Yuan, Jin-Hua; Xu, Ren-Kou; Li, Xing-Hui
2014-02-01
The biochars were prepared from straws of canola, corn, soybean, and peanut at different temperatures of 300, 500, and 700 °C by means of oxygen-limited pyrolysis.Amelioration effects of these biochars on an acidic Ultisol were investigated with incubation experiments, and application rate of biochars was 10 g/kg. The incorporation of these biochars induced the increase in soil pH, soil exchangeable base cations, base saturation, and cation exchange capacity and the decrease in soil exchangeable acidity and exchangeable Al. The ameliorating effects of biochars on acidic soil increased with increase in their pyrolysis temperature. The contribution of oxygen-containing functional groups on the biochars to their ameliorating effects on the acidic soil decreased with the rise in pyrolysis temperature, while the contribution from carbonates in the biochars changed oppositely. The incorporation of the biochars led to the decrease in soil reactive Al extracted by 0.5mol/L CuCl2, and the content of reactive Al was decreased with the increase in pyrolysis temperature of incorporated biochars. The biochars generated at 300 °C increased soil organically complexed Al due to ample quantity of oxygen-containing functional groups such as carboxylic and phenolic groups on the biochars, while the biochars generated at 500 and 700 °C accelerated the transformation of soil exchangeable Al to hydroxyl-Al polymers due to hydrolysis of Al at higher pH. Therefore, the crop straw-derived biochars can be used as amendments for acidic soils and the biochars generated at relatively high temperature have great ameliorating effects on the soils.
Contribution of wastes and biochar amendment to the sorption capacity of heavy metals by a minesoil
NASA Astrophysics Data System (ADS)
Forján, Rubén; Asensio, Verónica; Vega, Flora A.; Andrade, Luisa; Covelo, Emma F.
2013-04-01
The use of wastes as soil amendments is a technique applied to reduce the available concentration of heavy metals in polluted sites (Pérez-de-Mora et al., 2005). However, the used wastes sometimes have high concentration of metals such as Cu, Pb, and Zn. Therefore, the sorption capacity of the amendments is important to understand its behavior in soil. The settling pond soil in a mine (S) located at Touro (Spain) was amended with a mixture of sewage sludges, sludges from an aluminum plant, ash, food industry wastes, sands from a wastewater treatment plant and biochar (A). The present study was performed to determine the influence of the addition of the amendment (A) in the sorption capacity of Cu, Pb, and Zn of the studied soil (S). The amendment (A) and the soil (S) were mixed (SA) at 20, 40, 60% and then introduced into glass vessels. The amendment A and S the soil at 100% were also introduced in glass vials as control samples. Mixtures and controls were incubated to field capacity for one month. To evaluate the sorption capacity of the soil and the mixtures soil-amendment, sorption isotherms were constructed using multiple-metal solutions of Cu, Pb and Zn nitrates (0.03, 0.05, 0.08, 0.1 and 0.5 mmol L-1) containing 0.01 M NaNO3 as background electrolyte (Vega et al., 2009). The overall capacity of the soil to sorb Cu, Pb y Zn was evaluated as the slope Kr (Vega et al., 2008). The sorption capacity of the amendment (A) is higher than the soil (S) for the three studied elements, which reflects that this amendment has a binding capacity of Cu, Pb and Zn higher than soil (S) (P <0.05). The soil-amendment mixtures (SA) in all proportions used, except 20% for Zn, also showed higher sorption capacity than the soil (S). The amended soil has higher sorption capacity of Cu, Pb and Zn than the soil without amending (P < 0.05). The element preferably sorbed by SA in the proportions 20, 40 and 60% is Pb and the least sorbed is Zn. The amendment without mixing with the soil (A) sorbed element is preferably Pb and Cu is the least sorbed (P <0.05). References Asensio, V.; Vega, F.A.; Singh, B.R.; Covelo, E.F. 2013. Science of the Total Environment. 443:446-453. Pérez-de-Mora, A.; Madrid, F.; Cabrera, F.; Madejón, E. 2007. Geoderma. 139: 1-10 Vega, F.A.; Covelo, E.F.; Andrade, M.L. 2009. J. Hazard. Mater. 169: 36-45. Vega, F.A.; Covelo, E.F.; Andrade, M.L. 2008. J. Colloid. Interface Sci. 327: 275-286.
Zampella, Mariavittoria; Adamo, Paola
2010-01-01
A study on variable charge soils (volcanic Italian and podzolic Scottish soils) was performed to investigate the influence of soil properties on the chemical composition of soil solution. Zinc speciation, bioavailability and toxicity in the soil solution were examined. The soils were spiked with increasing amounts of Zn (0, 100, 200, 400 and 1000 mg/kg) and the soil solutions were extracted using rhizon soil moisture samplers. The pH, total organic carbon (TOC), base cations, anions, total Zn and free Zn2+ in soil solution were analysed. A rapid bioassay with the luminescent bacterium Escherichia coli HB101 pUCD607 was performed to assess Zn toxicity. The influence of soil type and Zn treatments on the chemical composition of soil solution and on Zn toxicity was considered and discussed. Different trends of total and free Zn concentrations, base cations desorption and luminescence of E. coli HB101 pUCD607 were observed. The soil solution extracted from the volcanic soils had very low total and free Zn concentrations and showed specific Zn2+/Ca2+ exchange. The soil solution from the podzolic soil had much higher total and free Zn concentrations and showed no evidence of specific Zn2+/Ca2+ exchange. In comparison with the subalkaline volcanic soils, the acidic podzol showed enhanced levels of toxic free Zn2+ and consequently stronger effects on E. coli viability.
Estimation of CO2 diffusion coefficient at 0-10 cm depth in undisturbed and tilled soils
USDA-ARS?s Scientific Manuscript database
Diffusion coefficients (D) of CO2 at 0 – 10 cm layers in undisturbed and tilled soil conditions were estimated using Penman, Millington-Quirk, Ridgwell et al. (1999), Troeh et al., and Moldrup et al. models. Soil bulk density and volumetric soil water content ('v) at 0 – 10 cm were measured on April...
NASA Astrophysics Data System (ADS)
Goulas, Anaïs; Sertillange, Nicolas; Garnier, Patricia; Dumény, Valérie; Bergheaud, Valérie; Benoit, Pierre; Haudin, Claire-Sophie
2017-04-01
The recycling of sludge compost and farmyard manure in agriculture can lead to the introduction of sulfonamide antibiotics and their acetylated metabolites into soils. The quality and the biodegradability of the exogenous organic matter (EOM) containing antibiotic residues is determinant for their environmental availability and fate in soils (Goulas et al., 2016). This study combined experimental and modeling approaches in order to: 1) assess the fraction of sulfamethoxazole (SMX) and N-acetyl-sulfamethoxazole (AcSMX) available in EOM-amended soils by using soft extractions (CaCl2, EDTA or cyclodextrin solutions) during a 28-day incubation; and 2) better understand the dynamics of sulfonamide residues in amended soils in connection with their availability and the mineralization of EOM organic matter thanks to the COP-Soil model (Geng et al. 2015). This model proposes several options to couple the biotransformation of organic pollutants (OP) with the decomposition of EOM in soil. The microbial degradation can be simulated by co-metabolism and specific-metabolism. The model also accounts for the formation of non-extractable residues (NER) via both physicochemical and microbial routes. The available fraction in both soil/EOM mixtures decreased from 56-96% and 31-63% initial 14C-activity for AcSMX and SMX, respectively, to reach 7-33% after 28 days. This high decrease in the first seven days was mainly due to the formation of NER that were more abundant in soil/manure mixtures than in the soil/compost ones. The three aqueous solutions differently extracted the available 14C-residues according to the incubation time, the EOM and the molecule. The mineralized fractions for both 14C-molecules were only 2-3% with a little more mineralization in the soil/manure mixtures than in the soil/compost. By using the COP-Soil model, the dynamics of EOM and OP were well described using parameter values specific to the organic matter mineralization, and this for the three soft extractants used. Others parameter values were common to both EOM and both sulfonamide compounds when coupling the dynamics of OP to EOM with the assumption of co-metabolism. The set of parameter values describing the pollutant fate strongly differed according to the soft extractant, confirming different mechanisms of extraction. Globally, the best OP simulations were obtained for the CaCl2-based extraction. Keywords Sulfonamides; environmental availability; recycling; organic matter; modeling References Goulas A. Haudin C.-S., Bergheaud V., Dumény V., Fehri S., Bourdat-Deschamps M, Nelieu S., Benoit P. 2016. A new extraction method to assess the environmental availability of ciprofloxacin in agricultural soil amended with exogenous organic matters. Chemosphere, 165, 460-469. Geng C., Haudin C.-S., Zhang Y., Lashermes G., Houot S., Garnier P.. 2015. Modelling the release of organic contaminants during compost decomposition in soil. Chemosphere, 119: 423-431.
NASA Astrophysics Data System (ADS)
Pokrovsky, O. S.; Viers, J.; Emnova, E. E.; Kompantseva, E. I.; Freydier, R.
2008-04-01
This work is aimed at quantifying the main environmental factors controlling isotope fractionation of Cu during its adsorption from aqueous solutions onto common organic (bacteria, algae) and inorganic (oxy(hydr)oxide) surfaces. Adsorption of Cu on aerobic rhizospheric ( Pseudomonas aureofaciens CNMN PsB-03) and phototrophic aquatic ( Rhodobacter sp. f-7bl, Gloeocapsa sp. f-6gl) bacteria, uptake of Cu by marine ( Skeletonema costatum) and freshwater ( Navicula minima, Achnanthidium minutissimum and Melosira varians) diatoms, and Cu adsorption onto goethite (FeOOH) and gibbsite (AlOOH) were studied using a batch reaction as a function of pH, copper concentration in solution and time of exposure. Stable isotopes of copper in selected filtrates were measured using Neptune multicollector ICP-MS. Irreversible incorporation of Cu in cultured diatom cells at pH 7.5-8.0 did not produce any isotopic shift between the cell and solution (Δ 65/63Cu(solid-solution)) within ±0.2‰. Accordingly, no systematic variation was observed during Cu adsorption on anoxygenic phototrophic bacteria ( Rhodobacter sp.), cyanobacteria ( Gloeocapsa sp.) or soil aerobic exopolysaccharide (EPS)-producing bacteria ( P. aureofaciens) in circumneutral pH (4-6.5) and various exposure times (3 min to 48 h): Δ 65Cu(solid-solution) = 0.0 ± 0.4‰. In contrast, when Cu was adsorbed at pH 1.8-3.5 on the cell surface of soil the bacterium P. aureofacienshaving abundant or poor EPS depending on medium composition, yielded a significant enrichment of the cell surface in the light isotope (Δ 65Cu (solid-solution) = -1.2 ± 0.5‰). Inorganic reactions of Cu adsorption at pH 4-6 produced the opposite isotopic offset: enrichment of the oxy(hydr)oxide surface in the heavy isotope with Δ 65Cu(solid-solution) equals 1.0 ± 0.25‰ and 0.78 ± 0.2‰ for gibbsite and goethite, respectively. The last result corroborates the recent works of Mathur et al. [Mathur R., Ruiz J., Titley S., Liermann L., Buss H. and Brantley S. (2005) Cu isotopic fractionation in the supergene environment with and without bacteria. Geochim. Cosmochim. Acta69, 5233-5246] and Balistrieri et al. [Balistrieri L. S., Borrok D. M., Wanty R. B. and Ridley W. I. (2008) Fractionation of Cu and Zn isotopes during adsorption onto amorhous Fe(III) oxyhydroxide: experimental mixing of acid rock drainage and ambient river water. Geochim. Cosmochim. Acta72, 311-328] who reported heavy Cu isotope enrichment onto amorphous ferric oxyhydroxide and on metal hydroxide precipitates on the external membranes of Fe-oxidizing bacteria, respectively. Although measured isotopic fractionation does not correlate with the relative thermodynamic stability of surface complexes, it can be related to their structures as found with available EXAFS data. Indeed, strong, bidentate, inner-sphere complexes presented by tetrahedrally coordinated Cu on metal oxide surfaces are likely to result in enrichment of the heavy isotope on the surface compared to aqueous solution. The outer-sphere, monodentate complex, which is likely to form between Cu 2+ and surface phosphoryl groups of bacteria in acidic solutions, has a higher number of neighbors and longer bond distances compared to inner-sphere bidentate complexes with carboxyl groups formed on bacterial and diatom surfaces in circumneutral solutions. As a result, in acidic solution, light isotopes become more enriched on bacterial surfaces (as opposed to the surrounding aqueous medium) than they do in neutral solution. Overall, the results of the present study demonstrate important isotopic fractionation of copper in both organic and inorganic systems and provide a firm basis for using Cu isotopes for tracing metal transport in earth-surface aquatic systems. It follows that both adsorption on oxides in a wide range of pH values and adsorption on bacteria in acidic solutions are capable of producing a significant (up to 2.5-3‰ (±0.1-0.15‰)) isotopic offset. At the same time, Cu interaction with common soil and aquatic bacteria, as well as marine and freshwater diatoms, at 4 < pH < 8 yields an isotopic shift of only ±0.2-0.3‰, which is not related to Cu concentration in solution, surface loading, the duration of the experiment, or the type of aquatic microorganisms.
Luo, Y M; Christie, P; Baker, A J
2000-07-01
Temporal changes in soil solution properties and metal speciation were studied in non-rhizosphere soil and in the rhizosphere of the hyperaccumulator Thlaspi caerulescens J. & C. Presl (population from Prayon, Belgium) grown in a Zn- and Cd-contaminated soil. This paper focuses on soil solution Zn and pH dynamics during phytoextraction. The concentration of Zn in both non-rhizosphere and rhizosphere soil solutions decreased from 23 mg/l at the beginning to 2 mg/l at the end of the experiment (84 days after transplanting of seedlings), mainly due to chemical sorption. There was no significant difference in overall Zn concentration between the planted and the unplanted soil solutions (P > 0.05). Soil solution pH decreased initially and then increased slightly in both planted and unplanted soil zones. From 60 to 84 days after transplanting, the pH of the rhizosphere soil solution was higher than that of non-rhizosphere soil solution (P<0.05). Zn uptake by the hyperaccumulator plants was 8.8 mg per pot (each containing 1 kg oven-dry soil) on average. The data indicate that the potential of T. caerulescens to remove Zn from contaminated soil may not be related to acidification of the rhizosphere.
Basile, Madeline; Unruh, Daniel K; Flores, Erin; Johns, Adam; Forbes, Tori Z
2015-02-14
Organic acids are important metal chelators in environmental systems and tend to form soluble complexes in aqueous solutions, ultimately influencing the transport and bioavailability of contaminants in surface and subsurface waters. This is particularly true for the formation of uranyl citrate complexes, which have been utilized in advanced photo- and bioremediation strategies for soils contaminated with nuclear materials. Given the complexity of environmental systems, the formation of ternary or heterometallic uranyl species in aqueous solutions are also expected, particularly with Al(iii) and Fe(iii) cations. These ternary forms are reported to be more stable in aqueous solutions, potentially enhancing contaminant mobility and uptake by organisms, but the exact coordination geometries of these soluble molecular complexes have not been elucidated. To provide insight into the nature of these species, we have developed a series of geochemical model compounds ([(UO(2))(2)Al(2)(C(6)H(4)O(7))(4)](6-) (U(2)Al(2)), [(UO(2))(2)Fe(2)(C(6)H(4)O(7))(4)](6-) (U(2)Fe(2)-1) and [(UO(2))(2)Fe(2)(C(6)H(4)O(7))(4)(H(2)O)(2)](6-) (U(2)Fe(2)-2) and [(UO(2))(2)Fe(4)(OH)(4)(C(6)H(4)O(7))(4)](8-) (U(2)Fe(4))) that were characterized by single-crystal X-ray diffraction and vibrational spectroscopy. Mass spectroscopy was then employed to compare the model compounds to species present in aqueous solutions to provide an enhanced understanding of the ternary uranyl citrate complexes that could be relevant in natural systems.
Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance.
Kochian, Leon V; Piñeros, Miguel A; Liu, Jiping; Magalhaes, Jurandir V
2015-01-01
Aluminum (Al) toxicity in acid soils is a significant limitation to crop production worldwide, as approximately 50% of the world's potentially arable soil is acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring resistance to Al toxicity has been a focus of intense research interest in the decade since the last article on crop acid soil tolerance was published in this journal. An impressive amount of progress has been made during that time that has greatly increased our understanding of the diversity of Al resistance genes and mechanisms, how resistance gene expression is regulated and triggered by Al and Al-induced signals, and how the proteins encoded by these genes function and are regulated. This review examines the state of our understanding of the physiological, genetic, and molecular bases for crop Al tolerance, looking at the novel Al resistance genes and mechanisms that have been identified over the past ten years. Additionally, it examines how the integration of molecular and genetic analyses of crop Al resistance is starting to be exploited for the improvement of crop plants grown on acid soils via both molecular-assisted breeding and biotechnology approaches.
Burnham, Mark B; Cumming, Jonathan R; Adams, Mary Beth; Peterjohn, William T
2017-11-01
Increased availability of monomeric aluminum (Al 3+ ) in forest soils is an important adverse effect of acidic deposition that reduces root growth and inhibits nutrient uptake. There is evidence that Al 3+ exposure interferes with NO 3 - uptake. If true for overstory trees, the reduction in stand demand for NO 3 - could increase NO 3 - discharge in stream water. These effects may also differ between species that tolerate different levels of soil acidity. To examine these ideas, we measured changes in relative uptake of NO 3 - and NH 4 + by six tree species in situ under increased soil Al 3+ using a 15 N-labeling technique, and measured soluble soil Al levels in a separate whole-watershed acidification experiment in the Fernow Experimental Forest (WV). When exposed to added Al 3+ , the proportion of inorganic N acquired as NO 3 - dropped 14% across species, but we did not detect a reduction in overall N uptake, nor did tree species differ in this response. In the long-term acidification experiment, we found that soluble soil Al was mostly in the free Al 3+ form, and the concentration of Al 3+ was ~65 μM higher (~250%) in the mineral soil of the acidified watershed vs. an untreated watershed. Thus, increased levels of soil Al 3+ under acidic deposition cause a reduction in uptake of NO 3 - by mature trees. When our 15 N uptake results were applied to the watershed acidification experiment, they suggest that increased Al 3+ exposure could reduce tree uptake of NO 3 - by 7.73 kg N ha -1 year -1 , and thus increase watershed NO 3 - discharge.
NASA Astrophysics Data System (ADS)
Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel; Vanderborght, Jan
2014-05-01
To acquire knowledge of solute transport through the unsaturated zone in the shallow subsurface is decisive to assess groundwater quality, nutrient cycling or to plan remediation strategies. The shallow subsurface is characterized by structural heterogeneity and strongly influenced by atmospheric conditions. This leads to changing flow directions, strong temporal changes in saturation and heterogeneous water fluxes during infiltration and evaporation events. Recent studies (e.g. Lehmann and Or, 2009; Bechtold et al.,2011) demonstrated the importance of lateral flow and solute transport during evaporation conditions (upward flux). The heterogeneous structure in these studies was constructed using two types of sand with strong material contrasts and arranged in parallel with a vertical orientation. Lateral transport and redistribution of solute from coarse to fine media was observed deeper in the soil column and from fine to coarse close to the soil surface. However, if boundary conditions are reversed due to precipitation, the flow field is not necessarily reversed in the same manner, resulting in entirely different transport patterns for downward and upward flow. Therefore, considering net-flow rates alone is misleading when describing transport under those conditions. In this contribution we analyze transport of a solute in the shallow subsurface to assess effects resulting from the temporal change of heterogeneous soil structures due to dynamic flow conditions. Two-dimensional numerical simulations of unsaturated flow and transport are conducted using a coupled finite volume and random walk particle tracking algorithm to quantify solute transport and leaching rates. Following previous studies (Lehmann and Or, 2009; Bechtold et al., 2011), the chosen domain is composed of two materials, coarse and fine sand, arranged in parallel with a vertical orientation. Hence, one sharp interface of strong material heterogeneity is induced. During evaporation both sands are assumed to stay under liquid-flow dominated evaporation conditions ("stage 1"). Simulations considering dynamic (infiltration-evaporation) and steady (solely infiltration) boundary conditions are carried out. The influence of dynamic boundary conditions (intensity and duration of precipitation and evaporation events) is examined in a multitude of simulations. If flow rates smaller than the saturated hydraulic conductivity of both materials are chosen to be applied as boundary condition, simulation results indicate that the flow field within the domain is exactly reversed. However, if applied flow rates exceed the saturated hydraulic conductivity of one material, the flow field is not just reversed, but different flow paths during downward and upward flow are observed. Results show the tendency of faster solute leaching under dynamic boundary conditions compared to steady infiltration conditions with the same net-infiltration rate. We use a double domain transport method as an upscaled model to reproduce vertically averaged concentration profiles with net flux only and compare the model parameters for information about flow dynamics and soil heterogeneity.
Burns, Douglas A.
1989-01-01
In a small watershed in the Shenandoah National Park, Virginia, the short-term dynamics of soluble aluminum in stream water sampled during rain events differed significantly from stream water sampled during base flow conditions. Three fractions of dissolved aluminum were measured. The inorganic monomeric fraction made up approximately two thirds of the total reactive aluminum at base flow, followed by the acid-soluble and organic monomeric fractions, respectively. Equilibrium modeling showed that hydroxide complexes were the most abundant form of inorganic monomeric aluminum followed by fluoride, free aluminum ion, and sulfate. The activity of inorganic monomeric aluminum at base flow appears to be in equilibrium with an Al(OH)3 phase with solubility intermediate between microcrystalline gibbsite and natural gibbsite. During two rain events, the concentration of all three aluminum fractions increased significantly. Available chemical evidence indicates that acidic soil water was the primary source of dissolved aluminum. As flow increased, the Al(OH)3 saturation index in the stream water increased significantly. The primary cause of the transient increase in the Al(OH)3 saturation index appears to have been the neutralization of excess H+ added by soil water through reaction with stream water HCO3− at a more rapid rate than excess inorganic monomeric aluminum could be removed from solution by hydroxide mineral precipitation. A soil water/stream water mixing model was developed based on measured changes of stream water alkalinity, silica concentration, and charge imbalance during the rain events. Model results indicate that a small amount of soil water (3–11%) was present in the stream at peak stage.
Metal(loid)s behaviour in soils amended with nano zero-valent iron as a function of pH and time.
Vítková, Martina; Rákosová, Simona; Michálková, Zuzana; Komárek, Michael
2017-01-15
Nano zero-valent iron (nZVI) is currently investigated as a stabilising amendment for contaminated soils. The effect of pH (4-8) and time (48 and 192 h) on the behaviour of nZVI-treated Pb-Zn and As-contaminated soil samples was assessed. Additionally, soil leachates were subsequently used to study the direct interaction between soil solution components and nZVI particles in terms of mineralogical changes and contaminant retention. A typical U-shaped leaching trend as a function of pH was observed for Cd, Pb and Zn, while As was released predominantly under alkaline conditions. Oxidising conditions prevailed, so pH was the key controlling parameter rather than redox conditions. Generally, longer contact time resulted in increased soluble concentrations of metal(loid)s. However, the stabilisation effect of nZVI was only observed after the direct soil leachate-nZVI interactions, showing enhanced redox and sorption processes for the studied metals. A significant decrease of dissolved As concentrations was observed for both experimental soils, but with different efficiencies depending on neutralisation capacity, organic matter content or solid fractionation of As related to the origin of the soils. Scorodite (FeAsO 4 ·2H 2 O) was predicted as a potential solubility-controlling mineral phase for As. Sorption of metal(loid)s onto secondary Fe- and Al-(oxyhydr)oxides (predicted to precipitate at pH > 5) represents an important scavenger mechanism. Moreover, transmission electron microscopy confirmed the retention of Zn and Pb under near-neutral and alkaline conditions by newly formed Fe oxides or aluminosilicates. This study shows that the efficiency of nZVI application strongly depends not only on soil pH-Eh conditions and contaminant type, but also on the presence of organic matter and other compounds such as Al/Fe/Mn oxyhydroxides and clay minerals. Copyright © 2016 Elsevier Ltd. All rights reserved.
DEVELOPMENT OF ANAEROBIC SOIL DISINFESTATION FOR FLORIDA VEGETABLE AND FLOWER PRODUCTION
USDA-ARS?s Scientific Manuscript database
Anaerobic soil disinfestation (ASD) combines biological soil disinfestation (Blok et al., 2000; Goud et al., 2004) and soil reductive sterilization (Shinmura, 2004). The development of an ASD system for Florida incorporated soil solarization with clear plastic with the addition of a labile carbon s...
Cell biology of aluminum toxicity and tolerance in higher plants.
Matsumoto, H
2000-01-01
Aluminum is the major element in the soil and exists as a stable complex with oxygen and silicate in neutral and weakly acidic soil. When the soil pH is lower than 4.5-5.0, Al is solubilized in the soil water and absorbed by plant roots. Absorbed Al inhibits root elongation severely, and the elongation of roots exposed to Al3+ as low as mumol level is inhibited within an hour(s). Thus much research has been conducted to understand the mechanism of Al toxicity and tolerance. Al is located specifically at the root apex. Al-sensitive plants absorb more Al than do Al-tolerant plants, and thus the exclusion mechanism of Al is the major idea for Al tolerance. The understanding of Al stress in plants is important for stable food production in future. Al is a complicated ion in its chemical form and biological function. In this chapter, mechanisms of Al toxicity and tolerance proposed during the past few decades as well as future topics are described from physiological and molecular points of view.
Behaviour of aluminium in forest soils with different lithology and herb vegetation cover.
Hubová, Petra; Tejnecký, Václav; Češková, Michaela; Borůvka, Luboš; Němeček, Karel; Drábek, Ondřej
2018-04-01
The aim of this study was to determine the content, distribution and behaviour of Al in soils under beech forest with different parent rock, and to assess the role of herbaceous vegetation on soil Al behaviour. We hypothesize that the contents of elements in the soil sorption complex (Al etc.) are strongly influenced by vegetation cover. Also, low molecular mass organic acids (LMMOA) can be considered as an indicator of soil organic matter (SOM) decomposition and vegetation litter turnover. Speciation of LMMOA, nutrition content (PO 4 3- , Ca 2+ , K + ) and element composition in aqueous extracts were determined by means of ion chromatography and inductively coupled plasma - optical emission spectrometry (ICP-OES) respectively. Active and exchangeable pH, sorption characteristics and exchangeable Al (Al ex ) were determined in BaCl 2 extracts by ICP-OES. Elemental composition of parent rocks was assessed by means of X-ray fluorescence spectroscopy. Herb-poor localities showed lower pH, less nutrients (PO 4 3- , Ca 2+ , K + ), less LMMOA, a larger stock of SOM and greater cation exchange capacity. There was also lower mobilisation of Al in organic horizons, which explains the larger pools of Al. Generally, we can conclude that LMMOA, and thus soil vegetation cover, play an important role in the Al soil cycle. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cerda, Artemi; Burguet, Maria; Keesstra, Saskia; Borja, Manuel Esteban Lucas; Hedo, Javier; Brevik, Eric; Pereira, Paulo; Novara, Agata; Jordan, Antonio; Prosdocimi, Massimo; Taguas, Encarnacion
2016-04-01
Soil Erosion is a worldwide environmental issue (Keesstra et al., 2007; Dai et al., 2015; Erkossa et al., 2015; Ochoa-Cueva et al., 2015; Taguas et al., 2015). The high erosion rates are affecting mainly the non-developed countries due to the lack of vegetation cover, deforestation and the intense ploughing (Lieskovsky and Kenderessy, 2014; Biwas et al., 2015, Colazo and Buschiazzo, 2015; Ligonja and Shrestha, 2015); and the developing countries due to the herbicides abuse and heavy machinery (Cerdà et al., 2009; Novara et al., 2011). Non-sustainable erosion rates result in the loss of soil and also changes in the hydrological, erosional, biological, and geochemical cycles, which produce the lack of the services, goods and resources the soil offers to the humankind (Keesstra et al., 2012; Berendse et al., 2015; Decock et al., 2015; Brevik et al., 2015; Smith et al., 2015). This is why there is a need to reduce the soil losses, and to achieve a sustainable situation with lower and renewable soil erosion rates and to improve the infiltration rates (Cerdà et al., 2015; Nanko et al., 2015; Mwango et al., 2016). Vegetation cover is the most efficient strategy to control soil and water losses (Cerdà, 1999; Keesstra, 2007; Zhao et al., 2014), however there is the need to use other covers once the vegetation is not recovered such as after the forest fires or when the crops do not allow to have weeds and the soil should be bare. This is sometimes a cultural and aesthetic need (farmers from the Cànyoles river watershed personal comm). Under the above-mentioned circumstances, a straw cover can reduce the soil losses and increase infiltration. This is the main research topic that is being carried out by the Soil Erosion and Degradation Research Group from the University of Valencia during more than one decade: to find solutions to the non-sustainable soil erosion rates under forest and agriculture land under Mediterranean climatic conditions. The research was developed using paired plots under natural and simulated rainfall at the Soil Erosion Stations of Montesa, El Teularet and Celler del Roure. Rainfall simulation experiments with very small (0.25 m2), small (1 m2) and medium (20 m2) plots were carried out in scrublands and recently fire-affected land, and on vineyards and orchards. The plots under natural rainfall conditions ranged from 1 to 300 m2. The results show a positive influence of the straw mulch to reduce the soil and water losses, although is more efficient to control the sediment delivery due to the reduction of the raindrop impact. Reduction in one order of magnitude is usual after the immediate application of the straw on vineyards (Prosdocimi et al., 2016) and apricots (Keesstra et al., under review) and in persimmon plantations (Cerdà et al., in press). The above-mentioned results show the positive effect of the straw mulch found by other researchers with other types of mulches such as rock fragments (Cerdà, 2001; Jordán et al., 2009; Jordan and Martínez-Zavala, 2008; Martínez-Zavala and Jordán, 2008, Zavala et al., 2010). There is a need to develop new and advanced research on the effects of the straw cover and other mulches such as litter on the recently forest fire affected soils, and pruned chipped branches and other organic amendments on agriculture land (Yazdanpanah et al., 2016). This new reseach challenge should give information about the soil and water losses, but also about the organic matter recovery, the soil water retention, and the biological, chemical and physical soil properties changes. . Acknowledgements The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603498 (RECARE project). References Berendse, F., van Ruijven, J., Jongejans, E., Keesstra, S. 2015. Loss of plant species diversity reduces soil erosion resistance. Ecosystems, 18 (5), 881-888. DOI: 10.1007/s10021-015-9869-6 Biswas H., Raizada A., Mandal D., Kumar S., Srinivas S., Mishra P. K. 2015. Identification of areas vulnerable to soil erosion risk in India using GIS methods. Solid Earth, 6 (4), pp. 1247-1257. DOI: 10. 5194/se-6-1247-2015v Brevik, E. C., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J. N., Six, J., and Van Oost, K.: The interdisciplinary nature of SOIL, SOIL, 1, 117-129, doi:10.5194/soil-1-117-2015, 2015. Cerdà, A., Giménez-Morera, A. and Bodí, M.B. 2009. Soil and water losses from new citrus orchards growing on sloped soils in the western Mediterranean basin. Earth Surface Processes and Landforms, 34, 1822-1830. DOI: 10.1002/esp.1889 Cerdà, A., González-Pelayo, O., Giménez-Morera, A., Jordán, A., Pereira, P., Novara, A., Brevik, E.C., Prosdocimi, M., Mahmoodabadi, M., Keesstra, S., García Orenes, F., Ritsema, C., 2015. The use of barley straw residues to avoid high erosion and runoff rates on persimmon plantations in Eastern Spain under low frequency - high magnitude simulated rainfall events. Soil Res. (In press) Colazo, J.C., Buschiazzo, D. 2015. The Impact of Agriculture on Soil Texture Due to Wind Erosion.Land Degradation and Development, 26 (1), 62-70 DOI: 10.1002/ldr.2297 Dai, Q., Liu, Z., Shao, H., Yang, Z. 2015. Karst bare slope soil erosion and soil quality: A simulation case study. Solid Earth, 6 (3), 985-995.DOI: 10.5194/se-6-985-2015 Decock, C.,J. Lee, M. Necpalova, E. I. P. Pereira, D. M. Tendall, J. Six. 2015 Mitigating N2O emissions from soil: from patching leaks to transformative action. SOIL, 1, 687-694, doi:10.5194/soil-1-687-2015, Erkossa T., Wudneh A., Desalegn B., Taye G. 2015. Linking soil erosion to on-site financial cost: Lessons from watersheds in the Blue Nile basin. Solid Earth, 6 (2), 765-774. DOI: 10. 5194/se-6-765-2015 Jordán-López, A., Martínez-Zavala, L., & Bellinfante, N. 2009. Impact of different parts of unpaved forest roads on runoff and sediment yield in a Mediterranean area. Science of the total environment, 407(2), 937-944. Jordán, A., & Martínez-Zavala, L. 2008. Soil loss and runoff rates on unpaved forest roads in southern Spain after simulated rainfall. Forest Ecology and Management, 255(3), 913-919. Jordán, A., Tarolli, P., Keesstra, S., Novara, A., Cerdà, A. 2016. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Science of The Total Environment, 547, 15 ,323-330, doi:10.1016/j.scitotenv.2015.12.076 Keesstra, S.D. 2007. Impact of natural reforestation on floodplain sedimentation in the Dragonja basin, SW Slovenia. Earth Surface Processes and Landforms, 32(1): 49-65. DOI: 10.1002/esp.1360 Keesstra, S.D. Pereira, P., Novara, A., Brevik, E.C., Azorin-Molina, C., Parras-Alcántara, L., Jordán, A., Cerdà, A., in press. Agricultural soil management affects soil erosion vulnerability of rainfed apricot orchards. Agriculture, Ecosystems and Environment. Science of The Total Environment Keesstra, S.D., Geissen, V., van Schaik, L., Mosse., K., Piiranen, S., 2012. Soil as a filter for groundwater quality. Current Opinions in Environmental Sustainability 4, 507-516.doi:10.1016/j.cosust.2012.10.007 Li X. H., Yang J., Zhao C. Y., Wang B. 2014. Runoff and sediment from orchard terraces in southeastern China. Land Degradation and Development, 25 (2), pp. 184-192. Cited 3 times. DOI: 10. 1002/ldr. 1160 Lieskovský, J., Kenderessy, P. 2014. Modelling the effect of vegetation cover and different tillage practices on soil erosion in: A case study in vráble (Slovakia) using WATEM/SEDEM Land Degradation and Development, 25 (3), 288-296. DOI: 10.1002/ldr.2162 Ligonja P. J., Shrestha R. P. 2015. Soil erosion assessment in kondoa eroded area in Tanzania using universal soil loss equation, geographic information systems and socioeconomic approachLand Degradation and Development, 26 (4), 367-379. DOI: 10. 1002/ldr. 2215 Martínez-Zavala, L., Jordán, A. 2008. Effect of rock fragment cover on interrill soil erosion from bare soils in Western Andalusia, Spain. Soil Use and Management, 24(1), 108-117. Mwango S. B., Msanya B. M., Mtakwa P. W., Kimaro D. N., Deckers J., Poesen J. 2016. Effectiveness of mulching under miraba in controlling soil erosion, fertility restoration and crop yield in the usambara mountains, Tanzania. Land Degradation and Development, DOI: 10. 1002/ldr. 2332 Nanko K., Giambelluca T. W., Sutherland R. A., Mudd R. G., Nullet M. A., Ziegler A. D. 2015. Erosion potential under miconia calvescens stands on the island of hawai'i. Land Degradation and Development, 26 (3), 218-226. DOI: 10. 1002/ldr. 2200 Novara, A., Gristina, L., Saladino, S. S., Santoro, A., Cerdà, A. 2011. Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard. Soil and Tillage Research, 117, 140-147. Ochoa-Cueva, P., Fries, A., Montesinos, P., Rodríguez-Díaz, J.A., Boll, J. 2015. Spatial Estimation of Soil Erosion Risk by Land-cover Change in the Andes OF Southern Ecuador. Land Degradation and Development, 26 (6), 565-573. DOI: 10.1002/ldr.2219 Smith, P., Cotrufo, M.F., Rumpel, C., Paustian, K., Kuikman, P.J., Elliott, J.A., McDowell, R., Griffiths, R.I., Asakawa, S., Bustamante, M., House, J.I., Sobocká, J., Harper, R., Pan, G., West, P.C., Gerber, J.S., Clark, J.M., Adhya, T., Scholes, R.J., Scholes, M.C., 2015. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. SOIL 1, 665-685. doi:10.5194/soil-1-665-2015 Taguas, E.V., Arroyo, C., Lora, A., Guzmán, G., Vanderlinden, K., Gómez, J.A., 2015. Exploring the linkage between spontaneous grass cover biodiversity and soil degradation in two olive orchard microcatchments with contrasting environmental and management conditions. SOIL, 1, 651-664. doi:10.5194/soil-1-651-2015 Yazdanpanah, N., Mahmoodabadi, M., and Cerdà, A. The impact of organic amendments on soil hydrology, structure and microbial respiration in semiarid lands. Geoderma Volume 266, 15 March 2016, Pages 58-65. doi:10.1016/j.geoderma.2015.11.032 Zavala, L. M., Jordán, A., Bellinfante, N., Gil, J. 2010. Relationships between rock fragment cover and soil hydrological response in a Mediterranean environment. Soil Science & Plant Nutrition, 56 (1), 95-104. Zhao, C., Gao, J., Huang, Y., Wang, G., Zhang, M. 2015. Effects of Vegetation Stems on Hydraulics of Overland Flow Under Varying Water Discharges. Land Degradation and Development, DOI: 10.1002/ldr.2423
NASA Astrophysics Data System (ADS)
Concepción Benítez, M.; González, José Luis; Tejada, Manuel
2014-05-01
The use of by-products of food industries in agricultural practices has become a routine over the last few decades. The addition of beet vinasse, by-products of the two sep olive mill process and by-products of defatted sunflower flour, etc., to soils is a common agricultural practice, since sensible use has been reported to improve the physical, chemical and biological aspects of the soil and to increase harvest yield, and in many cases harvest quality Previous research carried out by the authors (Ordóñez et al., 2001) examined a process whereby a protein concentrate is obtained from defatted sunflower flour. In this process, floating liquid phosphorus, potassium contents and smaller amounts of humic substances and nitrogen are obtained. The potential application of this solution as a fertiliser has been evaluated on rye grass, confirming that its effects are comparable to those produced by a nutritional solution in terms of phosphorus and potassium foliar levels. The experiment was performed on soil classified as Typic Haploxererts located in the Middle Valley of the river Guadalquivir Cajeme wheat (Triticum aestivum var) variety was used at a dose of 180 kg seeds / ha. For both crop, four fertiliser treatments were applied in triplicate to randomly distributed 7 x 8 m plots. The greatest positive effect of applying the experimental phospho-potassic solution was found for the leaf levels of K, in maturity; this influence was most significant when the highest dosage of said solution. With reference to the levels of N, P and K in wheat grain, the levels of potassium were significantly different for all the fertilising treatments, and the plot fertilised with the highest dosage of the experimental phospho-potassic solution presented the highest values. As for the data obtained for harvest yield and quality, the addition of the experimental solution was observed to have a significantly positive influence (but only in the highest dosages) on the production levels.
Silica fractionation and reactivity in soils
NASA Astrophysics Data System (ADS)
Unzué Belmonte, Dácil; Barão, Lúcia; Vandevenne, Floor; Schoelynck, Jonas; Struyf, Eric; Meire, Patrick
2014-05-01
The Si cycle is a globally important biogeochemical cycle, with strong connections to other biogeochemical cycles, including C. Silica is taken up by plants to form protective structures called phytoliths, which become a part of the soil and contribute strongly to soil Si cycling upon litter burial. Different silica fractions are found in soils, with phytoliths among the most easily soluble, especially compared to silicate minerals. A whole set of secondary non-biogenic fractions exist, that also have a high reactivity (adsorbed Si, reactive secondary minerals…). A good characterization of the different fractions of reactive silica is crucial to move forward knowledge on ecosystem Si cycling, which has been recognized in the last decade as crucial for terrestrial Si fluxes. A new method to analyze the different fractions of silica in soils has been described by Koning et al. (2002) and adapted by our research team (Barão et al. 2013). Using a continuous extraction of Si and aluminum in 0.5M NaOH, biogenic and non-biogenic reactive fractions are separated based on their Si/Al ratios and their reactivity in NaOH. Applying this new method I will investigate three emerging ideas on how humans can affect directly terrestrial Si fluxes. -Land use. I expect strong silica fractionation and reactivity differences in different land uses. These effects due to agricultural and forestry management have already been shown earlier in temperate soils (Vandevenne et al. 2012). Now we will test this hypothesis in recently deforested soils, in the south of Brazil. 'Pristine' forest, managed forest and tobacco field soils (with and without rotation crops) will be studied. This research belongs to an interdisciplinary project on soils and global change. -Fire. According to the IPCC report, extreme events such as fires (number and intensity) would increase due to climate change. We analyzed litter from spruce forest, beech forest and peat soils at two burning levels, after 350°C and 550°C burnings. The first results showed differences in silica fractions between treatments and between soil types. This project is a close collaboration with University of Dresden. -Fertilization. Humans use fertilizers to increase crops growth and to avoid plagues affecting soil biogeochemistry. We set up a greenhouse experiment where olivine (a relatively easily weatherable silicate mineral) fertilization is applied to two crops (barley and wheat), at two rain application regimes (daily rain and weekly heavy rain) and with different fertilizer grain sizes. The aim of this project is to investigate how olivine application affects Si fractionation and reactivity in the soil profile. Barão, L., Clymans, W., Vandevenne, F., Meire, P., Conley, D.J. and Struyf, E. Pedogenic and biogenic amorphous Si distribution along a temperate land use gradient. Submitted, European Journal of Soil Science, 2013. Koning, E., Epping, E., and Van Raaphorst, W.: Determining bio- genic silica in marine samples by tracking silicate and aluminium concentrations in alkaline leaching solutions, Aquat. Geochem., 8, 37-67, 2002. Vandevenne, F.I., Struyf, E., Clymans, W. & Meire, P. 2012. Agricultural silica harvest: have humans created a new and important loop in the global silica cycle? Frontiers in Ecology and the Environment 10: 243-248.
Comparison of Predicted and Measured Soil Retention Curve in Lombardy Region Northern of Italy
NASA Astrophysics Data System (ADS)
Wassar, Fatma; Rienzner, Michele; Chiaradia, Enrico Antonio; Gandolfi, Claudio
2013-04-01
Water retention characteristics are crucial input parameters in any modeling study on water flow and solute transport. These properties are difficult to measure and therefore the use of both direct and indirect methods is required in order to adequately describe them with sufficient accuracy. Several field methods, laboratory methods and theoretical models for such determinations exist, each having their own limitations and advantages (Stephens, 1994). Therefore, extensive comparisons between estimated, field and laboratory results to determine it still requires their validity for a range of different soils and specific cases. This study attempts to make a contribution specifically in this connection. The soil water retention characteristics were determined in two representative sites (PMI-1 and PMI-5) located in Landriano field, in Lombardy region, northern Italy. In the laboratory, values of both volumetric water content (θ) and soil water matric potential (h) are measured in the same sample using the tensiometric box and pressure plate apparatus. Field determination of soil water retention involved measurements of soil water content with SENTEK probes, and matric potential with tensiometers. The retention curve characteristics were also determined using some of the most commonly cited and some recently developed PTFs that use soil properties such as particle-size distribution (sand, silt, and clay content), organic matter or organic Carbon content, and dry bulk density. Field methods are considered to be more representative than laboratory and estimation methods for determining water retention characteristics (Marion et al., 1996). Therefore, field retention curves were compared against retention curves obtained from laboratory measurements and PTFs estimations. The performances of laboratory and PTFs in predicting field measured data were evaluated using root mean square error (RMSE) and bias. The comparison showed that laboratory measurements were the most accurate. They had the highest ranking for the validation indices (RMSE ranging between 2.4 and 7.7% and bias between 0.1 and 6.4%). The second best technique was the PTF Rosetta (Schaap et al. 2001). They perform only slightly poorer than the laboratory measurements (RMSE ranging between 2.7 and 10% and bias between 0.3 and 7.7%). The lowest prediction accuracy is observed for the Rawls and Brakensiek (1985) PTF (RMSE ranging between 6.3 and 17% and bias between 5 and 10%) which is in contradiction with previous finding (Calzolari et al., 2001), showing that this function is well representing the retention characteristics of the area. We conclude that the Rosetta PTF developed by Schaap et al (2001) appears to be well suited to predict the soil moisture retention curve from easily available soil properties in the Lombardy area and further field investigations would be useful to reinforce this finding. Keywords: water retention curve; laboratory measurements; field measurements; pedotransfert functions; comparison.
NASA Astrophysics Data System (ADS)
Ullrich, Romy; Vogel, Franziska; Möhler, Ottmar; Höhler, Kristina; Schiebel, Thea
2017-04-01
Soil dust from arid and semi-arid regions is one of the most abundant aerosol types in the atmosphere with emission rates of about 1600 Tg per year (Andreae et al. (2009)). Therewith, soil dust plays an important role for the atmospheric radiative transfer and also for the formation of clouds. Soil dust refers to dust sampled from agricultural used areas, to dust from bare soil as well as to dust from desert regions. By mass-spectrometric measurements of the chemical composition of ice residuals, mineral dust as component of soil dust was found to be the major heterogeneous ice nucleating particle (INP) type (e.g. Cziczo et al. (2013)), in particular in the upper troposphere. Also in laboratory studies the ice nucleation efficiency of the different soil dusts was investigated. It was shown that desert dusts (Ullrich et al. (2017)) as well as soil dusts from arable regions (O'Sullivan et al. (2014), Tobo et al. (2014)) are efficient INP. However, there is still a lack of data for ice nucleation on soil dusts for temperatures below about 220 K. With the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber, we are able to characterize the ice nucleation efficiency for different aerosol types to temperatures down to 180 K and high ice supersaturations. In order to extend the already existing AIDA data base for deposition nucleation on desert dusts and agricultural soil dusts, new experiments were done in the upper tropospheric temperature regime. This contribution will show the results of the new experiments with desert dust in comparison to existing data for higher temperatures. The first data analysis confirms the temperature dependent trend of the ice nucleation activity as discussed and parameterized in a recent paper by Ullrich et al. (2017). Furthermore, the update and extension of the recently published parameterization of deposition nucleation for desert dust to lower temperatures will be discussed. The experiments with agricultural soil dust will be compared to existing AIDA experiments at higher temperatures published by Steinke et al. (2016). Finally, the ice nucleation activity of both desert dust and agricultural soil dust will be compared for the upper tropospheric temperature regime. Andreae et al. (2009), Sources and Nature of Atmospheric Aerosols, in Aerosol Pollution Impact on Precipitation - A Scientific Review, Ch.3, Springer Netherlands, 45-89 Cziczo et al. (2013), Clarifying the Dominant Sources and Mechanisms of Cirrus Cloud Formation, Science, 340, 1320-1324 O'Sullivan et al. (2014), Ice nucleation by fertile soil dusts: relative importance of mineral and biogenic components, Atmos. Chem. Phys., 14, 1853-1867 Steinke et al. (2016), Ice nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina and Germany, J. Geophys. Res., 121 Tobo et al. (2014), Organic matter matters for ice nuclei of agricultural soil origin, Atmos. Chem. Phys., 14, 8521-8531 Ullrich et al. (2017), A new ice nucleation active site parametrization for desert dust and soot, J. Atmos. Sci., in press
NASA Astrophysics Data System (ADS)
Anderson, S. P.; Mills, T. J.
2016-12-01
Water delivery drives weathering and streamflow in catchments. Deciphering the loci of weathering processes and the hydrology of hillslopes requires untangling these deeply entwined systems. Highly variable water delivery compounds the problem. In the Gordon Gulch catchment of Boulder Creek CZO, ephemeral snow, convective storms, and seasonal drought produce highly variable conditions that reveal changing flowpaths contributing to streamflow. We focus on two: groundwater and shallow flow paths. Both are well expressed in the stream during relatively brief periods each year. Baseflow conditions, when streamflow is primarily derived from groundwater, occurs during seasonal drought. Commonly, this is late summer, but it can occur earlier if there is little snow or spring precipitation. We identify baseflow by its chemical signature of low or no Si-Al colloids and DOC, and high concentration of rock-weathering derived dissolved Si, Na, Ca and alkalinity. These solutes increase in concentration downstream, suggesting either a greater proportion of groundwater inputs downstream, or longer deep flowpaths downstream. Shallow flow paths connect to the stream during high flow in periods of high soil moisture from snowmelt or rain. Although annual peak discharge occurs most years from snowmelt augmented by spring rain, convective rainstorms can also drive annual peak discharge. Chemical constituents associated with these shallow connected flowpaths are DOC and Si-Al colloids, which tend to be elevated during wetter conditions in the catchment. We infer that these are mobilized from shallow soil when high soil moisture increases connectivity of shallow soil with the stream channel. These constituents do not vary in concentration downstream. A question they pose is the extent of the zone of connectivity; it seems unlikely that shallow flow paths connected to the stream channel extend far beyond the riparian corridor. Several solutes are mobilized following seasonal drought. Cl and SO4 decline in concentration on both the rising and falling limbs of the annual discharge peak. Their concentrations rise during baseflow, and spike in fall and winter. We infer that these are delivered by dry deposition, and are flushed from shallow soils by wetting events after extended dry periods.
Vassallo, A.M.; Wilson, M.A.; Collin, P.J.; Oades, J.M.; Waters, A.G.; Malcolm, R.L.
1987-01-01
An examination of coals, coal tars, a fulvic acid, and soil fractions by solid-state 13C NMR spectrometry has demonstrated widely differing behavior regarding quantitative representation in the spectrum. Spin counting experiments on coal tars and the fulvic acid show that almost all the sample carbon is observed in both solution and solid-state NMR spectra. Similar experiments on two coals (a lignite and a bituminous coal) show that most (70-97%) of the carbon is observed; however, when the lignite is ion exchanged with 3% (w/w) Fe3+, the fraction of carbon observed drops to below 10%. In additional experiments signal intensity from soil samples is enhanced by a simple dithionite treatment. This is illustrated by 13C, 27Al, and 29Si solid-state NMR experiments on soil fractions. ?? 1987 American Chemical Society.
The role of rock fragment cover on soil erosion in conventional vineyards in Eastern Spain
NASA Astrophysics Data System (ADS)
Rodrigo Comino, Jesús; Jordán, Antonio; García-Díaz, Andrés; Brevik, Eric C.; Pereira, Paulo; Keesstra, Saskia; Novara, Agata; Cerdà, Artemi
2017-04-01
Soil erosion results in soil degradation and losses in crop production, specifically, in vineyards are active sources of sediments and water (Martínez-Casasnovas et al., 2005; Rodrigo Comino et al., 2016). Several studies confirm that the main causes of this degradation include lack of vegetative cover, widespread use of herbicides and sprays, and compaction by heavy machinery and trampling effect, suggesting the use of organic amendments and management of mulch covers as solutions (Prosdocimi et al., 2016). Local, inexpensive materials are easier to manage, less costly to apply, and more sustainable if already in the soil, such as the rock fragments. Rock fragments can improve soil quality by conserving the temperature such as the slates in German vineyards (Rodrigo Comino et al., 2015) or contributing to the forestation of degraded ecosystems (Jiménez et al., 2016), but no information exists from tilled vineyards. Therefore, the main goal of this research was to determine the impact of soil cover and soil properties (slope, soil organic carbon, vegetation cover, soil water content, and rock fragments) on soil erosion in tilled vineyards. To achieve this goal, simulated rainfall experiments were carried out to avoid the spatial variability of natural rainfall (Cerdà, 1999, 1997). After performing the rainfall simulations and assessing the statistical analysis, our interest was focused on the impact of one concrete parameter: the rock fragment cover. The main reason was because experimental results showed significant correlations with runoff (positive) and sediment yield (negative). The results of our study show that the rock fragments at the pedon scale can act as mulch in Mediterranean vineyards, but a pavement of embedded rock fragments will trigger high runoff rates. Acknowledgments This research was funded by the European Union Seventh Framework Programme (FP7/2007-2013) under grant no. 603498 (RECARE Project). References Cerdà, A., 1999. Parent Material and Vegetation Affect Soil Erosion in Eastern Spain. Soil Sci. Soc. Am. J. 63. doi:10.2136/sssaj1999.03615995006300020014x Cerdà, A., 1997. Soil erosion after land abandonment in a semiarid environment of southeastern Spain. Arid Soil Res. Rehabil. 11, 163-176. doi:10.1080/15324989709381469 Jiménez, M.N., Fernández-Ondoño, E., Ripoll, M.Á., Castro-Rodríguez, J., Huntsinger, L., Navarro, F.B., 2016. Stones and Organic Mulches Improve the Quercus Ilex L. Afforestation Success Under Mediterranean Climatic Conditions. Land Degrad. Dev. 27, 357-365. doi:10.1002/ldr.2250 Martínez-Casasnovas, J.A., Ramos, M.C., Ribes-Dasi, M., 2005. On-site effects of concentrated flow erosion in vineyard fields: some economic implications. Catena 60, 129-146. doi:10.1016/j.catena.2004.11.006 Prosdocimi, M., Cerdà, A., Tarolli, P., 2016. Soil water erosion on Mediterranean vineyards: A review. Catena 141, 1-21. doi:10.1016/j.catena.2016.02.010 Rodrigo Comino, J., Brings, C., Lassu, T., Iserloh, T., Senciales, J., Martínez Murillo, J., Ruiz Sinoga, J., Seeger, M., Ries, J., 2015. Rainfall and human activity impacts on soil losses and rill erosion in vineyards (Ruwer Valley, Germany). Solid Earth 6, 823-837. doi:10.5194/se-6-823-2015 Rodrigo Comino, J., Iserloh, T., Lassu, T., Cerdà, A., Keestra, S.D., Prosdocimi, M., Brings, C., Marzen, M., Ramos, M.C., Senciales, J.M., Ruiz Sinoga, J.D., Seeger, M., Ries, J.B., 2016. Quantitative comparison of initial soil erosion processes and runoff generation in Spanish and German vineyards. Sci. Total Environ. 565, 1165-1174. doi:10.1016/j.scitotenv.2016.05.163
de Vries, Wim; Lofts, Steve; Tipping, Ed; Meili, Markus; Groenenberg, Jan E; Schütze, Gudrun
2007-01-01
Risk assessment for metals in terrestrial ecosystems, including assessments of critical loads, requires appropriate critical limits for metal concentrations in soil and soil solution. This chapter presents an overview of methodologies used to derive critical (i) reactive and total metal concentrations in soils and (ii) free metal ion and total metal concentrations in soil solution for Cd, Pb, Cu, Zn, and Hg, taking into account the effect of soil properties related to ecotoxicological effects. Most emphasis is given to the derivation of critical free and total metal concentrations in soil solution, using available NOEC soil data and transfer functions relating solid-phase and dissolved metal concentrations. This approach is based on the assumption that impacts on test organisms (plants, microorganisms, and soil invertebrates) are mainly related to the soil solution concentration (activity) and not to the soil solid-phase content. Critical Cd, Pb, Cu, Zn, and Hg concentrations in soil solution vary with pH and DOC level. The results obtained are generally comparable to those derived for surface waters based on impacts to aquatic organisms. Critical soil metal concentrations, related to the derived soil solution limits, can be described as a function of pH and organic matter and clay content, and varying about one order of magnitude between different soil types.
1986-07-01
pure water. Dissolved ions in the soil solution lower the freezing point; this is called freezing point depression. Many of the early studies of...them in the remaining soil solution . The temperature and concentration of this solution affect the chemical reactions and the forms of ions in...in the soil solution freezes, more concentrated "% solutes will be present in soil solution . 3. Water will travel even in frozen soils and sediments
Effect of chloride in soil solution on the plant availability of biosolid-borne cadmium.
Weggler, Karin; McLaughlin, Michael J; Graham, Robin D
2004-01-01
Increasing chloride (Cl) concentration in soil solution has been shown to increase cadmium (Cd) concentration in soil solution and Cd uptake by plants, when grown in phosphate fertilizer- or biosolid-amended soils. However, previous experiments did not distinguish between the effect of Cl on biosolid-borne Cd compared with soil-borne Cd inherited from previous fertilizer history. A factorial pot experiment was conducted with biosolid application rates of 0, 20, 40, and 80 g biosolids kg(-1) and Cl concentration in soil solution ranging from 1 to 160 mM Cl. The Cd uptake of wheat (Triticum aestivum L. cv. Halberd) was measured and major cations and anions in soil solution were determined. Cadmium speciation in soil solution was calculated using GEOCHEM-PC. The Cd concentration in plant shoots and soil solution increased with biosolid application rates up to 40 g kg(-1), but decreased slightly in the 80 g kg(-1) biosolid treatment. Across biosolid application rates, the Cd concentration in soil solution and plant shoots was positively correlated with the Cl concentration in soil solution. This suggests that biosolid-borne Cd is also mobilized by chloride ligands in soil solution. The soil solution CdCl+ activity correlated best with the Cd uptake of plants, although little of the variation in plant Cd concentrations was explained by activity of CdCl+ in higher sludge treatments. It was concluded that chlorocomplexation of Cd increased the phytoavailability of biosolid-borne Cd to a similar degree as soil (fertilizer) Cd. There was a nonlinear increase in plant uptake and solubility of Cd in biosolid-amended soils, with highest plant Cd found at the 40 g kg(-1) rate of biosolid application, and higher rates (80 g kg(-1)) producing lower plant Cd uptake and lower Cd solubility in soil. This is postulated to be a result of Cd retention by CaCO3 formed as a result of the high alkalinity induced by biosolid application.
NASA Astrophysics Data System (ADS)
Koestel, John; Bechtold, Michel; Jorda, Helena; Jarvis, Nicholas
2015-04-01
The saturated and near-saturated hydraulic conductivity of soil is of key importance for modelling water and solute fluxes in the vadose zone. Hydraulic conductivity measurements are cumbersome at the Darcy scale and practically impossible at larger scales where water and solute transport models are mostly applied. Hydraulic conductivity must therefore be estimated from proxy variables. Such pedotransfer functions are known to work decently well for e.g. water retention curves but rather poorly for near-saturated and saturated hydraulic conductivities. Recently, Weynants et al. (2009, Revisiting Vereecken pedotransfer functions: Introducing a closed-form hydraulic model. Vadose Zone Journal, 8, 86-95) reported a coefficients of determination of 0.25 (validation with an independent data set) for the saturated hydraulic conductivity from lab-measurements of Belgian soil samples. In our study, we trained boosted regression trees on a global meta-database containing tension-disk infiltrometer data (see Jarvis et al. 2013. Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrology & Earth System Sciences, 17, 5185-5195) to predict the saturated hydraulic conductivity (Ks) and the conductivity at a tension of 10 cm (K10). We found coefficients of determination of 0.39 and 0.62 under a simple 10-fold cross-validation for Ks and K10. When carrying out the validation folded over the data-sources, i.e. the source publications, we found that the corresponding coefficients of determination reduced to 0.15 and 0.36, respectively. We conclude that the stricter source-wise cross-validation should be applied in future pedotransfer studies to prevent overly optimistic validation results. The boosted regression trees also allowed for an investigation of relevant predictors for estimating the near-saturated hydraulic conductivity. We found that land use and bulk density were most important to predict Ks. We also observed that Ks is large in fine and coarse textured soils and smaller in medium textured soils. Completely different predictors were important for appraising K10, where the soil macropore system is air-filled and therefore inactive. Here, the average annual temperature and precipitation where most important. The reasons for this are unclear and require further research. The clay content and the organic matter content were also important predictors of K10. We suggest that a larger and more complete database may help to improve the prediction of K10, whereas it may be more fruitful to estimate Ks statistics of sampling sites instead of individual values since the Ks is highly variable over very short distances.
Qu, Ying; Liu, Su-hong; Li, Xiao-wen
2012-05-01
The leaf-level solar-induced fluorescence changes when the typical crops are under Cu stress, which can be considered as a sensitive indicator to estimate the stress level. In the present study, wheat (Triticum aestivum L.), pea (Pisum sativum L.) and Chinese cabbage (Brassica campestris L.) were selected and cultured with copper solutions or copper polluted soil with different Cu stress. The apparent reflectance of leaves was measured by an ASD Fieldspec spectrometer and an integrating sphere. As the apparent reflectance was seldom affected by the fluorescence emission at 580-650 and 800-1000 nm, so the apparent solar-induced fluorescence can be separated from the apparent reflectance based on PROSPECT model. The re-absorption effect of chlorophyll was corrected by three methods, called GM (Gitelson et al.'s model), AM (Agati et al.'s model) and LM (Lagorio et al.'s model). After the re-absorption correction, the solar-induced fluorescence under different Cu stress was obtained, and a positive relationship was found between the height of far RED fluorescence (FRF) and the copper contents in leaves.
Responses of Earthworm to Aluminum Toxicity in Latosol
Jia-En Zhang; Jiayu Yu; Ying Ouyang; Huaqin Xu
2012-01-01
Excess aluminum (Al) in soils due to acid rain leaching is toxic to water resources and harmful to soil organisms and plants. This study investigated adverse impacts of Al levels upon earthworms (Eisenia fetida) from the latosol (acidic red soil). Laboratory experiments were performed to examine the survival and avoidance of earthworms from high Al...
Contrasting effects of biochar on phosphorus dynamics and bioavailability in different soil types.
Bornø, Marie Louise; Müller-Stöver, Dorette Sophie; Liu, Fulai
2018-06-15
We investigated how two different biochars (wood biochar - WBC and straw biochar - SBC) affected P dynamics and bioavailability in five different soils differing in pH, C%, texture, Fe, Al, Ca, and Mg giving a range of soils with low (S1 and S2), intermediate (S4), and high (S3 and S5) P sorption capacities. Langmuir and Freundlich equations were fitted to the sorption data of soil and soil/biochar mixtures. P fertilizer applied to all treatments was fractioned into strongly sorbed P (qS), easily available sorbed P (qA) and solution P (c) by determining the anion exchange resin (AER)-extractable P in samples from the sorption experiment. A pot experiment was conducted to measure P uptake by maize grown in S1, S2 and S3 amended with WBC or SBC at two P fertilizer levels (0 or 70mgPkg -1 ). Only WBC could sorb P from solution partly due to a high content of calcite. SBC did not have any effect on P sorption isotherms, whereas WBC increased the P sorption in S1, S2, and S4, yet decreased P sorption in acidic soil S5. qS increased in S1, S2, and S4, and decreased in S5 in WBC treatments, whereas, qS decreased in SBC treatments in soils S2, S4, and S5. Accordingly, there was a significant interaction between soil type and biochar on maize growth and P uptake. Biochar had no effect in an alkaline soil (S3), whereas, WBC and SBC had positive effects on maize growth in slightly acidic soils S1 and S2, depending on the soil P status, however, the P uptake was lower in WBC compared to SBC treatments. Biochar and soil properties and the P status of the soil affect P bioavailability. The study provides useful information for optimizing the use of biochar in agricultural P management. Copyright © 2018 Elsevier B.V. All rights reserved.
Effect of Solution Properties on Arsenic Adsorption by Drinking Water Treatment Residuals
NASA Astrophysics Data System (ADS)
Nagar, R.; Sarkar, D.; Datta, R.; Sharma, S.
2005-05-01
Arsenic (As) is a ubiquitous element in the environment. Higher levels of As in soils may result from various anthropogenic sources such as use of arsenical pesticides, fertilizers, wood preservatives, smelter wastes, and coal combustion. This is of great environmental and human health concern due to the high toxicity and proven carcinogenicity of several arsenical species. Thus there is a need for developing cost effective technologies capable of lowering bioavailable As concentrations in soils to environmentally acceptable levels. In-situ immobilization of metals using inexpensive amendments such as minerals (apatite, zeolite, or clay minerals) or waste by-products (steel shot, beringite, and iron-rich biosolids) to reduce bioavailability is an inexpensive alternative to the more expensive ex-situ remediation methods. One such emerging in-situ technique is the application of drinking water treatment residuals (WTRs). WTRs can be classified as a byproduct of drinking water treatment plants and are generally composed of amorphous Fe/Al oxides, activated C and cationic polymers. WTRs possess amorphous structure and generally have high positive charge. Because As is chemically similar to phosphorus, the oxyanions As (V) and As (III) may have the potential of being retained by the WTRs. Thus, it is hypothesized that WTRs retain As irreversibly, thereby reducing As biavailability. As mobility of arsenic is controlled by adsorption reactions, knowledge of adsorption of As by WTRs is of primary relevance. Although the overall rate of adsorption is dependent on numerous factors, review of the literature indicates that competing ions in solution play an important role in the overall retention of As; however, little work has been conducted to identify which ions provide the most competition. As arsenic adsorption appears to be influenced by the variable pH-dependent charges developed on the soil particle surfaces, the effect of pH is also of critical importance. Hence, the purpose of the present study is to investigate the effect of solution properties, such as pH, ionic strength and competing ions on the adsorption of As by WTRs and WTR amended soils. Three types of WTRs are being used, namely Fe- WTR, Al- WTR and Ca-WTR. Effect of pH is being studied by varying the pH values between 3 and 9. The solid/solution ratio has been fixed at 1:5 and a 24 h equilibration has been chosen based on the results of earlier adsorption experiments. Furthermore, As adsorption will be studied in presence of potentially competing ions such as phosphate, sulfate, and selenate. Keywords: Adsorption, water treatment residuals, oxyanions, in-situ remediation, Arsenic
Koslowsky, S D; Boener, R E
1989-01-01
The effects of Al on Panicum virgatum (switchgrass), a widespread perennial grass, were determined in relation to factors which might interact with Al in the soil. Plants were grown for 8 weeks in sand culture and were treated with 3 Al levels (0.5, 2.0, 5.0 mM), 2 P levels (0.065, 0.161 mM), 2 inoculum types (vesicular-arbuscular mycorrhizal (VAM) inoculum or VAM-free soil inoculum) and 2 inoculum sources (a high Al forest in NY or a low Al forest in Ohio) in a factorial design. Plant growth decreased with increasing Al and increased with increasing P, but the Al effect was less at high P than low P. VAM-inoculated plants outgrew non-VAM plants, especially at low and medium Al levels. Total P and Ca uptake decreased with increasing Al concentration, especially at low P levels. VAM inoculation did not result in increased P uptake at any Al level though VAM plants took up significantly more Ca than non-VAM plants at any Al level. VAM plants had lower tissue Al concentrations and took up less Al than non-VAM plants; Al uptake increased with increasing soil Al in non-VAM plants but not in VAM plants. Plants given inoculum from the high Al site had significantly lower tissue Al than plants given the low Al site inoculum, regardless of VAM status. We conclude that the presence of a VAM infection, moderate levels of soil P, and the source of the inoculum can reduce the effects of soluble Al. We discuss potential physiological and edaphic mechanisms by which Al may be immobilized and Ca availability increased in the presence of VAM fungi and other soil microflora.
Soil solution extraction techniques for microbial ecotoxicity testing: a comparative evaluation.
Tiensing, T; Preston, S; Strachan, N; Paton, G I
2001-02-01
The suitability of two different techniques (centrifugation and Rhizon sampler) for obtaining the interstitial pore water of soil (soil solution), integral to the ecotoxicity assessment of metal contaminated soil, were investigated by combining chemical analyses and a luminescence-based microbial biosensor. Two different techniques, centrifugation and Rhizon sampler, were used to extract the soil solution from Insch (a loamy sand) and Boyndie (a sandy loam) soils, which had been amended with different concentrations of Zn and Cd. The concentrations of dissolved organic carbon (DOC), major anions (F- , CI-, NO3, SO4(2-)) and major cations (K+, Mg2+, Ca2+) in the soil solutions varied depending on the extraction technique used. Overall, the concentrations of Zn and Cd were significantly higher in the soil solution extracted using the centrifugation technique compared with that extracted using the Rhizon sampler technique. Furthermore, the differences observed between the two extraction techniques depended on the type of soil from which the solution was being extracted. The luminescence-based biosensor Escherichia coli HB101 pUCD607 was shown to respond to the free metal concentrations in the soil solutions and showed that different toxicities were associated with each soil, depending on the technique used to extract the soil solution. This study highlights the need to characterise the type of extraction technique used to obtain the soil solution for ecotoxicity testing in order that a representative ecotoxicity assessment can be carried out.
Comparing root architectural models
NASA Astrophysics Data System (ADS)
Schnepf, Andrea; Javaux, Mathieu; Vanderborght, Jan
2017-04-01
Plant roots play an important role in several soil processes (Gregory 2006). Root architecture development determines the sites in soil where roots provide input of carbon and energy and take up water and solutes. However, root architecture is difficult to determine experimentally when grown in opaque soil. Thus, root architectural models have been widely used and been further developed into functional-structural models that are able to simulate the fate of water and solutes in the soil-root system (Dunbabin et al. 2013). Still, a systematic comparison of the different root architectural models is missing. In this work, we focus on discrete root architecture models where roots are described by connected line segments. These models differ (a) in their model concepts, such as the description of distance between branches based on a prescribed distance (inter-nodal distance) or based on a prescribed time interval. Furthermore, these models differ (b) in the implementation of the same concept, such as the time step size, the spatial discretization along the root axes or the way stochasticity of parameters such as root growth direction, growth rate, branch spacing, branching angles are treated. Based on the example of two such different root models, the root growth module of R-SWMS and RootBox, we show the impact of these differences on simulated root architecture and aggregated information computed from this detailed simulation results, taking into account the stochastic nature of those models. References Dunbabin, V.M., Postma, J.A., Schnepf, A., Pagès, L., Javaux, M., Wu, L., Leitner, D., Chen, Y.L., Rengel, Z., Diggle, A.J. Modelling root-soil interactions using three-dimensional models of root growth, architecture and function (2013) Plant and Soil, 372 (1-2), pp. 93 - 124. Gregory (2006) Roots, rhizosphere and soil: the route to a better understanding of soil science? European Journal of Soil Science 57: 2-12.
NASA Astrophysics Data System (ADS)
André, Laurent; Christov, Christomir; Lassin, Arnault; Azaroual, Mohamed
2018-03-01
The knowledge of the thermodynamic behavior of multicomponent aqueous electrolyte systems is of main interest in geo-, and environmental-sciences. The main objective of this study is the development of a high accuracy thermodynamic model for solution behavior, and highly soluble M(III)Cl3(s) (M= Al, Fe, Cr) minerals solubility in Na-Al(III)-Cr(III)-Fe(III)-Cl-H2O system at 25°C. Comprehensive thermodynamic models that accurately predict aluminium, chromium and iron aqueous chemistry and M(III) mineral solubilities as a function of pH, solution composition and concentration are critical for understanding many important geochemical and environmental processes involving these metals (e.g., mineral dissolution/alteration, rock formation, changes in rock permeability and fluid flow, soil formation, mass transport, toxic M(III) remediation). Such a model would also have many industrial applications (e.g., aluminium, chromium and iron production, and their corrosion, solve scaling problems in geothermal energy and oil production). Comparisons of solubility and activity calculations with the experimental data in binary and ternary systems indicate that model predictions are within the uncertainty of the data. Limitations of the model due to data insufficiencies are discussed. The solubility modeling approach, implemented to the Pitzer specific interaction equations is employed. The resulting parameterization was developed for the geochemical Pitzer formalism based PHREEQC database.
Depth distribution of exchangeable aluminum in acid soils: A study from subtropical Brazil
USDA-ARS?s Scientific Manuscript database
High exchangeable aluminum (Al3+) requires greater attention when preparing agricultural soils. However, research examining the relationship between natural levels of soil Al3+ and pedogenetic processes receives little priority, particularly regarding the number of soil profiles investigated. To rep...
Soil fertility status and challenges in Burundi: an overview
NASA Astrophysics Data System (ADS)
Kaboneka, Salvator
2015-04-01
Landlocked and thousands miles away from international sea ports, Burundi is one of the poorest country in the world. 58% of the population suffers chronic malnutrition, 67% live in absolute poverty (MDG report 2012). 90% of the estimated 10 million people depends on subsistence agriculture, on about 3 million ha of cultivable land. The average size of a family farm is less than 0.5 ha which has to support a family of typically 7 people . As a consequence, fallow practices are no longer possible and continuous land cultivation leads to enormous soil losses by erosion. As much as 100-200 metric tons per hectare of soil losses have been reported on the hill sides of the Mumirwa region, whose landscape is currently so degraded that the local community now say that "stones grow" in the zone. In medium to high altitude areas, about 1 million of ha are acidic (pH < 5) with a high risk of Al toxicity and deficiencies in major (P, Ca, Mg, K) and micro-nutrients (Cu, Zn). Some parts of the low land of the Imbo zone, dedicated to rice cultivation, manifest indications of salinity. A recent survey showed that 14% of the 2.800 ha of land committed to rice production is affected by rising salinity. Although soil salinity constitutes a challenge to rice producers in that region, soil acidity, often combined with Al toxicity, is the major limitation to soil productivity throughout Burundi. Almuminum saturation up to 60% and pH as low as 4.5 are observed. As elsewhere, technical solutions do exist, but the level of poverty of the population is such that access to fertilizers and adoption of sustainable practices is very weak. We believe that the main challenge to soil productivity in Burundi is more socio-economic than technical, and farmers should be helped with simple tools that should be linked to their indigenous knowledge about soil fertility. Sustainable management of soil fertility is the key challenge for farmers to optimize a sustainable yield. Key words: micro nutrient, soil fertility, nutrient depletion, soil acidity.
Luo, Y M; Yan, W D; Christie, P
2001-01-01
A pot experiment was conducted to study soil solution dynamics of Cu and Zn in a Cu/Zn-polluted soil as influenced by gamma-irradiation and Cu-Zn interaction. A slightly acid sandy loam was amended with Cu and Zn (as nitrates) either singly or in combination (100 mg Cu and 150 mg Zn kg(-1) soil) and was then gamma-irradiated (10 kGy). Unamended and unirradiated controls were included, and spring barley (Hordeum vulgare L. cv. Forrester) was grown for 50 days. Soil solution samples obtained using soil moisture samplers immediately before transplantation and every ten days thereafter were used directly for determination of Cu, Zn, pH and absorbance at 360 nm (A360). Cu and Zn concentrations in the solution of metal-polluted soil changed with time and were affected by gamma-irradiation and metal interaction. gamma-Irradiation raised soil solution Cu substantially but generally decreased soil solution Zn. These trends were consistent with increased dissolved organic matter (A360) and solution pH after gamma-irradiation. Combined addition of Cu and Zn usually gave higher soil solution concentrations of Cu or Zn compared with single addition of Cu or Zn in gamma-irradiated and non-irradiated soils, indicating an interaction between Cu and Zn. Cu would have been organically complexed and consequently maintained a relatively high concentration in the soil solution under higher pH conditions. Zn tends to occur mainly as free ion forms in the soil solution and is therefore sensitive to changes in pH. The extent to which gamma-irradiation and metal interaction affected solubility and bioavailability of Cu and Zn was a function of time during plant growth. Studies on soil solution metal dynamics provide very useful information for understanding metal mobility and bioavailability.
NASA Astrophysics Data System (ADS)
Mimmo, T.; Terzano, R.; Medici, L.; Lettino, A.; Fiore, S.; Tomasi, N.; Pinton, R.; Cesco, S.
2012-04-01
Plants release significant amounts of high and low molecular weight organic compounds into the rhizosphere. Among these exudates organic acids (e.g. citric acid, malic acid, oxalic acid), phenolic compounds (e.g. flavonoids), amino acids and siderophores of microbial and/or plant origin strongly influence and modify the biogeochemical cycles of several elements, thus causing changes in their availability for plant nutrition. One class of these elements is composed by the trace elements; some of them are essential for plants even if in small concentrations and are considered micronutrients, such as Fe, Zn, Mn. Their solubility and bioavailability can be influenced, among other factors, by the presence in soil solution of low molecular weight root exudates acting as organic complexing agents that can contribute to the mineral weathering and therefore, to their mobilization in the soil solution. The mobilized elements, in function of the element and of its concentration, can be either important nutrients or toxic elements for plants. The objective of this study was to assess the influence of several root exudates (citric acid, malic acid, oxalic acid, genistein, quercetin and siderophores) on the mineralogy of two different soils (an agricultural calcareous soil and an acidic polluted soil) and to evaluate possible synergic or competitive behaviors. X-ray diffraction (XRD) coupled with Electron Probe Micro Analysis (EPMA) was used to identify the crystalline and amorphous phases which were subjected to mineral alteration when exposed to the action of root exudates. Solubilization of trace metals such as Cu, Zn, Ni, Cr, Pb, Cd as well as of major elements such as Si, Al, Fe and Mn was assessed by means of Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Soil microorganisms have proven to decrease mineral weathering by reducing the concentration of active root exudates in solution. Results obtained are an important cornerstone to better understand the biogeochemical processes acting in the rhizosphere which can play an important role in the availability of trace elements (either nutrient or toxic) for plant uptake. Research is supported by MIUR - FIRB "Futuro in ricerca", internal grant of Unibz (TN5031 & TN5046) and the Autonomous Province of Bolzano (Rhizotyr TN5218).
Effect of citrate on Aspergillus niger phytase adsorption and catalytic activity in soil
NASA Astrophysics Data System (ADS)
Mezeli, Malika; Menezes-Blackburn, Daniel; Zhang, Hao; Giles, Courtney; George, Timothy; Shand, Charlie; Lumsdon, David; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Stutter, Marc; Blackwell, Martin; Darch, Tegan; Wearing, Catherine; Haygarth, Philip
2015-04-01
Current developments in cropping systems that promote mobilisation of phytate in agricultural soils, by exploiting plant-root exudation of phytase and organic acids, offer potential for developments in sustainable phosphorus use. However, phytase adsorption to soil particles and phytate complexion has been shown to inhibit phytate dephosphorylation, thereby inhibiting plant P uptake, increasing the risk of this pool contributing to diffuse pollution and reducing the potential benefits of biotechnologies and management strategies aimed to utilise this abundant reserve of 'legacy' phosphorus. Citrate has been seen to increase phytase catalytic efficiency towards complexed forms of phytate, but the mechanisms by which citrate promotes phytase remains poorly understood. In this study, we evaluated phytase (from Aspergillus niger) inactivation, and change in catalytic properties upon addition to soil and the effect citrate had on adsorption of phytase and hydrolysis towards free, precipitated and adsorbed phytate. A Langmuir model was fitted to phytase adsorption isotherms showing a maximum adsorption of 0.23 nKat g-1 (19 mg protein g-1) and affinity constant of 435 nKat gˉ1 (8.5 mg protein g-1 ), demonstrating that phytase from A.niger showed a relatively low affinity for our test soil (Tayport). Phytases were partially inhibited upon adsorption and the specific activity was of 40.44 nKat mgˉ1 protein for the free enzyme and 25.35 nKat mgˉ1 protein when immobilised. The kinetics of adsorption detailed that most of the adsorption occurred within the first 20 min upon addition to soil. Citrate had no effect on the rate or total amount of phytase adsorption or loss of activity, within the studied citrate concentrations (0-4mM). Free phytases in soil solution and phytase immobilised on soil particles showed optimum activity (>80%) at pH 4.5-5.5. Immobilised phytase showed greater loss of activity at pH levels over 5.5 and lower activities at the secondary peak at pH 2.5 when compared to the free enzymes or in soil solution. The effect of ionic strength on enzyme activity was studied by increasing NaCl concentration on the activity buffer. A significant loss of activity was seen at ionic strengths over 0.6 M but enzymes in soil solution showed increased loss of activity on initial increase in ionic strength. No significant effect of citrate on phytase catalytic efficiency was observed towards free, adsorbed and precipitated (Al, Fe, Ca) phytate, except for the free phytase towards adsorbed phytase which showed a ~160% increase in P release with the addition of citric acid. This data suggest that citrate addition has no impact on the adsorption or catalytic activity of phytase in soil solution or that immobilised on soil particles, suggesting that its impact is associated with the availability of the substrate rather than effects on the enzyme per se. The ionic strength of soil solution does, however, have an impact on phytase activity suggesting that both wetting/drying cycles and fertilisation will have discrete impacts on the activity of phytases once released to soil and thus their ability to make organic P available for uptake by plants and microbes.
Gruba, Piotr; Mulder, Jan
2015-04-01
Soil organic matter (SOM) in forest soil is of major importance for cation binding and acid buffering, but its characteristics may differ among soils under different tree species. We investigated acidity, cation exchange properties and Al bonding to SOM in stands of Scots pine, pedunculate oak, Norway spruce, European beech and common hornbeam in southern Poland. The content of total carbon (Ct) was by far the major contributor to total cation exchange capacity (CECt) even in loamy soils and a strong relationship between Ct and CECt was found. The slope of the regression of CECt to Ct increased in the order hornbeam≈oak
Understanding mineral dusts from the Middle East
NASA Astrophysics Data System (ADS)
Engelbrecht, J. P.; McDonald, E.; Gillies, J. A.; Jayanty, J.; Casuccio, G.; Gertler, A.
2012-12-01
The purpose of the program was to provide scientifically founded information on the chemical and physical properties of airborne mineral dust collected during a period of approximately one year, largely in 2006, at Djibouti, Afghanistan (Bagram, Khowst), Qatar, United Arab Emirates, Iraq (Balad, Baghdad, Tallil, Tikrit, Taji, Al Asad), and Kuwait (Northern, Central, Coastal, and Southern regions). To fully understand mineral dusts, their chemical and physical properties as well as mineralogical interrelationships were accurately established. Three collocated low volume particulate samplers, one each for the total suspended (TSP), less than 10 μm in aerodynamic diameter (PM10), and less than 2.5 μm in aerodynamic diameter (PM2.5) particulate matter were deployed at each of the 15 sites, operating on a "1 in 6 day" sampling schedule. A total of 3,136 filter samples were collected on a 1-in-6 day schedule, along with one-time bulk soil samples, at each of the 15 sites. Sample media included Teflon® membrane and quartz fiber filters for chemical analysis (71 species), and Nuclepore® filters for individual particle analysis by Scanning Electron Microscopy (SEM). The provisional study of the data revealed three broad air pollution sources: geological dust, smoke from burn pits, and until now unidentified lead-zinc smelters and battery-processing facilities. SEM results and secondary electron imagery show that quartz and other silicate minerals and, to a lesser extent, dolomite and calcite particles are coated by a thin Si-Al-Mg layer, probably the clay minerals palygorskite and/or montmorillonite/illite. Positive Matrix Factorization (PMF) was performed on aerosol samples collected at six military sites in Iraq (Balad, Baghdad, Tallil, Tikrit, Taji, and Al Asad). PMF results reflect chemical differences amongst sources impacting at individual sites, further complicated by the regional geomorphology and meteorology. Sampling sites are seldom impacted by one source at a time. Also, dust palls are continually being modified by added dust from soils across which they migrate, and by particle segregation in the dust plume followed by precipitation of the coarser particles. PMF was applied separately to two ambient data sets collected in Iraq in 2006, the one on Teflon membrane filters and the other on quartz fiber. Each of the filter types were previously analyzed for different chemical species: Teflon membrane for elements, by XRF and ICP-MS, while quartz fiber filters were analyzed for ions and carbon. A set of 392 Teflon filter samples analyzed for 25 elemental species was modeled by PMF. A five factor solution identified three soil factors, a silicate soil, limestone soil, and a gypsum soil, as well as a salt factor and an anthropogenic metal factor. Similarly, a set of 362 quartz filter samples analyzed for 10 selected chemical species was modeled by PMF. A five factor solution provided a limestone-gypsum soil, diesel combustion, secondary ammonium sulfate, salt and agricultural-burnpit combustion source type.
Polymer tensiometers in a saline environment.
NASA Astrophysics Data System (ADS)
van der Ploeg, Martine; Gooren, H. P. A.; Bakker, G.; Russell, W.; Hoogendam, C. W.; Huiskes, C.; Shouse, P.; de Rooij, G. H.
2010-05-01
It is estimated that 20% of all cultivated land and nearly half of the irrigated land is salt-affected, which pose major economic and environmental problems. Salinity may be the result of two processes; dryland and irrigation salinity. Dryland salinity is caused by a rise in the groundwater table, which occurs as a result of the replacement of deep-rooted, perennial native vegetation by shallow-rooted annual species meant for production. Irrigation salinity may occur as a result of poor water quality, poor drainage, or inefficient use of water. Consequently, new strategies to enhance crop yield stability on saline soils represent a major research priority (Botella et al. 2005). At the same time, native vegetation is capable of thriving under saline and/or dry conditions. The plant physiology of such vegetation has been investigated thoroughly, but the relation with in situ soil properties (soil moisture and salinity) may be more difficult to unravel as soil moisture sensors are less sensitive in dry soil, and the signal of most soil moisture content sensors is strongly attenuated by soil salinity. Recently, polymer tensiometer were developed that are able to measure matric potentials (closely related to a soil's moisture status) in dry soils. Polymer tensiometers consist of a solid ceramic, a stainless steel cup and a pressure transducer. The ceramic consist of a support layer and a membrane with 2 nm pore-size to prevent polymer leakage. Between the ceramic membrane and the pressure transducer a tiny chamber is located, which contains the polymer solution. The polymer's osmotic potential strongly reduces the total water potential inside the polymer tensiometer, which causes build-up of osmotic pressure. Polymer tensiometers would thus be an ideal instrument to measure in dry soil, if the polymer inside the tensiometer is not affected by the salts in the soil solution. We will address some key issues regarding the use of POTs in saline environments by showing results from a field experiment conducted in a very saline soil. This research was funded by the Dutch Technology Foundation (STW).
Borba, Ricardo Perobelli; Ribeirinho, Victor Sanches; de Camargo, Otávio Antonio; de Andrade, Cristiano Alberto; Kira, Carmen Silvia; Coscione, Aline Reneé
2018-02-01
In this study, we performed monitoring of the soil solution (SS) over 10 years on a loamy/clayey-textured Dark Red Dystroferric Oxisol that received sewage sludge for agricultural purposes. The SS was obtained by lysimeters installed along the walls of a well at 1 m, 2 m, 3 m, 4 m and 5 m in depth. The major ions found in the SS were NO 3 - , SO 4 2- , Cl - , Ca 2+ , Mg 2+ , Al 3+ , Pb 2+ , Cd 2+ and Zn 2+ , and the pH level ranged from 4 to 6.5 along the profile. Throughout the first three years of monitoring, the pH to a 3-m depth became more acidic, and in the last year, this trend reached 5 m. At the 5-m depth, the pH decreased from 6.5 to 4.5 from the first to the last monitoring. The SS acidification was provoked by both nitrite oxidation and ion leaching. The leaching of H + or the possible ion exchange/desorption of H + due to the leached cations (Ca 2+ and Mg 2+ ) at the 4-m and 5-m depth caused the pH decrease. The ionic strength (IS) of the solution controlled the ion leaching. The sludge application increased the IS to 3 m, increasing the density of the soil charges and its ability to absorb ions. After the sludge application was completed, there was a decrease in IS of the SS as well as a decrease in ion absorption and retention abilities, which promoted leaching to greater depths. During the entire monitoring process, NO 3 - , Cd and Pb remained above the potability limit. Copyright © 2017 Elsevier Ltd. All rights reserved.
Predicting active-layer soil thickness using topographic variables at a small watershed scale
Li, Aidi; Tan, Xing; Wu, Wei; Liu, Hongbin; Zhu, Jie
2017-01-01
Knowledge about the spatial distribution of active-layer (AL) soil thickness is indispensable for ecological modeling, precision agriculture, and land resource management. However, it is difficult to obtain the details on AL soil thickness by using conventional soil survey method. In this research, the objective is to investigate the possibility and accuracy of mapping the spatial distribution of AL soil thickness through random forest (RF) model by using terrain variables at a small watershed scale. A total of 1113 soil samples collected from the slope fields were randomly divided into calibration (770 soil samples) and validation (343 soil samples) sets. Seven terrain variables including elevation, aspect, relative slope position, valley depth, flow path length, slope height, and topographic wetness index were derived from a digital elevation map (30 m). The RF model was compared with multiple linear regression (MLR), geographically weighted regression (GWR) and support vector machines (SVM) approaches based on the validation set. Model performance was evaluated by precision criteria of mean error (ME), mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). Comparative results showed that RF outperformed MLR, GWR and SVM models. The RF gave better values of ME (0.39 cm), MAE (7.09 cm), and RMSE (10.85 cm) and higher R2 (62%). The sensitivity analysis demonstrated that the DEM had less uncertainty than the AL soil thickness. The outcome of the RF model indicated that elevation, flow path length and valley depth were the most important factors affecting the AL soil thickness variability across the watershed. These results demonstrated the RF model is a promising method for predicting spatial distribution of AL soil thickness using terrain parameters. PMID:28877196
Zhang, H; Zhao, F J; Sun, B; Davison, W; McGrath, S P
2001-06-15
Risk assessments of metal contaminated soils need to address metal bioavailability. To predict the bioavailability of metals to plants, it is necessary to understand both solution and solid phase supply processes in soils. In striving to find surrogate chemical measurements, scientists have focused either on soil solution chemistry, including free ion activities, or operationally defined fractions of metals. Here we introduce the new concept of effective concentration, CE, which includes both the soil solution concentration and an additional term, expressed as a concentration, that represents metal supplied from the solid phase. CE was measured using the technique of diffusive gradients in thin films (DGT) which, like a plant, locally lowers soil solution concentrations, inducing metal supply from the solid phase, as shown by a dynamic model of the DGT-soil system. Measurements of Cu as CE, soil solution concentration, by EDTA extraction and as free Cu2+ activity in soil solution were made on 29 different soils covering a large range of copper concentrations. Theywere compared to Cu concentrations in the plant material of Lepidium heterophyllum grown on the same soils. Plant concentrations were linearly related and highly correlated with CE but were more scattered and nonlinear with respect to free Cu2+ activity, EDTA extraction, or soil solution concentrations. These results demonstrate that the dominant supply processes in these soils are diffusion and labile metal release, which the DGT-soil system mimics. The quantity CE is shown to have promise as a quantitative measure of the bioavailable metal in soils.
Migration of trace elements from pyrite tailings in carbonate soils.
Dorronsoro, C; Martin, F; Ortiz, I; García, I; Simón, M; Fernández, E; Aguilar, J; Fernández, J
2002-01-01
In the carbonate soils contaminated by a toxic spill from a pyrite mine (Aznalcóllar, southern Spain), a study was made of a thin layer (thickness = 4 mm) of polluted soil located between the pyrite tailings and the underlying soil. This layer, reddish-yellow in color due to a high Fe content, formed when sulfates (from the oxidation of sulfides) infiltrated the soil, causing acidification (to pH 5.6 as opposed to 8.0 of unaffected soil) and pollution (in Zn, Cu, As, Pb, Co, Cd, Sb, Bi, Tl, and In). The less mobile elements (As, Bi, In, Pb, Sb, and Tl) concentrated in the uppermost part of the reddish-yellow layer, with concentration decreasing downward. The more mobile elements (Co, Cd, Zn, and Cu) tended to precipitate where the pH was basic, toward the bottom of the layer or in the upper part of the underlying soil. The greatest accumulations occurred within the first 6 mm in overall soil depth, and were negligible below 15 mm. In addition, the acidity of the solution from the tailings degraded the minerals of the clay fraction of the soils, both the phyllosilicates as well as the carbonates. Also, within the reddish-yellow layer, gypsum formed autigenically, together with complex salts of sulfates of Fe, Al, Zn, Ca, and Mn, jarosite, and oxihydroxides of Fe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsenovich, Yelena P.; Cardona, Claudia; Lapierre, Robert
2016-10-01
Remediation of uranium in the deep unsaturated zone is a challenging task, especially in the presence of oxygenated, high-carbonate alkalinity soil and pore water composition typical for arid and semi-arid environments of the western regions of the U.S. This study evaluates the effect of various pore water constituencies on changes of uranium concentrations in alkaline conditions, created in the presence of reactive gases such as NH3 to effectively mitigate uranium contamination in the vadose zone sediments. This contaminant is a potential source for groundwater pollution through slow infiltration of soluble and highly mobile uranium species towards the water table. Themore » objective of this research was to evaluate uranium sequestration efficiencies in the alkaline synthetic pore water solutions prepared in a broad range of Si, Al, and bicarbonate concentrations typically present in field systems of the western U.S. regions and identify solid uranium-bearing phases that result from ammonia gas treatment. In previous studies (Szecsody et al. 2012; Zhong et al. 2015), although uranium mobility was greatly decreased, solid phases could not be identified at the low uranium concentrations in field-contaminated sediments. The chemical composition of the synthetic pore water used in the experiments varied for silica (5–250 mM), Al3+ (2.8 or 5 mM), HCO3- (0–100 mM) and U(VI) (0.0021–0.0084 mM) in the solution mixture. Experiment results suggested that solutions with Si concentrations higher than 50 mM exhibited greater removal efficiencies of U(VI). Solutions with higher concentrations of bicarbonate also exhibited greater removal efficiencies for Si, Al, and U(VI). Overall, the silica polymerization reaction leading to the formation of Si gel correlated with the removal of U(VI), Si, and Al from the solution. If no Si polymerization was observed, there was no U removal from the supernatant solution. Speciation modeling indicated that the dominant uranium species in the presence of bicarbonate were anionic uranyl carbonate complexes (UO2(CO3)2-2 and UO2(CO3)3-4) and in the absence of bicarbonate in the solution, U(VI) major species appeared as uranyl-hydroxide (UO2(OH)3- and UO2(OH)4-2) species. The model also predicted the formation of uranium solid phases. Uranyl carbonates as rutherfordine [UO2CO3], cejkaite [Na4(UO2)(CO3)3] and hydrated uranyl silicate phases as Na-boltwoodite [Na(UO2)(SiO4)·1.5H2O] were anticipated for most of the synthetic pore water compositions amended from medium (2.9 mM) to high (100 mM) bicarbonate concentrations.« less
DGT technique to assess P mobilization from greenhouse vegetable soils in China: A novel approach.
Kalkhajeh, Yusef Kianpoor; Sørensen, Helle; Huang, Biao; Guan, Dong-Xing; Luo, Jun; Hu, Wenyou; Holm, Peter E; Hansen, Hans Christian Bruun
2018-07-15
Intensive phosphorus (P) inputs to plastic-covered greenhouse vegetable production (PGVP) in China has led to excessive soil P accumulation increasing the potential for leaching to surface waters. This study examined the mobility and hence the potential risk of P losses through correlations between soil solution P (P Sol ) and soil extractable P as determined by conventional soil P test methods (STPs) including degree of P saturations (DPSs), and diffusive gradient in thin-films (DGT P) technique. A total of 75 topsoil samples were chosen from five representative Chinese PGVPs covering a wide range of physiochemical soil properties and cultivation history. Total P and Olsen P contents varied from 260 to 4900, and 5 to 740mgkg -1 , respectively, while P Sol concentrations were between 0.01 and 10.8mgL -1 reflecting the large differences in vegetation history, fertilization schemes, and soil types. Overall, DGT P provided the best correlation with P Sol (r 2 =0.97) demonstrating that DGT P is a versatile measure of P mobility regardless of soil type. Among the DPSs tested, oxalate extractable Al (DPS Ox-Al ) had the best correlation with P Sol (r 2 =0.87). In the STP versus P Sol relationships, STP break-points above which P mobilization increases steeply were 513μgL -1 and 190mgkg -1 for DGT P or Olsen P, respectively, corresponding to P Sol concentration of 0.88mgL -1 . However, for P Sol concentration of 0.1mgL -1 that initiates eutrophication, the corresponding DGT P and Olsen P values were 27μgL -1 and 22mgkg -1 , respectively. Over 80% of the investigated soils had DGT P and Olsen P above these values, and thus are at risk of P mobilization threatening receiving waters by eutrophication. This paper demonstrates that the DGT extracted P is a powerful measure for soluble P and hence for assessment of P mobility from a broad range of soil types. Copyright © 2018 Elsevier B.V. All rights reserved.
Impact of managed moorland burning on peat nutrient and base cation status
NASA Astrophysics Data System (ADS)
Palmer, Sheila; Gilpin, Martin; Wearing, Catherine; Johnston, Kerrylyn; Holden, Joseph; Brown, Lee
2013-04-01
Controlled 'patch' burning of moorland vegetation has been used for decades in the UK to stimulate growth of heather (Calluna vulgaris) for game bird habitat and livestock grazing. Typically small patches (300-900 m2) are burned in rotations of 8-25 years. However, our understanding of the short-to-medium term environmental impacts of the practice on these sensitive upland areas has so far been limited by a lack of scientific data. In particular the effect of burning on concentrations of base cations and acid-base status of these highly organic soils has implications both for ecosystem nutrient status and for buffering of acidic waters. As part of the EMBER project peat chemistry data were collected in ten upland blanket peat catchments in the UK. Five catchments were subject to a history of prescribed rotational patch burning. The other five catchments acted as controls which were not subject to burning, nor confounded by other detrimental activities such as drainage or forestry. Soil solution chemistry was also monitored at two intensively studied sites (one regularly burned and one control). Fifty-centimetre soil cores, sectioned into 5-cm intervals, were collected from triplicate patches of four burn ages at each burned site, and from twelve locations at similar hillslope positions at each control site. At the two intensively monitored sites, soil solution chemistry was monitored at four depths in each patch. Across all sites, burned plots had significantly smaller cation exchange capacities, lower concentrations of exchangeable base cations and increased concentrations of exchangeable H+ and Al3+ in near-surface soil. C/N ratios were also lower in burned compared to unburned surface soils. There was no consistent trend between burn age and peat chemistry across all burned sites, possibly reflecting local controls on post-burn recovery rates or external influences on burn management decisions. At the intensively monitored site, plots burned less than two years prior to sampling had significantly smaller exchange capacities and lower concentrations of soil base cations in surface soils relative to plots burned 15-25 years previously. In contrast, surface soil solutions in recently burned plots were enriched in base cations relative to older plots and relative to the control site, possibly due to enhanced leaching at bare soil surfaces. The results offer evidence for an impact of burning on peat nutrient and acid-base status, but suggest that soils recover given time with no further burning.
Factors affecting the mobilization of DOC and metals in a peat soil under a warmer scenario
NASA Astrophysics Data System (ADS)
Carrera, Noela; Barreal, María. Esther; Briones, María. Jesús I.
2010-05-01
Most climate change models predict an increase of temperature of 3-5°C in Southern Europe by the end of this century (IPCC 2007). However, changes in summer precipitations are more uncertain, and although a decrease in rainfall inputs is forecasted by most models, the magnitude of this effect has not been assessed properly (Rowell & Jones 2006). Peatland areas are very sensitive to climate change. In Galicia they survive in upland areas where cold temperatures and continuous moisture supply allow their presence. Besides abiotic factors, alterations in soil fauna activities can also affect peat turnover. Among them, enchytraeids are usually the most numerous invertebrate group in these systems and both temperature and moisture content regulate their abundances and vertical distribution. Previous studies have demonstrated that changes in their populations associated to increasing temperatures can significantly affect metal mobilization, namely iron and aluminium, together with an important decline in the acidity of the soil solution, which possibly eliminates one of the critical mechanisms restricting DOC release (Carrera et al., 2009). In this study we investigated whether changes in water content of the peat soil and soil invertebrate activities associated to increasing temperatures could alter the mobilization rates of Fe and Al and in turn, DOC. 72 undisturbed soil cores (6 cm diameter x 10 cm deep) with their associated vegetation were taken from a blanket bog in Galicia (NW Spain). Back at the laboratory they were sliced horizontally into two layers, (0-5cm and 5-10cm) which were defaunated by means of a wet extraction. Thereafter, the two soil layers derived from the same core were introduced in each microcosm by placing them in their original position but separated by a 1 mm nylon mesh to allow the vertical movements of the organisms. Half of the experimental units were adjusted to the used moisture values observed in the field (80% SWC, H1), whereas in the remaining half the moisture content was decreased to a lower value so that the activities of the soil organisms remained unaffected (60%, H2). Sixty enchytraeid individuals were inoculated into 18 units of each moisture treatment resulting in two animal treatments (+E and -E). Nine replicates of each treatment were incubated at 14°C and the rest were maintained at 19°C. Changes in enchytraeid populations during incubation were monitored by using a parallel series of 120 experimental units consisting of plastic containers which contained defaunated soil samples (two soil layers) separated by the nylon mesh and with the two moisture treatments as the microcosms (H1 and H2) following the same procedures as before. Next, the same number of enchytraeids was re-inoculated in half of these experimental units (+E and -E). The experiment run for 13 weeks; every 15 days, enchytraeid numbers, DOC, Fe and Al content in the leachates collected from each individual layer were determined. Results showed that both high temperature and moisture values promoted enchytraeid reproduction, with most individuals concentrated in the upper layer. This abundant enchytraeid population favoured the mobilization of DOC, Fe and Al to the soil solution. These findings suggest that modifications in soil faunal populations due to abiotic changes could enhance organic matter decomposition, contributing to the destabilization of these peatland systems. Increasing leaching of dissolved organic matter and metals could have negative implications, not only in terms of possible feed-backs to global warming but also as potential contaminants for aquatic ecosystems. References • Carrera N., Barreal M.E., Gallego P. & Briones M.J.I. (2009). Soil invertebrates control peatland C fluxes in response to warming. Functional Ecology 23: 637-648. • IPCC 2007. Climate change 2007. The Physical Science Basis. Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M. & Miller H.L. (Eds.). Cambridge University Press, Cambridge, UK. • Rowell D.P. & Jones R.G. (2006). Causes and uncertainty of future summer drying over Europe. Climate Dynamics 27: 281-299.
The impact of olive leaves, mosses and the burrowing of wild boars on soil erosion in olive orchards
NASA Astrophysics Data System (ADS)
Cerdà, Artemi; Nadal-Romero, Estela; Brevik, Eric C.; Pulido, Manuel; Maestre, Fermando T.; Taguas, Tani; Novara, Agata; Keesstra, Saskia; Cammeraat, Erik; Parras-Alcantara, Luis
2017-04-01
The main factor controlling soil erosion is vegetation cover (Cerdà and Doerr, 2005; Van Eck et al., 2016; van Hall et al., 2017). However, due to the removal of the vegetation in agricultural fields and the increase in soil erosion rates other factors arise as keys to control soil erosion rates and mechanisms (Ochoa-Cueva et al., 2016; Rodrigo Comino et al., 2016). Soil erosion rates in olive plantations are high due to the lack of vegetation cover as a consequence of intensive tillage and herbicides abuse (Taguas et al., 2015; Parras-Alcantara et al., 2016; Zema et al., 2016). This is also found in vineyards and other orchards around the world (Prosdocimi et al., 2016; Rodrígo Comino et al., 2016), and the reason to look for sustainable management techniques such as geotextiles, mulches or catch crops that will stop the accelerated soil erosion (Giménez Morera et al., 2010; Mwango et al., 2016; Nawaz et al., 2016a; 2016b; Nishigaki et al., 2016). All these management techniques are difficult to apply and have high costs. Natural solutions such as weeds to provide cover are very efficient and have no cost (Cerdà et al., 2016; Keesstra et al., 2016) and they can be adapted to the management of the farmers. In olive orchards under herbicide treatment there is a natural growth of mosses and the development of a litter layer composed of olive leaves. There is also burrowing by wild boars that "ploughs" the soil. This research evaluates the impact of the three items above on soil erosion. The measurements were carried out using simulated rainfall experiments over an area of 0.25 m2 at a rainfall rate of 55 mm h-1 during one hour (Cerdà, 1996; Prosdocimi et al., 2017) on 15 plots of mosses, 15 wild boar burrowed surfaces and 15 leaf covered surfaces during the winter of 2015. The soil erosion rates were 34 times greater in the wild boar burrowed soils, meanwhile the litter and mosses covered soils showed similar erosional responses and the soil erosion rates were negligible. Acknowledgements The research leading to these results has received funding from the European Union Seventh Framework Program (FP7/2007-2013) under grant agreement n_ 603498 (RECARE project) and the CGL2013- 47862-C2-1-R and CGL2016-75178-C2-2-R national research projects. References Cerdà, A. (1996). Seasonal variability of infiltration rates under contrasting slope conditions in southeast spain. Geoderma, 69(3-4), 217-232. Cerdà, A., & Doerr, S. H. (2005). Influence of vegetation recovery on soil hydrology and erodibility following fire: An 11-year investigation. International Journal of Wildland Fire, 14(4), 423-437. doi:10.1071/WF05044 Cerdà, A., González-Pelayo, O., Giménez-Morera, A., Jordán, A., Pereira, P., Novara, A., . . . Ritsema, C. J. (2016). Use of barley straw residues to avoid high erosion and runoff rates on persimmon plantations in eastern spain under low frequency-high magnitude simulated rainfall events. Soil Research, 54(2), 154-165. doi:10.1071/SR15092 Giménez-Morera, A., Ruiz Sinoga, J. D., & Cerdà, A. (2010). The impact of cotton geotextiles on soil and water losses from mediterranean rainfed agricultural land. Land Degradation and Development, 21(2), 210-217. doi:10.1002/ldr.971 Keesstra, S., Pereira, P., Novara, A., Brevik, E. C., Azorin-Molina, C., Parras-Alcántara, L., . . . Cerdà, A. (2016). Effects of soil management techniques on soil water erosion in apricot orchards. Science of the Total Environment, 551-552, 357-366. doi:10.1016/j.scitotenv.2016.01.182 Mwango, S. B., Msanya, B. M., Mtakwa, P. W., Kimaro, D. N., Deckers, J., & Poesen, J. (2016). Effectiveness OF mulching under miraba in controlling soil erosion, fertility restoration and crop yield in the usambara mountains, tanzania. Land Degradation and Development, 27(4), 1266-1275. doi:10.1002/ldr.2332 Nawaz, A., Farooq, M., Lal, R., Rehman, A., Hussain, T., & Nadeem, A. (2016). Influence of sesbania brown manuring and rice residue mulch on soil health, weeds and system productivity of conservation rice-wheat systems. Land Degradation and Development, doi:10.1002/ldr.2578 Nawaz, A., Lal, R., Shrestha, R. K., & Farooq, M. (2016). Mulching affects soil properties and greenhouse gas emissions under long-term no-till and plough-till systems in alfisol of central ohio. Land Degradation and Development, doi:10.1002/ldr.2553 Nishigaki, T., Shibata, M., Sugihara, S., Mvondo-Ze, A. D., Araki, S., & Funakawa, S. (2016). Effect of mulching with vegetative residues on soil water erosion and water balance in an oxisol cropped by cassava in east cameroon. Land Degradation and Development, doi:10.1002/ldr.2568 Ochoa-Cueva, P., Fries, A., Montesinos, P., Rodríguez-Díaz, J. A., & Boll, J. (2015). Spatial estimation of soil erosion risk by land-cover change in the andes OF southern ecuador. Land Degradation and Development, 26(6), 565-573. doi:10.1002/ldr.2219 Parras-Alcántara, L., Lozano-García, B., Keesstra, S., Cerdà, A., & Brevik, E. C. (2016). Long-term effects of soil management on ecosystem services and soil loss estimation in olive grove top soils. Science of the Total Environment, 571, 498-506. doi:10.1016/j.scitotenv.2016.07.016 Prosdocimi, M., Burguet, M., Di Prima, S., Sofia, G., Terol, E., Rodrigo Comino, J., . . . Tarolli, P. (2017). Rainfall simulation and structure-from-motion photogrammetry for the analysis of soil water erosion in mediterranean vineyards. Science of the Total Environment, 574, 204-215. doi:10.1016/j.scitotenv.2016.09.036 Prosdocimi, M., Cerdà, A., & Tarolli, P. (2016a). Soil water erosion on mediterranean vineyards: A review. Catena, 141, 1-21. doi:10.1016/j.catena.2016.02.010 Rodrigo Comino, J., Iserloh, T., Lassu, T., Cerdà, A., Keesstra, S. D., Prosdocimi, M., . . . Ries, J. B. (2016). Quantitative comparison of initial soil erosion processes and runoff generation in spanish and german vineyards. Science of the Total Environment, 565, 1165-1174. doi:10.1016/j.scitotenv.2016.05.163 Rodrigo Comino, J., Quiquerez, A., Follain, S., Raclot, D., Le Bissonnais, Y., Casalí, J., Giménez, R., Cerdà, A., Keesstra, S.D., Brevik, E.C., Pereira, P., Senciales, J.M., Seeger, M., Ruiz Sinoga, J.D., Ries, J.B., 2016. Soil erosion in sloping vineyards assessed by using botanical indicators and sediment collectors in the Ruwer-Mosel valley. Agriculture Ecosystems and Environment, 233, 158-170. DOI: 10.1016/j.agee.2016.09.009 Taguas, E. V., E. Guzmán, G. Guzmán, T. Vanwalleghem, and J. A. Gómez. 2015. Characteristics and Importance of Rill and Gully Erosion: A Case Study in a Small Catchment of a Marginal Olive Grove. Cuadernos De Investigacion Geografica 41 (1): 107-126. doi:10.18172/cig.2644. Van Eck, C. M., Nunes, J. P., Vieira, D. C. S., Keesstra, S., & Keizer, J. J. (2016). Physically-based modelling of the post-fire runoff response of a forest catchment in central portugal: Using field versus remote sensing based estimates of vegetation recovery. Land Degradation and Development, 27(5), 1535-1544. doi:10.1002/ldr.2507 van Hall, R. L., Cammeraat, L. H., Keesstra, S. D., & Zorn, M. (2017). Impact of secondary vegetation succession on soil quality in a humid mediterranean landscape. Catena, 149, 836-843. doi:10.1016/j.catena.2016.05.021 Zema, D. A., Denisi, P., Taguas Ruiz, E. V., Gómez, J. A., Bombino, G., & Fortugno, D. (2016). Evaluation of surface runoff prediction by AnnAGNPS model in a large mediterranean watershed covered by olive groves. Land Degradation and Development, 27(3), 811-822. doi:10.1002/ldr.2390
Im, Jinwoo; Yang, Kyung; Jho, Eun Hea; Nam, Kyoungphile
2015-11-01
The effect of soil washing used for arsenic (As)-contaminated soil remediation on soil properties and bioavailability of residual As in soil is receiving increasing attention due to increasing interest in conserving soil qualities after remediation. This study investigates the effect of different washing solutions on bioavailability of residual As in soils and soil properties after soil washing. Regardless of washing solutions, the sequential extraction revealed that the residual As concentrations and the amount of readily labile As in soils were reduced after soil washing. However, the bioassay tests showed that the washed soils exhibited ecotoxicological effects - lower seed germination, shoot growth, and enzyme activities - and this could largely be attributed to the acidic pH and/or excessive nutrient contents of the washed soils depending on washing solutions. Overall, this study showed that treated soils having lower levels of contaminants could still exhibit toxic effects due to changes in soil properties, which highly depended on washing solutions. This study also emphasizes that data on the As concentrations, the soil properties, and the ecotoxicological effects are necessary to properly manage the washed soils for reuses. The results of this study can, thus, be utilized to select proper post-treatment techniques for the washed soils. Copyright © 2015 Elsevier Ltd. All rights reserved.
Prietzel, Jörg; Harrington, Gertraud; Häusler, Werner; Heister, Katja; Werner, Florian; Klysubun, Wantana
2016-03-01
Direct speciation of soil phosphorus (P) by linear combination fitting (LCF) of P K-edge XANES spectra requires a standard set of spectra representing all major P species supposed to be present in the investigated soil. Here, available spectra of free- and cation-bound inositol hexakisphosphate (IHP), representing organic P, and of Fe, Al and Ca phosphate minerals are supplemented with spectra of adsorbed P binding forms. First, various soil constituents assumed to be potentially relevant for P sorption were compared with respect to their retention efficiency for orthophosphate and IHP at P levels typical for soils. Then, P K-edge XANES spectra for orthophosphate and IHP retained by the most relevant constituents were acquired. The spectra were compared with each other as well as with spectra of Ca, Al or Fe orthophosphate and IHP precipitates. Orthophosphate and IHP were retained particularly efficiently by ferrihydrite, boehmite, Al-saturated montmorillonite and Al-saturated soil organic matter (SOM), but far less efficiently by hematite, Ca-saturated montmorillonite and Ca-saturated SOM. P retention by dolomite was negligible. Calcite retained a large portion of the applied IHP, but no orthophosphate. The respective P K-edge XANES spectra of orthophosphate and IHP adsorbed to ferrihydrite, boehmite, Al-saturated montmorillonite and Al-saturated SOM differ from each other. They also are different from the spectra of amorphous FePO4, amorphous or crystalline AlPO4, Ca phosphates and free IHP. Inclusion of reference spectra of orthophosphate as well as IHP adsorbed to P-retaining soil minerals in addition to spectra of free or cation-bound IHP, AlPO4, FePO4 and Ca phosphate minerals in linear combination fitting exercises results in improved fit quality and a more realistic soil P speciation. A standard set of P K-edge XANES spectra of the most relevant adsorbed P binding forms in soils is presented.
NASA Astrophysics Data System (ADS)
Helfenstein, Julian; Jegminat, Jannes; McLaren, Timothy I.; Frossard, Emmanuel
2018-01-01
The exchange rate of inorganic phosphorus (P) between the soil solution and solid phase, also known as soil solution P turnover, is essential for describing the kinetics of bioavailable P. While soil solution P turnover (Km) can be determined by tracing radioisotopes in a soil-solution system, few studies have done so. We believe that this is due to a lack of understanding on how to derive Km from isotopic exchange kinetic (IEK) experiments, a common form of radioisotope dilution study. Here, we provide a derivation of calculating Km using parameters obtained from IEK experiments. We then calculated Km for 217 soils from published IEK experiments in terrestrial ecosystems, and also that of 18 long-term P fertilizer field experiments. Analysis of the global compilation data set revealed a negative relationship between concentrations of soil solution P and Km. Furthermore, Km buffered isotopically exchangeable P in soils with low concentrations of soil solution P. This finding was supported by an analysis of long-term P fertilizer field experiments, which revealed a negative relationship between Km and phosphate-buffering capacity. Our study highlights the importance of calculating Km for understanding the kinetics of P between the soil solid and solution phases where it is bioavailable. We argue that our derivation can also be used to calculate soil solution turnover of other environmentally relevant and strongly sorbing elements that can be traced with radioisotopes, such as zinc, cadmium, nickel, arsenic, and uranium.
de Vries, W; Wieggers, H J J; Brus, D J
2010-08-05
Element fluxes through forest ecosystems are generally based on measurements of concentrations in soil solution at regular time intervals at plot locations sampled in a regular grid. Here we present spatially averaged annual element leaching fluxes in three Dutch forest monitoring plots using a new sampling strategy in which both sampling locations and sampling times are selected by probability sampling. Locations were selected by stratified random sampling with compact geographical blocks of equal surface area as strata. In each sampling round, six composite soil solution samples were collected, consisting of five aliquots, one per stratum. The plot-mean concentration was estimated by linear regression, so that the bias due to one or more strata being not represented in the composite samples is eliminated. The sampling times were selected in such a way that the cumulative precipitation surplus of the time interval between two consecutive sampling times was constant, using an estimated precipitation surplus averaged over the past 30 years. The spatially averaged annual leaching flux was estimated by using the modeled daily water flux as an ancillary variable. An important advantage of the new method is that the uncertainty in the estimated annual leaching fluxes due to spatial and temporal variation and resulting sampling errors can be quantified. Results of this new method were compared with the reference approach in which daily leaching fluxes were calculated by multiplying daily interpolated element concentrations with daily water fluxes and then aggregated to a year. Results show that the annual fluxes calculated with the reference method for the period 2003-2005, including all plots, elements and depths, lies only in 53% of the cases within the range of the average +/-2 times the standard error of the new method. Despite the differences in results, both methods indicate comparable N retention and strong Al mobilization in all plots, with Al leaching being nearly equal to the leaching of SO(4) and NO(3) with fluxes expressed in mol(c) ha(-1) yr(-1). This illustrates that Al release, which is the clearest signal of soil acidification, is mainly due to the external input of SO(4) and NO(3).
[Process and mechanism of plants in overcoming acid soil aluminum stress].
Zhao, Tian-Long; Xie, Guang-Ning; Zhang, Xiao-Xia; Qiu, Lin-Quan; Wang, Na; Zhang, Su-Zhi
2013-10-01
Aluminum (Al) stress is one of the most important factors affecting the plant growth on acid soil. Currently, global soil acidification further intensifies the Al stress. Plants can detoxify Al via the chelation of ionic Al and organic acids to store the ionic Al in vacuoles and extrude it from roots. The Al extrusion is mainly performed by the membrane-localized anion channel proteins Al(3+)-activated malate transporter (ALMT) and multi-drug and toxin extrusion (MATE). The genes encoding ABC transporter and zinc-finger protein conferred plant Al tolerance have also been found. The identification of these Al-resistant genes makes it possible to increase the Al resistance of crop plants and enhance their production by the biological methods such as gene transformation and mark-associated breeding. The key problems needed to be solved and the possible directions in the researches of plant Al stress resistance were proposed.
NASA Astrophysics Data System (ADS)
Cerdà, Artemi; González Pelayo, Óscar; García Orenes, Fuensanta; Jordán, Antonio; Pereira, Paulo; Novara, Agata; Neris, Jonay
2015-04-01
Soil water repellency is being researched in many enviroments of the world due to the fact that after two decades of intense investigations we found that soil water repellency is a soil property that can be found at any ecosystem (Atanassava and Doerr, 2011; Goebel et al., 2011; Mataix-Solera et al., 2013; Roper et al., 2013; Young et al., 2013; Badía-Villas et al., 2014; Jordán et al., 2014; Whelan et al., 2014). Soil water repellency inhibits or delays infiltration, encourage surface runoff but also the preferential flow in cracks and other macropores (Arye et al., 2011; Jordán et al., 2011; Madsen et al., 2011; Spohn and Rilling, 2012; García-Moreno et al., 2013; Hallin et al., 2013). Water repellency has been found in many soil types and it is present after forest fire, on forested land and also in agriculture soils (Granjed et al., 2013; Bodí et al., 2012; García Orenes et al., 2013; Jordán et al., 2012; Bodí et al., 2013; Dlapa et al., 2013; González-Peñaloza et al., 2012; López Garrido et al., 2012; León et al., 2013; Hewelke et al., 2014; Santos et al., 2014; Kröpfl et al., 2013). This paper show the measurements caried out by means of the water drop penetration time (WDPT) method in olive plantation in the Cànyoles watershed in Eastern Spain. Conservation practices applied such as no-tillage, manure addition, application of herbicides may contribute to increase soil organic matter and, hence, soil water repellency, and this is unknow under Mediterranean type ecosystems. The effect of long-term addition of plant residues and organic manure, no-tillage and no chemical fertilization (MNT), annual addition of plant residues and no-tillage (NT), application of conventional herbicides and no-tillage (H), and conventional tillage (CT) on soil water repellency in Mediterranean calcareous citrus-cropped soils (Eastern Spain) has been studied. Water repellency was observed in MNT soils, which may be attributed to the input of hydrophobic organic compounds as a consequence of the addition of plant residues and organic manure such has been demonstrated by the soil organic matter measurements. CT reduced the organic matter content and soils remained wettable. Water repellency was observed in soils under NT and H treatments, but it was below 5 seconds. Previos studies developed by González Peñaloza et al., (2013) show that under citrus production the response of the land management was similar. We found also an increase in the soil water repellency due to the time since organic matter is accumulating. This results should be shown in the framework of the land degradation that can trigger (or not) the increase in water repellency (Mekuria and Aynekulu, 2013; Nadal Romero et al., 2013; Neal et al., 2013; Taguas et al., 2013; Zhao et al., 2013). Acknowledgements To the "Ministerio de Economía and Competitividad" of Spanish Government for finance the POSTFIRE project (CGL2013- 47862-C2-1-R). The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7-ENV-2013- supported this research. References Arye, G., Tarchitzky, J., Chen, Y. 2011. Treated wastewater effects on water repellency and soil hydraulic properties of soil aquifer treatment infiltration basins. Journal of hydrology, 397(1), 136-145. Atanassava and Doerr, 2011; Goebel et al., 2011; Mataix-Solera et al., 2013; Roper et al., 2013; Young et al., 2013; Badía-Villas et al., 2014; Jordán et al., 2014; Whelan et al., 2014; Atanassova, I., Doerr, S. H. 2011. Changes in soil organic compound composition associated with heat-induced increases in soil water repellency. European Journal of Soil Science, 62(4), 516-532. Atanassova, I., Doerr, S. H. 2011. Changes in soil organic compound composition associated with heat-induced increases in soil water repellency. European Journal of Soil Science, 62(4), 516-532. Badía-Villas, D., González-Pérez, J. A., Aznar, J. M., Arjona-Gracia, B., & Martí-Dalmau, C. 2014. Changes in water repellency, aggregation and organic matter of a mollic horizon burned in laboratory: soil depth affected by fire. Geoderma, 213, 400-407. Badía-Villas, D., González-Pérez, J. A., Aznar, J. M., Arjona-Gracia, B., & Martí-Dalmau, C. 2014. Changes in water repellency, aggregation and organic matter of a mollic horizon burned in laboratory: soil depth affected by fire. Geoderma, 213, 400-407. Bodí, M.B. Doerr, S.H., Cerdà, A., Mataix-Solera, J. 2012. Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soils. Geoderma, 191, 14-23. http://dx.doi.org/10.1016/j.geoderma.2012.01.006 Bodí, M.B., Muñoz-Santa, I., Armero, C., Doerr, S.H., Mataix-Solera, J., Cerdà, A. 2013. Spatial and temporal variations of water repellency and probability of its occurrence in calcareous Mediterranean rangeland soils affected by fires. Catena, 108, 14-24. http://dx.doi.org/10.1016/j.catena.2012.04.002 Dlapa, P., Bodí, M.B., Mataix-Solera, J., Cerdà, A., Doerr, S.H. 2013. FT-IR spectroscopy reveals that ash water repellency is highly dependent on ash chemical composition. Catena, 108, 35-43. Doi:10.1016/j.catena.2012.02.011 García-Moreno, J., Gordillo-Rivero, Á. J., Zavala, L. M., Jordán, A., & Pereira, P. 2013. Mulch application in fruit orchards increases the persistence of soil water repellency during a 15-years period. Soil and Tillage Research, 130, 62-68. García-Orenes, F., Roldán, A., Mataix-Solera, J., Cerdà, A., Campoy, M., Arcenegui, V., Caravaca, F. 2012 Soil structural stability and erosion rates influenced by agricultural management practices in a semi-arid Mediterranean agro-ecosystem. Soil Use and Management 28(4): 571-579. DOI: 10.1111/j.1475-2743.2012.00451.x Goebel, M. O., Bachmann, J., Reichstein, M., Janssens, I. A., Guggenberger, G. 2011. Soil water repellency and its implications for organic matter decomposition-is there a link to extreme climatic events?. Global Change Biology, 17(8), 2640-2656. González-Peñaloza, F.A., Cerdà, A., Zavala, L.M., Jordán, A., Giménez-Morera, A., Arcenegui, V. 2012. Do conservative agriculture practices increase soil water repellency? A case study in citrus-cropped soils. Soil and Tillage Research, 124, 233-239. http://dx.doi.org/10.1016/j.still.2012.06.015 Granged, A. J., Jordán, A., Zavala, L. M., Bárcenas, G. (2011): Fire-induced changes in soil water repellency increased fingered flow and runoff rates following the 2004 Huelva wildfire. Hydrological Processes, 25: 1614-1629. Hallin, I., Douglas, P., Doerr, S. H., Bryant, R. 2013. The Role of Drop Volume and Number on Soil Water Repellency Determination. Soil Science Society of America Journal, 77(5), 1732-1743. Hewelke, E., Szatyłowicz, J., Gnatowski, T., Oleszczuk, R. (2014). EFFECTS OF SOIL WATER REPELLENCY ON MOISTURE PATTERNS IN A DEGRADED SAPRIC HISTOSOL. Land Degradation & Development. DOI: 10.1002/ldr.2305 Jiménez-Morillo, N. T., González-Pérez, J. A., Jordán, A., Zavala, L. M., Rosa, J. M., Jiménez-González, M. A., & González-Vila, F. J. (2014). Organic matter fractions controlling soil water repellency in Sandy soils from the Doñana National Park (Southwestern Spain). Land Degradation & Development.| DOI: 10.1002/ldr.2314 Jordán, A., García-Moreno, J., Gordillo-Rivero, Á. J., Zavala, L. M., Cerdà, A. 2014. Organic carbon, water repellency and soil stability to slaking under different crops and managements: a case study at aggregate and intra-aggregate scales. SOIL Discussions, 1(1), 295-325. Jordán, A., Zavala, L. M., Mataix-Solera, J., Doerr, S. H. 2013. Soil water repellency: origin, assessment and geomorphological consequences. Catena, 108, 1-5. Jordán, A., Zavala, L. M., Mataix-Solera, J., Nava, A. L., & Alanís, N. 2011. Effect of fire severity on water repellency and aggregate stability on Mexican volcanic soils. Catena, 84(3), 136-147. Kröpfl, A. I., Cecchi, G. A., Villasuso, N. M., Distel, R. A. 2013. Degradation and recovery processes in Semi-Arid patchy rangelands of northern Patagonia, Argentina. Land Degradation & Development, 24: 393- 399. DOI 10.1002/ldr.1145 León, J. Bodí, M.B., Cerdà, A., Badía, D. 2013. The contrasted response of ash to wetting. The effects of ash type, thickness and rainfall events. Geoderma, 209-210, 143-152. http://dx.doi.org/10.1016/j.geoderma.2012.01.006 López-Garrido, R., Deurer, M., Madejón, E., Murillo, J. M., Moreno, F. 2012. Tillage influence on biophysical soil properties: The example of a long-term tillage experiment under Mediterranean rainfed conditions in South Spain. Soil and Tillage Research, 118, 52-60. Lozano, E., Jiménez-Pinilla, P., Mataix-Solera, J., Arcenegui, V., Bárcenas, G. M., González-Pérez, J. A., Mataix-Beneyto, J. 2013. Biological and chemical factors controlling the patchy distribution of soil water repellency among plant species in a Mediterranean semiarid forest. Geoderma, 207, 212-220. Madsen, M. D., Zvirzdin, D. L., Petersen, S. L., Hopkins, B. G., Roundy, B. A., Chandler, D. G. 2011. Soil water repellency within a burned piñon-juniper woodland: Spatial distribution, severity, and ecohydrologic implications. Soil Science Society of America Journal, 75(4), 1543-1553. Mataix-Solera, J., Arcenegui, V., Tessler, N., Zornoza, R., Wittenberg, L., Martínez, C., Jordán, M. M. 2013. Soil properties as key factors controlling water repellency in fire-affected areas: evidences from burned sites in Spain and Israel. Catena, 108, 6-13. Mekuria, W., Aynekulu, E. 2013. Exclosure land management for restoration of the soils in degrade communal grazing lands in Northern Ethiopia. Land Degradation & Development, 24: 528- 538. DOI 10.1002/ldr.1146 Nadal-Romero, E., Lasanta, T., García-Ruiz, J. M. 2013. Runoff and sediment yield from land under various uses in a Mediterranean mountain area: long-term results from an experimental station. Earth Surface Processes and Landforms, 38(4), 346-355. Neal, C., Reynolds, B., Norris, D., Kirchner, J. W., Neal, M., Rowland, P., Wright, D. 2011. Three decades of water quality measurements from the Upper Severn experimental catchments at Plynlimon, Wales: an openly accessible data resource for research, modelling, environmental management and education. Hydrological Processes, 25(24), 3818-3830. Roper, M. M., Ward, P. R., Keulen, A. F., Hill, J. R. (2013). Under no-tillage and stubble retention, soil water content and crop growth are poorly related to soil water repellency. Soil and Tillage Research, 126, 143-150. Santos, J. M., Verheijen, F. G., Tavares Wahren, F., Wahren, A., Feger, K. H., Bernard-Jannin, L., Nunes, J. P. (2015). Soil water repellency dynamics in pine and eucalupt plantation in Portugal - a high- resolution series. Land Degradation & Development. DOI: 10.1002/ldr.2251 Spohn, M., Rillig, M. C. 2012. Temperature-and moisture-dependent soil water repellency induced by the basidiomycete< i> Agaricus bisporus. Pedobiologia, 55(1), 59-61. Stoof, C. R., Moore, D., Ritsema, C. J., Dekker, L. W. 2011. Natural and fire-induced soil water repellency in a Portuguese shrubland. Soil Science Society of America Journal, 75(6), 2283-2295. Taguas, E. V., Carpintero, E., and Ayuso, J. L. 2013. Assessing land degradation risk through the long-term analysis of erosivity: a case study in Southern Spain. Land Degradation & Development, 24: 179- 187. DOI 10.1002/ldr.1119 Whelan, A., Kechavarzi, C., Coulon, F., Doerr, S. H. 2014. Experimental characterization of the impact of temperature and humidity on the breakdown of soil water repellency in sandy soils and composts. Hydrological Processes. Young, I. M., Feeney, D. S., O'Donnell, A. G., Goulding, K. W. 2012. Fungi in century old managed soils could hold key to the development of soil water repellency. Soil Biology and Biochemistry, 45, 125-127. Zhao, G., Mu, X., Wen, Z., Wang, F., and Gao, P. 2013. Soil erosion, conservation, and Eco-environment changes in the Loess Plateau of China. Land Degradation & Development, 24: 499- 510. DOI 10.1002/ldr.2246
NASA Astrophysics Data System (ADS)
Näthe, Kerstin; Michalzik, Beate; Levia, Delphis; Steffens, Markus
2016-04-01
Fires represent an ecosystem disturbance and are recognized to seriously pertubate the nutrient budgets of forested ecosystems. While the effects of fires on chemical, biological, and physical soil properties have been intensively studied, especially in Mediterranean areas and North America, few investigations examined the effects of fire-induced alterations in the water-bound fluxes and the chemical composition of dissolved and particulate organic carbon and nitrogen (DOC, POC, DN, PN). The exclusion of the particulate organic matter fraction (0.45 μm < POM < 500 μm) potentially results in misleading inferences and budgeting gaps when studying the effects of fires on nutrient and energy fluxes. To our best knowledge, this is the first known study to present fire-induced changes on the composition of dissolved and total organic matter (DOM, TOM) in forest floor (FF) and soil solutions (A, B horizon) from Scots pine forests in Germany. In relation to control sites, we test the effects of low-severity fires on: (1) the composition of DOM and TOM in forest floor and soil solutions; and (2) the translocated amount of particulate in relation to DOC and DN into the subsoil. The project aims to uncover the mechanisms of water-bound organic matter transport along an ecosystem profile and its compositional changes following a fire disturbance. Forest floor and soil solutions were fortnightly sampled from March to December 2014 on fire-manipulated and control plots in a Scots pine forest in Central Germany. Shortly after the experimental duff fire in April 2014 pooled solutions samples were taken for solid-state 13C NMR spectroscopy to characterize DOM (filtered solution < 0.8μm pore size) and TOM in unfiltered solutions. Independent from fire manipulation, the composition of TOM was generally less aromatic (aromaticity index [%] according to Hatcher et al., 1981) with values between 18 (FF) - 25% (B horizon) than the DOM fraction with 23 (FF) - 27% (B horizon). For DOM in FF solution, fire manipulation caused an increase in aromaticity from 23 to 27% compared to the control, due to an increase of the aryl-C and a decrease of the O-alkyl-C and alkyl-C signal. Fire effects were leveled out in the mineral soil. For TOM, fire effects became notable only in the A horizon, exhibiting a decrease in aromaticity from 22 to 18% compared to the control, due to increased O-alkyl-C and diminished aryl-C proportions. Compared to the control, fire only caused minor DOC release rates (< 10%) in the FF and mineral soil, while DN in the FF was significantly mobilized (+ 40%) by fire exhibiting annual values of 33 at the control sites compared to 46 kg DN ha-1 at the fire treated sites. Compared to the control, fire events did not significantly enhance the proportion of POC and PN in the total C and N amounts exhibiting values between 10 and 20%. To fully understand the quality and amount of translocated organic C and N compounds within soils under both ambient as well as fire environments, dissolved and particulate size fractions need to be considered.
NASA Astrophysics Data System (ADS)
Sharma, S.; Sarkar, D.; Datta, R.
2005-05-01
Land-applied arsenical pesticides have contributed elevated soil arsenic (As) levels. Many baseline risk assessments As-contaminated sites assume that all As present in the soil is bioavailable, thereby potentially overestimating the actual health risk. However, risk from As exposure is associated only with those forms of As that are potentially extractable by the human gastrointestinal juices. It has been demonstrated that As may exist in several geochemical forms depending on soil chemical properties, which may or may not be bioavailable. The current study aims at addressing the issue of soil variability on As bioavailability as a function of soil physico-chemical properties in a greenhouse setting involving dynamic interactions between soil, water and plants. Four different soils were chosen based on their potential differences with respect to As reactivity: Immokalee, an acid sand with low extractable Fe/Al, having minimal arsenic retention capacity; Millhopper, an acid sandy loam with high extractable Fe/Al oxides; Pahokee Muck soil with 85% soil organic matter (SOM) as well as high Fe/Al content; and Orelia soil with high clay and Fe/Al content. Soils were amended with sodium arsenate (675 and 1500 mg/Kg). Rice (Oryza sativa) was used as the test crop. A sequential extraction scheme was employed to identify the geochemical forms of As in soils (soluble, exchangeable, organic, Fe/Al-bound, Ca/Mg-bound, residual) immediately after spiking; after 3 mo; and after 6 mo of equilibration time. Concentrations of these As forms were correlated with the in-vitro bioavailable As fractions to identify those As fractions that are most likely to be bioavailable. Results from this study showed that there was little to no plant growth in the contaminated soils. Sequential extractions of the soil indicated that arsenic is strongly adsorbed onto soil amorphous iron/aluminum oxides, and the degree of arsenic retention is a direct function of equilibration time.
Particle size effects on bioaccessible amounts of ingestible soil-borne toxic elements.
Qin, Junhao; Nworie, Obinna Elijah; Lin, Chuxia
2016-09-01
The unified BARGE method was used to examine the effects of soil particle size on the bioaccessible amounts of potentially toxic elements in multi-contaminated soils from a closed landfill site. The results show that bioaccessible As, Al, Cd, Cr, Cu, Mn, Ni, Pb and Zn increased with decreasing soil particle size and the <0.002 mm soil fraction contained much greater amounts of the bioaccessible elements, as compared to other soil fractions (0.002-0.063 mm, 0.063-0.125 mm, and 0.125-0.250 mm). As, Al and Cr had much lower bioaccessibility, as compared to the six cationic heavy metals. In contrast with other elements, As bioaccessibility tended to be higher in the gastrointestinal phase than in the gastric phase. There was a significant soil particle size effect on bioaccessibility of As and Al in the gastrointestinal phase: As bioaccessibility decreased with decreasing particle size, and the finer soil fractions tended to have a higher Al bioaccessibility, as compared to the coarser soil fractions. The research findings prompt the need for further division of soil particle size fractions in order to more accurately assess the bioaccessible amounts of soil-borne potentially toxic elements in contaminated lands. Copyright © 2016 Elsevier Ltd. All rights reserved.
Influence of pH and temperature on alunite dissolution rates and products
NASA Astrophysics Data System (ADS)
Acero, Patricia; Hudson-Edwards, Karen
2015-04-01
Aluminium is one of the main elements in most mining-affected environments, where it may influence the mobility of other elements and play a key role on pH buffering. Moreover, high concentrations of Al can have severe effects on ecosystems and humans; Al intake, for example, has been implicated in neurological pathologies (e.g., Alzheimer's disease; Flaten, 2001). The behaviour of Al in mining-affected environments is commonly determined, at least partially, by the dissolution of Al sulphate minerals and particularly by the dissolution of alunite (KAl3(SO4)2(OH)6), which is one of the most important and ubiquitous Al sulphates in mining-affected environments (Nordstrom, 2011). The presence of alunite has been described in other acid sulphate environments, including some soils (Prietzel & Hirsch, 1998) and on the surface of Mars (Swayze et al., 2008). Despite the important role of alunite, its dissolution rates and products, and their controlling factors under conditions similar to those found in these environments, remain largely unknown. In this work, batch dissolution experiments have been carried out in order to shed light on the rates, products and controlling factors of alunite dissolution under different pH conditions (between 3 and 8) and temperatures (between 279 and 313K) similar to those encountered in natural systems. The obtained initial dissolution rates using synthetic alunite, based on the evolution of K concentrations, are between 10-9.7 and 10-10.9 mol-m-2-s-1, with the lowest rates obtained at around pH 4.8, and increases in the rates recorded with both increases and decreases in pH. Increases of temperature in the studied range also cause increases in the dissolution rates. The dissolution of alunite dissolution is incongruent, as has been reported for jarosite (isostructural with alunite) by Welch et al. (2008). Compared with the stoichiometric ratio in the bulk alunite (Al/K=3), K tends to be released to the solution preferentially over Al, leading to dissolved Al/K ratios between 0.5 and 2.5. This depletion of Al in the solution is especially clear for the experiments at pH 4.5-4.8 and 8 and it is consistent with the results of elemental quantifications of the same proportions in the reacted alunite surfaces using X-ray Photoelectron Spectroscopy (XPS). REFERENCES Flaten, T.P. (2001): Aluminium as a risk factor in Alzheimzer's disease, with emphasis on drinking water. Brain Research Bulletin 55: 187-196. Nordstrom, D.K. (2011): Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Applied Geochemistry 26: 1777-1791. Prietzel, J., & Hirsch, C. (1998). Extractability and dissolution kinetics of pure and soil-added synthesized aluminium hydroxy sulphate minerals. European journal of soil science, 49(4), 669-681. Swayze, G.A., Ehlmann, B.L., Milliken, R.E., Poulet, F., Wray, J.J., Rye, R.O., Clark, R.N., Desborough, G.A., Crowley, J.K., Gondet, B., Mustard, J.F., Seelos, K.D. and Murchie, S.L., 2008. Discovery of the Acid-Sulfate Mineral Alunite in Terra Sirenum, Mars, Using MRO CRISM: Possible Evidence for Acid-Saline Lacustrine Deposits?, American Geophysical Union, Fall Meeting 2008, abstract #P44A-04. Welch, S. A., Kirste, D., Christy, A. G., Beavis, F. R., & Beavis, S. G. (2008): Jarosite dissolution II'Reaction kinetics, stoichiometry and acid flux. Chemical Geology, 254(1), 73-86.
Evaluation of different amendments to stabilize antimony in mining polluted soils.
Álvarez-Ayuso, E; Otones, V; Murciego, A; García-Sánchez, A
2013-02-01
Soil pollution with antimony is of increasing environmental concern worldwide. Measures for its control and to attenuate the risks posed to the ecosystem are required. In this study the application of several iron and aluminium oxides and oxyhydroxides as soil amendments was evaluated in order to assess their feasibility to stabilize Sb in mining polluted soils. Mine soils with different pollution levels were amended with either goethite, ferrihydrite or amorphous Al oxide at various ratios (0-10%). The effectiveness of such treatments was assessed by both batch and column leaching tests. The use of ferrihydrite or amorphous Al oxide proved to be highly effective to stabilize Sb. Immobilization levels of 100% were found when doses of 5% ferrihydrite or 10% amorphous Al oxide were applied, regardless of the soil Sb load. Column leaching studies also showed a high Sb leaching reduction (>75%) when soils were amended with 1% ferrihydrite or 5% amorphous Al oxide. Moreover, such treatments proved to simultaneously immobilize As and Pb in a great extent when soils were also polluted with such toxic elements. Copyright © 2012 Elsevier Ltd. All rights reserved.
Száková, J; Tlustos, P; Goessler, W; Frková, Z; Najmanová, J
2009-12-30
The effect of soil extraction procedures and/or sample pretreatment (drying, freezing of the soil sample) on the extractability of arsenic and its compounds was tested. In the first part, five extraction procedures were compared with following order of extractable arsenic portions: 2M HNO(3)>0.43 M CH(3)COOH>or=0.05 M EDTA>or=Mehlich III (0.2M CH(3)COOH+0.25 M NH(4)NO(3)+0.013 M HNO(3)+0.015 M NH(4)F+0.001 M EDTA) extraction>water). Additionally, two methods of soil solution sampling were compared, centrifugation of saturated soil and the use of suction cups. The results showed that different sample pretreatments including soil solution sampling could lead to different absolute values of mobile arsenic content in soils. However, the interpretation of the data can lead to similar conclusions as apparent from the comparison of the soil solution sampling methods (r=0.79). For determination of arsenic compounds mild extraction procedures (0.05 M (NH(4))(2)SO(4), 0.01 M CaCl(2), and water) and soil solution sampling using suction cups were compared. Regarding the real soil conditions the extraction of fresh samples and/or in situ collection of soil solution are preferred among the sample pretreatments and/or soil extraction procedures. However, chemical stabilization of the solutions should be allowed and included in the analytical procedures for determination of individual arsenic compounds.
Metals in European roadside soils and soil solution--a review.
Werkenthin, Moritz; Kluge, Björn; Wessolek, Gerd
2014-06-01
This review provides a summary of studies analysing metal concentrations in soils and soil solution at European roadsides. The data collected during 27 studies covering a total of 64 sites across a number of European countries were summarised. Highest median values of Cr, Cu, Ni, Pb, and Zn were determined in the top soil layer at the first 5 m beside the road. Generally, the influence of traffic on soil contamination decreased with increasing soil depth and distance to the road. The concentration patterns of metals in soil solution were independent from concentrations in the soil matrix. At 10-m distance, elevated soil metal concentrations, low pH, and low percolation rates led to high solute concentrations. Directly beside the road, high percolation rates lead to high annual loadings although solute concentrations are comparatively low. These loadings might be problematic, especially in regions with acidic sandy soils and a high groundwater table. Copyright © 2014 Elsevier Ltd. All rights reserved.
Takeda, Akira; Tsukada, Hirofumi; Takaku, Yuichi; Akata, Naofumi; Hisamatsu, Shun'ichi
2008-06-01
For a better understanding of the soil-to-plant transfer of radionuclides, their behavior in the soil solution should be elucidated, especially at the interface between plant roots and soil particles, where conditions differ greatly from the bulk soil because of plant activity. This study determined the concentration of stable Cs and Sr, and U in the soil solution, under plant growing conditions. The leafy vegetable komatsuna (Brassica rapa L.) was cultivated for 26 days in pots, where the rhizosphere soil was separated from the non-rhizosphere soil by a nylon net screen. The concentrations of Cs and Sr in the rhizosphere soil solution decreased with time, and were controlled by K+NH(4)(+) and Ca, respectively. On the other hand, the concentration of U in the rhizosphere soil solution increased with time, and was related to the changes of DOC; however, this relationship was different between the rhizosphere and non-rhizosphere soil.
Zhang, Jing; Lin, Xian-Gui; Li, Xuan-Zhen; Yin, Rui
2010-10-01
Polycyclic aromatic hydrocarbons (PAHs) are a group of the most widespread organic pollutants, which distributed widely in soil and sediment. Pot experiment was conducted to improve efficiency of phytoremediation using alfalfa (Medicago sativa L.) in aged PAHs contaminated soil by introducing spent mushroom compost and rhamnolipids. Plant biomass, PAHs concentrations, number of soil microorganism, soil enzyme activity and soil microbial functional diversity were determined after 60 days of alfalfa growth. The results showed that within 60 days, removal ratio of PAHs in treatment of alfalfa alone (AL) reached to 14.43%, while removal ratio of PAHs in treatments of "GZ + RH0.5, + AL" and "GZ + RH1.0 + AL" reached to 32.64% and 36.95%, which were 115.45% and 156.06% higher than that of phytoremediation. Contrasted to the control, the treatment of "GZ + RH1.0 + AL" had more plant biomass than others, shoot and root dry weight were 1.05 g/pot and 0.20 g/pot, respectively. During the process of phytoremediation, the number of soil bacteria and fungi were greatly increased by "GZ + RH1.0 + AL" and reached to 31.37 x 10(6) CFU x g(-1) and 5.86 x 10(6) CFU x g(-1), especially the number of PAHs-degrading bacteria reached to 39.57 x 10(5) MPN x g(-1), which were 29 times more than control treatment and 4 times more than treatment of alfalfa alone (AL). Moreover, soil dehydrogenase activity and the functional diversity of soil microbial community were increased significantly by the treatment of "GZ + RH1.0 + AL", respectively. Therefore, interaction of spent mushroom compost and rhamnolipids to enhance the phytoremediation efficiency had satisfied results in removal aged PAHs from an agricultural soil, the feasibility of this method needed to be further proved by large-area scale field experiment.
Possible Association of Ferrous Phosphates and Ferric Sulfates in S-rich Soil on Mars
NASA Astrophysics Data System (ADS)
Mao, J.; Schroeder, C.; Haderlein, S.
2012-12-01
NASA Mars Exploration Rover (MER) Spirit explored Gusev Crater to look for signs of ancient aqueous activity, assess past environmental conditions and suitability for life. Spirit excavated light-toned, S-rich soils at several locations. These are likely of hydrothermal, possibly fumarolic origin. At a location dubbed Paso Robles the light-toned soil was also rich in P - a signature from surrounding rock. While S is mainly bound in ferric hydrated sulfates [1], the mineralogy of P is ill-constrained [2]. P is a key element for life and its mineralogy constrains its availability. Ferrous phases observed in Paso Robles Mössbauer spectra may represent olivine and pyroxene from surrounding basaltic soil [1] or ferrous phosphate minerals [3]. Phosphate is well-known to complex and stabilize Fe 2+ against oxidation to Fe 3+ . Schröder et al. [3] proposed a formation pathway of ferrous phosphate/ferric sulfate associations: sulfuric acid reacts with basalt containing apatite, forming CaSO4 and phosphoric acid. The phosphoric and/or excess sulfuric acid reacts with olivine, forming Fe2+-phosphate and sulfate. The phosphate is less soluble and precipitates. Ferrous sulfate remains in solution and is oxidized as pH increases. To verify this pathway, we dissolved Fe2+-chloride and Na-phosphate salts in sulfuric acid inside an anoxic glovebox. The solution was titrated to pH 6 by adding NaOH when a first precipitate formed, which was ferrous phosphate according to Mössbauer spectroscopy (MB). At that point the solution was removed from the glovebox and allowed to evaporate in the presence of atmospheric oxygen, leading to the oxidation of Fe2+. The evaporation rate was controlled by keeping the suspensions at different temperatures; pH was monitored during the evaporation process. The final precipitates were analyzed by MB and X-Ray Fluorescence (XRF), comparable to MER MB and Alpha Particle X-ray Spectrometer instrument datasets, and complementary techniques such as X-ray diffraction. Fourier Transform Infrared spectroscopy measurements to compare to MER miniature thermal emission spectrometer data are planned. We observed differences depending on the heat source during evaporation. The closest match to Martian data on the basis of Mössbauer spectra was achieved with a suspension evaporated at 80°C on a hot plate, i.e. heated from below with a temperature gradient in the bottle. The Fe2+/FeT ratio matched, and ferrous phases were all phosphate. When heated in a water bath, i.e. without a temperature gradient in the bottle, Fe2+/FeT ratios increased and ferrous sulfates precipitated also. These results indicate that the Martian light-toned S-rich deposits formed by evaporation on the surface where temperature gradients would be expected rather than underground. They confirm that ferrous phosphate/ferric sulfate associations are possible on Mars and could be preserved in the oxygen-free Martian atmosphere. References: [1] Morris et al., J.Geophys. Res. 111 (2006) E02S13; [2] Ming et al., J. Geophys. Res. 111 (2006) E02S12; [3] Schröder et al., GSA Annual Meeting 2008, Paper No. 171-3.
Mechanistic roles of soil humus and soil minerals and their contributions to soil sorption of nonionic organic compounds from aqueous and organic solutions are illustrated. Parathion and lindane are used as model solutes on two soils that differ greatly in their humic and mineral...
Controls on soil solution nitrogen along an altitudinal gradient in the Scottish uplands.
Jackson-Blake, L; Helliwell, R C; Britton, A J; Gibbs, S; Coull, M C; Dawson, L
2012-08-01
Nitrogen (N) deposition continues to threaten upland ecosystems, contributing to acidification, eutrophication and biodiversity loss. We present results from a monitoring study aimed at investigating the fate of this deposited N within a pristine catchment in the Cairngorm Mountains (Scotland). Six sites were established along an elevation gradient (486-908 m) spanning the key habitats of temperate maritime uplands. Bulk deposition chemistry, soil carbon content, soil solution chemistry, soil temperature and soil moisture content were monitored over a 5 year period. Results were used to assess spatial variability in soil solution N and to investigate the factors and processes driving this variability. Highest soil solution inorganic N concentrations were found in the alpine soils at the top of the hillslope. Soil carbon stock, soil solution dissolved organic carbon (DOC) and factors representing site hydrology were the best predictors of NO(3)(-) concentration, with highest concentrations at low productivity sites with low DOC and freely-draining soils. These factors act as proxies for changing net biological uptake and soil/water contact time, and therefore support the hypothesis that spatial variations in soil solution NO(3)(-) are controlled by habitat N retention capacity. Soil percent carbon was a better predictor of soil solution inorganic N concentration than mass of soil carbon. NH(4)(+) was less affected by soil hydrology than NO(3)(-) and showed the effects of net mineralization inputs, particularly at Racomitrium heath and peaty sites. Soil solution dissolved organic N concentration was strongly related to both DOC and temperature, with a stronger temperature effect at more productive sites. Due to the spatial heterogeneity in N leaching potential, a fine-scale approach to assessing surface water vulnerability to N leaching is recommended over the broad scale, critical loads approach currently in use, particularly for sensitive areas. Copyright © 2012 Elsevier B.V. All rights reserved.
Modeling the Transport of Heavy Metals in Soils
1990-09-01
vii NOMENCLATURE Term Definition a aggregate radius (cm) b Freundlich parameter (dimensionless) c concentration of dissolved chemical in soil solution (mg...metals (e.g., Cu, Hg, Cr, Cd, and Zn). retention-release reactions in the soil solution have been observed to be strongly time-dependent. Recent...of the dissolved chemical in the soil solution (mg L 2 s = mount of solute retained per unit mass of the soil matrix (mg kg- )-, D = hydrodynamic
NASA Astrophysics Data System (ADS)
Tejnecky, V.; Drabek, O.; Bradová, M.; Němeček, K.; Šebek, O.; Zenáhlíková, J.; Boruvka, L.
2011-12-01
The Low Molecular Mass Organic Acids (LMMOA) are essential in processes affecting the soils and represent reactive fraction of dissolved organic carbon (DOC). LMMOA influence soil-chemistry behaviour, participate in transport of mineral nutrition and reduce potential toxicity of selected elements like Al. The aim of this research was to assess behaviour, amount and composition of LMMOA in forest soil under different vegetation cover. The researched area is located in the naturally acid Jizera Mountains (Czech Republic), which was further affected by acid deposition and improper forest management. Soil samples from organic F and H horizons, organo-mineral A horizon and spodic or cambic mineral B horizons were taken under beech and spruce stands monthly (from April to October). Both stands were located immediately next to each other. The collected soil samples were analyzed immediately in a "fresh" state. Contents of LMMOA in deionised water extract were determined by means of ion-exchange chromatography (ICS-1600, Dionex, USA) with suppressed conductivity and gradient elution of KOH mobile phase. The contents of LMMOAS were also determined in precipitation samples. In addition, other selected elements (Al, Fe, Ca, Na, Mg and K), Al speciation and main inorganic anions were determined in water extract and precipitation samples. The highest amounts of LMMOA (mainly lactic, acetic, formic, malic and oxalic acid) were observed in organic F and H horizons and measured amounts decreased with increasing soil profile depth. Higher contents were determined in soil under spruce forest than under beech forest. External inputs of LMMOA in a form of precipitation were assessed as less significant in comparison with the soil processes (e.g. soil biological activity, soil organic matter decomposition processes). LMMOA amounts were higher in spring and summer (from April to August), caused by increased biological activity, while lower amounts were observed during the autumn period. Soil LMMOA were influencing also Al behaviour and Al species representation to less potentially toxic Al species.
NASA Astrophysics Data System (ADS)
Schaaf, Wolfgang
2010-05-01
To combine process-oriented research on initial development of ecosystems with interactions and co-development of spatial patterns and structures the Transregional Collaborative Research Centre (SFB/TRR) 38 (www.tu-cottbus.de/sfb_trr) was established as an initiative of three universities (BTU Cottbus, TU Munich and ETH Zurich). The objective of the SFB/TRR 38 is to enhance our understanding of structure genesis in ecosystems and of process dynamics as well as their interactions during the initial development phase. The artificial catchment was constructed in the mining area of Lusatia/Germany as the main research site (Gerwin et al. 2009). With an area of about 6 ha, this catchment ´Chicken Creeḱ is to our knowledge the largest artificial catchment worldwide. It was constructed as a 2-4 m layer of post-glacial sandy to loamy sediments overlying a 1-2 m layer of Tertiary clay that forms a shallow pan and seals the whole catchment at the base. No further measures of restoration like planting, amelioration or fertilization were carried out to allow natural succession and undisturbed development. Initial soil conditions were characterized by intensive grid sampling throughout the catchment. There is textural difference between the western and the eastern part of the catchment due to the fact that the substrates were dumped in two different periods during the construction process. In the NE part of the catchment pure sands dominate whereas the SW part has more loamy sands. Due to the carbonate content the pH values are weakly alkaline or neutral. The low contents in organic carbon, pedogenic oxides and clay mineralogy underline the initial state of the soil. Soil solution is sampled at four soil pits that were excavated down to the saturated layer in 2-2.5 m depth by hand and stabilized with a lining of PE rings with a diameter of 1m. From these pits boron silicate glass suction plates were installed into the soil in 2-3 depths. Soil solution is collected using a permanent pressure head of -10 kPa and sampled biweekly. Soil solution composition varies considerably between the four soil pits during the observation period. Compared to these spatial variations, differences in soil depth and over time are less pronounced. Main components of all sampled soil solutions are Ca2+, Mg2+, HCO3- and SO42-. Due to the carbonate content of the substrates, mean pH values vary between 7.0 and 8.0 in all samples. No correlations were found between soil solution compositions and soil parameters of the surrounding grid samples. Compared to the low organic carbon and total sulfur contents of the parent material, the concentrations of sulfate and DOC are surprisingly high. During summer drought periods pale whitish precipitations were frequently observed at the vertical walls of erosions gullies. Microscopy revealed that these precipitations form a very thin crust composed of very small crystal grains. Further analysis using SEM and EDX mapping showed that the particles are composed of Ca and S indicating gypsum or anhydrite. Similar findings in Chernozems of Central Germany. were interpreted as gypsum formation due to former high sulphur deposition together with low precipitation and leaching (Dultz and Kühn 2005). References Dultz, S. and Kühn, P., 2005: Occurrence, formation, and micromorphology of gypsum in soils from the Central-German Chernozem region. Geoderma 129, 230-250. Gerwin, W., Schaaf, W., Biemelt, D., Fischer, A., Winter, S., Hüttl, R.F., 2009: The artificial catchment "Chicken Creek" (Lusatia, Germany) - a landscape laboratory for interdisciplinary studies of initial ecosystem development. Ecolological Engineering 35, 1786-1796.
Gould, Billie; McCouch, Susan; Geber, Monica
2014-12-01
Studies of the wild grass Anthoxanthum odoratum at the long-term Park Grass Experiment (PGE, Harpenden, UK) document a well-known example of rapid plant evolution in response to environmental change. Repeated fertilizer applications have acidified the soil in some experimental plots over the past 150+ years, and Anthoxanthum subpopulations have quickly become locally adapted. Early reciprocal transplants showed subpopulation differentiation specifically in response to soil aluminium (Al) toxicity across the experiment, even at small (30 m) spatial scales. Almost 40 years after its original measurement, we reassessed the degree of local adaptation to soil Al at the PGE using updated phenotyping methods and identified genes with variation linked to the tolerance trait. Root growth assays show that plants are locally adapted to soil Al at both the seedling and adult growth stages, but to a smaller extent than previously inferred. Among a large suite of candidate loci that were previously shown to have Al-sensitive expression differences between sensitive and tolerant plants, three loci contained SNPs that are associated with both Al tolerance and soil acidity: an Al-sensitive malate transporter (ALMT), a tonoplast intrinsic protein (TIP) and the putative homolog of the rice cell-wall modification gene STAR1. Natural genetic variation at these loci is likely to have contributed to the recent rapid evolution at PGE. Continued study of Al tolerance variants in Anthoxanthum will allow us to test hypotheses about the nature and source of genetic variation that enables some species to adapt to soil acidification and other types of rapid environmental change. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Radhakrishnan, G.; Anjan Kumar, M.; Raju, G. V. R. Prasada
2017-12-01
Expansive soils are known to be problematic due to their nature and behavior. These soils show volume changes due to changes in moisture content, which cause distortions to structures constructed on them. Relentless efforts are being made all over the world to find solution to the problems of expansive soils. In the case of flexible pavements, unless the subgrade is appropriately treated during the construction stage, the maintenance cost will increase substantially due to deterioration. There are many methods of stabilising expansive subgrade soils. Chemical stabilisation is one such technique employed in improving the engineering properties of the expansive soil. Investigations on chemical stabilization of expansive soils revealed that conventionally used lime could be replaced by the chloride compound chemicals because of their ready dissolvability in water, ease of mixing with soil and supply of sufficient cations for ready cation exchange. The main objective of this work is to study the effectiveness of three chloride compound chemicals, ammonium chloride (NH4Cl), magnesium chloride (MgCl2) and aluminum chloride (AlCl3) on the geotechnical properties of an expansive soil. The chemicals content up to 2% were added to the soil and its effect on the index limits, swell pressure, compaction characteristics as well as California bearing ratio are studied. It was observed that aluminum chloride chemical content has a significantly higher influence than the other two chemicals and it could be recognized as an effective chemical stabilizer.
Yang, Mei; Tan, Ling; Xu, Yuanyuan; Zhao, Yihui; Cheng, Fei; Ye, Shaoming; Jiang, Weixin
2015-01-01
Knowing how acid soils and aluminum in soils may limit the growth of Eucalyptus trees in plantations is important because these plantations grow in many tropical and subtropical regions. Seedlings of four vegetatively propagated Eucalyptus clones, E. grandis × E. urophylla 'GLGU9'(G9), E. grandis × E. urophylla 'GLGU12' (G12), E. urophylla × E. camaldulensis 'GLUC3' (G3) and E. urophylla 'GLU4'(G4), were subjected to liquid culture with Hoagland nutrient solution for 40 days, then treated with four different treatments of acid and aluminum for 1 day. The four treatments used either pH 3.0 or 4.0 with or without added aluminum (4.4 mM) in all possible combinations; a control used no added aluminum at pH 4.8. Subsequently, the photosynthetic parameters and morphology of leaves from eucalypt seedlings were determined and observed. The results showed that the tested chlorophyll content, net photosynthetic rate, transpiration rate and water use efficiency were apparently inhibited by aluminum. Under uniform Al concentration (4.4 mM), the Al-induced limitation to photosynthetic parameters increased with pH, indicating acid stimulation to Al toxicity. Among all treatments, the most significant reduction was found in the combination of pH 3.0 and 4.4 mM Al. The photosynthetic and transpiration rates showed similar trends with G9 > G12 > G3 > G4, suggesting that G9 and G12 had higher Al-tolerance than other two clones. Microscopic observation revealed changes in leaf morphology when exposed to Al stress; for example, a reduced thickness of leaf epidermis and palisade tissue, the descendant palisade tissue/spongy tissue ratio and leaf tissue looseness. Overall, the acid and aluminum stress exerted negative effects on the photosynthetic activity of eucalypt seedlings, but the differences in tolerance to Al toxicity between the clones were favorable, offering potential to improve Eucalyptus plantation productivity by selecting Al tolerant clones.
Speciation analysis of aluminium in plant parts of Betula pendula and in soil.
Zioła-Frankowska, Anetta; Frankowski, Marcin
2018-03-01
The research presents the first results of aluminium speciation analysis in aqueous extracts of individual plant parts of Betula pendula and soil samples, using High Performance Ion Chromatography with Diode Array Detection (HPIC-DAD). The applied method allowed us to carry out a full speciation analysis of aluminium in the form of predominant aluminium-fluoride complexes: AlF (x=2,3,4) (3-x) (first analytical signal), AlF 2+ (second analytical signal) and Al 3+ (third analytical signal) in samples of lateral roots, tap roots, twigs, stem, leaf and soil collected under roots of B. pendula. Concentrations of aluminium and its complexes were determined for two types of environment characterised by different degree of human impact: contaminated site of the Chemical Plant in Luboń and protected area of the Wielkopolski National Park. For all the analysed samples of B. pendula and soil, AlF (x=2,3,4) (3-x) had the largest contribution, followed by Al 3+ and AlF 2+ . Significant differences in concentration and contribution of Al-F complexes and Al 3+ form, depending on the place of sampling (different anthropogenic pressure) and plant part of B. pendula were observed. Based on the obtained results, it was found that transport of aluminium is "blocked" by lateral roots, and is closely related to Al content of soil. Copyright © 2017. Published by Elsevier B.V.
Fernández-Caliani, J C; Barba-Brioso, C
2010-09-15
A one-year field trial was conducted at the abandoned mine site of Tharsis (Spain) in order to assess the potential value of waste sludge generated during the processing of marble stone, as an additive for assisting natural remediation of heavily contaminated acid mine soils. An amendment of 22 cmol(c) of lime per kilogram of soil was applied to raise the pH level from 3.2 to above 6. The amendment application was effective in reducing concentrations of Al, Fe, Mn, sulfate and potentially hazardous trace elements (mainly Cu, Pb, Zn and Cd) in the most labile metal pools (water-soluble and EDTA-extractable fractions). Geochemical equilibrium calculations indicate that sulfate complexes and free metal ions were the dominant aqueous species in the soil solution. Metal coprecipitation with nanocrystalline ferric oxyhydroxides may be the major chemical mechanism of amendment-induced immobilization. The alleviating effect of the soil amendment on the metal bioavailability and phytotoxicity showed promise for assisting natural revegetation of the mine land. Copyright 2010 Elsevier B.V. All rights reserved.
1981-04-01
also found that almost all the Fe in soil solution was complexed with organic mat- ter. The high degree of Fe complexing in soil solution was...range of pH, the potentials were in conformity with the theoretical slope of 0.06. 45. When a soil is submerged, soil solution concentrations of...Ponnanperuma 1972). Low temperatures lead to extensive accumula- tion of organic acids in the soil solution (International Rice Research Institute (IRRI) 1969
NASA Astrophysics Data System (ADS)
Fritsch, E.; Allard, Th.; Benedetti, M. F.; Bardy, M.; do Nascimento, N. R.; Li, Y.; Calas, G.
2009-04-01
The development of podzols in lateritic landscapes of the upper Amazon basin contributes to the exportation of organic carbon and associated metals in the black waters of the Negro River watershed. We have investigated the distribution of Fe III in the clay-size fraction of eight organic-rich horizons of waterlogged plateau podzols, to unravel the weathering conditions and mechanisms that control its transfer to the rivers. The speciation and amount of Fe III stored in residual mineral phases of laterites, or bound to organic compounds of weakly and well-expressed podzols, were determined by electron paramagnetic resonance spectroscopy combined with chemical analyses. Reducing conditions restrict the production of organo-Fe complexes in the subsoil B-horizons of waterlogged podzols and most of the Fe 2+ released from the dissolution of Fe-oxides is exported to the rivers via the perched groundwater. However, significant amounts of diluted Fe III bound to organic ligands (Fe IIIOM) and nano Fe-oxides are produced at the margin of the depression in the topsoil A horizons of weakly expressed podzols due to shorter periods of anoxia. The downward translocation of organically bound metals from topsoil A to subsoil B-horizons of podzols occurs in shorter distances for Fe than it does for Al. This separation of secondary Fe species from Al species is attributed to the physical fractionation of their organic carriers in texture contrasted B-horizons of podzols, as well as to the effect of pH on metal speciation in soil solutions and metal binding onto soil organic ligands (mostly for Al). This leads us to consider the topsoil A horizons of weakly expressed podzols, as well as the subsoil Bh horizon of better-expressed ones, as the main sources for the transfer of Fe IIIOM to the rivers. The concentration of Fe IIIOM rises from soil sources to river colloids, suggesting drastic biogeochemical changes in more oxygenated black waters of the Negro River watershed. The contribution of soil organic matter to the transfer of Fe to rivers is likely at the origin of the peculiar Fe isotope pattern recently recognized in podzolic environments.
1980-01-01
ciple we can use these data in nitrification models, ON NITRIFICATION provided the concentration of oxygen in soil solution is known. This, however, is...Soil nitrifiers 30 0.8 (mixed culture) *As determined by Shah (1975). than within bulk soil solution , and McLaren and Packer these soils. The spatial...concentration concentration of 70 mg/l since this is the reported in soil solution depends on a soil-specific equilibrium influent concentration
Biochar contribution to soil pH buffer capacity
NASA Astrophysics Data System (ADS)
Tonutare, Tonu; Krebstein, Kadri; Utso, Maarius; Rodima, Ako; Kolli, Raimo; Shanskiy, Merrit
2014-05-01
Biochar as ecologically clean and stable form of carbon has complex of physical and chemical properties which make it a potentially powerful soil amendment (Mutezo, 2013). Therefore during the last decade the biochar application as soil amendment has been a matter for a great number of investigations. For the ecological viewpoint the trend of decreasing of soil organic matter in European agricultural land is a major problem. Society is faced with the task to find possibilities to stabilize or increase soil organic matter content in soil and quality. The availability of different functional groups (e.g. carboxylic, phenolic, acidic, alcoholic, amine, amide) allows soil organic matter to buffer over a wide range of soil pH values (Krull et al. 2004). Therefore the loss of soil organic matter also reduces cation exchange capacity resulting in lower nutrient retention (Kimetu et al. 2008). Biochar can retain elements in soil directly through the negative charge that develops on its surfaces, and this negative charge can buffer acidity in the soil. There are lack of investigations about the effect of biochar to soil pH buffering properties, The aim of our investigation was to investigate the changes in soil pH buffer capacity in a result of addition of carbonizated material to temperate region soils. In the experiment different kind of softwood biochars, activated carbon and different soil types with various organic matter and pH were used. The study soils were Albeluvisols, Leptosols, Cambisols, Regosols and Histosols . In the experiment the series of the soil: biochar mixtures with the biochar content 0 to 100% were used. The times of equiliberation between solid and liquid phase were from 1 to 168 hours. The suspension of soil: biochar mixtures was titrated with HCl solution. The titration curves were established and pH buffer capacities were calculated for the pH interval from 3.0 to 10.0. The results demonstrate the dependence of pH buffer capacity from soil type, organic matter and type of added carbonizated material. Our study showed that the biochar content has significant role in total pH buffer capacity in soil:biochar system . References. Kimetu, J.M., Lehmann, J., Ngoze, S.O., Mugendi, D.N., Kinyangi, J., Riha, S.J., Verchot, L., Recha, J.W., Pell, A.N. 2008. Reversibility of Soil Productivity Decline with Organic Matter of Differing Quality Along a Degradation Gradient. Ecosystems, 11, 726-739. Krull, E. S., Skjemstad, J.O., Baldock, J.A. 2004 'Functions of Soil Organic Matter and the Effect on Soil Properties'. GRDC report. Project CSO 00029. Mutezo, W.T., 2013. Early crop growth and yield responses of maize (Zea mays) to biochar applied on soil. International Working Paper Series, 13/03, 50 pp.
Soil Methane uptake Model (MeMo): a process based model for global methane consumption by soils
NASA Astrophysics Data System (ADS)
Murguia-Flores, F.; Arndt, S.; Ganesan, A.; Hornibrook, E. R. C.; Murray-Tortarolo, G.
2016-12-01
Atmospheric methane (CH4) is a powerful greenhouse gas, responsible for 20% of global warming. The only terrestrial and biological sink is the uptake in the soils by methanotrophic bacteria, however there is large spatial and temporal heterogeneity in the magnitude of this sink. One way to provide a global understanding of this process is by using a mathematical model to simulate the mechanisms of the underlying physical and biological drivers. Here we present the soil Methane uptake Model (MeMo) a process-based model for the global methane consumption by soils. We have built on previous models by Ridgwell et al., (1999) and Curry et al., (2007), by making several advances. First, a general analytical solution of the one-dimensional diffusion-reaction equation was implemented that accounts for a maximum uptake depth and for a CH4 flux coming from below the surface (i.e. CH4 production in the soil). Secondly, we revisited and improved the effect of nitrogen inhibition, soil moisture and soil temperature on CH4 uptake in the light of newly available data and advances in our understanding of these drivers. Using observed forcing data, we estimated a global mean CH4 uptake of 31.2±1.2 Tg y-1 for the period 1990-2009 with an increasing trend of 0.1 Tg y-2. Our model represented the latitudinal pattern of uptake shown by field observations, with the highest uptake per unit area occurring over dry tropical forest and the lowest uptake in the polar desert. The highest seasonality occurred in the Northern Hemisphere, showing that the main driver of variability in a given year is from a combination of temperature and soil moisture. Our model showed that CH4 uptake is reduced from previous studies by approximately 10% at the regions with the highest nitrogen deposition: East Asia and Europe. Finally, our results suggest that more field measurements are needed to improve the modelling of the process, such as the basal oxidation rate for different ecosystems, the Q10 temperature response across different conditions and long term field CH4 uptake records.
Chiou, C.T.; Kile, D.E.
1998-01-01
A series of single-solute and binary-solute sorption data have been obtained on representative samples of polar compounds (substituted ureas and phenolic compounds) and of nonpolar compounds (e.g., EDB and TCE) on a peat soil and a mineral (Woodburn) soil; the data extend to low relative solute concentrations (C(e)/S(w)). At relatively low C(e)/S(w), both the nonpolar and the polar solutes exhibit nonlinear sorption. The sorption nonlinearity approaches apparent saturation at about C(e)/S(w) = 0.010-0.015 for the nonpolar solutes and at about C(e)/S(w) = 0.10-0.13 for the polar solutes; above these C(e)/S(w) regions, the isotherms are practically linear. The nonlinear sorption capacities are greater for polar solutes than for nonpolar solutes and the peat soil shows a greater effect than the Woodburn soil. The small nonlinear sorption capacity for a nonpolar solute is suppressed indiscriminately by either a nonpolar or a polar cosolute at relatively low C(e)/S(w) of the cosolute. By contrast, the abilities of different cosolutes to suppress the nonlinear capacity of a nominal polar solute differ drastically. For polar solutes, a nonpolar cosolute exhibits a limited suppression even at high cosolute C(e)/S(w); effective suppression occurs when the cosolute is relatively polar and at various C(e)/S(w). These differences suggest that more than a single mechanism is required to account for the nonlinear sorption of both nonpolar and polar compounds at low C(e)/S(w). Mechanistic processes consistent with these observations and with soil surface areas are discussed along with other suggested models. Some important consequences of the nonlinear competitive sorption to the behavior of contaminants in natural systems are discussed.A number of conceptual models was postulated to account for the nonlinear solute sorption on soils of significant soil organic matter. A series of single-solute and binary-route sorption data was obtained representing samples of polar compounds of substituted ureas and phenolic compounds, and of nonpolar compounds of EDB and trichloroethylene on a peat soil and a mineral on a Woodburn soil. The nonlinear sorption capacities are greater for polar solutes than for nonpolar solutes and the peat soil shows a greater effect than the Woodburn soil.
Yin, Yujun; Impellitteri, Christopher A; You, Sun-Jae; Allen, Herbert E
2002-03-15
The lability (mobility and bioavailability) of metals varies significantly with soil properties for similar total soil metal concentrations. We studied desorption of Cu, Ni and Zn, from 15 diverse, unamended soils. These studies included evaluation of the effects of soil:solution extraction ratio and the roles of soil properties on metal desorption. Dcsorption was examined for each metal by computing distribution coefficients (Kd) for each metal in each soil where Kd = [M]soil/[M]solution, Results from soil:solution ratio studies demonstrated that Kd values for the metals tended to increase with increasing soil:solution ratio. This result also held true for distribution of soil organic matter (SOM). Because the soil:solution ratio has a significant effect on measured metal distributions, we selected a high soil:solution ratio to more closely approach natural soil conditions. Copper showed strong affinity to operationally defined dissolved organic matter (DOM). In this study, DOM was operationally defined based on the total organic carbon (TOC) content in 0.45-microm or 0.22-microm filtrates of the extracts. The Kd of Cu correlated linearly (r2 = 0.91) with the Kd of organic matter (Kd-om) where the Kd-om is equal to SOM as measured by Walkley-Black wet combustion and converted to total carbon (TC) by a factor of 0.59. These values representing solid phase TC were then divided by soluble organic carbon as measured by TOC analysis (DOM). The conversion factor of 0.59 was employed in order to construct Kd-om values based on solid phase carbon and solution phase carbon. SOM plays a significant role in the fate of Cu in soil systems. Soil-solution distribution of Ni and Zn, as well as the activity of free Cu2+, were closely related to SOM, but not to DOM. Kd values for Ni, Zn and free Cu2+ in a particular soil were divided by the SOM content in the same soil. This normalization of the Kd values for Ni, Zn, and free Cu2+ to the SOM content resulted in significant improvements in the linear relationships between non-normalized Kd values and soil pH. The semi-empirical normalized regression equations can be used to predict the solubility of Ni and Zn and the activity of free Cu2+ as a function of pH.
NASA Astrophysics Data System (ADS)
Massari, Christian; Brocca, Luca; Pellarin, Thierry; Kerr, Yann; Crow, Wade; Cascon, Carlos; Ciabatta, Luca
2016-04-01
Recent advancements in the measurement of precipitation from space have provided estimates at scales that are commensurate with the needs of the hydrological and land-surface model communities. However, as demonstrated in a number of studies (Ebert et al. 2007, Tian et al. 2007, Stampoulis et al. 2012) satellite rainfall estimates are characterized by low accuracy in certain conditions and still suffer from a number of issues (e.g., bias) that may limit their utility in over-land applications (Serrat-Capdevila et al. 2014). In recent years many studies have demonstrated that soil moisture observations from ground and satellite sensors can be used for correcting satellite precipitation estimates (e.g. Crow et al., 2011; Pellarin et al., 2013), or directly estimating rainfall (SM2RAIN, Brocca et al., 2014). In this study, we carried out a detailed scientific analysis in which these three different methods are used for: i) estimating rainfall through satellite soil moisture observations (SM2RAIN, Brocca et al., 2014); ii) correcting rainfall through a Land surface Model Assimilation Algorithm (LMAA) (an improvement of a previous work of Crow et al. 2011 and Pellarin et al. 2013) and through the Soil Moisture Analysis Rainfall Tool (SMART, Crow et al. 2011). The analysis is carried within the ESA project "SMOS plus Rainfall" and involves 9 sites in Europe, Australia, Africa and USA containing high-quality hydrometeorological and soil moisture observations. Satellite soil moisture data from Soil Moisture and Ocean Salinity (SMOS) mission are employed for testing their potential in deriving a cumulated rainfall product at different temporal resolutions. The applicability and accuracy of the three algorithms is investigated also as a function of climatic and soil/land use conditions. A particular attention is paid to assess the expected limitations soil moisture based rainfall estimates such as soil saturation, freezing/snow conditions, SMOS RFI, irrigated areas, contribution of surface runoff and evapotranspiration, vegetation coverage, temporal sampling, and the assimilation/modelling approach. The 9 selected sites gather such potential problems which are shown and discussed at the conference. REFERENCES Ebert, E. E.; Janowiak, J. E.; Kidd, C. Comparison of Near-Real-Time Precipitation Estimates from Satellite Observations and Numerical Models. Bull. Am. Meteorol. Soc. 2007, 88, 47-64. Tian, Y.; Peters-Lidard, C. D.; Choudhury, B. J.; Garcia, M. Multitemporal Analysis of TRMM-Based Satellite Precipitation Products for Land Data Assimilation Applications. J. Hydrometeorol. 2007, 8, 1165-1183. Stampoulis, D.; Anagnostou, E. N. Evaluation of Global Satellite Rainfall Products over Continental Europe. J. Hydrometeorol. 2012, 13, 588-603. Serrat-Capdevila, A.; Valdes, J. B.; Stakhiv, E. Z. Water Management Applications for Satellite Precipitation Products: Synthesis and Recommendations. JAWRA J. Am. Water Resour. Assoc. 2014, 50, 509-525. Crow, W. T.; van den Berg, M. J.; Huffman, G. J.; Pellarin, T. Correcting rainfall using satellite-based surface soil moisture retrievals: The Soil Moisture Analysis Rainfall Tool (SMART). Water Resour. Res. 2011, 47, W08521. Pellarin, T.; Louvet, S.; Gruhier, C.; Quantin, G.; Legout, C. A simple and effective method for correcting soil moisture and precipitation estimates using AMSR-E measurements. Remote Sens. Environ. 2013, 136, 28-36. Brocca, L.; Ciabatta, L.; Massari, C.; Moramarco, T.; Hahn, S.; Hasenauer, S.; Kidd, R.; Dorigo, W.; Wagner, W.; Levizzani, V. Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos. 2014, 119, 5128-5141.
Awasthi, Jay Prakash; Saha, Bedabrata; Regon, Preetom; Sahoo, Smita; Chowra, Umakanta; Pradhan, Amit; Roy, Anupam; Panda, Sanjib Kumar
2017-01-01
Aluminum (Al) is the third most abundant metal in earth crust, whose chemical form is mainly dependent on soil pH. The most toxic form of Al with respect to plants is Al3+, which exists in soil pH <5. Acidic soil significantly limits crop production mainly due to Al3+ toxicity worldwide, impacting approximately 50% of the world’s arable land (in North-Eastern India 80% soil are acidic). Al3+ toxicity in plants ensues root growth inhibition leading to less nutrient and water uptake impacting crop productivity as a whole. Rice is one of the chief grains which constitutes the staple food of two-third of the world population including India and is not untouched by Al3+ toxicity. Al contamination is a critical constraint to plant production in agricultural soils of North East India. 24 indigenous Indica rice varieties (including Badshahbhog as tolerant check and Mashuri as sensitive check) were screened for Al stress tolerance in hydroponic plant growth system. Results show marked difference in growth parameters (relative growth rate, Root tolerance index, fresh and dry weight of root) of rice seedlings due to Al (100 μM) toxicity. Al3+ uptake and lipid peroxidation level also increased concomitantly under Al treatment. Histochemical assay were also performed to elucidate uptake of aluminum, loss of membrane integrity and lipid peroxidation, which were found to be more in sensitive genotypes at higher Al concentration. This study revealed that aluminum toxicity is a serious harmful problem for rice crop productivity in acid soil. Based on various parameters studied it’s concluded that Disang is a comparatively tolerant variety whereas Joymati a sensitive variety. Western blot hybridization further strengthened the claim, as it demonstrated more accumulation of Glutathione reductase (GR) protein in Disang rice variety than Joymati under stressed condition. This study also observed that the emergence of lethal toxic symptoms occurs only after 48h irrespective of the dose used in the study. PMID:28448589
Kim, Kwon-Rae; Owens, Gary; Kwon, Soon-lk
2010-01-01
This study investigated the influence of Indian mustard (Brassica juncea) root exudation on soil solution properties (pH, dissolved organic carbon (DOC), metal solubility) in the rhizosphere using a rhizobox. Measurement was conducted following the cultivation of Indian mustard in the rhizobox filled four different types of heavy metal contaminated soils (two alkaline soils and two acidic soils). The growth of Indian mustard resulted in a significant increase (by 0.6 pH units) in rhizosphere soil solution pH of acidic soils and only a slight increase (< 0.1 pH units) in alkaline soils. Furthermore, the DOC concentration increased by 17-156 mg/L in the rhizosphere regardless of soil type and the extent of contamination, demonstrating the exudation of DOC from root. Ion chromatographic determination showed a marked increase in the total dissolved organic acids (OAs) in rhizosphere. While root exudates were observed in all soils, the amount of DOC and OAs in soil solution varied considerably amongst different soils, resulting in significant changes to soil solution metals in the rhizosphere. For example, the soil solution Cd, Cu, Pb, and Zn concentrations increased in the rhizosphere of alkaline soils compared to bulk soil following plant cultivation. In contrast, the soluble concentrations of Cd, Pb, and Zn in acidic soils decreased in rhizosphere soil when compared to bulk soils. Besides the influence of pH and DOC on metal solubility, the increase of heavy metal concentration having high stability constant such as Cu and Pb resulted in a release of Cd and Zn from solid phase to liquid phase.
NASA Astrophysics Data System (ADS)
Gough, R. V.; Chevrier, V.; Tolbert, M. A.
2013-12-01
There is significant interest in the possible existence of liquid water on current Mars. This water would likely exist as a brine in order to be stable on Mars today. It has been proposed that soil salts could form aqueous solutions through either the melting of ice by low-eutectic salts, or by the deliquescence of hygroscopic salts present in the Martian soil. The focus thus far has largely been on perchlorate species, which can melt ice at temperatures as low as 206 K and can deliquesce at relative humidity values as low as 38% RH. A Mars-relevant salt that has been neglected thus far is calcium chloride (CaCl2). Calcium has been reported to be an abundant cation at the Phoenix landing site and Mars Science Laboratory instruments have recently identified calcium as well. Simulations suggest subsurface CaCl2 is an ideal candidate to produce brines with seasonality consistent with observed recurring slope lineae (RSL) (Chevrier et al., 2012). Finally, the only terrestrial site where RSL-like features have been observed (near Don Juan Pond in the Antarctic Dry Valleys) contains abundant CaCl2. These seasonal slope streaks are thought to form when CaCl2 in the soil deliquesces due to contact with atmospheric water vapor (Dickson et al., 2013). It is important to understand how this CaCl2 interacts with water vapor at low temperatures relevant to Mars and the Martian analog sites. Here we use a Raman microscope and environmental cell to monitor the low-temperature (223 - 273 K) deliquescence (solid to aqueous phase transition) and efflorescence (aqueous to solid phase transition) of three hydration states of CaCl2 (dihydrate, tetrahydrate, hexahydrate). We have found that the deliquescence relative humidity (DRH) increases with increasing hydration state, which is an expected result. Average DRH values over the temperature range studied are 20.0 × 2.6% RH for the dihydrate, 31.8 × 6.3% RH for the tetrahydrate and 60.7 × 1.6% RH for the hexahydrate. Once the aqueous solution has formed, efflorescence (recrystallization) of the salt is kinetically hindered and supersaturated solutions can exist at humidities far below the DRH. Regardless of temperature or initial hydration state of the solid salt, we do not observe efflorescence of the aqueous solutions to occur until single digit RH values are reached. We show here that calcium chloride is at least as deliquescent as many perchlorate salts, and that solutions of calcium chloride are even more difficult to recrystallize once a brine solution has formed. These experimental results will assist with interpretation of observations of deliquescence in the Antarctic Dry Valleys and will help us understand potential liquid water formation on Mars. In addition to formation of brines through melting, deliquescence of salts such as CaCl2 is a reasonable mechanism for formation of aqueous solutions on current Mars.
Distinguishing "new" from "old" carbon in post mining soils
NASA Astrophysics Data System (ADS)
Vindušková, Olga; Frouz, Jan
2014-05-01
Introduction Soils developing on heaped overburden after open pit coal mining near Sokolov, Czech Republic, provide an exceptional opportunity to study sites of different ages (0-70 years) developing on similar substrate under relatively well-known conditions. Soil organic carbon (SOC) is an useful indicator of soil quality and represents an important global carbon pool. Post-mining soils would be a perfect model for long-term study of carbon dynamics. Unfortunately, quantifying SOC in Sokolov post-mining soils is quite complicated, since conventional quantification methods cannot distinguish between SOC derived from plant residues and fossil organic carbon derived from coal and kerogen present in the overburden. Moreover, also inorganic carbon may sometimes bias SOC quantification. Up to now, the only way to directly estimate recently derived SOC in these soils is radiocarbon dating (Rumpel et al. 1999; Karu et al. 2009). However, this method is costly and thus cannot be used routinely. The aim of our study is to find an accessible method to quantify recently derived SOC. We would highly appreciate ideas of other soil scientists, organic geochemists and sedimentologists on how to solve this challenge. Methods and hypotheses A set of 14 soil samples were analysed by radiocarbon (14C-AMS) analysis, near-infrared spectroscopy (NIRS), 13C CPMAS NMR spectroscopy, Rock-Eval and XRD. For calibration of NIRS, also 125 artificial mixtures were produced by mixing different amounts of claystone, coal and partially decomposed litter. NIRS (1000-2500 nm) as well as younger mid-infrared spectroscopy has been widely applied to soils (Janik et al. 2007; Vasques et al. 2009; Michel et al. 2009). When combined with multivariate chemometric techniques, it can be used to predict concentration of different compounds. No study has yet focused on NIRS application to soils where fossil carbon is found in two chemically different forms - whereas coal is rather aromatic, kerogen in our study area is highly aliphatic. 13C CPMAS NMR spectroscopy is an analytical technique used for structural characterization of soil organic matter (Preston 1996). Particular regions of NMR spectra can be assigned to alkyl C, O-alkyl C, aromatic C, and carboxylic C (Kögel-Knabner 2000). We hypothesize that recently derived and fossil organic matter will have different relative proportions of signals in these regions and this difference could be used to estimate recently derived SOC in unknown samples. Rock-Eval pyrolysis is a method used in oil exploration to evaluate the quantity, quality and thermal maturity of organic matter in sediments. Lately, is has been applied also to soils and can bring useful information about soil organic matter (Sebag et al. 2006; Disnar et al. 2003). Particularly, it allows to determine the total organic carbon content (TOC wt.%) and also provides Hydrogen and Oxygen Index values (HI and OI) which are known to correlate wit H/C and O/C ratios. Also, pyrolysis and oxidation products (hydrocarbons, CO and CO2) can be plotted against temperature and give us an idea of thermal stability of their source compounds. We hypothesize that recently derived and fossil organic matter will differ in thermal stability and also in the quantity and quality of pyrolysis products. These differences could allow to quantify both fractions in post-mining soils. XRD (X-ray diffraction) is an analytical technique used to identify minerals in rocks and soils and give a semi-quantitative estimate of their content. Carbonates (as an inorganic form of carbon, IC) can be source of bias in some organic carbon analyses. Carbonates can be removed from samples by acid treatment but the specific procedure that is required depends on the type (and solubility) of carbonates present in sample (Brodie et al. 2011). Up to now, other methods did not show a significant content of IC in Sokolov soils; however, previous XRD analyses of parent claystones in the area showed that siderite (FeCO3) represents a highly variable component of the overburden (Table 1 from Kříbek et al. 1998). Since siderite is known to be highly insoluble, it is possible it has not been detected by previous IC measurements in soils (Larson et al. 2008). Acknowledgments The financial support provided by the The Charles University Grant Agency (grant no. 922513) is gratefully acknowledged. References Brodie, C.R. et al., 2011. Evidence for bias in C and N concentrations and [delta]13C composition of terrestrial and aquatic organic materials due to pre-analysis acid preparation methods. Chemical Geology, 282(3-4), pp.67-83. Disnar, J.R. et al., 2003. Soil organic matter (SOM) characterization by Rock-Eval pyrolysis: scope and limitations. Organic Geochemistry, 34(3), pp.327-343. Janik, L.J. et al., 2007. The prediction of soil carbon fractions using mid-infrared-partial least square analysis. Australian Journal of Soil Research, 45(2), p.73. Karu, H. et al., 2009. Carbon sequestration in a chronosequence of Scots pine stands in a reclaimed opencast oil shale mine. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 39(8), pp.1507-1517. Kögel-Knabner, I., 2000. Analytical approaches for characterizing soil organic matter. Organic Geochemistry, 31(7), pp.609-625. Kříbek, B. et al., 1998. Geochemistry of Miocene lacustrine sediments from the Sokolov Coal Basin (Czech Republic). International Journal of Coal Geology, 37(3-4), pp.207-233. Larson, T.E. et al., 2008. Pretreatment technique for siderite removal for organic carbon isotope and C:N ratio analysis in geological samples. Rapid communications in mass spectrometry: RCM, 22(6), pp.865-72. Michel, K. et al., 2009. Use of near- and mid-infrared spectroscopy to distinguish carbon and nitrogen originating from char and forest-floor material in soils. Journal Of Plant Nutrition And Soil Science, 172(1), pp.63-70. Preston, C.M., 1996. Applications of NMR to soil organic matter analysis: history and prospects. Soil Science, 161(3), pp.144-166. Rumpel, C., Kögel-Knabner, I. & Hüttl, R., 1999. Organic matter composition and degree of humification in lignite-rich mine soils under a chronosequence of pine. Plant and Soil, 213(1), pp.161-168. Sebag, D. et al., 2006. Monitoring organic matter dynamics in soil profiles by "Rock-Eval pyrolysis": bulk characterization and quantification of degradation. European Journal of Soil Science, 57(3), pp.344-355. Vasques, G.M., Grunwald, S. & Sickman, J.O., 2009. Modeling of Soil Organic Carbon Fractions Using Visible-Near-Infrared Spectroscopy. Soil Science Society of America Journal, 73(1), pp.176-184.
Main Parameters of Soil Quality and it's Management Under Changing Climate
NASA Astrophysics Data System (ADS)
László Phd, M., ,, Dr.
2009-04-01
Reviewing Paper Introduction: Malcolm summarised the topic of soil quality and it's management in a well synthetized form in 2000. So, the soils are fundamental to the well-being and productivity of agricultural and natural ecosystems. Soil quality is a concept being developed to characterize the usefulness and health of soils. Soil quality includes soil fertility, potential productivity, contaminant levels and their effects, resource sustainability and environmental quality. A general definition of soil quality is the degree of fitness of a soil for a specific use. The existence of multiple definitions suggests that the soil quality concept continues to evolve (Kádár, 1992; Várallyay, 1992, 1994, 2005; Németh, 1996; Malcolm, 2000; Márton, 2005; Márton et al. 2007). Recent attention has focused on the sustainability of human uses of soil, based on concerns that soil quality may be declining (Boehn and Anderson, 1997). We use sustainable to mean that a use or management of soil will sustain human well-being over time. Lal (1995) described the land resources of the world (of which soil is one component) as "finite, fragile, and nonrenewable," and reported that only about 22% (3.26 billion ha) of the total land area on the globe is suitable for cultivation and at present, only about 3% (450 million ha) has a high agricultural production capacity. Because soil is in large but finite supply, and some soil components cannot be renewed within a human time frame, the condition of soils in agriculture and the environment is an issue of global concern (Howard, 1993; FAO, 1997). Concerns include soil losses from erosion, maintaining agricultural productivity and system sustainability, protecting natural areas, and adverse effects of soil contamination on human health (Haberern, 1992; Howard, 1993; Sims et al., 1997). Parr et al. (1992) state, "...soil degradation is the single most destructive force diminishing the world's soil resource base." Soil quality guidelines are intended to protect the ability of ecosystems to function properly (Kádár, 1992; Várallyay, 1992, 1994, 2005; Cook and Hendershot, 1996; Németh, 1996; Malcolm, 2000; Márton, 2005; Márton et al. 2007). The Hungarian Ministry of Environment and Water (HMEW, 2004) suggests that the Hungarian Regions should adopt a national policy "...that seeks to conserve and enhance soil quality...". Useful evaluation of soil quality requires agreement about why soil quality is important, how it is defined, how it should be measured, and how to respond to measurements with management, restoration, or conservation practices. Because determining soil quality requires one or more value judgments and because we have much to learn about soil, these issues are not easily addressed (Várallyay, 1992, 1994, 2005; Cook and Hendershot, 1996; Németh, 1996; Malcolm, 2000). Definitions of soil quality have been based both on human uses of soil and on the functions of soil within natural and agricultural ecosystems. For purposes of this work, we are showing soil quality within the context of managed agricultural ecosystems. To many in agriculture and agricultural research, productivity is analogous to soil quality. Maintaining soil quality is also a human health concern because air, groundwater and surface water consumed by humans can be adversely affected by mismanaged and contaminated soils, and because humans may be exposed to contaminated soils in residential areas (Kádár, 1992; Várallyay, 2005; Cook and Hendershot, 1996; Németh, 1996; Malcolm, 2000; Márton et al. 2007). Contamination may include heavy metals, toxic elements, excess nutrients, volatile and nonvolatile organics, explosives, radioactive isotopes and inhalable fibers (Sheppard et al., 1992; Cook and Hendershot, 1996). Soil quality is not determined by any single conserving or degrading process or property, and soil has both dynamic and relatively static properties that also vary spatially (Carter et al., 1997). Gregorich et al. (1994) state that "soil quality is a composite measure of both a soil's ability to function and how well it functions, relative to a specific use." Increasingly, contemporary discussion of soil quality includes the environmental cost of production and the potential for reclamation of degraded soils (Várallyay, 2005). Reasons for assessing soil quality in an agricultural or managed system may be somewhat different than reasons for assessing soil quality in a natural ecosystem. In an agricultural context, soil quality may be managed, to maximize production without adverse environmental effect, while in a natural ecosystem, soil quality may be observed, as a baseline value or set of values against which future changes in the system may be compared (Várallyay, 1994; Cook and Hendershot, 1996; Németh, 1996; Malcolm, 2000; Márton et al. 2007). Soil quality has historically been equated with agricultural productivity, and thus is not a new idea. Soil conservation practices to maintain soil productivity are as old as agriculture itself, with documentation dating to the Roman Empire (Jenny, 1961). The Storie Index (Storie, 1932) and USDA Land Capability Classification (Klingebiel and Montgomery, 1973) were developed to separate soils into different quality classes. Soil quality is implied in many decisions farmers make about land purchases and management, and in the economic value rural assessors place on agricultural land for purposes of taxation. Beginning in the 1930s, soil productivity ratings were developed in the United States and elsewhere to help farmers select crops and management practices that would maximize production and minimize erosion or other adverse environmental effects (Huddleston, 1984). These rating systems are important predecessors of recent attempts to quantitatively assess soil quality. In the 1970s, attempts were made to identify and protect soils of the highest productive capacity by defining "prime agricultural lands" (Miller, 1979). An idea related to soil quality is "carrying capacity". Carrying capacity is the number of individuals that can be supported in a given area (Budd, 1992). Soils with high productivity have high carrying capacity, and are considered to be high quality. Sustainability implies that a system does not exceed its carrying capacity over time. Recent attempts to define soil quality and develop indices to measure it have many of the properties of the earlier soil productivity ratings (Doran and Jones, 1996; Snakin et al., 1996; Seybold et al., 1997). Cox (1995) calls for national goals for soil quality that "... recognize the inherent links between soil, water and air quality." Haberern (1992) suggests that the decade of the 1990s is the time to study the soil as we have recognized and studied air quality and water quality in the preceding two decades. Air and water quality standards are generally based on maximum allowable concentrations of materials hazardous to human health. They are specified and enforced by regulators according to public uses of these resources. The result is that changes in air and water quality are now monitored to protect human health. With few exceptions, soil quality standards have not been set, nor have regulations been created regarding maintenance of soil quality (Várallyay, 2005; Cook and Hendershot, 1996; Malcolm, 2000; Márton et al. 2007). To the extent that soil has been the disposal site of hazardous wastes, as well as a pathway by which contamination or other applied chemicals may present a human health risk, sporadic 40 regulations of soil quality (in terms of contamination) does exist in the 27 European Union (EU) countries for not just new ones but an estimated 30 000 existing chemicals, today. These regulations are in the form of laws regulating hazardous waste, toxic substances, and pesticides. However, these standards are often contradictory, inconsistent with each other and with current methods of assessing risk. For example, in the United States, federal regulations supporting CERCLA (40 CFR) is a list of "hazardous substances" and the levels in various media (e.g., soil, water) to which the Environmental Protection Agency (EPA) must respond with a cleanup effort. However, EPA has fielded considerable controversy about contaminant levels and chemical forms that legitimately constitute a human health risk. Target cleanup levels have also been subject to debate and legislation. Soil quality assessment requires definition of a "clean" soil (Sims et al., 1997). From this point of view, good quality soil has been defined as posing "...no harm to any normal use by humans, plants or animals; not adversely affecting natural cycles or functions; and not contaminating other components of the environment" (Moen, 1988). The parallel to air and water quality is easy to draw on a conceptual level, but designation of soil quality standards is significantly complicated by soil variability and heterogeneity (Smith et al., 1993). Among the authors (Merker, 1956; Odell et al. 1984; Johnston et al., 1986; Reganold et al., 1990; Granatstein and Bezdicek, 1992; Kádár, 1992; Beke et al., 1994; Jenkinson et al., 1994; Schjenning et al., 1994; Murata et al., 1995; Biederbeck et al., 1996; Lindert et al., 1996; Romig et al., 1995; Warkentin, 1995; Carter et al., 1997; Gerzabeck et al., 1997; Seybold et al., 1997; Malcolm, 2000; Várallyay, 2005) and organizations defining soil quality are Larson and Pierce (1991), Karlen et al. (1997). The next section reviews some of the definitions and soil characteristics used to define soil quality. The reader should understand that the definition of soil quality and selection of soil characteristics needed to quantify soil quality are continuing to evolve. For example, Bouma (1989) recognized that an essential problem with definitions that produce carefully limited suitability classes is that empirical decisions must be made to separate the classes along what is essentially a continuum. That is, if soil organic matter is part of a soil quality definition, where on the continuum of soil organic matter content does one draw the line between a high quality and low quality soil? Does high organic matter content always indicate high soil quality? These are non-trivial questions under discussion by the soil science community. Carter et al. (1997) suggest a framework for evaluating soil quality that includes: 1. describing each soil function on which quality is to be based, 2. selecting soil characteristics or properties that influence the capacity of the soil to provide each function, 3. choosing indicators of characteristics that can be measured, and 4. using methods that provide accurate measurement of those indicators. The following soil functions appear frequently in the soil science literature: 1. soil maintains biological activity/productivity (Karlen et al., 1997), serves as medium for plant/crop growth (Arshad and Coen, 1992), supports plant productivity/yield (Arshad and Coen, 1992), supports human/animal health (Karlen et al., 1997); 2. partitions and regulates water/ solute flow through environment (Larson and Pierce, 1991; Arshad and Coen, 1992); 3. serves as an environmental buffer/filter (Larson and Pierce, 1991), maintains environmental quality (Arshad and Ccen, 1992); 4. cycles nutrients, water, energy and other elements through the biosphere (Anderson and Gregorich, 1984). Clearly, these functions are interrelated. Later in this chapter, discussion focuses on the first and third functions (productivity and environmental buffering) as encompassing those aspects of soil quality most debated in the literature. Larson and Pierce (1991) defined soil quality as "the capacity of a soil to function within the ecosystem boundaries and interact positively with the environment external to that ecosystem." Three soil functions are considered essential: provide a medium for plant growth, regulate and partition waterllow through the environment, and serve as an effective environmental filter. Arshad and Coen (1992) define soil quality as "the sustaining capability of a soil to accept, store and recycle water, minerals and energy for production of crops at optimum levels while preserving a healthy environment." They discuss terrain, climate and hydrology as site factors that contribute to soil quality and suggest that socioeconomic factors such as land use, operator and management should be included in a soil quality analysis. This approach is consistent with the FAO approach to land quality analysis (FAO, 1997). Karlen et al. (1992) define soil quality as "the ability of the soil to serve as a natural medium for the growth of plants that sustain human and animal life." Their definition is based on the role of soil quality in the long-term productivity of soil and maintenance of environmental quality. Doran and Parkin (1994) defined soil quality as "the capacity of a soil to function within ecosystem boundaries to sustain biological productivity, maintain environmental quality, and promote plant and animal health." Gregorich et al. (1994) define soil quality as "a composite measure of both a soil's ability to function and how well it functions relative to a specific use" or "the degree of fitness of a soil for a specific use." The Soil Science Society of America Ad Hoc Committee on Soil Health proposed that soil quality is "the capacity of a specific kind of soil to function, within natural or managed ecosystem boundaries, to sustain plant and animal productivity, maintain or enhance water and air quality, and support human health and habitation" (Karlen et al., 1997). This definition requires that five functions must be evaluated to describe soil quality: 1. sustaining biological activity, diversity, and productivity; 2. regulating and partitioning water and solute flow; 3. filtering, buffering, degrading, immobilizing and detoxifying organic and inorganic materials, including industrial and municipal byproducts and atmospheric deposition; 4. storing and cycling nutrients and other elements within the earth's biosphere; and 5. providing support of socioeconomic structures and protection for archeological treasures associated with human habitation. No soil is likely to successfully provide all of these functions, some of which occur in natural ecosystems and some of which are the result of human modification. We can summarize by saying that soil quality depends on the extent to which soil functions to benefit humans. Thus, for food production or mediation of contamination, soil quality means the extent to which a soil fulfills the role we have defined for it. Within agriculture, high quality equates to maintenance of high productivity without significant soil or environmental degradation. The Glossary of Soil Science terms produced by the Soil Science Society of America (1996) states that soil quality is an inherent attribute of a soil that is inferred from soil characteristics or indirect observations. To proceed from a dictionary definition to a measure of soil quality, a minimum dataset (MDS) of soil characteristics that represents soil quality must be selected and quantified (Papendick et al., 1995). The MDS may include biological, chemical or physical soil characteristics [Organic matter (OM), Aggregation (A), Bulk density (BD), Depth to hardpan (DH), Electrical conductivity (EC), Fertility (F), Respiration (R), pH, Soil test (ST), Yield (Y), Infiltration (I), Mineralizable nitrogen potential (MNP), Water holding capacity (WHC)]. For agriculture, the measurement of properties should lead to a relatively simple and accurate way to rank soils based on potential plant production without soil degradation. Unfortunately, commonly identified soil quality parameters may not correlate well with yield (Reganold, 1988). In the next section, we consider these four points concerning the selection and quantification of soil characteristics: 1. soil characteristics may be desirable or undesirable, 2. soil renewability involves judgment of the extent to which soil characteristics can be controlled or managed, 3. rates of change in soil characteristics vary, and 4. there may be significant temporal or spatial variation in soil characteristics. Components of soil quality definitions may include desirable and undesirable characteristics. Desirable soil characteristics may either be the presence of a property that benefits soil productivity and/or other important soil functions, or the absence of a property that is detrimental to these functions. A soil characteristic may include a range of values that contributes positively to quality and a range that contributes negatively. Soil pH, for example, may be a positive or negative characteristic depending on its value. Larson and Pierce (1991) suggest that ranges of property values can be defined as optimal, suboptimal or superoptimal. A pH range of 6 to 7.5 is optimal for production of most crops. Outside of this range, pH is suboptimal and soil quality is lower than at the optimal pH range. The complexity of the soil quality concept is illustrated by the fact that the choice of optimal pH range is crop or use dependent. Letey (1985) suggested that identification of a range of water content that is nonlimiting to plant productivity might be a good way of assessing the collective effect of soil physical characteristics that contribute to crop productivity. For soils of decreasing quality, the width of the nonlimiting water range decreases. Undesirable soil characteristics may be either the presence of contaminants or a range of values of soil characteristics that contribute negatively to soil quality. The presence of chemicals that inhibit plant root growth or the absence of nutrients that result in low yields or poor crop quality are examples of undesirable soil characteristics that lower soil quality. The extent to which soil is viewed as a renewable resource shapes our approach to soil quality. "Soil" in this context is the natural, three-dimensional, horizonated individual, not something created by earth moving machinery. For the purpose of assessing human impact on sustainability of soil quality, it may be appropriate to use only those soil properties that are slowly or nonrenewable. Shorter term assessments may be based on those properties that change rapidly and are subject to easy management. Willis and Evans (1977) argued that soil is not renewable over the short term based on studies that suggest that 30 to more than 1,000 years are required to develop 25 mm of surface soil from parent material by natural processes. Jenny (1980) also argued that soil is not renewable over the time scale to which humans relate. Howard (1993) suggests defining soil quality based on undisturbed natural soils and to set quality standards based on changes in soils which cannot be reversed naturally or by ecological approaches. The renewability of soil depends on the soil property considered. For example, once soil depth is reduced by wind or water erosion so that it is too shallow to support crops, it is not renewable within a human or management time frame. Some important soil characteristics are slowly renewable. Organic matter, most nutrients and some physical properties may be renewed through careful long-term management. Certain chemical properties (pH, salinity, N, P, K content) may be altered to a more satisfactory range for agriculture within a growing season or two, while removal of unwanted chemicals may take much longer. No soil property is permanent, but rates and frequency of change vary widely among properties. Soil properties also vary with ecosystem, arguably depending most on climate. In rangelands, for example, temporal variability is high and relatively unpredictable due to the strong dependence of soil properties on soil wetness (Herrick and Whitford, 1995). Variability in soil wetness is not restricted to rangelands and may be an especially important determinant of microbial community structure and function in both irrigated and rainfed agricultural systems. Arnold et al. (1990) suggest that changes in soil properties can be nonsystematic, periodic, or trend. Nonsystematic changes are short term and unpredictable. Periodic are predictable and trend changes tend to be in one direction over time. Carter et al. (1997) distinguish between dynamic soil properties that are most subject to change through human use and are strongly influenced by agronomic practices, and intrinsic or static properties that are not subject to rapid change or management. Examples of dynamic soil characteristics are the size, membership, distribution, and activity of a soil's microbiological community; the soil solution composition, pH, and nutrient ion concentrations, and the exchangeable cation population. Soils respond quickly to changes in conditions such as water content. As a result, the optimal frequency and distribution of soil measurements vary with the property being measured. Soil mineralogy, particle size distribution and soil depth are static soil quality indicators. Although changes occur continuously, they are slow under natural conditions. Organic matter content may be a dynamic variable, but the chemical properties of organic matter may change only over periods on the order of 100 to 1,500 years depending on texture. Soil properties that change quickly present a problem because many measurements are needed to know the average value and to determine if changes in the average indicate improvement or degradation of soil quality. Conversely, properties that change very slowly are insensitive measures of short-term changes in soil quality. Papendick et al. (1995) argue that the MDS required for soil quality analysis includes a mix of "dynamic" and relatively "static" properties. A soil quality assessment must specify area. One could use the pedon (the three-dimensional soil individual) as the unit of measure, or a soil map unit, a landscape, a field or an entire watershed. The choice will depend to some degree on what property is of interest and the spatial variability of the property. Karlen et al. (1997) propose that soil quality can be evaluated at scales ranging from points to regional, national and international. They suggest that the more detailed scales provide an opportunity to "understand" soil quality while larger scale approaches provide interdisciplinary monitoring of soil quality and changes in soil quality. Pennock et al. (1994) discuss scaling up data from discrete sampling points to landscape and regional scales. Soil physical characteristics [Aeration (A), Aggregate stability (AS), Bulk density (BD), Clay mineralogy (CM), Color (C), Consistence (dry (CD), moist (CM), wet (CW)), Depth to root limiting layer (DRLL), Hydraulic conductivity (HC), Oxygen diffusion rate (ODR), Particle size distribution (PSD), Penetration resistence (PR), Pore connectivity (PC), Pore size distribution (PSD), Soil strength (SS), Soil tilth (ST), Structure type (STY), Temperature (T), Total porosity (TP), Water-holding capacity (WHC)] are a necessary part of soil quality assessment because they often cannot be easily improved (Wagenet and Hutson, 1997). Larson and Pierce (1991) summarize the physical indicators of soil quality as those properties that influence crop production by determining: 1. whether a soil can accommodate unobstructed root growth and provide pore space of sufficient size and continuity for root penetration and expansion, 2. the extent to which the soil matrix will resist deformation, and 3. the capacity of soil for water supply and aeration. Factors such as effective rooting depth, porosity or pore size distribution, bulk density, hydraulic conductivity, soil strength and particle size distribution capture these soil functions (Malcolm, 2000; Várallyay, 2005). Reganold and Palmer (1995) use texture, color, dry and moist consistence, structure type, a structure index, bulk density of the 0-5 cm zone, penetration resistance of 0 to 20 and 20 to 40 cm zones and topsoil thickness as physical determinants of soil quality. Letey (1994) suggests that structure, texture, bulk density, and profile characteristics affect management practices in agriculture but are not directly related to plant productivity. He proposes that water potential, oxygen diffusion rate, temperature, and mechanical resistance directly affect plant growth, and thus are the best indicators of the physical quality of a soil for production. Soil tilth, a poorly defined term that describes the physical condition of soil, also may be an indicator of a soil's ability to support crops. Farmers may assess soil tilth by kicking a soil clod. More formal measurements to describe soil ti]th include bulk density, porosity, structure, roughness and aggregate characteristics (Karlen et al., 1992). Many of the processes that contribute to soil structure, aggregate stability, bulk density and porosity are not well understood, making soil tilth a difficult parameter to quantify. Soil depth is an easily measured and independent property that provides direct information about a soil's ability to support plants. Effective soil depth is the depth available for roots to explore for water and nutrients. Layers that restrict root growth or water movement include hard rock, naturally dense soil layers such as fragipans, petrocalcic and, petroferric horizons, duripans, and human-induced layers of high bulk density such as plow pans and traffic pans. Effective soil depth is a problem for agricultural use of over 50% of soils in Africa (Eswaran et al., 1997). Soil depth requirements vary with crop or species. Many vegetable crops, for example, are notably shallow rooted while grain crops and some legumes like alfalfa are deep rooted. Variation will be even greater in unmanaged, natural systems. Wheat yield in Colorado was shown to decrease from 2,700 to 1,150 kg ha' over a 60-yr period of cultivation primarily due to decrease in soil depth (Bowman et al., 1990). Assessment of soil quality based on soil chemistry, whether the property is a contaminant or part of a healthy system, requires a sampling protocol, a method of chemical analysis, an understanding of how its chemistry affects biological systems and interacts with mineral forms, methods for location of possible contamination, and standards for soil characterization (Várallyay, 2005; Németh, 1996; Malcolm, 2000). Some soil chemical properties suggested as soil quality indicators are: Base saturation percentage (BSP), Cation exchange capacity (CEC), Contaminant availability (CA), Contaminant concentration (CC), Contaminant mobility (CM), Contaminant presence (CP), Electrical conductivity (EC), ESP, Nutrient cycling rates (NCR), Ph, Plant nutrient availability (PNA), Plant nutrient content (PNC) and SAR. Nutrient availability depends on soil physical and chemical processes, such as weathering and buffering, and properties such as organic matter content, CEC and pH (Kádár, 1992; Várallyay, 1992, 1994, 2005; Németh, 1996; Malcolm, 2000; Márton, 2005; Márton et al. 2007). At low and high pH, for example, some nutrients become unavailable to plants and some toxic elements become more available. Larson and Pierce (1991) chose those chemical properties that either inhibit root growth or that affect nutrient supply due to the quantity present or the availability. Reganold and Palmer (1995) used chemical parameters related to nutrient availability as measures of soil quality, including CEC, total N and P, pH and extractable P, S, Ca, Mg and K. Karlen et al. (1992) suggest that total and available plant nutrients, and nutrient cycling rates, should be included in soil quality assessments. Soil properties may be severely compromised by intended or unintended human additions of chemical compounds and soil productivity reduced if unwanted chemicals exceed safe thresholds. Data are required to determine whether or not a site is significantly polluted and if it requires clean-up (Sims et al., 1997). International standard methods have been created to maintain the quality of measurements (Hortensius and Welling, 1996). A difficult determination is the level of each chemical that is considered an ecological risk. Beck et al. (1995) provide a list of levels for organic chemicals adopted by The Netherlands and Canada. EPA uses similar lists for compounds considered hazardous (e.g., 40 CFR). Sims et al. (1997) argue that clean and unclean are two extremes of a continuum and that it is more appropriate to define the physical, chemical and biological state of the soil as acceptable or unacceptable. In The Netherlands, soil quality reference values have been created for heavy metals and organic chemicals based on a linear relationship with soil clay and organic matter content. The Dutch Ministry of Housing, Physical Planning and Environment has used the maximum of a range of reference values for a given substance as a provisional reference value for good soil quality (Howard, 1993). The focus of many soil quality definitions is soil biology [Organic carbon (OC), Microbial biomass (MB), C and N, Total bacterial biomass (TBB), Total fungal biomass (TFB), Potentially mineralizable N (PMN), Soil respiration (SR), Enzymes (Dehydrogenase, Phosphatase, Arlysulfatase), Biomass C/total organic carbon, Respiration/biomass, Microbial community fingerprinting (MCF), Substrate utilization (SU), Fatty acid analysis (FAA), Nucleic acid analysis (NAA)]. Soil supports a diverse population of organisms, ranging in size from viruses to large mammals, that usually interacts positively with plants and other system components (Paul and Clark, 1996). However, some soil organisms such as nematodes, bacterial and fungal pathogens reduce plant productivity. Many proposed soil quality definitions focus on the presence of beneficial rather than absence of detrimental organisms, although both are critically important. Various measures of microbial community viability have been suggested as measures or indices of soil quality. Community level studies consider species diversity and frequency of occurrence of species. Visser and Parkinson (1992) found that diverse soil microbiological criteria may be used to indicate deteriorating or improving soil quality. They suggested testing the biological criteria for soil quality at three levels: population, community and ecosystem. Microorganisms and microbial communities are dynamic and diverse, making them sensitive to changes in soil conditions (Kennedy and Papendick, 1995). Their populations include fungi, bacteria including actinomycetes, protozoa, and algae. Soil microorganisms form crucial symbiotic relationships with plants, including mycorrhizal infection for P and N acquisition and bacterial infection for fixation of atmospheric N. Authors emphasizing use of biological factors as indicators of soil quality often equate soil quality with relatively dynamic properties such as microbial biomass, microbial respiration, organic matter mineralization and denitrification, and organic matter content (Yakovchenko et al., 1996; Franzluebbers and Arshad, 1997), or soil microbial C, phospholipid analyses and soil enzymes (Gregorich et al., 1997), or total organic C and N (Franco-Vizcaino, 1997). Visser and Parkinson (1992) question the suitability of enzyme assays for microbial activity and soil quality assessments. Waksman (1927), who studied measurements of soil microorganisms that could indicate soil fertility, found that physical and chemical factors as well as soil biology were needed to predict soil fertility. Meso- and macrofauna populations have also been considered as part of soil quality definitions (Berry, 1994). One could choose to use presence or absence of a particular species or population of a particular species as a measure of soil quality. Stork and Eggleton (1992) discuss species richness as a powerful indicator of invertebrate community and soil quality, although determining the number of species is a problem. They suggest that keystone species, taxonomic diversity at the group level, and species richness of several dominant groups of invertebrates can be used as part of a soil quality definition. Measuring soil fauna populations involves decisions about which organisms to measure and how to measure them. An example is the earthworm population, the size of which is frequently mentioned as an important measure of soil quality. Measurement choices include numbers of organisms per volume or weight of soil, number of species, or a combination of numbers of organisms and species. Reganold and Palmer (1995) use total earthworms per square meter, total earthworm weight (g m-') and average individual earthworm weight as biological indicators of soil quality. Measurement of one or more components of the N cycle including ammonification, nitrification and nitrogen fixation, may be used to assess soil fertility and soil quality (Visser and Parkinson, 1992). Presumably, high rates of N turnover may infer a dynamic and healthy soil biological community. In contrast, low soil quality or poor soil health may be inferred from lack of N turnover. The interpretation of N turnover rates is highly dependent on the kinds of substrates added to soils and climate variables such as soil temperature and moisture. One needs to be careful when comparing N turnover rates within soils and among different soils to be sure that the cause of differences is a soil quality parameter and not natural variability. Presence of pesticide residues, for example, may reduce N turnover rate. In such an instance, both the presence of the pesticide and the N turnover rate would be needed to determine that the soil quality had been impaired. Production incorporates use of and need for functioning soil resources in agriculture, and environmental buffering incorporates the direct and indirect effects of human use on ecosystem function and human health (Kádár, 1992; Várallyay, 1992, 1994, 2005; Németh, 1996; Malcolm, 2000; Márton, 2005; Márton et al. 2007). Worldwide agriculture is the most extensive human land use, and soil characteristics are a critical determinant of agricultural productivity. Agriculture includes irrigated and rainfed cultivated cropland, permanent crops such as orchards and vineyards, irrigated pasture, range, and forestry. Each cropping system has distinct soil and soil management conditions for optimal production. It has been suggested that soil productivity is the net resultant of soil degradation processes and soil conservation practices (Parr et al., 1990). An appropriate definition of soil quality and the criteria necessary to evaluate and monitor soil quality is a step toward "the development of systematic criteria of sustainability". Issues to be considered when discussing soil quality for agriculture include: 1. How are productivity and sustainability related? 2. Is the cropping system in question cultivated or non-cultivated? 3. Is the cropping system in question an irrigated or dryland system? Sustainability of agricultural systems is critical to human welfare and is an a subject of research and debate (Letey, 1994). High productivity and sustainability must be converging goals if the growing human population is to be fed without destroying the resources necessary to produce food. Sustainability implies that a system is at a desirable steady state. Thermodynamically, soil is an open system through which matter and energy flow and a steady state is characterized by a minimum production of entropy (Andiscott, 1995). Ellert et al. (1997) review related literature on ways of assessing soil function on an ecosystem scale, commenting that the complexity and organization of living systems, which seem to defy the second law of thermodynamics (increasing disorder/entropy), may provide a means to broadly assess ecosystem function. The purpose of agriculture is to provide products for human sustenance and by definition is not sustainable unless the nutrients removed in the products are returned to the soil. Many of the arguments about the sustainability of agricultural systems relate to the form in which nutrients are most sustainably returned. No agricultural system will be sustainable in the long run without management that considers nutrient cycling and energy budgets. The more intense the agricultural system, the more energy and resources must be expended to maintain the system. The relative quality of a soil for agriculture can depend on the resources available to farmers. In the United States, resources may be readily available for management of dynamic soil properties such as nutrient or water status. In other countries, farmers may be resource poor, and agricultural systems are generally low input, meaning that large-scale irrigation is absent, use of fertilizers, pesticides, and herbicides is minimal, and high energy, mechanized equipment is not available (Eswaran et a1.,1997). This means, for example, that soil quality for agriculture will be more dependent on climate than if the same soils were part of a highly managed, irrigated system. Similarly, sustainability is more dependent on maintenance of dynamic soil properties because resources may not exist to remedy losses (Várallyay, 2005; Malcolm, 2000; Márton et al. 2007). It is difficult to overstate the importance of irrigation to food production. One-third of the total global harvest of food comes from the 17% (250 million ha) of the world's cropland that is irrigated (Hoffman et al., 1990); three-quarters of which are in developing countries (Tribe, 1994). India, China, the former Soviet Union, the United States and Pakistan have the greatest area of irrigated land. Should soil quality criteria be the same for irrigated and dryland agriculture? Sojka (1996) suggests that the arid and semi-arid soils that support most irrigated agriculture have thin erodible surfaces, characteristics that would classify such soils as having poor quality. Yet under irrigation, they feed much of the world. Without irrigation, for example, in many African soils, moisture stress becomes a significant factor limiting production, and the water-holding capacity of a soil becomes crucial (Eswaran et al., 1997). This suggests that a standard set of criteria based on potential productivity is not a sufficient definition of soil quality. Soils that are not cultivated are a much larger component of agriculture, broadly defined, than those that are cultivated. About 65% of the land in the United States is forest (284 million ha) or range land (312 million ha), with only about 284 million hacultivated (NRC,1994). Herrick and Whitford (1995) suggest that range land soils, which often serve multiple uses, present unique challenges and opportunities for assessing soil quality because spatial and temporal variability are higher than in cropped systems. On range lands and forest lands, food, fiber, timber production, biomass for fuel, wildlife, biodiversity, recreation, and water supply are all potential uses that may have diverse criteria for quality soils. Herrick and Whitford (1995) give the example of a thick O horizon that may be an indicator of good timber production but has no predictive value of soil quality for the rancher. The National Research Council (NRC, 1994) recommends that range land health be determined using three criteria: degree of soil stability and watershed function, integrity of nutrient cycles and energy flows, and presence of functioning recovery mechanisms. Soil erosion by wind and water and infiltration or capture of precipitation were selected as processes that could be used as indicators of soil stability and watershed function. Specific indicators or properties need to be related to these two broad processes. The amount of nutrients available, the speed with which nutrients cycle, and measures of the integrity of energy flow through the system were considered fundamental components of range land health. Finally, the capacity of range land ecosystems to react to change depends on recovery mechanisms that result in capture and cycling of nutrients, capture of energy, conservation of nutrients, energy and water, and resilience to change. Specific indicators include status of vegetation, age class and distribution (Kádár, 1992; Várallyay, 1992, 1994, 2005; Németh, 1996; Malcolm, 2000; Márton et al. 2007). The evaluation of land quality for forestry is a well-known practice. Indices range from quantitative through semi-quantitative to qualitative. Quantitative evaluations, such as site index, use regression equations to predict tree height at a predetermined tree age based on soil and climate data. Qualitative evaluations assign land to classes based on soil and climate properties. In soil science, the term "buffer" refers collectively to processes that constrain shifts in the dissolved concentration of any ion when it is added to or removed from the soil system (Singer and Munns, 1996). Soils "buffer" nutrients as well as contaminants and other solutes, via sorption to or incorporation into clay and organic materials. The extent to which a soil immobilizes or chemically alters substances that are toxic, thus effectively detoxifying them, reflects "quality" in the sense that humans or other biological components of the system are protected from harm. This is the basis for the European concept of soil quality (Moen, 1988; Siegrist, 1989; Denneman and Robberse, 1990). Lack of soil function in this category is reflected as direct toxicity or as contamination of air or water. Identifying substances that qualify as "contaminants" can be challenging because some, such as nitrates and phosphates, are important plant nutrients as well as potential water pollutants. An example is agricultural runoff containing N03 or soluble P (Yli-Halla et al., 1995). This chapter does not attempt a comprehensive review of research in this area, which is covered in an earlier chapter, but instead presents a few sample articles pertinent to this aspect of soil quality. Holden and Firestone (1997) define soil quality in this context as "the degree to which the physical, chemical, and biological characteristics of the soil serve to attenuate environmental pollution." Howard (1993) defines the ecological risk of a chemical in the environment as "the probability that a random species in a large community is exposed to a concentration of the chemical greater than its no-effect level." The extent to which a soil is capable of reducing the probability of exposure is a measure of its quality. A well-studied example of a common soil contaminant is Pb (McBride et al., 1997). Although legislated limits may be on a concentration basis in soil (e.g., 500 ftg kg-'), risk assessment techniques have attempted to account for the chemical form of Pb present, as well as the observed relative relationship between the amount of Pb present in soil and blood levels in local residents (Bowers and Gauthier, 1994). Critics have questioned analytical techniques used to determine bioavailable levels of Pb in soil, as well as the degree to which toxicity data account for its chemical fate and ecologically damaging properties (Cook and Hendershot, 1996). Natural variability of soils and variation within a soil series make average values or average background values inadequate for soil quality assessments. In addition, bioaccumulation and toxicity need to be considered when establishing levels of toxicants that may not be exceeded in a "high quality" soil for a given use (Traas et al. 1996). Another example is the effect of heavy metals such as Cr(VI) on soil biological properties. Based on a study of three New Zealand soils of contrasting texture, organic matter content, and CEC, Speir et al. (1995) propose an "ecological dose value" that represents the inhibitory effects of a heavy metal (in this case, Cr(VI)) on the kinetics of soil biological properties, and serves as a generic index for determination of permissible concentration levels for heavy metals in soils. A single soil characteristic is of limited use in evaluating differences in soil quality (Reganold and Palmer, 1995). Using more than one quantitative variable requires some system for combining the measurements into a useful index (Halvorson et al., 1996). The region, crop, or general soil use for which an index was created will likely limit its effectiveness outside the scope of its intended application. Even an index designed only to rate productivity is not likely to be useful for all crops and soils, leading Gersmehl and Brown (1990) to advocate regionally targeted systems. Rice is a good example of a crop requiring significantly different soil properties than other crops. It is a food staple for a large proportion of the world population. Approximately 146 million ha were in rice production in 1989 (FAO, 1989) mainly (90%) in Asia. High quality soils for paddy rice may be poor quality for most other irrigated and dryland crops because they may be saline or sodic, and high in clay with slow infiltration and permeability. These physical and chemical properties often constrain production of other crops. Although they are not reviewed here, various land suitability classifications specifically for rice have been developed since the turn of the century (Dent, 1978). Examples of several soil quality indexing systems are presented in the following sections. To some extent, recent attempts to enumerate the factors of soil quality resemble Jenny's (1941) introduction of the interrelated factors of soil formation. An index is categorized here as nonquantitative if it does not combine evaluated parameters into a numerical index that rates soils along a continuous scale. Examples are the USDA Land Capability Classification and the US Bureau of Reclamation (USBR) Irrigation Suitability. The purpose of the Land Capability Classification (LCC) was to place arable soils into groups based on their ability to sustain common cultivated crops that do not require specialized site conditioning or treatment (Klingebiel and Montgomery, 1973). Nonarable soils, unsuitable for long-term, sustained cultivation, are grouped according to their ability to support permanent vegetation, and according to the risk of soil damage if mismanaged. The LCC combines three rating values at different levels of abstraction: capability class, subclass, and unit. At the most general level, soils are placed in eight classes according to whether they (a) are capable of producing adapted plants under good management (classes I to N), (b) are capable of producing specialized crops under highly intensive management involving "elaborate practices for soil and water conservation" (classes V to VII), or (c) do not return on-site benefits as a result of management inputs for crops, grasses or trees without major reclamation (Klingebiel and Montgomery, 1973). The four possible limitations/hazards under the subclass rating are erosion hazard, wetness, rooting zone limitations and climate. The capability unit groups soils that have about the same responses to systems of management and have longtime estimated yields that do not vary by more than 25% under comparable management. The issue of critical limits is a difficult one in soils because of the range of potential uses and the interactions among variables (Arshad and Ccen, 1992). Several studies have shown that lands of higher LCC have higher productivity than lands of lower LCC (Patterson and Mackintosh, 1976; van Vliet et al., 1979; Reganold and Singer, 1984). In a study of 744 alfalfa, corn, cotton, sugar beet and wheat growing fields in the San Joaquin Valley of California, those with LCC ratings between 1 and 3 had significantly lower input/output ratios than fields with ratings between 3.01 and 6 (Reganold and Singer, 1984). This suggests that use of the LCC system provides an economically meaningful assessment of soil quality for agriculture. This was a frequently used system of land evaluation for irrigation in the Western US during the period of rapid expansion of water delivery systems (McRae and Burnham, 1981). It combines social and economic evaluations of the land with soil and other ecological variables to determine if the land has the productive capacity, once irrigated, to repay the investment necessary to bring water to an area. It recognizes the unique importance of irrigation to agriculture and the special qualities of soils that make them irrigable. Quantitative systems result in a numerical index, typically with the highest number being assigned to the best quality soils. Systems may be additive, multiplicative or more complex functions. They have two important advantages over nonquantitative systems: 1. they are easier to use with GIS and other automated data retrieval and display systems, and 2. they typically provide a continuous scale of assessment. No single national system is presently in use but several state or regional systems exist. Although he considered the productivity of the land to be dependent on 32 soil, climate and vegetative properties [Surface conditions: Physiographic position, Slope, Microrelief, Erosion deposition, External drainage, runoff. Soil physical conditions: Soil color, Soil depth, Soil density and porosity, Soil permeability, Soil texture, Stoniness, Soil structure, Soil workability-consistence, Internal drainage, Water-holding capacity, Plant-available water. Soil chemical conditions: Organic matter, Nitrogen, Reaction, Calcium carbonate, bases, Exchange capacity, Salts: Cl, SO Na, Toxicities, e.g., B, Available P, Available K, Minor elements, e.g., Zn, Fe, Fertility. Mineralogical conditions: Mineralogy. Climate: Precipitation Temperature Growing season Winds. Vegetativé cover: Natural vegetation], only nine properties were used in the SIR, because incorporating a greater number of factors made the system unwieldy. The nine factors are soil morphology (A), surface texture (B), slope (C), and six variables (X.) that rate drainage class, sodicity, acidity, erosion, microrelief and fertility; rated from 1% to 100%. These are converted to their decimal value and multiplied together (Storie, 1964). Values for each factor were derived from Storie's experience mapping and evaluating soils in California, and in soil productivity studies in cooperation with the California Agricultural Experiment Station cost-efficiency projects relating to orchard crops, grapes and cotton. In describing the SIR (SIR= [AxBxCxIIXi]x100), Storie (1932, 1964) explicitly mentioned "soil quality". Soils that were deep, had no restricting subsoil horizons, and held water well had the greatest potential for the widest range of crops. The usefulness of the SIR as a soil quality index would be greatest if there was a statistically significant relationship between SIR values and an economic indicator of land value. Reganold and Singer (1984) found that area-weighted average SIR values between 60 and 100 for 744 fields in the San Joaquin Valley of California had lower but statistically insignificant input/output ratios than fields with indices < 60. The lack of statistical significance does not mean that better quality lands could not be farmed at economically lower cost or at higher cost and higher output than the lower quality lands. We productivity index model (PI) was developed to evaluate soil productivity in the top 100 cm, especially with reference to potential productivity loss due to soil erosion (Neill, 1979; Kiniry et al., 1983). The PI model rates soils on the sufficiency for root growth based on potential available water storage capacity, bulk density, aeration, pH, and electrical conductivity. A value from zero to one is assigned to each property describing the importance of that parameter for root development. The product of these five index values is used to describe the fractional sufficiency of any soil layer for root development. Pierce et al. (1983) modified the PI to include the assumption that nutrients were not limiting and that climate, management and plant differences are constant. A number of authors found that it is useful to various degrees (Gantzer and McCarty, 1987; Lindstrom et al., 1992). Parr et al. (1992) suggest that a SQI could take the form of Equation: SQI = f (SP, P, E, H, ER, BD, FQ, MI) where SQI is a function of soil properties (SP), potential productivity (P), environmental factors (E), human and animal health (H), erodibility (ER), biological diversity (BD), food quality and safety (FQ) and management inputs (MI). Determination of the specific measurable indicators of each variable and the interactions among these diverse variables is a daunting task. Moreover, the mathematical method of combining these factors, as well as the resulting value that would indicate a high quality soil, is not specified. The inclusion of variables BD, FQ and MI make this a land quality index as suggested by FAO (1997). Larson and Pierce (1991) defined soil quality (Q) as the state of existence of soil relative to a standard or in terms of a degree of excellence. They argue that defining Q in terms of productivity is too limiting and does not serve us well. Rather, Q is defined as the sum of individual soil qualities q. and expressed as Equation: Q=f(qi ...qn). These authors do not identify the best subset of properties or their functional and quantitative relationship, but do suggest that a MDS should be selected from those soil characteristics in which changes are measurable and relatively rapid (i.e., "dynamic" properties), arguing that it is more important to know about changes in soil quality (dQ) than the magnitude of Q (Larson and Pierce, 1991). Changes in soil quality are a function of changes in soil characteristics (q) over time (t): dQ = f[(qi.t - qit0 )... (qn.t-qnt0)]. If dQ/dt is ≥0, the soil or ecosystem is improving relative to the standard at time to. If dQ/dt <0, soil degradation is occurring. Time zero can be selected to meet management needs or goals. If there is a drastic change in management, time zero can be defined as prior to the change. If a longer time period of comparison is considered more appropriate, properties of an uncultivated or pristine soil could be used. The MDS recommended by Larson and Pierce (1991) includes N mineralization potential or P buffering capacity, total organic C, labile organic C, texture, plant-available water capacity, structure (bulk density is recommended as a surrogate variable), strength, maximum rooting depth, pH and EC. In instances when data are unavailable, pedotransfer functions (Bouma, 1989) can be used to estimate values of soil characteristics. These estimates can then be used as part of the minimum dataset to estimate soil quality or changes in soil quality brought about by management. Although this is a quantitative system, some qualitative judgments are needed to make decisions about changes in soil quality. In particular, interpretation of the meaning of magnitude of changes in a characteristic or the number of characteristics to change from time zero to the time of the measurement is qualitative. The authors do not address how large a change in pH, soil depth, bulk density or organic C represents serious soil degradation, or the values that define soil as high or low quality. Karlen et al. (1994) developed QI based on a 10-year crop residue management study. QI is based on four soil functions: (1) accommodating water entry, (2) retaining and supplying water to plants, (3) resisting degradation, and (4) supporting plant growth. Numerous properties were measured and values normalized based on standard scoring functions. One function is based on the concept that more of a property is better, one that less is better and the third that an optimum is better. Lower threshold values receive a score of zero, upper threshold values receive a score of one, and baseline values receive a score of one-half. Priorities are then assigned to each value. For example, aggregate stability was given the highest weight among factors important in water entry. After normalizing, each value is then multiplied by its weighting factor (wt) and products are summed Equation: QI=qwe (wt) + qwt (wt)+qrd (wt) + qspg (wt). Subscripts refer to the four main functions described earlier. It should also be noted that resisting degradation (rd) and sustaining plant growth (spg) are assigned secondary and tertiary levels of properties that themselves are normalized and weighted before a final value is calculated and incorporated into Equation. The resulting index resulted in values between zero and one. Of the three systems in the study, the one with the highest rate of organic matter return to the soil had the highest index value, and the soil with the lowest had the lowest value. The authors suggest that this demonstrates the usefulness of the index for monitoring the status and change in status of a soil as a function of management. They also suggest that the index and the soil characteristics that go into the index may change as the index is refined (Karlen et al. 1994). Snakin et al. (1996) developed an index of soil degradation that assigns three separate values from one to five reflecting the degree to which a soil's physical, chemical, and biological properties are degraded, as well as the rate of degradation. The Canadian soil capability classification system is similar to the older US systems and is quantitative. In a study in southwestern Ontario, Patterson and Mackintosh (1976) found that high gross returns per ha were three times as likely if the productivity index of land, based on the soil capability classification, was between 90 and 100 than if it fell between 80 and 89. Smith et al. (1993) and Halvorson et al. (1996) propose a multiple-variable indicator transform procedure to combine values or ranges of values that represent the best estimate of soil quality. Their system converts measured data values into a single value according to specified criteria. They do not attempt to define soil quality or specify what soil characteristics are to be used. They combine this procedure with kriging to develop maps that indicate the probabilities of meeting a soil quality criterion on a landscape level. Critical threshold values must be known, assumed, or determined in order to separate different soil qualities. Numerous additive productivity rating systems have been developed for specific states, as reviewed by Huddleston (1984). In these systems, soil properties are assigned numerical values according to their expected impact on plant growth. The index is usually calculated as the sum of the values assigned to each property with 100 the maximum value. Huddleston (1984) notes advantages and disadvantages to such a system which are similar to those for many of the soil quality indices previously discussed. Additive systems become complex as the number of factors, cropping systems, and soil and climatic conditions increases. A unique problem of subtractive systems (one in which 100 is the starting point and values are deducted for problem conditions) is that negative values result when multiple factors are less than satisfactory. Soil quality is a concept being developed to characterize the usefulness and health of soils, because soils are fundamental to the well-being and productivity of agricultural and natural ecosystems. It is a compound characteristic that cannot be directly measured. Many definitions of soil quality can be found in the literature and no set of soil characteristics has been universally adopted to quantify definitions. Soil quality is often equated with agricultural productivity and sustainability. An approach toward developing soil quality definitions is one that assesses soil quality in the context of a soil's potential to perform given functions in a system; e.g., maintains productivity, partitions and regulates water and solute flow through an ecosystem, serves as an environmental buffer, and cycles nutrients, water, and energy through the biosphere. Air and water quality standards are usually based on maximum allowable concentrations of materials hazardous to human health. A definition of soil quality based on this concept would encompass only a fraction of the important roles soils play in agriculture and the environment but could be essential to soil remediation. To proceed from a definition to a measure of soil quality, a minimum dataset of soil characteristics that represent soil quality must be selected and quantified. Many soil physical, chemical and biological properties have been suggested to separate soils of different quality. These include desirable and undesirable properties. Desirable soil characteristics may either be the presence of a property that benefits crop productivity and environmental buffering and/or other important soil functions, or the absence of a property that is detrimental to these functions. In particular, absence of contaminants is an important soil quality characteristic. In selecting characteristics, it is necessary to recognize that some soil properties are static, in the sense that they change slowly over time and others are dynamic. In addition, spatial and temporal variability of soil properties must be considered when selecting the properties used to assess soil quality. A single soil property is of limited use in evaluating soil quality. Qualitative and quantitative soil quality indices have been suggested that combine quantitative values of soil properties. Quantitative systems may be additive, multiplicative or more complex functions. Regardless of the definition or suite of soil variables chosen to define and quantify soil quality, it is critical to human welfare that soils be managed to provide for human health and well-being while minimizing soil and environmental degradation. References Anderson, D.W., E.G. Gregorich. 1984. Effect of soil erosion on soil quality and productivity. p. 105-113. In Soil erosion and degradation. Proc. 2nd Ann. Western Prov. Conf. Rational. Water Soil Res. Manag. Sask., Saskatoon, Canada. Andiscott, T.M. 1995. Entropy and sustainability. Europ. J. Soil Sci. 46:161-168. Arnold, R.W., I. Zaboles., V.C. Targulian (ed.). 1990. Global soil change. Report of an IIASA-ISSS-UNEP task force on the role of soil in global change. International Institute for Applied Systems Analysis, Laxanberg, Austria. Arshad, M-A., G.M. Coen. 1992. Characterization of soil quality: Physical and chemical criteria. Am. J. Altern. Agr. 725-3 I . Beck, A.J., S.C. Wilson., R.E. Alcock., K.C. Jones. 1995. Kinetic constraints on the loss of organic chemicals from contaminated soils: Implications for soil-quality limits. Critical Rev. Environ. Sci. Technol. 25:1-43. Beke, G.J., H.H. Janzen., T. Entz. 1994. Salinity and nutrient distribution in soil profiles of long-term crop rota-tions. Can. J. Soil Sci. 74:229-234. Berry, E.C. 1994. Earthworms and other fauna in the soil, p. 61-90. In J.L. Hatfield and B A. Stewart (ed.) Soil biology: effects on soil quality. Lewis Publishers, Boca Raton, FL. Biederbeck, V.O., C.A. Campbell., H.U. Krainetz., D. Curtain., O.T Bouman. 1996. Soil microbial and biochemical properties after ten years of fertilization with urea and anhydrous ammonia. Can. J. Soil Sci. 76:7-14. Boehn, M.M., D.W. Anderson. 1997. A landscape-scale study of soil quality in three prairie farming systems. Soil Sci. Soc. Am. J. 61:1147-1159. Bouma, J. 1989. Land qualities in space and time. p. 3-13. In J. Bouma and A.K. Bregt (ed.) Land qualities in space and time. Pudoc, Wageningen, Netherlands. Bouma, J., A.K. Bregt (ed.). 1989. Land qualities in space and time. Pudoc, Wageningen, Netherlands. Bowers, T.S., T.D. Gauhier. 1994. Use of the output of a lead risk assessment model to establish soil lead cleanup levels. Environ. Geochem. Health 16:191-196. Bowman, R.A., J.D. Reeder., G.E. Schuman. 1990. Evaluation of selected soil physical, chemical and biological parameters as indicators of soil productivity. Proc. Int. Conf. on Soil Quality in Semi-arid Ag. 2:64-70. Univ. of Saskatchewan, Saskatoon, Canada. Budd, W.W. 1992. What capacity the land? J. Soil Water Conserv. 47:28-31. Carter, MR., E.G. Gregorich., D.W Anderson., J.W. Doran., H.H. Janzen., F.J. Pierce. 1997. Concepts of soil quality and their significance: /n E.G. Gregorich and M. Carter (ed.) Soil quality for crop production and ecosys-tem health. Elsevier Science Publishers, Amsterdam, Netherlands. Cook, N., W.H. Hendershot. 1996. The problem of establishing ecologically based soil quality criteria: The case of lead. Can J. Soil Sci. 76:335-342. Cox, C. 1995. Soil quality: Goals for national policy. J. Soil Water Conserv. 50:223. Denneman, C.A.J., J.G. Robberse. 1990. Ecotoxicological risk assessment as a base for development of soil quality criteria. p. 157-164. In F Arendt, M. Hinsenveld and W.J. van den Brink (ed.) Contaminated soil '90. Proc. Intl. KfK/I'NO Conf. on Contaminated Soil, Karlsruhe, Germany, Kluwer Academic Publishers, Dordrecht, Neth-erlands. Dent, F.J. 1978. Land suitability classification. p. 273-293. In Soils and rice. International Ri
Huang, Xinqi; Liu, Liangliang; Wen, Teng; Zhang, Jinbo; Wang, Fenghe; Cai, Zucong
2016-06-01
Reductive soil disinfestation (RSD) has been proven to be an effective and environmentally friendly way to control many soilborne pathogens and diseases. In this study, the RSDs using ethanol (Et-RSD) and alfalfa (Al-RSD) as organic carbons were performed in a Rhizoctonia solani-infected soil, and the dissimilarities of microbial communities during the RSDs and after planting two seasons of cucumber seedlings in the RSDs-treated soil were respectively investigated by MiSeq pyrosequencing. The results showed that, as for bacteria, Coprococcus, Flavisolibacter, Rhodanobacter, Symbiobacterium, and UC-Ruminococcaceae became the dominant bacterial genera at the end of Al-RSD. In contrast, Et-RSD soil involved more bacteria belonging to Firmicutes, such as Sedimentibacter, UC-Gracilibacteraceae, and Desulfosporosinus. For fungi, Chaetomium significantly increased at the end of RSDs, while Rhizoctonia and Aspergillus significantly decreased. After planting two seasons of cucumber seedlings, those bacteria belonging to Firmicutes significantly decreased, but Lysobacter and Rhodanobacter belonging to the phylum Proteobacteria as well as UC-Sordariales and Humicola belonging to Ascomycota alternatively increased in Al- and Et-RSD-treated soils. Besides, some nitrification, denitrification, and nitrogen fixation genes were apparently increased in the RSD-treated soils, but the effect was more profound in Al-RSD than Et-RSD. Overall, Et-RSD could induced more antagonists belonging to Firmicutes under anaerobic condition, whereas Al-RSD could continuously stimulate some functional microorganisms (Lysobacter and Rhodanobacter) and further improve nitrogen transformation activities in the soil at the coming cropping season.
Vandenhove, H; Van Hees, M; Wouters, K; Wannijn, J
2007-01-01
Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for (238)U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K(d), L kg(-1)) and the organic matter content (R(2)=0.70) and amorphous Fe content (R(2)=0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH=6, log(K(d)) was linearly related with pH [log(K(d))=-1.18 pH+10.8, R(2)=0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex.
King, Stagg; Harden, Jennifer; Manies, Kristen L.; Munster, Jennie; White, L. Douglas
2002-01-01
Soils in Alaska, and in high latitude terrestrial ecosystems in general, contain significant amounts of organic carbon, most of which is believed to have accumulated since the start of the Holocene about 10 ky before present. High latitude soils are estimated to contain 30-40% of terrestrial soil carbon (Melillo et al., 1995; McGuire and Hobbie, 1997), or ~ 300-400 Gt C (Gt = 1015 g), which equals about half of the current atmospheric burden of carbon. Boreal forests in particular are estimated to have more soil carbon than any other terrestrial biome (Post et al., 1982; Chapin and Matthews, 1993). The relations among net primary production, soil carbon storage, recurrent fire disturbance, nutrients, the hydrologic cycle, permafrost and geomorphology are poorly understood in boreal forest. Fire disturbance has been suggested to play a key role in the interactions among the complex biogeochemical processes influencing carbon storage in boreal forest soils (Harden et al., 2000; Zhuang et al., 2002). There has been an observed increase in fire disturbance in North American boreal black spruce (Picea mariana) forests in recent decades (Murphy et al., 1999; Kasichke et al., 2000), concurrent with increases in Alaskan boreal and arctic surface temperatures and warming of permafrost (Osterkamp and Romanofsky, 1999). Understanding the role of fire in long term carbon storage and how recent changes in fire frequency and severity may influence future high latitude soil carbon pools is necessary for those working to understand or mitigate the effects of global climate change.
Microwave Dielectric Constant Dependence on Soil Tension.
1983-10-01
water to be only a single monolayer thick .1 (OA) with Ice-like dielectric properties EWS = (3.15, JO). The first approach apportions the soil solution Into...mixing model that accounts explicitly for the presence of a hydrationU layer of bound water adjacent to hydrophilic soil particle surfaces. The soil ... solution is differentiated Into (1) a bound, ice-like component and (2) a bulk solution component, by a physical soil model dependent upon either soil
Schön, Walter; Mittermayr, Florian; Leis, Albrecht; Mischak, Irene; Dietzel, Martin
2016-12-01
The chemical and isotopic composition of soil solutions is highly relevant for environmental and forensic tasks. We investigated interstitial solutions from soil horizons of three cambisols in Styria (Austria). The soils consisted mainly of quartz, feldspar and clay minerals with a vertical variability. Two soil solution fractions from meso-, macro- and micropores (m) and micropores only (μ) were extracted at two subsequent hydraulic pressure steps corresponding to matrix potentials of up to pF 5.43 and from 5.43 to 5.73, respectively. While solute concentrations indicated diverse distribution in soil solution fractions m and μ, heavy stable hydrogen and oxygen isotopes of H 2 O (-92.5‰<δ 2 H<-34.4‰; -11.9‰<δ 18 O<-4.0‰, VSMOW) are clearly enriched in the μ versus m fractions. Principal component analysis on the hydrochemical data set indicates that the intensity of the overall silicate weathering is higher in autumn versus spring, whereas the anthropogenic impact on weathering behaves inversely. The anthropogenic impact is related to seasonal variability of nitrification of N-fertilizers. In consequence of evaluated signals for overall silicate weathering about three-fourths of the soil solutions sampled in autumn indicated elevated total dissolved solid concentration vs. those in spring accompanied with washing out solutes from the soil cover following precipitation events in autumn before sampling. Isotopic shift of soil solutions from the local meteoric water line in spring obviously followed an evaporation trend because of less precipitation and high evaporation before sampling. Experimentally simulated evaporation of soil samples confirmed the observed isotopic evaporation trend. Wetting experiments indicated the infiltration of water within minutes into the micropores of the soils. Exchange of water molecules between micro-, meso- and macropores is an almost instantaneous process and soil solutions in micropores are not as isolated from the soil water system as it was formerly suggested, e.g. for plant uptake. Highly dynamic and complex mechanisms in the gas-water-solid system of soils have to be considered for the application of elemental and isotope proxies related to environmental, forensic and agricultural tasks. Copyright © 2016 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
A number of recent soil biota studies have deviated from the standard experimental approach of generating a distinct data value for each experimental unit (e.g. Yang et al., 2013; Gundale et al., 2014). Instead, these studies have mixed together soils from multiple experimental units (i.e. sites wi...
Mineral materials as feasible amendments to stabilize heavy metals in polluted urban soils.
Zhang, Mingkui; Pu, Jincheng
2011-01-01
Four minerals, agricultural limestone (AL), rock phosphate (RP), palygorskite (PG), and calcium magnesium phosphate (CMP), were evaluated by means of chemical fractions of heavy metals in soils and concentrations of heavy metals in leachates from columns to determine their ability to stabilize heavy metals in polluted urban soils. Two urban soils (calcareous soil and acidic soil) polluted with cadmium, copper, zinc and lead were selected and amended in the laboratory with the mineral materials) for 12 months. Results indicated that application of the mineral materials reduced exchangeable metals in the sequence of Pb, Cd > Cu > Zn. The reduction of exchangeable fraction of heavy metals in the soils amended with different mineral materials followed the sequence of CMP, PG > AL > RP. Reductions of heavy metals leached were based on comparison with cumulative totals of heavy metals eluted through 12 pore volumes from an untreated soil. The reductions of the metals eluted from the calcareous soil amended with the RP, AL, PG and CMP were 1.98%, 38.89%, 64.81% and 75.93% for Cd, 8.51%, 40.42%, 60.64% and 55.32% for Cu, 1.76%, 52.94%, 70.00% and 74.12% for Pb, and 28.42%, 52.74%, 64.38% and 49.66% for Zn. Those from the acidic soil amended with the CMP, PG, AL, and RP were 25.65%, 68.06%, 78.01% and 79.06% for Cd, 26.56%, 49.64%, 43.40% and 34.68% for Cu, 44.44%, 33.32%, 61.11% and 69.44% for Pb, and 18.46%, 43.77%, 41.98% and 40.68% for Zn. The CMP and PG treatments were superior to the AL and RP for stabilizing heavy metals in the polluted urban soils.
NASA Astrophysics Data System (ADS)
Charteris, Alice; Michaelides, Katerina; Evershed, Richard
2015-04-01
Organic N concentrations far exceed those of inorganic N in most soils and despite much investigation, the composition and cycling of this complex pool of SOM remains poorly understood. A particular problem has been separating more recalcitrant soil organic N from that actively cycling through the soil system; an important consideration in N cycling studies and for the soil's nutrient supplying capacity. The use of 15N-labelled substrates as stable isotope tracers has contributed much to our understanding of the soil system, but the complexity and heterogeneity of soil organic N prevents thorough compound-specific 15N analyses of organic N compounds and makes it difficult to examine any 15N-labelled organic products in any detail. As a result, a significant proportion of previous work has either simply assumed that since the majority of soil N is organic, all of the 15N retained in the soil is organic N (e.g. Sebilo et al., 2013) or subtracted 15N-labelled inorganic compounds from bulk values (e.g. Pilbeam et al., 1997). While the latter approach is more accurate, these methods only provide an estimate of the bulk 15N value of an extremely complex and non-uniformly labelled organic pool. A more detailed approach has been to use microbial biomass extraction (Brookes et al., 1985) and subsequent N isotopic analysis to determine the 15N value of biomass-N, representing the fraction of 15N assimilated by microbes or the 15N cycling through the 'living' or 'active' portion of soil organic N. However, this extraction method can only generate estimates and some lack of confidence in its validity and reliability remains. Here, we present an alternative technique to obtain a measure of the assimilation of an applied 15N substrate by the soil microbial biomass and an estimate of the newly synthesized soil protein, which is representative of the magnitude of the active soil microbial biomass. The technique uses a stable isotope tracer and compound-specific 15N analysis, but unlike previous works analyses for amino acids (representing organic products) rather than ammonium (NH4+) and nitrate (NO3-). Amino acids are commonly referred to as 'the building blocks of life' as they form the proteins which regulate life's essential biochemical reactions. Proteinaceous matter generally comprises 20-40% of total soil N and is ubiquitous in living organisms, so is a likely 'organic product' of microbial activity/assimilation. Hence, we consider it likely that amino acids represent the major organic nitrogenous products and a reasonable 'proxy' for/measure of the assimilation of an applied 15N substrate by the soil microbial biomass and an estimate of the newly synthesized soil protein. Brookes, P. C. et al. Soil Biol Biochem. 1985, 17, 837-842. Jenkinson, D. S. et al. Soil Biol Biochem. 2004, 36, 5-7. Nannipieri, P. et al. Plant Soil. 1999, 208, 43-56. Pilbeam, C. J. et al. J Agr Sci. 1997, 128, 415-424. Sebilo, M. et al. PNAS. 2013, 110, 18185-18189.
Phosphorus exchangeability and leaching losses from two grassland soils.
Sinaj, S; Stamm, C; Toor, G S; Condron, L M; Hendry, T; Di, H J; Cameron, K C; Frossard, E
2002-01-01
Although phosphate phosphorus (P) is strongly sorbed in many soils, it may be quickly transported through the soil by preferential flow. Under flood irrigation, preferential flow is especially pronounced and associated solute losses may be important. Phosphorus losses induced by flood irrigation were investigated in a lysimeter study. Detailed soil chemical analyses revealed that P was very mobile in the topsoil, but the higher P-fixing capacity of the subsoil appeared to restrict P mobility. Application of a dye tracer enabled preferential flow pathways to be identified. Soil sampling according to dye staining patterns revealed that exchangeable P was significantly greater in preferential flow areas as compared with the unstained soil matrix. This could be partly attributed to the accumulation of organic carbon and P, together with enhanced leaching of Al- and Fe-oxides in the preferential flow areas, which resulted in reduced P sorption. The irrigation water caused a rapid hydrologic response by displacement of resident water from the subsoil. Despite the occurrence of preferential flow, most of the outflowing water was resident soil water and very low in P. In these soils the occurrence of preferential flow per se is not sufficient to cause large P losses even if the topsoil is rich in P. It appears that the P was retained in lower parts of the soil profile characterized by a very high P-fixing capacity. This study demonstrates the risks associated with assessing potential P losses on the basis of P mobility in the topsoil alone.
Genesis of Cr(VI) in Sri Lankan soils and its adsorptive removal by calcined gibbsite
NASA Astrophysics Data System (ADS)
Rajapaksha, A. U.; Wijesundara, D. M.; Vithanage, M. S.; Ok, Y. S.
2012-12-01
Hexavalent chromium is highly toxic to biota and considered as a priority pollutant. Industrial sources of Cr(VI) include leather tanning, plating, electroplating, anodizing baths, rinse waters, etc. In addition, weathering of ultramafic rocks rich in chromium, such as serpentine, is known to Cr(VI) sources into natural water. The Cr(III) is the most stable in the environment, however, conversion of Cr(III) into Cr(VI) occurs in soil due to presence of naturally occurring minerals such as manganese dioxides. We investigated the amount of Cr(VI) recorded from the soils from anthropogenically and naturally contaminated soils (serpentine soils) in Sri Lanka and the removal efficacy of Cr(VI) by calcined gibbsite (Al oxides). The effect of pH on Cr(VI) adsorption was determined by adjusting the pH in the range of 4-10. In the experiments, the adsorbent concentration was kept at 1 g/l of solution containing 10 mg/l Cr(VI) at 25 0C. Total chromium recorded were around 11,000 mg kg-1 and 6,000 mg kg-1 for serpentine soil and tannery waste-contaminated soil, respectively. Although total Cr was high in the contaminated soils, Cr(VI) concentration was only about 28 mg kg-1 and 210 mg kg-1 in the serpentine and tannery soils, respectively. The calcined gibbsite has maximum adsorption of 85 % around pH 4 and adsorption generally decreased with increase of pH.
Demonstration of MPV Sensor at Yuma Proving Ground, AZ
2011-06-01
test plot in Ashland, OR, where magnetic soils have shown to have a significant effect on EMI sensors ( Pasion et al., 2008). The recorded signal...sensors was also investigated during that survey as part of SERDP MM-1573 (PI: Len Pasion , Sky Research). The MPV offers possibilities to defeat...of magnetic soils (Lhomme et al., 2008; Pasion et al., 2008). The MPV response due to sensor motion and topography over magnetic soil is predicable
Time domain reflectometry measurements of solute transport across a soil layer boundary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nissen, H.H.; Moldrup, P.; Kachanoski, R.G.
2000-02-01
The mechanisms governing solute transport through layered soil are not fully understood. Solute transport at, above, and beyond the interface between two soil layers during quasi-steady-state soil water movement was investigated using time domain reflectometry (TDR). A 0.26-m sandy loam layer was packed on top of a 1.35-m fine sand layer in a soil column. Soil water content ({theta}) and bulk soil electrical conductivity (EC{sub b}) were measured by 50 horizontal and 2 vertical TDR probes. A new TDR calibration method that gives a detailed relationship between apparent relative dielectric permittivity (K{sub s}) and {theta} was applied. Two replicate solutemore » transport experiments were conducted adding a conservative tracer (CCl) to the surface as a short pulse. The convective lognormal transfer function model (CLT) was fitted to the TDR-measured time integral-normalized resident concentration breakthrough curves (BTCs). The BTCs and the average solute-transport velocities showed preferential flow occurred across the layer boundary. A nonlinear decrease in TDR-measured {theta} in the upper soil toward the soil layer boundary suggests the existence of a 0.10-m zone where water is confined towards fingered flow, creating lateral variations in the area-averaged water flux above the layer boundary. A comparison of the time integral-normalized flux concentration measured by vertical and horizontal TDR probes at the layer boundary also indicates a nonuniform solute transport. The solute dispersivity remained constant in the upper soil layer, but increased nonlinearly (and further down, linearly) with depth in the lower layer, implying convective-dispersive solute transport in the upper soil, a transition zone just below the boundary, and stochastic-convective solute transport in the remaining part of the lower soil.« less
Molecular breeding of cereals for aluminium resistance
USDA-ARS?s Scientific Manuscript database
Aluminium (Al3+) toxicity is the primary factor limiting crop production on acidic soils worldwide. In addition to an application of lime for soil amelioration, Al3+ resistant plant varieties have been deployed to raise productivity on such hostile soils. This has been possible due to the exploita...
Analytical Determination of KDOC-Values of Polycyclic Musk Compounds with HS-SPME and GC/MS/MS
NASA Astrophysics Data System (ADS)
Böhm, L.; Düring, R.-A.
2009-04-01
Polycyclic musk compounds, used as fragrances in cosmetics and detergents, get into rivers via domestic wastewater and sewage treatment plants and with sewage sludge as fertilizer into soils. Because of their persistence and lipophilic character they accumulate in biota, so they are pollutants with environmental relevance. The coefficient KDOC is used to quantify the distribution of substances between aqueous phase and dissolved organic matter (DOM) which is quantified by the determination of dissolved organic carbon (DOC). DOM is of specific relevance for the transport and fate of persistent and lipophilic compounds in the environment. The affinity to DOM increases, the more lipophilic a substance is. So the environmental mobility is enhanced with increasing binding on DOM. For that reason, measured KDOC-values are important to predict the fate and behaviour of chemicals in the environment and should be used for environmental fate modelling purposes. LITZ ET AL. (2007) state that, to carry out a risk-assessment for polycyclic musk compounds, further research on their sorption-behaviour is necessary. For the determination of KDOC-values, different concentrations of humic acid were spiked with a multi-component stock solution. The samples were analysed with headspace solid-phase microextraction in combination with gas chromatography coupled with mass spectrometry (HS-SPME GC/MS/MS). The KDOC-values were calculated according to YABUTA ET AL. (2004). The method was validated with single substance stock solutions and with polycyclic aromatic hydrocarbons (PAHs). The results show that the method is applicable, repeatable and suitable to get KDOC-values for many substances very fast, cheap and solvent-free. With our results KDOC-values for polycyclic musk compounds were determined for the first time. Literature LITZ, N. TH., MüLLER, J. AND BöHMER, W. (2007): Occurrence of Polycyclic Musks in Sewage Sludge and their Behaviour in Soils and Plants. Part 2: Investigation of Polycyclic Musks in Soils and Plants. J Soils Sediments 7: 36-44 YABUTA, H., FUKUSHIMA, M., TANAKA, F., ICHIKAWA, H. AND TATSUMI, K. (2004): Solid-phase Microextraction for the Evaluation of Partition Coefficients of a Chlorinated Dioxin and Hexachlorobenzene into Humic Substances. Anal. Sci. 20: 787-791
NASA Astrophysics Data System (ADS)
McIntosh, Jennifer C.; Schaumberg, Courtney; Perdrial, Julia; Harpold, Adrian; Vázquez-Ortega, Angélica; Rasmussen, Craig; Vinson, David; Zapata-Rios, Xavier; Brooks, Paul D.; Meixner, Thomas; Pelletier, Jon; Derry, Louis; Chorover, Jon
2017-05-01
This study investigates the influence of water, carbon, and energy fluxes on solute production and transport through the Jemez Critical Zone (CZ) and impacts on C-Q relationships over variable spatial and temporal scales. Chemical depletion-enrichment profiles of soils, combined with regolith thickness and groundwater data indicate the importance to stream hydrochemistry of incongruent dissolution of silicate minerals during deep bedrock weathering, which is primarily limited by water fluxes, in this highly fractured, young volcanic terrain. Under high flow conditions (e.g., spring snowmelt), wetting of soil and regolith surfaces and presence of organic acids promote mineral dissolution and provide a constant supply of base cations, Si, and DIC to soil water and groundwater. Mixing of waters from different hydrochemical reservoirs in the near stream environment during "wet" periods leads to the chemostatic behavior of DIC, base cations, and Si in stream flow. Metals transported by organic matter complexation (i.e., Ge, Al) and/or colloids (i.e., Al) during periods of soil saturation and lateral connectivity to the stream display a positive relationship with Q. Variable Si-Q relationships, under all but the highest flow conditions, can be explained by nonconservative transport and precipitation of clay minerals, which influences long versus short-term Si weathering fluxes. By combining measurements of the CZ obtained across different spatial and temporal scales, we were able to constrain weathering processes in different hydrological reservoirs that may be flushed to the stream during hydrologic events, thereby informing C-Q relationships.
Ash wettability conditions splash erosion in the postfire
NASA Astrophysics Data System (ADS)
Gordillo-Rivero, Ángel J.; de Celis, Reyes; García-Moreno, Jorge; Jiménez-Compán, Elizabeth; Alanís, Nancy; Cerdà, Artemi; Pereira, Paulo; Zavala, Lorena M.; Jordán, Antonio
2015-04-01
1. INTRODUCTION Soil sustainability and recovery after fire depend on physical, chemical and biological processes and fire severity (Neary et al., 1999; Mataix-Solera and Guerrero, 2007). Fire effects on soils are divided in two types: direct effects, as a consequence of combustion and temperature reached and indirect effects (Neary et al., 1999) as consequence of changes in other ecosystem components, such as decrease in vegetal coverage or ash and partially burned litter contribution including changes in flora (Pausas and Verdú, 2005; Trabaud, 2000). Low intensity fires, during which high temperatures are not reached, affect vegetal coverage but will not cause major impacts on soil. In contrast, prolonged, recurrent, or high-intensity fires may cause important impacts on the soil system functioning (De Celis et al., 2013; DeBano, 1991; Mataix-Solera et al., 2009; Zavala et al., 2014), aggregation (Mataix-Solera et al., 2011), organic matter content and quality (Sevink et al., 1989), water repellency (DeBano, 2000; Doerr et al., 2000), soil nutrients (Stark, 1977), soil erosion (Larsen et al., 2009) and others. In these cases, the restoration period of the initial conditions can be very long and changes may become permanent (DeBano, 1991). During combustion, fuel (biomass, necromass and soil organic matter) is transformed in materials with new physical and chemical properties. After burn, the soil surface is covered by a layer of ash and charred organic residues. Ash has important ecological, hydrological and geomorphological effects, even after being rearranged or mobilized by runoff or wind (Bodí et al., 2014). Ash properties will depend on the burned species, the amount of affected biomass, fuel flammability and structure, temperature and the residence time of thermal peaks (Pereira et al., 2009). Some studies have emphasized the role of ash on soil protection during the after fire period, in which the vegetable coverage could be drastically decreased (Cerdà and Doerr, 2008; Woods and Balfour, 2008; Zavala et al., 2009). The presence of an ash layer may be ephemeral, as it often is quickly removed or redistributed by water and wind erosion, animals or traffic (Zavala et al., 2009a). Many authors have observed that the capacity of ash to protect soil depends on properties as the topography, the meteorological conditions and the thickness of ash coverage (Cerdà and Doerr, 2008; Pereira et al., 2013; Woods and Balfour, 2010; Zavala et al., 2009). Taking this into account, in this study we hypothesized that the wettability / hydrophobicity of the ash layer may have a significant effect on the soil response to splash erosion. Therefore, the aim of this study is to evaluate the dispersion of sediments produced by the impact of raindrops in function of ash wettability after a prescribed fire at plot scale. 2. MATERIAL AND METHODS In 20 November 2012, a prescribed fire was carried out in an area located in the public mount "Las Navas", near Almaden de la Plata, Sevilla (approx. 37° 50' 44.44'' N / 6° 3' 7.44''W and 428 masl). Soils are acidic and shallow, developed from acidic metamorphic rocks (schists, slates and pyrophyllites). Vegetation is dominated by shrub legumes (Calicotome villosa and several species of Ulex and Genista). The experimental area was framed and plowed to eliminate the risk of fire spreading during the experiment. Previously to burn, level staffs were installed for determination of flame height. The temperature reached in the soil was monitored during the fire by a set of six thermocouples which were buried in soil (2 cm depth) and connected to a data-logger for monitoring the topsoil temperature every 60 s. The environmental conditions were also monitored during the experiment by a mobile weather station. At the moment of the ignition, the temperature was around 20 °C and the wind speed was near 0.0 m/s. After ignition, the experimental area was allowed to burn during 2.5 h. During burning, flames reached 200 cm height, although thermal peaks recorded 2 cm depth were relatively low (not surpassing 80 °C). After burning, the soil surface was covered by a pattern of white and black ash, indicating varying degrees of fire severity, and areas covered by water repellent or hydrophilic ash were selected using the ethanol percentage test (EPT). The EPT provides an indirect measurement of the surface tension of the ground and, therefore, indicates the intensity of soil water repellency and is based on the different surface tension of a number of standardized solutions of ethanol in water. The procedure consists in applying drops (0.05 mL) of different ethanol solutions with different concentrations onto the surface of the ash layer observing if infiltration occurs in a period that not exceed 5 s (Jordán et al., 2010) . Every drop is allowed to fall from a distance not bigger than 15 mm to avoid the excess of kinetic energy that can affect infiltration. Applying drops with decreasing surface tension (that is, with concentrations of increasing ethanol) until a drop resists the infiltration allows the classification of the ground in a particular class of surface tension between two concentrations of ethanol: that in which infiltration occurs immediately (in less than 5 s) and the above solution of weaker concentration. Thus, it is assumed that solution whose drop is infiltrated within the first 5 s after application has a lower surface tension than soil surface. Fifteen representative points were selected at wettable or water-repellent ash zone. At each selected point, surrounded by white/wettable or dark/water-repellent ash to a minimum distance of 0.5 m, splash sediment collection device was installed. This system consist on a couple of funnels (100 mm in diameter) arranged one inside the other, with a paper filter beween both. Each device was inserted in soil until only 10 mm protruding the ground surface in order to avoid capturing runoff sediments. Sediments collected at each point of study were collected monthly and determined gravimetrically after oven drying between November 2012 and May 2013. 3. RESULTS AND DISCUSSION Depending on the intensity of the water repellency, the ash layer fluctuated between wettable and very strongly water repellent. The ash has a high permeability and water storage. However, its hydrophilic character has been emphasized rarely (Cerdà and Doerr, 2008). Different authors have described hydrophobic behaviors depending on the burned vegetation such as oak (Gabet and Sternberg, 2008) or pine forest (Stark, 1977) in the United States, eucalyptus forest in Australia (Khanna et al., 1996 ) or Mediterranean tree and shrub species in Spain (Bodí et al., 2011). In the latter case, Bodí et al. (2011) observed that ash has different properties depending on the combustion conditions, organic carbon content and color. This variability of behavior agrees with the results obtained in the present work. Significant differences between splash erosion from wettable and water-repellent ash zones were found (p < 0.0001). In the water-repellent ash zone, large differences were found among samples. The amount of sediment displaced by splash increased rapidly up to 264.10% (from 3.90 ± 0.44 to 14.20 ± 1.75 g) during the first four months after burn (November 2012 - February 2013). In contrast, during the last three months (March - May 2013), the amount of displaced sediments remained high, but with low growing rate (28.11%, from 16.97 ± 1.66 to 21.74 ± 3.27 g). In the wettable ash zone, the amount of sediment displaced was much smaller, with mean values between 1.29 (November 2012) and 6.14 g (May 2013). During the first two sampling dates after burn, data did not differ significantly among sites (1.38 ± 0.18 g on average), but the amount of sediment collected grew slowly during the experimental period between 3.06 ± 0.39 and 6.14 ± 0.69 g (January - May 2013). Several authors have suggested that ash acts protecting soil from the direct impact of raindrops and thus reduce sediment dispersion by splash (Cerdà and Doerr, 2008, Larsen et al, 2009; Woods and Balfour, 2008, Zavala et al, 2009). However, there is very little information about the effect of hydrophobicity on splash erosion. In a rainfall simulation experiment under laboratory conditions, Bodí et al. (2012) observed that splash erosion was at least two times higher in samples of water repellent soil than in hydrophilic soil, but no differences in ash loss or thickness of ash layer were observed. 4. CONCLUSIONS Our results highlight the role played by ash water repellency and the influence of burn severity on the development of a pattern of splash erosion intensities. Splash erosion was reduced in one order of magnitude on wettable ash zones. In contrast, the presence of a water-repellent ash layer increases the mobilization of sediments at plot scale. Further research should focus on the impacts of ash wettability on splash erosion at hillslope scale in the post fire. REFERENCES Bodí MB, Doerr SH, Cerdà A, Mataix-Solera J. 2012. Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. Geoderma 191, 14-23. Bodí MB, Martin DA, Balfour VN, Santín C, Doerr SJ, Pereira P, Cerdà A. Mataix-Solera J. 2014. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects. Earth-Sciece Reviews 130, 103-127. Cerdà A, Doerr, SH. 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena 74, 256-263. De Celis R, Jordán A, Zavala LM. 2013. Efectos del fuego en las propiedades biológicas, físicas y químicas del suelo. In: Bento-Gonçalves A, Vieira A (Eds.), Grandes incêndios florestais, erosão, degradação e medidas de recuperação dos solos. Núcleo de Investigação en Geografia e Planeamento (NIGP), Universidade do Minho. Guimaraes. Pp.: 145-160. DeBano LF. 1991. The effect of fire on soil. In: Harvey AE; Neuenschwander LF.(Eds.), Management and productivity of western-montane forest soils. General Technical Report INT-280. Intermountain Forest and Range Experimental Station, United States Department of Agriculture, Forest Service. Ogden, UT. DeBano LF. 2000. Water repellency in soils: a historical overview. Journal of Hydrology 231-232, 4-32. Doerr SH, Shakesby RA, Walsh RPD. 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews 51, 33-65. Larsen I, MacDonald LH, Brown E, Rough D, Welsh MJ, Pietraszek JH, Libohava Z, Benavides-Solorio JD, Schaffrath K. 2009. Causes of post-fire runoff and erosion: water repellency, cover or soil heating?. Soil Science Society of America Journal 73, 1393-1407. Mataix-Solera J, Guerrero C. 2007. Efecto de los incendios forestales sobre las propiedades edáficas. In: J. Mataix-Solera (Ed.) Incendios Forestales, Suelos y Erosión Hídrica. Caja Mediterráneo CENACAM Font Roja-Alcoi. Alicante. Pp.: 5-40. Mataix-Solera J, Guerrero C, Arcenegui V, Bárcenas G, Zornoza R, Pérez-Bejarano A, Bodí MB, Mataix-Beneyto J, Gómez I, García-Orenes F, Navarro-Pedreño J, Jordán MM, Cerdà A, Doerr SH, Úbeda X, Outeiro L, Jordán A, Zavala LM. 2009. Los incendios forestales y el suelo: un resumen de la investigación realizada por el Grupo de Edafología Ambiental de la UMH en colaboración con otros grupos. In: Cerdà A, Mataix-Solera J. (Eds.). El efecto de los incendios forestales sobre los suelos en España. El estado de la cuestión visto por los científicos españoles. Universitat de Valencia. Valencia. Pp.: 185-218. Mataix-Solera J, Cerdà A, Arcenegui V, Jordán A, Zavala LM. 2011. Fire efects on soil aggregation: a review. Earth-Science Reviews 109, 44-60 Neary DG, Klopatek CC, DeBano LF, Ffolliott PF. 1999. Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management 122, 51-71. Pausas JG, Verdú M. 2005. Plant persistence traits in fire-prone ecosystems of the Mediterranean Basin: a phylogenetic approach. Oikos 109, 196-202. Pereira P, Úbeda X, Outeiro L, Martin D. 2009. Factor analysis applied to fire temperature effects on water quality. In: Gómez E, Álvarez K (Eds.), Forest Fires: Detection, Suppression and Prevention. Series Natural Disaster Research, Prediction and Mitigation, Nova Science Publishers, New York, NY. Pp.: 273-285 Pereira P, Cerdà A, Úbeda X, Mataix-Solera J, Martin D, Jordán A, Burguet M. 2013. Spatial models for monitoring the spatio-temporal evolution of ashes after fire - a case study of a burnt grassland in Lithuania. Solid Earth 4, 153-165. Sevink J, Imeson AC, Verstraten JM. 1989. Humus form development and hillslope runoff, and the effects of fire and management, under Mediterranean forest in N.E. Spain. Catena 16, 461-475. Stark NM, 1977. Fire and nutrient cycling in a Douglas-fir/larch forest. Ecology, 58, 16-30. Trabaud L. 2000. Post-fire regeneration of Pinus halepensis forest in the west Mediterranean. In: Ne'eman G, Trabaud L (Eds.), Ecology, biogeography and management of Pinus halepensis and P. brutia forest ecosystems in the Mediterranean basin. Backhuys Publishers. Leiden. Pp.: 257-268. Woods SW, Balfour VN. 2008. Vegetative ash: an important factor in the short term response to rainfall in the post-fire environment. Geophysical Research Abstracts 10, EGU2008-A-00556. Woods SW, Balfour VN. 2010. The effects of soil texture and ash thickness on the post-fire hydrological response from ash-covered soils. Journal of Hydrology 393, 274-286. Zavala LM, Jordán A, Gil J, Bellinfante N, Pain C. 2009. Intact ash and charred litter reduces susceptibility to rain splash erosion post-wildfire Earth Surface Processes and Landforms, 34, 1522-1532. Zavala LM, De Celis R, Jordán A. 2014. How wildfires affect soil properties. A brief review Cuadernos de Investigación Geográfica 40, 311-331. AKNOWLEDGEMENTS This research is part of the POSTFIRE Project (ref. CGL2013-47862-C2-1-R), funded by the Spanish Ministry of Economy and Competitiveness. The authors are also grateful to the Environmental Management Centre (Mykolas Romeris University, Lithuania) and the Michoacan University (Morelia, Mexico) for their support.
Dayton, E A; Basta, N T
2005-01-01
A high amorphous aluminum or iron oxide content in drinking water treatment residuals (WTRs) can result in a high phosphorus (P) sorption capacity. Therefore, WTR may be used beneficially to adsorb P and reduce P loss to surface or ground water. The strong relationship between acid ammonium oxalate-extractable aluminum (Al(ox)) and Langmuir phosphorus adsorption maximum (P(max)) in WTR could provide a useful tool for determining P(max) without the onus of the multipoint batch equilibrations necessary for the Langmuir model. The objectives of this study were to evaluate and/or modify an acid ammonium oxalate extraction of Al(ox) and the experimental conditions used to generate P adsorption isotherms to strengthen the relationship between Al(ox) and P(max). The oxalate extraction solution to WTR ratio varied from 40:1, 100:1, and 200:1. Batch equilibration conditions were also varied. The WTR particle size was reduced from <2 mm to <150 microm, and batch equilibration was extended from 17 h to 6 d. Increasing the solution to WTR ratio to 100:1 extracted significantly greater Al(ox) at levels of >50 mg Al kg(-1). No additional increase was found at 200:1. Reducing WTR particle size from <2 mm to <150 microm increased P(max) 2.46-fold. Extending the equilibration time from 17 h to 6 d increased P(max) by a mean of 5.83-fold. The resulting empirical regression equation between the optimized Al(ox) and P(max) (r(2) = 0.91, significant at the 0.001 probability level) may provide a tool to estimate the P(max) of Al-based WTR simply by measuring Al(ox). The accurate determination of WTR P(max) and Al(ox) is essential in using WTR effectively to reduce P loss in runoff or to reduce the solubility of P in agricultural soils or organic waste materials (biosolids, manure).
Interactions of Hydrazine and of Hydrazine Derivatives with Soil Constituents and with Soils.
1982-01-31
exchangeable metal cations held by the clay and humic colloids, or the metal of the hydrous oxide colloids. The pH values of the natural soil solution of most...hydrazine into a soil system will tend to increase the pH of the soil solution . Hydrous oxides of iron and aluminium are insoluble at high pH, and these...aeration, and by the soil solution pH. Treatment of contaminated soils can alter these properties in order to promote the degradation or immobilization of
Wu, L H; Luo, Y M; Christie, P; Wong, M H
2003-02-01
A pot experiment was conducted to study the effects of EDTA and low molecular weight organic acids (LMWOA) on the pH, total organic carbon (TOC) and heavy metals in the soil solution in the rhizosphere of Brassica juncea grown in a paddy soil contaminated with Cu, Zn, Pb and Cd. The results show that EDTA and LMWOA have no effect on the soil solution pH. EDTA addition significantly increased the TOC concentrations in the soil solution. The TOC concentrations in treatments with EDTA were significantly higher than those in treatments with LMWOA. Adding 3 mmol kg(-1) EDTA to the soil markedly increased the total concentrations of Cu, Zn, Pb and Cd in the soil solution. Compared to EDTA, LMWOA had a very small effect on the metal concentrations. Total concentrations in the soil solution followed the sequence: EDTA > citric acid (CA) approximately oxalic acid (OA) approximately malic acid (MA) for Cu and Pb; EDTA > MA > CA approximately OA for Zn; and EDTA > MA > CA > OA for Cd. The labile concentrations of Cu, Zn, Pb and Cd showed similar trends to the total concentrations.
TDR water content inverse profiling in layered soils during infiltration and evaporation
NASA Astrophysics Data System (ADS)
Greco, R.; Guida, A.
2009-04-01
During the last three decades, time domain reflectometry (TDR) has become one of the most commonly used tools for soil water content measurements either in laboratory or in the field. Indeed, TDR provides easy and cheap water content estimations with relatively small disturbance to the investigated soil. TDR measurements of soil water content are based on the strong correlation between relative dielectric permittivity of wet soil and its volumetric water content. Several expressions of the relationship between relative dielectric permittivity and volumetric water content have been proposed, empirically stated (Topp et al., 1980) as well as based on semi-analytical approach to dielectric mixing models (Roth et al., 1990; Whalley, 1993). So far, TDR field applications suffered the limitation due to the capability of the technique of estimating only the mean water content in the volume investigated by the probe. Whereas the knowledge of non homogeneous vertical water content profiles was needed, it was necessary to install either several vertical probes of different length or several horizontal probes placed in the soil at different depths, in both cases strongly increasing soil disturbance as well as the complexity of the measurements. Several studies have been recently dedicated to the development of inversion methods aimed to extract more information from TDR waveforms, in order to estimate non homogeneous moisture profiles along the axis of the metallic probe used for TDR measurements. A common feature of all these methods is that electromagnetic transient through the wet soil along the probe is mathematically modelled, assuming that the unknown soil water content distribution corresponds to the best agreement between simulated and measured waveforms. In some cases the soil is modelled as a series of small layers with different dielectric properties, and the waveform is obtained as the result of the superposition of multiple reflections arising from impedance discontinuities between the layers (Nguyen et al., 1997; Todoroff et al., 1998; Heimovaara, 2001; Moret et al., 2006). Other methods consider the dielectric properties of the soil as smoothly variable along probe axis (Greco, 1999; Oswald et al., 2003; Greco, 2006). Aim of the study is testing the applicability to layered soils of the inverse method for the estimation of water content profiles along vertical TDR waveguides, originally applied in laboratory to homogeneous soil samples with monotonic moisture distributions (Greco, 2006), and recently extended to field measurements with more general water content profiles (Greco and Guida, 2008). Influence of soil electrical conductivity, uniqueness of solution, choices of parametrization, parameters identifiabilty, sensitivity of the method to chosen parameters variations are discussed. Finally, the results of the application of the inverse method to a series of infiltration and evaporation experiments carried out in a flume filled with three soil layers of different physical characteristics are presented. ACKNOWLEDGEMENTS The research was co-financed by the Italian Ministry of University, by means of the PRIN 2006 PRIN program, within the research project entitled ‘Definition of critical rainfall thresholds for destructive landslides for civil protection purposes'. REFERENCES Greco, R., 1999. Measurement of water content profiles by single TDR experiments. In: Feyen, J., Wiyo, K. (Eds.), Modelling of Transport Processes in Soils. Wageningen Pers, Wageningen, the Netherlands, pp. 276-283. Greco, R., 2006. Soil water content inverse profiling from single TDR waveforms. J. Hydrol. 317, 325-339. Greco R., Guida A., 2008. Field measurements of topsoil moisture profiles by vertical TDR probes. J. Hydrol. 348, 442- 451. Heimovaara, T.J., 2001. Frequency domain modelling of TDR waveforms in order to obtain frequency dependent dielectric properties of soil samples: a theoretical approach. In: TDR 2001 - Second International Symposium on Time Domain Reflectometry for Innovative Geotechnical Applications. Northwestern University, Evanston, Illinois, pp. 19-21. Moret, D., Arrue, J.L., Lopez, M.V., Gracia, R., 2006. A new TDR waveform analysis approach for soil moisture profiling using a single probe. J. Hydrol. 321, 163-172. Nguyen, B.L., Bruining, J., Slob, E.C., 1997. Saturation profiles from dielectric (frequency domain reflectometry) measurements in porous media. In: Proceedings of International Workshop on characterization and Measurements of the Hydraulic Properties of Unsaturated Porous Media, Riverside, California, pp. 363-375. Oswald, B., Benedickter, H.R., Ba¨chtold, W., Flu¨hler, H., 2003. Spatially resolved water content profiles from inverted time domain reflectometry signals. Water Resour. Res. 39 (12), 1357. Todoroff, P., Lorion, R., Lan Sun Luk, J.-D., 1998. L'utilisation des génétiques pour l'identification de profils hydriques de sol a` partir de courbes réflectométriques. CR Acad. Sci. Paris, Sciences de la terre et des plane`tes 327, 607-610. Topp, G.C., Davis, J.L., Annan, A.P., 1980. Electromagnetic determination of soil water content: measurement in coaxial transmission lines. Water Resour. Res. 16, 574-582. Roth, K., Schulin, R., Fluhler, H., Attinger, W., 1990. Calibration of time domain reflectometry for water content measurement using a composite dielectric approach. Water Resour. Res. 26, 2267-2273. Whalley, W.R., 1993. Considerations on the use of time domain reflectometry (TDR) for measuring soil water content. J. Soil Sci. 44, 1-9.
USDA-ARS?s Scientific Manuscript database
Low pH, aluminum (Al) toxicity and low phosphorus (P) often coexist in acid soils where crops need to cope with these multiple limiting factors. In this study we found that P addition to acid soils alleviates Al toxicity and enhanced soybean adaptation to acid soils, especially for the P-efficient g...
Jiang, Yuhui; Shang, Yixuan; Yu, Shuyao; Liu, Jianguo
2018-01-01
Hexachlorobenzene (HCB) contamination of soils remains a significant environmental challenge all over the world. Reductive stabilization is a developing technology that can decompose the HCB with a dechlorination process. A nanometallic Al/CaO (n-Al/CaO) dispersion mixture was developed utilizing ball-milling technology in this study. The dechlorination efficiency of HCB in contaminated soils by the n-Al/CaO grinding treatment was evaluated. Response surface methodology (RSM) was employed to investigate the effects of three variables (soil moisture content, n-Al/CaO dosage and grinding time) and the interactions between these variables under the Box-Behnken Design (BBD). A high regression coefficient value (R2 = 0.9807) and low p value (<0.0001) of the quadratic model indicated that the model was accurate in predicting the experimental results. The optimal soil moisture content, n-Al/CaO dosage, and grinding time were found to be 7% (m/m), 17.7% (m/m), and 24 h, respectively, in the experimental ranges and levels. Under optimal conditions, the dechlorination efficiency was 80%. The intermediate product analysis indicated that dechlorination was the process by stepwise loss of chloride atoms. The main pathway observed within 24 h was HCB → pentachlorobenzene (PeCB) → 1,2,3,4-tetrachlorobenzene (TeCB) and 1,2,4,5-TeCB. The results indicated that the moderate soil moisture content was crucial for the hydrodechlorination of HCB. A probable mechanism was proposed wherein water acted like a hydrogen donor and promoted the hydrodechlorination process. The potential application of n-Al/CaO is an environmentally-friendly and cost-effective option for decontamination of HCB-contaminated soils. PMID:29702570
Jiang, Yuhui; Shang, Yixuan; Yu, Shuyao; Liu, Jianguo
2018-04-27
Hexachlorobenzene (HCB) contamination of soils remains a significant environmental challenge all over the world. Reductive stabilization is a developing technology that can decompose the HCB with a dechlorination process. A nanometallic Al/CaO (n-Al/CaO) dispersion mixture was developed utilizing ball-milling technology in this study. The dechlorination efficiency of HCB in contaminated soils by the n-Al/CaO grinding treatment was evaluated. Response surface methodology (RSM) was employed to investigate the effects of three variables (soil moisture content, n-Al/CaO dosage and grinding time) and the interactions between these variables under the Box-Behnken Design (BBD). A high regression coefficient value ( R ² = 0.9807) and low p value (<0.0001) of the quadratic model indicated that the model was accurate in predicting the experimental results. The optimal soil moisture content, n-Al/CaO dosage, and grinding time were found to be 7% (m/m), 17.7% (m/m), and 24 h, respectively, in the experimental ranges and levels. Under optimal conditions, the dechlorination efficiency was 80%. The intermediate product analysis indicated that dechlorination was the process by stepwise loss of chloride atoms. The main pathway observed within 24 h was HCB → pentachlorobenzene (PeCB) → 1,2,3,4-tetrachlorobenzene (TeCB) and 1,2,4,5-TeCB. The results indicated that the moderate soil moisture content was crucial for the hydrodechlorination of HCB. A probable mechanism was proposed wherein water acted like a hydrogen donor and promoted the hydrodechlorination process. The potential application of n-Al/CaO is an environmentally-friendly and cost-effective option for decontamination of HCB-contaminated soils.
Metali, Faizah; Abu Salim, Kamariah; Tennakoon, Kushan; Burslem, David F R P
2015-01-01
Foliar elemental concentrations are predictors of life-history variation and contribute to spatial patterns in biogeochemical cycling. We examined the contributions of habitat association, local soil environment, and elemental interactions to variation in foliar elemental concentrations in tropical trees using methods that account for phylogeny. We sampled top-soils and leaves of 58 tropical trees in heath forest (HF) on nutrient-poor sand and mixed dipterocarp forest (MDF) on nutrient-rich clay soils. A phylogenetic generalized least squares method was used to determine how foliar nutrient and aluminium (Al) concentrations varied in response to habitat distribution, soil chemistry and other elemental concentrations. Foliar nitrogen (N) and Al concentrations were greater for specialists of MDF than for specialists of HF, while foliar calcium (Ca) concentrations showed the opposite trend. Foliar magnesium (Mg) concentrations were lower for generalists than for MDF specialists. Foliar element concentrations were correlated with fine-scale variation in soil chemistry in phylogenetically controlled analyses across species, but there was limited within-species plasticity in foliar elemental concentrations. Among Al accumulators, foliar Al concentration was positively associated with foliar Ca and Mg concentrations, and negatively associated with foliar phosphorus (P) concentrations. The Al-accumulation trait and relationships between foliar elemental and Al concentrations may contribute to species habitat partitioning and ecosystem-level differences in biogeochemical cycles. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Cremer, Clemens; Neuweiler, Insa
2016-04-01
Flow and solute transport in the shallow subsurface is strongly governed by atmospheric boundary conditions. Erratically varying infiltration and evaporation cycles lead to alternating upward and downward flow, as well as spatially and temporally varying water contents and associated hydraulic conductivity of the prevailing materials. Thus presenting a highly complicated, dynamic system. Knowledge of subsurface solute transport processes is vital to assess e.g. the entry of, potentially hazardous, solutes to the groundwater and nutrient uptake by plant roots and can be gained in many ways. Besides field measurements and numerical simulations, physical laboratory experiments represent a way to establish process understanding and furthermore validate numerical schemes. With the aim to gain a better understanding and to quantify solute transport in the unsaturated shallow subsurface under natural precipitation conditions in heterogeneous media, we conduct physical laboratory experiments in a 22 cm x 8 cm x 1 cm flow cell that is filled with two types of sand and apply cyclic infiltration-evaporation phases at the soil surface. Pressure at the bottom of the domain is kept constant. Following recent studies (Lehmann and Or, 2009; Bechtold et al., 2011a), heterogeneity is introduced by a sharp vertical interface between coarse and fine sand. Fluorescent tracers are used to i) qualitatively visualize transport paths within the domain and ii) quantify solute leaching at the bottom of the domain. Temporal and spatial variations in water content during the experiment are derived from x-ray radiographic images. Monitored water contents between infiltration and evaporation considerably changed in the coarse sand while the fine sand remained saturated throughout the experiments. Lateral solute transport through the interface in both directions at different depths of the investigated soil columns were observed. This depended on the flow rate applied at the soil surface and significantly influenced solute leaching. Dynamic boundary conditions generally resulted in faster initial breakthrough and stronger tailing. References: Bechtold, M., S. Haber-Pohlmeier, J. Vanderborght, A. Pohlmeier, T.P.A. Ferré and H. Veerecken. 2011a. Near-surface solute redistribution during evaporation. Geophys. Res. Lett., 38, L17404, doi:10.1029/2011GL048147. Lehmann, P. and D. Or. 2009. Evaporation and capillary coupling across vertical textural contrasts in porous media. Phys. Rev. E, 80, 046318, doi:10.1103/PhysRevE.80.046318.
Earthworm Activity and the Potential for Enhanced Leaching of Inorganic Elements in Soils
NASA Astrophysics Data System (ADS)
Gruau, G.; Ablain, F.; Cluzeau, D.
2002-12-01
The potential influence of earthworms on the mobility of soil inorganic constituents was experimentally investigated. Six 20 cm long and 15 cm i.d. columns were packed with soil (loamy material, Paris basin, France). Three earthworm specimens - Lombricus terrestris - were introduced into 3 of the 6 columns (earthworm treatment or ET), the remaing 3 being used to study changes in water composition and solute fluxes without earthworms (control treatment or CT). The 6 columns were operated for 8 weeks and were subjected to 100 ml addition of distilled water at 1, 8, 15, 22, 29, 36, 43 and 50 days. Effluents were collected weekly, filtered and analysed for their Dissolved Organic Carbon (DOC) as well as Si, Na, K, Mg, Ca, Fe, Mn, Al, Sr, Ba, Cu, Zn, Cr, Cd, REE and U concentrations. Replicates yielded extremely consistent results, with standard deviations generally lower than 10%. Effluent volumes were greatest during ET simulations (28% difference on a cumulative basis), which can be attributed to the construction by Lombricus terrestris of permanent vertical burrows into the soil columns. Different temporal chemical trends were observed depending on whether earthworms were present or not. During ET simulations, a washout phenomenon occurred for DOC, Ca, Mg, Fe, Ba, Sr, Cu and U during the startup outflow period (week 2). This washout was followed by a period of apparent equilibrium with concentrations in ET effluents remaining roughly constant for all solutes except REE, Zn and to a lesser extent Mn. No such washout nor equilibrium period was observed during CT simulations. Instead, concentrations in Ca, Mg, Fe, Ba, Sr, Cr and Cu decreased from week 2 to week 8, while those in other solutes increased from week 2 to week 5, then declining untill week 8. For many elements (not all), final (equilibrium?) concentrations (8 weeks simulation) were highest in ET effluents (e.g. 17% higher for Ca and Na; 30% higher for Zn), despite the enhanced infiltration rate (and thus the likely shorter soil-water interaction time). Although preliminary, these results suggest that earthworm activities can potentialy increase the leaching of a wide variety of inorganic elements in soils. This increase could occur through the ability of earthworms to change the biogeochemical conditions in the soil along their burrows (so-called drilosphere).
2005-09-01
found no significant change in concentration (+ 5 percent) occurring between 72 and 96 hr. The aqueous metal/ soil solution was then centrifuged and...environment. Soils with high Kd values strongly adsorb the lead onto the soil particles and slow the rate of migration of the lead in the soil solution . A...small Kd suggests faster migration rates and more rapid migration with the soil solution . Comparison of the Kd values obtained shows a large
NASA Astrophysics Data System (ADS)
Cerdà, Artemi; Keesstra, Saskia; Pereira, Paulo; Matrix-Solera, Jorge; Giménez-Morera, Antonio; Úbeda, Xavier; Francos, Marcos; Alcañiz, Meritxell; Jordán, Antonio
2016-04-01
Soils are affected by the impacts of wildfires (Dlapa et al., 2013; Pereira et al., 2014; Tsibart et al., 2014; Dlapa et al., 2015, Hedo et al., 2015; Tessler et al., 2015). Soil erosion rates are highly affected by forest fires due to the removal of the above ground vegetation, the heat impact on the soil, the reduction of the organic matter, the ash cover, and the changes introduced by the rainfall on the soil surface (Lasanta and Cerdà, 2005; Mataix-Solera et al., 2011; Novara et al., 2011; Novara et al., 2013; Keesstra et al., 2014; Hedo et al., 2015; Pereira, 2015). Most of the research carried out on forest fire affected land paid attention to the "window of disturbance", which is the period that the soil losses are higher than before the forest fire and that last for few years (Cerdà, 1998a; Cerdà 1998b, Pérez-Cabello et al., 2011; Bodí et al., 2011; Bodí et al., 2012; Pereira et al., 2013: Pereira et al., 2015). However, the spatial and temporal variability of soil erosion is very high as a result of the uneven temporal and spatial distribution of the rainfall (Novara et al., 2011; Bisantino et al., 2015; Gessesse et al., 2015; Ochoa et al., 2015), and the window of disturbance cannot be easily found under natural rainfall. In order to understand the evolution of soil erosion after forest fires it is necessary to monitor fire affected sites over a long period of time, which will enable the assessment of the period affected by the window of disturbance (see Cerdà and Doerr, 2005). However, it is also possible to do measurements and experiments in areas with a different fire history. This will give us information about the temporal changes in soil erosion after forest fire. To reduce the spatial variability of rainfall we can use simulated rainfall that can be applied at multiple site with the same rainfall intensity and duration. For this purpose rainfall simulation can be of great help, in the laboratory (Moreno et al., 2014; Sadegui et al., 2015; Carvalho et al., 2015; Lassu et al., 2015) or in the field (Cerdà et al., 1998c; Jordán et al., 2009; Prosdocimi et al., 2016). In order to determine how fire and post-fire changes change soil erosion rates we selected 12 research sites at the study area of the Massís del Caroig, Eastern Spain, which suffered different fires in the last century. The parent material is limestone in all study sites and the mean annual rainfall ranges from 480 to 550 mm per year in average. The vegetation consists of scrubland (Maquia) with different species. In the years after the fire Brachypodium retusum, Thymus vulgaris, Fumana Ericoides, Cistus Albidus, Ulex parviflorus or Rosmarinus officinalis regenerated, but after some years dense shrub cover develops with typical species such as Quercus coccifera, Quercus ilex, Pistacia lentiscus and Junyperus oxycedurs. Soils are shallow (0-30 cm depth) and distributed in pockets of soil mixed with rock outcrops. All the selected plots were located on the middle tram of the slopes to avoid differences, although previous studies showed no differences in infiltration rates, overland flow and soil erosion on the different trams of the slopes on limestone (Cerdà, 1998d). Each site was selected upon the last fire registered: 0, 1, 2, 3, 5, 9, 16, 24, 33, 44, 51, and 63 years after the last fire. The measurements were carried out in August 2013 by means of a portable rainfall simulator (Cerdà et al., 2009; Iserloh et al., 2013). Ten plots of 0.25 m2 were selected at each site. Rainfall simulation at 55 mm h-1 during one hour was applied. The results show that immediately after the wildfires the soil erosion was negligible due to the ash cover, which acted as mulch, meanwhile after few months (1 year after the fire) the highest soil losses were measured. After 5 years the soil losses had reduced significantly and after 16 years were negligible. Acknowledgements The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603498 (RECARE project) and by the Spanish Government with the research Project CGL2013- 47862-C2-1-R. References Bisantino T., Bingner R., Chouaib W., Gentile F., Trisorio Liuzzi G. 2015. Estimation of runoff, peak discharge and sediment load at the event scale in a medium-size mediterranean watershed using the annagnps model. Land Degradation and Development, 26 (4), 340-355. DOI: 10. 1002/ldr. 2213 Bodí, M.B., Doerr, S.H., Cerdà, A., Mataix-Solera, J. 2012. Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. Geoderma, 191, 14-23. DOI: 10.1016/j.geoderma.2012.01.006 Bodí, M.B., Mataix-Solera, J., Doerr, S.H., Cerdà, A. 2011. The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type,burn severity and total organic carbon content. Geoderma, 160 (3-4), 599-607. Carvalho, S.C.P., de Lima, J.L.M.P., de Lima, M.I.P. 2015. Increasing the Rainfall Kinetic Energy of Spray Nozzles by using Meshes. Land Degradation and Development, DOI: 10.1002/ldr.2349 Cerdà, A. 1998a.The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. Canadian Journal of Soil Science, 78 (2), 321-330. Cerdà, A. 1998b. Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes, 12 (7), 1031-1042. Cerdà, A. 1998c. Post-fire dynamics of erosional processes under Mediterranean climatic conditions(1998) Zeitschrift fur Geomorphologie, 42 (3), 373-398. Cerdà, A. 1998d. The influence of geomorphological position and vegetation cover on the erosional and hydrological processes on a Mediterranean hillslope. Hydrological Processes, 12 (4), 661-671. Cerdà, A., Doerr, S.H. 2005.Influence of vegetation recovery on soil hydrology and erodibility following fire: An 11-year investigation International Journal of Wildland Fire, 14 (4), 423-437. DOI: 10.1071/WF05044 Cerdà, A., Jurgensen, M.F., Bodi, M.B. 2009. Effects of ants on water and soil losses from organically-managed citrus orchards in eastern Spain. Biologia, 64 (3), 527-531. DOI: 10.2478/s11756-009-0114-7 Dlapa P., Bodí M.B., Mataix-Solera J., Cerdà A., Doerr S.H. 2015. Organic matter and wettability characteristics of wildfire ash from Mediterranean conifer forests. Catena, 135, 369-376. DOI: 10.1016/j.catena.2014.06.018 Dlapa, P., Bodí, M.B., Mataix-Solera, J., Cerdà, A., Doerr, S.H. 2013. FT-IR spectroscopy reveals that ash water repellency is highly dependent on ash chemical composition. Catena, 108, 35-43. DOI: 10.1016/j.catena.2012.02.011 Gessesse B., Bewket W., Bräuning A. 2015. Model-Based Characterization and Monitoring of Runoff and Soil Erosion in Response to Land Use/land Cover Changes in the Modjo Watershed, Ethiopia. (2015) Land Degradation and Development, 26 (7), 711-724.. DOI: 10. 1002/ldr. 2276 Hedo J., Lucas-Borja M. E., Wic C., Andrés-Abellán M., De Las Heras J. 2015. Soil microbiological properties and enzymatic activities of long-term post-fire recovery in dry and semiarid Aleppo pine (Pinus halepensis M.) forest stands. Solid Earth, 6 (1), 243-252. DOI: 10. 5194/se-6-243-2015 Hedo de Santiago, J., Lucas-Borja, M.E., Wic-Baena, C., Andrés-Abellán, M., de las Heras, J. 2015. Effects of thinning and induced drought on microbiological soil properties and plant species diversity at dry and semiarid locations. Land Degradation and Development, DOI: 10.1002/ldr.2361 Iserloh, T., Ries, B.J., Cerdà, A., Echeverría, M.T., Fister, W., Geißler, C., Kuhn, N.J., León, F.J., Peters, P., Schindewolf, M., Schmidt, J., Scholten, T., Seeger, M. 2013. Comparative measurements with seven rainfall s simulators on uniform bare fallow land. Zeitschrift fur Geomorphologie, 57 (1 SUPPL. 1), 1-10. DOI: 10.1127/0372-8854/2012/S-00085 Jordán-López, A., Martínez-Zavala, L., Bellinfante, N. 2009. Impact of different parts of unpaved forest roads on runoff and sediment yield in a Mediterranean area. Science of the total environment, 407(2), 937-944. Keesstra, S.D., Maroulis, J., Argaman, E., Voogt, A., Wittenberg, L, 2014. Effects of controlled fire on hydrology and erosion under simulated rainfall. Cuadernos de Investigación Geográfica 40, 269-293. DOI: 10.18172/cig.2532 Lasanta, T., Cerdà, A. 2005. Long-term erosional responses after fire in the Central Spanish Pyrenees: 2. Solute reléase. Catena, 60 (1), 81-100. DOI: 10.1016/j.catena.2004.09.005 Lassu, T., Seeger, M., Peters, P., Keesstra, S.D. 2015. The Wageningen Rainfall Simulator: Set-up and Calibration of an Indoor Nozzle-Type Rainfall Simulator for Soil Erosion Studies. Land Degradation and Development, 26 (6), 604-612. DOI: 10.1002/ldr.2360 Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., Zavala, L.M. 2011. Fire effects on soil aggregation: A review. Earth-Science Reviews, 109 (1-2), 44-60. DOI: 10.1016/j.earscirev.2011.08.002 Moreno-Ramón, H., Quizembe, S.J., Ibáñez-Asensio, S. 2014. Coffee husk mulch on soil erosion and runoff: Experiences under rainfall simulation experiment. Solid Earth, 5 (2), 851-862. DOI: 10.5194/se-5-851-2014 Novara A., Gristina L., Rühl J., Pasta S., D'Angelo G., La Mantia T., Pereira P. 2013. Grassland fire effect on soil organic carbon reservoirs in a semiarid environment. Solid Earth, 4 (2), 381-385.. DOI: 10. 5194/se-4-381-2013 Novara, A., Gristina, L., Bodì, M.B., Cerdà, A. 2011. The impact of fire on redistribution of soil organic matter on a Mediterranean hillslope under maquia vegetation type Land Degradation and Development, 22 (6), 530-536. DOI: 10.1002/ldr.1027 Novara, A., Gristina, L., Saladino, S.S., Santoro, A., Cerdà, A. 2011. Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard. Soil and Tillage Research, 117, 140-147. DOI: 10.1016/j.still.2011.09.007 Ochoa-Cueva P., Fries A., Montesinos P., Rodríguez-Díaz J. A., Boll J. 2015. Spatial Estimation of Soil Erosion Risk by Land-cover Change in the Andes OF Southern Ecuador. Land Degradation and Development, 26 (6), 565-573DOI: 10. 1002/ldr. 2219 Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Arcenegui, V., Zavala, L.M. 2015. Modelling the Impacts of Wildfire on Ash Thickness in a Short-Term Period. Land Degradation and Development, 26 (2), 180-192. DOI: 10.1002/ldr.2195 Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Martin, D., Jordán, A., Burguet, M. 2013. Spatial models for monitoring the spatio-temporal evolution of ashes after fire and ash; A case study of a burnt grassland in Lithuania. Solid Earth, 4 (1), 153-165 DOI: 10.5194/se-4-153-2013 Pereira, P., Jordán, A., Cerdà, A., Martin, D. 2015. Editorial: The role of ash in fire-affected ecosystem. Catena, . DOI: 10.1016/j.catena.2014.11.016 Pereira, P., Úbeda, X., Mataix-Solera, J., Oliva, M., Novara, A.Short-term changes in soil Munsell colour value, organic matter content and soil water repellency after a spring grassland fire in Lithuania (2014) Solid Earth, 5 (1), 209-225. DOI: 10.5194/se-5-209-2014 Pérez-Cabello, F., Cerdà, A., de la Riva, J., Echeverría, M.T., García-Martín, A., Ibarra, P., Lasanta, T., Montorio, R., Palacios, V. 2012. Micro-scale post-fire surface cover changes monitored using high spatial resolution photography in a semiarid environment: A useful tool in the study of post-fire soil erosion processes. Journal of Arid Environments, 76 (1), 88-96. DOI: 10.1016/j.jaridenv.2011.08.007 Prosdocimi,M., Jordán, A., Tarolli, P., Keesstra, S., Novara, A., Cerdà, A. 2016. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Science of The Total Environment, 547, 15 ,323-330, doi:10.1016/j.scitotenv.2015.12.076 Sadeghi, S.H.R., Gholami, L., Sharifi, E., Khaledi Darvishan, A., Homaee, M. 2015. Scale effect on runoff and soil loss control using rice mulch under laboratory conditions. Solid Earth, 6 (1), 1-8. DOI: 10.5194/se-6-1-2015 Tessler, N., Sapir, Y., Wittenberg, L., Greenbaum, N. 2015. Recovery of Mediterranean Vegetation after Recurrent Forest Fires: Insight from the 2010 Forest Fire on Mount Carmel, Israel. Land Degradation and Development, DOI: 10.1002/ldr.2419 Tsibart, A., Gennadiev, A., Koshovskii, T., Watts, A. 2014. Polycyclic aromatic hydrocarbons in post-fire soils of drained peatlands in western Meshchera (Moscow region, Russia). Solid Earth, 5 (2), 1305-1317. DOI: 10.5194/se-5-1305-2014 Wang, C., Wang, G., Wang, Y., Rafique, R., Ma, L., Hu, L., Luo, Y. 2015. Fire Alters Vegetation and Soil Microbial Community in Alpine Meadow. Land Degradation and Development, . DOI: 10.1002/ldr.2367
Phosphate reactivity in long-term poultry litter-amended southern Delaware sandy soils
Arai, Y.; Livi, K.J.T.; Sparks, D.L.
2005-01-01
Eutrophication caused by dissolved P from poultry litter (PL)-amended agricultural soils has been a serious environmental concern in the Delaware-Maryland-Virginia Peninsula (Delmarva), USA. To evaluate state and federal nutrient management strategies for reducing the environmental impact of soluble P from long-term PL-amended Delaware (DE) soils, we investigated (i) inorganic P speciation; (ii) P adsorption capacity; and (iii) the extent of P desorption. Although the electron microprobe (EMP) analyses showed a strong correlation between P and Al/Fe, crystalline Al/Fe-P precipitates were not detected by x-ray diffraction (XRD). Instead, the inorganic P fractionation analyses showed high levels of oxalate extractable P, Al, and Fe fractions (615-858, 1215-1478, and 337-752 mg kg-1, respectively), which were susceptible to slow release during the long-term (30-d) P desorption experiments at a moderately acidic soil pHwater. The labile P in the short-term (24-h) desorption studies was significantly associated with oxalate and F extractable Fe and Al, respectively. This was evident in an 80% reduction maximum in total desorbable P from NH4 oxalate/F pretreated soils. In the adsorption experiments, P was strongly retained in soils at near targeted pH of lime (???6.0), but P adsorption gradually decreased with decreasing pH near the soil pHwater (???5.0). The overall findings suggest that P losses from the can be suppressed by an increase in the P retention capacity of soils via (i) an increase in the number of lime applications to maintain soil pHwater at near targeted pH values, and/or (ii) alum/iron sulfate amendments to provide additional Al- and Fe-based adsorbents. ?? Soil Science Society of America.
NASA Astrophysics Data System (ADS)
Lawrence, G. B.; Ross, D. S.; Sullivan, T. J.; McDonnell, T. C.; Bailey, S. W.; Dukett, J. E.
2014-12-01
The Buck Creek Monitoring Watershed, in the western Adirondack Region of New York, has provided long-term data back to 1982 for tracking acid rain effects and recovery, and for supporting fundamental research on environmental change. At Buck Creek, monitoring acidic deposition effects as they worsened, then diminished, has advanced our understanding of key biogeochemical processes such as Al mobilization. Although Al mobilization has been one of the primary adverse effects of acidic deposition, in the recovery phase it is now affecting terrestrial and aquatic ecosystems in new ways that could be both positive and negative, as soils and surface waters respond to further declines in acidic deposition. Using stream Al measurements from Buck Creek over varying seasons and flows, a new index, the base cation surplus (BCS), was developed to account for dissolved organic carbon (DOC) effects on the relationship between ANC and inorganic Al. Mobilization of inorganic Al, the form toxic to biota, occurs below a BCS of zero, regardless of DOC concentrations. Soil and stream data from Adirondack surveys showed that a BCS value of zero corresponds to a soil base saturation value in the B horizon of approximately 12%. Additional Adirondack survey work indicated that, where sugar maple stands grew in soils with base saturation values below 12%, seedling regeneration was nearly zero, suggesting a link between Al mobilization and impairment of tree regeneration. In recovering Adirondack lakes, the BCS was also used to show that increasing trends in DOC were accelerating decreases of inorganic Al beyond what would be expected from the increasing trends of ANC. Similar decreases of inorganic Al in Buck Creek, were coupled with increases in organic Al concentrations, which resulted in no trend in total Al concentrations despite a strong increase in pH. Sampling of Buck Creek soils in 1997, and again in 2009-2010, indicated a substantial decrease in forest floor exchangeable Al, of which approximately 85% was accounted for by stream export through leaching of exchangeable Al from soil to stream. Changes in the chemistry of the upper B horizon also suggest the possibility that recovery from acidification is accelerating podzolization in these soils.
NASA Astrophysics Data System (ADS)
Cerdà, Artemi; González, Óscar; León, Javier; Jordán, Antonio
2015-04-01
Water repellency is a well-know soil property since the research of professor Stefan Helmut Doerr recovered and powered the research developed by professor DeBano (Atanassova and Doerr, 2011; ; Jordán et al., 2011; Bodí et al., 2012; González Peñaloza et al., 2012 Bodí et al., 2013; García Moreno et al., 2013; Jordán et al., 2013; Badía-Villas et al., 2014; Jordán et al., 2013; Jiménez Morillo et al., 2015). However, little is known about the impact of water repellency in surface runoff generation, although usually is accepted that when more soil water repellent is a soil, higher will be the surface runoff discharge (Stoff et al., 2011; Madsen et al., 2011; León et al., 2013; Lozano et al., 2013; Mataix-Solera et al., 2013; Santos et al., 2015). And the impact of the water repellency and then the higher surface wash discharge can trigger high erosion rates (Kröpfl et al., 2013; Mandal and Sharda 2013; Zhao et al., 2013). However these relationships were not demonstrated as the most water repellent soils are the one with high organic contents, and those soils do not have soil losses, probably due to the high infiltration rates due to the macropore flow. Rainfall simulation experiments can shed light in the runoff generation mechanism as they can control the rainfall intensity (Bodí et al., 2012; Iserloh et al., 2012; Iserloh et al., 2013), and inform about the main mechanism of the soil erosion process Cerdà and Jurgensen, 2011; Daugherty et al., 2011; Podwojewski et al., 2011; Dunkerley, 2012; Garel et al., 2012; Jouquet et al., 2012; Kibet et al., 2013; Butzen et al., 2014; Ma et al., 2014; Martínez Murillo et al., 2013). To determine the relationship between surface runoff generated under simulated rainfall (Cerdà, 1988a; 1988b; Cerdà et al., 1998; Ziadat and Taimeh, 2013) with a small rainfall simulator (0.25 m2) and water repellency measurements with the Water Drop Penetration time methods were done (Bodí et al., 2012). The results show that the most water repellent soils generate a fast surface runoff that use to be infiltrate in macropores (cracks and fauna) and that runoff at plot scales was negligible in water repellent soils. Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7-ENV-2013- supported this research. References Atanassova, I., Doerr, S. H. 2011. Changes in soil organic compound composition associated with heat-induced increases in soil water repellency. European Journal of Soil Science, 62(4), 516-532. Badía-Villas, D., González-Pérez, J. A., Aznar, J. M., Arjona-Gracia, B., & Martí-Dalmau, C. 2014. Changes in water repellency, aggregation and organic matter of a mollic horizon burned in laboratory: soil depth affected by fire. Geoderma, 213, 400-407. Bodí, M. B., Doerr, S. H., Cerdà, A., Mataix-Solera, J. 2012. Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. Geoderma, 191, 14-23. Bodí, M.B. Doerr, S.H., Cerdà, A., Mataix-Solera, J. 2012. Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soils. Geoderma, 191, 14-23. http://dx.doi.org/10.1016/j.geoderma.2012.01.006 Bodí, M.B., Muñoz-Santa, I., Armero, C., Doerr, S.H., Mataix-Solera, J., Cerdà, A. 2013. Spatial and temporal variations of water repellency and probability of its occurrence in calcareous Mediterranean rangeland soils affected by fires. Catena, 108, 14-24. http://dx.doi.org/10.1016/j.catena.2012.04.002 Butzen, V., Seeger, M., Wirtz, S., Huemann, M., Mueller, C., Casper, M., Ries, J. B. 2014. Quantification of Hortonian overland flow generation and soil erosion in a Central European low mountain range using rainfall experiments. Catena, 113, 202-212. Cerdà, A. 1998a. Effect of climate on surface flow along a climatological gradient in Israel. A field rainfall simulation approach. Journal of Arid Environments, 38, 145-159. Cerdà, A. 1998b. The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. Canadian Journal of Soil Science, 78, 321-330. Cerdà, A., Jurgensen, M. F. 2011. Ant mounds as a source of sediment on citrus orchard plantations in eastern Spain. A three-scale rainfall simulation approach. Catena, 85(3), 231-236. Dougherty, W. J., Mason, S. D., Burkitt, L. L., Milham, P. J. 2011. Relationship between phosphorus concentration in surface runoff and a novel soil phosphorus test procedure (DGT) under simulated rainfall. Soil Research, 49(6), 523-528. Dunkerley, D. 2012. Effects of rainfall intensity fluctuations on infiltration and runoff: rainfall simulation on dryland soils, Fowlers Gap, Australia. Hydrological Processes, 26(15), 2211-2224. García-Moreno, J., Gordillo-Rivero, Á. J., Zavala, L. M., Jordán, A., & Pereira, P. 2013. Mulch application in fruit orchards increases the persistence of soil water repellency during a 15-years period. Soil and Tillage Research, 130, 62-68. Garel, E., Marc, V., Ruy, S., Cognard-Plancq, A. L., Klotz, S., Emblanch, C., Simler, R. 2012. Large scale rainfall simulation to investigate infiltration processes in a small landslide under dry initial conditions: the Draix hillslope experiment. Hydrological Processes, 26(14), 2171-2186. González-Peñaloza, F.A., Cerdà, A., Zavala, L.M., Jordán, A., Giménez-Morera, A., Arcenegui, V. 2012. Do conservative agriculture practices increase soil water repellency? A case study in citrus-cropped soils. Soil and Tillage Research, 124, 233-239. http://dx.doi.org/10.1016/j.still.2012.06.015 Granged, A. J., Jordán, A., Zavala, L. M., Bárcenas, G. (2011): Fire-induced changes in soil water repellency increased fingered flow and runoff rates following the 2004 Huelva wildfire. Hydrological Processes, 25: 1614-1629. Iserloh, T., Ries, J.B., Arnaez, J., Boix Fayos, C., Butzen, V., Cerdà, A., Echeverría, M.T., Fernández-Gálvez, J., Fister, W., Geißler, C., Gómez, J.A., Gómez-Macpherson, H., Kuhn, N.J., Lázaro, R., León, F.J., Martínez-Mena, M., Martínez-Murillo, J.F., Marzen, M., Mingorance, M.D., Ortigosa, L., Peters, P., Regüés, D., Ruiz-Sinoga, J.D., Scholten, T., Seeger, M., Solé-Benet, A., Wengel, R., Wirtz, S. 2013. European small portable rainfall simulators: a comparison of rainfall characteristics. Catena, 110, 100-112. Doi: 10.1016/j.catena.2013.05.013 Iserloh, T., Ries, J.B., Cerdà, A., Echeverría, M.T., Fister, W., Geißler, C., Kuhn, N.J., León, F.J., Peters, P., Schindewolf, M., Schmidt, J., Scholten, T., Seeger, M. (2012): Comparative measurements with seven rainfall simulators on uniform bare fallow land. Zeitschrift für Geomorphologie, 57, 193-201. DOI: 10.1127/0372-8854/2012/S-00118. Jiménez-Morillo, N. T., González-Pérez, J. A., Jordán, A., Zavala, L. M., Rosa, J. M., Jiménez-González, M. A., & González-Vila, F. J. (2014). Organic matter fractions controlling soil water repellency in Sandy soils from the Doñana National Park (Southwestern Spain). Land Degradation & Development.| DOI: 10.1002/ldr.2314 Jordán, A., García-Moreno, J., Gordillo-Rivero, Á. J., Zavala, L. M., Cerdà, A. 2014. Organic carbon, water repellency and soil stability to slaking under different crops and managements: a case study at aggregate and intra-aggregate scales. SOIL Discussions, 1(1), 295-325. Jordán, A., Zavala, L. M., Mataix-Solera, J., Doerr, S. H. 2013. Soil water repellency: origin, assessment and geomorphological consequences. Catena, 108, 1-5. Jordán, A., Zavala, L. M., Mataix-Solera, J., Nava, A. L., & Alanís, N. 2011. Effect of fire severity on water repellency and aggregate stability on Mexican volcanic soils. Catena, 84(3), 136-147. Jouquet, P., Janeau, J. L., Pisano, A., Sy, H. T., Orange, D., Minh, L. T. N., Valentin, C. 2012. Influence of earthworms and termites on runoff and erosion in a tropical steep slope fallow in Vietnam: A rainfall simulation experiment. Applied Soil Ecology, 61, 161-168. Kibet, L. C., Saporito, L. S., Allen, A. L., May, E. B., Kleinman, P. J., Hashem, F. M., Bryant, R. B. 2013. A protocol for conducting rainfall simulation to study soil runoff. Journal of visualized experiments: JoVE, (86). Kröpfl, A. I., Cecchi, G. A., Villasuso, N. M., Distel, R. A. 2013. Degradation and recovery processes in Semi-Arid patchy rangelands of northern Patagonia, Argentina. Land Degradation & Development, 24: 393- 399. DOI 10.1002/ldr.1145 Cerdà, A., Schnabel, S., Gómez-Amelia, D. & Ceballos, A. 1998. Soil hydrological Response under simulated rainfall in the Dehesa ecosystem, Extremadura, SW, Spain. Earth Surface Processes and Landforms, 23, 195- 209 León, J. Bodí, M.B., Cerdà, A., Badía, D. 2013. The contrasted response of ash to wetting. The effects of ash type, thickness and rainfall events. Geoderma, 209-210, 143-152. http://dx.doi.org/10.1016/j.geoderma.2012.01.006 Lozano, E., Jiménez-Pinilla, P., Mataix-Solera, J., Arcenegui, V., Bárcenas, G. M., González-Pérez, J. A., Mataix- Beneyto, J. 2013. Biological and chemical factors controlling the patchy distribution of soil water repellency among plant species in a Mediterranean semiarid forest. Geoderma, 207, 212-220. Ma, W., Li, Z., Ding, K., Huang, J., Nie, X., Zeng, G., Liu, G. (2014). Effect of soil erosion on dissolved organic carbon redistribution in subtropical red soil under rainfall simulation. Geomorphology, 226, 217-225. Madsen, M. D., Zvirzdin, D. L., Petersen, S. L., Hopkins, B. G., Roundy, B. A., Chandler, D. G. 2011. Soil water repellency within a burned piñon-juniper woodland: Spatial distribution, severity, and ecohydrologic implications. Soil Science Society of America Journal, 75(4), 1543-1553. Mandal, D., Sharda, V. N. Appraisal of soil erosion risk in the Eastern Himalayan region of India for soil conservation planning. Land Degradation & Development, 24: 430-437. 2013. DOI 10.1002/ldr.1139 Martínez-Murillo, J. F., Nadal-Romero, E., Regüés, D., Cerdà, A., Poesen, J. 2013. Soil erosion and hydrology of the western Mediterranean badlands throughout rainfall simulation experiments: A review. Catena, 106, 101-112. Mataix-Solera, J., Arcenegui, V., Tessler, N., Zornoza, R., Wittenberg, L., Martínez, C., Jordán, M. M. 2013. Soil properties as key factors controlling water repellency in fire-affected areas: evidences from burned sites in Spain and Israel. Catena, 108, 6-13. Podwojewski, P., Janeau, J. L., Grellier, S., Valentin, C., Lorentz, S., Chaplot, V. 2011. Influence of grass soil cover on water runoff and soil detachment under rainfall simulation in a sub-humid South African degraded rangeland. Earth Surface Processes and Landforms, 36(7), 911-922. Santos, J. M., Verheijen, F. G., Tavares Wahren, F., Wahren, A., Feger, K. H., Bernard-Jannin, L., Nunes, J. P. (2015). Soil water repellency dynamics in pine and eucalupt plantation in Portugal - a high- resolution series. Land Degradation & Development. DOI: 10.1002/ldr.2251 Stoof, C. R., Moore, D., Ritsema, C. J., Dekker, L. W. 2011. Natural and fire-induced soil water repellency in a Portuguese shrubland. Soil Science Society of America Journal, 75(6), 2283-2295. Zhao, G., Mu, X., Wen, Z., Wang, F., and Gao, P. 2013. Soil erosion, conservation, and Eco-environment changes in the Loess Plateau of China. Land Degradation & Development, 24: 499- 510. DOI 10.1002/ldr.2246 Ziadat, F. M., Taimeh, A. Y. 2013. Effect of rainfall intensity, slope and land use and antecedent soil moisture on soil erosion in an arid environment. Land Degradation & Development, 24: 582- 590. DOI 10.1002/ldr.2239
Chemodynamics of heavy metals in long-term contaminated soils: metal speciation in soil solution.
Kim, Kwon-Rae; Owens, Gary
2009-01-01
The concentration and speciation of heavy metals in soil solution isolated from long-term contaminated soils were investigated. The soil solution was extracted at 70% maximum water holding capacity (MWHC) after equilibration for 24 h. The free metal concentrations (Cd2+, CU2+, Pb2+, and Zn2+) in soil solution were determined using the Donnan membrane technique (DMT). Initially the DMT was validated using artificial solutions where the percentage of free metal ions were significantly correlated with the percentages predicted using MINTEQA2. However, there was a significant difference between the absolute free ion concentrations predicted by MINTEQA2 and the values determined by the DMT. This was due to the significant metal adsorption onto the cation exchange membrane used in the DMT with 20%, 28%, 44%, and 8% mass loss of the initial total concentration of Cd, Cu, Pb, and Zn in solution, respectively. This could result in a significant error in the determination of free metal ions when using DMT if no allowance for membrane cation adsorption was made. Relative to the total soluble metal concentrations the amounts of free Cd2+ (3%-52%) and Zn2+ (11%-72%) in soil solutions were generally higher than those of Cu2+ (0.2%-30%) and Pb2+ (0.6%-10%). Among the key soil solution properties, dissolved heavy metal concentrations were the most significant factor governing free metal ion concentrations. Soil solution pH showed only a weak relationship with free metal ion partitioning coefficients (K(p)) and dissolved organic carbon did not show any significant influence on K(p).
Aluminum stress signaling in plants
Baluska, Frantisek; Matsumoto, Hideaki
2009-01-01
Aluminum (Al) toxicity is a major constraint for crop production in acidic soil worldwide. When the soil pH is lower than 5, Al3+ is released to the soil and enters into root tip cell ceases root development of plant. In acid soil with high mineral content, Al is the major cause of phytotoxicity. The target of Al toxicity is the root tip, in which Al exposure causes inhibition of cell elongation and cell division, leading to root stunting accompanied by reduced water and nutrient uptake. A variety of genes have been identified that are induced or repressed upon Al exposure. At tissue level, the distal part of the transition zone is the most sensitive to Al. At cellular and molecular level, many cell components are implicated in the Al toxicity including DNA in nucleus, numerous cytoplastic compounds, mitochondria, the plasma membrane and the cell wall. Although it is difficult to distinguish the primary targets from the secondary effects so far, understanding of the target sites of the Al toxicity is helpful for elucidating the mechanisms by which Al exerts its deleterious effects on root growth. To develop high tolerance against Al stress is the major goal of plant sciences. This review examines our current understanding of the Al signaling with the physiological, genetic and molecular approaches to improve the crop performance under the Al toxicity. New discoveries will open up new avenues of molecular/physiological inquiry that should greatly advance our understanding of Al tolerance mechanisms. Additionally, these breakthroughs will provide new molecular resources for improving the crop Al tolerance via molecular-assisted breeding and biotechnology. PMID:19820334
Soil nitrogen availability in the open steppe with Stipa tenacissima
NASA Astrophysics Data System (ADS)
Novosadova, Irena; Damian Ruiz Sinoga, Jose; Záhora, Jaroslav
2010-05-01
Open steppes dominated by Stipa tenacissima L. constitute one of the most representative ecosystems of the semi-arid zones of Iberian Peninsula and show a higher degree of variability in composition and structure (Maestre et al., 2007). Vegetation patchiness, which are seen as mosaics including vegetated and non-vegetated components, is a common feature of such open steppes (Valentin et al., 1999). Ecosystem functioning is strongly related to the spatial pattern of grass tussocks. Soils beneath S. tenacissima grass show higher fertility and improved microclimatic conditions, favouring the formation of "resource islands" (Maestre et al., 2007). First, soil moisture is greater beneath the clumps, due to water harvesting through rainfall interception, uptake by roots from adjacent unvegetated areas and water redistribution from gaps to clumps (Bergkamp et al., 1999; Puigdefá bregas et al., 1999). Second, the canopy diminishes the intense solar radiation (Maestre et al., 2001) avoiding the sun-baking effect, which is an important factor for soil temperature change and physical disruption (Magid et al., 1999). Plant clumps either functioned as microbial hotspots where enhanced microbially driven ecosystem processes took place or as microbial banks capable of undergoing a burst of activity under favourable climatic conditions (Goberna et al., 2007). The competition for water and resources between plants and microorganisms is strong and mediated trough an enormous variety of exudates and resource depletion intended to regulate soil microbial communities in the rhizosphere, control herbivory, encourage beneficial symbioses, and change chemical and physical properties in soil (Pugnaire et Armas, 2008). On the other hand there exists experimental evidence of a non-patchy distribution of certain soil microbial properties in semi-arid Mediterranean patchy ecosystems (Goberna et al., 2007). The microbial nutrient release processes have a fundamental role in ecosystem functioning, particularly in Mediterranean areas, where nutrient availability, mainly nitrogen and phosphorous, represents a limiting factor (Sardans et al., 2005) together with water availability. Soil N availability has been found to affect plant water use efficiency (Sardans et al., 2008a). This strong link between N availability and water use efficiency makes particularly important the understanding of factors affecting soil N availability in Mediterranean ecosystems in view of the future predicted increasing drought in this area. Changes in the soil nitrogen availability in the open steppe with S. tenacissima were monitored over a two distinct period of time during the years 2008 and 2009 at a field site in semi-arid south-eastern Spain (Novosádová et al., 2010). The availability of ammonia-nitrogen and nitrate nitrogen was estimated in situ according to Binkley at Matson (1982) by the trapping of mineral N into the ion exchange resin inserted into special cover. The availability of soil ammonia-N as well as the availability of nitrate-N were in the 2008 year significantly influenced by the addition of different substrate (only 38% of control after the cellulose addition and 176% of control after the raw silk addition). In the following 2009 year was the N availability probably due to favorable soil moisture nearly the same in all experimental variants. The availability of ammonia-N was, in general, higher than the availability of nitrate-N, but the differences were less noticeable in 2008 year. It can be concluded, that the microbial competition for available nitrogen is very high and spatially and/or temporary significantly different.
Soil transport parameters of potassium under a tropical saline soil condition using STANMOD
NASA Astrophysics Data System (ADS)
Suzanye da Silva Santos, Rafaelly; Honorio de Miranda, Jarbas; Previatello da Silva, Livia
2015-04-01
Environmental responsibility and concerning about the final destination of solutes in soil, so more studies allow a better understanding about the solutes behaviour in soil. Potassium is a macronutrient that is required in high concentrations, been an extremely important nutrient for all agricultural crops. It plays essential roles in physiological processes vital for plant growth, from protein synthesis to maintenance of plant water balance, and is available to plants dissolved in soil water while exchangeable K is loosely held on the exchange sites on the surface of clay particles. K will tend to be adsorbed onto the surface of negatively charged soil particles. Potassium uptake is vital for plant growth but in saline soils sodium competes with potassium for uptake across the plasma membrane of plant cells. This can result in high Na+:K+ ratios that reduce plant growth and eventually become toxic. This study aimed to obtain soil transport parameters of potassium in saline soil, such as: pore water velocity in soil (v), retardation factor (R), dispersivity (λ) and dispersion coefficient (D), in a disturbed sandy soil with different concentrations of potassium chlorate solution (KCl), which is one of the most common form of potassium fertilizer. The experiment was carried out using soil samples collected in a depth of 0 to 20 cm, applying potassium chlorate solution containing 28.6, 100, 200 and 500 mg L-1 of K. To obtain transport parameters, the data were adjusted with the software STANMOD. At low concentrations, interaction between potassium and soil occur more efficiently. It was observed that only the breakthrough curve prepared with solution of 500 mg L-1 reached the applied concentration, and the solution of 28.6 mg L-1 overestimated the parameters values. The STANMOD proved to be efficient in obtaining potassium transport parameters; KCl solution to be applied should be greater than 500 mg L-1; solutions with low concentrations tend to overestimate parameters values.
Assessing the fate and effects of nano aluminum oxide in the terrestrial earthworm, Eisenia fetida.
Coleman, Jessica G; Johnson, David R; Stanley, Jacob K; Bednar, Anthony J; Weiss, Charles A; Boyd, Robert E; Steevens, Jeffery A
2010-07-01
Nano-sized aluminum is currently being used by the military and commercial industries in many applications including coatings, thermites, and propellants. Due to the potential for wide dispersal in soil systems, we chose to investigate the fate and effects of nano-sized aluminum oxide (Al2O3), the oxidized form of nano aluminum, in a terrestrial organism. The toxicity and bioaccumulation potential of micron-sized (50-200 microm, nominal) and nano-sized (11 nm, nominal) Al2O3 was comparatively assessed through acute and subchronic bioassays using the terrestrial earthworm, Eisenia fetida. Subchronic (28-d) studies were performed exposing E. fetida to nano- and micron-sized Al2O3-spiked soils to assess the effects of long-term exposure. No mortality occurred in subchronic exposures, although reproduction decreased at >or=3,000 mg/kg nano-sized Al2O3 treatments, with higher aluminum body burdens observed at 100 and 300 mg/kg; no reproductive effects were observed in the micron-sized Al2O3 treatments. In addition to toxicity and bioaccumulation bioassays, an acute (48-h) behavioral bioassay was conducted utilizing a soil avoidance wheel in which E. fetida were given a choice of habitat between control, nano-, or micron-sized Al2O3 amended soils. In the soil avoidance bioassays, E. fetida exhibited avoidance behavior toward the highest concentrations of micron- and nano-sized Al2O3 (>5,000 mg/kg) relative to control soils. Results of the present study indicate that nano-sized Al2O3 may impact reproduction and behavior of E. fetida, although at high levels unlikely to be found in the environment. Copyright (c) 2010 SETAC.
Soil organic matter on citrus plantation in Eastern Spain
NASA Astrophysics Data System (ADS)
Cerdà, Artemi; Pereira, Paulo; Novara, Agata; Prosdocimi, Massimo
2015-04-01
Citrus plantations in Eastern Spain are the main crop and Valencia region is the largest world exporter. The traditional plantation are located on flood irrigated areas and the new plantation are located on slopes were drip irrigation is the source of the wetting. It has been demonstrate that the citrus plantations contribute to high erosion rates on slopes (Cerdà et al., 2009b) as it is usual on agriculture land (Cerdà et al., 2009a), but when organic farming is present the soil erosion is much lower (Cerdà and Jurgensen, 2008; Cerdà et al., 2009; Cerdà and Jurgensen, 2011). This is a worldwide phenomenon (Wu et al., 2007; Wu et al., 2011; Xu et al., 2010; Xu et al., 2012a; Xu et al., 2012b), which are a key factor of the high erosion rates in rural areas (García Orenes et al., 2009: García Orenes et al., 20010; García Orenes et al., 2012; Haregewyn et al., 2013; Zhao et al., 2013). The key factor of the contrasted response of soils to the rain in citrus is the organic matter cover. This is why the Soil Erosion and Degradation Research Team developed a survey to determine the soil erosion rates on citrus orchards under different managements. A hundred of samples were collected in a citrus plantation on slope under conventional management (Chemical management), one on organic farming, one on traditional flood irrigated organic farming and one on traditional chemical flooding farm. The organic farming soils were treated with 10000 Kg ha-1 of manure yearly. The results show that the mean soil organic matter content was 1.24 %, 3.54%, 5,43% and 2.1% respectively, which show a clear impact of organic farming in the recovery of the soil organic matter. meanwhile the on the slopes and the flood-irrigated soils are Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7- ENV-2013- supported this research. References Cerdà, A., Flanagan, D.C., le Bissonnais, Y., Boardman, J. 2009a. Soil erosion and agriculture Soil and Tillage Research 106, 107-108. DOI: 10.1016/j.still.2009.1 Cerdà, A., Jurgensen, M.F. 2008. The influence of ants on soil and water losses from an orange orchard in eastern Spain. Journal of Applied Entomology 132, 306-314. Cerdà, A., Jurgensen, M.F. 2011. Ant mounds as a source of sediment on citrus orchard plantations in eastern Spain. A three-scale rainfall simulation approach. Catena 85, 231-236. Cerdà, A., Jurgensen, M.F., Bodi, M.B. 2009. Effects of ants on water and soil losses from organically-managed citrus orchards in eastern Spain. Biologia 64, 527-531. Cerdà, A., Morera, A.G., Bodí, M.B. 2009b. Soil and water losses from new citrus orchards growing on sloped soils in the western Mediterranean basin. Earth Surface Processes and Landforms 34, 1822-1830. García-Orenes, F., Cerdà, A., Mataix-Solera, J., Guerrero, C., Bodí, M.B., Arcenegui, V., Zornoza, R. & Sempere, J.G. 2009. Effects of agricultural management on surface soil properties and soil-water losses in eastern Spain. Soil and Tillage Research 106, 117-123. 10.1016/j.still.2009.06.002 García-Orenes, F., Guerrero, C., Roldán, A.,Mataix-Solera, J., Cerdà, A., Campoy, M., Zornoza, R., Bárcenas, G., Caravaca. F. 2010. Soil microbial biomass and activity under different agricultural management systems in a semiarid Mediterranean agroecosystem. Soil and Tillage Research 109, 110-115. 10.1016/j.still.2010.05.005. García-Orenes, F., Roldán, A., Mataix-Solera, J., Cerdà, A., Campoy, M., Arcenegui, V., Caravaca, F. 2012. Soil structural stability and erosion rates influenced by agricultural management practices in a semi-arid Mediterranean agro-ecosystem. Soil Use and Management 28, 571-579. DOI: 10.1111/j.1475-2743.2012.00451.x Haregeweyn, N., Poesen, J., Verstraeten, G., Govers, G., de Vente, J., Nyssen, J., Deckers, J., Moeyersons, J. 2013. Assessing the performance of a Spatially distributed soil erosion and sediment delivery model (WATEM/SEDEM) in Northern Ethiopia. Land Degradation & Development 24, 188-204. DOI 10.1002/ldr.1121 Wu J., Li Q., Yan L. 1997. Effect of intercropping on soil erosion in young citrus plantation - a simulation study. Chinese Journal of Applied Ecology 8, 143-146. Wu, D.-M., Yu, Y.-C., Xia, L.-Z., Yin, S.-X., Yang, L.-Z. 2011. Soil fertility indices of citrus orchard land along topographic gradients in the three gorges area of China. Pedosphere 21, 782-792. Xu, Q. X., Wang, T. W., Cai, C. F., Li, Z. X., Shi, Z. H. 2012a. Effects of soil conservation on soil properties of citrus orchards in the Three-Gorges Area, China. Land Degradation & Development, 23(1), 34-42. Xu, Q., Wang, T., Li, Z., Cai, C., Shi, Z., Jiang, C. 2010. Effect of soil conservation measurements on runoff, erosion and plant production: A case study on steeplands from the Three Gorges Area, China. Journal of Food, Agriculture and Environment 8, 980-984. Xu, Q.X., Wang, T.W., Cai, C.F., Li, Z.X., Shi, Z.H. 2012b. Effects of soil conservation on soil properties of citrus orchards in the Three-Gorges Area, China. Land Degradation and Development 23, 34-42. Zhao, G., Mu, X., Wen, Z., Wang, F., Gao, P. 2013. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degradation & Development, 24, 499- 510. DOI 10.1002/ldr.2246SP
Soil water erosion on Mediterranean vineyards. A review based on published data
NASA Astrophysics Data System (ADS)
Prosdocimi, Massimo; Cerdà, Artemi; Tarolli, Paolo
2015-04-01
Soil water erosion on cultivated lands is a severe threat to soil resources in the world (Leh et al., 2013; Zhao et al., 2013). In particular, Mediterranean areas deserve a particular attention because of their edaphic, topographic and climatic conditions. Among the cultivated lands, concerns have arisen about vineyards because, aside representing one of the most important crop in terms of income and employment, they also have proven to be the form of agricultural land that causes one of the highest soil losses (Tropeano et al., 1984; Leonard and Andrieux, 1998; Ferrero et al., 2005; Cerdà et al., 2007; Blavet et al., 2009; Casalí et al., 2009; Novara et al., 2011; Martínez Casasnovas et al., 2013; Ruiz Colmenero et al., 2013; Tarolli et al., 2014). Although the topic of soil water erosion on vineyards has been studied, it still raises uncertainties. These are due to the i) high complexity of processes involved, ii) different methodologies used to analyze them and iii) analyses carried out at different spatial and temporal scales. At this regard, this work aims to evaluate the impact of factors controlling erosion such as rainfall characteristics, topography, soil properties and soil and water conservation techniques. Data derived from experimental plots have been reviewed. At first, what emerges is the difficulty of comparing erosion rates obtained with different methodologies and at different spatial scales. Secondly, all the factors demonstrate to have a strong impact on soil erosion but a 'general rule' upon which to consider one factor always predominant over the others does not come out. Therefore, this work supports the importance of monitoring soil water erosion by field measurements to better understand the relationship between the factors. Variables like rainfall characteristics, topography and soil properties are much more difficult to modify than the soil and water management techniques. Hence, future researches are needed to both recommend the best soil and water management techniques to the farmers and implement soil erosion mitigation policies at appropriate spatial scales. Acknowledgements The RECARE project is funded by the European Commission FP7 program, ENV.2013.6.2-4 "Sustainable land care in Europe". References Blavet, D., De Noni, G., Le Bissonnais, Y., Leonard, M., Maillo, L., Laurent, J.Y., Asseline, J., Leprun, J. C., Arshad, M. A., Roose, E.: Effect of land use and management on the early stages of soil water erosion in French Mediterranean vineyards, Soil & Tillage Research, 106, 124-136, 2009. Brenot, J., Quiquerez, A., Petit, C., Garcia, J.-P., Davy, P.: Soil erosion rates in Burgundian vineyards, Bolletino della Società Geologica Italiana, Volume Speciale 6, 169-174, 2006. Casalí, J., Giménez, R., De Santisteban, L., Alvarez-Mozos, J., Mena, J., Del Valle de Lersundi, J.: Determination of long-term erosion rates in vineyards of Navarre (Spain) using botanical benchmarks, Catena, 78, 12-19, doi:10.1016/ j.catena.2009.02.015, 2009. Cerdà, A., Doerr, S. H.: Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils, Hydrological Processes, 21, 2325-2336, doi: 10.1016/j.catena.2008.03.010, 2007. Ferrero, A., Usowicz, B., Lipiec, J.: Effects of tractor traffic on spatial variability of soil strength and water content in grass covered and cultivated sloping vineyard, Soil & Tillage Research, 84, 127-138, 2005. Leh, M., Bajwa, S., Chaubey, I.: Impact of land use change on erosion risk: and integrated remote sensing geographic information system and modeling methodology, Land Degradation & Development, 24, 409- 421, doi 10.1002/ldr.1137, 2013. Leonard, J., Andrieux, P.: Infiltration characteristics of soils in Mediterranean vineyards in southern France, Catena, 32, 209-223, 1998. Martinez-Casasnovas, J. A., Ramos, M. C., Benites, G.: Soil and water assessment tool soil loss simulation at the sub-basin scale in the Alt Penedès-Anoia vineyard region (NE Spain) in the 2000s, Land Degradation & Development, doi: 10.1002/ldr.2240, 2013. Novara, A., Gristina, L., Saladino, S. S., Santoro, A., Cerdà, A.: Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard, Soil & Tillage Research, 117, 140-147, 2011. Ruiz-Colmenero, M., Bienes, R., Eldridge, D. J., Marques, M. J.: Vegetation cover reduces erosion and enhances soil organic carbon in a vineyard in the central Spain, Catena, 104, 153-160, doi:10.1016/j.catena.2012.11.007, 2013. Tarolli, P., Sofia, G., Calligaro, S., Prosdocimi, M., Preti, F., Dalla Fontana, G.: Vineyards in terraced landscapes: new opportunities from lidar data, Land Degradation & Development, doi:10.1002/ldr.2311, 2014. Tropeano, D.: Rate of soil erosion processes on vineyards in central Piedmont (NW Italy), Earth Surf. Process. Landf., 9, 253- 266, 1984. Zhao, G., Mu, X., Wen, Z., Wang, F., Gao, P.: Soil erosion, conservation, and Eco-environment changes in the Loess Plateau of China, Land Degradation & Development, 24, 499- 510, doi 10.1002/ldr.2246, 2013.
NASA Astrophysics Data System (ADS)
Porras, R. C.; Torn, M. S.; McFarlane, K. J.
2011-12-01
Association with mineral surfaces is suggested as one mechanism underlying the long-term stabilization of organic matter in soils. Several recent studies have demonstrated a positive correlation between short range ordered soil Fe and Al concentrations and soil OM or radiocarbon based residence time. The positive correlation between poorly crystalline Fe and Al and 14C-based residence times suggests that mineral associated OM persists over much longer time scales. Suggested mechanisms include encapsulation within iron oxide microaggregate structures or adsorption to highly reactive metal oxide mineral surfaces both of which have been shown to reduce the bioavailabilty of toxicant species in soil and aquatic environments. We utilized radiocarbon measurements coupled with selective chemical dissolution techniques to investigate the relationship between the concentration of short range order Fe and Al oxides and the stability of soil organic matter across four deciduous forest sites in the eastern U.S.comprising three different soil orders. Preliminary results indicate that SRO Fe and Al slow the turnover of SOM, with a significant linear relationship between computed radiocarbon turnover time and SRO Al and Fe overall (R2= 0.60,P=0.0001,CL=95%). Piecewise regression analysis on turnover time vs. metal oxide concentration for all four sites shows an apparent metal oxide threshold value at 5g kg-1. Sites with SRO Al and Fe content below this value showed no statistically significant influence on SOM stability presumably because they are present in insufficient quantity to exert a measureable influence on the decomposability of organic inputs. Among individual sites, Harvard Forest had the highest extractable metal oxide concentrations and exhibited the strongest influence of SRO Fe and Al oxides on 14C based turnover times (R2=0.91, P=0.0001,CL=95%); in this soil, poorly crystalline metal oxides are quantitatively important in stabilizing organic inputs against decomposition. Although more fundamental geochemical research will be necessary to obtain a truly mechanistic description of the specific processes responsible for organic matter stabilization in soil, an empirical approach consisting of selective chemical dissolution coupled with 14C measurements does permit useful insights into the relationship between SOM stability and SRO metal oxide content for the soils under study which may in turn be used to inform model parameterizations.
NASA Astrophysics Data System (ADS)
Hugelius, G.; Ahlström, A.; Canadell, J.; Koven, C. D.; Jackson, R. B.; Luo, Y.
2016-12-01
Soils hold the largest reactive pool of carbon (C) on earth. Global soil organic C stocks (0-200 cm depth plus full peatland depth) are estimated to 2200 Pg C (adapted from Hugelius et al., 2014, Köchy et al., 2015 and Batjes, 2016). Soil C stocks in Earth system models (ESMs) can be generated by running the model over a longer time period until soil C pools are in or near steady-state. Inherent in this concept is the idea that soil C stocks are in (quasi)equilibrium as determined by the balance of net ecosystem input to soil organic matter and its turnover. The rate of turnover is sometimes subdivided into several pools and the rates are affected by various environmental factors. Here we break down the empirically based estimates of global soil C pools into equilibrium-type soils which current (Coupled Model Intercomparison Project, phase 5; CMIP5) generation ESMs are set-up to represent and non-equilibrium type soils which are generally not represented in current ESMs. We define equilibrium soils as those where pedogenesis (and associated soil C formation) is not significantly limited by the environmental factors perennial soil freezing, waterlogging/anoxia or limited unconsolidated soil substrate. This is essentially all permafrost-free mineral soils that are not in a wetland or alpine setting. On the other hand, non-equlibrium soils are defined as permafrost soils, peatlands and alpine soils with a limited fine-soil matrix. Based on geospatial analyses of state-of-the-art datasets on soil C stocks, we estimate that the global soil C pool is divided roughly equally between equilibrium and non-equlibrium type soils. We discuss the ways in which this result affects C cycling in ESMs and projections of soil C sensitivity under a changing climate. ReferencesBatjes N.H. (2016) Geoderma, 269, 61-68, doi: 10.1016/j.geoderma.2016.01.034 Hugelius G. et al. (2014) Biogeosciences, 11, 6573-6593, doi:10.5194/bg-11-6573-2014 Köchy M. et al. (2015) Soil 1, 351-365. DOI: doi:10.5194/soil-1-351-2015
NASA Astrophysics Data System (ADS)
Mao, Xianhe; Qin, Zhigui; Yuan, Xiaoning; Wang, Chunming; Cai, Xinan; Zhao, Weixia; Zhao, Kang; Yang, Ping; Fan, Xiaoling
2013-11-01
A simulated radioactive soil waste containing cerium as an imitator element has been immobilized by a thermite self-propagating high-temperature synthesis (SHS) process. The compositions, structures, and element leaching rates of products with different cerium contents have been characterized. To investigate the influence of iron on the chemical stability of the immobilized products, leaching tests of samples with different iron contents with different leaching solutions were carried out. The results showed that the imitator element cerium mainly forms the crystalline phases CeAl11O18 and Ce2SiO5. The leaching rate of cerium over a period of 28 days was 10-5-10-6 g/(m2 day). Iron in the reactants, the reaction products, and the environment has no significant effect on the chemical stability of the immobilized SHS products.
Soil microbial activities beneath Stipa tenacissima L. and in surrounding bare soil
NASA Astrophysics Data System (ADS)
Novosadová, I.; Ruiz Sinoga, J. D.; Záhora, J.; Fišerová, H.
2010-05-01
Open steppes dominated by Stipa tenacissima L. constitute one of the most representative ecosystems of the semi-arid zones of Eastern Mediterranean Basin (Iberian Peninsula, North of Africa). These steppes show a higher degree of variability in composition and structure. Ecosystem functioning is strongly related to the spatial pattern of grass tussocks. Soils beneath S. tenacissima grass show higher fertility and improved microclimatic conditions, favouring the formation of "resource islands" (Maestre et al., 2007). On the other hand in "resource islands" and in surrounding bare soil exists the belowground zone of influence. The competition for water and resources between plants and microorganisms is strong and mediated trough an enormous variety of exudates and resource depletion intended to regulate soil microbial communities in the rhizosphere, control herbivory, encourage beneficial symbioses, and change chemical and physical properties in soil (Pugnaire et Armas, 2008). Secondary compounds and allelopathy restrict other species growth and contribute to patchy plant distribution. Active root segregation affects not only neighbourś growth but also soil microbial activities. The objective of this study was to assess the effect of Stipa tenacissima on the key soil microbial activities under controlled incubation conditions (basal and potential respiration; net nitrogen mineralization). The experimental plots were located in the province Almería in Sierra de los Filabres Mountains near the village Gérgal (southeast Spain) in the small catchment which is situated between 1090 - 1165 m a.s.l. The area with extent of 82 000 m2 is affected by soil degradation. The climate is semiarid Mediterranean. The mean annual rainfall is of about 240 mm mostly concentrated in autumn and spring. The mean annual temperature is 13.9° C. The studied soil has a loam to sandy clay texture and is classified as Lithosol (FAO-ISRIC and ISSS, 1998). The vegetation of these areas is an open steppe dominated by Stipa tenacissima. In February 2009 representative soil samples from the top 10 cm were taken beneath grass tussock and from bare soil. Soil samples in three replicates were incubated after rewetting with distilled water (basal microbial activities) and after rewetting with the glucose solution and with the mixture of glucose and peptone solution (potential microbial activities). The CO2, C2H4 evolved under controlled conditions (60% WHC, 24°C) during a 37-day aerobic incubation were determined. Ammonia and nitrate nitrogen were estimated in percolates after simulated rainfall (on the 16th day of incubation) and in the incubated soil samples at the end of incubation. Net ammonification and net nitrification rates were determined by subtracting initial soil mineral N from both mineral N in percolates plus final mineral N contents at 37th day. Basal, potential microbial respiration and net nitrification in the soils beneath S. tenacissima were, in general, not significantly different from the bare soils. The differences between plant-covered soil and bare soil in cumulative values of CO2 production and in amounts of accumulated NO3--N (net nitrification) were less than ± 10%. Greater differences were found in the net ammonification, which were higher beneath S. tenacissima, mainly in the control (basal activities) variant (about 38 %). Significantly less ethylene produced by microbial activity in soils beneath S. tenacissima after the addition of glucose indicates the dependence of rhizospheric microbial communities on available carbon compounds mainly from root exudates. It can be concluded, similarly as published Goberna et al., (2007), that the distribution of soil microbial properties in semi-arid Mediterranean ecosystems is not necessarily associated with the patchy plant distribution and that some microbial activities characteristics can be unexpectedly homogenous.
NASA Astrophysics Data System (ADS)
Coppola, A.; Santini, A.; Botti, P.; Vacca, S.; Comegna, V.; Severino, G.
2004-06-01
This paper aims mainly to provide experimental evidence of the consequences of urban wastewater reuse in irrigation practices on the hydrological behavior of soils. The effects on both the hydraulic and dispersive properties of representative soils in southern Sardinia are illustrated. Ten undisturbed soil monoliths, 120 cm in height and 40 cm in diameter, were collected from plots previously selected through a soil survey. Soil hydraulic and solute transport properties were determined before and after application of wastewater using transient water infiltration and steady state-solute transport column experiments. Detailed spatial-temporal information on the propagation of water and solute through the soil profiles were obtained by monitoring soil water contents, θ, pressure heads, h, and solute concentrations, C, measured by a network of time domain reflectometry probes, tensiometers and solution samplers horizontally inserted in each column at different depths. A disturbed layer at the soil surface, which expands in depth with time, was observed, characterized by reduced soil porosity, translation of pore size distribution towards narrower pores and consequent decrease in water retention, hydraulic conductivity and hydrodynamic dispersion. It is shown that these changes occurring in the disturbed soil layer, although local by nature, affect the hydrological behavior of the whole soil profile. Due to the disturbed layer formation, the soil beneath never saturates. Such behavior has important consequences on the solute transport in soils, as unsaturated conditions mean higher residence times of solutes, even of those normally characterized by considerable mobility (e.g. boron), which may accumulate along the profile. The results mainly provide experimental evidence that knowledge of the chemical and microbiological composition of the water is not sufficient to evaluate its suitability for irrigation. Other factors, mainly soil physical and hydrological characteristics, should be considered in order to define appropriate guidelines for wastewater management.
Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N
2016-03-01
Exchange of water and solutes between contaminated soil matrix and bulk solution in preferential flow paths has been shown to contribute to the long-term release of dissolved contaminants in the subsurface, but whether and how this exchange can affect the release of colloids in a soil are unclear. To examine this, we applied rainfall solutions of different ionic strength on an intact soil core and compared the resulting changes in effluent colloid concentration through multiple sampling ports. The exchange of water between soil matrix and the preferential flow paths leading to each port was characterized on the basis of the bromide (conservative tracer) breakthrough time at the port. At individual ports, two rainfalls of a certain ionic strength mobilized different amounts of colloids when the soil was pre-exposed to a solution of lower or higher ionic strength. This result indicates that colloid mobilization depended on rainfall solution history, which is referred as colloid mobilization hysteresis. The extent of hysteresis was increased with increases in exchange of pore water and solutes between preferential flow paths and matrix. The results indicate that the soil matrix exchanged the old water from the previous infiltration with new infiltrating water during successive infiltration and changed the pore water chemistry in the preferential flow paths, which in turn affected the release of soil colloids. Therefore, rainfall solution history and soil heterogeneity must be considered to assess colloid mobilization in the subsurface. These findings have implications for the release of colloids, colloid-associated contaminants, and pathogens from soils.
NASA Astrophysics Data System (ADS)
Gomez, Jose Alfonso; Biddoccu, Marcella; Guzmán, Gema; Cavallo, Eugenio
2016-04-01
Analysis with simulation models is in many situations the only way to evaluate the impact of changes in soil management on soil erosion risk, and the Revised Universal Soil Loss Equation RUSLE (Renard et al. 1997, Dabney et al. 2012) remains as the most widely used. Even with their relative simplicity compared to other, more process based, erosion models proper RUSLE calibration for a given situation outside the modelling community can be challenging, especially in situations outside of those widely covered in the USA. An approach pursued by Gómez et al. (2003) to overcome this problems for calibrating RUSLE, specially the cover-management factor, C, was to build a summary model using the equations defined by the RUSLE manual (Renard et al. 1997) but considering that the basic information required to calibrate the subfactors, such as soil surface roughness and ground cover, soil moisture, … were calculated (or taken from available sources) elsewhere and added to the summary model instead of calculated by the RUSLE software. This strategy simplified the calibration process as well as the understanding and interpretation of the RUSLE parameters and model behavior by on-expert users for its application in olive orchards under a broad range of management conditions. Gómez et al. (2003) build this summary model in Excel and demonstrated the ability to calibrate RUSLE for a broad range of management conditions. Later on several studies (Vanwalleghem et al., 2011, Marin, 2013) demonstrated how this summary model successfully predicted soil losses at hillslope scale close to those determined experimentally. Vines are one of the most extended tree crops covering a wide range of environmental and management conditions, and conceptually present in terms of soil conservation several analogies with olives especially in relation to soil management (Gomez et al., 2011). In vine growing areas, besides topographic and rainfall characteristics, the soil management practices adopted in vineyards could favor erosion. Cultivation with rows running up-and-down the slope on sloping vineyards, maintenance of bare soil, compaction due to high traffic of machinery are some of the vineyard's management practices that expose soil to degradation, favoring runoff and soil erosion processes. On the other side, the adoption of grass cover in vineyards has a fundamental role in soil protection against erosion, in case of high rainfall intensity and erosivity. This communication presents a preliminary version of a summary model to calibrate RUSLE for vines under different soil management options following an approach analogous to that used by Gómez et al. (2003) for olive orchards in a simplified situation of an homogeneous hillslope, including the latest RUSLE conceptual updates (RUSLE2, Dabney et al., 2012). It also presents preliminary results for different values of the C factor under different soil management and environmental conditions, as well as its impact on predicted soil losses in the long term in vineyards located in Southern Spain and N Italy. Keywords: vines, erosion, soil management, RUSLE, model. References Dabney, S.M. Yoder, D.C. Yoder, Vieira, D.A.N. 2012. The application of the Revised Universal Soil Loss Equation, Version 2, to evaluate the impacts of alternative climate change scenarios on runoff and sediment yield. Journal of Soil and Water Conservation 67: 343 - 353. Gómez, J.A., Battany, M., Renschler, C.S., Fereres, E. 2003. Evaluating the impact of soil management on soil loss in olive orchards. Soil Use Manage. 19: 127- 134. Gómez, J.A., Llewellyn, C., Basch, G, Sutton, P.B., Dyson, J.S., Jones, C.A. 2011. The effects of cover crops and conventional tillage on soil and runoff loss in vineyards and olive groves in several Mediterranean countries. Soil Use and Management 27 502 - 514 Marín, V. 2013. Interfaz gráfica para la valoración de la pérdida de suelo en parcelas de olivar. Final Degree project. University of Cordoba. Vanwalleghem, T., Infante, J.A., González, M., Soto, D., Gómez, J.A. 2011. Quantifying the effect of historical soil management on soil erosion rates in Mediterranean olive orchards. Agriculture, Ecosystems & Environment 142: 341-351.
Silicon Isotopic Fractionation in a Tropical Soil-Plant System
NASA Astrophysics Data System (ADS)
Opfergelt, S.; Delstanche, S.; Cardinal, D.; Andre, L.; Delvaux, B.
2006-12-01
Silica fluxes to soil solutions and water streams are controlled by both abiotic and biotic processes occurring in a Si soil-plant cycle that can be significant in comparison with Si weathering input and hydrological output. The quantification of Si-isotopic fractionation by these processes is highly promising to study the Si soil-plant cycle. Therein, the fate of aqueous monosilicic acid H4SiO4, as produced by silicate weathering, may take four paths: (1) uptake by plants and recycling through falling litter, (2) formation of clay minerals, (3) specific adsorption onto Al and Fe oxides, (4) leaching in drainage waters and export from watersheds. Here we report on detailed Si-isotopic compositions of various Si pools in a tropical soil-plant system involving old stands of banana (Musa acuminata Colla, cv Grande Naine) cropped on a weathering sequence of soils derived from andesitic volcanic ash and pumice deposits in Cameroon, West Africa. Si-isotopic compositions were measured by MC-ICP-MS in dry plasma mode with external Mg doping with a reproducibility of 0.08 permil (2stdev). Results were expressed as delta29Si vs NBS28. The compositions were determined in plant parts, bulk soils, clay fractions (less than 2um) and stream waters used for crop irrigation. Of the weathering sequence, we selected young (Y) and old (O) volcanic soils (vs). Yvs are rich in weatherable minerals, and contain large amounts of pumice gravels; their clay fraction (10-35 percent) contains allophane, halloysite and ferrihydrite. Oppositely, Ovs are strongly weathered and fine clayey soils (75-96 percent clay) rich in halloysite, kaolinite, gibbsite and goethite. Intra-plant fractionation between roots and shoots and within shoots confirmed our previous data measured on banana plants grown in hydroponics. The bulk plant isotopic composition was heavier at Ovs than at Yvs giving a fractionation factor per atomic mass unit between plants and their irrigation water Si source (+0.61 permil) of -0.33 (Ovs) and -0.56 permil (Yvs), close to the fractionation factor previously measured in hydroponics (-0.40 permil). The average delta29Si of phytoliths in banana plants was +0.17 permil. In the topsoil, the isotopic composition of Yvs ( 0.21 permil) was close to that of unweathered pumice (-0.20 permil). The Ovs were significantly lighter (-0.73 permil), confirming published data pointing to lighter isotopic composition with increased weathering. Heavier bulk plants at Ovs might be related to a heavier residual soil solution due to: (i) the formation of lighter clay minerals at Ovs (clay fraction: -0.94 permil) than at Yvs (-0.60 permil), and (ii) the quantitative adsorption of silica onto iron oxides (see Delstanche et al., 2006, AGU), more abundant in weathered Ovs. Our data support the view that plants can induce a strong imprint on the continental cycle of silicon, just as clay formation and possibly Si adsorption onto iron oxides can do. The quantification of Si-isotopic fractionation in the soil-plant system requires, however, further studies involving all the Si pools to achieve a comprehensive understanding of this cycle.
NASA Astrophysics Data System (ADS)
Dinu, Marina
2013-04-01
Organic matter (OM) of natural waters can bind with the ions metals (IM) entering the system, thus reducing their toxic properties. OM in water consists predominantly (up to 80%) of humic acids (HA), represented by highmolecular, dyed, polyfunctional compounds. The natural-climatic zones feature various ratios of fulvic (FA) and humic acids. An important specific feature of metals as contamination elements is the fact that when they occur in the environment, their potential toxicity and bioavailability depend significantly on their speciation. In recent years, lakes have been continuously enriched in hazardous elements such as Pb, Cd, Al, and Cr on a global (regional) basis. The most important organic ligands are humic matter (HM) washed out from soils in water and metals occur in natural waters as free ions, simple complexes with inorganic and organic ligands, and mineral and organic particles of molecules and ions sorbed on the surface. The occurrence of soluble metal forms in natural waters depends on the presence of organic and inorganic anions. However, direct determinations are rather difficult. The goal was the calculation and analysis of the forms of metals in the system catchment basin, based on the chemical composition of the water body and the structural features of soil humic substances (HS).We used the following analytical techniques - leaching of humic substances from soil and sample preparation (Orlov DS, 1985), the functional characteristics of humic substances - spectral analysis methods, the definition of conditional stability constants of complexes - electrochemical methods of analysis. Our results show thet HAs of selected soil types are different in functions, and these differences effect substantially the complexing process. When analyzing the results obtained in the course of spectrometric investigation of HMs in selected soil types, we determined the following main HA characteristics: (1) predominance of oxygen bearing groups in HM of the northern taiga soils; (2) similar amounts of oxygen bearing fragments, hydrocarbon constituents, and nitrogen bearing components in the mixed forest zones; (3) occurrence of aromatic and aliphatic hydrocarbons in HM of steppe soils. The HM functional characteristics influence substantially the stability constants of complexes with metal ions and complex stoichiometry: Fe(III)>Cu(II)>Pb(II)>Al(III)>Co(II)>Ni(II)>Cd(II)>Zn(II)>Cr(III)>Mg(II)>Sr(II)>Ca(II)>Mn(II) - northern taiga soils; Cu(II)>Fe(III)>Al(III)>Ni(II)>Zn(II)>Pb(II)>Co(II)>Cd(II)>Sr(II)>Mn(II)>Cr(III)>Ca(II)>Mg(II) - mixed forest zones; Fe(III)>Cu(II)>Al(III)>Pb(II)>Ni(II)>Zn(II)>Co(II)>Ca(II)>Cd(II)>Sr(II)>Mg(II)>Cr(III)>Mn(II) - steppe soils. 1. T.I. Moiseenko, L.P. Kudryavtseva, and N.A. Gashkina, Scattered Element in Surface Land Waters: Technophility, Bioaccumulation, and Ecotoxicology (Nauka, Moscow, 2006) 2. G. M. Varshal, Ext. Abstr. Doct. Dis. Chem. (Inst. Geokh. Analit. Khim. RAN, Moscow, 1994).. 4. D.S. Orlov, Humic Acids (MGU, Moscow, 1986) 5. D.V. Kovalevsky, Ext. Abstr. Cand. Dis. Chem. (MGU, Moscow, 1998). 6. I.A. Linnik and B. I. Nabivanets, Metal Migration Forms in Surface Fresh Waters (Gidrometizdat, Leningrad, 1985) 7. Hartley, F., Burgess, C., and Alcoc, R., Solution Equilibria (Ellis Horwood, Chichester (UK), 1980). 8. Yu. Yu. Lur'e, Reference Book of Physicochemical Values (Nauka, Moscow, 2000)
When interflow also percolates: downslope travel distances and hillsclope process zones
C. Rhett Jackson; Menberu Bitew; Enhao Du
2014-01-01
In hillslopes with soils characterized by deep regoliths, such as Ultisols, Oxisols, and Alfisols, interflow occurs episodically over impeding layers near and parallel to the soil surface such as low-conductivity B horizons (e.g.Newman et al., 1998; Buttle and McDonald, 2002; Du et al., In Review), till layers (McGlynn et al., 1999; Bishop et al., 2004), hardpans (...
Aluminum, a Friend or Foe of Higher Plants in Acid Soils
Bojórquez-Quintal, Emanuel; Escalante-Magaña, Camilo; Echevarría-Machado, Ileana; Martínez-Estévez, Manuel
2017-01-01
Aluminum (Al) is the most abundant metal in the earth’s crust, but its availability depends on soil pH. Despite this abundance, Al is not considered an essential element and so far no experimental evidence has been put forward for a biological role. In plants and other organisms, Al can have a beneficial or toxic effect, depending on factors such as, metal concentration, the chemical form of Al, growth conditions and plant species. Here we review recent advances in the study of Al in plants at physiological, biochemical and molecular levels, focusing mainly on the beneficial effect of Al in plants (stimulation of root growth, increased nutrient uptake, the increase in enzyme activity, and others). In addition, we discuss the possible mechanisms involved in improving the growth of plants cultivated in soils with acid pH, as well as mechanisms of tolerance to the toxic effect of Al. PMID:29075280
Levitan, Denise M.; Zipper, Carl E.; Donovan, Patricia; Schreiber, Madeline E.; Seal, Robert; Engle, Mark A.; Chermak, John A.; Bodnar, Robert J.; Johnson, Daniel K.; Aylor, Joseph G.
2015-01-01
Soil geochemical anomalies can be used to identify pathfinders in exploration for ore deposits. In this study, compositional data analysis is used with multivariate statistical methods to analyse soil geochemical data collected from the Coles Hill uranium deposit, Virginia, USA, to identify pathfinders associated with this deposit. Elemental compositions and relationships were compared between the collected Coles Hill soil and reference soil samples extracted from a regional subset of a national-scale geochemical survey. Results show that pathfinders for the Coles Hill deposit include light rare earth elements (La and Ce), which, when normalised by their Al content, are correlated with U/Al, and elevated Th/Al values, which are not correlated with U/Al, supporting decoupling of U from Th during soil generation. These results can be used in genetic and weathering models of the Coles Hill deposit, and can also be applied to future prospecting for similar U deposits in the eastern United States, and in regions with similar geological/climatic conditions.
The lability (mobility and bioavailability) of metals varies significantly with soil properties for similar total soil metal concentrations. We studied desorption of Cu, Ni and Zn, from 15 diverse, unamended soils. These studies included evaluation of the effects of soil:solution...
The inflow of Cs-137 in soil with root litter and root exudates of Scots pine
NASA Astrophysics Data System (ADS)
Shcheglov, Alexey; Tsvetnova, Olga; Popova, Evgenia
2017-04-01
In the model experiment on evaluation of Cs-137 inflow in the soil with litter of roots and woody plants root exudates on the example of soil and water cultures of Scots pine (Pinus sylvestris L.) was shown, that through 45 days after the deposit Cs-137 solution on pine needles (specific activity of solution was 3.718*106 Bk) of the radionuclide in all components of model systems has increased significantly: needles, small branches and trunk by Cs-137 surface contamination during the experiment; roots as a result of the internal distribution of the radionuclide in the plant; soil and soil solution due to the of receipt Cs-137 in the composition of root exudates and root litter. Over 99% of the total reserve of Cs-137 accumulated in the components of the soil and water systems, accounted for bodies subjected to external pollution (needles and small branches) and <0.5% - on the soil / soil solution, haven't been subjected to surface contamination. At the same contamination of soil and soil solution by Cs-137 in the model experiment more than a> 99.9% was due to root exudates
NASA Astrophysics Data System (ADS)
Valdes-Abellan, Javier; Candela, Lucila; Medero, Gabriela; Buckman, Jim; Hasnayn, Mohammad M.
2015-04-01
Impacts on soil and aquifer media from the use of non-conventional water (treated wastewater-TWW, desalted) for irrigation have been widely studied in the last years . A number of contributions have focused on the impacts derived from the use of TWW (Assouline and Narkis, 2013; Lahav et al., 2010; Xu et al., 2010). Changes in soil hydraulic conductivity and clogging processes have been studied in laboratory experiments from soil columns (Lado and Ben-Hur, 2010) and at field scale (Costa, 1999; Minhas et al., 1994). Irrigation with non-conventional water may also lead to the occurrence of contaminants, a major current environmental concern (Valdes-Abellan et al., 2013). Previous studies have considered impacts in a uniform soil media pore structure; less attention has been paid at a microscopic scale and the influence that high-salinity water may have on wettability of soil. Environmental scanning electron microscopy (ESEM) is a useful technique to be applied in soil science to analyse microscopic changes in soil structure or soil wetting patterns. Research applying this technology for wet systems (Donald, 1998) or porous media (Ali et al., 1995) is available, however as far as we know research on soil impacts due to long term irrigation with saline or non-conventional water are much less common. The dynamic mode of the ESEM allows changes of samples from wet to dry by modifying the water vapour pressure and to observe the wetting and drying patterns and interactions between the solid and liquid phase in the soil (Lourenço et al., 2008). Preliminary results of the study at a microscopic scale of soil samples collected before and after three year irrigation with slightly salted water in an experimental plot setup in semi-arid climatic conditions (Alicante, SE Spain) are presented. We will show the micro-structure of soil and undertake a preliminary investigation of wetting and drying of samples using ESEM techniques Differences in the water vapour pressure value at which complete saturation is achieved was detected, being lower in the 3-years irrigated samples compared with the initial ones. Besides, velocity in which saturation took place was different: initial samples saturation process were developed very quickly, as triggered by a critical shift in the water vapour pressure value and much gradual process were develop in the 3-years irrigated sample when saturation started earlier.
NASA Technical Reports Server (NTRS)
Gruener, J. E.; Ming, Doug; Galindo, C., Jr.; Henderson, K. E.
2006-01-01
The National Aeronautics and Space Administration (NASA) has developed advanced life support (ALS) systems for long duration space missions that incorporate plants to regenerate the atmosphere (CO2 to O2), recycle water (via evapotranspiration), and produce food. NASA has also developed a zeolite-based synthetic substrate consisting of clinoptilolite and synthetic apatite to support plant growth for ALS systems (Ming et al., 1995). The substrate is called zeoponics and has been designed to slowly release all plant essential elements into "soil" solution. The substrate consists of K- and NH4-exchanged clinoptilolite and a synthetic hydroxyapatite that has Mg, S, and the plant-essential micronutrients incorporated into its structure in addition to Ca and P. Plant performance in zeoponic substrates has been improved by the addition of dolomite pH buffers, nitrifying bacteria, and other calcium-bearing minerals (Henderson et al., 2000; Gruener et al., 2003). Wheat was used as the test crop for all of these studies. The objectives of this study were to expand upon the previous studies to determine the growth and nutrient uptake of radish in zeoponic substrates and to determine the nutrient availability of the zeoponic substrate after three successive radish crops.
1981-12-01
IW samples were determined because researchers have suggested that if an element was present in the IW (or soil solution ), then it could be...1973), using the soil solution extraction method of Hossner and Phillips (1973), showed that if the soil solution phosphorus concentration was greater -i...Patrick (1977b) indicated that if cadmium was present in the soil solution , it was moving into the rice plant with the transpiration stream. Bingham et
Xi, Min; Lu, Xian-Guo; Li, Yue; Kong, Fan-Long
2007-01-01
Overwhelming evidence reveals that concentrations of dissolved organic carbon (DOC) have increased in streams which brings negative environmental impacts. DOC in stream flow is mainly originated from soil-water solutions of watershed. Wetlands prove to be the most sensitive areas as an important DOC reserve between terrestrial and fluvial biogeosystems. This reported study was focused on the distribution characteristics and the controlling factors of DOC in soil-water solutions of annular wetland, i.e., a dishing wetland and a forest wetland together, in the Sanjiang Plain, Northeast China. The results indicate that DOC concentrations in soil-water solutions decreased and then increased with increasing soil depth in the annular wetland. In the upper soil layers of 0-10 cm and 10-20 cm, DOC concentrations in soil-water solutions linearly increased from edge to center of the annular wetland (R2 = 0.3122 and R2 = 0.443). The distribution variations were intimately linked to DOC production and utilization and DOC transport processes in annular wetland soil-water solutions. The concentrations of total organic carbon (TOC), total carbon (TC) and Fe(II), DOC mobility and continuous vertical and lateral flow affected the distribution variations of DOC in soil-water solutions. The correlation coefficients between DOC concentrations and TOC, TC and Fe(II) were 0.974, 0.813 and 0.753 respectively. These distribution characteristics suggested a systematic response of the distribution variations of DOC in annular wetland soil-water solutions to the geometry of closed depressions on a scale of small catchments. However, the DOC in soil pore water of the annular wetland may be the potential source of DOC to stream flow on watershed scale. These observations also implied the fragmentation of wetland landscape could bring the spatial-temporal variations of DOC distribution and exports, which would bring negative environmental impacts in watersheds of the Sanjiang Plain.
Controls on soil solution nitrogen along an altitudinal gradient in the Scottish uplands
NASA Astrophysics Data System (ADS)
Jackson-Blake, L.; Helliwell, R. C.; Britton, A. J.; Gibbs, S.; Coull, M. C.; Dawson, L.
2012-04-01
Nitrogen (N) deposition continues to threaten upland ecosystems, contributing to acidification, eutrophication and biodiversity loss. We present results from a monitoring study aimed at investigating the fate of this deposited N within a relatively pristine catchment in the Cairngorm Mountains (Scotland). Six sites were established along an elevation gradient (486 - 908 m) spanning the key habitats of temperate maritime uplands. Bulk deposition chemistry, soil carbon content, soil solution chemistry, soil temperature and soil moisture content were monitored over a 5 year period, making this the first study of its kind in a maritime Alpine environment. Results were used to assess spatial variability in soil solution N and to investigate the factors and processes driving this variability. Highest soil solution inorganic N concentrations were found in the alpine soils at the top of the hillslope. Soil carbon stock, dissolved organic carbon concentration and factors representing site hydrology were the best predictors of nitrate concentration. These factors act as proxies for changing net biological uptake and soil/water contact time, and support the hypothesis that spatial variations in soil solution nitrate are controlled by habitat N retention capacity. Soil percent carbon was a better predictor of soil solution N concentration than mass of carbon. Ammonium was less affected by soil hydrology than nitrate and showed the effects of net mineralization inputs, particularly at Racomitrium heath and peaty sites. We hypothesize that high ammonium concentrations at the Racomitrium heath are related to the mineralization of microbial cell tissue during times of stress, largely in the absence of plant uptake. Due to the spatial heterogeneity in N leaching potential, a fine-scale approach to assessing surface water vulnerability to N leaching is recommended over the broad scale, critical loads approach currently in use, particularly for sensitive areas.
Agostinho, Flavia B.; Tubana, Brenda S.; Martins, Murilo S.; Datnoff, Lawrence E.
2017-01-01
A series of pot experiments were conducted to: (1) evaluate the effects of different Si sources (soil- and foliar-applied) on grain yield and Si accumulation of rice supplied with varying P rates, and (2) evaluate Si absorption of rice using foliar- and soil-applied Si fertilizers. Three P rates, (0, 112, and 224 kg ha−1) combined with five Si treatments (wollastonite and slag applied at 4.5 ton ha−1 and one foliar Si solution applied at 20, 40 and 80 mg Si L−1) and a check were arranged in a randomized complete block design with four replications. The presence of P and Si in the soil created a synergistic effect on soil Al, Mn, and As (P < 0.01), but not on rice growth and P uptake. Wollastonite and slag application were most effective in raising rice Si content than foliar applied Si (P < 0.001). While there was an improvement in biomass (42%) and tiller production (25%) for rice receiving foliar Si, no supporting evidence was obtained in these experiments to verify leaf surface Si absorption. The application of Si-rich materials to soil still remains the most effective method for enhancing Si uptake by plants. PMID:28850079
Agostinho, Flavia B; Tubana, Brenda S; Martins, Murilo S; Datnoff, Lawrence E
2017-08-29
A series of pot experiments were conducted to: (1) evaluate the effects of different Si sources (soil- and foliar-applied) on grain yield and Si accumulation of rice supplied with varying P rates, and (2) evaluate Si absorption of rice using foliar- and soil-applied Si fertilizers. Three P rates, (0, 112, and 224 kg ha -1 ) combined with five Si treatments (wollastonite and slag applied at 4.5 ton ha -1 and one foliar Si solution applied at 20, 40 and 80 mg Si L -1 ) and a check were arranged in a randomized complete block design with four replications. The presence of P and Si in the soil created a synergistic effect on soil Al, Mn, and As ( P < 0.01), but not on rice growth and P uptake. Wollastonite and slag application were most effective in raising rice Si content than foliar applied Si ( P < 0.001). While there was an improvement in biomass (42%) and tiller production (25%) for rice receiving foliar Si, no supporting evidence was obtained in these experiments to verify leaf surface Si absorption. The application of Si-rich materials to soil still remains the most effective method for enhancing Si uptake by plants.
NASA Astrophysics Data System (ADS)
Cerdà, Artemi; Keesstra, Saskia; Jordán, Antonio; Pereira, Paulo; Prosdocimi, Massimo; Ritsema, Coen J.; Burguet, María
2016-04-01
Soil erosion is the main cause of soil degradation in agriculture land, which is a world-wide problem (Cerdà et al., 2009; Novara et al., 2011; Biwas et al., 2015, Colazo and Buschiazzo, 2015; Ligonja and Shrestha, 2015). High erosion rates result in the loss of soil and also changes the hydrological, erosional, biological, and geochemical cycles (Keesstra et al., 2012; Berendse et al., 2015; Decock et al., 2015; Brevik et al., 2015; Smith et al., 2015). Thus, there is a need to reduce the soil losses to achieve soil sustainability. However, although some findings show that straw, geotextiles, vegetation cover and tillage reduction are efficient strategies (Gimenez Morera et al., 2010; Cerdà et al., 2015; Lieskovský and Kenderessy, 2014; Taguas et al., 2015) there is still a need to find easy strategies for farmers to adopt in their fields that will protect, and also recover, their soils. Chipped branches are usually burned in many orchards to remove them from the fields. However, when they would be chipped and spread on the fields, they can be a source of organic matter, and in addition this might reduce soil losses and improve the water retention capacity of the soils (Mukherjee et al., 2014; Yazdanpanah et al., 2016). The hypothesis is that the chipped branches reduce soil loss. To test this hypothesis we selected 3 study sites in which chipped branches were applied, and paired sites with bare soil to check the changes introduced by the chipped branches on the soils. We selected 3 sites of the Cànyoles river watershed (Montesa municipality), SW Spain, with 10 plots in each site. At each site, 10 rainfall simulation experiments were carried out. Paired plots were selected in the nearby (less than 10 m in distance) orchard where the pruned branches were removed. Then, 60 rainfall simulation experiments at 55 mm h-1 of rainfall intensity during 1 hour were carried out in small 0.25 m2 plots to determine the soil particle detachment. The results show that in all three sites the soil erosion is reduced in one order of magnitude in average as a consequence of the cover of the chipped pruned branches (78.45 % in average cover) in comparison to the bare (control) soils. Acknowledgements The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603498 (RECARE project). References Berendse, F., van Ruijven, J., Jongejans, E., Keesstra, S. 2015. Loss of plant species diversity reduces soil erosion resistance. Ecosystems, 18 (5), 881-888. DOI: 10.1007/s10021-015-9869-6 Biswas H., Raizada A., Mandal D., Kumar S., Srinivas S., Mishra P. K. 2015. Identification of areas vulnerable to soil erosion risk in India using GIS methods. Solid Earth, 6 (4), pp. 1247-1257. DOI: 10. 5194/se-6-1247-2015v Brevik, E. C., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J. N., Six, J., and Van Oost, K.: The interdisciplinary nature of SOIL, SOIL, 1, 117-129, doi:10.5194/soil-1-117-2015, 2015. Cerdà, A., Giménez-Morera, A. and Bodí, M.B. 2009.Soil and water losses from new citrus orchards growing on sloped soils in the western Mediterranean basin. Earth Surface Processes and Landforms, 34, 1822-1830. DOI: 10.1002/esp.1889 Cerdà, A., González-Pelayo, O., Giménez-Morera, A., Jordán, A., Pereira, P., Novara, A., Brevik, E.C., Prosdocimi, M., Mahmoodabadi, M., Keesstra, S., García Orenes, F., Ritsema, C., 2015. The use of barley straw residues to avoid high erosion and runoff rates on persimmon plantations in Eastern Spain under low frequency - high magnitude simulated rainfall events. Soil Res. (In press) Colazo, J.C., Buschiazzo, D. 2015. The Impact of Agriculture on Soil Texture Due to Wind Erosion.Land Degradation and Development, 26 (1), 62-70 DOI: 10.1002/ldr.2297 Decock, C.,J. Lee, M. Necpalova, E. I. P. Pereira, D. M. Tendall, J. Six. 2015 Mitigating N2O emissions from soil: from patching leaks to transformative action. SOIL, 1, 687-694, doi:10.5194/soil-1-687-2015, Keesstra, S.D., Geissen, V., van Schaik, L., Mosse., K., Piiranen, S., 2012. Soil as a filter for groundwater quality. Current Opinions in Environmental Sustainability 4, 507-516.doi:10.1016/j.cosust.2012.10.007 Lieskovský, J., Kenderessy, P. 2014. Modelling the effect of vegetation cover and different tillage practices on soil erosion in: A case study in vráble (Slovakia) using WATEM/SEDEM Land Degradation and Development, 25 (3), 288-296. DOI: 10.1002/ldr.2162 Ligonja P. J., Shrestha R. P. 2015. Soil erosion assessment in kondoa eroded area in Tanzania using universal soil loss equation, geographic information systems and socioeconomic approachLand Degradation and Development, 26 (4), 367-379. DOI: 10. 1002/ldr. 2215 Mukherjee, A., Zimmerman, A.R., Hamdan, R., Cooper, W.T.Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging(2014) Solid Earth, 5 (2), pp. 693-704. DOI: 10.5194/se-5-693-2014 Novara, A., Gristina, L., Saladino, S. S., Santoro, A., Cerdà, A. 2011. Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard. Soil and Tillage Research, 117, 140-147. Smith, P., Cotrufo, M.F., Rumpel, C., Paustian, K., Kuikman, P.J., Elliott, J.A., McDowell, R., Griffiths, R.I., Asakawa, S., Bustamante, M., House, J.I., Sobocká, J., Harper, R., Pan, G., West, P.C., Gerber, J.S., Clark, J.M., Adhya, T., Scholes, R.J., Scholes, M.C., 2015. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. SOIL 1, 665-685. doi:10.5194/soil-1-665-2015 Taguas, E.V., Arroyo, C., Lora, A., Guzmán, G., Vanderlinden, K., Gómez, J.A., 2015. Exploring the linkage between spontaneous grass cover biodiversity and soil degradation in two olive orchard microcatchments with contrasting environmental and management conditions. SOIL, 1, 651-664. doi:10.5194/soil-1-651-2015 Yazdanpanah, N., Mahmoodabadi, M., and Cerdà, A. The impact of organic amendments on soil hydrology, structure and microbial respiration in semiarid lands. Geoderma Volume 266, 15 March 2016, Pages 58-65. doi:10.1016/j.geoderma.2015.11.032
NASA Astrophysics Data System (ADS)
Gómez, José Alfonso; Biddoccu, Marcella; Guzman, Gema; Bauer, Thomas; Strauss, Peter; Winter, Silvia; Zaller, Johann; Cavallo, Eugenio
2017-04-01
The Revised Universal Soil Loss Equation RUSLE (Dabney et al., 2012) is commonly used to estimate rates of soil erosion caused by rainfall and its associated overland flow on cropland and many other disturbed and undisturbed lands. Several studies have been focused on the evaluation of erosion risk in vineyards across Europe, which has four countries, France, Italy, Spain and Portugal, among the world's top ten vine growers. Other European countries, such as Romania, Greece, Austria, Serbia and Hungary, also have significant surface devoted to vineyards (FAO, 2014). However, literature shows a wide variability among C factors from different sources (Auerswald and Schwab, 1999; Kouli et al., 2009; Novara et al., 2011; Pacheco et al., 2014; Rodrigo Comino et al., 2016) that complicates their interpretation and use outside the area where they were developed. Gómez et al. (2016) presented a simplified erosion prediction model based on RUSLE, ORUSCAL, to demonstrate the possibility to calibrate RUSLE for a broad range of management conditions in vineyards with limited datasets. This approach have already been pursued successfully in olives (Gómez et al. 2003, Vanwalleghem et al., 2011). This communication reports the results of an evaluation of the calibration strategies and model predictions of ORUSCAL using a long-term experiment dataset (Bidoccu et al., 2016) in a vineyard in Northern Italy, and its implementation to develop soil cover and management factors (C) in three different soil, climate and management conditions across Europe: Southern Spain, Northern Italy and Austria. The communication, furthermore, explores and discusses of the application of the ORUSCAL model to additional vineyards areas in France and Romania in the context of the Vinedivers project (www.vinedivers.eu). Keywords: vineyard, erosion, soil management, RUSLE, model. References Auerswald K., Schwab, S. 1999. Erosion risk (C factor) of different viticultural practices. Vitic. Enol. Sci.54: 54 - 60. Biddoccu M., Ferrari S., Opsi F., Cavallo E. 2016. Long-term monitoring of soil management effects on runoff and soil erosion in sloping vineyards in Alto Monferrato (North-West Italy). Soil Till. Res.155: 176 - 189. Dabney S.M., Yoder D.C., Vieira D.A.N. 2012. The application of the Revised Universal Soil Loss Equation, Version 2, to evaluate the impacts of alternative climate change scenarios on runoff and sediment yield. J. Soil Water Conserv. 67: 343 - 353. FAO. 2014. FAO Statistical Yearbook 2014. Europe and Central Asia Food and Agriculture. Food and Agriculture Organization of the United Nations. Regional Office for Europe and Central Asia Budapest, available on line at http://www.fao.org/3/a-i3621e.pdfGómez J.A., Battany M., Renschler C.S., Fereres E. 2003. Evaluating the impact of soil management on soil loss in olive orchards. Soil Use Manage. 19: 127 - 134. Gómez J.A., Biddoccu M., Guzmán G., Cavallo E. 2016. A simplified Excel tool for implementation of RUSLE2 in vineyards for stakeholders with limited dataset. Geophysical Research Abstracts Vol. 18, EGU2016-5142. Kouli M., Soupios P. Vallianatos F. 2009. Soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece. Environmental Geology, 57 (3): 483 - 497. Rodrigo Comino J., Quiquerez A., Follain S., Raclot D, Le Bissonnais Y., Casalí J., Giménez R.,Cerdà A., Keesstra S.D., Brevik E.C., Pereira P, Senciales J.M., Seeger M., Ruiz Sinoga J.D., Ries J.B. 2016. Soil erosion in sloping vineyards assessed by using botanical indicators and sediment collectors in the Ruwer-Mosel valley. Agric. Ecosyst. Environ. 233(3): 158 - 170. Novara A., Gristina L., Saladino S.S., Santoro A., Cerdá A. 2011. Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard. Soil Till. Res.117: 140 - 147. Pacheco F.A.L., Varandas S.G.P., Fernandes L.S., Junior R.V. 2014. Soil losses in rural watersheds with environmental land use conflicts. Sci. Total Environ. 485: 110 - 120. Vanwalleghem, T., Infante, J.A., González, M., Soto, D., Gómez, J.A. 2011. Quantifying the effect of historical soil management on soil erosion rates in Mediterranean olive orchards. Agriculture, Ecosystems & Environment 142: 341-351.
Advanced remediation of uranium-contaminated soil.
Kim, S S; Han, G S; Kim, G N; Koo, D S; Kim, I G; Choi, J W
2016-11-01
The existing decontamination method using electrokinetic equipment after acidic washing for uranium-contaminated soil requires a long decontamination time and a significant amount of electric power. However, after soil washing, with a sulfuric acid solution and an oxidant at 65 °C, the removal of the muddy solution using a 100 mesh sieve can decrease the radioactivity of the remaining coarse soil to the clearance level. Therefore, only a small amount of fine soil collected from the muddy solution requires the electrokinetic process for its decontamination. Furthermore, it is found that the selective removal of uranium from the sulfuric washing solution is not obtained using an anion exchanger but rather using a cation exchanger, unexpectedly. More than 90% of the uranium in the soil washing solutions is adsorbed on the S-950 resin, and 87% of the uranium adsorbed on S-950 is desorbed by washing with a 0.5 M Na 2 CO 3 solution at 60 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dissolved organic carbon in soil solution of peat-moorsh soils on Kuwasy Mire
NASA Astrophysics Data System (ADS)
Jaszczyński, J.; Sapek, A.
2009-04-01
Key words: peat-moorsh soils, soil solution, dissolved organic carbon (DOC), temperature of soil, redox potential. The objective this study was the dissolved organic carbon concentration (DOC) in soil solution on the background of soil temperature, moisture and redox potential. The investigations were localized on the area of drained and agricultural used Kuwasy Mire, which are situated in the middle basin of Biebrza River, in North-East Poland. Research point was placed on a low peat soil of 110 cm depth managed as extensive grassland. The soil was recognized as peat-moorsh with the second degree of the moorshing process (with 20 cm of moorsh layer). The ceramic suction cups were installed in three replications at 30 cm depth of soil profile. The soil solution was continuously sampled by pomp of the automatic field station. The successive samples comprised of solution collected at the intervals of 21 days. Simultaneously, at the 20, 30 and 40 cm soil depths the measurements of temperature and determination of soil moisture and redox potential were made automatically. The mean twenty-four hours data were collected. The concentrations of DOC were determined by means of the flow colorimeter using the Skalar standard methods. Presented observations were made in 2001-2006. Mean DOC concentration in soil solution was 66 mg.dm-3 within all research period. A significant positive correlation between studied compound concentration and temperature of soil at 30 cm depth was observed; (correlation coefficient - r=0.55, number of samples - n=87). The highest DOC concentrations were observed during the season from July to October, when also a lower ground water level occurred. The DOC concentration in soil solution showed as well a significant correlation with the soil redox potential at 20 cm level. On this depth of describing soil profile a frontier layer between moorshing layer and peat has been existed. This layer is the potentially most active in the respect to biochemical transformation. On the other hand it wasn't possible to shown dependences on the DOC concentration from soil moisture. That probably results from a huge water-holding capacity of these type of peat soils, which are keeping a high moisture content even at a long time after decreasing of the groundwater table.
Koufopoulou, Sofia; Michalopoulos, Charalampos; Tzamtzis, Nikolaos; Pappa, Athina
2014-06-01
Long term fire retardant (LTR) application for forest fire prevention purposes as well as wildland fires can result in chemical leaching from forest soils. Large quantities of sodium (Na), aluminium (Al), iron (Fe), manganese (Mn), copper (Cu) and silicon (Si) in leachates, mainly due to ammonium (one of the major LTR components) soil deposition, could affect the groundwater quality. The leaching of Na, Al, Fe, Mn, Cu and Si due to nitrogen based LTR application (Fire Trol 931) was studied at laboratory scale. The concentrations of Na(+), Al(3+), Fe(3+)/Fe(2+), Mn(2+), Cu(2+) and Si(4+) were measured in the resulting leachates from pots with forest soil and pine trees alone and in combination with fire. The leaching of Na, Fe and Si from treated pots was significantly greater than that from control pots. The leaching of Al, Mn and Cu was extremely low.
Sorption of lead by settling pond soils after reclamation treatments
NASA Astrophysics Data System (ADS)
Asensio, Verónica; Forján, Rubén; Vega, Flora A.; Andrade, Luisa; Covelo, Emma F.
2013-04-01
The reclamation of degraded soils adding waste amendments can add significant concentrations of Pb. Because of this, it is important to know the sorption capacity of Pb by the soils where wastes with high concentrations of this metal are applied. To determine the sorption capacity of Pb by mine soils, before and after reclamation treatments, four different sites were selected at a settling pond mine zone: an untreated one as the control sample (B1), a vegetated one with pines for 21 years (B2v), a vegetated with eucalyptus for 6 years (B3v) and an amended with sewage sludges and paper mill residues for 5 months (B4w). All soils had one horizon except B4w, where twice were sampled (B4Aw and B4Bw). The B4Bw is considered analogous of the control soil. To evaluate the sorption capacity by the soils, sorption isotherms were constructed using single-metal solutions of Pb2+ nitrates (0.03, 0.05, 0.08, 0.1 and 0.5 mmol L-1) containing 0.01 M NaNO3 as background electrolyte (Vega et al., 2009). The overall capacity of the soil to sorb Pb was evaluated as the slope Kr (Vega et al., 2008). The obtained results show that the sorption isotherm of Pb by control soil (B1) and its analogous (B4Bw) are of L-type curve, whereas the sorption isotherms of the treated soils (B2v, B3v and B4Aw) are of H-type curve (Giles et al., 1974). The most of the obtained isotherms do not fit with the models of Langmuir or Freundlich, therefore sorption capacity was evaluated by Kr parameter. According to the obtained Kr parameter, B1 and B4Bw have the lowest Pb sorption capacity (Kr = 0.480 and 0.556, respectively), which increased two times after recently waste amending (B4Aw; Kr = 0.998). The vegetated sites (B2v and B3v) also have higher sorption capacity than B1, but lower than B4Aw (Kr = 0.692 and 0.725, respectively). The highest sorption capacity of Pb by the amended soil is due to its characteristics such as high pH and organic carbon content. This is corroborated by the significantly positive correlation of Kr for Pb and the soil pH, effective cation exchange capacity (CECe), the different forms of C (inorganic, humin, fulvic and humic acids), the percentage of clay fraction and the percentage of crystalline minerals in that fraction (P < 0.01). Therefore, the best treatment to increase the sorption capacity of Pb by mine soils is the amendment with organic wastes. References Giles, C.H.; Smith, D.; Huitson, A. 1974. J. Colloid. Interface Sci. 47: 755-756. Vega, F.A.; Covelo, E.F.; Andrade, M.L. 2009. J. Hazard. Mater. 169: 36-45. Vega, F.A.; Covelo, E.F.; Andrade, M.L. 2008. J. Colloid. Interface Sci. 327: 275-286.
USDA-ARS?s Scientific Manuscript database
Different parts of soil solution move with different velocities, and therefore chemicals are leached gradually from soil with infiltrating water. Solute dispersivity is the soil parameter characterizing this phenomenon. To characterize the dispersivity of soil profile at field scale, it is desirable...
Green, Timothy R.; Freyberg, David L.
1995-01-01
Anisotropy in large-scale unsaturated hydraulic conductivity of layered soils changes with the moisture state. Here, state-dependent anisotropy is computed under conditions of large-scale gravity drainage. Soils represented by Gardner's exponential function are perfectly stratified, periodic, and inclined. Analytical integration of Darcy’s law across each layer results in a system of nonlinear equations that is solved iteratively for capillary suction at layer interfaces and for the Darcy flux normal to layering. Computed fluxes and suction profiles are used to determine both upscaled hydraulic conductivity in the principal directions and the corresponding “state-dependent” anisotropy ratio as functions of the mean suction. Three groups of layered soils are analyzed and compared with independent predictions from the stochastic results of Yeh et al. (1985b). The small-perturbation approach predicts appropriate behaviors for anisotropy under nonarid conditions. However, the stochastic results are limited to moderate values of mean suction; this limitation is linked to a Taylor series approximation in terms of a group of statistical and geometric parameters. Two alternative forms of the Taylor series provide upper and lower bounds for the state-dependent anisotropy of relatively dry soils.
Aluminum exclusion and aluminum tolerance in woody plants.
Brunner, Ivano; Sperisen, Christoph
2013-01-01
The aluminum (Al) cation Al(3) (+) is highly rhizotoxic and is a major stress factor to plants on acid soils, which cover large areas of tropical and boreal regions. Many woody plant species are native to acid soils and are well adapted to high Al(3) (+) conditions. In tropical regions, both woody Al accumulator and non-Al accumulator plants occur, whereas in boreal regions woody plants are non-Al accumulators. The mechanisms of these adaptations can be divided into those that facilitate the exclusion of Al(3) (+) from root cells (exclusion mechanisms) and those that enable plants to tolerate Al(3) (+) once it has entered the root and shoot symplast (internal tolerance mechanisms). The biochemical and molecular basis of these mechanisms have been intensively studied in several crop plants and the model plant Arabidopsis. In this review, we examine the current understanding of Al(3) (+) exclusion and tolerance mechanisms from woody plants. In addition, we discuss the ecology of woody non-Al accumulator and Al accumulator plants, and present examples of Al(3) (+) adaptations in woody plant populations. This paper complements previous reviews focusing on crop plants and provides insights into evolutionary processes operating in plant communities that are widespread on acid soils.
NASA Astrophysics Data System (ADS)
Pédrot, M.; Dia, A.; Davranche, M.
2009-04-01
Dissolved organic matter is ubiquitous at the Earth's surface and plays a prominent role in controlling metal speciation and mobility from soils to hydrosystems. Humic substances (HS) are usually considered to be the most reactive fraction of organic matter. Humic substances are relatively small and formed by chemically diverse organic molecules, bearing different functional groups that act as binding sites for cations and mineral surfaces. Among the different environmental physicochemical parameters controlling the metal speciation, pH is likely to be the most important one. Indeed, pH affect the dissociation of functional groups, and thus can influence the HS structure, their ability to complex metals, their solubility degree allowing the formation of aggregates at the mineral surface. In this context, soil/water interactions conducted through batch system experiments, were carried out with a wetland organic-rich soil to investigate the effect of pH on the release of dissolved organic carbon (DOC) and associated trace elements. The pH was regulated between 4 and 7.5 using an automatic pH stat titrator. Ultrafiltration experiments were performed to separate the dissolved organic pool following decreasing pore sizes (30 kDa, 5 kDa and 2 kDa with 1 Da = 1 g.mol-1). The pH increase induced a significant DOC release, especially in heavy organic molecules (size >5 kDa) with a high aromaticity (>30 %). These were probably humic acids (HA). This HA release influenced (i) directly the trace element concentrations in soil solution since HA were enriched in several trace elements such as Th, REE, Y, U, Cr and Cu; and (ii) indirectly by the breaking of clay-humic complexes releasing Fe- and Al-rich nanoparticles associated with V, Pb and Ti. By contrast, at acid pH, most HS were complexed onto mineral surfaces. They also sequestered iron nanoparticles. Therefore, at low pH, most part of DOC molecules had a size < 5 kDa and lower aromaticity. Thus, the DOC was mostly composed of simple organic compounds little complexing. Consequently, the soil solution was depleted in trace elements such as Th, REE, Y, U, Cr, Cu, Al, Fe, V, Pb and Ti, but also enriched in Ca, Sr, Ba, Mn, Mg, Co, Zn and in a lesser proportion in Rb, Li and Ni. The aromaticity in the fractions <5 kDa was higher than in the fractions <30 kDa or <0.2 µm. Complementary experiments were performed to understand the HS size distribution and aromaticity according to pH and ionic strength .The molecular size and shape of HS is usually explained by two concepts: (i) the macropolymeric structure with heavy organic molecules considered to be flexible linear polyelectrolytes and (ii) the supramolecular structure with an association of a complex mixture of different molecules held together by dispersive weak forces. Ours results supported the HA supramolecular structure at neutral or basic pH conditions. But, at acid pH, a disruption of the humic supramolecular associations involved the release of small organic molecules with a high aromaticity. Moreover, this aromaticity variation can be due also to the presence of fulvic acids in the fractions <5 kDa and a mixture of heavy organic molecules little complexing in the fractions >5 kDa. These latter molecules displayed a low aromaticity decreasing the global aromaticity of the fractions <30 kDa and <0.2 µm. To summarize, these new data demonstrated that the DOC and trace element concentrations of the soil solutions were strongly controlled by pH. This parameter influenced the nature and the size of the DOC as well as, the trace element concentrations in the soil solutions, with a decreasing contribution of HA when pH decreased. This pH dependence is a key issue of concern since local (human pressure) and/or global (climatic) warning result in pH water changes.
Impact of Slow-Rate Land Treatment on Groundwater Quality, Toxic Organics
1984-12-01
environmentally significant or mobile in tween the soil or sediment partition coefficient the soil solution . and the partitiop coafficien: for the same sub... soil solution in equi- ment particles and have found a strong correlation librium with an eqaal mass of soil material: between the extent of sorption...then the equilibrium soil solution concen- Pentachlorophenol 2 tration is 0.021 ppm (mg/L). Of a total mass of z m-Nitrotoluene 3 "added to an equal
NASA Astrophysics Data System (ADS)
Loick, Nadine; Dixon, Elizabeth R.; Repullo Ruibérriz de Torres, Miguel A.; Ciganda, Veronica; Lopez-Aizpun, Maria A.; Matthews, G. Peter; Müller, Christoph; Cardenas, Laura M.
2017-04-01
Nitrous oxide (N2O) is considered to be an important greenhouse gas (GHG) accounting for approximately 6% of the current global warming. The atmospheric N2O concentration has been increasing since the Industrial Revolution, with soils representing its major source, making the understanding of its sources and removal processes very important for the development of mitigation strategies. In soils N gases are mainly produced via nitrification and denitrification. It is assumed that under dry/aerobic conditions nitrification is the dominant N consuming process, while denitrification becomes dominant under wetter conditions promoting anaerobicity. Nitrification and denitrification may occur simultaneously in different microsites of the same soil but there is often uncertainty associated with which process dominates in a particular soil under specific conditions. N2O predominantly derives from incomplete denitrification of nitrate (NO3-). The existence of different pools of NO3- in soils, namely the native soil pool, and the fertiliser-added one, has been suggested through a series of laboratory incubation experiments (Meijide et al., 2010; Bergstermann et al., 2011) using the denitrification incubation system, DENIS (Cardenas et al., 2003), in which soil cores are incubated under an N-free atmosphere, allowing direct measurements of all emitted N gases (NO, N2O and N2) as well as CO2. A third pool, NO3- produced from nitrification of applied NH4+, can also be a source of N2O via denitrification and also from nitrification. In this study labelling of substrate-N with 15N is used to quantify the underlying gross N transformation rates and link them to N-emissions to identify the production and consumption pathways and temporal dynamics of N2O. In three experiments twelve soil cores each were incubated in the DENIS to measure gaseous emissions, while parallel incubations under the same conditions were set up for destructive soil sampling at 7 time points. Using the triple labelling technique - i.e. applying NH4NO3 with either the N at the NH4+ or at the NO3-, or in both places being labelled - this study investigates the effects of a low, medium and high water filled pore space (55, 70, 85%) in a clay soil on gaseous N emissions and investigates the source and processes leading to N2O emissions. To assess the utilisation of applied NO3- vs nitrified NO3- from applied NH4+, the model developed by Müller et al. (2007) is used to calculate the immobilisation of added NO3- and NH4+, nitrification of added NH4+, mineralisation of organic N and subsequent nitrification by the analysis of the 15N in the soil. Gross transformation rates, indicating the relative importance of added NO3- and NO3- derived from nitrified added NH4+ are calculated. Bergstermann et al. (2011) Soil Biol. & Biochem. 43, 240-250. Meijide et al. (2010) Eur. J. Soil Sci. 61, 364-374. Cárdenas et al. (2003) Soil Biol. & Biochem. 35, 867-870. Müller et al. (2007) Soil Biol. & Biochem. 39, 715-726.
Response to Comment on "The whole-soil carbon flux in response to warming".
Hicks Pries, Caitlin E; Castanha, C; Porras, R; Phillips, Claire; Torn, M S
2018-02-23
Temperature records and model predictions demonstrate that deep soils warm at the same rate as surface soils, contrary to Xiao et al 's assertions. In response to Xiao et al 's critique of our Q 10 analysis, we present the results with all data points included, which show Q 10 values of >2 throughout the soil profile, indicating that all soil depths responded to warming. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Delhaize, Emmanuel; James, Richard A; Ryan, Peter R
2012-08-01
We found significant genetic variation in the ability of wheat (Triticum aestivum) to form rhizosheaths on acid soil and assessed whether differences in aluminium (Al(3+) ) tolerance of root hairs between genotypes was the physiological basis for this genetic variation. A method was developed to rapidly screen rhizosheath size in a range of wheat genotypes. Backcrossed populations were generated from cv Fronteira (large rhizosheath) using cv EGA-Burke (small rhizosheath) as the recurrent parent. A positive correlation existed between rhizosheath size on acid soil and root hair length. In hydroponic experiments, root hairs of the backcrossed lines with large rhizosheaths were more tolerant of Al(3+) toxicity than the backcrossed lines with small rhizosheaths. We conclude that greater Al(3+) tolerance of root hairs underlies the larger rhizosheath of wheat grown on acid soil. Tolerance of the root hairs to Al(3+) was largely independent of the TaALMT1 gene which suggests that different genes encode the Al(3+) tolerance of root hairs. The maintenance of longer root hairs in acid soils is important for the efficient uptake of water and nutrients. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Awad, John; van Leeuwen, John; Liffner, Joel; Chow, Christopher; Drikas, Mary
2016-02-01
The treatability of NOM present in runoff and subsurface waters from discrete zero-order catchments (ZOCs) with three land management practices (Australian native vegetation, pine plantation, grasslands) on varying soil textures of a closed drinking water reservoir-catchment was investigated. Subsurface water samples were collected by lysimeters and shallow piezometers and surface waters by installation of barriers that diverted waters to collection devices. For small sample volumes collected, a 'micro' jar testing procedure was developed to assess the treatability of organics by enhanced coagulation using alum, under standardised conditions. DOM present in water samples was quantified by measurement of DOC and UV absorbance (at 254 nm) and characterized using these and F-EEM. The mean alum dose rate (mg alum per mg DOC removed or Al/DOC) was found to be lower for DOM from sandy soil ZOCs (21.1 ± 11.0 Al/DOC) than from clayey soil ZOCs (38.6 ± 27.7 Al/DOC). ZOCs with Pinus radiata had prominent litter layers (6.3 ± 2.6 cm), and despite differences in soil textures showed similarity in DOM character in subsurface waters, and in alum dose rates (22.2 ± 5.5 Al/DOC). For sandy soil ZOCs, the lowest alum dose rates (16.5 ± 10.6 Al/DOC) were for waters from native vegetation catchment while, for clayey soil ZOCs, waters from pine vegetation had the lowest alum dose rates (23.0 ± 5.0 Al/DOC). Where ZOCs have a prominent O horizon, soil minerals had no apparent influence on the treatability of DOM. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Effects of thiourea on pH and availability of metal ions in acid red soil].
Yang, Bo; Wang, Wen; Zeng, Qing-Ru; Zhou, Xi-Hong
2014-03-01
Through the simulation research, the effects of application of thiourea and urea on pH and availability of metal ions in acid red soil were studied, and the results showed that after applying urea, the soil pH increased in the first experimental stage and then reduced gradually to a low level, however, decreased trends of soil pH values were inhibited by the application of thiourea, especially when the concentration of thiourea reached to 5.0 mmol x kg(-1) dry soil, the soil pH was stable at high level, which exceeded to 6.0. It proved that the application of thiourea could inhibit the soil acidification due to urea application. After applying urea with different concentrations of thiourea, the available contents of Zn and Al decreased with the increasing concentration of thiourea, nevertheless, when the concentration of thiourea reached to 5.0 mmol x kg(-1), the available content of Mn was stable at high level which was over 110 mg x kg(-1). In addition, the results showed a highly significant negative correlation between the soil pH and the available content of Cu, Zn and Al, but for Mn, no discipline was found between the soil pH and the availability after applying thiourea. Moreover, the soil pH became higher after applying urea with thiourea compared to add urea only, which led to the decreasing of available content of Al, and it was benefited for the control of the phytotoxic effect of Al. The available content of Mn in the soil not only depended on soil pH but also the content of thiourea due to its redox and complexing reaction with Mn.
Metal Ion Speciation and Dissolved Organic Matter Composition in Soil Solutions
NASA Astrophysics Data System (ADS)
Benedetti, M. F.; Ren, Z. L.; Bravin, M.; Tella, M.; Dai, J.
2014-12-01
Knowledge of the speciation of heavy metals and the role of dissolved organic matter (DOM) in soil solution is a key to understand metal mobility and ecotoxicity. In this study, soil column-Donnan membrane technique (SC-DMT) was used to measure metal speciation of Cd, Cu, Ni, Pb, and Zn in eighteen soil solutions, covering a wide range of metal sources and concentrations. DOM composition in these soil solutions was also determined. Our results show that in soil solution Pb and Cu are dominant in complex form, whereas Cd, Ni and Zn mainly exist as free ions; for the whole range of soil solutions, only 26.2% of DOM is reactive and consists mainly of fulvic acid (FA). The metal speciation measured by SC-DMT was compared to the predicted ones obtained via the NICA-Donnan model using the measured FA concentrations. The free ion concentrations predicted by speciation modelling were in good agreement with the measurements. Diffusive gradients in thin-films gels (DGT) were also performed to quantify the labile metal species in the fluxes from solid phase to solution in fourteen soils. The concentrations of metal species detected by DGT were compared with the free ion concentrations measured by DMT and the maximum concentrations calculated based on the predicted metal speciation in SC-DMT soil solutions. It is concluded that both inorganic species and a fraction of FA bound species account for the amount of labile metals measured by DGT, consistent with the dynamic features of this technique. The comparisons between measurements using analytical techniques and mechanistic model predictions provided mutual validation in their performance. Moreover, we show that to make accurate modelling of metal speciation in soil solutions, the knowledge of DOM composition is the crucial information, especially for Cu; like in previous studies the modelling of Pb speciation is not optimal and an updated of Pb generic binding parameters is required to reduce model prediction uncertainties.
NASA Astrophysics Data System (ADS)
Ameijeiras-Marino, Y.; Opfergelt, S.; Derry, L. A.; Robinet, J.; Delmelle, P.
2016-12-01
Soil weathering processes influence solute fluxes to rivers, playing a major role in global biogeochemical cycles. Land use change such as forest conversion to cropland enhances soil erosion, which mobilizes solutes and exposes new mineral surfaces to weathering processes, changing soil weathering degree. However, the impact of forest conversion to cropland on soil weathering degree and solute fluxes exported from soils to rivers remain poorly quantified. This study assesses the soil weathering degree and uses a geochemical tracer of weathering, Ge/Si ratio, to provide new insights on the impact of soil weathering processes under anthropogenic forcing on the transfer of solutes to rivers. A subtropical site was studied in Rio Grande do Sul (Brazil). This area is characterized by mean annual rainfall of 1800 mm, with strong rain events mobilizing high sediment load. A forested catchment is considered as the reference and compared to a catchment cultivated for the past 100 years (similar lithology and climate). Bedrock, soil, soil pore water and stream water (during base flow and rain events) samples were analysed for their chemical and mineralogical compositions and Ge/Si ratios (combined isotope dilution, HR-ICP-MS and hydride generation). Chemical and mineralogical analyses highlight that forest conversion to cropland decreases the soil weathering degree on steep slopes. Ge/Si ratios (μmol/mol) are comparable in bulk soils between the forested (2.33 ± 0.50) and the cultivated catchment (2.61 ± 0.62), but differ in soil pore waters between forest (0.47 ± 0.16) and culture (0.73 ± 0.15) indicating differences on soil weathering processes. The response of Ge/Si ratios in stream waters to a rain event differs between forest and culture, highlighting a larger contribution from soil pore waters to stream waters under culture. Altogether, our data support that land use history has an impact on the present day soil weathering processes and on the solute export to rivers.
Zhao, Zhen-hua; Wu, Yu; Jiang, Xin; Xia, Li-ling; Ni, Li-xiao
2009-10-15
The kinetic release behaviors of a-endosulfan from red soil with three kinds of low-molecular-weight organic acids (LMWOA: oxalate, tartrate and citrate) solution and water leaching were investigated by kinetic device designed by ourselves and batch method. The results show that: the release percentage of endosulfan from red soil by tartrate and citrate solution (10 mmol/L) can increase by 7%-18% more than that by distilled water and oxalate solution, especially for tartrate solution. There is no significant difference between distilled water and oxalate solution for the release percentage of endosulfan (p > 0.05). There are two stages of quick and slow for the release of endosulfan from red soil, and the leaching speed is quicker especially for the initial 200 mL leaching solution. When using distilled water or oxalate solution as leaching solution, the best equations that described the kinetic release behavior of endosulfan from red soil were parabola diffuse equation and double constant equation, and weren't the apparent first dynamics equation that represented the simple surface diffusion mechanism. The kinetic release behavior of endosulfan in tartrate or citrate leaching system can be described by Elovich equation (R2 > 0.99, p < 0.0001), it implied that the simple surface diffusion mechanism is not the primary factor that effected the release of endosulfan, which three-dimensional molecule structure is complex, from red soil in aqueous phase leaching systems, and it maybe related to the outward diffuse mechanism from soil particle, activation and deactivation function of soil particles surface, the dissolution of soil mineral surface and structure change of inherent organic matter that coating onto the soil mineral surface induced by LMW organic acid. It suggested that the tartrate and citrate induced the complication of the release mechanisms of the pesticides from red soil.
Forest soil microbial communities: Using metagenomic approaches to survey permanent plots
Amy L. Ross-Davis; Jane E. Stewart; John W. Hanna; John D. Shaw; Andrew T. Hudak; Theresa B. Jain; Robert J. Denner; Russell T. Graham; Deborah S. Page-Dumroese; Joanne M. Tirocke; Mee-Sook Kim; Ned B. Klopfenstein
2014-01-01
Forest soil ecosystems include some of the most complex microbial communities on Earth (Fierer et al. 2012). These assemblages of archaea, bacteria, fungi, and protists play essential roles in biogeochemical cycles (van der Heijden et al. 2008) and account for considerable terrestrial biomass (Nielsen et al. 2011). Yet, determining the microbial composition of forest...
Possible Phosphate Redistribution on the Martian Surface: Implication From Simulation Experiments
NASA Astrophysics Data System (ADS)
Dreibus, G.; Haubold, R.; Jagoutz, E.
2001-12-01
The chemical composition of Martian rocks and soils as measured with the APXS (Alpha Proton X-ray Spectrometer) of the Mars Pathfinder Mission are very different [1]. Surprisingly, only small differences of the phosphorous concentrations between soils and rocks were found. The P concentration of about 4000 ppm is similar to that measured in basaltic shergottites. Phosphates are the host mineral for the REE, Th and U. Leach experiments with slightly acidified brines on basaltic shergottites easily dissolved more than a half of the REEs and U whereas K remained insoluble. Therefore, we suggested the possibility of alteration and mobilization of phosphates in the Martian environment with the result of an enrichment of U, Th, and consequently P on the surface. However, the APXS measured no P enrichment in rocks and soil of the Martian crust, whereas a high Th concentration on the surface was measured with the gamma-spectroscopy from orbit by Mars-5 and Phobos-2 [2]. With leach experiments on terrestrial samples we studied the solubility of U and Th as in the case of shergottites, but also that of phosphorous. Furthermore, simulation experiments of reactions between slightly acidified calcium-phosphate solution and different terrestrial rock types were performed to clarify the redistribution of P at the Martian surface with its complex weathering history. Ref.: [1] Brueckner J. et al. (2001) Lunar Planet. Science. XXXII, 1293; [2] Surkov Yu. A. et al. (1989) Nature 341, 595.
NASA Astrophysics Data System (ADS)
McMurtrie, R. E.; Norby, R. J.; Näsholm, T.; Iversen, C.; Dewar, R. C.; Medlyn, B. E.
2011-12-01
Forest free-air CO2 enrichment (FACE) experiments have shown that annual nitrogen (N) uptake increases when trees are grown at elevated CO2 (eCO2) and that increased N uptake is critical for a sustained growth response to eCO2. Processes contributing to increased N uptake at eCO2 may include: accelerated decomposition of soil organic matter due to enhanced root carbon (C) exudation (so-called rhizosphere priming); increased C allocation to fine roots and increased root production at depth, both of which enhance N acquisition; differences in soil N availability with depth; changes in the abundance of N in chemical forms with differing mobility in soil; and reduced N concentrations, reduced maintenance respiration rates, and increased longevities of deeper roots. These processes have been synthesised in a model of annual N uptake in relation to the spatial distribution of roots. We hypothesise that fine roots are distributed spatially in order to maximise annual N uptake. The optimisation hypothesis leads to equations for the optimal vertical distribution of root biomass in relation to the distribution of available soil N and for maximum annual N uptake. We show how maximum N uptake and rooting depth are related to total root mass, and compare the optimal solution with an empirical function that has been fitted to root-distribution data from all terrestrial biomes. Finally, the model is used to explore the consequences of rhizosphere priming at eCO2 as observed at the Duke forest FACE experiment (Drake et al. 2011, Ecology Letters 14: 349-357) and of increasing N limitation over time as observed at the Oak Ridge FACE experiment (Norby et al. 2010, Proc. Nat. Acad. Sci. USA 107: 19368-19373).
Mukhopadhyay, Soumyadeep; Mukherjee, Sumona; Hashim, Mohd Ali; Sen Gupta, Bhaskar
2015-01-01
Colloidal gas aphron dispersions (CGAs) can be described as a system of microbubbles suspended homogenously in a liquid matrix. This work examines the performance of CGAs in comparison to surfactant solutions for washing low levels of arsenic from an iron rich soil. Sodium Dodecyl Sulfate (SDS) and saponin, a biodegradable surfactant, obtained from Sapindus mukorossi or soapnut fruit were used for generating CGAs and solutions for soil washing. Column washing experiments were performed in down-flow and up flow modes at a soil pH of 5 and 6 using varying concentration of SDS and soapnut solutions as well as CGAs. Soapnut CGAs removed more than 70% arsenic while SDS CGAs removed up to 55% arsenic from the soil columns in the soil pH range of 5-6. CGAs and solutions showed comparable performances in all the cases. CGAs were more economical since it contains 35% of air by volume, thereby requiring less surfactant. Micellar solubilization and low pH of soapnut facilitated arsenic desorption from soil column. FT-IR analysis of effluent suggested that soapnut solution did not interact chemically with arsenic thereby facilitating the recovery of soapnut solution by precipitating the arsenic. Damage to soil was minimal arsenic confirmed by metal dissolution from soil surface and SEM micrograph. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chen, An-Lei; Wang, Kai-Rong; Xie, Xiao-Li; Liu, Ying-Xin
2007-12-01
Based on a fifteen years field experiment in double rice-cropping region of subtropical China, the responses of microbial biomass P (MB-P) to organic C and P in red paddy soils under different fertilization systems were investigated. The results indicated that a long-term input of organic carbon sources and the increasing soil organic carbon made soil microbial biomass remain at a high level (MB-C > 800 mg x kg(-1)), being a main reason of the increase of MB-P. Under long-term zero chemical P fertilization, there was a significant decrease in soil total P (P < 0.05), but soil organic P increased by 29.3% on average. The inorganic P forms in deficit were mainly Al-P, Fe-P, Ca-P and O-P, with the lowest content of Al-P (only 0.5 mg x kg(-1) on average). The content of soil MB-P under zero chemical P fertilization was much higher than that of Olsen-P. Correlation analysis showed that there was a significant relationship (P < 0.05) between MB-P and Al-P, from which, it was deduced that the utilization of Al-P, Fe-P, Ca-P and O-P by soil microbes could be the key approach of promoting these P forms transformed into available P. Chemical P fertilization combined with organic nutrient recycling could not only enlarge the soil P pool, but also improve the P availability.
Effect of wood ash application on soil solution chemistry of tropical acid soils: incubation study.
Nkana, J C Voundi; Demeyer, A; Verloo, M G
2002-12-01
The objective of this study was to determine the effect of wood ash application on soil solution composition of three tropical acid soils. Calcium carbonate was used as a reference amendment. Amended soils and control were incubated for 60 days. To assess soluble nutrients, saturation extracts were analysed at 15 days intervals. Wood ash application affects the soil solution chemistry in two ways, as a liming agent and as a supplier of nutrients. As a liming agent, wood ash application induced increases in soil solution pH, Ca, Mg, inorganic C, SO4 and DOC. As a supplier of elements, the increase in the soil solution pH was partly due to ligand exchange between wood ash SO4 and OH- ions. Large increases in concentrations of inorganic C, SO4, Ca and Mg with wood ash relative to lime and especially increases in K reflected the supply of these elements by wood ash. Wood ash application could represent increased availability of nutrients for the plant. However, large concentrations of basic cations, SO4 and NO3 obtained with higher application rates could be a concern because of potential solute transport to surface waters and groundwater. Wood ash must be applied at reasonable rates to avoid any risk for the environment.
Root adaptations to soils with low fertility and aluminium toxicity
Rao, Idupulapati M.; Miles, John W.; Beebe, Stephen E.; Horst, Walter J.
2016-01-01
Background Plants depend on their root systems to acquire the water and nutrients necessary for their survival in nature, and for their yield and nutritional quality in agriculture. Root systems are complex and a variety of root phenes have been identified as contributors to adaptation to soils with low fertility and aluminium (Al) toxicity. Phenotypic characterization of root adaptations to infertile soils is enabling plant breeders to develop improved cultivars that not only yield more, but also contribute to yield stability and nutritional security in the face of climate variability. Scope In this review the adaptive responses of root systems to soils with low fertility and Al toxicity are described. After a brief introduction, the purpose and focus of the review are outlined. This is followed by a description of the adaptive responses of roots to low supply of mineral nutrients [with an emphasis on low availability of nitrogen (N) and phosphorus (P) and on toxic levels of Al]. We describe progress in developing germplasm adapted to soils with low fertility or Al toxicity using selected examples from ongoing breeding programmes on food (maize, common bean) and forage/feed (Brachiaria spp.) crops. A number of root architectural, morphological, anatomical and metabolic phenes contribute to the superior performance and yield on soils with low fertility and Al toxicity. Major advances have been made in identifying root phenes in improving adaptation to low N (maize), low P (common bean) or high Al [maize, common bean, species and hybrids of brachiariagrass, bulbous canarygrass (Phalaris aquatica) and lucerne (Medicago sativa)]. Conclusions Advanced root phenotyping tools will allow dissection of root responses into specific root phenes that will aid both conventional and molecular breeders to develop superior cultivars. These new cultivars will play a key role in sustainable intensification of crop–livestock systems, particularly in smallholder systems of the tropics. Development of these new cultivars adapted to soils with low fertility and Al toxicity is needed to improve global food and nutritional security and environmental sustainability. PMID:27255099
NASA Astrophysics Data System (ADS)
Shahid, Muhammad; Sabir, Muhammad; Ghafoor, Abdul
2013-04-01
Heavy metal pollution of soil and other environmental compartments through anthropogenic activities and/or natural processes is a widespread and serious problem confronting society, scientists, and regulators worldwide (Shahid et al., 2011). Among the heavy metals, Ni is an essential heavy metal and plays many functions in living organisms (Khoshgoftarmanesh et al., 2011). The presence of this metal in soil or growth medium may have positive biological effects on plant growth. However, Ni may interfere with various morphological, physiological and biochemical process in plants when its concentration rises to supra-optimal values i.e., 100 mg kg-1 in plants and 420 kg ha-I in soil (Tucker, 2005). The use of organic amendments is a common practice in Pakistan to improve soil fertility. Organic amendments are known to affect chemical speciation and bioavailability of heavy metals and in turn their uptake and toxicity to plants (Shahid et al., 2012). The present study evaluate the influence of organic amendments viz. farm yard manure (FM), poultry manure (PM), press mud (PrM) and activated carbon (AC) on Ni bioavailability in soil as well as its uptake and growth responses of Trifolium alexandrinum. A pot experiment was conducted where T. alexandrinum was exposed to three different Ni level i.e., 30, 60 and 90 mg kg-1 in the form of NiCl2 solution in the presence and absence of organic amendments each applied at 15 g kg-1 soil. The results showed that the effect of organic amendments on Ni bioavailability and uptake by T. alexandrinum depend on Ni levels in soil and amendment type. Application of organic amendments generally increased Ni phytoavailability in soil and Ni uptake by plants at low Ni levels (Ni-0 and Ni-30) but decreased at higher levels (Ni-60 and Ni-90). It is proposed that the soil Ni levels and amendment type must be considered while using these amendments in Ni remediation and risk assessment studies. Keywords: Nickel, organic amendments, bioavailability, Trifolium alexandrinum, plant growth. REFERENCES Shahid M, Pinelli E, Dumat C, 2012. Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. Journal of Hazardous Materials, 219-220: 1-12. Shahid M, Pinelli E, Pourrut B, Silvestre J, Dumat C, 2011. Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicology and Environmental Safety, 74(1): 78-84. Khoshgoftarmanesh, A.H. Hosseini, F. and Afyuni, M. (2011) Nickel supplementation effect on the growth, urease activity and urea and nitrate concentrations in lettuce supplied with different nitrogen sources. Sci. Horti., 130, 381-385. Tucker, M.R. Hardy, D.H. and Stokes, C.E. (2005) Heavy metals in North Carolina soils: occurrence and significance. North Carolina Department of Agriculture and Consumer Services, Agronomic Division.
Yang, Mei; Tan, Ling; Xu, Yuanyuan; Zhao, Yihui; Cheng, Fei; Ye, Shaoming; Jiang, Weixin
2015-01-01
Knowing how acid soils and aluminum in soils may limit the growth of Eucalyptus trees in plantations is important because these plantations grow in many tropical and subtropical regions. Seedlings of four vegetatively propagated Eucalyptus clones, E. grandis × E. urophylla ‘GLGU9’(G9), E. grandis × E. urophylla ‘GLGU12’ (G12), E. urophylla × E. camaldulensis ‘GLUC3’ (G3) and E. urophylla ‘GLU4’(G4), were subjected to liquid culture with Hoagland nutrient solution for 40 days, then treated with four different treatments of acid and aluminum for 1 day. The four treatments used either pH 3.0 or 4.0 with or without added aluminum (4.4 mM) in all possible combinations; a control used no added aluminum at pH 4.8. Subsequently, the photosynthetic parameters and morphology of leaves from eucalypt seedlings were determined and observed. The results showed that the tested chlorophyll content, net photosynthetic rate, transpiration rate and water use efficiency were apparently inhibited by aluminum. Under uniform Al concentration (4.4 mM), the Al-induced limitation to photosynthetic parameters increased with pH, indicating acid stimulation to Al toxicity. Among all treatments, the most significant reduction was found in the combination of pH 3.0 and 4.4 mM Al. The photosynthetic and transpiration rates showed similar trends with G9 > G12 > G3 > G4, suggesting that G9 and G12 had higher Al-tolerance than other two clones. Microscopic observation revealed changes in leaf morphology when exposed to Al stress; for example, a reduced thickness of leaf epidermis and palisade tissue, the descendant palisade tissue/spongy tissue ratio and leaf tissue looseness. Overall, the acid and aluminum stress exerted negative effects on the photosynthetic activity of eucalypt seedlings, but the differences in tolerance to Al toxicity between the clones were favorable, offering potential to improve Eucalyptus plantation productivity by selecting Al tolerant clones. PMID:26090998
NASA Astrophysics Data System (ADS)
Rees, R.; Robinson, B. H.; Hartmann, S.; Lehmann, E.; Schulin, R.
2009-04-01
Poplars are well suited for the phytomanagement of boron (B)-contaminated sites, due to their high transpiration rate and tolerance to elevated soil B concentrations. However, the uptake and the fate of B in poplar stands are not well understood. This information is crucial to improve the design of phytomanagement systems, where the primary role of poplars is to reduce B leaching by reducing the water flux through the contaminated material. Like other trace elements, B occurs heterogeneously in soils. Concentrations can differ up to an order of magnitude within centimetres. These gradients affect plant root growth and thus via preferential flow along the roots water and mass transport in soils to ground and surface waters. Generally there are three possible reactions of plant roots to patches with elevated trace element concentrations in soils: indifference, avoidance, or foraging. While avoidance or indifference might seem to be the most obvious strategies, foraging cannot be excluded a priori, because of the high demand of poplars for B compared to other tree species. We aimed to determine the rooting strategies of poplars in soils where B is either homo- or heterogeneously distributed. We planted 5 cm cuttings of Populus tremula var. Birmensdorf clones in aluminum (Al) containers with internal dimensions of 64 x 67 x 1.2 cm. The soil used was subsoil from northern Switzerland with a naturally low B and organic C concentration. We setup two treatments and a control with three replicates each. We spiked a bigger and a smaller portion of the soil with the same amount of B(OH)3-salt, in order to obtain soil concentrations of 7.5 mg B kg-1 and 20 mg B kg-1. We filled the containers with (a) un-spiked soil, (b) the 7.5 mg B kg-1 soil and (c) heterogeneously. The heterogeneous treatment consisted of one third 20 mg B kg-1 soil and two thirds control soil. We grew the poplars in a small greenhouse over 2 months and from then on in a climate chamber for another 3 months. We irrigated the poplars with modified Hoagland's solution that contained no B. We imaged the roots in the soil every 3rd week using neutron radiography (NR) at the Paul-Scherrer Institute. Living roots can be visualised in soil by NR because of their higher water content compared to the surrounding soil. At the end of the growing period, the Al containers were opened and the soil surface was scanned by a standard office scanner. The soil in the containers was divided into nine equal portions representing different depths and spiked or un-spiked regions in soil profile. We separated roots and soil as well as the aerial parts (stems and leaves). We obtained data on root morphological parameters like root length and root density by evaluating scans of the washed root samples with an image evaluation software. All soil and plant samples were dried, weighed and analyzed for B and mineral nutrients using ICP-OES. Plant vitality parameters like water use, growth and number of living leaves did not show any reaction to the treatments. The oldest poplar leaves from poplars in the B-spiked treatments showed signs of light to serious necrosis. From the neutron radiographs it was apparent that poplar roots reached the walls of the Al- containers during the experiment. Primary roots grew at first strongly in lengths in horizontal as well as in vertical direction and only after this lateral root growth was visible. Although the filling and packing of the containers was done with great care to establish an ideally homogeneous soil profile settlement occurred in some containers resulting in gaps in the profile. However, roots growth did not seem to be deranged since roots simply crossed these gaps and continued growth in the adjacent soil patch. The complete results will be available at the time of the conference.
Plasticity solutions for soil behaviour around contracting cavities and tunnels
NASA Astrophysics Data System (ADS)
Yu, H. S.; Rowe, R. K.
1999-10-01
The action of tunnel excavation reduces the in-situ stresses along the excavated circumference and can therefore be simulated by unloading of cavities from the in-situ stress state. Increasing evidence suggests that soil behavior in the plane perpendicular to the tunnel axis can be modelled reasonably by a contracting cylindrical cavity, while movements ahead of an advancing tunnel heading can be better predicted by spherical cavity contraction theory. In the past, solutions for unloading of cavities from in-situ stresses in cohesive-frictional soils have mainly concentrated on the small strain, cylindrical cavity model. Large strain spherical cavity contraction solutions with a non-associated Mohr-Coulomb model do not seem to be widely available for tunnel applications. Also, cavity unloading solutions in undrained clays have been developed only in terms of total stresses with a linear elastic-perfectly plastic soil model. The total stress analyses do not account for the effects of strain hardening/softening, variable soil stiffness, and soil stress history (OCR). The effect of these simplifying assumptions on the predicted soil behavior around tunnels is not known.In this paper, analytical and semi-analytical solutions are presented for unloading of both cylindrical and spherical cavities from in-situ state of stresses under both drained and undrained conditions. The non-associated Mohr-Coulomb model and various critical state theories are used respectively to describe the drained and undrained stress-strain behaviors of the soils. The analytical solutions presented in this paper are developed in terms of large strain formulations. These solutions can be used to serve two main purposes: (1) to provide models for predicting soil behavior around tunnels; (2) to provide valuable benchmark solutions for verifying various numerical methods involving both Mohr-Coulomb and critical state plasticity models.
NASA Astrophysics Data System (ADS)
Hamamoto, S.; Arihara, M.; Kawamoto, K.; Nishimura, T.; Komatsu, T.; Moldrup, P.
2014-12-01
Subsurface warming driven by global warming, urban heat islands, and increasing use of shallow geothermal heating and cooling systems such as the ground source heat pump, potentially causes changes in subsurface mass transport. Therefore, understanding temperature dependency of the solute transport characteristics is essential to accurately assess environmental risks due to increased subsurface temperature. In this study, one-dimensional solute transport experiments were conducted in soil columns under temperature control to investigate effects of temperature on solute transport parameters, such as solute dispersion and diffusion coefficients, hydraulic conductivity, and retardation factor. Toyoura sand, Kaolin clay, and intact loamy soils were used in the experiments. Intact loamy soils were taken during a deep well boring at the Arakawa Lowland in Saitama Prefecture, Japan. In the transport experiments, the core sample with 5-cm diameter and 4-cm height was first isotropically consolidated, whereafter 0.01M KCl solution was injected to the sample from the bottom. The concentrations of K+ and Cl- in the effluents were analyzed by an ion chromatograph to obtain solute breakthrough curves. The solute transport parameters were calculated from the breakthrough curves. The experiments were conducted under different temperature conditions (15, 25, and 40 oC). The retardation factor for the intact loamy soils decreased with increasing temperature, while water permeability increased due to reduced viscosity of water at higher temperature. Opposite, the effect of temperature on solute dispersivity for the intact loamy soils was insignificant. The effects of soil texture on the temperature dependency of the solute transport characteristics will be further investigated from comparison of results from differently-textured samples.
Rethinking infiltration in wildfire-affected soils
Ebel, Brian A.; Moody, John A.
2013-01-01
Wildfires frequently result in natural hazards such as flash floods (Yates et al., 2001) and debris flows (Cannon et al., 2001a,b; Gabet and Sternberg, 2008). One of the principal causes of the increased risk of post-wildfire hydrologically driven hazards is reduced in filtration rates (e.g. Scott and van Wyk, 1990; Cerdà, 1998; Robichaud, 2000; Martin and Moody, 2001). Beyond the reduction in peak infiltration rate, there is mounting evidence that the fundamental physics of infiltration in wild fire-affected soils is different from unburned soils (e.g. Imeson et al., 1992; Moody et al., 2009; Moody and Ebel, 2012).Understanding post-wildfire hydrology is critical given the increasing wildfire incidence in the western USA (Westerling et al., 2006) and elsewhere in the world (Kasischke and Turetsky, 2006; Holz and Veblen, 2011; Pausas and Fernández-Muñoz, 2012). Wildfire is a disturbance event with global distribution (Bowman et al., 2009; Krawchuk et al., 2009; Pechony and Shindell, 2010; Moritz et al., 2012), and with increasing populations moving into fire-prone areas, understanding post-wildfire infiltration is of increasing importance for predicting post-wildfire consequences. Runoff is generally controlled by the infiltration-excess mechanism in fire-affected soils (e.g. Mayor et al., 2007; Onda et al., 2008; Kinner and Moody, 2010). It is essential that the fire community have conceptual models, physical equations and tools (i.e. numerical models) to predict infiltration and thus excess rainfall (after Horton, 1933), which can provide estimates of peak discharge, start of runoff, time to peak and total runoff for hydroclimatic scenarios after wildfires. Reductions in saturated hydraulic conductivity Ksat [LT-1] are common for fire-affected soils, and the relatively low values observed explain the elevated flash flood hazards (e.g. Ksat of 1–100 mm h-1 , Robichaud, 2000; Yates et al., 2000; Martin and Moody, 2001; Robichaud et al., 2007; Moody et al., 2009; Neary, 2011; Nyman et al., 2011).
NASA Astrophysics Data System (ADS)
Steinmann, M.; Floch, A. L.; Lucot, E.; Badot, P. M.
2014-12-01
The oxyhydroxides of iron are common soil minerals and known to control the availability of various major and trace elements essential for biogeochemical processes. We present a study from acidic natural forest soils, where reducing redox conditions due to seasonal waterlogging lead to the dissolution of Fe-oxyhydroxides, and to the release of Fe to soil water. In order to study in detail the mechanism of redox cycling of Fe, we used Rare Earth Element (REE) distribution patterns, because an earlier study has shown that they are a suitable tool to identify trace metal sources during soil reduction in wetland soils (Davranche et al., 2011). The REE patterns of soil leachates obtained with the modified 3-step BCR extraction scheme of Rauret et al., (1999) were compared with those of natural soil water. The adsorbed fractions (F1 leach), the reducible fraction of the deepest soil horizon H4 (F2 leach, 50-120 cm), and the oxidizable fractions of horizons H2 to H4 (F3 leachs, 24-120 cm) yielded REE patterns almost identical to soil water (see figure), showing that the REE and trace metal content of soil water was mainly derived from the F1 pool, and from the F2 and F3 pools of the clay mineral-rich deep soil horizons. In contrast, the F2 leach mobilized mainly Fe-oxyhydroxides associated with organic matter of the surface soil and yielded REE patterns significantly different from those of soil water. These results suggest that the trace metal content of soil water in hydromorphic soils is primarily controlled by the clay fraction of the deeper soil horizons and not by organic matter and related Fe-oxyhydroxides of the surface soil. Additional analyses are in progress in order to verify whether the REE and trace metals of the deeper soil horizons were directly derived from clay minerals or from associated Fe-oxyhydroxide coatings. Refs cited: Davranche et al. (2011), Chem. Geol. 284; Rauret et al. (1999), J. Environ. Monit. 1.
Influence of Pb on microbial activity in Pb-contaminated soils
Landmeyer, J.E.; Bradley, P.M.; Chapelle, F.H.
1993-01-01
Investigations of the influence of Pb on soil microbial communities have focused on Pb concentrations of 1 g kg-’ or less (Barkay et al., 1985; Capone et al., 1983; Chang and Broadbent, 1981; Doelman and Haanstra, 1979; Trevors et al., 1985). However, a number of environments exist in which Pb concentrations exceed 1 g kg-’ dry soil (Davenport and Peryea, 1991; Davis et al., 1992; Bisessar, 1982). Bisessar (1982) reported an inverse correlation between Pb concentration and the bacterial population size in soil near a secondary lead smelter. However, similar trends in the concentrations of Pb, As, Cd, and Cu at the site make it difficult to attribute the reductions in population size to Pb alone. Although the effects on microbial carbon mineralization of Pb concentrations as high as 20,000 g kg-’ dry soil were investigated by Debosz et a/. (1985), differences in pH between Pb treatments and the lack of controls for abiotic CO, evolution make the results of the study equivocal. Our purpose was to examine the effects of g kg-’ Pb concentrations on the growth and productivity of soil microbial communities.
Leachate Properties and Cadmium Migration Through Freeze-thaw Treated Soil Columns.
Xu, Meng; Zheng, Yue; Chen, Weiwei; Mao, Na; Guo, Ping
2017-01-01
Soil column leaching experiments were conducted to study the effects of multiple freeze-thaw cycles on the vertical migration of cadmium (Cd). Three Cd-spiked leaching solutions of different properties were derived from snowmelt, sludge, and straw, designated as B, W and J, respectively. The leaching solutions varied in dissolved organic matter (DOM) concentrations in the order of J > W > B. Changes in leachate properties and Cd concentration were observed. The results showed that pH values of all the leachate solutions through freeze-thaw treated soil columns were higher than those of leachates through unfrozen soils. However, electrical conductivity (EC) values decreased compared with leachates in unfrozen treated soil columns. Although the concentrations of DOM in leachate solutions had no evident differences between the freeze-thaw and unfrozen treated soil columns, the concentrations of DOM in the leachate solutions B, W and J were different. Freeze-thaw cycles resulted in increased concentrations of Cd in the leachate solutions in the order J > W > B, and promoted a deeper migration of Cd in the soil columns. Thus, it was shown that freeze-thaw cycles may increase the risk of groundwater pollution by Cd.
Jho, Eun Hea; Im, Jinwoo; Yang, Kyung; Kim, Young-Jin; Nam, Kyoungphile
2015-01-01
This study was set to investigate the changes in the toxicity of arsenic (As)-contaminated soils after washing with phosphate solutions. The soil samples collected from two locations (A: rice paddy and B: forest land) of a former smelter site were contaminated with a similar level of As. Soil washing (0.5 M phosphate solution for 2 h) removed 24.5% As, on average, in soil from both locations. Regardless of soil washing, Location A soil toxicities, determined using Microtox, were greater than that of Location B and this could be largely attributed to different soil particle size distribution. With soils from both locations, the changes in As chemical forms resulted in either similar or greater toxicities after washing. This emphasizes the importance of considering ecotoxicological aspects, which are likely to differ depending on soil particle size distribution and changes in As chemical forms, in addition to the total concentration based remedial goals, in producing ecotoxicologically-sound soils for reuse. In addition, calcium phosphate used as the washing solution seemed to contribute more on the toxic effects of the washed soils than potassium phosphate and ammonium phosphate. Therefore, it would be more appropriate to use potassium or ammonium phosphate than calcium phosphate for phosphate-aided soil washing of the As-contaminated soils. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mariscal-Sancho, I.; Gonzalez-Fernandez, P.; León, P.; Gómez-Paccard, C.; Benito, M.; Espejo, R.
2012-04-01
Cañamerós raña formation in western Spain was cleared for cropping in 1940´s. Its highly weathered acidic soils (Ultisols) were deeply affected by tillage. The soil organic matter (SOM) content and specially the particulate organic matter (POM), a labile fraction, were drastically reduced, and most of their chemical and physical soil properties related to its quality were negatively affected. The extraction of Ca through the harvest and the release of Al retained in organic-Al complexes resulted in a lower Ca/Al ratio which increased the Al toxicity. These effects led to a drastic yield reduction and the abandon of many degraded fields after 20-70 years of unsustainable managements. On these degraded soils we studied the effect of different soil management strategies (no-till with wild pasture (WP) and no-till with an improved pasture (IP)), and amendment applications (sugar foam waste (SF), and SF + Phosphogypsum (PH) versus control (C)). One of the objectives of this work was to evaluate the efficiency of these practices to recover soil quality parameters, especially those related to soil-water relationship. A Split-plot experiment was established in a degraded field. We evaluated the changes in superficial infiltration, bulk density, and content of water-stable aggregates per 100 g of soil before the Ca-amendment applications and pasture establishments, and after 4.5 years. We also measured the changes in SOM and POM contents which are closely related with the previous parameters. The Ca applications reduced Al toxicity, improved the pasture yield and increased organic matter inputs to soil. The results showed a significant increase of POM in all treatment compared with the POM content at the beginning of this experiment. However the "SOM minus POM" which could be classified as recalcitrant organic matter did not show significant increments. The increase of POM had a positive effect on the content of water-stable aggregates per 100 g of soil and the water infiltration which increased, and the bulk density which decreased. We recommend the use of SF for these degraded acid soils, because it improved soil-water properties and because it is a clean and inexpensive by-product. The IP cropping also assisted the soil recovery and provided pastures with higher concentration of legumes species than the WP.
Soil solution interactions may limit Pb remediation using P amendments in an urban soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obrycki, John F.; Scheckel, Kirk G.; Basta, Nicholas T.
Lead (Pb) contaminated soils are a potential exposure hazard to the public. Amending soils with phosphorus (P) may reduce Pb soil hazards. Soil from Cleveland, OH containing 726 ± 14 mg Pb kg -1 was amended in a laboratory study with bone meal and triple super phosphate (TSP) at 5:1 P:Pb molar ratios. Soil was acidified, neturalized and re-acidified to encourage Pb phosphate formation. PRSTM-probes were used to evaluate changes in soil solution chemistry. Soil acidification did not decrease in vitro bioaccessible (IVBA) Pb using either a pH 1.5, 0.4 M glycine solution or a pH 2.5 solution with organicmore » acids. PRSTM-probe data found soluble Pb increased 10-fold in acidic conditions compared to circumnetural pH conditions. In acidic conditions (p = 3-4), TSP treated soils increased detected P 10-fold over untreated soils. Bone meal application did not increase PRSTM-probe detected P, indicating there may have been insufficient P to react with Pb. X-ray absorption spectroscopy suggested a 10% increase in pyromorphite formation for the TSP treated soil only. Treatments increased soil electrical conductivity above 16 mS cm -1, potentially causing a new salinity hazard. This study used a novel approach by combining the human ingestion endpoint, PRSTM-probes, and X-ray absorption spectroscopy to evaluate treatment efficacy. PRSTM-probe data indicated potentially excess Ca relative to P across incubation steps that could have competed with Pb for soluble P. More research is needed to characterize soil solutions in Pb contaminated urban soils to identify where P treatments might be effective and when competing cations, such as Ca, Fe, and Zn may limit low rate P applications for treating Pb soils.« less
Extreme soil erosion rates in citrus slope plantations and control strategies. A literature review
NASA Astrophysics Data System (ADS)
Cerdà, Artemi; Ángel González Peñaloza, Félix; Pereira, Paulo; Reyes Ruiz Gallardo, José; García Orenes, Fuensanta; Burguet, María
2013-04-01
Soil Erosion is a natural process that shapes the Earth. Due to the impact of agriculture, soil erosion rates increase, landforms show gullies and rills, and soils are depleted. In the Mediterranean, wheat, olive and vineyards were the main agriculture products, but new plantations are being found in sloping terrain due to the drip-irrigation. This new strategy results in the removal of the traditional terraces in order to make suitable for mechanization the agriculture plantation. Citrus is a clear example of the impact of the new chemical agriculture with a high investment in herbicides, pesticides, mechanisation, land levelling and drip computer controlled irrigation systems. The new plantation of citrus orchards is found in the Mediterranean, but also in California, Florida, China and Brazil. Chile, Argentina, and South Africa are other producers that are moving to an industrial production of citrus. This paper shows how the citrus plantations are found as one of the most aggressive plantation due to the increase in soil erosion, and how we can apply successful control strategies. The research into the high erosion rates of citrus orchard built on the slopes are mainly found in China (Wu et al., 1997; Xu et al., 2010; Wang et al., 2011; Wu et al., 2011; Liu et al., 2011; Lü et al., 2011; Xu et al., 2012) and in the Mediterranean (Cerdà and Jurgensen, 2008; 2009; Cerdà et al., 2009a; 2009b; Cerdà et al., 2011; 2012) Most of the research done devoted to the measurements of the soil losses but also some research is done related to the soil properties (Lu et al., 1997; Lü et al., 2012; Xu et al., 2012) and the impact of cover crops to reduce the soil losses (Lavigne et al., 2012; Le Bellec et al., 2012) and the use of residues such as dried citrus peel in order to reduce the soil losses. There are 116 million tonnes of citrus produced yearly, and this affects a large surface of the best land. The citrus orchards are moving from flood irrigated to drip irrigated land, and this contributes to increase the soil losses due to the sloping terrain. Although citrus is a world wide food, and occupy a large surface little is being researched on their impact on soil erosion, land degradation and strategies to control the soil, water and nutrient losses. This paper review the research developed until now and the results show that there is a poor background on this topic. It is necessary to develop research projects to improve the knowledge on the impact of citrus plantations on soil degradation and soil erosion. Another key information from the literature review done, is that most of the research was done in two regions of China and one of the Mediterranean. Definitively, a poor understanding of a huge environmental problem that need more scientific research. Acknowledgements The research projects GL2008-02879/BTE and LEDDRA 243857 supported this research. References Bombino, G., Denisi, P., Fortugno, D., Tamburino, V., Zema, D.A., Zimbone, S.M. 2010. Land spreading of solar-dried citrus peel to control runoff and soil erosion. WIT Transactions on Ecology and the Environment, 140, 145-154. Cerdà, A., Giménez Morera, A., Burguet, M., Arcenegui, V., González Peñaloza, F.A., García-Orenes, F., Pereira, P. 2012. The impact of the farming, abandonment and agricultural intensification on loss of water and soil. The example of the northern slopes of the Serra Grossa, Eastern Spain [El impacto del cultivo, el abandono y la intensificación de la agricultura en la pérdida de agua y suelo. el ejemplo de la vertiente norte de la serra grossa en el este peninsular] Cuadernos de Investigacion Geografica, 38 (1), 75-94. Cerdà, A., Jurgensen, M.F. 2008. The influence of ants on soil and water losses from an orange orchard in eastern Spain. Journal of Applied Entomology, 132 (4), 306-314. Cerdà, A., Jurgensen, M.F. 2011. Ant mounds as a source of sediment on citrus orchard plantations in eastern Spain. A three-scale rainfall simulation approach. Catena, 85 (3), 231-236. Cerdà, A., Jurgensen, M.F., Bodi, M.B. 2009. Effects of ants on water and soil losses from organically-managed citrus orchards in eastern Spain. Biologia, 64 (3), 527-531. Cerdà, A., Morera, A.G., Bodí, M.B. 2009. Soil and water losses from new citrus orchards growing on sloped soils in the western Mediterranean basin. Earth Surface Processes and Landforms, 34 (13), 1822-1830. Lavigne, C., Achard, R., Tixier, P., Lesueur Jannoyer, M. 2012. How to integrate cover crops to enhance sustainability in banana and citrus cropping systems. Acta Horticulturae, 928, 351-358. Le Bellec, F., Damas, O., Boullenger, G., Vannière, H., Lesueur Jannoyer, M., Tournebize, R., Ozier Lafontaine, H. 2012. Weed control with a cover crop (Neonotonia wightii) in mandarin orchards in Guadeloupe (FWI). Acta Horticulturae, 928, 359-366. Liu, Y., Tao, Y., Wan, K.Y., Zhang, G.S., Liu, D.B., Xiong, G.Y., Chen, F. 2012. Runoff and nutrient losses in citrus orchards on sloping land subjected to different surface mulching practices in the Danjiangkou Reservoir area of China. Agricultural Water Management, 110, 34-40. Lu, J., Wilson, M.J., Yu, J. 1997. Effects of trench planting and soil chiselling on soil properties and citrus production in hilly ultisols of China Soil and Tillage Research, 43 (3-4), 309-318. Lü, W., Zhang, H., Wu, Y., Cheng, J., Li, J., Wang, X. 2012. The impact of plant hedgerow in Three Gorges on the soil chemicophysical properties and soil erosion. Key Engineering Materials, 500, 142-148. Wang, L., Tang, L., Wang, X., Chen, F. 2010. Effects of alley crop planting on soil and nutrient losses in the citrus orchards of the Three Gorges Region. Soil and Tillage Research, 110 (2), 243-250. Wu J., Li Q., Yan L. 1997. Effect of intercropping on soil erosion in young citrus plantation - a simulation study. Chinese Journal of Applied Ecology, 8 (2), 143-146. Wu, D.-M., Yu, Y.-C., Xia, L.-Z., Yin, S.-X., Yang, L.-Z. 2011. Soil fertility indices of citrus orchard land along topographic gradients in the three gorges area of China. Pedosphere, 21 (6), 782-792. Xu, Q., Wang, T., Li, Z., Cai, C., Shi, Z., Jiang, C. 2010. Effect of soil conservation measurements on runoff, erosion and plant production: A case study on steeplands from the Three Gorges Area, China. Journal of Food, Agriculture and Environment, 8 (3-4 PART 2), 980-984. Xu, Q.X., Wang, T.W., Cai, C.F., Li, Z.X., Shi, Z.H. 2012. Effects of soil conservation on soil properties of citrus orchards in the Three-Gorges Area, China. Land Degradation and Development, 23 (1), 34-42.
Whicker, Jeffrey J; Pinder, John E; Ibrahim, Shawki A; Stone, James M; Breshears, David D; Baker, Kristine N
2007-07-01
The environmental mobility of newly deposited radionuclides in surface soil is driven by complex biogeochemical relationships, which have significant impacts on transport pathways. The partition coefficient (Kd) is useful for characterizing the soil-solution exchange kinetics and is an important factor for predicting relative amounts of a radionuclide transported to groundwater compared to that remaining on soil surfaces and thus available for transport through erosion processes. Measurements of Kd for 238U are particularly useful because of the extensive use of 238U in military applications and associated testing, such as done at Los Alamos National Laboratory (LANL). Site-specific measurements of Kd for 238U are needed because Kd is highly dependent on local soil conditions and also on the fine soil fraction because 238U concentrates onto smaller soil particles, such as clays and soil organic material, which are most susceptible to wind erosion and contribute to inhalation exposure in off-site populations. We measured Kd for uranium in soils from two neighboring semiarid forest sites at LANL using a U.S. Environmental Protection Agency (EPA)-based protocol for both whole soil and the fine soil fraction (diameters<45 microm). The 7-d Kd values, which are those specified in the EPA protocol, ranged from 276-508 mL g-1 for whole soil and from 615-2249 mL g-1 for the fine soil fraction. Unexpectedly, the 30-d Kd values, measured to test for soil-solution exchange equilibrium, were more than two times the 7-d values. Rates of adsorption of 238U to soil from solution were derived using a 2-component (FAST and SLOW) exponential model. We found significant differences in Kd values among LANL sampling sites, between whole and fine soils, and between 7-d and 30-d Kd measurements. The significant variation in soil-solution exchange kinetics among the soils and soil sizes promotes the use of site-specific data for estimates of environmental transport rates and suggests possible differences in desorption rates from soil to solution (e.g., into groundwater or lung fluid). We also explore potential relationships between wind erosion, soil characteristics, and Kd values. Combined, our results highlight the need for a better mechanistic understanding of soil-solution partitioning kinetics for accurate risk assessment.
NASA Astrophysics Data System (ADS)
Kočárek, Martin; Kodešová, Radka; Klement, Aleš; Golovko, Oksana; Fér, Miroslav; Nikodem, Antonín; Vondráčková, Lenka; Jakšík, Ondřej; Grabic, Roman
2016-04-01
Transport of human and veterinary pharmaceuticals in soils and consequent ground-water contamination are influenced by many factors, including compound sorption on soil particles and dissipation. Batch sorption experiment for 9 soils (3 soil types with 3 (Greyic Phaeozem on loess), 4 (Haplic Luvisol on loess) and 2 (Haplic Cambisol on gneiss) horizons) and mixture of 4 pharmaceuticals (atenolol, trimetoprim, carbamazepine and sulfamethoxazole) was performed to study competitive sorption of compounds in each soil sample. Sorption affinities and dissipation half-lives of all compounds in topsoils were previously studied by Kodešová et al. (2015 and 2016). Ten grams of dry soil was placed directly into the plastic centrifuge tubes and 20 ml of solution of a known pharmaceutical concentration was added. The same concentrations (0.5, 1, 2.5, 5 and 10 mg/l) were used for all compounds. Three replicates of each concentration were applied for each soil. Tube was shaken for 24 h using the shaking apparatus at 20 C. After shaking, the analyzed soil suspension was centrifuged for 10 min at 6,000 rotations per minute. The actual initial and final equilibrium pharmaceutical concentrations were measured using two-dimensional liquid chromatography-tandem mass spectrometry LC/LC-MS/MS using isotope dilution and internal standard methods. The pharmaceutical concentration adsorbed on soil particles was calculated using the initial and final (i.e. after incubation) pharmaceutical concentrations. The Freundlich equations were used to fit data points of the measured adsorption isotherms. In the case of carbamazepine (neutral form) and sulfamethoxazole (partly negatively charged) sorption affinity of compounds decrease with soil depth. On the other hand in the case of atenolol and trimethoprim (both positively charged) compound sorption affinity was not depth dependent. Data obtained for top soils were compared with sorption affinities for single compounds published by (Kodešová et al., 2015). While sorption affinities of atenolol, trimethoprim and carbamazepine due to compound competition decrease, sorption affinity of sulfamethoxazole increased. Pearson product moment correlation coefficient and p-value were used to evaluate relationships between sorption coefficients and soil properties. Kodešová, R., Grabic, R., Kočárek, M., Klement, A., Golovko, O., Fér, M., Nikodem, A., Jakšík, O. (2015a): Pharmaceuticals' sorptions relative to properties of thirteen different soils. Science of the Total Environment, 511, 435-443. Kodešová, R., Kočárek, M., Klement, A., Golovko, O., Koba, O., Fér, M., Nikodem, A., Vondráčková, L., Jakšík, O., Grabic, R. (2016): An analysis of the dissipation of pharmaceuticals under thirteen different soil conditions. Science of the Total Environment, 544, 369-381.
A new methodology for quantifying the impact of water repellency on the filtering function of soils
NASA Astrophysics Data System (ADS)
Müller, Karin; Deurer, Markus; Kawamoto, Ken; Hiradate, Syuntaro; Komatsu, Toshiko; Clothier, Brent
2014-05-01
Soils deliver a range of ecosystem services, and some of the most valuable relate to the regulating services resulting from the buffering and filtering of solutes by soil. However, it is commonly accepted that soil water repellency (SWR) can lead to finger flow and preferential flow. Yet, there have been few attempts to quantify the impact of such flow phenomena on the buffering and filtering of solutes. No method is available to quantify directly how SWR affects the transport of reactive solutes. We have closed this gap and developed a new method for quantifying solute transport by novel experiments with water-repellent soils. It involves sequentially applying two liquids, one water, and the other a reference fully wetting liquid, namely, aqueous ethanol, to the same intact soil core with air-drying between the application of the two liquids. Our results highlight that sorption experiments are necessary to complement our new method to ascertain directly the impact of SWR on the filtering of a solute. We conducted transport and sorption experiments, by applying our new method, with the herbicide 2,4-Dichlorophenoxyacetic acid and two Andosol top-soils; one from Japan and the other one from New Zealand. Breakthrough curves from the water experiments were characterized by preferential flow with high initial concentrations, tailing and a long prevalence of solutes remaining in the soil. Our results clearly demonstrate and quantify the impact of SWR on the leaching of this herbicide. This technique for quantifying the reduction of the soil's filtering efficiency by SWR enables assessment of the increased risk of groundwater contamination by solutes exogenously applied to water-repellent soils.
Use of plant trait data in the ISBA-A-gs model
NASA Astrophysics Data System (ADS)
Calvet, Jean-Christophe
2014-05-01
ISBA-A-gs is a CO2-responsive LSM (Calvet et al., 1998; Gibelin et al., 2006), able to simulate the diurnal cycle of carbon and water vapour fluxes, together with LAI and soil moisture evolution. The various components of ISBA-A-gs are based to a large extent on meta-analyses of trait data. (1) Photosynthesis: ISBA-A-gs uses the model of Goudriaan et al. (1985) modified by Jacobs (1994) and Jacobs et al. (1996). The main parameter is mesophyll conductance (gm). Leaf-level photosynthesis observations were used together with canopy level flux observations to derive gm together with other key parameters of the Jacobs model, including in drought conditions. This permitted implementing detailed representations of the soil moisture stress. Two different types of drought responses are distinguished for both herbaceous vegetation (Calvet, 2000) and forests (Calvet et al., 2004), depending on the evolution of the water use efficiency (WUE) under moderate stress: WUE increases in the early soil water stress stages in the case of the drought-avoiding response, whereas WUE decreases or remains stable in the case of the drought-tolerant response. (2) Plant growth: the leaf biomass is provided by a growth model (Calvet et al., 1998; Calvet and Soussana, 2001) driven by photosynthesis. In contrast to other land surface models, no GDD-based phenology model is used in ISBA-A-gs, as the vegetation growth and senescence are entirely driven by photosynthesis. The leaf biomass is supplied with the carbon assimilated by photosynthesis, and decreased by a turnover and a respiration term. Turnover is increased by a deficit in photosynthesis. The leaf onset is triggered by sufficient photosynthesis levels and a minimum LAI value is prescribed. The maximum annual value of LAI is prognostic, i.e. it can be predicted by the model. LAI is derived from leaf biomass using SLA values. The latter are derived from the leaf nitrogen concentration using plasticity parameters. (3) CO2 effect: the photosynthesis model is able to represent the antitranspirant effect of CO2. The plant growth model represents the fertilization effect of CO2. However, the nitrogen dilution triggered by the CO2 increase has to be represented. A pragmatic solution consists in decreasing the leaf nitrogen concentration parameter in response to CO2, using existing meta-analyses of this parameter (Calvet et al., 2008). The TRY database could be used to improve the current parameterizations, together with the mapping of the model parameters.
Extraction of Pentachlorophenol from Soils using Environmentally Benign Lactic Acid Solutions
Soil contamination with pentachlorophenol (PCP) is widespread across the globe. Soil washing/extraction is a common technique to remove this compound. Several soil washing/extraction solutions have been used but a majority of them have the problem of persistence in the environmen...
Influence of Soil Solution Salinity on Molybdenum Adsorption by Soils
USDA-ARS?s Scientific Manuscript database
Molybdenum (Mo) adsorption on five arid-zone soils from California was investigated as a function of equilibrium solution Mo concentration (0-30 mg L-1), solution pH (4-8), and electrical conductivity (EC = 0.3 or 8 dS m-1). Molybdenum adsorption decreased with increasing pH. An adsorption maximum...
Influence of soil solution cation composition on boron adsorption by soils
USDA-ARS?s Scientific Manuscript database
Boron (B) adsorption on five arid-zone soil samples from California was investigated as a function of solution pH (4-10) and cation composition (Na, Ca, or Mg). Boron adsorption increased with increasing solution pH, reached an adsorption maximum near pH 9, and decreased with further increases with...
NASA Astrophysics Data System (ADS)
Cerdà, Artemi; Burguet, Maria; Keesstra, Saskia; Prosdocimi, Massimo; Di Prima, Simone; Brevik, Erik; Novara, Agata; Jordan, Antonio; Tarolli, Paolo
2016-04-01
Soil erosion, land degradation, lack of organic matter, erodible soils, rock outcrops… are a consequence of the human abuse and misuse of the soil resources. And this is a worldwide environmental issue (Novara et al., 2011; Vanlauwe et al., 2015; Musinguzi et al., 2015; Pereira et al., 2015; Mwagno et al., 2016). Agriculture terraces are a strategy to reduce the soil erosion, improve the soil fertility and allow the ploughing (Cerdà et al., 2010; Li et al., 2014). Although this idea is well accepted there are few scientific evidences that demonstrate that soils in the terraced areas are more stable, fertile and sustainable that the soil in non terraced areas. In fact, the ploughing in comparison to the abandoned or not ploughed land results in the soil degradation (Lieskovský and Kenderessy, 2014; Gao et al., 2015; Parras-Alcántara et al., 2014). This is mainly due to the lack of vegetation that increase the surface runoff (Cerdà et al., 1998; Keesstra et al., 2007). And why is necessary to develop also in terraced landscapes soil erosion control strategies (Mekonnen et al., 2015a; Mekonnen et al., 2015b; Prosdocimi et al., 2016). Our objective was to assess the soil organic matter content (Walkley and Black, 1934), the soil bulk density (ring method), the aggregate stabilility (drop impact) and the water repellency (Water Drop Penetration Time test) in four study sites in the Sierra de Enguera. Two sites were terraced: one abandoned 40 years before the measurements and the other still active with olive crops. And two control sites non-terraced. We used the paired plot strategy to compare the impact of terracing and abandonment. At each site we collected randomly 50 soil samples at 0-2 cm, 4-6 and 8-10 cm depth. At each sampling point 100 WDPT measurements where carried out, and one sample for the bulk density, and one for the organic matter, and one for the soil aggregate stability were collected. The soil surface samples shown the largest differences. The results shows that the abandoned terrace is developing soils with more organic matter (7.34 % in average) than the control plot (5.37 %), with lower soil bulk density (1.01 g/cm3 against 1.05 g/cm3), higher WDPT (54 seconds against 42 seconds) and more stable aggregates (87 against 76 %). On the contrary, the active terrace shown soils with low more organic matter (2.05% in average) than the control plot non-terraced (5.39 %), with higher soil bulk density (1.12 g/cm3 against 1.06 g/cm3), lower WDPT (2.54 seconds against 43 seconds) and unstable aggregates (39 % surviving aggregates against 74 %). This results shown that terraces when abandoned are developing soils rich in organic matter, high aggregate stability, water repellent and low bulk density, but when active, the ploughing results in soils more degraded than the ones developed nearby. Acknowledgements The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603498 (RECARE project). Cerdà, A. The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain (1998) Canadian Journal of Soil Science, 78 (2), pp. 321-330. Cerdà, A., Lavee, H., Romero-Díaz, A., Hooke, J., Montanarella, L. 2010. Soil erosion and degradation in mediterranean type ecosystems. Land Degradation and Development, 21 (2), pp. 71-74..DOI: 10.1002/ldr.968 Gao Y., Dang X., Yu Y., Li Y., Liu Y., Wang J. Effects of Tillage Methods on Soil Carbon and Wind Erosion. (2015) Land Degradation and Development, . Article in Press. DOI: 10. 1002/ldr. 2404 Keesstra, S.D., 2007. Impact of natural reforestation on floodplain sedimentation in the Dragonja basin, SW Slovenia. Earth Surface Processes and Landforms, 32(1): 49-65. DOI: 10.1002/esp.1360 Li X. H., Yang J., Zhao C. Y., Wang B. Runoff and sediment from orchard terraces in southeastern China. (2014) Land Degradation and Development, 25 (2), pp. 184-192. Cited 3 times. DOI: 10. 1002/ldr. 1160 Lieskovský, J., Kenderessy, P. 2014. Modelling the effect of vegetation cover and different tillage practices on soil erosion in vineyards: A case study in vráble (Slovakia) using WATEM/SEDEM Land Degradation and Development, 25 (3), 288-296. DOI: 10.1002/ldr.2162 Mekonnen, M., Keesstra, S. D., Baartman, J. E., Ritsema, C. J., & Melesse, A. M. (2015). Evaluating sediment storage dams: structural off-site sediment trapping measures in northwest Ethiopia. Cuadernos de Investigación Geográfica, 41(1), 7-22. DOI: 10.18172/cig.2643 Mekonnen, M., Keesstra, S.D., Stroosnijder, L., Baartman, J.E.M., Maroulis, J., 2015. Soil conservation through sediment trapping: a review. Land Degradation and Development, 26, 544-556. DOI: 10.1002/ldr.2308 Musinguzi, P., Ebanyat, P., Tenywa, J.S., Basamba, T.A., Tenywa, M.M., Mubiru, D. 2015. Precision of farmer-based fertility ratings and soil organic carbon for crop production on a Ferralsol. Solid Earth, 6 (3), pp. 1063-1073. DOI: 10.5194/se-6-1063-2015 Mwango, S.B., Msanya, B.M., Mtakwa, P.W., Kimaro, D.N., Deckers, J., Poesen, J. 2016.Effectiveness of mulching under miraba in controlling soil erosion, fertility restoration and crop yield in the usambara mountains, Tanzania. Land Degradation and Development, DOI: 10.1002/ldr.2332 Novara, A., Gristina, L., Saladino, S.S., Santoro, A., Cerdà, A. 2011. Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard. Soil and Tillage Research, 117, pp. 140-147. DOI: 10.1016/j.still.2011.09.007 Parras-Alcántara L., Lozano-García B. Conventional tillage versus organic farming in relation to soil organic carbon stock in olive groves in Mediterranean rangelands (southern Spain). (2014) Solid Earth, 5 (1), pp. 299-311. Cited 6 times. DOI: 10. 5194/se-5-299-2014 Pereira, P., Giménez-Morera, A., Novara, A., Keesstra, S., Jordán, A., Masto, R. E., Brevik, E., Azorin-Molina, C. Cerdà, A. 2015. The impact of road and railway embankments on runoff and soil erosion in eastern Spain. Hydrology and Earth System Sciences Discussions, 12, 12947-12985. Prosdocimi,M., Jordán, A., Tarolli, P., , S., Novara, A., Cerdà, A. 2016. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Science of The Total Environment, 547,15,323-330, doi:10.1016/j.scitotenv.2015.12.076 Prosdocimi,M., Jordán, A., Tarolli, P., , S., Novara, A., Cerdà, A. 2016. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Science of The Total Environment, 547,15,323-330, doi:10.1016/j.scitotenv.2015.12.076 Vanlauwe, B., Descheemaeker, K., Giller, K.E., Huising, J., Merckx, R., Nziguheba, G., Wendt, J., Zingore, S., 2015. Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation. SOIL 1, 491-508. doi:10.5194/soil-1-491-2015 Walkley AJ, Black IA. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37: 29-38
Biocrust ecology: Unifying micro- and macro-scales to confront global change
Ferrenberg, Scott; Reed, Sasha C.
2017-01-01
Biological soil crusts (biocrusts) are communities of microbes, lichens and bryophytes living at the soil surface in drylands (Fig. 1; Belnap et al., 2016). Biocrusts occur on all continents and can comprise a majority of cover in some systems (Belnap et al., 2016). While species diversity and distributions have long been a research focus, interest in controls on community composition and cover has expanded as biocrusts are increasingly recognized for their roles in ecosystem functioning (Deane-Coe and Stanton, 2017). For example, biocrust organisms can stabilize soils (Belnap et al., 2016; Faist et al., 2017), fix atmospheric carbon (C) (Sancho et al., 2016), and serve as the foremost source of ‘new’ soil nitrogen (N) in drylands, via N2 fixation (Barger et al., 2016) These contributions to gross primary production and soil fertility could be quite large, as high-end estimates suggest biocrusts and similar communities of bryophytes and lichens might account for 10% of terrestrial C- and 50% of N-fixation globally (Elbert et al., 2012). Yet verifying these and other biocrust roles in ecosystem functioning is complicated by limited knowledge of biocrust cover and composition across the vast dryland biome (Ferrenberg et al., 2017).It was against this backdrop that ‘Biocrust3: the 3rd International workshop on biological soil crusts’ was held in Moab, UT, USA, on 26-30 September 2016. The workshop brought together over 50 scientists from 21 countries and six continents, and included numerous biocrust science pioneers (Fig. 2). The meeting was notable for its cross-scale focus, discussion of novel molecular and imaging techniques, and sessions on mapping and restoring biocrusts in a changing world. Here, we synthesize a central theme that emerged from Biocrust3, namely the potential for combining cutting edge tools with studies focused on organismal traits, ecosystem functions, and global change biology to advance the frontier of biocrust ecology.
Zheng, Hao; Gao, Jixi; Teng, Yanguo; Feng, Chaoyang; Tian, Meirong
2015-01-01
Drought and shortages of soil water are becoming extremely severe due to global climate change. A better understanding of the relationship between vegetation type and soil-moisture conditions is crucial for conserving soil water in forests and for maintaining a favorable hydrological balance in semiarid areas, such as the Saihanwula National Nature Reserve in Inner Mongolia, China. We investigated the temporal dynamics of soil moisture in this reserve to a depth of 40 cm under three types of vegetation during a period of rainwater recharge. Rainwater from most rainfalls recharged the soil water poorly below 40 cm, and the rainfall threshold for increasing the moisture content of surface soil for the three vegetations was in the order: artificial Larix spp. (AL) > Quercus mongolica (QM) > unused grassland (UG). QM had the highest mean soil moisture content (21.13%) during the monitoring period, followed by UG (16.52%) and AL (14.55%); and the lowest coefficient of variation (CV 9.6-12.5%), followed by UG (CV 10.9-18.7%) and AL (CV 13.9-21.0%). QM soil had a higher nutrient content and higher soil porosities, which were likely responsible for the higher ability of this cover to retain soil water. The relatively smaller QM trees were able to maintain soil moisture better in the study area. PMID:25781333
NASA Astrophysics Data System (ADS)
Portner, Hanspeter; Wolf, Annett; Rühr, Nadine; Bugmann, Harald
2010-05-01
Many biogeochemical models have been applied to study the response of the carbon cycle to changes in climate, whereby the process of carbon uptake (photosynthesis) has usually gained more attention than the equally important process of carbon release by respiration. The decomposition of soil organic matter is driven by a combination of factors like soil temperature, soil moisture and litter quality. We have introduced dependence on litter substrate quality to heterotrophic soil respiration in the ecosystem model LPJ-GUESS [Smith et al.(2001)]. We were interested in differences in model projections before and after the inclusion of the dependency both in respect to short- and long-term soil carbon dynamics. The standard implementation of heterotrophic soil respiration in LPJ-GUESS is a simple carbon three-pool model whose decay rates are dependent on soil temperature and soil moisture. We have added dependence on litter quality by coupling LPJ-GUESS to the soil carbon model Yasso07 [Tuomi et al.(2008)]. The Yasso07 model is based on an extensive number of measurements of litter decomposition of forest soils. Apart from the dependence on soil temperature and soil moisture, the Yasso07 model uses carbon soil pools representing different substrate qualities: acid hydrolyzable, water soluble, ethanol soluble, lignin compounds and humus. Additionally Yasso07 differentiates between woody and non-woody litter. In contrary to the reference implementation of LPJ-GUESS, in the new model implementation, the litter now is divided according to its specific quality and added to the corresponding soil carbon pool. The litter quality thereby differs between litter source (leaves, roots, stems) and plant functional type (broadleaved, needleleaved, grass). The two contrasting model implementations were compared and validated at one specific CarboEuropeIP site (Lägern, Switzerland) and on a broader scale all over Switzerland. Our focus lay on the soil respiration for the years 2006 and 2007 [Rühr(2009)] and present soil carbon stocks [Heim et al.(2009)]. Our Results show, that for short-term soil carbon dynamics, e.g. estimates of heterotrophic soil respiration on an annual basis, the inclusion of the dependency on litter quality is not necessary, as the differences are minor only. However, when considering long-term soil carbon dynamics, e.g. simulated estimates of present soil carbon content, the dependency on litter quality shows effect, as there are correlations with specific site factors such as site location and forest type. The inclusion of the dependence on litter quality therefore may be of importance for the projection of future soil carbon dynamics, as forest types may well be altered due to climatic change. References [Heim et al.(2009)] A. Heim, L. Wehrli, W. Eugster, and M.W.I. Schmidt. Effects of sampling design on the probability to detect soil carbon stock changes at the swiss CarboEurope site Lägeren. Geoderma, 149(3-4):347-354, 2009. [Rühr(2009)] Nadine Katrin Rühr. Soil respiration in a mixed mountain forest : environmental drivers and partitioning of component fluxes. PhD thesis, ETH, 2009. [Smith et al.(2001)] Benjamin Smith, I. Colin Prentice, and Martin T. Sykes. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within european climate space. Global Ecology and Biogeography, 10(6):621-637, 2001. [Tuomi et al.(2008)] Mikko Tuomi, Pekka Vanhala, Kristiina Karhu, Hannu Fritze, and Jari Liski. Heterotrophic soil respiration-Comparison of different models describing its temperature dependence. Ecological Modelling, 211(1-2): 182-190, 2008.
NASA Astrophysics Data System (ADS)
Romano, N.
2015-12-01
Soil moisture is an important state variable that influences water flow and solute transport in the soil-vegetation-atmosphere system, and plays a key role in securing agricultural ecosystem services for nutrition and food security. Especially when environmental studies should be carried out at relatively large spatial scales, there is a need to synthesize the complex interactions between soil, plant behavior, and local atmospheric conditions. Although it relies on the somewhat loosely defined concepts of "field capacity" and "wilting point", the soil water-holding capacity seems a suitable indicator to meet the above-mentioned requirement, yet easily understandable by the public and stakeholders. This parameter is employed in this work to evaluate the effectiveness of phytoremediation protocols funded by the EU-Life project EcoRemed and being implemented to remediate and restore contaminated agricultural soils of the National Interest Priority Site Litorale Domizio-Agro Aversano. The study area is located in the Campania Region (Southern Italy) and has an extent of about 200,000 hectares. A high-level spotted soil contamination is mostly due to the legal or outlaw industrial and municipal wastes, with hazardous consequences also on groundwater quality. With the availability of soil and land systems maps for this study area, disturbed and undisturbed soil samples were collected at two different soil depths to determine basic soil physico-chemical properties for the subsequent application of pedotransfer functions (PTFs). Soil water retention and hydraulic conductivity functions were determined for a number of soil cores, in the laboratory with the evaporation experiments, and used to calibrate the PTFs. Efficient mapping of the soil hydraulic properties benefitted greatly from the use of the PTFs and the physically-based scaling procedure developed by Nasta et al. (2013, WRR, 49:4219-4229).
NASA Astrophysics Data System (ADS)
Cerdà, Artemi; Giménez-Morera, Antonio; Jordán, Antonio; Pereira, Paulo; Novara, Agata; García-Orenes, Fuensanta
2014-05-01
Not only the Sahel (Haregeweyn et al., 2013), the deforested land (Borelli et al., 2013) the chinese Plateau are affected by intense soil erosion rates (Zhao et al., 2013). Soil erosion affect agriculture land (Cerdà et al., 2009), and citrus orchards are being seeing as one of the crops with the highest erosion rates due to the managements that avoid the catch crops, weeds or litter. Example of the research carried out on citrus orchards is found in the Mediterranean (Cerdà and Jurgensen, 2008; 2009; Cerdà et al., 2009a; 2009b; Cerdà et al., 2011; 2012) and in China (Wu et al., 1997; Xu et al., 2010; Wang et al., 2011; Wu et al., 2011; Liu et al., 2011; Lü et al., 2011; Xu et al., 2012), and they confirm the non sustainable soil losses measured. The land management in citrus plantations results in soil degradation too (Lu et al., 1997; Lü et al., 2012; Xu et al., 2012). The use of cover crops to reduce the soil losses (Lavigne et al., 2012; Le Bellec et al., 2012) and the use of residues such as dried citrus peel has been found successful. There is a need to find new plants or residues to protect the soils on citrus orchards. Agriculture produces a high amount of residues. The pruning can contribute with a valuable source of nutrients and a good soil protection. The leaves of the trees, and some parts of the plants, once harvest can contribute to reduce the soil losses. Due to the mechanization of the agriculture, and the reduction of the draft animals (mainly horses, mules, donkeys and oxen) the straw is being a residue instead of a resource. The Valencia region is the largest producer of citrus in Europe, and the largest exporter in the world. This citrus production region is located in the eastern cost of Spain where we can find the rice production area of the l'Albufera Lagoon paddy fields, the third largest production region in Spain. This means, a rice production region surrounded by the huge citrus production region. There, the rice straw is not used in the paddy fields after harvesting and the straw is being as a residue that damages the air quality when burnt, the water quality due to the decomposition and the methane production, and is not accepted in the field by the farmers. This is a new problem as few years ago the rice straw was use for animal feeding. Many attempts were developed in the last decade to remove and use the straw to avoid fires and water pollution (Iranzo et al., 2004; Silvestre et al., 2013). Our goal is to test if a residue such as the rice straw can be transformed as a resource: soil erosion control. Straw has been seen as a very efficient to reduce the water losses in agriculture land (García Moreno et al., 2013), the soil losses in fire affected land (Robichaud et al., 2013a; 2013b; Fernandez and Vega, 2014), and soil properties (García Orenes et al., 2009; 2010; Jordán et al., 2010; García Orenes 2012). Rainfall simulations under 55 mm h-1 rainfall intensity during one hour on 0,25 m2 plots were carried out on plots paired plots: bare and covered with straw. The plots covered with straw had different straw mulch cover: from 10 to 100 % cover and from 0,005 g m2 to 300 g m2. The results show a positive effect of the straw cover that show an exponential relation between the straw cover and weight with the sediment yield. Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and RECARE supported this research. References Bombino, G., Denisi, P., Fortugno, D., Tamburino, V., Zema, D.A., Zimbone, S.M. 2010. Land spreading of solar-dried citrus peel to control runoff and soil erosion. WIT Transactions on Ecology and the Environment 140,145-154. Borrelli, P., Märker, M., Schütt, B. 2013. Modelling post-tree-haversting soil erosion and sediment deposition potential in the Turano River Basin (Italian Central Apennine). Land Degradation & Development, DOI 10.1002/ldr.2214 Cerdà, A., Flanagan, D.C., le Bissonnais, Y., Boardman, J. 2009. Soil erosion and agriculture Soil and Tillage Research 106, 107-108. DOI: 10.1016/j.still.2009.1 Cerdà, A., Jurgensen, M.F. 2008. The influence of ants on soil and water losses from an orange orchard in eastern Spain. Journal of Applied Entomology 132, 306-314. Cerdà, A., Jurgensen, M.F. 2011. Ant mounds as a source of sediment on citrus orchard plantations in eastern Spain. A three-scale rainfall simulation approach. Catena 85, 231-236. Cerdà, A., Jurgensen, M.F., Bodi, M.B. 2009. Effects of ants on water and soil losses from organically-managed citrus orchards in eastern Spain. Biologia 64, 527-531. Cerdà, A., Morera, A.G., Bodí, M.B. 2009. Soil and water losses from new citrus orchards growing on sloped soils in the western Mediterranean basin. Earth Surface Processes and Landforms 34, 1822-1830. Lavigne, C., Achard, R., Tixier, P., Lesueur Jannoyer, M. 2012. How to integrate cover crops to enhance sustainability in banana and citrus cropping systems. Acta Horticulturae 928, 351-358. Fernández, C., Vega, J.A. 2014. Efficacy of bark strands and straw mulching after wildfire in NW Spain: Effects on erosion control and vegetation recovery. Ecological Engineering 63, 50-57 García-Moreno, J., Gordillo-Rivero, Á.J., Zavala, L.M., Jordán, A., Pereira, P. 2013. Mulch application in fruit orchards increases the persistence of soil water repellency during a 15-years period. Soil and Tillage Research 130, 62-68. García-Orenes, F., Cerdà, A., Mataix-Solera, J., Guerrero, C., Bodí, M.B., Arcenegui, V., Zornoza, R. & Sempere, J.G. 2009. Effects of agricultural management on surface soil properties and soil-water losses in eastern Spain. Soil and Tillage Research 106, 117-123. 10.1016/j.still.2009.06.002 García-Orenes, F., Guerrero, C., Roldán, A.,Mataix-Solera, J., Cerdà, A., Campoy, M., Zornoza, R., Bárcenas, G., Caravaca. F. 2010. Soil microbial biomass and activity under different agricultural management systems in a semiarid Mediterranean agroecosystem. Soil and Tillage Research 109, 110-115. 10.1016/j.still.2010.05.005. García-Orenes, F., Roldán, A., Mataix-Solera, J., Cerdà, A., Campoy, M., Arcenegui, V., Caravaca, F. 2012. Soil structural stability and erosion rates influenced by agricultural management practices in a semi-arid Mediterranean agro-ecosystem. Soil Use and Management 28, 571-579. DOI: 10.1111/j.1475-2743.2012.00451.x Haregeweyn, N., Poesen, J., Verstraeten, G., Govers, G., de Vente, J., Nyssen, J., Deckers, J., Moeyersons, J. 2013. Assessing the performance of a Spatially distributed soil erosion and sediment delivery model (WATEM/SEDEM) in Northern Ethiopia. Land Degradation & Development 24, 188-204. DOI 10.1002/ldr.1121 Iranzo, M., Cañizares, J.V., Roca-Perez, L., Sainz-Pardo, I., Mormeneo, S., Boluda, R. 2004. Characteristics of rice straw and sewage sludge as composting materials in Valencia (Spain). Bioresource Technology 95, 107-112 Le Bellec, F., Damas, O., Boullenger, G., Vannière, H., Lesueur Jannoyer, M., Tournebize, R., Ozier Lafontaine, H. 2012. Weed control with a cover crop (Neonotonia wightii) in mandarin orchards in Guadeloupe (FWI). Acta Horticulturae 928, 359-366. Liu, Y., Tao, Y., Wan, K.Y., Zhang, G.S., Liu, D.B., Xiong, G.Y., Chen, F. 2012. Runoff and nutrient losses in citrus orchards on sloping land subjected to different surface mulching practices in the Danjiangkou Reservoir area of China. Agricultural Water Management 110, 34-40. Lu, J., Wilson, M.J., Yu, J. 1997. Effects of trench planting and soil chiselling on soil properties and citrusproduction in hilly ultisols of China Soil and Tillage Research 43, 309-318. Lü, W., Zhang, H., Wu, Y., Cheng, J., Li, J., Wang, X. 2012. The impact of plant hedgerow in Three Gorges on the soil chemicophysical properties and soil erosion. Key Engineering Materials 500 142-148. Robichaud, P.R., Lewis, S.A., Wagenbrenner, J.W., Ashmun, L.E., Brown, R.E. 2013a. Post-fire mulching for runoff and erosion mitigation. Part I: Effectiveness at reducing hillslope erosion rates. Catena 105, 75-92. Robichaud, P.R., Wagenbrenner, J.W., Lewis, S.A., Ashmun, L.E., Brown, R.E., Wohlgemuth, P.M. 2013b. Post-fire mulching for runoff and erosion mitigation. Part II: Effectiveness in reducing runoff and sediment yields from small catchments. Catena 105, 93-111. Silvestre, G., Gómez, M.P., Pascual, A., Ruiz, B. 2013. Anaerobic co-digestion of cattle manure with rice straw: Economic & energy feasibility. Water Science and Technology 67, 745-755 Wang, L., Tang, L., Wang, X., Chen, F. 2010. Effects of alley crop planting on soil and nutrient losses in the citrus orchards of the Three Gorges Region. Soil and Tillage Research 110, 243-250. Wu J., Li Q., Yan L. 1997. Effect of intercropping on soil erosion in young citrus plantation - a simulation study. Chinese Journal of Applied Ecology 8, 143-146. Wu, D.-M., Yu, Y.-C., Xia, L.-Z., Yin, S.-X., Yang, L.-Z. 2011. Soil fertility indices of citrus orchard land along topographic gradients in the three gorges area of China. Pedosphere 21, 782-792. Xu, Q., Wang, T., Li, Z., Cai, C., Shi, Z., Jiang, C. 2010. Effect of soil conservation measurements on runoff, erosion and plant production: A case study on steeplands from the Three Gorges Area, China. Journal of Food, Agriculture and Environment 8, 980-984. Xu, Q.X., Wang, T.W., Cai, C.F., Li, Z.X., Shi, Z.H. 2012. Effects of soil conservation on soil properties of citrus orchards in the Three-Gorges Area, China. Land Degradation and Development 23, 34-42. Zhao, G., Mu, X., Wen, Z., Wang, F., Gao, P. 2013. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degradation & Development, 24, 499- 510. DOI 10.1002/ldr.2246SP
Evolution of Fractal Parameters through Development Stage of Soil Crust
NASA Astrophysics Data System (ADS)
Ospina, Abelardo; Florentino, Adriana; Tarquis, Ana Maria
2016-04-01
Soil surface characteristics are subjected to changes driven by several interactions between water, air, biotic and abiotic components. One of the examples of such interactions is provided through biological soil crusts (BSC) in arid and semi-arid environments. BSC are communities composed of cyanobacteria, fungi, mosses, lichens, algae and liverworts covering the soil surface and play an important role in ecosystem functioning. The characteristics and formation of these BSC influence the soil hydrological balance, control the mass of eroded sediment, increase stability of soil surface, and influence plant productivity through the modification of nitrogen and carbon cycle. The site of this work is located at Quibor and Ojo de Agua (Lara state, Venezuela). The Quibor Depression in Venezuela is a major agricultural area being at semi-arid conditions and limited drainage favor the natural process of salinization. Additionally, the extension and intensification of agriculture has led to over-exploitation of groundwater in the past 30 years (Méndoza et al., 2013). The soil microbial crust develops initially on physical crusts which are mainly generated since wetting and drying, being a recurrent feature in the Quíbor arid zone. The microbiotic crust is organic, composed of macro organisms (bryophytes and lichens) and microorganisms (cyanobacteria, fungi algae, etc.); growing on the ground, forming a thickness no greater than 3 mm. For further details see Toledo and Florentino (2009). This study focus on characterize the development stage of the BSC based on image analysis. To this end, grayscale images of different types of biological soil crust at different stages where taken, each image corresponding to an area of 12.96 cm2 with a resolution of 1024x1024 pixels (Ospina et al., 2015). For each image lacunarity and fractal dimension through the differential box counting method were calculated. These were made with the software ImageJ/Fraclac (Karperien, 2013). REFERENCES Karperien, A. (2013). FracLac for ImageJ. Méndoza, B., Florentino, A., Hernández-Hernández, R.M., Aciego, J., Torres, D. and Vera, Elena. (2013). Biological attributes of two Quibor soils with addition of organic fertilizer and salt solutions. Revista Mexicana de Ciencias Agrícolas, 4(3), 409-421. Ospina, Abelardo, Adriana Florentino and Ana M. Tarquis (2015) Spatial Pattern of Biological Soil Crust with Fractal Geometry. Geophysical Research Abstracts, 17, EGU2015-15415-1 Toledo, V. and Florentino, A. (2009). The Microbiotic Crust On Soil. Revista de Investigación N° 68(33), 199-216.
Yates, S R
2009-01-01
An analytical solution describing the fate and transport of pesticides applied to soils has been developed. Two pesticide application methods can be simulated: point-source applications, such as idealized shank or a hot-gas injection method, and a more realistic shank-source application method that includes a vertical pesticide distribution in the soil domain due to a soil fracture caused by a shank. The solutions allow determination of the volatilization rate and other information that could be important for understanding fumigant movement and in the development of regulatory permitting conditions. The solutions can be used to characterize differences in emissions relative to changes in the soil degradation rate, surface barrier conditions, application depth, and soil packing. In some cases, simple algebraic expressions are provided that can be used to obtain the total emissions and total soil degradation. The solutions provide a consistent methodology for determining the total emissions and can be used with other information, such as field and laboratory experimental data, to support the development of fumigant regulations. The uses of the models are illustrated by several examples.
Sol-Gel Precursors for Ceramics from Minerals Simulating Soils from the Moon and Mars
NASA Technical Reports Server (NTRS)
Sibille, Laurent; Gavira-Gallardo, Jose-Antonio; Hourlier-Bahloul, Djamila
2003-01-01
Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report some preliminary results on the production of sol-gel precursors for ceramic products using mineral resources available in Martian or Lunar soil. The presence of SiO2, TiO2, and A12O3 in both Martian (44 wt.% SiO2, 1 wt.% TiO2, 7 wt.% Al2O3) and Lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from Lunar and Martian simulant soils. Clear sol-gel precursors have been obtained by dissolution of silica from Lunar simulant soil in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Thermogravimetric Analysis and X-ray Photoelectron Spectroscopy were used to characterize the elemental composition and structure of the precursor molecules. Further concentration and hydrolysis of the products was performed to obtain gel materials for evaluation as ceramic precursors. In the second set of experiments, we used the same starting materials to synthesize silicate esters in acidified alcohol mixtures. Preliminary results indicate the presence of silicon alkoxides in the product of distillation.
NASA Technical Reports Server (NTRS)
Wagner, Wolfgang; Luca, Brocca; Naeimi, Vahid; Reichle, Rolf; Draper, Clara; de Jeu, Richard; Ryu, Dongryeol; Su, Chun-Hsu; Western, Andrew; Calvet, Jean-Christophe;
2013-01-01
In a recent paper, Leroux et al. compared three satellite soil moisture data sets (SMOS, AMSR-E, and ASCAT) and ECMWF forecast soil moisture data to in situ measurements over four watersheds located in the United States. Their conclusions stated that SMOS soil moisture retrievals represent "an improvement [in RMSE] by a factor of 2-3 compared with the other products" and that the ASCAT soil moisture data are "very noisy and unstable." In this clarification, the analysis of Leroux et al. is repeated using a newer version of the ASCAT data and additional metrics are provided. It is shown that the ASCAT retrievals are skillful, although they show some unexpected behavior during summer for two of the watersheds. It is also noted that the improvement of SMOS by a factor of 2-3 mentioned by Leroux et al. is driven by differences in bias and only applies relative to AMSR-E and the ECWMF data in the now obsolete version investigated by Leroux et al.
Ecosystem Impacts of Woody Encroachment In Texas: A Spatial Analysis Using AVIRIS
NASA Technical Reports Server (NTRS)
Martin, Roberta E.; Asner, Gregory P.
2004-01-01
Woody encroachment, the increase of woody plant density relative to herbaceous vegetation, has been documented in drylands of Texas as well as worldwide (Archer 1994, Harrington and Harman 1995, Moleele et al. 2002). Over-grazing, fire suppression and climate change are implicated in the shift from open grasslands to ecosystems now populated by trees and shrubs (Scholes and Archer 1997, Archer et al. 2001), such as Prosopis glandulosa var. glandulosa (honey mesquite) in north Texas (Teague et al. 1997, Ansley et al. 2001, Asner et al. 2003a). Several studies have examined changes in ecosystem properties accompanying woody vegetation encroachment in the Southwest U.S., with research focused on increases in plant and soil carbon (C) and nitrogen (N) stores (Hoffman and Jackson 2000, Asner et al. 2003a), isotopic shifts in these pools (Boutton 1999, Archer et al. 2001), and increases in N cycling rates (Rundel et al. 1982, Hibbard et al. 2001). However, little is known regarding the impact of woody encroachment on N trace gas emissions from dryland regions such as Texas. NOx is produced in the soil during the processes of nitrification and denitrification (Firestone and Davidson 1989). The total N efflux from soils is most directly influenced by the internal cycling of N, which at a regionalscale, is controlled by the inputs and availability of N from vegetation via litterfall and subsequent decomposition (Robertson et al. 1989). Although plot-scale studies are critical to understanding controls over N oxide emissions, regionalization of the measurements is impeded by spatial variation in the factors contributing most to N cycling processes: soil properties (affecting soil moisture regimes and N stocks) and vegetation cover (affecting litter inputs and N uptake). While broad patterns in ecosystem structure and vegetation composition co-vary with general patterns of trace gas emissions (Matson 1997), there is no easily measured index of N availability that can be applied for regional-scale studies of N oxide fluxes. Remote sensing is arguably the only approach available to develop a spatially-explicit understanding of ecosystem processes. More specifically, remotely detectable spatial patterns in the distal controls over soil N properties, such as vegetation cover, land use and soil type (Robertson et al. 1989), should be exploited for regional studies of N oxide emissions. The woody encroachment phenomenon provides an opportunity to test the strength of the relationship between N oxide emissions and those factors controlling the fluxes that can be remotely measured. If such linkages can be firmly established, and if the spatial pattern of distal controls is relevant, then the combination of field measurements and remote sensing offers to improve regional-scale N oxide estimates. The paper presents the utility of linking field based sampling of soil NOx emissions with very high resolution remote sensing estimates of woody vegetation cover from the NASA AVIRIS, Airborne Visible-Infrared Imaging Spectrometer (Green et al. 1998, Asner and Green 2001) and automated spectral mixture analysis (Asner and Lobell 2000, Asner and Heidebrecht 2002) that provide a means to spatially extrapolate soil NOx emissions to the regional scale.
The impact of pH and calcium on the uptake of fluoride by tea plants (Camellia sinensis L.).
Ruan, Jianyun; Ma, Lifeng; Shi, Yuanzhi; Han, Wenyan
2004-01-01
Tea plants (Camellia sinensis L.) accumulate large amounts of fluoride (F) from soils containing normal F concentrations. The present experiments examined the effects of pH and Ca on F uptake by this accumulating plant species. The effect of pH was assessed in two experiments, one using uptake solutions with different pHs, and the other using lime, as CaO, applied to the soil. The effect of Ca was examined by analysing F concentrations in plants supplied with varying amounts of Ca, as Ca(NO3)2, either in uptake solutions or through the soil. F uptake was highest at solution pH 5.5, and significantly lower at pH 4.0. In the soil experiment, leaf F decreased linearly with the amounts of lime, which raised the soil pH progressively from 4.32 to 4.91, 5.43, 5.89 and, finally, 6.55. Liming increased the water-soluble F content of the soil. Including Ca in the uptake solution or adding Ca to soil significantly decreased leaf F concentrations. The distribution pattern of F in tea plants was not altered by Ca treatment, with most F being allocated to leaves. The activity of F- in the uptake solution was unaffected and water-soluble F in the soil was sometimes increased by added Ca. F uptake by tea plants, which are inherently able to accumulate large quantities of F, was affected both by pH and by Ca levels in the medium. The reduced F uptake following Ca application appeared not to be due simply to the precipitation of CaF2 in solution and soil or to the complexing of Ca and F in roots, although these factors cannot be dismissed. It was more likely due to the effect of Ca on the properties of cell wall or membrane permeability in the solution experiments, and to alteration of F speciations and their quantities in soil solutions following Ca application.
The fate of silver nanoparticles in soil solution--Sorption of solutes and aggregation.
Klitzke, Sondra; Metreveli, George; Peters, Andre; Schaumann, Gabriele E; Lang, Friederike
2015-12-01
Nanoparticles enter soils through various pathways. In the soil, they undergo various interactions with the solution and the solid phase. We tested the following hypotheses using batch experiments: i) the colloidal stability of Ag NP increases through sorption of soil-borne dissolved organic matter (DOM) and thus inhibits aggregation; ii) the presence of DOM suppresses Ag oxidation; iii) the surface charge of Ag NP governs sorption onto soil particles. Citrate-stabilized and bare Ag NPs were equilibrated with (colloid-free) soil solution extracted from a floodplain soil for 24h. Nanoparticles were removed through centrifugation. Concentrations of free Ag ions and DOC, the specific UV absorbance at a wavelength of 254 nm, and the absorption ratio α254/α410 were determined in the supernatant. Nanoparticle aggregation was studied using time-resolved dynamic light scattering (DLS) measurement following the addition of soil solution and 1.5mM Ca(2+) solution. To study the effect of surface charge on the adsorption of Ag NP onto soil particles, bare and citrate-stabilized Ag NP, differing in the zeta potential, were equilibrated with silt at a solid-to-solution ratio of 1:10 and an initial Ag concentration range of 30 to 320 μg/L. Results showed that bare Ag NPs sorb organic matter, with short-chained organic matter being preferentially adsorbed over long-chained, aromatic organic matter. Stabilizing effects of organic matter only come into play at higher Ag NP concentrations. Soil solution inhibits the release of Ag(+) ions, presumably due to organic matter coatings. Sorption to silt particles was very similar for the two particle types, suggesting that the surface charge does not control Ag NP sorption. Besides, sorption was much lower than in comparable studies with sand and glass surfaces. Copyright © 2014. Published by Elsevier B.V.
Mapping fire effects on ash and soil properties. Current knowledge and future perspectives.
NASA Astrophysics Data System (ADS)
Pereira, Paulo; Cerda, Artemi; Strielko, Irina
2014-05-01
Fire has heterogeneous impacts on ash and soil properties, depending on severity, topography of the burned area, type of soil and vegetation affected, and meteorological conditions during and post-fire. The heterogeneous impacts of fire and the complex topography of wildland environments impose the challenge of understand fire effects at diverse scales in space and time. Mapping is fundamental to identify the impacts of fire on ash and soil properties because allow us to recognize the degree of the fire impact, vulnerable areas, soil protection and distribution of ash and soil nutrients, important to landscape recuperation. Several methodologies have been used to map fire impacts on ash soil properties. Burn severity maps are very useful to understand the immediate and long-term impacts of fire on the ecosystems (Wagtendonk et al., 2004; Kokaly et al., 2007). These studies normally are carried out with remote sensing techniques and study large burned areas. On a large scale it is very important to detect the most vulnerable areas (e.g. with risk of runoff increase, flooding, erosion, sedimentation and debris flow) and propose -if necessary- immediate rehabilitation measures. Post-fire rehabilitation measures can be extremely costly. Thus the identification of the most affected areas will reduce the erosion risks and soil degradation (Miller and Yool, 2002; Robichaud et al., 2007; Robichaud, 2009), as the consequent economical, social and ecological impacts. Recently, the United States Department of Agriculture created a field guide to map post-fire burn severity, based on remote sensing and Geographical Information Systems (GIS) technologies. The map produced should reflect the effects of fire on soil properties, and identify areas where fire was more severe (Parsons et al. 2010). Remote sensing studies have made attempts to estimate soil and ash properties after the fire, as hydrophobicity (Lewis et al., 2008), water infiltration (Finnley and Glenn, 2010), forest floor consumption (Lewis et al., 2011), ash cover (Robichaud et al., 2007) and other aspects related with soil as the vegetation factors that affect post-fire erosion risk (Fox et al., 2008). Field studies had also indented to estimate and map the impacts of fire in soil properties. Contrary to remote sensing studies, the mapping of fire effects on ash and soil properties in the field is specially carried out at small scale (e.g. slope or plot). The small scale resolution studies are important because identify small patterns that are normally ignored by remote sensing studies, but fundamental to understand the post-fire evolution of the burned areas. One of the important aspects of the small scale studies of fire effect on ash and soil properties is the great spatial variability, showing that the impact of fire is extremely heterogeneous in space and time (Outeiro et al., 2008; Pereira et al. in press). The small scale mapping of fire effects on soil properties normally is carried out using Geostatistical methods or using deterministic interpolation methods (Robichaud and Miller, 1999; Pereira et al., 2013). Several reports were published on the spatial distribution and mapping of ash and duff thickness (Robichaud and Miller, 1999; Pereira et al., 2013; Pereira et al. in press), fire severity (Pereira et al., 2014), ash chemical characteristics as total nitrogen (Pereira et al., 2010a), and ash extractable elements (Pereira et al., 2010b). Also, previous works mapped fire effects on soil temperature (Gimeno-Garcia et al., 2004), soil hydrophobicity (Woods et al., 2007), total nitrogen (Hirobe et al., 2003), phosphorous (Rodriguez et al., 2009) and major cations (Outeiro et al., 2008). It is important to integrate remote sensing and field based works of fire effects on ash and soil properties in order to have a better validation of the models predicted. The aim of this work is present the current knowledge about mapping fire effects in ash and soil properties at diverse scales and the future perspectives. References Finley, C.D., Glenn, N.F. (2010) Fire and vegetation type effects on soil hydrophobicity and infiltration in the sagebrussh-steppe: II. Hyperspectral analysis. Journal of Arid Environments, 74: 660-666. Fox, D.A., Maselli, F., Carrega, P. (2008) Using SPOT images and field sampling to map burn severity and vegetation factors affecting post-fire erosion risk. Catena, 75: 326-335. Gimeno-Garcia. E., Andreu., V., Rubio, J.L. (2004) Spatial patterns of soil temperatures during experiemntal fires. Geoderma, 118: 17-34. Hirobe, M., Tokushi, N., Wachrinrat, C., Takeda, H. (2003) Fire history influences on the spatial heterogeneity of soil nitrogen transformations in three adjacent stands in a dry tropical forest in Thailand. Plant and Soil, 249: 309-318. Kokaly, R.F., Rockwell, B.W., Haire, S.L., King, T.V.V. (2007) Characterization of post fire surface cover, soils, and burn severity at the Cerro Grande fire, New Mexico, using hyperspectral and multispectral remote sensing. Remote Sensing of the Environment, 106: 305-325. Lewis, S.A., Hudak, A.T., Ottmar, R.D., Robichaud, P.R., Lentile, L.B., Hood, S.M., Cronan, J.B., Morgan, P. (2012) Using hyperspectral imagery to estimate forest floor consumption from wildfire in boreal forests of Alaska. International Journal of Wildland Fire, 20: 255-271. Lewis, S.A., Robichaud, P.R., Frazier, B.E., Wu, J.Q., Laes, D.Y.M. (2008) Using hyperspectral imagery to predict post-wildfire soil repellency. Geomorphology, 98, 192-205. Miller, J.D., Yool, S. (2002) Mapping forest post-fire canopy consumption in several overstory types using multi-temporal Landsat TM and ETM data. Remote Sensing of the Environment, 82: 481-496. Outeiro, L., Aspero, F., Ubeda, X. (2008) Geostatistical methods to study spatial variability of soil cation after a prescribed fire and rainfall. Catena, 74: 310-320. Parsons, A., Robichaud, P.R., Lewis, S.A., Napper, C., Clark, J.T. (2010) Field guide for mapping post-fire soil burn severity. Gen. Tech. Rep. RMRS-GTR-243. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 49 p. Pereira, P. Úbeda X., Martin D A (2010b) Mapping wildfire effects on Ca2+ and Mg2+ released from ash. A microplot analysis, EGU General Assembly 2010, Geophysical Research Abstracts, 12,EGU 2010 - 30 Vienna. ISSN: 1607-7962. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. Modelling the impacts of wildfire on ash thickness in a short-term period, Land Degradation and Development, (In Press), DOI: 10.1002/ldr.2195 Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Jordan, A. Burguet, M. (2013) Spatial models for monitoring the spatio-temporal evolution of ashes after fire - a case study of a burnt grassland in Lithuania, Solid Earth, 4: 153-165. Pereira, P., Úbeda, X., Baltrenaite, E. (2010a) Mapping Total Nitrogen in ash after a Wildfire, a microplot analysis, Ekologija, 56 (3-4), 144-152. Pereira, P., Cerda, A., Ubeda, X., Mataix-Solera, J., Martin, D.A., Jordan, A., Martin, D.A., Mierauskas, P., Arcenegui, V., Zavala, L. (2014) Do fire severity effects change with the time?, What ash tell us, Flamma, 5: 23-27. Robichaud, P.R. (2009) Post-fire stabilization and rehabilitation. In: Cerda, A., Robichaud, P. (eds) Fire Effects on Soils and Restoration Strategies, Science Publishers, 299-320. Robichaud, P.R., Lewis, S.A., Laes, D.Y.M., Hudak, A.T., Kokaly, R.F., Zamudio, J.Z. (2007) Post-fire burn severity mapping with hyperspectral image unmixing. Remote Sensing of the Environment, 108: 467-480. Robichaud, P.R., Miller, S.M. (1999) Spatial interpolation and simulation of post-burn duff thickness after prescribed fire. International Journal of Wildland Fire, 9: 137-143. Rodriguez, A., Duran, J., Fernandez-Palacios, J.M., Gallardo, A. (2009) Short-term wildfire effects on the spatial pattern and scale of labile organic-N and inorganic-N and P pools. Forest Ecology and Management, 257: 739-746. Wagtendonk, J.W., Root, R.R., Key, C.H. (2004) Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity. Remote Sensing of the Environment, 92: 397-408. Woods, S.W., Birkas, A., Ahl, R. (2007) Spatial variability of soil hydrophobicity after wildfires in Montana and Colorado. Geomorphology, 86: 465-479.
Liu, Jiang; Jiang, Tao; Huang, Rong; Zhang, Jin-zhong; Chen, Hong
2016-04-15
Lead (Pb) in purple soil was selected as the research target, using one-step extraction method with 0.01 mol · L⁻¹ sodium nitrate as the background electrolyte to study the release effect of citric acid (CA), tartaric acid (TA) and acetic acid (AC) with different concentrations. Sequential extraction and geochemical model (Visual Minteq v3.0) were applied to analyze and predict the speciation of Pb in soil solid phase and soil solution phase. Then the ebvironmental implications and risks of low-molecule weight organic acid (LMWOA) on soil Pb were analyzed. The results indicated that all three types of LMWOA increased the desorption capacity of Pb in purple soil, and the effect followed the descending order of CA > TA > AC. After the action of LMWOAs, the exchangeable Pb increased; the carbonate-bound Pb and Fe-Mn oxide bound Pb dropped in soil solid phase. Organic bound Pb was the main speciation in soil solution phase, accounting for 45.16%-75.05%. The following speciation of Pb in soil solution was free Pb, accounting for 22.71%-50.25%. For CA and TA treatments, free Pb ions and inorganic bound Pb in soil solution increased with increasing LMWOAs concentration, while organic bound Pb suffered a decrease in this process. An opposite trend for AC treatment was observed compared with CA and TA treatments. Overall, LMWOAs boosted the bioavailability of Pb in purple soil and had a potential risk to contaminate underground water. Among the three LMWOAs in this study, CA had the largest potential to activate soil Pb.
Catch crops impact on soil water infiltration in vineyards
NASA Astrophysics Data System (ADS)
Cerdà, Artemi; Bagarello, Vincenzo; Iovino, Massimo; Ferro, Vito; Keesstra, Saskia; Rodrigo-Comino, Jesús; García Diaz, Andrés; di Prima, Simone
2017-04-01
Infiltration is the key component of the hydrological cycle (Cerdà, 1999; Bagarello et al.,, 2014; Zema et al., 2016). Infiltration determines the partitioning of rainfall into runoff and subsurface flow (Cerdà, 1996; Bagarello et al., 2006; Wang et al., 2016). In the Mediterranean, agriculture resulted in the degradation of the soil structure, reduction of the organic matter and increase in the soil losses (Cerdà et al., 2009; Laudicina et al., 2015; Iovino et al., 2016; Willaarts et al., 2016). There is an urgent need to restore the agriculture soils to avoid floods, reduce the carbon emissions and avoid reservoir siltation (Aksakal et al., 2016; Ben Slimane et al., 2016; Yagüe et al., 2016). Catch Crops are widespread used due to their impact on the soil fertility (Mwango et al., 2016; Nishigaki et al., 2016 ; Nawaz et al., 2016). Catch crops also increase the amount of organic matter but little is known about the effect on soil infiltration. Two paired plots were selected in Les Alcusses (Moixent municipality) in Eastern Iberian Peninsula to compare the infiltration rates between a 8-years catch crop (Vicia sp) with a control (plough) soil. The measurements were carried out by means of ring infiltrometer in August 2014 and December 2014 under dry and wet conditions (Cerdà, 2001; Di Prima et al., 2016). The results show that the steady-state infiltration rates were 1.8 higher during the summer period, and that the catch crops did not increase the infiltration rates. Acknowledgements The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n 603498 (RECARE project) and the CGL2013- 47862-C2-1-R and CGL2016-75178-C2-2-R national research projects. References Aksakal, E. L., Sari, S., & Angin, I. (2016). Effects of vermicompost application on soil aggregation and certain physical properties. Land Degradation and Development, 27(4), 983-995. doi:10.1002/ldr.2350 Bagarello, V., Castellini, M., Di Prima, S., & Iovino, M. (2014). Soil hydraulic properties determined by infiltration experiments and different heights of water pouring. Geoderma, 213, 492-501. Bagarello, V., Elrick, D. E., Iovino, M., & Sgroi, A. (2006). A laboratory analysis of falling head infiltration procedures for estimating the hydraulic conductivity of soils. Geoderma, 135, 322-334. Ben Slimane, A., Raclot, D., Evrard, O., Sanaa, M., Lefevre, I., & Le Bissonnais, Y. (2016). Relative contribution of Rill/Interrill and Gully/Channel erosion to small reservoir siltation in mediterranean environments. Land Degradation and Development, 27(3), 785-797. doi:10.1002/ldr.2387 Cerdà, A. (1996). Seasonal variability of infiltration rates under contrasting slope conditions in southeast spain. Geoderma, 69(3-4), 217-232. Cerdà, A. (1999). Seasonal and spatial variations in infiltration rates in badland surfaces under mediterranean climatic conditions. Water Resources Research, 35(1), 319-328. doi:10.1029/98WR01659 Cerdà, A. (2001). Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. European Journal of Soil Science, 52(1), 59-68. doi:10.1046/j.1365-2389.2001.00354.x Cerdà, A., Morera, A. G., & Bodí, M. B. (2009). Soil and water losses from new citrus orchards growing on sloped soils in the western mediterranean basin. Earth Surface Processes and Landforms, 34(13), 1822-1830. doi:10.1002/esp.1889 di Prima, S., Lassabatère, L., Bagarello, V., Iovino, M., & Angulo-Jaramillo, R. (2016). Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma, 262, 20-34. Iovino, M., Castellini, M., Bagarello, V., & Giordano, G. (2016). Using static and dynamic indicators to evaluate soil physical quality in a sicilian area. Land Degradation and Development, 27(2), 200-210. doi:10.1002/ldr.2263 Laudicina, V. A., Novara, A., Barbera, V., Egli, M., & Badalucco, L. (2015). Long-term tillage and cropping system effects on chemical and biochemical characteristics of soil organic matter in a mediterranean semiarid environment. Land Degradation and Development, 26(1), 45-53. doi:10.1002/ldr.2293 Mamedov, A. I., Bar-Yosef, B., Levkovich, I., Rosenberg, R., Silber, A., Fine, P., & Levy, G. J. (2016). Amending soil with sludge, manure, humic acid, orthophosphate and phytic acid: Effects on infiltration, runoff and sediment loss. Land Degradation and Development, 27(6), 1629-1639. doi:10.1002/ldr.2474 Mwango, S. B., Msanya, B. M., Mtakwa, P. W., Kimaro, D. N., Deckers, J., & Poesen, J. (2016). Effectiveness OF mulching under miraba in controlling soil erosion, fertility restoration and crop yield in the usambara mountains, tanzania. Land Degradation and Development, 27(4), 1266-1275. doi:10.1002/ldr.2332 Nawaz, A., Farooq, M., Lal, R., Rehman, A., Hussain, T., & Nadeem, A. (2016). Influence of sesbania brown manuring and rice residue mulch on soil health, weeds and system productivity of conservation rice-wheat systems. Land Degradation and Development, doi:10.1002/ldr.2578 Nishigaki, T., Shibata, M., Sugihara, S., Mvondo-Ze, A. D., Araki, S., & Funakawa, S. (2016). Effect of mulching with vegetative residues on soil water erosion and water balance in an oxisol cropped by cassava in east cameroon. Land Degradation and Development, doi:10.1002/ldr.2568 Wang, Y., Fan, J., Cao, L., & Liang, Y. (2016). Infiltration and runoff generation under various cropping patterns in the red soil region of china. Land Degradation and Development, 27(1), 83-91. doi:10.1002/ldr.2460 Willaarts, B. A., Oyonarte, C., Muñoz-Rojas, M., Ibáñez, J. J., & Aguilera, P. A. (2016). Environmental factors controlling soil organic carbon stocks in two contrasting mediterranean climatic areas of southern spain. Land Degradation and Development, 27(3), 603-611. doi:10.1002/ldr.2417 Yagüe, M. R., Domingo-Olivé, F., Bosch-Serra, À. D., Poch, R. M., & Boixadera, J. (2016). Dairy cattle manure effects on soil quality: Porosity, earthworms, aggregates and soil organic carbon fractions. Land Degradation and Development, 27(7), 1753-1762. doi:10.1002/ldr.2477 Zema, D. A., Labate, A., Martino, D., & Zimbone, S. M. (2016). Comparing different infiltration methods of the HEC-HMS model: The case study of the mésima torrent (southern italy). Land Degradation and Development, doi:10.1002/ldr.2591
The impact of land use on biological activity of agriculture soils. An State-of-the-Art
NASA Astrophysics Data System (ADS)
Morugán-Coronado, Alicia; Cerdà, Artemi; García-Orenes, Fuensanta
2014-05-01
Biological activity is a crucial soil property affecting soil sustainability and crop production. The unsuitable land management can lead to a loss in soil fertility and a reduction in the abundance and diversity of soil microorganisms. This can be as a consequence of high erosion rates due to the mismanagement of farmers (Cerdà et al., 2009a). However ecological practices and some organic amendments can promote the activities of soil microbial communities, and increase its biodiversity (García-Orenes et al., 2010; 2013). The impact of land use in microbiological properties of agriculture soil are presented and discussed in this review. Biological activity is quantified by microbial soil communities and soil enzyme activities to interpret the effects of soil management practices (Morugán-Coronado et al., 2013). The aim of biological activity tests is to give a reliable description of the state of agricultural soils under the effect of different land uses. Numerous methods have been used to determine the impact of land uses on microbiological properties. The current used methods for detecting microbial diversity are based on molecular techniques centered on the 16S and 18S rRNA encoding sequences such as CLPP: community-level physiological profiles; T-RFLP: terminal restriction fragment length polymorphism; DGGE: denaturing gradient gel electrophoresis; OFRG: oligonucleotide fingerprinting of rRNA genes, ARISA: Automated Ribosomal intergenic spacer analysis, SSCP: single-strand conformation polymorphism. And techniques based on the cellular composition of the microbes such as PLFA: phospholipid fatty acid analysis. Other methods are based on the activity of microbes, for example, Cmic: microbial biomass carbon; SIR: substrate induced respiration; BSR: Basal soil respiration; qCO2 metabolic quotient; enzymatic activities (Urease, ß-glucosidase and phosphatase) (Deng, 2012). Agricultural land management can contribute to increased rates of erosion due to desiccation, mechanical destruction, soil compaction, reduce pore volume, and disruption of access to food resources (Cerdà et al., 2009b). Furthermore, it can lead to a loss in soil fertility and reduction in the abundance and diversity of soil microorganism (Caravaca et al., 2002). Nevertheless, some organic fertilizers, such as manure, waste water and sewage sludge, promote the activities of soil microbial communities (Morugán-Coronado et al., 2011; Balota et al., 2013; Macci et al., 2013). On the other hand, land use influences soil microbial processes by changing the quantity and quality of plant residues entering the soil and their spatial distribution, thorough changes in nutrients and inputs (García-Orenes et al., 2009; 2012). The abuse of pesticides can drastically modify the function and structure of microbial communities, altering the terrestrial ecosystems, which has important implication for soil quality (Pampulha et al., 2006). Soil quality is important for the sustainable development of terrestrial ecosystem (Paz-Ferreiro & Fu, 2013; Vasconcellos et al., 2013). This paper will review the State-of-the-Art of the scientific knowledge on the impact of land use on the biological activity in agriculture soils Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and RECARE supported this research. References Balota, E. L., Yada, I.F., Amaral, H., Nakatani, A.S., Dick, R.P., Coyne, M.S. 2013. Long-term land use influences soil microbial biomass p and s, phosphatase and arylsulfatase activities, and mineralization in a brazilian oxisol. Land degradation & development. DOI: 10.1002/ldr.2242 Caravaca F, Masciandaro G, Ceccanti B. 2002. Land use in relation to soil chemical and biochemical properties in a semiarid Mediterranean environment. Soil and Tillage Research 68: 23-30. Cerdà, A., Flanagan, D.C., le Bissonnais, Y., Boardman, J. 2009a. Soil erosion and agriculture Soil and Tillage Research 106, 107-108. DOI: 10.1016/j.still.2009.1 Cerdà, A., Giménez-Morera, A.G., Bodí, M.B. 2009b. Soil and water losses from new citrus orchards growing on sloped soils in the western Mediterranean basin. Earth Surface Processes and Landforms 34, 1822-1830. Deng, H. 2012. A review of diversity-stability relationship of soil microbial community: what do we not know? Journal of Environmental Sciences 24(6),1027-35. DOI:10.1016/S1001-0742(11)60846-2 García-Orenes, F., Cerdà, A., Mataix-Solera, J., Guerrero, C., Bodí, M.B., Arcenegui, V., Zornoza, R. & Sempere, J.G. 2009. Effects of agricultural management on surface soil properties and soil-water losses in eastern Spain. Soil and Tillage Research 106, 117-123. 10.1016/j.still.2009.06.002 García-Orenes, F., Guerrero, C., Roldán, A.,Mataix-Solera, J., Cerdà, A., Campoy, M., Zornoza, R., Bárcenas, G., Caravaca. F. 2010. Soil microbial biomass and activity under different agricultural management systems in a semiarid Mediterranean agroecosystem. Soil and Tillage Research 109, 110-115. 10.1016/j.still.2010.05.005. García-Orenes, F., Morugán-Coronado, A., Zornoza, R., Scow, K. 2013. Changes in Soil Microbial Community Structure Influenced by Agricultural Management Practices in a Mediterranean Agro-Ecosystem. PLoS ONE 8:e80522. García-Orenes, F., Roldán, A., Mataix-Solera, J., Cerdà, A., Campoy, M., Arcenegui, V., Caravaca, F. 2012. Soil structural stability and erosion rates influenced by agricultural management practices in a semi-arid Mediterranean agro-ecosystem. Soil Use and Management 28, 571-579. DOI: 10.1111/j.1475-2743.2012.00451.x Macci, C., Doni, S., Peruzzi, E., Mennone, C., Masciandaro, G. 2013. Biostimulation of soil microbial activity through organic fertilizer and almond tree association. Land degradation & development. DOI: 10.1002/ldr.2234 Morugán-Coronado, A., García-Orenes, F., Mataix-Solera, J., Arcenegui, V., Mataix-Beneyto, J. 2011. Short-term effects of treated wastewater irrigation on Mediterranean calcareous soil. Soil and Tillage Research 112 (1), 18-26 Morugán-Coronado, A., García-Orenes, F., Mataix-Solera, J., Arcenegui, V., Mataix-Beneyto, J. 2013. Application of soil quality indices to assess the status of agricultural soils irrigated with treated wastewaters. Solid Earth 4 (1), 119-127 2013 Pampulha ME, Oliveira A (2006) Impact of an herbicide combination of bromoxynil and prosulfuron on soil microorganisms. Current Microbiology 53: 238-243. Paz-Ferreiro, J., Fu., S. 2013. Biological indices for soil quality evaluation: perspectives and limitations. Land degradation & development. DOI: 10.1002/ldr.2262 Vasconcellos, R. L. F., Bonfim, J. A., Baretta, D., Cardoso, E.J.B.N. 2013. Arbuscular mycorrhizal fungi and glomalin-related soil protein as potential indicators of soil quality in a recuperation gradient of the Atlantic forest in brazil. Land degradation & development. DOI: 10.1002/ldr.2228
Hormann, Volker; Kirchner, Gerald
2002-04-22
For agriculturally used areas, which are contaminated by the debris from a nuclear accident, the use of chemical amendmends (e.g. potassium chloride and lime) is among the most common soil-based countermeasures. These countermeasures are intended to reduce the plant uptake of radionuclides (mainly 137Cs and 90Sr) by competitive inhibition by chemically similar ions. So far, the impacts of countermeasures on soil solution composition - and thus, their effectiveness - have almost exclusively been established experimentally, since they depend on mineral composition and chemical characteristics of the soil affected. In this study, which focuses on caesium contamination, the well-established code PHREEQC was used as a geochemical model to calculate the changes in the ionic compositions of soil solutions, which result from the application of potassium or ammonium in batch equilibrium experiments. The simple ion exchange model used by PHREEQC was improved by taking into account selective sorption of Cs+, NH4+ and K+ by clay minerals. Calculations were performed with three different initial soil solution compositions, corresponding to particular soil types (loam, sand, peat). For loamy and sandy soils, our calculational results agree well with experimental data reported by Nisbet (Effectiveness of soil-based countermeasures six months and one year after contamination of five diverse soil types with caesium-134 and strontium-90. Contract Report NRPB-M546, National Radiation Protection Board, Chilton, 1995.). For peat, discrepancies were found indicating that for organic soils a reliable set of exchange constants of the relevant cations still has to be determined experimentally. For cesium, however, these discrepancies almost disappeared if selective sites were assumed to be inaccessible. Additionally, results of sensitivity analyses are presented by which the influence of the main soil parameters on Cs+ concentrations in solution after soil treatment has been systematically studied. It is shown that calculating the impacts of soil-based chemical countermeasures on soil solution chemistry using geochemical codes such as PHREEQC offers an attractive alternative to establishing these impacts by often time-consuming and site-specific experiments.
Greater carbon stocks and faster turnover rates with increasing agricultural productivity
NASA Astrophysics Data System (ADS)
Sanderman, J.; Fallon, S.; Baisden, T. W.
2013-12-01
H.H. Janzen (2006) eloquently argued that from an agricultural perspective there is a tradeoff between storing carbon as soil organic matter (SOM) and the soil nutrient and energy benefit provided during SOM mineralization. Here we report on results from the Permanent Rotation Trial at the Waite Agricultural Institute, South Australia, indicating that shifting to an agricultural management strategy which returns more carbon to the soil, not only leads to greater carbon stocks but also increases the rate of carbon cycling through the soil. The Permanent Rotation Trial was established on a red Chromosol in 1925 with upgrades made to several treatments in 1948. Decadal soil samples were collected starting in 1963 at two depths, 0-10 and 10-22.5 cm, by compositing 20 soil cores taken along the length of each plot. We have chosen to analyze five trials representing a gradient in productivity: permanent pasture (Pa), wheat-pasture rotation (2W4Pa), continuous wheat (WW), wheat-oats-fallow rotation (WOF) and wheat-fallow (WF). For each of the soil samples (40 in total), the radiocarbon activity in the bulk soil as well as size-fractionated samples was measured by accelerator mass spectrometry at ANU's Radiocarbon Dating Laboratory (Fallon et al. 2010). After nearly 70 years under each rotation, SOC stocks increased linearly with productivity data across the trials from 24 to 58 tC ha-1. Importantly, these differences were due to greater losses over time in the low productivity trials rather than gains in SOC in any of the trials. Uptake of the bomb-spike in atmospheric 14C into the soil was greatest in the trials with the greatest productivity. The coarse size fraction always had greater Δ14C values than the bulk soil samples. Several different multi-pool steady state and non-steady state models were used to interpret the Δ14C data in terms of SOC turnover rates. Regardless of model choice, either the decay rates of all pools needed to increase or the allocation of C to more actively cycling pools needed to increase in order to fit the model to the measured Δ14C data as productivity of the trial increased. In model formulations with a non-cycling passive pool (i.e. Rothamsted Carbon Model, Jenkinson 1990), the best fit solution for the 14C age of the passive pool decreased from > 2000 years in the WF trial to < 100 years in the Pa trial. The modeling analysis suggests that decay constants are not constant and that there are important feedbacks between C input rate and the turnover rate of SOC. References: Fallon S et al. (2010) The next chapter in radiocarbon dating at the Australian National University: Status report on the single stage AMS. Nuclear Instruments and Methods in Physics Research: Section B, 268: 298-901. Grace PR et al. (1995) Trends in wheat yields and soil organic carbon in the Permanent Rotation Trial at the Waite Agricultural Research Institute, South Australia. Australian Journal of Experimental Agriculture 35: 857-864. Janzen HH (2006) The soil carbon dilemma: Shall we hoard it or use it? Soil Biology and Biochemistry 38:419-424. Jenkinson DS (1990) The turnover of organic carbon and nitrogen in soil. Philosophical transactions of the Royal Society, Series B 329: 361-368
The superior effect of nature based solutions in land management for enhancing ecosystem services.
Keesstra, Saskia; Nunes, Joao; Novara, Agata; Finger, David; Avelar, David; Kalantari, Zahra; Cerdà, Artemi
2018-01-01
The rehabilitation and restoration of land is a key strategy to recover services -goods and resources- ecosystems offer to the humankind. This paper reviews key examples to understand the superior effect of nature based solutions to enhance the sustainability of catchment systems by promoting desirable soil and landscape functions. The use of concepts such as connectivity and the theory of system thinking framework allowed to review coastal and river management as a guide to evaluate other strategies to achieve sustainability. In land management NBSs are not mainstream management. Through a set of case studies: organic farming in Spain; rewilding in Slovenia; land restoration in Iceland, sediment trapping in Ethiopia and wetland construction in Sweden, we show the potential of Nature based solutions (NBSs) as a cost-effective long term solution for hydrological risks and land degradation. NBSs can be divided into two main groups of strategies: soil solutions and landscape solutions. Soil solutions aim to enhance the soil health and soil functions through which local eco-system services will be maintained or restored. Landscape solutions mainly focus on the concept of connectivity. Making the landscape less connected, facilitating less rainfall to be transformed into runoff and therefore reducing flood risk, increasing soil moisture and reducing droughts and soil erosion we can achieve the sustainability. The enhanced eco-system services directly feed into the realization of the Sustainable Development Goals of the United Nations. Copyright © 2017 Elsevier B.V. All rights reserved.
Fraters, Dico; Boom, Gerard J F L; Boumans, Leo J M; de Weerd, Henk; Wolters, Monique
2017-02-01
The solute concentration in the subsoil beneath the root zone is an important parameter for leaching assessment. Drainage centrifugation is considered a simple and straightforward method of determining soil solution chemistry. Although several studies have been carried out to determine whether this method is robust, hardly any results are available for loess subsoils. To study the effect of centrifugation conditions on soil moisture recovery and solute concentration, we sampled the subsoil (1.5-3.0 m depth) at commercial farms in the loess region of the Netherlands. The effect of time (20, 35, 60, 120 and 240 min) on recovery was studied at two levels of the relative centrifugal force (733 and 6597g). The effect of force on recovery was studied by centrifugation for 35 min at 117, 264, 733, 2932, 6597 and 14,191g. All soil moisture samples were chemically analysed. This study shows that drainage centrifugation offers a robust, reproducible and standardised way for determining solute concentrations in mobile soil moisture in silt loam subsoils. The centrifugal force, rather than centrifugation time, has a major effect on recovery. The maximum recovery for silt loams at field capacity is about 40%. Concentrations of most solutes are fairly constant with an increasing recovery, as most solutes, including nitrate, did not show a change in concentration with an increasing recovery.
Zhao, Fang-Jie; Rooney, Corinne P; Zhang, Hao; McGrath, Steve P
2006-03-01
The toxicity effect concentrations (10% effective concentration [EC10] and 50% effective concentration [EC50]) of total added Cu derived from barley root elongation and tomato growth assays varied widely among 18 European soils. We investigated whether this variation could be explained by the solubility or speciation of Cu in soil solutions or the diffusive gradients in thin-films (DGT) measurement. Solubility and Cu speciation varied greatly among the soils tested. However, the EC10 and EC50 of soil solution Cu or free Cu2+ activity varied even more widely than those based on the total added Cu, indicating that solubility or soil solution speciation alone could not explain intersoil variation in Cu toxicity. Estimated EC10 and EC50 of free Cu2+ activity correlated closely and negatively with soil pH, indicating a protective effect of H+, which is consistent with the biotic ligand model concept. The DGT measurement was found to narrow the intersoil variation in EC50 considerably and to be a better predictor of plant Cu concentrations than either soil solution Cu or free Cu2+ activity. We conclude that plant bioavailability of Cu in soil depends on Cu speciation, interactions with protective ions (particularly H+), and the resupply from the solid phase, and we conclude that the DGT measurement provides a useful indicator of Cu bioavailability in soil.
Duquène, L; Vandenhove, H; Tack, F; Van Hees, M; Wannijn, J
2010-02-01
The usefulness of uranium concentration in soil solution or recovered by selective extraction as unequivocal bioavailability indices for uranium uptake by plants is still unclear. The aim of the present study was to test if the uranium concentration measured by the diffusive gradient in thin films (DGT) technique is a relevant substitute for plant uranium availability in comparison to uranium concentration in the soil solution or uranium recovered by ammonium acetate. Ryegrass (Lolium perenne L. var. Melvina) is grown in greenhouse on a range of uranium spiked soils. The DGT-recovered uranium concentration (C(DGT)) was correlated with uranium concentration in the soil solution or with uranium recovered by ammonium acetate extraction. Plant uptake was better predicted by the summed soil solution concentrations of UO(2)(2+), uranyl carbonate complexes and UO(2)PO(4)(-). The DGT technique did not provide significant advantages over conventional methods to predict uranium uptake by plants. Copyright 2009 Elsevier Ltd. All rights reserved.
Moreno-Jiménez, Eduardo; Six, Laetitia; Williams, Paul N; Smolders, Erik
2013-01-30
The bioavailability of soil arsenic (As) is determined by its speciation in soil solution, i.e., arsenite [As(III)] or arsenate [As(V)]. Soil bioavailability studies require suitable methods to cope with small volumes of soil solution that can be speciated directly after sampling, and thereby minimise any As speciation change during sample collection. In this study, we tested a self-made microcartridge to separate both As species and compared it to a commercially available cartridge. In addition, the diffusive gradient in thin films technique (DGT), in combination with the microcartridges, was applied to synthetic solutions and to a soil spiked with As. This combination was used to improve the assessment of available inorganic As species with ferrihydrite(FH)-DGT, in order to validate the technique for environmental analysis, mainly in soils. The self-made microcartridge was effective in separating As(III) from As(V) in solution with detection by inductively coupled plasma optical emission spectrometry (ICP-OES) in volumes of only 3 ml. The DGT study also showed that the FH-based binding gels are effective for As(III) and As(V) assessment, in solutions with As and P concentrations and ionic strength commonly found in soils. The FH-DGT was tested on flooded and unflooded As spiked soils and recoveries of As(III) and As(V) were 85-104% of the total dissolved As. This study shows that the DGT with FH-based binding gel is robust for assessing inorganic species of As in soils. Copyright © 2012 Elsevier B.V. All rights reserved.
Terrestrial microbes in martian and chondritic meteorites
NASA Astrophysics Data System (ADS)
Airieau, S.; Piceno, Y.; Andersen, G.
2007-08-01
Good extraterrestrial analogs for microbiology are SNC meteorites as Mars analogs, and chondrites as early planet analogs. Chondrites and SNCs are used to trace processes in the early solar system and on Mars. Yet, questions about terrestrial contamination and its effects on the isotopic, chemical and mineral characteristics often arise. A wide biodiversity was found in 21 chondrites of groups CR, CV, CK, CO from ANSMET, CI and CM Falls, and 8 SNCs. Studies documented the alteration of meteorites by weathering and biology [1]-[6], and during aqueous extraction for oxygen isotopic analysis [7], visible biofilms grew in the meteorite solutions in days. To assess biological isotopic and chemical impacts, cultures were incubated 11 months and analyzed by PCR. The sequences for 2 isolates from EET 87770 and Leoville were of a good quality with long sequence reads. In EET 87770, the closest matches were in the genus Microbacterium. Soil and plant isolates were close relatives by sequence comparison. Bacillus, a common soil bacterial genus, grew in a Leoville culture. All SNCs exhibited biological activity measured independently by LAL but only 1 colony was successfully cultured from grains of the SNC Los Angeles. Isotopic analyses of samples with various amounts of microbial contamination could help quantified isotopic impact of microbes on protoplanetary chemistry in these rocks. References: [1] Gounelle, M.& Zolensky M. (2001) LPS XXXII, Abstract #999. [2] Fries, M. et al. (2005) Meteoritical Society Meeting 68, Abstract # 5201. [3] Burckle, L. H. & Delaney, J. S (1999) Meteoritics & Planet. Sci., 32, 475. [4] Whitby, C. et al. (2000) LPS XXXI, Abstract #1732. [5] Tyra M. et al., (2007) Geochim. Cosmochim. Acta, 71, 782 [6] Toporski, J. & Steele A., (2007) Astrobiology, 7, 389 [7]Airieau, S. et al (2005) Geochim. Cosmochim. Acta, 69, 4166.
Stochastic modeling of the migration of Cs-137 in the soil considering a power law tailing in space
NASA Astrophysics Data System (ADS)
Oka, Hiroki; Hatano, Yuko
2016-04-01
We develop a theoretical model to reproduce the measured data of Cs-137 in the soil due to the Fukushima Daiichi NPP accident. In our past study, we derived the analytic solution under the generalized Robin boundary condition (Oka-Yamamoto solution). This is a generalization of the He-Walling solution (1996). We compared our solution with the Fukushima soil data of for 3 years after the accident and found that the concentration of Cs-137 has a discrepancy from our solution, specifically in a deep part because the depth profiles have a power law tailing. Therefore, we improved our model in the following aspect. When Cs particle (or Cs solution) migrate in the soil, the diffusion coefficient should be the results of many processes in the soil. These processes include the effect of various materials which constitute the soil (clay, litter, sand), or the variations of pore size in the soil. Hence we regard the diffusion coefficient as the stochastic variable, we derive the model. Specifically, we consider the solution of ADE to be the conditional probability C(x,t|D) in terms of the diffusion coefficient D and calculate C(x,t)=∫_(0~∞) C(x,t|D)*f(D)*dD, where f(D) is the probability density function of D. This model has a power law tailing in space like the space-fractional ADE.
Uncertainties in detecting decadal change in extractable soil elements in Northern Forests
NASA Astrophysics Data System (ADS)
Bartlett, O.; Bailey, S. W.; Ducey, M. J.
2016-12-01
Northern Forest ecosystems have been or are being impacted by land use change, forest harvesting, acid deposition, atmospheric CO2 enrichment, and climate change. Each of these has the potential to modify soil forming processes, and the resulting chemical stocks. Horizontal and vertical variations in concentrations complicate determination of temporal change. This study evaluates sample design, sample size, and differences among observers as sources of uncertainty when quantifying soil temporal change over regional scales. Forty permanent, northern hardwood, monitoring plots were established on the White Mountain National Forest in central New Hampshire and western Maine. Soil pits were characterized and sampled by genetic horizon at plot center in 2001 and resampled again in 2014 two-meters on contour from the original sampling location. Each soil horizon was characterized by depth, color, texture, structure, consistency, boundaries, coarse fragments, and roots from the forest floor to the upper C horizon, the relatively unaltered glacial till parent material. Laboratory analyses included pH in 0.01 M CaCl2 solution and extractable Ca, Mg, Na, K, Al, Mn, and P in 1 M NH4OAc solution buffered at pH 4.8. Significant elemental differences were identified by genetic horizon from paired t-tests (p ≤ 0.05) indicate temporal change across the study region. Power analysis, 0.9 power (α = 0.05), revealed sampling size was appropriate within this region to detect concentration change by genetic horizon using a stratified sample design based on topographic metrics. There were no significant differences between observers' descriptions of physical properties. As physical properties would not be expected to change over a decade, this suggests spatial variation in physical properties between the pairs of sampling pits did not detract from our ability to detect temporal change. These results suggest that resampling efforts within a site, repeated across a region, to quantify elemental change by carefully described genetic horizons is an appropriate method of detecting soil temporal change in this region. Sample size and design considerations from this project will have direct implications for future monitoring programs to characterize change in soil chemistry.
Wang, Ning; Xue, Xi-Mei; Juhasz, Albert L; Chang, Zhi-Zhou; Li, Hong-Bo
2017-01-01
Previous studies have shown that biochar enhances microbial reduction of iron (Fe) oxyhydroxide under anaerobic incubation. However, there is a lack of data on its influence on arsenic (As) release from As-contaminated paddy soils. In this study, paddy soil slurries (120 mg As kg -1 ) were incubated under anaerobic conditions for 60 days with and without the addition of biochar (3%, w/w) prepared from rice straw at 500 °C. Arsenic release, Fe reduction, and As fractionation were determined at 1, 10, 20, 30, and 60 d, while Illumina sequencing and real-time PCR were used to characterize changes in soil microbial community structure and As transformation function genes. During the first month of incubation, As released into soil solution increased sharply from 27.9 and 55.9 to 486 and 630 μg kg -1 in unamended and biochar amended slurries, with inorganic trivalent As (As III ) being the dominant specie (52.7-91.0% of total As). Compared to unamended slurries, biochar addition increased As and ferrous ion (Fe 2+ ) concentrations in soil solution but decreased soil As concentration in the amorphous Fe/Al oxide fraction (F3). Difference in released As between biochar and unamended treatments (ΔAs) increased with incubation time, showing strong linear relationships (R 2 = 0.23-0.33) with ΔFe 2+ and ΔF3, confirming increased As release due to enhanced Fe reduction. Biochar addition increased the abundance of Fe reducing bacteria such as Clostridum (27.3% vs. 22.7%), Bacillus (3.34% vs. 2.39%), and Caloramator (4.46% vs. 3.88%). In addition, copy numbers in biochar amended slurries of respiratory As reducing (arrA) and detoxifying reducing genes (arsC) increased 19.0 and 1.70 fold, suggesting microbial reduction of pentavalent As (As V ) adsorbed on Fe oxides to As III , further contributing to increased As release. Copyright © 2016 Elsevier Ltd. All rights reserved.
Garnier, J; Garnier, J-M; Vieira, C L; Akerman, A; Chmeleff, J; Ruiz, R I; Poitrasson, F
2017-01-01
The iron isotope composition was used to investigate dissimilatory iron reduction (DIR) processes in an iron-rich waterlogged paddy soil, the iron uptake strategies of plants and its translocation in the different parts of the rice plant along its growth. Fe concentration and isotope composition (δ 56 Fe) in irrigation water, precipitates from irrigation water, soil, pore water solution at different depths under the surface water, iron plaque on rice roots, rice roots, stems, leaves and grains were measured. Over the 8.5-10cm of the vertical profiles investigated, the iron pore water concentration (0.01 to 24.3mg·l -1 ) and δ 56 Fe (-0.80 to -3.40‰) varied over a large range. The significant linear co-variation between Ln[Fe] and δ 56 Fe suggests an apparent Rayleigh-type behavior of the DIR processes. An average net fractionation factor between the pore water and the soil substrate of Δ 56 Fe≈-1.15‰ was obtained, taking the average of all the δ 56 Fe values weighted by the amount of Fe for each sample. These results provide a robust field study confirmation of the conceptual model of Crosby et al. (2005, 2007) for interpreting the iron isotope fractionation observed during DIR, established from a series of laboratories experiments. In addition, the strong enrichment of heavy Fe isotope measured in the root relative to the soil solution suggest that the iron uptake by roots is more likely supplied by iron from plaque and not from the plant-available iron in the pore water. Opposite to what was previously observed for plants following strategy II for iron uptake from soils, an iron isotope fractionation factor of -0.9‰ was found from the roots to the rice grains, pointing to isotope fractionation during rice plant growth. All these features highlight the insights iron isotope composition provides into the biogeochemical Fe cycling in the soil-water-rice plant systems studied in nature. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zufiaurre-Galarza, Raquel; Fernández Campos, Marta; Badía-Villas, David; María Armas-Herrera, Cecilia; Martí-Dalmau, Clara; Girona-García, Antonio
2016-04-01
Prescribed fire has recently been adopted as an encroachment-fighting strategy in the Central Pyrenees. Despite relatively large information on wildfire impacts on soil, there is little information on prescribed fire effects, especially in mountain ecosystems (Shakesby et al, 2015). Fire effects are noticeable in the topsoil, particularly in relation to soil organic matter and nutrient contents and quality (Alexis et al, 2012). These components change with time after fire and at the scale of the upper few centimetres of mineral soil (Badía et al, 2014). The aim of this study is to evaluate the immediate effects of prescribed shrubland burning on soil's nutrients and organic matter content to detect changes at cm-scale, trying to differentiate the heat shock from the subsequent incorporation of ash and charcoal. The study area, densely covered with spiny broom (Echinospartum horridum), is located in Tella (Central Pyrenees, NE Spain) at 1900 meters above sea level. Three sites were sampled before burning and immediately after burning just in its adjacent side. The soils belong to the WRB unit Leptic Eutric Cambisol, Soil samples were collected separating carefully the organic layers (litter in unburned soils and ashes and fire-altered organic residues in burned soils) and the mineral horizon at 0-1, 1-2 and 2-3 cm depths. Soil samples were air-dried and sieved to 2 mm. Soil organic C (by the wet oxidation method), total N (Kjeldahl method), water-soluble ions (Ca2+, Mg2+, Na+, K+, SO4=, NO3- and NH4+), exchangeable ions (Ca2+, Mg2+, K+, Na+, Fe3+ and Mn2+), total and available P, pH (1:5) and the electrical conductivity (in a 1:10 soil-to-water ratio) were measured. Immediately after the controlled fire, soil organic carbon content on burned topsoil decreases significantly within 0-3 cm of soil depth studied while total N decrease was not significant. Moreover, only a slight increase of the electrical conductivity, water-soluble ions and exchangeable ions was observed on burned topsoil. These changes detected immediately after fire (SOC decrease and slight nutrients increase) are related to the heat released during the severe intensity of prescribed burning. Few changes in nutrients are yet observed due to the negligible incorporation of ashes into the soil, still remaining on the surface. In the medium term, it can be expected its partial incorporation into the soil and, also, ash and soil losses depending on the rain intensity and the amount of time in which the soil is kept bare. REFERENCES Alexis et al. (2012). Evolution of soil organic matter after prescribed fire: A 20-year chronosequence. Geoderma 189-190: 98-107. Badía et al. (2014). Wildfire effects on nutrients and organic carbon of a Rendzic Phaeozem in NE Spain: Changes at cm-scale topsoil. Catena 113: 267-275. Shakesby et al. (2015). Impacts of prescribed fire on soil loss and soil quality: An assessment based on an experimentally-burned catchment in central Portugal. Catena 128: 278-293
Dynamics of the Exchange of Carbon Dioxide in Arctic and Subarctic Regions,
1973-01-01
snow, at temperatures too low for significant biological activity. The phenomena of gas evasion under conditions of 3 freezing soil solution , confirmed...1972) have observed a de- pression rather than an acceleration in soil respiration, as the soil solution undergoes a phase change near 0C. On the other...temperatures are too low for significant biological activity. CO2 from biological sources expressed by freezing the soil solution , evidently leaks to the
Chen, Chunmei; Dynes, James J; Wang, Jian; Karunakaran, Chithra; Sparks, Donald L
2014-06-17
There is a growing acceptance that associations with soil minerals may be the most important overarching stabilization mechanism for soil organic matter. However, direct investigation of organo-mineral associations has been hampered by a lack of methods that can simultaneously characterize organic matter (OM) and soil minerals. In this study, STXM-NEXAFS spectroscopy at the C 1s, Ca 2p, Fe 2p, Al 1s, and Si 1s edges was used to investigate C associations with Ca, Fe, Al, and Si species in soil clay fractions from an upland pasture hillslope. Bulk techniques including C and N NEXAFS, Fe K-edge EXAFS spectroscopy, and XRD were applied to provide additional information. Results demonstrated that C was associated with Ca, Fe, Al, and Si with no separate phase in soil clay particles. In soil clay particles, the pervasive C forms were aromatic C, carboxyl C, and polysaccharides with the relative abundance of carboxyl C and polysaccharides varying spatially at the submicrometer scale. Only limited regions in the soil clay particles had aliphatic C. Good C-Ca spatial correlations were found for soil clay particles with no CaCO3, suggesting a strong role of Ca in organo-mineral assemblage formation. Fe EXAFS showed that about 50% of the total Fe in soils was contained in Fe oxides, whereas Fe-bearing aluminosilicates (vermiculite and Illite) accounted for another 50%. Fe oxides in the soil were mainly crystalline goethite and hematite, with lesser amounts of poorly crystalline ferrihydrite. XRD revealed that soil clay aluminosilicates were hydroxy-interlayered vermiculite, Illite, and kaolinite. C showed similar correlation with Fe to Al and Si, implying a similar association of Fe oxides and aluminosilicates with organic matter in organo-mineral associations. These direct microscopic determinations can help improve understanding of organo-mineral interactions in soils.
Gruba, Piotr; Socha, Jarosław; Błońska, Ewa; Lasota, Jarosław
2015-07-15
In this study we investigated the effect of fine (ϕ<0.05mm) fraction, i.e., silt+clay (FF) content in soils, site moisture, metal (Al and Fe) of soil organic matter (SOM) and forest species composition on the spatial distribution of carbon (C) pools in forest soils at the landscape scale. We established 275 plots in regular 200×200m grid in a forested area of 14.4km(2). Fieldwork included soil sampling of the organic horizon, mineral topsoil and subsoil down to 40cm deep. We analysed the vertical and horizontal distribution of soil organic carbon (SOC) stocks, as well as the quantity of physically separated fractions including the free light (fLF), occluded light (oLF) and mineral associated fractions (MAF) in the mineral topsoil (A, AE) horizons. Distribution of C in soils was predominantly affected by the variation in the FF content. In soils richer in the FF more SOC was accumulated in mineral horizons and less in the organic horizons. Accumulation of SOC in mineral soil was also positively affected by the degree of saturation of SOM with Al and Fe. The increasing share of beech influenced the distribution of C stock in soil profiles by reducing the depth of O horizon and increasing C stored in mineral soil. The content of FF was positively correlated with the content of C in MAF and fLF fractions. The content of oLF and MAF fractions was also positively influenced by a higher degree of metal saturation, particularly Al. Our results confirmed that Al plays an important role in the stabilization of SOM inside aggregates (CoLF) and as in CMAF fractions. We also found a significant, positive effect of beech on the CfLF and fir on the CoLF content. Copyright © 2015 Elsevier B.V. All rights reserved.
Yang, Wen-Tao; Wang, Ying-Jie; Zhou, Hang; Yi, Kai-Xin; Zeng, Min; Peng, Pei-Qin; Liao, Bo-Han
2015-02-01
Speciation and bioavailability of arsenic in the rhizosphere and non-rhizosphere soils at different growth stages (tillering stage, jointing stage, booting stage, filling stage and maturing stage) of rice (Oryza sativa L.) were studied using toxicity characteristic leaching procedure (TCLP) and arsenic speciation analysis. Pot experiments were conducted and the soil samples were taken from a certain paddy soil in Hunan Province contaminated by mining industry. The results showed that: (1) With the extension of rice growth period, pH values and TCLP extractable arsenic levels in the rhizosphere and non-rhizosphere soils increased gradually. Soil pH and TCLP extractable arsenic levels in non-rhizosphere soils were higher than those in the rhizosphere soils at the same growth stage. (2) At the different growth stages of rice, contents of exchangeable arsenic (AE-As) in rhizosphere and non-rhizosphere soils were lower than those before the rice planting, and increased gradually with the extension of the rice growing period. Contents of Al-bound arsenic (Al-As), Fe-bound arsenic (Fe-As) and Ca-bound arsenic (Ca-As) increased gradually after rice planting, but not significantly. Residual arsenic (O-As) and total arsenic (T-As) decreased gradually after rice planting, by 37.30% and 14.69% in the rhizosphere soils and by 31.38% and 8.67% in the non-rhizosphere soils, respectively. (3) At the different growth stages of rice, contents of various forms of arsenic in the soils were in the following order: residual arsenic (O-As) > Fe-bound arsenic ( Fe-As) > Al-bound arsenic (Al-As) > Ca-bound arsenic (Ca-As) > exchangeable arsenic (AE-As). In the pH range of 5.0- 5.8, significant positive linear correlations were found between most forms of arsenic or TCLP extractable arsenic levels and pH values, while the Ca-bound arsenic was poorly correlated with pH values in the rhizosphere soils.
Prediction of Soil Erosion Rates in Japan where Heavily Forested Landscape with Unstable Terrain
NASA Astrophysics Data System (ADS)
Nanko, K.; Oguro, M.; Miura, S.; Masaki, T.
2016-12-01
Soil is fundamental for plant growth, water conservation, and sustainable forest management. Multidisciplinary interest in the role of the soil in areas such as biodiversity, ecosystem services, land degradation, and water security has been growing (Miura et al., 2015). Forest is usually protective land use from soil erosion because vegetation buffers rainfall power and erosivity. However, some types of forest in Japan show high susceptibility to soil erosion due to little ground cover and steep slopes exceeding thirty degree, especially young Japanese cypress (Chamaecyparis obtusa) plantations (Miura et al., 2002). This is a critical issue for sustainable forest management because C. obtusaplantations account for 10% of the total forest coverage in Japan (Forestry Agency, 2009). Prediction of soil erosion rates on nationwide scale is necessary to make decision for future forest management plan. To predict and map soil erosion rates across Japan, we applied three soil erosion models, RUSLE (Revised Universal Soil Loss Equation, Wischmeier and Smith, 1978), PESERA (Pan-European Soil Erosion Risk Assessment, Kirkby et al., 2003), and RMMF (Revised Morgan-Morgan-Finney, Morgan, 2001). The grid scale is 1-km. RUSLE and PESERA are most widely used erosion models today. RMMF includes interactions between rainfall and vegetation, such as canopy interception and ratio of canopy drainage in throughfall. Evaporated rainwater by canopy interception, generally accounts for 15-20% in annual rainfall, does not contribute soil erosion. Whereas, larger raindrops generated by canopy drainage produced higher splash erosion rates than gross rainfall (Nanko et al., 2008). Therefore, rainfall redistribution process in canopy should be considered to predict soil erosion rates in forested landscape. We compared the results from three erosion models and analyze the importance of environmental factors for the prediction of soil erosion rates. This research was supported by the Environment Research and Technology Development Fund (S15-2-2) of the Ministry of the Environment, Japan.
Long-term citrus organic farming strategy results in soil organic matter recovery
NASA Astrophysics Data System (ADS)
Novara, Agata; Pereira, Paulo; Barone, Ettore; Giménez Morera, Antonio; Keesstra, Saskia; Gristina, Luciano; Jordán, Antonio; Parras-Alcantara, Luis; Cerdà, Artemi
2017-04-01
ABSTRACT Soils play a key role in the Earth System (Keesstra et al., 2012; Brevick et al., 2015). Soils are a key resource for the human societies (Mol and Keesstra, 2012) and they are relevant to achieve the sustainability such as the United Nations Goals highlight (Keesstra et al., 2016). Agriculture soils, especially those under conventional tillage, are prone to organic matter mineralization, soil erosion, compaction and increase of greenhouse gases emission (Novara et al., 2011; Bruun et al., 2015; de Moraes et al., 2015; Choudhury et al., 2016; del Mar et al., 2016). The adoption of organic farming and sustainable management practices may provide a sustainable crop productivity, and in the meanwhile mitigate the negative impact of agriculture on ecosystem services benefits (Laudicina et al., 2015; Parras-Alcantara et al., 2015; 2016). The aim of this study was to examine, under field conditions, the long-term changes of soil organic matter under organic farming management in citrus orchards in Mediterranean environment and evaluate the ecosystem service on C sequestration in terms of economic benefits. The research was carried out at the Alcoleja Experimental Station located in the Cànyoles river watershed in the Eastern Spain on 45year old citrus plantation. Soil Organic Matter (SOM) content was monitored for 20 years at 6 different soil depth. The profitability of citrus plantation was estimated under conventional and organic management. Results showed that SOM in the 0-30 cm soil depth was the double after 20 years of organic farming management, ranging from 0.8 g kg-1 in 1995 to 1.5 g kg-1 in 2006. The highest SOM increase was in the top soil layer (368% of SOM increase in comparison to the initial SOM content) and decreased with soil depth. The effect of organic farming was relevant after 5 years since land management change, indicating that in Mediterranean environment the duration of long term studies should be higher than five years and proper policy should be performed on these results. The ecosystem service evaluated trough the profitability of citrus orchard provided useful information for the assessment of ecosystem service payment which should be based on the real effect on potential SOC sequestration. Acknowledgements The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement 603498 (RECARE project) and the CGL2013- 47862-C2-1-R and CGL2016-75178-C2-2-R national research projects. References Brevik, E. C., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J. N., Six, J., and Van Oost, K. 2015. The interdisciplinary nature of SOIL, SOIL, 1, 117-129, doi:10.5194/soil-1-117-2015, Bruun, T. B., B. Elberling, A. de Neergaard, and J. Magid. 2015. Organic Carbon Dynamics in Different Soil Types After Conversion of Forest to Agriculture. Land Degradation and Development 26 (3): 272-283. Choudhury, B. U., A. R. Fiyaz, K. P. Mohapatra, and S. Ngachan. 2016. Impact of Land Uses, Agrophysical Variables and Altitudinal Gradient on Soil Organic Carbon Concentration of North-Eastern Himalayan Region of India. Land Degradation and Development 27 (4): 1163-1174. doi:10.1002/ldr.2338. de Moraes Sá, J. C., L. Séguy, F. Tivet, R. Lal, S. Bouzinac, P. R. Borszowskei, C. Briedis, et al. 2015. Carbon Depletion by Plowing and its Restoration by no-Till Cropping Systems in Oxisols of Subtropical and Tropical Agro-Ecoregions in Brazil. Land Degradation and Development 26 (6): 531-543. doi:10.1002/ldr.2218. del Mar Montiel-Rozas, M., M. Panettieri, P. Madejón, and E. Madejón. 2016. Carbon Sequestration in Restored Soils by Applying Organic Amendments. Land Degradation and Development 27 (3): 620-629. doi:10.1002/ldr.2466. Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., van der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B., and Fresco, L. O.: The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals, SOIL, 2, 111-128, doi:10.5194/soil-2-111-2016, 2016. Keesstra, S.D., Geissen, V., van Schaik, L., Mosse., K., Piiranen, S., 2012. Soil as a filter for groundwater quality. Current Opinions in Environmental Sustainability 4, 507-516. doi:10.1016/j.cosust.2012.10.007 Laudicina, V. A., A. Novara, V. Barbera, M. Egli, and L. Badalucco. 2015. Long-Term Tillage and Cropping System Effects on Chemical and Biochemical Characteristics of Soil Organic Matter in a Mediterranean Semiarid Environment. Land Degradation and Development 26 (1): 45-53. doi:10.1002/ldr.2293. Mol, G., Keesstra, S.D., 2012. Editorial: Soil science in a changing world. Current Opinions in Environmental Sustainability 4: 473-477. Novara, A., L. Gristina, M. B. Bodì, and A. Cerdà. 2011. The Impact of Fire on Redistribution of Soil Organic Matter on a Mediterranean Hillslope Under Maquia Vegetation Type. Land Degradation and Development 22 (6): 530-536. doi:10.1002/ldr.1027. Parras-Alcántara, L., B. Lozano-García, E. C. Brevik, and A. Cerdá. 2015. Soil Organic Carbon Stocks Assessment in Mediterranean Natural Areas: A Comparison of Entire Soil Profiles and Soil Control Sections. Journal of Environmental Management 155: 219-228. doi:10.1016/j.jenvman.2015.03.039. Parras-Alcántara, L., B. Lozano-García, S. Keesstra, A. Cerdà, and E. C. Brevik. 2016. Long-Term Effects of Soil Management on Ecosystem Services and Soil Loss Estimation in Olive Grove Top Soils. Science of the Total Environment. doi:10.1016/j.scitotenv.2016.07.016.
The influence of vertical sorbed phase transport on the fate of organic chemicals in surface soils.
McLachlan, Michael S; Czub, Gertje; Wania, Frank
2002-11-15
Gaseous exchange between surface soil and the atmosphere is an important process in the environmental fate of many chemicals. It was hypothesized that this process is influenced by vertical transport of chemicals sorbed to soil particles. Vertical sorbed phase transport in surface soils occurs by many processes such as bioturbation, cryoturbation, and erosion into cracks formed by soil drying. The solution of the advection/diffusion equation proposed by Jury et al. to describe organic chemical fate in a uniformly contaminated surface soil was modified to include vertical sorbed phase transport This process was modeled using a sorbed phase diffusion coefficient, the value of which was derived from soil carbon mass balances in the literature. The effective diffusivity of the chemical in a typical soil was greater in the modified model than in the model without sorbed phase transport for compounds with log K(OW) > 2 and log K(OA) > 6. Within this chemical partitioning space, the rate of volatilization from the surface soil was larger in the modified model than in the original model by up to a factor of 65. The volatilization rate was insensitive to the value of the sorbed phase diffusion coefficient throughout much of this chemical partitioning space, indicating that the surface soil layer was essentially well-mixed and that the mass transfer coefficient was determined by diffusion through the atmospheric boundary layer only. When this process was included in a non-steady-state regional multimedia chemical fate model running with a generic emissions scenario to air, the predicted soil concentrations increased by upto a factor of 25,whilethe air concentrations decreased by as much as a factor of approximately 3. Vertical sorbed phase transport in the soil thus has a major impact on predicted air and soil concentrations, the state of equilibrium, and the direction and magnitude of the chemical flux between air and soil. It is a key process influencing the environmental fate of persistent organic pollutants (POPs).
Sarkar, D; Quazi, S; Makris, K C; Datta, R; Khairom, A
2007-10-01
A laboratory incubation study was conducted to determine the effect of drinking-water treatment residuals (WTRs) on arsenic (As) bioaccessibility and phytoavailability in a poorly As-sorbing soil contaminated with arsenical pesticides and fertilized with triple super phosphate (TSP). The Immokalee soil (a sandy spodosol with minimal As-retention capacity) was amended with 2 WTRs (Al and Fe) at 5 application rates ranging between 0% and 5% wt/wt. Sodium arsenate and TSP were used to spike the soil with 90 mg As kg(-1) and 115 mg P kg(-1), respectively. Bioaccessible As was determined at time 0 (immediately after spiking), and at 6 and 12 months of equilibration using an in vitro gastrointestinal test, and As phytoavailability was measured with a 1-M KC1 extraction test. Arsenic phytoavailability decreased immediately after spiking (20% availability at 5% rate), but only after 6 months for the Al-WTR- and the Fe-WTR-amended soil, respectively. Arsenic bioaccessibility simulated for the stomach and intestine phases showed that the Fe-WTR was more effective than the Al-WTR in resisting the harsh acidic conditions of the human stomach, thus preventing As release. Both the phytoavailable As and the bioaccessible As were significantly correlated (p < 0.001) for soil spiked with either Al- or Fe-WTR. Both WTRs were able to decrease soil As bioaccessibility irrespective of the presence or absence of P, which was added as TSP. Results indicate the potential of WTRs in immobilizing As in contaminated soils fertilized with P, thereby minimizing soil As bioaccessibility and phytoavailability.
A combined Eulerian-Lagrangian two-phase analysis of the SSME HPOTP nozzle plug trajectories
NASA Technical Reports Server (NTRS)
Garcia, Robert; Mcconnaughey, P. K.; Dejong, F. J.; Sabnis, J. S.; Pribik, D.
1989-01-01
As a result of high cycle fatigue, hydrogen embrittlement, and extended engine use, it was observed in testing that the trailing edge on the first stage nozzle plug in the High Pressure Oxygen Turbopump (HPOTP) could detach. The objective was to predict the trajectories followed by particles exiting the turbine. Experiments had shown that the heat exchanger soils, which lie downstream of the turbine, would be ruptured by particles traveling in the order of 360 ft/sec. An axisymmetric solution of the flow was obtained from the work of Lin et. al., who used INS3D to obtain the solution. The particle trajectories were obtained using the method of de Jong et. al., which employs Lagrangian tracking of the particle through the Eulerian flow field. The collision parameters were obtained from experiments conducted by Rocketdyne using problem specific alloys, speeds, and projectile geometries. A complete 3-D analysis using the most likely collision parameters shows maximum particle velocities of 200 ft/sec. in the heat exchanger region. Subsequent to this analysis, an engine level test was conducted in which seven particles passed through the turbine but no damage was observed on the heat exchanger coils.
Free-Field Ground Shock Pressures from Buried Detonations in Saturated and Unsaturated Soils
1983-05-01
pressures are, therefore, which is shown in Figure 4 and compared to the higher at various standoff distances, unsaturated soil solution and test data on...IK-82 an4 ?g-84 bombs. As can be seen, the hydrodynamic Instead of using a soil solution , the propaga- solution works much better and predicts much
1989-08-01
to which roots are exposed. Thus, soil sorption will control the concentration of soil - solution TNT and/or TNT-derived residues available for root... soil - solution TNT and/or TNT-derived residues available for root uptake. Hydroponic systems were used to calibrate subsequent soil studies and to
NASA Astrophysics Data System (ADS)
Raudina, Tatiana V.; Loiko, Sergey V.; Lim, Artyom G.; Krickov, Ivan V.; Shirokova, Liudmila S.; Istigechev, Georgy I.; Kuzmina, Daria M.; Kulizhsky, Sergey P.; Vorobyev, Sergey N.; Pokrovsky, Oleg S.
2017-07-01
Mobilization of dissolved organic carbon (DOC) and related trace elements (TEs) from the frozen peat to surface waters in the permafrost zone is expected to enhance under ongoing permafrost thaw and active layer thickness (ALT) deepening in high-latitude regions. The interstitial soil solutions are efficient tracers of ongoing bio-geochemical processes in the critical zone and can help to decipher the intensity of carbon and metals migration from the soil to the rivers and further to the ocean. To this end, we collected, across a 640 km latitudinal transect of the sporadic to continuous permafrost zone of western Siberia peatlands, soil porewaters from 30 cm depth using suction cups and we analyzed DOC, dissolved inorganic carbon (DIC), and 40 major elements and TEs in 0.45 µm filtered fraction of 80 soil porewaters. Despite an expected decrease in the intensity of DOC and TE mobilization from the soil and vegetation litter to the interstitial fluids with the increase in the permafrost coverage and a decrease in the annual temperature and ALT, the DOC and many major and trace elements did not exhibit any distinct decrease in concentration along the latitudinal transect from 62.2 to 67.4° N. The DOC demonstrated a maximum of concentration at 66° N, on the border of the discontinuous/continuous permafrost zone, whereas the DOC concentration in peat soil solutions from the continuous permafrost zone was equal to or higher than that in the sporadic/discontinuous permafrost zone. Moreover, a number of major (Ca, Mg) and trace (Al, Ti, Sr, Ga, rare earth elements (REEs), Zr, Hf, Th) elements exhibited an increasing, not decreasing, northward concentration trend. We hypothesize that the effects of temperature and thickness of the ALT are of secondary importance relative to the leaching capacity of peat, which is in turn controlled by the water saturation of the peat core. The water residence time in peat pores also plays a role in enriching the fluids in some elements: the DOC, V, Cu, Pb, REEs, and Th were a factor of 1.5 to 2.0 higher in mounds relative to hollows. As such, it is possible that the time of reaction between the peat and downward infiltrating waters essentially controls the degree of peat porewater enrichments in DOC and other solutes. A 2° northward shift in the position of the permafrost boundaries may bring about a factor of 1.3 ± 0.2 decrease in Ca, Mg, Sr, Al, Fe, Ti, Mn, Ni, Co, V, Zr, Hf, Th, and REE porewater concentration in continuous and discontinuous permafrost zones, and a possible decrease in DOC, specific ultraviolet absorbency (SUVA), Ca, Mg, Fe, and Sr will not exceed 20 % of their current values. The projected increase in ALT and vegetation density, northward migration of the permafrost boundary, or the change of hydrological regime is unlikely to modify chemical composition of peat porewater fluids larger than their natural variations within different micro-landscapes, i.e., within a factor of 2. The decrease in DOC and metal delivery to small rivers and lakes by peat soil leachate may also decrease the overall export of dissolved components from the continuous permafrost zone to the Arctic Ocean. This challenges the current paradigm on the increase in DOC export from the land to the ocean under climate warming in high latitudes.
NASA Astrophysics Data System (ADS)
Prunier, Jonathan; Chabaux, François; Stille, Peter; Pierret, Marie-Claire; Viville, Daniel; Gangloff, Sophie
2015-04-01
Major and trace element concentrations along with U and Sr isotopic ratios of the main components of the water-soil-plant system of two experimental plots in a forested silicate catchment were determined to characterize the day-present weathering processes within the surface soil levels and to identify the nature of minerals which control the lithogenic flux of the soil solutions. This study allows recognition of a lithogenic origin of the dissolved U in the surface soil solutions, even in the most superficial ones, implying that the colloidal U is a U secondarily associated with organic matter or organo-metallic complexes. This flux significantly varies in the upper meter of the soil and between the two sites, due to their slightly different bedrock lithologies and likely also to their different vegetation covers. A long-time monitoring during the past 15 years was achieved to evaluate the response of this ecosystem to recent environmental changes. A clear decrease of the Ca and K fluxes exported by the soil solutions between 1992 and 2006 at the spruce site was observed, while this decrease is much smaller for the beech plot. In addition, the Sr isotope ratios of soil solutions vary significantly between 1998 and 2004, with once again a much more important change for the spruce site than for the beech site. It demonstrates that the source of elements in soil solutions has changed over this time period due to a modification of the weathering reactions occurring within the weathering profile. The origin of the weathering modification could be the consequence of the acid rains on weathering granitic bedrock or a consequence of forest exploitation incompatible with the nutriment reserve of soils with recent plantations of conifer, which impoverish soils. All together, these data suggest that the forest ecosystem at the spruce plot is in a transient state of functioning marked by a possible recent modification of weathering reactions. This study shows the potential of the approach combining the analysis of U and Sr isotopes in soil solutions and vegetation to evaluate this kind of phenomenon.
Gao, Peng; Fu, Tong-Gang; Wang, Ke-Lin; Chen, Hong-Song; Zeng, Fu-Ping
2013-11-01
A total of 163 soil samples (0-20 cm layer) were collected from the grid sampling plots (80 m x 80 m) in Huanjiang Observation and Research Station of Karst Ecosystem in a small catchment in Karst cluster-peak depression area, South China. By using classical statistics and geostatistics, the spatial heterogeneity of mineral components (SiO2, Fe2O3, CaO, MgO, Al2O3, MnO, and TiO2) in the soils were studied. The contents of the seven soil mineral components in the study area differed greatly, being in the order of SiO2 > Al2O3 > CaO > MgO > Fe2O3 > TiO2 > MnO, and the variance coefficients also varied obviously, in the order of CaO > MgO > Fe2O3 > TiO2 > SiO2 > Al2O3 > MnO. The seven mineral components accounted for 69.4% of the total soil mass. The spatial patterns and the fittest models of the seven soil mineral components differed from each other. All the seven soil mineral components had a strong spatial autocorrelation, with shorter variation ranges and stronger spatial dependence. The Kriging contour maps indicated that the distribution patterns of soil SiO2, Fe2O3, Al2O3, MnO, and TiO2 were similar, being higher in south and east, lower in north and west, higher in depression, and lower in slope, while the distribution patterns of soil CaO and MgO were in adverse. Natural conditions (vegetation, bare rock rate, slope degree, and slope aspect, etc. ) and human disturbance were the most important factors affecting the spatial patterns of the soil mineral components.
Bur, T; Crouau, Y; Bianco, A; Gandois, L; Probst, A
2012-01-01
The toxicity of Pb and Cd+Pb was assessed on the Collembola F. candida in two cultivated soils (SV and AU) with low organic matter (OM) content and circumneutral to basic pH, and an acid forested soil (EPC) with high OM content. Collembola reproduction and growth as well as metal content in Collembola body, in soil, exchangeable fraction and soil solutions, pH and DOC were investigated. Pb and Cd+Pb were the highest in exchangeable fraction and soil solution of the acidic soils. Soil solution pH decreased after metal spiking in every soil due to metal adsorption, which was similar for Cd and the highest in AU for Pb. With increasing Pb and Cd+Pb, the most important reproduction decrease was in EPC soil. The LOEC for reproduction after metal addition was 2400 (Pb) and 200/2400 (Cd/Pb), 1200 and 100/1200, 300 and 100/1200 μg g(-1) for AU, SV and EPC, respectively. The highest and the lowest Pb toxicity was observed for EPC and AU bulk soil, respectively. The metal in Collembola increased with increasing soil concentration, except in AU, but the decreasing BF(solution) with increasing concentrations indicates a limited metal transfer to Collembola or an increased metal removal. Loading high Pb concentrations decreases Cd absorption by the Collembola, but the reverse was not true. The highest Pb toxicity in EPC can be explained by pH and OM content. Because of metal complexation, OM might have a protective role but its ingestion by Collembola lead to higher toxicity. Metal bioavailability in Collembola differs from soil solution indicating that soil solution is not sufficient to evaluate toxicity in soil organisms. The toxicity as a whole decreased when metals were combined, except for Pb in AU, due to adsorption competition between Cd and Pb on clay particles and OM sites in AU and EPC soils, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Batukaev, Abdul-Malik A.; Endovitsky, Anatoly P.; Andreev, Andrey G.; Kalinichenko, Valery P.; Minkina, Tatiana M.; Dikaev, Zaurbek S.; Mandzhieva, Saglara S.; Sushkova, Svetlana N.
2016-03-01
The assessment of soil and vadose zone as the drains for carbon sink and proper modeling of the effects and extremes of biogeochemical cycles in the terrestrial biosphere are the key components to understanding the carbon cycle, global climate system, and aquatic and terrestrial system uncertainties. Calcium carbonate equilibrium causes saturation of solution with CaCO3, and it determines its material composition, migration and accumulation of salts. In a solution electrically neutral ion pairs are formed: CaCO30, CaSO40, MgCO30, and MgSO40, as well as charged ion pairs CaHCO3+, MgHCO3+, NaCO3-, NaSO4-, CaOH+, and MgOH+. The calcium carbonate equilibrium algorithm, mathematical model and original software to calculate the real equilibrium forms of ions and to determine the nature of calcium carbonate balance in a solution were developed. This approach conducts the quantitative assessment of real ion forms of solution in solonetz soil and vadose zone of dry steppe taking into account the ion association at high ionic strength of saline soil solution. The concentrations of free and associated ion form were calculated according to analytical ion concentration in real solution. In the iteration procedure, the equations were used to find the following: ion material balance, a linear interpolation of equilibrium constants, a method of ionic pairs, the laws of initial concentration preservation, operating masses of equilibrium system, and the concentration constants of ion pair dissociation. The coefficient of ion association γe was determined as the ratio of ions free form to analytical content of ion γe = Cass/Can. Depending on soil and vadose zone layer, concentration and composition of solution in the ionic pair's form are 11-52 % Ca2+; 22.2-54.6 % Mg2+; 1.1-10.5 % Na+; 3.7-23.8 HCO3-, 23.3-61.6 % SO42-, and up to 85.7 % CO32-. The carbonate system of soil and vadose zone water solution helps to explain the evolution of salted soils, vadose and saturation zones, and landscape. It also helps to improve the soil maintenance, plant nutrition and irrigation. The association of ions in soil solutions is one of the drivers promoting transformation of solution, excessive fluxes of carbon in the soil, and loss of carbon from soil through vadose zone.
Schneider, Arnaud R; Ponthieu, Marie; Cancès, Benjamin; Conreux, Alexandra; Morvan, Xavier; Gommeaux, Maxime; Marin, Béatrice; Benedetti, Marc F
2016-06-01
Trace element (TE) speciation modelling in soil solution is controlled by the assumptions made about the soil solution composition. To evaluate this influence, different assumptions using Visual MINTEQ were tested and compared to measurements of free TE concentrations. The soil column Donnan membrane technique (SC-DMT) was used to estimate the free TE (Cd, Cu, Ni, Pb and Zn) concentrations in six acidic soil solutions. A batch technique using DAX-8 resin was used to fractionate the dissolved organic matter (DOM) into four fractions: humic acids (HA), fulvic acids (FA), hydrophilic acids (Hy) and hydrophobic neutral organic matter (HON). To model TE speciation, particular attention was focused on the hydrous manganese oxides (HMO) and the Hy fraction, ligands not considered in most of the TE speciation modelling studies in soil solution. In this work, the model predictions of free ion activities agree with the experimental results. The knowledge of the FA fraction seems to be very useful, especially in the case of high DOM content, for more accurately representing experimental data. Finally, the role of the manganese oxides and of the Hy fraction on TE speciation was identified and, depending on the physicochemical conditions of the soil solution, should be considered in future studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yuan, Xiao Chun; Chen, Yue Min; Yuan, Shuo; Zheng, Wei; Si, You Tao; Yuan, Zhi Peng; Lin, Wei Sheng; Yang, Yu Sheng
2017-01-01
To study the effects of nitrogen deposition on the concentration and spectral characteristics of dissolved organic matter (DOM) in the forest soil solution from the subtropical Cunninghamia lanceolata plantation, using negative pressure sampling method, the dynamics of DOM in soil solutions from 0-15 and 15-30 cm soil layer was monitored for two years and the spectroscopic features of DOM were analyzed. The results showed that nitrogen deposition significantly reduced the concentration of dissolved organic carbon (DOC), and increased the aromatic index (AI) and the humic index (HIX), but had no significant effect on dissolved organic nitrogen (DON) concentration in both soil layers. There was obvious seasonal variation in DOM concentration of the soil solution, which was prominently higher in summer and autumn than in spring and winter.Fourier-transform infrared (FTIR) absorption spectrometry indicated that the DOM in forest soil solution had absorption peaks in the similar position of six regions, being the highest in wave number of 1145-1149 cm -1 . Three-dimensional fluorescence spectra indicated that DOM was mainly consisted of protein-like substances (Ex/Em=230 nm/300 nm) and microbial degradation products (Ex/Em=275 nm/300 nm). The availability of protein-like substances from 0-15 cm soil layer was reduced in the nitrogen treatments. Nitrogen deposition significantly reduced the concentration of DOC in soil solution, maybe largely by reducing soil pH, inhibiting soil carbon mineralization and stimulating plant growth. In particular, the decline of DOC concentration in the surface layer was due to the production inhibition of the protein-like substances and carboxylic acids. Short-term nitrogen deposition might be beneficial to the maintenance of soil fertility, while the long-term accumulation of nitrogen deposition might lead to the hard utilization of soil nutrients.
NASA Astrophysics Data System (ADS)
Coffinet, Sarah; Huguet, Arnaud; Pedentchouk, Nikolai; Omuombo, Christine; Williamson, David; Bergonzini, Laurent; Wagner, Thomas; Derenne, Sylvie
2016-04-01
Leaf wax n-alkanes (C27-C31) and branched glycerol dialkyl glycerol tetraethers (br GDGTs) are increasingly being used as molecular proxies to investigate past environmental conditions. Indices were previously developed to relate the br GDGT distribution to temperature and pH in soils. Furthermore, the δ²Hwax of leaf wax n-alkanes in soils was shown to track the 'altitude effect', suggesting it could be used to reconstruct paleoelevation. Combination of these two proxies could bring information on both past uplift elevation and past temperature changes, as illustrated by the pioneer paleostudy of Hren et al. (2010) in the Sierra Nevada. In the present study, δ²Hwax and br GDGTs were analysed in ca. 60 surface soils collected along Mt. Rungwe (Southwest Tanzania) and Mt. Kenya (Central Kenya). A weak link was identified between δ²Hwax and altitude (R² = 0.33) along Mt. Kenya, whereas no trend was observed along Mt. Rungwe, as also previously shown by Peterse et al. (2009) for Mt. Kilimanjaro. This shows that the strength of the relationship between soil δ²Hwax and elevation depends on which mountain is considered in East Africa and can be overprinted by numerous poorly understood environmental and/or physiological parameters. In contrast, br GDGT-derived mean annual air temperature (MAAT) and temperature lapse rate (5 °C/1000 m) were in agreement with values recorded along both Mt. Rungwe and Mt. Kenya, highlighting the robustness of this proxy for paleotemperature reconstruction in East Africa. Moreover, the combination of these br GDGT data with previous results obtained from East African surface soils (along Mts. Kilimanjaro (Tanzania), Sinninghe Damsté et al., 2008; Rwenzori (Uganda), Loomis et al., 2011; Rungwe (Tanzania), Coffinet et al., 2014), allowed the establishment of a regional soil calibration between br GDGT distribution and MAAT. This new East African calibration, based on 105 samples, leads to a substantial improvement of both the R2 (0.75) and RMSE (2.4 °C) of brGDGT-derived MAAT with respect to the global soil calibration by Peterse et al. (2012; R2 0.61 and RMSE 5° C). References: Coffinet, S. et al., 2014. Org. Geochem. 68, 82-89. Hren, M.T. et al., 2010. Geology 38, 7-10. Loomis, S.E., et al., 2011. Org. Geochem. 42, 739-751. Peterse, F. et al., 2009. Biogeosciences 6, 2799-2807. Peterse, F. et al., 2012. Geochim. Cosmochim. Acta 96, 215-229. Sinninghe Damsté, J.S. et al., 2008. Org. Geochem. 39, 1072-1076.
Surfactant-Induced Changes of Water Flow and Solute Transport in Soils
NASA Astrophysics Data System (ADS)
Kinsey, E. N.; Korte, C.; Peng, Z.; Yu, C.; Powelson, D.; Jacobson, A. R.; Baveye, P. C.; Darnault, C. J. G.
2016-12-01
Surfactants are present in the environment due to agricultural practices such as irrigation with wastewater, biosolid soil amendments, and/or environmental engineering remediation. Furthermore, surfactants occur widely in soils due to the application of pesticides in surfactant solution sprays, or the application of surfactants as soil wetting agents. Surfactants, because they are amphiphilic and impact the surface tension of aqueous solutions and the contact angle between aqueous and solid phases have the potential to influence water flow in porous media and the physicochemical properties of soils. The objective of this study was to assess the impact of surfactant on the soil infiltration process. Four different soils were used in this study: two sandy loam soils (Lewiston and Greenson series) and two loamy sand soils (Sparta and Gilford series). Rainfall was simulated to flow through different columns filled with the four different types of soil and effluent samples were collected at the end of each column. Each type of soil had two columns, one with a non-ionic surfactant Aerosol®22 at twice the critical micelle concentration, in the rainfall solution and one without. A conservative tracer, potassium bromide, was added to all rainfalls to monitor the infiltration process in soil. Tracer breakthrough curves were used to characterize flow in soils. Flow rates were also recorded for each soil. The presence of surfactant decreased the flow rate by a significant amount in most soil types. The decrease in flow rate can be attributed to the effects on the soil properties of hydraulic conductivity and soil aggregates. A decrease in pore space from the swelling of the soil particles can decrease the hydraulic conductivity. The properties in surfactants also decrease the surface tension and therefore soil particles are able to be dislodged from soil aggregates and cause potential soil clogging.
Grounding electrode and method of reducing the electrical resistance of soils
Koehmstedt, Paul L.
1980-01-01
A first solution of an electrolyte is injected underground into a volume of soil having negative surface charges on its particles. A cationic surfactant suspended in this solution neutralizes these surface charges of the soil particles within the volume. Following the first solution, a cationic asphalt emulsion suspended in a second solution is injected into the volume. The asphalt emulsion diffuses through the volume and electrostatically bonds with additional soil surrounding the volume such that an electrically conductive water repellant shell enclosing the volume is formed. This shell prevents the leaching of electrolyte from the volume into the additional soil. The second solution also contains a dissolved deliquescent salt which draws water into the volume prior to the formation of the shell. When electrically connected to an electrical installation such as a power line tower, the volume constitutes a grounding electrode for the tower.
Terroir et vignoble: how the farming management can affect the production of a quality wine
NASA Astrophysics Data System (ADS)
Gallo, Alba; Bini, Claudio
2016-04-01
Italian wine is one of the most exported wine in the world. The particular climate, the soil characteristics and other several factors have contributed to this success. Italy is located in the temperate belt, with a suitable climate for grapevine cultivation. For this reason, all regions in Italy produce wine, first of all the Veneto region, with 8.569.000 hl of wine in 2011. Wine quality derives from the perfect interaction among climate, morphology, soil and plant, i.e. the terroir. So, knowledge of the land characteristics, together with cultivation techniques and management, is essential to understand this interaction and the typicality of the wine. For example, large utilization of fertilizers and pesticides may determine accumulation of toxic substances in soil and possible translocation to the food chain. For this reason, metal contamination of soils and plants becomes a main issue in agricultural production. Therefore, our attention was focused on the determination of soil quality of the Prosecco DOCG (controlled and guaranteed denomination of origin) area, particularly in Conegliano. Conegliano is a town located in Veneto, in the province of Treviso, known for its wine. This wine variety is regulated by the Conegliano-Valdobbiadene production Consortium, to protect both consumers and producers. The goals of this research are: evaluation of trace metal content (Al ,Cd, Cr, Cu, Fe, Mg, Mn, Ni, P, Pb, V and Zn) in soils and possible uptake by grape leaves; estimation of biological soil quality (QBS-ar index); analysis of oxidative stress in dandelion (Taraxacum officinale) and grape leaves, by the Lipid peroxidation test (LPO test). Results concerning trace metal concentration show: i) a high content of Al, Mg and P in soils, and ii) high concentration of Al, Cu, Fe and Zn in grape leaves. High contents of Al in topsoil are consistent with the high concentration of organic matter. Instead, high Al contents in subsoil are related to clay. Mg and P are usually added to soil as fertilizer. In grape leaves, Al concentration is releated to Al content in soil, Cu could derive from foliar fungicides and no signs of toxicity from high content of Fe and Zn are visible. LPO test values are below the reference value, therefore vegetation in the study area is not affected by oxidative stress. Concerning the biological soil quality, 3 different classes (4, 5 and 6) were recorded (with noteworthy microarthropods adaption to soil conditions. This result suggest that the study area presents good grade ecosystem stability and limited stress evident. In conclusion, it is possible to assert that the study area is characterized by not polluted soils of good quality and without environmental stress. It is likely that the agronomic practices do not produce any negative effect on plant growth and, thus, on quality of wine.
Tang, Hailong; Shuai, Weitao; Wang, Xiaojing; Liu, Yangsheng
2017-08-01
Rare earth elements (REEs) contamination to the surrounding soil has increased the concerns of health risk to the local residents. Soil washing was first attempted in our study to remediate REEs-contaminated cropland soil using nitric acid, citric acid, and ethylene diamine tetraacetic acid (EDTA) for soil decontamination and possible recovery of REEs. The extraction time, washing agent concentration, and pH value of the washing solution were optimized. The sequential extraction analysis proposed by Tessier was adopted to study the speciation changes of the REEs before and after soil washing. The extract containing citric acid was dried to obtain solid for the X-ray fluorescence (XRF) analysis. The results revealed that the optimal extraction time was 72 h, and the REEs extraction efficiency increased as the agent concentration increased from 0.01 to 0.1 mol/L. EDTA was efficient to extract REEs over a wide range of pH values, while citric acid was around pH 6.0. Under optimized conditions, the average extraction efficiencies of the major REEs in the contaminated soil were 70.96%, 64.38%, and 62.12% by EDTA, nitric acid, and citric acid, respectively. The sequential extraction analyses revealed that most soil-bounded REEs were mobilized or extracted except for those in the residual fraction. Under a comprehensive consideration of the extraction efficiency and the environmental impact, citric acid was recommended as the most suitable agent for extraction of the REEs from the contaminated cropland soils. The XRF analysis revealed that Mn, Al, Si, Pb, Fe, and REEs were the major elements in the extract indicating a possibile recovery of the REEs.
A new approach to treat discontinuities in multi-layered soils
NASA Astrophysics Data System (ADS)
Berardi, Marco; Difonzo, Fabio; Caputo, Maria; Vurro, Michele; Lopez, Luciano
2017-04-01
The water infiltration into two (or more) layered soils can give rise to preferential flow paths at the interface between different soils. The deep understanding of this phenomenon can be of great interest in modeling different environmental problems in geosciences and hydrology. Flow through layered soils arises naturally in agriculture, and layered soils are also engineered as cover liners for landfills. In particular, the treatment of the soil discontinuity is of great interest from the modeling and the numerical point of view, and is still an open problem.% (see, for example, te{Matthews_et_al,Zha_vzj_2013,DeLuca_Cepeda_ASCE_2016}). Assuming to approximate the soils with different porous media, the governing equation for this phenomenon is Richards' equation, in the following form: {eq:different_Richards_1} C_1(ψ) partial ψ/partial t = partial /partial z [ K_1(ψ) ( partial ψ/partial z - 1 ) ], \\quad if \\quad z < \\overline{z}, C_2(ψ) partial ψ/partial t = partial /partial z [ K_2(ψ) ( partial ψ/partial z - 1 ) ], \\quad if \\quad z > \\overline{z}, where \\overline{z} is the spatial threshold that identifies the change in soil structure, and C1 C_2, K_1, K_2, the hydraulic functions that describe the upper and the lower soil, respectively. The ψ-based form is used, in this work. Here we have used the Filippov's theory in order to deal with discontinuous differential systems, and we handled opportunely the numerical discretization in order to treat the abovementioned system by means of this theory, letting the discontinuity depend on the state variable. The advantage of this technique is a better insight on the solution behavior on the discontinuity surface, and the no-need to average the hydraulic conductivity field on the threshold itself, as in the existing literature.
NASA Astrophysics Data System (ADS)
Nezat, C. A.; Blum, J. D.
2005-12-01
Easily dissolved minerals such as calcite and apatite can be important in controlling stream and ground water chemistry even though these minerals are only present in trace amounts in granitoid rocks. Because of its solubility, apatite, a calcium phosphate mineral, may be a significant source of essential nutrients (especially phosphorous) for vegetation, and has been shown to strongly influence stream and soil water composition (e.g, calcium, strontium and rare earth elements). There are additional sources of Ca (e.g., feldspars, hornblende) and P (e.g., organic matter or bound to Fe and Al oxides) in granitoid soils. In order to distinguish the chemical constituents of apatite from other pools in the bulk soil, we selectively dissolved apatite with a dilute acid leach, and measured Pb isotopic ratios of apatite, feldspar, and leachates. We tested the leaching procedure on mineral separates and verified that a dilute nitric solution primarily dissolves apatite. Silicates were dissolved in subsequent steps by successively stronger acids. We then applied this method to bulk soils collected from several soil pits across a small watershed at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA, to determine the spatial distribution of Ca and P pools, and determine the depth of apatite depletion in the soil. We also measured Pb isotope ratios in the soil leachates to distinguish among the various sources of Pb (e.g., apatite, feldspars and anthropogenic sources). We found that Pb in the dilute nitric leach of the HBEF organic soils is dominated by anthropogenic sources and that Pb from apatite becomes increasingly important with depth.
Identifying Dust Sources by Positive Matrix Factorization (PMF)
NASA Astrophysics Data System (ADS)
Engelbrecht, Johann P.
2010-05-01
This presentation is on the source attribution by Positive Matrix Factorization (PMF) of aerosol samples collected in Iraq, a major source of mineral dust in the Middle East. Globally transported mineral dust from North Africa, the Middle East, China, and elsewhere are routinely being sampled at high elevation monitoring sites such as those on the Canary Islands and Hawaii, and many ambient monitoring sites worldwide. Chemical results of these filter samples reflect differences in sources impacting at each site, further complicated by the regional geomorphology and meteorology. Trace elements, isotopes, elemental ratios, and mineralogy are generally being used to pinpoint geological source regions of natural and anthropogenic dusts. A receptor site is seldom impacted by only one source at a time. Dust palls are continually being modified by added dust from soils across which they migrate, also by particle segregation in the dust plume, and precipitation of the coarser particles. The result is that dust is a mixture, with contributions from different sources, each with a different chemical and mineralogical signature. PMF is a non-negative factorization procedure that produces only positive factor scores and loadings, in contrast to classical factor analysis (FA) and Principal Components Analysis (PCA). PMF enables us to resolve factors (chemical signatures) for source types contributing to the ambient chemical data set, and also models the source-type contributions to individual ambient samples. The latter can often be related to specific source regions. PMF was applied separately to two ambient data sets collected in Iraq in 2006, the one on Teflon membrane filters and the other on quartz fiber. Each of the filter types were previously analyzed for different chemical species: Teflon membrane for elements, by XRF and ICP-MS, while quartz fiber filters were analyzed for ions and carbon. [Engelbrecht et al. 2009] A set of 392 Teflon filter samples analyzed for 25 elemental species was modeled by PMF. A five factor solution identified three soil factors, a silicate soil, limestone soil, and a gypsum soil, as well as a salt factor and an anthropogenic metal factor. Similarly, a set of 362 quartz filter samples analyzed for 10 selected chemical species was modeled by PMF. A five factor solution provided a limestone-gypsum soil, diesel combustion, secondary ammonium sulfate, salt and agricultural-burnpit combustion source type. Examples of time series plots of PMF factor contributions for each of six sampling sites (Balad, Baghdad, Tallil, Tikrit, Taji, and Al Asad) will be discussed. Engelbrecht , J. P., McDonald, E. V., Gillies, J. A., Jayanty, R. K. M., Casuccio, G., and Gertler, A. W., 2009, Characterizing mineral dusts and other aerosols from the Middle East - Part 1: Ambient sampling: Inhalation Toxicology, v. 21, p. 297-326.
Changes in Soil Minerology Reduce Phosphorus Mobility During Anoxic Soil Conditions
NASA Astrophysics Data System (ADS)
Giri, S. K.; Geohring, L. D.; Richards, B. K.; Walter, M.; Steenhuis, T. S.
2008-05-01
Phosphorus (P) transfer from the landscape to receiving waters is an important environmental concern because these diffuse losses may cause widespread water quality impairments which can accelerate freshwater eutrophication. Phosphorus (P) mobilization from soil to surface and subsurface flow paths is controlled by numerous factors, and thus it can vary greatly with time and landscape scale. To determine whether P mobilization during soil saturation in the landscape was caused or controlled by complexation, iron reduction or ligand exchange, experiments were carried out to better characterize the interrelationships of varying P sources with dissolved organic carbon (DOC) and soil anoxic conditions. The soil incubation experiments consisted of treatments with distilled water, 5 mM acetic acid (HAc), 0.05% humic acid (HA) and glucose (40 mM) at 26 o C under anaerobic conditions to isolate effects of the various P exchange processes. The experimental results suggest that during soil saturation, the loosely bound P, which is primarily associated with iron oxyhydroxides, was mobilized by both reduction and complexation processes. Good correlations were observed between ferrous iron (Fe+2) and DOC, and between total dissolved phosphorus (TDP) and DOC, facilitating P desorption to the soil water. The anaerobic soil conditions with different P sources also indicated that mineralization facilitated P mobility, mainly due to chelation (humics and metabolites) and as a result of the bio-reduction of iron when fresh litter and grass were present. The organic P sources which are rich in carbohydrate and cellulose and that undergo fermentation due to the action of lactate forming organisms also caused a release of P. The easily metabolizable DOC sources lead to intensive bio-reduction of soil with the release of Fe, however this did not necessarily appear to cause more TDP in the soil solution. The varying P additions in soils with water, HAc and glucose (40mm) before and after soil incubation showed higher P sorption than aerobic soil due to reduced iron (Fe+2) - P mineral formation. Some of the readily available P in the soil solution tended to co-precipitate quickly with Fe, Al, Ca, and Mn, but it also resulted in the formation of earthy masses of vivianite [Fe2+3(PO4)2 . 8 H20], thus almost completely immobilizing P. These findings suggest that where conditions in the landscape are saturated, but remain stagnant for extended time periods, P additions may not necessarily enhance leaching once hydrological transport resumes. The temporal nature of P mobilization processes combined with rapid (i.e., preferential flow) hydrological transport appears to have a more important role in controlling P transport through the landscape.
USDA-ARS?s Scientific Manuscript database
Acid soils have been reported to restrict crop growth and productivity by creating unhealthy conditions for crops including deficiencies of K, Ca, Mg, and P and toxicities of Al, Mn and Fe. The current study was conducted with natural rubber (NR, Hevea brasiliensis Mu¨ll. Arg) plantations grown on a...
Beyond clay - using selective extractions to improve predictions of soil carbon content
NASA Astrophysics Data System (ADS)
Rasmussen, C.; Berhe, A. A.; Blankinship, J. C.; Crow, S. E.; Druhan, J. L.; Heckman, K. A.; Keiluweit, M.; Lawrence, C. R.; Marin-Spiotta, E.; Plante, A. F.; Schaedel, C.; Schimel, J.; Sierra, C. A.; Thompson, A.; Wagai, R.; Wieder, W. R.
2016-12-01
A central component of modern soil carbon (C) models is the use of clay content to scale the relative partitioning of decomposing plant material to respiration and mineral stabilized soil C. However, numerous pedon to plot scale studies indicate that other soil mineral parameters, such as Fe- or Al-oxyhydroxide content and specific surface area, may be more effective than clay alone for predicting soil C content and stabilization. Here we directly address the following question: Are there soil physicochemical parameters that represent mineral C association and soil C content that can replace or be used in conjunction with clay content as scalars in soil C models. We explored the relationship of soil C content to a number of soil physicochemical and physiographic parameters using the National Cooperative Soil Survey database that contains horizon level data for > 62,000 pedons spanning global ecoregions and geographic areas. The data indicated significant variation in the degree of correlation among soil C, clay and Fe-/Al-oxyhydroxides with increasing moisture variability. Specifically, dry, water-limited systems (PET/MAP > 1) presented strong positive correlations between clay and soil C, that decreased significantly to little or no correlation in wet, energy-limited systems (PET/MAP < 1). In contrast, the correlation of soil C to oxalate extractable Al+Fe increased significantly with increasing moisture availability. This pattern was particularly well expressed for subsurface B horizons. Multivariate analyses indicated similar patterns, with clear climate and ecosystem level variation in the degree of correlation among soil C and soil physicochemical properties. The results indicate a need to modify current soil C models to incorporate additional C partitioning parameters that better account for climate and ecoregion variability in C stabilization mechanisms.
NASA Astrophysics Data System (ADS)
Morel, Xavier; Decharme, Bertrand; Delire, Christine
2017-04-01
Permafrost soils and boreal wetlands represent an important challenge for future climate simulations. Our aim is to be able to correctly represent the most important thermal, hydrologic and carbon cycle related processes in boreal areas with our land surface model ISBA (Masson et al, 2013). This is particularly important since ISBA is part of the CNRM-CM Climate Model (Voldoire et al, 2012), that is used for projections of future climate changes. To achieve this goal, we replaced the one layer original soil carbon module based on the CENTURY model (Parton et al, 1987) by a multi-layer soil carbon module that represents C pools and fluxes (CO2 and CH4), organic matter decomposition, gas diffusion (Khvorostyanov et al., 2008), CH4 ebullition and plant-mediated transport, and cryoturbation (Koven et al., 2009). The carbon budget of the new model is closed. The soil carbon module is tightly coupled to the ISBA energy and water budget module that solves the one-dimensional Fourier law and the mixed-form of the Richards equation explicitly to calculate the time evolution of the soil energy and water budgets (Boone et al., 2000; Decharme et al. 2011). The carbon, energy and water modules are solved using the same vertical discretization. Snowpack processes are represented by a multi-layer snow model (Decharme et al, 2016). We test this new model on a pair of monitoring sites in Greenland, one in a permafrost area (Zackenberg Ecological Research Operations, Jensen et al, 2014) and the other in a region without permafrost (Nuuk Ecological Research Operations, Jensen et al, 2013); both sites are established within the GeoBasis part of the Greenland Ecosystem Monitoring (GEM) program. The site of Chokurdakh, in a permafrost area of Siberia is is our third studied site. We test the model's ability to represent the physical variables (soil temperature and water profiles, snow height), the energy and water fluxes as well as the carbon dioxyde and methane fluxes. We also test the model behaviour in the case of a flooded fen, hence giving a first insight of the sensitivity of greenhouse gas emissions with respect to surface hydrology. Comparing the model results on these three climatically distinct sites also gives a first insight on the model sensitivity to the forcing climate variables, and show that the model is generic enough to reasonably model methane and carbon dioxyde emission behaviour from different types of boreal ecosystems.
Wan, Yanan; Camara, Aboubacar Younoussa; Yu, Yao; Wang, Qi; Guo, Tianliang; Zhu, Lina; Li, Huafen
2018-05-11
Cadmium (Cd) in rice grains is a potential threat to human health. This study investigated the effects of selenite fertilisation (0 mg kg -1 , 0.5 mg kg -1 , and 1.0 mg kg -1 ) on soil solution Cd dynamics and rice uptake. Rice was grown in two Cd-contaminated soils in Jiangxi and Hunan Provinces under two different sets of conditions: aerobic and flooded. The experiments were conducted in pots. The plants were harvested at the seedling stage and at maturity to determine their Cd levels. Soil solutions were also extracted during the growing season to monitor Cd dynamics. The results showed that in the Jiangxi soil (pH 5.25), Cd concentrations in the soil solutions, seedlings, and mature rice plants were higher under aerobic than under flooded water management conditions. In the Hunan soil (pH 7.26), however, flooding decreased Cd levels in the rice seedlings but not in mature plants. Selenite additions to the Hunan soil decreased Cd concentrations in the soil solutions and in the mature rice plants. These effects were not observed for the solutions or the plants from Jiangxi soil amended with selenite. Relative to the control treatment, 0.5 mg kg -1 selenite decreased the rice grain Cd content by 45.2% and 67.7% under aerobic and flooding conditions, respectively. The results demonstrated that water management regimes affected rice Cd uptake more effectively in Jiangxi than in Hunan soil, whereas selenite addition was more effective in Hunan than in Jiangxi soil. Selenite addition was also more effective at reducing rice grain Cd levels when it was applied under flooding than under aerobic conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dias-Ferreira, Celia; Kirkelund, Gunvor M; Ottosen, Lisbeth M
2015-01-01
Seven electrodialytic experiments were conducted using ammonium citrate as enhancing agent to remediate copper and chromium-contaminated soil from a wood-preservation site. The purpose was to investigate the effect of current density (0.2, 1.0 and 1.5 mA cm(-2)), concentration of enhancing agent (0.25, 0.5 and 1.0 M) and remediation times (21, 42 and 117 d) for the removal of Cu and Cr from a calcareous soil. To gain insight on metal behavior, soil solution was periodically collected using suction cups. It was seen that current densities higher than 1.0 mA cm(-2) did not increase removal and thus using too high current densities can be a waste of energy. Desorption rate is important and both remediation time and ammonium citrate concentration are relevant parameters. It was possible to collect soil solution samples following an adaptation of the experimental set-up to ensure continuous supply of ammonium citrate to the soil in order to keep it saturated during the remediation. Monitoring soil solution gives valuable information on the evolution of remediation and helps deciding when the soil is remediated. Final concentrations in the soil ranged from 220 to 360 mg Cu kg(-1) (removals: 78-86%) and 440-590 mg Cr kg(-1) (removals: 35-51%), being within the 500 mg kg(-1) limit for a clean soil only for Cu. While further optimization is still required for Cr, the removal percentages are the highest achieved so far, for a real Cu and Cr-contaminated, calcareous soil. The results highlight EDR potential to remediate metal polluted soils at neutral to alkaline pH by choosing a good enhancement solution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Muhs, D.R.; Bush, C.A.; Stewart, K.C.; Rowland, T.R.; Crittenden, R.C.
1990-01-01
Most previous workers have regarded the insoluble residues of high-purity Quaternary limestones (coral reefs and oolites) as the most important parent material for well-developed, clay-rich soils on Caribbean and western Atlantic islands, but this genetic mechanism requires unreasonable amounts of limestone solution in Quaternary time. Other possible parent materials from external sources are volcanic ash from the Lesser Antilles island arc and Saharan dust carried across the Atlantic Ocean on the northeast trade winds. Soils on Quaternary coral terraces and carbonate eolianites on Barbados, Jamaica, the Florida Keys (United States), and New Providence Island (Bahamas) were studied to determine which, if either, external source was important. Caribbean volcanic ashes and Saharan dust can be clearly distinguished using ratios of relatively immobile elements ( Al2O3 TiO2, Ti Y, Ti Zr, and Ti Th). Comparison of these ratios in 25 soils, where estimated ages range from 125,000 to about 870,000 yr, shows that Saharan dust is the most important parent material for soils on all islands. These results indicate that the northeast trade winds have been an important component of the regional climatology for much of the Quaterary. Saharan dust may also be an important parent material for Caribbean island bauxites of much greater age. ?? 1990.
NASA Astrophysics Data System (ADS)
Buch, A.; Freissinet, C.; Sternberg, R.; Szopa, C.; Coll, P. J.; Brault, A.; Pinnick, V.; Siljeström, S.; Raulin, F.; Steininger, H.; Goesmann, F.; MOMA Team
2011-12-01
With the aim of separating and detecting organic compounds from Martian soil onboard the Mars Organic Molecule Analyzer (MOMA) experiment of the ExoMars 2018 upcoming joint ESA/NASA mission, we have developed three different space compatible sample preparation techniques compatible with space missions, able to extract and analyze by GC-MS a wide range of volatile and refractory compounds, including chirality analysis. Then, a sample processing utilizing three derivatization/extraction reactions has been carried out. The first reaction is based on a silyl reagent N-Methyl-N- (Tert-Butyldimethylsilyl)trifluoroacetamide (MTBSTFA) [1], the second one, N,N-Dimethylformamide Dimethylacetal (DMF-DMA) [2,3] is dedicated to the chirality detection and the third one is a thermochemolysis based on the use of tetramethylammoniumhydroxide (TMAH). The sample processing system is performed in an oven, dedicated to the MOMA experiment containing the solid sample (50-100mg). The internal temperature of the oven ranges from 20 to 900 °C. The extraction step is achieved by using thermodesorption in the range of 100 to 300°C for 5 to 20 min. Then, the chemical derivatization of the extracted compounds is performed directly on the soil sample by using a derivatyization capsule which contains a mixture of MTBSTFA-DMF or DMF-DMA solution when enantiomeric separation is required. By decreasing the polarity of the targeted molecules, this step allows their volatilization at a temperature below 250°C without any thermal degradation. Once derivatized, the volatile target molecules are trapped in a chemical trap and promptly desorbed into the gas chromatograph coupled to a mass spectrometer. Thermochemolysis is directly performed in the oven at 400°C during 5 min with a 25% (w/w) methanol solution of tetramethylammonium hydroxide (TMAH). Then, pyrolysis in the presence of TMAH allows both an efficient cleavage of polar bonds and the subsequent methylation of COOH, OH and NH2 groups, hence the release of less polar, GC-amenable compounds. By using thermochemolysis several families of biological molecules were detected such as fatty acids, n-alkenes and n-alkanols [4]. [1] A. Buch et al., Development of a gas chromatography compatible Sample Processing System (SPS) for the in-situ analysis of refractory organic matter in martian soil: preliminary result. Advances in Space Research 43, 143-151, 2009. [2] C. Freissinet et al., Journal of Chromatography A.1217 (5), 731-740, 2010. [3] U. Meierhenrich et al., Journal of Analytical and Applied Pyrolysis 60, 13-26, 2001. [4] C. Geffroy-Rodier et al., Journal of Analytical and Applied Pyrolysis, 85, 2009.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arai, Y.; Tappero, R.; Rick, A.R.
Environmental contamination of lead (Pb) in soils and sediments poses serious threats to human and ecological health. The objective of this study is to investigate the effect of seasonal dove sports hunting activities on Pb contamination in acid forest soils. A grid sampling method was used to investigate the spatial distribution of Pb contamination in surface soils. Soils were analyzed for total metal(loid) concentration and characterized for physicochemical properties and mineralogy. Adsorption isotherm experiments were also conducted to understand the reactivity and retention capacity of Pb(II) in soils. Finally, synchrotron-based X-ray microprobe and X-ray absorption spectroscopy were used to understandmore » the chemical speciation of Pb that controls the retention/release mechanisms of Pb in soils. There was no excessive accumulation of Pb at the site. However, the concentration of Pb in surface soils was greater than the background level (<16 mg kg{sup -1}). The contamination level of Pb was as high as 67 mg kg{sup -1} near a patch of corn field where lime was frequently applied. A microfocused X-ray microprobe analysis showed the presence of Pb pellet fragments that predominantly contain oxidized Pb(II), suggesting that oxidative dissolution was occurring in soils. Dissolved Pb(II) can be readily retained in soils up to {approx}3,600 mg kg{sup -1} via inner-sphere and outer-sphere surface complexation on carbon and aluminol functional groups of soil components, suggesting that partitioning reactions control the concentration of Pb in soil solution. The fate of Pb is likely to be controlled by (1) oxidative dissolution process of Pb(0) pellets and (2) the release of outer-sphere and/or inner-sphere Pb surface complexes in humic substances and aluminosilicate/Al oxyhydroxides. Although no remedial actions are immediately required, the long-term accumulation of Pb in soils should be carefully monitored in protecting ecosystem and water quality at the dove hunting field.« less
NASA Astrophysics Data System (ADS)
Li, Lin
2008-12-01
Partial least squares (PLS) regressions were applied to lunar highland and mare soil data characterized by the Lunar Soil Characterization Consortium (LSCC) for spectral estimation of the abundance of lunar soil chemical constituents FeO and Al2O3. The LSCC data set was split into a number of subsets including the total highland, Apollo 16, Apollo 14, and total mare soils, and then PLS was applied to each to investigate the effect of nonlinearity on the performance of the PLS method. The weight-loading vectors resulting from PLS were analyzed to identify mineral species responsible for spectral estimation of the soil chemicals. The results from PLS modeling indicate that the PLS performance depends on the correlation of constituents of interest to their major mineral carriers, and the Apollo 16 soils are responsible for the large errors of FeO and Al2O3 estimates when the soils were modeled along with other types of soils. These large errors are primarily attributed to the degraded correlation FeO to pyroxene for the relatively mature Apollo 16 soils as a result of space weathering and secondary to the interference of olivine. PLS consistently yields very accurate fits to the two soil chemicals when applied to mare soils. Although Al2O3 has no spectrally diagnostic characteristics, this chemical can be predicted for all subset data by PLS modeling at high accuracies because of its correlation to FeO. This correlation is reflected in the symmetry of the PLS weight-loading vectors for FeO and Al2O3, which prove to be very useful for qualitative interpretation of the PLS results. However, this qualitative interpretation of PLS modeling cannot be achieved using principal component regression loading vectors.
NASA Astrophysics Data System (ADS)
Cerdà, Artemi; Bodí, Merche B.; González, Óscar; Mataix Solera, Jorge; Doerr, Stefan Helmut
2015-04-01
Wildfire are present in the Earth System since vegetation was present in the continents (Doerr and Cerdà, 2005; Kaiho et al., 2013). Forest fire cause damage in the soil and the vegetation cover (Guénon et al., 2013). The years after a forest fire there is a sudden increase in the soil erosion rates that contribute to connect the pedon, slope tram, tram and watershed with surface flows that results in high erosion rates (Cerdà and Lasanta, 2005; Lasanta and Cerdà, 2005; Cawson et al., 2012; Pérez Cabello et al., 2012; Prats et al., 2015). Although the research on soil erosion after forest fire was carried out at different scales by different authors, there is not information about soil erosion at different scales at the same research site and during the post fire period. After the forest fire of April 2008 in Navalón, Eastern Spain, the Soil Erosion and Degradation Research Group from the University of Valencia initiated the measurement of the soil losses at pedon scale (microplots of 0.30 m2), at slope tram (silt fences of 1.8 m width), at slope scale (abandoned terraces) and at watershed scale, at the bottom of the valley (abandoned terraces). The results show that there is a reduction in the sediment yield from pedon to watershed scale and that the soil erosion took place in the first year after the fire. Acknowledgements To the "Ministerio de Economía and Competitividad" of Spanish Government for finance the POSTFIRE project (CGL2013- 47862-C2-1-R). The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7-ENV-2013- supported this research. References Carreiras, M., Ferreira, A.J.D., Valente, S., Fleskens, L., Gonzales-Pelayo, Ó., Rubio, J.L., Stoof, C.R., Coelho, C.O.A., Ferreira, C.S.S., Ritsema, C.J. 2014. Comparative analysis of policies to deal with the wildfire risk. Land Degradation & Development, 25, 92-103. http://dx.doi.org/10.1002/ldr.2274 Cawson, J. G., Sheridan, G. J., Smith, H. G., Lane, P. N. J. (2012). Surface runoff and erosion after prescribed burning and the effect of different fire regimes in forests and shrublands: a review. International Journal of Wildland Fire, 21(7), 857-872. Cerdà, A., Lasanta, A. 2005. Long-term erosional responses after fire in the Central Spanish Pyrenees: 1. Water and sediment yield. Catena, 60, 59-80. Doerr, S., Cerdà, A. 2005. Fire effects on soil system functioning: new insights and future challenges International Journal of Wildland Fire Preface. International Journal of Wildland Fire 14(4) 339-342 Guénon, R., Vennetier, M., Dupuy, N., Roussos, S., Pailler, A., Gros, R. 2013. Trends in recovery of Mediterranean soil chemical properties and microbial activities after infrequent and frequent wildfires. Land Degradation & Development, 24: 115- 128. DOI 10.1002/ldr.1109 Kaiho, K., Yatsu, S., Oba, M., Gorjan, P., Casier, J. G., Ikeda, M. (2013). A forest fire and soil erosion event during the Late Devonian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 392, 272-280. Lasanta, A., Cerdà, A. 2005. Long-term erosional responses after fire in the Central Spanish Pyrenees: 2. Solute release. Catena, 60, 80-101. Pérez-Cabello, F., Cerdà, A., de la Riva, J., Echeverría, M.T., García-Martín, A., Ibarra, P., Lasanta, T., Montorio, R., Palacios, V. 2012. Micro-scale post-fire surface cover changes monitored using high spatial resolution photography in a semiarid environment: A useful tool in the study of post-fire soil erosion processes, Journal of Arid Environments, 76: 88-96. 10.1016/j.jaridenv.2011.08.007 Prats, S.A., Malvar, M.C., Simões-Vieira, D.C., MacDonald, L., Keizer, J.J. 2015. Effectiveness of hydro- mulching to reduce runoff and erosion in a recently burnt pine plantation in central Portugal. Land Degradation & Development, DOI: 10.1002/ldr.2236.
Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Alaska Region
2006-02-01
insoluble but ferrous iron easily enters the soil solution and is moved or translocated to other areas of the soil. Areas that have lost iron...causing oxidation of ferrous iron present in the soil solution . They are evidence of saturated and reduced soil conditions during the plant’s
Xu, Wenjie; Jiang, Zhenming; Zhao, Quanlin; Zhang, Zhenzhong; Su, Hongping; Gao, Xuewen; Ye, Zhengfang
2016-11-01
Explosive-contaminated soil is harmful to people's health and the local ecosystem. The acute toxicity of its extracting solution was tested by bacterial luminescence assay using three kinds of luminescent bacteria to characterize the toxicity of the soil. An orthogonal test L 16 (4 5 ) was designed to optimize the soil extracting conditions. The optimum extracting conditions were obtained when the ultrasonic extraction time, ultrasonic extraction temperature, and the extraction repeat times were 6 h, 40 °C, and three, respectively. Fourier transform infrared spectroscopy (FTIR) results showed that the main components of the contaminated soil's extracting solution were 2,4-dinitrotoluene-3-sulfonate (2,4-DNT-3-SO 3 - ); 2,4-dinitrotoluene-5-sulfonate (2,4-DNT-5-SO 3 - ); and 2,6-dinitrotoluene (2,6-DNT). Compared with Photobacterium phosphoreum and Vibrio fischeri, Vibrio qinghaiensis sp. Nov. is more suitable for assessing the soil extracting solution's acute toxicity. Soil washing can remove most of the contaminants toxic to luminescent bacterium Vibrio qinghaiensis sp. Nov., suggesting that it may be a potential effective remediation method for explosive-contaminated soil.
Iggy, Litaor M.; Thurman, E.M.
1988-01-01
Soil interstitial waters in the Green Lakes Valley, Front Range, Colorado were studied to evaluate the capacity of the soil system to buffer acid deposition. In order to determine the contribution of humic substances to the buffering capacity of a given soil, dissolved organic carbon (DOC) and pH of the soil solutions were measured. The concentration of the organic anion, Ai-, derived from DOC at sample pH and the concentration of organic anion, Ax- at the equivalence point were calculated using carboxyl contents from isolated and purified humic material from soil solutions. Subtracting Ax- from Ai- yields the contribution of humic substances to the buffering capacity (Aequiv.-). Using this method, one can evaluate the relative contribution of inorganic and organic constituents to the acid neutralizing capacity (ANC) of the soil solutions. The relative contribution of organic acids to the overall ANC was found to be extremely important in the alpine wetland (52%) and the forest-tundra ecotone (40%), and somewhat less important in the alpine tundra sites (20%). A failure to recognize the importance of organic acids in soil solutions to the ANC will result in erroneous estimates of the buffering capacity in the alpine environment of the Front Range, Colorado. ?? 1988.
Lopez-Sangil, Luis; George, Charles; Medina-Barcenas, Eduardo; Birkett, Ali J; Baxendale, Catherine; Bréchet, Laëtitia M; Estradera-Gumbau, Eduard; Sayer, Emma J
2017-09-01
Root exudation is a key component of nutrient and carbon dynamics in terrestrial ecosystems. Exudation rates vary widely by plant species and environmental conditions, but our understanding of how root exudates affect soil functioning is incomplete, in part because there are few viable methods to manipulate root exudates in situ . To address this, we devised the Automated Root Exudate System (ARES), which simulates increased root exudation by applying small amounts of labile solutes at regular intervals in the field.The ARES is a gravity-fed drip irrigation system comprising a reservoir bottle connected via a timer to a micro-hose irrigation grid covering c . 1 m 2 ; 24 drip-tips are inserted into the soil to 4-cm depth to apply solutions into the rooting zone. We installed two ARES subplots within existing litter removal and control plots in a temperate deciduous woodland. We applied either an artificial root exudate solution (RE) or a procedural control solution (CP) to each subplot for 1 min day -1 during two growing seasons. To investigate the influence of root exudation on soil carbon dynamics, we measured soil respiration monthly and soil microbial biomass at the end of each growing season.The ARES applied the solutions at a rate of c . 2 L m -2 week -1 without significantly increasing soil water content. The application of RE solution had a clear effect on soil carbon dynamics, but the response varied by litter treatment. Across two growing seasons, soil respiration was 25% higher in RE compared to CP subplots in the litter removal treatment, but not in the control plots. By contrast, we observed a significant increase in microbial biomass carbon (33%) and nitrogen (26%) in RE subplots in the control litter treatment.The ARES is an effective, low-cost method to apply experimental solutions directly into the rooting zone in the field. The installation of the systems entails minimal disturbance to the soil and little maintenance is required. Although we used ARES to apply root exudate solution, the method can be used to apply many other treatments involving solute inputs at regular intervals in a wide range of ecosystems.
Soil phosphorus cycling in tropical soils: An ultisol and oxisol perspective
Reed, Sasha C.; Wood, Tana E
2016-01-01
Phosphorus (P) is essential for life. It is the backbone of our DNA, provides energy for biological reactions, and is an integral component of cell membranes. As such, it is no surprise that P availability plays a strong role in regulating ecosystem structure and function (Wassen et al. 2005, Elser et al. 2007, Condit et al. 2013), and in determining our capacity to grow food for a burgeoning human population (Sharpley et al. 1997, Sims and Sharpley 2005, Lal 2009). Concerns that P supplies are insufficient to meet our species’ growing demands are on the rise (Richardson and Simpson 2011) and scientific and media outlets increasingly discuss P as an element worthy of our attention and concern (e.g., Cordell et al. 2009, Lougheed 2011, Edixhoven et al. 2013, Ulrich et al. 2013). Indeed, a number of groups are calling for the explicit stewardship of our planet’s P stocks (Schipper 2014, Withers et al. 2015). Yet a focus on P as a vital and limited resource is not new in the tropics, where an abundance of soils characterized by low P has resulted in a substantial, longstanding reliance on P inputs for tropical ecosystem function in both unmanaged and agriculture settings (Table 1, Figure 2; Sanchez 1976, Swap et al. 1992, Chadwick et al. 1999, Okin et al. 2004, Lal 2009). Indeed, there is a long history of cultivation in the tropics, where for thousands of years land management practices have included methods that effectively modify P availability for plant growth (e.g., Giardina et al. 2000, Lawrence and Schlesinger 2001, Vitousek et al. 2004, Lewis et al. 2015). Nevertheless, low soil fertility in tropical systems where fertilizer is scarce has enduringly been recognized as a major source of hunger and starvation (Sanchez and Buol 1975, Sanchez 2002, Sanchez and Swaminathan 2005).
NASA Astrophysics Data System (ADS)
Dolan, E. M.; Perdrial, J. N.; Vazquez, A.; Hernández, S.; Chorover, J.
2010-12-01
Elizabeth Dolan1,2, Julia Perdrial3, Angélica Vázquez-Ortega3, Selene Hernández-Ruiz3, Jon Chorover3 1Deptartment of Soil, Environmental, and Atmospheric Science, University of Missouri. 2Biosphere 2, University of Arizona. 3Deptartment of Soil, Water, and Environmental Science, University of Arizona. Abstract: The behavior of dissolved organic matter (DOM) in soil is important to many biogeochemical processes. Extraction methods to obtain DOM from the unsaturated zone remain a current focus of research as different methods can influence the type and concentration of DOM obtained. Thus, the present comparison study involves three methods for soil solution sampling to assess their impact on DOM quantity and quality: 1) aqueous soil extracts, 2) solution yielded from laboratory installed suction cup samplers and 3) solutions from field installed suction cup samplers. All samples were analyzed for dissolved organic carbon and total nitrogen concentrations. Moreover, DOM quality was analyzed using fluorescence, UV-Vis and FTIR spectroscopies. Results indicate higher DOC values for laboratory extracted DOM: 20 mg/L for aqueous soil extracts and 31 mg/L for lab installed samplers compared to 12 mg/L for field installed samplers. Large variations in C/N ratios were also observed ranging from 1.5 in laboratory extracted DOM to 11 in field samples. Fluorescence excitation-emission matrices of DOM solutions obtained for the laboratory extraction methods showed higher intensities in regions typical for fulvic and humic acid-like materials relative to those extracted in the field. Similarly, the molar absorptivity calculated from DOC concentration normalization of UV-Vis absorbance of the laboratory-derived solutions was significantly higher as well, indicating greater aromaticity. The observed differences can be attributed to soil disturbance associated with obtaining laboratory derived solution samples. Our results indicate that laboratory extraction methods are not comparable to in-situ field soil solution extraction in terms of DOM.
Recent Experimental Advances to Determine (noble) Gases in Waters
NASA Astrophysics Data System (ADS)
Kipfer, R.; Brennwald, M. S.; Huxol, S.; Mächler, L.; Maden, C.; Vogel, N.; Tomonaga, Y.
2013-12-01
In aquatic systems noble gases, radon, and bio-geochemically conservative transient trace gases (SF6, CFCs) are frequently applied to determine water residence times and to reconstruct past environmental and climatic conditions. Recent experimental breakthroughs now enable ● to apply the well-established concepts of terrestrial noble gas geochemistry in waters to the minute water amounts stored in sediment pore space and in fluid inclusions (A), ● to determine gas exchange processes on the bio-geochemical relevant time scales of minutes - hours (B), and ● to separate diffusive and advective gas transport in soil air (C). A. Noble-gas analysis in water samples (< 1 g) facilitates determining the solute transport in the pore space and identifying the origin of bio- and geogenic fluids in (un) consolidated sediments [1]. Advanced techniques that combine crushing and sieving speleothem samples in ultra-high-vacuum to a specific grain size allow to separate air and water-bearing fluid inclusions and thus enables noble-gas-based reconstruction of environmental conditions from water masses as small as 1mg [2]. B. The coupling of noble gas analysis with approaches of gas chromatography permits combined analysis of noble gases and other gases species (e.g., SF6, CFCs, O2, N2) from a single water sample. The new method substantially improves ground water dating by SF6 and CFCs as excess air is quantified from the same sample and hence can adequately be corrected for [3]. Portable membrane-inlet mass spectrometers enable the quasi-continuous and real-time analysis of noble gases and other dissolved gases directly in the field, allowing, for instance, quantification of O2 turnover rates on small time scales [4]. C. New technical developments perfect 222Rn analysis in water by the synchronous the determination of the short-lived 220Rn. The combined 220,222Rn analysis sheds light on the emanation behaviour of radon by identifying soil water content to be the crucial control of 220Rn occurrence in the environment, e.g., making an argument why 220Rn is not detectable in water, but in soil air. As 220Rn occurrence is of 'very local origin' the combined analysis of 220,222Rn in soil air allows differentiating between advective and diffusive soil gas transport [5]. By discussing these recent achievements, we intend to stimulate a broader discussion to identify future applications of noble and other gases in (un) conventional aquatic systems, such as blood. [1] Tomonaga et al. (2011) Limnol. Oceanogr. Methods, 9, 42-49, doi:10:4319/lom.2011.9.42. [2] Vogel et al. (2013) Geochem. Geophys. Geosyst., 14, doi:10.1002/ggge.20164. [3] Brennwald et al. (2013) Environ. Sci. Technol., Article ASAP, DOI: 10.1021/es401698p. [4] Mächler et al. (2012) Environ. Sci. Technol., 47, 7060-7066. [5] Huxol et al. Environ. Sci. Technol., in revision.
The positive impact of European subsidies on soil erosion rates in orange plantations
NASA Astrophysics Data System (ADS)
Keesstra, Saskia; Jordán, Antonio; Novara, Agata; Taguas, Tani; Pereira, Paulo; Brevik, Eric C.; Cerdà, Artemi
2017-04-01
Soil erosion in orchards and vineyards has been found non-sustainable due to bare soils due to the use of herbicides and tillage (Novara et al., 2011; Taguas et al., 2015; Ochoa et al., 2016; Rodrigo Comino et al., 2016a; 2016b; 2016c). Citrus plantations in sloping terrains are also non-sustainable from the soil erosion point of view due high erosion rates and the damage caused on infra-structures (Cerdà et al., 2009; 2009b; Cerdà et al., 2011; Pereira et al., 2015). This is not uncommon in Mediterranean type Ecosystems (Cerdà et al., 2010) but there is a need to reduce the soil and water losses to achieve sustainability (Brevik et al., 2015; Keesstra et al., 2016). The use of mulches, geotextiles, catch crops, and vegetation was found to be very successful as a sustainable strategy to reduce the soil losses (Giménez Morera et al., 2010; Mwango et al., 2016; Nawaz et al., 2016; Nishigaki et al., 2016; Prosdocimi et al., 2016). Nowadays, chipped branches are applied in orchards and vineyards because of European subsidies; however little scientific data is available on the impact of the chipped branches mulch on soil erosion. In an orange plantation in Eastern Valencia, at the L'Alcoleja experimental station the impact of these chipped branches was tested under 45 mm h-1 rainfall simulations on laboratory plots of 0.5 m2 under with different covers of chipped branches. The results show that with a cover of 20 % with chipped branches soil erosion reduces by 78 %. Acknowledgements The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement 603498 (RECARE project) and the CGL2013- 47862-C2-1-R and CGL2016-75178-C2-2-R national research projects. References Brevik, E. C., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J. N., Six, J., and Van Oost, K. 2015. The interdisciplinary nature of SOIL, SOIL, 1, 117-129, doi:10.5194/soil-1-117-2015, Cerdà, A. and M. F. Jurgensen. 2011. Ant Mounds as a Source of Sediment on Citrus Orchard Plantations in Eastern Spain. A Three-Scale Rainfall Simulation Approach. Catena 85 (3): 231-236. doi:10.1016/j.catena.2011.01.008. Cerdà, A., A. G. Morera, and M. B. Bodí. 2009a. Soil and Water Losses from New Citrus Orchards Growing on Sloped Soils in the Western Mediterranean Basin. Earth Surface Processes and Landforms 34 (13): 1822-1830. doi:10.1002/esp.1889. Cerdà, A., H. Lavee, A. Romero-Díaz, J. Hooke, and L. Montanarella. 2010. Preface: Soil Erosion and Degradation in Mediterranean Type Ecosystems. Land Degradation and Development 21 (2): 71-74. doi:10.1002/ldr.968. Cerdà, A., M. F. Jurgensen, and M. B. Bodi. 2009b. Effects of Ants on Water and Soil Losses from Organically-Managed Orchards in Eastern Spain. Biologia 64 (3): 527-531. doi:10.2478/s11756-009-0114-7. Giménez-Morera, A., J. D. Ruiz Sinoga, and A. Cerdà. 2010. The Impact of Cotton Geotextiles on Soil and Water Losses from Mediterranean Rainfed Agricultural Land. Land Degradation and Development 21 (2): 210-217. doi:10.1002/ldr.971. Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., van der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B., and Fresco, L. O.: The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals, SOIL, 2, 111-128, doi:10.5194/soil-2-111-2016, 2016. Mwango, S. B., B. M. Msanya, P. W. Mtakwa, D. N. Kimaro, J. Deckers, and J. Poesen. 2016. Effectiveness OF Mulching Under Miraba in Controlling Soil Erosion, Fertility Restoration and Crop Yield in the Usambara Mountains, Tanzania. Land Degradation and Development 27 (4): 1266-1275. doi:10.1002/ldr.2332. Nawaz, A., R. Lal, R. K. Shrestha, and M. Farooq. 2016. Mulching Affects Soil Properties and Greenhouse Gas Emissions Under Long-Term no-Till and Plough-Till Systems in Alfisol of Central Ohio. Land Degradation and Development. doi:10.1002/ldr.2553. Nishigaki, T., M. Shibata, S. Sugihara, A. D. Mvondo-Ze, S. Araki, and S. Funakawa. 2016. Effect of Mulching with Vegetative Residues on Soil Water Erosion and Water Balance in an Oxisol Cropped by Cassava in East Cameroon. Land Degradation and Development. doi:10.1002/ldr.2568. Novara, A., L. Gristina, S. S. Saladino, A. Santoro, and A. Cerdà. 2011. Soil Erosion Assessment on Tillage and Alternative Soil Managements in a Sicilian Vineyard. Soil and Tillage Research 117: 140-147. doi:10.1016/j.still.2011.09.007. Ochoa, P. A., A. Fries, D. Mejía, J. I. Burneo, J. D. Ruíz-Sinoga, and A. Cerdà. 2016. Effects of Climate, Land Cover and Topography on Soil Erosion Risk in a Semiarid Basin of the Andes. Catena 140: 31-42. doi:10.1016/j.catena.2016.01.011. Pereira, P., Giménez-Morera, A., Novara, A., Keesstra, S., Jordán, A., Masto, R.E., Brevik, E., Azorin-Molina, C., Cerdà A., 2015. The impact of road and railway embankments on runoff and soil erosion in eastern Spain. Hydrol. Earth Syst. Sci. Discuss., 12, 12947-12985, doi:10.5194/hessd-12-12947-2015, 2015 Prosdocimi, M., A. Jordán, P. Tarolli, S. Keesstra, A. Novara, and A. Cerdà. 2016. The Immediate Effectiveness of Barley Straw Mulch in Reducing Soil Erodibility and Surface Runoff Generation in Mediterranean Vineyards. Science of the Total Environment 547: 323-330. doi:10.1016/j.scitotenv.2015.12.076. Rodrigo Comino J, Iserloh T, Morvan X, Malam Issa O, Naisse C, Keesstra SD, Cerdà A, Prosdocimi M, Arnáez J, Lasanta T, Ramos MC, Marqués MJ, Ruiz Colmenero M, Bienes R, Ruiz Sinoga JD, Seeger M, Ries JB (2016). Soil Erosion Processes in European Vineyards: A Qualitative Comparison of Rainfall Simulation Measurements in Germany, Spain and France. Hydrology, 3 (1), 6; doi:10.3390/hydrology3010006 Rodrigo Comino, J., Iserloh, T., Lassu, T., Cerdà, A., Keesstra, S.D., Prosdocimi, M., Brings, C., Marzen, M., Ramos, M.C., Senciales, J.M., Ruiz Sinoga, J.D., Seeger, M., Ries, J.B., 2016. Quantitative comparison of initial soil erosion processes and runoff generation in Spanish and German vineyards. Sci. Total Environ. 565, 1165-1174. DOI:10.1016/j.scitotenv.2016.05.163 Rodrigo-Comino, J., M. Seeger, J. M. Senciales, J. D. Ruiz-Sinoga, and J. B. Ries. 2016. Spatial and Temporal Variation of Soil Hydrological Processes on Steep Slope Vineyards (Ruwel-Mosel Valley, Gemany). Cuadernos De Investigacion Geografica 42 (1): 281-306. doi:10.18172/cig.2934. Taguas, E. V., E. Guzmán, G. Guzmán, T. Vanwalleghem, and J. A. Gómez. 2015. Characteristics and Importance of Rill and Gully Erosion: A Case Study in a Small Catchment of a Marginal Olive Grove. Cuadernos De Investigacion Geografica 41 (1): 107-126. doi:10.18172/cig.2644.
Chen, Season S; Sun, Yuqing; Tsang, Daniel C W; Graham, Nigel J D; Ok, Yong Sik; Feng, Yujie; Li, Xiang-Dong
2017-02-01
Hydraulic fracturing has advanced the development of shale gas extraction, while inadvertent spills of flowback water may pose a risk to the surrounding environment due to its high salt content, metals/metalloids (As, Se, Fe and Sr), and organic additives. This study investigated the potential impact of flowback water on four representative soils from shale gas regions in Northeast China using synthetic flowback solutions. The compositions of the solutions were representative of flowback water arising at different stages after fracturing well establishment. The effects of solution composition of flowback water on soil ecosystem were assessed in terms of metal mobility and bioaccessibility, as well as biological endpoints using Microtox bioassay (Vibrio fischeri) and enzyme activity tests. After one-month artificial aging of the soils with various flowback solutions, the mobility and bioaccessibility of As(V) and Se(VI) decreased as the ionic strength of the flowback solutions increased. The results inferred a stronger binding affinity of As(V) and Se(VI) with the soils. Nevertheless, the soil toxicity to Vibrio fischeri only presented a moderate increase after aging, while dehydrogenase and phosphomonoesterase activities were significantly suppressed with increasing ionic strength of flowback solutions. On the contrary, polyacrylamide in the flowback solutions led to higher dehydrogenase activity. These results indicated that soil enzyme activities were sensitive to the composition of flowback solutions. A preliminary human health risk assessment related to As(V) suggested a low level of cancer risk through exposure via ingestion, while holistic assessment of environmental implications is required. Copyright © 2016 Elsevier B.V. All rights reserved.
Soil solution interactions may limit Pb remediation using P amendments in an urban soil.
Obrycki, John F; Scheckel, Kirk G; Basta, Nicholas T
2017-01-01
Lead (Pb) contaminated soils are a potential exposure hazard to the public. Amending soils with phosphorus (P) may reduce Pb soil hazards. Soil from Cleveland, OH containing 726 ± 14 mg Pb kg -1 was amended in a laboratory study with bone meal and triple super phosphate (TSP) at 5:1 P:Pb molar ratios. Soil was acidified, neturalized and re-acidified to encourage Pb phosphate formation. PRSTM-probes were used to evaluate changes in soil solution chemistry. Soil acidification did not decrease in vitro bioaccessible (IVBA) Pb using either a pH 1.5, 0.4 M glycine solution or a pH 2.5 solution with organic acids. PRSTM-probe data found soluble Pb increased 10-fold in acidic conditions compared to circumnetural pH conditions. In acidic conditions (p = 3-4), TSP treated soils increased detected P 10-fold over untreated soils. Bone meal application did not increase PRSTM-probe detected P, indicating there may have been insufficient P to react with Pb. X-ray absorption spectroscopy suggested a 10% increase in pyromorphite formation for the TSP treated soil only. Treatments increased soil electrical conductivity above 16 mS cm -1 , potentially causing a new salinity hazard. This study used a novel approach by combining the human ingestion endpoint, PRSTM-probes, and X-ray absorption spectroscopy to evaluate treatment efficacy. PRSTM-probe data indicated potentially excess Ca relative to P across incubation steps that could have competed with Pb for soluble P. More research is needed to characterize soil solutions in Pb contaminated urban soils to identify where P treatments might be effective and when competing cations, such as Ca, Fe, and Zn may limit low rate P applications for treating Pb soils. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gould, Billie; McCouch, Susan; Geber, Monica
2015-01-01
Studies of adaptation in the wild grass Anthoxanthum odoratum at the Park Grass Experiment (PGE) provided one of the earliest examples of rapid evolution in plants. Anthoxanthum has become locally adapted to differences in soil Al toxicity, which have developed there due to soil acidification from long-term experimental fertilizer treatments. In this study, we used transcriptome sequencing to identify Al stress responsive genes in Anthoxanhum and identify candidates among them for further molecular study of rapid Al tolerance evolution at the PGE. We examined the Al content of Anthoxanthum tissues and conducted RNA-sequencing of root tips, the primary site of Al induced damage. We found that despite its high tolerance Anthoxanthum is not an Al accumulating species. Genes similar to those involved in organic acid exudation (TaALMT1, ZmMATE), cell wall modification (OsSTAR1), and internal Al detoxification (OsNRAT1) in cultivated grasses were responsive to Al exposure. Expression of a large suite of novel loci was also triggered by early exposure to Al stress in roots. Three-hundred forty five transcripts were significantly more up- or down-regulated in tolerant vs. sensitive Anthoxanthum genotypes, providing important targets for future study of rapid evolution at the PGE. PMID:26148203
Gould, Billie; McCouch, Susan; Geber, Monica
2015-01-01
Studies of adaptation in the wild grass Anthoxanthum odoratum at the Park Grass Experiment (PGE) provided one of the earliest examples of rapid evolution in plants. Anthoxanthum has become locally adapted to differences in soil Al toxicity, which have developed there due to soil acidification from long-term experimental fertilizer treatments. In this study, we used transcriptome sequencing to identify Al stress responsive genes in Anthoxanhum and identify candidates among them for further molecular study of rapid Al tolerance evolution at the PGE. We examined the Al content of Anthoxanthum tissues and conducted RNA-sequencing of root tips, the primary site of Al induced damage. We found that despite its high tolerance Anthoxanthum is not an Al accumulating species. Genes similar to those involved in organic acid exudation (TaALMT1, ZmMATE), cell wall modification (OsSTAR1), and internal Al detoxification (OsNRAT1) in cultivated grasses were responsive to Al exposure. Expression of a large suite of novel loci was also triggered by early exposure to Al stress in roots. Three-hundred forty five transcripts were significantly more up- or down-regulated in tolerant vs. sensitive Anthoxanthum genotypes, providing important targets for future study of rapid evolution at the PGE.
Soil fungi colony growth and community dynamics
NASA Astrophysics Data System (ADS)
Falconer, Ruth E.; Kravchenko, Alexandra; Otten, Wilfred
2010-05-01
Fungi are a major player in soil functioning, they contribute to soil structure formation and shaping of plant communities through their role in nutrient cycling, pathogenesis and symbiosis. Theoretical approaches which have emerged over the years and improved considerably our understanding of above ground plant communities are still lacking below ground. A theoretical framework is needed, such that links soil physics, fungal biology and mathematical biology in order to understand fungal community dynamics and diversity in undisturbed soils. Such a framework is essential if we are to understand how environmental change or soil manipulation impacts biodiversity. Different land use and management practices significantly affect soil environmental characteristics crucial for fungal communities by contributing different quantities and qualities of biomass inputs, generating different levels of soil disturbance, influencing soil temperature and moisture regimes, and affecting structure and geometry of soil pore space. Differences in pore structures generated by long-term differences in land use and management are reflected in notable changes in soil physical and hydraulic properties, including soil porosity, hydraulic conductivity and water retention (Brye and Pirani, 2005). Changes in numbers, shapes, and distributions of soil macropores have been often observed (e.g., Pachepsky et al., 1996; Giménez et al., 1997; Udawatta et al., 2008). However, specific implications of these differences in pore structure and geometries for ability of pathogenic as well as non-pathogenic fungi to colonize soil have not yet been addressed. Recent advances in computed tomography and microscopy facilitate detailed examination of the inner pore structures of undisturbed soil samples as well as visualization of fungal mycelia. Such tools together with modelling generate a new level of understanding of the mechanisms governing fungal behaviour at microscopic scales, and for the first time allow us to examine species interactions in a 3D soil environment.
Root adaptations to soils with low fertility and aluminium toxicity.
Rao, Idupulapati M; Miles, John W; Beebe, Stephen E; Horst, Walter J
2016-06-01
Plants depend on their root systems to acquire the water and nutrients necessary for their survival in nature, and for their yield and nutritional quality in agriculture. Root systems are complex and a variety of root phenes have been identified as contributors to adaptation to soils with low fertility and aluminium (Al) toxicity. Phenotypic characterization of root adaptations to infertile soils is enabling plant breeders to develop improved cultivars that not only yield more, but also contribute to yield stability and nutritional security in the face of climate variability. In this review the adaptive responses of root systems to soils with low fertility and Al toxicity are described. After a brief introduction, the purpose and focus of the review are outlined. This is followed by a description of the adaptive responses of roots to low supply of mineral nutrients [with an emphasis on low availability of nitrogen (N) and phosphorus (P) and on toxic levels of Al]. We describe progress in developing germplasm adapted to soils with low fertility or Al toxicity using selected examples from ongoing breeding programmes on food (maize, common bean) and forage/feed (Brachiaria spp.) crops. A number of root architectural, morphological, anatomical and metabolic phenes contribute to the superior performance and yield on soils with low fertility and Al toxicity. Major advances have been made in identifying root phenes in improving adaptation to low N (maize), low P (common bean) or high Al [maize, common bean, species and hybrids of brachiariagrass, bulbous canarygrass (Phalaris aquatica) and lucerne (Medicago sativa)]. Advanced root phenotyping tools will allow dissection of root responses into specific root phenes that will aid both conventional and molecular breeders to develop superior cultivars. These new cultivars will play a key role in sustainable intensification of crop-livestock systems, particularly in smallholder systems of the tropics. Development of these new cultivars adapted to soils with low fertility and Al toxicity is needed to improve global food and nutritional security and environmental sustainability. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.
Loh, A G; Israf, D A
1998-03-01
The influence of soil texture (silt, sand and laterite) and flotation solutions (saturated NaCl, sucrose, NaNO3, and ZnSO4) upon the recovery of Toxocara ova from seeded soil samples with the centrifugal flotation technique was investigated. Soil samples of different texture were artificially seeded with Toxocara spp. ova and subjected to a centrifugal flotation technique which used various flotation solutions. The results showed significant (P < 0.001) interactions between the soil types and the flotation solutions. The highest percentage of ova recovery was obtained with silty soil (34.9-100.8%) with saturated NaCl as the flotation solution (45.3-100.8%). A combination of washing of soil samples with 0.1% Tween 80, and flotation using saturated NaCl and a 30 min coverslip recovery period was used to study the prevalence of contamination of soil samples. Forty-six soil samples were collected from up to 24 public parks/playgrounds in urban areas of Petaling Jaya and suburban areas of Serdang. The prevalence of Toxocara species in the urban and suburban areas was 54.5% and 45.8% respectively.
The effects of mulching on soil erosion by water. A review based on published data
NASA Astrophysics Data System (ADS)
Prosdocimi, Massimo; Jordán, Antonio; Tarolli, Paolo; Cerdà, Artemi
2016-04-01
Among the soil conservation practices that have been recently implemented, mulching has been successfully applied in different contexts (Jordán et al., 2011), such as agricultural lands (García-Orenes et al. 2009; Prosdocimi et al., 2016), fire-affected areas (Prats et al., 2014; Robichaud et al., 2013) and anthropic sites (Hayes et al., 2005), to reduce water and soil losses rates. In these contexts, soil erosion by water is a serious problem, especially in semi-arid and semi-humid areas of the world (Cerdà et al., 2009; Cerdan et al., 2010; Sadeghi et al., 2015). Although soil erosion by water consists of physical processes that vary significantly in severity and frequency according to when and where they occur, they are also strongly influenced by anthropic factors such as unsustainable farming practices and land-use changes on large scales (Cerdà, 1994; Montgomery, 2007). Although the beneficial effects of mulching are known, their quantification needs further research, especially in those areas where soil erosion by water represents a severe threat. In literature, there are still some uncertainties about how to maximize the effectiveness of mulching in the reduction of soil and water loss rates. First, the type of choice of the vegetative residues is fundamental and drives the application rate, cost, and consequently, its effectiveness. Second, it is important to assess application rates suitable for site-specific soil and environment conditions. The percentage of area covered by mulch is another important aspect to take into account, because it has proven to influence the reduction of soil loss. And third, the role played by mulching at catchment scale, where it plays a key role as barrier for breaking sediment and runoff connectivity. Given the seriousness of soil erosion by water and the uncertainties that still concern the correct use of mulching, this work aims to evaluate the effects of mulching on soil erosion rates and water losses in agricultural lands, post-fire affected areas and anthropic sites. Data published in literature have been collected. The results proved the beneficial effects of mulching on soil erosion by water in all the contexts considered, with reduction rates in average sediment concentration, soil loss and runoff volume that, in some cases, exceeded 90%. Furthermore, in most cases, mulching confirmed to be a relatively inexpensive soil conservation practice that allowed to reduce soil erodibility and surface immediately after its application. References Cerdà, A., 1994. The response of abandoned terraces to simulated rain, in: Rickson, R.J., (Ed.), Conserving Soil Resources: European Perspective, CAB International, Wallingford, pp. 44-55. Cerdà, A., Flanagan, D.C., Le Bissonnais, Y., Boardman, J., 2009. Soil erosion and agriculture. Soil & Tillage Research 106, 107-108. Cerdan, O., Govers, G., Le Bissonnais, Y., Van Oost, K., Poesen, J., Saby, N., Gobin, A., Vacca, A., Quinton, J., Auerwald, K., Klik, A., Kwaad, F.J.P.M., Raclot, D., Ionita, I., Rejman, J., Rousseva, S., Muxart, T., Roxo, M.J., Dostal, T., 2010. Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology 122, 167-177. García-Orenes, F., Roldán A., Mataix-Solera, J, Cerdà, A., Campoy M, Arcenegui, V., Caravaca F. 2009. Soil structural stability and erosion rates influenced by agricultural management practices in a semi-arid Mediterranean agro-ecosystem. Soil Use and Management 28: 571-579. Hayes, S.A., McLaughlin, R.A., Osmond, D.L., 2005. Polyacrylamide use for erosion and turbidity control on construction sites. Journal of soil and water conservation 60(4):193-199. Jordán, A., Zavala, L.M., Muñoz-Rojas, M., 2011. Mulching, effects on soil physical properties. In: Gliński, J., Horabik, J., Lipiec, J. (Eds.), Encyclopedia of Agrophysics. Springer, Dordrecht, pp. 492-496. Montgomery, D.R., 2007. Soil erosion and agricultural sustainability. PNAS 104, 13268-13272. Prats, S.A., dos Santons Martins MA, Malvar MC, Ben-Hur M, Keizer JJ. 2014. Polyacrylamide application versus forest residue mulching for reducing post-fire runoff and soil erosion. Science of the Total Environment 468: 464-474. Prosdocimi, M., Jordán, A., Tarolli, P., Keesstra, S., Novara, A., Cerdà A., 2016. The immediate effectiveness of barley Straw mulch in reducing soil erodibility and Surface runoff generation in Mediterranean vineyards. Science of the Total Environment 547: 323-330. Robichaud, P.R., Lewis, S.A., Wagenbrenner, J.W., Ashmun, L.E., Brown, R.E., 2013. Post-fire mulching for runoff and erosion mitigation. Part I: Effectiveness at reducing hillslope erosion rates. Catena 105: 75-92. Sadeghi, S.H.R., Gholami, L., Homaee, M., Khaledi Darvishan, A., 2015. Reducing sediment concetration and soil loss using organic and inorganic amendments at plot scale. Soild Earth 6: 1-8.
Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils.
Sade, Hemalatha; Meriga, Balaji; Surapu, Varalakshmi; Gadi, Jogeswar; Sunita, M S L; Suravajhala, Prashanth; Kavi Kishor, P B
2016-04-01
Aluminum (Al) stress is one of the serious limiting factors in plant productivity in acidic soils, which constitute about 50 % of the world's potentially arable lands and causes anywhere between 25 and 80 % of yield losses depending upon the species. The mechanism of Al toxicity and tolerance has been examined in plants, which is vital for crop improvement and enhanced food production in the future. Two mechanisms that facilitate Al tolerance in plants are Al exclusion from the roots and the ability to tolerate Al in the symplast or both. Although efforts have been made to unravel Al-resistant factors, many aspects remain unclear. Certain gene families such as MATE, ALMT, ASR, and ABC transporters have been implicated in some plants for resistance to Al which would enhance the opportunities for creating crop plants suitable to grow in acidic soils. Though QTLs have been identified related to Al-tolerance, no crop plant that is tolerant to Al has been evolved so far using breeding or molecular approaches. The remarkable changes that plants experience at the physiological, biochemical and molecular level under Al stress, the vast array of genes involved in Al toxicity-tolerance, the underlying signaling events and the holistic image of the molecular regulation, and the possibility of creating transgenics for Al tolerance are discussed in this review.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsenovich, Yelena; Gonzalez, Nathan; Moreno-Pastor, Carol
2012-07-01
Injection of reactive gases, such as NH{sub 3}, is an innovative technique to mitigate uranium contamination in soil for a vadose zone (VZ) contaminated with radionuclides. A series of experiments were conducted to examine the effect of the concentration ratio of silicon to aluminum in the presence of various bicarbonate concentrations on the coprecipitation process of U(VI). The concentration of Al in all tests remained unchanged at 2.8 mM. Experiments showed that the removal efficiency of uranium was not significantly affected by the different bicarbonate and U(VI) concentrations tested. For the lower Si:Al molar ratios of 2:1 and 18:1, themore » removal efficiency of uranium was relatively low (≤ 8%). For the Si:Al molar ratio of 35:1, the removal efficiency of uranium was increased to an average of ∼82% for all bicarbonate concentrations tested. At higher Si:Al molar ratios (53:1 and above), a relatively high removal efficiency of U(VI), approximately 85% and higher, was observed. These results demonstrate that the U(VI) removal efficiency is more affected by the Si:Al molar ratio than by the bicarbonate concentration in solution. The results of this experiment are promising for the potential implementation of NH{sub 3} gas injection for the remediation of U(VI) -contaminated VZ. (authors)« less
Bruna, F; Celis, R; Pavlovic, I; Barriga, C; Cornejo, J; Ulibarri, M A
2009-09-15
Hydrotalcite-like compounds [Mg(3)Al(OH)(8)]Cl x 4H(2)O; [Mg(3)Fe(OH)(8)]Cl x 4H(2)O; [Mg(3)Al(0.5)Fe(0.5)(OH)(8)]Cl x 4H(2)O (LDHs) and calcined product of [Mg(3)Al(OH)(8)]Cl x 4H(2)O, Mg(3)AlO(4.5) (HT500), were studied as potential adsorbents of the herbicide MCPA [(4-chloro-2-methylphenoxy)acetic acid] as a function of pH, contact time and pesticide concentration, and also as support for the slow release of this pesticide, with the aim to reduce the hazardous effects that it can pose to the environment. The information obtained in the adsorption study was used for the preparation of LDH-MCPA complexes. The results showed high and rapid adsorption of MCPA on the adsorbents as well as that MCPA formulations based on LDHs and HT500 as pesticide supports displayed controlled release properties and reduced herbicide leaching in soil columns compared to a standard commercial MCPA formulation. Thereby, we conclude that the LDHs employed in this study can be used not only as adsorbents to remove MCPA from aqueous solutions, but also as supports for the slow release of this highly mobile herbicide, thus controlling its immediate availability and leaching.
Vandenhove, H; Van Hees, M; Wannijn, J; Wouters, K; Wang, L
2007-01-01
The present study aimed to quantify the influence of soil parameters on uranium uptake by ryegrass. Ryegrass was established on eighteen distinct soils, spiked with (238)U. Uranium soil-to-plant transfer factors (TF) ranged from 0.0003 to 0.0340kgkg(-1). There was no significant relation between the U soil-to-plant transfer (or total U uptake or flux) and the uranium concentration in the soil solution or any other soil factor measured, nor with the U recovered following selective soil extractions. Multiple linear regression analysis resulted in a significant though complex model explaining up to 99% of variation in TF. The influence of uranium speciation on uranium uptake observed was featured: UO(2)(+2), uranyl carbonate complexes and UO(2)PO(4)(-) seem the U species being preferentially taken up by the roots and transferred to the shoots. Improved correlations were obtained when relating the uranium TF with the summed soil solution concentrations of mentioned uranium species.
NASA Astrophysics Data System (ADS)
Pinheiro Dick, D.; Benvenuti Leite, S.; Dalmolin, R.; Almeida, H.; Knicker, H.; Martinazzo, R.
2009-04-01
The region known as Campos de Cima da Serra, located at 800 to 1400 m above sea level in the northeas of Rio Grande do Sul State, Brazil, is covered by a mosaic of natural grassland and Araucaria forest. Cattle raising, introduced by the first European settlers about 200 years ago, is the traditional economic activity in the region, occurring extensively and continuously on the natural pasture. In the last 30 years, while seeking for higher profits, local farmers have introduced agricultural crops and Pinus Taeda plantations in the original pasture lands. Pinus plantations are established in this area as dense monocultures and not as a sylvipastoral system, representing, thus, a severe threaten to the Campos' biodiversity. The soils are shallow, though very acidic (pH 4.2) and rich in exchangeable Al (28 to 47% of Al saturation), and present high contents of SOM in the surface layer (in general, higher than 4 %), which shows a low decomposition degree, as indicated by its high proportion of C-O alkyl groups (51 to 59 %). Considering that the biome sustainability of this region is being progressively affected by the change of land use and that systematic studies about exotic trees afforestation in that region are very scarce, our main objective was to investigate the impact of the introduction of Pinus on the SOM composition and chemical attributes of highland soils in 8 (Pi8) and 30 (Pi30) years old plantations, using as reference the original condition under native pasture (NP). In each studied Leptosol, soil samples were collected from three layers down to 15 cm ( 0-5 cm, 5-10 cm and 10-15 cm). Contents of exchangeable cations and of micronutrients and soil pH were determined. The SOM composition was investigated by means of elemental analyses, FTIR and fluorescence spectroscopy (three replicates). Prior to the spectroscopic analyses, samples were demineralized with 10% HF solution and organic matter loss was monitored. From the FTIR spectra, an aromaticity index 1 and the relative intensities (RI) of the main peaks2 were calculated and from the fluorescence spectra an humification index3 was obtained. The samples under NP showed the greatest C contents (13,7%) and a sharp decrease with soil depth was observed. The Pinus sites showed lower C contents than NP sites, in particular in the 0-5 cm layer (7 to 8%), and its decrease was comparatively smoother. In comparison to NP samples, both exchangeable Ca and Mg contents were considerable lower in the Pinus samples (≤ 0.02 cmloc kg-1), while exchangeable K tended to decrease in the order NP>Pi8>Pi30. It follows, that in addition to N and C, afforestation also caused a depletion of exchangeable nutrients. The index RI1070, which informs about the relative carbohydrate content, varied broadly among the studied samples and decreased with depth in the NP environment. In the 0-5 cm NP sample, the higher content of carbohydrate structures, together with the high SOM loss due to HF treatment (57%) in comparison to the other samples corroborates the presence of less recalcitrant structures in the surface layer under pasture. In the Pi8 and Pi30 samples, the index RI1070 decreased slightly with depth, but was always smaller than in the NP samples, in each layer. These results evidence the more recalcitrant nature of the SOM under Pinus. The correlation of the FTIR index with the proportion of N/O-alkyl structures, determined by 13C NMR CPMAS in the same samples4 are significant (p< 0,01, r=0,96). Hence, the index RI1070 might be a promising tool in comparative studies of the SOM composition. The other calculated FTIR indexes, RI2920, RI1720, RI1630 and RI1540, showed small variation and no information regarding differences of the SOM composition could be obtained from them. Our results evidenced the greater cycling effect of the pasture in comparison to the Pinus environments, that depleted the soil regarding the nutrients and organic matter. The SOM in pasture soils showed a higher content of carbohydrate and of structures derived from microbial metabolism. The SOM in the Pinus soils gets gradually enriched in chemical recalcitrant structures and remains poorer in N-containing groups. References: 1Chefetz et al., 1996. Environ. Quali., 25: 776 ; 2Gerbazek et al., 2006, Eur. J. Soil Sci., 57: 485 ; 3.Milori et al., 2002. Soil Science, 167: 739 ; 4Wiesmeier, M. et al., 2009,Eur. J. Soil Sci. Accepted
You, Jiangfeng; Liu, Xing; Zhang, Bo; Xie, Zhongkai; Hou, Zhiguang; Yang, Zhenming
2014-01-01
Background In Changbai Mountains, Panax ginseng (ginseng) was cultivated in a mixture of the humus and albic horizons of albic luvisol in a raised garden with plastic shade. This study aimed to evaluate the impact of ginseng planting on soil characteristics. Methods The mixed-bed soils were seasonally collected at intervals of 0–5 cm, 5–10 cm, and 10–15 cm for different-aged ginsengs. Soil physico-chemical characteristics were studied using general methods. Aluminum was extracted from the soil solids with NH4Cl (exchangeable Al) and Na-pyrophosphate (organic Al) and was measured with an atomic absorption spectrophotometer. Results A remarkable decrease in the pH, concentrations of exchangeable calcium, NH4+, total organic carbon (TOC), and organic Al, as well as a pronounced increase in the bulk density were observed in the different-aged ginseng soils from one spring to the next. The decrease in pH in the ginseng soils was positively correlated with the NH4+ (r = 0.463, p < 0.01), exchangeable calcium (r = 0.325, p < 0.01) and TOC (r = 0.292, p < 0.05) concentrations. The NO3− showed remarkable surface accumulation (0–5 cm) in the summer and even more in the autumn but declined considerably the next spring. The exchangeable Al fluctuated from 0.10 mg g−1 to 0.50 mg g−1 for dry soils, which was positively correlated with the NO3− (r = 0.401, p < 0.01) and negatively correlated with the TOC (r = −0.329, p < 0.05). The Al saturation varied from 10% to 41% and was higher in the summer and autumn, especially in the 0–5 cm and 5–10 cm layers. Conclusion Taken together, our study revealed a seasonal shift in soil characteristics in ginseng beds with plastic shade. PMID:25535481
NASA Astrophysics Data System (ADS)
Pupier, Julie; Benedetti, Lucilla; Bourles, Didier; Leclerc, Elisabeth; Thiry, Yves
2013-04-01
Chlorine-36 is a cosmogenic nuclide mainly produced in the atmosphere by interactions between energetic particles originating from the cosmic radiations and 40Ar. Because of its long half-life (T1-2 = 3.01 105 yr) and its high mobility, chlorine-36 is a critical radionuclide concerning radioactive waste repository sites. Moreover, it has been shown that inorganic chlorine could be enriched along the trophic chain due to its high solubility and bioavailability (Ashworth and Shaw, 2006). Additionally, many studies during the last decades have established that due to chlorination process, organic chlorine may account for a large proportion of the total soil chlorine pool (more than 80 % in surface soils of temperate ecosystems. Redon et al., 2012). The aim of this study is thus to measure chlorine-36 in all the compartments of the biogeochemical cycle, to better understand its recycling in the biosphere. The study site is the experimental beech forest site of the Andra long-term monitoring and testing system (OPE*). It is located at Montiers-sur-Saulx, North-East of France and is associated to the future radioactive waste repository site of Bure. Since March 2012, rainwater above (rainfall collected from a 45 m high tower built on purpose) and below (throughfall and stemflow) the canopy, has been collected monthly, as well as soil solutions (gravitational and bound waters) at four depths (0, 10, 30, 60 cm deep). Chlorine-36 and chlorine have been measured in the rainfall samples between March and July 2012 and in water solutions collected from all compartments of the biosphere using isotope dilution mass spectrometry at the french AMS national facility ASTER located at CEREGE. The results yielded from the rainfall samples allow to study the temporal fluctuations of chlorine-36 in the atmosphere, which represents the main inflow of chlorine-36 in its biogeochemical cycle. The first results indicate a flow increase during the late spring-early summer. Santos et al., 2004 have also observed a similar pattern in southern Spain. This increase might be due to a tropopause break, a natural process which occurs in spring and in fall. This break implies an increase of the air masses exchange between the tropopause and the stratosphere and therefore could cause high chlorine-36 inflow. All together, those results allow to draw a profile of the evolution of chlorine-36 concentrations in the various pools of the biogeochemical cycle (from the upper rainfall through stemflow and throughfall to the lower soil). Both 36Cl and Cl concentrations in stemflow samples are 25-50% higher than in the rainfall and throughfall samples. In water solutions collected from the soil, chlorine-36 concentrations vary between 3 to 8 10 3 at/ml, with an increase in the concentration at 30 cm depth. To understand the chlorine-36 recycling in soil, the next step will be to isolate and measure the 36Cl concentrations in the inorganic and organic fractions of chlorine in a soil profile. * : OPE : Observatoire Pérenne de l'Environnement (SOERE), French national long-term monitoring and experimental system for research in environment, www.andra-ope.fr Ashworth, D. J. and Shaw, G. (2006). A comparison of the soil migration and plant uptake of radioactive chlorine and iodine from contaminated groundwater. Journal of environmental radioactivity, 89(1) :61-80. Redon, P.-O., Jolivet, C., Saby, N. P. a., Abdelouas, A., and Thiry, Y. (2012). Occurrence of natural organic chlorine in soils for different land uses. Biogeochemistry (In press), doi : 10.1007/s10533- 012-9771-7. Santos, F., Lopez-Gutierrez, J., Garcia-Leon, M., Schnabel, C., Synal, H., and Suter, M. (2004). Analysis of 36Cl in atmospheric samples from Seville (Spain) by AMS. Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms, 223-224 :501-506.
Soil vapor extraction and bioventing: Applications, limitations, and future research directions
NASA Astrophysics Data System (ADS)
Rathfelder, K.; Lang, J. R.; Abriola, L. M.
1995-07-01
Soil vapor extraction (SVE) has evolved over the past decade as an attractive in situ remediation method for unsaturated soils contaminated with volatile organic compounds (VOCs). SVE involves the generation of air flow through the pores of the contaminated soil to induce transfer of VOCs to the air stream. Air flow is established by pumping from vadose zone wells through which contaminant vapors are collected and transported above ground where they are treated, if required, and discharged to the atmosphere. The popularity of SVE technologies stems from their proven effectiveness for removing large quantities of VOCs from the soil, their cost competitiveness, and their relatively simple non-intrusive implementation. Widespread field application of SVE has occurred following the success of early laboratory and field scale feasibility studies [Texas Research Institute, 1980, 1984; Thornton and Wootan, 1982; Marley and Hoag, 1984; Crow et al., 1985, 1987]. As many as 18% of Superfund sites employ SVE remediation technologies [Travis and Macinnis, 1992] and numerous articles and reports have documented the application of SVE [e.g. Hutzler et al., 1989; Downey and Elliott, 1990; U.S. EPA, 1991; Sanderson et al, 1993; Gerbasi and Menoli, 1994; McCann et al., 1994;].
The Contrasting Effects of Alum-Treated Chicken Manures and KH2PO4 on Phosphorus Behavior in Soils.
Huang, Lidong; Yang, Junming; Xu, Yuting; Lei, Jiayan; Luo, Xiaoshan; Cade-Menun, Barbara J
2018-03-01
Alum [KAl(SO)⋅12HO] is often added to chicken manure to limit P solubility after land application. This is generally ascribed to the formation of Al-PO complexes. However, Al-PO complex formation could be affected by the matrix of chicken manure, which varies with animal diet. Alum was added to KHPO (as a reference material) and two manures from typical chicken farms in China, one from an intensive farm (CMIF) and another from free-ranging chickens (CMFR). These were subsequently incubated with soils for 100 d to investigate P transformations. Alum reduced water-soluble colorimetrically reactive phosphorus (RP) from soils amended with manure more effectively than in soils amended with KHPO. Alum addition lowered Mehlich-3 RP in soils with CMFR but had no influence on Mehlich-3 RP in CMIF- or KHPO-amended soils. A comparison of P in digested Mehlich-3 extracts with RP in undigested samples showed significantly increased P in digests of alum-treated CMFR only. Fractionation data indicated that alum treatment increased P in the NHF-RP (Al-P) fraction only in soils with KHPO, but not in soils with manure treatments. Furthermore, NaOH-extracted nonreactive P was markedly higher in soil with alum-treated CMFR relative to normal CMFR. The CMFR manure was assumed to contain higher concentrations of organic P because these chickens were fed grains only. These results suggest that the formation of alum-organic P complexes may reduce P solubility. By comparing alum-treated KHPO and manures, it appears that organic matter in manure could interfere with the formation of Al-PO complexes. Copyright © Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and AgriFood Canada.
A joint EPA/state/industry working group has developed several multi-analyte methods to analyze soils for low ppb (parts per billion) levels of herbicides (such as sulfonylureas, imidazolinones, and sulfonamides) that are acetolactate synthase (ALS) inhibitors and may cause phyto...
NASA Astrophysics Data System (ADS)
Mataix-Solera, Jorge; Cerdà, Artemi; Jordán, Antonio; Úbeda, Xavier; Pereira, Paulo
2015-04-01
Soil structure is the key factor that determine the soil quality as control the organic matter turnnover, soil biology and soil erodibility (Cerdà, 1996; 1998; Wick et al., 2014; Gelaw, 2015). There is a need to understand better the factors and the processes that act on the soil aggregation and the dynamics of the soil aggregation, which will make easier to understand the soil system functioning (Jordán et al., 2011; Jordán et al., 2012; Pulido Moncada et al., 2013). Fire, mines, grazing and agricultura (Cerdà, 2000; Mataix Solera et al., 2011; Cerdà et al., 2012; Hallett et al., 2014; Lozano et al., 2013) determines how the soil structure is highly affected by the humankind. And this determines the sustainability of the land managements (García Orenes et al., 2012; K¨ropfl et al., 2013; Mekuria and Aynekulu, 2013; Taguas et al., 2013; Zhao et al., 2013). Aggregates are Small And Well Organized (SAWO) structures that allow the water to flow, the air fill the porous and the life to be diverse and abundant in the soil. The SAWO avatar will teach the importance of the functions and the services of the aggregates to students and other scientists, but also to any audience. This means that the experiments and the vocabulary to be used by SAWO will be very wide and rich. The Avatar SAWO will use different strategies and skills to teach the soil aggregation properties and characteristics. And also, how to measure. Easy to carry out experiments will be shown by SAWO to measure the aggregate stability in the field and in the laboratory, and the soil sampling in the field. The SAWO avatar will play a special attention to the impact of forest fires on aggregate stability changes and how to measure. The SAWO avatar will teach how to take samples in the field, how to transport and manage in the laboratory, and finally which measurements and test can be done to determine the aggregate stability. Acknowledgements To the "Ministerio de Economía and Competitividad" of Spanish Government for finance the POSTFIRE project (CGL2013- 47862-C2-1-R). The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7-ENV-2013- supported this research. References Cerdà, A. 1996. Soil aggregate stability in three mediterranean environments. Soil Technology, 9, 129-133. Cerdà, A. 1998. Soil aggregate stability under different Mediterranean vegetation types. Catena, 32, 73-86. Cerdà, A. 2000. Aggregate stability against water forces under different climates on agriculture land and scrubland in southern Bolivia. Soil and Tillage Research, 36, 1- 8. Cerdà, A., Mataix-Solera, J., Arcenegui, V. (2012, April). Aggregate stability in citrus plantations. The impact of drip irrigation. In EGU General Assembly Conference Abstracts (Vol. 14, p. 3772). García-Orenes, F., Roldán, A., Mataix-Solera, J., Cerdà, A., Campoy, M., Arcenegui, V., Caravaca, F. 2012. Soil structural stability and erosion rates influenced by agricultural management practices in a semi-arid Mediterranean agro-ecosystem. Soil Use and Management 28(4): 571-579. DOI: 10.1111/j.1475-2743.2012.00451.x Gelaw, A. M., Singh, B. R., Lal, R. 2015. Organic carbon and nitrogen associated with soil aggregates and particle sizes under different land uses in Tigray, northern Ethiopia. Land Degradation & Development.DOI: 10.1002/ldr.2261 Hallett, P., Ogden, M., Karim, K., Schmidt, S., Yoshida, S. (2014, May). Beneath aggregate stability-quantifying thermodynamic properties that drive soil structure dynamics. In EGU General Assembly Conference Abstracts (Vol. 16, p. 10792). Jordán, A., Zavala, L. M., Mataix-Solera, J., Nava, A. L., Alanís, N. (2011). Effect of fire severity on water repellency and aggregate stability on Mexican volcanic soils. Catena, 84(3), 136-147. Jordan, M., Garcia-Orenes, F., Mataix-Solera, J., Garcia-Sanchez, E. (2012, April). Evaluation of the physical properties, bulk density and aggregate stability of potential substrates in quarry restoration. In EGU General Assembly Conference Abstracts (Vol. 14, p. 1110). Kröpfl, A. I., Cecchi, G. A., Villasuso, N. M., Distel, R. A. 2013. Degradation and recovery processes in Semi-Arid patchy rangelands of northern Patagonia, Argentina. Land Degradation & Development, 24: 393- 399. DOI 10.1002/ldr.1145 Lozano, E., Temporal, B., Oltra, Á., Mataix-Solera, J., Arcenegui, V., García-Orenes, F. (2013, April). Effect of freeze-thawing on aggregate stability in a calcareous Mediterranean soil. In EGU General Assembly Conference Abstracts (Vol. 15, p. 1483). Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., Zavala, L.M. 2011 Fire effects on soil aggregation: a review. Earth-Science Reviews 109: 44-60 http://dx.doi.org/10.1016/j.earscirev.2011.08.002 Mekuria, W., Aynekulu, E. 2013. Exclosure land management for restoration of the soils in degrade communal grazing lands in Northern Ethiopia. Land Degradation & Development, 24: 528- 538. DOI 10.1002/ldr.1146 Pulido Moncada, M., Gabriels, D., Cornelis, W., Lobo, D. 2013. Comparing aggregate stability tests for soil physical quality indicators. Land Degradation & Development.| DOI: 10.1002/ldr.2225 Taguas, E. V., Carpintero, E., and Ayuso, J. L. 2013. Assessing land degradation risk through the long-term analysis of erosivity: a case study in Southern Spain. Land Degradation & Development, 24: 179- 187. DOI 10.1002/ldr.1119 Wick, A.F., Daniels, W.L. Nash, W.L. a Burger, J.A. 2014. Aggregate recovery in reclaimed coal mine soils of SW Virginia. Land Degradation and Development. 2014. DOI: 10.1002/ldr.2309S Zhao, G., Mu, X., Wen, Z., Wang, F., and Gao, P. 2013. Soil erosion, conservation, and Eco-environment changes in the Loess Plateau of China. Land Degradation & Development, 24: 499- 510. DOI 10.1002/ldr.2246
Simultaneous sorption of four ionizable pharmaceuticals in different horizons of three soil types.
Kočárek, Martin; Kodešová, Radka; Vondráčková, Lenka; Golovko, Oksana; Fér, Miroslav; Klement, Aleš; Nikodem, Antonín; Jakšík, Ondřej; Grabic, Roman
2016-11-01
Soils may be contaminated by human or veterinary pharmaceuticals. Their behaviour in soil environment is largely controlled by sorption of different compounds in a soil solution onto soil constituents. Here we studied the sorption affinities of 4 pharmaceuticals (atenolol, trimethoprim, carbamazepine and sulfamethoxazole) applied in solute mixtures to soils taken from different horizons of 3 soil types (Greyic Phaeozem on loess, Haplic Luvisol on loess and Haplic Cambisol on gneiss). In the case of the carbamazepine (neutral form) and sulfamethoxazole (partly negatively charged and neutral), sorption affinity of compounds decreased with soil depth, i.e. decreased with soil organic matter content. On the other hand, in the case of atenolol (positively charged) and trimethoprim (partly positively charged and neutral) compound sorption affinity was not depth dependent. Compound sorption affinities in the four-solute systems were compared with those experimentally assessed in topsoils, and were estimated using the pedotransfer rules proposed in our previous study for single-solute systems. While sorption affinities of trimethoprim and carbamazepine in topsoils decreased slightly, sorption affinity of sulfamethoxazole increased. Decreases in sorption of the two compounds could be attributed to their competition between each other and competition with atenolol. Differences between carbamazepine and atenolol behaviour in the one- and four-solute systems could also be explained by the slightly different soil properties in this and our previous study. A great increase of sulfamethoxazole sorption in the Greyic Phaeozem and Haplic Luvisol was observed, which was attributed to elimination of repulsion between negatively charged molecules and particle surfaces due to cation sorption (atenolol and trimethoprim) on soil particles. Thus, our results proved not only an antagonistic but also a synergic affect of differently charged organic molecules on their sorption to soil constituents. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Viscarra Rossel, R. A.
2015-12-01
We can effectively monitor soil condition—and develop sound policies to offset the emissions of greenhouse gases—only with accurate data from which to define baselines. Currently, estimates of soil organic C for countries or continents are either unavailable or largely uncertain because they are derived from sparse data, with large gaps over many areas of the Earth. Here, we derive spatially explicit estimates, and their uncertainty, of the distribution and stock of organic C content and composition in the soil of Australia. The composition of soil organic C may be characterized by chemical separation or physical fractionation based on either particle size or particle density (Skjemstad et al., 2004; Gregorich et al., 2006; Kelleher&Simpson, 2006; Zimmermann et al., 2007). In Australia, for example, Skjemstad et al. (2004) used physical separation of soil samples into 50-2000 and <50-μm particle-size fractions followed by the measurement of char-carbon using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, giving the three OC pools, particulate organic carbon (POC), humic organic carbon (HOC) and resistant organic carbon (ROC; charcoal or char-carbon). We assembled and harmonized data from several sources to produce the most comprehensive set of data on the current stock of organic C in soil of the continent. Using them, we have produced a fine spatial resolution baseline map of organic C, POC, HOC and ROC at the continental scale. In this presentation I will describe how we made the maps and how we use them to assess the vulnerability of soil organic C to for instance climate change.
Organic Acids Regulation of Chemical-Microbial Phosphorus Transformations in Soils.
Menezes-Blackburn, Daniel; Paredes, Cecilia; Zhang, Hao; Giles, Courtney D; Darch, Tegan; Stutter, Marc; George, Timothy S; Shand, Charles; Lumsdon, David; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Blackwell, Martin; Wearing, Catherine; Haygarth, Philip M
2016-11-01
We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg -1 . However, low organic acid doses (<2 mmol kg -1 ) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (K d ) and desorption rate constants (k -1 ) decreased whereas an increase in the response time of solution P equilibration (T c ) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical-microbial soil phosphorus transformations.
The Sands of the Bagnold Dunes, Mars and Volatiles in Mars Soils
NASA Astrophysics Data System (ADS)
Ehlmann, B. L.; Edgett, K. S.; Sutter, B.; Achilles, C.; Litvak, M. L.; Lapotre, M. G. A.; Sullivan, R. J., Jr.; Fraeman, A. A.; Arvidson, R. E.; Blake, D. F.; Bridges, N. T.; Conrad, P. G.; Cousin, A.; Downs, R. T.; Gabriel, T. S. J.; Gellert, R.; Hamilton, V. E.; Hardgrove, C. J.; Johnson, J. R.; Kuhn, S.; Mahaffy, P. R.; Maurice, S.; Meslin, P. Y.; McHenry, M.; Ming, D. W.; Minitti, M. E.; Morookian, J.; Morris, R. V.; O'Connell-Cooper, C.; Pinet, P. C.; Rowland, S. K.; Schröder, S.; Siebach, K. L.; Stein, N.; Thompson, L. M.; Vaniman, D.; Vasavada, A. R.; Wellington, D. F.; Wiens, R. C.; Yen, A.
2017-12-01
The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in an active portion of the Bagnold dune field. The composition and grain size information were reviewed in Ehlmann et al. [2017, JGR-Planets and papers referenced therein]. The Bagnold sands are rounded to subrounded, very fine to medium sized ( 45-500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%) [Achilles et al., 2017]. Like Rocknest, release of CO2 and NO is higher than Gale rocks, implying enrichment in the carrier phases of these volatiles [Sutter et al., 2017]. Yet Bagnold and Rocknest bulk chemistries differ. Bagnold sands are Si-enriched relative to other soils at Gale crater [Cousin et al., 2017; O'Connell-Cooper et al., 2017], and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands [Cousin et al., 2017; O'Connell-Cooper et al., 2017], corroborated by visible/near-infrared spectra that suggest enrichment of olivine [Johnson et al., 2017]. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H2O. This has implications for the origins of the volatiles and their potential extractability. Future isotopic measurements of later-acquired sand samples may help elucidate the origins and timing of the volatiles sequestration in Martian sands and soils.
NASA Astrophysics Data System (ADS)
Potthoff, Martin; Wichern, Florian; Dyckmans, Jens; Joergensen, Rainer Georg
2016-04-01
Earthworms deeply interact with the processes of soil organic matter turnover in soil. Stabilization of carbon by soil aggregation and in the humus fraction of SOM are well known processes related to earthworm activity and burrowing. However, recent research on priming effects showed inconsistent effects for the impact of earthworm activity. Endogeic earthworms can induce apparent as well as true positive priming effects. The main finding is almost always that earthworm increase the CO2 production from soil. The sources of this carbon release can vary and seem to depend on a complex interaction of quantity and quality of available carbon sources including added substrates like straw or other compounds, food preferences and feeding behavior of earthworms, and soil properties. Referring to recent studies on earthworm effects on soil carbon storage and release (mainly Eck et al. 2015 Priming effects of Aporrectodea caliginosa on young rhizodeposits and old soil organic matter following wheat straw addition, European Journal of Soil Biology 70:38-45; Zareitalabad et al. 2010 Decomposition of 15N-labelled maize leaves in soil affected by endogeic geophagous Aporrectodea caliginosa, Soil Biology and Biochemistry 42(2):276-282; and Potthoff et al. 2001 Short-term effects of earthworm activity and straw amendment on the microbial C and N turnover in a remoistened arable soil after summer drought, Soil Biology and Biochemistry 33(4):583-591) we summaries the knowledge on earthworms and priming and come up with a conceptual approach and further research needs.
Weathering behavior of REE-Y in a granitic soil profile (Case of Strengbach watershed)
NASA Astrophysics Data System (ADS)
Gangloff, Sophie; Stille, Peter; Chabaux, François
2017-04-01
Rare earth elements and yttrium (REE-Y) can be used as tracers of bedrock weathering and soil formation. One of the aims of this study is to better understand the different phenomena which impact the REE-Y mobilization and modify the REE-Y pattern along a soil profile. Our study has been performed on a granitic soil profile and soil solutions corresponding, sampled in a forest parcel covered with spruces from the Strengbach catchment. The behavior of the REE-Y pattern are compared with previously published results. The samples were collected from 2009 to 2013 and ultra-filtered to determine the spatial and temporal influence as well as that of the colloidal and dissolved fractions on the evolution of the REE-Y patterns. The EFTi of the soil indicates that during alteration process, phosphate minerals and zircon might be dissolved and induce the formation of secondary mineral phase like xenotime in the deeper soil horizons. The ultra-filtered soil solutions from humic horizon show that the REE-Y are principally enriched in the colloidal fraction controlling the REE-Y dynamic while in the deeper soil solutions colloidal and dissolved fractions influence the REE-Y. The mobility of REE-Y is controlled by the dissolution of the zircon and phosphate minerals, the precipitation of the REE-Y(PO4) and the evolution of OC with depth. The comparative study of the soil profile, soil water extracts and soil solutions show that (Eu*/Eu)DS anomaly reflects weathering of plagioclase in the micropores and the migration of the released Eu to the macropores, the (Ce*/Ce) anomaly, is stabilized by the electron shuttling of the humic acid (aromaticity) and provides information on the redox conditions only in the deeper soil horizons depleted in humic acid and finally the HREE enrichment in the deeper soil solutions results from the partial dissolution of secondary minerals in the upper soil horizons (above 30 cm depth).
The Impact of pH and Calcium on the Uptake of Fluoride by Tea Plants (Camellia sinensis L.)
RUAN, JIANYUN; MA, LIFENG; SHI, YUANZHI; HAN, WENYAN
2004-01-01
• Background and Aims Tea plants (Camellia sinensis L.) accumulate large amounts of fluoride (F) from soils containing normal F concentrations. The present experiments examined the effects of pH and Ca on F uptake by this accumulating plant species. • Methods The effect of pH was assessed in two experiments, one using uptake solutions with different pHs, and the other using lime, as CaO, applied to the soil. The effect of Ca was examined by analysing F concentrations in plants supplied with varying amounts of Ca, as Ca(NO3)2, either in uptake solutions or through the soil. • Key results F uptake was highest at solution pH 5·5, and significantly lower at pH 4·0. In the soil experiment, leaf F decreased linearly with the amounts of lime, which raised the soil pH progressively from 4·32 to 4·91, 5·43, 5·89 and, finally, 6·55. Liming increased the water‐soluble F content of the soil. Including Ca in the uptake solution or adding Ca to soil significantly decreased leaf F concentrations. The distribution pattern of F in tea plants was not altered by Ca treatment, with most F being allocated to leaves. The activity of F– in the uptake solution was unaffected and water‐soluble F in the soil was sometimes increased by added Ca. • Conclusions F uptake by tea plants, which are inherently able to accumulate large quantities of F, was affected both by pH and by Ca levels in the medium. The reduced F uptake following Ca application appeared not to be due simply to the precipitation of CaF2 in solution and soil or to the complexing of Ca and F in roots, although these factors cannot be dismissed. It was more likely due to the effect of Ca on the properties of cell wall or membrane permeability in the solution experiments, and to alteration of F speciations and their quantities in soil solutions following Ca application. PMID:14644914
Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils.
Koopmans, G F; Römkens, P F A M; Fokkema, M J; Song, J; Luo, Y M; Japenga, J; Zhao, F J
2008-12-01
A Cd and Zn contaminated soil was mixed and equilibrated with an uncontaminated, but otherwise similar soil to establish a gradient in soil contamination levels. Growth of Thlaspi caerulescens (Ganges ecotype) significantly decreased the metal concentrations in soil solution. Plant uptake of Cd and Zn exceeded the decrease of the soluble metal concentrations by several orders of magnitude. Hence, desorption of metals must have occurred to maintain the soil solution concentrations. A coupled regression model was developed to describe the transfer of metals from soil to solution and plant shoots. This model was applied to estimate the phytoextraction duration required to decrease the soil Cd concentration from 10 to 0.5 mg kg(-1). A biomass production of 1 and 5 t dm ha(-1) yr(-1) yields a duration of 42 and 11 yr, respectively. Successful phytoextraction operations based on T. caerulescens require an increased biomass production.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Zavodsky, Bradley T.; White, Kristopher D.; Bell, Jesse E.
2015-01-01
This paper provided a brief background on the work being done at NASA SPoRT and the CDC to create a soil moisture climatology over the CONUS at high spatial resolution, and to provide a valuable source of soil moisture information to the CDC for monitoring conditions that could favor the development of Valley Fever. The soil moisture climatology has multi-faceted applications for both the NOAA/NWS situational awareness in the areas of drought and flooding, and for the Public Health community. SPoRT plans to increase its interaction with the drought monitoring and Public Health communities by enhancing this testbed soil moisture anomaly product. This soil moisture climatology run will also serve as a foundation for upgrading the real-time (currently southeastern CONUS) SPoRT-LIS to a full CONUS domain based on LIS version 7 and incorporating real-time GVF data from the Suomi-NPP Visible Infrared Imaging Radiometer Suite (Vargas et al. 2013) into LIS-Noah. The upgraded SPoRT-LIS run will serve as a testbed proof-of-concept of a higher-resolution NLDAS-2 modeling member. The climatology run will be extended to near real-time using the NLDAS-2 meteorological forcing from 2011 to present. The fixed 1981-2010 climatology shall provide the soil moisture "normals" for the production of real-time soil moisture anomalies. SPoRT also envisions a web-mapping type of service in which an end-user could put in a request for either an historical or real-time soil moisture anomaly graph for a specified county (as exemplified by Figure 2) and/or for local and regional maps of soil moisture proxy percentiles. Finally, SPoRT seeks to assimilate satellite soil moisture data from the current Soil Moisture Ocean Salinity (SMOS; Blankenship et al. 2014) and the recently-launched NASA Soil Moisture Active Passive (SMAP; Entekhabi et al. 2010) missions, using the EnKF capability within LIS. The 9-km combined active radar and passive microwave retrieval product from SMAP (Das et al. 2011) has the potential to provide valuable information about the near-surface soil moisture state for improving land surface modeling output.
Shi, Leilei; Zhang, Hongzhi; Liu, Tao; Mao, Peng; Zhang, Weixin; Shao, Yuanhu; Fu, Shenglei
2018-04-01
World soils are subjected to a number of anthropogenic global change factors. Although many previous studies contributed to understand how single global change factors affect soil properties, there have been few studies aimed at understanding how two naturally co-occurring global change drivers, nitrogen (N) deposition and increased precipitation, affect critical soil properties. In addition, most atmospheric N deposition and precipitation increase studies have been simulated by directly adding N solution or water to the forest floor, and thus largely neglect some key canopy processes in natural conditions. These previous studies, therefore, may not realistically simulate natural atmospheric N deposition and precipitation increase in forest ecosystems. In a field experiment, we used novel canopy applications to investigate the effects of N deposition, increased precipitation, and their combination on soil chemical properties and the microbial community in a temperate deciduous forest. We found that both soil chemistry and microorganisms were sensitive to these global change factors, especially when they were simultaneously applied. These effects were evident within 2 years of treatment initiation. Canopy N deposition immediately accelerated soil acidification, base cation depletion, and toxic metal accumulation. Although increased precipitation only promoted base cation leaching, this exacerbated the effects of N deposition. Increased precipitation decreased soil fungal biomass, possible due to wetting/re-drying stress or to the depletion of Na. When N deposition and increased precipitation occurred together, soil gram-negative bacteria decreased significantly, and the community structure of soil bacteria was altered. The reduction of gram-negative bacterial biomass was closely linked to the accumulation of the toxic metals Al and Fe. These results suggested that short-term responses in soil cations following N deposition and increased precipitation could change microbial biomass and community structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Soil-solution speciation of Cd as affected by soil characteristics in unpolluted and polluted soils.
Meers, Erik; Unamuno, Virginia; Vandegehuchte, Michiel; Vanbroekhoven, Karolien; Geebelen, Wouter; Samson, Roeland; Vangronsveld, Jaco; Diels, Ludo; Ruttens, Ann; Du Laing, Gijs; Tack, Filip
2005-03-01
Total metal content by itself is insufficient as a measure to indicate actual environmental risk. Understanding the mobility of heavy metals in the soil and their speciation in the soil solution is of great importance for accurately assessing environmental risks posed by these metals. In a first explorative study, the effects of general soil characteristics on Cd mobility were evaluated and expressed in the form of empirical formulations. The most important factors influencing mobility of Cd proved to be pH and total soil content. This may indicate that current legislation expressing the requirement for soil sanitation in Flanders (Belgium) as a function of total soil content, organic matter, and clay does not successfully reflect actual risks. Current legal frameworks focusing on total content, therefore, should be amended with criteria that are indicative of metal mobility and availability and are based on physicochemical soil properties. In addition, soil-solution speciation was performed using two independent software packages (Visual Minteq 2.23 and Windermere Humic Aqueous model VI [WHAM VI]). Both programs largely were in agreement in concern to Cd speciation in all 29 soils under study. Depending on soil type, free ion and the organically complexed forms were the most abundant species. Additional inorganic soluble species were sulfates and chlorides. Minor species in solution were in the form of nitrates, hydroxides, and carbonates, the relative importance of which was deemed insignificant in comparison to the four major species.
NASA Astrophysics Data System (ADS)
Vodyanitskii, Yu. N.; Goryachkin, S. V.; Savichev, A. T.
2011-05-01
Along with Fe and Al, many heavy metals (Mn, Cr, Zn, Cu, and Ni) show a markedly pronounced eluvial-illuvial redistribution in the profiles of soils of the podzolic group. The intensity of the redistribution of the bulk forms of these metals is comparable with that of Fe and exceeds that of Al. Although the podzolic soils are depleted of rare-earth metals, the latter respond readily to soil podzolization. The inactive participation of Al is explained by an insignificant portion of the active reaction-capable fraction. Podzolization does not influence the profile distribution of Sr and Ba. The leaching degree of heavy metals such as Mn, Cr, Zn, Ni, and Zr is noticeably higher in the sandy podzols than in the loamy podzolic soils. Leaching of heavy metals from the podzolic horizons is of geochemical importance, whereas the depletion of metals participating in plant nutrition and biota development is of ecological importance. The leaching of heavy metals is related to the destruction of clay particles in the heavy-textured podzolic soils; the effect of the soil acidity on the leaching of heavy metals is less significant.
Impact of anthropomorphic soil genesis on hydraulic properties: the case of cranberry production
NASA Astrophysics Data System (ADS)
Periard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean; Hallema, Dennis W.
2014-05-01
The construction of a cranberry field requires the installation of a drainage system which causes anthropic layering of the natural sequence of soil strata. Over the years, the soil hydraulic properties may change under the influence of irrigation and water table control. In fact, natural consolidation (drainage and recharge cycles), filtration and clogging soil pores by colloidal particle accelerated by water management will alter the hydrodynamic behavior of the soil (Gaillard et al., 2007; Wildenschild and Sheppard, 2013; Bodner et al., 2013). Today, advances in the field of tomography imagery allows the study a number of physicals processes of soils (Wildenschilds and Sheppard, 2013) especially for the transport of colloidal particles (Gaillard et al., 2007) and consolidation (Reed et al, 2006; Pires et al, 2007). Therefore, the main objective of this work is to analyze the temporal evolution of hydrodynamic properties of a sandy soil during repeated drainage and recharge cycles using a medical CT-scan. A soil columns laboratory experiment was setup in fall 2013, pressure head, input and output flow, tracer monitoring (KBr and ZrO2) and tomographic analyses have been used to quantify the temporal variation of the soil hydrodynamic properties of these soil columns. The results showed that the water management (irrigation and drainage) has strong effect on soil genesis and causes significant alteration of soil hydraulic properties, which may reduce soil drainage capacity. Knowledge about the mechanisms responsible of anthropic cranberry soil genesis will allow us to predict soil evolution according to several conditions (soil type, drainage system design, water management) to better anticipate and control their future negative effects on cranberry production. References: Bodner, G., P. Scholl and H.P. Kaul. 2013. Field quantification of wetting-drying cycles to predict temporal changes of soil pore size distribution. Soil and Tillage Research 133: 1-9. doi:http://dx.doi.org/10.1016/j.still.2013.05.006. Gaillard, J.-F., C. Chen, S.H. Stonedahl, B.L.T. Lau, D.T. Keane and A.I. Packman. 2007. Imaging of colloidal deposits in granular porous media by X-ray difference micro-tomography. Geophysical Research Letters 34: L18404. doi:10.1029/2007GL030514. Pires, L.F., O.O.S. Bacchi and K. Reichardt. 2007. Assessment of soil structure repair due to wetting and drying cycles through 2D tomographic image analysis. Soil and Tillage Research 94: 537-545. doi:http://dx.doi.org/10.1016/j.still.2006.10.008. Reed, A. H., Thompson, K. E., Zhang, W., Willson, C. S., & Briggs, K. B. (2006). Quantifying consolidation and reordering in natural granular media from computed tomography images. Advances in X-ray Tomography for Geomaterials, 263-268. Wildenschild, D. and A.P. Sheppard. 2013. X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Advances in Water Resources 51: 217-246. doi:http://dx.doi.org/10.1016/j.advwatres.2012.07.018.
Using stable isotopes to resolve eco-hydrological dynamics of soil-plant-atmosphere feedbacks
NASA Astrophysics Data System (ADS)
Dubbert, M.; Piayda, A.; Kübert, A.; Cuntz, M.; Werner, C.
2016-12-01
Water is the main driver of ecosystem productivity in most terrestrial ecosystems worldwide. Extreme events are predicted to increase in frequency in many regions and dynamic responses in soil-vegetation-atmosphere feedbacks play a privotal role in understanding the ecosystem water balance and functioning. In this regard, more interdisciplinary approaches, bridging hydrology, ecophysiology and atmospheric sciences are needed and particularly water stable isotopes are a powerful tracer of water transfer in soils and at the soil-plant interface (Werner and Dubbert 2016). Here, we present observations 2 different ecosystems. Water fluxes, atmospheric concentrations and their isotopic compositions were measured using laser spectroscopy. Soil moisture and its isotopic composition in several depths as well as further water sources in the ecosystem were monitored throughout the year. Using these isotopic approaches we disentangled soil-plant-atmosphere feedback processes controlling the ecosystem water cycle including vegetation effects on soil water infiltration and distribution, event water use of vegetation and soil fluxes, vegetational soil water uptake depths plasticity and partitioning of ecosystem water fluxes. In this regard, we review current strategies of ET partitioning and highlight pitfalls in the presented strategies (Dubbert et al. 2013, Dubbert et al.2014a). We demonstrate that vegetation strongly influenced water cycling, altering infiltration and distribution of precipitation. In conclusion, application of stable water isotope tracers delivers a process based understanding of interactions between soil, understorey and trees governing ecosystem water cycling necessary for prediction of climate change impact on ecosystem productivity and vulnerability. ReferencesDubbert, M. et al. (2013): Partitioning evapotranspiration - Testing the Craig and Gordon model with field measurements of oxygen isotope ratios of evaporative fluxes. Journal of Hydrology Dubbert, M. et al. (2014a): Oxygen isotope signatures of transpired water vapor: the role of isotopic non-steady-state transpiration under natural conditions. New Phytologist. Werner, C. and Dubbert, M. (2016): Resolving rapid dynamics of soil-plant-atmosphere interactions. New Phytologist.
NASA Technical Reports Server (NTRS)
Brucker, Ludovic; Dinnat, Emmanuel; Koenig, Lora
2014-01-01
Space-based microwave sensors have been available for several decades, and with time more frequencies have been offered. Observations made at frequencies between 7 and 183 GHz were often used for monitoring cryospheric properties (e.g. sea ice concentration, snow accumulation, snow melt extent and duration). Since 2009, satellite observations are available at the low frequency of 1.4 GHz. Such observations are collected by the Soil Moisture and Ocean Salinity (SMOS) mission, and the Aquarius/SAC-D mission. Even though these missions have been designed for the monitoring of soil moisture and sea surface salinity, new applications are being developed to study the cryosphere. For instance, L-band observations can be used to monitor soil freeze/thaw (e.g. Rautiainen et al., 2012), and thin sea ice thickness (e.g. Kaleschke et al., 2010, Huntemann et al., 2013). Moreover, with the development of satellite missions comes the need for calibration and validation sites. These sites must have stable characteristics, such as the Antarctic Plateau (Drinkwater et al., 2004, Macelloni et al., 2013). Therefore, studying the cryosphere with 1.4 GHz observations is relevant for both science applications, and remote sensing applications.
NASA Technical Reports Server (NTRS)
Brucker, Ludovic; Dinnat, Emmanuel; Koenig, Lora
2014-01-01
Space-based microwave sensors have been available for several decades, and with time more frequencies have been offered. Observations made at frequencies between 7 and 183 GHz were often used for monitoring cryospheric properties (e.g. sea ice concentration, snow accumulation, snow melt extent and duration). Since 2009, satellite observations are available at the low frequency of 1.4 GHz. Such observations are collected by the Soil Moisture and Ocean Salinity (SMOS) mission, and the AquariusSAC-D mission. Even though these missions have been designed for the monitoring of soil moisture and sea surface salinity, new applications are being developed to study the cryosphere. For instance, L-band observations can be used to monitor soil freezethaw (e.g. Rautiainen et al., 2012), and thin sea ice thickness (e.g. Kaleschke et al., 2010, Huntemann et al., 2013). Moreover, with the development of satellite missions comes the need for calibration and validation sites. These sites must have stable characteristics, such as the Antarctic Plateau (Drinkwater et al., 2004, Macelloni et al., 2013). Therefore, studying the cryosphere with 1.4 GHz observations is relevant for both science applications, and remote sensing applications.
Preferential flow systems amended with biogeochemical components: imaging of a two-dimensional study
NASA Astrophysics Data System (ADS)
Pales, Ashley R.; Li, Biting; Clifford, Heather M.; Kupis, Shyla; Edayilam, Nimisha; Montgomery, Dawn; Liang, Wei-zhen; Dogan, Mine; Tharayil, Nishanth; Martinez, Nicole; Moysey, Stephen; Powell, Brian; Darnault, Christophe J. G.
2018-04-01
The vadose zone is a highly interactive heterogeneous system through which water enters the subsurface system by infiltration. This paper details the effects of simulated plant exudate and soil component solutions upon unstable flow patterns in a porous medium (ASTM silica sand; US Silica, Ottawa, IL, USA) through the use of two-dimensional tank light transmission method (LTM). The contact angle (θ) and surface tension (γ) of two simulated plant exudate solutions (i.e., oxalate and citrate) and two soil component solutions (i.e., tannic acid and Suwannee River natural organic matter, SRNOM) were analyzed to determine the liquid-gas and liquid-solid interface characteristics of each. To determine if the unstable flow formations were dependent on the type and concentration of the simulated plant exudates and soil components, the analysis of the effects of the simulated plant exudate and soil component solutions were compared to a control solution (Hoagland nutrient solution with 0.01 M NaCl). Fingering flow patterns, vertical and horizontal water saturation profiles, water saturation at the fingertips, finger dimensions and velocity, and number of fingers were obtained using the light transmission method. Significant differences in the interface properties indicated a decrease between the control and the plant exudate and soil component solutions tested; specifically, the control (θ = 64.5° and γ = 75.75 mN m-1) samples exhibited a higher contact angle and surface tension than the low concentration of citrate (θ = 52.6° and γ = 70.8 mN m-1). Wetting front instability and fingering flow phenomena were reported in all infiltration experiments. The results showed that the plant exudates and soil components influenced the soil infiltration as differences in finger geometries, velocities, and water saturation profiles were detected when compared to the control. Among the tested solutions and concentrations of soil components, the largest finger width (10.19 cm) was generated by the lowest tannic acid solution concentration (0.1 mg L-1), and the lowest finger width (6.00 cm) was induced by the highest SRNOM concentration (10 mg L-1). Similarly, for the plant exudate solutions, the largest finger width (8.36 cm) was generated by the lowest oxalate solution concentration (0.1 mg L-1), and the lowest finger width (6.63 cm) was induced by the lowest citrate concentration (0.1 mg L-1). The control solution produced fingers with average width of 8.30 cm. Additionally, the wettability of the medium for the citrate, oxalate, and SRNOM solutions increased with an increase in concentration. Our research demonstrates that the plant exudates and soil components which are biochemical compounds produced and released in soil are capable of influencing the process of infiltration in soils. The results of this research also indicate that soil wettability, expressed as
Arsenic in the rhizosphere soil solution of ferns.
Wei, Chaoyang; Zheng, Huan; Yu, Jiangping
2012-12-01
The aim of this study was to explore the evidence of arsenic hyperaccumulation in plant rhizosphere solutions. Six common fern plants were selected and grown in three types of substrate: arsenic (As) -tailings, As-spiked soil, and soil-As-tailing composites. A rhizobox was designed with an in-situ collection of soil solutions to analyze changes in the As concentration and valence as well as the pH, dissolved organic carbon (DOC) and total nitrogen (TN). Arsenite composed less than 20% of the total As, and As depletion was consistent with N depletion in the rhizosphere solutions of the various treatments. The As concentrations in the rhizosphere and non-rhizosphere solutions in the presence of plants were lower than in the respective controls without plants, except for in the As-spiked soils. The DOC concentrations were invariably higher in the rhizosphere versus non-rhizosphere solutions from the various plants; however, no significant increase in the DOC content was observed in Pteris vittata, in which only a slight decrease in pH appeared in the rhizosphere compared to non-rhizosphere solutions. The results showed that As reduction by plant roots was limited, acidification-induced solubilization was not the mechanism for As hyperaccumulation.
Traveling Wave Solutions to the Problem of Quasi-Steady Freezing of Soils
1994-03-01
thermal equilibrium with each other, Le ., that physical variables, such as a0 and al, used in the the constituents have locally a common tempera...equilibrium unfrozen water content at T. We will now denote the values of viand V, for instance, in the part RIj = 0,1,2) by v. and V, n respectively. We will...for kea W rmn OWmams end A .6 215 J1br5-1 D" le I smy. bis 124 Ad* VA 2202-49. nd m to ftha d Mummi " na d BuWL Pugesuc Rueami Prcje~ (0704010- Wd*i)m
NASA Astrophysics Data System (ADS)
Basile-Doelsch, Isabelle; Amundson, Ronald; Balesdent, Jérome; Borschneck, Daniel; Bottero, Jean-Yves; Colin, Fabrice; de Junet, Alexis; Doelsch, Emmanuel; Legros, Samuel; Levard, Clément; Masion, Armand; Meunier, Jean-Dominique; Rose, Jérôme
2014-05-01
From a strictly mineralogical point of view, weathering of volcanic glass produces secondary phases that are short range ordered alumino-silicates (SRO-AlSi). These are imogolite tubes (2 to 3 nm of diameter) and allophane supposedly spheres (3.5 to 5 nm). Their local structure is composed of a curved gibbsite Al layer and Si tetrahedra in the vacancies (Q0). Proto-imogolites have the same local structure but are roof-shape nanoparticles likely representing the precursors of imogolite and allophanes (Levard et al. 2010). These structures and sizes give to the SRO-AlSi large specific surfaces and high reactivities. In some natural sites, imogolites and allophanes are formed in large quantities. Aging of these phases may lead to the formation of more stable minerals (halloysite, kaolinite and gibbsite) (Torn et al 1997). In natural environments, when the weathering of volcanic glass is associated with the establishment of vegetation, the soils formed are generally andosols. These soils are particularly rich in organic matter (OM), which is explained by the high ability of SRO-AlSi mineral phases to form bonds with organic compounds. In a first order "bulk" approach, it is considered that these bonds strongly stabilize the organic compounds as their mean age can reach more than 10 kyrs in some studied sites (Basile-Doelsch et al. 2005; Torn et al. 1997). However, the structure of the mineral phases present in andosols deserves more attention. Traditionally, the presence in the SRO-AlSi andosols was shown by selective dissolution approaches by oxalate and pyrophosphate. Using spectroscopic methods, mineralogical analysis of SRO-AlSi in andosols samples showed that these mineral phases were neither imogolites nor allophanes as originally supposed, but only less organized structures remained in a state of proto-imogolites (Basile-Doelsch al. 2005 ; Levard et al., 2012). The presence of OM would have an inhibitory effect on the formation of secondary mineral phases, by blocking the crystal growth of SRO-AlSi. Conversely, the effect of minerals on the dynamics of organic compounds also deserves to be studied in greater detail. If the "bulk" approaches showed that proto-imogolites involve long-term stabilized OM, other approaches such as densimetric fractionation and C3/C4 chronosequences (Basile-Doelsch et al. 2007; De Junet et al. 2013) led us to consider a new model involving two types of organo-mineral interactions: (1) OM stabilized by strong bonds to proto-imogolite, leading to a slow OM turnover and (2) OM retained within the porosity of the 3D structure formed by the proto-imogolite (similar to a gel structure), leading to a faster OM turnover. Understanding the mechanisms of organo-mineral interactions in andosols will open new research directions for understanding the mechanisms of stabilization of OM in any type of soil (Bonnard et al. 2012). Basile-Doelsch et al., Geoderma, 137, 477-489, 2007. Basile-Doelsch et al., European Journal of Soil Science, 56, 689-703, 2005. Bonnard et al., European Journal of Soil Science, 63, 5, 625-636, 2012. de Junet, et al., Journal of Analytical and Applied Pyrolysis, 99, 92-10, 2013, Levard et al, Geoderma, 183-184, 100-108, 2012. Levard et al. Chemistry Of Materials, 22, 2466-2473, 2010 Torn et al. Nature, London, 389, 170-173, 1997.
Aluminum elution and precipitation in glass vials: effect of pH and buffer species.
Ogawa, Toru; Miyajima, Makoto; Wakiyama, Naoki; Terada, Katsuhide
2015-02-01
Inorganic extractables from glass vials may cause particle formation in the drug solution. In this study, the ability of eluting Al ion from borosilicate glass vials, and tendencies of precipitation containing Al were investigated using various pHs of phosphate, citrate, acetate and histidine buffer. Through heating, all of the buffers showed that Si and Al were eluted from glass vials in ratios almost the same as the composition of borosilicate glass, and the amounts of Al and Si from various buffer solutions at pH 7 were in the following order: citrate > phosphate > acetate > histidine. In addition, during storage after heating, the Al concentration at certain pHs of phosphate and acetate buffer solution decreased, suggesting the formation of particles containing Al. In citrate buffer, Al did not decrease in spite of the high elution amount. Considering that the solubility profile of aluminum oxide and the Al eluting profile of borosilicate glass were different, it is speculated that Al ion may be forced to leach into the buffer solution according to Si elution on the surface of glass vials. When Al ions were added to the buffer solutions, phosphate, acetate and histidine buffer showed a decrease of Al concentration during storage at a neutral range of pHs, indicating the formation of particles containing Al. In conclusion, it is suggested that phosphate buffer solution has higher possibility of forming particles containing Al than other buffer solutions.
Quantification of colloidal and aqueous element transfer in soils: The dual-phase mass balance model
Bern, Carleton R.; Thompson, Aaron; Chadwick, Oliver A.
2015-01-01
Mass balance models have become standard tools for characterizing element gains and losses and volumetric change during weathering and soil development. However, they rely on the assumption of complete immobility for an index element such as Ti or Zr. Here we describe a dual-phase mass balance model that eliminates the need for an assumption of immobility and in the process quantifies the contribution of aqueous versus colloidal element transfer. In the model, the high field strength elements Ti and Zr are assumed to be mobile only as suspended solids (colloids) and can therefore be used to distinguish elemental redistribution via colloids from redistribution via dissolved aqueous solutes. Calculations are based upon element concentrations in soil, parent material, and colloids dispersed from soil in the laboratory. We illustrate the utility of this model using a catena in South Africa. Traditional mass balance models systematically distort elemental gains and losses and changes in soil volume in this catena due to significant redistribution of Zr-bearing colloids. Applying the dual-phase model accounts for this colloidal redistribution and we find that the process accounts for a substantial portion of the major element (e.g., Al, Fe and Si) loss from eluvial soil. In addition, we find that in illuvial soils along this catena, gains of colloidal material significantly offset aqueous elemental loss. In other settings, processes such as accumulation of exogenous dust can mimic the geochemical effects of colloid redistribution and we suggest strategies for distinguishing between the two. The movement of clays and colloidal material is a major process in weathering and pedogenesis; the mass balance model presented here is a tool for quantifying effects of that process over time scales of soil development.
The contribution of mulches to control high soil erosion rates in vineyards in Eastern Spain
NASA Astrophysics Data System (ADS)
Cerdà, Artemi; Jordán, Antonio; Zavala, Lorena; José Marqués, María; Novara, Agata
2014-05-01
Soil erosion take place in degraded ecosystem where the lack of vegetation, drought, erodible parent material and deforestation take place (Borelli et al., 2013; Haregeweyn et al., 2013; Zhao et al., 2013). Agriculture management developed new landscapes (Ore and Bruins, 2012) and use to trigger non-sustainable soil erosion rates (Zema et al., 2012). High erosion rates were measured in agriculture land (Cerdà et al., 2009), but it is also possible to develop managements that will control the soil and water losses, such as organic amendments (Marqués et al., 2005), plant cover (Marqués et al., 2007) and geotextiles (Giménez Morera et al., 2010). The most successful management to restore the structural stability and the biological activity of the agriculture soil has been the organic mulches (García Orenes et al; 2009; 2010; 2012). The straw mulch is also very successful on bare fire affected soil (Robichaud et al., 2013a; 2013b), which also contributes to a more stable soil moisture content (García-Moreno et al., 2013). The objective of this research is to determine the impact of two mulches: wheat straw and chipped branches, on the soil erosion rates in a rainfed vineyard in Eastern Spain. The research site is located in the Les Alcusses Valley within the Moixent municipality. The Mean annual temperature is 13 ºC, and the mean annual rainfall 455 mm. Soil are sandy loam, and are developed at the foot-slope of a Cretaceous limestone range, the Serra Grossa range. The soils use to be ploughed and the features of soil erosion are found after each thunderstorm. Rills are removed by ploughing. Thirty rainfall simulation experiments were carried out in summer 2011 during the summer drought period. The simulated rainfall lasted during 1 hour at a 45 mmh-1 intensity on 1 m2 plots (Cerdà and Doerr, 2010; Cerdà and Jurgensen 2011). Ten experiments were carried out on the control plots (ploughed), 10 on straw mulch covered plots, and 10 on chipped branches covered soil. The results show that the soil erosion is reduced by 10 on straw mulch covered soils and by 4 on chipped branches covered soil. Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and RECARE supported this research. References Borrelli, P., Märker, M., Schütt, B. 2013. Modelling post-tree-haversting soil erosion and sediment deposition potential in the Turano River Basin (Italian Central Apennine). Land Degradation & Development, DOI 10.1002/ldr.2214 Cerdà, A., Flanagan, D.C., le Bissonnais, Y., Boardman, J. 2009. Soil erosion and agriculture Soil and Tillage Research 106, 107-108. DOI: 10.1016/j.still.2009.1 Cerdà, A., Morera, A.G., Bodí, M.B. 2009. Soil and water losses from new citrus orchards growing on sloped soils in the western Mediterranean basin. Earth Surface Processes and Landforms 34, 1822-1830. García-Moreno, J., Gordillo-Rivero, Á.J., Zavala, L.M., Jordán, A., Pereira, P. 2013. Mulch application in fruit orchards increases the persistence of soil water repellency during a 15-years period. Soil and Tillage Research 130, 62-68. García-Orenes, F., Cerdà, A., Mataix-Solera, J., Guerrero, C., Bodí, M.B., Arcenegui, V., Zornoza, R. & Sempere, J.G. 2009. Effects of agricultural management on surface soil properties and soil-water losses in eastern Spain. Soil and Tillage Research 106, 117-123. 10.1016/j.still.2009.06.002 García-Orenes, F., Guerrero, C., Roldán, A.,Mataix-Solera, J., Cerdà, A., Campoy, M., Zornoza, R., Bárcenas, G., Caravaca. F. 2010. Soil microbial biomass and activity under different agricultural management systems in a semiarid Mediterranean agroecosystem. Soil and Tillage Research 109, 110-115. 10.1016/j.still.2010.05.005. García-Orenes, F., Roldán, A., Mataix-Solera, J., Cerdà, A., Campoy, M., Arcenegui, V., Caravaca, F. 2012. Soil structural stability and erosion rates influenced by agricultural management practices in a semi-arid Mediterranean agro-ecosystem. Soil Use and Management 28, 571-579. DOI: 10.1111/j.1475-2743.2012.00451.x Giménez Morera, A., Ruiz Sinoga, J.D. y Cerdà, A. 2010. The impact of cotton geotextiles on soil and water losses in Mediterranean rainfed agricultural land. Land Degradation and Development , 210- 217. DOI: 10.1002/ldr.971. Haregeweyn, N., Poesen, J., Verstraeten, G., Govers, G., de Vente, J., Nyssen, J., Deckers, J., Moeyersons, J. 2013. Assessing the performance of a Spatially distributed soil erosion and sediment delivery model (WATEM/SEDEM) in Northern Ethiopia. Land Degradation & Development 24, 188-204. DOI 10.1002/ldr.1121 Marqués M.J., Jiménez, L., Pérez-Rodríguez, R., García-Ormaechea, S., Bienes, R. 2005. Reducing water erosion by combined use of organic amendment and shrub revegetation. Land Degradation Development, 16, 339-350. Marqués, M.J., Bienes, R., Jiménez, L., Pérez-Rodríguez, R.. 2007. Effect of vegetal cover on runoff and soil erosion under light intensity events. Rainfall simulation over USLE plots. Science of the Total Environment, 378, 161-165. Ore, G., Bruins, H. J. 2012. Design features of ancient agriculture terrace walls in the Negev Desert: human-made geodiversity. Land Degradation & Development, 23: 409- 418. DOI 10.1002/ldr.2152 Robichaud, P.R., Lewis, S.A., Wagenbrenner, J.W., Ashmun, L.E., Brown, R.E. 2013a. Post-fire mulching for runoff and erosion mitigation. Part I: Effectiveness at reducing hillslope erosion rates. Catena 105, 75-92. Robichaud, P.R., Wagenbrenner, J.W., Lewis, S.A., Ashmun, L.E., Brown, R.E., Wohlgemuth, P.M. 2013b. Post-fire mulching for runoff and erosion mitigation. Part II: Effectiveness in reducing runoff and sediment yields from small catchments. Catena 105, 93-111. Wang, L., Tang, L., Wang, X., Chen, F. 2010. Effects of alley crop planting on soil and nutrient losses in the citrus orchards of the Three Gorges Region. Soil and Tillage Research 110, 243-250. Wu J., Li Q., Yan L. 1997. Effect of intercropping on soil erosion in young citrus plantation - a simulation study. Chinese Journal of Applied Ecology 8, 143-146. Zema, D. A., Bingner, R. L., Denisi, P., Govers, G., Licciardello, F., Zimbone, S. M. 2012. Evaluation of runoff, peak flow and sediment yield for events simulated by the AnnAGNPS model in a belgian agricultural watershed. Land Degradation & Development, 23: 205- 215. DOI 10.1002/ldr.1068 Zhao, G., Mu, X., Wen, Z., Wang, F., Gao, P. 2013. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degradation & Development, 24, 499- 510. DOI 10.1002/ldr.2246SP
Karak, Tanmoy; Paul, Ranjit Kumar; Das, Sampa; Das, Dilip K; Dutta, Amrit Kumar; Boruah, Romesh K
2015-11-01
A study on the sorption kinetics of Cd from soil solution to soils was conducted to assess the persistence of Cd in soil solution as it is related to the leaching, bioavailability, and potential toxicity of Cd. The kinetics of Cd sorption on two non-contaminated alkaline soils from Canning (22° 18' 48.02″ N and 88° 39' 29.0″ E) and Lakshmikantapur (22° 06' 16.61″ N and 88° 19' 08.66″ E) of South 24 Parganas, West Bengal, India, were studied using conventional batch experiment. The variable soil suspension parameters were pH (4.00, 6.00, 8.18, and 9.00), temperatures (308, 318, and 328 K) and Cd concentrations (5-100 mg L(-1)). The average rate coefficient (kavg) and half-life (t1/2) values indicate that the persistence of Cd in soil solution is influenced by both temperature and soil suspension pH. The concentration of Cd in soil solution decreases with increase of temperature; therefore, Cd sorption on the soil-solution interface is an endothermic one. Higher pH decreases the t 1/2 of Cd in soil solution, indicating that higher pH (alkaline) is not a serious concern in Cd toxicity than lower pH (acidic). Based on the energy of activation (Ea) values, Cd sorption in acidic pH (14.76±0.29 to 64.45±4.50 kJ mol(-1)) is a surface control phenomenon and in alkaline pH (9.33±0.09 to 44.60±2.01 kJ mol(-1)) is a diffusion control phenomenon The enthalpy of activation (ΔH∓) values were found to be between 7.28 and 61.73 kJ mol(-1). Additionally, higher positive energy of activation (ΔG∓) values (46.82±2.01 to 94.47±2.36 kJ mol(-1)) suggested that there is an energy barrier for product formation.