Sample records for soil surface area

  1. Location of Bare Soil Surface and Soil Line on the RED-NIR Spectral Plane

    NASA Astrophysics Data System (ADS)

    Koroleva, P. V.; Rukhovich, D. I.; Rukhovich, A. D.; Rukhovich, D. D.; Kulyanitsa, A. L.; Trubnikov, A. V.; Kalinina, N. V.; Simakova, M. S.

    2017-12-01

    Soil as a separate natural body occupies certain area with its own set of spectral characteristics within the RED-NIR spectral space. This is an ellipse-shaped area, and its semi-major axis is the soil line for a satellite image. The spectral area for a bare soil surface is neighboring to the areas of black carbon, straw, vegetating plants, and missing RED-NIR values. A reliable separation of the bare soil surface within the spectral space is possible with the technology of spectral neighborhood of soil line. The accuracy of this method is 90%. The determination of the bare soil surface using vegetation indices, both relative (NDVI), and perpendicular (PVI), is incorrect; the accuracy of these methods does not exceed 65%, and for most of the survey seasons it may be lower than 50%. The flat part of the "tasseled cap" described as the soil line, is not a synonym for the area of the bare soil surface. The bare soil surface on the RED-NIR plots occupies significantly smaller areas than the area of soil line according to Kauth and Thomas.

  2. The surface area of soil organic matter

    USGS Publications Warehouse

    Chiou, C.T.; Lee, J.-F.; Boyd, S.A.

    1990-01-01

    The previously reported surface area for soil organic matter (SOM) of 560-800 m2/g as determined by the ethylene glycol (EG) retention method was reexamined by the standard BET method based on nitrogen adsorption at liquid nitrogen temperature. Test samples consisted of two high organic content soils, a freeze-dried soil humic acid, and an oven-dried soil humic acid. The measured BET areas for these samples were less than 1 m2/g, except for the freeze-dried humic acid. The results suggest that surface adsorption of nonionic organic compounds by SOM is practically insignificant in comparison to uptake by partition. The discrepancy between the surface areas of SOM obtained by BET and EG methods was explained in terms of the 'free surface area' and the 'apparent surface area' associated with these measurements.The previously reported surface area for soil organic matter (SOM) of 560-800 m2/g as determined by the ethylene glycol (EG) retention method was reexamined by the standard BET method based on nitrogen adsorption at liquid nitrogen temperature. Test samples consisted of two high organic content soils, a freeze-dried soil humic acid, and an oven-dried soil humic acid. The measured BET areas for these samples were less than 1 m2/g, except for the freeze-dried humic acid. The results suggest that surface adsorption of nonionic organic compounds by SOM is practically insignificant in comparison to uptake by partition. The discrepancy between the surface areas of SOM obtained by BET and EG methods was explained in terms of the 'free surface area' and the 'apparent surface area' associated with these measurements.

  3. Area G Perimeter Surface-Soil Sampling Environmental Surveillance for Fiscal Year 1998 Hazardous and Solid Waste Group (ESH-19)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquis Childs

    1999-09-01

    Material Disposal Area G (Area G) is at Technical Area 54 at Los Alamos National Laboratory (LANL). Area G has been the principal facility for the disposal of low-level, solid-mixed, and transuranic waste since 1957. It is currently LANL's primary facility for radioactive solid waste burial and storage. As part of the annual environmental surveillance effort at Area G, surface soil samples are collected around the facility's perimeter to characterize possible radionuclide movement off the site through surface water runoff During 1998, 39 soil samples were collected and analyzed for percent moisture, tritium, plutonium-238 and 239, cesium-137 and americium-241. Tomore » assess radionuclide concentrations, the results from these samples are compared with baseline or background soil samples collected in an undisturbed area west of the active portion Area G. The 1998 results are also compared to the results from analogous samples collected during 1996 and 1997 to assess changes over this time in radionuclide activity concentrations in surface soils around the perimeter of Area G. The results indicate elevated levels of all the radionuclides assessed (except cesium-137) exist in Area G perimeter surface soils vs the baseline soils. The comparison of 1998 soil data to previous years (1996 and 1997) indicates no significant increase or decrease in radionuclide concentrations; an upward or downward trend in concentrations is not detectable at this time. These results are consistent with data comparisons done in previous years. Continued annual soil sampling will be necessary to realize a trend if one exists. The radionuclide levels found in the perimeter surface soils are above background but still considered relatively low. This perimeter surface soil data will be used for planning purposes at Area G, techniques to prevent sediment tm.nsport off-site are implemented in the areas where the highest radionuclide concentrations are indicated.« less

  4. Spatial variability of specific surface area of arable soils in Poland

    NASA Astrophysics Data System (ADS)

    Sokolowski, S.; Sokolowska, Z.; Usowicz, B.

    2012-04-01

    Evaluation of soil spatial variability is an important issue in agrophysics and in environmental research. Knowledge of spatial variability of physico-chemical properties enables a better understanding of several processes that take place in soils. In particular, it is well known that mineralogical, organic, as well as particle-size compositions of soils vary in a wide range. Specific surface area of soils is one of the most significant characteristics of soils. It can be not only related to the type of soil, mainly to the content of clay, but also largely determines several physical and chemical properties of soils and is often used as a controlling factor in numerous biological processes. Knowledge of the specific surface area is necessary in calculating certain basic soil characteristics, such as the dielectric permeability of soil, water retention curve, water transport in the soil, cation exchange capacity and pesticide adsorption. The aim of the present study is two-fold. First, we carry out recognition of soil total specific surface area patterns in the territory of Poland and perform the investigation of features of its spatial variability. Next, semivariograms and fractal analysis are used to characterize and compare the spatial variability of soil specific surface area in two soil horizons (A and B). Specific surface area of about 1000 samples was determined by analyzing water vapor adsorption isotherms via the BET method. The collected data of the values of specific surface area of mineral soil representatives for the territory of Poland were then used to describe its spatial variability by employing geostatistical techniques and fractal theory. Using the data calculated for some selected points within the entire territory and along selected directions, the values of semivariance were determined. The slope of the regression line of the log-log plot of semi-variance versus the distance was used to estimate the fractal dimension, D. Specific surface area in A and B horizons was space-dependent, with the range of spatial dependence of about 2.5°. Variogram surfaces showed anisotropy of the specific surface area in both horizons with a trend toward the W to E directions. The smallest fractal dimensions were obtained for W to E directions and the highest values - for S to N directions. * The work was financially supported in part by the ESA Programme for European Cooperating States (PECS), No.98084 "SWEX-R, Soil Water and Energy Exchange/Research", AO3275.

  5. Chemical weathering rates of a soil chronosequence on granitic alluvium: I. Quantification of mineralogical and surface area changes and calculation of primary silicate reaction rates

    USGS Publications Warehouse

    White, A.F.; Blum, A.E.; Schulz, M.S.; Bullen, T.D.; Harden, J.W.; Peterson, M.L.

    1996-01-01

    Mineral weathering rates are determined for a series of soils ranging in age from 0.2-3000 Ky developed on alluvial terraces near Merced in the Central Valley of California. Mineralogical and elemental abundances exhibit time-dependent trends documenting the chemical evolution of granitic sand to residual kaolinite and quartz. Mineral losses with time occur in the order: hornblende > plagioclase > K-feldspar. Maximum volume decreases of >50% occur in the older soils. BET surface areas of the bulk soils increase with age, as do specific surface areas of aluminosilicate mineral fractions such as plagioclase, which increases from 0.4-1.5 m2 g-1 over 600 Ky. Quartz surface areas are lower and change less with time (0.11-0.23 m2 g-1). BET surface areas correspond to increasing external surface roughness (?? = 10-600) and relatively constant internal surface area (??? 1.3 m2 g-1). SEM observations confirm both surface pitting and development of internal porosity. A numerical model describes aluminosilicate dissolution rates as a function of changes in residual mineral abundance, grain size distributions, and mineral surface areas with time. A simple geometric treatment, assuming spherical grains and no surface roughness, predicts average dissolution rates (plagioclase, 10-17.4; K-feldspar, 10-17.8; and hornblende, 10-17.5 mol cm-1 s-1) that are constant with time and comparable to previous estimates of soil weathering. Average rates, based on BET surface area measurements and variable surface roughnesses, are much slower (plagioclase, 10-19.9; K-feldspar, 10-20.5; and hornblende 10-20.1 mol cm-2 s-1). Rates for individual soil horizons decrease by a factor of 101.5 over 3000 Ky indicating that the surface reactivities of minerals decrease as the physical surface areas increase. Rate constants based on BET estimates for the Merced soils are factors of 103-104 slower than reported experimental dissolution rates determined from freshly prepared silicates with low surface roughness (?? <10). This study demonstrates that the utility of experimental rate constants to predict weathering in soils is limited without consideration of variable surface areas and processes that control the evolution of surface reactivity with time.

  6. Impact of surface coal mining on soil hydraulic properties

    Treesearch

    X. Liu; J. Q. Wu; P. W. Conrad; S. Dun; C. S. Todd; R. L. McNearny; William Elliot; H. Rhee; P. Clark

    2016-01-01

    Soil erosion is strongly related to soil hydraulic properties. Understanding how surface coal mining affects these properties is therefore important in developing effective management practices to control erosion during reclamation. To determine the impact of mining activities on soil hydraulic properties, soils from undisturbed areas, areas of roughly graded mine...

  7. Is soil dressing a way once and for all in remediation of arsenic contaminated soils? A case study of arsenic re-accumulation in soils remediated by soil dressing in Hunan Province, China.

    PubMed

    Su, Shiming; Bai, Lingyu; Wei, Caibing; Gao, Xiang; Zhang, Tuo; Wang, Yanan; Li, Lianfang; Wang, Jinjin; Wu, Cuixia; Zeng, Xibai

    2015-07-01

    The investigation of arsenic (As) re-accumulation in an area previously remediated by soil dressing will help in sustainable controlling the risks of As to local ecosystems and should influence management decisions about remediation strategies. In this study, As content in an area remediated by soil dressing and the possible As accumulation risk in agricultural products were investigated. The results indicated that after 7 years of agricultural activities, the average As content (24.6 mg kg(-1)) in surface soil of the investigated area increased by 83.6% compared with that (13.4 mg kg(-1)) in clean soil. Of the surface soil samples (n = 88), 21.6% had As levels that exceeded the limits of the Environmental Quality Standard for Soils of China (GB 15618-1995) and 98.9% of the surface soil samples with As contents exceeding that in clean soil was observed. Soil dressing might be not a remediation method once and for all in some contaminated areas, even though no significant difference in available As content was found between clean (0.18 mg kg(-1)) and surface (0.22 mg kg(-1)) soils. The foreign As in surface soil of the investigated area mainly specifically sorbed with soil colloid or associated with hydrous oxides of Fe and Al, or existed in residual fraction. The upward movement of contaminated soil from the deeper layers and the atmospheric deposition of slag particles might be responsible for the re-accumulation of As in the investigated area. Decreases in soil pH in the investigated soils and the fact that no plant samples had As levels exceeding the limits of the National Food Safety Standards for Contaminants of China (GB 2762-2012) were also observed.

  8. Surface features of soil particles of three types of soils under different land use strategies

    NASA Astrophysics Data System (ADS)

    Matveeva, Nataliy; Kotelnikova, Anna; Rogova, Olga; Proskurnin, Mikhail

    2017-04-01

    Nowadays, there is a clear need in a deep investigation of molecular composition of soils and of its influence on surface characteristics of soil particles. The aim of this study is to evaluate the composition and properties of physical fractions in different soil types in determining functional specificity of soil solid-phase surface. The experiments were carried out with three different types of Russian soils—Sod-Podzolic, Chestnut, and Chernozem soils—under various treatments (fallow, different doses of mineral fertilizers and their aftereffects). The samples were separated into three fractions: silt (SF) with a particle size of <2 μm, light fraction (LF) with a density of <2 g/cm3, and residual fraction (RF) with a size >2 μm and the density >2 g/cm3. We measured specific surface area, surface hydrophobicity (contact angle, CA), ζ-potential, and the point of zero charge (PZC). For Chernozem and Chestnut soils and their fractions of we observed an increase in hydrophobicity for SF and RF under fertilizer treatment. At the sites not treated with fertilizers and aftereffect sites, the hydrophobicity of fractions was lower compared to the sites under treatment. The CA of the original soils and fractions were different: in 35% of cases CA was higher for SF and RF by 12-16%. The rest of samples demonstrated CA of all three physical fractions lower than CA of the original soil. The variability of the mean CA indicates considerable differences in ζ-potential and PZC between different types of soils and soil fractions. The results of potentiometric titration of PZC for Sod-Podzolic soil showed that all values are in acidic range, which suggests predominance of acidic functional groups at the surface of soil particles. Specific surface area determines soil sorption processes, bioavailability of nutrients, water etc. Here, specific surface area of Sod-Podzolic soil was low and SF-dependent. We calculated specific surface charge from obtained data on specific surface area and PZC. The results suggested considerable differences between sorption features of both soils and fractions under different land use strategies.

  9. The impact of using area-averaged land surface properties —topography, vegetation condition, soil wetness—in calculations of intermediate scale (approximately 10 km 2) surface-atmosphere heat and moisture fluxes

    NASA Astrophysics Data System (ADS)

    Sellers, Piers J.; Heiser, Mark D.; Hall, Forrest G.; Verma, Shashi B.; Desjardins, Raymond L.; Schuepp, Peter M.; Ian MacPherson, J.

    1997-03-01

    It is commonly assumed that biophysically based soil-vegetation-atmosphere transfer (SVAT) models are scale-invariant with respect to the initial boundary conditions of topography, vegetation condition and soil moisture. In practice, SVAT models that have been developed and tested at the local scale (a few meters or a few tens of meters) are applied almost unmodified within general circulation models (GCMs) of the atmosphere, which have grid areas of 50-500 km 2. This study, which draws much of its substantive material from the papers of Sellers et al. (1992c, J. Geophys. Res., 97(D17): 19033-19060) and Sellers et al. (1995, J. Geophys. Res., 100(D12): 25607-25629), explores the validity of doing this. The work makes use of the FIFE-89 data set which was collected over a 2 km × 15 km grassland area in Kansas. The site was characterized by high variability in soil moisture and vegetation condition during the late growing season of 1989. The area also has moderate topography. The 2 km × 15 km 'testbed' area was divided into 68 × 501 pixels of 30 m × 30 m spatial resolution, each of which could be assigned topographic, vegetation condition and soil moisture parameters from satellite and in situ observations gathered in FIFE-89. One or more of these surface fields was area-averaged in a series of simulation runs to determine the impact of using large-area means of these initial or boundary conditions on the area-integrated (aggregated) surface fluxes. The results of the study can be summarized as follows: 1. analyses and some of the simulations indicated that the relationships describing the effects of moderate topography on the surface radiation budget are near-linear and thus largely scale-invariant. The relationships linking the simple ratio vegetation index ( SR), the canopy conductance parameter (▽ F) and the canopy transpiration flux are also near-linear and similarly scale-invariant to first order. Because of this, it appears that simple area-averaging operations can be applied to these fields with relatively little impact on the calculated surface heat flux. 2. The relationships linking surface and root-zone soil wetness to the soil surface and canopy transpiration rates are non-linear. However, simulation results and observations indicate that soil moisture variability decreases significantly as an area dries out, which partially cancels out the effects of these non-linear functions.In conclusion, it appears that simple averages of topographic slope and vegetation parameters can be used to calculate surface energy and heat fluxes over a wide range of spatial scales, from a few meters up to many kilometers at least for grassland sites and areas with moderate topography. Although the relationships between soil moisture and evapotranspiration are non-linear for intermediate soil wetnesses, the dynamics of soil drying act to progressively reduce soil moisture variability and thus the impacts of these non-linearities on the area-averaged surface fluxes. These findings indicate that we may be able to use mean values of topography, vegetation condition and soil moisture to calculate the surface-atmosphere fluxes of energy, heat and moisture at larger length scales, to within an acceptable accuracy for climate modeling work. However, further tests over areas with different vegetation types, soils and more extreme topography are required to improve our confidence in this approach.

  10. Remote sensing of soils, land forms, and land use in the northern great plains in preparation for ERTS applications

    NASA Technical Reports Server (NTRS)

    Frazee, C. J.; Westin, F. C.; Gropper, J.; Myers, V. I.

    1972-01-01

    Research to determine the optimum time or season for obtaining imagery to identify and map soil limitations was conducted in the proposed Oahe irrigation project area in South Dakota. The optimum time for securing photographs or imagery is when the soil surface patterns are most apparent. For cultivated areas similar to the study area, May is the optimum time. The fields are cultivated or the planted crop has not yet masked soil surface features. Soil limitations in 59 percent of the field of the flight line could be mapped using the above criteria. The remaining fields cannot be mapped because the vegetation or growing crops do not express features related to soil differences. This suggests that imagery from more than one year is necessary to map completely the soil limitations of Oahe area by remote sensing techniques. Imagery from the other times studied is not suitable for identifying and mapping soil limitations of Oahe area by remote sensing techniques. Imagery from the other times studied is not suitable for identifying and mapping soil limitations because the vegetative cover masked the soil surface and does not reflect soil differences.

  11. Identifying environmental features for land management decisions

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Pairs of HCMM day-night thermal infrared (IR) data were selected to examine patterns of surface temperature and thermal inertia (TI) of peninsular Florida. GOES and NOAA-6 thermal IR, as well as National Climatic Center temperatures and rainfall, were also used. The HCMM apparent thermal inertia (ATI) images closely correspond to the General Soil Map of Florida, based on soil drainage classes. Areas with low ATI overlay well-drained soils, such as deep sands and drained organic soils. Areas with high ATI overlay areas with wetlands and bodies of water. The HCMM ATI images also correspond well with GOES-detected winter nocturnal cold-prone areas. Use of HCMM data with Carlson's energy balance model shows both high moisture availability (MA) and high thermal inertia (TI) of wetland-type surfaces and low MA and low TI of upland, well-drained soils. Since soil areas with low TI develop higher temperatures during the day, then antecedent patterns of highest maximum daytime surface temperature can also be used to predict nocturnal cold-prone areas in Florida.

  12. Area G perimeter surface-soil and single-stage water sampling: Environmental surveillance for fiscal year 95. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, M.; Conrad, R.

    1997-09-01

    ESH-19 personnel collected soil and single-stage water samples around the perimeter of Area G at Los Alamos National Laboratory (LANL) during FY 95 to characterize possible radionuclide movement out of Area G through surface water and entrained sediment runoff. Soil samples were analyzed for tritium, total uranium, isotopic plutonium, americium-241, and cesium-137. The single-stage water samples were analyzed for tritium and plutonium isotopes. All radiochemical data was compared with analogous samples collected during FY 93 and 94 and reported in LA-12986 and LA-13165-PR. Six surface soils were also submitted for metal analyses. These data were included with similar data generatedmore » for soil samples collected during FY 94 and compared with metals in background samples collected at the Area G expansion area.« less

  13. Phytoremediation in the tropics--influence of heavy crude oil on root morphological characteristics of graminoids.

    PubMed

    Merkl, Nicole; Schultze-Kraft, Rainer; Infante, Carmen

    2005-11-01

    When studying species for phytoremediation of petroleum-contaminated soils, one of the main traits is the root zone where enhanced petroleum degradation takes place. Root morphological characteristics of three tropical graminoids were studied. Specific root length (SRL), surface area, volume and average root diameter (ARD) of plants grown in crude oil-contaminated and uncontaminated soil were compared. Brachiaria brizantha and Cyperus aggregatus showed coarser roots in polluted soil compared to the control as expressed in an increased ARD. B. brizantha had a significantly larger specific root surface area in contaminated soil. Additionally, a shift of SRL and surface area per diameter class towards higher diameters was found. Oil contamination also caused a significantly smaller SRL and surface area in the finest diameter class of C. aggregatus. The root structure of Eleusine indica was not significantly affected by crude oil. Higher specific root surface area was related to higher degradation of petroleum hydrocarbons found in previous studies.

  14. Aerodynamic method for obtaining the soil water retention curve

    NASA Astrophysics Data System (ADS)

    Alekseev, V. V.; Maksimov, I. I.

    2013-07-01

    A new method for the rapid plotting of the soil water retention curve (SWRC) has been proposed that considers the soil water as an environment limited by the soil solid phase on one side and by the soil air on the other side. Both contact surfaces have surface energies, which play the main role in water retention. The use of an idealized soil model with consideration for the nonequilibrium thermodynamic laws and the aerodynamic similarity principles allows us to estimate the volumetric specific surface areas of soils and, using the proposed pedotransfer function (PTF), to plot the SWRC. The volumetric specific surface area of the solid phase, the porosity, and the specific free surface energy at the water-air interface are used as the SWRC parameters. Devices for measuring the parameters are briefly described. The differences between the proposed PTF and the experimental data have been analyzed using the statistical processing of the data.

  15. Barley root hair growth and morphology in soil, sand, and water solution media and relationship with nickel toxicity.

    PubMed

    Lin, Yanqing; Allen, Herbert E; Di Toro, Dominic M

    2016-08-01

    Barley, Hordeum vulgare (Doyce), was grown in the 3 media of soil, hydroponic sand solution (sand), and hydroponic water solution (water) culture at the same environmental conditions for 4 d. Barley roots were scanned, and root morphology was analyzed. Plants grown in the 3 media had different root morphology and nickel (Ni) toxicity response. Root elongations and total root lengths followed the sequence soil > sand > water. Plants grown in water culture were more sensitive to Ni toxicity and had greater root hair length than those from soil and sand cultures, which increased root surface area. The unit root surface area as root surface area per centimeter of length of root followed the sequence water > sand > soil and was found to be related with root elongation. Including the unit root surface area, the difference in root elongation and 50% effective concentration were diminished, and percentage of root elongations can be improved with a root mean square error approximately 10% for plants grown in different media. Because the unit root surface area of plants in sand culture is closer to that in soil culture, the sand culture method, not water culture, is recommended for toxicity parameter estimation. Environ Toxicol Chem 2016;35:2125-2133. © 2016 SETAC. © 2016 SETAC.

  16. [Spatial variability of surface soil nutrients in the landslide area of Beichuan County, South- west China, after 5 · 12 Wenchuan Earthquake].

    PubMed

    Mai, Ji-shan; Zhao, Ting-ning; Zheng, Jiang-kun; Shi, Chang-qing

    2015-12-01

    Based on grid sampling and laboratory analysis, spatial variability of surface soil nutrients was analyzed with GS⁺ and other statistics methods on the landslide area of Fenghuang Mountain, Leigu Town, Beichuan County. The results showed that except for high variability of available phosphorus, other soil nutrients exhibited moderate variability. The ratios of nugget to sill of the soil available phosphorus and soil organic carbon were 27.9% and 28.8%, respectively, showing moderate spatial correlation, while the ratios of nugget to sill of the total nitrogen (20.0%), total phosphorus (24.3%), total potassium (11.1%), available nitrogen (11.2%), and available potassium (22.7%) suggested strong spatial correlation. The total phosphorus had the maximum range (1232.7 m), followed by available nitrogen (541.27 m), total nitrogen (468.35 m), total potassium (136.0 m), available potassium (128.7 m), available phosphorus (116.6 m), and soil organic carbon (93.5 m). Soil nutrients had no significant variation with the increase of altitude, but gradually increased from the landslide area, the transition area, to the little-impacted area. The total and available phosphorus contents of the landslide area decreased by 10.3% and 79.7% compared to that of the little-impacted area, respectively. The soil nutrient contents in the transition area accounted for 31.1%-87.2% of that of the little-impacted area, with the nant reason for the spatial variability of surface soil nutrients.

  17. 77 FR 14717 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-13

    ... preclude future actions under Superfund. This partial deletion pertains to the surface soil, unsaturated subsurface soil, surface water and sediments of Operable Unit (OU) 1, the Gateway Lake Ash Study Area, and.... Surface soil, unsaturated subsurface soil, surface water, and sediments at OU-2, OU-3, OU-4, OU-5, OU-6...

  18. Use of thermal inertia determined by HCMM to predict nocturnal cold prone areas in Florida

    NASA Technical Reports Server (NTRS)

    Allen, L. H., Jr. (Principal Investigator)

    1983-01-01

    Pairs of HCMM day-night thermal infrared (IR) data were selected during the 1978-79 winter to examine patterns of surface temperature and thermal inertia (TI) of peninsular Florida. The GOES and NOAA-6 thermal IR, as well as National Climatic Center temperatures and rainfall, were also used. The HCMM apparent thermal inertia (ATI) images closely corresponded to the general soil map of Florida, based on soil drainage classes. Areas with low ATI overlay well-drained soils, such as deep sands and drained organic soils, whereas with high ATI overlay areas with wetlands and bodies of water. The HCMM ATI images also corresponded well with GOES-detected winter nocturnal cold-prone areas. Use of HCMM data with Carlson's energy balance model showed both high moisture availability (MA) and high thermal inertia (TI) of wetland-type surfaces and low MA and low TI of upland, well-drained soils. Since soil areas with low TI develop higher temperatures during the day, then antecedent patterns of highest maximum daytime surface temperature can also be used to predict nocturnal cold-prone areas in Florida.

  19. Retrieval and Mapping of Soil Texture Based on Land Surface Diurnal Temperature Range Data from MODIS

    PubMed Central

    Wang, De-Cai; Zhang, Gan-Lin; Zhao, Ming-Song; Pan, Xian-Zhang; Zhao, Yu-Guo; Li, De-Cheng; Macmillan, Bob

    2015-01-01

    Numerous studies have investigated the direct retrieval of soil properties, including soil texture, using remotely sensed images. However, few have considered how soil properties influence dynamic changes in remote images or how soil processes affect the characteristics of the spectrum. This study investigated a new method for mapping regional soil texture based on the hypothesis that the rate of change of land surface temperature is related to soil texture, given the assumption of similar starting soil moisture conditions. The study area was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely available land surface temperature product of MODIS as the main data source. We analyzed the relationships between the content of different particle soil size fractions at the soil surface and land surface day temperature, night temperature and diurnal temperature range (DTR) during three selected time periods. These periods occurred after rainfalls and between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008. Then, linear regression models were developed between the land surface DTR and sand (> 0.05 mm), clay (< 0.001 mm) and physical clay (< 0.01 mm) contents. The models for each day were used to estimate soil texture. The spatial distribution of soil texture from the studied area was mapped based on the model with the minimum RMSE. A validation dataset produced error estimates for the predicted maps of sand, clay and physical clay, expressed as RMSE of 10.69%, 4.57%, and 12.99%, respectively. The absolute error of the predictions is largely influenced by variations in land cover. Additionally, the maps produced by the models illustrate the natural spatial continuity of soil texture. This study demonstrates the potential for digitally mapping regional soil texture variations in flat areas using readily available MODIS data. PMID:26090852

  20. Retrieval and Mapping of Soil Texture Based on Land Surface Diurnal Temperature Range Data from MODIS.

    PubMed

    Wang, De-Cai; Zhang, Gan-Lin; Zhao, Ming-Song; Pan, Xian-Zhang; Zhao, Yu-Guo; Li, De-Cheng; Macmillan, Bob

    2015-01-01

    Numerous studies have investigated the direct retrieval of soil properties, including soil texture, using remotely sensed images. However, few have considered how soil properties influence dynamic changes in remote images or how soil processes affect the characteristics of the spectrum. This study investigated a new method for mapping regional soil texture based on the hypothesis that the rate of change of land surface temperature is related to soil texture, given the assumption of similar starting soil moisture conditions. The study area was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely available land surface temperature product of MODIS as the main data source. We analyzed the relationships between the content of different particle soil size fractions at the soil surface and land surface day temperature, night temperature and diurnal temperature range (DTR) during three selected time periods. These periods occurred after rainfalls and between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008. Then, linear regression models were developed between the land surface DTR and sand (> 0.05 mm), clay (< 0.001 mm) and physical clay (< 0.01 mm) contents. The models for each day were used to estimate soil texture. The spatial distribution of soil texture from the studied area was mapped based on the model with the minimum RMSE. A validation dataset produced error estimates for the predicted maps of sand, clay and physical clay, expressed as RMSE of 10.69%, 4.57%, and 12.99%, respectively. The absolute error of the predictions is largely influenced by variations in land cover. Additionally, the maps produced by the models illustrate the natural spatial continuity of soil texture. This study demonstrates the potential for digitally mapping regional soil texture variations in flat areas using readily available MODIS data.

  1. STIR Proposal For Research Area 2.1.2 Surface Energy Balance: Transient Soil Density Impacts Land Surface Characteristics and Characterization

    DTIC Science & Technology

    2015-12-22

    not shown). The relatively small differences were likely associated with differences in surface albedo and longwave radiation from soil surface. Ground...SECURITY CLASSIFICATION OF: Soil density is commonly treated as static in studies on land surface property dynamics. Magnitudes of errors associated...with this assumption are largely unknown. Objectives of this preliminary investigation were to: i) quantify effects of soil density variation on soil

  2. Assessment of Soil Environmental Quality in Huangguoshu Waterfalls Scenic Area

    NASA Astrophysics Data System (ADS)

    Luo, Rongbin; Feng, Kaiyu; Gu, Bo; Xu, Chengcheng

    2018-03-01

    This paper concentrates on five major heavy metal pollutants as soil environmental quality evaluation factors, respectively Lead (Pb), Cadmium (Cd), Mercury (Hg), Arsenic (As), Chromium (Cr), based on the National Soil Environmental Quality Standards (GB15618 - 1995), we used single factor index evaluation model of soil environmental quality and comprehensive index evaluation model to analyze surface soil environmental quality in the Huangguoshu Waterfalls scenic area. Based on surface soil analysis, our results showed that the individual contamination index, Pb, Hg, As and Cr in the Huangguoshu Waterfalls scenic area met class I according to requirements of National Soil Environmental Quality Standards, which indicated that Pb, Hg, As and Cr were not main heavy metal pollutants in this area, but the individual contamination index of Cd in soil was seriously exceeded National Soil Environmental Quality Standards’ requirement. Soil environmental quality in Shitouzhai, Luoshitan, Langgong Hongyan Power Plant have exceeded the requirement of National Soil Environmental Quality Standards “0.7< Pc≤ 1.0” (Alert Level), these soils had been slightly polluted; the classification of soil environmental quality assessment in Longgong downstream area was above “Alert Level”, it indicated that soil in this area was not polluted. Above all, relevant measures for soil remediation are put forward.

  3. Quantification of soil surface roughness evolution under simulated rainfall

    USDA-ARS?s Scientific Manuscript database

    Soil surface roughness is commonly identified as one of the dominant factors governing runoff and interrill erosion. The objective of this study was to compare several existing soil surface roughness indices and to test the Revised Triangular Prism surface area Method (RTPM) as a new approach to cal...

  4. Soil moisture status estimation over Three Gorges area with Landsat TM data based on temperature vegetation dryness index

    NASA Astrophysics Data System (ADS)

    Xu, Lina; Niu, Ruiqing; Li, Jiong; Dong, Yanfang

    2011-12-01

    Soil moisture is the important indicator of climate, hydrology, ecology, agriculture and other parameters of the land surface and atmospheric interface. Soil moisture plays an important role on the water and energy exchange at the land surface/atmosphere interface. Remote sensing can provide information on large area quickly and easily, so it is significant to do research on how to monitor soil moisture by remote sensing. This paper presents a method to assess soil moisture status using Landsat TM data over Three Gorges area in China based on TVDI. The potential of Temperature- Vegetation Dryness Index (TVDI) from Landsat TM data in assessing soil moisture was investigated in this region. After retrieving land surface temperature and vegetation index a TVDI model based on the features of Ts-NDVI space is established. And finally, soil moisture status is estimated according to TVDI. It shows that TVDI has the advantages of stability and high accuracy to estimating the soil moisture status.

  5. Specific surface area as a maturity index of lunar fines

    NASA Technical Reports Server (NTRS)

    Gammage, R. B.; Holmes, H. F.

    1975-01-01

    Mature surface fines have an equilibrium specific surface area of about 0.6 sq m/g the equivalent mean particle size being about 3 microns. The adsorption behavior of inert gases (reversible isotherms) indicates that the particles are also nonporous in the size range of pores from 10 to 3000 A. Apparently, in mature soils there is a balance in the forces which cause fining, attrition, pore filling, and growth of lunar dust grains. Immature, lightly irradiated soils usually have coarser grains which reduce in size as aging proceeds. The specific surface area, determined by nitrogen or krypton sorption at 77 K, is a valuable index of soil maturity.

  6. Relationship between the parent material and the soil, in plain and mountainous areas

    NASA Astrophysics Data System (ADS)

    Kerek, Barbara; Kuti, Laszlo; Dobos, Timea; Vatai, Jozsef; Szentpetery, Ildiko

    2013-04-01

    One of the most important tasks of the soil is the nutrition of plants. This function is determinated by those parts of the geological media on what is the soil situated and from what the soil was formed (those two can be different). Soil can be formed definitely just from sediment, so it is more proper to speak about parent material than parent rock. Soil forming sediment is defined as the loose sediment on the surface, which is the upper layer of near-surface rocks in flat and hilly regions, and it is the upper layer of the sediment-ensemble situated on the undisturbed bedrock in mountainous areas. Considering its origin, these sediments could be autochthon or allochton. Soil forming is determinated, besides other factors (climate, elevation, vegetation, etc.), by the parent material, which has a crucial influence on the type, quality and fertility of soils through its mineral composition, physical and chemical characteristics. Agrogeological processes happen in the superficial loose sediments in mountainous areas, but the underlying solid rock (where on the surface or close to it, there is solid rock), has an effect on them. The plain and hilly regions covered by thick loose sediment and the areas build up by solid rock and covered with thinner loose sediment in mountainous areas should be searched separately. In plain areas the near-surface formations have to be studied as a whole down to the saturated zone, but at least to 10 m. In regions of mountain and mountain fronts, the thickness, the composition and genetics of the young unconsolidated sediments situated above the older solid rocks have a vital importance, and also the relations among the soils, soil forming sediments and the base rocks have to be understood.

  7. NEARBY LAKE SEDIMENT QUALITY AND SEEDLING TREE SURVIVAL ON ERODED OILY WASTE/BRINE CONTAMINATED SOIL

    EPA Science Inventory

    An ecosystem restoration study is being conducted at an old oil production area in Northeast Oklahoma. Surface soil samples from areas impacted by discarded crude oil and brine wastes have been chemically characterized. Surface erosion has occurred in areas impacted by waste disc...

  8. 43 CFR 11.71 - Quantification phase-service reduction quantification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... identified geohydrological units, which are aquifers or confining layers, within the assessment area. (2)(i... determined by determining: (1) The surface area of soil with reduced ability to sustain the growth of vegetation from the baseline level; (2) The surface area or volume of soil with reduced suitability as...

  9. 43 CFR 11.71 - Quantification phase-service reduction quantification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... identified geohydrological units, which are aquifers or confining layers, within the assessment area. (2)(i... determined by determining: (1) The surface area of soil with reduced ability to sustain the growth of vegetation from the baseline level; (2) The surface area or volume of soil with reduced suitability as...

  10. 43 CFR 11.71 - Quantification phase-service reduction quantification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... identified geohydrological units, which are aquifers or confining layers, within the assessment area. (2)(i... determined by determining: (1) The surface area of soil with reduced ability to sustain the growth of vegetation from the baseline level; (2) The surface area or volume of soil with reduced suitability as...

  11. Heterogeneity of soil surface temperature induced by xerophytic shrub in a revegetated desert ecosystem, northwestern China

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-Feng; Wang, Xin-Ping; Pan, Yan-Xia; Hu, Rui; Zhang, Hao

    2013-06-01

    Variation characteristics of the soil surface temperature induced by shrub canopy greatly affects the near-surface biological and biochemical processes in desert ecosystems. However, information regarding the effects of shrub upon the heterogeneity of soil surface temperature is scarce. Here we aimed to characterize the effects of shrub ( Caragana korshinskii) canopy on the soil surface temperature heterogeneity at areas under shrub canopy and the neighbouring bare ground. Diurnal variations of soil surface temperature were measured at areas adjacent to the shrub base (ASB), beneath the midcanopy (BMC), and in the bare intershrub spaces (BIS) at the eastern, southern, western and northern aspects of shrub, respectively. Results indicated that diurnal mean soil surface temperature under the C. korshinskii canopy (ASB and BMC) was significantly lower than in the BIS, with the highest in the BIS, followed by the BMC and ASB. The diurnal maximum and diurnal variations of soil surface temperatures under canopy vary strongly with different aspects of shrub with the diurnal variation in solar altitude, which could be used as cues to detect safe sites for under-canopy biota. A significant empirical linear relationship was found between soil surface temperature and solar altitude, suggesting an empirical predicator that solar altitude can serve for soil surface temperature. Lower soil surface temperatures under the canopy than in the bare intershrub spaces imply that shrubs canopy play a role of `cool islands' in the daytime in terms of soil surface temperature during hot summer months in the desert ecosystems characterized by a mosaic of sparse vegetation and bare ground.

  12. Soil strength response of select soil disturbance classes on a wet pine flat in South Carolina

    Treesearch

    Emily A. Carter; W. Michael Aust; James A. Burger

    2007-01-01

    Harvest operations conducted under conditions of high soil moisture on a et pine flat in South Carolina resulted in a high degree of soil surface disturbance. Less soil surface disturbance occurred when soil moisture content was lower. Soil strength varied by soil disturbance class in wet harvested locations and highly disturbed areas were associated with low soil...

  13. Analysis of the sorption properties of different soils using water vapour adsorption and potentiometric titration methods

    NASA Astrophysics Data System (ADS)

    Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia

    2016-07-01

    Parameters of specific surface area as well as surface charge were used to determine and compare sorption properties of soils with different physicochemical characteristics. The gravimetric method was used to obtain water vapour isotherms and then specific surface areas, whereas surface charge was estimated from potentiometric titration curves. The specific surface area varied from 12.55 to 132.69 m2 g-1 for Haplic Cambisol and Mollic Gleysol soil, respectively, and generally decreased with pH (R=0.835; α = 0.05) and when bulk density (R=-0.736; α = 0.05) as well as ash content (R=-0.751; α = 0.05) increased. In the case of surface charge, the values ranged from 63.00 to 844.67 μmol g-1 Haplic Fluvisol and Mollic Gleysol, respecively. Organic matter gave significant contributions to the specific surface area and cation exchange capacity due to the large surface area and numerous surface functional groups, containing adsorption sites for water vapour molecules and for ions. The values of cation exchange capacity and specific surface area correlated linearly at the level of R=0.985; α = 0.05.

  14. Experiment Study on Determination of Surface Area of Finegrained Soils by Mercury Intrusion Porosimetry

    NASA Astrophysics Data System (ADS)

    Yan, X. Q.; Zhou, C. Y.; Fang, Y. G.; Lin, L. S.

    2017-12-01

    The specific surface area (SSA) has a great influence on the physical and chemical properties of fine-grained soils. Determination of specific surface area is an important content for fine-grained soils micro-meso analysis and characteristic research. In this paper, mercury intrusion porosimetry (MIP) was adopted to determine the SSA of fine-grained soils including quartz, kaolinite, bentonite and natural Shenzhen soft clay. The test results show that the average values of SSA obtained by MIP are 0.78m2/g, 11.31m2/g, 57.28m2/g and 27.15m2/g respectively for very fine-grained quartz, kaolin, bentonite and natural Shenzhen soft clay, and that it is feasible to apply MIP to obtain the SSA of fine-grained soils through statistical analysis of 97 samples. Through discussion, it is necessary to consider the state of fine-grained soils such as pore ratio when the SSA of fine-grained soils is determined by MIP.

  15. Theoretical considerations of soil retention. [dirtying of solar energy devices

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1980-01-01

    The performance of solar energy devices is adversely affected by surface soiling, and generally, the loss of performance increases with increases in the quantity of soil retained on their surfaces. To minimize performance losses caused by soiling, solar devices should not only be deployed in low soiling geographical areas, but employ surfaces or surfacing materials having low affinity for soil retention, maximum susceptibility to be naturally cleaned by wind, rain and snow, and to be readily cleanable by simple and inexpensive maintenance cleaning techniques. This article describes known and postulated mechanisms of soil retention on surfaces, and infers from these mechanisms that low soiling and easily cleanable surfaces should have low surface energy, and be hard, smooth, hydrophobic and chemically clean of sticky materials and water soluble salts.

  16. [Soil seed bank research of China mining areas: necessity and challenges].

    PubMed

    Chang, Qing; Zhang, Da-Wei; Li, Xue; Peng, Jian; Guan, Ai-Nong; Liu, Xiao-Si

    2011-05-01

    Soil seed bank consists of all living seeds existed in soil and its surface litter, especially in topsoil, and can reflect the characteristics of regional biodiversity. As the base of vegetation restoration and potential greening material, topsoil and its seed bank are the limited and non-renewable resources in mining areas. The study of soil seed bank has become one of the hotspots in the research field of vegetation restoration and land reclamation in China mining areas. Owing to the special characteristics of mining industry, the soil seed bank study of mining areas should not only concern with the seed species, quantities, and their relations with ground surface vegetation, but also make use of the research results on the soil seed bank of other fragile habitats. Besides, a breakthrough should be sought in the thinking ways and research approach. This paper analyzed the particularity of mining area's soil seek bank research, summarized the research progress in the soil seed bank of mining areas and other fragile habitats, and put forward the challenges we are facing with. It was expected that this paper could help to reinforce the soil seed bank research of China mining areas, and provide scientific guidelines for taking great advantage of the significant roles of soil seed bank in land reclamation and vegetation restoration in the future.

  17. Use of thermal inertia determined by HCMM to predict nocturnal cold prone areas in Florida. [The Everglades agricultural area, Lake Okeechobee, and the Suwanee River basin

    NASA Technical Reports Server (NTRS)

    Allen, L. H., Jr. (Principal Investigator); Chen, E.; Martsolf, J. D.; Jones, P. H.

    1981-01-01

    Transparencies, prints, and computer compatible tapes of temperature differential and thermal inertia for the winter of 1978 to 1979 were obtained. Thermal inertial differences in the South Florida depicted include: drained organic soils of the Everglades agricultural area, undrained organic soils of the managed water conservation areas of the South Florida water management district, the urbanized area around Miami, Lake Okeechobee, and the mineral soil west of the Everglades agricultural area. The range of wetlands and uplands conditions within the Suwanee River basin was also identified. It is shown that the combination of wetlands uplands surface features of Florida yield a wide range of surface temperatures related to wetness of the surface features.

  18. Effect of Ionic Soil Stabilizers on Soil-Water Characteristic of Special Clay

    NASA Astrophysics Data System (ADS)

    Cui, D.; Xiang, W.

    2011-12-01

    The engineering properties of special clay are conventionally improved through the use of chemical additive such as ionic soil stabilizer (ISS). Such special clays are often referred to as stabilized or treated clays. The soil-water characteristic curves (SWCC) of special clays from Henan province and Hubei province were measured both in natural and stabilized conditions using the pressure plate apparatus in the suction range of 0-500 kPa. The SWCC results are used to interpret the special clays behavior due to stabilizer treatment. In addition, relationships were developed between the basic clay and stabilized properties such as specific surface area and pore size distribution. The analysis showed that specific surface area decreases, cumulative pore volume and average pore size diameter decrease, dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. The research data and interpretation analysis presented here can be extended to understand the water film change behaviors influencing the mechanical and physical properties of stabilized special clay soils. KEY WORDS: ionic soil stabilizer, special clay, pore size diameter, specific surface area, soil water characteristic curve, water film

  19. Clay mineralogy in different geomorphic surfaces in sugarcane areas

    NASA Astrophysics Data System (ADS)

    Camargo, L.; Marques, J., Jr.

    2012-04-01

    The crystallization of the oxides and hydroxides of iron and aluminum and kaolinite of clay fraction is the result of pedogenetic processes controlled by the relief. These minerals have influence on the physical and chemical attributes of soil and exhibit spatial dependence. The pattern of spatial distribution is influenced by forms of relief as the geomorphic surfaces. In this sense, the studies aimed at understanding the relationship between relief and the distribution pattern of the clay fraction attributes contribute to the delineation of specific areas of management in the field. The objective of this study was to evaluate the spatial distribution of oxides and hydroxides of iron and aluminum and kaolinite of clay fraction and its relationship with the physical and chemical attributes in different geomorphic surfaces. Soil samples were collected in a transect each 25 m (100 samples) and in the sides of the same (200 samples) as well as an area of 500 ha (1 sample each six hectare). Geomorphic surfaces (GS) in the transect were mapped in detail to support mapping the entire area. The soil samples were taken to the laboratory for chemical, physical, and mineralogical analysis, and the pattern of spatial distribution of soil attributes was obtained by statistics and geostatistics. The GS I is considered the oldest surface of the study area, with depositional character, and a slope ranging from 0 to 4%. GS II and III are considered to be eroded, and the surface II plan a gentle slope that extends from the edge of the surface until the beginning of I and III. The crystallographic characteristics of the oxides and hydroxides of iron and aluminum and kaolinite showed spatial dependence and the distribution pattern corresponding to the limits present of the GS in the field. Surfaces I and II showed the best environments to the degree of crystallinity of hematite and the surface III to the greatest degree of crystallinity of goethite agreeing to the pedoenvironment conditions of each surface. The rate goethite/(goethite+hematite) decreases the surface I to III this result is the variation of the source material that has an increase of clay which is characteristic of sandstone rock (Adamantine Formation) in the surface III. The rate kaolinite/(kaolinite+gibbsite) also shows a decrease of the surface I to the surface III. The spatial distribution pattern of mineralogy influenced the pattern of physical and chemical properties. On the surface III (with higher iron and gibbsite) had the best physical condition (lower density, higher porosity and aggregates) and greater phosphorus sorption. In this sense, the identification and mapping of the GSs, allowed a better understanding of cause and effect of the distribution of soils in the area, and the recognition of areas of controlled variability of soil attributes. These areas can be considered specific areas of management, useful for planning and management practices in the culture of sugarcane. Besides, suggesting criteria for the recognition of map units that would be equivalent to the future series of soils of the Brazilian System of Soil Classification.

  20. Documentation for Program SOILSIM: A computer program for the simulation of heat and moisture flow in soils and between soils, canopy and atmosphere

    NASA Technical Reports Server (NTRS)

    Field, Richard T.

    1990-01-01

    SOILSIM, a digital model of energy and moisture fluxes in the soil and above the soil surface, is presented. It simulates the time evolution of soil temperature and moisture, temperature of the soil surface and plant canopy the above surface, and the fluxes of sensible and latent heat into the atmosphere in response to surface weather conditions. The model is driven by simple weather observations including wind speed, air temperature, air humidity, and incident radiation. The model intended to be useful in conjunction with remotely sensed information of the land surface state, such as surface brightness temperature and soil moisture, for computing wide area evapotranspiration.

  1. Assessment of DDT and Metabolites in Soil and Sediment of Potentially Contaminated Areas of Belém, Amazon Region, Brazil.

    PubMed

    Rodrigues, Andreia Oliveira; de Souza, Larissa Costa; da Silva Rocha, Cássia Christina; da Costa, Amilton Cesar Gomes; de Alcântara Mendes, Rosivaldo

    2017-07-01

    The aim of this study was to evaluate the distribution of DDT and metabolites in surface soils and soil profiles from two areas containing deposits of obsolete pesticides in Belém, Amazon Region, Brazil. DDT and metabolites were extracted by microwave assisted extraction and analyzed by gas chromatography with electron capture detection. Concentrations of total DDT in surface soil samples ranged from 64.22 mg kg -1 in area 1 (A1) to 447.84 mg kg -1 in area 2 (A2). Lower levels were found in soil profiles than at the surface (6.21-21.17 mg kg -1 in A1 and 36.13-113.66 mg kg -1 in A2). pp'-DDT, pp'-DDE and pp'-DDD were detected in sediments at levels of 2.01, 0.96 and 0.35 mg kg -1 , respectively. The ratio (DDE + DDD)/ΣDDT was low indicating the recent introduction of DDT to the environment in the two study areas, through the volatilization and atmospheric deposition of the obsolete pesticides.

  2. 40 CFR 434.80 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... grubbing area means the area where woody plant materials that would interfere with soil salvage operations have been removed or incorporated into the soil that is being salvaged. (b) The term regraded area... sediment yield means the sum of the soil losses from a surface minus deposition in macro-topographic...

  3. 40 CFR 434.80 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... grubbing area means the area where woody plant materials that would interfere with soil salvage operations have been removed or incorporated into the soil that is being salvaged. (b) The term regraded area... sediment yield means the sum of the soil losses from a surface minus deposition in macro-topographic...

  4. 40 CFR 434.80 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... area means the area where woody plant materials that would interfere with soil salvage operations have been removed or incorporated into the soil that is being salvaged. (b) The term regraded area means the... means the sum of the soil losses from a surface minus deposition in macro-topographic depressions, at...

  5. 40 CFR 434.80 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... area means the area where woody plant materials that would interfere with soil salvage operations have been removed or incorporated into the soil that is being salvaged. (b) The term regraded area means the... means the sum of the soil losses from a surface minus deposition in macro-topographic depressions, at...

  6. Impervious Surfaces Alter Soil Bacterial Communities in Urban Areas: A Case Study in Beijing, China

    PubMed Central

    Hu, Yinhong; Dou, Xiaolin; Li, Juanyong; Li, Feng

    2018-01-01

    The rapid expansion of urbanization has caused land cover change, especially the increasing area of impervious surfaces. Such alterations have significant effects on the soil ecosystem by impeding the exchange of gasses, water, and materials between soil and the atmosphere. It is unclear whether impervious surfaces have any effects on soil bacterial diversity and community composition. In the present study, we conducted an investigation of bacterial communities across five typical land cover types, including impervious surfaces (concrete), permeable pavement (bricks with round holes), shrub coverage (Buxus megistophylla Levl.), lawns (Festuca elata Keng ex E. Alexeev), and roadside trees (Sophora japonica Linn.) in Beijing, to explore the response of bacteria to impervious surfaces. The soil bacterial communities were addressed by high-throughput sequencing of the bacterial 16S rRNA gene. We found that Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, and Firmicutes were the predominant phyla in urban soils. Soil from impervious surfaces presented a lower bacterial diversity, and differed greatly from other types of land cover. Soil bacterial diversity was predominantly affected by Zn, dissolved organic carbon (DOC), and soil moisture content (SMC). The composition of the bacterial community was similar under shrub coverage, roadside trees, and lawns, but different from beneath impervious surfaces and permeable pavement. Variance partitioning analysis showed that edaphic properties contributed to 12% of the bacterial community variation, heavy metal pollution explained 3.6% of the variation, and interaction between the two explained 33% of the variance. Together, our data indicate that impervious surfaces induced changes in bacterial community composition and decrease of bacterial diversity. Interactions between edaphic properties and heavy metals were here found to change the composition of the bacterial community and diversity across areas with different types of land cover, and soil properties play a more important role than heavy metals. PMID:29545776

  7. Using Nd and Sr isotopes to trace dust and volcanic inputs to soils on French Guadeloupe Island

    NASA Astrophysics Data System (ADS)

    Guo, J.; Pereyra, Y.; Ma, L.; Gaillardet, J.; Sak, P. B.; Bouchez, J.

    2017-12-01

    Soil is at the central part of the Critical Zone for its important roles in sustaining ecosystems and agriculture. At French Guadeloupe, a tropical humid volcanic island, previous studies have shown that the mineral nutrient elements such as K, Na, Ca, and Mg are highly depleted in the surface soil. And mineral nutrients introduced by dusts are an important mineral nutrient source for vegetation growth in this area. It is important to understand and quantify the sources of the mineral dust added to surface soils. Nd isotope ratios, due to their distinct signatures between two unique end-members in soils for this area: the young volcanic areas like Guadeloupe and the dust source region from the old continental shields like Sahara Desert, can be a robust tracer to understand this critical process. Nevertheless, Sr isotope ratios can trace the inputs of marine aerosols. Here we present a new Nd isotope study on Guadeloupe soil depth profiles, combined with previous Sr isotope data, to fingerprint the sources of dust and volcanic inputs into soils. Soil samples from three surface profiles (0 - 1000cm deep) at different locations of the Guadeloupe Island were systematically analyzed. The results show distinct depth variations for Nd isotope signature along profiles. For all profiles, deep soils are relatively consisted with bedrock value (ɛNd: 5.05). But in surface soils (0-600cm), unlike Sr isotope ratios that are significantly modified by marine aerosol input, Nd isotope ratios show similar decrease (to ɛNd:-10) and frequent fluctuations toward the surface, suggesting dust is the dominant source of Nd in these soils. This conclusion is further supported by REE and other trace element data. Thus, with a simplified two end-member model, Sahara dust contributes the Nd percentages in soils varying from 10.7% at the deepest profiles to 69.5% on surface, showing a significant amount of Nd on the surface soil came from dust source. The deep soil profiles are also characterized by the presence of Nd isotope spikes with negative values, suggesting dust signatures at depth. Such a feature could be related to the presence of a paleo-soil surface at the spike depth that was buried by later volcanic eruption. Both Nd and Sr isotopes hence show dust and volcanic inputs are important factors for soil developments on French Guadeloupe Island.

  8. Some physicochemical properties of surface layer soils shelterbelts in agricultural landscape

    NASA Astrophysics Data System (ADS)

    Jaskulska, R.; Szajdak, L.

    2009-04-01

    Shelterbelts belong to very efficient biogeochemical barriers. They decrease the migration of chemical compounds between ecosystems. The investigations were carried out in the Chlapowski's Agroecological Park in Turew situated 40 km South-West of Poznań, Poland. This area is located on loamy soils, which contains 70% cultivated fields and 14% shelterbelts and small afforestations. The shelterbelts represent different ages and the content of plants as well as humus quantity in surface layer. The first one is 100-year-old shelterbelt, where predominant species is Crataegus monogyna Jacq., Quercus rober L., and Fraxinus excelsior (L.) and is characterized by a well-developed humus level. The other one is 14-year-old shelterbelt. It includes 13 species of trees and revealed a small amount of humus. The soil under both shelterbelts is mineral, grey-brown podzolic in surface layer compound from light loamy sands and weakly loamy sands. The soil samples were taken from surface layer (0-20 cm). pH 1N KCl, hydrolytic acidity, cation-exchange capacity, total proper area, total organic carbon and dissociation constants were determined in soils. The study showed that the soil under shelterbelts revealed acidic properties. It was observed that soils of 100-year-old shelterbelt characterizing lowest values pH = 4.2 revealed highest values of hydrolytic acidity equaled to 7.8 cmol(+)ṡkg-1. The physicochemical properties of investigated soils shoved specific surface areas (22.8 m2ṡg-1), cationic sorptive capacity (12.9 cmol(+)ṡkg-1). TOC (1.6%) 100-year-old shelterbelt was higher than in 14-year-old shelterbelt. The dissociation constants were determined by potentiometric titration. This investigation revealed that the pK value was the highest in the humus of 100-year-old shelterbelt (pKa = 3.1). However, soils of 14-year-old shelterbelt characterized by the lovest pK equaled to 2.8. The surface layer soils shelterbelts in agricultural landscape with good humus development are the most acidic of the soils studied. Most values of acidity, full specific surface areas and sorption capacity are specific to the surface layer of 100-year-old shelterbelt with the highest total organic carbon content. This work was supported by a grant No. 2295/B/P01/2008/35 founded by Polish Ministry of Education.

  9. Estimating Long Term Surface Soil Moisture in the GCIP Area From Satellite Microwave Observations

    NASA Technical Reports Server (NTRS)

    Owe, Manfred; deJeu, Vrije; VandeGriend, Adriaan A.

    2000-01-01

    Soil moisture is an important component of the water and energy balances of the Earth's surface. Furthermore, it has been identified as a parameter of significant potential for improving the accuracy of large-scale land surface-atmosphere interaction models. However, accurate estimates of surface soil moisture are often difficult to make, especially at large spatial scales. Soil moisture is a highly variable land surface parameter, and while point measurements are usually accurate, they are representative only of the immediate site which was sampled. Simple averaging of point values to obtain spatial means often leads to substantial errors. Since remotely sensed observations are already a spatially averaged or areally integrated value, they are ideally suited for measuring land surface parameters, and as such, are a logical input to regional or larger scale land process models. A nine-year database of surface soil moisture is being developed for the Central United States from satellite microwave observations. This region forms much of the GCIP study area, and contains most of the Mississippi, Rio Grande, and Red River drainages. Daytime and nighttime microwave brightness temperatures were observed at a frequency of 6.6 GHz, by the Scanning Multichannel Microwave Radiometer (SMMR), onboard the Nimbus 7 satellite. The life of the SMMR instrument spanned from Nov. 1978 to Aug. 1987. At 6.6 GHz, the instrument provided a spatial resolution of approximately 150 km, and an orbital frequency over any pixel-sized area of about 2 daytime and 2 nighttime passes per week. Ground measurements of surface soil moisture from various locations throughout the study area are used to calibrate the microwave observations. Because ground measurements are usually only single point values, and since the time of satellite coverage does not always coincide with the ground measurements, the soil moisture data were used to calibrate a regional water balance for the top 1, 5, and 10 cm surface layers in order to interpolate daily surface moisture values. Such a climate-based approach is often more appropriate for estimating large-area spatially averaged soil moisture because meteorological data are generally more spatially representative than isolated point measurements of soil moisture. Vegetation radiative transfer characteristics, such as the canopy transmissivity, were estimated from vegetation indices such as the Normalized Difference Vegetation Index (NDVI) and the 37 GHz Microwave Polarization Difference Index (MPDI). Passive microwave remote sensing presents the greatest potential for providing regular spatially representative estimates of surface soil moisture at global scales. Real time estimates should improve weather and climate modelling efforts, while the development of historical data sets will provide necessary information for simulation and validation of long-term climate and global change studies.

  10. Soil mixing and transport increase inventories of mineral surface area and organic carbon, with systematic shifts in C/N, δ13C, and δ15N, along a forested hillslope transect

    NASA Astrophysics Data System (ADS)

    Fisher, B.; Yoo, K.; Aufdenkampe, A. K.; Nater, E. A.; Aalto, R. E.; Marquard, J.

    2017-12-01

    The quantity of organic carbon (OC) per unit of mineral surface area (OC/SA) and the inventory of organic carbon increased by a factor of 2-3 as result of soil mixing due to soil creep, erosional movement, and in situ mixing process in a soil transect in a first-order forested watershed in the Christina River Basin Critical Zone Observatory. In the uppermost 5 meters, 50-75% of mineral specific surface area was contributed by citrate-dithionate extractable forms of iron and aluminum that comprised less than 2.5% of the total sample mass. As soils were redistributed to depositional landscape positions, mixing processes systematically decreased C/N and enriched stable isotopes of C ( δ13C) and N ( δ15N). Radiocarbon (14C) concentration of light and dense fraction OC (divided at 2.0 g cm-3), increased with depth, but results of light fraction radiocarbon were obscured by 3000-year-old charcoal. Short range order Fe- and Al-bearing minerals contributed the vast majority of specific surface area, and this finding has implications for the stability and longevity of organomineral complexes. We identified a strong correlation between C/N and the ratio of OC to mineral surface area (OC/SA), indicating that the processes that associate organic matter and minerals are fundamentally linked with organic matter composition, and both properties may provide a proxy for organic matter stabilization by soil minerals.

  11. Adsorption of water vapour and the specific surface area of arctic zone soils (Spitsbergen)

    NASA Astrophysics Data System (ADS)

    Cieśla, Jolanta; Sokołowska, Zofia; Witkowska-Walczak, Barbara; Skic, Kamil

    2018-01-01

    Water vapour/nitrogen adsorption were investigated and calculated the specific surface areas of arctic-zone soil samples (Turbic Cryosols) originating from different micro-relief forms (mud boils, cell forms and sorted circles) and from different depths. For the characterisation of the isotherms obtained for arctic soils, the Brunauer-Emmet-Teller model was then compared with the two other models (Aranovich-Donohue and Guggenheim-Anderson-de Boer) which were developed from Brunauer-Emmet-Teller. Specific surface area was calculated using the Brunauer-Emmet-Teller model at p p0-1 range of 0.05-0.35 for the water vapour desorption and nitrogen adsorption isotherms. The values of total specific surface area were the highest in Cryosols on mud boils, lower on cell forms, and the lowest on sorted circles. Such tendency was observed for the results obtained by both the water vapour and nitrogen adsorption. The differences in the values of specific surface area at two investigated layers were small. High determination coefficients were obtained for relationships between the specific surface areas and contents of clay and silt fraction in Cryosols. No statistically significant correlation between the total carbon amount and the values of specific surface area in Cryosols has been found.

  12. Heavy-metal contamination on training ranges at the Grafenwoehr Training Area, Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zellmer, S.D.; Schneider, J.F.

    1993-05-01

    Large quantities of lead and other heavy metals are deposited in the environment of weapons ranges during training exercises. This study was conducted to determine the type, degree, and extent of heavy-metal contamination on selected handgun, rifle, and hand-grenade ranges at Grafenwoehr Training Area, Germany. Soil, vegetation, and surface-water samples were collected and analyzed using the inductively-coupled plasma atomic-emission spectroscopy (ICP-AES) method and the toxic characterization leaching procedure (TCLP). The ICP-AES results show that above-normal levels of lead and copper are in the surface soil at the handgun range, high concentrations of lead and copper are in the berm andmore » soil surface at the rifle range, and elevated levels of cadmium and above-normal concentrations of arsenic, copper, and zinc are present in the surface soil at the hand-grenade range. The TCLP results show that surface soils can be considered hazardous waste because of lead content at the rifle range and because of cadmium concentration at the hand-grenade range. Vegetation at the handgun and rifle ranges has above-normal concentrations of lead. At the hand-grenade range, both vegetation and surface water have high levels of cadmium. A hand-held X-ray fluorescence (XRF) spectrum analyzer was used to measure lead concentrations in soils in a field test of the method. Comparison of XRF readings with ICP-AES results for lead indicate that the accuracy and precision of the hand-held XRF unit must improve before the unit can be used as more than a screening tool. Results of this study show that heavy-metal contamination at all three ranges is limited to the surface soil; heavy metals are not being leached into the soil profile or transported into adjacent areas.« less

  13. Surface Soil Preparetion for Leguminous Plants Growing in Degraded Areas by Mining Located in Amazon Forest-Brazil

    NASA Astrophysics Data System (ADS)

    Irio Ribeiro, Admilson; Hashimoto Fengler, Felipe; Araújo de Medeiros, Gerson; Márcia Longo, Regina; Frederici de Mello, Giovanna; José de Melo, Wanderley

    2015-04-01

    The revegetation of areas degraded by mining usually requires adequate mobilization of surface soil for the development of the species to be implemented. Unlike the traditional tillage, which has periodicity, the mobilization of degraded areas for revegetation can only occur at the beginning of the recovery stage. In this sense, the process of revegetation has as purpose the establishment of local native vegetation with least possible use of inputs and superficial tillage in order to catalyze the process of natural ecological succession, promoting the reintegration of areas and minimizing the negative impacts of mining activities in environmental. In this context, this work describes part of a study of land reclamation by tin exploitation in the Amazon ecosystem in the National Forest Jamari- Rondonia Brazil. So, studied the influence of surface soil mobilization in pit mine areas and tailings a view to the implementation of legumes. The results show that the surface has areas of mobilizing a significant effect on the growth of leguminous plants, areas for both mining and to tailings and pit mine areas.

  14. Ground-based Remote Sensing for Quantifying Subsurface and Surface Co-variability to Scale Arctic Ecosystem Functioning

    NASA Astrophysics Data System (ADS)

    Oktem, R.; Wainwright, H. M.; Curtis, J. B.; Dafflon, B.; Peterson, J.; Ulrich, C.; Hubbard, S. S.; Torn, M. S.

    2016-12-01

    Predicting carbon cycling in Arctic requires quantifying tightly coupled surface and subsurface processes including permafrost, hydrology, vegetation and soil biogeochemistry. The challenge has been a lack of means to remotely sense key ecosystem properties in high resolution and over large areas. A particular challenge has been characterizing soil properties that are known to be highly heterogeneous. In this study, we exploit tightly-coupled above/belowground ecosystem functioning (e.g., the correlations among soil moisture, vegetation and carbon fluxes) to estimate subsurface and other key properties over large areas. To test this concept, we have installed a ground-based remote sensing platform - a track-mounted tram system - along a 70 m transect in the ice-wedge polygonal tundra near Barrow, Alaska. The tram carries a suite of near-surface remote sensing sensors, including sonic depth, thermal IR, NDVI and multispectral sensors. Joint analysis with multiple ground-based measurements (soil temperature, active layer soil moisture, and carbon fluxes) was performed to quantify correlations and the dynamics of above/belowground processes at unprecedented resolution, both temporally and spatially. We analyzed the datasets with particular focus on correlating key subsurface and ecosystem properties with surface properties that can be measured by satellite/airborne remote sensing over a large area. Our results provided several new insights about system behavior and also opens the door for new characterization approaches. We documented that: (1) soil temperature (at >5 cm depth; critical for permafrost thaw) was decoupled from soil surface temperature and was influenced strongly by soil moisture, (2) NDVI and greenness index were highly correlated with both soil moisture and gross primary productivity (based on chamber flux data), and (3) surface deformation (which can be measured by InSAR) was a good proxy for thaw depth dynamics at non-inundated locations.

  15. Evapotranspiration and runoff from large land areas: Land surface hydrology for atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Famiglietti, J. S.; Wood, Eric F.

    1993-01-01

    A land surface hydrology parameterization for use in atmospheric GCM's is presented. The parameterization incorporates subgrid scale variability in topography, soils, soil moisture and precipitation. The framework of the model is the statistical distribution of a topography-soils index, which controls the local water balance fluxes, and is therefore taken to represent the large land area. Spatially variable water balance fluxes are integrated with respect to the topography-soils index to yield our large topography-soils distribution, and interval responses are weighted by the probability of occurrence of the interval. Grid square averaged land surface fluxes result. The model functions independently as a macroscale water balance model. Runoff ratio and evapotranspiration efficiency parameterizations are derived and are shown to depend on the spatial variability of the above mentioned properties and processes, as well as the dynamics of land surface-atmosphere interactions.

  16. Changing spatial patterns of evapotranspiration and deep drainage in response to the interactions among impervious surface arrangement, soil characteristics, and weather on a residential parcel.

    NASA Astrophysics Data System (ADS)

    Voter, C. B.; Steven, L. I.

    2015-12-01

    The introduction impervious surfaces in urban areas is a key driver of hydrologic change. It is now well understood that the amount of "effective" impervious area directly connected to the storm sewer network is a better indicator of hydrologic behavior than the total amount of impervious area. Most studies in urban hydrology have focused on the relationship between impervious connectivity and stormwater runoff or other surface water flows, with the result that the effect on subsurface flow is not as well understood. In the field, we observe differences in soil moisture availability that are dependent on proximity to impervious features and significant from a root water uptake perspective, which indicates that parcel-scale subsurface and plant water fluxes may also be sensitive to fine-scaled heterogeneity in impervious surface arrangement and connectivity. We use ParFlow with CLM, a watershed model with fully integrated variably-saturated subsurface flow, overland flow, and land-surface processes, to explore the extent to which soil moisture, evapotranspiration, and deep drainage vary under various impervious surface arrangement and soil condition scenarios, as well as under a range of precipitation regimes. We investigate the effect of several impervious surface and soil characteristics, including general lot layout, downspout disconnect, and direction of driveway/sidewalk slope, and soil compaction. We show that that some impervious connectivity schemes transfer more water from impervious areas to pervious ones and promote localized recharge by developing well-defined, fast-moving wetting fronts that are able to penetrate the root zone. Enhanced infiltration is translated more directly to recharge in normal to wet years but partitioned more often to transpiration in dry years, leading to a nonlinear relationship among precipitation, runoff and recharge.

  17. Hydrological significance of soil frost for pre-alpine areas

    NASA Astrophysics Data System (ADS)

    Stähli, Manfred

    2017-03-01

    Soil frost can have a substantial impact on water flows at the soil surface and-potentially-alter the dynamics of catchment runoff. While these findings are mainly based on studies from alpine and Northern-latitude areas (including permafrost areas), little is known about the significance of soil frost for hydrology in pre-alpine areas, i.e. the region at the transition from central European lowlands to high-alpine areas. Here I synthesize soil temperature data and soil frost observations from ten sites in Switzerland to assess the occurrence of soil frost and to determine its impact on catchment runoff. In addition, a well-established numerical model was used to reconstruct the presence of soil frost in two first-order catchments for single runoff events and winters. The data clearly demonstrates that shallow soil frost has formed regularly in this altitudinal range over the past decade. The presence of a frozen soil surface was found to be highly variable among the sites under study and did not significantly correlate with altitude or forest density. For the first-order catchments, it was not possible to relate important flood peaks or increased runoff coefficients to winter situations with substantial soil frost. Thus, the present analysis suggests that although soil frost is widespread and regularly occurring at this altitudinal range, it has no significant impact on winter runoff in pre-alpine watersheds.

  18. Uncovering surface area and micropores in almond shell biochars by rainwater wash

    USDA-ARS?s Scientific Manuscript database

    Biochars have been considered for adsorption of contaminants in soil and water, as well as conditioning and improving soil quality. One important property of the biochar is surface area in the pores of the biochar. Biochars were created from almond shells from two almond varieties with different ash...

  19. Improved Prediction of Quasi-Global Vegetation Conditions Using Remotely-Sensed Surface Soil Moisture

    NASA Technical Reports Server (NTRS)

    Bolten, John; Crow, Wade

    2012-01-01

    The added value of satellite-based surface soil moisture retrievals for agricultural drought monitoring is assessed by calculating the lagged rank correlation between remotely-sensed vegetation indices (VI) and soil moisture estimates obtained both before and after the assimilation of surface soil moisture retrievals derived from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) into a soil water balance model. Higher soil moisture/VI lag correlations imply an enhanced ability to predict future vegetation conditions using estimates of current soil moisture. Results demonstrate that the assimilation of AMSR-E surface soil moisture retrievals substantially improve the performance of a global drought monitoring system - particularly in sparsely-instrumented areas of the world where high-quality rainfall observations are unavailable.

  20. Organic matter controls of soil water retention in an alpine grassland and its significance for hydrological processes

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Zhang, Gan-Lin; Yang, Jin-Ling; Li, De-Cheng; Zhao, Yu-Guo; Liu, Feng; Yang, Ren-Min; Yang, Fan

    2014-11-01

    Soil water retention influences many soil properties and soil hydrological processes. The alpine meadows and steppes of the Qilian Mountains on the northeast border of the Qinghai-Tibetan Plateau form the source area of the Heihe River, the second largest inland river in China. The soils of this area therefore have a large effect on water movement and storage of the entire watershed. In order to understand the controlling factors of soil water retention and how they affect regional eco-hydrological processes in an alpine grassland, thirty-five pedogenic horizons in fourteen soil profiles along two facing hillslopes in typical watersheds of this area were selected for study. Results show that the extensively-accumulated soil organic matter plays a dominant role in controlling soil water retention in this alpine environment. We distinguished two mechanisms of this control. First, at high matric potentials soil organic matter affected soil water retention mainly through altering soil structural parameters and thereby soil bulk density. Second, at low matric potentials the water adsorbing capacity of soil organic matter directly affected water retention. To investigate the hydrological functions of soils at larger scales, soil water retention was compared by three generalized pedogenic horizons. Among these soil horizons, the mattic A horizon, a diagnostic surface horizon of Chinese Soil Taxonomy defined specially for alpine meadow soils, had the greatest soil water retention over the entire range of measured matric potentials. Hillslopes with soils having these horizons are expected to have low surface runoff. This study promotes the understanding of the critical role of alpine soils, especially the vegetated surface soils in controlling the eco-hydrological processes in source regions of the Heihe River watershed.

  1. [Spatial variation of soil phosphorus in flooded area of the Yellow River based on GIS and geo-statistical methods: A case study in Zhoukou City, Henan, China.

    PubMed

    Jia, Zhen Yu; Zhang, Jun Hua; Ding, Sheng Yan; Feng, Shu; Xiong, Xiao Bo; Liang, Guo Fu

    2016-04-22

    Soil phosphorus is an important indicator to measure the soil fertility, because the content of soil phosphorus has an important effect on physical and chemical properties of soil, plant growth, and microbial activity in soil. In this study, the soil samples collecting and indoor analysis were conducted in Zhoukou City located in the flooded area of the Yellow River. By using GIS combined with geo-statistics, we tried to analyze the spatial variability and content distribution of soil total phosphorus (TP) and soil available phosphorus (AP) in the study area. Results showed that TP and AP of both soil layers (0-20 cm and 20-40 cm) were rich, and the contents of TP and AP in surface layer (0-20 cm) were higher than in the second layer (20-40 cm). TP and AP of both soil layers exhibited variation at medium level, and AP had varied much higher than TP. TP of both layers showed medium degree of anisotropy which could be well modeled by the Gaussian model. TP in the surface layer showed strong spatial correlation, but that of the second layer had medium spatial correlation. AP of both layers had a weaker scope in anisotropy which could be simulated by linear model, and both soil layers showed weaker spatial correlations. TP of both soil layers showed a slowly rising change from southwest to northeast of the study area, while it gradually declined from northwest to southeast. AP in soil surface layer exhibited an increase tendency firstly and then decrease from southwest to the northeast, while it decreased firstly and then increased from southeast to the northwest. AP in the second soil layer had an opposite change in the southwest to the northeast, while it showed continuously increasing tendency from northwest to the southeast. The contents of TP and AP in the surface layer presented high grades and the second layer of TP belonged to medium grade, but the second layer of AP was in a lower grade. The artificial factors such as land use type, cropping system, irrigation and fertilization were the main factors influencing the distribution and spatial variation of soil phosphorus in this area.

  2. SMAP Global Map of Surface Soil Moisture Aug. 25-27, 2015

    NASA Image and Video Library

    2015-09-02

    A three-day composite global map of surface soil moisture as retrieved from NASA SMAP radiometer instrument between Aug. 25-27, 2015. Dry areas appear yellow/orange, such as the Sahara Desert, western Australia and the western U.S. Wet areas appear blue, representing the impacts of localized storms. White areas indicate snow, ice or frozen ground. http://photojournal.jpl.nasa.gov/catalog/PIA19877

  3. Specific surface area effect on adsorption of chlorpyrifos and TCP by soils and modeling

    USDA-ARS?s Scientific Manuscript database

    The adsorption of chlorpyrifos and TCP (3,5,6, trichloro-2-pyridinol) was determined in four soils (Mollisol, Inceptisol, Entisol, Alfisol) having different specific surface areas (19–84 m2/g) but rather similar organic matter content (2.4–3.5%). Adsorption isotherms were derived from batch equilibr...

  4. Geographical trends in 137Cs fallout from the Chernobyl accident and leaching from natural surface soil in Norway.

    PubMed

    Gjelsvik, Runhild; Steinnes, Eiliv

    2013-12-01

    In order to follow the turnover of (137)Cs in natural soils and estimate future trends in exposure of livestock, samples of natural surface soils were collected at 0-3 cm depth at 464 sites in 1995 and 463 sites in 2005 covering the country. In both cases the geographical pattern observed was similar to the original distribution from 1986, but the decline of (137)Cs activity in the surface soil was not the same everywhere. In 1995 the (137)Cs reduction since 1986 was found to be considerably greater in coastal areas than farther inland. The main reason for this appears to be the much greater deposition of marine cations such as Mg(2+) and Na(+) in the coastal areas, replacing Cs ions fixed on soil particle surfaces. This cation exchange appeared to be particularly strong near the southern coast where deposition of NH4(+) from transboundary air pollution is evident in addition to the marine cations. During 1995-2005 the (137)Cs decline in the surface soil was more uniform over the country than in the preceding 10-year period but still significantly higher in coastal areas than inland. Differences in precipitation chemistry may have influenced the uptake of (137)Cs in terrestrial food chains. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Satellite microwave observations of soil moisture variations. [by the microwave radiometer on the Nimbus 5 satellite

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Rango, A.; Neff, R.

    1975-01-01

    The electrically scanning microwave radiometer (ESMR) on the Nimbus 5 satellite was used to observe microwave emissions from vegetated and soil surfaces over an Illinois-Indiana study area, the Mississippi Valley, and the Great Salt Lake Desert in Utah. Analysis of microwave brightness temperatures (T sub B) and antecedent rainfall over these areas provided a way to monitor variations of near-surface soil moisture. Because vegetation absorbs microwave emission from the soil at the 1.55 cm wavelength of ESMR, relative soil moisture measurements can only be obtained over bare or sparsely vegetated soil. In general T sub B increased during rainfree periods as evaporation of water and drying of the surface soil occurs, and drops in T sub B are experienced after significant rainfall events wet the soil. Microwave observations from space are limited to coarse resolutions (10-25 km), but it may be possible in regions with sparse vegetation cover to estimate soil moisture conditions on a watershed or agricultural district basis, particularly since daily observations can be obtained.

  6. Redistribution of soil nitrogen, carbon and organic matter by mechanical disturbance during whole-tree harvesting in northern hardwoods

    USGS Publications Warehouse

    Ryan, D.F.; Huntington, T.G.; Wayne, Martin C.

    1992-01-01

    To investigate whether mechanical mixing during harvesting could account for losses observed from forest floor, we measured surface disturbance on a 22 ha watershed that was whole-tree harvested. Surface soil on each 10 cm interval along 81, randomly placed transects was classified immediately after harvesting as mineral or organic, and as undisturbed, depressed, rutted, mounded, scarified, or scalped (forest floor scraped away). We quantitatively sampled these surface categories to collect soil in which preharvest forest floor might reside after harvest. Mechanically mixed mineral and organic soil horizons were readily identified. Buried forest floor under mixed mineral soil occurred in 57% of mounds with mineral surface soil. Harvesting disturbed 65% of the watershed surface and removed forest floor from 25% of the area. Mechanically mixed soil under ruts with organic or mineral surface soil, and mounds with mineral surface soil contained organic carbon and nitrogen pools significantly greater than undisturbed forest floor. Mechanical mixing into underlying mineral soil could account for the loss of forest floor observed between the preharvest condition and the second growing season after whole-tree harvesting. ?? 1992.

  7. Assessment of mercury erosion by surface water in Wanshan mercury mining area.

    PubMed

    Dai, ZhiHui; Feng, Xinbin; Zhang, Chao; Shang, Lihai; Qiu, Guangle

    2013-08-01

    Soil erosion is a main cause of land degradation, and in its accelerated form is also one of the most serious ecological environmental problems. Moreover, there are few studies on migration of mercury (Hg) induced by soil erosion in seriously Hg-polluted districts. This paper selected Wanshan Hg mining area, SW China as the study area. Revised universal soil loss equation (RUSLE) and Geographic information system (GIS) methods were applied to calculate soil and Hg erosion and to classify soil erosion intensity. Our results show that the soil erosion rate can reach up to 600,884tkm(-2)yr(-1). Surfaces associated with very slight and extremely severe erosion include 76.6% of the entire land in Wanshan. Furthermore, the cumulative erosion rates in the area impacted by extremely severe erosion make up 90.5% of the total. On an annual basis, Hg surface erosion load was predicted to be 505kgyr(-1) and the corresponding mean migration flux of Hg was estimated to be 3.02kgkm(-2)yr(-1). The erosion loads of Hg resulting from farmland and meadow soil were 175 and 319kgyr(-1) respectively, which were enhanced compared to other landscape types due to the fact that they are generally located in the steep zones associated with significant reclamation. Contributing to establish a mass balance of Hg in Wanshan Hg mining area, this study supplies a dependable scientific basis for controlling soil and water erosion in the local ecosystems. Land use change is the most effective way for reducing Hg erosion load in Wanshan mining area. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Soil Moisture: The Hydrologic Interface Between Surface and Ground Waters

    NASA Technical Reports Server (NTRS)

    Engman, Edwin T.

    1997-01-01

    A hypothesis is presented that many hydrologic processes display a unique signature that is detectable with microwave remote sensing. These signatures are in the form of the spatial and temporal distributions of surface soil moisture. The specific hydrologic processes that may be detected include groundwater recharge and discharge zones, storm runoff contributing areas, regions of potential and less than potential evapotranspiration (ET), and information about the hydrologic properties of soils. In basin and hillslope hydrology, soil moisture is the interface between surface and ground waters.

  9. Lunar surface engineering properties experiment definition

    NASA Technical Reports Server (NTRS)

    Mitchell, J. K.; Goodman, R. E.; Hurlbut, F. C.; Houston, W. N.; Willis, D. R.; Witherspoon, P. A.; Hovland, H. J.

    1971-01-01

    Research on the mechanics of lunar soils and on developing probes to determine the properties of lunar surface materials is summarized. The areas of investigation include the following: soil simulation, soil property determination using an impact penetrometer, soil stabilization using urethane foam or phenolic resin, effects of rolling boulders down lunar slopes, design of borehole jack and its use in determining failure mechanisms and properties of rocks, and development of a permeability probe for measuring fluid flow through porous lunar surface materials.

  10. Impact of soil moisture initialization on boreal summer subseasonal forecasts: mid-latitude surface air temperature and heat wave events

    NASA Astrophysics Data System (ADS)

    Seo, Eunkyo; Lee, Myong-In; Jeong, Jee-Hoon; Koster, Randal D.; Schubert, Siegfried D.; Kim, Hye-Mi; Kim, Daehyun; Kang, Hyun-Suk; Kim, Hyun-Kyung; MacLachlan, Craig; Scaife, Adam A.

    2018-05-01

    This study uses a global land-atmosphere coupled model, the land-atmosphere component of the Global Seasonal Forecast System version 5, to quantify the degree to which soil moisture initialization could potentially enhance boreal summer surface air temperature forecast skill. Two sets of hindcast experiments are performed by prescribing the observed sea surface temperature as the boundary condition for a 15-year period (1996-2010). In one set of the hindcast experiments (noINIT), the initial soil moisture conditions are randomly taken from a long-term simulation. In the other set (INIT), the initial soil moisture conditions are taken from an observation-driven offline Land Surface Model (LSM) simulation. The soil moisture conditions from the offline LSM simulation are calibrated using the forecast model statistics to minimize the inconsistency between the LSM and the land-atmosphere coupled model in their mean and variability. Results show a higher boreal summer surface air temperature prediction skill in INIT than in noINIT, demonstrating the potential benefit from an accurate soil moisture initialization. The forecast skill enhancement appears especially in the areas in which the evaporative fraction—the ratio of surface latent heat flux to net surface incoming radiation—is sensitive to soil moisture amount. These areas lie in the transitional regime between humid and arid climates. Examination of the extreme 2003 European and 2010 Russian heat wave events reveal that the regionally anomalous soil moisture conditions during the events played an important role in maintaining the stationary circulation anomalies, especially those near the surface.

  11. Salt Efflorescence Effects on Soil Surface Erodibility and Dust Emissions

    NASA Astrophysics Data System (ADS)

    Van Pelt, R. S.; Zhang, G.

    2017-12-01

    Soluble salts resulting from weathering of geological materials often form surface crusts or efflorescences in areas with shallow saline groundwater. In many cases, the affected areas are susceptible to wind erosion due to their lack of protective vegetation and their flat topography. Fugitive dusts containing soluble salts affect the biogeochemistry of deposition regions and may result in respiratory irritation during transport. We created efflorescent crusts on soil trays by surface evaporation of single salt solutions and bombarded the resultant efflorescences with quartz abrader sand in a laboratory wind tunnel. Four replicate trays containing a Torrifluvent soil affected by one of nine salts commonly found in arid and semiarid streams were tested and the emissions were captured by an aspirated multi-stage deposition and filtering system. We found that in most cases the efflorescent crust reduced the soil surface erodibility but also resulted in the emission of salt rich dust. Two of the salts, sodium thiosulfate and calcium chloride, resulted in increased soil volume and erodibility. However, one of the calcium chloride replicates was tested after an outbreak of humid air caused hygroscopic wetting of the soil and it became indurated upon drying greatly decreasing the erodibility. Although saline affected soils are not used for agricultural production and degradation is not a great concern, the release of salt rich dust is an area of environmental concern and steps to control the dust emissions from affected soils should be developed. Future testing will utilize suites of salts found in streams of arid and semiarid regions.

  12. Defining Hydrophytes for Wetland Identification and Delineation

    DTIC Science & Technology

    2012-01-01

    frequent and sufficient supply of water to saturate the land surface for extended periods. Wetlands therefore occur along the natural soil moisture...from permanent inundation (shallow water habitats) to periodic soil saturation at or near the soil surface (seasonally waterlogged habitats). Plants...most specialized of the wetland plants live in water or in areas of long-term wetness. As soil wetness decreases, many other plants can colonize

  13. Micromorphological features of the fine earth and skeletal fractions of soils of West Antarctica in the areas of Russian Antarctic stations

    NASA Astrophysics Data System (ADS)

    Abakumov, E. V.; Gagarina, E. I.; Sapega, V. F.; Vlasov, D. Yu.

    2013-12-01

    Micromorphological features of the fine earth and skeletal fractions of soils of West Antarctica forming under different conditions of pedogenesis have been studied in the areas of Russian Antarctic stations. The processes of mineral weathering and alteration of rock fragments are more pronounced in the Subantarctic soils with better developed humification and immobilization of iron compounds under conditions of surface overmoistening. The biogenic accumulative processes in the soils of King George Island result in the appearance of initial forms of humic plasma that have not been detected in the Antarctic soils in the areas of the Russkaya and Leningradskaya stations. Humus films on mineral grains are present in the soils of King George Island, and organic plasmic material is present in the ornithogenic soils under penguin guano on Lindsey Island. High-latitude Antarctic soils may contain surface concentrations of organic matter; rock fragments are covered by iron oxides and soluble salts. The formation of amorphous organic plasma takes place in the ornithogenic soils of Lindsey Island. The microprobe analysis indicates the presence of local concentrations of organic matter and pedogenic compounds not only on the surface of rock fragments but also in the fissures inside them. This analysis has also proved the translocation of guano-derived organic substances inside rock fragments through a system of fissures in the soils of Lindsey Island and the development of a network of pores inside rock fragments in the soils of King George Island.

  14. Inclusion of Solar Elevation Angle in Land Surface Albedo Parameterization Over Bare Soil Surface.

    PubMed

    Zheng, Zhiyuan; Wei, Zhigang; Wen, Zhiping; Dong, Wenjie; Li, Zhenchao; Wen, Xiaohang; Zhu, Xian; Ji, Dong; Chen, Chen; Yan, Dongdong

    2017-12-01

    Land surface albedo is a significant parameter for maintaining a balance in surface energy. It is also an important parameter of bare soil surface albedo for developing land surface process models that accurately reflect diurnal variation characteristics and the mechanism behind the solar spectral radiation albedo on bare soil surfaces and for understanding the relationships between climate factors and spectral radiation albedo. Using a data set of field observations, we conducted experiments to analyze the variation characteristics of land surface solar spectral radiation and the corresponding albedo over a typical Gobi bare soil underlying surface and to investigate the relationships between the land surface solar spectral radiation albedo, solar elevation angle, and soil moisture. Based on both solar elevation angle and soil moisture measurements simultaneously, we propose a new two-factor parameterization scheme for spectral radiation albedo over bare soil underlying surfaces. The results of numerical simulation experiments show that the new parameterization scheme can more accurately depict the diurnal variation characteristics of bare soil surface albedo than the previous schemes. Solar elevation angle is one of the most important factors for parameterizing bare soil surface albedo and must be considered in the parameterization scheme, especially in arid and semiarid areas with low soil moisture content. This study reveals the characteristics and mechanism of the diurnal variation of bare soil surface solar spectral radiation albedo and is helpful in developing land surface process models, weather models, and climate models.

  15. Mechanisms of surface runoff genesis on a subsurface drained soil affected by surface crusting: A field investigation

    NASA Astrophysics Data System (ADS)

    Augeard, Bénédicte; Kao, Cyril; Chaumont, Cédric; Vauclin, Michel

    Artificial drainage has been subject to widespread criticism because of its impact on water quality and because there is suspicion that it may have detrimental effects on flood genesis. The present work aims at a better understanding of the mechanisms controlling infiltration and surface runoff genesis, particularly in soils with artificial drainage and affected by surface crusting. A field experiment was conducted during one drainage season (November 2003-March 2004) in the Brie region (80 km east of Paris, France) on a subsurface drained silty soil. Water table elevation and surface runoff were monitored above the drain and at midpoint between drains. Soil water pressure head was measured at various depths and locations between the midpoint and the drain. Soil surface characteristics (microtopography and degree of structural and sedimentary crust development) were recorded regularly on the experimental site and on other plots of various drainage intensities. The results show that the first surface runoff events were induced by high water table. However, runoff was higher at midpoint between the drains because water table reached the soil surface at that point, thus considerably reducing infiltration capacity compared to that above the drain. Comparing different plots, the area with older drainage installation (1948) yielded the most surface runoff. Wider drain spacing, smaller drain depth and possible plugging may have led to a greater area of saturated soil between drains. During the winter period, the impact of raindrops induced the formation of a structural crust on the soil surface. Furthermore, the development of the sedimentary crust, which was favored by water actually flowing on the soil surface during the high water table periods could be correlated with surface runoff volume. The formation of this crust had a significant impact on runoff occurrence at the end of the winter. Therefore, poorly drained fields presented more favorable conditions for both Horton type runoff and saturation excess runoff. Drainage effectively reduces surface runoff occurrences not only by lowering the water table in winter but also by limiting soil surface sealing.

  16. HCMM energy budget data as a model input for assessing regions of high potential groundwater pollution

    NASA Technical Reports Server (NTRS)

    Moore, D. G. (Principal Investigator); Heilman, J.; Beutler, G.

    1978-01-01

    The author has identified the following significant results. In early April 1978, heavy spring runoff from snowmelt caused significant flooding along a portion of the Big Sioux River Basin in southeastern South Dakota. The flooded area was visible from surrounding areas on a May 15 HCMM IR test image. On May 15, the flood waters had receded but an area of anomalous residual high soil moisture remained. The high soil moisture area was not visible on a HCMM day visible test image of the same scene, or on LANDSAT imagery. To evaluate the effect of water table depth on surface temperatures, thermal scanner data collected on September 5 and 6, 1978 at approximate HCMM overpass times at an altitude of 3650 m were analyzed. Apparent surface temperatures measured by the scanner included emittance contributions from soil surface and the land cover. Results indicated that the shallow water tables produced a damping of the amplitude of the diurnal surface temperature wave.

  17. Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils

    PubMed Central

    Vogel, Cordula; Mueller, Carsten W.; Höschen, Carmen; Buegger, Franz; Heister, Katja; Schulz, Stefanie; Schloter, Michael; Kögel-Knabner, Ingrid

    2014-01-01

    The sequestration of carbon and nitrogen by clay-sized particles in soils is well established, and clay content or mineral surface area has been used to estimate the sequestration potential of soils. Here, via incubation of a sieved (<2 mm) topsoil with labelled litter, we find that only some of the clay-sized surfaces bind organic matter (OM). Surprisingly, <19% of the visible mineral areas show an OM attachment. OM is preferentially associated with organo-mineral clusters with rough surfaces. By combining nano-scale secondary ion mass spectrometry and isotopic tracing, we distinguish between new labelled and pre-existing OM and show that new OM is preferentially attached to already present organo-mineral clusters. These results, which provide evidence that only a limited proportion of the clay-sized surfaces contribute to OM sequestration, revolutionize our view of carbon sequestration in soils and the widely used carbon saturation estimates. PMID:24399306

  18. Relationship between specific surface area and the dry end of the water retention curve for soils with varying clay and organic carbon contents

    NASA Astrophysics Data System (ADS)

    Resurreccion, Augustus C.; Moldrup, Per; Tuller, Markus; Ferré, T. P. A.; Kawamoto, Ken; Komatsu, Toshiko; de Jonge, Lis Wollesen

    2011-06-01

    Accurate description of the soil water retention curve (SWRC) at low water contents is important for simulating water dynamics and biochemical vadose zone processes in arid environments. Soil water retention data corresponding to matric potentials of less than -10 MPa, where adsorptive forces dominate over capillary forces, have also been used to estimate soil specific surface area (SA). In the present study, the dry end of the SWRC was measured with a chilled-mirror dew point psychrometer for 41 Danish soils covering a wide range of clay (CL) and organic carbon (OC) contents. The 41 soils were classified into four groups on the basis of the Dexter number (n = CL/OC), and the Tuller-Or (TO) general scaling model describing water film thickness at a given matric potential (<-10 MPa) was evaluated. The SA estimated from the dry end of the SWRC (SA_SWRC) was in good agreement with the SA measured with ethylene glycol monoethyl ether (SA_EGME) only for organic soils with n > 10. A strong correlation between the ratio of the two surface area estimates and the Dexter number was observed and applied as an additional scaling function in the TO model to rescale the soil water retention curve at low water contents. However, the TO model still overestimated water film thickness at potentials approaching ovendry condition (about -800 MPa). The semi-log linear Campbell-Shiozawa-Rossi-Nimmo (CSRN) model showed better fits for all investigated soils from -10 to -800 MPa and yielded high correlations with CL and SA. It is therefore recommended to apply the empirical CSRN model for predicting the dry part of the water retention curve (-10 to -800 MPa) from measured soil texture or surface area. Further research should aim to modify the more physically based TO model to obtain better descriptions of the SWRC in the very dry range (-300 to -800 MPa).

  19. Superfund Record of Decision (EPA Region 4): Aberdeen Pesticide Dumps, Moore County, Aberdeen, NC. (First remedial action), (Amendment), September 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-09-30

    The Aberdeen Pesticide Dumps site consists of a plant area and four disposal areas in Aberdeen, Moore County, North Carolina. The five areas are Farm Chemicals, Twin Sites, Fairway Six, McIver Dump, and Route 211. Ground water is the main source of drinking water for local residents. After investigations by EPA's Emergency Response Section in 1985 and 1986, several removal actions were conducted, including removing surface contaminants, drums, and soil in several areas. The ROD concurrently addresses surface and subsurface soil contamination. The amended remedial action for this site includes conducting a treatability study using thermal desorption; excavating and treatingmore » a total of 123,933 cubic yards of soil from all five areas including previously excavated soil from the Fairway Six and McIver Dump areas using an onsite thermal desorption process that includes an activated carbon adsorption to treat off-gases, followed by offsite incineration of residual organics.« less

  20. Comparison of soil heavy metal pollution caused by e-waste recycling activities and traditional industrial operations.

    PubMed

    He, Kailing; Sun, Zehang; Hu, Yuanan; Zeng, Xiangying; Yu, Zhiqiang; Cheng, Hefa

    2017-04-01

    The traditional industrial operations are well recognized as an important source of heavy metal pollution, while that caused by the e-waste recycling activities, which have sprouted in some developing countries, is often overlooked. This study was carried out to compare the status of soil heavy metal pollution caused by the traditional industrial operations and the e-waste recycling activities in the Pearl River Delta, and assess whether greater attention should be paid to control the pollution arising from e-waste recycling activities. Both the total contents and the chemical fractionation of major heavy metals (As, Cr, Cd, Ni, Pb, Cu, and Zn) in 50 surface soil samples collected from the e-waste recycling areas and 20 soil samples from the traditional industrial zones were determined. The results show that the soils in the e-waste recycling areas were mainly polluted by Cu, Zn, As, and Cd, while Cu, Zn, As, Cd, and Pb were the major heavy metals in the soils from the traditional industrial zones. Statistical analyses consistently show that Cu, Cd, Pb, and Zn in the surface soils from both types of sites were contributed mostly by human activities, while As, Cr, and Ni in the soils were dominated by natural background. No clear distinction was found on the pollution characteristic of heavy metals in the surface soils between the e-waste recycling areas and traditional industrial zones. The potential ecological risk posed by heavy metals in the surface soils from both types of sites, which was dominated by that from Cd, ranged from low to moderate. Given the much shorter development history of e-waste recycling and its largely unregulated nature, significant efforts should be made to crack down on illegal e-waste recycling and strengthen pollution control for related activities.

  1. Multivariate Analyses of Heavy Metals in Surface Soil Around an Organized Industrial Area in Eskisehir, Turkey.

    PubMed

    Malkoc, S; Yazici, B

    2017-02-01

    A total of 50 surface industrial area soil in Eskisehir, Turkey were collected and the concentrations of As, Cr, Cd, Co, Cu, Ni, Pb, Zn, Fe and Mg, at 11.34, 95.8, 1.37, 15.28, 33.06, 143.65, 14.34, 78.79 mg/kg, 188.80% and 78.70%, respectively. The EF values for As, Cu, Pb and Zn at a number of sampling sites were found to be the highest among metals. Igeo-index results show that the study area is moderately polluted with respect to As, Cd, Ni. According to guideline values of Turkey Environmental Quality Standard for Soils, there is no problem for Pb, but the Cd values are fairly high. However, Cr, Cu, Ni and Zn values mostly exceed the limits. Cluster analyses suggested that soil the contaminator values are homogenous in those sub classes. The prevention and remediation of the heavy metal soil pollution should focus on these high-risk areas in the future.

  2. Continuous measurement of soil evaporation in a drip-irrigated wine vineyard in a desert area

    USDA-ARS?s Scientific Manuscript database

    Evaporation from the soil surface (E) can be a significant source of water loss in arid areas. In sparsely vegetated systems, E is expected to be a function of soil, climate, irrigation regime, precipitation patterns, and plant canopy development, and will therefore change dynamically at both daily ...

  3. Land Capability Potential Index (LCPI) for the Lower Missouri River Valley

    USGS Publications Warehouse

    Jacobson, Robert B.; Chojnacki, Kimberly A.; Reuter, Joanna M.

    2007-01-01

    The Land Capability Potential Index (LCPI) was developed to serve as a relatively coarse-scale index to delineate broad land capability classes in the valley of the Lower Missouri River. The index integrates fundamental factors that determine suitability of land for various uses, and may provide a useful mechanism to guide land-management decisions. The LCPI was constructed from integration of hydrology, hydraulics, land-surface elevations, and soil permeability (or saturated hydraulic conductivity) datasets for an area of the Lower Missouri River, river miles 423–670. The LCPI estimates relative wetness based on intersecting water-surface elevations, interpolated from measurements or calculated from hydraulic models, with a high-resolution land-surface elevation dataset. The potential for wet areas to retain or drain water is assessed using soil-drainage classes that are estimated from saturated hydraulic conductivity of surface soils. Terrain mapping that delineates areas with convex, concave, and flat parts of the landscape provides another means to assess tendency of landscape patches to retain surface water.

  4. [Spatial variation characteristics of surface soil water content, bulk density and saturated hydraulic conductivity on Karst slopes].

    PubMed

    Zhang, Chuan; Chen, Hong-Song; Zhang, Wei; Nie, Yun-Peng; Ye, Ying-Ying; Wang, Ke-Lin

    2014-06-01

    Surface soil water-physical properties play a decisive role in the dynamics of deep soil water. Knowledge of their spatial variation is helpful in understanding the processes of rainfall infiltration and runoff generation, which will contribute to the reasonable utilization of soil water resources in mountainous areas. Based on a grid sampling scheme (10 m x 10 m) and geostatistical methods, this paper aimed to study the spatial variability of surface (0-10 cm) soil water content, soil bulk density and saturated hydraulic conductivity on a typical shrub slope (90 m x 120 m, projected length) in Karst area of northwest Guangxi, southwest China. The results showed that the surface soil water content, bulk density and saturated hydraulic conductivity had different spatial dependence and spatial structure. Sample variogram of the soil water content was fitted well by Gaussian models with the nugget effect, while soil bulk density and saturated hydraulic conductivity were fitted well by exponential models with the nugget effect. Variability of soil water content showed strong spatial dependence, while the soil bulk density and saturated hydraulic conductivity showed moderate spatial dependence. The spatial ranges of the soil water content and saturated hydraulic conductivity were small, while that of the soil bulk density was much bigger. In general, the soil water content increased with the increase of altitude while it was opposite for the soil bulk densi- ty. However, the soil saturated hydraulic conductivity had a random distribution of large amounts of small patches, showing high spatial heterogeneity. Soil water content negatively (P < 0.01) correlated with the bulk density and saturated hydraulic conductivity, while there was no significant correlation between the soil bulk density and saturated hydraulic conductivity.

  5. Concentrations of polynuclear aromatic hydrocarbons and inorganic constituents in ambient surface soils, Chicago, Illinois, 2001-02

    USGS Publications Warehouse

    Kay, Robert T.; Arnold, Terri L.; Cannon, William F.; Graham, David; Morton, Eric; Bienert, Raymond

    2003-01-01

    Polynuclear aromatic hydrocarbon (PAH) compounds are ubiquitous in ambient surface soils in the city of Chicago, Illinois. PAH concentrations in samples collected in June 2001 and January 2002 were typically in the following order from highest to lowest: fluoranthene, pyrene, benzo(b)fluoranthene, phenanthrene, benzo(a)pyrene, chrysene, benzo(a)anthracene, benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene, benzo(g,h,i)perylene, dibenzo(a,h)anthracene, and anthracene. Naphthalene, acenaphthene, acenaphthylene, and fluorene were consistently at the lowest concentrations in each sample. Concentrations of the PAH compounds showed variable correlation. Concentrations of PAH compounds with higher molecular weights typically show a higher degree of correlation with other PAH compounds of higher molecular weight, whereas PAH compounds with lower molecular weights tended to show a lower degree of correlation with all other PAH compounds. These differences indicate that high and low molecular-weight PAHs behave differentl y once released into the environment. Concentrations of individual PAH compounds in soils typically varied by at least three orders of magnitude across the city and varied by more than an order of magnitude over a distance of about 1,000 feet. Concentrations of a given PAH in ambient surface soils are affected by a variety of site-specific factors, and may be affected by proximity to industrial areas. Concentrations of a given PAH in ambient surface soils did not appear to be affected the organic carbon content of the soil, proximity to non-industrial land use, or proximity to a roadway. The concentration of the different PAH compounds in ambient surface soils appears to be affected by the propensity for the PAH compound to be in the vapor or particulate phase in the atmosphere. Lower molecular-weight PAH compounds, which are primarily in the vapor phase in the atmosphere, were detected in lower concentrations in the surface soils. Higher molecular-weight PAH compounds, which are present primarily in the particulate phase in the atmosphere, tended to be in higher concentrations in the surface soils. The apparent effect of the PAH phase in the atmosphere on the concentration of a PAH in ambient surface soils indicates that atmospheric settling of particulate matter is an important source of the PAH compounds in ambient surface soils in Chicago. The distribution of PAH compounds within the city was complex. Comparatively high concentrations were detected near Lake Michigan in the northern part of the city, in much of the western part of the city, and in isolated areas in the southern part of the city. Concentrations were lower in much of the northwestern, south-central, southwestern, and far southern parts of the city. The arithmetic mean concentration of arsenic, mercury, calcium, magnesium, phosphorus, copper, molybdenum, zinc, and selenium was from 2 to 6 times higher in ambient surface soils in the city of Chicago than in soils from surrounding agricultural areas. The arithmetic mean concentration of lead in Chicago soils was about 20 times higher. Concentrations of calcium and magnesium above those of surrounding agricultural areas appear to be related to the effects of dolomite bedrock on the chemical composition of the soil. Elevated concentrations of the remaining elements listed above indicate a potential anthropogenic source(s) of these elements in Chicago soils.

  6. The impact of climatic and non-climatic factors on land surface temperature in southwestern Romania

    NASA Astrophysics Data System (ADS)

    Roşca, Cristina Florina; Harpa, Gabriela Victoria; Croitoru, Adina-Eliza; Herbel, Ioana; Imbroane, Alexandru Mircea; Burada, Doina Cristina

    2017-11-01

    Land surface temperature is one of the most important parameters related to global warming. It depends mainly on soil type, discontinuous vegetation cover, or lack of precipitation. The main purpose of this paper is to investigate the relationship between high LST, synoptic conditions and air masses trajectories, vegetation cover, and soil type in one of the driest region in Romania. In order to calculate the land surface temperature and normalized difference vegetation index, five satellite images of LANDSAT missions 5 and 7, covering a period of 26 years (1986-2011), were selected, all of them collected in the month of June. The areas with low vegetation density were derived from normalized difference vegetation index, while soil types have been extracted from Corine Land Cover database. HYSPLIT application was employed to identify the air masses origin based on their backward trajectories for each of the five study cases. Pearson, logarithmic, and quadratic correlations were used to detect the relationships between land surface temperature and observed ground temperatures, as well as between land surface temperature and normalized difference vegetation index. The most important findings are: strong correlation between land surface temperature derived from satellite images and maximum ground temperature recorded in a weather station located in the area, as well as between areas with land surface temperature equal to or higher than 40.0 °C and those with lack of vegetation; the sandy soils are the most prone to high land surface temperature and lack of vegetation, followed by the chernozems and brown soils; extremely severe drought events may occur in the region.

  7. Carbon sequestration in a surface flow constructed wetland after 12 years of swine wastewater treatment.

    PubMed

    Reddy, Gudigopuram B; Raczkowski, Charles W; Cyrus, Johnsely S; Szogi, Ariel

    2016-01-01

    Constructed wetlands used for the treatment of swine wastewater may potentially sequester significant amounts of carbon. In past studies, we evaluated the treatment efficiency of wastewater in a marsh-pond-marsh design wetland system. The functionality of this system was highly dependent on soil carbon content and organic matter turnover rate. To better understand system performance and carbon dynamics, we measured plant dry matter, decomposition rates and soil carbon fractions. Plant litter decomposition rate was 0.0052 g day(-1) (±0.00119 g day(-1)) with an estimated half-life of 133 days. The detritus layer accumulated over the soil surface had much more humin than other C fractions. In marsh areas, soil C extracted with NaOH had four to six times higher amounts of humic acid, fulvic acid and humin than soil C extracted by cold and hot water, HCl/HF, and Na pyruvate. In the pond area, humic acid, fulvic acid and humin content were two to four times lower than in the marsh area. More soil C and N was found in the marsh area than in the pond area. These wetlands proved to be large sinks for stable C forms.

  8. Soil fertility in deserts: a review on the influence of biological soil crusts and the effect of soil surface disturbance on nutrient inputs and losses

    USGS Publications Warehouse

    Reynolds, R.; Phillips, S.; Duniway, M.; Belnap, J.

    2003-01-01

    Sources of desert soil fertility include parent material weathering, aeolian deposition, and on-site C and N biotic fixation. While parent materials provide many soil nutrients, aeolian deposition can provide up to 75% of plant-essential nutrients including N, P, K, Mg, Na, Mn, Cu, and Fe. Soil surface biota are often sticky, and help retain wind-deposited nutrients, as well as providing much of the N inputs. Carbon inputs are from both plants and soil surface biota. Most desert soils are protected by cyanobacterial-lichen-moss soil crusts, chemical crusts and/or desert pavement. Experimental disturbances applied in US deserts show disruption of soil surfaces result in decreased N and C inputs from soil biota by up to 100%. The ability to glue aeolian deposits in place is compromised, and underlying soils are exposed to erosion. The ability to withstand wind increases with biological and physical soil crust development. While most undisturbed sites show little sediment production, disturbance by vehicles or livestock produce up to 36 times more sediment production, with soil movement initiated at wind velocities well below commonly-occurring wind speeds. Soil fines and flora are often concentrated in the top 3 mm of the soil surface. Winds across disturbed areas can quickly remove this material from the soil surface, thereby potentially removing much of current and future soil fertility. Thus, disturbances of desert soil surfaces can both reduce fertility inputs and accelerate fertility losses.

  9. SORPTION OF 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN FROM WATER BY SURFACE SOILS

    EPA Science Inventory

    The sorption of l4C-labeled 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) from water by two uncontaminated surface soils from the Times Beach, MO, area was evalu- ated by using batch shake testing. Sorption isotherm plots for the soil with the lower fraction organic carbon (f,) wer...

  10. Scratching technique for the study and analysis of soil surface abrasion mechanism

    NASA Astrophysics Data System (ADS)

    Ta, Wanquan

    2007-11-01

    Aeolian abrasion is the most fundamental and active surface process that takes place in arid and semi-arid environments. Its nature is a wear process for wind blown grains impinging on a soil or sediment surface, which causes particles and aggregates to fracture from the soil surface through a series of plastic and brittle cracking deformation such as cutting, ploughing and brittle fracturing. Using a Universal Micro-Tribometer (UMT), a scratching test was carried out on six soil surfaces (sandy soil, sand loam, silt loam, loam, silt clay loam, and silt clay). The results indicate that traces of normal and tangential force vs. time show a jagged curve, which can reflect the plastic deformation and brittle fracturing of aggregates and particles of various sizes fractured from the soil surfaces. The jagged curve peaks, and the area enclosed underneath, may represent the bonding forces and bonding energies of some aggregates and grains on the soil surface, respectively. Connecting the scratching test with an impact abrasion experiment furthermore demonstrates that soil surface abrasion rates are proportional to the square of speeds of impacting particles and to the 2.6 power of mean soil grain size, and inversely proportional to the 1.5 power of specific surface abrasive energy or to the 1.7 power of specific surface hardness.

  11. Heavy metal contamination of surface soil in electronic waste dismantling area: site investigation and source-apportionment analysis.

    PubMed

    Jinhui Li; Huabo Duan; Pixing Shi

    2011-07-01

    The dismantling and disposal of electronic waste (e-waste) in developing countries is causing increasing concern because of its impacts on the environment and risks to human health. Heavy-metal concentrations in the surface soils of Guiyu (Guangdong Province, China) were monitored to determine the status of heavy-metal contamination on e-waste dismantling area with a more than 20 years history. Two metalloids and nine metals were selected for investigation. This paper also attempts to compare the data among a variety of e-waste dismantling areas, after reviewing a number of heavy-metal contamination-related studies in such areas in China over the past decade. In addition, source apportionment of heavy metal in the surface soil of these areas has been analysed. Both the MSW open-burning sites probably contained invaluable e-waste and abandoned sites formerly involved in informal recycling activities are the new sources of soil-based environmental pollution in Guiyu. Although printed circuit board waste is thought to be the main source of heavy-metal emissions during e-waste processing, requirement is necessary to soundly manage the plastic separated from e-waste, which mostly contains heavy metals and other toxic substances.

  12. Exploring the Influence of Topography on Belowground C Processes Using a Coupled Hydrologic-Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Davis, K. J.; Eissenstat, D. M.; Kaye, J. P.; Duffy, C.; Yu, X.; He, Y.

    2014-12-01

    Belowground carbon processes are affected by soil moisture and soil temperature, but current biogeochemical models are 1-D and cannot resolve topographically driven hill-slope soil moisture patterns, and cannot simulate the nonlinear effects of soil moisture on carbon processes. Coupling spatially-distributed physically-based hydrologic models with biogeochemical models may yield significant improvements in the representation of topographic influence on belowground C processes. We will couple the Flux-PIHM model to the Biome-BGC (BBGC) model. Flux-PIHM is a coupled physically-based land surface hydrologic model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Because PIHM is capable of simulating lateral water flow and deep groundwater, Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. The coupled Flux-PIHM-BBGC model will be tested at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). The abundant observations, including eddy covariance fluxes, soil moisture, groundwater level, sap flux, stream discharge, litterfall, leaf area index, above ground carbon stock, and soil carbon efflux, make SSHCZO an ideal test bed for the coupled model. In the coupled model, each Flux-PIHM model grid will couple a BBGC cell. Flux-PIHM will provide BBGC with soil moisture and soil temperature information, while BBGC provides Flux-PIHM with leaf area index. Preliminary results show that when Biome- BGC is driven by PIHM simulated soil moisture pattern, the simulated soil carbon is clearly impacted by topography.

  13. The Aggregate Description of Semi-Arid Vegetation with Precipitation-Generated Soil Moisture Heterogeneity

    NASA Technical Reports Server (NTRS)

    White, Cary B.; Houser, Paul R.; Arain, Altaf M.; Yang, Zong-Liang; Syed, Kamran; Shuttleworth, W. James

    1997-01-01

    Meteorological measurements in the Walnut Gulch catchment in Arizona were used to synthesize a distributed, hourly-average time series of data across a 26.9 by 12.5 km area with a grid resolution of 480 m for a continuous 18-month period which included two seasons of monsoonal rainfall. Coupled surface-atmosphere model runs established the acceptability (for modelling purposes) of assuming uniformity in all meteorological variables other than rainfall. Rainfall was interpolated onto the grid from an array of 82 recording rain gauges. These meteorological data were used as forcing variables for an equivalent array of stand-alone Biosphere-Atmosphere Transfer Scheme (BATS) models to describe the evolution of soil moisture and surface energy fluxes in response to the prevalent, heterogeneous pattern of convective precipitation. The calculated area-average behaviour was compared with that given by a single aggregate BATS simulation forced with area-average meteorological data. Heterogeneous rainfall gives rise to significant but partly compensating differences in the transpiration and the intercepted rainfall components of total evaporation during rain storms. However, the calculated area-average surface energy fluxes given by the two simulations in rain-free conditions with strong heterogeneity in soil moisture were always close to identical, a result which is independent of whether default or site-specific vegetation and soil parameters were used. Because the spatial variability in soil moisture throughout the catchment has the same order of magnitude as the amount of rain failing in a typical convective storm (commonly 10% of the vegetation's root zone saturation) in a semi-arid environment, non-linearitv in the relationship between transpiration and the soil moisture available to the vegetation has limited influence on area-average surface fluxes.

  14. Post-fire soil nutrient redistribution in northern Chihuahuan Desert

    NASA Astrophysics Data System (ADS)

    Wang, G.; Li, J. J.; Ravi, S.; Sankey, J. B.; Duke, D.; Gonzales, H. B.; Van Pelt, S.

    2016-12-01

    The desert grassland in the southwestern US has undergone dramatic land degradation with woody shrub encroachment over the last 150 years. Wind erosion and periodic fires are major drivers of vegetation dynamics in these ecosystems. Due to climate change and anthropogenic disturbances, many drylands are undergoing changes in fire regimes, which can largely alter the nutrient loss rate as well as the soil resource heterogeneity. In this study, we used manipulative field experiments, laboratory and geostatistical analyses to investigate the distribution of fertile islands, nutrient loss rate and spatial variation. Replicated burned and control experimental plots were set up in a desert grassland in northern Chihuahuan Desert in March 2016. Windblown sediments were monitored by multiple MWAC sediment collectors on each plot. Surface soil samples, with their locations accurately recorded (i.e., under shrub, under grass, and bare interspace) were collected twice per year in spring and again in summer after the experimental setup. Our preliminary results show that the spatial heterogeneity of soil C and N in the burned plots has changed notably compared to the control plots. Our results further demonstrated that areas with burned shrubs is most vulnerable to wind erosion, therefore the soil nutrient loss is most significant, almost five times of the nutrient loss rate of bare areas. Interspace bare areas is in the lowest micro-land and some of the surface has caliche, which makes the surface resistant to wind erosion. And areas with burned grass receive the lightest wind erosion and nutrient loss, around one third of the erosion on bare areas, because burned grasses still cover the surface and the dead bodies can eliminate wind erosion to a large extent. Hence, periodic fire in desert grassland favors the evenness distribution of soil nutrients and can retard the shrub encroachment process.

  15. Automated mapping of impervious surfaces in urban and suburban areas: Linear spectral unmixing of high spatial resolution imagery

    NASA Astrophysics Data System (ADS)

    Yang, Jian; He, Yuhong

    2017-02-01

    Quantifying impervious surfaces in urban and suburban areas is a key step toward a sustainable urban planning and management strategy. With the availability of fine-scale remote sensing imagery, automated mapping of impervious surfaces has attracted growing attention. However, the vast majority of existing studies have selected pixel-based and object-based methods for impervious surface mapping, with few adopting sub-pixel analysis of high spatial resolution imagery. This research makes use of a vegetation-bright impervious-dark impervious linear spectral mixture model to characterize urban and suburban surface components. A WorldView-3 image acquired on May 9th, 2015 is analyzed for its potential in automated unmixing of meaningful surface materials for two urban subsets and one suburban subset in Toronto, ON, Canada. Given the wide distribution of shadows in urban areas, the linear spectral unmixing is implemented in non-shadowed and shadowed areas separately for the two urban subsets. The results indicate that the accuracy of impervious surface mapping in suburban areas reaches up to 86.99%, much higher than the accuracies in urban areas (80.03% and 79.67%). Despite its merits in mapping accuracy and automation, the application of our proposed vegetation-bright impervious-dark impervious model to map impervious surfaces is limited due to the absence of soil component. To further extend the operational transferability of our proposed method, especially for the areas where plenty of bare soils exist during urbanization or reclamation, it is still of great necessity to mask out bare soils by automated classification prior to the implementation of linear spectral unmixing.

  16. Assessment of Potential Location of High Arsenic Contamination Using Fuzzy Overlay and Spatial Anisotropy Approach in Iron Mine Surrounding Area

    PubMed Central

    Wirojanagud, Wanpen; Srisatit, Thares

    2014-01-01

    Fuzzy overlay approach on three raster maps including land slope, soil type, and distance to stream can be used to identify the most potential locations of high arsenic contamination in soils. Verification of high arsenic contamination was made by collection samples and analysis of arsenic content and interpolation surface by spatial anisotropic method. A total of 51 soil samples were collected at the potential contaminated location clarified by fuzzy overlay approach. At each location, soil samples were taken at the depth of 0.00-1.00 m from the surface ground level. Interpolation surface of the analysed arsenic content using spatial anisotropic would verify the potential arsenic contamination location obtained from fuzzy overlay outputs. Both outputs of the spatial surface anisotropic and the fuzzy overlay mapping were significantly spatially conformed. Three contaminated areas with arsenic concentrations of 7.19 ± 2.86, 6.60 ± 3.04, and 4.90 ± 2.67 mg/kg exceeded the arsenic content of 3.9 mg/kg, the maximum concentration level (MCL) for agricultural soils as designated by Office of National Environment Board of Thailand. It is concluded that fuzzy overlay mapping could be employed for identification of potential contamination area with the verification by surface anisotropic approach including intensive sampling and analysis of the substances of interest. PMID:25110751

  17. Spatial glyphosate and AMPA redistribution on the soil surface driven by sediment transport processes - A flume experiment.

    PubMed

    Bento, Célia P M; Commelin, Meindert C; Baartman, Jantiene E M; Yang, Xiaomei; Peters, Piet; Mol, Hans G J; Ritsema, Coen J; Geissen, Violette

    2018-03-01

    This study investigates the influence of small-scale sediment transport on glyphosate and AMPA redistribution on the soil surface and on their off-site transport during water erosion events. Both a smooth surface (T1) and a surface with "seeding lines on the contour" (T2) were tested in a rainfall simulation experiment using soil flumes (1 × 0.5 m) with a 5% slope. A dose of 178 mg m -2 of a glyphosate-based formulation (CLINIC ® ) was applied on the upper 0.2 m of the flumes. Four 15-min rainfall events (RE) with 30-min interval in between and a total rainfall intensity of 30 mm h -1 were applied. Runoff samples were collected after each RE in a collector at the flume outlet. At the end of the four REs, soil and sediment samples were collected in the application area and in four 20 cm-segments downslope of the application area. Samples were collected according to the following visually distinguished soil surface groups: light sedimentation (LS), dark sedimentation (DS), background and aggregates. Results showed that runoff, suspended sediment and associated glyphosate and AMPA off-site transport were significantly lower in T2 than in T1. Glyphosate and AMPA off-site deposition was higher for T2 than for T1, and their contents on the soil surface decreased with increasing distance from the application area for all soil surface groups and in both treatments. The LS and DS groups presented the highest glyphosate and AMPA contents, but the background group contributed the most to the downslope off-site deposition. Glyphosate and AMPA off-target particle-bound transport was 9.4% (T1) and 17.8% (T2) of the applied amount, while water-dissolved transport was 2.8% (T1) and 0.5% (T2). Particle size and organic matter influenced the mobility of glyphosate and AMPA to off-target areas. These results indicate that the pollution risk of terrestrial and aquatic environments through runoff and deposition can be considerable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Sorption of N2 and EGME vapors on some soils, clays, and mineral oxides and determination of sample surface areas by use of sorption data

    USGS Publications Warehouse

    Chiou, C.T.; Rutherford, D.W.; Manes, M.

    1993-01-01

    Vapor sorption isotherms of ethylene glycol monoethyl ether (EGME) at room temperature and isotherms of N2 gas at liquid nitrogen temperature were determined for various soils and minerals. The N2 monolayer capacities [Qm (N2)] were calculated from the BET equation and used to determine the surface areas. To examine whether EGME is an appropriate adsorbate for determination of surface areas, the apparent EGME monolayer capacities [Qm (EGME)ap] were also obtained by use of the BET equation. For sand, aluminum oxide, kaolinite, hematite, and synthetic hydrous iron oxide, which are relatively free of organic impurity and expanding/solvating minerals, the Qm (EGME)ap values are in good conformity with the corresponding Qm (N2) values and would give surface areas consistent with BET (N2) values. For other samples (Woodburn soil, a natural hydrous iron oxide, illite, and montmorillonite), the Qm (EGME)ap values overestimate the Qm (N2) values from a moderate to a large extent, depending on the sample. A high-organic-content peat shows a very small BET (N2) surface area; the EGME/ peat isotherm is linear and does not yield a calculation of the surface area. Large discrepancies between results of the two methods for some samples are attributed to the high solubility of polar EGME in soil organic matter and/ or to the cation solvation of EGME with solvating clays. The agreement for other samples is illustrative of the consistency of the BET method when different adsorbates are used, so long as they do not exhibit bulk penetration and/or cation solvation. ?? 1993 American Chemical Society.

  19. Visually assessing the level of development and soil surface stability of cyanobacterially dominated biological soil crusts

    USGS Publications Warehouse

    Belnap, J.; Phillips, S.L.; Witwicki, D.L.; Miller, M.E.

    2008-01-01

    Biological soil crusts (BSCs) are an integral part of dryland ecosystems and often included in long-term ecological monitoring programs. Estimating moss and lichen cover is fairly easy and non-destructive, but documenting cyanobacterial level of development (LOD) is more difficult. It requires sample collection for laboratory analysis, which causes soil surface disturbance. Assessing soil surface stability also requires surface disturbance. Here we present a visual technique to assess cyanobacterial LOD and soil surface stability. We define six development levels of cyanobacterially dominated soils based on soil surface darkness. We sampled chlorophyll a concentrations (the most common way of assessing cyanobacterial biomass), exopolysaccharide concentrations, and soil surface aggregate stability from representative areas of each LOD class. We found that, in the laboratory and field, LOD classes were effective at predicting chlorophyll a soil concentrations (R2=68-81%), exopolysaccharide concentrations (R2=71%), and soil aggregate stability (R2=77%). We took representative photos of these classes to construct a field guide. We then tested the ability of field crews to distinguish these classes and found this technique was highly repeatable among observers. We also discuss how to adjust this index for the different types of BSCs found in various dryland regions.

  20. Assessment of Soil-Gas, Surface-Water, and Soil Contamination at the Installation Railhead, Fort Gordon, Georgia, 2008-2009

    USGS Publications Warehouse

    Landmeyer, James E.; Harrelson, Larry G.; Ratliff, W. Hagan; Wellborn, John B.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, assessed soil gas, surface water, and soil for contaminants at the Installation Railhead (IR) at Fort Gordon, Georgia, from October 2008 to September 2009. The assessment included delineation of organic contaminants present in soil-gas samples beneath the IR, and in a surface-water sample collected from an unnamed tributary to Marcum Branch in the western part of the IR. Inorganic contaminants were determined in a surface-water sample and in soil samples. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samples collected within a localized area on the western part of the IR contained total petroleum hydrocarbons; benzene, toluene, ethylbenzene, and total xylenes (referred to as BTEX); and naphthalene above the method detection level. These soil-gas samples were collected where buildings had previously stood. Soil-gas samples collected within a localized area contained perchloroethylene (PCE). These samples were collected where buildings 2410 and 2405 had been. Chloroform and toluene were detected in a surface-water sample collected from an unnamed tributary to Marcum Branch but at concentrations below the National Primary Drinking Water Standard maximum contaminant level (MCL) for each compound. Iron was detected in the surface-water sample at 686 micrograms per liter (ug/L) and exceeded the National Secondary Drinking Water Standard MCL for iron. Metal concentrations in composite soil samples collected at three locations from land surface to a depth of 6 inches did not exceed the U.S. Environmental Protection Agency Regional Screening Levels for industrial soil.

  1. Biological soil crusts in deserts: A short review of their role in soil fertility, stabilization, and water relations

    USGS Publications Warehouse

    Belnap, Jayne

    2003-01-01

    Cyanobacteria and cyanolichens dominate most desert soil surfaces as the major component of biological soil crusts (BSC). BSCs contribute to soil fertility in many ways. BSC can increase weathering of parent materials by up to 100 times. Soil surface biota are often sticky, and help retain dust falling on the soil surface; this dust provides many plant-essential nutrients including N, P, K, Mg, Na, Mn, Cu, and Fe. BSCs also provide roughened soil surfaces that slow water runoff and aid in retaining seeds and organic matter. They provide inputs of newly-fixed carbon and nitrogen to soils. They are essential in stabilizing soil surfaces by linking soil particles together with filamentous sheaths, enabling soils to resist both water and wind erosion. These same sheaths are important in keeping soil nutrients from becoming bound into plant-unavailable forms. Experimental disturbances applied in US deserts show soil surface impacts decrease N and C inputs from soil biota by up to 100%. The ability to hold aeolian deposits in place is compromised, and underlying soils are exposed to erosion. While most undisturbed sites show little sediment production, disturbance by vehicles or livestock produces up to 36 times more sediment production, with soil movement initiated at wind velocities well below commonly-occurring wind speeds. Winds across disturbed areas can quickly remove this material from the soil surface, thereby potentially removing much of current and future soil fertility. Thus, reduction in the cover of cyanophytes in desert soils can both reduce fertility inputs and accelerate fertility losses.

  2. [Effects of tillage practices on root spatial distribution and yield of spring wheat and pea in the dry land farming areas of central Gansu, China].

    PubMed

    Zhang, Ming Jun; Li, Ling Ling; Xie, Jun Hong; Peng, Zheng Kai; Ren, Jin Hu

    2017-12-01

    A field experiment was conducted to explore the mechanism of cultivation measures in affecting crop yield by investigating root distribution in spring wheat-pea rotation based on a long-term conservation tillage practices in a farming region of Gansu. The results showed that with the develo-pment of growth period, the total root length, root surface area of spring wheat and pea showed a consistent trend of increase after initial decrease and reached the maximum at flowering stage. Higher root distribution was found in the 0-10 cm soil layer at seedling and 10-30 cm soil layer at flowering and maturity stages in spring wheat, while in the field pea, higher root distribution was found in the 0-10 cm soil layer at seedling and maturity, and in the 10-30 cm soil layer at flowering stages. No tillage with straw mulching and plastic mulching increased the root length and root surface area. Compared with conventional tillage in spring wheat and field pea, root length increased by 35.9% to 92.6%, and root surface area increased by 43.2% to 162.4%, respectively. No tillage with straw mulching and plastic mulching optimized spring wheat and pea root system distribution, compared with conventional tillage, increased spring wheat and field pea root length and root surface area ratio at 0-10 cm depths at the seedling stage, the root distribution at deeper depths increased significantly at flowering and maturity stages, and no tillage with straw mulching increased root length and root surface area ratio by 3.3% and 9.7% respectively, in 30-80 cm soil layer at the flowering stage. The total root length, root surface area and yield had significantly positive correlation for spring wheat in each growth period, and the total root length and pea yield also had significant positive correlation. No tillage with straw mulching and plastic mulching boosted yield of spring wheat and pea by 23.4%-38.7% compared with the conventional tillage, and the water use efficiency was increased by 13.7%-28.5%. It was concluded that no-till farming and straw mulching (plastic) could increase crop root length and root surface area, optimize the spatial distribution of roots in the soil, enhance crop root layer absorption ability, so as to improve crop yield and water utilization.

  3. Soil erosion in mountainous areas: how far can we go?

    NASA Astrophysics Data System (ADS)

    Egli, Markus

    2017-04-01

    Erosion is the counter part of soil formation, is a natural process and cannot be completely impeded. With respect to soil protection, the term of tolerable soil erosion, having several definitions, has been created. Tolerable erosion is often equalled to soil formation or production. It is therefore crucial that we know the rates of soil formation when discussing sustainability of soil use and management. Natural rates of soil formation or production are determined by mineral weathering or transformation of parent material into soil, dust deposition and organic matter incorporation. In mountain areas where soil depth is a main limiting factor for soil productivity, the use and management of soils must consider how to preserve them from excessive depth loss and consequent degradation of their physical, chemical and biological properties. Even under natural conditions, landscape surfaces and soils are known to evolve in complex, non-linear ways over time. As a result, soil production and erosion change substantially with time. The fact that soil erosion and soil production processes are discontinuous over time is an aspect that is in most cases completely neglected. To conserve a given situation, tolerable values should take these dynamics into account. Measurements of long and short-term physical erosion rates, total denudation, weathering rates and soil production have recently become much more widely available through cosmogenic and fallout nuclide techniques. In addition to this, soil chronosequences deliver a precious insight into the temporal aspect of soil formation and production. Examples from mountainous and alpine areas demonstrate that soil production rates strongly vary as a function of time (with young soils and eroded surfaces having distinctly higher rates than old soils). Extensive erosion promotes rejuvenation of the surface and, therefore, accelerates chemical weathering and soil production - the resulting soil thickness will however be shallow. The comparison of soil production and erosion rates indicates that the present-day management of grassland soils in several alpine and mountain regions will lead in the long-term to very shallow soils (showing the characteristics of young soils). Shallow soils go along with high 'tolerable' erosion rates. It is, however, strongly doubtful whether this matches the deeper sense of sustainability.

  4. Limiting Factors for Agricultural Production and Differentiation of Soil Management in Romania

    NASA Astrophysics Data System (ADS)

    Ioana Moraru, Paula; Rusu, Teodor; Bogdan, Ileana; Ioan Pop, Adrian; Pop, Horia

    2017-04-01

    Romania's land area is 23,839,100 ha; 0.16% of the world's surface. Worldwide, Romania is ranked #83 for areal extent, and it consitutes 4.81% of the Europe's surface (ranked #12). Romania has 14,856,800 ha of agricultural land which represents 62.3% of the total surface; 0.65 ha per capita. At the national level, 72.5% and 27.5% of soils in Romania can be broadly classed as very poor and good/very good, respectively, based on intrinsic soil characteristics, climate, topography, and ground water. Romania has a specific geographical situation, namely: i) Romanian territory is located in the southeast portion of Central Europe at the cross roads of several high and low pressure centers that form regularly at the borders. The influence of these air masses is altered by the presence in the central regions of the Carpathian mountain chain resulting in a diverse climate with average annual rain fall amounts between 350 to 1,400 mm and average annual temperatures between 2 and 11.5°C. ii) At the national level, almost all soils in the international classification system are present in Romania; each soil type having specific properties and characteristics. iii) On approximately 12.5 million ha (7.5 million ha arable), soil fertility is adversely affected by erosion, acidity, low humus content, extreme texture (clay, sand), excessive moisture, chemical pollution etc. These natural and anthropogenic factors dramatically influence agricultural production. Furthermore, soil, climate, topography, etc. vary widely not only across the country, but also on smaller scales, even across fields within the same farm. In Steppe zone limitative climatic factors, which require differentiation towards soil management use, include: long periods of drought, high temperatures, high frequency winds (wind erosion in area of sands), low relative air humidity, and harsh frosts during winter. Negative phenomena most commonly encountered in this area are salinization, excess water, temporary deficit of rainfall, and poor to very poor supply of humus, phosphorus, and potassium. In Forest-Steppe zone limiting factors of the area include: drought, erosion, temporary excessive moisture, soil compaction, slope, exposition, groundwater depth, occurrence of white frost period, and early/late frosts; climate is also highly variable from one sub-area to another. Irrigation and water conservation measures in the soil have a very important role in the forest steppe. Most lands in the forest steppe are situated on slopes so the tillage system must include anti-erosion agrotechnics. Furthermore, finding the optimal timing of tillage is very important for avoiding secondary compaction of the soil. In Forest area limiting factors of the area include mixed relief, reduced field surface, excess surface moisture, lower soil fertility compared to previously studied areas, soil erosion, landslides, primary and secondary soil compaction, soil acidity, pronounced diverse spectrum of weeds and vegetative development opportunities compared to previous areas. Harnessing the sustainable arable lands on slopes and their conservation implies that the organization of the territory and differentiated soil management will achieve the following: i) cultivation of an assortment of plants suitable for the purposes and conditions offered by the slopes and design of crop rotations with an anti-erosion role; ii) use of anti-erosion culture systems on slopes, level curve direction in strips, grassed strips and arable terraces; iii) application of differentiated soil management elements, respecting regional planning projects; iv) execution of soil tillage on the general direction of level curves; v) adaptation of agro-components such as: fertilization, integrated control of weeds (especially herbicide application), and the maintenance, mechanization, and harvesting of the specific land. Acknowledgments This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0884.

  5. Volatilization of pesticides from the bare soil surface: evaluation of the humidity effect.

    PubMed

    Schneider, Martina; Endo, Satoshi; Goss, Kai-Uwe

    2013-01-01

    Volatilization of pesticides from soils under dry conditions (water content below the permanent wilting point) can be significantly influenced by sorption to hydrated mineral surfaces. This sorption process strongly depends on the water activity, expressed as equilibrium relative humidity in the pore space of the soil, and on the available surface area of the hydrated minerals. In this study, the influence of different humidity regimes on the volatilization of two pesticides (triallate and trifluralin) was demonstrated with a bench-scale wind tunnel system that allowed the establishment of well controlled humidity conditions within the soil. In the experiment starting with very dry conditions, increasing the relative humidity in the adjacent air from 60 to 85% resulted in an up to 8 times higher volatilization rate of the pesticides. An additional strong increase in volatilization (up to 3 times higher) was caused by a simulated rain event, which eliminates all sorption sites associated to mineral surfaces. In agreement with this interpretation, the comparison of two soils suggested that mineral surface area was the soil property that governs the volatilization under dry conditions, whereas soil organic matter was the controlling variable under wet conditions. In contrast to expectations, the use of a novel capsulated suspension for triallate showed the same humidity effects and no substantially lower volatilization rates in comparison to the regular formulation. This study demonstrated that humidity effects on pesticide volatilization can be interpreted via the mechanism of sorption to mineral surfaces under dry conditions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Soil erosion in humid regions: a review

    Treesearch

    Daniel J. Holz; Karl W.J. Williard; Pamela J. Edwards; Jon E. Schoonover

    2015-01-01

    Soil erosion has significant implications for land productivity and surface water quality, as sediment is the leading water pollutant worldwide. Here, erosion processes are defined. The dominant factors influencing soil erosion in humid areas are reviewed, with an emphasis on the roles of precipitation, soil moisture, soil porosity, slope steepness and length,...

  7. Investigation of off-site airborne transport of lead from a superfund removal action site using lead isotope ratios and concentrations

    USGS Publications Warehouse

    Pribil, Michael J.; Maddaloni, Mark A.; Staiger, Kimberly; Wilson, Eric; Magriples, Nick; Ali, Mustafa; Santella, Dennis

    2014-01-01

    Lead (Pb) concentration and Pb isotopic composition of surface and subsurface soil samples were used to investigate the potential for off-site air transport of Pb from a former white Pb processing facility to neighboring residential homes in a six block area on Staten Island, NY. Surface and subsurface soil samples collected on the Jewett White Pb site were found to range from 1.122 to 1.138 for 206Pb/207Pb and 2.393 to 2.411 for 208Pb/207Pb. The off-site surface soil samples collected from residential backyards, train trestle, near site grass patches and background areas varied from 1.144 to 1.196 for 206Pb/207Pb and 2.427 to 2.464 for 208Pb/207Pb. Two soil samples collected along Richmond Terrace, where Jewett site soils accumulated after major rain events, varied from 1.136 to 1.147 for 206Pb/207Pb and 2.407 to 2.419 for 208Pb/207Pb. Lead concentration for on-site surface soil samples ranged from 450 to 8000 ug/g, on-site subsurface soil samples ranged from 90,000 to 240,000 ug/g and off-site samples varied from 380 to 3500 ug/g. Lead concentration and isotopic composition for the Staten Island off-site samples were similar to previously published data for other northeastern US cities and reflect re-suspension and re-mobilization of local accumulated Pb. The considerable differences in both the Pb isotopic composition and Pb concentration of on-site and off-site samples resulted in the ability to geochemically trace the transport of particulate Pb. Data in this study indicate minimal off-site surface transport of Pb from the Jewett site into the neighboring residential area.

  8. A study of variation characteristics of Gobi broadband emissivity based on field observational experiments in northwestern China

    NASA Astrophysics Data System (ADS)

    Zheng, Zhi-yuan; Wei, Zhi-gang; Wen, Zhi-ping; Dong, Wen-jie; Li, Zhen-chao; Wen, Xiao-hang; Zhu, Xian; Chen, Chen; Hu, Shan-shan

    2018-02-01

    Land surface emissivity is a significant variable in energy budgets, land cover assessments, and environment and climate studies. However, the assumption of an emissivity constant is being used in Gobi broadband emissivity (GbBE) parameterization scheme in numerical models because of limited knowledge surrounding the spatiotemporal variation characteristics of GbBE. To address this issue, we analyzed the variation characteristics of GbBE and possible impact factor-surface soil moisture based on long-term continuous and high temporal resolution field observational experiments over a typical Gobi underlying surface in arid and semiarid areas in northwestern China. The results indicate that GbBE has obvious daily and diurnal variation features, especially diurnal cycle characteristics. The multi-year average of the daily average of GbBE is in the range of 0.932 to 0.970 with an average of 0.951 ± 0.008, and the average diurnal GbBE is in the range of 0.880 to 0.940 with an average of 0.906 ± 0.018. GbBE varies with surface soil moisture content. We observed a slight decrease in GbBE with an increase in soil moisture, although this change was not very obvious because of the low soil moisture in this area. Nevertheless, we think that soil moisture must be one of the most significant impact factors on GbBE in arid and semiarid areas. Soil moisture must be taken into account into the parameterization schemes of bare soil broadband emissivity in land surface models. Additional field experiments and studies should be carried out in order to clarify this issue.

  9. Stream Flow Prediction by Remote Sensing and Genetic Programming

    NASA Technical Reports Server (NTRS)

    Chang, Ni-Bin

    2009-01-01

    A genetic programming (GP)-based, nonlinear modeling structure relates soil moisture with synthetic-aperture-radar (SAR) images to present representative soil moisture estimates at the watershed scale. Surface soil moisture measurement is difficult to obtain over a large area due to a variety of soil permeability values and soil textures. Point measurements can be used on a small-scale area, but it is impossible to acquire such information effectively in large-scale watersheds. This model exhibits the capacity to assimilate SAR images and relevant geoenvironmental parameters to measure soil moisture.

  10. Climate-driven reduction in soil loss due to the dynamic role of vegetation

    NASA Astrophysics Data System (ADS)

    Constantine, J. A.; Ciampalini, R.; Walker-Springett, K.; Hales, T. C.; Ormerod, S.; Gabet, E. J.; Hall, I. R.

    2016-12-01

    Simulations of 21st century climate change predict increases in seasonal precipitation that may lead to widespread soil loss and reduced soil carbon stores by increasing the likelihood of surface runoff. Vegetation may counteract this increase through its dynamic response to climate change, possibly mitigating any impact on soil erosion. Here, we document for the first time the potential for vegetation to prevent widespread soil loss by surface-runoff mechanisms (i.e., rill and inter-rill erosion) by implementing a process-based soil erosion model across catchments of Great Britain with varying land-cover, topographic, and soil characteristics. Our model results reveal that, even under a significantly wetter climate, warmer air temperatures can limit soil erosion across areas with permanent vegetation cover because of its role in enhancing primary productivity, which improves leaf interception, soil infiltration-capacity, and the erosive resistance of soil. Consequently, any increase in air temperature associated with climate change will increase the threshold change in rainfall required to accelerate soil loss, and rates of soil erosion could therefore decline by up to 50% from 2070-2099 compared to baseline values under the IPCC-defined medium-emissions scenario SRES A1B. We conclude that enhanced primary productivity due to climate change can introduce a negative-feedback mechanism that limits soil loss by surface runoff as vegetation-induced impacts on soil hydrology and erodibility offset precipitation increases, highlighting the need to expand areas of permanent vegetation cover to reduce the potential for climate-driven soil loss.

  11. Mineral formation and organo-mineral controls on the bioavailability of carbon at the terrestrial-aquatic interface

    NASA Astrophysics Data System (ADS)

    Rod, K. A.; Smith, A. P.; Renslow, R.

    2016-12-01

    Recent evidence highlights the importance of organo-mineral interactions in regulating the source or sink capacity of soil. High surface area soils, such as allophane-rich or clay-rich soils, retain organic matter (OM) via sorption to mineral surfaces which can also contribute physical isolation in interlayer spaces. Despite the direct correlation between mineral surfaces and OM accumulation, the pedogenic processes controlling the abundance of reactive surface areas and their distribution in the mineral matrix remains unclear. As global soil temperatures rise, the dissolution of primary minerals and formation of new secondary minerals may be thermodynamically favored as part of soil weathering process. Newly formed minerals can supply surfaces for organo-metallic bonding and may, therefore, stabilize OM by surface bonding and physical exclusion. This is especially relevant in environments that intersect terrestrial and aquatic systems, such as the capillary fringe zone in riparian ecosystems. To test the mechanisms of mineral surface area protection of OM, we facilitated secondary precipitation of alumino-silicates in the presence of OM held at two different temperatures in natural Nisqually River sediments (Mt Rainier, WA). This was a three month reaction intended to simulate early pedogenesis. To tease out the influence of mineral surface area increase during pedogenesis, we incubated the sediments at two different soil moisture contents to induce biodegradation. We measured OM desorption, biodegradation, and the molecular composition of mineral-associated OM both prior to and following the temperature manipulation. To simulate the saturation of capillary fringe sediment and associated transport and reaction of OM, column experiments were conducted using the reacted sediments. More co-precipitation was observed in the 20°C solution compared to the 4°C reacted solution suggesting that warming trends alter mineral development and may remove more OM from solution. The results from the static experiments will be used to model and predict the impacts of mineral sorption and biological activity on OM persistence in the context of dynamic saturation conditions and heterogeneous material properties.

  12. Microwave remote sensing of soil water content

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Ulaby, F. T.

    1975-01-01

    Microwave remote sensing of soils to determine water content was considered. A layered water balance model was developed for determining soil water content in the upper zone (top 30 cm), while soil moisture at greater depths and near the surface during the diurnal cycle was studied using experimental measurements. Soil temperature was investigated by means of a simulation model. Based on both models, moisture and temperature profiles of a hypothetical soil were generated and used to compute microwave soil parameters for a clear summer day. The results suggest that, (1) soil moisture in the upper zone can be predicted on a daily basis for 1 cm depth increments, (2) soil temperature presents no problem if surface temperature can be measured with infrared radiometers, and (3) the microwave response of a bare soil is determined primarily by the moisture at and near the surface. An algorithm is proposed for monitoring large areas which combines the water balance and microwave methods.

  13. A surface fuel classification for estimating fire effects

    Treesearch

    Duncan C. Lutes; Robert E. Keane; John F. Caratti

    2009-01-01

    We present a classification of duff, litter, fine woody debris, and logs that can be used to stratify a project area into sites with fuel loading that yield significantly different emissions and maximum soil surface temperature. Total particulate matter smaller than 2.5?m in diameter and maximum soil surface temperature were simulated using the First...

  14. Hydrologic conditions controlling runoff generation immediately after wildfire

    USGS Publications Warehouse

    Ebel, Brian A.; Moody, John A.; Martin, Deborah A.

    2012-01-01

    We investigated the control of postwildfire runoff by physical and hydraulic properties of soil, hydrologic states, and an ash layer immediately following wildfire. The field site is within the area burned by the 2010 Fourmile Canyon Fire in Colorado, USA. Physical and hydraulic property characterization included ash thickness, particle size distribution, hydraulic conductivity, and soil water retention curves. Soil water content and matric potential were measured indirectly at several depths below the soil surface to document hydrologic states underneath the ash layer in the unsaturated zone, whereas precipitation and surface runoff were measured directly. Measurements of soil water content showed that almost no water infiltrated below the ash layer into the near-surface soil in the burned site at the storm time scale (i.e., minutes to hours). Runoff generation processes were controlled by and highly sensitive to ash thickness and ash hydraulic properties. The ash layer stored from 97% to 99% of rainfall, which was critical for reducing runoff amounts. The hydrologic response to two rain storms with different rainfall amounts, rainfall intensity, and durations, only ten days apart, indicated that runoff generation was predominantly by the saturation-excess mechanism perched at the ash-soil interface during the first storm and predominantly by the infiltration-excess mechanism at the ash surface during the second storm. Contributing area was not static for the two storms and was 4% (saturation excess) to 68% (infiltration excess) of the catchment area. Our results showed the importance of including hydrologic conditions and hydraulic properties of the ash layer in postwildfire runoff generation models.

  15. Identification of sources of environmental lead in South Africa from surface soil geochemical maps.

    PubMed

    de Villiers, Stephanie; Thiart, Christien; Basson, Nicholas C

    2010-10-01

    The bioavailability of lead in soil is of considerable importance to human and animal health. Although selective extraction has been explored as a more appropriate technique than total heavy metal analysis in environmental pollution assessments, such studies remain scarce globally and are almost non-existent in developing countries. Results for a large-scale study of extractable lead levels in undisturbed soil samples in South Africa identify several geographic areas of concern. Lead levels are considerably elevated relative to background levels in the Johannesburg urban and industrial area. Areas of active lead mining also exhibit higher surface soil values. Interestingly, areas of active and intensive coal mining activity display relatively low soil Pb values, possibly attributable to the relatively low heavy metal content of South African coal. In all instances, distribution of cadmium, a carcinogenic element, correlates with that of lead. The results demonstrate the usefulness of the quick and easy Mehlich-3 single extractant technique, an established technique in micronutrient studies, to simultaneously provide valuable environmental data for toxic metals such as Pb and Cd.

  16. Cleanup Verification Package for the 118-H-6:2, 105-H Reactor Ancillary Support Areas, Below-Grade Structures, and Underlying Soils; the 118-H-6:3, 105-H Reactor Fuel Storage Basin and Underlying Soils; The 118-H-6:3 Fuel Storage Basin Deep Zone Side Slope Soils; the 100-H-9, 100-H-10, and 100-H-13 French Drains; the 100-H-11 and 100-H-12 Expansion Box French Drains; and the 100-H-14 and 100-H-31 Surface Contamination Zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. J. Appel

    2006-06-29

    This cleanup verification package documents completion of removal actions for the 105-H Reactor Ancillary Support Areas, Below-Grade Structures, and Underlying Soils (subsite 118-H-6:2); 105-H Reactor Fuel Storage Basin and Underlying Soils (118-H-6:3); and Fuel Storage Basin Deep Zone Side Slope Soils. This CVP also documents remedial actions for the following seven additional waste sties: French Drain C (100-H-9), French Drain D (100-H-10), Expansion Box French Drain E (100-H-11), Expansion Box French Drain F (100-H-12), French Drain G (100-H-13), Surface Contamination Zone H (100-H-14), and the Polychlorinated Biphenyl Surface Contamination Zone (100-H-31).

  17. Impact of water conditions on land surface subsidance and the decline of organic soils in Kuwasy peatland

    NASA Astrophysics Data System (ADS)

    Chrzanowski, S.; Szajdak, L.

    2009-04-01

    Organic soils as result of drainage undergo consolidation, mineralization, and subsidence of surface layer, and decline of organic matter. The rate of the subsidence of surface layer depends on a number of factors, such as ground water level, kind of peat, density of thickness of peat layer, drainage depth, climate, land use and drainage duration. These processes are connected with the changes of physical properties and lead to the conversion of organic soils into mineral-organic and mineral. The phenomena are observed in Biebrza, Notec Valley, and Kurpiowska Basin and Wieprz-Krzna channel. During last 42 years, in Kuwasy peatland from 10-13 ton per year was declined and the area of peatland decreased from 53 to 57 cm. It was observed that, peat moorsh soil of the first stadium of moorshification located on a middle decomposed peat transformed into peat-moorh soil of the second stadium of moorshification located on a high decomposed peat. However shallow peat soils were converted into mineral-moorsh and moorsh. Kuwasy peatland was meliorated twice in XX century, first one in the middle of 30 and second one in 50. It led to the farther land surface subsidence and decline of organic matter. The aim of this investigation was to evaluate the rate of land surface subsidence, decline of the area and the transformation of physic-water properties in peat-moorsh soil of different water conditions. The investigations were carried out in Kuwasy peatland, located in Biebrza Basin North-East Poland. In peat soil samples ash contents, porosity, pF curves and bulk density were determined. The analysis of these results allowed to evaluate long-term soil subsidence and to relate it to soil water conditions.

  18. Abacus to determine soils salinity in presence of saline groundwater in arid zones case of the region of Ouargla

    NASA Astrophysics Data System (ADS)

    Fergougui, Myriam Marie El; Benyamina, Hind; Boutoutaou, Djamel

    2018-05-01

    In order to remedy the limit of salt intake to the soil surface, it is necessary to study the causes of the soil salinity and find the origin of these salts. The arid areas in the region of Ouargla lie on excessively mineralized groundwater whose level is near the soil surface (0 - 1.5 m). The topography and absence of a reliable drainage system led to the rise of the groundwater beside the arid climatic conditions contributed to the salinization and hydromorphy of the soils. The progress and stabilization of cultures yields in these areas can only occur if the groundwater is maintained (drained) to a depth of 1.6 m. The results of works done to the determination of soil salinity depend mainly on the groundwater's salinity, its depth and the climate.

  19. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 415: Project 57 No. 1 Plutonium Dispersion (NTTR), Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Patrick; Burmeister, Mark

    2014-04-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 415, Project 57 No. 1 Plutonium Dispersion (NTTR). CAU 415 is located on Range 4808A of the Nevada Test and Training Range (NTTR) and consists of one corrective action site: NAFR-23-02, Pu Contaminated Soil. The CAU 415 site consists of the atmospheric release of radiological contaminants to surface soil from the Project 57 safety experiment conducted in 1957. The safety experiment released plutonium (Pu), uranium (U), and americium (Am) to the surface soil over an area of approximately 1.9 squaremore » miles. This area is currently fenced and posted as a radiological contamination area. Vehicles and debris contaminated by the experiment were subsequently buried in a disposal trench within the surface-contaminated, fenced area and are assumed to have released radiological contamination to subsurface soils. Potential source materials in the form of pole-mounted electrical transformers were also identified at the site and will be removed as part of closure activities.« less

  20. Interaction between aggrading geomorphic surfaces and the formation of a late pleistocene paleosol in the palouse loess of eastern Washington state

    NASA Astrophysics Data System (ADS)

    McDonald, Eric V.; Busacca, Alan J.

    1990-09-01

    Variable rates of loess deposition contributed to dramatic regional variation in a soil-stratigraphic unit, the Washtucna Soil, in the Palouse loess deposits in the Channeled Scabland of eastern Washington state. Throughout most of the Channeled Scabland, the morphology of the Washtucna Soil is that of a single buried soil, but it bifurcates into two well-developed and pedologically distinct buried soils in areas immediately downwind of the major source of loessial sediment. Regional loess stratigraphy confirms that the two well-developed soils formed during the same interval of time during which only one soil formed in areas that are distal to loess source areas. The variable and perhaps rapid rates of soil formation suggested by the stratigraphy resulted from an interaction between variable rates of loess deposition and the formation of superimposed calcic soils. Petrocalcic horizons with weak Stage IV morphology formed as the zone of carbonate accumulation moved up into former A and cambic horizons that had been profusely burrowed by cicadas. The development of cicada burrows in one phase of soil development that were subsequently engulfed by pedogenic carbonate under a rising land surface seems to have greatly accelerated the development of the petrocalcic horizons. Accelerated rates of formation of the petrocalcic horizons occurred when extrinsic (pulses of loess deposition) and intrinsic (engulfment of burrowed horizons) thresholds were exceeded. Stratigraphic evidence suggests that the soil formation that accompanied the rise in the land surface due to additional loess deposition may have occurred during the late Wisconsin glaciation when giant glacial outburst floods in the channeled Scabland triggered a new cycle of loess deposition.

  1. A reactive transport model for Marcellus shale weathering

    NASA Astrophysics Data System (ADS)

    Heidari, Peyman; Li, Li; Jin, Lixin; Williams, Jennifer Z.; Brantley, Susan L.

    2017-11-01

    Shale formations account for 25% of the land surface globally and contribute a large proportion of the natural gas used in the United States. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water in the surface or deep subsurface, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil and water chemistry data. The simulation was carried out for 10,000 years since deglaciation, assuming bedrock weathering and soil genesis began after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small if CO2 was not present in the soil gas. The field observations were only simulated successfully when the modeled specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals. Small surface areas could be consistent with the lack of accessibility of some fluids to mineral surfaces due to surface coatings. In addition, some mineral surface is likely interacting only with equilibrated pore fluids. An increase in the water infiltration rate enhanced weathering by removing dissolution products and maintaining far-from-equilibrium conditions. We conclude from these observations that availability of reactive surface area and transport of H2O and gases are the most important factors affecting rates of Marcellus shale weathering of the in the shallow subsurface. This weathering study documents the utility of reactive transport modeling for complex subsurface processes. Such modelling could be extended to understand interactions between injected fluids and Marcellus shale gas reservoirs at higher temperature, pressure, and salinity conditions.

  2. Relationship of pyrogenic polycyclic aromatic hydrocarbons contamination among environmental solid media.

    PubMed

    Kim, Dong Won; Kim, Seung Kyu; Lee, Dong Soo

    2009-06-01

    This study compared the contamination levels and compositional characteristics of PAHs in soil, SS and sediment to understand the cross media characteristics among the three solid media and ecological risk implications for the purpose to help manage in a more integrated manner the environmental quality objectives or the ecological risk in the media. The study area included urban (metropolis and industrial zone), suburban and rural sites. Seasonal samples were concurrently collected in surface soils, surface waters (dissolved and suspended solid (SS) phases separately) and sediments. The emission estimate and source characterizing PAH indices consistently indicated that PAHs were from pyrogenic sources. The level of total PAHs in soil declined along the wind direction from the urban areas to the rural areas. The sorption power of soil appeared distinctly different between the urban and rural areas. The contamination levels and PAH profiles in soil and sediment were closely related to each other while no such correlation was observed between SS and sediment or SS and soil. Comparisons of the observed partitioning coefficients with three different partitioning equilibrium models strongly suggested that PAHs in water appeared to undergo partitioning among the dissolved phase in water, dissolved organic matter, and organic and soot carbons in SS, which might account for the level and profile of PAHs in SS that were not correlated with those in soil or sediment. The observed results suggested that PAHs of pyrogenic origins entered into soil, sediment, and water by the atmospheric deposition and subsequent other cross-media transfers of PAHs. The results also evidenced that sediments were principally contaminated with PAHs delivered via surface run-off from soil although in the urban areas the run-off influence appeared less immediate than in the rural areas. Environmental quality objectives for PAHs in soil and sediment should be set in a coherent manner and the protection efforts for the sediment quality should be made with the consideration of the soil quality particularly where the river bottom sediment is renewed periodically with eroded soil due to heavy rain and/or large river regime coefficient. In spite of the difference in PAH profiles among the three solid media, BaP commonly appeared to present the greatest TEQ, suggesting that strict regulation of BaP is necessary to efficiently and substantially minimize the total risk of the environmental PAHs.

  3. The geochemical characteristics of soil water and epikarst springs and their response to vegetation-soil degradation in a karst area

    NASA Astrophysics Data System (ADS)

    Xiao, D. A.; Xu, H.

    2012-04-01

    Samples of soil waters and epi-karst springs in four vegetation types were collected at Maolan nature reserve in Libo county, which including protogenetic arbors, secondary arbor-shrub, shrubs and shrub-grass, to analyze their hydro-geochemical properties and the variations of nutrient elements, and further to illustrate the intrinsic correlations of vegetation, soil, environment changes and their geochemical information. The conclusions have been concluded as follows: (1) The pH of soil waters in the study area varies between 5.32 and 7.93, with a mean value of 6.78, and the conductivity changes between 31.82 and 353.65 μS/cm, with a mean value of 126.19 μS/cm. Both descend as the vegetation degrades. The hydro-chemistry of soil waters are Ca- HCO3-, and their ions mainly consist of Ca2+, Mg2+, HCO3-, SO42-. Ca2+, Mg2+, HCO3-are very sensitive to vegetations degradation. Ion contents are high in rain seasons and low in dry ones. (2) The pH of surface karst springs in the study area vary between 6.7 and 8.42, with a mean value of 7.65, and the conductivity between 125.6 and 452 μS/cm, with a mean value of 288.09 μS/cm. The hydro-chemistry of surface karst springs are Ca- HCO3-. HCO3-and SO42-are the main anions while Ca2+and Mg2+as main cations. The chemical properties and geochemical process of surface springs are mainly controlled by the solubility equilibrium of carbonate rocks, thus not sensitive to vegetation degradations. (3) All the calcite saturation indices of soil waters in four vegetation types are below 0, while most indices of surface karst springs are above 0, demonstrating greater denudation of soil waters than surface karst springs. As soil waters flow to surface springs, the partial pressure of CO2decreases, the denudation of water lessens, and saturation index, Ca2+, HCO3-, consequently, pH and conductivity increase. (4) Inorganic nitrogen in soil waters exist mainly as N-NO3- and N-NH4+, accounting ~ 95% of the 3 Ns. As vegetation degrades, nitrate nitrogen, organic nitrogen and total nitrogen change in follow way, protogenetic arbors > secondary arbor-shrub, shrubs > shrub-grass, but the differences among all vegetation types are not prominent. Ammonia nitrogen, however, changes otherwise as follows: shrubs, shrub-grass > protogenetic arbors, secondary arbor-shrub. In surface springs, few inorganic nitrogen exists as NO2--N ( 2 μg/L on average ), and most exists as NO3-N ( 215 μg/L on average ), and NH4+-N is 185μg/L on average. In general, NH4+-N, NO3--N and TN formations in the four vegetation types are: protogenetic arbors > secondary arbor-shrub > shrubs > shrub-grass. (5) DOC content in soil waters vary between 1.88 and 10.37 mg/L, with an average 4.8 mg/L. DOC content in surface karst springs changes between 0.39 and 9.98 mg/L, with an average 2.25 mg/L. DOCs in soil waters are greater than those in surface karst springs in all four vegetation types, and have sharp differences ( P≤0.01 ). DOCs in soil waters and surface karst springs share a great relationship and a similar change tendency, which well illustrates a main source of surface springs from soil waters. In both of them, DOCs are larger in original vegetations than in degraded vegetations. This is because the soil-vegetation system is stable in an original ecology environment which free from outside disturbs. By contrast, a degraded system is unstable, weak at beating disturbs, and conserves less but loses more. Key words: soil waters, epi-karst springs, hydro-geochemical, vegetation, karst area, Maolan in Guizhou

  4. The effect of heterogeneity and surface roughness on soil hydrophobicity

    NASA Astrophysics Data System (ADS)

    Hallin, I.; Bryant, R.; Doerr, S. H.; Douglas, P.

    2010-05-01

    Soil water repellency, or hydrophobicity, can develop under both natural and anthropogenic conditions. Forest fires, vegetation decomposition, microbial activity and oil spills can all promote hydrophobic behaviour in surrounding soils. Hydrophobicity can stabilize soil organic matter pools and decrease evapotranspiration, but there are many negative impacts of hydrophobicity as well: increased erosion of topsoil, an increasingly scarce resource; increased runoff, which can lead to flooding; and decreased infiltration, which directly affects plant health. The degree of hydrophobicity expressed by soil can vary greatly within a small area, depending partly on the type and severity of the disturbance as well as on temporal factors such as water content and microbial activity. To date, many laboratory investigations into soil hydrophobicity have focused on smooth particle surfaces. As a result, our understanding of how hydrophobicity develops on rough surfaces of macro, micro and nano-particulates is limited; we are unable to predict with certainty how these soil particles will behave on contact with water. Surface chemistry is the main consideration when predicting hydrophobic behaviour of smooth solids, but for particles with rough surfaces, hydrophobicity is believed to develop as a combination of surface chemistry and topography. Topography may reflect both the arrangement (aggregation) of soil particles and the distribution of materials adsorbed on particulate surfaces. Patch-wise or complete coverage of rough soil particles by hydrophobic material may result in solid/water contact angles ≥150° , at which point the soil may be classified as super-hydrophobic. Here we present a critical review of the research to date on the effects of heterogeneity and surface roughness on soil hydrophobicity in which we discuss recent advances, current trends, and future research areas. References: Callies, M., Y. Chen, F. Marty, A. Pépin and D. Quéré. 2005. Microfabricated textured surfaces for super-hydrophobicity investigations. Microelectronic Engineering. 78-79:100-105. Doerr, S.H. C.J. Ritsema, L.W. Dekker, D.F. Scott and D. Carter. 2007. Water repellence of soils: new insights and emerging research needs. Hydrological Processes. 21:2223-2228. Doerr, S.H., R.A. Shakesby and R.P.D. Walsh. 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews. 51:33-65. McHale, G. N.J. Shirtcliffe, M.I. Newton, F.B. Pyatt and S.H. Doerr. 2007. Self-organization of hydrophobic soil and granular surfaces. Applied Physics Letters. 90. 054110.

  5. Modeling of technical soil-erosion control measures and its impact on soil erosion off-site effects within urban areas

    NASA Astrophysics Data System (ADS)

    Dostal, Tomas; Devaty, Jan

    2013-04-01

    The paper presents results of surface runoff, soil erosion and sediment transport modeling using Erosion 3D software - physically based mathematical simulation model, event oriented, fully distributed. Various methods to simulate technical soil-erosion conservation measures were tested, using alternative digital elevation models of different precision and resolution. Ditches and baulks were simulated by three different approaches, (i) by change of the land-cover parameters to increase infiltration and decrease flow velocity, (ii) by change of the land-cover parameters to completely infiltrate the surface runoff and (iii) by adjusting the height of the digital elevation model by "burning in" the channels of the ditches. Results show advantages and disadvantages of each approach and conclude suitable methods for combinations of particular digital elevation model and purpose of the simulations. Further on a set of simulations was carried out to model situations before and after technical soil-erosion conservation measures application within a small catchment of 4 km2. These simulations were focused on quantitative and qualitative assessment of technical soil-erosion control measures impact on soil erosion off-site effects within urban areas located downstream of intensively used agricultural fields. The scenarios were built upon a raster digital elevation model with spatial resolution of 3 meters derived from LiDAR 5G vector point elevation data. Use of this high-resolution elevation model allowed simulating the technical soil-erosion control measures by direct terrain elevation adjustment. Also the structures within the settlements were emulated by direct change in the elevation of the terrain model. The buildings were lifted up to simulate complicated flow behavior of the surface runoff within urban areas, using approach of Arévalo (Arévalo, 2011) but focusing on the use of commonly available data without extensive detailed editing. Application of the technical soil-erosion control measures induced strong change in overall amount of eroded/deposited material as well as spatial erosion/deposition patterns within the settlement areas. Validation of modeled scenarios and effects on measured data was not possible as no real runoff event was recorded in the target area so the conclusions were made by comparing the different modeled scenarios. Advantages and disadvantages of used approach to simulate technical soil-erosion conservation measures are evaluated and discussed as well as the impact of use of high-resolution elevation data on the intensity and spatial distribution of soil erosion and deposition. Model approved ability to show detailed distribution of damages over target urban area, which is very sensitive for off-site effects of surface runoff, soil erosion and sediment transport and also high sensitivity to input data, especially to DEM, which affects surface runoff pattern and therefore intensity of harmful effects. Acknowledgement: This paper has been supported by projects: Ministry of the interior of the CR VG 20122015092, and project NAZV QI91C008 TPEO.

  6. Contribution to the study of pollution of soil and water in Oued El Maleh area (Mohammedia, Morocco)

    NASA Astrophysics Data System (ADS)

    El hajjaji, Souad; Dahchour, Abdelmalek; Belhsaien, Kamal; Zouahri, Abdelmjid; Moussadek, Rachid; Douaik, Ahmed

    2016-04-01

    In Morocco, diffuse ground and surface water pollution in irrigated areas has caused an increase in the risk of water and soil quality deterioration. This has generated a health and environmental risks. The present study was carried out in the Oued El Maleh region located 65 Km to the south of Rabat on the Moroccan Atlantic coast. It covers a surface area of 310 km2 where agriculture constitutes the main activity of the population. This region is considered as a very important agricultural area, known nationally for its high potential for market gardening. This intensification has been accompanied by an excessive use of agrochemical inputs and poor control of irrigation and drainage. Consequently, salinization phenomena and deterioration of soil structure as well as water are about to create an alarming situation. In order to assess the state of pollution of waters and soil in the region, our study focuses on the determination of physicochemical parameters for the quality of water and soil. The obtained results from sampled wells and surface water show relatively higher values of nitrate and conductivity exceeding Moroccan national standards and revealing net degradation of water quality; therefore the water can be considered not suitable for human consumption and can induce a degradation of soil. The results of the studied soil show that the pH of these soils is weakly to moderately basic; they are usually non-saline with organic matter content moderately filled. Moreover, very high concentrations of nutrients (potassium, phosphorus and nitrogen) were recorded, highlighting poor management fertilizing vegetable crops in the region of Oued El Maleh.

  7. Thermal Properties of Soils

    DTIC Science & Technology

    1981-12-01

    plagio - clase feldspar and pyroxene. The tine fraction may Surface area and its effects contain the clay "sheet" minerals (i.e. kaolinite. illite...Pyroxene, Kaoliniwe Unified By By Ortho. Plagio . amphibole, Basic clay min. Hematite Soil Soil soil petrogr. X.ray clase clase and Igneous and clay and no

  8. Phosphorus dynamics in long-term flooded, drained and reflooded soils

    USDA-ARS?s Scientific Manuscript database

    In flooded areas, soils are often exposed to standing water and subsequent drainage, thus over fertilization can release excess phosphorus (P) into surface water and groundwater. To investigate P release and transformation processes in flooded alkaline soils, we flooded-drained-reflooded two soils f...

  9. Estimating sources of Valley Fever pathogen propagation in southern Arizona: A remote sensing approach

    NASA Astrophysics Data System (ADS)

    Pianalto, Frederick S.

    Coccidioidomycosis (Valley Fever) is an environmentally-mediated respiratory disease caused by the inhalation of airborne spores from the fungi Coccidioides spp. The fungi reside in arid and semi-arid soils of the Americas. The disease has increased epidemically in Arizona and other areas within the last two decades. Despite this increase, the ecology of the fungi remains obscure, and environmental antecedents of the disease are largely unstudied. Two sources of soil disturbance, hypothesized to affect soil ecology and initiate spore dissemination, are investigated. Nocturnal desert rodents interact substantially with the soil substrate. Rodents are hypothesized to act as a reservoir of coccidioidomycosis, a mediator of soil properties, and a disseminator of fungal spores. Rodent distributions are poorly mapped for the study area. We build automated multi-linear regression models and decision tree models for ten rodent species using rodent trapping data from the Organ Pipe Cactus National Monument (ORPI) in southwest Arizona with a combination of surface temperature, a vegetation index and its texture, and a suite of topographic rasters. Surface temperature, derived from Landsat TM thermal images, is the most widely selected predictive variable in both automated methods. Construction-related soil disturbance (e.g. road construction, trenching, land stripping, and earthmoving) is a significant source of fugitive dust, which decreases air quality and may carry soil pathogens. Annual differencing of Landsat Thematic Mapper (TM) mid-infrared images is used to create change images, and thresholded change areas are associated with coordinates of local dust inspections. The output metric identifies source areas of soil disturbance, and it estimates the annual amount of dust-producing surface area for eastern Pima County spanning 1994 through 2009. Spatially explicit construction-related soil disturbance and rodent abundance data are compared with coccidioidomycosis incidence data using rank order correlation and regression methods. Construction-related soil disturbance correlates strongly with annual county-wide incidence. It also correlates with Tucson periphery incidence aggregated to zip codes. Abundance values for the desert pocket mouse (Chaetodipus penicillatus), derived from a soil-adjusted vegetation index, aspect (northing) and thermal radiance, correlate with total study period incidence aggregated to zip code.

  10. Hillslope Chromatography in Savannas

    NASA Astrophysics Data System (ADS)

    Hartshorn, A.; Khomo, L.; Chadwick, O.; Rogers, K.; Kurtz, A.; Heimsath, A.

    2005-12-01

    In semiarid ecosystems, vegetation patterns are controlled in part by soil water availability. Along hillslopes in Kruger National Park, South Africa, water availability is strongly dependent on soil texture and textural differences with depth, which are a function of landscape position (convergent or divergent crests, midslopes, and footslopes) and parent material. We are studying weathering and landscape development on the western side of the park, which is underlain by granitic gneisses. Hillslopes in the park are often described as catenas, where rainfall catalyzes chemical weathering and drives the downslope transport of clays and weathering products, forming a predictable sequence of soil types. Sandy crest soils grade to midslope soils where sandy surface horizons overlie clayey subsurface horizons; footslopes generally have higher volumetric clay contents. The boundary between the sandy and clayey soils is of ecological significance because this is the location where run-on from upslope landscape positions is diverted to the surface, initiating overland flow and reducing infiltration. In a geochemical sense these hillslopes can be thought of as chromatographic columns that accentuate differential solute mobility along the long (~1-2 km) potential flowpaths. We use the compound topographic index (a terrain attribute that indexes soil wetness by dividing the upslope contributing area by the slope) to predict the redistribution of clays across these semiarid hillslopes and hope to demonstrate that landscape positions occupying comparable plan and profile curvatures contain clay and organic carbon in proportion to contributing area. Thus far, we have derived contributing area values for 40 soil pits using LiDAR-based digital elevation models and then tested how well contributing area and other terrain attributes predicted clay and carbon content for 218 horizons at these 40 locations. Depth-weighted soil clay ranged from 3 to 25% and total soil carbon ranged from 0.1 to 2.1%. Our preliminary results suggest that greater contributing area only produces greater soil clay content up to a threshold clay content, after which clay illuviation and in situ clay production slows following the diversion of water to the surface.

  11. The total amounts of radioactively contaminated materials in forests in Fukushima, Japan

    PubMed Central

    Hashimoto, Shoji; Ugawa, Shin; Nanko, Kazuki; Shichi, Koji

    2012-01-01

    There has been leakage of radioactive materials from the Fukushima Daiichi Nuclear Power Plant. A heavily contaminated area (≥ 134, 137Cs 1000 kBq m−2) has been identified in the area northwest of the plant. The majority of the land in the contaminated area is forest. Here we report the amounts of biomass, litter (small organic matter on the surface of the soil), coarse woody litter, and soil in the contaminated forest area. The estimated overall volume and weight were 33 Mm3 (branches, leaves, litter, and coarse woody litter are not included) and 21 Tg (dry matter), respectively. Our results suggest that removing litter is an efficient method of decontamination. However, litter is being continuously decomposed, and contaminated leaves will continue to fall on the soil surface for several years; hence, the litter should be removed promptly but continuously before more radioactive elements are transferred into the soil. PMID:22639724

  12. Use of thermal inertia determined by HCMM to predict nocturnal cold prone areas in Florida. [Everglades agricultural area and the west north central peninsula

    NASA Technical Reports Server (NTRS)

    Allen, L. H., Jr. (Principal Investigator); Chen, E.; Martsolf, J. D.; Jones, P. H.

    1981-01-01

    Surface temperatures derived from HCMM data were compared with to those obtained by GOES satellite and the apparent thermal inertia (ATI) calculated. For two dates, the HCMM temperatures appear to be about 5 C lower than the GOES temperatures. The ATI for excessively-drained to well-drained mineral soils was greater than for drained organic soils possibly because of long periods of low rainfall during late 1980 and early 1981. Organic soils cropped to sugar cane showed lower ATI after a severe killing freeze. With dead leaves, there was less transpiration and more solar radiation probably reached the dark soil surface. This would explain the larger diurnal temperature amplitude observed.

  13. A Reactive Transport Model for Marcellus Shale Weathering

    NASA Astrophysics Data System (ADS)

    Li, L.; Heidari, P.; Jin, L.; Williams, J.; Brantley, S.

    2017-12-01

    Shale formations account for 25% of the land surface globally. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil chemistry and water data. The simulation was carried out for 10,000 years, assuming bedrock weathering and soil genesis began right after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1,000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small with the presence of soil CO2. The field observations were only simulated successfully when the specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals, reflecting the lack of accessibility of fluids to mineral surfaces and potential surface coating. An increase in the water infiltration rate enhanced weathering by removing dissolution products and maintaining far-from-equilibrium conditions. We conclude that availability of reactive surface area and transport of H2O and gases are the most important factors affecting chemical weathering of the Marcellus shale in the shallow subsurface. This study documents the utility of reactive transport modeling for complex subsurface processes. Such modelling could be extended to understand interactions between injected fluids and Marcellus shale gas reservoirs at higher temperature and pressure.

  14. Screening hydroxyapatite for cadmium and lead immobilization in aqueous solution and contaminated soil: The role of surface area.

    PubMed

    Li, Hongying; Guo, Xisheng; Ye, Xinxin

    2017-02-01

    Hydroxyapatite (HAP) has been widely used to immobilize many cationic metals in water and soils. The specific reason why an increase in the surface area of HAP enhances cadmium (Cd) uptake, but has no effect on lead (Pb) uptake, is not clear. The aim of this study was to determine the factors causing the differences in sorption behavior between Cd and Pb by evaluating HAPs with different surface areas. We synthesized HAPs with two different surface areas, which were characterized by X-ray diffraction, N 2 adsorption, and scanning electron microscopy, and then evaluated them as sorbents for Cd and Pb removal by testing in single and binary systems. The sorption capacity of large surface area HAP (1.85mmol/g) for Cd in the single-metal system was higher than that of small surface area HAP (0.64mmol/g), but there were no differences between single- and binary-metal solutions containing Pb. After the Cd experiments, the HAP retained a stable structure and intact morphology, which promotes the accessibility of reactive sites for Cd. However, a newly formed precipitate covered the surface and blocked the channels in the presence of Pb, which reduced the number of potential adsorption sites on HAP for Cd and Pb. Remediation experiments using Cd- and Pb-contaminated soil produced similar results to the solution tests. These results indicate that alterations of the structure and morphology during the reaction is an important factor influencing metal sorption to HAP. Copyright © 2016. Published by Elsevier B.V.

  15. Altitude Distributions and Source Analysis of OCPs and PCBs in Surface Soils of Changbai Mountain, Northeast China.

    PubMed

    Wang, Xiaochun; Chen, Shu; Wan, Kuiyuan; Yin, Xiaocai; Zhu, Xiaohua; Pan, Jing; Yang, Yongliang

    2017-06-01

    Organochlorine pesticides and polychlorinated biphenyls in surface soils of Changbai Mountain, Northeastern China, have been quantified by gas chromatography with electron capture detector and the altitude distributions and possible pollution sources were analyzed. The concentrations of ∑HCHs, ∑DDTs and ∑ 7 PCBs were in the range of 3.09-25.6, 0.96-19.4 and 7.32-26.1 ng/g dw, respectively. The concentration of α-HCH, β-HCH, p,p'-DDT, p,p'-DDE, PCB 101, 138, 153, and 180 showed increasing trends with altitude. ∑ 7 PCBs in surface soils of Changbai Mountain were significantly higher than that in Chinese background areas. The concentration of lower volatile PCB isomers showed positive correlation with altitude. These pollutants may originate from the adjacent industrial and agricultural areas via atmospheric transport and cold-trapping effect through wet precipitation. Additional, DDTs may cause a certain potential ecological risks on birds and soil organisms and the usage of lindane in the adjacent areas cannot be excluded in Changbai Mountain.

  16. [Detecting the moisture content of forest surface soil based on the microwave remote sensing technology.

    PubMed

    Li, Ming Ze; Gao, Yuan Ke; Di, Xue Ying; Fan, Wen Yi

    2016-03-01

    The moisture content of forest surface soil is an important parameter in forest ecosystems. It is practically significant for forest ecosystem related research to use microwave remote sensing technology for rapid and accurate estimation of the moisture content of forest surface soil. With the aid of TDR-300 soil moisture content measuring instrument, the moisture contents of forest surface soils of 120 sample plots at Tahe Forestry Bureau of Daxing'anling region in Heilongjiang Province were measured. Taking the moisture content of forest surface soil as the dependent variable and the polarization decomposition parameters of C band Quad-pol SAR data as independent variables, two types of quantitative estimation models (multilinear regression model and BP-neural network model) for predicting moisture content of forest surface soils were developed. The spatial distribution of moisture content of forest surface soil on the regional scale was then derived with model inversion. Results showed that the model precision was 86.0% and 89.4% with RMSE of 3.0% and 2.7% for the multilinear regression model and the BP-neural network model, respectively. It indicated that the BP-neural network model had a better performance than the multilinear regression model in quantitative estimation of the moisture content of forest surface soil. The spatial distribution of forest surface soil moisture content in the study area was then obtained by using the BP neural network model simulation with the Quad-pol SAR data.

  17. Heavy Metals in Soil and Salad in the Proximity of Historical Ferroalloy Emission

    PubMed Central

    Ferri, Roberta; Donna, Filippo; Smith, Donald R.; Guazzetti, Stefano; Zacco, Annalisa; Rizzo, Luigi; Bontempi, Elza; Zimmerman, Neil J.; Lucchini, Roberto G.

    2016-01-01

    Emissions of manganese (Mn), lead (Pb), iron (Fe), zinc (Zn), copper (Cu) from ferro-alloy operations has taken place in Valcamonica, a pre-Alp valley in the province of Brescia, Italy, for about a century until 2001. Metal concentrations were measured in the soil of local home gardens and in the cultivated vegetables. Soil analysis was carried out using a portable X-Ray Fluorescence (XRF) spectrometer in both surface soil and at 10 cm depth. A subset of soil samples (n = 23) additionally was analysed using the modified BCR sequential extraction method and ICP-OES for intercalibration with XRF (XRF Mn = 1.33 * total OES Mn – 71.8; R = 0.830, p < 0.0001). Samples of salads (Lactuca sativa and Chichorium spp.) were analyzed with a Total Reflection X-Ray Fluorescence (TXRF) technique. Vegetable and soil metal measurements were performed in 59 home gardens of Valcamonica, and compared with 23 gardens from the Garda Lake reference area. Results indicate significantly higher levels of soil Mn (median 986 ppm vs 416 ppm), Pb (median 46.1 ppm vs 30.2 ppm), Fe (median 19,800 ppm vs 13,100 ppm) in the Valcamonica compared to the reference area. Surface soil levels of all metals were significantly higher in surface soil compared to deeper soil, consistent with atmospheric deposition. Significantly higher levels of metals were shown also in lettuce from Valcamonica for Mn (median 53.6 ppm vs 30.2) and Fe (median 153 vs 118). Metals in Chichorium spp. did not differ between the two areas. Surface soil metal levels declined with increasing distance from the closest ferroalloy plant, consistent with plant emissions as the source of elevated soil metal levels. A correlation between Mn concentrations in soil and lettuce was also observed. These data show that historic ferroalloy plant activity, which ended nearly a decade before this study, has contributed to the persistence of increased Mn levels in locally grown vegetables. Further research is needed to assess whether this increase can lead to adverse effects in humans and plants especially for Mn, an essential element that can be toxic in humans when exceeding the homeostatic ranges. PMID:27818841

  18. Soil surface lowering due to soil erosion in villages near Lake Victoria, Uganda

    NASA Astrophysics Data System (ADS)

    de Meyer, A.; Deckers, J.; Poesen, J.; Isabirye, M.

    2009-04-01

    In the effort to pinpoint the sources of sediment pollution in Lake Victoria, the contribution of sedi-ment from compounds, landing sites, main roads and footpaths is determined in the catchment of Na-bera Bay and Kafunda Bay at the northern shore of Lake Victoria in southern Uganda. The amount of soil loss in compounds and landing sites is determined by the reconstruction of the original and current soil surface according to botanical and man-made datable objects. The soil erosion rate is then deter-mined by dividing the eroded soil volume (corrected for compaction) by the age of the oldest datable object. In the study area, the average soil erosion rate in compounds amounts to 107 Mg ha-1 year-1 (per unit compound) and in landing sites to 207 Mg ha-1 year-1 (per unit landing site). Although com-pounds and landing sites occupy a small area of the study area (1.1 %), they are a major source of sediment to Lake Victoria (63 %). The soil loss on footpaths and main roads is calculated by multip-lying the total length of footpaths and main roads with the average width and depth (measured towards a reference surface). After the correction for compaction is carried out, the soil erosion rate on foot-paths amounts to 34 Mg ha-1 year-1 and on main roads to 35 Mg ha-1 year-1. Also footpaths and main roads occupy a small area of the study area (1.1 %), but contribute disproportionately to the total soil loss in the catchment (22 %). In this research, the information about the village/compound given by the villager/owner is indispensable. In accordance to an adaptation of the model of McHugh et al. (2002), 32 % of the sediment that is generated in the catchment, is deposited in Lake Victoria (i.e. 2 209 Mg year-1 or 0.7 Mg ha-1 year-1). The main buffer in the study area is papyrus at the shore of Lake Victoria. Also sugarcane can be a major buffer. However, the sugarcane-area is intersected by com-pounds, landing sites, footpaths and main roads that generate large amounts of sediment and function as main bypass mechanisms (high CR) facilitating and enhancing sediment delivery to Lake Victoria.

  19. Long-Term Responses of Understory Vegetation on a Highly Erosive Louisiana Soil to Fertilization

    Treesearch

    James D. Haywood; Ronald E. Thill

    1995-01-01

    Responses of vegetation on highly eroded Kisatchie soils to a broadcast application of 600 lb/acre of 16-30-l 3 granular fertilizer were monitored for 12 years. Understory woody and herbaceous vegetation responded to fertilization immediately, and thus the soil surface was protected from erosion sooner in the fertilized area than in the two unfertilized areas. After 1...

  20. Pollution distribution of heavy metals in surface soil at an informal electronic-waste recycling site.

    PubMed

    Fujimori, Takashi; Takigami, Hidetaka

    2014-02-01

    We studied distribution of heavy metals [lead (Pb), copper (Cu) and zinc (Zn)] in surface soil at an electronic-waste (e-waste) recycling workshop near Metro Manila in the Philippines to evaluate the pollution size (spot size, small area or the entire workshop), as well as to assess heavy metal transport into the surrounding soil environment. On-site length-of-stride-scale (~70 cm) measurements were performed at each surface soil point using field-portable X-ray fluorescence (FP-XRF). The surface soil at the e-waste recycling workshop was polluted with Cu, Zn and Pb, which were distributed discretely in surface soil. The site was divided into five areas based on the distance from an entrance gate (y-axis) of the e-waste recycling workshop. The three heavy metals showed similar concentration gradients in the y-axis direction. Zn, Pb and Cu concentrations were estimated to decrease to half of their maximum concentrations at ~3, 7 and 7 m from the pollution spot, respectively, inside the informal e-waste recycling workshop. Distance from an entrance may play an important role in heavy metal transport at the soil surface. Using on-site FP-XRF, we evaluated the metal ratio to characterise pollution features of the solid surface. Variability analysis of heavy metals revealed vanishing surficial autocorrelation over metre ranges. Also, the possibility of concentration prediction at unmeasured points using geostatistical kriging was evaluated, and heavy metals had a relative "small" pollution scales and remained inside the original workshop compared with toxic organohalogen compounds. Thus, exposure to heavy metals may directly influence the health of e-waste workers at the original site rather than the surrounding habitat and environmental media.

  1. Digital modelling of landscape and soil in a mountainous region: A neuro-fuzzy approach

    NASA Astrophysics Data System (ADS)

    Viloria, Jesús A.; Viloria-Botello, Alvaro; Pineda, María Corina; Valera, Angel

    2016-01-01

    Research on genetic relationships between soil and landforms has largely improved soil mapping. Recent technological advances have created innovative methods for modelling the spatial soil variation from digital elevation models (DEMs) and remote sensors. This generates new opportunities for the application of geomorphology to soil mapping. This study applied a method based on artificial neural networks and fuzzy clustering to recognize digital classes of land surfaces in a mountainous area in north-central Venezuela. The spatial variation of the fuzzy memberships exposed the areas where each class predominates, while the class centres helped to recognize the topographic attributes and vegetation cover of each class. The obtained classes of terrain revealed the structure of the land surface, which showed regional differences in climate, vegetation, and topography and landscape stability. The land-surface classes were subdivided on the basis of the geological substratum to produce landscape classes that additionally considered the influence of soil parent material. These classes were used as a framework for soil sampling. A redundancy analysis confirmed that changes of landscape classes explained the variation in soil properties (p = 0.01), and a Kruskal-Wallis test showed significant differences (p = 0.01) in clay, hydraulic conductivity, soil organic carbon, base saturation, and exchangeable Ca and Mg between classes. Thus, the produced landscape classes correspond to three-dimensional bodies that differ in soil conditions. Some changes of land-surface classes coincide with abrupt boundaries in the landscape, such as ridges and thalwegs. However, as the model is continuous, it disclosed the remaining variation between those boundaries.

  2. 30 CFR 816.114 - Revegetation: Mulching and other soil stabilizing practices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Revegetation: Mulching and other soil... STANDARDS-SURFACE MINING ACTIVITIES § 816.114 Revegetation: Mulching and other soil stabilizing practices. Suitable mulch and other soil stabilizing practices shall be used on all areas that have been regraded and...

  3. 30 CFR 816.114 - Revegetation: Mulching and other soil stabilizing practices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Revegetation: Mulching and other soil... STANDARDS-SURFACE MINING ACTIVITIES § 816.114 Revegetation: Mulching and other soil stabilizing practices. Suitable mulch and other soil stabilizing practices shall be used on all areas that have been regraded and...

  4. 30 CFR 816.114 - Revegetation: Mulching and other soil stabilizing practices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Revegetation: Mulching and other soil... STANDARDS-SURFACE MINING ACTIVITIES § 816.114 Revegetation: Mulching and other soil stabilizing practices. Suitable mulch and other soil stabilizing practices shall be used on all areas that have been regraded and...

  5. 30 CFR 816.114 - Revegetation: Mulching and other soil stabilizing practices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Revegetation: Mulching and other soil... STANDARDS-SURFACE MINING ACTIVITIES § 816.114 Revegetation: Mulching and other soil stabilizing practices. Suitable mulch and other soil stabilizing practices shall be used on all areas that have been regraded and...

  6. 30 CFR 816.114 - Revegetation: Mulching and other soil stabilizing practices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Revegetation: Mulching and other soil... STANDARDS-SURFACE MINING ACTIVITIES § 816.114 Revegetation: Mulching and other soil stabilizing practices. Suitable mulch and other soil stabilizing practices shall be used on all areas that have been regraded and...

  7. Surfactant and Irrigation Effects on Runoff, Erosion, and Water Retention of Three Wettable Soils

    USDA-ARS?s Scientific Manuscript database

    Surfactants are chemical compounds that change the contact angle of water on solid surfaces and are commonly used to increase infiltration into hydrophobic soil. Since production fields with water-repellent soil often contain areas of wettable soil, surfactants applied to such fields will likely be ...

  8. Surfactant and irrigation effects on wettable soils: Runoff, erosion, and water retention responses

    USDA-ARS?s Scientific Manuscript database

    Surfactants are chemical compounds that change the contact angle of water on solid surfaces and are commonly used to increase infiltration into hydrophobic soil. Since production fields with water-repellent soil often contain areas of wettable soil, surfactants applied to such fields will likely be ...

  9. Comparing Background and Recent Erosion Rates in Degraded Areas of Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Fernandes, N.; Bierman, P. R.; Sosa-Gonzalez, V.; Rood, D. H.; Fontes, R. L.; Santos, A. C.; Godoy, J. M.; Bhering, S.

    2014-12-01

    Soil erosion is a major problem in northwestern Rio de Janeiro State where, during the last three centuries, major land-use changes took place, associated with the replacement of the original rainforest by agriculture and grazing. The combination of steep hillslopes, erodible soils, sparse vegetation, natural and human-induced fires, as well as downslope ploughing, led to an increase in surface runoff and surface erosion on soil-mantled hillslopes; together, these actions and responses caused a decline in soil productivity. In order to estimate changes in erosion rates over time, we compared erosion rates measured at different spatial and temporal scales, both background (natural) and short-term (human-induced during last few decades). Background long-term erosion rates were measured using in-situ produced cosmogenic 10Be in the sand fraction quartz of active river channel sediment in four basins in the northwestern portion of Rio de Janeiro State. In these basins, average annual precipitation varies from 1,200 to 1,300 mm, while drainage areas vary from 15 to 7,200 km2. Short-term erosion rates were measured in one of these basins from fallout 210Pb in soil samples collected along a hillslope transect located in an abandoned agriculture field. In this transect, 190 undisturbed soil samples (three replicates) were collected from the surface to 0.50 m depth (5 cm vertical intervals) in six soil pits. 10Be average background, basin-wide, erosion rates in the area are ~ 13 m/My; over the last decades, time-integrated (210Pb) average hillslope erosion rates are around 1450 m/Myr, with maximum values at the steepest portion of convex hillslopes of about 2000 m/Myr. These results suggest that recent hillslope erosion rates are about 2 orders of magnitude above background rates of sediment generation integrated over many millennia. This unsustainable rate of soil loss has severely decreased soil productivity eventually leading to the abandonment of farming activities in areas where soil loss is severe.

  10. Assimilation of SMOS Retrieved Soil Moisture into the Land Information System

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Case, Jonathan; Zavodsky, Bradley; Jedlovec, Gary

    2014-01-01

    Soil moisture retrievals from the Soil Moisture and Ocean Salinity (SMOS) instrument are assimilated into the Noah land surface model (LSM) within the NASA Land Information System (LIS). Before assimilation, SMOS retrievals are bias-corrected to match the model climatological distribution using a Cumulative Distribution Function (CDF) matching approach. Data assimilation is done via the Ensemble Kalman Filter. The goal is to improve the representation of soil moisture within the LSM, and ultimately to improve numerical weather forecasts through better land surface initialization. We present a case study showing a large area of irrigation in the lower Mississippi River Valley, in an area with extensive rice agriculture. High soil moisture value in this region are observed by SMOS, but not captured in the forcing data. After assimilation, the model fields reflect the observed geographic patterns of soil moisture. Plans for a modeling experiment and operational use of the data are given. This work helps prepare for the assimilation of Soil Moisture Active/Passive (SMAP) retrievals in the near future.

  11. Fertility of the early post-eruptive surfaces of Kasatochi Island volcano

    USGS Publications Warehouse

    Michaelson, G. J.; Wang, Bronwen; Ping, C. L.

    2016-01-01

    In the four years after the 2008 eruption and burial of Kasatochi Island volcano, erosion and the return of bird activity have resulted in new and altered land surfaces and initiation of ecosystem recovery. We examined fertility characteristics of the recently deposited pyroclastic surfaces, patches of legacy pre-eruptive surface soil (LS), and a post-eruptive surface with recent bird roosting activity. Pyroclastic materials were found lacking in N, but P, K, and other macronutrients were in sufficient supply for plants. Erosion and leaching are moving mobile P and Fe downslope to deposition fan areas. Legacy soil patches that currently support plants have available-N at levels (10–22 mg N kg-1) similar to those added by birds in a recent bird roosting area. Roosting increased surface available N from <1 mg N kg-1 in the new pyroclastic surfaces to up to 42 mg N kg-1 and increased soil biological respiration of CO2 from essentially zero to a level about 40% that of the LS surface. Laboratory plant growth trials using Lupinus nootkatensis and Leymus mollis indicated that the influence of eroded and redeposited LS in amounts as little as 10% by volume mixed with new pyroclastic materials could aid plant recovery by supplying vital N and soil biota to plants as propagules are introduced to the new surface. Erosion-exposure of fertile pre-eruptive soils and erosion-mixing of pre-eruptive soils with newly erupted materials, along with inputs of nutrients from bird activities, each will exert significant influences on the surface fertility and recovery pattern of the new post-eruptive Kasatochi volcano. For this environment, these influences could help to speed recovery of a more diverse plant community by providing N (LS and bird inputs) as alternatives to relying most heavily on N-fixing plants to build soil fertility.

  12. Environmental Assessment: Improvements to Silver Flag Training Area at Tyndall Air Force Base, Florida

    DTIC Science & Technology

    2013-01-01

    moderate in magnitude on air quality, noise, Air Installation Compatible Use Zone program soils , wetlands, surface water, floodplains, vegetation, fish...magnitude, on air quality, noise, Air Installation Compatible Use Zone program, soils , wetlands, smf ace water, floodplains, vegetation, fish and wildlife...range from negligible to moderate in magnitude on air quality, noise, Air Installation Compatible Use Zone program, soils , wetlands, surface water

  13. Occurrence and sources of natural and anthropogenic lipid tracers in surface soils from arid urban areas of Saudi Arabia.

    PubMed

    Rushdi, Ahmed I; Al-Mutlaq, Khalid F; El-Mubarak, Aarif H; Al-Saleh, Mohammed A; El-Otaibi, Mubarak T; Ibrahim, Sami M M; Simoneit, Bernd R T

    2016-01-01

    Soil particles contain a variety of natural and anthropogenic organic components, and in urban areas can be considered as local collectors of pollutants. Surface soil samples were taken from ten urban areas in Riyadh during early winter of 2007. They were extracted with dichloromethane-methanol mixture and the extracts were analyzed by gas chromatography-mass spectrometry. The major compounds were unresolved complex mixture (UCM), plasticizers, n-alkanes, carbohydrates, n-alkanoic acids, hopanes, n-alkanols, and sterols. Vegetation detritus was the major natural source of organic compounds (24.0 ± 15.7%) in samples from areas with less human activities and included n-alkanes, n-alkanoic acids, n-alkanols, sterols and carbohydrates. Vehicular emission products and discarded plastics were the major anthropogenic sources in the soil particles (53.3 ± 21.3% and 22.7 ± 10.7%, respectively). The anthropogenic tracers were UCM, plasticizers, n-alkanes, hopanes and traces of steranes. Vegetation and human activities control the occurrence and distribution of natural and anthropogenic extractable organic matter in this arid urban area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Constraining the 2012-2014 growing season Alaskan methane budget using CARVE aircraft measurements

    NASA Astrophysics Data System (ADS)

    Hartery, S.; Chang, R. Y. W.; Commane, R.; Lindaas, J.; Miller, S. M.; Wofsy, S. C.; Karion, A.; Sweeney, C.; Miller, C. E.; Dinardo, S. J.; Steiner, N.; McDonald, K. C.; Watts, J. D.; Zona, D.; Oechel, W. C.; Kimball, J. S.; Henderson, J.; Mountain, M. E.

    2015-12-01

    Soil in northen latitudes contains rich carbon stores which have been historically preserved via permafrost within the soil bed; however, recent surface warming in these regions is allowing deeper soil layers to thaw, influencing the net carbon exchange from these areas. Due to the extreme nature of its climate, these eco-regions remain poorly understood by most global models. In this study we analyze methane fluxes from Alaska using in situ aircraft observations from the 2012-2014 Carbon in Arctic Reservoir Vulnerability Experiment (CARVE). These observations are coupled with an atmospheric particle transport model which quantitatively links surface emissions to atmospheric observations to make regional methane emission estimates. The results of this study are two-fold. First, the inter-annual variability of the methane emissions was found to be <1 Tg over the area of interest and is largely influenced by the length of time the deep soil remains unfrozen. Second, the resulting methane flux estimates and mean soil parameters were used to develop an empirical emissions model to help spatially and temporally constrain the methane exchange at the Alaskan soil surface. The empirical emissions model will provide a basis for exploring the sensitivity of methane emissions to subsurface soil temperature, soil moisture, organic carbon content, and other parameters commonly used in process-based models.

  15. Characterization of post-fire surface cover, soils, and burn severity at the Cerro Grande Fire, New Mexico, using hyperspectral and multispectral remote sensing

    USGS Publications Warehouse

    Kokaly, R.F.; Rockwell, B.W.; Haire, S.L.; King, T.V.V.

    2007-01-01

    Forest fires leave behind a changed ecosystem with a patchwork of surface cover that includes ash, charred organic matter, soils and soil minerals, and dead, damaged, and living vegetation. The distributions of these materials affect post-fire processes of erosion, nutrient cycling, and vegetation regrowth. We analyzed high spatial resolution (2.4??m pixel size) Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data collected over the Cerro Grande fire, to map post-fire surface cover into 10 classes, including ash, soil minerals, scorched conifer trees, and green vegetation. The Cerro Grande fire occurred near Los Alamos, New Mexico, in May 2000. The AVIRIS data were collected September 3, 2000. The surface cover map revealed complex patterns of ash, iron oxide minerals, and clay minerals in areas of complete combustion. Scorched conifer trees, which retained dry needles heated by the fire but not fully combusted by the flames, were found to cover much of the post-fire landscape. These scorched trees were found in narrow zones at the edges of completely burned areas. A surface cover map was also made using Landsat Enhanced Thematic Mapper plus (ETM+) data, collected September 5, 2000, and a maximum likelihood, supervised classification. When compared to AVIRIS, the Landsat classification grossly overestimated cover by dry conifer and ash classes and severely underestimated soil and green vegetation cover. In a comparison of AVIRIS surface cover to the Burned Area Emergency Rehabilitation (BAER) map of burn severity, the BAER high burn severity areas did not capture the variable patterns of post-fire surface cover by ash, soil, and scorched conifer trees seen in the AVIRIS map. The BAER map, derived from air photos, also did not capture the distribution of scorched trees that were observed in the AVIRIS map. Similarly, the moderate severity class of Landsat-derived burn severity maps generated from the differenced Normalized Burn Ratio (dNBR) calculation had low agreement with the AVIRIS classes of scorched conifer trees. Burn severity and surface cover images were found to contain complementary information, with the dNBR map presenting an image of degree of change caused by fire and the AVIRIS-derived map showing specific surface cover resulting from fire.

  16. Soil classification for seismic site effect using MASW and ReMi methods: A case study from western Anatolia (Dikili -İzmir)

    NASA Astrophysics Data System (ADS)

    Karabulut, Savaş

    2018-03-01

    The study area is located in the northern part of Izmir, Western Turkey, prone to an active tectonic extensional regime and includes typical features of sedimentary basins, horst-grabens surrounded by a series of normal and strike-slip faults. In September 1939 the Dikili (Kabakum) earthquake with a magnitude of Mw: 6.6 occurred and after this phenomenon, residents moved from the west of Dikili to the east (i.d. soft sediments to relative to rock area). A proper estimate of the earthquake-related hazard for the area is the main objective of this study. The site effect and soil engineering problems for estimating hazard parameters at the soil surface need to be carefully analyzed for seismic site classification and geo-engineering problems like soil liquefaction, soil settlement, soil bearing capacity and soil amplification. To solve the soil static and dynamic problems, shear-wave velocities have been used in a joint interpretation process; Multichannel Analysis of Surface Waves (MASW) and Refraction Microtremor (ReMi) analyses were conducted on 121 sites with 300 × 300 m grid size in an area of 60 km2. It has been proposed that the probability of an earthquake with a magnitude of Mw: 6 occurring within 10 years is 64%, when considering the Gutenberg-Richter model. This puts the region under an important earthquake risk. The estimated Vs30 values are ≤180 m/s in the central and the northernmost part of the study area are showing an E type soil after the classification of NEHRP, where alluvial deposits are dominant. Vs30 values in the north and central part are between 180 ≤ Vs ≤ 360 m/s suggesting a D type soil. In the southernmost part of the study area where volcanic rocks are widely distributed, Vs30 values range between 360 and 908 m/s, corresponding to a C type and B type soil. The results show that soil liquefaction induced settlement and soil amplification are the most important problems in the south and the northernmost part of the study area, which is densely populated and encompasses the urbanized part of the study region.

  17. Soil carbon storage in a small arid catchment in the Negev desert (Israel)

    NASA Astrophysics Data System (ADS)

    Hoffmann, Ulrike; Kuhn, Nikolaus

    2010-05-01

    The mineral soil represents a major pool in the global carbon cycle. The behavior of mineral soil as a carbon reservoir in global climate and environmental issues is far from fully understood and causes a serious lack of comparable data on mineral soil organic carbon (SOC) at regional scale. To improve our understanding of soil carbon sequestration, it is necessary to acquire regional estimates of soil carbon pools in different ecosystem types. So far, little attention has been given to Dryland ecosystems, but they are often considered as highly sensitive to environmental change, with large and rapid responses to even smallest changes of climate conditions. Due to this fact, Drylands, as an ecosystem with extensive surface area across the globe (6.15 billion ha), have been suggested as a potential component for major carbon storage. A priori reasoning suggests that regional spatial patterns of SOC density (kg/m²) in Drylands are mostly affected by vegetation, soil texture, landscape position, soil truncation, wind erosion/deposition and the effect of water supply. Particularly unassigned is the interaction between soil volume, geomorphic processes and SOC density on regional scale. This study aims to enhance our understanding of regional spatial variability in dependence on soil volume, topography and surface parameters in areas susceptible to environmental change. Soil samples were taken in small transects at different representative slope positions across a range of elevations, soil texture, vegetation types, and terrain positions in a small catchment (600 ha) in the Negev desert. Topographic variables were extracted from a high resolution (0.5m) digital elevation model. Subsequently, we estimated the soil volume by excavating the entire soil at the representative sampling position. The volume was then estimated by laser scanning before and after soil excavation. SOC concentration of the soil samples was determined by CHN-analyser. For each sample, carbon densities (in kg/m²) were estimated for the mineral soil layer. The results indicate a large spatial variability of the carbon contents, the soil volume and depths across the landscape. In general, topography exerts a strong control on the carbon contents and the soil depths in the study site. Lowest carbon contents are apparent at the hillslope tops with increasing contents downslope. Because of the significantly larger carbon content at the northern exposed slope, we suggest that solar radiation driven differences of soil moisture content major controls SOC. Regarding the soil depths, the differences are not that clear. Soil depths seem to be higher at the southern exposed slope, but differences with respect to the slope position are not significant. Concerning the total amount of carbon storage in the study area, the results show that soil carbon may not be neglected in arid areas. Our results should provide an indication that carbon contents in dynamic environments are more affected and controlled by surface properties (soil volume) than by climate. Concluding that hint, climate is less important than surface processes in dryland ecosystems.

  18. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs

    PubMed Central

    Edmondson, J. L.; Stott, I.; Davies, Z. G.; Gaston, K. J.; Leake, J. R.

    2016-01-01

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health. PMID:27641002

  19. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs.

    PubMed

    Edmondson, J L; Stott, I; Davies, Z G; Gaston, K J; Leake, J R

    2016-09-19

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.

  20. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs

    NASA Astrophysics Data System (ADS)

    Edmondson, J. L.; Stott, I.; Davies, Z. G.; Gaston, K. J.; Leake, J. R.

    2016-09-01

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.

  1. Radiocarbon in Ecosystem Respiration and Soil Pore-Space CO2 with Surface Gas Flux, Air Temperature, and Soil Temperature and Moisture, Barrow, Alaska, 2012-2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lydia Vaughn; Margaret Torn; Rachel Porras

    Dataset includes Delta14C measurements made from CO2 that was collected and purified in 2012-2014 from surface soil chambers, soil pore space, and background atmosphere. In addition to 14CO2 data, dataset includes co-located measurements of CO2 and CH4 flux, soil and air temperature, and soil moisture. Measurements and field samples were taken from intensive study site 1 areas A, B, and C, and the site 0 and AB transects, from specified positions in high-centered, flat-centered, and low centered polygons.

  2. Concerning the relationship between evapotranspiration and soil moisture

    NASA Technical Reports Server (NTRS)

    Wetzel, Peter J.; Chang, Jy-Tai

    1987-01-01

    The relationship between the evapotranspiration and soil moisture during the drying, supply-limited phase is studied. A second scaling parameter, based on the evapotranspirational supply and demand concept of Federer (1982), is defined; the parameter, referred to as the threshold evapotranspiration, occurs in vegetation-covered surfaces just before leaf stomata close and when surface tension restricts moisture release from bare soil pores. A simple model for evapotranspiration is proposed. The effects of natural soil heterogeneities on evapotranspiration computed from the model are investigated. It is observed that the natural variability in soil moisture, caused by the heterogeneities, alters the relationship between regional evapotranspiration and the area average soil moisture.

  3. Reference levels of natural radioactivity and (137)Cs in and around the surface soils of Kestanbol pluton in Ezine region of Çanakkale province, Turkey.

    PubMed

    Öztürk, Buket Canbaz; Çam, N Füsun; Yaprak, Günseli

    2013-01-01

    The aim of the study was to conduct a systematic investigation on the natural gamma emitting radionuclides ((226)Ra, (232)Th and (40)K) as well as (137)Cs in the surface soils from Kestanbol/Ezine plutonic area in Çanakkale province as part of the environmental monitoring program on radiologic impact of the granitoid areas in Western Anatolia. The activity measurements of the gamma emitters in the surface soil samples collected from 52 sites distributed all over the region has been carried out, by means of HPGe gamma-ray spectrometry system. The activity concentrations of the relevant radionuclides in the soil samples appeared in the ranges as follows: (226)Ra was 20-521 Bq kg(-1); (232)Th, 11-499 Bq kg(-1)and; (40)K, 126-3181 Bq kg(-1), yet the (137)Cs was much lower than 20 Bq kg(-1)at most. Furthermore, based on the available data, the radiation hazard parameters associated with the surveyed soils were calculated. The present data also allowed evaluation of some correlations that may exist in the investigated natural radionuclides of the soil samples from the plutonic area in Çanakkale province. It is concluded from the above that the concerned region did not lead to any significant radiological exposure to the environment.

  4. Mineralogical and chemical interactions of soils eaten by chimpanzees of the Mahale Mountains and Gombe Stream National Parks, Tanzania.

    PubMed

    Aufreiter, S; Mahaney, W C; Milner, M W; Huffman, M A; Hancock, R G; Wink, M; Reich, M

    2001-02-01

    Termite mound soils eaten by chimpanzees of the Mahale Mountains and Gombe National Parks, Tanzania, have mineralogical and geochemical compositions similar to many soils eaten by higher primates, but release very low levels of either toxic or nutritional inorganic elements to solution at acid pH. Comparison with control (uneaten) soils from the same areas showed lower levels of carbon and nitrogen in the eaten soils, a relationship confirmed by surface analysis. Surface analysis also revealed lower levels of iron on particle surfaces versus interiors, and higher levels of iron on ingested versus control soil particle surfaces. The soils can adsorb dietary toxins, present in the plant diet or those produced by microorganisms. Taking the toxic alkaloids quinine, atropine, sparteine, and lupanine as examples, it is evident that soils from Mahale have a very good adsorptive capacity. A new adaptive advantage of geophagy is proposed, based on the prevention of iron uptake. The behavior of the soils in vitro is consistent with the theory that geophagy has a therapeutic value for these chimpanzees.

  5. Microclimatic modeling of the desert in the United Arab Emirates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, A.K.; Abdrabboh, M.A.; Kamel, K.A.

    1996-10-01

    The present study is concerned with the prediction of the weather parameters in the microclimate layer (less than 2 m above the ground surface) in the desert and sparsely vegetated areas in the United Arab Emirates. A survey was made of the weather data in these regions including solar radiation, wind speed, screen temperatures and relative humidity. Additionally, wind speed data were obtained at heights below two meters and surface albedo was recorded for various soil and vegetation conditions. A survey was also carried out for the different plant species in various areas of the U.A.E. Data on soil andmore » surface temperature were then analyzed. An energy balance model was formulated including incident short- and long-wave length radiation between earth and sky, convective heat transfer to/from earth surface, surface reflection of solar radiation and soil/plant evapotranspiration. An explicit one dimensional finite difference scheme was adapted to solve the resulting algebraic finite difference equations. The equation for surface nodes included thermal radiation as well as convection effects. The heat transfer coefficient was evaluated on the basis of wind speed and surface roughness at the site where the energy balance was set. Theoretical predictions of air and soil temperatures were accordingly compared to experimental measurements in selected sites, where reasonable agreements were observed.« less

  6. Seed reserves diluted during surface soil reclamation in eastern Mojave Desert

    USGS Publications Warehouse

    Scoles-Sciulla, S. J.; DeFalco, L.A.

    2009-01-01

    Surface soil reclamation is used to increase the re-establishment of native vegetation following disturbance through preservation and eventual replacement of the indigenous seed reserves. Employed widely in the mining industry, soil reclamation has had variable success in re-establishing native vegetation in arid and semi-arid regions. We tested whether variable success could be due in part to a decrease of seed reserves during the reclamation process by measuring the change in abundance of germinable seed when surface soil was mechanically collected, stored in a soil pile for 4 months, and reapplied upon completion of a roadway. Overall seed reserve declines amounted to 86% of the original germinable seed in the soil. The greatest decrease in seed reserves occurred during soil collection (79% of original reserves), compared to the storage and reapplication stages. At nearby sites where stored surface soil had been reapplied, no perennial plant cover occurred from 0.5 to 5 years after application and <1% cover after 7 years compared to 5% cover in nearby undisturbed areas. The reduction in abundance of germinable seed during reclamation was primarily due to dilution of seed reserves when deeper soil fractions without seed were mixed with the surface soil during collection. Unless more precise techniques of surface soil collection are utilized, soil reclamation alone as a means for preserving native seed reserves is a method ill-suited for revegetating disturbed soils with a shallow seed bank, such as those found in the Mojave Desert. Copyright ?? Taylor & Francis Group, LLC.

  7. Effects of land disposal of municipal sewage sludge on fate of nitrates in soil, streambed sediment, and water quality

    USGS Publications Warehouse

    Tindall, James A.; Lull, Kenneth J.; Gaggiani, Neville G.

    1994-01-01

    This study was undertaken to determine the effects of sewage-sludge disposal at the Lowry sewage-sludge-disposal area, near Denver, Colorado, on ground- and surface-water quality, to determine the fate of nitrates from sludge leachate, and to determine the source areas of leachate and the potential for additional leaching from the disposal area.Sewage-sludge disposal began in 1969. Two methods were used to apply the sludge: burial and plowing. Also, the sludge was applied both in liquid and cake forms. Data in this report represent the chemical composition of soil and streambed sediment from seven soil- and four streambed-sampling sites in 1986, chemical and bacterial composition of ground water from 28 wells from 1981 to 1987, and surface-water runoff from seven water-sampling sites from 1984 to 1987. Ground water samples were obtained from alluvial and bedrock aquifers. Samples of soil, streambed sediment, ground water and surface water were obtained for onsite measurement and chemical analysis. Measurements included determination of nitrogen compounds and major cations and anions, fecal-coliform and -streptococcus bacteria, specific conductance, and pH.Thirteen wells in the alluvial aquifer in Region 3 of the study area contain water that was probably affected by sewage-sludge leachate. The plots of concentration of nitrate with time show seasonal trends and trends caused by precipitation. In addition to yearly fluctuation, there were noticeable increases in ground-water concentrations of nitrate that coincided with increased precipitation. After 3 years of annual ground-water-quality monitoring and 4 years of a quarterly sampling program, it has been determined that leachate from the sewage-sludge-disposal area caused increased nitrite plus nitrate (as nitrogen) concentration in the alluvial ground water at the site. Soil analyses from the disposal area indicate that organic nitrogen was the dominant form of nitrogen in the soil.As a result of investigations at the research site, it has been determined that a potentially large source of contamination exists in the soils of the study area owing to increased concentrations of nitrogen, sodium, calcium, magnesium, sulfate, bicarbonate, and chloride because of sewage disposal. Continued monitoring of surface and ground water for nitrogen and the other ions previously mentioned is required to assess long-term effects of municipal sludge disposal on water quality.

  8. Effects of land disposal of municipal sewage sludge on fate of nitrates in soil, streambed sediment, and water quality

    NASA Astrophysics Data System (ADS)

    Tindall, James A.; Lull, Kenneth J.; Gaggiani, Neville G.

    1994-12-01

    This study was undertaken to determine the effects of sewage-sludge disposal at the Lowry sewage-sludge-disposal area, near Denver, Colorado, on ground- and surface-water quality, to determine the fate of nitrates from sludge leachate, and to determine the source areas of leachate and the potential for additional leaching from the disposal area. Sewage-sludge disposal began in 1969. Two methods were used to apply the sludge: burial and plowing. Also, the sludge was applied both in liquid and cake forms. Data in this report represent the chemical composition of soil and streambed sediment from seven soil- and four streambed-sampling sites in 1986, chemical and bacterial composition of ground water from 28 wells from 1981 to 1987, and surface-water runoff from seven water-sampling sites from 1984 to 1987. Ground water samples were obtained from alluvial and bedrock aquifers. Samples of soil, streambed sediment, ground water and surface water were obtained for onsite measurement and chemical analysis. Measurements included determination of nitrogen compounds and major cations and anions, fecal-coliform and -streptococcus bacteria, specific conductance, and pH. Thirteen wells in the alluvial aquifer in Region 3 of the study area contain water that was probably affected by sewage-sludge leachate. The plots of concentration of nitrate with time show seasonal trends and trends caused by precipitation. In addition to yearly fluctuation, there were noticeable increases in ground-water concentrations of nitrate that coincided with increased precipitation. After 3 years of annual ground-water-quality monitoring and 4 years of a quarterly sampling program, it has been determined that leachate from the sewage-sludge-disposal area caused increased nitrite plus nitrate (as nitrogen) concentration in the alluvial ground water at the site. Soil analyses from the disposal area indicate that organic nitrogen was the dominant form of nitrogen in the soil. As a result of investigations at the research site, it has been determined that a potentially large source of contamination exists in the soils of the study area owing to increased concentrations of nitrogen, sodium, calcium, magnesium, sulfate, bicarbonate, and chloride because of sewage disposal. Continued monitoring of surface and ground water for nitrogen and the other ions previously mentioned is required to assess long-term effects of municipal sludge disposal on water quality.

  9. Improved or unimproved urban areas effect on soil and water quality

    USDA-ARS?s Scientific Manuscript database

    Construction in urban areas usually results in compacted soil, which restricts plant growth and infiltration. Nutrients may be lost in storm runoff water and sediment. The purpose of this study was to determine if existing lawns benefit from aeration and surface compost additions without negative im...

  10. Ammonium, Nitrate, and Total Nitrogen in the Soil Water of Feedlot and Field Soil Profiles1

    PubMed Central

    Elliott, L. F.; McCalla, T. M.; Mielke, L. N.; Travis, T. A.

    1972-01-01

    A level feedlot, located in an area consisting of Wann silt loam changing with depth to sand, appears to contribute no more NO3- nitrogen, NH4+ nitrogen, and total nitrogen to the shallow water table beneath it than an adjacent cropped field. Soil water samples collected at 46, 76, and 107 cm beneath the feedlot surface generally showed NO3- nitrogen concentrations of less than 1 μg/ml. During the summer months, soil water NO3- nitrogen increased at the 15-cm depth, indicating that nitrification took place at the feedlot surface. However, the low soil water NO3- nitrogen values below 15 cm indicate that denitrification takes place beneath the surface. PMID:16349922

  11. Soil-landform-plant communities relationships of a periglacial landscape at Potter Peninsula, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Poelking, E. L.; Schaefer, C. E. R.; Fernandes Filho, E. I.; de Andrade, A. M.; Spielmann, A. A.

    2014-08-01

    Integrated studies on the interplay between soils, periglacial geomorphology and plant communities are crucial for the understanding of climate change effects on terrestrial ecosystems of Maritime Antarctica, one of the most sensitive areas to global warming. Knowledge on physical environmental factors that influence plant communities can greatly benefit studies on monitoring climate change in Maritime Antarctica, where new ice-free areas are being constantly exposed, allowing plant growth and organic carbon inputs. The relationship between topography, plant communities and soils was investigated in Potter Peninsula, King George Island, Maritime Antarctica. We mapped the occurrence and distribution of plant communities and identified soil-landform-vegetation relationships. The vegetation map was obtained by classification of a Quickbird image, coupled with detailed landform and characterization of 18 soil profiles. The sub-formations were identified and classified, and we also determined the total elemental composition of lichens, mosses and grasses. Plant communities at Potter Peninsula occupy 23% of the ice-free area, at different landscape positions, showing decreasing diversity and biomass from the coastal zone to inland areas where sub-desert conditions prevail. There is a clear dependency between landform and vegetated soils. Soils with greater moisture or poorly drained, and acid to neutral pH, are favourable for mosses subformations. Saline, organic-matter rich ornithogenic soils of former penguin rookeries have greater biomass and diversity, with mixed associations of mosses and grasses, while stable felseenmeers and flat rocky cryoplanation surfaces are the preferred sites for Usnea and Himantormia lugubris lichens, at the highest surface. Lichens subformations cover the largest vegetated area, showing varying associations with mosses.

  12. Vs30 mapping at selected sites within the Greater Accra Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Nortey, Grace; Armah, Thomas K.; Amponsah, Paulina

    2018-06-01

    A large part of Accra is underlain by a complex distribution of shallow soft soils. Within seismically active zones, these soils hold the most potential to significantly amplify seismic waves and cause severe damage, especially to structures sited on soils lacking sufficient stiffness. This paper presents preliminary site classification for the Greater Accra Metropolitan Area of Ghana (GAMA), using experimental data from two-dimensional (2-D) Multichannel Analysis of Surface Wave (MASW) technique. The dispersive characteristics of fundamental mode Rayleigh type surface waves were utilized for imaging the shallow subsurface layers (approx. up to 30 m depth) by estimating the 1D (depth) and 2D (depth and surface location) shear wave velocities at 5 selected sites. The average shear wave velocity for 30 m depth (Vs30), which is critical in evaluating the site response of the upper 30 m, was estimated and used for the preliminary site classification of the GAM area, as per NEHRP (National Earthquake Hazards Reduction Program). Based on the Vs30 values obtained in the study, two common site types C, and D corresponding to shallow (>6 m < 30 m) weathered rock and deep (up 30 m thick) stiff soils respectively, have been identified within the study area. Lower velocity profiles are inferred for the residual soils (sandy to silty clays), derived from the Accraian Formation that lies mainly within Accra central. Stiffer soil sites lie to the north of Accra, and to the west near Nyanyano. The seismic response characteristics over the residual soils in the GAMA have become apparent using the MASW technique. An extensive site effect map and a more robust probabilistic seismic hazard analysis can now be efficiently built for the metropolis, by considering the site classes and design parameters obtained from this study.

  13. Estimating the Limits of Infiltration in the Urban Appalachian Plateau

    NASA Astrophysics Data System (ADS)

    Lavin, S. M.; Bain, D.; Hopkins, K. G.; Pfeil-McCullough, E. K.; Copeland, E.

    2014-12-01

    Green infrastructure in urbanized areas commonly uses infiltration systems, such as rain gardens, swales and trenches, to convey surface runoff from impervious surfaces into surrounding soils. However, precipitation inputs can exceed soil infiltration rates, creating a limit to infiltration-based storm water management, particularly in urban areas covered by impervious surfaces. Given the limited availability and varied quality of soil infiltration rate data, we synthesized information from national databases, available field test data, and applicable literature to characterize soil infiltration rate distributions, focusing on Allegheny County, Pennsylvania as a case study. A range of impervious cover conditions was defined by sampling available GIS data (e.g., LiDAR and street edge lines) with analysis windows placed randomly across urbanization gradients. Changes in effective precipitation caused by impervious cover were calculated across these gradients and compared to infiltration rate distributions to identify thresholds in impervious coverage where these limits are exceeded. Many studies have demonstrated the effects of urbanization on infiltration, but the identification of these thresholds will clarify interactions between impervious cover and soil infiltration. These methods can help identify sections of urban areas that require augmentation of infiltration-based systems with additional infrastructural strategies, especially as green infrastructure moves beyond low impact development towards more frequent application during infilling of existing urban systems.

  14. Vertical Distribution and Estimated Doses from Artificial Radionuclides in Soil Samples around the Chernobyl Nuclear Power Plant and the Semipalatinsk Nuclear Testing Site

    PubMed Central

    Taira, Yasuyuki; Hayashida, Naomi; Tsuchiya, Rimi; Yamaguchi, Hitoshi; Takahashi, Jumpei; Kazlovsky, Alexander; Urazalin, Marat; Rakhypbekov, Tolebay; Yamashita, Shunichi; Takamura, Noboru

    2013-01-01

    For the current on-site evaluation of the environmental contamination and contributory external exposure after the accident at the Chernobyl Nuclear Power Plant (CNPP) and the nuclear tests at the Semipalatinsk Nuclear Testing Site (SNTS), the concentrations of artificial radionuclides in soil samples from each area were analyzed by gamma spectrometry. Four artificial radionuclides (241Am, 134Cs, 137Cs, and 60Co) were detected in surface soil around CNPP, whereas seven artificial radionuclides (241Am, 57Co, 137Cs, 95Zr, 95Nb, 58Co, and 60Co) were detected in surface soil around SNTS. Effective doses around CNPP were over the public dose limit of 1 mSv/y (International Commission on Radiological Protection, 1991). These levels in a contaminated area 12 km from Unit 4 were high, whereas levels in a decontaminated area 12 km from Unit 4 and another contaminated area 15 km from Unit 4 were comparatively low. On the other hand, the effective doses around SNTS were below the public dose limit. These findings suggest that the environmental contamination and effective doses on the ground definitely decrease with decontamination such as removing surface soil, although the effective doses of the sampling points around CNPP in the present study were all over the public dose limit. Thus, the remediation of soil as a countermeasure could be an extremely effective method not only for areas around CNPP and SNTS but also for areas around the Fukushima Dai-ichi Nuclear Power Plant (FNPP), and external exposure levels will be certainly reduced. Long-term follow-up of environmental monitoring around CNPP, SNTS, and FNPP, as well as evaluation of the health effects in the population residing around these areas, could contribute to radiation safety and reduce unnecessary exposure to the public. PMID:23469013

  15. Vertical distribution and estimated doses from artificial radionuclides in soil samples around the Chernobyl nuclear power plant and the Semipalatinsk nuclear testing site.

    PubMed

    Taira, Yasuyuki; Hayashida, Naomi; Tsuchiya, Rimi; Yamaguchi, Hitoshi; Takahashi, Jumpei; Kazlovsky, Alexander; Urazalin, Marat; Rakhypbekov, Tolebay; Yamashita, Shunichi; Takamura, Noboru

    2013-01-01

    For the current on-site evaluation of the environmental contamination and contributory external exposure after the accident at the Chernobyl Nuclear Power Plant (CNPP) and the nuclear tests at the Semipalatinsk Nuclear Testing Site (SNTS), the concentrations of artificial radionuclides in soil samples from each area were analyzed by gamma spectrometry. Four artificial radionuclides ((241)Am, (134)Cs, (137)Cs, and (60)Co) were detected in surface soil around CNPP, whereas seven artificial radionuclides ((241)Am, (57)Co, (137)Cs, (95)Zr, (95)Nb, (58)Co, and (60)Co) were detected in surface soil around SNTS. Effective doses around CNPP were over the public dose limit of 1 mSv/y (International Commission on Radiological Protection, 1991). These levels in a contaminated area 12 km from Unit 4 were high, whereas levels in a decontaminated area 12 km from Unit 4 and another contaminated area 15 km from Unit 4 were comparatively low. On the other hand, the effective doses around SNTS were below the public dose limit. These findings suggest that the environmental contamination and effective doses on the ground definitely decrease with decontamination such as removing surface soil, although the effective doses of the sampling points around CNPP in the present study were all over the public dose limit. Thus, the remediation of soil as a countermeasure could be an extremely effective method not only for areas around CNPP and SNTS but also for areas around the Fukushima Dai-ichi Nuclear Power Plant (FNPP), and external exposure levels will be certainly reduced. Long-term follow-up of environmental monitoring around CNPP, SNTS, and FNPP, as well as evaluation of the health effects in the population residing around these areas, could contribute to radiation safety and reduce unnecessary exposure to the public.

  16. Giardia & Pets

    MedlinePlus

    ... dog or cat Rolling and playing in contaminated soil Licking its body after contact with a contaminated ... coming into contact with infected feces (poop) or soil. Clean household surfaces regularly. Clean and disinfect areas ...

  17. NNSS Soils Monitoring: Plutonium Valley (CAU366) FY2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George

    2013-01-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events. Field measurements at the T-4 Atmospheric Test Site (CAU 370) suggest that radionuclide-contaminated soils may have migrated along a shallow ephemeral drainage that traverses the site (NNSA/NSO, 2009). (It is not entirely clear how contaminated soils got into their present location at the T-4more » Site, but flow to the channel has been redirected and the contamination does not appear to be migrating at present.) Aerial surveys in selected portions of the Nevada National Security Site (NNSS) also suggest that radionuclide-contaminated soils may be migrating along ephemeral channels in Areas 3, 8, 11, 18, and 25 (Colton, 1999). In Area 11, several low-level airborne surveys of the Plutonium Valley Dispersion Sites (CAU 366) show plumes of Americium 241 (Am-241) extending along ephemeral channels (Figure 1, marker numbers 5 and 6) below Corrective Action Site (CAS) 11-23-03 (marker number 3) and CAS 11 23-04 (marker number 4) (Colton, 1999). Plutonium Valley in Area 11 of the NNSS was selected for the study because of the aerial survey evidence suggesting downstream transport of radionuclide-contaminated soil. The aerial survey (Figure 1) shows a well defined finger of elevated radioactivity (marker number 5) extending to the southwest from the southernmost detonation site (marker number 4). This finger of contamination overlies a drainage channel mapped on the topographic base map used for presentation of the survey data suggesting surface runoff as a likely cause of the contaminated area. Additionally, instrumenting sites strongly suspected of conveying soil from areas of surface contamination offers the most efficient means to confirm that surface runoff may transport radioactive contamination as a result of ambient precipitation/runoff events. Closure plans being developed for the CAUs on the NNSS may include post-closure monitoring for possible release of radioactive contaminants. Determining the potential for transport of radionuclide-contaminated soils under ambient meteorological conditions will facilitate an appropriate closure design and post-closure monitoring program.« less

  18. Soil hydrological and soil property changes resulting from termite activity on agricultural fields in Burkina Faso

    NASA Astrophysics Data System (ADS)

    Mettrop, I.; Cammeraat, L. H.; Verbeeten, E.

    2009-04-01

    Termites are important ecosystem-engineers in subtropical and tropical regions. The effect of termite activity affecting soil infiltration is well documented in the Sahelian region. Most studies find increased infiltration rates on surfaces that are affected by termite activity in comparison to crusted areas showing non-termite presence. Crusted agricultural fields in the Sanmatenga region in Burkina Faso with clear termite activity were compared to control fields without visual ground dwelling termite activity. Fine scale rainfall simulations were carried out on crusted termite affected and control sites. Furthermore soil moisture change, bulk density, soil organic matter as well as general soil characteristics were studied. The top soils in the study area were strongly crusted (structural crust) after the summer rainfall and harvest of millet. They have a loamy sand texture underlain by a shallow sandy loam Bt horizon. The initial soil moisture conditions were significantly higher on the termite plots when compared to control sites. It was found that the amount of runoff produced on the termite plots was significantly higher, and also the volumetric soil moisture content after the experiments was significantly lower if compared to the control plots. Bulk density showed no difference whereas soil organic matter was significantly higher under termite affected areas, in comparison to the control plots. Lab tests showed no significant difference in hydrophobic behavior of the topsoil and crust material. Micro and macro-structural properties of the topsoil did not differ significantly between the termite sites and the control sites. The texture of the top 5 cm of the soil was also found to be not significantly different. The infiltration results are contradictory to the general literature, which reports increased infiltration rates after prolonged termite activity although mostly under different initial conditions. The number of nest entrances was clearly higher in the termite areas, but apparently did not significantly affect infiltration. The increased soil organic matter contents in the termite affected areas however, are as expected from literature, but did not improve soil aggregation which would be expected given the importance of organic matter in soil aggregation in this type of soils. One of the explanations for the reduced infiltration rates might be that termites bring clay from the finer textured subsoil to the surface to build casts over the organic material on the surface (mainly millet stems). It is speculated that the excavated clay material could be involved in crust formation, only present is in the upper 0.5 cm of the soil crust, which is enough to block pores in the crust surface, hampering infiltration. The topsoil aggregates are slaking under the summer rainfall and the increase in fine textured material, excavated by the termites, could be incorporated into the crust and reduce infiltration. Furthermore this specific effect might also be related to the type of termite involved, as impacts from ecosystem engineers on their environment is highly dependent on the specific species involved.

  19. Statistical analysis of $sup 239-240$Pu and $sup 241$Am contamination of soil and vegetation on NAEG study sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, R.O.; Eberhardt, L.L.; Fowler, E.B.

    Reported here are results of the statistical design and analysis work conducted during Calendar Year 1974 for the Nevada Applied Ecology Group (NAEG) at plutonium study sites on the Nevada Test Site (NTS) and the Tonopah Test Range (TTR). Estimates of $sup 239-240$Pu inventory in surface soil (0 to 5-cm depth) are given for each of the NAEG intensive study sites, together with activity maps based on FIDLER surveys showing the field areas to which these estimates apply. There is evidence of a preliminary nature to suggest that the plutonium present in surface soil may be covered by a thinmore » (less than 2.5 cm) layer of soil whose alpha activity is considerably less than that directly below. Computer-drawn $sup 239-240$Pu concentration contours and three-dimensional surfaces in soil and vegetation are given for Area 13 and GMX as a first attempt at estimating the geographical distribution of $sup 239-240$Pu at these sites. (CH)« less

  20. Chemical and geotechnical assessment of low organic foundation soils across the coastal area of Southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Adebisi, N. O.; Osammor, J.; Oluwafemi, O. S.

    2018-04-01

    Pressure on land use has caused great site development along the coastal area of south western Nigeria. However, research works for the purpose of evaluating appropriate depths of foundations in the area were without cognizance of engineering challenges that may ensue as a result of the organic content, and associated factors of the soils. This paper evaluates the compositional effects of the soils on foundation materials, and a phenomenological model of compressibility of fines during design and construction of problem-free foundations in the area. Thirty (30) disturbed soils were analysed for moisture content, grain size distribution, consistency limits, chloride, pH and sulphate, while the oedometer consolidation test was carried out on another 30 undisturbed soils. The stratigraphic sequence in the profile comprises medium dense to coarse grained silty clayey sand to 16.80 m depth, below loose grey organic silty clayey sand from the surface. Results show in most cases, that the foundation soils contain insignificant percentages (0.95-5.8%) of organic solids. Moisture content (44-70%), chloride (74.9 ppm), sulphate (420 ppm) ions concentration and pH (8.96) could enhance the corrosive potential of the soils. It is recommended that Portland cement concrete will be suitable in the environment. Foundation settlement with respect to surface area (0.028≤ mv ≤ 0.434m2MN-1 at 200 kNm-2; 0.038mv ≤ 0.776m2MN-1 at 400 kNm-2; 0.038≤ mv ≤ 0.879m2MN-1 at 800 kNm-2) ranges from low to medium compressibility with respect to consolidation pressure. Therefore, footings load need be spread over the soils, and foundation design need be based on site-specific soil information.

  1. Mechanisms for surface contamination of soils and bottom sediments in the Shagan River zone within former Semipalatinsk Nuclear Test Site.

    PubMed

    Aidarkhanov, A O; Lukashenko, S N; Lyakhova, O N; Subbotin, S B; Yakovenko, Yu Yu; Genova, S V; Aidarkhanova, A K

    2013-10-01

    The Shagan River is the only surface watercourse within the former Semipalatinsk Test Site (STS). Research in the valley of the Shagan River was carried out to study the possible migration of artificial radionuclides with surface waters over considerable distances, with the possibility these radionuclides may have entered the Irtysh River. The investigations revealed that radioactive contamination of soil was primarily caused by the first underground nuclear test with soil outburst conducted at the "Balapan" site in Borehole 1004. The surface nuclear tests carried out at the "Experimental Field" site and global fallout made insignificant contributions to contamination. The most polluted is the area in the immediate vicinity of the "Atomic" Lake crater. Contamination at the site is spatial. The total area of contamination is limited to 10-12 km from the crater piles. The ratio of plutonium isotopes was useful to determine the source of soil contamination. There was virtual absence of artificial radionuclide migration with surface waters, and possible cross-border transfer of radionuclides with the waters of Shagan and Irtysh rivers was not confirmed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Residues of organochlorine pesticides in surface soil and raw ...

    EPA Pesticide Factsheets

    The central Asian Republic of Tajikistan has been an area of extensive historical agricultural pesticide use as well as large scale burials of obsolete banned chlorinated insecticides. The current investigation was a four year study of legacy organochlorine pesticides in surface soil and raw foods in four rural areas of Tajikistan. The four study areas included the pesticide burial sites of Konibodom and Vakhsh, and family farms of Garm and Chimbuloq villages. These areas were selected to represent a diversity of pesticide disposal histories and to allow assessment of local pesticide contamination in Tajikistan. Each site was visited multiple times and over 500 samples of surface soil and raw foods were collected and analyzed for twenty legacy organochlorine pesticides. Various local food products were sampled to represent the range of raw foods potentially containing residues of banned pesticides, including dairy products, meat, edible plant and cotton seed products. The pesticide analytes included DDTs (DDT, DDD, DDE), lindane isomers (α, β, γ, δ BHC), endosulfan isomers (endosulfan I, II, sulfate), other cyclodienes (aldrin, α and γ chlordanes, dieldrin, endrin, endrin aldehyde and ketone, heptachlor, heptachlor epoxide), and methoxychlor. Pesticide analytes were selected based on availability of commercial standards and known or suspected historical pesticide use and burial. Pesticide contamination was highest in soil at each of the four sites, and ge

  3. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    NASA Astrophysics Data System (ADS)

    Wang, W.; Rinke, A.; Moore, J. C.; Cui, X.; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D. M.; McGuire, A. D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2015-03-01

    We perform a land surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies between 6 modern stand-alone land surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by 5 different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99-135 x 104 km2) between the two diagnostic methods based on air temperature which are also consistent with the best current observation-based estimate of actual permafrost area (101 x 104 km2). However the uncertainty (1-128 x 104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air temperature based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification and snow cover. Models are particularly poor at simulating permafrost distribution using definition that soil temperature remains at or below 0°C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in permafrost distribution can be made for the Tibetan Plateau.

  4. Thermal and Hydrologic Signatures of Soil Controls on Evaporation: A Combined Energy and Water Balance Approach with Implications for Remote Sensing of Evaporation

    NASA Technical Reports Server (NTRS)

    Salvucci, Guido D.

    2000-01-01

    The overall goal of this research is to examine the feasibility of applying a newly developed diagnostic model of soil water evaporation to large land areas using remotely sensed input parameters. The model estimates the rate of soil evaporation during periods when it is limited by the net transport resulting from competing effects of capillary rise and drainage. The critical soil hydraulic properties are implicitly estimated via the intensity and duration of the first stage (energy limited) evaporation, removing a major obstacle in the remote estimation of evaporation over large areas. This duration, or 'time to drying' (t(sub d)) is revealed through three signatures detectable in time series of remote sensing variables. The first is a break in soil albedo that occurs as a small vapor transmission zone develops near the surface. The second is a break in either surface to air temperature differences or in the diurnal surface temperature range, both of which indicate increased sensible heat flux (and/or storage) required to balance the decrease in latent heat flux. The third is a break in the temporal pattern of near surface soil moisture. Soil moisture tends to decrease rapidly during stage I drying (as water is removed from storage), and then become more or less constant during soil limited, or 'stage II' drying (as water is merely transmitted from deeper soil storage). The research tasks address: (1) improvements in model structure, including extensions to transpiration and aggregation over spatially variable soil and topographic landscape attributes; and (2) applications of the model using remotely sensed input parameters.

  5. Thermal and Hydrologic Signatures of Soil Controls on Evaporation: A Combined Energy and Water Balance Approach with Implications for Remote Sensing of Evaporation

    NASA Technical Reports Server (NTRS)

    Salvucci, Guido D.

    1997-01-01

    The overall goal of this research is to examine the feasibility of applying a newly developed diagnostic model of soil water evaporation to large land areas using remotely sensed input parameters. The model estimates the rate of soil evaporation during periods when it is limited by the net transport resulting from competing effects of capillary rise and drainage. The critical soil hydraulic properties are implicitly estimated via the intensity and duration of the first stage (energy limited) evaporation, removing a major obstacle in the remote estimation of evaporation over large areas. This duration, or "time to drying" (t(sub d)), is revealed through three signatures detectable in time series of remote sensing variables. The first is a break in soil albedo that occurs as a small vapor transmission zone develops near the surface. The second is a break in either surface to air temperature differences or in the diurnal surface temperature range, both of which indicate increased sensible heat flux (and/or storage) required to balance the decrease in latent heat flux. The third is a break in the temporal pattern of near surface soil moisture. Soil moisture tends to decrease rapidly during stage 1 drying (as water is removed from storage), and then become more or less constant during soil limited, or "stage 2" drying (as water is merely transmitted from deeper soil storage). The research tasks address: (1) improvements in model structure, including extensions to transpiration and aggregation over spatially variable soil and topographic landscape attributes; and (2) applications of the model using remotely sensed input parameters.

  6. Modification of Soil Temperature and Moisture Budgets by Snow Processes

    NASA Astrophysics Data System (ADS)

    Feng, X.; Houser, P.

    2006-12-01

    Snow cover significantly influences the land surface energy and surface moisture budgets. Snow thermally insulates the soil column from large and rapid temperature fluctuations, and snow melting provides an important source for surface runoff and soil moisture. Therefore, it is important to accurately understand and predict the energy and moisture exchange between surface and subsurface associated with snow accumulation and ablation. The objective of this study is to understand the impact of land surface model soil layering treatment on the realistic simulation of soil temperature and soil moisture. We seek to understand how many soil layers are required to fully take into account soil thermodynamic properties and hydrological process while also honoring efficient calculation and inexpensive computation? This work attempts to address this question using field measurements from the Cold Land Processes Field Experiment (CLPX). In addition, to gain a better understanding of surface heat and surface moisture transfer process between land surface and deep soil involved in snow processes, numerical simulations were performed at several Meso-Cell Study Areas (MSAs) of CLPX using the Center for Ocean-Land-Atmosphere (COLA) Simplified Version of the Simple Biosphere Model (SSiB). Measurements of soil temperature and soil moisture were analyzed at several CLPX sites with different vegetation and soil features. The monthly mean vertical profile of soil temperature during October 2002 to July 2003 at North Park Illinois River exhibits a large near surface variation (<5 cm), reveals a significant transition zone from 5 cm to 25 cm, and becomes uniform beyond 25cm. This result shows us that three soil layers are reasonable in solving the vertical variation of soil temperature at these study sites. With 6 soil layers, SSiB also captures the vertical variation of soil temperature during entire winter season, featuring with six soil layers, but the bare soil temperature is underestimated and root-zone soil temperature is overestimated during snow melting; which leads to overestimated temperature variations down to 20 cm. This is caused by extra heat loss from upper soil level and insufficient heat transport from the deep soil. Further work will need to verify if soil temperature displays similar vertical thermal structure for different vegetation and soil types during snow season. This study provides insight to the surface and subsurface thermodynamic and hydrological processes involved in snow modeling which is important for accurate snow simulation.

  7. Assessing seasonal backscatter variations with respect to uncertainties in soil moisture retrieval in Siberian tundra regions

    NASA Astrophysics Data System (ADS)

    Högström, Elin; Trofaier, Anna Maria; Gouttevin, Isabella; Bartsch, Annett

    2015-04-01

    Data from the Advanced Scatterometer (ASCAT) instrument provide the basis of a near real-time, coarse scale, global soil moisture product. Numerous studies have shown the applicability of this product, including recent operational use for numerical weather forecasts. Soil moisture is a key element in the global cycles of water, energy and carbon. Among many application areas, it is essential for the understanding of permafrost development in a future climate change scenario. Dramatic climate changes are expected in the Arctic, where ca 25% of the land is underlain by permafrost, and it is to a large extent remote and inaccessible. The availability and applicability of satellite derived land-surface data relevant for permafrost studies, such as surface soil moisture, is thus crucial to landscape-scale analyses of climate-induced change. However, there are challenges in the soil moisture retrieval that are specific to the Arctic. This study investigates backscatter variability unrelated to soil moisture variations in order to understand the possible impact on the soil moisture retrieval. The focus is on tundra lakes, which are a common feature in the Arctic and are expected to affect the retrieval. ENVISAT Advanced Synthetic Aperture Radar (ASAR) Wide Swath (120 m) data are used to resolve lakes and later understand and quantify their impacts on Metop ASCAT (25 km) soil moisture retrieval during the snow free period. Sites of interest are chosen according to high or low agreement between output from the land surface model ORCHIDEE and ASCAT derived SSM. The results show that in most cases low model agreement is related to high water fraction. The water fraction correlates with backscatter deviations (relative to a smooth water surface reference image) within the ASCAT footprint areas (R = 0.91-0.97). Backscatter deviations of up to 5 dB can occur in areas with less than 50% water fraction and an assumed soil moisture related range (sensitivity) of 7 dB in the ASCAT data. The study demonstrates that the usage of higher spatial resolution data than currently available for SSM is required in lowland permafrost environments. Furthermore, the results show that in the flat and open Arctic tundra areas, wind likely affects the soil moisture retrieval procedure rather than rain or remaining ice cover on the water surface. Therefore, the potential of a wind correction method is explored for sites where meteorological field data are available.

  8. Assessment of Radioactive Materials and Heavy Metals in the Surface Soil around the Bayanwula Prospective Uranium Mining Area in China

    PubMed Central

    Bai, Haribala; Hu, Bitao; Wang, Chengguo; Bao, Shanhu; Sai, Gerilemandahu; Xu, Xiao; Zhang, Shuai; Li, Yuhong

    2017-01-01

    The present work is the first systematic and large scale study on radioactive materials and heavy metals in surface soil around the Bayanwula prospective uranium mining area in China. In this work, both natural and anthropogenic radionuclides and heavy metals in 48 surface soil samples were analyzed using High Purity Germanium (HPGe) γ spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). The obtained mean activity concentrations of 238U, 226Ra, 232Th, 40K, and 137Cs were 25.81 ± 9.58, 24.85 ± 2.77, 29.40 ± 3.14, 923.0 ± 47.2, and 5.64 ± 4.56 Bq/kg, respectively. The estimated average absorbed dose rate and annual effective dose rate were 76.7 ± 3.1 nGy/h and 83.1 ± 3.8 μSv, respectively. The radium equivalent activity, external hazard index, and internal hazard index were also calculated, and their mean values were within the acceptable limits. The estimated lifetime cancer risk was 3.2 × 10−4/Sv. The heavy metal contents of Cr, Ni, Cu, Zn, As, Cd, and Pb from the surface soil samples were measured and their health risks were then assessed. The concentrations of all heavy metals were much lower than the average backgrounds in China except for lead which was about three times higher than that of China’s mean. The non-cancer and cancer risks from the heavy metals were estimated, which are all within the acceptable ranges. In addition, the correlations between the radionuclides and the heavy metals in surface soil samples were determined by the Pearson linear coefficient. Strong positive correlations between radionuclides and the heavy metals at the 0.01 significance level were found. In conclusion, the contents of radionuclides and heavy metals in surface soil around the Bayanwula prospective uranium mining area are at a normal level. PMID:28335450

  9. Assessment of Radioactive Materials and Heavy Metals in the Surface Soil around the Bayanwula Prospective Uranium Mining Area in China.

    PubMed

    Bai, Haribala; Hu, Bitao; Wang, Chengguo; Bao, Shanhu; Sai, Gerilemandahu; Xu, Xiao; Zhang, Shuai; Li, Yuhong

    2017-03-14

    The present work is the first systematic and large scale study on radioactive materials and heavy metals in surface soil around the Bayanwula prospective uranium mining area in China. In this work, both natural and anthropogenic radionuclides and heavy metals in 48 surface soil samples were analyzed using High Purity Germanium (HPGe) γ spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). The obtained mean activity concentrations of 238 U, 226 Ra, 232 Th, 40 K, and 137 Cs were 25.81 ± 9.58, 24.85 ± 2.77, 29.40 ± 3.14, 923.0 ± 47.2, and 5.64 ± 4.56 Bq/kg, respectively. The estimated average absorbed dose rate and annual effective dose rate were 76.7 ± 3.1 nGy/h and 83.1 ± 3.8 μ Sv, respectively. The radium equivalent activity, external hazard index, and internal hazard index were also calculated, and their mean values were within the acceptable limits. The estimated lifetime cancer risk was 3.2 × 10 -4 /Sv. The heavy metal contents of Cr, Ni, Cu, Zn, As, Cd, and Pb from the surface soil samples were measured and their health risks were then assessed. The concentrations of all heavy metals were much lower than the average backgrounds in China except for lead which was about three times higher than that of China's mean. The non-cancer and cancer risks from the heavy metals were estimated, which are all within the acceptable ranges. In addition, the correlations between the radionuclides and the heavy metals in surface soil samples were determined by the Pearson linear coefficient. Strong positive correlations between radionuclides and the heavy metals at the 0.01 significance level were found. In conclusion, the contents of radionuclides and heavy metals in surface soil around the Bayanwula prospective uranium mining area are at a normal level.

  10. Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production.

    NASA Astrophysics Data System (ADS)

    Heitkötter, Julian; Marschner, Bernd

    2015-04-01

    Biochar is suggested for soil amelioration and carbon sequestration, based on its assumed role as the key factor for the long-term fertility of Terra preta soils. Several studies have shown that certain biochar properties can undergo changes through ageing processes, especially regarding charge characteristics. However, only a few studies determined the changes of different biochars under the same incubation conditions and in different soils. The objective of this study was to characterize the changes of pine chip (PC)- and corn digestate (CD)-derived biochars pyrolyzed at 400 or 600 °C during 100 days of laboratory incubation in a historical kiln soil and an adjacent control soil. Separation between soil and biochar was ensured by using mesh bags. Especially, changes in charge characteristics depended on initial biochar properties affected by feedstock and pyrolysis temperature and on soil properties affected by historic charcoal production. While the cation exchange capacity (CEC) markedly increased for both CD biochars during incubation, PC biochars showed no or only slight increases in CEC. Corresponding to the changes in CEC, ageing of biochars also increased the amount of acid functional groups with increases being in average about 2-fold higher in CD biochars than in PC biochars. Further and in contrast to other studies, the surface areas of biochars increased during ageing, likely due to ash leaching and degradation of tar residues. Changes in CEC and surface acidity of CD biochars were more pronounced after incubation in the control soil, while surface area increase was higher in the kiln soil. Since the two acidic forest soils used in this this study did not greatly differ in physical or chemical properties, the main process for inducing these differences in the buried biochar most likely is related to the differences in dissolved organic carbon (DOC). Although the kiln soil contained about 50% more soil organic carbon due to the presence of charcoal particles, extractable DOC was lower and less aromatic than in the adjacent control soil, likely due to strong sorption of dissolved organic matter (DOM) onto charcoal particles. We suggest that higher sorption of DOM onto the surface of biochar in the control soil provided additional acid functional groups and thus increased the surface charge to a greater extent than in the DOC poorer kiln soil. Hence, biochars incubated in the kiln soil showed less changes in CEC and surface acidity. Higher availability of DOM in the control soil could also stimulate microbial activity to a larger extent, resulting in higher oxidation rates of biochars incubated in the control soil.

  11. Transfer of radiocesium from rhizosphere soil to four cruciferous vegetables in association with a Bacillus pumilus strain and root exudation.

    PubMed

    Aung, Han Phyo; Mensah, Akwasi Dwira; Aye, Yi Swe; Djedidi, Salem; Oikawa, Yosei; Yokoyama, Tadashi; Suzuki, Sohzoh; Dorothea Bellingrath-Kimura, Sonoko

    2016-11-01

    This study was carried out to assess the effect of Bacillus pumilus on the roots of four cruciferous vegetables with different root structures in regard to enhancement of 137 Cs bioavailability in contaminated rhizosphere soil. Results revealed that B. pumilus inoculation did not enhance the plant biomass of vegetables, although it increased root volume and root surface areas of all vegetables except turnip. The pH changes due to rhizosphere acidification by B. pumilus inoculation and root exudation did not affect the bioavailability of 137 Cs. However, concentrations of 137 Cs in plant tissues and soil-to-plant transfer values increased as a result of the larger root volume and root surface area of vegetables due to inoculation. Moreover, leafy vegetables, which possessed larger root volume and root surface areas, had a higher 137 Cs transfer value than root vegetables. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Phytoremediation of soils contaminated with toxic elements and radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornish, J.E.; Goldberg, W.C.; Levine, R.S.

    1995-12-31

    At many US Department of Energy (US DOE) facilities and other sites, surface soils over relatively large areas are contaminated with heavy metals, radionuclides, and other toxic elements, often at only a relatively small factor above regulatory action levels. Cleanup of such sites presents major challenges, because currently available soil remediation technologies can be very expensive. In response, the US DOE`s Office of Technology Development, through the Western Environmental Technology Office, is sponsoring research in the area of phytoremediation. Phytoremediation is an emerging technology that uses higher plants to transfer toxic elements and radionuclides from surface soils into aboveground biomass.more » Some plants, termed hyperaccumulators, take up toxic elements in substantial amounts, resulting in concentrations in aboveground biomass over 100 times those observed with conventional plants. After growth, the plant biomass is harvested, and the toxic elements are concentrated and reclaimed or disposed of. As growing, harvesting, and processing plant biomass is relatively inexpensive, phytoremediation can be a low-cost technology for remediation of extensive areas having lightly to moderately contaminated soils. This paper reviews the potential of hyper- and moderate accumulator plants in soil remediation, provides some comparative cost estimates, and outlines ongoing work initiated by the US DOE.« less

  13. Surficial and bedrock geologic map database of the Kelso 7.5 Minute quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Bedford, David R.

    2003-01-01

    This geologic map database describes geologic materials for the Kelso 7.5 Minute Quadrangle, San Bernardino County, California. The area lies in eastern Mojave Desert of California, within the Mojave National Preserve (a unit of the National Parks system). Geologic deposits in the area consist of Proterozoic metamorphic rocks, Cambrian-Neoproterozoic sedimentary rocks, Mesozoic plutonic and hypabyssal rocks, Tertiary basin fill, and Quaternary surficial deposits. Bedrock deposits are described by composition, texture, and stratigraphic relationships. Quaternary surficial deposits are classified into soil-geomorphic surfaces based on soil characteristics, inset relationships, and geomorphic expression. The surficial geology presented in this report is especially useful to understand, and extrapolate, physical properties that influence surface conditions, and surface- and soil-water dynamics. Physical characteristics such as pavement development, soil horizonation, and hydraulic characteristics have shown to be some of the primary drivers of ecologic dynamics, including recovery of those ecosystems to anthropogenic disturbance, in the eastern Mojave Desert and other arid and semi-arid environments.

  14. Nanoparticles in natural systems I: The effective reactive surface area of the natural oxide fraction in field samples

    NASA Astrophysics Data System (ADS)

    Hiemstra, Tjisse; Antelo, Juan; Rahnemaie, Rasoul; van Riemsdijk, Willem H.

    2010-01-01

    Information on the particle size and reactive surface area of natural samples is essential for the application of surface complexation models (SCM) to predict bioavailability, toxicity, and transport of elements in the natural environment. In addition, this information will be of great help to enlighten views on the formation, stability, and structure of nanoparticle associations of natural organic matter (NOM) and natural oxide particles. Phosphate is proposed as a natively present probe ion to derive the effective reactive surface area of natural samples. In the suggested method, natural samples are equilibrated (⩾10 days) with 0.5 M NaHCO 3 (pH = 8.5) at various solid-solution ratios. This matrix fixes the pH and ionic strength, suppresses the influence of Ca 2+ and Mg 2+ ions by precipitation these in solid carbonates, and removes NOM due to the addition of activated carbon in excess, collectively leading to the dominance of the PO 4-CO 3 interaction in the system. The data have been interpreted with the charge distribution (CD) model, calibrated for goethite, and the analysis results in an effective reactive surface area (SA) and a reversibly bound phosphate loading Γ for a series of top soils. The oxidic SA varies between about 3-30 m 2/g sample for a large series of representative agricultural top soils. Scaling of our data to the total iron and aluminum oxide content (dithionite-citrate-bicarbonate extractable), results in the specific surface area between about 200-1200 m 2/g oxide for most soils, i.e. the oxide particles are nano-sized with an equivalent diameter in the order of ˜1-10 nm if considered as non-porous spheres. For the top soils, the effective surface area and the soil organic carbon fraction are strongly correlated. The oxide particles are embedded in a matrix of organic carbon (OC), equivalent to ˜1.4 ± 0.2 mg OC/m 2 oxide for many soils of the collection, forming a NOM-mineral nanoparticle association with an average NOM volume fraction of ˜80%. The average mass density of such a NOM-mineral association is ˜1700 ± 100 kg/m 3 (i.e. high-density NOM). The amount of reversibly bound phosphate is rather close to the amount of phosphate that is extractable with oxalate. The phosphate loading varies remarkably ( Γ ≈ 1-3 μmol/m 2 oxide) in the samples. As discussed in part II of this paper series ( Hiemstra et al., 2010), the phosphate loading ( Γ) of field samples is suppressed by surface complexation of NOM, where hydrophilic, fulvic, and humic acids act as a competitor for (an)ions via site competition and electrostatic interaction.

  15. Soil-geomorphic significance of land surface characteristics in an arid mountain range, Mojave Desert, USA

    USGS Publications Warehouse

    Hirmas, D.R.; Graham, R.C.; Kendrick, K.J.

    2011-01-01

    Mountains comprise an extensive and visually prominent portion of the landscape in the Mojave Desert, California. Landform surface properties influence the role these mountains have in geomorphic processes such as dust flux and surface hydrology across the region. The primary goal of this study was to describe and quantify land surface properties of arid-mountain landforms as a step toward unraveling the role these properties have in soil-geomorphic processes. As part of a larger soil-geomorphic study, four major landform types were identified within the southern Fry Mountains in the southwestern Mojave Desert on the basis of topography and landscape position: mountaintop, mountainflank, mountainflat (intra-range low-relief surface), and mountainbase. A suite of rock, vegetation, and morphometric land surface characteristic variables was measured at each of 65 locations across the study area, which included an associated piedmont and playa. Our findings show that despite the variation within types, landforms have distinct land surface properties that likely control soil-geomorphic processes. We hypothesize that surface expression influences a feedback process at this site where water transports sediment to low lying areas on the landscape and wind carries dust and soluble salts to the mountains where they are washed between rocks, incorporated into the soil, and retained as relatively long-term storage. Recent land-based video and satellite photographs of the dust cloud emanating from the Sierra Cucapá Mountains in response to the 7.2-magnitude earthquake near Mexicali, Mexico, support the hypothesis that these landforms are massive repositories of dust.

  16. The Source, Spatial Distribution and Risk Assessment of Heavy Metals in Soil from the Pearl River Delta Based on the National Multi-Purpose Regional Geochemical Survey.

    PubMed

    Zhang, Lingyan; Guo, Shuhai; Wu, Bo

    2015-01-01

    The data on the heavy metal content at different soil depths derived from a multi-purpose regional geochemical survey in the Pearl River Delta (PRD) were analyzed using ArcGIS 10.0. By comparing their spatial distributions and areas, the sources of heavy metals (Cd, Hg, As and Pb) were quantitatively identified and explored. Netted measuring points at 25 ×25 km were set over the entire PRD according to the geochemical maps. Based on the calculation data obtained from different soil depths, the concentrations of As and Cd in a large area of the PRD exceeded the National Second-class Standard. The spatial disparity of the geometric centers in the surface soil and deep soil showed that As in the surface soil mainly came from parent materials, while Cd had high consistency in different soil profiles because of deposition in the soil forming process. The migration of Cd also resulted in a considerable ecological risk to the Beijiang and Xijiang River watershed. The potential ecological risk index followed the order Cd ≥ Hg > Pb > As. According to the sources, the distribution trends and the characteristics of heavy metals in the soil from the perspective of the whole area, the Cd pollution should be repaired, especially in the upper reaches of the Xijiang and Beijiang watershed to prevent risk explosion while the pollution of Hg and Pb should be controlled in areas with intense human activity, and supervision during production should be strengthened to maintain the ecological balance of As.

  17. The Source, Spatial Distribution and Risk Assessment of Heavy Metals in Soil from the Pearl River Delta Based on the National Multi-Purpose Regional Geochemical Survey

    PubMed Central

    Zhang, Lingyan; Guo, Shuhai; Wu, Bo

    2015-01-01

    The data on the heavy metal content at different soil depths derived from a multi-purpose regional geochemical survey in the Pearl River Delta (PRD) were analyzed using ArcGIS 10.0. By comparing their spatial distributions and areas, the sources of heavy metals (Cd, Hg, As and Pb) were quantitatively identified and explored. Netted measuring points at 25 ×25 km were set over the entire PRD according to the geochemical maps. Based on the calculation data obtained from different soil depths, the concentrations of As and Cd in a large area of the PRD exceeded the National Second-class Standard. The spatial disparity of the geometric centers in the surface soil and deep soil showed that As in the surface soil mainly came from parent materials, while Cd had high consistency in different soil profiles because of deposition in the soil forming process. The migration of Cd also resulted in a considerable ecological risk to the Beijiang and Xijiang River watershed. The potential ecological risk index followed the order Cd ≥ Hg > Pb > As. According to the sources, the distribution trends and the characteristics of heavy metals in the soil from the perspective of the whole area, the Cd pollution should be repaired, especially in the upper reaches of the Xijiang and Beijiang watershed to prevent risk explosion while the pollution of Hg and Pb should be controlled in areas with intense human activity, and supervision during production should be strengthened to maintain the ecological balance of As. PMID:26230506

  18. Concentrations of asbestos fibers and metals in drinking water caused by natural crocidolite asbestos in the soil from a rural area.

    PubMed

    Wei, Binggan; Ye, Bingxiong; Yu, Jiangping; Jia, Xianjie; Zhang, Biao; Zhang, Xiuwu; Lu, Rongan; Dong, Tingrong; Yang, Linsheng

    2013-04-01

    Asbestos fibers and metals in drinking water are of significant importance to the field of asbestos toxicology. However, little is known about asbestos fibers and metals in drinking water caused by naturally occurring asbestos. Therefore, concentrations of asbestos fibers and metals in well and surface waters from asbestos and control areas were measured by scanning electron microscopy (SEM), inductively coupled plasma (ICP) optical emission spectrometer, and ICP-mass spectrometry in this study. The results indicated that the mean concentration of asbestos fibers was 42.34 millions of fibers per liter by SEM, which was much higher than the permission exposure level. The main compositions of both asbestos fibers in crocidolite mineral and in drinking water were Na, Mg, Fe, and Si based on energy dispersive X-ray analysis. This revealed that the drinking water has been contaminated by asbestos fibers from crocidolite mineral in soil and rock. Except for Cr, Pb, Zn, and Mn, the mean concentrations of Ni, Na, Mg, K, Fe, Ca, and SiO2 were much higher in both surface water and well waters from the asbestos area than in well water from the control area. The results of principal component and cluster analyses indicated that the metals in surface and well waters from the asbestos area were significantly influenced by crocidolite mineral in soil and rock. In the asbestos area, the mean concentrations of asbestos fibers and Ni, Na, Mg, K, Fe, Ca, and SiO2 were higher in surface and well waters, indicating that asbestos fibers and the metals were significantly influenced by crocidolite in soil and rock.

  19. The herbicide glyphosate and its metabolite AMPA in the Lavaux vineyard area, western Switzerland: proof of widespread export to surface waters. Part II: the role of infiltration and surface runoff.

    PubMed

    Daouk, Silwan; De Alencastro, Luiz F; Pfeifer, Hans-Rudolf

    2013-01-01

    Two parcels of the Lavaux vineyard area, western Switzerland, were studied to assess to which extent the widely used herbicide, glyphosate, and its metabolite aminomethylphosphonic acid (AMPA) were retained in the soil or exported to surface waters. They were equipped at their bottom with porous ceramic cups and runoff collectors, which allowed retrieving water samples for the growing seasons 2010 and 2011. The role of slope, soil properties and rainfall regime in their export was examined and the surface runoff/throughflows ratio was determined with a mass balance. Our results revealed elevated glyphosate and AMPA concentrations at 60 and 80 cm depth at parcel bottoms, suggesting their infiltration in the upper parts of the parcels and the presence of preferential flows in the studied parcels. Indeed, the succession of rainy days induced the gradual saturation of the soil porosity, leading to rapid infiltration through macropores, as well as surface runoff formation. Furthermore, the presence of more impervious weathered marls at 100 cm depth induced throughflows, the importance of which in the lateral transport of the herbicide molecules was determined by the slope steepness. Mobility of glyphosate and AMPA into the unsaturated zone was thus likely driven by precipitation regime and soil characteristics, such as slope, porosity structure and layer permeability discrepancy. Important rainfall events (>10 mm/day) were clearly exporting molecules from the soil top layer, as indicated by important concentrations in runoff samples. The mass balance showed that total loss (10-20%) mainly occurred through surface runoff (96%) and, to a minor extent, by throughflows in soils (4%), with subsequent exfiltration to surface waters.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duran, S.; Gueray, R. T.; Yalcin, C.

    In this study, 137Cs specific activities were measured in surface soil samples collected from undisturbed areas over the eastern part of the Black Sea coast line of Turkey, between Trabzon and Hopa, in August 2004 and January 2005. A total number of 41 surface soil samples were counted using an HpGe spectrometer system. The results indicate that 137Cs levels show a large variation over the coast ranging between 10 Bq/kg and 1000 Bq/kg. The soil activities are generally higher in the eastern part of the coast. Exposure rates above the ground surface due to 137Cs activity in soil estimated tomore » vary between 0.1mR/s and 9 mR/s.« less

  1. Wide-Area Soil Moisture Estimation Using the Propagation of Lightning Generated Low-Frequency Electromagnetic Signals 1977

    USDA-ARS?s Scientific Manuscript database

    Land surface moisture measurements are central to our understanding of the earth’s water system, and are needed to produce accurate model-based weather/climate predictions. Currently, there exists no in-situ network capable of estimating wide-area soil moisture. In this paper, we explore an alterna...

  2. Moisture controls decomposition rate in thawing tundra

    Treesearch

    C.E. Hicks-Pries; E.A.G. Schuur; S.M. Natali; J.G. Vogel

    2013-01-01

    Permafrost thaw can affect decomposition rates by changing environmental conditions and litter quality. As permafrost thaws, soils warm and thermokarst (ground subsidence) features form, causing some areas to become wetter while other areas become drier. We used a common substrate to measure how permafrost thaw affects decomposition rates in the surface soil in a...

  3. Assessment of hyporheic zone, flood-plain, soil-gas, soil, and surface-water contamination at the Old Incinerator Area, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface-water for contaminants at the Old Incinerator Area at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Total petroleum hydrocarbons were detected above the method detection level in all 13 samplers deployed in the hyporheic zone and flood plain of an unnamed tributary to Spirit Creek. The combined concentrations of benzene, toluene, ethylbenzene, and total xylene were detected at 3 of the 13 samplers. Other organic compounds detected in one sampler included octane and trichloroethylene. In the passive soil-gas survey, 28 of the 60 samplers detected total petroleum hydrocarbons above the method detection level. Additionally, 11 of the 60 samplers detected the combined masses of benzene, toluene, ethylbenzene, and total xylene above the method detection level. Other compounds detected above the method detection level in the passive soil-gas survey included octane, trimethylbenzene, perchlorethylene, and chloroform. Subsequent to the passive soil-gas survey, six areas determined to have relatively high contaminant mass were selected, and soil-gas samplers were deployed, collected, and analyzed for explosives and chemical agents. No explosives or chemical agents were detected above their method detection levels, but those that were detected were above the nondetection level. The same six locations that were sampled for explosives and chemical agents were selected for the collection of soil samples. No metals that exceeded the Regional Screening Levels for Industrial Soils as classified by the U.S. Environmental Protection Agency were detected at any of the six Old Incinerator Area locations. The soil samples also were compared to values from the ambient, uncontaminated (background) levels for soils in South Carolina. Because South Carolina is adjacent to Georgia and the soils in the coastal plain are similar, these comparisons are valid. No similar values are available for Georgia to use for comparison purposes. The only metal detected above the ambient background levels for South Carolina was barium. A surface-water sample collected from a tributary west and north of the Old Incinerator Area was analyzed for volatile organic compounds, semivolatile organic compounds, and inorganic compounds (metals). The only volatile organic and (or) semivolatile organic compound that was detected above the laboratory reporting level was toluene. The compounds 4-isopropyl-1-methylbenzene and isophorone were detected above the nondetection level but below the laboratory reporting level and were estimated. These compounds were detected at levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency National Primary Drinking Water Standard. Iron was the only inorganic compound detected in the surface-water sample that exceeded the maximum contaminant level set by the U.S. Environmental Protection Agency National Secondary Drinking Water Standard. No other inorganic compounds exceeded the maximum contaminant levels for the U.S. Environmental Protection Agency National Primary Drinking Water Standard, National Secondary Drinking Water Standard, or the Georgia In-Stream Water Quality Standard.

  4. Soil formation in the Tsauchab Valley, Namibia

    NASA Astrophysics Data System (ADS)

    Eden, Marie; Bens, Oliver; Ramisch, Arne; Schwindt, Daniel; Völkel, Jörg

    2016-04-01

    The BMBF-funded project GeoArchives (Spaces) investigates soils and sediments in Southern Africa. A focus area lies on the Tsauchab Valley (Namibia), South of the Naukluft mountain range (24°26'40'' S, 16°10'40'' E). On a gently sloping alluvial fan facing East towards the river, the surface is characterized by a desert pavement covering soils used as farmland. The landscape units were mapped and the area at the lower slope of a hill was divided into three units: a rinsing surface and a gravel plain, separated by a channel. On these surfaces soil profiles were excavated. Profile description followed the German system (Bodenkundliche Kartieranleitung KA 5) and disturbed samples were taken at various depths and analysed in the lab. Undisturbed soil cores with a volume of 100 cm³ were taken just below the surface at a depth of ~1-6 cm. Lab analyses included texture and gravel content, colour, pH, electrical conductivity, carbonates, CNS, cation exchange capacity, pedogenic oxides, main and trace elements (XRF), and clay mineral distribution (XRD). Undisturbed samples were used to determine soil water retention curve, air permeability and bulk density. The profiles revealed moderately developed cambic soils rich in clay minerals and with total carbon contents ranging up to 1.8 %, bearing shrubs and after episodic rainfall a dense grass vegetation. Their genesis is discussed and interpreted in the context of the landscape and climate history of this semi-desert environment.

  5. Health assessment for Waldick Aerospace Devices, Monmouth County, New Jersey, Region 2. CERCLIS No. NJD054981337. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-02-29

    The 1.72-acre Waldrick Aerospace Devices site is located in Wall Township, Monmouth County, New Jersey. Surface soils and ground water are contaminated with volatile organic chemicals, petroleum hydrocarbons, chromium, and cadmium; building interiors are contaminated by a wide variety of process chemicals and pesticides. Although there are small, on-site areas with high concentrations of soil contaminants, the areas are vegetated and partially fenced to discourage trespassing. Access to these areas should be restricted until the soils are decontaminated or removed.

  6. Heavy metal distribution in soils near Palapye, Botswana: An evaluation of the environmental impact of coal mining and combustion on soils in a semi-arid region

    USGS Publications Warehouse

    Zhai, M.; Totolo, O.; Modisi, M.P.; Finkelman, R.B.; Kelesitse, S.M.; Menyatso, M.

    2009-01-01

    Morupule Colliery near Palapye in eastern Botswana is the only coalmine in production in Botswana at present. Its coal is mainly used in the nearby coal-fired Morupule Power Station, which generates approximately 1,000 GWh of electricity per annum. After more than 30 years mining and more than 20 years of combustion, the sedimentation of outlet fly ash from the Morupule Power Station has increased concentrations of Cr, Ni, Zn and As by 13, 2.5, 16 and 5 ppm, respectively, in the fine portion (<53 ??m) of surface soils for approximately 9 km downwind. Elements that have higher concentrations in coal have stronger small-particle association during coal combustion and are less mobile in surface soils, thus showing stronger contaminations in surface soils around the coal-fired plant. Although the degree of contamination of Cr, Ni, Zn and As from coal combustion in the Palapye area at present is low, it is necessary to monitor concentrations of these elements in surface soils routinely in the future. This study also reveals moderate Pb and Zn contaminations in the Palapye area. The former is due to the use of leaded petroleum in motor vehicle traffic and the latter is mainly due to the use of galvanized iron sheets in construction. ?? 2009 Springer Science+Business Media B.V.

  7. Heavy metal distribution in soils near Palapye, Botswana: an evaluation of the environmental impact of coal mining and combustion on soils in a semi-arid region.

    PubMed

    Zhai, Mingzhe; Totolo, Otlogetswe; Modisi, Motsoptse P; Finkelman, Robert B; Kelesitse, Sebueng M; Menyatso, Mooketsi

    2009-12-01

    Morupule Colliery near Palapye in eastern Botswana is the only coalmine in production in Botswana at present. Its coal is mainly used in the nearby coal-fired Morupule Power Station, which generates approximately 1,000 GWh of electricity per annum. After more than 30 years mining and more than 20 years of combustion, the sedimentation of outlet fly ash from the Morupule Power Station has increased concentrations of Cr, Ni, Zn and As by 13, 2.5, 16 and 5 ppm, respectively, in the fine portion (<53 μm) of surface soils for approximately 9 km downwind. Elements that have higher concentrations in coal have stronger small-particle association during coal combustion and are less mobile in surface soils, thus showing stronger contaminations in surface soils around the coal-fired plant. Although the degree of contamination of Cr, Ni, Zn and As from coal combustion in the Palapye area at present is low, it is necessary to monitor concentrations of these elements in surface soils routinely in the future. This study also reveals moderate Pb and Zn contaminations in the Palapye area. The former is due to the use of leaded petroleum in motor vehicle traffic and the latter is mainly due to the use of galvanized iron sheets in construction.

  8. Chemical composition of rocks and soils at Taurus-Littrow

    NASA Technical Reports Server (NTRS)

    Rose, H. J., Jr.; Cuttitta, F.; Berman, S.; Brown, F. W.; Carron, M. K.; Christian, R. P.; Dwornik, E. J.; Greenland, L. P.

    1974-01-01

    Seventeen soils and seven rock samples were analyzed for major elements, minor elements, and trace elements. Unlike the soils at previous Apollo sites, which showed little difference in composition at each collection area, the soils at Taurus-Littrow vary widely. Three soil types are evident, representative of (1) the light mantle at the South Massif, (2) the dark mantle in the valley, and (3) the surface material at the North Massif. The dark-mantle soils are chemically similar to those at Tranquillitatis. Basalt samples from the dark mantle are chemically similar although they range from fine to coarse grained. It is suggested that they originated from the same source but crystallized at varying depths from the surface.

  9. Competitive adsorption of heavy metals in soil underlying an infiltration facility installed in an urban area.

    PubMed

    Hossain, M A; Furumai, H; Nakajima, F

    2009-01-01

    Accumulation of heavy metals at elevated concentration and potential of considerable amount of the accumulated heavy metals to reach the soil system was observed from earlier studies in soakaways sediments within an infiltration facility in Tokyo, Japan. In order to understand the competitive adsorption behaviour of heavy metals Zn, Ni and Cu in soil, competitive batch adsorption experiments were carried out using single metal and binary metal combinations on soil samples representative of underlying soil and surface soil at the site. Speciation analysis of the adsorbed metals was carried out through BCR sequential extraction method. Among the metals, Cu was not affected by competition while Zn and Ni were affected by competition of coexisting metals. The parameters of fitted 'Freundlich' and 'Langmuir' isotherms indicated more intense competition in underlying soil compared to surface soil for adsorption of Zn and Ni. The speciation of adsorbed metals revealed less selectivity of Zn and Ni to soil organic matter, while dominance of organic bound fraction was observed for Cu, especially in organic rich surface soil. Compared to underlying soil, the surface soil is expected to provide greater adsorption to heavy metals as well as provide greater stability to adsorbed metals, especially for Cu.

  10. Effective soil hydraulic properties in space and time: some field data analysis and modeling concepts

    USDA-ARS?s Scientific Manuscript database

    Soil hydraulic properties, which control surface fluxes and storage of water and chemicals in the soil profile, vary in space and time. Spatial variability above the measurement scale (e.g., soil area of 0.07 m2 or support volume of 14 L) must be upscaled appropriately to determine “effective” hydr...

  11. Using semi-variogram analysis for providing spatially distributed information on soil surface condition for land surface modeling

    NASA Astrophysics Data System (ADS)

    Croft, Holly; Anderson, Karen; Kuhn, Nikolaus J.

    2010-05-01

    The ability to quantitatively and spatially assess soil surface roughness is important in geomorphology and land degradation studies. Soils can experience rapid structural degradation in response to land cover changes, resulting in increased susceptibility to erosion and a loss of Soil Organic Matter (SOM). Changes in soil surface condition can also alter sediment detachment, transport and deposition processes, infiltration rates and surface runoff characteristics. Deriving spatially distributed quantitative information on soil surface condition for inclusion in hydrological and soil erosion models is therefore paramount. However, due to the time and resources involved in using traditional field sampling techniques, there is a lack of spatially distributed information on soil surface condition. Laser techniques can provide data for a rapid three dimensional representation of the soil surface at a fine spatial resolution. This provides the ability to capture changes at the soil surface associated with aggregate breakdown, flow routing, erosion and sediment re-distribution. Semi-variogram analysis of the laser data can be used to represent spatial dependence within the dataset; providing information about the spatial character of soil surface structure. This experiment details the ability of semi-variogram analysis to spatially describe changes in soil surface condition. Soil for three soil types (silt, silt loam and silty clay) was sieved to produce aggregates between 1 mm and 16 mm in size and placed evenly in sample trays (25 x 20 x 2 cm). Soil samples for each soil type were exposed to five different durations of artificial rainfall, to produce progressively structurally degraded soil states. A calibrated laser profiling instrument was used to measure surface roughness over a central 10 x 10 cm plot of each soil state, at 2 mm sample spacing. The laser data were analysed within a geostatistical framework, where semi-variogram analysis quantitatively represented the change in soil surface structure during crusting. The laser data were also used to create digital surface models (DSM) of the soil states for visual comparison. This research has shown that aggregate breakdown and soil crusting can be shown quantitatively by a decrease in sill variance (silt soil: 11.67 (control) to 1.08 (after 90 mins rainfall)). Features present within semi-variograms were spatially linked to features at the soil surface, such as soil cracks, tillage lines and areas of deposition. Directional semi-variograms were used to provide a spatially orientated component, where the directional sill variance associated with a soil crack was shown to increase from 7.95 to 19.33. Periodicity within semi-variogram was also shown to quantify the spatial scale of soil cracking networks and potentially surface flowpaths; an average distance between soil cracks of 37 mm closely corresponded to the distance of 38 mm shown in the semi-variogram. The results provide a strong basis for the future retrieval of spatio-temporal variations in soil surface condition. Furthermore, the presence of process-based information on hydrological pathways within semi-variograms may work towards an inclusion of geostatisically-derived information in land surface models and the understanding of complex surface processes at different spatial scales.

  12. IMPACT OF OIL PRODUCTION RELEASES ON SOME SOIL CHEMICAL PROPERTIES AT THE OSPER SITES

    EPA Science Inventory

    Surface and soil core samples were collected at two field sites in an old oil production area near Skiatook Lake in Oklahoma. The soil samples were analyzed for nitrates, organic matter, total petroleum hydrocarbons, conductivity, chlorides and dehydrogenase activity. Low level...

  13. Large area mapping of soil moisture using the ESTAR passive microwave radiometer

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Levine, D. M.; Swift, C. T.; Schmugge, T. J.

    1994-01-01

    Investigations designed to study land surface hydrologic-atmospheric interactions, showing the potential of L band passive microwave radiometry for measuring surface soil moisture over large areas, are discussed. Satisfying the data needs of these investigations requires the ability to map large areas rapidly. With aircraft systems this means a need for more beam positions over a wider swath on each flightline. For satellite systems the essential problem is resolution. Both of these needs are currently being addressed through the development and verification of Electronically Scanned Thinned Array Radiometer (ESTAR) technology. The ESTAR L band radiometer was evaluated for soil moisture mapping applications in two studies. The first was conducted over the semiarid rangeland Walnut Gulch watershed located in south eastern Arizona (U.S.). The second was performed in the subhumid Little Washita watershed in south west Oklahoma (U.S.). Both tests showed that the ESTAR is capable of providing soil moisture with the same level of accuracy as existing systems.

  14. Don’t bust the biological soil crust: Preserving and restoring an important desert resource

    Treesearch

    Sue Miller; Steve Warren; Larry St. Clair

    2017-01-01

    Biological soil crusts are a complex of microscopic organisms growing on the soil surface in many arid and semi-arid ecosystems. These crusts perform the important role of stabilizing soil and reducing or eliminating water and wind erosion. One of the largest threats to biological soil crusts in the arid and semi-arid areas of the western United States is mechanical...

  15. Influence of Sub-Surface Irrigation on Soil Conditions and Water Irrigation Efficiency in a Cherry Orchard in a Hilly Semi-Arid Area of Northern China

    PubMed Central

    Peng, Gao; Bing, Wang; Guangcan, Zhang

    2013-01-01

    Sub-surface irrigation (SUI) is a new water-saving irrigation technology. To explore the influence of SUI on soil conditions in a cherry orchard and its water-saving efficiency, experiments were conducted from 2009 to 2010 using both SUI and flood irrigation (FLI) and different SUI quotas in hilly semi-arid area of northern China. The results demonstrated the following: 1) The bulk density of the soil under SUI was 6.8% lower than that of soil under FLI (P<0.01). The total soil porosity, capillary porosity and non-capillary porosity of soils using SUI were 11.7% (P<0.01), 8.7% (P<0.01) and 43.8% (P<0.01) higher than for soils using FLI. 2) The average soil temperatures at 0, 5, 10, 15 and 20 cm of soil depth using SUI were 1.7, 1.1, 0.7, 0.4 and 0.3°C higher than those for FLI, specifically, the differences between the surface soil layers were more significant. 3) Compared with FLI, the average water-saving efficiency of SUI was 55.6%, and SUI increased the irrigation productivity by 7.9-12.3 kg m-3 ha-1. 4) The soil moisture of different soil layers using SUI increased with increases in the irrigation quotas, and the soil moisture contents under SUI were significantly higher in the 0-20 cm layer and in the 21-50 cm layer than those under FLI (P<0.01). 5) The average yields of cherries under SUI with irrigation quotas of 80-320 m3 ha-1 were 8.7%-34.9% higher than those in soil with no irrigation (CK2). The average yields of cherries from soils using SUI were 4.5%-12.2% higher than using FLI. It is appropriate to irrigate 2-3 times with 230 m3 ha-1 per application using SUI in a year with normal rainfall. Our findings indicated that SUI could maintain the physical properties, greatly improve irrigation water use efficiency, and significantly increase fruit yields in hilly semi-arid areas of northern China. PMID:24039986

  16. Field-scale moisture estimates using COSMOS sensors: a validation study with temporary networks and leaf-area-indices

    USDA-ARS?s Scientific Manuscript database

    The Cosmic-ray Soil Moisture Observing System (COSMOS) is a new and innovative method for estimating surface and near surface soil moisture at large (~700 m) scales. This system accounts for liquid water within its measurement volume. Many of the sites used in the early validation of the system had...

  17. Natural regeneration of lodgepole pine in south-central Oregon

    Treesearch

    P.H. Cochran

    1973-01-01

    A sequence of events is necessary for natural regeneration in the pumice soil region: Adequate seed must be probed and distributed over the area, germination must be favored by warm and moist surface soils, daily surface temperature variation must be moderate, seedlings must survive summer drought, and weather conditions must prevent severe frost heaving the fall after...

  18. Residues of organochlorine pesticides in surface soil and raw foods from rural areas of the Republic of Tajikistan.

    PubMed

    Barron, Mace G; Ashurova, Zebunisso J; Kukaniev, Mukhamadcho A; Avloev, Hakbarqul K; Khaidarov, Karim K; Jamshedov, Jamshed N; Rahmatullova, Oygul S; Atolikshoeva, Sunbula S; Mamadshova, Sakina S; Manzenyuk, Oksana

    2017-05-01

    The central Asian Republic of Tajikistan has been an area of extensive historical agricultural pesticide use as well as large scale burials of banned chlorinated insecticides. The current investigation was a four year study of legacy organochlorine pesticides in surface soil and raw foods in four rural areas of Tajikistan. Study areas included the pesticide burial sites of Konibodom and Vakhsh, and family farms of Garm and Chimbuloq villages. These areas were selected to represent a diversity of pesticide disposal histories and to allow assessment of local pesticide contamination in Tajikistan. Each site was visited multiple times and over 500 samples of surface soil and raw foods were collected and analyzed for twenty legacy organochlorine pesticides. Various local food products were sampled to represent the range of raw foods potentially containing residues of banned pesticides, including dairy products, meat, edible plant and cotton seed products. The pesticide analytes included DDTs (DDT, DDD, DDE), lindane isomers (α, β, γ, δ BHC), endosulfan isomers (endosulfan I, II, sulfate), other cyclodienes (aldrin, α and γ chlordanes, dieldrin, endrin, endrin aldehyde and ketone, heptachlor, heptachlor epoxide), and methoxychlor. Pesticide analytes were selected based on availability of commercial standards and known or suspected historical pesticide use and burial. Pesticide contamination was highest in soil and generally low in meat, dairy, and plant products. DDT was consistently the highest measured individual pesticide at each of the four sampling areas, along with BHC isomers and endosulfan II. Soil concentrations of pesticides were extremely heterogeneous at the Vakhsh and Konibodam disposal sites with many soil samples greater than 10 ppm. In contrast, samples from farms in Chimbuloq and Garm had low concentrations of pesticides. Pesticide contamination in raw foods was generally low, indicating minimal transfer from the pesticide sites into local food chains. Published by Elsevier Ltd.

  19. Hydrology of area 4, Eastern Coal Province, Pennsylvania, Ohio, and West Virginia

    USGS Publications Warehouse

    Roth, Donald K.; Engelke, Morris J.; ,

    1981-01-01

    Area 4 (one of the 24 hydrologic areas defining the Eastern Coal Province) is located at the northern end of the Eastern Coal Province in eastern Ohio, northern West Virginia, and western Pennsylvania. It is part of the upper Ohio River basin, which includes the Beaver, Mahoning, and Shenango Rivers. The area is underlain by rocks of the Pottsville, Allegheny, Conemaugh, Monongahela Groups (or Formations) and Dunkard Group. Area 4 has a temperate climate with an annual average rainfall of 38 to 42 inches, most of its area is covered by forest. The soils have a high erosion potential where the vegetation cover is removed. In response to Public Law 95-87, 132 sites were added to the existing surface-water data-collection network in area 4. At these added sites, collected data includes discharge, water quality, sediment, and biology. The data are available from computer storage through the National Water Data Exchange (NAWDEX) or the published annual Water Resources Data reports for Ohio, Pennsylvania, and West Virginia. Hydrologic problems related to mining are: (1) Erosion and increased sedimentation, and (2) degradation of water quality. Erosion and sedimentation are associated chiefly with surface mining. Sediment yields increase drastically when vegetation is removed from the highly erosive soils. Degradation of water quality can be caused by acid-mine drainage from underground and surface mining. More than half the acid-mine drainage effluent in area 4 comes from underground mines. The rest seeps from abandoned surface mines. Usually in reclaimed surface mines the overburden is replaced in such a short time after the coal is taken out that oxidation of acid-forming minerals, commonly pyrite or marcasite, is not complete or is neutralized by the buffering action of calcareous minerals in the soils. (USGS)

  20. Muiti-Sensor Historical Climatology of Satellite-Derived Global Land Surface Moisture

    NASA Technical Reports Server (NTRS)

    Owe, Manfred; deJeu, Richard; Holmes, Thomas

    2007-01-01

    A historical climatology of continuous satellite derived global land surface soil moisture is being developed. The data set consists of surface soil moisture retrievals from observations of both historical and currently active satellite microwave sensors, including Nimbus-7 SMMR, DMSP SSM/I, TRMM TMI, and AQUA AMSR-E. The data sets span the period from November 1978 through the end of 2006. The soil moisture retrievals are made with the Land Parameter Retrieval Model, a physically-based model which was developed jointly by researchers from the above institutions. These data are significant in that they are the longest continuous data record of observational surface soil moisture at a global scale. Furthermore, while previous reports have intimated that higher frequency sensors such as on SSM/I are unable to provide meaningful information on soil moisture, our results indicate that these sensors do provide highly useful soil moisture data over significant parts of the globe, and especially in critical areas located within the Earth's many arid and semi-arid regions.

  1. Identification of vulnerable sites in salts affected agricultural soils from South-Eastern Spain

    NASA Astrophysics Data System (ADS)

    Acosta, Jose A.; Faz, Angel; Kalbitz, Karsten; Jansen, Boris; Silvia, Martinez-Martinez

    2010-05-01

    Soil salinization is one of the main problems in many soils under intensive agricultural practices, especially in arid and semiarid zones. Two important reasons for the occurrence of salinization are i) the use of low quality irrigation water and ii) climatic conditions reducing soil quality. The results of salinization can be quite serious. It limits the growing of crops, constrains agricultural productivity, and in severe cases, leads to the abandonment of agricultural soils. There are mainly two kinds of soil salinity: naturally occurring dry-land salinity and human-induced salinity caused by the low quality of irrigation water, excessive water and fertilizer applications. In both cases the development of plants and soil organisms is limited. Natural occurrence of salts in soils is very difficult to handle and requires higher investments than the reduction of human-induced salinity. For these reasons, identification of vulnerable sites is essential for sustainable agricultural management, especially in these semiarid and arid environments. The main aim of this study was to examine spatial and vertical distribution pattern of salts in a semi-arid study site in South-Eastern Spain in order to identify vulnerable sites. In order to achieve this objective, surface soil samples were collected in January and July 2009 at 48 sites located in a representative lemon production area close to City of Murcia, covering a surface area of 44 km2. The area was divided using a square grid of 1000 m and the samples were taken from these squares. The ionic concentrations were used as the input data for distribution maps. The software used for the spatial analysis was Arcview 3.1. An interpolation method called the Inverse Distanced Weighted (IDW) method was adopted for the interpolation of the data. The results indicated that the concentrations of most anions are higher in summer. The difference was particularly large for chloride, most likely because of its high mobility and little adsorption to soil colloidal particles. However, other ions such as sulfate, calcium, magnesium, and sodium also displayed significant increases in concentration in July. This can be explained by the movements of soluble salt to the surface due to evaporation and capillary rise and subsequent precipitation of the salts during high temperatures and low rainfall. Rainfall or irrigation events enhance the leaching of salts to deeper soil horizons. The most affected area is located in the west of the study area, at the lowest altitude within the study area. Depressions favour accumulation of salts, due to both runoffs from higher areas during rainfall periods and poor quality irrigation water. It is recommended to use a better quality of water, at least before the summer, in order to reduce the amount of salts in the surface layer, likely to cause stress to crops growing on the soil in question. In conclusion, the spatial distribution of anions in the soil solution is very useful for predicting where higher increases in salinity will be produced. This will allow for identification of vulnerable areas and subsequent implementation of the necessary measures to decrease the risk for sensitive crops. Acknowledgements: to "Fundación Séneca" of "Comunidad Autónoma de Murcia" for its financial support.

  2. Geochemical characteristics of rare earth elements in different types of soil: A chemometric approach.

    PubMed

    Khan, Aysha Masood; Behkami, Shima; Yusoff, Ismail; Md Zain, Sharifuddin Bin; Bakar, Nor Kartini Abu; Bakar, Ahmad Farid Abu; Alias, Yatimah

    2017-10-01

    Rare earth elements (REEs) are becoming significant due to their huge applications in many industries, large-scale mining and refining activities. Increasing usage of such metals pose negative environmental impacts. In this research ICP-MS has been used to analyze soil samples collected from former ex-mining areas in the depths of 0-20 cm, 21-40 cm, and 41-60 cm of residential, mining, natural, and industrial areas of Perak. Principal component analysis (PCA) revealed that soil samples taken from different mining, industrial, residential, and natural areas are separated into four clusters. It was observed that REEs were abundant in most of the samples from mining areas. Concentration of the rare elements decrease in general as we move from surface soil to deeper soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Interactions Between Wind Erosion, Vegetation Structure, and Soil Stability in Groundwater Dependent Plant Communities

    NASA Astrophysics Data System (ADS)

    Vest, K. R.; Elmore, A. J.; Okin, G. S.

    2009-12-01

    Desertification is a human induced global phenomenon causing a loss of biodiversity and ecosystem productivity. Semi-arid grasslands are vulnerable to anthropogenic impacts (i.e., groundwater pumping and surface water diversion) that decrease vegetation cover and increase bare soil area leading to a greater probability of soil erosion, potentially enhancing feedback processes associated with desertification. To enhance our understanding of interactions between anthropogenic, physical, and biological factors causing desertification, this study used a combination of modeling and field observations to examine the relationship between chronic groundwater pumping and vegetation cover change and its effects on soil erosion and stability. The work was conducted in Owens Valley California, where a long history of groundwater pumping and surface water diversion has lead to documented vegetation changes. The work examined hydrological, ecological and biogeochemical factors across thirteen sites in Owens Valley. We analyzed soil stability, vegetation and gap size, soil organic carbon, and we also installed Big Spring Number Eight (BSNE) catchers to calculate mass transport of aeolian sediment across sites. Mass transport calculations were used to validate a new wind erosion model that represents the effect of porous vegetation on surface windshear velocity. Results across two field seasons show that the model can be used to predict mass transport, and areas with increased groundwater pumping show a greater susceptibility to erosion. Sediment collected in BSNE catchers was positively correlated with site gap size. Additionally, areas with larger gap sizes have a greater threshold shear velocity and soil stability, yet mass transport was greater at these sites than at sites with smaller gap sizes. Although modeling is complicated by spatial variation in multiple model parameters (e.g., gap size, threshold shear velocity in gaps), our results support the hypothesis that soils with high organic matter are being eroded following the loss of vegetation cover due to groundwater decline leaving behind bare soil surfaces with less fertility hampering vegetation reestablishment. Desertification in this system is apparently easily initiated through groundwater decline due to the high friability of these meadow soils.

  4. Geomorphological characterization of conservation agriculture

    NASA Astrophysics Data System (ADS)

    Tarolli, Paolo; Cecchin, Marco; Prosdocimi, Massimo; Masin, Roberta

    2017-04-01

    Soil water erosion is one of the major threats to soil resources throughout the world. Conventional agriculture has worsened the situation. Therefore, agriculture is facing multiple challenges: it has to produce more food to feed a growing population, and, on the other hand, safeguard natural resources adopting more sustainable production practices. In this perspective, more conservation-minded soil management practices should be taken to achieve an environmental sustainability of crop production. Indeed, conservation agriculture is considered to produce relevant environmental positive outcomes (e.g. reducing runoff and soil erosion, improving soil organic matter content and soil structure, and promoting biological activity). However, as mechanical weed control is limited or absent, in conservation agriculture, dependence on herbicides increases especially in the first years of transition from the conventional system. Consequently, also the risk of herbicide losses via runoff or adsorbed to eroded soil particles could be increased. To better analyse the complexity of soil water erosion and runoff processes in landscapes characterised by conservation agriculture, first, it is necessary to demonstrate if such different practices can significantly affect the surface morphology. Indeed, surface processes such erosion and runoff strongly depend on the shape of the surface. The questions are: are the lands treated with conservation and conventional agriculture different from each other regarding surface morphology? If so, can these differences provide a better understanding of hydrogeomorphic processes as the basis for a better and sustainable land management? To give an answer to these questions, we considered six study areas (three cultivated with no-tillage techniques, three with tillage techniques) in an experimental farm. High-resolution topography, derived from low-cost and fast photogrammetric techniques Structure-from-Motion (SfM), served as the basis to characterise the surface morphology. For each of derived Digital Elevation Model, seven morphometric indexes, such as slope, curvature, flow direction, contributing area, roughness, and connectivity was calculated. We showed then the variations of the morphology in the areas converted to the conservation agriculture, and, consequently, a possible modification of processes such as erosion and runoff. The results suggested that the agricultural surfaces interested by no-tillage practices are different from those tilled with conventional systems. The topography is rougher, with chaotic flow directions, and more concave areas, thus resulting in potential water storages, mitigating the intensity of soil erosion and runoff processes. On the other hand, the topography of traditional tillage area is more regular and smooth, with flow directions that tend to follow the same direction on the surface. These results are a novelty in the Earth Science and Agronomy: we demonstrated and quantified, from the geomorphological point of view, the potential role of conservative agriculture in mitigating, not only land degradation phenomena, but also the distribution of pollutants, and rainfall-runoff processes. References Prosdocimi, M., Tarolli, P., Cerdà, A. (2016). Mulching practice for reducing soil water erosion: A review. Earth-Science Reviews, 161, 191-203. Prosdocimi, M., Burguet, M., Di Prima, S., Sofia, G., Terol, E, Rodrigo Comino J., Cerdà, A., Tarolli, P. (2017). Rainfall simulation and Structure-from-Motion photogrammetry for the analysis of soil water erosion in Mediterranean vineyards. Science of the Total Environment, 574, 204-215. Tarolli, P., Sofia G. (2016). Human topographic signatures and derived geomorphic processes across landscapes, Geomorphology, 255, 140-161.

  5. Zambia Wetland

    Atmospheric Science Data Center

    2013-04-16

    ... and are influenced by terrain, vegetation structure, soil type and soil moisture content. Wet surfaces or areas with standing water ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  6. Evaluation of current techniques for isolation of chars as natural adsorbents

    USGS Publications Warehouse

    Chun, Y.; Sheng, G.; Chiou, C.T.

    2004-01-01

    Chars in soils or sediments may potentially influence the soil/sediment sorption behavior. Current techniques for the isolation of black carbon including chars rely often on acid demineralization, base extraction, and chemical oxidation to remove salts and minerals, humic acid, and refractory kerogen, respectively. Little is known about the potential effects of these chemical processes on the char surface and adsorptive properties. This study examined the effects of acid demineralization, base extraction, and acidic Cr2O72- oxidation on the surface areas, surface acidity, and benzene adsorption characteristics of laboratory-produced pinewood and wheat-residue chars, pure or mixed with soils, and a commercial activated carbon. Demineralization resulted in a small reduction in the char surface area, whereas base extraction showed no obvious effect. Neither demineralization nor base extraction caused an appreciable variation in benzene adsorption and presumably the char surface properties. By contrast, the Cr2O 72- oxidation caused a >31% reduction in char surface area. The Boehm titration, supplemented by FTIR spectra, indicated that the surface acidity of oxidized chars increased by a factor between 2.3 and 12 compared to nonoxidized chars. Benzene adsorption with the oxidized chars was lower than that with the non-oxidized chars by a factor of >8.9; both the decrease in char surface area and the increase in char surface acidity contributed to the reduction in char adsorptive power. Although the Cr 2O72- oxidation effectively removes resistant kerogen, it is not well suited for the isolation of chars as contaminant adsorbents because of its destructive nature. Alternative nondestructive techniques that preserve the char surface properties and effectively remove kerogen must be sought.

  7. Zn mobility and geochemistry in surface sulfide mining soils from SE Spain.

    PubMed

    Garcia, G; Peñas, J M; Manteca, J I

    2008-03-01

    The extraction of metallic minerals and the mineral dressing operations in concentrators produced a high impact in soils and sediments. Heavy metals in soils constitute a high risk of pollution, not only for mining areas, but also for agriculture and villages placed in subsidiary areas. This research has been focused on the assessment of the real environmental and health hazards of Zn in relation to geochemistry and metal mobility in surface soils from a mining area in SE Spain, under semiarid weather conditions. Mineralogy of the studied soils revealed major presence of quartz, but also of other silicates, sulfates, carbonates, and sulfides. Regarding Zn minerals, the presence of sphalerite as the main Zn sulfide, and of goslarite as Zn sulfate, and of smithsonite as Zn carbonate should be highlighted. Soil pH ranged between 4.4 and 4.9 and the electrical conductivity between 55 and 85 microS/cm. By using the sequential extraction procedure, the achieved results show that zinc is not only mainly associated to primary but also to secondary sulfides. Total concentration of the non-available fractions rises up to 98.45% of total Zn in the studied soils. On the other hand, available Zn fraction did not exceed more than 1.55% in percentage and less than 2000 ppm in absolute terms, and when referred to more easily available fraction (water-soluble and exchangeable fractions), these values are not more than 0.44% and then 800 ppm. Therefore, although there is a significant pollution level in this area, immediate hazard for the environment can be assessed as moderate. Finally it should be highlighted that these surface soils have undergone concentration processes of sphalerite, whose mechanisms should be related to the ascending flow of capillary water and the dragging of sphalerite crystals and Zn salts by electrokinetic and colloidal processes These processes seem to occur based on environmental pollution by wind and water erosion, and therefore directly associated to environmental pollution and risks by free metals.

  8. Soil-landform-plant-community relationships of a periglacial landscape on Potter Peninsula, maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Poelking, E. L.; Schaefer, C. E. R.; Fernandes Filho, E. I.; de Andrade, A. M.; Spielmann, A. A.

    2015-05-01

    Integrated studies on the interplay between soils, periglacial geomorphology and plant communities are crucial for the understanding of climate change effects on terrestrial ecosystems of maritime Antarctica, one of the most sensitive areas to global warming. Knowledge on physical environmental factors that influence plant communities can greatly benefit studies on the monitoring of climate change in maritime Antarctica, where new ice-free areas are being constantly exposed, allowing plant growth and organic carbon inputs. The relationship between topography, plant communities and soils was investigated on Potter Peninsula, King George Island, maritime Antarctica. We mapped the occurrence and distribution of plant communities and identified soil-landform-vegetation relationships. The vegetation map was obtained by classification of a QuickBird image, coupled with detailed landform and characterization of 18 soil profiles. The sub-formations were identified and classified, and we also determined the total elemental composition of lichens, mosses and grasses. Plant communities on Potter Peninsula occupy 23% of the ice-free area, at different landscape positions, showing decreasing diversity and biomass from the coastal zone to inland areas where sub-desert conditions prevail. There is a clear dependency between landform and vegetated soils. Soils that have greater moisture or are poorly drained, and with acid to neutral pH, are favourable for moss sub-formations. Saline, organic-matter-rich ornithogenic soils of former penguin rookeries have greater biomass and diversity, with mixed associations of mosses and grasses, while stable felsenmeers and flat rocky cryoplanation surfaces are the preferred sites for Usnea and Himantormia lugubris lichens at the highest surface. Lichens sub-formations cover the largest vegetated area, showing varying associations with mosses.

  9. Assessment of heavy metals (Cd and Pb) and micronutrients (Cu, Mn, and Zn) of paddy (Oryza sativa L.) field surface soil and water in a predominantly paddy-cultivated area at Puducherry (Pondicherry, India), and effects of the agricultural runoff on the elemental concentrations of a receiving rivulet.

    PubMed

    Reddy, M Vikram; Satpathy, Deepmala; Dhiviya, K Shyamala

    2013-08-01

    The concentrations of toxic heavy metals-Cd and Pb and micronutrients-Cu, Mn, and Zn were assessed in the surface soil and water of three different stages of paddy (Oryza sativa L.) fields, the stage I-the first stage in the field soon after transplantation of the paddy seedlings, holding adequate amount of water on soil surface, stage II-the middle stage with paddy plants of stem of about 40 cm length, with sufficient amount of water on the soil surface, and stage III-the final stage with fully grown rice plants and very little amount of water in the field at Bahour, a predominantly paddy cultivating area in Puducherry located on the southeast Coast of India. Comparison of the heavy metal and micronutrient concentrations of the soil and water across the three stages of paddy field showed their concentrations were significantly higher in soil compared with that of water (p < 0.05) of the fields probably because of accumulation and adsorption in soil. The elemental concentrations in paddy soil as well as water was in the ranking order of Cd > Mn > Zn > Cu > Pb indicating concentration of Cd was maximum and Pb was minimum. The elemental concentrations in both soil and water across the three stages showed a ranking order of stage II > stage III > stage I. The runoff from the paddy fields has affected the elemental concentrations of the water and sediment of an adjacent receiving rivulet.

  10. Remote sensing assessment of oil lakes and oil-polluted surfaces at the Greater Burgan oil field, Kuwait

    NASA Astrophysics Data System (ADS)

    Kwarteng, Andy Yaw

    A heinous catastrophe imposed on Kuwait's desert environment during the 1990 to 1991 Arabian Gulf War was the formation of oil lakes and oil-contaminated surfaces. Presently, the affected areas consist of oil lakes, thick light and disintegrated tarmats, black soil and vegetation. In this study, Landsat TM, Spot, colour aerial photographs and IRS-1D digital image data acquired between 1989 and 1998 were used to monitor the spatial and temporal changes of the oil lakes and polluted surfaces at the Greater Burgan oil field. The use of multisensor datasets provided the opportunity to observe the polluted areas in different wavelengths, look angles and resolutions. The images were digitally enhanced to optimize the visual outlook and improve the information content. The data documented the gradual disappearance of smaller oil lakes and soot/black soil from the surface with time. Even though some of the contaminants were obscured by sand and vegetation and not readily observed on the surface or from satellite images, the harmful chemicals still remain in the soil. Some of the contaminated areas displayed a remarkable ability to support vegetation growth during the higher than average rainfall that occurred between 1992 to 1998. The total area of oil lakes calculated from an IRS-1D panchromatic image acquired on 16 February 1998, using supervised classification applied separately to different parts, was 24.13 km 2.

  11. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  12. [Phytoremediation of Petroleum Contaminated Soils with Iris pseudacorus L. and the Metabolic Analysis in Roots].

    PubMed

    Wang, Ya-nan; Cheng, Li-juan; Zhou, Qi-xing

    2016-04-15

    In this study, we performed a greenhouse pot-culture experiment to investigate the potential of a wild ornamental plant Iris pseudacorus L. in remediating petroleum contaminated soils from the Dagang Oilfield in Tianjin, China. The results suggested that Iris pseudacorus L. had great resistance to ≤ 40,000 mg · kg(⁻¹ of total petroleum hydrocarbons (TPHs). The removal rate of TPHs with concentrations of 10,000 mg · kg⁻¹, 20,000 mg · kg⁻¹ and 40,000 mg · kg⁻¹ in soils by Iris pseudacorus L. was 42.1%, 33.1% 31.2%, respectively, much higher than those in the corresponding controls (31.8%, 21.3% 11.9%, respectively) (P < 0.05). The root specific surface area of Iris pseudacorus L. was determined by the root scanner. The results suggested that TPHs with concentrations of 10,000 mg · kg⁻¹, 20,000 mg · kg⁻¹ and 40,000 mg · kg⁻¹ in soils increased the root specific surface area comparing with the controls. Additionally, the metabolic analysis showed that root metabolism changed to different degrees under the stress of TPHs, and the levels or species of metabolites had a significant change (P < 0.001). Furthermore, the results showed that 5 of 11 metabolites (VIP value > 1.2) with the root specific surface area from the PLS-DA model analysis, including ethanedioic acid, lactic acid, 2-butenedioic acid, phosphate and propanedioic acid, were positively correlated with the root specific surface area, but the others, gluconic acid, uridine, butanoic acid, maltose, 9,12-octadecadienoic acid, phenylalanine, were negatively correlated with it. In conclusion, using Iris pseudacorus L. to remediate petroleum contaminated soils is feasible, and the metabolic analysis in roots is useful to better understand the metabolic response of plants exposure to petroleum contaminated soils, and then reveals its remediated mechanisms.

  13. Estimation of small-scale soil erosion in laboratory experiments with Structure from Motion photogrammetry

    NASA Astrophysics Data System (ADS)

    Balaguer-Puig, Matilde; Marqués-Mateu, Ángel; Lerma, José Luis; Ibáñez-Asensio, Sara

    2017-10-01

    The quantitative estimation of changes in terrain surfaces caused by water erosion can be carried out from precise descriptions of surfaces given by means of digital elevation models (DEMs). Some stages of water erosion research efforts are conducted in the laboratory using rainfall simulators and soil boxes with areas less than 1 m2. Under these conditions, erosive processes can lead to very small surface variations and high precision DEMs are needed to account for differences measured in millimetres. In this paper, we used a photogrammetric Structure from Motion (SfM) technique to build DEMs of a 0.5 m2 soil box to monitor several simulated rainfall episodes in the laboratory. The technique of DEM of difference (DoD) was then applied using GIS tools to compute estimates of volumetric changes between each pair of rainfall episodes. The aim was to classify the soil surface into three classes: erosion areas, deposition areas, and unchanged or neutral areas, and quantify the volume of soil that was eroded and deposited. We used a thresholding criterion of changes based on the estimated error of the difference of DEMs, which in turn was obtained from the root mean square error of the individual DEMs. Experimental tests showed that the choice of different threshold values in the DoD can lead to volume differences as large as 60% when compared to the direct volumetric difference. It turns out that the choice of that threshold was a key point in this method. In parallel to photogrammetric work, we collected sediments from each rain episode and obtained a series of corresponding measured sediment yields. The comparison between computed and measured sediment yields was significantly correlated, especially when considering the accumulated value of the five simulations. The computed sediment yield was 13% greater than the measured sediment yield. The procedure presented in this paper proved to be suitable for the determination of sediment yields in rainfall-driven soil erosion experiments conducted in the laboratory.

  14. The two-phase flow IPTT method for measurement of nonwetting-wetting liquid interfacial areas at higher nonwetting saturations in natural porous media

    PubMed Central

    Zhong, Hua; Ouni, Asma El; Lin, Dan; Wang, Bingguo; Brusseau, Mark L

    2017-01-01

    Interfacial areas between nonwetting-wetting (NW-W) liquids in natural porous media were measured using a modified version of the interfacial partitioning tracer test (IPTT) method that employed simultaneous two-phase flow conditions, which allowed measurement at NW saturations higher than trapped residual saturation. Measurements were conducted over a range of saturations for a well-sorted quartz sand under three wetting scenarios of primary drainage (PD), secondary imbibition (SI), and secondary drainage (SD). Limited sets of experiments were also conducted for a model glass-bead medium and for a soil. The measured interfacial areas were compared to interfacial areas measured using the standard IPTT method for liquid-liquid systems, which employs residual NW saturations. In addition, the theoretical maximum interfacial areas estimated from the measured data are compared to specific solid surface areas measured with the N2/BET method and estimated based on geometrical calculations for smooth spheres. Interfacial areas increase linearly with decreasing water saturation over the range of saturations employed. The maximum interfacial areas determined for the glass beads, which have no surface roughness, are 32±4 and 36±5 cm−1 for PD and SI cycles, respectively. The values are similar to the geometric specific solid surface area (31±2 cm−1) and the N2/BET solid surface area (28±2 cm−1). The maximum interfacial areas are 274±38, 235±27, and 581±160 cm−1 for the sand for PD, SI, and SD cycles, respectively, and ~7625 cm−1 for the soil for PD and SI. The maximum interfacial areas for the sand and soil are significantly larger than the estimated smooth-sphere specific solid surface areas (107±8 cm−1 and 152±8 cm−1, respectively), but much smaller than the N2/BET solid surface area (1387±92 cm−1 and 55224 cm−1, respectively). The NW-W interfacial areas measured with the two-phase flow method compare well to values measured using the standard IPTT method. PMID:28959079

  15. Phosphate Treatment of Lead-Contaminated Soil: Effects on Water Quality, Plant Uptake, and Lead Speciation

    EPA Science Inventory

    Water quality threats associated with using phosphate-based amendments to remediate Pb-contaminated soils are a concern, particularly in riparian areas. This study investigated the effects of P application rates to a Pb-contaminated alluvial soil on Pb and P loss via surface wat...

  16. Emission reduction of 1,3-dichloropropene by soil amendment with biochar

    USDA-ARS?s Scientific Manuscript database

    Soil fumigation is important for growing many fruits and vegetable crops, but fumigant emissions may contaminate the atmosphere. Biochar as soil amendments has the potential of mitigating climate change effects. In addition, its high surface area and porosity enable it to adsorb or retain nutrients,...

  17. A Simple Close Range Photogrammetry Technique to Assess Soil Erosion in the Field

    USDA-ARS?s Scientific Manuscript database

    Evaluating the performance of a soil erosion prediction model depends on the ability to accurately measure the gain or loss of sediment in an area. Recent development in acquiring detailed surface elevation data (DEM) makes it feasible to assess soil erosion and deposition spatially. Digital photogr...

  18. [Identification of using organic carbon isotopic composition of soil pollution process].

    PubMed

    Guo, Qing-Jun; Chen, Tong-Bin; Yang, Jun; Strauss, Harald; Lei, Mei; Zhu, Guang-Xu; Li, Yan-Mei; Zhou, Xiao-Yong; Li, Xiao-Yan

    2011-10-01

    This study has taken advantage of the characteristics of concentration of soil organic matter (SOC) and delta13 C(SOC) values to provide proofs for environment quality assessment and to know more about polluted sources, sizes and processes in Beijing steel company area. delta13C values of SOC is good for tracing sources and documenting shifts in community composition and distribution. Two sections (Beijing steel company area and Yongledian, Tongzhou) which belong to two different soil types collected in Beijing, and organic carbon isotopic composition and total soil organic carbon were analyzed. These results shows that SOC of soil samples from Beijing steel company area are quite high, and even 9.7% at the surface sample, however SOC from unpolluted area (Yongledian area) is lower than those of industrial area. delta13 C(SOC) from soils of Beijing steel company area and Yongledian area respectively vary from -24.8 per thousand to -23.1 per thousand and -26.4 per thousand to -20.5 per thousand, the results are quite different. The results reflect that there are different organic carbon sources in different types' soil: Organic carbon from Beijing steel company area has been mainly affected by coal burning, soil organic carbon concentrations are quite high, and pollution can affect on soils 70 cm deep underground; and soils from Yongledian area, have been not polluted, and organic matter is from natural litter (C3 plants). Although there are different soil organic carbon concentrations and isotope compositions, two soil sections have similar variation trends. This study provides proofs for environment quality assessment and know more about polluted and natural sources, sizes in Beijing.

  19. Effect of stone coverage on soil erosion

    NASA Astrophysics Data System (ADS)

    Jomaa, S.; Barry, D. A.; Heng, B. P.; Brovelli, A.; Sander, G. C.; Parlange, J.

    2010-12-01

    Soil surface coverage has a significant impact on water infiltration, runoff and soil erosion yields. In particular, surface stones protect the soils from raindrop detachment, they retard the overland flow therefore decreasing its sediment transport capacity, and they prevent surface sealing. Several physical and environmental factors control to what extent stones on the soil surface modify the erosion rates and the related hydrological response. Among the most important factors are the moisture content of the topsoil, stone size, emplacement, coverage density and soil texture. Owing to the different inter-related processes, there is ambiguity concerning the quantitative effect of stones, and process-based understanding is limited. Experiments were performed (i) to quantify how stone features affect sediment yields, (ii) to understand the local effect of isolated surface stones, that is, the changes of the soil particle size distribution in the vicinity of a stone and (iii) to determine how stones attenuate the development of surface sealing and in turn how this affects the local infiltration rate. A series of experiments using the EPFL 6-m × 2-m erosion flume were conducted at different rainfall intensities (28 and 74 mm h-1) and stone coverage (20 and 40%). The total sediment concentration, the concentration of the individual size classes and the flow discharge were measured. In order to analyze the measurements, the Hairsine and Rose (HR) erosion model was adapted to account for the shielding effect of the stone cover. This was done by suitably adjusting the parameters based on the area not covered by stones. It was found that the modified HR model predictions agreed well with the measured sediment concentrations especially for the long time behavior. Changes in the bulk density of the topsoil due to raindrop-induced compaction with and without stone protection revealed that the stones protect the upper soil surface against the structural seals resulting in negligible changes in the bulk density during the erosion event. Since the main process contributing to surface sealing development is the compaction due to the raindrop kinetic energy and associated physico-chemical changes, the protection provided by the stone cover is consistent with the area-averaging approach used in applying the HR model.

  20. The influence of land cover on surface energy partitioning and evaporative fraction regimes in the U.S. Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Bagley, Justin E.; Kueppers, Lara M.; Billesbach, Dave P.; Williams, Ian N.; Biraud, Sébastien C.; Torn, Margaret S.

    2017-06-01

    Land-atmosphere interactions are important to climate prediction, but the underlying effects of surface forcing of the atmosphere are not well understood. In the U.S. Southern Great Plains, grassland/pasture and winter wheat are the dominant land covers but have distinct growing periods that may differently influence land-atmosphere coupling during spring and summer. Variables that influence surface flux partitioning can change seasonally, depending on the state of local vegetation. Here we use surface observations from multiple sites in the U.S. Department of Energy Atmospheric Radiation Measurement Southern Great Plains Climate Research Facility and statistical modeling at a paired grassland/agricultural site within this facility to quantify land cover influence on surface energy balance and variables controlling evaporative fraction (latent heat flux normalized by the sum of sensible and latent heat fluxes). We demonstrate that the radiative balance and evaporative fraction are closely related to green leaf area at both winter wheat and grassland/pasture sites and that the early summer harvest of winter wheat abruptly shifts the relationship between evaporative fraction and surface state variables. Prior to harvest, evaporative fraction of winter wheat is strongly influenced by leaf area and soil-atmosphere temperature differences. After harvest, variations in soil moisture have a stronger effect on evaporative fraction. This is in contrast with grassland/pasture sites, where variation in green leaf area has a large influence on evaporative fraction throughout spring and summer, and changes in soil-atmosphere temperature difference and soil moisture are of relatively minor importance.

  1. Widespread arsenic contamination of soils in residential areas and public spaces: an emerging regulatory or medical crisis?

    PubMed

    Belluck, D A; Benjamin, S L; Baveye, P; Sampson, J; Johnson, B

    2003-01-01

    A critical review finds government agencies allow, permit, license, or ignore arsenic releases to surface soils. Release rates are controlled or evaluated using risk-based soil contaminant numerical limits employing standardized risk algorithms, chemical-specific and default input values. United States arsenic residential soil limits, approximately 0.4- approximately 40 ppm, generally correspond to a one-in-one-million to a one-in-ten-thousand incremental cancer risk range via ingestion of or direct contact with contaminated residential soils. Background arsenic surface soil levels often exceed applicable limits. Arsenic releases to surface soils (via, e.g., air emissions, waste recycling, soil amendments, direct pesticide application, and chromated copper arsenic (CCA)-treated wood) can result in greatly elevated arsenic levels, sometimes one to two orders of magnitude greater than applicable numerical limits. CCA-treated wood, a heavily used infrastructure material at residences and public spaces, can release sufficient arsenic to result in surface soil concentrations that exceed numerical limits by one or two orders of magnitude. Although significant exceedence of arsenic surface soil numerical limits would normally result in regulatory actions at industrial or hazardous waste sites, no such pattern is seen at residential and public spaces. Given the current risk assessment paradigm, measured or expected elevated surface soil arsenic levels at residential and public spaces suggest that a regulatory health crisis of sizeable magnitude is imminent. In contrast, available literature and a survey of government agencies conducted for this paper finds no verified cases of human morbidity or mortality resulting from exposure to elevated levels of arsenic in surface soils. This concomitance of an emerging regulatory health crisis in the absence of a medical crisis is arguably partly attributable to inadequate government and private party attention to the issue.

  2. Regional prediction of carbon isotopes in soil carbonates for Asian dust source tracer

    NASA Astrophysics Data System (ADS)

    Chen, Bing; Cui, Xinjuan; Wang, Yaqiang

    2016-10-01

    Dust particles emitted from deserts and semi-arid lands in northern China cause particulate pollution that increases the burden of disease particularly for urban population in East Asia. The stable carbon isotopes (δ13C) of carbonates in soils and dust aerosols in northern China were investigated. We found that the δ13C of carbonates in surface soils in northern China showed clearly the negative correlation (R2 = 0.73) with Normalized Difference Vegetation Index (NDVI). Using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite-derived NDVI, we predicted the regional distribution of δ13C of soil carbonates in deserts, sandy lands, and steppe areas. The predictions show the mean δ13C of -0.4 ± 0.7‰ in soil carbonates in Taklimakan Desert and Gobi Deserts, and the isotope values decrease to -3.3 ± 1.1‰ in sandy lands. The increase in vegetation coverage depletes 13C in soil carbonates, thus the steppe areas are predicted by the lowest δ13C levels (-8.1 ± 1.7‰). The measurements of atmospheric dust samples at eight sites showed that the Asian dust sources were well assigned by the 13C mapping in surface soils. Predicting 13C in large geographical areas with fine resolution offers a cost-effective tracer to monitor dust emissions from sandy lands and steppe areas which show an increasing role in Asian dust loading driven by climate change and human activities.

  3. A missing piece of the puzzle in climate change hotspots: Near-surface turbulent interactions controlling ET-soil moisture coupling in semiarid areas

    NASA Astrophysics Data System (ADS)

    Haghighi, Erfan; Gianotti, Daniel J.; Rigden, Angela J.; Salvucci, Guido D.; Kirchner, James W.; Entekhabi, Dara

    2017-04-01

    Being located in the transitional zone between dry and wet climate areas, semiarid ecosystems (and their associated ecohydrological processes) play a critical role in controlling climate change and global warming. Land evapotranspiration (ET), which is a central process in the climate system and a nexus of the water, energy and carbon cycles, typically accounts for up to 95% of the water budget in semiarid areas. Thus, the manner in which ET is partitioned into soil evaporation and plant transpiration in these settings is of practical importance for water and carbon cycling and their feedbacks to the climate system. ET (and its partitioning) in these regions is primarily controlled by surface soil moisture which varies episodically under stochastic precipitation inputs. Important as the ET-soil moisture relationship is, it remains empirical, and physical mechanisms governing its nature and dynamics are underexplored. Thus, the objective of this study is twofold: (1) to provide observational evidence for the influence of surface cover conditions on ET-soil moisture coupling in semiarid regions using soil moisture data from NASA's SMAP satellite mission combined with independent observationally based ET estimates, and (2) to develop a relatively simple mechanistic modeling platform improving our physical understanding of interactions between micro and macroscale processes controlling ET and its partitioning in partially vegetated areas. To this end, we invoked concepts from recent progress in mechanistic modeling of turbulent energy flux exchange in bluff-rough regions, and developed a physically based ET model that explicitly accounts for how vegetation-induced turbulence in the near-surface region influences soil drying and thus ET rates and dynamics. Model predictions revealed nonlinearities in the strength of the ET-soil moisture relationship (i.e., ∂ET/∂θ) as vegetation cover fraction increases, accounted for by the nonlinearity of surface-cover-dependent turbulent interactions. We identified a (predictable) critical vegetation cover fraction (as a function of vegetation stature and environmental conditions) that yields the strongest ET-soil moisture relationship under prescribed atmospheric conditions. Overall, the results suggest that ∂ET/ ∂θ varies more widely in regions with tall-stature woody vegetation that experience higher rates of change in turbulence intensity as the cover fraction increases. Our results facilitate a mathematically tractable description of ∂ET/ ∂θ, which is a core component of models that seek to predict hydrology-climate feedback processes in a changing climate.

  4. Forms of phosphorus transfer in runoff under no-tillage in a soil treated with successive swine effluents applications.

    PubMed

    Lourenzi, Cledimar Rogério; Ceretta, Carlos Alberto; Tiecher, Tadeu Luis; Lorensini, Felipe; Cancian, Adriana; Stefanello, Lincon; Girotto, Eduardo; Vieira, Renan Costa Beber; Ferreira, Paulo Ademar Avelar; Brunetto, Gustavo

    2015-04-01

    Successive swine effluent applications can substantially increase the transfer of phosphorus (P) forms in runoff. The aim of this study was to evaluate P accumulation in the soil and transfer of P forms in surface runoff from a Hapludalf soil under no-tillage subjected to successive swine effluent applications. This research was carried out in the Agricultural Engineering Department of the Federal University of Santa Maria, Brazil, from 2004 to 2007, on a Typic Hapludalf soil. Swine effluent rates of 0, 20, 40, and 80 m3 ha(-1) were broadcast over the soil surface prior to sowing of different species in a crop rotation. Soil samples were collected in stratified layers, and the levels of available P were determined. Samples of water runoff from the soil surface were collected throughout the period, and the available, soluble, particulate, and total P were measured. Successive swine effluent applications led to increases in P availability, especially in the soil surface, and P migration through the soil profile. Transfer of P forms was closely associated with runoff, which is directly related to rainfall volume. Swine effluent applications also reduced surface runoff. These results show that in areas with successive swine effluent applications, practices that promote higher water infiltration into the soil are required, e.g., crop rotation and no-tillage system.

  5. The Study Of Soil And Agrochemical Features Of Zonal Soils Of Coal Mining Enterprises In Kemerovo Region

    NASA Astrophysics Data System (ADS)

    Yakovchenko, M. A.; Kosolapova, A. A.; Ermolaev, V. A.

    2017-01-01

    The paper represents the results of the study of soil and agrochemical features of zonal soils: the grain-size composition, the content of humus, phosphorus and potassium, and heavy metals, the reaction of soil solution of the territory of the open-pit coal mine No12 of Kemerovo region in the areas of the working enterprise. The species composition of the lignose and herbaceous vegetation of the undisturbed territories has been studied. It has been revealed that the fertile soil layer of the studied areas of the open-pit coal mine is characterized as fertile but can’t be removed and stored because the surface of the whole area under study is forest-covered very much, rumpled, there are gullies and a lot of wind-fallen trees.

  6. Quantifying root water extraction after drought recovery using sub-mm in situ empirical data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhiman, Indu; Bilheux, Hassina Z.; DeCarlo, Keito F.

    Root-specific responses to stress are not well-known, and have been largely based on indirect measurements of bulk soil water extraction, which limits mechanistic modeling of root function. Here, we used neutron radiography to examine in situ root-soil water dynamics of a previously droughted black cottonwood ( Populus trichocarpa) seedling, contrasting water uptake by younger, thinner or older, thicker parts of the fine root system. The smaller diameter roots had greater water uptake capacity per unit surface area than the larger diameter roots, but they had less total surface area leading to less total water extraction; rates ranged from 0.0027 –more » 0.0116 g cm -2 hr -1. The finest most-active roots were not visible in the radiographs, indicating the need to include destructive sampling. Analysis based on bulk soil hydraulic properties indicated substantial redistribution of water via saturated/unsaturated flow, capillary wicking, and root hydraulic redistribution across the layers - suggesting water uptake dynamics following an infiltration event may be more complex than approximated by common soil hydraulic or root surface area modeling approaches. Lastly, our results highlight the need for continued exploration of root-trait specific water uptake rates in situ, and impacts of roots on soil hydraulic properties – both critical components for mechanistic modeling of root function.« less

  7. Quantifying root water extraction after drought recovery using sub-mm in situ empirical data

    DOE PAGES

    Dhiman, Indu; Bilheux, Hassina Z.; DeCarlo, Keito F.; ...

    2017-09-09

    Root-specific responses to stress are not well-known, and have been largely based on indirect measurements of bulk soil water extraction, which limits mechanistic modeling of root function. Here, we used neutron radiography to examine in situ root-soil water dynamics of a previously droughted black cottonwood ( Populus trichocarpa) seedling, contrasting water uptake by younger, thinner or older, thicker parts of the fine root system. The smaller diameter roots had greater water uptake capacity per unit surface area than the larger diameter roots, but they had less total surface area leading to less total water extraction; rates ranged from 0.0027 –more » 0.0116 g cm -2 hr -1. The finest most-active roots were not visible in the radiographs, indicating the need to include destructive sampling. Analysis based on bulk soil hydraulic properties indicated substantial redistribution of water via saturated/unsaturated flow, capillary wicking, and root hydraulic redistribution across the layers - suggesting water uptake dynamics following an infiltration event may be more complex than approximated by common soil hydraulic or root surface area modeling approaches. Lastly, our results highlight the need for continued exploration of root-trait specific water uptake rates in situ, and impacts of roots on soil hydraulic properties – both critical components for mechanistic modeling of root function.« less

  8. Grass seeding and soil erosion in a steep, logged area in northeastern Oregon.

    Treesearch

    J.D. Helvey; W.B. Fowler

    1979-01-01

    This case study tested the common belief that grass seeding is needed to prevent erosion after areas are clearcut in the Blue Mountains. Changes in the soil surface height at about 500 points each in a seedbed and an unseeded area were measured on four dates covering a 20-month period. Average vertical displacement was not consistently related to seeding nor to degree...

  9. Remedial Investigation Report, Presidio Main Installation, Presidio of San Francisco. Volume 5: Figures 7-15

    DTIC Science & Technology

    1997-01-01

    YFO U A .. SOIL BORING1 3 . 4 SURFACE SOIL SAM SSURFACES COVERE S::::::::::::::::i-•. PAVEMENT OR BUll ...EXPLANW SOIL BORING .A SURFACE SOIL SAIN LII. PVMNOR BUll .5____iSTAIN ED AREAS LITHOOGY E/DUNOTES: 1. ALL...WCALXI ~q~qJO~i II~ %~1, z U 0 a LL 0 L c 0S-0 F- tr C14 Uj- Ui -Z w- z zow w0 m Z z z 0 0on coLi/ in z On.. 0 LL -J Ua. z C 0 w D TIPo 44f -lot a26

  10. Surface disturbances: their role in accelerating desertification

    USGS Publications Warehouse

    Belnap, Jayne

    1995-01-01

    Maintaining soil stability and normal water and nutrient cycles in desert systems is critical to avoiding desertification. These particular ecosystem processes are threatened by trampling of livestock and people, and by off-road vehicle use. Soil compaction and disruption of cryptobiotic soil surfaces (composed of cyanobacteria, lichens, and mosses) can result in decreased water availability to vascular plants through decreased water infiltration and increased albedo with possible decreased precipitation. Surface disturbance may also cause accelerated soil loss through wind and water erosion and decreased diversity and abundance of soil biota. In addition, nutrient cycles can be altered through lowered nitrogen and carbon inputs and slowed decomposition of soil organic matter, resulting in lower nutrient levels in associated vascular plants. Some cold desert systems may be especially susceptible to these disruptions due to the paucity of surface-rooting vascular plants for soil stabilization, fewer nitrogen-fixing higher plants, and lower soil temperatures, which slow nutrient cycles. Desert soils may recover slowly from surface disturbances, resulting in increased vulnerability to desertification. Recovery from compaction and decreased soil stability is estimated to take several hundred years. Re-establishment rates for soil bacterial and fungal populations are not known. The nitrogen fixation capability of soil requires at least 50 years to recover. Recovery of crusts can be hampered by large amounts of moving sediment, and re-establishment can be extremely difficult in some areas. Given the sensitivity of these resources and slow recovery times, desertification threatens million of hectares of semiarid lands in the United States.

  11. An Assessment of Soil Disturbance from Five Harvesting Intensities

    Treesearch

    John Klepac; Stephen E. Reutebuch; Robert B. Rummer

    1999-01-01

    Surface soil disturbance was compared among a commercial thinning, group selection, patch cut, 2-age, and clearcut. The thinning, group selection and patch cut units had significantly higher percentages of undisturbed area. The 2-age unit had a significantly higher percentage of area disturbed with litter in place. The clearcut unit had a significantly higher...

  12. Clay fractions from a soil chronosequence after glacier retreat reveal the initial evolution of organo-mineral associations

    NASA Astrophysics Data System (ADS)

    Dümig, Alexander; Häusler, Werner; Steffens, Markus; Kögel-Knabner, Ingrid

    2012-05-01

    Interactions between organic and mineral constituents prolong the residence time of organic matter in soils. However, the structural organization and mechanisms of organic coverage on mineral surfaces as well as their development with time are still unclear. We used clay fractions from a soil chronosequence (15, 75 and 120 years) in the foreland of the retreating Damma glacier (Switzerland) and from mature soils outside the proglacial area (>700 and <3000 years) to elucidate the evolution of organo-mineral associations during initial soil formation. The chemical composition of the clay-bound organic matter (OM) was assessed by solid-state 13C NMR spectroscopy while the quantities of amino acids and neutral sugar monomers were determined after acid hydrolysis. The mineral phase was characterized by X-ray diffraction, oxalate extraction, specific surface area by N2 adsorption (BET approach), and cation exchange capacity at pH 7 (CECpH7). The last two methods were applied before and after H2O2 treatment. We found pronounced shifts in quantity and quality of OM during aging of the clay fractions, especially within the first one hundred years of soil formation. The strongly increasing organic carbon (OC) loading of clay-sized particles resulted in decreasing specific surface areas (SSA) of the mineral phases and increasing CECpH7. Thus, OC accumulation was faster than the supply of mineral surfaces and cation exchange capacity was mainly determined by the OC content. Clay-bound OC of the 15-year-old soils showed high proportions of carboxyl C and aromatic C. This may point to remnants of ancient OC which were inherited from the recently exposed glacial till. With increasing age (75 and 120 years), the relative proportions of carboxyl and aromatic C decreased. This was associated with increasing O-alkyl C proportions, whereas accumulation of alkyl C was mainly detected in clay fractions from the mature soils. These findings from solid-state 13C NMR spectroscopy are in line with the increasing amounts of microbial-derived carbohydrates with soil age. The large accumulation of proteins, which was comparable to those of carbohydrates, and the very low C/N ratios of H2O2-resistant OM indicated strong and preferential associations between proteinaceous compounds and mineral surfaces. In the acid soils, poorly crystalline Fe oxides were the main providers of mineral surface area and important for the stabilization of OM during aging of the clay fractions. This was indicated by (I) the strong correlations between oxalate soluble Fe and both, SSA of H2O2-treated clay fractions and OC content, and (II) the low formation of expandable clays due to small extents of mineral weathering. Our chronosequence approach provided new insights into the evolution of organo-mineral interactions in acid soils. The formation of organo-mineral associations started with the sorption of proteinaceous compounds and microbial-derived carbohydrates on mineral surfaces which were mainly provided by ferrihydrite. The sequential accumulation of different organic compounds and the large OC loadings point to multiple accretion of OM in distinct zones or layers during the initial evolution of clay fractions.

  13. Human Effects and Soil Surface CO2 fluxes in Tropical Urban Green Areas, Singapore

    NASA Astrophysics Data System (ADS)

    Ng, Bernard; Gandois, Laure; Kai, Fuu Ming; Chua, Amy; Cobb, Alex; Harvey, Charles; Hutyra, Lucy

    2013-04-01

    Urban green spaces are appreciated for their amenity value, with increasing interest in the ecosystem services they could provide (e.g. climate amelioration and increasingly as possible sites for carbon sequestration). In Singapore, turfgrass occupies approximately 20% of the total land area and is readily found on both planned and residual spaces. This project aims at understanding carbon fluxes in tropical urban green areas, including controls of soil environmental factors and the effect of urban management techniques. Given the large pool of potentially labile carbon, management regimes are recognised to have an influence on soil environmental factors (temperature and moisture), this would affect soil respiration and feedbacks to the greenhouse effect. A modified closed dynamic chamber method was employed to measure total soil respiration fluxes. In addition to soil respiration rates, environmental factors such as soil moisture and temperature, and ambient air temperature were monitored for the site in an attempt to evaluate their control on the observed fluxes. Measurements of soil-atmosphere CO2 exchanges are reported for four experimental plots within the Singtel-Kranji Radio Transmission Station (103o43'49E, 1o25'53N), an area dominated by Axonopus compressus. Different treatments such as the removal of turf, and application of clippings were effected as a means to determine the fluxes from the various components (respiration of soil and turf, and decomposition of clippings), and to explore the effects of human intervention on observed effluxes. The soil surface CO2 fluxes observed during the daylight hours ranges from 2.835 + 0.772 umol m-2 s-1 for the bare plot as compared to 6.654 + 1.134 umol m-2 s-1 for the turfed plot; this could be attributed to both autotrophic and heterotrophic respiration. Strong controls of both soil temperature and soil moisture are observed on measured soil fluxes. On the base soils, fluxes were positively correlated to soil temperature and negatively to soil moisture. Above the grass, fluxes are negatively correlated soil temperature and positively to soil moisture. The measured values will be combined to carbon stock evaluation in the different compartments to assess carbon budget for green area under different grass management in Singapore.

  14. Spatial and temporal variations of soil moisture under Rosmarinus officinalis and Quercus coccifera in a burned soil

    NASA Astrophysics Data System (ADS)

    Gimeno-García, E.; Pascual-Aguilar, J. A.; Llovet, J.

    2009-04-01

    When studying surface runoff processes, measurement of the soil moisture content (SMC) at the surface could be used to identify sinks and sources areas of runoff. Surface soil moisture patterns variability have been studied in a burned Mediterranean semi-arid area. Since surface SMC and soil water repellency (SWR) are influenced by fire and vegetation (see previous abstract), and soil water dynamics and vegetation dynamics are functionally related, it could be expected to find some changes during the following months after fire when vegetation starts to recover. The identification of these changes is the main goal of this research. The study area is located at the municipality of Les Useres, 40 km from Castellón city (E Spain), where a wildfire occured in August 2007. We selected a burned SSE facing hillslope, located at 570 m a.s.l., with 12° slope angle, in which it was possible to identify the presence of two unique shrub species: Quercus coccifera L. and Rosmarinus officinalis L., which were distributed in a patchy mosaic. Twenty microsites with burned R. officinalis and eight microsites with burned Q. coccifera were selected in an area of 7 m wide by 14 m long. At the burned microsites, it was possible to distinguish three concentric zones (I, II and III) around the stumps showing differences on their soil surface appearance, which indicate a gradient of fire severity. Those differences were considered for field soil moisture measurements. Five measurements of SMC separated approximately 10 cm per zone at each microsite (n= 420) were carried out after different rainfall events. Volumetric soil moisture was measured by means of the moisture meter HH2 with ThetaProbe sensor type ML2x, 6 cm long. SMC was monitored on three occasions, always one day after the following rainfall events: (1) the first rainfall event after fire, when 11 mm were registered (Oct-07); (2) four months later than fire (Dec-07), after six consecutive raining days with a total rain volume of 172 mm; and (3) ten months after fire (Jun-08), when 50 mm were registered in the previous ten days. The spatial pattern of SMC was determined trough geostatistical analysis using GS+ software, calculating the semivariograms, to analyse the spatial correlation scale, interpolating data to estimate values of SMC at unsampled locations by means of kriging and finally, the results of kriging were displayed as different contour maps. Results showed that spatial pattern of SMC was highly variable, with important differences recorded within short distances. In fact, the range of spatial correlation (a0), which is the distance at that spatial correlation exists, varied between 0.5 to 1.4 m. A0 also varied according to the time from fire, with values of 0.5 m in the first rainfall after fire, 0.9 m four months later and 1.4 m ten months after fire occurs. This result suggests that the extent of the wettest areas increase as the vegetation recover. After the first rainfall, the SMC spatial pattern seems to be related to the soil microsite characteristics, mainly organic matter content, presence of hydrophobicity and soil clay content. Generally, the highest SMC (26-31%) appears at the burned bare soil areas. Four months later, as the same time as Q. coccifera resprouts, and in the R. officinalis microsites an important regrowth of Brachypodium resutum is observed, the spatial pattern of SMC changed according this plant cover distribution. This pattern is more clearly observed ten months after fire, when the highest SMC values were located at Q. coccifera and B. resutum areas (28-33%). At this time, no evidence of germination of R. officinalis (obligate seeder specie) was found. The lowest SMC (19-22%) appeared at the half lower part of the plot, where there was a central strip dominated by bare soil, with scarce presence of resprouter species. These results showed that at detailed working scale, the soil moisture pattern in this burned area was highly heterogeneous and the microsite characteristics (mainly soil properties and vegetation regrowth) seem to control the SMC spatial pattern. The interaction of soil-plant-water is more complex that the few environmental factors analysed here, and future research is needed to consider other site factors, such as microtopography, surface stoniness and outcrops, root density, between others. However, the obtained results reflect the capacity of vegetated patches to act as moisture holding areas ten months after fire occurs.

  15. Active microwave remote sensing research program plan. Recommendations of the Earth Resources Synthetic Aperture Radar Task Force. [application areas: vegetation canopies, surface water, surface morphology, rocks and soils, and man-made structures

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A research program plan developed by the Office of Space and Terrestrial Applications to provide guidelines for a concentrated effort to improve the understanding of the measurement capabilities of active microwave imaging sensors, and to define the role of such sensors in future Earth observations programs is outlined. The focus of the planned activities is on renewable and non-renewable resources. Five general application areas are addressed: (1) vegetation canopies, (2) surface water, (3) surface morphology, (4) rocks and soils, and (5) man-made structures. Research tasks are described which, when accomplished, will clearly establish the measurement capabilities in each area, and provide the theoretical and empirical results needed to specify and justify satellite systems using imaging radar sensors for global observations.

  16. A Global comparison of surface soil characteristics across five cities: A test of the urban ecosystem convergence hypothesis.

    Treesearch

    Richard V. Pouyat; Ian D. Yesilonis; Miklos Dombos; Katalin Szlavecz; Heikki Setala; Sarel Cilliers; Erzsebet Hornung; D. Johan Kotze; Stephanie Yarwood

    2015-01-01

    As part of the Global Urban Soil Ecology and Education Network and to test the urban ecosystem convergence hypothesis, we report on soil pH, organic carbon (OC), total nitrogen (TN), phosphorus (P), and potassium (K) measured in four soil habitat types (turfgrass, ruderal, remnant, and reference) in five metropolitan areas (Baltimore, Budapest,...

  17. Landscape functionality of plant communities in the Impala Platinum mining area, Rustenburg.

    PubMed

    van der Walt, L; Cilliers, S S; Kellner, K; Tongway, D; van Rensburg, L

    2012-12-30

    The tremendous growth of the platinum mining industry in South Africa has affected the natural environment adversely. The waste produced by platinum mineral processing is alkaline, biologically sterile and has a low water-holding capacity. These properties in the environment may constitute dysfunctional areas that will create 'leaky' and dysfunctional landscapes, limiting biological development. Landscape Function Analysis (LFA) is a monitoring procedure that assesses the degradation of landscapes, as brought about by human, animal and natural activities, through rapidly assessing certain soil surface indicators which indicate the biophysical functionality of the system. The "Trigger-Transfer-Reserve-Pulse" (TTRP) conceptual framework forms the foundation for assessing landscape function when using LFA. The two main aspects of this framework are the loss of resources from the system and the utilisation of resources by the system. After a survey of landscape heterogeneity to reflect the spatial organisation of the landscape, soil surface indicators are assessed within different patch types (identifiable units that retains resources that pass through the system) and interpatches (units between patches where vital resources are not retained, but lost) to assess the capacity of patches with various physical properties in regulating the effectiveness of resource control in the landscape. Indices describing landscape organisation are computed by a spreadsheet analysis, as well as soil surface quality indices. When assembled in different combinations, three indices emerge that reflect soil productive potential, namely: the (1) surface stability, (2) infiltration capacity, and (3) the nutrient cycling potential of the landscape. In this study we compared the landscape functionality of natural thornveld areas, rehabilitated opencast mines and rehabilitated slopes of tailings dams in the area leased for mining in the Rustenburg area. Our results show that the rehabilitated areas had a higher total SSA functionality due to higher infiltration and nutrient cycling indices than the natural thornveld landscapes. The length of interpatches and the width of patches greatly influenced the landscape function of the studied areas. The natural thornveld areas had a marginally higher total patch area than the rehabilitated areas. Vegetated patches (grass-, sparse grass-, grassy forb-, and grassy shrub-patches) generally scored the highest functionality indices, whilst bare soil interpatches contributed to the landscape functionality of the various plant communities the least. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Heavy metals, salts and organic residues in old solid urban waste landfills and surface waters in their discharge areas: determinants for restoring their impact.

    PubMed

    Pastor, J; Hernández, A J

    2012-03-01

    This study was designed to determine the state of polluted soils in the main landfills of the Community of Madrid (central Spain), as part of a continuous assessment of the impacts of urban solid waste (USW) landfills that were capped with a layer of soil 20 years ago. Our analysis of this problem has been highly conditioned by the constant re-use of many of the USW landfills, since they have never been the target of any specific restoration plan. Our periodical analysis of cover soils and soils from discharge areas of the landfills indicates soil pollution has worsened over the years. Here, we examined heavy metal, salts, and organic compounds in soil and surface water samples taken from 15 landfills in the Madrid region. Impacts of the landfill soil covers on nematode and plant diversity were also evaluated. These analyses continue to reveal the presence of heavy metals (Zn, Cu, Cr, Ni, Pb, Cd) in soils, and salts (sulphates, chlorides and nitrates) in soils and surface waters. In addition, non-agricultural organic compounds, mainly aromatic and aliphatic hydrocarbons, often appeared in very high concentrations, and high levels of insecticides such as gamma-HCH (lindane) were also detected in soils. Around 50% of the water samples collected showed chemical demand of oxygen (CDO) values in excess of 150 mg/l. Traces of phenolic compounds were detected in some landfills, some of which exhibited high levels of 2-chlorophenol and pentachlorophenol. All these factors are conditioning both the revegetation of the landfill systems and the remediation of their slopes and terrestrial ecosystems arising in their discharge areas. This work updates the current situation and discusses risks for the health of the ecosystems, humans, domestic animals and wildlife living close to these landfills. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Soil surface Hg emission flux in coalfield in Wuda, Inner Mongolia, China.

    PubMed

    Li, Chunhui; Liang, Handong; Liang, Ming; Chen, Yang; Zhou, Yi

    2018-06-01

    Hg emission flux from various land covers, such as forests, wetlands, and urban areas, have been investigated. China has the largest area of coalfield in the world, but data of Hg flux of coalfields, especially, those with coal fires, are seriously limited. In this study, Hg fluxes of a coalfield were measured using the dynamic flux chamber (DFC) method, coupled with a Lumex multifunctional Hg analyzer RA-915+ (Lumex Ltd., Russia). The results show that the Hg flux in Wuda coalfield ranged from 4 to 318 ng m -2  h -1 , and the average value for different areas varied, e.g., coal-fire area 99 and 177 ng m -2  h -1 ; no coal-fire area 19 and 32 ng m -2  h -1 ; and backfilling area 53 ng m -2  h -1 . Hg continued to be emitted from an underground coal seam, even if there were no phenomena, such as vents, cracks, and smog, of coal fire on the soil surface. This phenomenon occurred in all area types, i.e., coal-fire area, no coal-fire area, and backfilling area, which is universal in Wuda coalfield. Considering that many coalfields in northern China are similar to Wuda coalfield, they may be large sources of atmospheric Hg. The correlations of Hg emission flux with influence factors, such as sunlight intensity, soil surface temperature, and atmospheric Hg content, were also investigated for Wuda coalfield. Graphical abstract ᅟ.

  20. Surface Runoff Estimation Using SMOS Observations, Rain-gauge Measurements and Satellite Precipitation Estimations. Comparison with Model Predictions

    NASA Astrophysics Data System (ADS)

    Garcia Leal, Julio A.; Lopez-Baeza, Ernesto; Khodayar, Samiro; Estrela, Teodoro; Fidalgo, Arancha; Gabaldo, Onofre; Kuligowski, Robert; Herrera, Eddy

    Surface runoff is defined as the amount of water that originates from precipitation, does not infiltrates due to soil saturation and therefore circulates over the surface. A good estimation of runoff is useful for the design of draining systems, structures for flood control and soil utilisation. For runoff estimation there exist different methods such as (i) rational method, (ii) isochrone method, (iii) triangular hydrograph, (iv) non-dimensional SCS hydrograph, (v) Temez hydrograph, (vi) kinematic wave model, represented by the dynamics and kinematics equations for a uniforme precipitation regime, and (vii) SCS-CN (Soil Conservation Service Curve Number) model. This work presents a way of estimating precipitation runoff through the SCS-CN model, using SMOS (Soil Moisture and Ocean Salinity) mission soil moisture observations and rain-gauge measurements, as well as satellite precipitation estimations. The area of application is the Jucar River Basin Authority area where one of the objectives is to develop the SCS-CN model in a spatial way. The results were compared to simulations performed with the 7-km COSMO-CLM (COnsortium for Small-scale MOdelling, COSMO model in CLimate Mode) model. The use of SMOS soil moisture as input to the COSMO-CLM model will certainly improve model simulations.

  1. Interaction of gases with lunar materials. [analysis of lunar samples from Apollo 17 flight

    NASA Technical Reports Server (NTRS)

    Holmes, H. F.; Fuller, E. L., Jr.; Gammage, R. B.

    1974-01-01

    The surface chemistry of Apollo 17 lunar fines samples 74220 (the orange soil) and 74241 (the gray control soil) has been studied by measuring the adsorption of nitrogen, argon, and oxygen (all at 77 K) and also water vapor (at 20 or 22 C). In agreement with results for samples from other missions, both samples had low initial specific surface areas, consisted of nonporous particles, and were attacked by water vapor at high relative pressure to give an increased specific surface area and create a pore system which gave rise to a capillary condensation hysteresis loop in the adsorption isotherms. In contrast to previous samples, both of the Apollo 17 soils were partially hydrophobic in their initial interaction with water vapor (both samples were completely hydrophilic after the reaction with water). The results are consistent with formation at high temperatures without subsequent exposure to significant amounts of water.

  2. Recent Approaches to Modeling Transport of Mercury in Surface Water and Groundwater - Case Study in Upper East Fork Poplar Creek, Oak Ridge, TN - 13349

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostick, Kent; Daniel, Anamary; Tachiev, Georgio

    2013-07-01

    In this case study, groundwater/surface water modeling was used to determine efficacy of stabilization in place with hydrologic isolation for remediation of mercury contaminated areas in the Upper East Fork Poplar Creek (UEFPC) Watershed in Oak Ridge, TN. The modeling simulates the potential for mercury in soil to contaminate groundwater above industrial use risk standards and to contribute to surface water contamination. The modeling approach is unique in that it couples watershed hydrology with the total mercury transport and provides a tool for analysis of changes in mercury load related to daily precipitation, evaporation, and runoff from storms. The modelmore » also allows for simulation of colloidal transport of total mercury in surface water. Previous models for the watershed only simulated average yearly conditions and dissolved concentrations that are not sufficient for predicting mercury flux under variable flow conditions that control colloidal transport of mercury in the watershed. The transport of mercury from groundwater to surface water from mercury sources identified from information in the Oak Ridge Environmental Information System was simulated using a watershed scale model calibrated to match observed daily creek flow, total suspended solids and mercury fluxes. Mercury sources at the former Building 81-10 area, where mercury was previously retorted, were modeled using a telescopic refined mesh with boundary conditions extracted from the watershed model. Modeling on a watershed scale indicated that only source excavation for soils/sediment in the vicinity of UEFPC had any effect on mercury flux in surface water. The simulations showed that colloidal transport contributed 85 percent of the total mercury flux leaving the UEFPC watershed under high flow conditions. Simulation of dissolved mercury transport from liquid elemental mercury and adsorbed sources in soil at former Building 81-10 indicated that dissolved concentrations are orders of magnitude below a target industrial groundwater concentration beneath the source and would not influence concentrations in surface water at Station 17. This analysis addressed only shallow concentrations in soil and the shallow groundwater flow path in soil and unconsolidated sediments to UEFPC. Other mercury sources may occur in bedrock and transport though bedrock to UEFPC may contribute to the mercury flux at Station 17. Generally mercury in the source areas adjacent to the stream and in sediment that is eroding can contribute to the flux of mercury in surface water. Because colloidally adsorbed mercury can be transported in surface water, actions that trap colloids and or hydrologically isolate surface water runoff from source areas would reduce the flux of mercury in surface water. Mercury in soil is highly adsorbed and transport in the groundwater system is very limited under porous media conditions. (authors)« less

  3. Synthesis of soil-hydraulic properties and infiltration timescales in wildfire-affected soils

    USGS Publications Warehouse

    Ebel, Brian A.; Moody, John A.

    2017-01-01

    We collected soil-hydraulic property data from the literature for wildfire-affected soils, ash, and unburned soils. These data were used to calculate metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and wetting front potential (Ψf) were significantly different (lower) in burned soils compared with unburned soils, whereas field-saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity during infiltration was greatly reduced in burned soils, causing faster ponding times in response to rainfall. Ash had large values of S and Kfs but moderate values of Ψf, compared with unburned and burned soils, indicating ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant (~100 mm) for unburned soils but more variable in burned soils, suggesting that unburned soils have a balance between gravity and capillarity contributions to infiltration that may depend on soil organic matter, whereas in burned soils the gravity contribution to infiltration is greater. Changes in S and Kfs in burned soils act synergistically to reduce infiltration and accelerate and amplify surface runoff generation. Synthesis of these findings identifies three key areas for future research. First, short timescales of capillary influences on infiltration indicate the need for better measurements of infiltration at times less than 1 min to accurately characterize S in burned soils. Second, using parameter values, such as Ψf, from unburned areas could produce substantial errors in hydrologic modeling when used without adjustment for wildfire effects, causing parameter compensation and resulting underestimation of Kfs. Third, more thorough measurement campaigns that capture soil-structural changes, organic matter impacts, quantitative water repellency trends, and soil-water content along with soil-hydraulic properties could drive the development of better techniques for numerically simulating infiltration in burned areas.

  4. Factors influencing soil-surface bulk density on oak savanna rangeland in the southern Sierra Nevada foothills

    Treesearch

    Dennis M. Dudley; Kenneth W. Tate; Neil K. McDougald; Melvin R. George

    2002-01-01

    The objectives of this study were to compare soil-surface bulk density between rangeland pastures not grazed since 1935, 1975, and 1995 to grazed areas with a 15-year record of light (>1,000 lbs ac-1 RDM), moderate (600-800 lbs ac-1 RDM), and heavy (-1 RDM) grazing by beef cattle; and...

  5. Characterization of magnetically enhanced buried soil layer in arid environment

    NASA Astrophysics Data System (ADS)

    Petrovsky, E.; Grison, H.; Kapicka, A.; Silva, P. F.; Font, E.

    2011-12-01

    Magnetic susceptibility (MS) of soils, reflecting the presence of magnetite/maghemite, can be used in several environmental applications. Magnetic topsoil mapping is often used to outline areas polluted by atmospherically deposited dust. However, in these studies, the magnetically enhanced layer is usually shallow, some 5-6 cm under the surface. In our contribution, we present the case when the magnetic susceptibility is enhanced in deeper soil layers. Investigated soils are mostly sandy soils, from several localities in Portugal, in a zone with arid climate. Sample profiles were collected always in forests or forest stands with pines, cork oaks or eucalyptus trees in two areas: around the city of Sines (on the coast south of Lisbon) and around the city of Abrantes (inland, north-east of Lisbon). Both areas are presumably affected by one major source of pollution - power plant. Surface magnetic susceptibility measurements were performed by Bartington MS2D loop; values vary from 10 to 300 x 10-5 SI units. Vertical distribution of magnetic susceptibility was measured already in situ using the SM400 (ZHInstruments) on profiles about 40cm in length. Mass-specific MS was determined using Bartington MS2B dual frequency meter and Agico MFK1. Nine vertical profiles were selected for detailed analyses including the ARM, IRM and hysteresis measurements. Distinctly enhanced magnetic layers were detected in deeper horizons. This enhancement can be ascribed to several mechanisms. Migration of magnetic particles seems to be probable, as observed in our model experiments with sand columns. In coastal areas, the enhanced layer could be due to tsunami deposits, as described in other areas. Finally, in particular at sites close to power plants, the construction works followed by surface remediation have to be also considered as one of the possible mechanisms.

  6. [Chemical forms and ecological effect of soil Mn in liver cancer's high incidence area in Zhu-jiang River Delta, China].

    PubMed

    Dou, Lei; Zhou, Yong-Zhang; Li, Yong; Ma, Jin; An, Yan-Fei; Du, Hai-Yan; Li, Zhan-Qiang

    2008-06-01

    The samples of surface soil, deep soil, and vegetables were collected from the liver cancer's high- and low incidence areas in Zhujiang River Delta to study the relationships between soil Mn forms and vegetables' Mn enrichment. The results showed that the soil Mn in study area was mainly derived from parent materials, and rarely come from human activities. The average soil Mn content in liver cancer's high incidence area was 577.65 mg x kg(-1), being significantly lower than that of liver cancer's low incidence area (718.04 mg x kg(-1)) and whole country (710 mg x kg(-1)). The Mn forms in high incidence area were mainly of residual Mn and Fe-Mn oxide, and less of water soluble Mn and exchangeable Mn, with the sum of the latter two's distribution coefficients being not higher than 4%. In low incidence area, the distribution pattern of soil Mn forms was similar to that in high incidence area, but the absolute contents of the Mn forms were significantly higher. Soil total Mn and soil pH had significant effects on soil Mn forms. There existed significant positive correlations between soil total Mn and the Mn forms of Fe-Mn bound, humic acid bound, carbonate bound, and residual, and negative correlations between soil pH and soil water soluble and organic bound Mn forms. Among the test five kinds of vegetables, Youmai lettuce and Chinese cabbage in liver cancer' s high incidence area had a significantly lower Mn content than in low incidence area, while the other three had less difference. The Mn enrichment in test vegetables was positively correlated with to the content of soil available Mn (sum of water soluble Mn and exchangeable Mn), but had no correlations with the contents of soil total Mn and other Mn forms.

  7. Observed and simulated hydrologic response for a first-order catchment during extreme rainfall 3 years after wildfire disturbance

    USGS Publications Warehouse

    Ebel, Brian A.; Rengers, Francis K.; Tucker, Gregory E.

    2016-01-01

    Hydrologic response to extreme rainfall in disturbed landscapes is poorly understood because of the paucity of measurements. A unique opportunity presented itself when extreme rainfall in September 2013 fell on a headwater catchment (i.e., <1 ha) in Colorado, USA that had previously been burned by a wildfire in 2010. We compared measurements of soil-hydraulic properties, soil saturation from subsurface sensors, and estimated peak runoff during the extreme rainfall with numerical simulations of runoff generation and subsurface hydrologic response during this event. The simulations were used to explore differences in runoff generation between the wildfire-affected headwater catchment, a simulated unburned case, and for uniform versus spatially variable parameterizations of soil-hydraulic properties that affect infiltration and runoff generation in burned landscapes. Despite 3 years of elapsed time since the 2010 wildfire, observations and simulations pointed to substantial surface runoff generation in the wildfire-affected headwater catchment by the infiltration-excess mechanism while no surface runoff was generated in the unburned case. The surface runoff generation was the result of incomplete recovery of soil-hydraulic properties in the burned area, suggesting recovery takes longer than 3 years. Moreover, spatially variable soil-hydraulic property parameterizations produced longer duration but lower peak-flow infiltration-excess runoff, compared to uniform parameterization, which may have important hillslope sediment export and geomorphologic implications during long duration, extreme rainfall. The majority of the simulated surface runoff in the spatially variable cases came from connected near-channel contributing areas, which was a substantially smaller contributing area than the uniform simulations.

  8. Distribution of 137Cs in surface soil of Fraser's Hill, Pahang, Malaysia

    NASA Astrophysics Data System (ADS)

    Bakar, Ahmad Sanadi Abu; Hamzah, Zaini; Saat, Ahmad

    2017-01-01

    Caesium-137 (137Cs) in an anthropogenic radionuclide originated from the fission of fissile materials. Nuclear weapons testing during the 1960s and the Chernobyl disaster introduced substantial amount of 137Cs into the atmosphere that are then eventually deposited back to earth's surface. Caesium-137 can be used as tracer to study soil movements since it adsorbs to soil particles. This paper aims to describe the distribution of 137Cs in surface soil of Fraser's Hill, Pahang, determine the levels of 137Cs here compared to other areas, and to check correlation of 137Cs levels to physical data. A series of sampling were carried out between February 2014 and August 2015. Soil samples were taken from 31 locations using soil scraper. The samples were then taken to the laboratory to be dried, homogenized, grinded and sieved. The activity concentration of 137Cs in the samples was determined using gamma spectroscopy. The activity concentration was found to be between 0.26 Bq/kg and 5.14 Bq/kg. Although this paper only studies surface soil, 137Cs is expected to be present within the soil body. Further study of 137Cs in the soil body can be used to predictive model for soil erosion.

  9. Examination of Soil Moisture Retrieval Using SIR-C Radar Data and a Distributed Hydrological Model

    NASA Technical Reports Server (NTRS)

    Hsu, A. Y.; ONeill, P. E.; Wood, E. F.; Zion, M.

    1997-01-01

    A major objective of soil moisture-related hydrological-research during NASA's SIR-C/X-SAR mission was to determine and compare soil moisture patterns within humid watersheds using SAR data, ground-based measurements, and hydrologic modeling. Currently available soil moisture-inversion methods using active microwave data are only accurate when applied to bare and slightly vegetated surfaces. Moreover, as the surface dries down, the number of pixels that can provide estimated soil moisture by these radar inversion methods decreases, leading to less accuracy and, confidence in the retrieved soil moisture fields at the watershed scale. The impact of these errors in microwave- derived soil moisture on hydrological modeling of vegetated watersheds has yet to be addressed. In this study a coupled water and energy balance model operating within a topographic framework is used to predict surface soil moisture for both bare and vegetated areas. In the first model run, the hydrological model is initialized using a standard baseflow approach, while in the second model run, soil moisture values derived from SIR-C radar data are used for initialization. The results, which compare favorably with ground measurements, demonstrate the utility of combining radar-derived surface soil moisture information with basin-scale hydrological modeling.

  10. Turning soil survey data into digital soil maps in the Energy Region Eger Research Model Area

    NASA Astrophysics Data System (ADS)

    Pásztor, László; Dobos, Anna; Kürti, Lívia; Takács, Katalin; Laborczi, Annamária

    2015-04-01

    Agria-Innoregion Knowledge Centre of the Eszterházy Károly College has carried out targeted basic researches in the field of renewable energy sources and climate change in the framework of TÁMOP-4.2.2.A-11/1/KONV project. The project has covered certain issues, which require the specific knowledge of the soil cover; for example: (i) investigation of quantitative and qualitative characteristics of natural and landscape resources; (ii) determination of local amount and characteristics of renewable energy sources; (iii) natural/environmental risk analysis by surveying the risk factors. The Energy Region Eger Research Model Area consists of 23 villages and is located in North-Hungary, at the Western part of Bükkalja. Bükkalja is a pediment surface with erosional valleys and dense river network. The diverse morphology of this area results diversity in soil types and soil properties as well. There was large-scale (1:10,000 and 1:25,000 scale) soil mappings in this area in the 1960's and 1970's which provided soil maps, but with reduced spatial coverage and not with fully functional thematics. To achive the recent tasks (like planning suitable/optimal land-use system, estimating biomass production and development of agricultural and ecomonic systems in terms of sustainable regional development) new survey was planned and carried out by the staff of the College. To map the soils in the study area 10 to 22 soil profiles were uncovered per settlement in 2013 and 2014. Field work was carried out according to the FAO Guidelines for Soil Description and WRB soil classification system was used for naming soils. According to the general goal of soil mapping the survey data had to be spatially extended to regionalize the collected thematic local knowledge related to soil cover. Firstly three thematic maps were compiled by digital soil mapping methods: thickness of topsoil, genetic soil type and rate of surface erosion. High resolution digital elevation model, Earth observation imagery, geology and land cover maps were used as spatial ancillary environmental variables related to soil forming processes. Regression kriging (RK) has been used for the spatial inference of quantitative data (thickness of topsoil); classification and regression trees (CART) were applied for the spatial inference of category type information (genetic soil type and rate of surface erosion) with the aid of the available and properly preprocessed auxiliary co-variables. The applied spatial resolution was 25 meters. The deduced digital soil maps hopefully will significantly promote to plan sustainable economic model in the region which can provide protection and regeneration of local natural conditions and potentials for local inhabitants for a long time. Acknowledgement: Our work was supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167) and TÁMOP-4.2.2.A-11/1/KONV project.

  11. Modelling landscape evolution at the flume scale

    NASA Astrophysics Data System (ADS)

    Cheraghi, Mohsen; Rinaldo, Andrea; Sander, Graham C.; Barry, D. Andrew

    2017-04-01

    The ability of a large-scale Landscape Evolution Model (LEM) to simulate the soil surface morphological evolution as observed in a laboratory flume (1-m × 2-m surface area) was investigated. The soil surface was initially smooth, and was subjected to heterogeneous rainfall in an experiment designed to avoid rill formation. Low-cohesive fine sand was placed in the flume while the slope and relief height were 5 % and 20 cm, respectively. Non-uniform rainfall with an average intensity of 85 mm h-1 and a standard deviation of 26 % was applied to the sediment surface for 16 h. We hypothesized that the complex overland water flow can be represented by a drainage discharge network, which was calculated via the micro-morphology and the rainfall distribution. Measurements included high resolution Digital Elevation Models that were captured at intervals during the experiment. The calibrated LEM captured the migration of the main flow path from the low precipitation area into the high precipitation area. Furthermore, both model and experiment showed a steep transition zone in soil elevation that moved upstream during the experiment. We conclude that the LEM is applicable under non-uniform rainfall and in the absence of surface incisions, thereby extending its applicability beyond that shown in previous applications. Keywords: Numerical simulation, Flume experiment, Particle Swarm Optimization, Sediment transport, River network evolution model.

  12. AmeriFlux CA-Qcu Quebec - Eastern Boreal, Black Spruce/Jack Pine Cutover

    DOE Data Explorer

    Margolis, Hank A. [Université Laval

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-Qcu Quebec - Eastern Boreal, Black Spruce/Jack Pine Cutover. Site Description - The ground is gently rolling with a weak slope (<5%). In mesic areas (designated as well to moderately well drained areas, according to the Canadian System of Soil Classification (Agriculture Canada Expert Committee on Soil Survey, 1983)), the soil is a ferro-humic to humic podzol covered by an organic layer having an average depth of 26 cm (Fig. 1). In humid areas, the soil is organic (imperfectly to poorly drained) with an average organic layer of 125 cm. Mesic areas accounted for approximately 75% of the total surface area of the footprint and humid areas accounted for 25%. Full-time continuous measurements eneded in 2011. Intermittent measurements are on-going as resources permit.

  13. Synergistic method for boreal soil moisture and soil freeze retrievals using active and passive microwave instruments

    NASA Astrophysics Data System (ADS)

    Smolander, Tuomo; Lemmetyinen, Juha; Rautiainen, Kimmo; Schwank, Mike; Pulliainen, Jouni

    2017-04-01

    Soil moisture and soil freezing are important for diverse hydrological, biogeochemical, and climatological applications. They affect surface energy balance, surface and subsurface water flow, and exchange rates of carbon with the atmosphere. Soil freezing controls important biogeochemical processes, like photosynthetic activity of plants and microbial activity within soils. Permafrost covers approximately 24% of the land surface in the Northern Hemisphere and seasonal freezing occurs on approximately 51% of the area. The retrieval method presented is based on an inversion technique and applies a semiempirical backscattering model that describes the dependence of radar backscattering of forest as a function of stem volume, soil permittivity, the extinction coefficient of forest canopy, surface roughness, incidence angle, and radar frequency. It gives an estimate of soil permittivity using active microwave measurements. Applying a Bayesian assimilation scheme, it is also possible to use other soil permittivity retrievals to regulate this estimate to combine for example low resolution passive observations with high resolution active observations for a synergistic retrieval. This way the higher variance in the active retrieval can be constricted with the passive retrieval when at the same time the spatial resolution of the product is improved compared to the passive-only retrieval. The retrieved soil permittivity estimate can be used to detect soil freeze/thaw state by considering the soil to be frozen when the estimate is below a threshold value. The permittivity retrieval can also be used to estimate the relative moisture of the soil. The method was tested using SAR (Synthetic Aperture Radar) measurements from ENVISAT ASAR instrument for the years 2010-2012 and from Sentinel-1 satellite for the years 2015-2016 in Sodankylä area in Northern Finland. The synergistic method was tested combining the SAR measurements with a SMOS (Soil Moisture Ocean Salinity) radiometer based retrieval. The results were validated using in situ measurements from automatic soil state observation stations in Sodankylä calibration and validation (CAL-VAL) site, which is a reference site for several EO (Earth Observation) data products.

  14. [Spatial Distribution and Potential Ecological Risk Assessment of Heavy Metals in Soils and Sediments in Shunde Waterway, Southern China].

    PubMed

    Cai, Yi-min; Chen, Wei-ping; Peng, Chi; Wang, Tie-yu; Xiao, Rong-bo

    2016-05-15

    Environmental quality of soils and sediments around water source area can influence the safety of potable water of rivers. In order to study the pollution characteristics, the sources and ecological risks of heavy metals Zn, Cr, Pb, Cu, Ni and Cd in water source area, surface soils around the waterway and sediments in the estuary of main tributaries were collected in Shunde, and ecological risks of heavy metals were assessed by two methods of potential ecological risk assessment. The mean contents of Zn, Cr, Pb, Cu, Ni and Cd in the surface soils were 186.80, 65.88, 54.56, 32.47, 22.65 and 0.86 mg · kg⁻¹ respectively, and they were higher than their soil background values except those of Cu and Ni. The mean concentrations of Zn, Cr, Pb, Cu, Ni and Cd in the sediments were 312.11, 111.41, 97.87, 92.32, 29.89 and 1.72 mg · kg⁻¹ respectively, and they were higher than their soil background values except that of Ni. The results of principal component analysis illustrated that the main source of Cr and Ni in soils was soil parent materials, and Zn, Pb, Cu and Cd in soils mainly came from wastewater discharge of local manufacturing industry. The six heavy metals in sediments mainly originated from industry emissions around the Shunde waterway. The results of potential ecological risk assessment integrating environmental bioavailability of heavy metals showed that Zn, Cu, Pb and Ni had a slight potential ecological risk. Cd had a slight potential ecological risk in surface soils, but a moderate potential ecological risk in surfaces sediments. Because the potential ecological risk assessment integrating environmental bioavailability of heavy metals took the soil properties and heavy metal forms into account, its results of risks were lower than those of Hakanson methods, and it could avoid overestimating the potential risks of heavy metals.

  15. Characterizing Mediterranean Land Surfaces as Component of the Regional Climate System by Remote Sensing

    NASA Technical Reports Server (NTRS)

    Bolle, H.-J.; Koslowsky, D.; Menenti, M.; Nerry, F.; Otterman, Joseph; Starr, D.

    1998-01-01

    Extensive areas in the Mediterranean region are subject to land degradation and desertification. The high variability of the coupling between the surface and the atmosphere affects the regional climate. Relevant surface characteristics, such as spectral reflectance, surface emissivity in the thermal-infrared region, and vegetation indices, serve as "primary" level indicators for the state of the surface. Their spatial, seasonal and interannual variability can be monitored from satellites. Using relationships between these primary data and combining them with prior information about the land surfaces (such as topography, dominant soil type, land use, collateral ground measurements and models), a second layer of information is built up which specifies the land surfaces as a component of the regional climate system. To this category of parameters which are directly involved in the exchange of energy, momentum and mass between the surface and the atmosphere, belong broadband albedo, thermodynamic surface temperature, vegetation types, vegetation cover density, soil top moisture, and soil heat flux. Information about these parameters finally leads to the computation of sensible and latent heat fluxes. The methodology was tested with pilot data sets. Full resolution, properly calibrated and normalized NOAA-AVHRR multi-annual primary data sets are presently compiled for the whole Mediterranean area, to study interannual variability and longer term trends.

  16. Radionuclide transport from soil to air, native vegetation, kangaroo rats and grazing cattle on the Nevada test site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, R.O.; Shinn, J.H.; Essington, E.H.

    Between 1970 and 1986 the Nevada Applied Ecology Group (NAEG), U.S. Department of Energy, conducted environmental radionuclide studies at weapons-testing sites on or adjacent to the Nevada Test Site. In this paper, NAEG studies conducted at two nuclear (fission) sites (NS201, NS219) and two nonnuclear (nonfission) sites (Area 13 (Project 57) and Clean Slate 2) are reviewed, synthesized and compared regarding (1) soil particle-size distribution and physical-chemical characteristics of 239 + 240Pu-bearing radioactive particles, (2) 239 + 240Pu resuspension rates and (3) transuranic and fission-product radionuclide transfers from soil to native vegetation, kangaroo rats and grazing cattle. The data indicatemore » that transuranic radionuclides were transferred more readily on the average from soil to air, the external surfaces of native vegetation and to tissues of kangaroo rats at Area 13 than at NS201 or NS219. The 239 + 240Pu resuspension factor for undisturbed soil at Area 13 was three to four orders-of-magnitude larger than at NS201 and NS219, the geometric mean (GM) vegetation-over-soil 239 + 240Pu concentration ratio was from ten to 100 times larger than at NS201, and the GM GI-over-soil, carcass-over-soil and pelt-over-soil 239 + 240Pu ratios for kangaroo rats were about ten times larger than at NS201. These results are consistent with the finding that Area 13, compared with NS201 or NS219, has a higher percentage of radioactivity associated with smaller soil particles and a larger percentage of resuspendable and respirable soil. However, the resuspension factor increased by a factor of 27 at NS201 when the surface soil was disturbed, and by a factor of 12 at NS219 following a wildfire.« less

  17. Spatial and temporal patterns of pesticide losses in a small Swedish agricultural catchment

    NASA Astrophysics Data System (ADS)

    Sandin, Maria; Piikki, Kristin; Jarvis, Nicholas; Larsbo, Mats; Bishop, Kevin; Kreuger, Jenny

    2017-04-01

    Research at catchment and regional scales shows that losses of pesticides to surface water often originate from a relatively small fraction of the agricultural landscape. These 'hydrologic source areas' represent areas of land that are highly susceptible to fast transport processes, primarily surface runoff or rapid subsurface flows through soil macropores, either to subsurface field drainage systems or as shallow interflow on more strongly sloping land. A good understanding of the nature of transport pathways for pesticides to surface water in agricultural landscapes is essential for cost-effective identification and implementation of mitigation measures. However, the relative importance of surface and subsurface flows for transport of pesticides to surface waters in Sweden remains largely unknown, since very few studies have been performed under Swedish agro-environmental conditions. We conducted a monitoring study in a small sub-surface drained agricultural catchment in one of the main crop production regions in Sweden. Three small sub-catchments were selected for water sampling based on a high-resolution soil map developed from proximal sensing data; one sub-catchment was dominated by clay soils, another by coarse sandy soils while the third comprised a mix of soil types. Samples were collected from the stream, from field drains discharging into the stream and from within-field surface runoff during spring and early summer in three consecutive years. LC-MS/MS analyses of more than 100 compounds, covering the majority of the polar and semi-polar pesticides most frequently used in Swedish agriculture, were performed on all samples using accredited methods. Information on pesticide applications (products, doses and timing) was obtained from annual interviews with the farmers. There were clear and consistent differences in pesticide losses between the three sub-catchments, with the largest losses occurring in the area with clay soils, and negligible losses from the sandy sub-catchment. This suggests that transport of pesticides to the stream is almost entirely occurring along fast flow paths such as macropore flow to drains or surface runoff. Only a very small proportion of fields are directly connected to the stream by overland pathways, which suggests that macropore flow to drains was the dominant loss pathway in the studied area. Data on pesticide use patterns revealed that compounds were detected in drainage and stream water samples that had not been applied for several years. This suggests that despite the predominant role of fast flow paths in determining losses to the stream, long-term storage along the transport pathways also occurs, presumably in subsoil where degradation is slow.

  18. Assessment of soil and water contaminants from selected locations in and near the Idaho Army National Guard Orchard Training Area, Ada County, Idaho, 2001-2003

    USGS Publications Warehouse

    Parliman, D.J.

    2004-01-01

    In 2001, the National Guard Bureau and the U.S. Geological Survey began a project to compile hydrogeologic data and determine presence or absence of soil, surface-water, and ground-water contamination at the Idaho Army National Guard Orchard Training Area in southwestern Idaho. Between June 2002 and April 2003, a total of 114 soil, surface-water, ground-water, precipitation, or dust samples were collected from 68 sample sites (65 different locations) in the Orchard Training Area (OTA) or along the vehicle corridor to the OTA. Soil and water samples were analyzed for concentrations of selected total trace metals, major ions, nutrients, explosive compounds, semivolatile organics, and petroleum hydrocarbons. Water samples also were analyzed for concentrations of selected dissolved trace metals and major ions. Distinguishing naturally occurring large concentrations of trace metals, major ions, and nutrients from contamination related to land and water uses at the OTA was difficult. There were no historical analyses for this area to compare with modern data, and although samples were collected from 65 locations in and near the OTA, sampled areas represented only a small part of the complex OTA land-use areas and soil types. For naturally occurring compounds, several assumptions were made?anomalously large concentrations, when tied to known land uses, may indicate presence of contamination; naturally occurring concentrations cannot be separated from contamination concentrations in mid- and lower ranges of data; and smallest concentrations may represent the lowest naturally occurring range of concentrations and (or) the absence of contaminants related to land and water uses. Presence of explosive, semivolatile organic (SVOC), and petroleum hydrocarbon compounds in samples indicates contamination from land and water uses. In areas along the vehicle corridor and major access roads within the OTA, most trace metal, major ion, and nutrient concentrations in soil samples were not in the upper 10th percentile of data, but concentrations of 25 metals, ions, or nutrients were in the upper 10th percentile in a puddle sample near the heavy equipment maneuvering area, MPRC-H. The largest concentrations of tin, ammonia, and nitrite plus nitrate (as nitrogen) in water from the OTA were detected in a sample from this puddle. Petroleum hydrocarbons were the most common contaminant, detected in all soil and surface-water samples. An SVOC, bis (2-ethylhexyl) phthalate, a plasticizer, was detected at a site along the vehicle corridor. In Maneuver Areas within the OTA, many soil samples contained at least one trace metal, major ion, or nutrient in the upper 10th percentile of data, and the largest concentrations of cobalt, iron, mercury, titanium, sodium, ammonia, or total phosphorus were detected in 6 of 13 soil samples outside the Tadpole Lake area. The largest concentrations of aluminum, arsenic, beryllium, nickel, selenium, silver, strontium, thallium, vanadium, chloride, potassium, sulfate, and nitrite plus nitrate were detected in soil samples from the Tadpole Lake area. Water from Tadpole Lake contained the largest total concentrations of 19 trace metals, 4 major ions, and 1 nutrient. Petroleum hydrocarbons were detected in 5 soil samples and water from Tadpole Lake. SVOCs related to combustion of fuel or plasticizers were detected in 1 soil sample. Explosive compounds were detected in 1 precipitation sample.In the Impact Area within the OTA, most soil samples contained at least one trace metal, major ion, or nutrient in the upper 10th percentile of data, and the largest concentrations of barium, chromium, copper, manganese, lead, or orthophosphate were detected in 6 of the 18 soil samples. Petroleum hydrocarbons were detected in 4 soil samples, SVOCs in 6 samples, and explosive compounds in 4 samples. In the mobilization and training equipment site (MATES) compound adjacent to the OTA, all soil and water samples contained at lea

  19. Spectral mapping of soil organic matter

    NASA Technical Reports Server (NTRS)

    Kristof, S. J.; Baumgardner, M. F.; Johannsen, C. J.

    1974-01-01

    Multispectral remote sensing data were examined for use in the mapping of soil organic matter content. Computer-implemented pattern recognition techniques were used to analyze data collected in May 1969 and May 1970 by an airborne multispectral scanner over a 40-km flightline. Two fields within the flightline were selected for intensive study. Approximately 400 surface soil samples from these fields were obtained for organic matter analysis. The analytical data were used as training sets for computer-implemented analysis of the spectral data. It was found that within the geographical limitations included in this study, multispectral data and automatic data processing techniques could be used very effectively to delineate and map surface soils areas containing different levels of soil organic matter.

  20. a Research on Monitoring Surface Deformation and Relationships with Surface Parameters in Qinghai Tibetan Plateau Permafrost

    NASA Astrophysics Data System (ADS)

    Mi, S. J.; Li, Y. T.; Wang, F.; Li, L.; Ge, Y.; Luo, L.; Zhang, C. L.; Chen, J. B.

    2017-09-01

    The Qinghai Tibetan Plateau permafrost has been the largest permafrost region in middle-low latitude in the world for its high altitude. For the large area permafrost, especially surface deformation brought by it, have serious influence on the road engineering, road maintaining and regional economic development. Consequently, it is essential to monitor the surface deformation and study factors that influent it. We monitored an area named Wudaoliang from July 25, 2015 to June 1, 2016 and 15 Sentinel images were obtained during this time. The area we chose is about 35 kilometers long and 2 kilometers wide, and the national road 109 of China passes through the area. The traditional PS-INSAR (Persistent Scatterer Interferometric Synthetic Aperture Radar) method is not suitable because less historical images in the research area and leading to the number of PS (Persistent Scatterer) points is not enough to obtain accurate deformation results. Therefore, in this paper, we used another method which named QUASI-PSInSAR (QUASI Persistent Scatterer Interferometric Synthetic Aperture Radar) to acquire deformation for it has the advantage to weaken or eliminate the effects of spatial and temporal correlation, which has proved by other scholar. After processing 15 images in the SARproz software, we got the conclusions that, 1) the biggest deformation velocity in the whole area was about 127.9mm/year and about 109.3 mm/year in the road; 2) apparent deformation which have surface deformation more than 30mm/year was about 1.7Km in the road. Meanwhile, soil moisture(SM), Land surface temperature (LST) and surface water(SW), which are primary parameters of the land surface over the same time were reversed by using Sentinel data, Landsat data and ZY-3 data, respectively. After analyzing SM, LST , SW and deformation, we obtained that wet areas which had bigger SM, lower LST and more SW, had greater percentage of severe deformation than arid areas; besides, deformation pattern were different in arid areas and wet areas. During the research time, frost heaving firstly accounted for a large proportion both in the arid and wet areas with the decrease of downward radiation from July to December; after December, thaw settlement came into prominence with the increase downward radiation in the arid areas, while in the wet areas, surface put into diverse situations because of water transformation leading to severe deformation. In summary, soil moisture is an important factor that influences the surface deformation. This relationship between deformation process and soil moisture will be researched more in our further work.

  1. Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands

    NASA Astrophysics Data System (ADS)

    Hendriks, Rob F. A.; van den Akker, Jan J. A.

    2017-04-01

    Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands In the Netherlands, about 8% of the area is covered by peat soils. Most of these soils are in use for dairy farming and, consequently, are drained. Drainage causes decomposition of peat by oxidation and accordingly leads to surface subsidence and greenhouse gas emission. Submerged drains that enhance submerged infiltration of water from ditches during the dry and warm summer half year were, and are still, studied in The Netherlands as a promising tool for reducing peat decomposition by raising groundwater levels. For this purpose, several pilot field studies in the Western part of the Dutch peat area were conducted. Besides the effectiveness of submerged drains in reducing peat decomposition and subsidence by raising groundwater tables, some other relevant or expected effects of these drains were studied. Most important of these are water management and loading of surface water with nutrients nitrogen, phosphorus and sulphate. Because most of these parameters are not easy to assess and all of them are strongly depending on the meteorological conditions during the field studies some of these studies were modelled. The SWAP model was used for evaluating the hydrological results on groundwater table and water discharge and recharge. Effects of submerged drains were assessed by comparing the results of fields with and without drains. An empirical relation between deepest groundwater table and subsidence was used to convert effects on groundwater table to effects on subsidence. With the SWAP-ANIMO model nutrient loading of surface water was modelled on the basis of field results on nutrient concentrations . Calibrated models were used to assess effects in the present situation, as thirty-year averages, under extreme weather conditions and for two extreme climate scenarios of the Royal Netherlands Meteorological Institute. In this study the model results of one of the pilot studies are presented. The case study 'de Krimpenerwaard' is situated in the peat area in the "Green Heart" between the major cities of Amsterdam, The Hague, Rotterdam and Utrecht. Model results show a halving of soil subsidence, a strong increase of water recharge but a lower increase of water discharge, and generally small to moderate effects on nutrient loading , all depending (strongly) on meteorological conditions.

  2. Estimating soil erosion in Natura 2000 areas located on three semi-arid Mediterranean Islands.

    PubMed

    Zaimes, George N; Emmanouloudis, Dimitris; Iakovoglou, Valasia

    2012-03-01

    A major initiative in Europe is the protection of its biodiversity. To accomplish this, specific areas from all countries of the European Union are protected by the establishment of the "Natura 2000" network. One of the major threats to these areas and in general to ecosystems is soil erosion. The objective of this study was to quantitatively estimate surface soil losses for three of these protected areas that are located on semi-arid islands of the Mediterranean. One Natura 2000 area was selected from each of the following islands: Sicily in Italy, Cyprus and Rhodes in Greece. To estimate soil losses, Gerlach troughs were used. These troughs were established on slopes that ranged from 35-40% in four different vegetation types: i) Quercus ilex and Quercus rotundifolia forests, ii) Pinus brutia forests, iii) "Phrygana" shrublands and iv) vineyards. The shrublands had the highest soil losses (270 kg ha(-1) yr(-1)) that were 5-13 times more than the other three vegetation types. Soil losses in these shrublands should be considered a major concern. However, the other vegetation types also had high soil losses (21-50 kg ha(-1) yr(-1)). Conclusively, in order to enhance and conserve the biodiversity of these Natura 2000 areas protective management measures should be taken into consideration to decrease soil losses.

  3. [Relationships between soil and rocky desertification in typical karst mountain area based on redundancy analysis].

    PubMed

    Long, Jian; Liao, Hong-Kai; Li, Juan; Chen, Cai-Yun

    2012-06-01

    Redundancy analysis (RDA) was employed to reveal the relationships between soil and rocky desertification through vegetation investigation and analysis of soil samples collected in typical karst mountain area of southwest Guizhou Province. The results showed that except TP, TK and ACa, all other variables including SOC, TN, MBC, ROC, DOC, available nutrients and basal respiration showed significant downward trends during the rocky desertification process. RDA results showed significant correlations between different types of desertification and soil variables, described as non-degraded > potential desertification > light desertification > moderate desertification > severe desertification. Moreover, RDA showed that using SOC, TN, AN, and BD as soil indicators, 74.4% of the variance information on soil and rocky desertification could be explained. Furthermore, the results of correlation analysis showed that soil variables were significantly affected by surface vegetation. Considering the ecological function of the aboveground vegetation and the soil quality, Zanthoxylum would be a good choice for restoration of local vegetation in karst mountain area.

  4. Processing of polarimetric SAR data for soil moisture estimation over Mahantango watershed area

    NASA Technical Reports Server (NTRS)

    Rao, K. S.; Teng, W. L.; Wang, J. R.

    1992-01-01

    Microwave remote sensing technique has a high potential for measuring soil moisture due to the large contrast in dielectric constant of dry and wet soils. Recent work by Pults et al. demonstrated the use of X/C-band data for quantitative surface soil moisture extraction from Airborne Synthetic Aperture Radar (SAR) system. Similar technique was adopted using polarimetric SAR data acquired with the JPL-AIRSAR system over the Mahantango watershed area in central Pennsylvania during July 1990. The data sets reported include C-, L-, and P-bands of 10, 13, 15, and 17 July 1990.

  5. Enzyme Sorption onto Soil and Biocarbon Amendments Alters Catalytic Capacity and Depends on the Specific Protein and pH

    NASA Astrophysics Data System (ADS)

    Foster, E.; Fogle, E. J.; Cotrufo, M. F.

    2017-12-01

    Enzymes catalyze biogeochemical reactions in soils and play a key role in nutrient cycling in agricultural systems. Often, to increase soil nutrients, agricultural managers add organic amendments and have recently experimented with charcoal-like biocarbon products. These amendments can enhance soil water and nutrient holding capacity through increasing porosity. However, the large surface area of the biocarbon has the potential to sorb nutrients and other organic molecules. Does the biocarbon decrease nutrient cycling through sorption of enzymes? In a laboratory setting, we compared the interaction of two purified enzymes β-glucosidase and acid phosphatase with a sandy clay loam and two biocarbons. We quantified the sorbed enzymes at three different pHs using a Bradford protein assay and then measured the activity of the sorbed enzyme via high-throughput fluorometric analysis. Both sorption and activity depended upon the solid phase, pH, and specific enzyme. Overall the high surface area biocarbon impacted the catalytic capacity of the enzymes more than the loam soil, which may have implications for soil nutrient management with these organic amendments.

  6. Impact of a thermokarst lake on the soil hydrological properties in permafrost regions of the Qinghai-Tibet Plateau, China.

    PubMed

    Gao, Zeyong; Niu, Fujun; Wang, Yibo; Luo, Jing; Lin, Zhanju

    2017-01-01

    The formation of thermokarst lakes can degrade alpine meadow ecosystems through changes in soil water and heat properties, which might have an effect on the regional surface water and groundwater processes. In this study, a typical thermokarst lake was selected in the Qinghai-Tibet Plateau (QTP), and the ecological index (S L ) was used to divide the affected areas into extremely affected, severely affected, medium-affected, lightly affected, and non-affected areas, and soil hydrological properties, including saturated hydraulic conductivity and soil water-holding capacity, were investigated. The results showed that the formation of a thermokarst lake can lead to the degradation of alpine meadows, accompanied by a change in the soil physiochemical and hydrological properties. Specifically, the soil structure turned towards loose soil and the soil nutrients decreased from non-affected areas to severely affected areas, but the soil organic matter and available potassium increased slightly in the extremely affected areas. Soil saturated hydraulic conductivity showed a 1.7- to 4.1-fold increase in the lake-surrounding areas, and the highest value (401.9cmd -1 ) was detected in the severely affected area. Soil water-holding capacity decreased gradually during the transition from the non-affected areas to the severely affected areas, but it increased slightly in the extremely affected areas. The principal component analysis showed that the plant biomass was vital to the changes in soil hydrological properties. Thus, the vegetation might serve as a link between the thermokarst lake and soil hydrological properties. In this particular case, it was concluded that the thermokarst lake adversely affected the regional hydrological services in the alpine ecosystem. These results would be useful for describing appropriate hydraulic parameters with the purpose of modeling soil water transportation more accurately in the Qinghai-Tibet Plateau. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Effects of rock fragments on water dynamics in a fire-affected soil

    NASA Astrophysics Data System (ADS)

    Gordillo-Rivero, Ángel J.; García-Moreno, Jorge; Jordán, Antonio; Zavala, Lorena M.

    2014-05-01

    Rock fragments (RF) are common in the surface of Mediterranean semiarid soils, and have important effects on the soil physical (bulk density and porosity) and hydrological processes (infiltration, evaporation, splash erosion and runoff generation) (Poesen and Lavee, 1994; Rieke-Zapp et al., 2007). In some cases, RFs in Mediterranean areas have been shown to protect bare soils from erosion risk (Cerdà, 2001; Martínez-Zavala, Jordán, 2008; Zavala et al., 2010). Some of these effects are much more relevant when vegetation cover is low or has been reduced after land use change or other causes, as forest fires. Although very few studies exist, the interest on the hydrological effects of RFs in burned areas is increasing recently. After a forest fire, RFs may contribute significantly to soil recovery. In this research we have studied the effect of surface and embedded RFs on soil water control, infiltration and evaporation in calcareous fire-affected soils from a Mediterranean area (SW Spain). For this study, we selected an area with soils derived from limestone under holm oak forest, recently affected by a moderate severity forest fire. The proportion of RF cover showed a significant positive relation with soil water-holding capacity and infiltration rates, although infiltration rate reduced significantly when RF cover increased above a certain threshold. Soil evaporation rate decreased with increasing volumetric content of RFs and became stable with RF contents approximately above 30%. Evaporation also decreased with increasing RF cover. When RF cover increased above 50%, no significant differences were observed between burned and control vegetated plots. REFERENCES Poesen, J., Lavee, H. 1994. Rock fragments in top soils: significance and processes. Catena Supplement 23, 1-28. Cerdà, A. 2001. Effect of rock fragment cover on soil infiltration, interrill runoff and erosion. European Journal of Soil Science 52, 59-68. DOI: 10.1046/j.1365-2389.2001.00354.x. Rieke-Zapp, D., Poesen, J., Nearing, M.A. 2007. Effects of rock fragments incorporated in the soil matrix on concentrated flow hydraulics and erosion. Earth Surface Processes and Landforms 32, 1063-1076. Martínez-Zavala, L., Jordán, A., 2008. Effect of rock fragment cover on interrill soil erosion from bare soils in Western Andalusia, Spain. Soil Use and Management 24, 108, 117. DOI: 10.1111/j.1475-2743.2007.00139.x. Zavala, L.M., Jordán, A., Bellinfante, N., Gil, J. 2010. Relationships between rock fragment cover and soil hydrological response in a Mediterranean environment, Soil Science and Plant Nutrition 56, 95-104. DOI: 10.1111/j.1747-0765.2009.00429.x.

  8. [Spatial distribution and ecological significance of heavy metals in soils from Chatian mercury mining deposit, western Hunan province].

    PubMed

    Sun, Hong-Fei; Li, Yong-Hu; Ji, Yan-Fang; Yang, Lin-Sheng; Wang, Wu-Yi

    2009-04-15

    Ores, waste tailings and slag, together with three typical soil profiles (natural soil profiles far from mine entrance and near mine entrance, soil profile under slag) in Chatian mercury mining deposit (CMD), western Hunan province were sampled and their concentrations of mercury (Hg), arsenic (As), lead (Pb), cadmium (Cd), zinc (Zn) were determined by HG-ICP-AES and ICP-MS. Enrichment factor and correlation analysis were taken to investigate the origins, distribution and migration of Hg, as well as other heavy metals in the CMD. The results show that Hg is enriched in the bottom of the soil profile far from mine entrance but accumulated in the surface of soil profiles near mine entrance and under slag. The soil profiles near mine entrance and under slag are both contaminated by Hg, while the latter is contaminated more heavily. In the soil profile under slag, Hg concentration in the surface soil, Hg average concentration in the total profile, and the leaching depth of soil Hg are 640 microg x g(-1), (76.74 +/- 171.71) microg x g(-1), and more than 100 cm, respectively; while 6.5 microg x g(-1), (2.74 +/- 1.90) microg x g(-1), and 40 cm, respectively, are found in the soil profile near mine entrance. Soil in the mercury mine area is also polluted by Cd, As, Pb, Zn besides metallogenic element Hg, among which Cd pollution is relatively heavier than others. The mobility of the studied heavy metals in soil follows the order as Hg > Cd > As > Zn approximately equal to Pb. The leaching depth of the heavy metals is influenced by total concentration in the surface soil and soil physico-chemical parameters. The origins, distribution and migration of heavy metals in soil profile in the mining area are related to primary geological environment, and strongly influenced by human mining activities.

  9. Nutrients in ground water and surface water of the United States; an analysis of data through 1992

    USGS Publications Warehouse

    Mueller, D.K.; Hamilton, P.A.; Helsel, D.R.; Hitt, K.J.; Ruddy, B.C.

    1995-01-01

    Historical data on nutrient (nitrogen and phosphorus species) concentrations in ground-and surface-water samples were compiled from 20 study units of the National Water-Quality Assessment (NAWQA) Program and 5 supplemental study areas. The resultant national retrospective data sets contained analyses of about 12,000 Found-water and more than 22,000 surface-water samples. These data were interpreted on regional and national scales by relating the distributions of nutrient concentrations to ancillary data, such as land use, soil characteristics, and hydrogeology, provided by local study-unit personnel. The information provided in this report on environmental factors that affect nutrient concentrations in ground and surface water can be used to identify areas of the Nation where the vulnerability to nutrient contamination is greatest. Nitrate was the nutrient of greatest concern in the historical ground-water data. It is the only nutrient that is regulated by a national drinking-water standard. Nitrate concentrations were significantly different in ground water affected by various land uses. Concentrations in about 16 percent of the samples collected in agricultural areas exceeded the drinking-water standard. However, the standard was exceeded in only about 1 percent of samples collected from public-supply wells. A variety of ancillary factors had significant relations to nitrate concentrations in ground water beneath agricultural areas. Concentrations generally were highest within 100 feet of the land surface. They were also higher in areas where soil and geologic characteristics promoted rapid movement of water to the aquifer. Elevated concentrations commonly occurred in areas underlain by permeable materials, such as carbonate bedrock or unconsolidated sand and gravel, and where soils are generally well drained. In areas where water movement is impeded, denitrification might lead to low concentrations of nitrate in the ground water. Low concentrations were also related to interspersion of pasture and woodland with cropland in agricultural areas. Elevated nitrate concentrations in areas of more homogeneous cropland probably were a result of intensive nitrogen fertilizer application on large tracts of land. Certain regions of the United States seemed more vulnerable to nitrate contamination of ground water in agricultural areas. Regions of greater vulnerability included parts of the Northeast, Midwest, and West Coast. The well-drained soils, typical in these regions, have little capacity to hold water and nutrients; therefore, these soils receive some of the largest applications of fertilizer and irrigation in the Nation. The agricultural land is intensively cultivated for row crops, with little interspersion of pasture and woodland. Nutrient concentrations in surface water also were generally related to land use. Nitrate concentrations were highest in samples from sites downstream from agricultural or urban areas. However, concentrations were not as high as in ground water and rarely exceeded the drinking-water standard. Elevated concentrations of nitrate in surface water of the Northeastern United States might be related to large amounts of atmospheric deposition (acid rain). High concentrations in parts of the Midwest might be related to tile drainage of agricultural fields. Ammonia and phosphorus concentrations were highest downstream from urban areas. These concentrations generally were high enough to warrant concerns about toxicity to fish and accelerated eutrophication. Recent improvements in wastewater treatment have decreased ammonia concentrations downstream from some urban areas, but the result has been an increase in nitrate concentrations. Information on environmental factors that affect water quality is useful to identify drainage basins throughout the Nation with the greatest vulnerability for nutrient contamination and to delineate areas where ground-water or surface-water contamination is most likely to oc

  10. Assessment and distribution of antimony in soils around three coal mines, Anhui, China

    USGS Publications Warehouse

    Qi, C.; Liu, Gaisheng; Kang, Y.; Lam, P.K.S.; Chou, C.

    2011-01-01

    Thirty-three soil samples were collected from the Luling, Liuer, and Zhangji coal mines in the Huaibei and Huainan areas of Anhui Province, China. The samples were analyzed for antimony (Sb) by inductively coupled plasmaoptical emission spectrometry (ICP-OES) method. The average Sb content in the 33 samples was 4 mg kg-1, which is lower than in coals from this region (6.2 mg kg-1). More than 75% of the soils sampled showed a significant degree of Sb pollution (enrichment factors [EFs] 5-20). The soils collected near the gob pile and coal preparation plant were higher in Sb content than those collected from residential areas near the mines. The gob pile and tailings from the preparation plant were high in mineral matter content and high in Sb. They are the sources of Sb pollution in surface soils in the vicinity of coal mines. The spatial dispersion of Sb in surface soil in the mine region shows that Sb pollution could reach out as far as 350 m into the local environment conditions. Crops in rice paddies may adsorb some Sb and reduce the Sb content in soils from paddyfields. Vertical distribution of Sb in two soil profiles indicates that Sb is normally relatively immobile in soils. ?? 2011 Air & Waste Management Association.

  11. Spatial prediction of near surface soil water retention functions using hydrogeophysics

    NASA Astrophysics Data System (ADS)

    Gibson, J. P.; Franz, T. E.

    2017-12-01

    The hydrological community often turns to widely available spatial datasets such as SSURGO to characterize the spatial variability of soil across a landscape of interest. This has served as a reasonable first approximation when lacking localized soil data. However, previous work has shown that information loss within land surface models primarily stems from parameterization. Localized soil sampling is both expensive and time intense, and thus a need exists in connecting spatial datasets with ground observations. Given that hydrogeophysics is data-dense, rapid, and relatively easy to adopt, it is a promising technique to help dovetail localized soil sampling with larger spatial datasets. In this work, we utilize 2 geophysical techniques; cosmic ray neutron probe and electromagnetic induction, to identify temporally stable soil moisture patterns. This is achieved by measuring numerous times over a range of wet to dry field conditions in order to apply an empirical orthogonal function. We then present measured water retention functions of shallow cores extracted within each temporally stable zone. Lastly, we use soil moisture patterns as a covariate to predict soil hydraulic properties in areas without measurement and validate using a leave-one-out cross validation analysis. Using these approaches to better constrain soil hydraulic property variability, we speculate that further research can better estimate hydrologic fluxes in areas of interest.

  12. Mitigation of water repellency in burned soils applying hydrophillic polymers

    NASA Astrophysics Data System (ADS)

    Neris, Jonay; de la Torre, Sara; Vidal-Vazquez, Eva; Lado, Marcos

    2017-04-01

    In this study, the effect of fire on water repellency was analyzed in soils from different parent materials, as well as the suitability of anionic polyacrylamide (PAM) to reduce water repellency in these soils. Samples were collected in four different sites where wildfires took place: two in the Canary Islands, with soils developed on volcanic materials, and two in Galicia (NW Spain), with soils developed on plutonic rocks. In Galicia, two soil samples were collected in each site, one in the burnt area and one in an adjacent unburnt area. In the Canary Islands, four samples were collected from each site, three inside the burnt area where the soils were affected by different fire intensities, and one in an unburnt adjacent area. Samples were air-dried and sieved by a 2-mm mesh sieve. Water repellency was measured using the Water Drop Penetration Time test. An amount of 10 g of soil was placed in a tray. Five drops of deionized water were place on the soil surface with a pipette, and the time for each drop to fully penetrate into the soil was recorded. PAM solution was applied to the burnt soils simulating a field application rate of 1gm-2. The polymer used was Superfloc A-110 (Kemira Water Solutions BV, Holland) with 1x107 Da molecular weigth and 15% hydrolysis. PAM was sprayed on the soil surface as solution with a concentration 0.2 g/L. After the application, the samples were dried and the WDPT test was performed. Three replicates for each treatment and soil were used, and the treatments included: dry soil, dry soil after a wetting treatment, dry PAM-treated soil. The results showed that water repellency was modified by fire differently in the various soils. In hydrophilic soils and soils with low water repellency, water repellency was increased after the action of fire. In soils with noticeable initial water repellency, this was reduced or eliminated after the fire. Wetting repellent soils caused a decrease in water repellency most probably because of the spatial redistribution of hydrophobic organic compounds that caused water repellency. The addition of PAM further reduced in all of the cases. The application of PAM could be an effective method for mitigation of water repellency in burnt soils.

  13. Health assessment for Shaw Avenue Dump Site, Charles City, Iowa, Region 7 (amended). CERCLIS No. IAD980630560. Preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-12-07

    The Shaw Avenue Dump Site is listed by the U.S. Environmental Protection Agency (USEPA) on the National Priorities List (NPL). The 8-acre city dump site, consisting of three waste disposal areas, is located in the southeast edge of Charles City approximately 500 feet east of the Cedar River. The three disposal areas are no longer in use and have been covered with soil and are vegetated. Arsenic is the contaminant of concern at the Shaw Avenue Dump Site. On-site soil samples collected in 1981 contained concentrations of arsenic that ranged from 4-820 mg/kg. On-site groundwater, surface water, and air analysesmore » were not conducted in previous investigations. From the available information, this site is considered to be of public health concern because of the potential risk to human health caused by possible exposure to hazardous substances via ingestion of groundwater, soil, and surface water; inhalation of fugitive dust; and dermal contact with soil, surface water, and groundwater.« less

  14. Updated global soil map for the Weather Research and Forecasting model and soil moisture initialization for the Noah land surface model

    NASA Astrophysics Data System (ADS)

    DY, C. Y.; Fung, J. C. H.

    2016-08-01

    A meteorological model requires accurate initial conditions and boundary conditions to obtain realistic numerical weather predictions. The land surface controls the surface heat and moisture exchanges, which can be determined by the physical properties of the soil and soil state variables, subsequently exerting an effect on the boundary layer meteorology. The initial and boundary conditions of soil moisture are currently obtained via National Centers for Environmental Prediction FNL (Final) Operational Global Analysis data, which are collected operationally in 1° by 1° resolutions every 6 h. Another input to the model is the soil map generated by the Food and Agriculture Organization of the United Nations - United Nations Educational, Scientific and Cultural Organization (FAO-UNESCO) soil database, which combines several soil surveys from around the world. Both soil moisture from the FNL analysis data and the default soil map lack accuracy and feature coarse resolutions, particularly for certain areas of China. In this study, we update the global soil map with data from Beijing Normal University in 1 km by 1 km grids and propose an alternative method of soil moisture initialization. Simulations of the Weather Research and Forecasting model show that spinning-up the soil moisture improves near-surface temperature and relative humidity prediction using different types of soil moisture initialization. Explanations of that improvement and improvement of the planetary boundary layer height in performing process analysis are provided.

  15. Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation.

    PubMed

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2016-01-01

    The persistence of many hydrophobic pesticides has been reported by various workers in various soil environments and its bioremediation is a major concern due to less bioavailability. In the present study, the pesticide residues in the surface and subsurface soil in an area of intense agricultural activity in Pakkam Village of Thiruvallur District, Tamilnadu, India, and its bioremediation using a novel bacterial consortium was investigated. Surface (0-15 cm) and subsurface soils (15-30 cm and 30-40 cm) were sampled, and pesticides in different layers of the soil were analyzed. Alpha endosulfan and beta endosulfan concentrations ranged from 1.42 to 3.4 mg/g and 1.28-3.1 mg/g in the surface soil, 0.6-1.4 mg/g and 0.3-0.6 mg/g in the subsurface soil (15-30 cm), and 0.9-1.5 mg/g and 0.34-1.3 mg/g in the subsurface soil (30-40 cm) respectively. Residues of other persistent pesticides were also detected in minor concentrations. These soil layers were subjected to bioremediation using a novel bacterial consortium under a simulated soil profile condition in a soil reactor. The complete removal of alpha and beta endosulfan was observed over 25 days. Residues of endosulfate were also detected during bioremediation, which was subsequently degraded on the 30th day. This study revealed the existence of endosulfan in the surface and subsurface soils and also proved that the removal of such a ubiquitous pesticide in the surface and subsurface environment can be achieved in the field by bioaugumenting a biosurfactant-producing bacterial consortium that degrades pesticides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Behavior of 131I and 137Cs in environments released from the Fukushima nuclear disaster

    NASA Astrophysics Data System (ADS)

    Ohta, T.; Mahara, Y.; Kubota, T.; Igarashi, T.

    2011-12-01

    The devastating tsunami that caused by the great earthquake (M = 9.0) off the coast of northeastern Honshu on 11 March 2011 destroyed large coastal areas of Tohoku and north Kanto, Japan. Radionuclides, including 131I, 134Cs, and 137Cs, were released into the atmosphere from the Fukushima Daiichi plants. Concentration of levels of 131I, 134Cs, and 137Cs in Ibaraki Prefecture, Japan, released from the Fukushima Daiichi plant were investigated in the soil and precipitation. The concentrations of 131I and 137Cs in the soil from the surface to 1 cm depth in Ibaraki Prefecture were 9360-13,400 Bq/kg and 720-3250 Bq/kg, respectively. The concentration of 137Cs at this soil observation site originating from the Fukushima plant was 8.4 to 21 times that found locally after the Nagasaki atomic bomb explosion. Most of the 134Cs and 137Cs from rainwater were trapped by the surface soil and sand to a depth of 1 cm, whereas only about 30% of the 131I was collected by the surface soil, suggesting that 131I would move deeper than 137Cs and 134Cs. The 131I in the rainwater was in the anion exchangeable form, and all of it could be collected by anion exchangeable mechanisms, whereas 30% of the 131I that had passed through the soil could not be trapped by the anion exchange resin, suggesting that the chemical form of this 30% was in a changeable, organic-bound form. The 131I, 134Cs, and 137Cs that were absorbed on soil were difficult to be dissolved into water. As the half-life of 131I is short and 137Cs is strongly adsorbed on the surface soil and sand, these radionuclides would be unlikely to reach the groundwater before completely decaying; contamination of groundwater with 131I and 137Cs supplied from rainwater to the surface soil is therefore exceedingly unlikely. As the 137Cs is likely to migrate only 0.6 cm in 10 years, people living in the Fukushima and Kanto areas will be exposed to radiation from 137Cs in the surface soil and sand. For protection, surface soils and sands with high levels of radiation need to be replaced with uncontaminated soils below a depth of about 30 cm. If this exchange operation will be done, even though the 137Cs will be placed deeper, its slow migration rate will ensure that it never reaches the groundwater.

  17. Phytoremediation of Trichloroethylene and Perchloroethylene at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brigmon, R.L.

    Bioremediation of chlorinated solvents, both natural and accelerated, is exemplified by phytoremediation and biodegradation by rhizosphere microorganisms. Phytoremediation is the use of vegetation for the treatment of contaminated soils, sediments, and water. The potential for phytoremediation of chlorinated solvents has been demonstrated at the Savannah River Site (SRS) Miscellaneous Chemical Basin, Southern Sector of A/M Area and TNX/D-Area. Recent characterization work at the SRS has delineated widespread plumes (1-2 miles) of low concentration (40 ppb -10-ppm range) trichloroethylene (TCE) and perchloroethylene (PCE) contaminated groundwater. Phytoremediation deployments are underway for TCE and PCE phytoremediation in select SRS areas. Phytoremediation appears tomore » be an excellent technology to intercept and control plume migration. The ongoing Southern Sector treatability study is part of a multi-year field study of SRS seepline-soil systems maintained under saturated conditions. The primary focus is on determining how trees, seepline groundcover, soil microbial communities, and geochemical and surface-volatilization processes affect TCE and PCE in contaminated groundwater that flows through surface seepline areas. Therefore, FY00 represented an initial acclimation phase for soil and plant systems and will facilitate examination of seepline phyto- and bioactivity in subsequent growth season in FY01.« less

  18. Sulfates on Mars: TES Observations and Thermal Inertia Data

    NASA Astrophysics Data System (ADS)

    Cooper, C. D.; Mustard, J. F.

    2001-05-01

    The high resolution thermal emission spectra returned by the TES spectrometer on the MGS spacecraft have allowed the mapping of a variety of minerals and rock types by different sets of researchers. Recently, we have used a linear deconvolution approach to compare sulfate-palagonite soil mixtures created in the laboratory with Martian surface spectra. This approach showed that a number of areas on Mars have spectral properties that match those of sulfate-cemented soils (but neither loose powder mixtures of sulfates and soils nor sand-sized grains of disaggregated crusted soils). These features do not appear to be caused by atmospheric or instrumental effects and are thus believed to be related to surface composition and texture. The distribution and physical state of sulfate are important pieces of information for interpreting surface processes on Mars. A number of different mechanisms could have deposited sulfate in surface layers. Some of these include evaporation of standing bodies of water, aerosol deposition of volcanic gases, hydrothermal alteration from groundwater, and in situ interaction between the atmosphere and soil. The areas on Mars with cemented sulfate signatures are spread across a wide range of elevations and are generally large in spatial scale. Some of the areas are associated with volcanic regions, but many are in dark red plains that have previously been interpreted as duricrust deposits. Our current work compares the distribution of sulfate-cemented soils as mapped by the spectral deconvolution approach with thermal inertia maps produced from both Viking and MGS-TES. Duricrust regions, interpreted from intermediate thermal inertia values, are large regions thought to be sulfate-cemented soils similar to coherent, sulfate-rich materials seen at the Viking lander sites. Our observations of apparent regions of cemented sulfate are also large in spatial extent. This scale information is important for evaluating formation mechanisms for the sulfate material, although we currently lack the data to analyze sulfates on the outcrop scale. Analyzing our sulfate maps from spectral deconvolution together with thermal inertia data gives more information on the distribution of possible duricrusts, which provides insight into possible surface processes on Mars.

  19. Transfer of Cadmium from Soil to Vegetable in the Pearl River Delta area, South China

    PubMed Central

    Zhang, Huihua; Chen, Junjian; Zhu, Li; Yang, Guoyi; Li, Dingqiang

    2014-01-01

    The purpose of this study was to investigate the regional Cadmium (Cd) concentration levels in soils and in leaf vegetables across the Pearl River Delta (PRD) area; and reveal the transfer characteristics of Cadmium (Cd) from soils to leaf vegetable species on a regional scale. 170 paired vegetables and corresponding surface soil samples in the study area were collected for calculating the transfer factors of Cadmium (Cd) from soils to vegetables. This investigation revealed that in the study area Cd concentration in soils was lower (mean value 0.158 mg kg−1) compared with other countries or regions. The Cd-contaminated areas are mainly located in west areas of the Pearl River Delta. Cd concentrations in all vegetables were lower than the national standard of Safe vegetables (0.2 mg kg−1). 88% of vegetable samples met the standard of No-Polluted vegetables (0.05 mg kg−1). The Cd concentration in vegetables was mainly influenced by the interactions of total Cd concentration in soils, soil pH and vegetable species. The fit lines of soil-to-plant transfer factors and total Cd concentration in soils for various vegetable species were best described by the exponential equation (), and these fit lines can be divided into two parts, including the sharply decrease part with a large error range, and the slowly decrease part with a low error range, according to the gradual increasing of total Cd concentrations in soils. PMID:25247431

  20. Transfer of cadmium from soil to vegetable in the Pearl River Delta area, South China.

    PubMed

    Zhang, Huihua; Chen, Junjian; Zhu, Li; Yang, Guoyi; Li, Dingqiang

    2014-01-01

    The purpose of this study was to investigate the regional Cadmium (Cd) concentration levels in soils and in leaf vegetables across the Pearl River Delta (PRD) area; and reveal the transfer characteristics of Cadmium (Cd) from soils to leaf vegetable species on a regional scale. 170 paired vegetables and corresponding surface soil samples in the study area were collected for calculating the transfer factors of Cadmium (Cd) from soils to vegetables. This investigation revealed that in the study area Cd concentration in soils was lower (mean value 0.158 mg kg(-1)) compared with other countries or regions. The Cd-contaminated areas are mainly located in west areas of the Pearl River Delta. Cd concentrations in all vegetables were lower than the national standard of Safe vegetables (0.2 mg kg(-1)). 88% of vegetable samples met the standard of No-Polluted vegetables (0.05 mg kg(-1)). The Cd concentration in vegetables was mainly influenced by the interactions of total Cd concentration in soils, soil pH and vegetable species. The fit lines of soil-to-plant transfer factors and total Cd concentration in soils for various vegetable species were best described by the exponential equation (y = ax(b)), and these fit lines can be divided into two parts, including the sharply decrease part with a large error range, and the slowly decrease part with a low error range, according to the gradual increasing of total Cd concentrations in soils.

  1. [Variation of soil organic carbon under different vegetation types in Karst Mountain areas of Guizhou Province, southwest China].

    PubMed

    Liao, Hong-kai; Long, Jian

    2011-09-01

    This paper studied the variation characteristics of soil organic carbon (SOC) and different particle sizes soil particulate organic carbon (POC) in normal soil and in micro-habitats under different vegetation types in typical Karst mountain areas of southwest Guizhou. Under different vegetation types, the SOC content in normal soil and in micro-habitats was all in the order of bare land < grass < shrub < forest, with the variation range being 7.18-43.42 g x kg(-1) in normal soil and being 6.62-46.47 g x kg(-1) and 9.01-52.07 g x kg(-1) in earth surface and stone pit, respectively. The POC/MOC (mineral-associated organic carbon) ratio under different vegetation types was in the order of bare land < grass < forest < shrub. Under the same vegetation types, the POC/MOC in stone pit was the highest, as compared to that in normal soil and in earth surface. In the process of bare land-grass-shrub-forest, the contents of different particle sizes soil POC increased, while the SOC mainly existed in the forms of sand- and silt organic carbon, indicating that in Karst region, soil carbon sequestration and SOC stability were weak, soil was easily subjected to outside interference and led to organic carbon running off, and thus, soil quality had the risk of decline or degradation.

  2. Mapping Surface Heat Fluxes by Assimilating SMAP Soil Moisture and GOES Land Surface Temperature Data

    NASA Astrophysics Data System (ADS)

    Lu, Yang; Steele-Dunne, Susan C.; Farhadi, Leila; van de Giesen, Nick

    2017-12-01

    Surface heat fluxes play a crucial role in the surface energy and water balance. In situ measurements are costly and difficult, and large-scale flux mapping is hindered by surface heterogeneity. Previous studies have demonstrated that surface heat fluxes can be estimated by assimilating land surface temperature (LST) and soil moisture to determine two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). Here a methodology is proposed to estimate surface heat fluxes by assimilating Soil Moisture Active Passive (SMAP) soil moisture data and Geostationary Operational Environmental Satellite (GOES) LST data into a dual-source (DS) model using a hybrid particle assimilation strategy. SMAP soil moisture data are assimilated using a particle filter (PF), and GOES LST data are assimilated using an adaptive particle batch smoother (APBS) to account for the large gap in the spatial and temporal resolution. The methodology is implemented in an area in the U.S. Southern Great Plains. Assessment against in situ observations suggests that soil moisture and LST estimates are in better agreement with observations after assimilation. The RMSD for 30 min (daytime) flux estimates is reduced by 6.3% (8.7%) and 31.6% (37%) for H and LE on average. Comparison against a LST-only and a soil moisture-only assimilation case suggests that despite the coarse resolution, assimilating SMAP soil moisture data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the uncertainties in the model estimates are large.

  3. [Effects of tree species diversity on fine-root biomass and morphological characteristics in subtropical Castanopsis carlesii forests].

    PubMed

    Wang, Wei-Wei; Huang, Jin-Xue; Chen, Feng; Xiong, De-Cheng; Lu, Zheng-Li; Huang, Chao-Chao; Yang, Zhi-Jie; Chen, Guang-Shui

    2014-02-01

    Fine roots in the Castanopsis carlesii plantation forest (MZ), the secondary forest of C. carlesii through natural regeneration with anthropogenic promotion (AR), and the secondary forest of C. carlesii through natural regeneration (NR) in Sanming City, Fujian Province, were estimated by soil core method to determine the influence of tree species diversity on biomass, vertical distribution and morphological characteristics of fine roots. The results showed that fine root biomass for the 0-80 cm soil layer in the MZ, AR and NR were (182.46 +/- 10.81), (242.73 +/- 17.85) and (353.11 +/- 16.46) g x m(-2), respectively, showing an increased tendency with increasing tree species diversity. In the three forests, fine root biomass was significantly influenced by soil depth, and fine roots at the 0-10 cm soil layer accounted for more than 35% of the total fine root biomass. However, the interaction of stand type and soil depth on fine-root distribution was not significant, indicating no influence of tree species diversity on spatial niche segregation in fine roots. Root surface area density and root length density were the highest in NR and lowest in the MZ. Specific root length was in the order of AR > MZ > NR, while specific root surface area was in the order of NR > MZ > AR. There was no significant interaction of stand type and soil depth on specific root length and specific root surface area. Fine root morphological plasticity at the stand level had no significant response to tree species diversity.

  4. Soil moisture content estimation using ground-penetrating radar reflection data

    NASA Astrophysics Data System (ADS)

    Lunt, I. A.; Hubbard, S. S.; Rubin, Y.

    2005-06-01

    Ground-penetrating radar (GPR) reflection travel time data were used to estimate changes in soil water content under a range of soil saturation conditions throughout the growing season at a California winery. Data were collected during three data acquisition campaigns over an 80 by 180 m area using 100 MHz surface GPR antennas. GPR reflections were associated with a thin, low permeability clay layer located 0.8-1.3 m below the ground surface that was identified from borehole information and mapped across the study area. Field infiltration tests and neutron probe logs suggest that the thin clay layer inhibited vertical water flow, and was coincident with high volumetric water content (VWC) values. The GPR reflection two-way travel time and the depth of the reflector at the borehole locations were used to calculate an average dielectric constant for soils above the reflector. A site-specific relationship between the dielectric constant and VWC was then used to estimate the depth-averaged VWC of the soils above the reflector. Compared to average VWC measurements from calibrated neutron probe logs over the same depth interval, the average VWC estimates obtained from GPR reflections had an RMS error of 0.018 m 3 m -3. These results suggested that the two-way travel time to a GPR reflection associated with a geological surface could be used under natural conditions to obtain estimates of average water content when borehole control is available and the reflection strength is sufficient. The GPR reflection method therefore, has potential for monitoring soil water content over large areas and under variable hydrological conditions.

  5. Why is SMOS Drier than the South Fork In-situ Soil Moisture Network?

    NASA Astrophysics Data System (ADS)

    Walker, V. A.; Hornbuckle, B. K.; Cosh, M. H.

    2014-12-01

    Global maps of near-surface soil moisture are currently being produced by the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) satellite mission at 40 km. Within the next few months NASA's Soil Moisture Active Passive (SMAP) satellite mission will begin producing observations of near-surface soil moisture at 10 km. Near-surface soil moisture is the water content of the first 3 to 5 cm of the soil. Observations of near-surface soil moisture are expected to improve weather and climate forecasts. These satellite observations must be validated. We define validation as determining the space/time statistical characteristics of the uncertainty. A standard that has been used for satellite validation is in-situ measurements of near-surface soil moisture made with a network of sensors spanning the extent of a satellite footprint. Such a network of sensors has been established in the South Fork of the Iowa River in Central Iowa by the USDA ARS. Our analysis of data in 2013 indicates that SMOS has a dry bias: SMOS near-surface soil moisture is between 0.05 to 0.10 m^3m^{-3} lower than what is observed by the South Fork network. A dry bias in SMOS observations has also been observed in other regions of North America. There are many possible explanations for this difference: underestimation of vegetation, or soil surface roughness; undetected radio frequency interference (RFI); a retrieval model that is not appropriate for agricultural areas; or the use of an incorrect surface temperature in the retrieval process. We will begin our investigation by testing this last possibility: that SMOS is using a surface temperature that is too low which results in a drier soil moisture that compensates for this error. We will present a comparison of surface temperatures from the European Center for Medium-range Weather Forecasting (ECMWF) used to retrieve near-surface soil moisture from SMOS measurements of brightness temperature, and surface temperatures in the South Fork obtained from both tower and in-situ sensors. We will also use a long-term data set of tower and in-situ sensors collected in agricultural fields to develop a relationship between air temperature and the surface temperature relevant to the terrestrial microwave emission that is detected by SMOS.

  6. Basin Wide Erosion and Soil Production Rates of a High Altitude Plateau in the Korean Peninsula Considered as an Uplifted Paleo Erosional Surface: Implications for Its Development Process and the Tectonics

    NASA Astrophysics Data System (ADS)

    Byun, J.; Seong, Y.

    2012-12-01

    The development process of High Altitude Plateaus (HAPs) has been a controversial issue in geomorphology. HAPs have been interpreted as uplifted erosional surfaces mainly controlled by fluvial processes. Recent studies, however, argued that the definition of the Paleo Erosional Surfaces (PESs) is ambiguous and HAPs, considered as the uplifted PESs, could be formed under various local lithologic, tectonic and climatic conditions. But these suggestions were severely limited by the lack of quantitative data in the field. Here, we investigate this issue of the development process of HAPs through estimating both basin wide erosion rates and soil production rates of the Daegwanryeong area in the Korean Peninsula (KP), where a HAP with low-relief hilly landscape is found. Study area has been known as a typical one of PESs in the KP, which have been uplifted since the early Miocene. Particularly deeply weathered saprolites, easily found in the study area, have also been believed to be resulted from the Tertiary deep weathering under higher temperature at the paleo sea level. First, analysis of 10Be in saprolite from the base of the soil column, except one under no soil mantle, shows that soil production rates decline linearly with increasing soil depth. These data provide a soil production function with a maximum soil production rate of 70.6m/m.y. under 24cm of soil and a minimum of 22m/m.y. under 75cm of soil. Accordingly it means that the interface between soil and saprolite have gone down maximum 141.2 m since the Quaternary. Thus it suggests that the saprolites are the results under current local climatic and geomorphic conditions rather than the relict of the Tertiary deep weathering. Second, measurements of 10Be in alluvial sediments show that the average erosion rate (70.7m/m.y.) of the study area is close to the maximum soil production rate, thus basin wide erosion rates of the study area are controlled by the current soil production rates. It means that about 1,400m has been eroded off since the early Miocene, when uplift of the KP seems to begin. Consequently it is difficult to think the HAP of the study area as the PES as well as one, which has been eroded keeping the original form of the PES. Furthermore, the erosion rates are lower than the uplift rates during the late Quaternary (about 300m/m.y.), but similar to the uplift rates before the early Miocene (about 100m/m.y.). Therefore, it suggests that the HAP of the study area has been uplifted since the early Miocene, but has not approached the steady state with the neotectonics of the KP. In summary, we suggest that the HAP of the study area is the result of the geomorphic process under current climatic and geomorphic condition rather than the relict of the PES.

  7. Residues of organochlorine pesticides in surface soil and raw foods from rural areas of the Republic of Tajikistan

    EPA Science Inventory

    The central Asian Republic of Tajikistan has been an area of extensive historical agricultural pesticide use as well as large scale burials of obsolete banned chlorinated insecticides. The current investigation was a four year study of legacy organochlorine pesticides in surface ...

  8. Earthworm impacts on organo-mineral interactions and soil carbon inventories in Fennoscandian boreal and sub-arctic landscapes

    NASA Astrophysics Data System (ADS)

    Wackett, Adrian; Yoo, Kyungsoo; Cameron, Erin; Klaminder, Jonatan

    2017-04-01

    Boreal and sub-arctic environments sustain some of the most pristine and fragile ecosystems in the world and house a disproportionate amount of the global soil carbon pool. Although the historical view of soil carbon turnover has focused on the intrinsic molecular structure of organic matter, recent work has highlighted the importance of stabilizing soil carbon on reactive mineral surfaces. However, the rates and mechanisms controlling these processes at high latitudes are poorly understood. Here we explored the biogeochemical impacts of deep-burrowing earthworm species on a range of Fennoscandian forest soils to investigate how earthworms impact soil carbon inventories and organo-mineral associations across boreal and sub-arctic landscapes. We sampled soils and earthworms at six sites spanning almost ten degrees latitude and encompassing a wide range of soil types and textures, permitting simultaneous consideration of how climate and mineralogy affect earthworm-mediated shifts in soil carbon dynamics. Across all sites, earthworms significantly decreased the carbon and nitrogen contents of the upper 10 cm, presumably through consumption of the humus layer and subsequent incorporation of the underlying mineral soil into upper organic horizons. Their mixing of humus and underlying soil also generally increased the proportion of mineral surface area occluded by organic matter, although the extent to which earthworms facilitate such organo-mineral interactions appears to be controlled by soil texture and mineralogy. This work indicates that quantitative measurements of mineral surface area and its extent of coverage by soil organic matter facilitate scaling up of molecular interactions between organic matter and minerals to the level of soil profiles and landscapes. Our preliminary data also strongly suggests that earthworms have profound effects on the fate of soil carbon and nitrogen in boreal and sub-arctic environments, highlighting the need for a better understanding of the joint ecological impacts of warming and indirect disturbances like earthworm introduction by humans to make sound predictions of future ecosystem change and carbon-climate feedbacks.

  9. Preliminary evaluation of the SIR-B response to soil moisture, surface roughness, and crop canopy cover

    NASA Technical Reports Server (NTRS)

    Dobson, M. C.; Ulaby, F. T.

    1986-01-01

    Two predawn ascending data-takes by the Shuttle Imaging Radar-B (SIR-B) were used to evaluate the effects of surface roughness, crop canopy, and soil moisture on radar backscatter. The two images, separated by three days, were both obtained at 30-deg local angle of incidence, but with opposite azimuth viewing directions. The imagery was externally calibrated with respect to the radar backscattering coefficient sigma(0) via response to arrays of point and area-extended targets of known radar cross section. Three land-cover classes: (1) corn, (2) corn stubble and plowed bare soil, and (3) disked bare soil, soybeans, soybean stubble, alfalfa, and clover could be readily separated for either observation date on the basis of image tone alone. The dependence of sigma(0) on the surface roughness and canopy brightness inhibits the capability of SIR to globally estimate the near-surface soil moisture from the value of sigma(0) for single date observations, unless the surface roughness or canopy cover conditions are accounted for. However, within given ranges of these conditions, the sigma(0) was found to be highly correlated with the soil moisture.

  10. Resolving terrestrial ecosystem processes along a subgrid topographic gradient for an earth-system model

    USGS Publications Warehouse

    Subin, Z M; Milly, Paul C.D.; Sulman, B N; Malyshev, Sergey; Shevliakova, E

    2014-01-01

    Soil moisture is a crucial control on surface water and energy fluxes, vegetation, and soil carbon cycling. Earth-system models (ESMs) generally represent an areal-average soil-moisture state in gridcells at scales of 50–200 km and as a result are not able to capture the nonlinear effects of topographically-controlled subgrid heterogeneity in soil moisture, in particular where wetlands are present. We addressed this deficiency by building a subgrid representation of hillslope-scale topographic gradients, TiHy (Tiled-hillslope Hydrology), into the Geophysical Fluid Dynamics Laboratory (GFDL) land model (LM3). LM3-TiHy models one or more representative hillslope geometries for each gridcell by discretizing them into land model tiles hydrologically coupled along an upland-to-lowland gradient. Each tile has its own surface fluxes, vegetation, and vertically-resolved state variables for soil physics and biogeochemistry. LM3-TiHy simulates a gradient in soil moisture and water-table depth between uplands and lowlands in each gridcell. Three hillslope hydrological regimes appear in non-permafrost regions in the model: wet and poorly-drained, wet and well-drained, and dry; with large, small, and zero wetland area predicted, respectively. Compared to the untiled LM3 in stand-alone experiments, LM3-TiHy simulates similar surface energy and water fluxes in the gridcell-mean. However, in marginally wet regions around the globe, LM3-TiHy simulates shallow groundwater in lowlands, leading to higher evapotranspiration, lower surface temperature, and higher leaf area compared to uplands in the same gridcells. Moreover, more than four-fold larger soil carbon concentrations are simulated globally in lowlands as compared with uplands. We compared water-table depths to those simulated by a recent global model-observational synthesis, and we compared wetland and inundated areas diagnosed from the model to observational datasets. The comparisons demonstrate that LM3-TiHy has the capability to represent some of the controls of these hydrological variables, but also that improvement in parameterization and input datasets are needed for more realistic simulations. We found large sensitivity in model-diagnosed wetland and inundated area to the depth of conductive soil and the parameterization of macroporosity. With improved parameterization and inclusion of peatland biogeochemical processes, the model could provide a new approach to investigating the vulnerability of Boreal peatland carbon to climate change in ESMs.

  11. Validation of SURFEX Simulated Soil Moisture over the Valencia Anchor Station using SMOS products and in situ measurements.

    NASA Astrophysics Data System (ADS)

    Coll, M. Amparo; Khodayar, Samiro; Lopez-Baeza, Ernesto

    2014-05-01

    Soil moisture is an important variable in agriculture, hydrology, meteorology and related disciplines. Despite its importance, it is complicated to obtain an appropriate representation of this variable, mainly because of its high temporal and spatial variability. SVAT (Soil-Vegetation-Atmosphere-Transfer) models can be used to simulate the temporal behaviour and spatial distribution of soil moisture in a given area. In this work, we use the SURFEX (Surface Externalisée) model developed at the Centre National de Recherches Météorologiques (CNRM) at Météo-France (http://www.cnrm.meteo.fr/surfex/) to simulate soil moisture at the Valencia Anchor Station. SURFEX integrates the ISBA (Interaction Sol-Biosphère-Atmosphère; surfaces with vegetation) module to describe the land surfaces (http://www.cnrm.meteo.fr/isbadoc/model.html) and we introduced the ECOCLIMAP for the description of land covers. The Valencia Anchor Station was chosen as a validation site for the SMOS (Soil Moisture and Ocean Salinity) mission and as one of the hydrometeorological sites for the HyMeX (HYdrological cycle in Mediterranean EXperiment) programme. This site represents a reasonably homogeneous and mostly flat area of about 50x50 km2. The main cover type is vineyards (65%), followed by fruit trees, shrubs, and pine forests, and a few number of small industrial and urban areas. Except for the vineyard growing season, the area remains mostly under bare soil conditions. In spite of its relatively flat topography, the small altitude variations of the region clearly influence climate. This oscillates between semiarid and dry-sub-humid. Annual mean temperatures are between 12 ºC and 14.5 ºC, and annual precipitation is about 400-450 mm. The duration of frost free periods is from May to November, with maximum precipitation in spring and autumn. The first part of this investigation consists in simulating soil moisture fields to be compared with level-2 and level-3 soil moisture maps generated from SMOS over the Valencia Anchor Station, as a continuation to the previous work carried out around SMOS launch and commissioning phase (Juglea et al., 2010). In situ measurements are also available as reference from a network of stations covering the reduced number of different vegetation cover and soil types. An L-band radiometer from ESA (European Space Agency), ELBARA-II, is installed in the area to monitor SMOS validation conditions over a vineyard crop. Different interpolation methods will be applied to all significant atmospheric forcing parameters from the two met stations available in the area (pressure, temperature, relative humidity and precipitation) in order to obtain a good representation of soil conditions to be compared to level-2 and -3 SMOS soil moisture products. The period of investigation covers the complete 2012 period and we will particularly focus on selected periods from September to November 2012 where there were extreme rain events in our study area.

  12. Impacts of Soil-aquifer Heat and Water Fluxes on Simulated Global Climate

    NASA Technical Reports Server (NTRS)

    Krakauer, N.Y.; Puma, Michael J.; Cook, B. I.

    2013-01-01

    Climate models have traditionally only represented heat and water fluxes within relatively shallow soil layers, but there is increasing interest in the possible role of heat and water exchanges with the deeper subsurface. Here, we integrate an idealized 50m deep aquifer into the land surface module of the GISS ModelE general circulation model to test the influence of aquifer-soil moisture and heat exchanges on climate variables. We evaluate the impact on the modeled climate of aquifer-soil heat and water fluxes separately, as well as in combination. The addition of the aquifer to ModelE has limited impact on annual-mean climate, with little change in global mean land temperature, precipitation, or evaporation. The seasonal amplitude of deep soil temperature is strongly damped by the soil-aquifer heat flux. This not only improves the model representation of permafrost area but propagates to the surface, resulting in an increase in the seasonal amplitude of surface air temperature of >1K in the Arctic. The soil-aquifer water and heat fluxes both slightly decrease interannual variability in soil moisture and in landsurface temperature, and decrease the soil moisture memory of the land surface on seasonal to annual timescales. The results of this experiment suggest that deepening the modeled land surface, compared to modeling only a shallower soil column with a no-flux bottom boundary condition, has limited impact on mean climate but does affect seasonality and interannual persistence.

  13. Atmospheric effects on radiometry from zenith of a plane with dark vertical protrusions

    NASA Technical Reports Server (NTRS)

    Otterman, J.

    1983-01-01

    Effects of an optically thin plane-parallel scattering atmosphere on radiometric imaging from the zenith of a specific surface-type are analyzed. The surface model was previously developed to describe arid steppe, where the sparse vegetation forms dark vertical protrusions from the bright soil-plane. The analysis is in terms of the surface reflectivity to the zenith r sub p for the direct beam, which is formulated as r sub p = r sub i exp (-s tan theta sub 0), where v sub i is the Lambert law reflectivity of the soil, the protrusions parameters s is the projection on a vertical plane of protrusions per unit area and theta sub 0 is the zenith angle. The surface reflectivity r sub p is approximately equal to that for the global irradiance (which is directly measured in the field) only for a narrow range of the solar zenith angles. The effects of the atmosphere when imaging large uniform areas of this type are comparable to those in imaging a Lambert surface with a reflectivity r sub p. Thus, the effects can be approximated by those in the case of a dark Lambert surface (analyzed previously), inasmuch as r sub p is smaller than the soil reflectivity r sub i for any off-zenith illumination. The surface becomes effectively darker with increasing solar zenith angle. Adjacency effects of a reflection from one area and scattering in the instantaneous field of view (object pixel) are analyzed as cross radiance and cross irradiance.

  14. Remote sensing of soils, land forms, and land use in the northern Great Plains in preparation for ERTS applications

    NASA Technical Reports Server (NTRS)

    Frazee, C. J.; Westin, F. C.; Gropper, J.; Myers, V. I.

    1972-01-01

    Research to determine the optimum time or season for obtaining imagery to identify and map soil limitations was conducted in the proposed Oahe irrigation project area in South Dakota. The optimum time for securing photographs or imagery is when the soil surface patterns are most apparent. For cultivated areas similar to the study area, May is the optimum time. The density slicing analysis of the May image provided additional and more accurate information than did the existing soil map. The soil boundaries were more accurately located. The use of a density analysis system for an operational soil survey has not been tested, but is obviously dependent upon securing excellent photographs for interpretation. The colors or densities of photographs will have to be corrected for sun angle effects, vignetting effects, and processing to have maximum effectiveness for mapping soil limitations. Rangeland sites were established in Bennett County, South Dakota to determine the usefulness of ERTS imagery. Imagery from these areas was interpreted for land use and drainage patterns.

  15. Investigating Forest Soil Disturbance with Different Timber Harvesting Operations in South Korea

    NASA Astrophysics Data System (ADS)

    Im, Sangjun; Lee, Eunjai; Eu, Song; Han, Sang-Kyun

    2017-04-01

    Forest operation such as timber harvesting can influence to forest environment by displacing soil particles, compacting surface layers, and destroying soil structures. This results in increased surface runoff and associated soil erosion during rainy season, due to soil disturbance. The extent of soil disturbance depends on the skidding/yarding method, types of machine used, and soil types. In South Korea, cut-to-length (CTL) operation is traditionally used by excavator with grapple in most areas. Recently, whole-tree (WT) harvesting system by swing yarder has gained considerable attention as an alternative traditional extraction method. The objectives of this study were to describe the effects of two different harvesting methods (CTL and WT) on soil disturbance and soil physical properties. After the CTL observation, we found that severe disturbed soils and compacted area were more than WT. Rutting was influenced more than 50% of the deep disturbance classes by the uphill climbing and downhill extraction method, while exposing bare soil was most disturbance in WT operation. Soil physical properties were influenced considerably by the number of excavator passes and slash residual classes in both units. The results from the study would be useful for understanding soil disturbance influence by timber harvesting in Korea. But, more detailed observations are needed to accurately estimate erosion rates and sediment delivery associated with forest management and operation. Acknowledgements. This study was carried out with the support of 'R&D Program for Forestry Technology (Project No. S211316L020110)' provided by Korea Forest Service.

  16. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    USGS Publications Warehouse

    Wang, A.; Moore, J.C.; Cui, Xingquan; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D.M.; McGuire, A.D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2016-01-01

     We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135  ×  104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101  × 104 km2). However the uncertainty (1 to 128  ×  104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future permafrost distribution can be made for the Tibetan Plateau.

  17. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    NASA Astrophysics Data System (ADS)

    Wang, W.; Rinke, A.; Moore, J. C.; Cui, X.; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D. M.; McGuire, A. D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2016-02-01

    We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135 × 104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101 × 104 km2). However the uncertainty (1 to 128 × 104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future permafrost distribution can be made for the Tibetan Plateau.

  18. Geochemical and isotopic study of soils and waters from an Italian contaminated site: Agro Aversano (Campania)

    USGS Publications Warehouse

    Bove, M.A.; Ayuso, R.A.; de Vivo, B.; Lima, A.; Albanese, S.

    2011-01-01

    Lead isotope applications have been widely used in recent years in environmental studies conducted on different kinds of sampled media. In the present paper, Pb isotope ratios have been used to determine the sources of metal pollution in soils and waters in the Agro Aversano area. During three different sampling phases, a total of 113 surface soils (5-20. cm), 20 samples from 2 soil profiles (0-1. m), 11 stream waters and 4 groundwaters were collected. Major element concentrations in sampled media have been analyzed by the ICP-MS technique. Surface soils (20 samples), all soil profiles and all waters have been also analyzed for Pb isotope compositions by thermal ionization (TIMS). The geochemical data were assessed using statistic methods and cartographically elaborated in order to have a clear picture of the level of disturbance of the area. Pb isotopic data were studied to discriminate between anthropogenic and geologic sources. Our results show that As (5.6-25.6. mg/kg), Cu (9-677. mg/kg), Pb (22-193. mg/kg), Tl (0.53-3.62. mg/kg), V (26-142. mg/kg) and Zn (34-215. mg//kg) contents in analyzed soils, exceed the intervention limits fixed by the Italian Environmental Law for residential areas in some of the sampled sites, while intervention limit for industrial areas is exceeded only for Cu concentrations. Lead isotopic data, show that there is a high similarity between the ratios measured in the leached soil samples and those deriving from anthropic activities. This similarity with anthropogenic Pb is also evident in the ratios measured in both groundwater and stream water samples. ?? 2010 Elsevier B.V.

  19. ESI-FTICR-MS Molecular Characterization of DOM Degradation under Warming in Tundra Soils from Barrow, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hongmei Chen; Ziming Yang; Rosalie Chu

    This dataset provides the results of warming incubation of Arctic soils from trough areas of a high-center polygon at the Barrow Environmental Observatory (BEO) in northern Alaska, United States. The organic-rich soil (8-20 cm below ground surface) and the mineral-rich soil (22-45 cm below surface) were separated, and the thawed and homogenized subsamples from each soil were incubated at -2 degrees C or 8 degrees C for 122 days under anoxic conditions (headspace filled with N2). The extracted DOM from soil samples were analyzed by Fourier transform ion cyclotron resonance mass spectrometry coupled with electrospray ionization (ESI-FTICR-MS). Reported analytes includemore » soil water content, dissolved organic carbon, total organic carbon, MS peaks' m/z and intensities, and elemental composition of identified molecular formulas.« less

  20. Estimation of bare soil evaporation for different depths of water table in the wind-blown sand area of the Ordos Basin, China

    NASA Astrophysics Data System (ADS)

    Chen, Li; Wang, Wenke; Zhang, Zaiyong; Wang, Zhoufeng; Wang, Qiangmin; Zhao, Ming; Gong, Chengcheng

    2018-04-01

    Soil surface evaporation is a significant component of the hydrological cycle, occurring at the interface between the atmosphere and vadose zone, but it is affected by factors such as groundwater level, soil properties, solar radiation and others. In order to understand the soil evaporation characteristics in arid regions, a field experiment was conducted in the Ordos Basin, central China, and high accuracy sensors of soil moisture, moisture potential and temperature were installed in three field soil profiles with water-table depths (WTDs) of about 0.4, 1.4 and 2.2 m. Soil-surface-evaporation values were estimated by observed data combined with Darcy's law. Results showed that: (1) soil-surface-evaporation rate is linked to moisture content and it is also affected by air temperature. When there is sufficient moisture in the soil profile, soil evaporation increases with rising air temperature. For a WTD larger than the height of capillary rise, the soil evaporation is related to soil moisture content, and when air temperature is above 25 °C, the soil moisture content reduces quickly and the evaporation rate lowers; (2) phreatic water contributes to soil surface evaporation under conditions in which the WTD is within the capillary fringe. This indicates that phreatic water would not participate in soil evaporation for a WTD larger than the height of capillary rise. This finding developed further the understanding of phreatic evaporation, and this study provides valuable information on recognized soil evaporation processes in the arid environment.

  1. Environmental Assessment of Short-Term Construction Projects at the 150th Fighter Wing, New Mexico Air National Guard, Kirtland Air Force Base, New Mexico

    DTIC Science & Technology

    2003-01-01

    level scs Soil Conservation Service DOD Department of Defense SF square foot DOPAA Description of the Proposed SHPO State Historic Preservation...relatively level and most of the area has already been developed. Consequently, most surface soils have been previously disturbed or paved over. Surface... soils arc well drained sands and lo<\\ffiS with slight to moderate hazard of wind and water erosion. As a tenant organization. Nl’vtANG is required to

  2. CO2 and CH4 Surface Flux, Soil Profile Concentrations, and Stable Isotope Composition, Barrow, Alaska, 2012-2013

    DOE Data Explorer

    Curtis, J.B.; Vaughn, L.S.; Torn, M.S.; Conrad, M.S.; Chafe, O.; Bill, M.

    2015-12-31

    In August-October 2012 and June-October 2013, co-located measurements were made of surface CH4 and CO2 flux, soil pore space concentrations and stable isotope compositions of CH4 and CO2, and subsurface temperature and soil moisture. Measurements were made in intensive study site 1 areas A, B, and C, and from the site 0 and AB transects, from high-centered, flat-centered, and low-centered polygons, from the center, edge, and trough of each polygon.

  3. Effect of crop residues on soil properties, plant growth, and crop yield. Agronomy Farm, Lincoln, Nebraska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Power, J.F.

    1981-01-01

    Progress is reported in a study designed to evaluate the effects of quantity of crop residues left on soil surface on soil properties, plant growth, and crop yield and to determine the effects of quantity of surface residues upon soil, fertilizer, and residue N transformations, availability, and efficiency of use. In a dryland corn-sorghum-soybean rotation produced on a clay loam, residues remaining after harvest of the previous crop were removed and respread on plots at rates of 0, 0.5, 1.0, and 1.5 times the quantity of residues originally present. The above crops were planted in four replications the following springmore » without tillage, after broadcasting 50 kg N/ha as ammonium nitrate. In 1980, /sup 15/N-depleted NH/sub 4/NO/sub 3/ was applied to half of each plot. After harvest, crop residues produced on the half-plot receiving the N-isotope were transferred to the half-plot receiving regular fertilizer, and visa versa. In 1981, /sup 15/N-depleted NH/sub 4/NO/sub 3/ was applied to half of each plot again, except at right angles to the fertilizer applied in 1980. After planting each year, thermocouples were installed in each plot and soil temperatures were recorded. Also access tubes were installed in all plots and soil water content was measured to the 150 cm soil depth periodically during the growing season. Dry matter production and N uptake by the plant tissue was measured periodically during the growing season and at maturity. Additional measurements taken included leaf area index, xylem water potentials, and soil microbial populations. Data are presented on corn and soybean production characteristics as affected by rate of crop residue on soil surface. Results are also given on leaf area index (LAI) and dry matter production of corn and soybeans as affected by surface residue rate. Total N content of corn and soybean plant materials and surface residues, and total and inorganic soil N (1980) are reported.« less

  4. Biological soil crusts as an organizing principle in drylands: Chapter 1

    USGS Publications Warehouse

    Belnap, Jayne; Weber, Bettina; Büdel, Burkhard; Weber, Bettina; Buedel, Burkhard; Belnap, Jayne

    2016-01-01

    Biological soil crusts (biocrusts) have been present on Earth’s terrestrial surfaces for billions of years. They are a critical part of ecosystem processes in dryland regions, as they cover most of the soil surface and thus mediate almost all inputs and outputs from soils in these areas. There are many intriguing, but understudied, roles these communities may play in drylands. These include their function in nutrient capture and transformation, influence on the movement and distribution of nutrients and water within dryland soils, ability to structure vascular plant communities, role in creating biodiversity hotspots, and the possibility that they can be used as indicators of soil health. There are still many fascinating aspects of these communities that need study, and we hope that this chapter will facilitate such efforts.

  5. Restoring the natural state of the soil surface by biocrusts

    NASA Astrophysics Data System (ADS)

    Zaady, Eli; Ungar, Eugene D.; Stavi, Ilan; Shuker, Shimshon; Knoll, Yaakov M.

    2017-04-01

    In arid and semi-arid areas, with mean annual precipitation of 70-200 mm, the dominant component of the ground cover is biocrusts composed of cyanobacteria, moss and lichens. Biocrusts play a role in stabilizing the soil surface, which reduces erosion by water and wind. Human disturbances, such as heavy vehicular traffic, earthworks, overgrazing and land mining destroy the soil surface and promote erosion. The aim of the study was to evaluate restoration of the soil surface by the return of a biocrust layer. We examined the impact of disturbances on the creation of a stable crust and on the rate of recovery. Biocrust disturbance was studied in two sites in the northern Negev. The nine treatments included different rates of biocrust inoculum application and NPK fertilization. Recovery rates of the biocrusts were monitored for five years using chemical, physical and bio-physiological tests which determined infiltration rate, soil surface resistance to pressure, shear force of the soil surface, levels of chlorophyll, organic matter and polysaccharide, NDVI and aggregate stability. The results show that untreated disturbed biocrusts present long-term damage and a very slow rate of recovery, which may take decades, while most of the treatments showed a faster recovery. In particular, NDVI, polysaccharide levels and aggregate stability showed steady improvements over the research period.

  6. Pattern Effects of Soil on Photovoltaic Surfaces

    DOE PAGES

    Burton, Patrick D.; Hendrickson, Alex; Ulibarri, Stephen Seth; ...

    2016-06-06

    The texture or patterning of soil on PV surfaces may influence light capture at various angles of incidence (AOI). Accumulated soil can be considered a microshading element, which changes with respect to AOI. Laboratory deposition of simulated soil was used to prepare test coupons for simultaneous AOI and soiling loss experiments. A mixed solvent deposition technique was used to consistently deposit patterned test soils onto glass slides. Transmission decreased as soil loading and AOI increased. Dense aggregates significantly decreased transmission. But, highly dispersed particles are less prone to secondary scattering, improving overall light collection. In order to test AOI losses on relevant systems, uniform simulated soil coatings were applied to split reference cells to further examine this effect. Finally, the measured optical transmission and area coverage correlated closely to the observedmore » $$I_{{rm SC}}$$. Angular losses were significant at angles as low as 25°.« less

  7. Surficial geologic map of the Heath-Northfield-Southwick-Hampden 24-quadrangle area in the Connecticut Valley region, west-central Massachusetts

    USGS Publications Warehouse

    Stone, Janet R.; DiGiacomo-Cohen, Mary L.

    2010-01-01

    The surficial geologic map layer shows the distribution of nonlithified earth materials at land surface in an area of 24 7.5-minute quadrangles (1,238 mi2 total) in west-central Massachusetts. Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and as resistant ledges in valley areas. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relationships, and age. Surficial materials also are known in engineering classifications as unconsolidated soils, which include coarse-grained soils, fine-grained soils, and organic fine-grained soils. Surficial materials underlie and are the parent materials of modern pedogenic soils, which have developed in them at the land surface. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for assessing water resources, construction aggregate resources, and earth-surface hazards, and for making land-use decisions. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text, quadrangle maps at 1:24,000 scale (PDF files), GIS data layers (ArcGIS shapefiles), metadata for the GIS layers, scanned topographic base maps (TIF), and a readme.txt file.

  8. Surficial geologic map of the Norton-Manomet-Westport-Sconticut Neck 23-quadrangle area in southeast Massachusetts

    USGS Publications Warehouse

    Stone, Byron D.; Stone, Janet R.; DiGiacomo-Cohen, Mary L.; Kincare, Kevin A.

    2012-01-01

    The surficial geologic map shows the distribution of nonlithified earth materials at land surface in an area of 23 7.5-minute quadrangles (919 mi2 total) in southeastern Massachusetts. Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and as resistant ledges in valley areas. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relationships, and age. Surficial materials also are known in engineering classifications as unconsolidated soils, which include coarse-grained soils, fine-grained soils, and organic fine-grained soils. Surficial materials underlie and are the parent materials of modern pedogenic soils, which have developed in them at the land surface. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for assessing water resources, construction aggregate resources, and earth-surface hazards, and for making land-use decisions. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text (PDF), quadrangle maps at 1:24,000 scale (PDF files), GIS data layers (ArcGIS shapefiles), metadata for the GIS layers, scanned topographic base maps (TIF), and a readme.txt file.

  9. Surficial geologic map of the Mount Grace-Ashburnham-Monson-Webster 24-quadrangle area in central Massachusetts

    USGS Publications Warehouse

    Stone, Janet R.

    2013-01-01

    The surficial geologic map shows the distribution of nonlithified earth materials at land surface in an area of 24 7.5-minute quadrangles (1,238 mi2 total) in central Massachusetts. Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and as resistant ledges in valley areas. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relationships, and age. Surficial materials also are known in engineering classifications as unconsolidated soils, which include coarse-grained soils, fine-grained soils, and organic fine-grained soils. Surficial materials underlie and are the parent materials of modern pedogenic soils, which have developed in them at the land surface. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for assessing water resources, construction-aggregate resources, and earth-surface hazards, and for making land-use decisions. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text (PDF), quadrangle maps at 1:24,000 scale (PDF files), GIS data layers (ArcGIS shapefiles), metadata for the GIS layers, scanned topographic base maps (TIF), and a readme.txt file.

  10. GPRsurvey as a part of land-use planning in Levi, Finnish Lapland

    NASA Astrophysics Data System (ADS)

    Kupila, Juho

    2010-05-01

    The need for detailed information regarding overlying soil layers in townplanning areas has become an important issue, especially in certain areas of Finnish Lapland where the lack of usable soil materials is obvious. Use of ground penetrating radar (GPR) is a fast and cost-effective method of determining the structure of subsurface layers and quantity of soil material above the bedrock surface. This environmental project was carried out by the Geological Survey of Finland together with local enterprises, environmental authorities and an EU structural fund. One of the goals of the project was to use GPR to determine the thickness of soil layers and the differences in material above the bedrock level in certain target areas of the project. The study area is located in the municipality of Kittilä, in the center of the Levi ski resort. The study area (total size of 28 hectares) and surroundings are under fast townplanning and there are, for example, plans for a hotel, apartments and underground garages and service routes, thus it is very important to determine the volume of quarrying. As well, the quality and quantity of existing soil is valid data for the reuse of materials and upcoming construction. One drilling program has already been executed in the area (11 boreholes), so GPR profiles were planned based on this drilling data, soil mapping data and data collected from the townplanning map of the area. According to these earlier drillings and soil mapping, most of the soil in the study area was morainic, so the antenna for the GPR-survey was set at 100 MHz. The positioning method used in this project was VRS-GPS (Virtual Reference Station Global Positioning System), which is a very accurate positioning system to use. Accuracy can be as good as a few centimeters. After the GPR-survey, secondary drilling program was carried out according to the GPR-profiles, thus the total amount of collected data from the planning area was 23 boreholes and 3500 meters of GPR-profiles. In the second phase of the project, all the collected data was used as a reference to build a 3D-model of the planning area. Interpreted GPR-profiles, surface soil map and borehole data formed a database from which an exact model of the study area subsurface was created using GISsoftware. Acquired results show the feasibility of this method to help local actors and authorities in planning and constructing of the area, in present and upcoming projects.

  11. Modeling Surface Roughness to Estimate Surface Moisture Using Radarsat-2 Quad Polarimetric SAR Data

    NASA Astrophysics Data System (ADS)

    Nurtyawan, R.; Saepuloh, A.; Budiharto, A.; Wikantika, K.

    2016-08-01

    Microwave backscattering from the earth's surface depends on several parameters such as surface roughness and dielectric constant of surface materials. The two parameters related to water content and porosity are crucial for estimating soil moisture. The soil moisture is an important parameter for ecological study and also a factor to maintain energy balance of land surface and atmosphere. Direct roughness measurements to a large area require extra time and cost. Heterogeneity roughness scale for some applications such as hydrology, climate, and ecology is a problem which could lead to inaccuracies of modeling. In this study, we modeled surface roughness using Radasat-2 quad Polarimetric Synthetic Aperture Radar (PolSAR) data. The statistical approaches to field roughness measurements were used to generate an appropriate roughness model. This modeling uses a physical SAR approach to predicts radar backscattering coefficient in the parameter of radar configuration (wavelength, polarization, and incidence angle) and soil parameters (surface roughness and dielectric constant). Surface roughness value is calculated using a modified Campbell and Shepard model in 1996. The modification was applied by incorporating the backscattering coefficient (σ°) of quad polarization HH, HV and VV. To obtain empirical surface roughness model from SAR backscattering intensity, we used forty-five sample points from field roughness measurements. We selected paddy field in Indramayu district, West Java, Indonesia as the study area. This area was selected due to intensive decreasing of rice productivity in the Northern Coast region of West Java. Third degree polynomial is the most suitable data fitting with coefficient of determination R2 and RMSE are about 0.82 and 1.18 cm, respectively. Therefore, this model is used as basis to generate the map of surface roughness.

  12. ESTCP Cost and Performance Report (ER-200742) Open Burn/Open Detonation (OBOD) Area Management Using Lime for Explosives Transformation and Metals Immobilization

    DTIC Science & Technology

    2011-10-01

    vertical transport of water on the APG OD area. ............................................................... 33  Table 5. Runoff water and leachate ...untreated control soil (study average). There was an insignificant change in leachate pH from Day 1 to Day 9 showing that, while the increase was...explosives from OB/OD area soils have occurred through horizontal transport in surface water and vertical leachate water transport. These pathways

  13. Transformation and contamination of soils in iron ore mining areas (a review)

    NASA Astrophysics Data System (ADS)

    Zamotaev, I. V.; Ivanov, I. V.; Mikheev, P. V.; Belobrov, V. P.

    2017-03-01

    Current concepts of soil transformation and contamination in iron ore mining areas have been reviewed. Changes of soils and ecosystems in the mining areas are among the largest-scale impacts of economic activity on the nature. Regularities in the radial differentiation, spatial distribution, and accumulation of heavy metals in soils of different natural zones are analyzed. The effects of mining technogenesis and gas-dust emissions from enterprises on soil microbial communities and fauna are considered. In zones of longterm atmotechnogenic impact of mining and processing plants, the stable state of ecosystems is lost and/or a new technoecosystem different from the natural one, with own microbial cenosis, is formed, where communities of soil organisms are in the stress state. In the ore mining regions, embriozems are formed, which pass through specific stages of technogenically-determined development, as well as technosols, chemozems, and technogenic surface formations with variable material compositions and properties. Technogenic soils and soil-like bodies form a soil cover differing from the initial one, whose complexity and contrast are not related to the natural factors of differentiation.

  14. Measuring soil moisture with imaging radars

    NASA Technical Reports Server (NTRS)

    Dubois, Pascale C.; Vanzyl, Jakob; Engman, Ted

    1995-01-01

    An empirical model was developed to infer soil moisture and surface roughness from radar data. The accuracy of the inversion technique is assessed by comparing soil moisture obtained with the inversion technique to in situ measurements. The effect of vegetation on the inversion is studied and a method to eliminate the areas where vegetation impairs the algorithm is described.

  15. Effect of soil texture on the microwave emission from soils

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1980-01-01

    The intensity brightness temperature of the microwave emission from the soil is determined primarily by its dielectric properties. The large difference between the dielectric constant of water and that of dry soil produces a strong dependence of the soil's dielectric constant on its moisture content. This dependence is effected by the texture of the soil because the water molecules close to the particle surface are tightly bound and do not contribute significantly to the dielectric properties. Since this surface area is a function of the particle size distribution (soil texture), being larger for clay soils with small particles, and smaller for sandy soils with larger particles; the dielectric properties will depend on soil texture. Laboratory measurements of the dielectric constant for soils are summarized. The dependence of the microwave emission on texture is demonstrated by measurements of brightness temperature from an aircraft platform for a wide range of soil textures. It is concluded that the effect of soil texture differences on the observed values can be normalized by expressing the soil moisture values as a percent field capacity for the soil.

  16. Can the soil fauna of boreal forests recover from lead-derived stress in a shooting range area?

    PubMed

    Selonen, Salla; Liiri, Mira; Setälä, Heikki

    2014-04-01

    The responses of soil faunal communities to lead (Pb) contamination in a shooting range area and the recovery of these fauna after range abandonment were studied by comparing the communities at an active shotgun shooting range, an abandoned shooting range, and a control site, locating in the same forest. Despite the similar overall Pb pellet load at the shooting ranges, reaching up to 4 kg m(-2), Pb concentrations in the top soil of the abandoned range has decreased due to the accumulation of detritus on the soil surface. As a consequence, soil animal communities were shown to recover from Pb-related disturbances by utilizing the less contaminated soil layer. Microarthropods showed the clearest signs of recovery, their numbers and community composition being close to those detected at the control site. However, in the deepest organic soil layer, the negative effects of Pb were more pronounced at the abandoned than at the active shooting range, which was detected as altered microarthropod and nematode community structures, reduced abundances of several microarthropod taxa, and the total absence of enchytraeid worms. Thus, although the accumulation of fresh litter on soil surface can promote the recovery of decomposer communities in the top soil, the gradual release of Pb from corroding pellets may pose a long-lasting risk for decomposer taxa deeper in the soil.

  17. SURFEX modeling of soil moisture fields over the Valencia Anchor Station and their comparison to different SMOS products and in situ measurements

    NASA Astrophysics Data System (ADS)

    Coll Pajaron, M. Amparo; Lopez-Baeza, Ernesto; Fernandez-Moran, Roberto; Samiro Khodayar-Pardo, D.

    2016-07-01

    Soil moisture is a difficult variable to obtain proper representation because of its high temporal and spatial variability. It is a significant parameter in agriculture, hydrology, meteorology and related disciplines. {it SVAT (Soil-Vegetation-Atmosphere-Transfer)} models can be used to simulate the temporal behaviour and spatial distribution of soil moisture in a given area. In this work, we use the {bf SURFEX (Surface Externalisée)} model developed at the {it Centre National de Recherches Météorologiques (CNRM)} at Météo-France (http://www.cnrm.meteo.fr/surfex/) to simulate soil moisture at the {bf Valencia Anchor Station}. SURFEX integrates the {bf ISBA (Interaction Sol-Biosphère-Atmosphère}; surfaces with vegetation) module to describe the land surfaces (http://www.cnrm.meteo.fr/isbadoc/model.html) that have been adapted to describe the land covers of our study area. The Valencia Anchor Station was chosen as a core validation site for the {it SMOS (Soil Moisture and Ocean Salinity)} mission and as one of the hydrometeorological sites for the {it HyMeX (HYdrological cycle in Mediterranean EXperiment)} programme. This site represents a reasonably homogeneous and mostly flat area of about 50x50 km2. The main cover type is vineyards (65%), followed by fruit trees, shrubs, and pine forests, and a few small scattered industrial and urban areas. Except for the vineyard growing season, the area remains mostly under bare soil conditions. In spite of its relatively flat topography, the small altitude variations of the region clearly influence climate. This oscillates between semiarid and dry sub-humid. Annual mean temperatures are between 12 ºC and 14.5 ºC, and annual precipitation is about 400-450 mm. The duration of frost free periods is from May to November, with maximum precipitation in spring and autumn. The first part of this investigation consists in simulating soil moisture fields over the Valencia Anchor Station to be compared with SMOS level-2 (resolution 15 km) and level-3 (resolution 25 km) soil moisture maps and high resolution SMOS pixel-disaggregated soil moisture products, obtained by combining SMOS level-2 with MODIS NDVI and LST data (resolution 1 km) (Piles et al., 2011). In situ measurements from the Valencia Anchor Station network of soil moisture stations are also available as reference covering a reduced number of different vegetation cover and soil types, as well as estimations from the ESA ELBARA-II L-band radiometer installed over a vineyard crop to monitor SMOS validation conditions. Different interpolation methods have been applied to all significant atmospheric forcing parameters from the two met stations available in the area (pressure, temperature, relative humidity and precipitation) in order to obtain a good representation of soil conditions. The period of investigation covers the complete year 2012 of which we will particularly focus on selected periods.

  18. Simulating root-induced rhizosphere deformation and its effect on water flow

    NASA Astrophysics Data System (ADS)

    Aravena, J. E.; Ruiz, S.; Mandava, A.; Regentova, E. E.; Ghezzehei, T.; Berli, M.; Tyler, S. W.

    2011-12-01

    Soil structure in the rhizosphere is influenced by root activities, such as mucilage production, microbial activity and root growth. Root growth alters soil structure by moving and deforming soil aggregates, affecting water and nutrient flow from the bulk soil to the root surface. In this study, we utilized synchrotron X-ray micro-tomography (XMT) and finite element analysis to quantify the effect of root-induced compaction on water flow through the rhizosphere to the root surface. In a first step, finite element meshes of structured soil around the root were created by processing rhizosphere XMT images. Then, soil deformation by root expansion was simulated using COMSOL Multiphysics° (Version 4.2) considering the soil an elasto-plastic porous material. Finally, fluid flow simulations were carried out on the deformed mesh to quantify the effect of root-induced compaction on water flow to the root surface. We found a 31% increase in water flow from the bulk soil to the root due to a 56% increase in root diameter. Simulations also show that the increase of root-soil contact area was the dominating factor with respect to the calculated increase in water flow. Increase of inter-aggregate contacts in size and number were observed within a couple of root diameters away from the root surface. But their influence on water flow was, in this case, rather limited compared to the immediate soil-root contact.

  19. Sources of arsenic and fluoride in highly contaminated soils causing groundwater contamination in Punjab, Pakistan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farooqi, A.; Masuda, H.; Siddiqui, R.

    2009-05-15

    Highly contaminated groundwater, with arsenic (As) and fluoride (F{sup -}) concentrations of up to 2.4 and 22.8 mg/L, respectively, has been traced to anthropogenic inputs to the soil. In the present study, samples collected from the soil surface and sediments from the most heavily polluted area of Punjab were analyzed to determine the F{sup -} and As distribution in the soil. The surface soils mainly comprise permeable aeolian sediment on a Pleistocene terrace and layers of sand and silt on an alluvial flood plain. Although the alluvial sediments contain low levels of F, the terrace soils contain high concentrations ofmore » soluble F{sup -} (maximum, 16 mg/kg; mean, 4 mg/kg; pH > 8.0). Three anthropogenic sources were identified as fertilizers, combusted coal, and industrial waste, with phosphate fertilizer being the most significance source of F{sup -} accumulated in the soil. The mean concentration of As in the surface soil samples was 10.2 mg/kg, with the highest concentration being 35 mg/kg. The presence of high levels of As in the surface soil implies the contribution of air pollutants derived from coal combustion and the use of fertilizers. Intensive mineral weathering under oxidizing conditions produces highly alkaline water that dissolves the F{sup -} and As adsorbed on the soil, thus releasing it into the local groundwater.« less

  20. [Effects of the grain size and thickness of dust deposits on soil water and salt movement in the hinterland of the Taklimakan Desert].

    PubMed

    Sun, Yan-Wei; Li, Sheng-Yu; Xu, Xin-Wen; Zhang, Jian-Guo; Li, Ying

    2009-08-01

    By using mcirolysimeter, a laboratory simulation experiment was conducted to study the effects of the grain size and thickness of dust deposits on the soil water evaporation and salt movement in the hinterland of the Taklimakan Desert. Under the same initial soil water content and deposition thickness condition, finer-textured (<0.063 mm) deposits promoted soil water evaporation, deeper soil desiccation, and surface soil salt accumulation, while coarse-textured (0.063-2 mm) deposits inhibited soil water evaporation and decreased deeper soil water loss and surface soil salt accumulation. The inhibition effect of the grain size of dust deposits on soil water evaporation had an inflection point at the grain size 0.20 mm, i. e., increased with increasing grain size when the grain size was 0.063-0.20 mm but decreased with increasing grain size when the grain size was > 0.20 mm. With the increasing thickness of dust deposits, its inhibition effect on soil water evaporation increased, and there existed a logarithmic relationship between the dust deposits thickness and water evaporation. Surface soil salt accumulation had a negative correlation with dust deposits thickness. In sum, the dust deposits in study area could affect the stability of arid desert ecosystem.

  1. CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1

    DOE Data Explorer

    Margaret Torn

    2015-01-14

    This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.

  2. Diameter Growth of Loblolly Pine Trees as Affected by Soil-Moisture Availibility

    Treesearch

    John R. Bassett

    1964-01-01

    In a 30-year-old even-aged stand of loblolly pine on a site 90 loessial soil in southeast Arkansas during foul growing seasons, most trees on plots thinned to 125 square feet of basal area per acre increased in basal area continuously when, under the crown canopy, available water in the surface foot remained above 65 percent. Measurable diameter growth ceased when...

  3. Isotopic ratios of 36Cl/Cl in Japanese surface soil

    NASA Astrophysics Data System (ADS)

    Seki, R.; Matsuhiro, T.; Nagashima, Y.; Takahashi, T.; Sasa, K.; Sueki, K.; Tosaki, Y.; Bessho, K.; Matsumura, H.; Miura, T.

    2007-06-01

    We have measured the 36Cl/Cl ratio of uncultivated surface soil samples collected from 11 areas distributed throughout Japan to determine the undisturbed value of the ratio. The ratio was found to be on the order of 10-13 except for the Tokai-mura area, where four research reactors, two commercial nuclear power plants and a nuclear fuel reprocessing plant have been operated. The observed ratio in the Tokai-mura area was higher than 10-12. Notably, soil samples collected from a site of commercial BWR nuclear power plants in Fukushima prefecture showed no significant increase in 36Cl/Cl ratio. The 36Cl/Cl ratio depth profiles of soil samples collected at both of Makabe-town and Tokai-mura were also measured. Since Makabe-town is located about 50 km apart from Tokai-mura, we do not expect it to be affected by the nuclear facilities. No large variations were observed in the Makabe depth profile; the measured ratios ranged from ∼3 to ∼5 × 10-13. The result obtained for Tokai-mura is significantly different in that from the surface to about 80 cm depth, the measured ratios, ∼10-12, are much higher than any at Makabe. At depth below 80 cm, the Tokai-mura ratios are lower and become indistinguishable from those at Makabe. The 36Cl/Cl ratio in unaffected areas of Japan is estimated to be 3-4 × 10-13.

  4. Polybrominated diphenyl ethers in surface soils from e-waste recycling areas and industrial areas in South China: concentration levels, congener profile, and inventory.

    PubMed

    Gao, Shutao; Hong, Jianwen; Yu, Zhiqiang; Wang, Jingzhi; Yang, Guoyi; Sheng, Guoying; Fu, Jiamo

    2011-12-01

    Polybrominated diphenyl ethers (PBDEs) were determined in 60 surface soils from two e-waste recycling sites (Qingyuan and Guiyu, China) and their surrounding areas to assess the extent and influence of PBDEs from e-waste recycling sites on the surrounding areas. A total of 32 surface soils from industrial areas in South China were also investigated for comparison. The mean concentrations of total PBDEs in the e-waste recycling sites of Guiyu and Qingyuan were 2,909 and 3,230 ng/g dry weight, respectively, whereas the PBDE concentrations decreased dramatically (1-2 orders of magnitude) with increasing distance from the recycling site, suggesting that the e-waste recycling activities were the major source of PBDEs in the surrounding areas. Decabromodiphenyl ethers accounted for 77.0 to 85.8% of total PBDEs in e-waste recycling areas, whereas it accounted for 90.2% in industrial areas. Principal component analysis showed that the major source of PBDEs in e-waste recycling areas were a combination of penta-, octa-, and deca-BDE commercial formulations, whereas deca-BDE commercial formulations were the major source of PBDE congeners in industrial areas. The inventories of PBDEs gave preliminary estimates of 6.22 tons and 13.4 tons for the e-waste recycling areas and industrial areas. The results suggested that significantly higher PBDEs in the e-waste recycling sites have already affected surrounding areas negatively within a relatively large distance. Because of the environmental persistence, bioaccumulation, and toxicity of PBDEs, improving the recycling techniques employed at such facilities and developing e-waste management policies are necessary. Copyright © 2011 SETAC.

  5. Metals distribution in soils around the cement factory in southern Jordan.

    PubMed

    Al-Khashman, Omar A; Shawabkeh, Reyad A

    2006-04-01

    Thirty one soil samples were collected from south Jordan around the cement factory in Qadissiya area. The samples were obtained at two depths, 0-10 cm and 10-20 cm and were analyzed by atomic absorption spectrophotometery for Pb, Zn, Cd, Fe, Cu and Cr. Physicochemical factors believed to affect their mobility of metals in soil of the study area were examined such as; pH, TOM, CaCO3, CEC and conductivity. The relatively high concentrations of lead, zinc and cadmium in the soil samples of the investigated area were related to anthropogenic sources such as cement industry, agriculture activities and traffic emissions. It was found that the lead, zinc and cadmium have the highest level in area close to the cement factory, while the concentration of chromium was low. This study indicate that all of the metals are concentrated on the surface soil, and decreased in the lower part of the soil, this due to reflects their mobility and physical properties of soil and its alkaline pH values. The use of factor analysis showed that anthropogenic activities seem to be the responsible source of pollution for metals in urban soils.

  6. Surface and downhole shear wave seismic methods for thick soil site investigations

    USGS Publications Warehouse

    Hunter, J.A.; Benjumea, B.; Harris, J.B.; Miller, R.D.; Pullan, S.E.; Burns, R.A.; Good, R.L.

    2002-01-01

    Shear wave velocity-depth information is required for predicting the ground motion response to earthquakes in areas where significant soil cover exists over firm bedrock. Rather than estimating this critical parameter, it can be reliably measured using a suite of surface (non-invasive) and downhole (invasive) seismic methods. Shear wave velocities from surface measurements can be obtained using SH refraction techniques. Array lengths as large as 1000 m and depth of penetration to 250 m have been achieved in some areas. High resolution shear wave reflection techniques utilizing the common midpoint method can delineate the overburden-bedrock surface as well as reflecting boundaries within the overburden. Reflection data can also be used to obtain direct estimates of fundamental site periods from shear wave reflections without the requirement of measuring average shear wave velocity and total thickness of unconsolidated overburden above the bedrock surface. Accurate measurements of vertical shear wave velocities can be obtained using a seismic cone penetrometer in soft sediments, or with a well-locked geophone array in a borehole. Examples from thick soil sites in Canada demonstrate the type of shear wave velocity information that can be obtained with these geophysical techniques, and show how these data can be used to provide a first look at predicted ground motion response for thick soil sites. ?? 2002 Published by Elsevier Science Ltd.

  7. Mobilization of selenium from the Mancos Shale and associated soils in the lower Uncompahgre River Basin, Colorado

    USGS Publications Warehouse

    Mast, M. Alisa; Mills, Taylor J.; Paschke, Suzanne S.; Keith, Gabrielle; Linard, Joshua I.

    2014-01-01

    This study investigates processes controlling mobilization of selenium in the lower part of the Uncompahgre River Basin in western Colorado. Selenium occurs naturally in the underlying Mancos Shale and is leached to groundwater and surface water by limited natural runoff, agricultural and domestic irrigation, and leakage from irrigation canals. Soil and sediment samples from the study area were tested using sequential extractions to identify the forms of selenium present in solid phases. Selenium speciation was characterized for nonirrigated and irrigated soils from an agricultural site and sediments from a wetland formed by a leaking canal. In nonirrigated areas, selenium was present in highly soluble sodium salts and gypsum. In irrigated soils, soluble forms of selenium were depleted and most selenium was associated with organic matter that was stable under near-surface weathering conditions. Laboratory leaching experiments and geochemical modeling confirm that selenium primarily is released to groundwater and surface water by dissolution of highly soluble selenium-bearing salts and gypsum present in soils and bedrock. Rates of selenium dissolution determined from column leachate experiments indicate that selenium is released most rapidly when water is applied to previously nonirrigated soils and sediment. High concentrations of extractable nitrate also were found in nonirrigated soils and bedrock that appear to be partially derived from weathered organic matter from the shale rather than from agricultural sources. Once selenium is mobilized, dissolved nitrate derived from natural sources appears to inhibit the reduction of dissolved selenium leading to elevated concentrations of selenium in groundwater. A conceptual model of selenium weathering is presented and used to explain seasonal variations in the surface-water chemistry of Loutzenhizer Arroyo, a major tributary contributor of selenium to the lower Uncompahgre River.

  8. 36 CFR 228.108 - Surface use requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to, posting signs, building fences, or otherwise identifying the hazardous site or condition. (i... operator shall not conduct operations in areas subject to mass soil movement, riparian areas and wetlands...

  9. Relationship between soil cobalt and vitamin B12 levels in the liver of livestock in Saudi Arabia: role of competing elements in soils.

    PubMed

    Huwait, Etimad A; Kumosani, Taha A; Moselhy, Said S; Mosaoa, Rami M; Yaghmoor, Soonham S

    2015-09-01

    This study aimed to analyze the agricultural soils from different regions in Saudi Arabia for cobalt and related metals as Cu(2+), Ni(2+), Cr(3+), Zn(2+) and Pb(2+). Liver and muscle tissues of livestock grazing on the selected areas were analyzed for the content of Co and vitamin B12. Our results indicated that the levels of Co in surface soil (0-15 cm) were higher than in sub-surface soil (>15 cm-45 cm). In contrast, Pb and Zn were higher in sub-surface soil than in surface soil. A significant positive correlation existed between the levels of Co and vitamin B12 in the liver of livestock. However, Co was not detected in muscle tissues while vitamin B12 was present at very low levels in comparison with the levels found in the liver. The results indicated that Zn(2+), Pb(2+) compete with Co in soil, which eventually affected the levels of vitamin B12 in liver. It was recommended that survey of heavy metals in grazing fields of cattle should consider inclusion of multiple elements that compete with the bioavailability of essential elements in plants and animals for the prevention of deficiency of essential elements such as Co.

  10. Characterization of soil phosphorus in a fire-affected forest Cambisol by chemical extractions and (31)P-NMR spectroscopy analysis.

    PubMed

    Turrion, María-Belén; Lafuente, Francisco; Aroca, María-José; López, Olga; Mulas, Rafael; Ruipérez, Cesar

    2010-07-15

    This study was conducted to investigate the long-term effects of fire on soil phosphorus (P) and to determine the efficiency of different procedures in extracting soil P forms. Different P forms were determined: labile forms (Olsen-P, Bray-P, and P extracted by anion exchange membranes: AEM-P); moderately labile inorganic and organic P, obtained by NaOH-EDTA extraction after removing the AEM-P fraction; and total organic and inorganic soil P. (31)P-NMR spectroscopy was used to characterize the structure of alkali-soluble P forms (orthophosphate, monoester, pyrophosphate, and DNA). The studied area was a Pinus pinaster forest located at Arenas de San Pedro (southern Avila, Spain). The soils were Dystric Cambisols over granites. Soil samples were collected at 0-2 cm, 2-5 cm, and 10-15 cm depths, two years after a fire in the burned area and in an adjacent unburned forest area. Fire increased the total N, organic C, total P, and organic and inorganic P content in the surface soil layer. In burned soil, the P extracted by the sequential procedure (AEM and NaOH+EDTA) was about 95% of the total P. Bray extraction revealed a fire-induced increase in the sorption surfaces. Analysis by chemical methods overestimated the organic P fraction in the EDTA-NaOH extract in comparison with the determination by ignition procedure. This overestimation was more important in the burned than unburned soil samples, probably due to humification promoted by burning, which increased P sorption by soil particles. The fire-induced changes on the structure of alkali-soluble P were an increase in orthophosphate-P and a decrease in monoester-P and DNA-P. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization.

    PubMed

    Hu, Yuanan; Liu, Xueping; Bai, Jinmei; Shih, Kaimin; Zeng, Eddy Y; Cheng, Hefa

    2013-09-01

    Heavy metals in the surface soils from lands of six different use types in one of the world's most densely populated regions, which is also a major global manufacturing base, were analyzed to assess the impact of urbanization and industrialization on soil pollution. A total of 227 surface soil samples were collected and analyzed for major heavy metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) by using microwave-assisted acid digestion and inductively coupled plasma-mass spectrometry (ICP-MS). Multivariate analysis combined with enrichment factors showed that surface soils from the region (>7.2 × 10(4) km(2)) had mean Cd, Cu, Zn, and As concentrations that were over two times higher than the background values, with Cd, Cu, and Zn clearly contributed by anthropogenic sources. Soil pollution by Pb was more widespread than the other heavy metals, which was contributed mostly by anthropogenic sources. The results also indicate that Mn, Co, Fe, Cr, and Ni in the surface soils were primarily derived from lithogenic sources, while Hg and As contents in the surface soils were controlled by both natural and anthropogenic sources. The pollution level and potential ecological risk of the surface soils both decreased in the order of: urban areas > waste disposal/treatment sites ∼ industrial areas > agricultural lands ∼ forest lands > water source protection areas. These results indicate the significant need for the development of pollution prevention and reduction strategies to reduce heavy metal pollution for regions undergoing fast industrialization and urbanization.

  12. Snowmelt water drives higher soil erosion than rainfall water in a mid-high latitude upland watershed

    NASA Astrophysics Data System (ADS)

    Wu, Yuyang; Ouyang, Wei; Hao, Zengchao; Yang, Bowen; Wang, Li

    2018-01-01

    The impacts of precipitation and temperature on soil erosion are pronounced in mid-high latitude areas, which lead to seasonal variations in soil erosion. Determining the critical erosion periods and the reasons behind the increased erosion loads are essential for soil management decisions. Hence, integrated approaches combining experiments and modelling based on field investigations were applied to investigate watershed soil erosion characteristics and the dynamics of water movement through soils. Long-term and continuous data for surface runoff and soil erosion variation characteristics of uplands in a watershed were observed via five simulations by the Soil and Water Assessment Tool (SWAT). In addition, laboratory experiments were performed to quantify the actual soil infiltrabilities in snowmelt seasons (thawed treatment) and rainy seasons (non-frozen treatment). The results showed that over the course of a year, average surface runoff and soil erosion reached peak values of 31.38 mm and 1.46 t ha-1 a-1, respectively, in the month of April. They also ranked high in July and August, falling in the ranges of 23.73 mm to 24.91 mm and 0.55 t ha-1 a-1 to 0.59 t ha-1 a-1, respectively. With the infiltration time extended, thawed soils showed lower infiltrabilities than non-frozen soils, and the differences in soil infiltration amounts between these two were considerable. These results highlighted that soil erosion was very closely and positively correlated with surface runoff. Soil loss was higher in snowmelt periods than in rainy periods due to the higher surface runoff in early spring, and the decreased soil infiltrability in snowmelt periods contributed much to this higher surface runoff. These findings are helpful for identification of critical soil erosion periods when making soil management before critical months, especially those before snowmelt periods.

  13. Aquaculture in artificially developed wetlands in urban areas: an application of the bivariate relationship between soil and surface water in landscape ecology.

    PubMed

    Paul, Abhijit

    2011-01-01

    Wetlands show a strong bivariate relationship between soil and surface water. Artificially developed wetlands help to build landscape ecology and make built environments sustainable. The bheries, wetlands of eastern Calcutta (India), utilize the city sewage to develop urban aquaculture that supports the local fish industries and opens a new frontier in sustainable environmental planning research.

  14. Assessment of soil compaction properties based on surface wave techniques

    NASA Astrophysics Data System (ADS)

    Jihan Syamimi Jafri, Nur; Rahim, Mohd Asri Ab; Zahid, Mohd Zulham Affandi Mohd; Faizah Bawadi, Nor; Munsif Ahmad, Muhammad; Faizal Mansor, Ahmad; Omar, Wan Mohd Sabki Wan

    2018-03-01

    Soil compaction plays an important role in every construction activities to reduce risks of any damage. Traditionally, methods of assessing compaction include field tests and invasive penetration tests for compacted areas have great limitations, which caused time-consuming in evaluating large areas. Thus, this study proposed the possibility of using non-invasive surface wave method like Multi-channel Analysis of Surface Wave (MASW) as a useful tool for assessing soil compaction. The aim of this study was to determine the shear wave velocity profiles and field density of compacted soils under varying compaction efforts by using MASW method. Pre and post compaction of MASW survey were conducted at Pauh Campus, UniMAP after applying rolling compaction with variation of passes (2, 6 and 10). Each seismic data was recorded by GEODE seismograph. Sand replacement test was conducted for each survey line to obtain the field density data. All seismic data were processed using SeisImager/SW software. The results show the shear wave velocity profiles increase with the number of passes from 0 to 6 passes, but decrease after 10 passes. This method could attract the interest of geotechnical community, as it can be an alternative tool to the standard test for assessing of soil compaction in the field operation.

  15. Tundra ecosystem respiration is dominated by recent C inputs, masking contributions from old and more decomposed substrates

    NASA Astrophysics Data System (ADS)

    Mauritz, M.; Celis, G.; Ebert, C.; Hutchings, J. A.; Ledman, J.; Pegoraro, E.; Salmon, V.; Schaedel, C.; Taylor, M.; Schuur, E.

    2017-12-01

    Rising global temperatures and increasing soil respiration are of great concern in high latitude permafrost ecosystems where substantial amounts of carbon (C) are stabilized by cold temperatures. The isotopic δ13C and Δ14C signature of respiration can be used to determine contributions of decomposition from above- and belowground plant respiration, and different parts of the soil column because δ13C and Δ14C change with depth, reflecting new plant inputs at the surface and organic matter in later stages of decomposition at depth. We measured ecosystem respiration (Reco) δ13C from early summer thaw until the end of summer transition from net ecosystem C uptake to net C release in a warming experiment with accelerated permafrost thaw and a vegetation removal treatment and determined the effect of thaw, water table, and plant productivity on seasonal Reco δ13C. When the system was a net CO2 sink in early August and after the system switched to a source we measured Δ14C to further resolve Reco sources. Reco δ13C was most enriched in spring (-23.02 ‰) suggesting that spring thaw released winter-trapped CO2 from soil decomposition in deeper soil layers. In areas with shallow thaw depletion of Reco δ13C from spring (-22.54 ‰) to autumn (-24.54 ‰) indicates a seasonally increasing contribution from plant root respiration and surface soil decomposition, even after surface soils cooled and aboveground leaves senesced. In deeply thawed, dry areas Reco δ13C (-23.33 ‰) was significantly enriched and showed no seasonal pattern while Reco δ13C from deeply thawed, wet areas (-24.19 ‰) was significantly depleted and similarly lacked seasonal change. Reco δ 13C from vegetation free areas was depleted and remained similar all season (-25.28 ‰). Decline of Reco Δ14C between early August (Δ14C: 30 ‰) and September (Δ14C: 6.85 ‰), indicates an underlying contribution to Reco from old, deep soil sources that was masked by high plant activity and surface soil decomposition, even when vegetation was removed (Δ14C removal, Aug: 53.55 ‰; Sep: -86.9 ‰). Our findings demonstrate that the strength of seasonal patterns in Reco δ13C depend on thaw and water table heterogeneity of the landscape. We conclude that the timing of Reco δ 13C and Δ 14C measurements will strongly influence any conclusions about deep soil contributions.

  16. Anomalous abundance and redistribution patterns of rare earth elements in soils of a mining area in Inner Mongolia, China.

    PubMed

    Wang, Lingqing; Liang, Tao

    2016-06-01

    The Bayan Obo Mine, the largest rare earth element (REE) deposit ever found in the world, has been mined for nearly 60 years for iron and rare earth elements. To assess the influences of mining activities on geochemical behavior of REEs in soils, 27 surface soil samples and three soil profile samples were collected from different directions in the vicinity of the mine area. The total concentrations of REEs in surface soils varied from 149.75 to 18,891.81 mg kg(-1) with an average value of 1906.12 mg kg(-1), which was apparently higher than the average values in China (181 mg kg(-1)). The order of the average concentrations of individual REEs in surface soils was similar to that in Bayan Obo ores, which confirmed that the concentration and distribution of REEs in the soils was influenced by the mining activities. The concentrations of single REE in the soil profiles showed a similar trend with depth with an increase at 0-25 cm section, then decreased and remained relatively stable in the deep part. The normalized curves inclined to the right side, showing the conspicuous fractionation between the light and heavy REEs, which supported by the North American Shale Composite (NASC) and Post-Archean Australian Shale (PAAS) normalized concentration ratios calculated for selected elements (La N /Yb N , La N /Sm N , Gd N /Yb N ). Slight positive Ce anomaly and negative Eu anomaly were also observed.

  17. Determination of water-soluble ions in soils from the dry valleys of Antarctica

    NASA Technical Reports Server (NTRS)

    Bustin, R.

    1981-01-01

    The soil chemistry of the dry valleys of Antarctica was studied. These valleys furnish a terrestrial analog for the surface of Mars. The abundance of the water-soluble ions magnesium, calcium, potassium, sodium chloride, and nitrate in soil samples was determined. All samples examined contained water-soluble salts reflecting the aridity of the area. Movement of salts to low-lying areas was verified. Upward ionic migration was evident in all core samples. Of all cations observed, sodium showed the greatest degree of migration.

  18. Comparison of GCM subgrid fluxes calculated using BATS and SiB schemes with a coupled land-atmosphere high-resolution model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Jinmei; Arritt, R.W.

    The importance of land-atmosphere interactions and biosphere in climate change studies has long been recognized, and several land-atmosphere interaction schemes have been developed. Among these, the Simple Biosphere scheme (SiB) of Sellers et al. and the Biosphere Atmosphere Transfer Scheme (BATS) of Dickinson et al. are two of the most widely known. The effects of GCM subgrid-scale inhomogeneities of surface properties in general circulation models also has received increasing attention in recent years. However, due to the complexity of land surface processes and the difficulty to prescribe the large number of parameters that determine atmospheric and soil interactions with vegetation,more » many previous studies and results seem to be contradictory. A GCM grid element typically represents an area of 10{sup 4}-10{sup 6} km{sup 2}. Within such an area, there exist variations of soil type, soil wetness, vegetation type, vegetation density and topography, as well as urban areas and water bodies. In this paper, we incorporate both BATS and SiB2 land surface process schemes into a nonhydrostatic, compressible version of AMBLE model (Atmospheric Model -- Boundary-Layer Emphasis), and compare the surface heat fluxes and mesoscale circulations calculated using the two schemes. 8 refs., 5 figs.« less

  19. An application of remotely derived climatological fields for risk assessment of vector-borne diseases : a spatial study of filariasis prevalence in the Nile Delta, Egypt.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crombie, M. K.; Gillies, R. R.; Arvidson, R. E.

    1999-12-01

    This paper applies a relatively straightforward remote sensing method that is commonly used to derive climatological variables. Measurements of surface reflectance and surface radiant temperature derived from Landsat Thematic Mapper data were used to create maps of fractional vegetation and surface soil moisture availability for the southern Nile delta in Egypt. These climatological variables were subsequently used to investigate the spatial distribution of the vector borne disease Bancroftian filariasis in the Nile delta where it is focally endemic and a growing problem. Averaged surface soil moisture values, computed for a 5-km border area around affected villages, were compared to filariasismore » prevalence rates. Prevalence rates were found to be negligible below a critical soil moisture value of 0.2, presumably because of a lack of appropriate breeding sites for the Culex Pipiens mosquito species. With appropriate modifications to account for local conditions and vector species, this approach should be useful as a means to map, predict, and control insect vector-borne diseases that critically depend on wet areas for propagation. This type of analysis may help governments and health agencies that are involved in filariasis control to better focus limited resources to identifiable high-risk areas.« less

  20. Observed Local Impacts of Global Irrigation on Surface Temperature

    NASA Astrophysics Data System (ADS)

    Chen, L.; Dirmeyer, P.

    2017-12-01

    Agricultural irrigation has significant potential for altering local climate through reducing soil albedo, increasing evapotranspiration, and enabling greater leaf area. Numerous studies using regional or global climate models have demonstrated the cooling effects of irrigation on mean and extreme temperature, especially over regions where irrigation is extensive. However, these model-based results have not been validated due to the limitations of observational datasets. In this study, multiple satellite-based products, including the Moderate Resolution Imaging Spectroradiometer (MODIS) and Soil Moisture Active Passive (SMAP) data sets, are used to isolate and quantify the local impacts of irrigation on surface climate over the irrigated regions, which are derived from the Global Map of Irrigation Areas (GMIA). The relationships among soil moisture, albedo, evapotranspiration, and surface temperature are explored. Strong evaporative cooling of irrigation on daytime surface temperature is found over the arid and semi-arid regions, such as California's Central Valley, the Great Plains, and central Asia. However, the cooling effects are less evident in most areas of eastern China, India, and the Lower Mississippi River Basin in spite of extensive irrigation over these regions. Results are also compared with irrigation experiments using the Community Earth System Model (CESM) to assess the model's ability to represent land-atmosphere interactions in regards to irrigation.

  1. Evaluation of hydrologic components of community land model 4 and bias identification

    DOE PAGES

    Du, Enhao; Vittorio, Alan Di; Collins, William D.

    2015-04-01

    Runoff and soil moisture are two key components of the global hydrologic cycle that should be validated at local to global scales in Earth System Models (ESMs) used for climate projection. Here, we have evaluated the runoff and surface soil moisture output by the Community Climate System Model (CCSM) along with 8 other models from the Coupled Model Intercomparison Project (CMIP5) repository using satellite soil moisture observations and stream gauge corrected runoff products. A series of Community Land Model (CLM) runs forced by reanalysis and coupled model outputs was also performed to identify atmospheric drivers of biases and uncertainties inmore » the CCSM. Results indicate that surface soil moisture simulations tend to be positively biased in high latitude areas by most selected CMIP5 models except CCSM, FGOALS, and BCC, which share similar land surface model code. With the exception of GISS, runoff simulations by all selected CMIP5 models were overestimated in mountain ranges and in most of the Arctic region. In general, positive biases in CCSM soil moisture and runoff due to precipitation input error were offset by negative biases induced by temperature input error. Excluding the impact from atmosphere modeling, the global mean of seasonal surface moisture oscillation was out of phase compared to observations in many years during 1985–2004. The CLM also underestimated runoff in the Amazon, central Africa, and south Asia, where soils all have high clay content. We hypothesize that lack of a macropore flow mechanism is partially responsible for this underestimation. However, runoff was overestimated in the areas covered by volcanic ash soils (i.e., Andisols), which might be associated with poor soil porosity representation in CLM. Finally, our results indicate that CCSM predictability of hydrology could be improved by addressing the compensating errors associated with precipitation and temperature and updating the CLM soil representation.« less

  2. Sorption and speciation of iodine in groundwater system: The roles of organic matter and organic-mineral complexes.

    PubMed

    Li, Junxia; Zhou, Hailing; Wang, Yanxin; Xie, Xianjun; Qian, Kun

    2017-06-01

    Characterizing the properties of main host of iodine in soil/sediment and the geochemical behaviors of iodine species are critical to understand the mechanisms of iodine mobilization in groundwater systems. Four surface soil and six subsurface sediment samples were collected from the iodine-affected area of Datong basin in northern China to conduct batch experiments and to evaluate the effects of NOM and/or organic-mineral complexes on iodide/iodate geochemical behaviors. The results showed that both iodine contents and k f -iodate values had positive correlations with solid TOC contents, implying the potential host of NOM for iodine in soil/sediment samples. The results of chemical removal of easily extracted NOM indicated that the NOM of surface soils is mainly composed of surface embedded organic matter, while sediment NOM mainly occurs in the form of organic-mineral complexes. After the removal of surface sorbed NOM, the decrease in k f -iodate value of treated surface soils indicates that surface sorbed NOM enhances iodate adsorption onto surface soil. By contrast, k f -iodate value increases in several H 2 O 2 -treated sediment samples, which was considered to result from exposed rod-like minerals rich in Fe/Al oxyhydroxide/oxides. After chemical removal of organic-mineral complexes, the lowest k f -iodate value for both treated surface soils and sediments suggests the dominant role of organic-mineral complexes on controlling the iodate geochemical behavior. In comparison with iodate, iodide exhibited lower affinities on all (un)treated soil/sediment samples. The understanding of different geochemical behaviors of iodine species helps to explain the occurrence of high iodine groundwater with iodate and iodide as the main species in shallow (oxidizing conditions) and deep (reducing conditions) groundwater. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Sorption and speciation of iodine in groundwater system: The roles of organic matter and organic-mineral complexes

    NASA Astrophysics Data System (ADS)

    Li, Junxia; Zhou, Hailing; Wang, Yanxin; Xie, Xianjun; Qian, Kun

    2017-06-01

    Characterizing the properties of main host of iodine in soil/sediment and the geochemical behaviors of iodine species are critical to understand the mechanisms of iodine mobilization in groundwater systems. Four surface soil and six subsurface sediment samples were collected from the iodine-affected area of Datong basin in northern China to conduct batch experiments and to evaluate the effects of NOM and/or organic-mineral complexes on iodide/iodate geochemical behaviors. The results showed that both iodine contents and kf-iodate values had positive correlations with solid TOC contents, implying the potential host of NOM for iodine in soil/sediment samples. The results of chemical removal of easily extracted NOM indicated that the NOM of surface soils is mainly composed of surface embedded organic matter, while sediment NOM mainly occurs in the form of organic-mineral complexes. After the removal of surface sorbed NOM, the decrease in kf-iodate value of treated surface soils indicates that surface sorbed NOM enhances iodate adsorption onto surface soil. By contrast, kf-iodate value increases in several H2O2-treated sediment samples, which was considered to result from exposed rod-like minerals rich in Fe/Al oxyhydroxide/oxides. After chemical removal of organic-mineral complexes, the lowest kf-iodate value for both treated surface soils and sediments suggests the dominant role of organic-mineral complexes on controlling the iodate geochemical behavior. In comparison with iodate, iodide exhibited lower affinities on all (un)treated soil/sediment samples. The understanding of different geochemical behaviors of iodine species helps to explain the occurrence of high iodine groundwater with iodate and iodide as the main species in shallow (oxidizing conditions) and deep (reducing conditions) groundwater.

  4. Characterization of soil salinization in typical estuarine area of the Jiaozhou Bay, China

    NASA Astrophysics Data System (ADS)

    Li, Qifei; Xi, Min; Wang, Qinggai; Kong, Fanlong; Li, Yue

    2018-02-01

    In this study, the characteristics of soil salinization and the effects of main land use/land cover and other factors in typical estuarine area of the Jiaozhou Bay are investigated. Soil samples were collected in the parallel coastal zone, vertical coastal zone and longitudinal profile depth in the area to determine the soil salt content. The correlation analysis and principal component analysis are used to address the general characteristics of soil salinization in the study area. In the horizontal direction, there are moderate salinization, severe salinization and saline soil state. The farther from the sea (within 1.1 km), the lower the soil salinization degree. In the direction of longitudinal profile depth, there are severe salinization and saline soil state, and the soil salt content is accumulated in the surface and bottom. The Na+ and Cl- are the dominant cation and anion, respectively, the distributions of which are consistent with that of salt content. All the salinization indexes, except for soil pH, are of moderate/strong variability. The invasion of Spartina alterniflora results in the increase of soil salt content and salinization degree, the effects of which are mainly determined by the physiological characteristics and the growth years. The degree of soil salinization increased significantly in the aquaculture ponds, which is mainly caused by the use of chemicals. The correlation between soil salt content and Na+, Cl- is particularly significant. From the results of principal component analysis, Na+, Cl-, Ca2+, Mg2+ and SO42- could be used as main diagnostic factors for salinization in typical estuarine area of the Jiaozhou Bay. The effects of NaCl and sulfate on salt content further affect the degree of salinization in the estuarine area.

  5. Radionuclide transport from soil to air, native vegetation, kangaroo rats and grazing cattle on the Nevada test site.

    PubMed

    Gilbert, R O; Shinn, J H; Essington, E H; Tamura, T; Romney, E M; Moor, K S; O'Farrell, T P

    1988-12-01

    Between 1970 and 1986 the Nevada Applied Ecology Group (NAEG), U.S. Department of Energy, conducted environmental radionuclide studies at weapons-testing sites on or adjacent to the Nevada Test Site. In this paper, NAEG studies conducted at two nuclear (fission) sites (NS201, NS219) and two nonnuclear (nonfission) sites (Area 13 [Project 57] and Clean Slate 2) are reviewed, synthesized and compared regarding (1) soil particle-size distribution and physical-chemical characteristics of 239 + 240Pu-bearing radioactive particles, (2) 239 + 240Pu resuspension rates and (3) transuranic and fission-product radionuclide transfers from soil to native vegetation, kangaroo rats and grazing cattle. The data indicate that transuranic radionuclides were transferred more readily on the average from soil to air, the external surfaces of native vegetation and to tissues of kangaroo rats at Area 13 than at NS201 or NS219. The 239 + 240Pu resuspension factor for undisturbed soil at Area 13 was three to four orders-of-magnitude larger than at NS201 and NS219, the geometric mean (GM) vegetation-over-soil 239 + 240Pu concentration ratio was from ten to 100 times larger than at NS201, and the GM GI-over-soil, carcass-over-soil and pelt-over-soil 239 + 240Pu ratios for kangaroo rats were about ten times larger than at NS201. These results are consistent with the finding that Area 13, compared with NS201 or NS219, has a higher percentage of radioactivity associated with smaller soil particles and a larger percentage of resuspendable and respirable soil. However, the resuspension factor increased by a factor of 27 at NS201 when the surface soil was disturbed, and by a factor of 12 at NS219 following a wildfire. The average (GM) concentration of 239 + 240Pu for the GI (and contents) of Area 13 kangaroo rats and for the rumen contents of beef cattle that grazed Area 13 were very similar (400 vs. 440 Bq kg-1 dry wt, respectively) although the variability between individuals was very large. The GM carcass-over-GI 239 + 240Pu concentration ratio for kangaroo rats at Area 13, Clean Slate 2, and NS201 were similar in value (approximately 2 X 10(-2)), as were the GM GI-over-vegetation concentration ratios (approximately 2 X 10(0)) (no statistical differences).(ABSTRACT TRUNCATED AT 400 WORDS)

  6. Likelihood parameter estimation for calibrating a soil moisture using radar backscatter

    USDA-ARS?s Scientific Manuscript database

    Assimilating soil moisture information contained in synthetic aperture radar imagery into land surface model predictions can be done using a calibration, or parameter estimation, approach. The presence of speckle, however, necessitates aggregating backscatter measurements over large land areas in or...

  7. Wind tunnel experimental study on the effect of PAM on soil wind erosion control.

    PubMed

    He, Ji-Jun; Cai, Qiang-Guo; Tang, Ze-Jun

    2008-10-01

    In recent years, high-molecular-weight anionic polyacrylamide (PAM) have been widely tested on a variety of soils, primarily in water erosion control. However, little information is available regarding the effectiveness of PAM on preventing soil loss from wind erosion. The research adopted room wind tunnel experiment, two kinds of soils were used which were from the agro-pastoral area of Inner Mongolia, the northwest of China, the clay content of soils were 22.0 and 13.7%, respectively. For these tests, all the treatments were performed under the condition of wind velocity of 14 m s(-1) and a blown angle of 8.75%, according to the actual situation of experimented area. The study results indicated that using PAM on the soil surface could enhance the capability of avoiding the wind erosion, at the same time, the effect of controlling wind soil erosion with 4 g m(-2) PAM was better than 2 g m(-2) PAM's. Economically, the 2 g m(-2) PAM used in soil surface can control wind erosion effectively in this region. The prophase PAM accumulated in soil could not improve the capability of avoiding the wind erosion, owing to the degradation of PAM in the soil and the continual tillage year after year. The texture of soil is a main factor influencing the capability of soil avoiding wind erosion. Soil with higher clay content has the higher capability of preventing soil from wind erosion than one with the opposite one under the together action of PAM and water.

  8. Vegetation-induced turbulence influencing evapotranspiration-soil moisture coupling: Implications for semiarid regions

    NASA Astrophysics Data System (ADS)

    Haghighi, E.; Kirchner, J. W.; Entekhabi, D.

    2016-12-01

    The relationship between soil moisture and evapotranspiration (ET) fluxes is an important component of land-atmosphere interactions controlling hydrology-climate feedback processes. Important as this relationship is, it remains empirical and physical mechanisms governing its dynamics are insufficiently studied. This is particularly of importance for semiarid regions (currently comprising about half of the Earth's land surface) where the shallow surface soil layer is the primary source of ET and direct evaporation from bare soil is likely a large component of the total flux. Hence, ET-soil moisture coupling in these regions is hypothesized to be strongly influenced by soil evaporation and associated mechanisms. Motivated by recent progress in mechanistic modeling of localized heat and mass exchange rates from bare soil surfaces covered by cylindrical bluff-body elements, we developed a physically based ET model explicitly incorporating coupled impacts of soil moisture and vegetation-induced turbulence in the near-surface region. Model predictions of ET and its partitioning were in good agreement with measured data and suggest that the strength and nature of ET-soil moisture interactions in sparsely vegetated areas are strongly influenced by aerodynamic (rather than radiative) forcing namely wind speed and near-surface turbulence generation as a function of vegetation type and cover fraction. The results demonstrated that the relationship between ET and soil moisture varies from a nonlinear function (the dual regime behavior) to a single moisture-limited regime (linear relationship) by increasing wind velocity and enhancing turbulence generation in the near-surface region (small-scale woody vegetation species of low cover fraction). Potential benefits of this study for improving accuracy and predictive capabilities of remote sensing techniques when applied to semiarid environments will also be discussed.

  9. VERU-SOLVE™ MARINE 200 HP

    EPA Pesticide Factsheets

    Technical product bulletin: this surface washing agent used in oil spill cleanups separates the oil and water from the sand or soiled surface. Suitable for treating shorelines, beaches, rocks, marshes, sensitive environments, and access limited areas.

  10. The L-band PBMR measurements of surface soil moisture in FIFE. [First International satellite land surface climatology project Field Experiment

    NASA Technical Reports Server (NTRS)

    Wang, James R.; Shiue, James C.; Schmugge, Thomas J.; Engman, Edwin T.

    1990-01-01

    The NASA Langley Research Center's L-band pushbroom microwave radiometer (PBMR) aboard the NASA C-130 aircraft was used to map surface soil moisture at and around the Konza Prairie Natural Research Area in Kansas during the four intensive field campaigns of FIFE in May-October 1987. There was a total of 11 measurements was made when soils were known to be saturated. This measurement was used for the calibration of the vegetation effect on the microwave absorption. Based on this calibration, the data from other measurements on other days were inverted to generate the soil moisture maps. Good agreement was found when the estimated soil moisture values were compared to those independently measured on the ground at a number of widely separated locations. There was a slight bias between the estimated and measured values, the estimated soil moisture on the average being lower by about 1.8 percent. This small bias, however, was accounted for by the difference in time of the radiometric measurements and the soil moisture ground sampling.

  11. Carbon sequestration potential of coastal wetland soils of Veracruz, Mexico

    NASA Astrophysics Data System (ADS)

    Fuentes-Romero, Elisabeth; García-Calderón, Norma Eugenia; Ikkonen, Elena; García-Varela, Kl

    2014-05-01

    Tropical coastal wetlands, including rainforests and mangrove ecosystems play an increasingly important ecological and economic role in the tropical coastal area of the State of Veracruz /Mexico. However, soil processes in these environments, especially C-turnover rates are largely unknown until today. Therefore, we investigated CO2 and CH4 emissions together with gains and losses of organic C in the soils of two different coastal ecosystems in the "Natural Protected Area Cienaga del Fuerte (NPACF)" near Tecolutla, in the State of Veracruz. The research areas were an artificially introduced grassland (IG) and a wetland rainforest (WRF). The gas emissions from the soil surfaces were measured by a static chamber array, the soil organic C was analysed in soil profiles distributed in the two areas, humic substances were characterized and C budget was calculated. The soils in both areas acted as carbon sinks, but the soils of the WRF sequestered more C than those of the IG, which showed a higher gas emission rate and produced more dissolved organic carbon. The gas emission measurements during the dry and the rainy seasons allowed for estimating the possible influence of global warming on gas fluxes from the soils of the two different ecological systems, which show in the WRF a quite complex spatial emission pattern during the rainy season in contrast to a more continuous emission pattern in the IG plots

  12. Lead identification in soil surrounding a used lead acid battery smelter area in Banten, Indonesia

    NASA Astrophysics Data System (ADS)

    Adventini, N.; Santoso, M.; Lestiani, D. D.; Syahfitri, W. Y. N.; Rixson, L.

    2017-06-01

    A used lead acid battery smelter generates particulates containing lead that can contaminate the surrounding environment area. Lead is a heavy metal which is harmful to health if it enters the human body through soil, air, or water. An identification of lead in soil samples surrounding formal and informal used lead acid battery smelters area in Banten, Indonesia using EDXRF has been carried out. The EDXRF accuracy and precision evaluated from marine sediment IAEA 457 gave a good agreement to the certified value. A number of 16 soil samples from formal and informal areas and 2 soil samples from control area were taken from surface and subsurface soils. The highest lead concentrations from both lead smelter were approximately 9 folds and 11 folds higher than the reference and control samples. The assessment of lead contamination in soils described in Cf index was in category: moderately and strongly polluted by lead for formal and informal lead smelter. Daily lead intake of children in this study from all sites had exceeded the recommended dietary allowance. The HI values for adults and children living near both lead smelter areas were greater than the value of safety threshold 1. This study finding confirmed that there is a potential health risk for inhabitants surrounding the used lead acid battery smelter areas in Banten, Indonesia.

  13. Metal contamination in environmental media in residential areas around Romanian mining sites.

    PubMed

    Neamtiu, Iulia A; Al-Abed, Souhail R; McKernan, John L; Baciu, Calin L; Gurzau, Eugen S; Pogacean, Anca O; Bessler, Scott M

    2017-03-01

    Hard-rock mining for metals, such as gold, silver, copper, zinc, iron and others, is recognized to have a significant impact on the environmental media, soil and water, in particular. Toxic contaminants released from mine waste to surface water and groundwater is the primary concern, but human exposure to soil contaminants either directly, via inhalation of airborne dust particles, or indirectly, via food chain (ingestion of animal products and/or vegetables grown in contaminated areas), is also, significant. In this research, we analyzed data collected in 2007, as part of a larger environmental study performed in the Rosia Montana area in Transylvania, to provide the Romanian governmental authorities with data on the levels of metal contamination in environmental media from this historical mining area. The data were also considered in policy decision to address mining-related environmental concerns in the area. We examined soil and water data collected from residential areas near the mining sites to determine relationships among metals analyzed in these different environmental media, using the correlation procedure in the SAS statistical software. Results for residential soil and water analysis indicate that the average values for arsenic (As) (85 mg/kg), cadmium (Cd) (3.2 mg/kg), mercury (Hg) (2.3 mg/kg) and lead (Pb) (92 mg/kg) exceeded the Romanian regulatory exposure levels [the intervention thresholds for residential soil in case of As (25 mg/kg) and Hg (2 mg/kg), and the alert thresholds in case of Pb (50 mg/kg) and Cd (3 mg/kg)]. Average metal concentrations in drinking water did not exceed the maximum contaminant level (MCL) imposed by the Romanian legislation, but high metal concentrations were found in surface water from Rosia creek, downstream from the former mining area.

  14. Sand fly (Diptera: Psychodidae) abundance and species diversity in relation to environmental factors in parts of coastal plains of southern India.

    PubMed

    Srinivasan, R; Jambulingam, P; Vanamail, P

    2013-07-01

    Abundance pattern of sand flies in relation to several environmental factors, such as type of areas, dwellings, landforms, land usage pattern, and surface soil pH, was assessed in 81 areas or villages of Puducherry district, Puducherry Union Territory, located on the coastal plain of southern India, for three seasons, between November 2006 and October 2008, adopting hand-catch method. In total, 1,319 sand fly specimens comprising 12 species under two genera, viz., Phlebotomus and Sergentomyia, were collected. Among them, Phlebotomus (Euphlebotomus) argentipes Annandale & Brunetti, the vector of visceral leishmaniasis in India, was the predominant species in all habitats surveyed. The hierarchical cluster analysis showed that the density of sand flies was 10-fold higher in high-density group and fivefold higher in medium-density group, compared with the no or low-density group. Sand fly density was found to be influenced significantly with the type of areas, dwellings, landforms, land usage pattern, and surface soil pH in different groups. Rural areas located on fluvial landform with alkaline surface soil pH, supporting rice cultivation and luxuriant vegetation, are the most influencing factors that favor sand fly abundance and diversity in this district.

  15. Soil abandonment in artificial soil terraces in marginal areas. Preliminary results of a case of water shortage effect in soils from Sultanate of Oman.

    NASA Astrophysics Data System (ADS)

    Saadi, Sara Kalifah Al; Kindi, Samaya Salim Al; Pracejus, Bernhard; Moraetis, Daniel

    2016-04-01

    Soil abandonment is taking place in marginal land areas in Sultanate of Oman. Artificial soil terraces in high elevation rocky mountainous areas left without agricultural activities due to water shortage. Soil terraces have been established approximately 700 years ago and constitute a significant part of the Oman cultural and natural heritage. The present study investigates the soil state in those areas and seeks the possible reasons for the land abandonment. Questionnaires were prepared to interview the opinion of the local people. In addition, meteorological data were gathered to analyze the rain patterns in the area and most importantly, six soil profiles in two different areas in marginal rocky areas of Oman were sampled. The soils are in artificial terraces in Wijma and Hadash villages with elevation of 1247 and 1469 m respectively at mountainous slopes of 20 to 45 degrees. Most of the land was abandoned the last 20 years, while one terrace had agriculture activity 3 years ago. The questioners and interviews showed that water shortage was the reason of land abandonment. The rain patterns show a reduction of annual precipitation at least the last 10 years of available metrological data in the area. The total soil depth in the six soil profiles was between 33 to 70 cm. The main horizons include AC and C and there was a characteristic hard soil horizon in most of the soil profiles with accumulation of carbonate minerals (caliche). The soil pH was mainly alkaline between 7.5 to 8.1 and the electrical conductivity range between 42 to 859 μS/cm. A horizonization in electrical conductivity showed more dissolved solids in lower horizons compare to the upper 10 cm of the soil and this was coinciding with the hard layers in lower soil profiles. It appeared that several hundred years (or maximum 1000 years) old soils showed the development of hard soil layers which are characteristic in arid areas. The upper soil layers showed low conductivity probably due to surface deflation and desert pavement development after the terraces abandonment. The water shortage has probably affected severely the soil characteristics (pavement development and strong wind erosion) and it has enforced the locals to search for alternative domestic income towards lower land areas. Hard soil horizons on those areas showed to have developed in relatively short time after soil terraces construction.

  16. Simulation and validation of concentrated subsurface lateral flow paths in an agricultural landscape

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Lin, H. S.

    2009-08-01

    The importance of soil water flow paths to the transport of nutrients and contaminants has long been recognized. However, effective means of detecting concentrated subsurface flow paths in a large landscape are still lacking. The flow direction and accumulation algorithm based on single-direction flow algorithm (D8) in GIS hydrologic modeling is a cost-effective way to simulate potential concentrated flow paths over a large area once relevant data are collected. This study tested the D8 algorithm for simulating concentrated lateral flow paths at three interfaces in soil profiles in a 19.5-ha agricultural landscape in central Pennsylvania, USA. These interfaces were (1) the interface between surface plowed layers of Ap1 and Ap2 horizons, (2) the interface with subsoil water-restricting clay layer where clay content increased to over 40%, and (3) the soil-bedrock interface. The simulated flow paths were validated through soil hydrologic monitoring, geophysical surveys, and observable soil morphological features. The results confirmed that concentrated subsurface lateral flow occurred at the interfaces with the clay layer and the underlying bedrock. At these two interfaces, the soils on the simulated flow paths were closer to saturation and showed more temporally unstable moisture dynamics than those off the simulated flow paths. Apparent electrical conductivity in the soil on the simulated flow paths was elevated and temporally unstable as compared to those outside the simulated paths. The soil cores collected from the simulated flow paths showed significantly higher Mn content at these interfaces than those away from the simulated paths. These results suggest that (1) the D8 algorithm is useful in simulating possible concentrated subsurface lateral flow paths if used with appropriate threshold value of contributing area and sufficiently detailed digital elevation model (DEM); (2) repeated electromagnetic surveys can reflect the temporal change of soil water storage and thus is a useful indicator of possible subsurface flow path over a large area; and (3) observable Mn distribution in soil profiles can be used as a simple indicator of water flow paths in soils and over the landscape; however, it does require sufficient soil sampling (by excavation or augering) to possibly infer landscape-scale subsurface flow paths. In areas where subsurface interface topography varies similarly with surface topography, surface DEM can be used to simulate potential subsurface lateral flow path reasonably so the cost associated with obtaining depth to subsurface water-restricting layer can be minimized.

  17. Soils and landforms from Fildes Peninsula and Ardley Island, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Michel, Roberto F. M.; Schaefer, Carlos E. G. R.; López-Martínez, Jerónimo; Simas, Felipe N. B.; Haus, Nick W.; Serrano, Enrique; Bockheim, James G.

    2014-11-01

    Fildes Peninsula (F.P.) and Ardley Island (A.I.) are among the first ice-free areas in Maritime Antarctica. Since the last glacial retreat in this part of Antarctica (8000 to 5000 years BP), the landscape in these areas evolved under paraglacial to periglacial conditions, with pedogenesis marked by cryogenic processes. We carried out a detailed soil and geomorphology survey, with full morphological and analytical description for both areas; forty-eight soil profiles representing different landforms were sampled, analyzed and classified according to the U.S. Soil Taxonomy and the World Reference Base for Soil Resources (WRB). Soils are mostly turbic, moderately developed, with podzolization and strong phosphatization (chemical weathering of rock minerals and formation of amorphous Al and Fe minerals) in former ornithogenic sites while in areas with poor vegetation show typical features of cryogenic weathering. Nivation, solifluction, cryoturbation, frost weathering, ablation and surface erosion are widespread. The most represented landform system by surface in Fildes Peninsula is the periglacial one, and 15 different periglacial landforms types have been identified and mapped. These features occupy about 30% of the land surface, in which patterned ground and stone fields are the most common landforms. Other significant landforms as protalus lobes, rock glaciers or debris lobes indicate the extensive presence of permafrost. Soil variability was high, in terms of morphological, physical and chemical properties, due to varying lithic contributions and mixing of different rocks, as well as to different degrees of faunal influence. Three soil taxonomy orders were identified, whereas thirty four individual pedons were differentiated. Fildes Peninsula experiences a south-north gradient from periglacial to paraglacial conditions, and apparently younger soils and landforms are located close to the Collins Glacier. Arenosols/Entisols and Cryosols/Gelisols (frequently cryoturbic) are the most important soil classes; Leptosols/Entisols, Gleysols/Aquents and Cambisols/Inceptisols also occur, all with gelic properties, and with varying faunal influences. Both soil classification systems are adequate to distinguish the local pedogenesis processes. The WRB system is broader, since it was designed to be applied in all Polar Regions; the family classes adopted by the ST were effective in separating soils with important differences with regard to texture and gravel content, all important attributes accounting for the ecological succession and periglacial processes. An altitudinal organization of landforms and processes can be recognized from geomorphological mapping. Periglacial features are dominant above 50 m a.s.l. although are present at lower altitude.

  18. Geology and surface geochemistry of the Roosevelt Springs Known Geothermal Resource Area, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovell, J.S.; Meyer, W.T.; Atkinson, D.J.

    1980-01-01

    Available data on the Roosevelt area were synthesized to determine the spatial arrangement of the rocks, and the patterns of mass and energy flow within them. The resulting model lead to a new interpretation of the geothermal system, and provided ground truth for evaluating the application of soil geochemistry to exploration for concealed geothermal fields. Preliminary geochemical studies comparing the surface microlayer to conventional soil sampling methods indicated both practical and chemical advantages for the surface microlayer technique, which was particularly evident in the case of As, Sb and Cs. Subsequent multi-element analyses of surface microlayer samples collected over anmore » area of 100 square miles were processed to produce single element contour maps for 41 chemical parameters. Computer manipulation of the multi-element data using R-mode factor analysis provided the optimum method of interpretation of the surface microlayer data. A trace element association of As, Sb and Cs in the surface microlayer provided the best indication of the leakage of geothermal solutions to the surface, while regional mercury trends may reflect the presence of a mercury vapour anomaly above a concealed heat source.« less

  19. Monitoring Land Surface Soil Moisture from Space with in-Situ Sensors Validation: The Huntsville Example

    NASA Technical Reports Server (NTRS)

    Wu, Steve Shih-Tseng

    1997-01-01

    Based on recent advances in microwave remote sensing of soil moisture and in pursuit of research interests in areas of hydrology, soil climatology, and remote sensing, the Center for Hydrology, Soil Climatology, and Remote Sensing (HSCARS) conducted the Huntsville '96 field experiment in Huntsville, Alabama from July 1-14, 1996. We, researchers at the Global Hydrology and Climate Center's MSFC/ES41, are interested in using ground-based microwave sensors, to simulate land surface brightness signatures of those spaceborne sensors that were in operation or to be launched in the near future. The analyses of data collected by the Advanced Microwave Precipitation Radiometer (AMPR) and the C-band radiometer, which together contained five frequencies (6.925,10.7,19.35, 37.1, and 85.5 GHz), and with concurrent in-situ collection of surface cover conditions (surface temperature, surface roughness, vegetation, and surface topology) and soil moisture content, would result in a better understanding of the data acquired over land surfaces by the Special Sensor Microwave Imager (SSM/I), the Tropical Rainfall Measuring Mission Microwave Imager (TMI), and the Advanced Microwave Scanning Radiometer (AMSR), because these spaceborne sensors contained these five frequencies. This paper described the approach taken and the specific objective to be accomplished in the Huntsville '97 field experiment.

  20. Factors controlling threshold friction velocity in semiarid and arid areas of the United States

    USGS Publications Warehouse

    Marticorena, Beatrice; Bergametti, G.; Belnap, Jayne

    1997-01-01

    A physical model was developed to explain threshold friction velocities u*t for particles of the size 60a??120 I?m lying on a rough surface in loose soils for semiarid and arid parts of the United States. The model corrected for the effect of momentum absorption by the nonerodible roughness. For loose or disturbed soils the most important parameter that controls u*t is the aerodynamic roughness height z 0. For physical crusts damaged by wind the size of erodible crust pieces is important along with the roughness. The presence of cyanobacteriallichen soil crusts roughens the surface, and the biological fibrous growth aggregates soil particles. Only undisturbed sandy soils and disturbed soils of all types would be expected to be erodible in normal wind storms. Therefore disturbance of soils by both cattle and humans is very important in predicting wind erosion as confirmed by our measurements.

  1. Inversion of Farmland Soil Moisture in Large Region Based on Modified Vegetation Index

    NASA Astrophysics Data System (ADS)

    Wang, J. X.; Yu, B. S.; Zhang, G. Z.; Zhao, G. C.; He, S. D.; Luo, W. R.; Zhang, C. C.

    2018-04-01

    Soil moisture is an important parameter for agricultural production. Efficient and accurate monitoring of soil moisture is an important link to ensure the safety of agricultural production. Remote sensing technology has been widely used in agricultural moisture monitoring because of its timeliness, cyclicality, dynamic tracking of changes in things, easy access to data, and extensive monitoring. Vegetation index and surface temperature are important parameters for moisture monitoring. Based on NDVI, this paper introduces land surface temperature and average temperature for optimization. This article takes the soil moisture in winter wheat growing area in Henan Province as the research object, dividing Henan Province into three main regions producing winter wheat and dividing the growth period of winter wheat into the early, middle and late stages on the basis of phenological characteristics and regional characteristics. Introducing appropriate correction factor during the corresponding growth period of winter wheat, correcting the vegetation index in the corresponding area, this paper establishes regression models of soil moisture on NDVI and soil moisture on modified NDVI based on correlation analysis and compare models. It shows that modified NDVI is more suitable as a indicator of soil moisture because of the better correlation between soil moisture and modified NDVI and the higher prediction accuracy of the regression model of soil moisture on modified NDVI. The research in this paper has certain reference value for winter wheat farmland management and decision-making.

  2. Relationships between groundwater, surface water, and soil salinity in Polder 32, Southwest Bangladesh

    NASA Astrophysics Data System (ADS)

    Fry, D. C.; Ayers, J. C.

    2014-12-01

    In the coastal areas of Southwest Bangladesh polders are surrounded by tidal channels filled with brackish water. In the wet season, farmers create openings in the embankments to irrigate rice paddies. In the dry season, farmers do the same to create saline shrimp ponds. Residents on Polder 32, located within the Ganges-Brahmaputra-Meghna delta system, practice these seasonal farming techniques. Soils in the area are entisols, being sediment recently deposited, and contain mostly silt-sized particles. Brackish water in brine shrimp ponds may deposit salt in the soil, causing soil salinization. However, saline connate groundwater could also be contributing to soil salinization. Groundwater, surface water (fresh water pond, rice paddy and tidal channel water) and soil samples have been analyzed via inductively coupled plasma optical emission spectroscopy, inductively coupled plasma mass spectroscopy and ion chromatography in an attempt to correlate salinity measurements with each other in order to determine major sources of soil salinity. Multiple parameters, including distances of samples from tidal channels, inland streams, shrimp ponds and tube wells were measured to see if spatial correlations exist. Similarly, values from wet and dry seasons were compared to quantify temporal variations. Salt content in many soil samples were found to be high enough to significantly decrease rice yields. Continued soil salinization can decrease these yields even more, leading to farmers not producing enough food to sustain their families.

  3. Deriving the suction stress of unsaturated soils from water retention curve, based on wetted surface area in pores

    NASA Astrophysics Data System (ADS)

    Greco, Roberto; Gargano, Rudy

    2016-04-01

    The evaluation of suction stress in unsaturated soils has important implications in several practical applications. Suction stress affects soil aggregate stability and soil erosion. Furthermore, the equilibrium of shallow unsaturated soil deposits along steep slopes is often possible only thanks to the contribution of suction to soil effective stress. Experimental evidence, as well as theoretical arguments, shows that suction stress is a nonlinear function of matric suction. The relationship expressing the dependence of suction stress on soil matric suction is usually indicated as Soil Stress Characteristic Curve (SSCC). In this study, a novel equation for the evaluation of the suction stress of an unsaturated soil is proposed, assuming that the exchange of stress between soil water and solid particles occurs only through the part of the surface of the solid particles which is in direct contact with water. The proposed equation, based only upon geometric considerations related to soil pore-size distribution, allows to easily derive the SSCC from the water retention curve (SWRC), with the assignment of two additional parameters. The first parameter, representing the projection of the external surface area of the soil over a generic plane surface, can be reasonably estimated from the residual water content of the soil. The second parameter, indicated as H0, is the water potential, below which adsorption significantly contributes to water retention. For the experimental verification of the proposed approach such a parameter is considered as a fitting parameter. The proposed equation is applied to the interpretation of suction stress experimental data, taken from the literature, spanning over a wide range of soil textures. The obtained results show that in all cases the proposed relationships closely reproduces the experimental data, performing better than other currently used expressions. The obtained results also show that the adopted values of the parameter H0, allowing for a good fitting of the experimental data, are in agreement with the values of water potential marking the limit between capillary and adsorptive soil water retention, which can be estimated from the shape of the water retention curve. Therefore, with the proposed approach, at least in principle it is possible to derive the SSSC directly from the knowledge of the SWRC.

  4. Adsorption coefficients for TNT on soil and clay minerals

    NASA Astrophysics Data System (ADS)

    Rivera, Rosángela; Pabón, Julissa; Pérez, Omarie; Muñoz, Miguel A.; Mina, Nairmen

    2007-04-01

    To understand the fate and transport mechanisms of TNT from buried landmines is it essential to determine the adsorption process of TNT on soil and clay minerals. In this research, soil samples from horizons Ap and A from Jobos Series at Isabela, Puerto Rico were studied. The clay fractions were separated from the other soil components by centrifugation. Using the hydrometer method the particle size distribution for the soil horizons was obtained. Physical and chemical characterization studies such as cation exchange capacity (CEC), surface area, percent of organic matter and pH were performed for the soil and clay samples. A complete mineralogical characterization of clay fractions using X-ray diffraction analysis reveals the presence of kaolinite, goethite, hematite, gibbsite and quartz. In order to obtain adsorption coefficients (K d values) for the TNT-soil and TNT-clay interactions high performance liquid chromatography (HPLC) was used. The adsorption process for TNT-soil was described by the Langmuir model. A higher adsorption was observed in the Ap horizon. The Freundlich model described the adsorption process for TNT-clay interactions. The affinity and relative adsorption capacity of the clay for TNT were higher in the A horizon. These results suggest that adsorption by soil organic matter predominates over adsorption on clay minerals when significant soil organic matter content is present. It was found that, properties like cation exchange capacity and surface area are important factors in the adsorption of clayey soils.

  5. [Effect of Recycled Water Irrieation on Heavy Metal Pollution in Irrigation Soil].

    PubMed

    Zhou, Yi-qi; Liu, Yun-xia; Fu, Hui-min

    2016-01-15

    With acceleration of urbanization, water shortages will become a serious problem. Usage of reclaimed water for flushing and watering of the green areas will be common in the future. To study the heavy metal contamination of soils after green area irrigation using recycled wastewater from special industries, we selected sewage and laboratory wastewater as water source for integrated oxidation ditch treatment, and the effluent was used as irrigation water of the green area. The irrigation units included broad-leaved forest, bush and lawn. Six samples sites were selected, and 0-20 cm soil of them were collected. Analysis of the heavy metals including Cr, Mn, Ni, Cu, Zn, As, Cd and Pb in the soil showed no significant differences with heavy metals concentration in soil irrigated with tap water. The heavy metals in the soil irrigated with recycled water were mainly enriched in the surface layer, among which the contents of Cr, Ni, Cu, Zn and Pb were below the soil background values of Beijing. A slight pollution of As and Cd was found in the soil irrigated by recycled water, which needs to be noticed.

  6. Soil Moisture Content Estimation using GPR Reflection Travel Time

    NASA Astrophysics Data System (ADS)

    Lunt, I. A.; Hubbard, S. S.; Rubin, Y.

    2003-12-01

    Ground-penetrating radar (GPR) reflection travel time data were used to estimate changes in soil water content under a range of soil saturation conditions throughout the growing season at a California winery. Data were collected during four data acquisition campaigns over an 80 by 180 m area using 100 MHz surface GPR antennae. GPR reflections were associated with a thin, low permeability clay layer located between 0.8 to 1.3 m below the ground surface that was calibrated with borehole information and mapped across the study area. Field infiltration tests and neutron probe logs suggest that the thin clay layer inhibited vertical water flow, and was coincident with high volumetric water content (VWC) values. The GPR reflection two-way travel time and the depth of the reflector at borehole locations were used to calculate an average dielectric constant for soils above the reflector. A site-specific relationship between the dielectric constant and VWC was then used to estimate the depth-averaged VWC of the soils above the reflector. Compared to average VWC measurements from calibrated neutron probe logs over the same depth interval, the average VWC estimates obtained from GPR reflections had an RMS error of 2 percent. We also investigated the estimation of VWC using reflections associated with an advancing water front, and found that estimates of average VWC to the water front could be obtained with similar accuracy. These results suggested that the two-way travel time to a GPR reflection associated with a geological surface or wetting front can be used under natural conditions to obtain estimates of average water content when borehole control is available. The GPR reflection method therefore has potential for monitoring soil water content over large areas and under variable hydrological conditions.

  7. Characteristic of pollution with groundwater inflow (90)Sr natural waters and terrestrial ecosystems near a radioactive waste storage.

    PubMed

    Lavrentyeva, G V

    2014-09-01

    The studies were conducted in the territory contaminated by (90)Sr with groundwater inflow as a result of leakage from the near-surface trench-type radioactive waste storage. The vertical soil (90)Sr distribution up to the depth of 2-3 m is analyzed. The area of radioactive contamination to be calculated with a value which exceeds the minimum significant activity 1 kBq/kg for the tested soil layers: the contaminated area for the 0-5 cm soil layer amounted to 1800 ± 85 m(2), for the 5-10 cm soil layer amounted to 300 ± 12 m(2), for the 10-15 cm soil layer amounted to 180 ± 10 m(2). It is found that (90)Sr accumulation proceeds in a natural sorption geochemical barrier of the marshy terrace near flood plain. The exposure doses for terrestrial mollusks Bradybaena fruticum are presented. The excess (90)Sr interference level was registered both in the ground and surface water during winter and summer low-water periods and autumn heavy rains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Geomorphic, hydrologic, and erosion data for selected reclaimed hillslopes, the Seneca II Mine, Routt County, Colorado, October 1988 - July 1990

    USGS Publications Warehouse

    Elliott, J.G.

    1993-01-01

    Geomorphic, hydrologic, and erosion data were collected from five reclaimed hillslopes at the Seneca II mine near Hayden, Colorado. Hillslope surveys were used to determine hillslope lengths, which range from 670 to 1,280 ft, and hillslope gradients, which range from 0.17 to 0.23 ft/ft (17 to 23 percent). Elevations in the study area range from 6,890 to 7,140 feet and hillslope aspect generally is west or south. Mean total vegetation cover ranges from 74 to 91 percent. Total monthly precipitation for December 1988 through May 1990 was computed from daily measurements made with weighing-bucket precipitation gages. Several snowpack measurements were made during 2 winters. Volumetric soil-water content was determined at incremental depths using a neutron probe and in the upper 11.8 in of soil using a time-domain reflectometer. Active and recent soil erosion was indicated by the presence of rills. Rill density (the sum of rill lengths/unit area) was computed at 50-feet intervals along each hillslope study area. Differences in soil-surface elevations between September or October 1989 and June 1990 were determined with an erosion frame and replicate soil-surface surveys at 16 erosion-study plots.

  9. Biochar as possible long-term soil amendment for phytostabilisation of TE-contaminated soils.

    PubMed

    Bopp, Charlotte; Christl, Iso; Schulin, Rainer; Evangelou, Michael W H

    2016-09-01

    Soils contaminated by trace elements (TEs) pose a high risk to their surrounding areas as TEs can spread by wind and water erosion or leaching. A possible option to reduce TE transfer from these sites is phytostabilisation. It is a long-term and cost-effective rehabilitation strategy which aims at immobilising TEs within the soil by vegetation cover and amendment application. One possible amendment is biochar. It is charred organic matter which has been shown to immobilise metals due to its high surface area and alkaline pH. Doubts have been expressed about the longevity of this immobilising effect as it could dissipate once the carbonates in the biochar have dissolved. Therefore, in a pot experiment, we determined plant metal uptake by ryegrass (Lolium perenne) from three TE-contaminated soils treated with two biochars, which differed only in their pH (acidic, 2.80; alkaline, 9.33) and carbonate (0.17 and 7.3 %) content. Root biomass was increased by the application of the alkaline biochar due to the decrease in TE toxicity. Zinc and Cu bioavailability and plant uptake were equally reduced by both biochars, showing that surface area plays an important role in metal immobilisation. Biochar could serve as a long-term amendment for TE immobilisation even after its alkalinity effect has dissipated.

  10. Changes in micro-relief during different water erosive stages of purple soil under simulated rainfall.

    PubMed

    Luo, Jian; Zheng, Zicheng; Li, Tingxuan; He, Shuqin

    2018-02-22

    This study investigated the variation characteristics of micro-topography during successive erosive stages of water erosion: splash erosion (SpE), sheet erosion (ShE), and rill erosion (RE). Micro-topography was quantified using surface elevation change, soil roughness (SR) and multifractal model. Results showed that the area of soil surface elevation decay increased gradually with the development of water erosion. With rainfall, the combined effects of the detachment by raindrop impact and the transport of runoff decreased SR, whereas rill erosion contributed to increase SR. With the increase in slope gradient, soil erosion area gradually decreased at the splash erosion stage. By contrast, soil erosion area initially decreased and then increased at the sheet and rill erosion stages. The width of the D q spectra (ΔD) values increased at the splash erosion stage and then decreased at the sheet and rill erosion stages on the 10° slope, opposite to that on the 15° slope. The ΔD values decreased with the evolution of water erosive stages on the 20° slope. The slope had an enhancing effect on the evolution of water erosion. In this study, we clarified the essence of micro-topography and laid a theoretical foundation for further understanding diverse hydrological processes.

  11. Polycyclic aromatic hydrocarbons and organochlorine pesticides in surface soils from the Qinghai-Tibetan plateau.

    PubMed

    Tao, Shu; Wang, Wentao; Liu, Wenxin; Zuo, Qian; Wang, Xilong; Wang, Rong; Wang, Bin; Shen, Guofeng; Yang, Yuanhe; He, Jin-shen

    2011-01-01

    Eighty eight surface soil samples were collected from the Qinghai-Tibetan Plateau (QTP) for determination of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs), including dichlorodiphenyltrichloroethane and metabolites (DDXs) and hexachlorocyclohexane isomers (HCHs). The measured concentrations were 51.8 ± 38.5 ng g(-1), 0.329 ± 0.818 ng g(-1), and 0.467 ± 0.741 ng g(-1) as means and standard deviations of PAHs, DDXs, and HCHs, respectively, which were 1-2 orders of magnitude lower than those reported for eastern China. Significant differences were also revealed among four sub-areas within QTP. PAHs detected in the samples from the remote sub-areas of T'ang-ku-la/Hoh Xil Mountains and along the Qinghai-Tibet highway in the west and northwest of QTP were 1 order of magnitude lower than those from Lhasa and east Qinghai. The differences in soil OCPs among the sub-areas were 2-7 times. Soil PAHs were significantly correlated with emission density and soil organic carbon content (SOC), while OCPs were correlated significantly with the population density and SOC. Based on the calculated backward air mass trajectories and geographical distributions of emission and population, it was revealed that PAHs and OCPs accumulated in the soils in the west and northwest QTP were primarily from long-range transport and may represent the background levels of East Asia. This part of QTP can also serve as an important receptor area for regional or even global long-range transport study. The elevated concentrations of PAHs and OCPs in Lhasa and east Qinghai were mainly from local sources, while PAHs from adjacent Lanzhou area also contributed considerably to the accumulation of PAHs in east Qinghai.

  12. Evaluating spatial interaction of soil property with non-point source pollution at watershed scale: the phosphorus indicator in Northeast China.

    PubMed

    Ouyang, Wei; Huang, Haobo; Hao, Fanghua; Shan, Yushu; Guo, Bobo

    2012-08-15

    To better understand the spatial dynamics of non-point source (NPS) phosphorus loading with soil property at watershed scale, integrated modeling and soil chemistry is crucial to ensure that the indicator is functioning properly and expressing the spatial interaction at two depths. Developments in distributed modeling have greatly enriched the availability of geospatial data analysis and assess the NPS pollution loading response to soil property over larger area. The 1.5 km-grid soil sampling at two depths was analyzed with eight parameters, which provided detailed spatial and vertical soil data under four main types of landuses. The impacts of landuse conversion and agricultural practice on soil property were firstly identified. Except for the slightly bigger total of potassium (TK) and cadmium (Cr), the other six parameters had larger content in 20-40 cm surface than the top 20 cm surface. The Soil and Water Assessment Tool was employed to simulate the loading of NPS phosphorus. Overlaying with the landuse distribution, it was found that the NPS phosphorus mainly comes from the subbasins dominated with upland and paddy rice. The linear correlations of eight soil parameters at two depths with NPS phosphorus loading in the subbasins of upland and paddy rice were compared, respectively. The correlations of available phosphorus (AP), total phosphorus (TP), total nitrogen (TN) and TK varied in two depths, and also can assess the loading. The soil with lower soil organic carbon (SOC) presented a significant higher risk for NPS phosphorus loading, especially in agricultural area. The Principal Component Analysis showed that the TP and zinc (Zn) in top soil and copper (Cu) and Cr in subsurface can work as indicators. The analysis suggested that the application of soil property indicators is useful for assessing NPS phosphorus loss, which is promising for water safety in agricultural area. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. 77 FR 74222 - Notice of Lodging of Consent Decree Under the Comprehensive Environmental Response, Compensation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... protection of public health and the environment. The cleanup goal for surface soil is PCBs of 25 ppm which is... and Highway 202. The selected remedy for OU-3 is soil capping and expanded groundwater extraction. The objectives of the remedial action for soils include: Reducing risks to area workers and trespassers from...

  14. Quantification and mapping of surface residue cover and tillage practices for maize and soybean fields in south central Nebraska-USA using Landsat imagery

    USDA-ARS?s Scientific Manuscript database

    The area cultivated under conservation tillage practices such as no-till and minimal tillage has recently increased in south central Nebraska (NE). Consequently, changes in some of the impacts of cropping systems on soil such as enhancing soil and water quality, improving soil structures and infiltr...

  15. Near Surface Soil Moisture Estimation Using SAR Images: A Case Study in the Mediterranean Area of Catalonia

    NASA Astrophysics Data System (ADS)

    Reppucci, Antonio; Moreno, Laura

    2010-12-01

    Information on Soil moisture spatial and temporal evolution is of great importance for managing the utilization of soils and vegetation, in particular in environments where the water resources are scarce. In-situ measurement of soil moisture are costly and not able to sample the spatial behaviour of a whole region. Thanks to their all weather capability and wide coverage, Synthetic Aperture Radar (SAR) images offer the opportunity to monitor large area with high resolution. This study presents the results of a project, partially founded by the Catalan government, to improve the monitoring of soil moisture using Earth Observation data. In particular the project is focused on the calibration of existing semi-empirical algorithm in the area of study. This will be done using co-located SAR and in-situ measurements acquired during several field campaigns. Observed deviations between SAR measurements and in-situ measurement are discussed.

  16. Analysis of airborne imaging spectrometer data for the Ruby Mountains, Montana, by use of absorption-band-depth images

    NASA Technical Reports Server (NTRS)

    Brickey, David W.; Crowley, James K.; Rowan, Lawrence C.

    1987-01-01

    Airborne Imaging Spectrometer-1 (AIS-1) data were obtained for an area of amphibolite grade metamorphic rocks that have moderate rangeland vegetation cover. Although rock exposures are sparse and patchy at this site, soils are visible through the vegetation and typically comprise 20 to 30 percent of the surface area. Channel averaged low band depth images for diagnostic soil rock absorption bands. Sets of three such images were combined to produce color composite band depth images. This relative simple approach did not require extensive calibration efforts and was effective for discerning a number of spectrally distinctive rocks and soils, including soils having high talc concentrations. The results show that the high spectral and spatial resolution of AIS-1 and future sensors hold considerable promise for mapping mineral variations in soil, even in moderately vegetated areas.

  17. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda.

    PubMed

    Nabulo, Grace; Oryem-Origa, Hannington; Diamond, Miriam

    2006-05-01

    The relationship between traffic density and trace metal concentrations in roadside soils, surface films, and a selected vegetable weed, Amaranthus dubius Mart. Ex Thell., was determined in 11 farming sites along major highways around Kampala City in Uganda. Surface soil, atmospherically deposited surface films on windows, and leaves of Amaranthus dubius were sampled at known distances from the roads and analyzed for lead (Pb), zinc (Zn), and cadmium (Cd) using flame atomic absorption spectrophotometry. Atmospherically deposited trace metal particulates were sampled using window glass as an inert, passive collector. Total trace metal concentrations in soils ranged from 30.0+/-2.3 to 64.6+/-11.7 mg/kg Pb, 78.4+/-18.4 to 265.6+/-63.2 mg/kg Zn, and 0.8+/-0.13 to 1.40+/-0.16 mg/kg Cd. Total trace metal levels in soil decreased rapidly with distance from the road. Total Pb decreased with distance up to 30 m from the road, where it reached a background soil concentration of 28 mg/kg dry weight. The study found background values of 50 and 1.4 mg/kg for Zn and Cd in roadside soils, respectively. Similarly, Pb concentration in Amaranthus dubius leaves decreased with increasing distance from the road edge. The dominant pathway for Pb contamination was from atmospheric deposition, which was consistent with Pb concentrations in surface films. The mean Pb concentrations in leaves of roadside crops were higher than those in their respective roots, with the highest leaf-to-root ratio observed in the Brassica oleraceae acephala group. The lowest Pb and Zn concentrations were found in the fruit compared to the leaves of the same crops. Leaves of roadside vegetables were therefore considered a potential source of heavy metal contamination to farmers and consumers in urban areas. It is recommended that leafy vegetables should be grown 30 m from roads in high-traffic, urban areas.

  18. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nabulo, Grace; Oryem-Origa, Hannington; Diamond, Miriam

    2006-05-15

    The relationship between traffic density and trace metal concentrations in roadside soils, surface films, and a selected vegetable weed, Amaranthus dubius Mart. Ex Thell., was determined in 11 farming sites along major highways around Kampala City in Uganda. Surface soil, atmospherically deposited surface films on windows, and leaves of Amaranthus dubius were sampled at known distances from the roads and analyzed for lead (Pb), zinc (Zn), and cadmium (Cd) using flame atomic absorption spectrophotometry. Atmospherically deposited trace metal particulates were sampled using window glass as an inert, passive collector. Total trace metal concentrations in soils ranged from 30.0{+-}2.3 to 64.6{+-}11.7more » mg/kg Pb, 78.4{+-}18.4 to 265.6{+-}63.2 mg/kg Zn, and 0.8{+-}0.13 to 1.40{+-}0.16 mg/kg Cd. Total trace metal levels in soil decreased rapidly with distance from the road. Total Pb decreased with distance up to 30 m from the road, where it reached a background soil concentration of 28 mg/kg dry weight. The study found background values of 50 and 1.4 mg/kg for Zn and Cd in roadside soils, respectively. Similarly, Pb concentration in Amaranthus dubius leaves decreased with increasing distance from the road edge. The dominant pathway for Pb contamination was from atmospheric deposition, which was consistent with Pb concentrations in surface films. The mean Pb concentrations in leaves of roadside crops were higher than those in their respective roots, with the highest leaf-to-root ratio observed in the Brassica oleraceae acephala group. The lowest Pb and Zn concentrations were found in the fruit compared to the leaves of the same crops. Leaves of roadside vegetables were therefore considered a potential source of heavy metal contamination to farmers and consumers in urban areas. It is recommended that leafy vegetables should be grown 30 m from roads in high-traffic, urban areas.« less

  19. Comparative analysis of different underlying surfaces using a high-resolution assimilation dataset in semi-arid areas in China

    NASA Astrophysics Data System (ADS)

    Ruan, Jinshuai; Wen, Xiaohang; Fan, Guangzhou; Li, Deqin; Hua, Wei; Wang, Bingyun; Zhang, Yi; Zhang, Mingjun; Wang, Chao; Wang, Lei

    2017-11-01

    To study the land surface and atmospheric meteorological characteristics of non-uniform underlying surfaces in the semi-arid area of Northeast China, we use a "High-Resolution Assimilation Dataset of the water-energy cycle in China (HRADC)". The grid points of three different underlying surfaces were selected, and their meteorological elements were averaged for each type (i.e., mixed forest, grassland, and cropland). For 2009, we compared and analyzed the different components of leaf area index (LAI), soil temperature and moisture, surface albedo, precipitation, and surface energy for various underlying surfaces in Northeast China. The results indicated that the LAI of mixed forest and cropland during the summer is greater than 5 m2 m-2 and below 2.5 m2 m-2 for grassland; in the winter and spring seasons, the Green Vegetation Fraction (GVF) is below 30%. The soil temperature and moisture both vary greatly. Throughout the year, the mixed forest is dominated by latent heat evaporation; in grasslands and croplands, the sensible heat flux and the latent heat flux are approximately equal, and the GVF contributed more to latent heat flux than sensible heat flux in the summer. This study compares meteorological characteristics between three different underlying surfaces of the semi-arid area of Northeast China and makes up for the insufficiency of purely using observations for the study. This research is important for understanding the water-energy cycle and transport in the semi-arid area.

  20. Extensive rill erosion and gullying on abandoned pit mining sites in Lusatia, Germany

    NASA Astrophysics Data System (ADS)

    Kunth, Franziska; Kaiser, Andreas; Vláčilová, Markéta; Schindewolf, Marcus; Schmidt, Jürgen

    2015-04-01

    As the major economic driver in the province of Lusatia, Eastern Germany, the large open-cast lignite mining sites characterize the landscape and leave vast areas of irreversible changed post-mining landscapes behind. Cost-intensive renaturation projects have been implemented in order to restructure former mine sites into stabile self-sustaining ecosystems and local recreation areas. With considerable expenditure the pits are stabilized, flooded and surrounding areas are restructured. Nevertheless, heavy soil erosion, extensive gullying and slope instability are challenges for the restructuring and renaturation of the abandoned open-cast mining sites. The majority of the sites remain inaccessible to the public due to instable conditions resulting in uncontrolled slides and large gullies. In this study a combined approach of UAV-based aerial imagery, 3D multi-vision surface reconstruction and physically-based soil erosion modelling is carried out in order to document, quantify and better understand the causes of erosion processes on mining sites. Rainfall simulations have been carried out in lausatian post mining areas to reproduce soil detachment processes and observe the responsible mechanisms for the considerable erosion rates. Water repellency and soil sealing by biological crusts were hindering infiltration and consequently increasing runoff rates despite the mainly sandy soil texture. On non-vegetated experimental plots runoff coefficients up to 87 % were measured. In a modelling routine for a major gully catchment regarding a 50 years rainfall event, simulation results reveal runoff coefficients of up to 84% and erosion rates of 118 Mg*ha^-1. At the sediment pass over point 450Mg of sediments enter the surface water bodies. A system response of this order of magnitude were unexpected by the authorities. By applying 3D multi-vision surface reconstruction a model validation is now possible and further may illustrate the great importance of soil conservation measures under the described conditions.

  1. Evaluation of a surface/vegetation parameterization using satellite measurements of surface temperature

    NASA Technical Reports Server (NTRS)

    Taconet, O.; Carlson, T.; Bernard, R.; Vidal-Madjar, D.

    1986-01-01

    Ground measurements of surface-sensible heat flux and soil moisture for a wheat-growing area of Beauce in France were compared with the values derived by inverting two boundary layer models with a surface/vegetation formulation using surface temperature measurements made from NOAA-AVHRR. The results indicated that the trends in the surface heat fluxes and soil moisture observed during the 5 days of the field experiment were effectively captured by the inversion method using the remotely measured radiative temperatures and either of the two boundary layer methods, both of which contain nearly identical vegetation parameterizations described by Taconet et al. (1986). The sensitivity of the results to errors in the initial sounding values or measured surface temperature was tested by varying the initial sounding temperature, dewpoint, and wind speed and the measured surface temperature by amounts corresponding to typical measurement error. In general, the vegetation component was more sensitive to error than the bare soil model.

  2. Element concentrations in surface soils of the Coconino Plateau, Grand Canyon region, Coconino County, Arizona

    USGS Publications Warehouse

    Van Gosen, Bradley S.

    2016-09-15

    This report provides the geochemical analyses of a large set of background soils collected from the surface of the Coconino Plateau in northern Arizona. More than 700 soil samples were collected at 46 widespread areas, sampled from sites that appear unaffected by mineralization and (or) anthropogenic contamination. The soils were analyzed for 47 elements, thereby providing data on metal concentrations in soils representative of the plateau. These background concentrations can be used, for instance, for comparison to metal concentrations found in soils potentially affected by natural and anthropogenic influences on the Coconino Plateau in the Grand Canyon region of Arizona.The soil sampling survey revealed low concentrations for the metals most commonly of environmental concern, such as arsenic, cobalt, chromium, copper, mercury, manganese, molybdenum, lead, uranium, vanadium, and zinc. For example, the median concentrations of the metals in soils of the Coconino Plateau were found to be comparable to the mean values previously reported for soils of the western United States.

  3. Effects of drying-wetting and freezing-thawing cycle on leachability of metallic elements in mine soils

    NASA Astrophysics Data System (ADS)

    Bang, H.; Kim, J.; Hyun, S.

    2016-12-01

    Mine leachate derived from contaminated mine sites with metallic elements can pose serious risks on human society and environment. Only labile fraction of metallic elements in mine soils is subject to leaching and movement by rainfall. Lability of metallic element in soil is a function of bond strengths between metal and soil surfaces, which is influenced by environmental condition (e.g., rainfall intensity, duration, temperature, etc.) The purpose of this study was to elucidate the effects of various climate conditions on the leaching patterns and lability of metallic elements in mine soils. To do this, two mine soils were sampled from two abandoned mine sites located in Korea. Leaching test were conducted using batch decant-refill method. Various climatic conditions were employed in leaching test such as (1) oven drying (40oC) - wetting cycles, (2) air drying (20oC) - wetting cycle, and (3) freezing (-40oC) - thawing cycles. Duration of drying and freezing were varied from 4 days to 2 weeks. Concentration of metallic elements, pH, Eh and concentration of dissolved iron and sulfate in leachate from each leaching process was measured. To identify the changes of labile fraction in mine soils after each of drying or freezing period, sequential extraction procedure (five fraction) was used to compare labile fraction (i.e., F1 + F2) of metallic elements. The concentration of metallic elements in mine leachate was increased after drying and freezing procedure. The amounts of released metallic element from mine soils was changed depending on their drying or freezing period. In addition, labile fraction of metallic elements in soil was also changed after drying and freezing. The changes in labile fraction after drying and freezing might be due to the increased soil surface area by pore water volume expansion. Further study is therefore needed to evaluate the impact of altered physical properties of soils such as hydration of soil surface area and shrinking by drying and freezing cycles.

  4. Incorporating dynamic root growth enhances the performance of Noah-MP at two contrasting winter wheat field sites

    NASA Astrophysics Data System (ADS)

    Gayler, Sebastian; Wöhling, Thomas; Ingwersen, Joachim; Wizemann, Hans-Dieter; Warrach-Sagi, Kirsten; Attinger, Sabine; Streck, Thilo; Wulmeyer, Volker

    2014-05-01

    Interactions between the soil, the vegetation, and the atmospheric boundary layer require close attention when predicting water fluxes in the hydrogeosystem, agricultural systems, weather and climate. However, land-surface schemes used in large scale models continue to show deficits in consistently simulating fluxes of water and energy from the subsurface through vegetation layers to the atmosphere. In this study, the multi-physics version of the Noah land-surface model (Noah-MP) was used to identify the processes, which are most crucial for a simultaneous simulation of water and heat fluxes between land-surface and the lower atmosphere. Comprehensive field data sets of latent and sensible heat fluxes, ground heat flux, soil moisture, and leaf area index from two contrasting field sites in South-West Germany are used to assess the accuracy of simulations. It is shown that an adequate representation of vegetation-related processes is the most important control for a consistent simulation of energy and water fluxes in the soil-plant-atmosphere system. In particular, using a newly implemented sub-module to simulate root growth dynamics has enhanced the performance of Noah-MP at both field sites. We conclude that further advances in the representation of leaf area dynamics and root/soil moisture interactions are the most promising starting points for improving the simulation of feedbacks between the sub-soil, land-surface and atmosphere in fully-coupled hydrological and atmospheric models.

  5. Corrective Action Decision Document/Closure Report for Corrective Action Unit 561: Waste Disposal Areas, Nevada National Security Site, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Krauss

    2011-08-01

    CAU 561 comprises 10 CASs: (1) 01-19-01, Waste Dump; (2) 02-08-02, Waste Dump and Burn Area; (3) 03-19-02, Debris Pile; (4) 05-62-01, Radioactive Gravel Pile; (5) 12-23-09, Radioactive Waste Dump; (6) 22-19-06, Buried Waste Disposal Site; (7) 23-21-04, Waste Disposal Trenches ; (8) 25-08-02, Waste Dump; (9) 25-23-21, Radioactive Waste Dump; and (10) 25-25-19, Hydrocarbon Stains and Trench. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure of CAU 561 with no further corrective action. The purpose of the CAI was to fulfill the following data needs as defined during the DQO process:more » (1) Determine whether COCs are present; (2) If COCs are present, determine their nature and extent; and (3) Provide sufficient information and data to complete appropriate corrective actions. The following contaminants were determined to be present at concentrations exceeding their corresponding FALs: (1) No contamination exceeding FALs was identified at CASs 01-19-01, 03-19-02, 05-62-01, 12-23-09, and 22-19-06. (2) The surface and subsurface soil within the burn area at CAS 02-08-02 contains arsenic and lead above the FALs of 23 milligrams per kilogram (mg/kg) and 800 mg/kg, respectively. The surface and subsurface soil within the burn area also contains melted lead slag (potential source material [PSM]). The soil within the waste piles contains polyaromatic hydrocarbons (PAHs) above the FALs. The contamination within the burn area is spread throughout the area, as it was not feasible to remove all the PSM (melted lead), while at the waste piles, the contamination is confined to the piles. (3) The surface and subsurface soils within Trenches 3 and 5 at CAS 23-21-04 contain arsenic and polychlorinated biphenyls (PCBs) above the FALs of 23 mg/kg and 0.74 mg/kg, respectively. The soil was removed from both trenches, and the soil that remains at this CAS does not contain contamination exceeding the FALs. Lead bricks and counterweights were also removed, and the soil below these items does not contain contamination that exceeds the FAL for lead. (4) The concrete-like material at CAS 25-08-02 contains arsenic above the FAL of 23 mg/kg. This concrete-like material was removed, and the soil that remains at this CAS does not contain contamination exceeding the FALs. Lead-acid batteries were also removed, and the soil below the batteries does not contain contamination that exceeds the FAL for lead. (5) The surface soils within the main waste dump at the posted southern radioactive material area (RMA) at CAS 25-23-21 contain cesium (Cs)-137 and PCBs above the FALs of 72.9 picocuries per gram (pCi/g) and 0.74 mg/kg, respectively. The soil was removed from the RMA, and the soil that remains at this CAS does not contain contamination exceeding the FALs. (6) The surface and subsurface soils at CAS 25-25-19 do not contain contamination exceeding the FALs. In addition, lead bricks were removed, and the soil below these items does not contain contamination that exceeds the FAL for lead. The following best management practices were implemented: (1) Housekeeping debris at CASs 02-08-02, 23-21-04, 25-08-02, 25-23-21, and 25-25-19 was removed and disposed of; (2) The open trenches at CAS 23-21-04 were backfilled; (3) The waste piles at CAS 25-08-02 were removed and the area leveled to ground surface; and (4) The remaining waste piles at the main waste dump at CAS 25-23-21 were leveled to ground surface. Therefore, NNSA/NSO provides the following recommendations: (1) No further action for CASs 01-19-01, 03-19-02, 05-62-01, 12-23-09, and 22-19-06; (2) Closure in place with an FFACO use restriction (UR) at CAS 02-08-02 for the remaining PAH-, arsenic-, and lead-contaminated soil, and the melted lead PSM. The UR form and map have been filed in the NNSA/NSO Facility Information Management System, the FFACO database, and the NNSA/NSO CAU/CAS files; (3) No further corrective action at CAS 23-21-04, as the lead bricks and counterweights (PSM) have been removed, and the COCs of arsenic and PCBs in soil have been removed; (4) No further corrective action at CAS 25-08-02, as the COC of arsenic in soil has been removed, and the lead-acid batteries have been removed; (5) No further corrective action at CAS 25-23-21, as the COCs of Cs-137 and PCBs in soil have been removed, and the cast-iron pipes have been removed and disposed of; (6) No further corrective action at CAS 25-25-19, as the lead bricks (PSM) been removed; (7) A Notice of Completion to the NNSA/NSO is requested from the Nevada Division of Environmental Protection for closure of CAU 561; and (8) Corrective Action Unit 561 should be moved from Appendix III to Appendix IV of the FFACO.« less

  6. Soils of wet valleys in the Larsemann Hills and Vestfold Hills oases (Princess Elizabeth Land, East Antarctica)

    NASA Astrophysics Data System (ADS)

    Mergelov, N. S.

    2014-09-01

    The properties and spatial distribution of soils and soil-like bodies in valleys of the coastal Larsemann Hills and Vestfold Hills oases—poorly investigated in terms of the soil areas of East Antarctica—are discussed. In contrast to Dry Valleys—large continental oases of Western Antarctica—the studied territory is characterized by the presence of temporarily waterlogged sites in the valleys. It is argued that the deficit of water rather than the low temperature is the major limiting factor for the development of living organisms and the pedogenesis on loose substrates. The moisture gradients in the surface soil horizons explain the spatial distribution of the different soils and biotic complexes within the studied valleys. Despite the permanent water-logging of the deep suprapermafrost horizons of most of the soils in the valleys, no gley features have been identified in them. The soils of the wet valleys in the Larsemann Hills oasis do not contain carbonates. They have a slightly acid or neutral reaction. The organic carbon and nitrogen contents are mainly controlled by the amount of living and dead biomass rather than by the humic substances proper. The larger part of the biomass is concentrated inside the mineral soil matrix rather than on the soil surface. The stresses caused by surface drying, strong winds, and ultraviolet radiation prevent the development of organisms on the surface of the soil and necessitate the search for shelter within the soil fine earth material (endoedaphic niche) or under the gravelly pavement (hypolithic niche). In the absence of higher plants, humified products of their decomposition, and rainwater that can wash the soil profile and upon the low content of silt and clay particles in the soil material, "classical" soil horizons are not developed. The most distinct (and, often, the only diagnosed) products of pedogenesis in these soils are represented by organomineral films on the surface of mineral particles.

  7. Open Burn/Open Detonation (OBOD) Area Management Using Lime For Explosives Transformation And Metals Immobilization

    DTIC Science & Technology

    2012-01-01

    14 Figure 7. The column study used to test treatment options and longevity by tracking pH in the leachate from the APG OD soil...during baseline characterization of the APG OD site. ............................................................. 39 Table 8. Runoff water and leachate ...et al. 2006). Off-site migration of explosives from OBOD area soils is possible through horizon- tal transport in surface water and vertical leachate

  8. Effects of Disturbances on Vegetation Composition and Permafrost Thaw in Boreal Forests and Tundra Ecosystems of the Siberian Arctic

    NASA Astrophysics Data System (ADS)

    Ramos, E.; Alexander, H. D.; Natali, S.

    2014-12-01

    In Arctic ecosystems, climate-driven changes to the thermal regime of permafrost soils have the potential to create surface disturbances that influence vegetation dynamics and underlying soil properties. Disturbance-mediated changes in vegetation are important because vegetation and the accumulation of soil organic matter drive ecosystem carbon (C) dynamics and contribute to the insulation of soils and protection of permafrost from thaw. We examined the effect of two disturbance types—thermokarsts and frost boils—to determine disturbance effects on the vegetation community and soil properties in northeast Siberia. In summer 2014, we measured vegetation cover, soil moisture, soil temperature, and thaw depth in two thermokarst sites within boreal forests, two frost boil sites in tundra, and in adjacent undisturbed sites within both ecosystems. Both thermokarst and frost boils resulted in decreased vegetation cover and greater exposure of mineral soils (10-40% bare soils vs. 0% in undisturbed), and consequently, 2-3 times higher soil temperature and deeper thaw depth. Compared to undisturbed areas, soil moisture was 3-4 times higher in thermokarst areas but 1.2-2 times lower in frost boil areas, which reflected differences in microtopography between these two disturbance types. In both thermokarst and frost boil disturbed areas, deciduous and evergreen shrubs covered only 5 and 10%, respectively, compared to approximately 10 and 20%, respectively, in undisturbed areas. In general, graminoids were substantially more abundant (2-20 times) in disturbed areas than in those undisturbed. These results highlight important linkages between disturbances, vegetation communities, and permafrost soils, and contribute to our understanding of how changes in arctic vegetation dynamics as direct and/or indirect consequences of climate change have the potential to impact permafrost C pools.

  9. Coupled MODEL Intercomparison Project PHASE 5 (CMIP5) Projected Twenty-First Century Warming over Southern Africa: Role of LOCAL Feedbacks

    NASA Astrophysics Data System (ADS)

    Shongwe, M.

    2014-12-01

    The warming rates projected by an ensemble of the Coupled Model Intercomparion Project Phase 5 (CMIP5) global climate models (GCMs) over southern Africa (south of 10 degrees latitude) are investigated. In all RCPs, CMIP5 models project a higher warming rate over the southwestern parts centred around the arid Kalahari and Namib deserts. The higher warming rates over these areas outpace global warming by up to a factor 2 in some GCMs. The projected warming is associated with an increase in heat waves. There is notable consensus across the models with little intermodel spread, suggesting a strong robustness of the projections. Mechanisms underlying the enhanced warming are investigated. A positive soil moisture-temperature feedback is suggested to contribute to the accelerated temperature increase. A decrease in soil moisture is projected by the GCMs over the area of highest warming. The reduction in soil wetness reduces evapotranspiration rates over the area where evaporation is dependent on available soil moisture. The reduction is evapotranspiration affects the partitioning of turbulent energy fluxes from the soil surface into the atmosphere and translates into an increase of the Bowen ratio featuring an increase in sensible relative to latent heat flux. An increase in sensible heat flux leads to an increase in near-surface temperature. The increase in temperature leads to a higher vapour pressure deficit and evaporative demand and evapotranspiration from the dry soils, possibly leading to a further decrease in soil moisture. A precipitation-soil moisture feedback is also suggested. A decrease in mean precipitation and an increase in drought conditions are projected over the area of enhanced warming. The reduced precipitation results in drier soils. The drier soil translates to reduced evapotranspiration for cloud and rainfall formation. However, the role played by the soil moisture-precipitation feedback loop is still inconclusive and characterized by some degree of uncertainty given that the strength of the local moisture recycling has not been explicitly quantified. An alternative mechanism involving the impact of soil moisture anomalies on boundary-layer stability and precipitation formation will be investigated.

  10. Description of the physical environment and coal-mining history of west-central Indiana, with emphasis on six small watersheds

    USGS Publications Warehouse

    Martin, Jeffrey D.; Crawford, Charles G.; Duwelius, R.F.; Renn, D.E.

    1987-01-01

    Information on the geology, geomorphology, soils, climate, hydrology, water use, land use, population, and coal mining history of Clay, Owen, Sullivan, and Vigo Counties in Indiana is summarized. Site-specific information is given on the morphology , geology, soils, land use, coal mining history, and hydrologic instrumentation of the six watersheds which are each less than 3 sq mi in area. The Wabash, White, and Eel Rivers are the major drainages in west-central Indiana. Average annual precipitation is about 39.5 in/yr and average annual runoff is about 13 in/yr. The most productive aquifers are confined or unconfined outwash aquifers located along the major rivers. Bedrock aquifers are regionally insignificant but are the sole source of groundwater for areas that lack outwash, alluvium, or sand and gravel lenses in till. Indiana has more than 17 billion short tons of recoverable coal reserves; about 11% can be mined by surface methods. Almost half of Indiana 's surface reserves are in Clay, Owen, Sullivan, and Vigo Counties. More than 50,000 acres in west-central Indiana have been disturbed by surface coal mining from 1941 through 1980. Big Slough and Hooker Creek are streams that drain unmined, agricultural watersheds. Row-crop corn and soybeans are the principal crops. Soils are moderately well drained silt loams, and the watersheds well developed dendritic drainage systems. Unnamed tributaries drain mined and reclaimed watersheds. Ridges of mine spoil have been graded to a gently rolling topography. Soils are well drained and consist of 6 to 12 inches of silt-loam topsoil that was stockpiled and then replaced over shale and sandstone fragments of the graded mine spoil. Grasses and legumes form the vegetative cover in each watershed. Pond Creek and an unnamed tributary to Big Branch are streams that drain mined and unreclaimed watersheds. Soils are very well drained shaly silty loams that have formed on steeply sloping banks. Both watersheds contain numerous impoundments of water and have enclosed areas that do not contribute surface runoff to streamflow. The ridges of mine spoil are covered with pine trees, but much of the soil surface is devoid of vegetation. (Lantz-PTT)

  11. Assessment of polycyclic aromatic hydrocarbons (PAHs) contamination in surface soil of coal stockpile sites in South Kalimantan, Indonesia.

    PubMed

    Mizwar, Andy; Priatmadi, Bambang Joko; Abdi, Chairul; Trihadiningrum, Yulinah

    2016-03-01

    Concentrations, spatial distribution, and sources of 16 polycyclic aromatic hydrocarbons (PAHs), listed as priority pollutants by the United States Environmental Protection Agency (USEPA), were investigated in surface soils of three different coal stockpile, agricultural, and residential sites in South Kalimantan Province, Indonesia. Total PAHs concentration ranged from 4.69 to 22.67 mg kg(-1)-dw. PAHs concentrations in soil of coal stockpile sites were higher than those in agricultural and residential soil. A complex of petrogenic origin and pyrolytic sources was found within the study area, as suggested by the isomeric ratios of PAHs. The results of principal component analysis and multiple linear regressions (PCA/MLR) showed that three sources contributed to the PAHs in the study area, including biomass and coal combustion (48.46%), raw coal (35.49%), and vehicular emission (16.05%). The high value of total benzo[a]pyrene equivalent concentration (B[a]Peq) suggests that local residents are exposed to a high carcinogenic potential.

  12. Characterization of biomass residues and their amendment effects on water sorption and nutrient leaching in sandy soil.

    PubMed

    Wang, Letian; Tong, Zhaohui; Liu, Guodong; Li, Yuncong

    2014-07-01

    In this study, we evaluated the efficiency of two types of biomass residues (fermentation residues from a bioethanol process, FB; brown mill residues from a papermaking process, BM) as amendments for a sandy soil. The characteristics of these residues including specific surface areas, morphologies and nutrient sorption capacity were measured. The effects of biorefinery residues on water and nutrient retention were investigated in terms of different particle sizes and loadings. The results indicated that bio-based wastes FB and BM were able to significantly improve water and nutrient retention of sandy soil. The residues with larger surface areas had better water and nutrient retention capability. Specifically, in the addition of 10% loading, FB and BM was able to improve water retention by approximately 150% and 300%, while reduce 99% of ammonium and phosphate concentration in the leachate compare to the soil control, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Soil Moisture and Vegetation Effects on GPS Reflectivity From Land

    NASA Astrophysics Data System (ADS)

    Torres, O.; Grant, M. S.; Bosch, D.

    2004-12-01

    While originally designed as a navigation system, the GPS signal has been used to achieve a number of useful scientific measurements. One of these measurements utilizes the reflection of the GPS signal from land to determine soil moisture. The study of GPS reflections is based on a bistatic configuration that utilizes forward reflection from the surface. The strength of the GPS signal varies in proportion to surface parameters such as soil moisture, soil type, vegetation cover, and topography. This paper focuses on the effects of soil water content and vegetation cover on the surface based around a reflectivity. A two-part method for calibrating the GPS reflectivity was developed that permits the comparison of the data with surface parameters. The first part of the method relieves the direct signal from any multipath effects, the second part is an over-water calibration that yields a reflectivity independent of the transmitting satellite. The sensitivity of the GPS signal to water in the soil is shown by presenting the increase in reflectivity after rain as compared to before rain. The effect of vegetation on the reflected signal is also presented by the inclusion of leaf area index as a fading parameter in the reflected signal from corn and soy bean fields. The results are compared to extensive surface measurements made as part of the Soil Moisture Experiment 2002 (SMEX 2002) in Iowa and SMEX 2003 in Georgia.

  14. Reestablishment of endogonaceae on Mount St. Helens: survival of residuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, M.F.; MacMahon, J.A.; Andersen, D.C.

    1984-01-01

    The 18 May 1980 eruption of Mount St. Helens resulted in the burial of relatively well developed soils under variable depths of sterile tephra and ash. During summer 1982, we examined a series of sites and estimated the numbers of spores of Endogonaceae that had been transported from the buried soil to the new ground surface by either abiotic or biotic vectors. There was no difference between spore counts of Endogone spp. or Glomus spp. in the buried soils of forests and clear-cuts; spores were rare in the tephra at any site. In areas featuring less than or equal tomore » 50 cm of tephra, spores were transported to the surface by gophers (in previous clear-cut areas) and by ants (in previous forest and clear-cut habitats). In the Pumice Plain, an area devoid of gophers and ants, erosion exposed spores to the surface. We found no evidence to suggest that endogonaceous fungi grow back up root systems from buried horizons. We hypothesize that small-scale perturbations (erosion, gopher and ant mounds) following the major volcanic disturbance may drive succession by exposing buried mycorrhizal and decomposer fungi. 26 references, 2 figures, 3 tables.« less

  15. Assessment of soil-gas, soil, and water contamination at the former hospital landfill, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Falls, Fred W.; Caldwell, Andral W.; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    Soil gas, soil, and water were assessed for organic and inorganic constituents at the former hospital landfill located in a 75-acre study area near the Dwight D. Eisenhower Army Medical Center, Fort Gordon, Georgia, from April to September 2010. Passive soil-gas samplers were analyzed to evaluate organic constituents in the hyporheic zone of a creek adjacent to the landfill and soil gas within the estimated boundaries of the former landfill. Soil and water samples were analyzed to evaluate inorganic constituents in soil samples, and organic and inorganic constituents in the surface water of a creek adjacent to the landfill, respectively. This assessment was conducted to provide environmental constituent data to Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Results from the hyporheic-zone assessment in the unnamed tributary adjacent to the study area indicated that total petroleum hydrocarbons and octane were the most frequently detected organic compounds in groundwater beneath the creek bed. The highest concentrations for these compounds were detected in the upstream samplers of the hyporheic-zone study area. The effort to delineate landfill activity in the study area focused on the western 14 acres of the 75-acre study area where the hyporheic-zone study identified the highest concentrations of organic compounds. This also is the part of the study area where a debris field also was identified in the southern part of the 14 acres. The southern part of this 14-acre study area, including the debris field, is steeper and not as heavily wooded, compared to the central and northern parts. Fifty-two soil-gas samplers were used for the July 2010 soil-gas survey in the 14-acre study area and mostly detected total petroleum hydrocarbons, and gasoline and diesel compounds. The highest soil-gas masses for total petroleum hydrocarbons, diesel compounds, and the only valid detection of perchloroethene were in the southern part of the study area to the west of the debris field. However, all other detections of total petroleum hydrocarbons greater than 10 micrograms and diesel greater than 0.04 micrograms, and all detections of the combined mass of benzene, toluene, ethylbenzene, and xylene were found down slope from the debris field in the central and northern parts of the study area. Five soil-gas samplers were deployed and recovered from September 16 to 22, 2010, and were analyzed for organic compounds classified as chemical agents or explosives. Chloroacetophenones (a tear gas component) were the only compounds detected above a method detection level and were detected at the same location as the highest total petroleum hydrocarbons and diesel detections in the southern part of the 14-acre study area. Composite soil samples collected at five locations were analyzed for 35 inorganic constituents. None of the inorganic constituents exceeded the regional screening levels. One surface-water sample collected in the western end of the hyporheic-zone study area had a trichlorofluoromethane concentration above the laboratory reporting level and estimated concentrations of chloroform, fluoranthene, and isophorone below laboratory reporting levels.

  16. Evaluation of groundwater and soil pollution in a landfill area using electrical resistivity imaging survey.

    PubMed

    Ahmed, A M; Sulaiman, W N

    2001-11-01

    Landfills are sources of groundwater and soil pollution due to the production of leachate and its migration through refuse. This study was conducted in order to determine the extent of groundwater and soil pollution within and around the landfill of Seri Petaling located in the State of Selangor, Malaysia. The condition of nearby surface water was also determined. An electrical resistivity imaging survey was used to investigate the leachate production within the landfill. Groundwater geochemistry was carried out and chemical analysis of water samples was conducted upstream and downstream of the landfill. Surface water was also analyzed in order to determine its quality. Soil chemical analysis was performed on soil samples taken from different locations within and around the landfill in the vadose zone (unsaturated zone) and below the water table (in the soil saturated zone). The resistivity image along line L-L1 indicated the presence of large zones of decomposed waste bodies saturated with highly conducting leachate. Analysis of trace elements indicated their presence in very low concentrations and did not reflect any sign of heavy metal pollution of ground and surface water or of soil. Major ions represented by Na, K, and Cl were found in anomalous concentrations in the groundwater of the downstream bore hole, where they are 99.1%, 99.2%, and 99.4%, respectively, higher compared to the upstream bore hole. Electrical conductivity (EC) was also found in anomalous concentration downstream. Ca and Mg ions represent the water hardness (which is comparatively high downstream). There is a general trend of pollution towards the downstream area. Sulfates (SO4) and nitrates (NO3) are found in the area in low concentrations, even below the WHO standards for drinking water, but are significantly higher in the surface water compared to the groundwater. Phosphate (PO4) and nitrite (NO2), although present in low levels, are significantly higher at the downstream. There is no significant difference in the amount of fluoride (F) in the different locations. In the soil vadose zone, heavy metals were found to be in their typical normal ranges and within the background concentrations. Soil exchangeable bases were significantly higher in the soil saturated zone compared to the vadose zone, and no significant difference was obtained in the levels of inorganic pollutants. With the exception of Cd, the concentration ranges of all trace elements (Cu, Zn, Cr, Pb, and Ni) of Seri Petaling landfill soils were below the upper limits of baseline concentrations published from different sources.

  17. Biochar characteristics produced from food-processing products and their sorptive capacity for mercury and phenanthrene

    NASA Astrophysics Data System (ADS)

    Fotopoulou, Kalliopi N.; Karapanagioti, Hrissi K.; Manariotis, Ioannis D.

    2015-04-01

    Various organic-rich wastes including wood chips, animal manure, and crop residues have been used for biochar production. Biochar is used as an additive to soils to sequester carbon and improve soil fertility but its use as a sorbent for environmental remediation processes is gaining increased attention. Surface properties such as point of zero charge, surface area and pore volume, surface topography, surface functional groups and acid-base behavior are important factors, which affect sorption efficiency. Understanding the surface alteration of biochars increases our understanding of the pollutant-sorbent interaction. The scope of the present work was to evaluate the effect of key characteristics of biochars on their sorptive properties. Raw materials for biochar production were evaluated including byproducts from brewering, coffee, wine, and olive oil industry. The charring process was performed at different temperatures under limited-oxygen conditions using specialized containers. The surface area, the pore volume, and the average pore size of the biochars were determined. Open surface area and micropore volume were determined using t-plot method and Harkins & Jura equation. Raw food-processing waste demonstrates low surface area that increases by 1 order of magnitude by thermal treatment up to 750oC. At temperatures from 750 up to 900oC, pyrolysis results to biochars with surface areas 210-700 m2/g. For the same temperature range, a high percentage (46 to73%) of the pore volume of the biochars is due to micropores. Positive results were obtained when high surface area biochars were tested for their ability to remove organic (i.e. phenanthrene) and inorganic (i.e. mercury) compounds from aqueous solutions. All these properties point to new materials that can effectively be used for environmental remediation.

  18. GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION

    EPA Science Inventory

    Prior to urbanization, ground water recharge resulted from infiltration of precipitation through pervious surfaces, including grasslands and woods. This infiltration water was relatively uncontaminated. With urbanization, the permeable soil surface area through which recharge by...

  19. Insecticide dissipation from soil and plant surfaces in tropical horticulture of southern Benin, West Africa.

    PubMed

    Rosendahl, Ingrid; Laabs, Volker; Atcha-Ahowé, Cyrien; James, Braima; Amelung, Wulf

    2009-06-01

    In Sub-Saharan Africa, horticulture provides livelihood opportunities for millions of people, especially in urban and peri-urban areas. Although the vegetable agroecosystems are often characterized by intensive pesticide use, risks resulting therefrom are largely unknown under tropical horticultural conditions. The objective of this study therefore was to study the fate of pesticides in two representative horticultural soils (Acrisol and Arenosol) and plants (Solanum macrocarpon L.) after field application and thus to gain first insight on environmental persistence and dispersion of typical insecticides used in vegetable horticulture in Benin, West Africa. On plant surfaces, dissipation was rapid with half lives ranging from 2 to 87 h (alpha-endosulfan < beta-endosulfan < deltamethrin). Soil dissipation was considerably slower than dissipation from plant surfaces with half-lives ranging from 3 (diazinon) to 74 d (total endosulfan), but persistence of pesticides in soil was still reduced compared to temperate climates. Nevertheless, for deltamethrin and endosulfan, a tendency for mid-term accumulation in soil upon repeated applications was observed. The soil and plant surface concentrations of the metabolite endosulfan sulfate increased during the entire trial period, indicating that this compound is a potential long-term pollutant even in tropical environments.

  20. Ecohydrological drought monitoring and prediction using a land data assimilation system

    NASA Astrophysics Data System (ADS)

    Sawada, Y.; Koike, T.

    2017-12-01

    Despite the importance of the ecological and agricultural aspects of severe droughts, few drought monitor and prediction systems can forecast the deficit of vegetation growth. To address this issue, we have developed a land data assimilation system (LDAS) which can simultaneously simulate soil moisture and vegetation dynamics. By assimilating satellite-observed passive microwave brightness temperature, which is sensitive to both surface soil moisture and vegetation water content, we can significantly improve the skill of a land surface model to simulate surface soil moisture, root zone soil moisture, and leaf area index (LAI). We run this LDAS to generate a global ecohydrological land surface reanalysis product. In this presentation, we will demonstrate how useful this new reanalysis product is to monitor and analyze the historical mega-droughts. In addition, using the analyses of soil moistures and LAI as initial conditions, we can forecast the ecological and hydrological conditions in the middle of droughts. We will present our recent effort to develop a near real time ecohydrological drought monitoring and prediction system in Africa by combining the LDAS and the atmospheric seasonal prediction.

  1. Predicted Infiltration for Sodic/Saline Soils from Reclaimed Coastal Areas: Sensitivity to Model Parameters

    PubMed Central

    She, Dongli; Yu, Shuang'en; Shao, Guangcheng

    2014-01-01

    This study was conducted to assess the influences of soil surface conditions and initial soil water content on water movement in unsaturated sodic soils of reclaimed coastal areas. Data was collected from column experiments in which two soils from a Chinese coastal area reclaimed in 2007 (Soil A, saline) and 1960 (Soil B, nonsaline) were used, with bulk densities of 1.4 or 1.5 g/cm3. A 1D-infiltration model was created using a finite difference method and its sensitivity to hydraulic related parameters was tested. The model well simulated the measured data. The results revealed that soil compaction notably affected the water retention of both soils. Model simulations showed that increasing the ponded water depth had little effect on the infiltration process, since the increases in cumulative infiltration and wetting front advancement rate were small. However, the wetting front advancement rate increased and the cumulative infiltration decreased to a greater extent when θ 0 was increased. Soil physical quality was described better by the S parameter than by the saturated hydraulic conductivity since the latter was also affected by the physical chemical effects on clay swelling occurring in the presence of different levels of electrolytes in the soil solutions of the two soils. PMID:25197699

  2. Predicted infiltration for sodic/saline soils from reclaimed coastal areas: sensitivity to model parameters.

    PubMed

    Liu, Dongdong; She, Dongli; Yu, Shuang'en; Shao, Guangcheng; Chen, Dan

    2014-01-01

    This study was conducted to assess the influences of soil surface conditions and initial soil water content on water movement in unsaturated sodic soils of reclaimed coastal areas. Data was collected from column experiments in which two soils from a Chinese coastal area reclaimed in 2007 (Soil A, saline) and 1960 (Soil B, nonsaline) were used, with bulk densities of 1.4 or 1.5 g/cm(3). A 1D-infiltration model was created using a finite difference method and its sensitivity to hydraulic related parameters was tested. The model well simulated the measured data. The results revealed that soil compaction notably affected the water retention of both soils. Model simulations showed that increasing the ponded water depth had little effect on the infiltration process, since the increases in cumulative infiltration and wetting front advancement rate were small. However, the wetting front advancement rate increased and the cumulative infiltration decreased to a greater extent when θ₀ was increased. Soil physical quality was described better by the S parameter than by the saturated hydraulic conductivity since the latter was also affected by the physical chemical effects on clay swelling occurring in the presence of different levels of electrolytes in the soil solutions of the two soils.

  3. Biological Soil Crusts: Webs of Life in the Desert

    USGS Publications Warehouse

    Belnap, Jayne

    2001-01-01

    Although the soil surface may look like dirt to you, it is full of living organisms that are a vital part of desert ecosystems. This veneer of life is called a biological soil crust. These crusts are found throughout the world, from hot deserts to polar regions. Crusts generally cover all soil spaces not occupied by green plants. In many areas, they comprise over 70% of the living ground cover and are key in reducing erosion, increasing water retention, and increasing soil fertility. In most dry regions, these crusts are dominated by cyanobacteria (previously called blue-green algae), which are one of the oldest known life forms. Communities of soil crusts also include lichens, mosses, microfungi, bacteria, and green algae. These living organisms and their by-products create a continuous crust on the soil surface. The general color, surface appearance, and amount of coverage of these crusts vary depending on climate and disturbance patterns. Immature crusts are generally flat and the color of the soil, which makes them difficult to distinguish from bare ground. Mature crusts, in contrast, are usually bumpy and dark-colored due to the presence of lichens, mosses, and high densities of cyanobacteria and other organisms.

  4. Agricultural Practice and Regional Climate Interactions in a Coupled Land Surface Mesoscale Model

    NASA Astrophysics Data System (ADS)

    Cooley, H. S.; Riley, W. J.; Torn, M. S.

    2003-12-01

    Regional climate affects the timing of harvest for rain-fed crops. In response to dry conditions, for example, farmers may harvest crops earlier than they do under wet conditions. This removal of vegetation alters the land surface characteristics and may, in turn, affect regional climate conditions. We studied the dynamic relationship between land use practice, i.e. winter wheat harvest, and regional climate by applying a coupled climate (MM5) and land-surface (LSM1) model to the ARM-CART region of the Southern Great Plains. We compared early and late harvest scenarios, with winter wheat harvested on June 5 and July 5, respectively. Winter wheat is grown in a fairly uniform belt that accounts for 20% of the total land area over the domain of the ARM-CART. Results showed that harvest dramatically affects energy, momentum, and water fluxes. Regionally-averaged, 2 m air temperatures were 0.5-1\\deg C warmer in the early- compared to late-harvest case, with peak warming of 5\\deg C centered over the harvested area. Soils in the harvested area were drier and warmer in the top 10 cm. Near-surface soil water-filled pore space was reduced by 7% across the region, with a peak drying of 22% centered over the harvested area. Soils were up to 10\\deg C warmer, with area-averaged warming of ~0.6\\deg C at mid-day two weeks after harvest. Differences between scenarios were greatest during an initial two-week dry period. A subsequent wet period greatly reduced these differences.

  5. Impact of Exposure to Pressure of 50 MPa on the Specific Surface Area of Clay

    NASA Astrophysics Data System (ADS)

    Koszela-Marek, Ewa

    2017-12-01

    The paper presents results of laboratory tests conducted to determine the impact of pressure of 50 MPa on specific surface area of clay. These tests were carried out in an original, high-pressure test stand. The specific surface area of clay extracted directly from an open pit mine was compared with the specific surface area of the same clay subjected to the pressure of 50 MPa in a high-pressure chamber. The study found that the specific surface area of the clay subjected to the pressure of 50 MPa increased distinctly by over 35 %. The increase in specific surface can be a result of changes in the microstructure of clay particles and microstructural alteration in the soil skeleton, caused by the pressure.

  6. Inoculation of soil native cyanobacteria to restore arid degraded soils

    NASA Astrophysics Data System (ADS)

    Raúl Román Fernández, José; Roncero Ramos, Beatriz; Chamizo de la Piedra, Sonia; Rodríguez Caballero, Emilio; Ángeles Muñoz Martín, M.; Mateo, Pilar; Cantón Castilla, Yolanda

    2017-04-01

    Restoration projects in semiarid lands often yield poor results. Water scarcity, low soil fertility, and poor soil structure strongly limit the survival and growth of planted seedlings in these areas. Under these conditions, a previous stage that improves edaphic conditions would turn out to a successful plant restoration. By successfully colonizing arid soils, cyanobacteria naturally provide suitable edaphic conditions, enhancing water availability, soil fertility and soil stability. Furthermore, cyanobacteria can be easily isolated and cultured ex-situ to produce high quantities of biomass, representing a potential tool to restore large areas efficiently. The objective of this study was to test the effect of inoculated cyanobacteria on degraded soils at three different semiarid areas from southeast Spain: Tabernas badlands, a limestone quarry located in Gádor, and grazed grassland in Las Amoladeras (Cabo de Gata). Soil native cyanobacteria belonging to three representative N-fixing genera (Nostoc, Scytonema and Tolypothrix) were isolated from such soils and cultured in BG110 medium. Each strain was inoculated (6 g m-2), separately and mixed (all in the same proportion), on Petri dishes with 80 g of each soil. Biocrust development was monitored during 3 months in these soils under laboratory conditions, at a constant temperature of 25oC. During the experiment, two irrigation treatments were applied simulating a dry (180 mm) and a wet (360 mm) rainfall year (average recorded in the study sites). After 3 months, net CO2 flux, spectral response and soil surface microtopography (1 mm spatial resolution) of inoculated and control soils was measured under wet conditions, all of them as a surrogate of biocrust development. Samples of the surface crust were collected in order to determine total soil organic carbon (SOC) content. The inoculated soils showed positive values of net CO2 flux, thus indicating a net CO2 uptake, whereas control soils showed CO2 fluxes closed to zero. This higher CO2 fixation in the inoculated soils was reflected in the higher SOC content found in these soils with respect to the non-inoculated soils. Soil surface roughness increased with biocrust development in the inoculated soils as compared to control soils. From the different treatments, soil inoculation with the mixture of the three strains promoted the highest SOC contents and absorbance at 680 nm (indicative of higher chlorophyll a content) on the three soil types. Therefore, using a consortium of cyanobacteria to inoculate degraded soils seems to be a more promising strategy to restore soils than inoculating individual species. Finally, differences between irrigation treatments were no significant, suggesting that water availability was not a key driver for cyanobacteria development under control laboratory conditions. Our results underline the viability of cyanobacteria inoculation to form an artificial developed biocrust that contribute to CO2 uptake and increase soil fertility which could facilitate further plant cover establishment. However, more studies are necessaries to test the effectiveness of inoculated crust development under field conditions.

  7. Mapping Soil Organic Carbon Resources Across Agricultural Land Uses in Highland Lesotho Using High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Knight, J.; Adam, E.

    2015-12-01

    Mapping spatial patterns of soil organic carbon (SOC) using high resolution satellite imagery is especially important in inaccessible or upland areas that have limited field measurements, where land use and land cover (LULC) are changing rapidly, or where the land surface is sensitive to overgrazing and high rates of soil erosion and thus sediment, nutrient and carbon export. Here we outline the methods and results of mapping soil organic carbon in highland areas (~2400 m) of eastern Lesotho, southern Africa, across different land uses. Bedrock summit areas with very thin soils are dominated by xeric alpine grassland; terrace agriculture with strip fields and thicker soils is found within river valleys. Multispectral Worldview 2 imagery was used to map LULC across the region. An overall accuracy of 88% and kappa value of 0.83 were achieved using a support vector machine model. Soils were examined in the field from different LULC areas for properties such as soil depth, maturity and structure. In situ soils in the field were also evaluated using a portable analytical spectral device (ASD) in order to ground truth spectral signatures from Worldview. Soil samples were examined in the lab for chemical properties including organic carbon. Regression modeling was used in order to establish a relationship between soil characteristics and soil spectral reflectance. We were thus able to map SOC across this diverse landscape. Results show that there are notable differences in SOC between upland and agricultural areas which reflect both soil thickness and maturity, and land use practices such as manuring of fields by cattle. Soil erosion and thus carbon (nutrient) export is significant issue in this region, which this project will now be examining.

  8. [Distribution of Urban Soil Heavy Metal and Pollution Evaluation in Different Functional Zones of Yinchuan City].

    PubMed

    Wang, You-qi; Bai, Yi-ru; Wang, Jian-yu

    2016-02-15

    Surface soil samples (0-20 cm) from eight different functional areas in Yinchuan city were collected. There were 10 samples respectively in each functional area. The urban soil heavy metals (Zn, Cd, Pb, Mn, Cu and Cr) pollution characteristics and sources in eight different functional areas were evaluated by mathematical statistics and geostatistical analysis method. Meanwhile, the spatial distributions of heavy metals based on the geography information system (GIS) were plotted. The average values of total Zn, Cd, Pb, Mn, Cu and Cr were 74.87, 0.15, 29.02, 553.55, 40.37 and 80.79 mg x kg(-1), respectively. The results showed that the average value of soil heavy metals was higher than the soil background value of Ningxia, which indicated accumulation of the heavy metals in urban soil. The single factor pollution index of soil heavy metals was in the sequence of Cu > Pb > Zn > Cr > Cd > Mn. The average values of total Zn, Cd, Pb and Cr were higher in north east, south west and central city, while the average values of Mn and Cu were higher in north east and central city. There was moderate pollution in road and industrial area of Yinchuan, while the other functional areas showed slight pollution according to Nemoro synthesis index. The pollution degree of different functional areas was as follows: road > industrial area > business district > medical treatment area > residential area > public park > development zone > science and education area. The results indicated that the soil heavy metal pollution condition in Yinchuan City has been affected by human activities with the development of economy.

  9. A point-infiltration model for estimating runoff from rainfall on small basins in semiarid areas of Wyoming

    USGS Publications Warehouse

    Rankl, James G.

    1990-01-01

    A physically based point-infiltration model was developed for computing infiltration of rainfall into soils and the resulting runoff from small basins in Wyoming. The user describes a 'design storm' in terms of average rainfall intensity and storm duration. Information required to compute runoff for the design storm by using the model include (1) soil type and description, and (2) two infiltration parameters and a surface-retention storage parameter. Parameter values are tabulated in the report. Rainfall and runoff data for three ephemeral-stream basins that contain only one type of soil were used to develop the model. Two assumptions were necessary: antecedent soil moisture is some long-term average, and storm rainfall is uniform in both time and space. The infiltration and surface-retention storage parameters were determined for the soil of each basin. Observed rainstorm and runoff data were used to develop a separation curve, or incipient-runoff curve, which distinguishes between runoff and nonrunoff rainfall data. The position of this curve defines the infiltration and surface-retention storage parameters. A procedure for applying the model to basins that contain more than one type of soil was developed using data from 7 of the 10 study basins. For these multiple-soil basins, the incipient-runoff curve defines the infiltration and retention-storage parameters for the soil having the highest runoff potential. Parameters were defined by ranking the soils according to their relative permeabilities and optimizing the position of the incipient-runoff curve by using measured runoff as a control for the fit. Analyses of runoff from multiple-soil basins indicate that the effective contributing area of runoff is less than the drainage area of the basin. In this study, the effective drainage area ranged from 41.6 to 71.1 percent of the total drainage area. Information on effective drainage area is useful in evaluating drainage area as an independent variable in statistical analyses of hydrologic data, such as annual peak frequency distributions and sediment yield.A comparison was made of the sum of the simulated runoff and the sum of the measured runoff for all available records of runoff-producing storms in the 10 study basins. The sums of the simulated runoff ranged from 12.0 percent less than to 23.4 percent more than the sums of the measured runoff. A measure of the standard error of estimate was computed for each data set. These values ranged from 20 to 70 percent of the mean value of the measured runoff. Rainfall-simulator infiltrometer tests were made in two small basins. The amount of water uptake measured by the test in Dugout Creek tributary basin averaged about three times greater than the amount of water uptake computed from rainfall and runoff data. Therefore, infiltrometer data were not used to determine infiltration rates for this study.

  10. Postfire soil erosion processes are conditioned by aridity

    NASA Astrophysics Data System (ADS)

    Jordán, Antonio; Zavala, Lorena M.; Gordillo-Rivero, Ángel J.; Muñoz-Rojas, Miriam; Keesstra, Saskia; Cerdà, Artemi

    2017-04-01

    In this work we have studied the runoff and rate of erosion in severely burnt Mediterranean shrublands of southern Spain by simulating high intensity rainfall over a period of 5 years. We have also observed temporal changes in soil surface properties (0-10 mm) of two scrub areas in different years. In both cases, surface runoff increased appreciably during the first year after the fire, compared to burning bushes in more rainy areas. Although differences in the rate of infiltration (determined by a mini-disk infiltrometer with ethanol, to avoid the effect of hydrophobicity) were observed, the increase in the rate of runoff was related to the increase of water repellency in the first millimeters of the soil surface, regardless of other physical properties (texture or percentage of rock fragments), chemical (acidity, organic matter content) or fire severity. Sediment loss was also exceptionally high during the first year. Then, runoff and soil loss rates were progressively approaching the values observed in the control zones. However, most of the physical and chemical properties of the soil after the fire did not change during the post-fire period, suggesting erosion of sediment depletion. No large differences were observed between the study points along the precipitation gradient, suggesting that, independently of this and other factors, the impact of high severity fires can be long over time. Although other authors have shown that relatively small changes in aridity have great impacts on erosion processes, this does not seem to be valid in the case of high severity fires in Mediterranean areas.

  11. Evaluation of a Soil Moisture Data Assimilation System Over West Africa

    NASA Astrophysics Data System (ADS)

    Bolten, J. D.; Crow, W.; Zhan, X.; Jackson, T.; Reynolds, C.

    2009-05-01

    A crucial requirement of global crop yield forecasts by the U.S. Department of Agriculture (USDA) International Production Assessment Division (IPAD) is the regional characterization of surface and sub-surface soil moisture. However, due to the spatial heterogeneity and dynamic nature of precipitation events and resulting soil moisture, accurate estimation of regional land surface-atmosphere interactions based sparse ground measurements is difficult. IPAD estimates global soil moisture using daily estimates of minimum and maximum temperature and precipitation applied to a modified Palmer two-layer soil moisture model which calculates the daily amount of soil moisture withdrawn by evapotranspiration and replenished by precipitation. We attempt to improve upon the existing system by applying an Ensemble Kalman filter (EnKF) data assimilation system to integrate surface soil moisture retrievals from the NASA Advanced Microwave Scanning Radiometer (AMSR-E) into the USDA soil moisture model. This work aims at evaluating the utility of merging satellite-retrieved soil moisture estimates with the IPAD two-layer soil moisture model used within the DBMS. We present a quantitative analysis of the assimilated soil moisture product over West Africa (9°N- 20°N; 20°W-20°E). This region contains many key agricultural areas and has a high agro- meteorological gradient from desert and semi-arid vegetation in the North, to grassland, trees and crops in the South, thus providing an ideal location for evaluating the assimilated soil moisture product over multiple land cover types and conditions. A data denial experimental approach is utilized to isolate the added utility of integrating remotely-sensed soil moisture by comparing assimilated soil moisture results obtained using (relatively) low-quality precipitation products obtained from real-time satellite imagery to baseline model runs forced with higher quality rainfall. An analysis of root-zone anomalies for each model simulation suggests that the assimilation of AMSR-E surface soil moisture retrievals can add significant value to USDA root-zone predictions derived from real-time satellite precipitation products.

  12. Organic matter composition of soil macropore surfaces under different agricultural management practices

    NASA Astrophysics Data System (ADS)

    Glæsner, Nadia; Leue, Marin; Magid, Jacob; Gerke, Horst H.

    2016-04-01

    Understanding the heterogeneous nature of soil, i.e. properties and processes occurring specifically at local scales is essential for best managing our soil resources for agricultural production. Examination of intact soil structures in order to obtain an increased understanding of how soil systems operate from small to large scale represents a large gap within soil science research. Dissolved chemicals, nutrients and particles are transported through the disturbed plow layer of agricultural soil, where after flow through the lower soil layers occur by preferential flow via macropores. Rapid movement of water through macropores limit the contact between the preferentially moving water and the surrounding soil matrix, therefore contact and exchange of solutes in the water is largely restricted to the surface area of the macropores. Organomineral complex coated surfaces control sorption and exchange properties of solutes, as well as availability of essential nutrients to plant roots and to the preferentially flowing water. DRIFT (Diffuse Reflectance infrared Fourier Transform) Mapping has been developed to examine composition of organic matter coated macropores. In this study macropore surfaces structures will be determined for organic matter composition using DRIFT from a long-term field experiment on waste application to agricultural soil (CRUCIAL, close to Copenhagen, Denmark). Parcels with 5 treatments; accelerated household waste, accelerated sewage sludge, accelerated cattle manure, NPK and unfertilized, will be examined in order to study whether agricultural management have an impact on the organic matter composition of intact structures.

  13. Integrated Processing of High Resolution Topographic Data for Soil Erosion Assessment Considering Data Acquisition Schemes and Surface Properties

    NASA Astrophysics Data System (ADS)

    Eltner, A.; Schneider, D.; Maas, H.-G.

    2016-06-01

    Soil erosion is a decisive earth surface process strongly influencing the fertility of arable land. Several options exist to detect soil erosion at the scale of large field plots (here 600 m²), which comprise different advantages and disadvantages depending on the applied method. In this study, the benefits of unmanned aerial vehicle (UAV) photogrammetry and terrestrial laser scanning (TLS) are exploited to quantify soil surface changes. Beforehand data combination, TLS data is co-registered to the DEMs generated with UAV photogrammetry. TLS data is used to detect global as well as local errors in the DEMs calculated from UAV images. Additionally, TLS data is considered for vegetation filtering. Complimentary, DEMs from UAV photogrammetry are utilised to detect systematic TLS errors and to further filter TLS point clouds in regard to unfavourable scan geometry (i.e. incidence angle and footprint) on gentle hillslopes. In addition, surface roughness is integrated as an important parameter to evaluate TLS point reliability because of the increasing footprints and thus area of signal reflection with increasing distance to the scanning device. The developed fusion tool allows for the estimation of reliable data points from each data source, considering the data acquisition geometry and surface properties, to finally merge both data sets into a single soil surface model. Data fusion is performed for three different field campaigns at a Mediterranean field plot. Successive DEM evaluation reveals continuous decrease of soil surface roughness, reappearance of former wheel tracks and local soil particle relocation patterns.

  14. INTERIM REPORT--INDEPENDENT VERIFICATION SURVEY OF SECTION 3, SURVEY UNITS 1, 4 AND 5 EXCAVATED SURFACES, WHITTAKER CORPORATION, REYNOLDS INDUSTRIAL PARK, TRANSFER, PENNSYLVANIA DCN: 5002-SR-04-0"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ADAMS, WADE C

    At Pennsylvania Department of Environmental Protection's request, ORAU's IEAV program conducted verification surveys on the excavated surfaces of Section 3, SUs 1, 4, and 5 at the Whittaker site on March 13 and 14, 2013. The survey activities included visual inspections, gamma radiation surface scans, gamma activity measurements, and soil sampling activities. Verification activities also included the review and assessment of the licensee's project documentation and methodologies. Surface scans identified four areas of elevated direct gamma radiation distinguishable from background; one area within SUs 1 and 4 and two areas within SU5. One area within SU5 was remediated by removingmore » a golf ball size piece of slag while ORAU staff was onsite. With the exception of the golf ball size piece of slag within SU5, a review of the ESL Section 3 EXS data packages for SUs 1, 4, and 5 indicated that these locations of elevated gamma radiation were also identified by the ESL gamma scans and that ESL personnel performed additional investigations and soil sampling within these areas. The investigative results indicated that the areas met the release criteria.« less

  15. The SWEX at the area of Eastern Poland: Comparison of soil moisture obtained from ground measurements and SMOS satellite data*

    NASA Astrophysics Data System (ADS)

    Usowicz, J. B.; Marczewski, W.; Usowicz, B.; Lukowski, M. I.; Lipiec, J.; Slominski, J.

    2012-04-01

    Soil moisture, together with soil and vegetation characteristics, plays an important role in exchange of water and energy between the land surface and the atmospheric boundary layer. Accurate knowledge of current and future spatial and temporal variation in soil moisture is not well known, nor easy to measure or predict. Knowledge of soil moisture in surface and root zone soil moisture is critical for achieving sustainable land and water management. The importance of SM is so high that this ECV is recommended by GCOS (Global Climate Observing System) to any attempts of evaluating of effects the climate change, and therefore it is one of the goals for observing the Earth by the ESA SMOS Mission (Soil Moisture and Ocean Salinity), globally. SMOS provides its observations by means of the interferometric radiometry method (1.4 GHz) from the orbit. In parallel, ten ground based stations are kept by IA PAN, in area of the Eastern Wall in Poland, in order to validate SMOS data and for other ground based agrophysical purposes. Soil moisture measurements obtained from ground and satellite measurements from SMOS were compared using Bland-Altman method of agreement, concordance correlation coefficient (CCC) and total deviation index (TDI). Observed similar changes in soil moisture, but the values obtained from satellite measurements were lower. Minor differences between the compared data are at higher moisture contents of soil and they grow with decreasing soil moisture. Soil moisture trends are maintained in the individual stations. Such distributions of soil moisture were mainly related to soil type. * The work was financially supported in part by the ESA Programme for European Cooperating States (PECS), No.98084 "SWEX-R, Soil Water and Energy Exchange/Research", AO3275.

  16. How does vineyard management intensity affect inter-row plant diversity and associated root parameters

    NASA Astrophysics Data System (ADS)

    Winter, Silvia; Labuda, Thomas; Probus, Sandra; Penke, Nicole; Himmelbauer, Margarita; Loiskandl, Willibald; Strauss, Peter; Bauer, Thomas; Popescu, Daniela; Comsa, Maria; Bunea, Claudiu-Ioan; Zaller, Johann G.; Kriechbaum, Monika

    2017-04-01

    Vineyard management has changed dramatically in the last 50 years. In many wine-growing regions, vineyard inter-rows are kept clean of vegetation by frequent tillage or use of herbicides to establish bare soil systems. In the last thirty years, policy-makers and several winegrowers have realized that temporary or permanent vegetation cover between the vine rows may increase ecosystem services like soil erosion mitigation, soil fertility and biodiversity conservation. The inter-row area of a vineyard can host a diverse flora providing habitat and food resources for pollinating insects and natural enemies of pests. The goal of this study was to analyze the influence of different soil management intensities on plant diversity and root parameters in the vineyard inter-rows. We investigated 15 vineyards in Romania and 14 in Austria to study the effects of three different management intensities on plant diversity, above and below-ground plant biomass, total root length and surface area of roots. Management intensity ranged from bare soil inter-rows to alternative soil tillage every second year to permanent vegetation cover for more than five years. In each vineyard inter-row, six soil samples (7 cm diameter and 10 cm height) of the upper soil layer were extracted for root analyses. Root were separated from the soil, stained and finally scanned and analyzed with the WinRHIZO software. Finally, roots were dried at 70°C to obtain dry matter of the root samples. Vegetation cover and vascular plant diversity was recorded in four 1 m2 plots within each vineyard inter-row two times a year. The most intensive bare soil management regime in Romania significantly reduced root biomass, total root length and surface area in comparison to the alternative and permanent vegetation cover management. Plant biodiversity was also reduced by intensive management, but differences were not significant. While alternative tillage every second year showed the highest values of plant species diversity and functional richness, total root length, surface area and root biomass always showed the highest value in the vineyards with permanent vegetation cover. In Austria, the difference between temporary and permanent vegetation cover was much less pronounced than in Romania. The overall synthesis of these results combined with additional biodiversity datasets and soil parameters gathered within the transdisciplinary BiodivERsA project VineDivers will be used to draft management and policy recommendations for various stakeholder groups engaged in viticulture.

  17. Distribution of Heavy Metal Pollution in Surface Soil Samples in China: A Graphical Review.

    PubMed

    Duan, Qiannan; Lee, Jianchao; Liu, Yansong; Chen, Han; Hu, Huanyu

    2016-09-01

    Soil pollution in China is one of most wide and severe in the world. Although environmental researchers are well aware of the acuteness of soil pollution in China, a precise and comprehensive mapping system of soil pollution has never been released. By compiling, integrating and processing nearly a decade of soil pollution data, we have created cornerstone maps that illustrate the distribution and concentration of cadmium, lead, zinc, arsenic, copper and chromium in surficial soil across the nation. These summarized maps and the integrated data provide precise geographic coordinates and heavy metal concentrations; they are also the first ones to provide such thorough and comprehensive details about heavy metal soil pollution in China. In this study, we focus on some of the most polluted areas to illustrate the severity of this pressing environmental problem and demonstrate that most developed and populous areas have been subjected to heavy metal pollution.

  18. Soil organic carbon in Apolobamba (Bolivia): Quantity and quality of the reservoir

    NASA Astrophysics Data System (ADS)

    Muñoz, M. Á.; Faz, A.

    2009-04-01

    Global carbon cycle mainly depends on the soil organic matter (SOM). Some reducction of climatic impact techiques are related to the increase of the soil organic carbon (SOC) contents in order to elevate atmospherical carbon inputs. Kinetic mechanisms of the SOC are differents due to the complex interation between biological, physical and chemical processes in the soil. For a full understanding of the SOM contribution to the carbon cycle in the soil, the SOC contents should be addressed. The vicuna (Vicugna vicugna) is an endangered species which belongs to camelid family. Its natural habitat is located in highland grasses in the Andes Montain Range, above 4,000 m.a.s.l. In Bolivia the vicuna is distributed around some andean regions such as Apolobamba. It is a protected area located in the Northwest of Bolivia where native inhabitants carry out a sustainable management of the vicuna. This activity is considered within a programme to improve economical conditions in the area. The vicuna lives in the same habitat than other cattle camelid like alpaca (Lama pacos). The soil is an essential natural resource in the vicuna development and the biodiversity conservation due to its role to support the native vegetation in Apolobamba. The objectives of this research were: (i) the quantification of SOC contents, (ii) the study of the SOC quality and (iii) the determination of the soil degradation degree in some zones in Apolobamba. Eight zones or census places, separated areas with geographic accidents, with different vicuna and alpaca densities were selected: Ulla-Ulla and Killu (low density), Ucha-Ucha and Wakampata (medium density), Sucondori and Caballchiñuni (high density) and Puyo-Puyo and Japu (very high density). One soil profile was taken and three sampling plots were determined in each zone. Three sampling points were selected in each plot and surface (0-5 cm) and subsurface samples (5-15 cm) were collected. Total carbon, total organic carbon (TOC) and water soluble organic carbon (WSOC) were messure. In addition, 13C MNR technique was used in surface samples in each plot in order to determine the main carbonide groups: alkyl, O-alkyl, aromatic and carboxilic. Results were discussing through statistical analyses. Soil profile datas exhibited very low TOC in Ulla-Ulla zone including the surface horizon. Sampling plot results showed maximum TOC contents in Wakampata and Puyo-Puyo surface samples; on the other hand, Sucondori, Caballchiñuni and Ulla-Ulla presented minimum contents. Generally speaking, low and medium WSOC inputs were determined in surface and subsurface samples, respectively, in studied areas. Moreover, Wakampata and Japu zones presented high O-alkyl percentages; it could be related to highest polysacharide concentrations and the easiest SOM degradation, taking into account alkyl/O-alkyl ratios. On the contrary, Ulla-Ulla and Caballchiñuni exhibited highest carboxilic percentages pointing out a SOM oxidation increase. In conclusion, Apolobamba soils presented different SOC conditions. There were some zones which could be characterized as excellent carbon reservoirs due to high SOM quantity and quality; however, in other census places could be identify a certain soil exhaustion degree, as a consequence to the soil overexploitation due to the cattle camelid concentrations both the natural wind erosion in these zones. It should be carried out conservation actions in order to improve the carbon sink and to preserve the soil and the biodiversity in Apolobamba.

  19. Soil degassing at the Los Humeros geothermal field (Mexico)

    NASA Astrophysics Data System (ADS)

    Peiffer, Loïc; Carrasco-Núñez, Gerardo; Mazot, Agnès; Villanueva-Estrada, Ruth Esther; Inguaggiato, Claudio; Bernard Romero, Rubén; Rocha Miller, Roberto; Hernández Rojas, Javier

    2018-05-01

    The Los Humeros geothermal field is the third most important producer of geothermal electricity (70 MW) in Mexico. Geothermal fluids are hosted in fractured andesitic lavas and mostly consist of high enthalpy steam with limited water content (vapor fraction > 0.9). Despite the high reservoir temperature ( 300-400 °C), thermal manifestations at the surface are scarce and locally appear as steaming grounds, weak steam vents and advanced argillic alteration. Geothermal fluid upflow from the reservoir towards the surface is limited by welded ignimbrite deposits that act as a low-permeability barrier. In this study, we present the first measurements of CO2, CH4 and H2S degassing rates from the soil performed at Los Humeros. Flux measurements were complemented with δ13C composition of degassing CO2 and soil temperatures to discuss gas origin and thermal anomalies. We measured high soil degassing rates (up to 7530 g m-2 d-1 CO2, 33 g m-2 d-1 CH4 and 22 g m-2 d-1 H2S) in three localized areas (Humeros North - HN, Humeros South - HS and Xalapazco - XA) as well as high soil temperatures reaching the boiling temperature at the local altitude (90.6 °C). The particular location of these three areas suggests that the steam-dominated reservoir degases to the surface through permeable faults crossing the ignimbritic deposits. The remaining surveyed areas are characterized by weak CO2 fluxes (≤44 g m-2 d-1), non-detectable CH4 and H2S fluxes, and lower soil temperatures (5-21 °C). The compositions in δ13CCO2 from HN-HS-XA areas (δ13CCO2 = -7.94 to -2.73‰) reflect a magmatic source with some possible contribution from the sedimentary basement, as well as fractionation induced by boiling and CO2 dissolution in shallow water bodies. We also discuss the processes causing the spread in CO2/CH4 flux ratios. Finally, we estimate the heat output from the three high degassing areas to a value of 16.4 MWt.

  20. Digital Elevation Models of Differences (DODs): implementation for assessment of soil erosion on recreational trails.

    NASA Astrophysics Data System (ADS)

    Tomczyk, A.; Ewertowski, M.

    2012-04-01

    Introduction: Tourism's negative impact on protected mountain areas is one of the main concerns for land managers. The impact on the natural environment is the most visible at locations of highly concentrated activities such as tourist trails, campsites, etc. The main indicators of the tourist trail degradation are vegetation loss (trampling of vegetation cover), change of vegetation type and composition, trail widening, muddiness and soil erosion. The last one is especially significant, since it can cause serious transformation to the land surface. Such undesirable changes cannot be repaired without high-cost management activities and in some cases they can made the trails difficult and unsafe to use. The scientific understanding of soil erosion in relation to human impact can be useful for a more effective management of protected natural areas (PNAs). The main objectives of this study are: (1) to analyse the spatial aspect of surface changes in microscale; (2) to quantify precisely the short-term rate of soil loss and deposition. Study area and methods: To gather precise and objective elevation data, an electronic total station with microprism were used. Measurements were taken in 12 test fields, located in two protected natural areas in south Poland: the Gorce National Park and Popradzki Landscape Park. The measuring places were located on the trails characterized by different slope, types of vegetation, and types of use. Each of the test fields was established by four special marks, firmly dug into the ground. Five sessions of measurement was carried out for each test field: August/September 2008, June 2009, August/September 2009, June 2010, August/September 2010. Generated DEMs (based on field surveys' results) were subtracted from each other, and thus we obtained a spatial picture of the loss or deposition of soil in each cell of the model, from one survey session to another. The subtraction of DEMs from subsequent time periods (DEMs of Difference - DoDs gave the amount of soil which was transported within the test fields and showed the spatial distribution of earth-surface changes as well. Results: The use of precise elevation data provided by the electronic total station and DEMs of Difference allows us to assess the volume of the surface changes. Spatial and temporal analyses of transformations on the trail surfaces revealed that the changes were not evenly distributed neither in time nor space. During a two-year period (2008-2010), soil loss dominated within 10 test fields, while a predominance of deposition was recorded for the remaining two. The avenger net volumetric change of the trail surface varied from -0.035 m3/m2 per year to +0.005 m3/m2 per year. Short-term dynamic was high and several test fields had a positive balance (predominance of deposition) in one period and negative balance (predominance of soil loss) in the next period.

  1. Intensity and duration of chemical weathering: An example from soil clays of the southeastern Koolau Mountains, Oahu, Hawaii

    USGS Publications Warehouse

    Johnsson, Mark J.; Ellen, Stephen D.; McKittrick, Mary Anne

    1993-01-01

    Orographic precipitation on the southern flank of the southeastern Koolau Mountains produces a pronounced precipitation gradient. The corresponding gradient in the intensity of the chemical weathering environment provides an opportunity to address the effects of varying chemical weathering intensity on the composition of clay-size weathering products in soils developed on basalt. In addition, little-modified remnants of the constructional surface of the Koolau Volcano, isolated by stream dissection, remain as facets on the southern ends of the parallel ridges of the study area. By comparing clay mineralogy of soils developed on these older geomorphic surfaces with those developed on the younger sharp-crested ridges and steep side slopes, the effects of weathering duration on clay mineralogy can also be addressed.Soil clays in this part of the Koolau Mountains are mineralogically complex; principal phases include smectite, kaolinite, and halloysite, but pure end member phases are uncommon. Rather, most phases contain some amount of mixed layering. Smectite may contain small (<5%) amounts of randomly interstratified halloysite. Similarly, kaolinite commonly contains a small proportion of halloysite interlayers. A complex halloysitic phase shows evidence of interstratification with both smectite and kaolinite. Nonphyllosilicates found in the clay fraction include gibbsite, goethite, rare quartz, and perhaps cristobalite.The gradient in precipitation is reflected in soil clay mineralogy by varying proportions of dominantly smectitic, kaolinitic, and halloysitic phases. In regions of relatively low precipitation (<2,000 mm/yr), soils are dominated by the smectitic and halloysitic phases. With increased precipitation (as much as ∼4,000 mm/yr), kaolinitic and halloysitic phases become the dominant clay minerals, and goethite and gibbsite become increasingly abundant.Older soils developed on geomorphic surfaces representing the original constructional surface of Koolau Volcano are markedly more leached than those from younger landscapes in the same precipitation regime. Although smectite may be present, kaolinite is the dominant phase, and accumulations of Fe and Ti occur in the uppermost soil levels. Enrichment of Zr and Ti in these soils, as compared to concentrations in the original basaltic parent material, indicates that as much as 75% of the parent material has been lost. Thus weathering duration may affect soil clay composition in the same way as weathering intensity.Because smectite and halloysite are expandable clay minerals, their presence in soils may decrease slope stability and influence the nature of slope processes. Soil avalanches occur on steep slopes throughout the study area, whereas slow-moving landslides appear to be restricted to gentler slopes in drier parts of the study area where smectite is abundant. The clay mineralogy of soils thus appears to influence the nature of slope processes in the southeastern Koolau Mountains.

  2. Chloropicrin emission reduction by soil amendment with biochar

    USDA-ARS?s Scientific Manuscript database

    Biochar is the carbon-enriched and porous material produced by heating organic material under conditions of limited or no oxygen. As biochar has a large surface area and strong sorption capacity, it can enhance the sequestration of organic contaminants such as pesticides in soil. Chloropicrin (CP) i...

  3. Modeling runoff generation in a small snow-dominated mountainous catchment

    USDA-ARS?s Scientific Manuscript database

    Snowmelt in mountainous areas is an important contributor to river water flows in the western United States. We developed a distributed model that calculates solar radiation, canopy energy balance, surface energy balance, snow pack dynamics, soil water flow, snow–soil–bedrock heat exchange, soil wat...

  4. Surface pavement solutions for poor subgrade conditions phase II : performance analysis of test sections and implementation guidelines : summary.

    DOT National Transportation Integrated Search

    2010-12-01

    Several areas within FDOT Districts 4 and 6 contain thick layers of organic soils at relatively shallow depths. Roads built on these soft compressible soils : often develop premature cracking, distortion, and settlement. Traditional repair methods, s...

  5. Detecting the Spatio-temporal Distribution of Soil Salinity and Its Relationship to Crop Growth in a Large-scale Arid Irrigation District Based on Sampling Experiment and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Ren, D.; Huang, G., Sr.; Xu, X.; Huang, Q., Sr.; Xiong, Y.

    2016-12-01

    Soil salinity analysis on a regional scale is of great significance for protecting agriculture production and maintaining eco-environmental health in arid and semi-arid irrigated areas. In this study, the Hetao Irrigation District (Hetao) in Inner Mongolia Autonomous Region, with suffering long-term soil salinization problems, was selected as the case study area. Field sampling experiments and investigations related to soil salt contents, crop growth and yields were carried out across the whole area, during April to August in 2015. Soil salinity characteristics in space and time were systematically analyzed for Hetao as well as the corresponding impacts on crops. Remotely sensed map of soil salinity distribution for surface soil was also derived based on the Landsat OLI data with a 30 m resolution. The results elaborated the temporal and spatial dynamics of soil salinity and the relationships with irrigation, groundwater depth and crop water consumption in Hetao. In addition, the strong spatial variability of salinization was clearly presented by the remotely sensed map of soil salinity. Further, the relationship between soil salinity and crop growth was analyzed, and then the impact degrees of soil salinization on cropping pattern, leaf area index, plant height and crop yield were preliminarily revealed. Overall, this study can provide very useful information for salinization control and guide the future agricultural production and soil-water management for the arid irrigation districts analogous to Hetao.

  6. Assessing and monitoring soil quality at agricultural waste disposal areas-Soil Indicators

    NASA Astrophysics Data System (ADS)

    Doula, Maria; Kavvadias, Victor; Sarris, Apostolos; Lolos, Polykarpos; Liakopoulou, Nektaria; Hliaoutakis, Aggelos; Kydonakis, Aris

    2014-05-01

    The necessity of elaborating indicators is one of the priorities identified by the United Nations Convention to Combat Desertification (UNCCD). The establishment of an indicator monitoring system for environmental purposes is dependent on the geographical scale. Some indicators such as rain seasonality or drainage density are useful over large areas, but others such as soil depth, vegetation cover type, and land ownership are only applicable locally. In order to practically enhance the sustainability of land management, research on using indicators for assessing land degradation risk must initially focus at local level because management decisions by individual land users are taken at this level. Soils that accept wastes disposal, apart from progressive degradation, may cause serious problems to the surrounding environment (humans, animals, plants, water systems, etc.), and thus, soil quality should be necessarily monitored. Therefore, quality indicators, representative of the specific waste type, should be established and monitored periodically. Since waste composition is dependent on their origin, specific indicators for each waste type should be established. Considering agricultural wastes, such a specification, however, could be difficult, since almost all agricultural wastes are characterized by increased concentrations of the same elements, namely, phosphorous, nitrogen, potassium, sulfur, etc.; contain large amounts of organic matter; and have very high values of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and electrical conductivity. Two LIFE projects, namely AgroStrat and PROSODOL are focused on the identification of soil indicators for the assessment of soil quality at areas where pistachio wastes and olive mill wastes are disposed, respectively. Many soil samples were collected periodically for 2 years during PROSODOL and one year during AgroStrat (this project is in progress) from waste disposal areas and analyzed for 23 parameters. Results indicate that there are soil parameters that can be used as indictors to assess soil quality at such areas. For the two cases, i.e pistachio wastes and olive oil mill wastes, different soil parameters were identified as potential indicators. In specific, for OMW the proposed indicators are: organic matter, electrical conductivity, total N, total polyphenols, exchangeable K, DTPA-available Fe, available P and pH (for the cases of acid soils). For pistachio wastes, it seems that the most appropriate indictors are: organic matter, electrical conductivity, exchangeable Mg, DTPA-available Fe, DTPA-available Cu, available B. A monitoring system was developed which may assist authorities and policy makers to continuously monitor the disposal areas or areas where wastes are used for fertilization/irrigation. For this, soil parameters were mapped with respect to the depth, date and temporal variations of their spatial distribution (spatial surfaces). Interpolated surfaces based on the Inverse Distance Weighted method (IDW) were created and integrated within a geospatial web based map application tool.

  7. Biogeochemical study of termite mounds: a case study from Tummalapalle area of Andhra Pradesh, India.

    PubMed

    Arveti, Nagaraju; Reginald, S; Kumar, K Sunil; Harinath, V; Sreedhar, Y

    2012-04-01

    Termite mounds are abundant components of Tummalapalle area of uranium mineralization of Cuddapah District of Andhra Pradesh, India. The systematic research has been carried out on the application of termite mound sampling to mineral exploration in this region. The distribution of chemical elements Cu, Pb, Zn, Ni, Co, Cr, Li, Rb, Sr, Ba, and U were studied both in termite soils and adjacent surface soils. Uranium accumulations were noticed in seven termite mounds ranging from 10 to 36 ppm. A biogeochemical parameter called "Biological Absorption Coefficient" of the termite mounds indicated the termite affected soils contained huge amounts of chemical elements than the adjacent soils.

  8. Hillslope-Riparian-Streamflow Interactions in a Discontinuous Permafrost Alpine Environment

    NASA Astrophysics Data System (ADS)

    Carey, S. K.

    2004-12-01

    Hillslope-riparian-streamflow interactions are poorly characterized in mountainous discontinuous permafrost environments. Permafrost underlain soils have a distinct soil profile, characterized by thick near-surface organic horizons atop ice-rich mineral substrates, whereas slopes without permafrost have thinner or absent organic soils overlying well drained mineral horizons. Riparian areas occur at the base of both seasonally frozen and permafrost slopes, yet a stronger hydrologic and soil transition occurs at slope bases with only seasonal frost. In a subarctic alpine catchment within the Wolf Creek Research Basin, Yukon, Canada, experiments were conducted between 2001 and 2003 to evaluate linkages along the slope-riparian-stream continuum during melt and post-melt periods. Water table, hydraulic head, stable isotope (d2H, d18O) and simple geochemical (pH, SpC, DOC) data were collected along transects during melt and summer periods. In soils with only seasonal frost, there was a downward piezometric gradient in slopes and upward gradient in riparian areas during melt. In contrast, permafrost soils did not show a recharge/discharge gradient between the slope and riparian zone. DOC declined and SpC increased with depth at all sites during melt. DOC was lower in riparian zones and areas without organic soils. SpC declined in soils as dilute meltwater entered the soil, yet it was difficult to establish spatial relations due to differences in melt timing. The similarity in stable isotope composition among sites indicated that the slopes were well flushed with snowmelt water to depth. DOC in streamflow was greatest on the ascending freshet hydrograph, and declined rapidly following melt. Streamflow SpC declined dramatically in response to dilute meltwater inputs and a decline in stream pH indicates flowpaths through organic horizons. Following melt, DOC concentrations declined rapidly in both slopes and riparian areas. In summer, water tables lowered in seasonally frozen slopes, yet an upward hydraulic gradient and near-surface water table was maintained in the riparian area. In permafrost slopes, water tables fell into mineral soils, increasing SpC and reducing DOC. Riparian water tables remained high and DOC was greater than the seasonally frozen soils, yet riparian zone hydraulic gradient reversed suggesting a small recharge gradient. In permafrost soil, riparian zone DOC was an order of magnitude higher than seasonally frozen riparian zones, which had DOC concentrations similar to streamflow. The similarity in stable isotope ratios among sites throughout the summer indicated that soil waters were dominated by water supplied during melt period. Rainfall waters had little long-term effect on slope and riparian isotopic ratios. Mixing analysis of geochemical and isotopic parameters indicates that during melt, most water was supplied via near surface organic layers, whereas later in the year, subsurface pathways predominated. Permafrost slope-riparian zones have a different hydraulic and geochemical interaction than seasonally frozen ones, yet their respective contribution to streamflow during different times of the year remains unclear at this time.

  9. Arsenic and metallic trace elements cycling in the surface water-groundwater-soil continuum down-gradient from a reclaimed mine area: Isotopic imprints

    NASA Astrophysics Data System (ADS)

    Khaska, Mahmoud; Le Gal La Salle, Corinne; Sassine, Lara; Cary, Lise; Bruguier, Olivier; Verdoux, Patrick

    2018-03-01

    One decade after closure of the Salsigne mine (SW France), As contamination persisted in surface water, groundwater and soil near and down-gradient from the reclaimed ore processing site (OPS). We assess the fate of As and other associated chalcophilic MTEs, and their transport in the surface-water/groundwater/soil continuum down-gradient from the reclaimed OPS, using Sr-isotopic fingerprinting. The Sr-isotope ratio was used as a tracer of transfer processes in this hydro-geosystem and was combined to sequential extraction of soil samples to evaluate the impact of contaminated soil on the underlying phreatic groundwater. The contrast in Sr isotope compositions of the different soil fractions reflects several Sr sources in the soil. In the complex hydro-geosystem around the OPS, the transport of As and MTEs is affected by a succession of factors, such as (1) Existence of a reducing zone in the aquifer below the reclaimed OPS, where groundwater shows relatively high As and MTEs contents, (2) Groundwater discharge into the stream near the reclaimed OPS causing an increase in As and MTE concentrations in surface water; (3) Partial co-precipitation of As with Fe-oxyhydroxides, contributing to some attenuation of As contents in surface water; (4) Infiltration of contaminated stream water into the unconfined aquifer down-gradient from the reclaimed OPS; (5) Accumulation of As and MTEs in soil irrigated with contaminated stream- and groundwater; (6) Release of As and MTEs from labile soil fractions to underlying the groundwater.

  10. Magnetic sorbents added to soil slurries lower Cr aqueous concentration

    NASA Astrophysics Data System (ADS)

    Aravantinos, Konstantinos; Isari, Ekavi; Karapanagioti, Hrissi K.; Manariotis, Ioannis D.; Werner, David

    2016-04-01

    Activated carbon (AC) acts as a strong binding agent that lowers the pollutant concentration and, thus its toxicity. Another promising sorbent material in environmental applications is biochar (BC) which is obtained from the incomplete combustion of carbon-rich biomass under oxygen-limited conditions. Both of these materials could be used as soil or sediment amendments that would lower the toxicity in the aqueous phase. A draw back of this technique is that although the pollutant will remain non- bioavailable for many years being sorbed into these sorbents, it actually stays into the system. The objective of this study was (a) to synthesize a magnetic powdered activated carbon (AC/Fe) and magnetic powdered biochar (BC/Fe) produced from a commercial AC sample and BC, respectively and (b) to evaluate the potential use of AC/Fe and BC/Fe to lower Cr concentration that desorb from two soils in their soil slurries. The two soil samples originate from the vicinity of a local metal shop. The BC was produced from olive pomace. The surface area, the pore volume, and the average pore size of each sorbent were determined using gas (N2) adsorption-desorption cycles and the Brunauer, Emmett, and Teller (BET) equation. Isotherms with 30 adsorption and 20 desorption points were conducted at liquid nitrogen temperature (77K). Open surface area and micropore volume were determined using t-plot method and Harkins & Jura equation. For both AC/Fe, surface area measurements resulted in 66% those of corresponding AC. For BC/Fe, the surface area was 82% that of BC. Our previous studies have shown that both AC/Fe and BC/Fe are effective sorbents for mercury in aqueous solutions but with lower sorption capacity compared to the initial materials (50-75% lower). Batch experiments with all sorbent samples and each soil were conducted at room temperature (25oC) in order to compare the sorption properties of the materials. The soil slurries demonstrated low Cr concentrations (10.9 and 14.6 μg/L, respectively). One month after the addition of amendments AC, AC/Fe, and BC/Fe, Cr concentration in the slurry was lower than the detection limit which was 0.5 μg/L (except of one of the soils with the AC that was 2.1 μg/L). The slurries with BC demonstrated Cr concentrations equal to 4.2 and 7.1 μg/L, respectively. All these properties point to promising materials that can effectively be used for in-situ environmental remediation and also be recovered.

  11. LS3MIP (v1.0) Contribution to CMIP6: The Land Surface, Snow and Soil Moisture Model Intercomparison Project Aims, Setup and Expected Outcome.

    NASA Technical Reports Server (NTRS)

    Van Den Hurk, Bart; Kim, Hyungjun; Krinner, Gerhard; Seneviratne, Sonia I.; Derksen, Chris; Oki, Taikan; Douville, Herve; Colin, Jeanne; Ducharne, Agnes; Cheruy, Frederique; hide

    2016-01-01

    The Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP) is designed to provide a comprehensive assessment of land surface, snow, and soil moisture feedbacks on climate variability and climate change, and to diagnose systematic biases in the land modules of current Earth System Models (ESMs). The solid and liquid water stored at the land surface has a large influence on the regional climate, its variability and predictability, including effects on the energy, water and carbon cycles. Notably, snow and soil moisture affect surface radiation and flux partitioning properties, moisture storage and land surface memory. They both strongly affect atmospheric conditions, in particular surface air temperature and precipitation, but also large-scale circulation patterns. However, models show divergent responses and representations of these feedbacks as well as systematic biases in the underlying processes. LS3MIP will provide the means to quantify the associated uncertainties and better constrain climate change projections, which is of particular interest for highly vulnerable regions (densely populated areas, agricultural regions, the Arctic, semi-arid and other sensitive terrestrial ecosystems).The experiments are subdivided in two components, the first addressing systematic land biases in offline mode (LMIP, building upon the 3rd phase of Global Soil Wetness Project; GSWP3) and the second addressing land feedbacks attributed to soil moisture and snow in an integrated framework (LFMIP, building upon the GLACE-CMIP blueprint).

  12. The Role of Iron-Bearing Minerals in NO2 to HONO Conversion on Soil Surfaces.

    PubMed

    Kebede, Mulu A; Bish, David L; Losovyj, Yaroslav; Engelhard, Mark H; Raff, Jonathan D

    2016-08-16

    Nitrous acid (HONO) accumulates in the nocturnal boundary layer where it is an important source of daytime hydroxyl radicals. Although there is clear evidence for the involvement of heterogeneous reactions of NO2 on surfaces as a source of HONO, mechanisms remain poorly understood. We used coated-wall flow tube measurements of NO2 reactivity on environmentally relevant surfaces (Fe (hydr)oxides, clay minerals, and soil from Arizona and the Saharan Desert) and detailed mineralogical characterization of substrates to show that reduction of NO2 by Fe-bearing minerals in soil can be a more important source of HONO than the putative NO2 hydrolysis mechanism. The magnitude of NO2-to-HONO conversion depends on the amount of Fe(2+) present in substrates and soil surface acidity. Studies examining the dependence of HONO flux on substrate pH revealed that HONO is formed at soil pH < 5 from the reaction between NO2 and Fe(2+)(aq) present in thin films of water coating the surface, whereas in the range of pH 5-8 HONO stems from reaction of NO2 with structural iron or surface complexed Fe(2+) followed by protonation of nitrite via surface Fe-OH2(+) groups. Reduction of NO2 on ubiquitous Fe-bearing minerals in soil may explain HONO accumulation in the nocturnal boundary layer and the enhanced [HONO]/[NO2] ratios observed during dust storms in urban areas.

  13. Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad City, Pakistan: contamination levels and their potential for air-soil exchange.

    PubMed

    Alamdar, Ambreen; Syed, Jabir Hussain; Malik, Riffat Naseem; Katsoyiannis, Athanasios; Liu, Junwen; Li, Jun; Zhang, Gan; Jones, Kevin C

    2014-02-01

    This study was conducted to examine organochlorine pesticides (OCPs) contamination levels in the surface soil and air samples together with air-soil exchange fluxes at an obsolete pesticide dumping ground and the associated areas from Hyderabad City, Pakistan. Among all the sampling sites, concentrations of OCPs in the soil and air samples were found highest in obsolete pesticide dumping ground, whereas dominant contaminants were dichlorodiphenyltrichloroethane (DDTs) (soil: 77-212,200 ng g(-1); air: 90,700 pg m(-3)) and hexachlorocyclohexane (HCHs) (soil: 43-4,090 ng g(-1); air: 97,400 pg m(-3)) followed by chlordane, heptachlor and hexachlorobenzene (HCB). OCPs diagnostic indicative ratios reflect historical use as well as fresh input in the study area. Moreover, the air and soil fugacity ratios (0.9-1.0) at the dumping ground reflecting a tendency towards net volatilization of OCPs, while at the other sampling sites, the fugacity ratios indicate in some cases deposition and in other cases volatilization. Elevated concentrations of DDTs and HCHs at pesticide dumping ground and its surroundings pose potential exposure risk to biological organisms, to the safety of agricultural products and to the human health. Our study thus emphasizes the need of spatio-temporal monitoring of OCPs at local and regional scale to assess and remediate the future adverse implications. © 2013.

  14. High concentrations of single-walled carbon nanotubes lower soil enzyme activity and microbial biomass.

    PubMed

    Jin, Lixia; Son, Yowhan; Yoon, Tae Kyung; Kang, Yu Jin; Kim, Woong; Chung, Haegeun

    2013-02-01

    Nanomaterials such as single-walled carbon nanotubes (SWCNTs) may enter the soil environment with unknown consequences resulting from the development of nanotechnology for a variety of applications. We determined the effects of SWCNTs on soil enzyme activity and microbial biomass through a 3-week incubation of urban soils treated with different concentrations of SWCNTs ranging from 0 to 1000 μg g(-1) soil. The activities of cellobiohydrolase, β-1,4-glucosidase, β-1,4-xylosidase, β-1,4-N-acetylglucosaminidase, L-leucine aminopeptidase, and acid phosphatase and microbial biomass were measured in soils treated with powder and suspended forms of SWCNTs. SWCNTs of concentrations at 300-1000 μg g(-1) soil significantly lowered activities of most enzymes and microbial biomass. It is noteworthy that the SWCNTs showed similar effects to that of multi-walled carbon nanotubes (MWCNTs), but at a concentration approximately 5 times lower; we suggest that this is mainly due to the higher surface area of SWCNTs than that of MWCNTs. Indeed, our results show that surface area of CNTs has significant negative relationship with relative enzyme activity and biomass, which suggests that greater microorganism-CNT interactions could increase the negative effect of CNTs on microorganisms. Current work may contribute to the preparation of a regulatory guideline for the release of CNTs to the soil environment. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Spatial distribution of heavy metals in the surface soil of source-control stormwater infiltration devices - Inter-site comparison.

    PubMed

    Tedoldi, Damien; Chebbo, Ghassan; Pierlot, Daniel; Branchu, Philippe; Kovacs, Yves; Gromaire, Marie-Christine

    2017-02-01

    Stormwater runoff infiltration brings about some concerns regarding its potential impact on both soil and groundwater quality; besides, the fate of contaminants in source-control devices somewhat suffers from a lack of documentation. The present study was dedicated to assessing the spatial distribution of three heavy metals (copper, lead, zinc) in the surface soil of ten small-scale infiltration facilities, along with several physical parameters (soil moisture, volatile matter, variable thickness of the upper horizon). High-resolution samplings and in-situ measurements were undertaken, followed by X-ray fluorescence analyses and spatial interpolation. Highest metal accumulation was found in a relatively narrow area near the water inflow zone, from which concentrations markedly decreased with increasing distance. Maximum enrichment ratios amounted to >20 in the most contaminated sites. Heavy metal patterns give a time-integrated vision of the non-uniform infiltration fluxes, sedimentation processes and surface flow pathways within the devices. This element indicates that the lateral extent of contamination is mainly controlled by hydraulics. The evidenced spatial structure of soil concentrations restricts the area where remediation measures would be necessary in these systems, and suggests possible optimization of their hydraulic functioning towards an easier maintenance. Heterogeneous upper boundary conditions should be taken into account when studying the fate of micropollutants in infiltration facilities with either mathematical modeling or soil coring field surveys. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Verification and completion of a soil data base for process based erosion model applications in Mato Grosso/Brazil

    NASA Astrophysics Data System (ADS)

    Schindewolf, Marcus; Schultze, Nico; Schönke, Daniela; Amorim, Ricardo S. S.; Schmidt, Jürgen

    2014-05-01

    The study area of central Mato Grosso is subjected to severe soil erosion. Continuous erosion leads to massive losses of top soil and related organic carbon. Consequently agricultural soil soils suffer a drop in soil fertility which only can be balanced by mineral fertilization. In order to control soil degradation and organic carbon losses of Mato Grosso cropland soils a process based soil loss and deposition model is used. Applying the model it will be possible to: - identify the main areas affected by soil erosion or deposition in different scales under present and future climate and socio-economic conditions - estimate the related nutrient and organic carbon losses/yields - figure out site-related causes of soil mobilization/deposition - locate sediment and sediment related nutrient and organic matter pass over points into surface water bodies - estimate the impacts of climate and land use changes on the losses of top soil, sediment bound nutrients and organic carbon. Model input parameters include digital elevation data, precipitation characteristics and standard soil properties as particle size distribution, total organic carbon (TOC) and bulk density. The effects of different types of land use and agricultural management practices are accounted for by varying site-specific parameters predominantly related to soil surface properties such as erosional resistance, hydraulic roughness and percentage ground cover. In this context the existing EROSION 3D soil parameter data base deducted from large scale rainfall simulations in Germany is verified for application in the study area, using small scale disc type rainfall simulator with an additional runoff reflux approach. Thus it's possible to enlarge virtual plot length up to at least 10 m. Experimental plots are located in Cuiabá region of central Mato Grosso in order to cover the most relevant land use variants and tillage practices in the region. Results show that derived model parameters are highly influenced by soil management. This indicates a high importance of tillage impact on resistance to erosion, mulch cover and TOC. The measured parameter ranges can generally be confirmed by the existing data base, which only need to be completed due to changed phenological stages in Mato Grosso compared to German conditions.

  17. Analysis of relationships between land surface temperature and land use changes in the Yellow River Delta

    NASA Astrophysics Data System (ADS)

    Ning, Jicai; Gao, Zhiqiang; Meng, Ran; Xu, Fuxiang; Gao, Meng

    2018-06-01

    This study analyzed land use and land cover changes and their impact on land surface temperature using Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager and Thermal Infrared Sensor imagery of the Yellow River Delta. Six Landsat images comprising two time series were used to calculate the land surface temperature and correlated vegetation indices. The Yellow River Delta area has expanded substantially because of the deposited sediment carried from upstream reaches of the river. Between 1986 and 2015, approximately 35% of the land use area of the Yellow River Delta has been transformed into salterns and aquaculture ponds. Overall, land use conversion has occurred primarily from poorly utilized land into highly utilized land. To analyze the variation of land surface temperature, a mono-window algorithm was applied to retrieve the regional land surface temperature. The results showed bilinear correlation between land surface temperature and the vegetation indices (i.e., Normalized Difference Vegetation Index, Adjusted-Normalized Vegetation Index, Soil-Adjusted Vegetation Index, and Modified Soil-Adjusted Vegetation Index). Generally, values of the vegetation indices greater than the inflection point mean the land surface temperature and the vegetation indices are correlated negatively, and vice versa. Land surface temperature in coastal areas is affected considerably by local seawater temperature and weather conditions.

  18. Polycyclic aromatic hydrocarbons in surface soil across the Tibetan Plateau: spatial distribution, source and air-soil exchange.

    PubMed

    Wang, Chuanfei; Wang, Xiaoping; Gong, Ping; Yao, Tandong

    2014-01-01

    There are limited data on polycyclic aromatic hydrocarbons (PAHs) in both the atmosphere and soil of the Tibetan Plateau (TP). Concentrations of PAHs were therefore measured in 13 XAD resin-based passive air samplers and 41 surface (0-5 cm) soil samples across the TP. The average concentration of atmospheric PAHs was 5.55 ng/m(3), which was lower than that reported for other background areas, but higher than the Arctic. Concentrations in the soils fell in a wide range from 5.54 to 389 ng/g, with an average of 59.9 ng/g. Elevation was found to play an important role in determining the spatial distribution of soil PAHs. The air-soil exchange state showed that the soils of the TP will likely remain as a sink for high molecular weight PAHs, but may become a potential "secondary source" for low molecular weight PAHs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Soil removal as a decontamination practice and radiocesium accumulation in tadpoles in rice paddies at Fukushima.

    PubMed

    Sakai, Masaru; Gomi, Takashi; Nunokawa, Masanori; Wakahara, Taeko; Onda, Yuichi

    2014-04-01

    We investigated the biological accumulation of radiocesium in tadpoles [Rana (Pelophylax) porosa porosa] in rice paddies with and without decontamination practice at Fukushima. Radiocesium was accumulated in surface part of soils both in the control and decontaminated paddies one year after decontamination. Mean (134)Cs and (137)Cs concentrations in tadpoles in the control and decontaminated paddies were 3000 and 4500, and 600 and 890 Bq/kg dry weight, respectively. Radiocesium concentrations in surface soil (0-5 cm depth) and tadpoles in the decontaminated paddy were five times smaller than in the control paddy. These results suggest that decontamination practice can reduce radiocesium concentrations in both soil and tadpoles. However, at the decontaminated paddy, radiocesium concentrations in surface soils became 3.8 times greater one year after decontamination, which indicates that monitoring the subsequent movement of radiocesium in rice paddies and surrounding areas is essential for examining contamination propagation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Hydrological Processes Modifications Induced by Land-Use Changes in the Caetité Region, Northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Fernandes, N. F.; Franklin, M. R.; Ferraz, A. C.; Reis, R. G.; Melo, V. P.

    2009-04-01

    Land-use changes can generate important modifications in hydrological processes, especially those that take place close to the soil surface. These changes usually lead to a decrease in infiltration rates and to an increase in surface runoff and soil erosion. Besides, in the long-term, they tend to reduce groundwater recharge. Such effect can be amplified when intensive groundwater pumping is carried out in order to support mining and milling activities. This is the case in the region close to Caetité, in the southwestern portion of Bahia state located in northeastern Brazil, where an already problematic situation in terms of water supply due to the semi-arid conditions is becoming worse due to the exhaustive pumping, mainly for supporting the uranium mining and concentration activities, leading to a variety of potential conflicts concerning the water management in the basin. Since 2008 an experimental basin was installed in the area in order to characterize, through field monitoring and modeling, the evolution of the hydrogeochemical processes in the basin. This study aims, besides the assessment of the water quality, to characterize the effects produced by land-use changes in the hydrological processes that take place at the soil surface, especially on the soil infiltration capacity and saturated hydraulic conductivity (ksat). The Caetité experimental basin has a total area of about 65 km2 that includes portions with natural vegetation (dense and sparse), agriculture (usually small farms), grazing, as well as those resulting from the mining and milling activities (open pit, waste rock piles , industrial plant, ponds and access dirty roads). Although the mining activities have been only recently installed in the area (year of 2000), farmers have been established in the basin for up to 40 years. Average total annual rainfall in the basin is about 710 mm, with a long dry period (from April to October). The geological frame of the area comprises an Archaean gneiss-migmatite complex leading to gentle topography with long convex hillslopes separated by wide flat tops at the divides, where elevations vary from 750 to 1100 m. At the flat tops, thick highly weathered Oxisols (more than 20 m thick) develop over an old lateritic cover. At the lower elevations, hillslope dissection contributed to the formation of less developed and thinner soils, sometimes less than 1m thick. Soil texture may vary significantly inside the basin due to the changes in the mineralogical composition of the different bedrocks, with clay soils developing over alkaline metassomatic rocks. In this study we carried out an initial characterization of the spatial variation of soil infiltration capacity and ksat inside the experimental basin. The infiltration capacity was measured using double-ring infiltrometers (5 cm head). In situ measurements of ksat at 20cm depth were conducted using a Guelph permeameter. These in situ field measurements were carried out in 12 sites in the basin, with 2 repetitions, involving different conditions of land-use (natural vegetation, agriculture and grazing), soil type (Oxisols and Cambisols), geology (granite and gneisses) and topography (flat top and hillslope). Besides, undisturbed soil samples were collected from the upper portion of the soil profile (0-5, 10-15 and 20-25cm depths) to analyze the main physical and hydrological soil properties, including soil texture, bulk density, porosity (micro, macro and total), as well as the water retention curve. The initial results show that areas with dense natural vegetation, independently of soil and topography conditions, present the highest infiltration capacity values in the basin, with minimum infiltration rates (MIR) of up to 100 cm/h. In areas under agriculture, the MIR is reduced by about a factor of 3 when compared with that one of the natural vegetation. MIR values for soils under grazing for more than 10 years show a reduction of up to about a factor of 30, attaining values as low as 3 cm/h. However, long-term grazing in this area tends to favor biogenic activity, mainly by ants. In these areas, the soil disturbing and the pore network produced increase infiltration rates, bringing MIR values to that ones of soil under agriculture. In other words, biogenic activity induced changes due to grazing activity in the area may improve soil infiltration conditions, increasing MIR values by about one order of magnitude. In areas under sparse natural vegetation, splash processes take place favoring surface sealing, leading to MIR values similar to the ones observed for grazing. Differently from what was observed in the infiltration rate, the effects of land-use on ksat are not clear. In general, the greater ksat values observed in the basin were at the main drainage divides, with soil are well-developed over large flat tops. The average ksat value for the basin was 5.68×10-2 cm/s. The results presented here, although preliminary, suggest that the land-use changes that took place in the area during the last decades induced important modifications in the hydrological processes.

  1. An Assessment of Land Surface and Lightning Characteristics Associated with Lightning-Initiated Wildfires

    NASA Technical Reports Server (NTRS)

    Coy, James; Schultz, Christopher J.; Case, Jonathan L.

    2017-01-01

    Can we use modeled information of the land surface and characteristics of lightning beyond flash occurrence to increase the identification and prediction of wildfires? Combine observed cloud-to-ground (CG) flashes with real-time land surface model output, and Compare data with areas where lightning did not start a wildfire to determine what land surface conditions and lightning characteristics were responsible for causing wildfires. Statistical differences between suspected fire-starters and non-fire-starters were peak-current dependent 0-10 cm Volumetric and Relative Soil Moisture comparisons were statistically dependent to at least the p = 0.05 independence level for both polarity flash types Suspected fire-starters typically occurred in areas of lower soil moisture than non-fire-starters. GVF value comparisons were only found to be statistically dependent for -CG flashes. However, random sampling of the -CG non-fire starter dataset revealed that this relationship may not always hold.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brownlow, D.T.; Escude, S.; Johanneson, O.H.

    The 1500 Area at Kelly Air Force Base (AFB) was the site of a subsurface release of approximately 1,000 gallons of JP-4 jet fuel. Preliminary studies found evidence of hydrocarbon contamination extending from 10 feet below ground surface (bgs) down to the shallow water table, at 20 to 25 feet bgs. In June of 1993, Kelly AFB authorized the installation and evaluation of a bioventing system at this site to aid in the cleanup of the hydrocarbon contaminated soils. The purpose of the bioventing system is to aerate subsurface soils within and immediately surrounding the release area, in order tomore » stimulate in-situ biological activity and enhance the natural bioremediation capacity of the soil. Augmenting oxygen to the indigenous soil microorganisms promotes the aerobic metabolism of fuel hydrocarbons in the soil. In vadose zone soils exhibiting relatively good permeability, bioventing has proven to be a highly cost effective remediation technology for treating fuel contaminated soils. In November, 1993, a Start-Up Test program consisting of an In-Situ Respiration Test (ISRT) and an Air Permeability Test was performed at the 1500 Area Spill Site.« less

  3. Linking the soil moisture distribution pattern to dynamic processes along slope transects in the Loess Plateau, China.

    PubMed

    Wang, Shuai; Fu, Bojie; Gao, Guangyao; Zhou, Ji; Jiao, Lei; Liu, Jianbo

    2015-12-01

    Soil moisture pulses are a prerequisite for other land surface pulses at various spatiotemporal scales in arid and semi-arid areas. The temporal dynamics and profile variability of soil moisture in relation to land cover combinations were studied along five slopes transect on the Loess Plateau during the rainy season of 2011. Within the 3 months of the growing season coupled with the rainy season, all of the soil moisture was replenished in the area, proving that a type stability exists between different land cover soil moisture levels. Land cover combinations disturbed the trend determined by topography and increased soil moisture variability in space and time. The stability of soil moisture resulting from the dynamic processes could produce stable patterns on the slopes. The relationships between the mean soil moisture and vertical standard deviation (SD) and coefficient of variation (CV) were more complex, largely due to the fact that different land cover types had distinctive vertical patterns of soil moisture. The spatial SD of each layer had a positive correlation and the spatial CV exhibited a negative correlation with the increase in mean soil moisture. The soil moisture stability implies that sampling comparisons in this area can be conducted at different times to accurately compare different land use types.

  4. Hydrologic and water-quality data for U.S. Coast Guard Support Center Kodiak, Alaska, 1987-89

    USGS Publications Warehouse

    Glass, R.L.

    1996-01-01

    Hydrologic and water-quality data were collected at the U.S. Coast Guard Support Center Kodiak on Kodiak Island, Alaska, to determine regional ground-water conditions and if contamination of soils, ground water, or surface water has occurred. Eighteen areas of possible contamination were identified. Ground-water levels, surface- water stages, surface-water discharges, and results of field and laboratory analyses of soil and water samples are presented in tabular form. Many quality-assurance samples had detectable concentrations of methylene chloride and 1,2-dichloroethane, which may be due to sampling or laboratory contamination. Concentrations were as great as 5.9 micrograms per liter for methylene chloride and 2.6 micrograms per liter for 1,2-dichloroethane. Excluding 1,2-dichloroethane, most soil, ground-water, and surface-water samples contained no detectable concentrations of the organic constituents that were analyzed. Chemical analyses were performed on two lake-bed-material samples and more than 100 soil samples. The median lead concentration was 9.8 milligrams per kilogram. Concentrations of tetrachloroethene were as great as 1.1 milligram per kilogram in soils near a laundry. Water samples were collected from 101 wells. The maximum benzene concentration detected in ground water was 78 micrograms per liter from a well at the air station near a site where aviation fuel was spilled. Wells near a laundry yielded water having concentrations of tetrachloroethene as great as 3,000 micrograms per liter, and vinyl chloride as great as 440 micrograms per liter. A well in a former aviation gasoline storage area yielded water with a concentration of trichloroethene as great as 66 micrograms per liter. Water samples were collected from 59 sites on streams, lakes, or ponds. Surface-water samples had much lower concen- trations of organic compounds; the highest concentration of benzene was 2.2 micrograms per liter in a stream near a former aviation-fuel storage area and the maximum vinyl chloride concentration was 15 micrograms per liter in a stream near a former landfill. Tetrachloroethene and trichloroethene were not detected in any surface-water samples.

  5. Smos Land Product Validation Activities at the Valencia Anchor Station

    NASA Astrophysics Data System (ADS)

    Lopez-Baeza, Ernesto

    ABSTRACT Soil moisture is a key parameter controlling the exchanges between the land surface and the atmosphere. In spite of being important for weather and climate modeling, this parameter is not well observed at a global scale. The SMOS (Soil Moisture and Ocean Salinity) Mission was designed by the European Space Agency (ESA) to measure soil moisture over continental surfaces as well as surface salinity over the oceans. Since 2001, the Valencia Anchor Station is currently being prepared for the validation of SMOS land products, namely soil moisture content and vegetation water content. The site has recently been selected by the Mission as a core validation site, mainly due to the reasonable homogeneous characteristics of the area which make it appropriate to undertake the validation of SMOS Level 2 land products during the Mission Commissioning Phase, before attempting more complex areas. Close to SMOS launch, ESA has defined and designed a SMOS V alidation Rehearsal C ampaign P lan which purpose is to repeat the Commissioning Phase execution with all centers, all tools, all participants, all structures, all data available, assuming all tools and structures are ready and trying to produce as close as possible the post-launch conditions. The aim is to test the readiness, the ensemble coordination and the speed of operations, and to avoid as far as possible any unexpected deficiencies of the plan and procedure during the real C ommissioning P hase campaigns. For the rehearsal activity, a control area of 10 x 10 km2 has been chosen at the Valencia Anchor Station study area where a network of ground soil moisture measuring stations is being set up based on the definition of homogeneous physio-hydrological units, attending to climatic, soil type, lithology, geology, elevation, slope and vegetation cover conditions. These stations are linked via a wireless communication system to a master post accessible via internet. The ground soil moisture stations will also be used to study the correlation between soil moisture and the Temperature-Vegetation Dryness Index (TVDI), obtained from remote sensing data, which will allow us to produce soil moisture maps for the whole control area. These soil moisture fields will then be compared to those obtained from HIRLAM (HIgh Resolution Limited Area Model ). Complementary to the ground measurements, flight operations will also be performed over the control area using the Helsinki University of Technology TKK Short Skyvan research aircraft. The payload for the SMOS Validation Rehearsal Campaign will consist of the following instruments: (i) L-band radiometer EMIRAD provided by the Technical University of Denmark (TUD), (ii) HUT-2D L-band imaging interferometric radiometer provided by TKK, (iii) PARIS GPS reflectrometry system provided by Institute for Space Studies of Catalonia (IEEC), (iv) IR sensor provided by the Finnish Institute of Maritime Research (FIMR), (v) a low resolution digital video camera Together with the ground soil moisture measurements, other ground and meteorological measurements obtained from the Valencia Anchor Station site will be used to simulate passive microwave brightness temperature so as to have satellite "match ups" for validation purposes and to test retrieval algorithms. The spatialization of the ground measurements up to a SMOS pixel will be carried out by using a Soil-Vegetation-Atmosphere-Transfer (SVAT) model (SUR- FEX) from Mátéo France. Output data, particularly soil moisture, will then used to simulate ee the L-band surface emission through the use of the L-MEB (L-band Microwave Emission of the Biosphere) model. This paper will present an overview of the whole Valencia Anchor Station Experimental Plan making more emphasis on the development of the ground activities which are considered a key element for the performance of the different validation components.

  6. Vertical distribution of soil organic carbon originated from a prior peatland in Greece and impacts on the landscape, after conversion to arable land

    NASA Astrophysics Data System (ADS)

    Kayrotis, Theodore; Charoulis, A.; Vavoulidou, E.; Tziouvalekas, M.

    2010-05-01

    The vertical distribution and the status of soil organic carbon (Corg.) in 66 surface and subsurface soil samples were investigated. These soils originated mainly from organic deposits of Philippoi (northern Greece) have been classified as Histosols and belong to the suborder of Saprists. The present study consisted of an area of 10,371 ha where about 90% of the soils are organic. The main crops are maize (Zea mays L.), sugar beets (Beta vulgaris L.), tobacco (Nicotiana tabacum L.), cotton (Gossypium hirsutum L.), tomatoes (Lycopersicon esculentum Mill.), and wheat (Triticum aestivum L.).The surface horizons consist mainly of well-humified organic materials mixed with mineral soil particles. Usually, they have moderate or insufficient drainage regime and conditions become favorable for microbial growth. Microbes decompose and transform the soil organic compounds into mineral forms, which are then available as nutrients for the crop. The organic matter was derived primarily from Cyperaceae (Cladium mariscus, various Carex species, etc.) and from decomposed residues of arable crops. The dominant features of these soils are the high content of organic matter and the obvious stratification of soil horizons. In contrast, most arable soils in Greece are characterized by low organic matter content. The stratification differentiates the physical and chemical properties and the groundwater table even during dry summers lies at depths,150 cm beneath surface. The Corg. content was high and varied greatly among the examined samples. In the surface layers ranged between 3.57 and 336.50 g kg2 (mean 199.26 g kg2) and between 22.10 and 401.10 g kg2 in the subsurface horizons (mean 258.89 g kg2). It can be argued that surface layers are drier and part of soil organic matter was seriously affected by the process of oxidation. At drier sites, soil subsidence was appeared as a consequence of soil organic matter oxidation. Increased contents were found in the northern part of the studied area, where soil moisture is usually higher. Similarly, higher contents were found at low-lying places or in hollows, due to drainage and consequent cultivation in the plowing horizons. The Corg. was highly correlated with total soil nitrogen, which is mainly bound into the soil organic matter. The studied soils are vulnerable to management, which strongly affects their properties. Under thermic temperature conditions, soils located in the slopping margin, where moisture regime is drier, can be decomposed relatively easier and faster. Rational water management, tillage practices, avoidance of heavy machinery, and proper fertilization could contribute to the soil and water quality, without significant yield reduction. Furthermore, a set of additional measures in the examined organic soils can be applied, such as: banning of plant residues burning, avoidance of deep ploughing, maintenance of a shallow water table and the partial conversion of arable soils into pasture land. Potential alternative uses and a number of practices can be suggested for proper soil management, such as: incorporation of crop residues after harvesting into subsoil, implementation of proper rotation schemes, and in some cases rational fertilsation and irrigation management to increase productivity. This investigation also provides a quantitative estimation of the soil carbon status per hectare, and an attempt was made for the interpretation of factors which affect the distribution of Corg. within the examined surface and subsurface soil layers.

  7. Developing Soil Moisture Profiles Utilizing Remotely Sensed MW and TIR Based SM Estimates Through Principle of Maximum Entropy

    NASA Astrophysics Data System (ADS)

    Mishra, V.; Cruise, J. F.; Mecikalski, J. R.

    2015-12-01

    Developing accurate vertical soil moisture profiles with minimum input requirements is important to agricultural as well as land surface modeling. Earlier studies show that the principle of maximum entropy (POME) can be utilized to develop vertical soil moisture profiles with accuracy (MAE of about 1% for a monotonically dry profile; nearly 2% for monotonically wet profiles and 3.8% for mixed profiles) with minimum constraints (surface, mean and bottom soil moisture contents). In this study, the constraints for the vertical soil moisture profiles were obtained from remotely sensed data. Low resolution (25 km) MW soil moisture estimates (AMSR-E) were downscaled to 4 km using a soil evaporation efficiency index based disaggregation approach. The downscaled MW soil moisture estimates served as a surface boundary condition, while 4 km resolution TIR based Atmospheric Land Exchange Inverse (ALEXI) estimates provided the required mean root-zone soil moisture content. Bottom soil moisture content is assumed to be a soil dependent constant. Mulit-year (2002-2011) gridded profiles were developed for the southeastern United States using the POME method. The soil moisture profiles were compared to those generated in land surface models (Land Information System (LIS) and an agricultural model DSSAT) along with available NRCS SCAN sites in the study region. The end product, spatial soil moisture profiles, can be assimilated into agricultural and hydrologic models in lieu of precipitation for data scarce regions.Developing accurate vertical soil moisture profiles with minimum input requirements is important to agricultural as well as land surface modeling. Previous studies have shown that the principle of maximum entropy (POME) can be utilized with minimal constraints to develop vertical soil moisture profiles with accuracy (MAE = 1% for monotonically dry profiles; MAE = 2% for monotonically wet profiles and MAE = 3.8% for mixed profiles) when compared to laboratory and field data. In this study, vertical soil moisture profiles were developed using the POME model to evaluate an irrigation schedule over a maze field in north central Alabama (USA). The model was validated using both field data and a physically based mathematical model. The results demonstrate that a simple two-constraint entropy model under the assumption of a uniform initial soil moisture distribution can simulate most soil moisture profiles within the field area for 6 different soil types. The results of the irrigation simulation demonstrated that the POME model produced a very efficient irrigation strategy with loss of about 1.9% of the total applied irrigation water. However, areas of fine-textured soil (i.e. silty clay) resulted in plant stress of nearly 30% of the available moisture content due to insufficient water supply on the last day of the drying phase of the irrigation cycle. Overall, the POME approach showed promise as a general strategy to guide irrigation in humid environments, with minimum input requirements.

  8. A smoothed particle hydrodynamics model for electrostatic transport of charged lunar dust on the moon surface

    NASA Astrophysics Data System (ADS)

    Mao, Zirui; Liu, G. R.

    2018-02-01

    The behavior of lunar dust on the Moon surface is quite complicated compared to that on the Earth surface due to the small lunar gravity and the significant influence of the complicated electrostatic filed in the Universe. Understanding such behavior is critical for the exploration of the Moon. This work develops a smoothed particle hydrodynamics (SPH) model with the elastic-perfectly plastic constitutive equation and Drucker-Prager yield criterion to simulate the electrostatic transporting of multiple charged lunar dust particles. The initial electric field is generated based on the particle-in-cell method and then is superposed with the additional electric field from the charged dust particles to obtain the resultant electric field in the following process. Simulations of cohesive soil's natural failure and electrostatic transport of charged soil under the given electric force and gravity were carried out using the SPH model. Results obtained in this paper show that the negatively charged dust particles levitate and transport to the shadow area with a higher potential from the light area with a lower potential. The motion of soil particles finally comes to a stable state. The numerical result for final distribution of soil particles and potential profile above planar surface by the SPH method matches well with the experimental result, and the SPH solution looks sound in the maximum levitation height prediction of lunar dust under an uniform electric field compared to theoretical solution, which prove that SPH is a reliable method in describing the behavior of soil particles under a complicated electric field and small gravity field with the consideration of interactions among soil particles.

  9. Radiation Dose Assessment for Military Personnel of the Enewetak Atoll Cleanup Project (1977-1980)

    DTIC Science & Technology

    2018-04-13

    population are detailed. 2.1 Enewetak Atoll Setting Enewetak Atoll (Figure 2) is approximately 23 by 17 statute miles with the long axis running ...Survey and stake the boundaries of soil excision areas; • Remove excess brush; • Excise (scrape surface with bulldozer blade ) the area and...JTGJ-2 and FRST members Survey instruments, soil sampling tools, dump trucks, bucket and backhoe loaders, water tank trucks, scrape blades

  10. Concentrations of polycyclic aromatic hydrocarbons and inorganic constituents in ambient surface soils, Chicago, Illinois: 2001-2002

    USGS Publications Warehouse

    Kay, R.T.; Arnold, T.L.; Cannon, W.F.; Graham, D.

    2008-01-01

    Samples of ambient surface soils were collected from 56 locations in Chicago, Illinois, using stratified random sampling techniques and analyzed for polycyclic aromatic hydrocarbon (PAH) compounds and inorganic constituents. PAHs appear to be derived primarily from combustion of fossil fuels and may be affected by proximity to industrial operations, but do not appear to be substantially affected by the organic carbon content of the soil, proximity to nonindustrial land uses, or proximity to a roadway. Atmospheric settling of particulate matter appears to be an important mechanism for the placement of PAH compounds into soils. Concentrations of most inorganic constituents are affected primarily by soil-forming processes. Concentrations of lead, arsenic, mercury, calcium, magnesium, phosphorus, copper, molybdenum, zinc, and selenium are elevated in ambient surface soils in Chicago in comparison to the surrounding area, indicating anthropogenic sources for these elements in Chicago soils. Concentrations of calcium and magnesium in Chicago soils appear to reflect the influence of the carbonate bedrock parent material on the chemical composition of the soil, although the effects of concrete and road fill cannot be discounted. Concentrations of inorganic constituents appear to be largely unaffected by the type of nearby land use. Copyright ?? Taylor & Francis Group, LLC.

  11. Soil characteristics of semidesert soils along a precipitation gradient in the Negev (Israel)

    NASA Astrophysics Data System (ADS)

    Steckenmesser, Daniel; Drahorad, Sylvie; Felix-Henningsen, Peter

    2010-05-01

    The sand dunes of the north-western Negev desert (Israel) show a unique precipitation gradient on a short distance. This area is build up by the same parent material and suited to investigate the influence of changes in rainfall on soil characteristics in semi-desert ecosystems. The study site is the western extension of the Sinai sand field, the sand dunes are stabilised by biological soil crusts and perennial vegetation like Retama raetam. Along this precipitation gradient the three investigation areas Nizzana South (90mm ^a-), Nizzana 84 (130mm ^a-1) and Nizzana 69 (170mm ^a-1) are situated. At every study site two soil profiles were investigated, each under the legume Retama raetam and in the bare interspace covered by biological soil crusts. The soil samples were taken at the interdune positions at every study site. The soil sampling included the biological soil crust, the topsoil and the subsoil up to 1,5 m. The narrow sampling of 20cm wide steps allow a mapping of the distribution of nutrients, carbonates and soluble salts of in order to show the impact of perennial plants and rainfall on soil properties. Soluble salts and nutrients were measured in a 1:5 water extraction, calcium carbonate was determined according to Scheibler. The data shows a strong influence of perennial shrubs on the deposition of dust and the redistribution of nutrients compared to the bare interspace. The distribution of highly and less soluble salts below the perennial shrub proofs a shallower water infiltration than in the comparable interspace area. The interspace between the plants is covered by a biological soil crust, which also strongly influences the matter fluxes by nutrient-fixation, creation of runoff and stabilization of the soil surface. These biological soil crusts show higher amounts of elements than the subsoils. The comparison of the three areas along the rainfall gradient shows higher inputs of soluble salts with increasing precipitation due to wet deposition, while carbonate contents are negatively correlated with decreasing precipitation. This is related to a higher dust input in the southern study site, which was generated in the lime stone Negev. Higher amounts of rainfall introduce higher element leaching. Perennial plants cover the surface and reduce infiltration. Inputs into the soils through dust have to be evaluated for every location to separate between effects of deposition and rainfall.

  12. Impact of land cover change on the environmental hydrology characteristics in Kelantan river basin, Malaysia

    NASA Astrophysics Data System (ADS)

    Saadatkhah, Nader; Mansor, Shattri; Khuzaimah, Zailani; Asmat, Arnis; Adnan, Noraizam; Adam, Siti Noradzah

    2016-09-01

    Changing the land cover/ land use has serious environmental impacts affecting the ecosystem in Malaysia. The impact of land cover changes on the environmental functions such as surface water, loss water, and soil moisture is considered in this paper on the Kelantan river basin. The study area at the east coast of the peninsular Malaysia has suffered significant land cover changes in the recent years. The current research tried to assess the impact of land cover changes in the study area focused on the surface water, loss water, and soil moisture from different land use classes and the potential impact of land cover changes on the ecosystem of Kelantan river basin. To simulate the impact of land cover changes on the environmental hydrology characteristics, a deterministic regional modeling were employed in this study based on five approaches, i.e. (1) Land cover classification based on Landsat images; (2) assessment of land cover changes during last three decades; (3) Calculation the rate of water Loss/ Infiltration; (4) Assessment of hydrological and mechanical effects of the land cover changes on the surface water; and (5) evaluation the impact of land cover changes on the ecosystem of the study area. Assessment of land cover impact on the environmental hydrology was computed with the improved transient rainfall infiltration and grid based regional model (Improved-TRIGRS) based on the transient infiltration, and subsequently changes in the surface water, due to precipitation events. The results showed the direct increased in surface water from development area, agricultural area, and grassland regions compared with surface water from other land covered areas in the study area. The urban areas or lower planting density areas tend to increase for surface water during the monsoon seasons, whereas the inter flow from forested and secondary jungle areas contributes to the normal surface water.

  13. Estimation of surface soil moisture and roughness from multi-angular ASAR imagery in the Watershed Allied Telemetry Experimental Research (WATER)

    NASA Astrophysics Data System (ADS)

    Wang, S. G.; Li, X.; Han, X. J.; Jin, R.

    2011-05-01

    Radar remote sensing has demonstrated its applicability to the retrieval of basin-scale soil moisture. The mechanism of radar backscattering from soils is complicated and strongly influenced by surface roughness. Additionally, retrieval of soil moisture using AIEM (advanced integrated equation model)-like models is a classic example of underdetermined problem due to a lack of credible known soil roughness distributions at a regional scale. Characterization of this roughness is therefore crucial for an accurate derivation of soil moisture based on backscattering models. This study aims to simultaneously obtain surface roughness parameters (standard deviation of surface height σ and correlation length cl) along with soil moisture from multi-angular ASAR images by using a two-step retrieval scheme based on the AIEM. The method firstly used a semi-empirical relationship that relates the roughness slope, Zs (Zs = σ2/cl) and the difference in backscattering coefficient (Δσ) from two ASAR images acquired with different incidence angles. Meanwhile, by using an experimental statistical relationship between σ and cl, both these parameters can be estimated. Then, the deduced roughness parameters were used for the retrieval of soil moisture in association with the AIEM. An evaluation of the proposed method was performed in an experimental area in the middle stream of the Heihe River Basin, where the Watershed Allied Telemetry Experimental Research (WATER) was taken place. It is demonstrated that the proposed method is feasible to achieve reliable estimation of soil water content. The key challenge is the presence of vegetation cover, which significantly impacts the estimates of surface roughness and soil moisture.

  14. Who's on first? Part I: Influence of plant growth on C association with fresh soil minerals

    NASA Astrophysics Data System (ADS)

    Neurath, R.; Whitman, T.; Nico, P. S.; Pett-Ridge, J.; Firestone, M. K.

    2015-12-01

    Mineral surfaces provide sites for carbon stabilization in soils, protecting soil organic matter (SOM) from microbial degradation. SOM distributed across mineral surfaces is expected to be patchy and certain minerals undergo re-mineralization under dynamic soil conditions, such that soil minerals surfaces can range from fresh to thickly-coated with SOM. Our research investigates the intersection of microbiology and geochemistry, and aims to build a mechanistic understanding of plant-derived carbon (C) association with mineral surfaces and the factors that determine SOM fate in soil. Plants are the primary source of C in soil, with roots exuding low-molecular weight compounds during growth and contributing more complex litter compounds at senescence. We grew the annual grass, Avena barbata, (wild oat) in a 99 atom% 13CO2 atmosphere in soil microcosms incubated with three mineral types representing a spectrum of reactivity and surface area: quartz, kaolinite, and ferrihydrite. These minerals, isolated in mesh bags to exclude roots but not microorganisms, were extracted and analyzed for total C and 13C at multiple plant growth stages. At plant senescence, the quartz had the least mineral-bound C (0.40 mg-g-1) and ferrihydrite the most (0.78 mg-g-1). Ferrihydrite and kaolinite also accumulated more plant-derived C (3.0 and 3.1% 13C, respectively). The experiment was repeated with partially digested 13C-labled root litter to simulate litter decomposition during plant senescence. Thus, we are able evaluate contributions derived from living and dead root materials on soil minerals using FTIR and 13C-NMR. We find that mineral-associated C bears a distinct microbial signature, with soil microbes not only transforming SOM prior to mineral association, but also populating mineral surfaces over time. Our research shows that both soil mineralogy and the chemical character of plant-derived compounds are important controls of mineral protection of SOM.

  15. Integration of multi-sensor data to measure soil surface changes

    NASA Astrophysics Data System (ADS)

    Eltner, Anette; Schneider, Danilo

    2016-04-01

    Digital elevation models (DEM) of high resolution and accuracy covering a suitable sized area of interest can be a promising approach to help understanding the processes of soil erosion. Thereby, the plot under investigation should remain undisturbed. The fragile marl landscape in Andalusia (Spain) is especially prone to soil detachment and transport with unique sediment connectivity characteristics due to the soil properties and climatic conditions. A 600 m² field plot is established and monitored during three field campaigns (Sep. 2013, Nov. 2013 and Feb. 2014). Unmanned aerial vehicle (UAV) photogrammetry and terrestrial laser scanning (TLS) are suitable tools to generate high resolution topography data that describe soil surface changes at large field plots. Thereby, the advantages of both methods are utilised in a synergetic manner. On the one hand, TLS data is assumed to comprise a higher reliability regarding consistent error behaviour than DEMs derived from overlapping UAV images. Therefore, global errors (e.g. dome effect) and local errors (e.g. DEM blunders due to erroneous image matching) within the UAV data are assessed with the DEMs produced by TLS. Furthermore, TLS point clouds allow for fast and reliable filtering of vegetation spots, which is not as straightforward within the UAV data due to known image matching problems in areas displaying plant cover. On the other hand, systematic DEM errors linked to TLS are detected and possibly corrected utilising the DEMs reconstructed from overlapping UAV images. Furthermore, TLS point clouds are filtered corresponding to the degree of point quality, which is estimated from parameters of the scan geometry (i.e. incidence angle and footprint size). This is especially relevant for this study because the area of interest is located at gentle hillslopes that are prone to soil erosion. Thus, the view of the scanning device onto the surface results in an adverse angle, which is solely slightly improved by the usage of a 4 m high tripod. Surface roughness is considered as a further parameter to evaluate the TLS point quality. The filtering tool allows for choosing each data point either from the TLS or UAV data corresponding to the data acquisition geometry and surface properties. The filtered points are merged into one point cloud, which is finally processed to reduce remaining data noise. DEM analysis reveals a continuous decrease of soil surface roughness after tillage, the reappearance of former wheel tracks and local patterns of erosion as well as accumulation.

  16. Soil stabilization by biological soil crusts in arid Tunisia

    NASA Astrophysics Data System (ADS)

    Guidez, Sabine; Couté, Alain; Bardat, Jacques

    2015-04-01

    As part of the fight against desertification (LCD) in arid Tunisia, we have been able to highlight the important role played by biological soil crusts (BSC) in soil stabilization. The identification of the major species of cyanobacteria, lichens and bryophytes, their adaptation and terrestrial colonization strategies in this high climatic constraints area through their morpho-anatomical criteria have been set. In addition to their biological composition, their internal arrangement (i.e. texture and microstructure) reflects the structural stability of BSC against erosion. Precisely, the aggregative power of cyanobacteria and their ways of moving inside a soil, the capacity of mosses to grow through the sediments and lichens ability to bind at particles on surface, thus stabilizing the substrate have been demonstrated. Then, the three biological components ability to capture soil particles has been widely illustrated, proving the major environmental contribution of BSC in arid areas biological crusts formation, providing that soils will experience an increase of organic matter and fine particles rates subsequently gaining faster and better stability. Although the thickness and the morphology of crusts are related to the cover rates of these different biological components, the water properties of the latter, studied at the environmental SEM, illustrate their important role in altering the water cycle. Thus, the mixed crusts, i.e. with good presence of three biological components, cause the highest runoff rates by their ability to retain the water and spread on the surface. In spite of a swelling coefficient in presence of water higher than cryptogams, the cyanobacterial crusts located in newly stabilized areas of our studied region, remain finally insufficiently dense to impact surface hydrology. But, we showed after all that the cyanobacteria, pioneer species, have a certain environmental role. The lichen crusts cause a increased runoff because the lichens have a ability to extend them horizontally on the soil surface. Despite the water capture for their metabolism, the water flows; it isn't released in the depth. The moss crusts show an opposite process with an increased infiltration thanks to the possibility of a vertical transit of water through their sheets, stem and roots. So, in relation to bare soils, a crust with a good microbial and cryptogamic development causes more runoff. As part of the fight against the desertification in arid Tunisia, hydrological impact of BSC may lead to elaborate some ecosystem strategies in water and soils management. Indeed, climate aridity is not synonymous with edaphic aridity.

  17. Application of Multitemporal Remotely Sensed Soil Moisture for the Estimation of Soil Physical Properties

    NASA Technical Reports Server (NTRS)

    Mattikalli, N. M.; Engman, E. T.; Jackson, T. J.; Ahuja, L. R.

    1997-01-01

    This paper demonstrates the use of multitemporal soil moisture derived from microwave remote sensing to estimate soil physical properties. The passive microwave ESTAR instrument was employed during June 10-18, 1992, to obtain brightness temperature (TB) and surface soil moisture data in the Little Washita watershed, Oklahoma. Analyses of spatial and temporal variations of TB and soil moisture during the dry-down period revealed a direct relationship between changes in T and soil moisture and soil physical (viz. texture) and hydraulic (viz. saturated hydraulic conductivity, K(sat)) properties. Statistically significant regression relationships were developed for the ratio of percent sand to percent clay (RSC) and K(sat), in terms of change components of TB and surface soil moisture. Validation of results using field measured values and soil texture map indicated that both RSC and K(sat) can be estimated with reasonable accuracy. These findings have potential applications of microwave remote sensing to obtain quick estimates of the spatial distributions of K(sat), over large areas for input parameterization of hydrologic models.

  18. 43 CFR 23.8 - Approval of mining plan.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Two copies of a suitable map, or aerial photograph showing the topography, the area covered by the... all runoff water and drainage from workings so as to reduce soil erosion and sedimentation and to... fire, soil erosion, pollution of surface and ground water, damage to fish and wildlife, and hazards to...

  19. 43 CFR 23.8 - Approval of mining plan.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Two copies of a suitable map, or aerial photograph showing the topography, the area covered by the... all runoff water and drainage from workings so as to reduce soil erosion and sedimentation and to... fire, soil erosion, pollution of surface and ground water, damage to fish and wildlife, and hazards to...

  20. 43 CFR 23.8 - Approval of mining plan.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Two copies of a suitable map, or aerial photograph showing the topography, the area covered by the... all runoff water and drainage from workings so as to reduce soil erosion and sedimentation and to... fire, soil erosion, pollution of surface and ground water, damage to fish and wildlife, and hazards to...

  1. A complex permittivity model for field estimation of soil water contents using time domain reflectometry

    USDA-ARS?s Scientific Manuscript database

    Accurate electromagnetic sensing of soil water contents (') under field conditions is complicated by the dependence of permittivity on specific surface area, temperature, and apparent electrical conductivity, all which may vary across space or time. We present a physically-based mixing model to pred...

  2. Section 404 of the Clean Water Act: How Wetlands are Defined and Identified

    EPA Pesticide Factsheets

    Wetlands are areas where the frequent and prolonged presence of water at or near the soil surface drives the natural system meaning the kind of soils that form, the plants that grow and the fish and/or wildlife communities that use the habitat.

  3. Maps of averaged spectral deviations from soil lines and their comparison with traditional soil maps

    NASA Astrophysics Data System (ADS)

    Rukhovich, D. I.; Rukhovich, A. D.; Rukhovich, D. D.; Simakova, M. S.; Kulyanitsa, A. L.; Bryzzhev, A. V.; Koroleva, P. V.

    2016-07-01

    The analysis of 34 cloudless fragments of Landsat 5, 7, and 8 images (1985-2014) on the territory of Plavsk, Arsen'evsk, and Chern districts of Tula oblast has been performed. It is shown that bare soil surface on the RED-NIR plots derived from the images cannot be described in the form of a sector of spectral plane as it can be done for the NDVI values. The notion of spectral neighborhood of soil line (SNSL) is suggested. It is defined as the sum of points of the RED-NIR spectral space, which are characterized by spectral characteristics of the bare soil applied for constructing soil lines. The way of the SNSL separation along the line of the lowest concentration density of points on the RED-NIR spectral space is suggested. This line separates bare soil surface from vegetating plants. The SNSL has been applied to construct soil line (SL) for each of the 34 images and to delineate bare soil surface on them. Distances from the points with averaged RED-NIR coordinates to the SL have been calculated using the method of moving window. These distances can be referred to as averaged spectral deviations (ASDs). The calculations have been performed strictly for the SNSL areas. As a result, 34 maps of ASDs have been created. These maps contain ASD values for 6036 points of a grid used in the study. Then, the integral map of normalized ASD values has been built with due account for the number of points participating in the calculation (i.e., lying in the SNSL) within the moving window. The integral map of ASD values has been compared with four traditional soil maps on the studied territory. It is shown that this integral map can be interpreted in terms of soil taxa: the areas of seven soil subtypes (soddy moderately podzolic, soddy slightly podzolic, light gray forest. gray forest, dark gray forest, podzolized chernozems, and leached chernozems) belonging to three soil types (soddy-podzolic, gray forest, and chernozemic soils) can be delineated on it.

  4. Plant Mounds as Concentration and Stabilization Agents for Actinide Soil Contaminants in Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.S. Shafer; J. Gommes

    Plant mounds or blow-sand mounds are accumulations of soil particles and plant debris around the base of shrubs and are common features in deserts in the southwestern United States. An important factor in their formation is that shrubs create surface roughness that causes wind-suspended particles to be deposited and resist further suspension. Shrub mounds occur in some plant communities on the Nevada Test Site, the Nevada Test and Training Range (NTTR), and Tonopah Test Range (TTR), including areas of surface soil contamination from past nuclear testing. In the 1970s as part of early studies to understand properties of actinides inmore » the environment, the Nevada Applied Ecology Group (NAEG) examined the accumulation of isotopes of Pu, 241Am, and U in plant mounds at safety experiment and storage-transportation test sites of nuclear devices. Although aerial concentrations of these contaminants were highest in the intershrub or desert pavement areas, the concentration in mounds were higher than in equal volumes of intershrub or desert pavement soil. The NAEG studies found the ratio of contaminant concentration of actinides in soil to be greater (1.6 to 2.0) in shrub mounds than in the surrounding areas of desert pavement. At Project 57 on the NTTR, 17 percent of the area was covered in mounds while at Clean Slate III on the TTR, 32 percent of the area was covered in mounds. If equivalent volumes of contaminated soil were compared between mounds and desert pavement areas at these sites, then the former might contain as much as 34 and 62 percent of the contaminant inventory, respectively. Not accounting for radionuclides associated with shrub mounds would cause the inventory of contaminants and potential exposure to be underestimated. In addition, preservation of shrub mounds could be important part of long-term stewardship if these sites are closed by fencing and posting with administrative controls.« less

  5. Geophysical techniques for reconnaissance investigations of soils and surficial deposits in mountainous terrain

    USGS Publications Warehouse

    Olson, C.G.; Doolittle, J.A.

    1985-01-01

    Two techniques were assessed for their capabilities in reconnaissance studies of soil characteristics: depth to the water table and depth to bedrock beneath surficial deposits in mountainous terrain. Ground-penetrating radar had the best near-surface resolution in the upper 2 m of the profile and provided continuous interpretable imagery of soil profiles and bedrock surfaces. Where thick colluvium blankets side slopes, the GPR could not consistently define the bedrock interface. In areas with clayey or shaley sediments, the GPR is also more limited in defining depth and is less reliable. Seismic refraction proved useful in determining the elevation of the water table and depth to bedrock, regardless of thickness of overlying material, but could not distinguish soil-profile characteristics.-from Authors

  6. Soil particle tracing using RFID tags for elucidating the behavior of radiocesium on bare soil surfaces in Fukushima

    NASA Astrophysics Data System (ADS)

    Manome, Ryo; Onda, Yuichi; Patin, Jeremy; Stefani, Chiara; Yoshimura, Kazuya; Parsons, Tony; Cooper, James

    2014-05-01

    Radioactive materials are generally associated with soil particles in terrestrial environment and therefore the better understanding soil erosion processes is expected to improve the mitigation of radioactive risks. Spatial variability in soil erosion has been one of critical issues for soil erosion management. This study attempts to track soil particle movement on soil surfaces by employing Radio Frequency Identification (RFID) tags for the better understanding radiocesium behavior. A RFID tag contains a specific electronically identifier and it permits tracing its movement by reading the identifier. In this study, we made artificial soil particles by coating the RFID tags with cement material. The particle diameters of the artificial soil particles approximately ranged from 3 to 5 mm. The artificial soil particles were distributed in a reticular pattern on a soil erosion plot (bare soil surface, 22.13 m length × 5 m width, 4.4° slope) in Kawamata town where radiocesium deposited because of the Fukushima Dai-ichi power plant accident. After their distribution on October 2012, we had read the identifiers of RFID tags and recorded their locations on the plot for 14 times by September 2013. Moving distance (MD) was calculated based on the difference of the location for each sampling date. The topographical changes on the plot were also monitored with a laser scanner to describe interrill erosion and rill erosion area on 11occasions. Median MD is 10.8cm for all the observations. Median MD on interrill and rill erosion areas were 9.8 cm and 20.7 cm, respectively. Seasonal variation in MD was observed; an extremely large MD was found in May 2013, at the first reading after the winter season. This large MD after winter suggests that snowmelt runoff was the dominant process which transported the soil particles. Comparing the MD with the observed amounts of rainfall, sediment and runoff on the plot, significant positive correlation were found if the data of May, 2013. The coefficient of correlation with the amounts of surface runoff, sediment discharge and R-factor were 0.79 (p < 0.05, n = 13), 0.92 (p < 0.05, n = 13) and 0.79 (p < 0.05, n = 13), respectively. These positive correlations supported a possible use of RFID tag for tracking soil particles. There was a negative relationship between Cs-137 in sediment eroded from the plot and median MD (r = -0.40, p > 0.05, n = 13). One possible explanation for this negative relationship is that sediments on the rill area, which contain relatively low concentration of Cs-137, were discharged during intensive rainfall events and they resulted in low concentrations of Cs-137 in sediment eroded from the plot. These results suggest that the spatial distribution on Cs-137 and erosion processes should be considered for predicting radiocesium behavior even at the scale of our erosion plot.

  7. Surface roughness and runoff

    NASA Astrophysics Data System (ADS)

    Szabó, Judit Alexandra; Szabó, Boglárka; Centeri, Csaba; Józsa, Sándor; Szalai, Zoltán; Jakab, Gergely

    2017-04-01

    Soil surface conditions changes dynamically during a precipitation event. The changes involve compaction, aggregate detachment and of course transportation by runoff or drop erosion. Those processes together have an effect on the transport process of the soil particles and aggregates, and influences the roughness of the soil surface as well. How does surface roughness have an effect on the aggregate and particle size distribution of the sediment? How does the sediment connectivity change from precipitation event to precipitation event? Beside the previous questions on of the main aim of the present research is to apply rainfall simulators for the built-up of a complex approach, rather than to concentrate only on one of two factors. Hence four types of sample were collected during the simulation experiment sequences: 1) photos were taken about the surface before and after the rain, in order to build digital surface models; 2) all the runoff and eroded sediment was collected; 3) soil loss due to drop erosion was also sampled separately; and 4) undisturbed crust samples were collected for thin section analyses. Though the runoff ratio was smaller than what, the preliminary results suggest that the sediment connectivity covered bigger area on crusty surface, than on a rough one. These ambiguous data may be connected to the soil crust development. J. A. Szabó wish to acknowledge the support of NTP-NFTÖ-16-0203. G. Jakab wish to acknowledge the support of János Bolyai Fellowship.

  8. Applying Hillslope Hydrology to Bridge between Ecosystem and Grid-Scale Processes within an Earth System Model

    NASA Astrophysics Data System (ADS)

    Subin, Z. M.; Sulman, B. N.; Malyshev, S.; Shevliakova, E.

    2013-12-01

    Soil moisture is a crucial control on surface energy fluxes, vegetation properties, and soil carbon cycling. Its interactions with ecosystem processes are highly nonlinear across a large range, as both drought stress and anoxia can impede vegetation and microbial growth. Earth System Models (ESMs) generally only represent an average soil-moisture state in grid cells at scales of 50-200 km, and as a result are not able to adequately represent the effects of subgrid heterogeneity in soil moisture, especially in regions with large wetland areas. We addressed this deficiency by developing the first ESM-coupled subgrid hillslope-hydrological model, TiHy (Tiled-hillslope Hydrology), embedded within the Geophysical Fluid Dynamics Laboratory (GFDL) land model. In each grid cell, one or more representative hillslope geometries are discretized into land model tiles along an upland-to-lowland gradient. These geometries represent ~1 km hillslope-scale hydrological features and allow for flexible representation of hillslope profile and plan shapes, in addition to variation of subsurface properties among or within hillslopes. Each tile (which may represent ~100 m along the hillslope) has its own surface fluxes, vegetation state, and vertically-resolved state variables for soil physics and biogeochemistry. Resolution of water state in deep layers (~200 m) down to bedrock allows for physical integration of groundwater transport with unsaturated overlying dynamics. Multiple tiles can also co-exist at the same vertical position along the hillslope, allowing the simulation of ecosystem heterogeneity due to disturbance. The hydrological model is coupled to the vertically-resolved Carbon, Organisms, Respiration, and Protection in the Soil Environment (CORPSE) model, which captures non-linearity resulting from interactions between vertically-heterogeneous soil carbon and water profiles. We present comparisons of simulated water table depth to observations. We examine sensitivities to alternative parameterizations of hillslope geometry, macroporosity, and surface runoff / inundation, and to the choice of global topographic dataset and groundwater hydraulic conductivity distribution. Simulated groundwater dynamics among hillslopes tend to cluster into three regimes of wet and well-drained, wet but poorly-drained, and dry. In the base model configuration, near-surface gridcell-mean water tables exist in an excessively large area compared to observations, including large areas of the Eastern U.S. and Northern Europe. However, in better-drained areas, the decrease in water table depth along the hillslope gradient allows for realistic increases in ecosystem water availability and soil carbon downslope. The inclusion of subgrid hydrology can increase the equilibrium 0-2 m global soil carbon stock by a large factor, due to the nonlinear effect of anoxia. We conclude that this innovative modeling framework allows for the inclusion of hillslope-scale processes and the potential for wetland dynamics in an ESM without need for a high-resolution 3-dimensional groundwater model. Future work will include investigating the potential for future changes in land carbon fluxes caused by the effects of changing hydrological regime, particularly in peatland-rich areas poorly treated by current ESMs.

  9. Impacts of vehicles on natural terrain at seven sites in the San Francisco Bay area

    USGS Publications Warehouse

    Wilshire, H.G.; Nakata, J.K.; Shipley, S.; Prestegaard, K.

    1978-01-01

    The impacts of off-road vehicles on vegetation and soil were investigated at seven representative sites in the San Francisco Bay area. Plant cover of grass and chaparral (with shrubs to 4 m tall) have been stripped by the two- and four-wheel vehicles in use. Impacts on loamy soils include increased surface strength (as much as 275 bars), increased bulk density (averaging 18%) to depths of 90 cm or more, reduction of soil moisture by an average 43% to 30 cm depths, greatly reduced infiltration, extension of the diurnal temperature range by as much as 12??C, and reduction of organic carbon by an average 33% in exposed soils. Very sandy soils respond similarly to vehicular use except that moisture is increased and surface strength of beach sand is decreased. These physical and chemical impacts reduce the land's capability of restoring its vegetative cover, which in turn adversely affects animal populations. Both the loss of plant cover and the physical changes caused by vehicles promote erosion. Measured soil and substrate losses from vehicular use zones range from 7 to 1180 kg/m2. The estimated erosion rate of the Chabot Park site exceeds the rate of erosion considered a serious problem by a factor 30, it exceeds United States Soil Conservation Service tolerance values by a factor of 46, and it exceeds average San Francisco Bay area erosion rates by a factor of 17. The resulting soil losses are effectively permanent. Neither the increased sediment yield nor the increased runoff is accomodated on the sites of use, and both are causing adverse effects to neighboring properties. ?? 1978 Springer-Verlag New York Inc.

  10. Urban Soil: Assessing Ground Cover Impact on Surface Temperature and Thermal Comfort.

    PubMed

    Brandani, Giada; Napoli, Marco; Massetti, Luciano; Petralli, Martina; Orlandini, Simone

    2016-01-01

    The urban population growth, together with the contemporary deindustrialization of metropolitan areas, has resulted in a large amount of available land with new possible uses. It is well known that urban green areas provide several benefits in the surrounding environment, such as the improvement of thermal comfort conditions for the population during summer heat waves. The purpose of this study is to provide useful information on thermal regimes of urban soils to urban planners to be used during an urban transformation to mitigate surface temperatures and improve human thermal comfort. Field measurements of solar radiation, surface temperature (), air temperature (), relative humidity, and wind speed were collected on four types of urban soils and pavements in the city of Florence during summer 2014. Analysis of days under calm, clear-sky condition is reported. During daytime, sun-to-shadow differences for , apparent temperature index (ATI), and were significantly positive for all surfaces. Conversely, during nighttime, differences among all surfaces were significantly negative, whereas ATI showed significantly positive differences. Moreover, was significantly negative for grass and gravel. Relative to the shaded surfaces, was higher on white gravel and grass than gray sandstone and asphalt during nighttime, whereas gray sandstone was always the warmest surface during daytime. Conversely, no differences were found during nighttime for ATI and measured over surfaces that were exposed to sun during the day, whereas showed higher values on gravel than grass and asphalt during nighttime. An exposed surface warms less if its albedo is high, leading to a significant reduction of during daytime. These results underline the importance of considering the effects of surface characteristics on surface temperature and thermal comfort. This would be fundamental for addressing urban environment issues toward the heat island mitigation considering also the impact of urban renovation on microclimate. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Study of the Effect of Turbulence and Large Obstacles on the Evaporation from Bare Soil Surface through Coupled Free-flow and Porous-medium Flow Model

    NASA Astrophysics Data System (ADS)

    Gao, B.; Smits, K. M.

    2017-12-01

    Evaporation is a strongly coupled exchange process of mass, momentum and energy between the atmosphere and the soil. Several mechanisms influence evaporation, such as the atmospheric conditions, the structure of the soil surface, and the physical properties of the soil. Among the previous studies associated with evaporation modeling, most efforts use uncoupled models which simplify the influences of the atmosphere and soil through the use of resistance terms. Those that do consider the coupling between the free flow and porous media flow mainly consider flat terrain with grain-scale roughness. However, larger obstacles, which may form drags or ridges allowing normal convective air flow through the soil, are common in nature and may affect the evaporation significantly. Therefore, the goal of this work is to study the influence of large obstacles such as wavy surfaces on the flow behavior within the soil and exchange processes to the atmosphere under turbulent free-flow conditions. For simplicity, the soil surface with large obstacles are represented by a simple wavy surface. To do this, we modified a previously developed theory for two-phase two-component porous-medium flow, coupling it to single-phase two-component turbulent flow to simulate and analyze the evaporation from wavy soil surfaces. Detailed laboratory scale experiments using a wind tunnel interfaced with a porous media tank were carried out to test the modeling results. The characteristics of turbulent flow across a permeable wavy surface are discussed. Results demonstrate that there is an obvious recirculation zone formed at the surface, which is special because of the accumulation of water vapor and the thicker boundary layer in this area. In addition, the influences of both the free flow and porous medium on the evaporation are also analyzed. The porous medium affects the evaporation through the amount of water it can provide to the soil surface; while the atmosphere influences the evaporation through the gradients formed within the boundary layer. This study gives a primary cognition on the evaporation from bare soil surface with obstacles. Ongoing work will include a deep understanding of the mechanisms which may provide the basis for land-atmosphere study on field scale.

  12. Assessment of Multi-frequency Electromagnetic Induction for Determining Soil Moisture Patterns at the Hillslope Scale

    NASA Astrophysics Data System (ADS)

    Tromp-van Meerveld, I.; McDonnell, J.

    2009-05-01

    We present an assessment of electromagnetic induction (EM) as a potential rapid and non-invasive method to map soil moisture patterns at the Panola (GA, USA) hillslope. We address the following questions regarding the applicability of EM measurements for hillslope hydrological investigations: (1) Can EM be used for soil moisture measurements in areas with shallow soils?; (2) Can EM represent the temporal and spatial patterns of soil moisture throughout the year?; and (3) can multiple frequencies be used to extract additional information content from the EM approach and explain the depth profile of soil moisture? We found that the apparent conductivity measured with the multi-frequency GEM-300 was linearly related to soil moisture measured with an Aqua-pro capacitance sensor below a threshold conductivity and represented the temporal patterns in soil moisture well. During spring rainfall events that wetted only the surface soil layers the apparent conductivity measurements explained the soil moisture dynamics at depth better than the surface soil moisture dynamics. All four EM frequencies (7290, 9090, 11250, and 14010 Hz) were highly correlated and linearly related to each other and could be used to predict soil moisture. This limited our ability to use the four different EM frequencies to obtain a soil moisture profile with depth. The apparent conductivity patterns represented the observed spatial soil moisture patterns well when the individually fitted relationships between measured soil moisture and apparent conductivity were used for each measurement point. However, when the same (master) relationship was used for all measurement locations, the soil moisture patterns were smoothed and did not resemble the observed soil moisture patterns very well. In addition, the range in calculated soil moisture values was reduced compared to observed soil moisture. Part of the smoothing was likely due to the much larger measurement area of the GEM-300 compared to the Aqua-pro soil moisture measurements.

  13. Thermal Desorption Analysis of Effective Specific Soil Surface Area

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.; Bashina, A. S.; Klyueva, V. V.; Kubareva, A. V.

    2017-12-01

    A new method of assessing the effective specific surface area based on the successive thermal desorption of water vapor at different temperature stages of sample drying is analyzed in comparison with the conventional static adsorption method using a representative set of soil samples of different genesis and degree of dispersion. The theory of the method uses the fundamental relationship between the thermodynamic water potential (Ψ) and the absolute temperature of drying ( T): Ψ = Q - aT, where Q is the specific heat of vaporization, and a is the physically based parameter related to the initial temperature and relative humidity of the air in the external thermodynamic reservoir (laboratory). From gravimetric data on the mass fraction of water ( W) and the Ψ value, Polyanyi potential curves ( W(Ψ)) for the studied samples are plotted. Water sorption isotherms are then calculated, from which the capacity of monolayer and the target effective specific surface area are determined using the BET theory. Comparative analysis shows that the new method well agrees with the conventional estimation of the degree of dispersion by the BET and Kutilek methods in a wide range of specific surface area values between 10 and 250 m2/g.

  14. Impacts of Soil and Water Conservation Practices on Crop Yield, Run-off, Soil Loss and Nutrient Loss in Ethiopia: Review and Synthesis.

    PubMed

    Adimassu, Zenebe; Langan, Simon; Johnston, Robyn; Mekuria, Wolde; Amede, Tilahun

    2017-01-01

    Research results published regarding the impact of soil and water conservation practices in the highland areas of Ethiopia have been inconsistent and scattered. In this paper, a detailed review and synthesis is reported that was conducted to identify the impacts of soil and water conservation practices on crop yield, surface run-off, soil loss, nutrient loss, and the economic viability, as well as to discuss the implications for an integrated approach and ecosystem services. The review and synthesis showed that most physical soil and water conservation practices such as soil bunds and stone bunds were very effective in reducing run-off, soil erosion and nutrient depletion. Despite these positive impacts on these services, the impact of physical soil and water conservation practices on crop yield was negative mainly due to the reduction of effective cultivable area by soil/stone bunds. In contrast, most agronomic soil and water conservation practices increase crop yield and reduce run-off and soil losses. This implies that integrating physical soil and water conservation practices with agronomic soil and water conservation practices are essential to increase both provisioning and regulating ecosystem services. Additionally, effective use of unutilized land (the area occupied by bunds) by planting multipurpose grasses and trees on the bunds may offset the yield lost due to a reduction in planting area. If high value grasses and trees can be grown on this land, farmers can harvest fodder for animals or fuel wood, both in scarce supply in Ethiopia. Growing of these grasses and trees can also help the stability of the bunds and reduce maintenance cost. Economic feasibility analysis also showed that, soil and water conservation practices became economically more viable if physical and agronomic soil and water conservation practices are integrated.

  15. Impacts of Soil and Water Conservation Practices on Crop Yield, Run-off, Soil Loss and Nutrient Loss in Ethiopia: Review and Synthesis

    NASA Astrophysics Data System (ADS)

    Adimassu, Zenebe; Langan, Simon; Johnston, Robyn; Mekuria, Wolde; Amede, Tilahun

    2017-01-01

    Research results published regarding the impact of soil and water conservation practices in the highland areas of Ethiopia have been inconsistent and scattered. In this paper, a detailed review and synthesis is reported that was conducted to identify the impacts of soil and water conservation practices on crop yield, surface run-off, soil loss, nutrient loss, and the economic viability, as well as to discuss the implications for an integrated approach and ecosystem services. The review and synthesis showed that most physical soil and water conservation practices such as soil bunds and stone bunds were very effective in reducing run-off, soil erosion and nutrient depletion. Despite these positive impacts on these services, the impact of physical soil and water conservation practices on crop yield was negative mainly due to the reduction of effective cultivable area by soil/stone bunds. In contrast, most agronomic soil and water conservation practices increase crop yield and reduce run-off and soil losses. This implies that integrating physical soil and water conservation practices with agronomic soil and water conservation practices are essential to increase both provisioning and regulating ecosystem services. Additionally, effective use of unutilized land (the area occupied by bunds) by planting multipurpose grasses and trees on the bunds may offset the yield lost due to a reduction in planting area. If high value grasses and trees can be grown on this land, farmers can harvest fodder for animals or fuel wood, both in scarce supply in Ethiopia. Growing of these grasses and trees can also help the stability of the bunds and reduce maintenance cost. Economic feasibility analysis also showed that, soil and water conservation practices became economically more viable if physical and agronomic soil and water conservation practices are integrated.

  16. Effects of human trampling on populations of soil fauna in the McMurdo Dry Valleys, Antarctica.

    PubMed

    Ayres, Edward; Nkem, Johnson N; Wall, Diana H; Adams, Byron J; Barrett, J E; Broos, Emma J; Parsons, Andrew N; Powers, Laura E; Simmons, Breana L; Virginia, Ross A

    2008-12-01

    Antarctic ecosystems are often considered nearly pristine because levels of anthropogenic disturbance are extremely low there. Nevertheless, over recent decades there has been a rapid increase in the number of people, researchers and tourists, visiting Antarctica. We evaluated, over 10 years, the direct impact of foot traffic on the abundance of soil animals and soil properties in Taylor Valley within the McMurdo Dry Valleys region of Antarctica. We compared soils from minimally disturbed areas with soils from nearby paths that received intermediate and high levels of human foot traffic (i.e., up to approximately 80 passes per year). The nematodes Scottnema lindsayae and Eudorylaimus sp. were the most commonly found animal species, whereas rotifers and tardigrades were found only occasionally. On the highly trampled footpaths, abundance of S. lindsayae and Eudorylaimus sp. was up to 52 and 76% lower, respectively, than in untrampled areas. Moreover, reduction in S. lindsayae abundance was more pronounced after 10 years than 2 years and in the surface soil than in the deeper soil, presumably because of the longer period of disturbance and the greater level of physical disturbance experienced by the surface soil. The ratio of living to dead Eudorylaimus sp. also declined with increased trampling intensity, which is indicative of increased mortality or reduced fecundity. At one site there was evidence that high levels of trampling reduced soil CO(2) fluxes, which is related to total biological activity in the soil. Our results show that even low levels of human traffic can significantly affect soil biota in this ecosystem and may alter ecosystem processes, such as carbon cycling. Consequently, management and conservation plans for Antarctic soils should consider the high sensitivity of soil fauna to physical disturbance as human presence in this ecosystem increases.

  17. Assessment of soil quality index for wheat and sugar beet cropping systems on an entisol in Central Anatolia.

    PubMed

    Şeker, Cevdet; Özaytekin, Hasan Hüseyin; Negiş, Hamza; Gümüş, İlknur; Dedeoğlu, Mert; Atmaca, Emel; Karaca, Ümmühan

    2017-04-01

    The sustainable use of agricultural lands is significantly affected by the implemented management and land processing methods. In sugar beet and wheat cropping, because the agronomic characteristics of plants are different, the tillage methods applied also exhibit significant variability. Soil quality concept is used, as a holistic approach to determining the effects of these applications on the sustainable use of soil. Agricultural soil quality evaluation is essential for economic success and environmental stability in rapidly developing regions. At present, a variety of methods are used to evaluate soil quality using different indicators. This study was conducted in one of the most important irrigated agriculture areas of Çumra plain in Central Anatolia, Turkey. In the soil under sugar beet and wheat cultivation, 12 soil quality indicators (aggregate stability (AS), available water capacity (AWC), surface penetration resistance (PR 0-20 ), subsurface penetration resistance (PR 20-40 ), organic matter (OM), active carbon (AC), potentially mineralizable nitrogen (PMN), root health value (RHV), pH, available phosphorus (AP), potassium (K), and macro-micro elements (ME) (Mg, Fe, Mn, and Zn)) were measured and scored according to the Cornell Soil Health Assessment (CSHA) and the Soil Management Assessment Framework (SMAF). The differences among 8 (AS, AWC, PR 0-20 , PR 20-40 , AC, PMN, AP, and ME) of these 12 soil quality characteristics measured in two different plant cultivation were found statistically significant. The result of the soil quality evaluation with scoring function in the examined area revealed a soil quality score of 61.46 in the wheat area and of 51.20 in the sugar beet area, which can be classified as medium and low, respectively. Low soil quality scores especially depend on physical and biological soil properties. Therefore, improvement of soil physical and biological properties with sustainable management is necessary to enhance the soil quality in the study area soils.

  18. Topographical controls on soil moisture distribution and runoff response in a first order alpine catchment

    NASA Astrophysics Data System (ADS)

    Penna, Daniele; Gobbi, Alberto; Mantese, Nicola; Borga, Marco

    2010-05-01

    Hydrological processes driving runoff generation in mountain basins depend on a wide number of factors which are often strictly interconnected. Among them, topography is widely recognized as one of the dominant controls influencing soil moisture distribution in the root zone, depth to water table and location and extent of saturated areas possibly prone to runoff production. Morphological properties of catchments are responsible for the alternation between steep slopes and relatively flat areas which have the potentials to control the storage/release of water and hence the hydrological response of the whole watershed. This work aims to: i) identify the role of topography as the main factor controlling the spatial distribution of near-surface soil moisture; ii) evaluate the possible switch in soil moisture spatial organization between wet and relatively dry periods and the stability of patterns during triggering of surface/subsurface runoff; iii) assess the possible connection between the develop of an ephemeral river network and the groundwater variations, examining the influence of the catchment topographical properties on the hydrological response. Hydro-meteorological data were collected in a small subcatchment (Larch Creek Catchment, 0.033 km²) of Rio Vauz basin (1.9 km²), in the eastern Italian Alps. Precipitation, discharge, water table level over a net of 14 piezometric wells and volumetric soil moisture at 0-30 cm depth were monitored continuously during the late spring-early autumn months in 2007 and 2008. Soil water content at 0-6 and 0-20 cm depth was measured manually during 22 field surveys in summer 2007 over a 44-sampling point experimental plot (approximately 3000 m²). In summer 2008 the sampling grid was extended to 64 points (approximately 4500 m²) and 28 field surveys were carried out. The length of the ephemeral stream network developed during rainfall events was assessed by a net of 24 Overland Flow Detectors (OFDs), which are able to detect the presence/absence of surface runoff. Results show a significant correlation between plot-averaged soil moisture at 0-20 cm depth, local slope and local curvature, while poor correlations were found with aspect and solar radiation: this suggests a sharp control of the catchment topological architecture (likely coupled with soil properties) on soil moisture distribution. This was also confirmed by the visual inspection of interpolated maps which reveal the persistence of high values of soil moisture in hollow areas and, conversely, of low values over the hillslopes. Moreover, a strong correlation between plot-averaged soil moisture patterns over time, with no decline after rainfall events, indicates a good temporal stability of water content distribution and its independence from the triggering of surface flow and transient lateral subsurface flow during wet conditions. The analysis of the time lag between storm centroid and piezometric peak shows an increasing delay of water table reaction with increasing distance from the stream, revealing different groundwater dynamics between the near-stream and the hillslope zone. Furthermore, the significant correlation between groundwater time lag monitored for the net of piezometers and the local slope suggests a topographical influence on the temporal and spatial variability of subsurface runoff. Finally, the extent of the ephemeral stream network was clearly dependent on the amount of precipitation but a different percentage of active OFDs and piezometers for the same rainfall event suggests a decoupling between patterns of surface and subsurface flows in the study area. Key words: topographical controls, soil moisture patterns, groundwater level, overland flow.

  19. Soil analyses for 1,3-dichloropropene (1,3-DCP), sodium n-methyldithiocarbamate (metam-sodium), and their degradation products near Fort Hall Idaho, September 1999 through March 2000

    USGS Publications Warehouse

    Parliman, D.J.

    2001-01-01

    Between September 1999 and March 2000, soil samples from the Fort Hall, Idaho, area were analyzed for two soil fumigants, 1,3-dichloropropene (1,3-DCP) and sodium n-methyldithiocarbamate (metam-sodium), and their degradation products. Ground water is the only source of drinking water at Fort Hall, and the purpose of the investigation was to determine potential risk of ground-water contamination from persistence and movement of these pesticides in cropland soils. 1,3-DCP, metam-sodium, or their degradation products were detected in 42 of 104 soil samples. The samples were collected from 1-, 2-, and 3-foot depths in multiple backhoe trenches during four sampling events—before pesticide application in September; after application in October; before soil freeze in December; and after soil thaw in March. In most cases, concentrations of the pesticide compounds were at or near their laboratory minimum reporting limits. U.S. Environmental Protection Agency Method 5035 was used as the guideline for soil sample preparation and analyses, and either sodium bisulfate (NaHSO4), an acidic preservative, or pesticide-free water was added to samples prior to analyses. Addition of NaHSO4 to the samples resulted in a greater number of compound detections, but pesticide-free water was added to most samples to avoid the strong reactions of soil carbonate minerals with the NaHSO4. As a result, nondetection of compounds in samples containing pesticide-free water did not necessarily indicate that the compounds were absent. Detections of these compounds were inconsistent among trenches with similar soil characteristics and histories of soil fumigant use. Compounds were detected at different depths and different trench locations during each sampling event. Overall results of this study showed that the original compounds or their degradation products can persist in soil 6 months or more after their application and are present to at least 3 feet below land surface in some areas. A few of the soil analyses results were unexpected. Degradation products of metam-sodium were detected in samples from croplands with a history of 1,3-DCP applications only, and were not detected in samples from croplands with a history of metam-sodium applications. Although 1,2-dibromoethane (EDB) has not been used in the area for many years, EDB was detected in a few soil samples. The presence of EDB in soil could be caused by irrigation of croplands with EDBcontaminated ground water. Analyses of these soil samples resulted in many unanswered questions, and further studies are needed. One potential study to determine vertical extent of pesticide compound migration in sediments, for example, would include analysis of one or more columns of soil and sediments (land surface to ground water, about 35 to 50 feet below land surface) in areas with known soil contamination. Another study would expand the scope of soil contamination to include broader types of cropland conditions and compound analyses.

  20. The role of topography and surface cover upon soil formation along hillslopes in arid climates

    NASA Astrophysics Data System (ADS)

    Yair, Aaron

    1990-09-01

    Two north-facing soil toposequences were selected from within the northern Negev desert, Israel, where average annual rainfall ranges from 70 to 200 mm. Both slopes are composed of an upper rocky and a lower colluvial section. Similar trends were found along both slopes. A high salt content was characteristic of soils at the top of the slope; salinity decreased downslope within the rocky slope section. The opposite occurred along the colluvial slopes, with salinity increasing sharply downslope. At any location along the slopes the northernmost soil toposequence site (160 mm average annual rainfall) represents, from a pedological point of view, an environment which is far more arid than its climatologically drier, more southern counterpart. The explanation provided for the variation of soil proporties at the scale of single hillslopes and at the regional scale is the same. It is contended that water input into the soil, and therefore leaching intensity, is positively related to the ratio of bedrock/soil cover. Rocky areas have limited infiltration, thus yielding high runoff rates into adjoining soil-covered areas, and contribute to water concentration, deeper infiltration and leaching intensity. Soil or sediment-covered areas having relatively high absorption capacities will experience reduced runoff, shallow infiltration and decreased water availability for leaching. This leads over time to salt accumulation at a shallow depth. The decrease in rock/soil ratio downslope within the colluvium is therefore held responsible for the corresponding increase in salinity. Similarly, the greater salinity of the soils in the northern site is explained by the fact that its rock/soil ratio is lower than in the southern area. The theoretical and practical implications regarding the relationship between climatic change and landscape evolution in arid areas are briefly discussed.

Top