Science.gov

Sample records for soil treatment session

  1. Single session treatment for bleeding hemorrhoids

    SciTech Connect

    Weinstein, S.J.; Rypins, E.B.; Houck, J.; Thrower, S.

    1987-12-01

    Fifty consecutive outpatients with bleeding internal hemorrhoids were prospectively treated with a single application of rubber band ligation or infrared coagulation. Complete follow-up observation was obtained in 48 patients (23 underwent rubber band ligation and 25 underwent infrared coagulation). At one month after treatment, 22 patients who underwent rubber band ligation and 16 who underwent infrared coagulation, were symptomatically improved (p less than 0.05). At six months, 15 patients who had undergone rubber band ligation and ten who had infrared coagulation treatment, remained improved (p less than 0.05). There was no statistical difference in the discomfort experienced by either group during or after the procedure as determined by a self-assessment scale. Two patients who underwent rubber band ligation experienced complications--a thrombosed external hemorrhoid developed in one patient and another had delayed rectal bleeding. Although associated with occasional complications after treatment, rubber band ligation is more effective than in infrared coagulation for single session treatment of bleeding internal hemorrhoids.

  2. Soil Classification and Treatment.

    ERIC Educational Resources Information Center

    Clemson Univ., SC. Vocational Education Media Center.

    This instructional unit was designed to enable students, primarily at the secondary level, to (1) classify soils according to current capability classifications of the Soil Conservation Service, (2) select treatments needed for a given soil class according to current recommendations provided by the Soil Conservation Service, and (3) interpret a…

  3. One-Session Treatment of Specific Phobias: A Detailed Description and Review of Treatment Efficacy

    ERIC Educational Resources Information Center

    Zlomke, Kimberly; Davis, Thompson E., III

    2008-01-01

    One-Session Treatment (OST) is a form of massed exposure therapy for the treatment of specific phobias. OST combines exposure, participant modeling, cognitive challenges, and reinforcement in a single session, maximized to three hours. Clients are gradually exposed to steps of their fear hierarchy using therapist-directed behavioral experiments.…

  4. Achieving intersubjective understanding: examples from an occupational therapy treatment session.

    PubMed

    Crepeau, E B

    1991-11-01

    Occupational therapists, like other health care professionals, must balance their application of treatment techniques with an understanding of their patients' life experiences. This paper reviews the literature from interpretive and medical sociology regarding the interplay between professional power and the achievement of an understanding of another person. It analyzes how an occupational therapist, during a single treatment session, enters into her patient's life-world and simultaneously controls and manages the treatment process. The concepts of knowledge schemata (the expectations and beliefs people bring to a situation) and footings (the shifts in alignment, or focus, that occur during interaction) are central to this analysis. The process of achieving a balance between professional power and an understanding of the patient's experience may be fostered in education and in clinical supervision through increased emphasis on the importance of understanding the values and beliefs of patients and on the development and refinement of interactive skills.

  5. A Comparative Evaluation of Minimal Therapist Contact and 15-Session Treatment for Female Orgasmic Dysfunction.

    ERIC Educational Resources Information Center

    Morokoff, Patricia J.; LoPiccolo, Joseph

    1986-01-01

    Compared a four-session minimal therapist contact (MTC) program for treatment of lifelong global orgasmic dysfunction in women to a 15-session full therapist contact (FTC) program. Both programs were effective in producing female orgasm and in improving satisfaction with the sexual relationship and, for women in MTC treatment, happiness in…

  6. Anger and Violence Prevention: Enhancing Treatment Effects through Booster Sessions

    ERIC Educational Resources Information Center

    Bundy, Alysha; McWhirter, Paula T.; McWhirter, J. Jeffries

    2011-01-01

    This study was designed to evaluate the effectiveness of booster sessions on the maintenance of intervention gains following an anger management prevention program: "Student Created Aggression Replacement Education Program" ("SCARE"). Participants who had completed the "SCARE" program a year earlier were randomly assigned into either a booster…

  7. Motivational Enhancement Therapy and Cognitive Behavioral Therapy for Adolescent Cannabis Users: 5 Sessions. Cannabis Youth Treatment (CYT) Series, Volume 1.

    ERIC Educational Resources Information Center

    Sampl, Susan; Kadden, Ronald

    This manual is designed to help train substance abuse treatment counselors to conduct a brief five-session treatment intervention for adolescents with cannabis use disorders presenting for outpatient treatment. It combines two sessions of motivational enhancement therapy provided individually and three sessions of cognitive behavioral therapy…

  8. Thermal treatment of polluted soil

    SciTech Connect

    Hodges, H.; Wells, S.K.

    1995-02-01

    Thermal treatment for the remediation soils contaminated with petroleum hydrocarbons is described. It is recommended tat a thorough analysis be performed of the situation including well monitoring and contamination testing, records review, and sampling.

  9. Specific Phobias in Youth: A Randomized Controlled Trial Comparing One-Session Treatment to a Parent-Augmented One-Session Treatment

    PubMed Central

    Ollendick, Thomas H.; Halldorsdottir, Thorhildur; Fraire, Maria G; Austin, Kristin E.; Noguchi, Ryoichi J. P.; Lewis, Krystal M.; Jarrett, Matthew A.; Cunningham, Natoshia R.; Canavera, Kristin; Allen, Kristy B.; Whitmore, Maria J.

    2015-01-01

    Objective Examine the efficacy of a parent-augmented One Session Treatment (A-OST) in treating specific phobias (SP) in youth by comparing this novel treatment to child-focused OST, a well-established treatment. Method A total of 97 youth (ages 6–15, 51.5% female, 84.5% white) who fulfilled diagnostic criteria for SP were randomized to either A-OST or OST. SPs were assessed with semi-structured diagnostic interviews, clinician improvement ratings, and parent and child improvement ratings. In addition, measures of treatment satisfaction and parental self-efficacy were obtained. Blind assessments were completed pretreatment, post-treatment, and 1-month and 6-months following treatment. Analyses were undertaken using mixed models. In addition, gender, age, internalizing/externalizing problems, parent overprotection, and parent anxiety were examined as potential predictors and moderators of treatment outcome. Results Both treatment conditions produced similar outcomes with approximately 50% of youth in both treatments diagnosis free and judged to be much or very much improved at post-treatment and 1-month follow up. At 6-month follow up, however, the treatments diverged with OST resulting in marginally superior outcomes to A-OST, contrary to predictions. Only age of child predicted treatment outcome across the two treatments (older children did better); unexpectedly, none of the variables moderated treatment outcomes. Conclusions Parent augmentation of OST produced no appreciable gains in treatment outcomes. Directions for future research are highlighted. PMID:25645164

  10. Informal Discussions in Substance Abuse Treatment Sessions with Spanish-speaking Clients

    PubMed Central

    Bamatter, Wendy; Carroll, Kathleen M.; Añez, Luis M.; Paris, Manuel; Ball, Samuel A.; Nich, Charla; Frankforter, Tami L.; Suarez-Morales, Lourdes; Szapocznik, Jose; Martino, Steve

    2010-01-01

    This study investigated the extent to which bilingual counselors initiated informal discussions about topics that were unrelated to the treatment of their monolingual Spanish-speaking Hispanic clients in a National Institute on Drug Abuse Clinical Trial Network protocol examining the effectiveness of motivational enhancement therapy (MET). Session audiotapes were independently rated to assess counselor treatment fidelity and the incidence of informal discussions. Eighty-three percent of the 23 counselors participating in the trial initiated informal discussions at least once in one or more of their sessions. Counselors delivering MET in the trial initiated informal discussion significantly less often than the counselors delivering standard treatment. Counselors delivering standard treatment were likely to talk informally the most when they were ethnically non-Latin. Additionally, informal discussion was found to have significant inverse correlations with client motivation to reduce substance use and client retention in treatment. These results suggest that informal discussion may have adverse consequences on Hispanic clients’ motivation for change and substance abuse treatment outcomes and that maintaining a more formal relationship in early treatment sessions may work best with Hispanic clients. Careful counselor training and supervision in MET may suppress the tendency of counselors to talk informally in sessions. PMID:20817381

  11. Treatment of radionuclide contaminated soils

    SciTech Connect

    Pettis, S.A.; Kallas, A.J.; Kochen, R.L.; McGlochlin, S.C.

    1988-06-01

    Rockwell, International, Rocky Flats Plants, is committed to remediating within the scope of RCRA/CERCLA, Solid Waste Managements Units (SWMUs) at Rocky Flats found to be contaminated with hazardous substances. SWMUs fund to have radionuclide (uranium, plutonium, and/or americium) concentrations in the soils and/or groundwater that exceed background levels or regulatory limits will also be included in this remediation effort. This paper briefly summarizes past and present efforts by Rockwell International, Rocky Flats Plant, to identify treatment technologies appropriate for remediating actinide contaminated soils. Many of the promising soil treatments evaluated in Rocky Flats' laboratories during the late 1970's and early 1980's are currently being revisited. These technologies are generally directed toward substantially reducing the volume of contaminated soils, with the subsequent intention of disposing of a small remaining concentrated fraction of contaminated soil in a facility approved to receive radioactive wastes. Treatment processes currently will be treated to remove actinides, and recycled back to the process. Past investigations have included evaluations of dry screening, wet screening, scrubbing, ultrasonics, chemical oxidation, calcination, desliming, flotation, and heavy-liquid density separation. 8 refs., 2 figs.

  12. One- vs. five-session treatment of intra-oral injection phobia: a randomized clinical study.

    PubMed

    Vika, Margrethe; Skaret, Erik; Raadal, Magne; Ost, Lars-Göran; Kvale, Gerd

    2009-06-01

    The present study aimed to evaluate the effect of one and five sessions of treatment for intra-oral injection phobia in 55 subjects fulfilling the DSM-IV criteria for specific phobia. The subjects were randomly assigned to one or five sessions of cognitive behavioural therapy (CBT) performed by dentists. Assessments included behavioural tests and self-report instruments used pretreatment, post-treatment, and at 1 yr of follow-up. The dental anxiety scale (DAS), the injection phobia scale-anxiety, and the mutilation questionnaires were applied. Mean avoidance duration of intra-oral injections before treatment was 7.0 yr. The results showed that 89% of the subjects had received intra-oral injections from a regular dentist during the 1-yr follow-up. The only significant difference between the one- and the five-session groups was that the five-session group reported less anxiety (as measured using the DAS) at 1 yr of follow-up. It was concluded that both treatments performed by dentists specially trained in CBT have a significant treatment effect on the intra-oral injection phobia.

  13. The Psychological Structure of African Americans Who Terminate Mental Health Treatment Services after Their Initial Sessions

    ERIC Educational Resources Information Center

    Dossman, Craig Arthur, Sr.

    2012-01-01

    The purpose of the qualitative phenomenological research study was to describe and explain the experiences of African Americans who terminated mental health treatment services after their initial sessions. The goal of the study was to expand the available knowledge by scientifically illuminating the lived experiences of African Americans who used…

  14. Combined local and systemic bleomycin administration in electrochemotherapy to reduce the number of treatment sessions

    PubMed Central

    Tellado, Matias; Olaiz, Nahuel; Michinski, Sebastian; Marshall, Guillermo

    2016-01-01

    Background Electrochemotherapy (ECT), a medical treatment widely used in human patients for tumor treatment, increases bleomycin toxicity by 1000 fold in the treated area with an objective response rate of around 80%. Despite its high response rate, there are still 20% of cases in which the patients are not responding. This could be ascribed to the fact that bleomycin, when administered systemically, is not reaching the whole tumor mass properly because of the characteristics of tumor vascularization, in which case local administration could cover areas that are unreachable by systemic administration. Patients and methods We propose combined bleomycin administration, both systemic and local, using companion animals as models. We selected 22 canine patients which failed to achieve a complete response after an ECT treatment session. Eleven underwent another standard ECT session (control group), while 11 received a combined local and systemic administration of bleomycin in the second treatment session. Results According to the WHO criteria, the response rates in the combined administration group were: complete response (CR) 54% (6), partial response (PR) 36% (4), stable disease (SD) 10% (1). In the control group, these were: CR 0% (0), PR 19% (2), SD 63% (7), progressive disease (PD) 18% (2). In the combined group 91% objective responses (CR+PR) were obtained. In the control group 19% objective responses were obtained. The difference in the response rate between the treatment groups was significant (p < 0.01). Conclusions Combined local and systemic bleomycin administration was effective in previously to ECT non responding canine patients. The results indicate that this approach could be useful and effective in specific population of patients and reduce the number of treatment sessions needed to obtain an objective response. PMID:27069450

  15. A Patient with Eight Intracranial Aneurysms: Endovascular Treatment in Two Sessions

    PubMed Central

    Onan, Hasan Bilen; Balli, Huseyin Tugsan; Cetinalp, Nuri Eralp

    2016-01-01

    The frequency of multiple intracranial aneurysms seen in patients with or without subarachnoid hemorrhage is high. The advancement of the endovascular technique and devices has ensured that endovascular treatment of intracranial aneurysms is the first choice in most cases, especially in unruptured ones. Different combinations of treatment modalities and techniques can be used in the management of multiple aneurysms. But in selected patients without subarachnoid hemorrhage, treatment of all aneurysms in one or more sessions with endovascular techniques is less traumatic than that with surgery. In the literature, the maximum number of aneurysms in one patient treated endovascularly and/or surgically is seven. In this case report, we present, with a review of the literature, a patient with eight intracranial aneurysms, all of which were treated in two sessions with various endovascular techniques. A 40-year-old female patient was admitted due to headache. Angiography showed eight aneurysms in the posterior circulation and, bilaterally, in the anterior circulation. All aneurysms were treated endovascularly in two sessions. In the treatment of the aneurysms, different endovascular techniques were used including flow diverters stents, stent-assisted coiling, Y-stent-assisted coiling, and coiling alone. PMID:27668108

  16. A Patient with Eight Intracranial Aneurysms: Endovascular Treatment in Two Sessions

    PubMed Central

    Onan, Hasan Bilen; Balli, Huseyin Tugsan; Cetinalp, Nuri Eralp

    2016-01-01

    The frequency of multiple intracranial aneurysms seen in patients with or without subarachnoid hemorrhage is high. The advancement of the endovascular technique and devices has ensured that endovascular treatment of intracranial aneurysms is the first choice in most cases, especially in unruptured ones. Different combinations of treatment modalities and techniques can be used in the management of multiple aneurysms. But in selected patients without subarachnoid hemorrhage, treatment of all aneurysms in one or more sessions with endovascular techniques is less traumatic than that with surgery. In the literature, the maximum number of aneurysms in one patient treated endovascularly and/or surgically is seven. In this case report, we present, with a review of the literature, a patient with eight intracranial aneurysms, all of which were treated in two sessions with various endovascular techniques. A 40-year-old female patient was admitted due to headache. Angiography showed eight aneurysms in the posterior circulation and, bilaterally, in the anterior circulation. All aneurysms were treated endovascularly in two sessions. In the treatment of the aneurysms, different endovascular techniques were used including flow diverters stents, stent-assisted coiling, Y-stent-assisted coiling, and coiling alone.

  17. Internet-based exposure treatment versus one-session exposure treatment of snake phobia: a randomized controlled trial.

    PubMed

    Andersson, Gerhard; Waara, Johan; Jonsson, Ulf; Malmaeus, Fredrik; Carlbring, Per; Ost, Lars-Göran

    2013-01-01

    In this study, the authors compared guided Internet-delivered self-help with one-session exposure treatment (OST) in a sample of snake phobic patients. A total of 30 patients were included following a screening on the Internet and a structured clinical interview. The Internet treatment consisted of four weekly text modules which were presented on a web page, a video in which exposure was modelled, and support provided via Internet. The OST was delivered in a three-hour session following a brief orientation session. The main outcome was the behavioural approach test (BAT), and as secondary measures questionnaires measuring anxiety symptoms and depression were used. Results showed that the groups did not differ at post-treatment or follow-up, with the exception of a significant interaction for the BAT in favour of the OST. At post-treatment, 61.5% of the Internet group and 84.6% of the OST group achieved a clinically significant improvement on the BAT. At follow-up, the corresponding figures were 90% for the Internet group and 100% for the OST group (completer sample). Within-group effect sizes for the Snake Phobia Questionnaire were large (d = 1.63 and d = 2.31 for the Internet and OST groups, respectively, at post-treatment). It is concluded that guided Internet-delivered exposure treatment is a potential treatment option in the treatment of snake phobia, but that OST probably is better.

  18. Session introduction

    NASA Astrophysics Data System (ADS)

    Bonfante, Antonello; Brook, Anna; D'Auria, Luca; Tizzani, Pietro

    2016-04-01

    Environmental processes cover spatial and temporal scales of different orders of magnitude. Quantitative and qualitative models, covering differentresearch fields, have provided important insights as to the interplay between processes acting in environmental systems at different scales, such asglobal geodynamics processes, volcanology, seismology, earth's critical zone, soil hydrology, landslide phenomena, etc. In this context, the proposed session will emphasize the multiscale nature of environmental issues, relevant for both natural and anthropic processes, and the need for knowledge sharing between different scientific communities. The session will be introduced by em.prof. Johan Bouma.

  19. Optimizing injectable poly-L-lactic acid administration for soft tissue augmentation: The rationale for three treatment sessions

    PubMed Central

    Bauer, Ute; Graivier, Miles H

    2011-01-01

    BACKGROUND: The availability and variety of different injectable modalities has led to a dramatic increase in soft tissue augmentation procedures in recent years. Injectable poly-L-lactic acid (PLLA) is a synthetic, biodegradable polymer device approved in the United States for use in immunocompetent patients as a single regimen of up to four treatment sessions for correction of shallow to deep nasolabial fold contour deficiencies and other facial wrinkles. Injectable PLLA is also approved for restoration and/or correction of signs of facial fat loss (lipoatrophy) in individuals with HIV. METHODS: The present article provides an overview of previous studies with injectable PLLA, and specifically focuses on the number of recommended treatment sessions and intervals between treatment sessions. The authors also provide two case studies to support their recommendations for an average of three treatment sessions. RESULTS: Although the specific mechanisms remain hypothetical, injections of PLLA are believed to cause a cascade of cellular events that lead to collagen repair and subsequent restoration of facial volume. Because the development of a response to injectable PLLA is gradual and its duration of effect is long lasting, sufficient time between treatment sessions should be allocated to avoid overcorrection. CONCLUSION: Studies of injectable PLLA support the hypothesized mode of operation, and the experience and clinical recommendations of the authors that suggest that three treatment sessions are an optimal regimen for use of injectable PLLA in the majority of patients. PMID:22942665

  20. Single-session interventions for problem gambling may be as effective as longer treatments: Results of a randomized control trial.

    PubMed

    Toneatto, Tony

    2016-01-01

    Empirically supported treatments for problem gambling tend to be multimodal combining cognitive, behavior and motivational interventions. Since problem gamblers often prefer briefer treatments it is important that interventions adopt strategies that are optimally effective. In this study, 99 community-recruited problem gamblers (74% male, mean age: 47.5 years) were randomized to one of four treatments: six sessions of cognitive therapy, behavior therapy, and motivational therapy or a single-session intervention. The sample was followed up for 12 months post-treatment. In both the Intent-to-Treat and Completer statistical analyses, no significant group differences on key gambling variables (i.e., frequency, expenditures, severity) were found. All four treatments showed significant improvement as a result of treatment that endured throughout the follow-up period. These results, although preliminary, suggest that very brief, single-session interventions may be as effective as longer treatments.

  1. Hydrogen peroxide treatment of TCE contaminated soil

    SciTech Connect

    Hurst, D.H.; Robinson, K.G.; Siegrist, R.L.

    1993-12-31

    Solvent contaminated soils are ubiquitous in the industrial world and represent a significant environmental hazard due to their persistence and potentially negative impacts on human health and the environment. Environmental regulations favor treatment of soils with options which reduce the volume and toxicity of contaminants in place. One such treatment option is the in-situ application of hydrogen peroxide to soils contaminated with chlorinated solvents such as trichloroethylene (TCE). This study investigated hydrogen peroxide mass loading rates on removal of TCE from soils of varying organic matter content. Batch experiments conducted on contaminated loam samples using GC headspace analysis showed up to 80% TCE removal upon peroxide treatment. Column experiments conducted on sandy loam soils with high organic matter content showed only 25% TCE removal, even at hydrogen peroxide additions of 25 g peroxide per kg soil.

  2. One session treatment for pediatric blood-injection-injury phobia: A controlled multiple baseline trial.

    PubMed

    Oar, Ella L; Farrell, Lara J; Waters, Allison M; Conlon, Elizabeth G; Ollendick, Thomas H

    2015-10-01

    The present study evaluated the effectiveness of a modified One Session Treatment (OST), which included an e-therapy homework maintenance program over 4 weeks for Blood-Injection-Injury (BII) phobia in children and adolescents. Using a single case, non-concurrent multiple-baseline design, 24 children and adolescents (8-18 years; 7 males, 17 females) with a primary diagnosis of BII phobia were randomly assigned to a one, two or three week baseline prior to receiving OST. Primary outcome measures included diagnostic severity, diagnostic status, and child and parent fear ratings. Secondary outcome measures included avoidance during behavioural avoidance tasks (BAT), global functioning and self and parent reported anxiety, fear and depression. Efficacy was assessed at post-treatment, 1-month, and 3-month follow-up. BII symptoms and diagnostic severity remained relatively stable during the baseline periods and then significantly improved following implementation of the intervention. Treatment response was supported by changes across multiple measures, including child, parent and independent clinician ratings. At post-treatment 8 of the 24 (33.33%) children were BII diagnosis free. Treatment gains improved at follow-ups with 14 (58.33%) children diagnosis free at 1-month follow-up and 15 (62.5%) diagnosis free at 3-month follow-up. Preliminary findings support the effectiveness of a modified OST approach for BII phobic youth with treatment outcomes improving over follow-up intervals. PMID:26313620

  3. Safety Aspects of Pulsed Dose Rate Brachytherapy: Analysis of Errors in 1,300 Treatment Sessions

    SciTech Connect

    Koedooder, Kees Wieringen, Niek van; Grient, Hans N.B. van der; Herten, Yvonne R.J. van; Pieters, Bradley R.; Blank, Leo

    2008-03-01

    Purpose: To determine the safety of pulsed-dose-rate (PDR) brachytherapy by analyzing errors and technical failures during treatment. Methods and Materials: More than 1,300 patients underwent treatment with PDR brachytherapy, using five PDR remote afterloaders. Most patients were treated with consecutive pulse schemes, also outside regular office hours. Tumors were located in the breast, esophagus, prostate, bladder, gynecology, anus/rectum, orbit, head/neck, with a miscellaneous group of small numbers, such as the lip, nose, and bile duct. Errors and technical failures were analyzed for 1,300 treatment sessions, for which nearly 20,000 pulses were delivered. For each tumor localization, the number and type of occurring errors were determined, as were which localizations were more error prone than others. Results: By routinely using the built-in dummy check source, only 0.2% of all pulses showed an error during the phase of the pulse when the active source was outside the afterloader. Localizations treated using flexible catheters had greater error frequencies than those treated with straight needles or rigid applicators. Disturbed pulse frequencies were in the range of 0.6% for the anus/rectum on a classic version 1 afterloader to 14.9% for orbital tumors using a version 2 afterloader. Exceeding the planned overall treatment time by >10% was observed in only 1% of all treatments. Patients received their dose as originally planned in 98% of all treatments. Conclusions: According to the experience in our institute with 1,300 PDR treatments, we found that PDR is a safe brachytherapy treatment modality, both during and outside of office hours.

  4. Comparison between one-session root canal treatment with aPDT and two-session treatment with calcium hydroxide-based antibacterial dressing, in dog's teeth with apical periodontitis.

    PubMed

    Hidalgo, Lidia Regina da Costa; da Silva, Léa Assed Bezerra; Nelson-Filho, Paulo; da Silva, Raquel Assed Bezerra; de Carvalho, Fabrício Kitazono; Lucisano, Marília Pacífico; Novaes, Arthur Belem

    2016-09-01

    To evaluate one-session endodontic treatment with aPDT and two-session treatment with calcium hydroxide (CH)-based dressing in dog's teeth with apical periodontitis. After experimental induction of apical periodontitis, 48 teeth were randomly assigned to the following groups: groups OS/aPDT120d and OS/aPDT180d (one-session treatment with aPDT) and groups TS/CH120d and TS/CH180d (two-session treatment with CH-based dressing-control groups). The animals were euthanized after 120 and 180 days. After histotechnical processing, microscopic and radiographic analyses were performed. Data were analyzed by Kruskal-Wallis and Fisher's exact tests (α = 0.05). Groups TS/CHs presented repaired resorbed cemental areas, with collagen bundles and few inflammatory cells. In groups OS/aPDTs, the areas of cemental resorption were not repaired with reduced presence of cells and fibers. In the analysis of the apical closure, fluorescence microscopy and percentage of radiographic reduction of lesions, there was significant difference between groups TS/CH120d and OS/aPDT120d and between TS/CH180d and OS/aPDT180d (p < 0.05). Groups TS/CHs had weak RANKL expression and positive immunostaining for RANK and OPG. In OS/aPDT120d, there was positive immunostaining for RANKL. In OS/aPDT180d, the three osteoclastogenesis markers were expressed. The results using aPDT were worse than those obtained with two-session endodontic treatment using a CH-based dressing in teeth with apical periodontitis. PMID:27389365

  5. Microbial activity in soils following steam treatment.

    PubMed

    Richardson, Ruth E; James, C Andrew; Bhupathiraju, Vishvesh K; Alvarez-Cohen, Lisa

    2002-01-01

    Steam enhanced extraction (SEE) is an aquifer remediation technique that can be effective at removing the bulk of non-aqueous phase liquid (NAPL) contamination from the subsurface, particularly highly volatile contaminants. However, low volatility compounds such as polynuclear aromatic hydrocarbons (PAHs) are less efficiently removed by this process. This research evaluated the effects of steam injection on soil microbial activity, community structure, and the potential for biodegradation of contaminants following steam treatment. Three different soils were evaluated: a laboratory-prepared microbially-enriched soil, soil from a creosote contaminated field site, and soil from a chlorinated solvent and waste oil contaminated field site. Results from field-scale steaming are also presented. Microbial activity before and after steam treatment was evaluated using direct epifluorescent microscopy (DEM) using the respiratory activity dye 5-cyano-2,3, ditolyl tetrazolium chloride (CTC) in conjunction with the fluorochrome 5-(4,6-dichlorotriazinyl) aminofluorescein (DTAF) to yield a quantitative assessment of active and total microbial numbers. DEM results indicate that steamed soils that were analyzed while still hot exhibited microbial activity levels that were below detection. However, soil samples that were slowly cooled, more closely reflecting the conditions of applied SEE, exhibited microbial activity levels that were comparable to presteamed soils. Samples from a field-site where steam was applied continuously for 6 weeks also showed high levels of microbial activity following cooling. The metabolic capabilities of the steamed communities were investigated by measuring cell growth in enrichment cultures on various substrates. These studies provided evidence that organisms capable of biodegradation were among the mesophilic populations that survived steam treatment. Fluorescent in situ hybridization (FISH) analysis of the soils with domain-level rRNA probes suggest

  6. d-cycloserine Enhancement of Fear Extinction is Specific to Successful Exposure Sessions: Evidence from the Treatment of Height Phobia

    PubMed Central

    Smits, Jasper A. J.; Rosenfield, David; Otto, Michael W.; Powers, Mark B.; Hofmann, Stefan G.; Telch, Michael J.; Pollack, Mark H.; Tart, Candyce D.

    2013-01-01

    Background Whereas some studies have shown clear evidence for an augmentation effect of d-cycloserine (DCS) on exposure therapy for anxiety disorders, other studies have shown weak effects or no effect at all. Some preclinical data suggest that the DCS augmentation effect is moderated by the success of the extinction trials. Therefore, we conducted a re-analysis of existing data to examine whether the effects of DCS on clinical outcome would vary as a function of response to the exposure session (i.e. exposure success). Methods In a clinical trial, patients with height phobia received two sessions involving 30 minutes of virtual reality exposure therapy and were randomly assigned to a pill placebo (N=14) or 50 mg of DCS (N=15) immediately after each session. Results Mixed-effects regression analysis showed that the effects of DCS administration on clinical improvement was moderated by the level of fear experienced just prior to concluding exposure sessions. Patients receiving DCS exhibited significantly greater improvement in symptoms relative to patients who received placebo when subjective fear was low at the end of the exposure. In contrast, when end fear was still elevated, patients receiving DCS improved less compared to those receiving placebo. Conclusions DCS appears to enhance the benefits of exposure treatment when applied after a successful session, but it seems to have detrimental effects when administered after inadequate/unsuccessful exposures. Trial Registry The Trial is registered at ClinicalTrials.gov (NCT01102803). PMID:23332511

  7. The Motivational Enhancement Therapy and Cognitive Behavioral Therapy Supplement: 7 Sessions of Cognitive Behavioral Therapy for Adolescent Cannabis Users, Cannabis Youth Treatment (CYT) Series, Volume 2.

    ERIC Educational Resources Information Center

    Webb, Charles; Scudder, Meleney; Kaminer, Yifrah; Kaden, Ron

    This manual, a supplement to "Motivational Enhancement Therapy and Cognitive Behavioral Therapy for Adolescent Cannabis Users: 5 Sessions, Cannabis Youth Treatment (CYT) Series, Volume 1", presents a seven-session cognitive behavioral treatment (CBT7) approach designed especially for adolescent cannabis users. It addresses the implementation and…

  8. INCINERATION TREATMENT OF ARSENIC-CONTAMINATED SOIL

    EPA Science Inventory

    An incineration test program was conducted at the U.S. Environmental Protection Agency's Incineration Research Facility to evaluate the potential of incineration as a treatment option for contaminated soils at the Baird and McGuire Superfund site in Holbrook, Massachusetts. The p...

  9. Guide to treatment technology for contaminated soils

    SciTech Connect

    Tran, H.; Aylward, R.

    1992-08-04

    This document is a guide for the screening of alternative treatment technologies for contaminated soils. The contents of this guide are organized into: 1. Introduction, II. Utilizing the table, III. Tables: Contamination Versus Technology, TV. Contaminant Waste Groups, and V. References. The four Contaminations Versus Technology tables are designed to identify the effectiveness and/or potential applicability of technologies to some or all compounds within specific waste groups. The tables also present limitations and special use considerations for the particular treatment technology. The phase of development of the technology is also included in the table. The phases are: Available, Innovative, and Emerging technologies. The technologies presented in this guide are organized according to the method of treatment. The four (4) treatment methods are Biological, Solidification/Stabilization, Thermal, and Chemical/Physical Treatment. There are several processing methods; some are well developed and proven, and others are in the development stage.

  10. Culturally relevant family-based treatment for adolescent delinquency and substance abuse: understanding within-session processes.

    PubMed

    Cunningham, Phillippe B; Foster, Sharon L; Warner, Sarah E

    2010-08-01

    Identifying psychotherapy processes that likely contribute to client outcome with ethnic minorities is a vital practice and research need, particularly within family-focused, evidence-based treatments (EBT) for youth with externalizing problems. Identifying process variables within a cross-cultural context may improve the efficacy of EBTs by informing psychotherapists how to modify their behavior when working with ethnically diverse clients. The authors described one approach to the development of culturally competent psychotherapy, using an observational coding system comprising Afrocentric codes to investigate culturally relevant therapist behaviors. Qualitative examples illustrated the quantitative findings relating to therapist in-session behavior that promote client engagement and positive responding during a midtreatment session of multisystemic therapy.

  11. Method for treatment of soils contaminated with organic pollutants

    DOEpatents

    Wickramanayake, Godage B.

    1993-01-01

    A method for treating soil contaminated by organic compounds wherein an ozone containing gas is treated with acid to increase the stability of the ozone in the soil environment and the treated ozone applied to the contaminated soil to decompose the organic compounds. The soil may be treated in situ or may be removed for treatment and refilled.

  12. Combined Therapies for the Treatment of Technically Unresectable Liver Malignancies: Bland Embolization and Radiofrequency Thermal Ablation within the Same Session

    SciTech Connect

    Bonomo, Guido Della Vigna, Paolo Monfardini, Lorenzo Orgera, Gianluigi; Chiappa, Antonio; Bianchi, Paolo Pietro; Zampino, Maria Giulia; Orsi, Franco

    2012-12-15

    Purpose: This retrospective study evaluated the feasibility, efficacy, and safety of combining transcatheter arterial embolization (TAE) with radiofrequency thermal ablation (RFA) in a single session for the treatment of technically unresectable liver-only malignancies. Methods: From May 2006 to January 2011, a total of 30 patients affected by liver metastases with single or multiple unresectable liver-only lesions underwent a combined treatment with TAE followed by RFA in the same session, for a total of 36 treated lesions. Patients were extrapolated from a cohort of patients discussed within the weekly institutional tumor board. TAE was performed by using 100 {mu}m microspheres; RFA was performed immediately after TAE by positioning the electrode needle via ultrasound and/or computed tomographic guidance. Local tumor responses and procedure-related complications were evaluated. Results: Completion of both procedures was obtained in all patients for all 36 lesions. Liver lesions had a maximum axial diameter ranging 16-59 mm. Postintervention unenhanced ablated areas ranged 28-104 mm in maximum axial diameter. Safety margins ranged 1-30.5 mm. Complete response, defined as complete devascularization at computed tomography, was obtained in all treated lesions for a maximum period of 12 months. Tumor relapse was observed in one patient at 12 months. Sixteen patients developed new liver lesions or progressive systemic disease during follow-up. Nine patients were still disease-free. Seven patients died as a result of systemic progressive disease. One major treatment-related complication was observed. Conclusions: In patients with technically unresectable liver-only malignancies, single-session combined TAE-RFA is an effective and safe treatment.

  13. Thermal treatment of soils contaminated with gas oil: influence of soil composition and treatment temperature.

    PubMed

    Piña, Juliana; Merino, Jerónimo; Errazu, Alberto F; Bucalá, Verónica

    2002-10-14

    Samples of two soils containing different organic matter contents, neat or contaminated with gas oil (diesel fuel oil) at 2.5 wt.% were heated from room temperature to different final temperatures (200-900 degrees C). The experiments, performed in an anaerobic media, simulate conditions pertinent to ex situ thermal desorptive and thermal destructive treatments. The products generated during the heating were collected and light gases were analyzed by gas chromatography. The results indicate that the chemical composition of the soil is a key factor since it strongly influences the quantity and composition of the off-gases. According to the liquid and light gas yields, the gas oil does not affect appreciably the generation of pyrolysis products of the own soil constituents and the gas oil does not suffer significant chemical transformations even at high operating temperatures (e.g. 900 degrees C). With surface areas of 16000 cm(2)/g (Soil A) and 85000 cm(2)/g (Soil B) based on the monolayer adsorbed model, 4 and 20%, respectively, of the original gas oil can be adsorbed. These values are in good agreement with experimental data. Even for high temperatures, the employed thermal treatment is capable to practically remove the gas oil from the soil bed without changing appreciably the original chemical composition of the contaminant.

  14. Conscious sedation with inhaled 50% nitrous oxide/oxygen premix in photodynamic therapy sessions for vulvar lichen sclerosus treatment*

    PubMed Central

    Cabete, Joana; Campos, Sara; Lestre, Sara

    2015-01-01

    Photodynamic therapy has been described as an effective therapeutic option in selected cases of anogenital lichen sclerosus that are refractory to first-line treatments. However, procedure-related pain is a limiting factor in patient adherence to treatment. The authors report the case of a 75-year-old woman with highly symptomatic vulvar lichen sclerosus, successfully treated with photodynamic therapy. An inhaled 50% nitrous oxide/oxygen premix was administered during sessions, producing a pain-relieving, anxiolytic, and sedative effect without loss of consciousness. This ready-to-use gas mixture may be a well-tolerated and accepted alternative to classical anesthetics in Photodynamic therapy, facilitating patients' adherence to illumination of pain-prone areas. PMID:25672311

  15. Soil-based treatment of partially treated liquid swine manure.

    PubMed

    Yang, H; Xiao, J; El-Din, M Gamal; Buchanan, I D; Bromley, D; Ikehata, K

    2007-01-01

    A soil-column system was tested for the removal of soluble organics and nutrients from partially treated liquid swine manure. The liquid manure was applied to the 900 mm deep (300 mm of local topsoil and 600 mm of local subsoil) soil columns continuously for an eight-week period, and leachate as well as soil samples were analysed. An effective liquid manure application rate of 17 mm d(-1) was determined based on a preliminary liquid manure soil-based treatment experiment. It was found that more than 90% of five-day biochemical oxygen demand, chemical oxygen demand, total Kjeldahl and ammonia nitrogen, and total phosphorus could be effectively removed from the liquid manure by the soil system. Nitrogen contents accumulated in the soil matrix mostly within the 0 to 300 mm depth, while no significant increase was observed in sub soils. Soil analyses indicated the occurrence of nitrification and denitrification in the soil columns. Nitrogen balance showed that about 42% of the applied nitrogen was lost from the system during the liquid manure soil-based treatment experiment, suggesting the emission of ammonia and other gaseous nitrogen generated through nitrification and denitrification. The leachate of the soil treatment system was used to irrigate Bermuda grass. No negative effect of leachate was observed on the plant growth.

  16. Grey water treatment by the slanted soil system with unsorted soil media.

    PubMed

    Ushijima, Ken; Tanaka, Erina; Suzuki, Laís Yuko; Hijikata, Nowaki; Funamizu, Naoyuki; Ito, Ryusei

    2015-01-01

    This study evaluated the performance of unsorted soil media in the slanted soil treatment system, in terms of removal efficiency in suspended solids (SS), chemical oxygen demand (COD), linear alkylbenzene sulphonate (LAS) and Escherichia coli, and lifetime until clogging occurs. Unsorted soil performed longer lifetime until clogging than sorted fine soil. Removal of SS, COD, and LAS also performed same or better level in unsorted soil than fine soil. As reaction coefficients of COD and LAS were described as a function of the hydraulic loading rate, we can design a slanted soil system according to the expected hydraulic loading rate and the targeted level of COD or LAS in effluent. Regarding bacteria removal, unsorted soil performed sufficient reduction of E. coli for 5 weeks; however, the removal process occurred throughout all four chambers, while that of fine soil occurred in one to two chambers.

  17. Apparatus for treatment of soils contaminated with organic pollutants

    DOEpatents

    Wickramanayake, Godage B.

    1993-01-01

    An apparatus for treating soil contaminated by organic compounds wherein an ozone containing gas is treated with acid to increase the stability of the ozone in the soil environment and the treated ozone applied to the contaminated soil in a manner adapted to decompose the organic compounds; one embodiment of the apparatus comprises a means to supply ozone as a gas-ozone mixture, a stability means to treat ozone obtained from the supply and distribution means to apply the stabilized gas-ozone to soil. The soil may be treated in situ or may be removed for treatment and refilled.

  18. Soil respiration in a long-term tillage treatment experiment

    NASA Astrophysics Data System (ADS)

    Gelybó, Györgyi; Birkás, Márta; Dencsö, Márton; Horel, Ágota; Kása, Ilona; Tóth, Eszter

    2016-04-01

    Regular soil CO2 efflux measurements have been carried out at Józsefmajor longterm tillage experimental site in 2014 and 2015 with static chamber technique in no-till and ploughing plots in seven spatial replicates. The trial was established in 2002 on a loamy chernozem soil at the experimental site of the Szent István University nearby the city Hatvan, northern Hungary. At the site sunflower (Helianthus A.) and wheat (Triticum A.) was grown in 2014 and 2015, respectively. Ancillary measurements carried out at the site included weather parameters, soil water content, soil temperature. The aim of the investigation was to detect the effect of soil disturbance and soil tillage treatments on soil CO2 emission in agricultural ecosystems. Soil respiration measurements were carried out every week during the vegetation period and campaign measurements were performed scheduled to tillage application. In this latter case, measurements were carried out 1, 2, 3, 4, 6, 12, 18, 24, 48, 72, 96, 120 hours and 7 days after tillage operation. Results showed that during the vegetation season in the majority of measurement occasions emission was higher in the no-till plots. These differences; however were not found to be statistically significant. Due to the short term effect of tillage treatment, emissions increased following tillage treatment in the ploughed plots. Soil water content was also examined as main driver of soil CO2 fluxes. Soil water content sharply decreases in the surface layer (5-10 cm depth) after tillage treatment indicating a fast drying due to soil disturbance. This effect slowly attenuated and eventually extincted in approx. two weeks. CO2 emission measurements were associated with high uncertainties as a result of the measurement technique. Our further aim is to reduce this uncertainty using independent measurement techniques on the field.

  19. Panel Sessions.

    ERIC Educational Resources Information Center

    Proceedings of the ASIS Mid-Year Meeting, 1992

    1992-01-01

    Lists the speakers and summarizes the issues addressed for 12 panel sessions on topics related to networking, including libraries and national networks, federal national resources and energy programs, multimedia issues, telecommuting, remote image serving, accessing the Internet, library automation, scientific information, applications of Z39.50,…

  20. Soil cultivation for enhanced wastewater infiltration in soil aquifer treatment (SAT)

    NASA Astrophysics Data System (ADS)

    Nadav, Itamar; Tarchitzky, Jorge; Chen, Yona

    2012-11-01

    SummarySoil aquifer treatment is often employed as a tertiary treatment component of reclamation proceeding of wastewater for irrigation in agriculture. Reductions in infiltration rates due to increase in water repellency have been reported to be associated with organic matter (OM) accumulation in the soil (mainly in the top soil layer) as a result of treated wastewater (TWW) infiltration. Our aim was to reduce OM content in soils extensively loaded with TWW. Four model infiltration ponds were built to simulate large infiltration basins: three for TWW infiltration using different application regimes, and the fourth for freshwater (FW) infiltration (control). We examined changes in OM content, hydraulic conductivity (HC) and water repellency in these model ponds as a result of soil plowing. In field experiment, four soil-plowing events were performed. Reduced OM content and water repellency, and increased HC were found in all TWW-applied ponds following each soil plowing. These changes were attributed to OM burial in deeper soil layers elimination of the continuity of the OM based crust, and surface exposure of soil with low OM content. An overall reduction in OM content was found at the end of the experiment in all soil layers as a consequence of plowing. No changes in OM content, water repellency or HC were found in the FW-applied pond as a result of soil plowing.

  1. Deep soil mixing for reagent delivery and contaminant treatment

    SciTech Connect

    Korte, N.; Gardner, F.G.; Cline, S.R.; West, O.R.

    1997-12-31

    Deep soil mixing was evaluated for treating clay soils contaminated with TCE and its byproducts at the Department of Energy`s Kansas City Plant. The objective of the project was to evaluate the extent of limitations posed by the stiff, silty-clay soil. Three treatment approaches were tested. The first was vapor stripping. In contrast to previous work, however, laboratory treatability studies indicated that mixing saturated, clay soil was not efficient unless powdered lime was added. Thus, powder injection of lime was attempted in conjunction with the mixing/stripping operation. In separate treatment cells, potassium permanganate solution was mixed with the soil as a means of destroying contaminants in situ. Finally, microbial treatment was studied in a third treatment zone. The clay soil caused operational problems such as breakage of the shroud seal and frequent reagent blowouts. Nevertheless, treatment efficiencies of more than 70% were achieved in the saturated zone with chemical oxidation. Although expensive ($1128/yd{sup 3}), there are few alternatives for soils of this type.

  2. Effects of soil improvement treatments on bacterial community structure and soil processes in an upland grassland soil.

    PubMed

    Gray, Neil D; Hastings, Richard C; Sheppard, Samuel K; Loughnane, Paul; Lloyd, David; McCarthy, Alan J; Head, Ian M

    2003-10-01

    Abstract Temporal temperature gradient electrophoresis (TTGE) analysis of 16S rRNA gene fragments amplified with primers selective for eubacteria and beta-proteobacterial ammonia-oxidising bacteria (AOB) was used to analyse changes in bacterial and AOB community profiles of an upland pasture following soil improvement treatments (addition of sewage sludge and/or lime). Community structure was compared with changes in activity assessed by laboratory measurements of basal respiration and ammonia oxidation potentials, and with measurements of treatment- and time-related changes in soil characteristics. The predominant bacterial populations had a high degree of similarity under all treatment regimens, which was most pronounced early in the growing season. Most of the differences that occurred between soil samples with time could be accounted for by spatial and temporal variation; however, analysis of variance and cluster analysis of similarities between 16S rDNA TTGE profiles indicated that soil improvement treatments exerted some effect on community structure. Lime application had the greatest influence. The impact of soil improvement treatments on autotrophic ammonia oxidation was significant and sustained, especially in soils which had received sewage sludge and lime treatments in combination. However, despite obvious changes in soil characteristics, e.g. pH and soil nitrogen, increasing heterogeneity in the AOB community structure over time obscured the treatment effects observed at the beginning of the experiment. Nevertheless, time series analysis of AOB TTGE profiles indicated that the AOB community in improved soils was more dynamic than in control soils where populations were found to be relatively stable. These observations suggest that the AOB populations exhibited a degree of functional redundancy.

  3. Poster Session

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Poster Session, the discussion focuses on the following topics: Development of correlative measures for the assessment of attention and memory; Biodynamical Responses of the Crewmember Head/Neck System During Emergence Ejection; Fecundation in the Sky, a Ten Years Old Experiment in Microgravity; A Modified Botex Incubator as a Transport System For Developing Crickets into Space; Chromosomal Aberrations in Peripheral Lymphocytes of Cosmonauts and Astronauts after Space Flights; Method for Establishing Long term Bone Marrow; Cultures Under Microgravity Conditions Reproduction Under Simulated Weightlessness --Mammalian in vivo Experiments Under Suspension; Towards Human Movement Analysis Without the Use of Markers; Habitability Requirements For a Cogent Mars Mission; The Saucer Concept for Space Habitats; New Way In Modeling the Growth of the Organism; The Fractionation of Hydrogen and Oxygen Stable Isotopes By Life Support Systems of Space Station "MIR"; and Effect of Space Flight on Neutrophil Function.

  4. Biofilm treatment of soil for waste containment and remediation

    SciTech Connect

    Turner, J.P.; Dennis, M.L.; Osman, Y.A.; Chase, J.; Bulla, L.A.

    1997-12-31

    This paper examines the potential for creating low-permeability reactive barriers for waste treatment and containment by treating soils with Beijerinckia indica, a bacterium which produces an exopolysaccharide film. The biofilm adheres to soil particles and causes a decrease in soil hydraulic conductivity. In addition, B. Indica biodegrades a variety of polycyclic aromatic hydrocarbons and chemical carcinogens. The combination of low soil hydraulic conductivity and biodegradation capabilities creates the potential for constructing reactive biofilm barriers from soil and bacteria. A laboratory study was conducted to evaluate the effects of B. Indica on the hydraulic conductivity of a silty sand. Soil specimens were molded with a bacterial and nutrient solution, compacted at optimum moisture content, permeated with a nutrient solution, and tested for k{sub sat} using a flexible-wall permeameter. Saturated hydraulic conductivity (k{sub sat}) was reduced from 1 x 10{sup -5} cm/sec to 2 x 10{sup -8} cm/sec: by biofilm treatment. Permeation with saline, acidic, and basic solutions following formation of a biofilm was found to have negligible effect on the reduced k{sub sat}, for up to three pore volumes of flow. Applications of biofilm treatment for creating low-permeability reactive barriers are discussed, including compacted liners for bottom barriers and caps and creation of vertical barriers by in situ treatment.

  5. Session Introduction

    NASA Astrophysics Data System (ADS)

    Eliane Lessner, Co-Chair:

    2009-03-01

    A panel discussion session providing a worldwide assessment of the status and experiences of women in physics, paying attention to the different cultures and environments they work in and to how the age of the physicist affects their perspective. We will hear about women physicists in Korea in particular and Asia in general, in Egypt in particular and Africa in general, and in the Caribbean. Six invited speakers will present analyses of the progress being made in promoting women in physics from their personal experiences and as assessed from their participation in the Third International Conference on Women In Physics (ICWIP2008) convened in Seoul, Korea in October 2008. From Albania to Zimbabwe, with representation of all the continents, ICWIP2008 congregated 283 women and men physicists from 57 countries to share the participants' scientific accomplishments and evaluate international progress in improving the status of women in physics. This three-hour session is organized jointly by the Committee on the Status of Women in Physics of the APS (CSWP) and the Forum on International Physics of the APS (FIP). Audience participation in the panel discussion will be strongly encouraged.

  6. Electrokinetic treatment of contaminated soils, sludges, and lagoons. Final report

    SciTech Connect

    Wittle, J.K.; Pamukcu, S.

    1993-04-01

    The electrokinetic process is an emerging technology for in-situ soil decontamination, in which chemical species, both ionic and nonionic are transported to an electrode site in soil. These products are subsequently removed from the ground via collection systems engineered for each specific application. Electrokinetics refer to movement of water, ions and charged particles relative to one another under the action of an applied direct current electric field. In a porous compact matrix of surface charged particles such as soil, the ion containing pore fluid may be made to flow to collection sites under the applied field. This report describes the effort undertaken to investigate electrokinetically enhanced transport of soil contaminants in synthetic systems. These systems consisted of clay or clay-sand mixtures containing known concentration of a selected heavy metal salt solution or an organic compound. Metals, surrogate radio nuclides and organic compounds evaluated in the program were representatives of those found at a majority of DOE sites. Degree of removal of these metals from soil by the electrokinetic treatment process was assessed through the metal concentration profiles generated across the soil between the electrodes. The best removals, from about 85 to 95% were achieved at the anode side of the soil specimens. Transient pH change had an effect on the metal movement via transient creation of different metal species with different ionic mobilities, as well as changing of the surface characteristics of the soil medium.

  7. Therapeutic Effect of Extracorporeal Shock Wave Therapy According to Treatment Session on Gastrocnemius Muscle Spasticity in Children With Spastic Cerebral Palsy: A Pilot Study

    PubMed Central

    Park, Dong-Soon; Park, Gi-Young; Lee, Michael Y.

    2015-01-01

    Objective To investigate the therapeutic effect of extracorporeal shockwave therapy (ESWT) according to treatment session on gastrocnemius muscle spasticity in children with spastic cerebral palsy (CP). Methods Twelve children with spastic CP underwent 1 ESWT and 2 sham ESWT sessions for gastrocnemius (group 1) or 3 ESWT sessions (group 2) once per week for 3 weeks. Modified Ashworth Scale (MAS) score, passive range of motion (PROM) of the ankle plantar-flexor muscles with knee extension, and median red pixel intensity (RPI) of color histogram of medial gastrocnemius on real-time sonoelastography (RTS) were measured before ESWT, immediately after the first and third ESWT, and at 4 weeks after the third ESWT. Results Mean ankle PROM was significantly increased whereas as mean ankle MAS and median gastrocnemius RPI were significantly decreased in both groups after the first ESWT. Clinical and RTS parameters before ESWT were not significantly different from those immediately after the third ESWT or at 4 weeks after the third ESWT in group 1. However, they were significantly different from those immediately after the third ESWT or at 4 weeks after the third ESWT in group 2. Mean ankle PROM, mean ankle MAS, and median gastrocnemius RPI in group 2 were significantly different from that in group 1 at 4 weeks or immediately after the third ESWT. Conclusion The therapeutic effect of ESWT on spastic medial gastrocnemius in children with spastic CP is dependent on the number of ESWT sessions. PMID:26798605

  8. Ferritization treatment of copper in soil by electrokinetic remediation.

    PubMed

    Kimura, Tomoyuki; Takase, Ken-Ichi; Terui, Norifumi; Tanaka, Shunitz

    2007-05-17

    The usefulness of the combined use of the electrokinetic (EK) remediation and a ferrite treatment zone (FTZ) was demonstrated for a treatment of the contaminated soil with heavy metal ions. Copper ions in contaminated soil were transferred into the FTZ by the EK technology and were ferritized in this system. The distribution of copper in a migration chamber after EK treatment with FTZ for 48h showed the large difference in the total and eluted concentration of copper. This indicated that copper ions transferred by EK into the FTZ were ferritized there with ferrite reagent in soil alkalified by EK process. The copper-ferrite compound, which was not dissolved with diluted acid, was retained in the FTZ and accumulated there. The ratio of the ferritized amount of copper against total copper was 92% in the EK process with FTZ after 48 h. PMID:17374444

  9. Radiolytic treatment of dioxin contaminated soils

    NASA Astrophysics Data System (ADS)

    Gray, Kimberly A.; Hilarides, Roger J.

    1995-09-01

    Recent work in our laboratory has demonstrated that γ-radiolysis is a feasible method by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can be converted to products of negligible toxicity. In the presence of 25% water, 2.5% non-ionic surfactant and at a dose of 800 kGy greater than 98% destruction was achieved in a standard soil artificially contaminated with 100 ppb TCDD. By-product analysis has illustrated that the destruction occurs via step-wise reductive dechlorination producing a suite of lesser chlorinated dioxins. These results in combination with scavenger studies, target theory calculations and yields indicate that direct radiation effects account for the major route of destruction. Radiolysis has also been conducted on a real soil contaminated with TCDD and other chlorinated aromatic compounds verifying the results of model studies. Based on the data of these experiments some designs of batch gamma systems are considered and a discussion of estimated capital and operating costs associated with γ-radiolysis is presented. Given the high costs of the alternatives (i.e. incineration), radiolysis appears to be not only technically feasible, but it may also be economically competitive.

  10. Wastewater treatment by soil infiltration: Long-term phosphorus removal.

    PubMed

    Eveborn, David; Kong, Deguo; Gustafsson, Jon Petter

    2012-10-01

    Phosphorus (P) leaching from on-site wastewater treatment systems may contribute to eutrophication. In developed countries the most common on-site treatment technique is septic systems with soil infiltration. However, the current knowledge about long term P removal in soil treatment systems is not well developed and the data used for estimation of P losses from such systems are unreliable. In this study we sampled four filter beds from community-scale soil treatment systems with an age of between 14 and 22years to determine the long-term P removal and to investigate the chemical mechanisms behind the observed removal. For one site the long-term P removal was calculated using a mass balance approach. After analysis of the accumulated P, it was estimated that on average 12% of the long-term P load had been removed by the bed material. This indicates a low overall capacity of soil treatment systems to remove phosphorus. Batch experiments and chemical speciation modelling indicated that calcium phosphate precipitation was not an important long-term P removal mechanism, with the possible exception of one of the sites. More likely, the P removal was induced by AlPO(4) precipitation and/or sorption to poorly ordered aluminium compounds, as evidenced by strong relationships between oxalate-extractable Al and P. PMID:22982614

  11. Wastewater treatment by soil infiltration: Long-term phosphorus removal

    NASA Astrophysics Data System (ADS)

    Eveborn, David; Kong, Deguo; Gustafsson, Jon Petter

    2012-10-01

    Phosphorus (P) leaching from on-site wastewater treatment systems may contribute to eutrophication. In developed countries the most common on-site treatment technique is septic systems with soil infiltration. However, the current knowledge about long term P removal in soil treatment systems is not well developed and the data used for estimation of P losses from such systems are unreliable. In this study we sampled four filter beds from community-scale soil treatment systems with an age of between 14 and 22 years to determine the long-term P removal and to investigate the chemical mechanisms behind the observed removal. For one site the long-term P removal was calculated using a mass balance approach. After analysis of the accumulated P, it was estimated that on average 12% of the long-term P load had been removed by the bed material. This indicates a low overall capacity of soil treatment systems to remove phosphorus. Batch experiments and chemical speciation modelling indicated that calcium phosphate precipitation was not an important long-term P removal mechanism, with the possible exception of one of the sites. More likely, the P removal was induced by AlPO4 precipitation and/or sorption to poorly ordered aluminium compounds, as evidenced by strong relationships between oxalate-extractable Al and P.

  12. Session Two Outcome of the Formula First Session Task in Problem- and Solution-Focused Approaches.

    ERIC Educational Resources Information Center

    Jordan, Karin; Quinn, William H.

    1994-01-01

    Evaluated treatment effects in single session process using problem-focused approach and solution-focused approach. Findings indicated significant difference between two approaches when dealing with client's perceived problem improvement, outcome expectancy, session depth, session smoothness, and session positivity. Found no significant…

  13. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    PubMed

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  14. Biological Treatment of Petroleum in Radiologically Contaminated Soil

    SciTech Connect

    BERRY, CHRISTOPHER

    2005-11-14

    This chapter describes ex situ bioremediation of the petroleum portion of radiologically co-contaminated soils using microorganisms isolated from a waste site and innovative bioreactor technology. Microorganisms first isolated and screened in the laboratory for bioremediation of petroleum were eventually used to treat soils in a bioreactor. The bioreactor treated soils contaminated with over 20,000 mg/kg total petroleum hydrocarbon and reduced the levels to less than 100 mg/kg in 22 months. After treatment, the soils were permanently disposed as low-level radiological waste. The petroleum and radiologically contaminated soil (PRCS) bioreactor operated using bioventing to control the supply of oxygen (air) to the soil being treated. The system treated 3.67 tons of PCRS amended with weathered compost, ammonium nitrate, fertilizer, and water. In addition, a consortium of microbes (patent pending) isolated at the Savannah River National Laboratory from a petroleum-contaminated site was added to the PRCS system. During operation, degradation of petroleum waste was accounted for through monitoring of carbon dioxide levels in the system effluent. The project demonstrated that co-contaminated soils could be successfully treated through bioventing and bioaugmentation to remove petroleum contamination to levels below 100 mg/kg while protecting workers and the environment from radiological contamination.

  15. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    PubMed

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen. PMID:27127923

  16. In situ extracorporeal shockwave lithotripsy for ureteral calculi: investigation of factors influencing stone fragmentation and appropriate number of sessions for changing treatment modality.

    PubMed

    Kim, H H; Lee, J H; Park, M S; Lee, S E; Kim, S W

    1996-12-01

    To determine the factors influencing stone fragmentation and to suggest when to change treatment modality for ureteral calculi refractory to repetitive in situ extracorporeal shockwave lithotripsy (SWL), we analyzed 369 patients treated primarily by the second-generation lithotripter, Siemens Lithostar, from March 1989 to December 1993. Three hundred forty-two (92.7%) of the patients were ultimately free of stones after repetitive in situ SWL. The cumulative stone-free rates of the first, second, and third session were 64%, 81%, and 88%, respectively, and the increment in the cumulative stone-free rate thereafter with further repeated in situ SWL was minimal (p < 0.01). The cumulative stone-free rate at the third session was 89%, 87%, and 86% for proximal, middle, and lower ureteral stones, respectively (p > 0.05). The cumulative stone-free rate at the third session was 100%, 90%, 87%, 70%, 67%, and 50% for stones <5 mm, 6 to 10 mm, 11 to 15 mm, 16 to 20 mm, 21 to 25 mm, and >25 mm, respectively (p < 0.001). According to the radiopacity of the stone, the cumulative stone-free rate at the third session was 96% for stones with minimal opacity, 94% for those with moderate opacity, and 70% for highly opaque stones (p < 0.001). The cumulative stone-free rate at the second session was 100% without ureteral obstruction; 80% with mild, 57% with moderate, and 67% with severe obstruction; and 50% in patients with nonappearance of the kidney (p < 0.05). From these observations, it could be concluded that the factors influencing fragmentation were the size and radiopacity of the calculi and the degree of ureteral obstruction, whereas the location of the calculi did not influence the cumulative stone-free rate of repetitive in situ SWL. It is preferable to restrict in situ SWL to three sessions in patients with ureteral calculi refractory to shockwaves. An early change of treatment modality either to ureteroscopic manipulation or to open surgery would be recommended if there

  17. HANDBOOK ON IN SITU TREATMENT OF HAZARDOUS WASTE- CONTAMINATED SOILS

    EPA Science Inventory

    This handbook comprises an update of Volume1 of the 1984 USEPA document entitled "Review of In-Place Treatment Techniques for Contaminated Surface Soils." The purpose of this handbook is the same as that of the original document - to provide state-of-the-art information on in sit...

  18. Bioremediation treatment of hydrocarbon-contaminated Arctic soils: influencing parameters.

    PubMed

    Naseri, Masoud; Barabadi, Abbas; Barabady, Javad

    2014-10-01

    The Arctic environment is very vulnerable and sensitive to hydrocarbon pollutants. Soil bioremediation is attracting interest as a promising and cost-effective clean-up and soil decontamination technology in the Arctic regions. However, remoteness, lack of appropriate infrastructure, the harsh climatic conditions in the Arctic and some physical and chemical properties of Arctic soils may reduce the performance and limit the application of this technology. Therefore, understanding the weaknesses and bottlenecks in the treatment plans, identifying their associated hazards, and providing precautionary measures are essential to improve the overall efficiency and performance of a bioremediation strategy. The aim of this paper is to review the bioremediation techniques and strategies using microorganisms for treatment of hydrocarbon-contaminated Arctic soils. It takes account of Arctic operational conditions and discusses the factors influencing the performance of a bioremediation treatment plan. Preliminary hazard analysis is used as a technique to identify and assess the hazards that threaten the reliability and maintainability of a bioremediation treatment technology. Some key parameters with regard to the feasibility of the suggested preventive/corrective measures are described as well.

  19. Overview of a large-scale bioremediation soil treatment project

    SciTech Connect

    Stechmann, R. )

    1991-02-01

    How long does it take to remediate 290,000 yd{sup 3} of impacted soil containing an average total petroleum hydrocarbon concentration of 3,000 ppm Approximately 15 months from start to end of treatment using bioremediation. Mittelhauser was retained by the seller of the property (a major oil company) as technical manager to supervise remediation of a 45-ac parcel in the Los Angeles basin. Mittelhauser completed site characterization, negotiated clean-up levels with the regulatory agencies, and prepared the remedial action plan (RAP) with which the treatment approach was approved and permitted. The RAP outlined the excavation, treatment, and recompaction procedures for the impacted soil resulting from leakage of bunker fuel oil from a large surface impoundment. The impacted soil was treated on site in unline Land Treatment Units (LTUs) in 18-in.-thick lifts. Due to space restraints, multiple lifts site. The native microbial population was cultivated using soil stabilization mixing equipment with the application of water and agricultural grade fertilizers. Costs on this multimillion dollar project are broken down as follows: general contractor cost (47%), bioremediation subcontractor cost (35%), site characterization (10%), technical management (7%), analytical services (3%), RAP preparation and permitting (1%), and civil engineering subcontractor cost (1%). Start-up of field work could have been severely impacted by the existence of Red Fox habitation. The foxes were successfully relocated prior to start of field work.

  20. Photo-Fenton treatment of TNT contaminated soil extract solutions obtained by soil flushing with cyclodextrin.

    PubMed

    Yardin, Gwenine; Chiron, Serge

    2006-03-01

    The technical feasibility and performances of coupling flushing abilities of cyclodextrin solutions for 2,4,6-trinitrotoluene (TNT) removal from contaminated soil and the ability of Photo-Fenton treatment for final disposal of soil extract solutions containing high TNT loads have been investigated at laboratory scale. Methylated-beta-cyclodextrin (MCD) has shown better ability than hydroxypropyl-beta-cyclodextrin (HPCD) to complex TNT. The MCD solution increased the aqueous concentration of TNT in soil extract effluents as much as 2.1 times the concentrations obtained during the water flush of the soil. TNT in soil extract solution has been treated by Photo-Fenton. Our results indicate that MCD has a beneficial effect on the degradation rates of TNT. This relative improvement of TNT degradation rate (1.3 time) in presence of high amounts of hydroxyl radical scavengers can be ascribed to the formation of a ternary complex (TNT-cyclodextrin-iron) which can direct hydroxyl radical reaction toward TNT. Complete mineralization of soil extraction solutions was not achieved and TNT degradation pathway has been elucidated in order to ensure that no potential toxic intermediate is left at the end of the treatment time. After successive TNT hydroxylations, oxidative opening of the TNT aromatic ring quickly occurred, leading to the accumulation of short chain carboxylic acids such as oxalic acid and formic acid.

  1. Session: Energy Conversion

    SciTech Connect

    Robertson, David; LaSala, Raymond J.; Kukacka, Lawrence E.; Bliem, Carl J.; Premuzic, Eugene T.; Weare, John H.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hydrothermal Energy Conversion Technology'' by David Robertson and Raymond J. LaSala; ''Materials for Geothermal Production'' by Lawrence E. Kukacka; ''Supersaturated Turbine Expansions for Binary Geothermal Power Plants'' by Carl J. Bliem; ''Geothermal Waster Treatment Biotechnology: Progress and Advantages to the Utilities'' by Eugen T. Premuzic; and ''Geothermal Brine Chemistry Modeling Program'' by John H. Weare.

  2. Laboratory assessment of factors affecting soil clogging of soil aquifer treatment systems.

    PubMed

    Pavelic, P; Dillon, P J; Mucha, M; Nakai, T; Barry, K E; Bestland, E

    2011-05-01

    In this study the effect of soil type, level of pre-treatment, ponding depth, temperature and sunlight on clogging of soil aquifer treatment (SAT) systems was evaluated over an eight week duration in constant temperature and glasshouse environments. Of the two soil types tested, the more permeable sand media clogged more than the loam, but still retained an order of magnitude higher absolute permeability. A 6- to 8-fold difference in hydraulic loading rates was observed between the four source water types tested (one potable water and three recycled waters), with improved water quality resulting in significantly higher infiltration. Infiltration rates for ponding depths of 30 cm and 50 cm were higher than 10 cm, although for 50 cm clogging rates were higher due to greater compaction of the clogging layer. Overall, physical clogging was more significant than other forms of clogging. Microbial clogging becomes increasingly important when the particulate concentrations in the source waters are reduced through pre-treatment and for finer textured soils due to the higher specific surface area of the media. Clogging by gas binding took place in the glasshouse but not in the lab, and mechanical clogging associated with particle rearrangement was evident in the sand media but not in the loam. These results offer insight into the soil, water quality and operating conditions needed to achieve viable SAT systems.

  3. LAND TREATMENT OF PAH-CONTAMINATED SOIL: PERFORMANCE MEASURED BY CHEMICAL AND TOXICITY ASSAYS

    EPA Science Inventory

    The performance of a soil remediation process can be determined by measuring the reduction in target soil contaminant concentrations and by assessing the treatment's ability to lower soil toxicity. Land treatment of polycyclic armomatic hydrocarbon (PAH)-contaminated soil from a ...

  4. LAND TREATMENT OF PAH-CONTAMINATED SOIL: PERFORMANCE MEASURED BY CHEMICAL AND TOXICITY ASSAYS

    EPA Science Inventory

    The performance of a soil remediation process can be determined by measuring the reduction in target soil contaminant concentrations and by assessing the treatment's ability to lower soil toxicity. Land treatment of polycyclic aromatic hydrocarbon (PAH)-contaminated soil from a ...

  5. Fate and transport of carbamazepine in soil aquifer treatment (SAT) infiltration basin soils.

    PubMed

    Arye, Gilboa; Dror, Ishai; Berkowitz, Brian

    2011-01-01

    The transport and fate of the pharmaceutical carbamazepine (CBZ) were investigated in the Dan Region Reclamation Project (SHAFDAN), Tel-Aviv, Israel. Soil samples were taken from seven subsections of soil profiles (150 cm) in infiltration basins of a soil aquifer treatment (SAT) system. The transport characteristics were studied from the release dynamics of soil-resident CBZ and, subsequently, from applying a pulse input of wastewater containing CBZ. In addition, a monitoring study was performed to evaluate the fate of CBZ after the SAT. Results of this study indicate adsorption, and consequently retardation, in CBZ transport through the top soil layer (0-5 cm) and to a lesser extent in the second layer (5-25 cm), but not in deeper soil layers (25-150 cm). The soluble and adsorbed fractions of CBZ obtained from the two upper soil layers comprised 45% of the total CBZ content in the entire soil profile. This behavior correlated to the higher organic matter content observed in the upper soil layers (0-25 cm). It is therefore deduced that when accounting for the full flow path of CBZ through the vadose zone to the groundwater region, the overall transport of CBZ in the SAT system is essentially conservative. The monitoring study revealed that the average concentration of CBZ decreased from 1094 ± 166 ng L⁻¹ in the recharged wastewater to 560 ± 175 ng L⁻¹ after the SAT. This reduction is explained by dilution of the recharged wastewater with resident groundwater, which may occur as it flows to active reclamation wells. PMID:20947124

  6. TECHNOLOGY EVALUATION REPORT: TORONTO HARBOUR COMMISSIONERS (THC) SOIL RECYCLE TREATMENT TRAIN. Project Summary

    EPA Science Inventory

    A demonstration of the Toronto Harbour Commissioners' (THC) Soil Recycle Treatment Train was performed under the Superfund Innovative Technology Evaluation (SITE) Program at a pilot plant facility in Toronto, Ontario, Canada. The Soil Recycle Treatment Train, which consists of s...

  7. A Retrospective Analysis of 5,195 Patient Treatment Sessions in an Integrative Veterinary Medicine Service: Patient Characteristics, Presenting Complaints, and Therapeutic Interventions

    PubMed Central

    Memon, Mushtaq A.

    2015-01-01

    Integrative veterinary medicine, the combination of complementary and alternative therapies with conventional care, is increasingly prevalent in veterinary practice and a focus of clinical instruction in many academic teaching institutions. However, the presenting complaints, therapeutic modalities, and patient population in an integrative medicine service have not been described. A retrospective analysis of 5,195 integrative patient treatment sessions in a veterinary academic teaching hospital demonstrated that patients most commonly received a combination of therapeutic modalities (39% of all treatment sessions). The 274 patients receiving multiple modalities were most frequently treated for neurologic and orthopedic disease (50.7% versus 49.6% of all presenting complaints, resp.). Older neutered or spayed dogs (mean age = 9.0 years) and Dachshunds were treated more often than expected based on general population statistics. Acupuncture, laser therapy, electroacupuncture, and hydrotherapy were frequently administered (>50% patients). Neurologic patients were more likely to receive acupuncture, electroacupuncture, and therapeutic exercises but less likely than orthopedic patients to receive laser, hydrotherapy, or therapeutic ultrasound treatments (P < 0.05). The results suggest that the application of these specific modalities to orthopedic and neurologic diseases should be subjected to increased evidence-based investigations. A review of current knowledge in core areas is presented. PMID:26798552

  8. A Retrospective Analysis of 5,195 Patient Treatment Sessions in an Integrative Veterinary Medicine Service: Patient Characteristics, Presenting Complaints, and Therapeutic Interventions.

    PubMed

    Shmalberg, Justin; Memon, Mushtaq A

    2015-01-01

    Integrative veterinary medicine, the combination of complementary and alternative therapies with conventional care, is increasingly prevalent in veterinary practice and a focus of clinical instruction in many academic teaching institutions. However, the presenting complaints, therapeutic modalities, and patient population in an integrative medicine service have not been described. A retrospective analysis of 5,195 integrative patient treatment sessions in a veterinary academic teaching hospital demonstrated that patients most commonly received a combination of therapeutic modalities (39% of all treatment sessions). The 274 patients receiving multiple modalities were most frequently treated for neurologic and orthopedic disease (50.7% versus 49.6% of all presenting complaints, resp.). Older neutered or spayed dogs (mean age = 9.0 years) and Dachshunds were treated more often than expected based on general population statistics. Acupuncture, laser therapy, electroacupuncture, and hydrotherapy were frequently administered (>50% patients). Neurologic patients were more likely to receive acupuncture, electroacupuncture, and therapeutic exercises but less likely than orthopedic patients to receive laser, hydrotherapy, or therapeutic ultrasound treatments (P < 0.05). The results suggest that the application of these specific modalities to orthopedic and neurologic diseases should be subjected to increased evidence-based investigations. A review of current knowledge in core areas is presented. PMID:26798552

  9. EFFECT OF SOIL PB INACTIVATION TREATMENTS ON BIOAVAILABILITY OF JOPLIN, MO, SMELTER CONTAMINATED SOIL PB TO RATS

    EPA Science Inventory

    The effects of treating contaminated soils with various soil amendments on the bioavailability of lead were assessed in the weanling rat model. The effect of treatment was assessed by comparing the adsorption of Pb of animals fed soil samples treated with (0.5%, 1% P and 2.5% Fe ...

  10. Inactivation of Ascaris eggs in soil by microwave treatment compared to UV and ozone treatment.

    PubMed

    Mun, Sungmin; Cho, Shin-Hyeong; Kim, Tong-Soo; Oh, Byung-Taek; Yoon, Jeyong

    2009-09-01

    This study reports on the effect of microwave radiation for inactivation of Ascaris lumbricoides eggs in 25 g of soil compared to ultraviolet irradiation and ozone expose. Microwave radiation at 700 W with 14% water content (w/w) achieved approximately 2.5 log inactivation of eggs in soil within 60s. On the other hand, UV irradiation at 3 mW cm(-2) with and without shaking soil for 3600 s achieved approximately 0.32 and 0.01 log inactivation of eggs, respectively. In ozone treatment, 0.13 log inactivation of eggs was achieved with 5.8+/-0.7 mg L(-1) of dissolved ozone dose for 30 min in a continuous diffusion reactor. In addition, the inactivation of eggs by three disinfection techniques was conducted in water in order to compare the inactivation efficiency of eggs in soil. The inactivation efficiency of microwave radiation was found to be no significant difference between in soil and water. However, the inactivation efficiency of UV irradiation was significantly increased in water while in ozone expose there was no significant difference between in soil and water. Microwave treatment thus proved to be the most efficient method in controlling A. lumbricoides eggs in soil.

  11. Sorption of lead by settling pond soils after reclamation treatments

    NASA Astrophysics Data System (ADS)

    Asensio, Verónica; Forján, Rubén; Vega, Flora A.; Andrade, Luisa; Covelo, Emma F.

    2013-04-01

    The reclamation of degraded soils adding waste amendments can add significant concentrations of Pb. Because of this, it is important to know the sorption capacity of Pb by the soils where wastes with high concentrations of this metal are applied. To determine the sorption capacity of Pb by mine soils, before and after reclamation treatments, four different sites were selected at a settling pond mine zone: an untreated one as the control sample (B1), a vegetated one with pines for 21 years (B2v), a vegetated with eucalyptus for 6 years (B3v) and an amended with sewage sludges and paper mill residues for 5 months (B4w). All soils had one horizon except B4w, where twice were sampled (B4Aw and B4Bw). The B4Bw is considered analogous of the control soil. To evaluate the sorption capacity by the soils, sorption isotherms were constructed using single-metal solutions of Pb2+ nitrates (0.03, 0.05, 0.08, 0.1 and 0.5 mmol L-1) containing 0.01 M NaNO3 as background electrolyte (Vega et al., 2009). The overall capacity of the soil to sorb Pb was evaluated as the slope Kr (Vega et al., 2008). The obtained results show that the sorption isotherm of Pb by control soil (B1) and its analogous (B4Bw) are of L-type curve, whereas the sorption isotherms of the treated soils (B2v, B3v and B4Aw) are of H-type curve (Giles et al., 1974). The most of the obtained isotherms do not fit with the models of Langmuir or Freundlich, therefore sorption capacity was evaluated by Kr parameter. According to the obtained Kr parameter, B1 and B4Bw have the lowest Pb sorption capacity (Kr = 0.480 and 0.556, respectively), which increased two times after recently waste amending (B4Aw; Kr = 0.998). The vegetated sites (B2v and B3v) also have higher sorption capacity than B1, but lower than B4Aw (Kr = 0.692 and 0.725, respectively). The highest sorption capacity of Pb by the amended soil is due to its characteristics such as high pH and organic carbon content. This is corroborated by the significantly

  12. Microbial Diversity in Soil Treatment Systems for Wastewater

    NASA Astrophysics Data System (ADS)

    Van Cuyk, S.; Spear, J.; Siegrist, R.; Pace, N.

    2002-05-01

    There is an increasing awareness and concern over land based wastewater system performance with respect to the removal of bacteria and virus. The goal of this work is to describe and identify the organismal composition of the microbiota in the applied wastewater effluent, the rich biomat that develops at the infiltrative surface, and in the soil percolate in order to aid in the understanding of bacterial and virus purification in soil treatment systems. The traditional reliance on pure culture techniques to describe microbiota is circumvented by the employment of a molecular approach. Microbial community characterization is underway based on cloning and sequencing of 16S rRNA genes for phylogenetic analyses, to determine the nature and quantity of microbiota that constitute these ecosystems. Knowledge of the organisms naturally present can influence the design and treatment capacity of these widely used land based systems. Laboratory, intermediate and field scale systems are currently under study. Since human pathogens are known to exist in sewage effluents, their removal in wastewater infiltration systems and within the underlying soil are in need of a more fundamental understanding. The relationship between design parameters and environmental conditions, including a microbial characterization, is essential for the prevention of contamination in groundwater sources. Preliminary results indicate the presence of uncultured organisms and phylogenetic kinds that had not been detected in these systems using other methods. Acinetobacter johnsonii and Acrobacter cryaerophilus were the two dominant species found in septic tank effluent, comprising 20% and 11% of the library respectively. In soil samples collected from the infiltrative surface of a column dosed with STE, there was no dominant bacterial species present. Percolate samples collected from the outflow of the column showed that a tuber borchii symbiont, a common soil microorganism, dominated the bacterial

  13. Calcium polysulfide treatment of Cr(VI)-contaminated soil.

    PubMed

    Chrysochoou, Maria; Ferreira, Daniel R; Johnston, Chad P

    2010-07-15

    Batch treatability studies for a Cr(VI)-contaminated glacial soil from a Cr plating facility were conducted using 1X and 2X the stoichiometric ratio of calcium polysulfide (CPS). The pH of the treated soil increased from 6 to 11 upon CPS addition, but progressively returned to 8-8.5 over the course of 1 year. The 1X dosage maintained a highly reducing environment up to 21 days of monitoring with the samples exposed to atmospheric oxygen, while 2X was reducing up to 180 days of curing. The EPA regulatory method for solid Cr(VI) could not reliably predict Cr(VI) in the treated solid due to ongoing reduction during the test. SPLP results showed that the CPS created an apparent Cr(VI) mobilization during the first 60 days of treatment, with subsequent decrease in soluble Cr(VI) up to 1 year of monitoring. Synchrotron micro-X-ray analyses at 60 days curing showed that Cr(VI) was predominantly bound as highly insoluble PbCrO(4) that precipitated in the interstitial pores of the soil, with very little to no Cr(VI) associated with the abundant iron oxyhydroxides. Despite its spatial accessibility and due to its low solubility, PbCrO(4) was recalcitrant to treatment, which proceeded only very slowly as judged by the SPLP data. It is concluded that, while CPS has a long residence time in the environment and is a promising reductant, in situ reduction is not an efficient treatment method for soils with highly insoluble Cr(VI) compounds, especially in surficial layers such as the one studied.

  14. Combination of surfactant enhanced soil washing and electro-Fenton process for the treatment of soils contaminated by petroleum hydrocarbons.

    PubMed

    Huguenot, David; Mousset, Emmanuel; van Hullebusch, Eric D; Oturan, Mehmet A

    2015-04-15

    In order to improve the efficiency of soil washing treatment of hydrocarbon contaminated soils, an innovative combination of this soil treatment technique with an electrochemical advanced oxidation process (i.e. electro-Fenton (EF)) has been proposed. An ex situ soil column washing experiment was performed on a genuinely diesel-contaminated soil. The washing solution was enriched with surfactant Tween 80 at different concentrations, higher than the critical micellar concentration (CMC). The impact of soil washing was evaluated on the hydrocarbons concentration in the leachates collected at the bottom of the soil columns. These eluates were then studied for their degradation potential by EF treatment. Results showed that a concentration of 5% of Tween 80 was required to enhance hydrocarbons extraction from the soil. Even with this Tween 80 concentration, the efficiency of the treatment remained very low (only 1% after 24 h of washing). Electrochemical treatments performed thereafter with EF on the collected eluates revealed that the quasi-complete mineralization (>99.5%) of the hydrocarbons was achieved within 32 h according to a linear kinetic trend. Toxicity was higher than in the initial solution and reached 95% of inhibition of Vibrio fischeri bacteria measured by Microtox method, demonstrating the presence of remaining toxic compounds even after the complete degradation. Finally, the biodegradability (BOD₅/COD ratio) reached a maximum of 20% after 20 h of EF treatment, which is not enough to implement a combined treatment with a biological treatment process.

  15. Treatment of Aroclor 1016 contaminated soil by hydrogen peroxide: laboratory column study.

    PubMed

    Viisimaa, Marika; Veressinina, Jelena; Goi, Anna

    2012-09-01

    The potential and feasibility of treating soil contaminated with electrical insulating oil, Aroclor 1016, containing polychlorinated biphenyls (PCBs) with stabilized hydrogen peroxide were evaluated using columns packed with soils of two different matrixes. The column experiments showed that PCBs degraded by the stabilized hydrogen peroxide treatment in both soil matrixes, although the efficacy of the treatment depended strongly on the soil characteristics. The removal of PCB-containing oil was higher in sandy silt soil than in sandy soil. While a higher iron content promoted hydrogen peroxide oxidation of the contaminant in sandy silt soil, lower permeability and higher organic matter content contributed to an oxidation decrease as a function of depth. Dehydrogenase activity measurements indicated no substantial changes in microbial activity during the treatment of both sandy and sandy silt soils, thus offering opportunities to apply the hydrogen peroxide treatment to the remediation of PCB-contaminated soil.

  16. DEMONSTRATION BULLETIN: IN-SITU STEAM/HOT AIR SOIL STRIPPING TOXIC TREATMENT (USA) INC.

    EPA Science Inventory

    This technology uses steam and hot air to strip volatile organics from contaminated soil. The treatment equipment is mobile and treats the soil in-situ without need for soil excavation or transportation. The organic contaminants volatilized from the soil are condensed and col...

  17. Impact of electrochemical treatment of soil washing solution on PAH degradation efficiency and soil respirometry.

    PubMed

    Mousset, Emmanuel; Huguenot, David; van Hullebusch, Eric D; Oturan, Nihal; Guibaud, Gilles; Esposito, Giovanni; Oturan, Mehmet A

    2016-04-01

    The remediation of a genuinely PAH-contaminated soil was performed, for the first time, through a new and complete investigation, including PAH extraction followed by advanced oxidation treatment of the washing solution and its recirculation, and an analysis of the impact of the PAH extraction on soil respirometry. The study has been performed on the remediation of genuine PAH-contaminated soil, in the following three steps: (i) PAH extraction with soil washing (SW) techniques, (ii) PAH degradation with an electro-Fenton (EF) process, and (iii) recirculation of the partially oxidized effluent for another SW cycle. The following criteria were monitored during the successive washing cycles: PAH extraction efficiency, PAH oxidation rates and yields, extracting agent recovery, soil microbial activity, and pH of soil. Two representative extracting agents were compared: hydroxypropyl-beta-cyclodextrin (HPCD) and a non-ionic surfactant, Tween(®) 80. Six PAH with different numbers of rings were monitored: acenaphthene (ACE), phenanthrene (PHE), fluoranthene (FLA), pyrene (PYR), benzo(a)pyrene (BaP), and benzo(g,h,i)perylene (BghiP). Tween(®) 80 showed much better PAH extraction efficiency (after several SW cycles) than HPCD, regardless of the number of washing cycles. Based on successive SW experiments, a new mathematical relation taking into account the soil/water partition coefficient (Kd*) was established, and could predict the amount of each PAH extracted by the surfactant with a good correlation with experimental results (R(2) > 0.975). More HPCD was recovered (89%) than Tween(®) 80 (79%), while the monitored pollutants were completely degraded (>99%) after 4 h and 8 h, respectively. Even after being washed with partially oxidized solutions, the Tween(®) 80 solutions extracted significantly more PAH than HPCD and promoted better soil microbial activity, with higher oxygen consumption rates. Moreover, neither the oxidation by-products nor the acidic media (p

  18. Impact of electrochemical treatment of soil washing solution on PAH degradation efficiency and soil respirometry.

    PubMed

    Mousset, Emmanuel; Huguenot, David; van Hullebusch, Eric D; Oturan, Nihal; Guibaud, Gilles; Esposito, Giovanni; Oturan, Mehmet A

    2016-04-01

    The remediation of a genuinely PAH-contaminated soil was performed, for the first time, through a new and complete investigation, including PAH extraction followed by advanced oxidation treatment of the washing solution and its recirculation, and an analysis of the impact of the PAH extraction on soil respirometry. The study has been performed on the remediation of genuine PAH-contaminated soil, in the following three steps: (i) PAH extraction with soil washing (SW) techniques, (ii) PAH degradation with an electro-Fenton (EF) process, and (iii) recirculation of the partially oxidized effluent for another SW cycle. The following criteria were monitored during the successive washing cycles: PAH extraction efficiency, PAH oxidation rates and yields, extracting agent recovery, soil microbial activity, and pH of soil. Two representative extracting agents were compared: hydroxypropyl-beta-cyclodextrin (HPCD) and a non-ionic surfactant, Tween(®) 80. Six PAH with different numbers of rings were monitored: acenaphthene (ACE), phenanthrene (PHE), fluoranthene (FLA), pyrene (PYR), benzo(a)pyrene (BaP), and benzo(g,h,i)perylene (BghiP). Tween(®) 80 showed much better PAH extraction efficiency (after several SW cycles) than HPCD, regardless of the number of washing cycles. Based on successive SW experiments, a new mathematical relation taking into account the soil/water partition coefficient (Kd*) was established, and could predict the amount of each PAH extracted by the surfactant with a good correlation with experimental results (R(2) > 0.975). More HPCD was recovered (89%) than Tween(®) 80 (79%), while the monitored pollutants were completely degraded (>99%) after 4 h and 8 h, respectively. Even after being washed with partially oxidized solutions, the Tween(®) 80 solutions extracted significantly more PAH than HPCD and promoted better soil microbial activity, with higher oxygen consumption rates. Moreover, neither the oxidation by-products nor the acidic media (p

  19. Amend soils with residues from water-treatment processes

    SciTech Connect

    Makansi, J.

    1993-09-01

    This article reports that land application is emerging as a viable disposal/reuse method for water-treatment-process residues. In many cases, these residues actually enhance soil quality and arrest fertilizer loss. Water treatment usually generates solid residues requiring disposal. These include sludges from lime softening and related pretreatment processes and spent ion-exchange resins and adsorbents used for softening, dealkalization, and deionization of surface and well water. Although it may not appear so at first glance, according to consultant Dr. Robert Kunin, these materials have properties that can benefit the soil for agricultural and horticultural needs. Treating water with lime is popular and effective for removing hardness, phosphates, and some silica. Small amounts of alum, chlorine, and/or organic flocculants may also be added in lime-softening processes. Resulting sludge consists of calcium carbonate (CaCO[sub 3]), magnesium hydroxide, and calcium/magnesium/phosphate compounds, along with humic matter and related organic compounds that originate in the raw water. If softening is conducted at high temperatures, large, dense CaCO[sub 3] particles form as the compound crystallizes around sand particles. Disposal of this sludge is often considered a major disadvantage of lime softening. But if the water being treated meets EPA regulations for heavy metals, especially arsenic, then chemical analysis suggests benefits for soils. This has been well-described in texts addressing water treatment. For example, the sludge serves as a mild liming agent and may even supply various plant nutrients. Note that this application is different from municipal wastewater treatment plant sludge, which is difficult to land apply.

  20. Session IV: Current Insights into Wilderness and Adventure Therapy. Family Crisis and the Enrollment of Children in Wilderness Treatment

    ERIC Educational Resources Information Center

    Harper, Nevin J.

    2009-01-01

    Wilderness camps and programs have long been identified as viable residential treatment options for troubled adolescents (Durkin, 1988). Wilderness treatment programs in the United States, regardless of reputation and service quality, have recently received increased scrutiny from government, mainly by being depicted as in pedagogical alignment…

  1. Sessions and Session Types: An Overview

    NASA Astrophysics Data System (ADS)

    Dezani-Ciancaglini, Mariangiola; de'Liguoro, Ugo

    We illustrate the concepts of sessions and session types as they have been developed in the setting of the π-calculus. Motivated by the goal of obtaining a formalisation closer to existing standards and aiming at their enhancement and strengthening, several extensions of the original core system have been proposed, which we survey together with the embodying of sessions into functional and object-oriented languages, as well as some implementations.

  2. Do therapist behaviors differ with Hispanic youth? A brief look at within-session therapist behaviors and youth treatment response

    PubMed Central

    Feldstein Ewing, Sarah W.; Gaume, Jacques; Ernst, Denise B.; Rivera, Liana; Houck, Jon M.

    2015-01-01

    Brief addiction treatments, including motivational interviewing (MI), have shown promise with youth. One under-examined factor in this equation is the role of therapist behaviors. We therefore sought to assess whether and how therapist behaviors differ for Hispanic versus non-Hispanic youth and how that may be related to treatment outcome. With 80 substance-using adolescents (M age = 16 years; 65% male; 59% Hispanic; 41% non-Hispanic) we examined the relationship between youth ethnicity and therapist behaviors across two brief treatments (MI and Alcohol/Marijuana Education; AME). We then explored relationships to youth three-month treatment response across four target outcomes: binge drinking days, alcohol-related problems, marijuana use days, and marijuana-related problems. In this study, therapists showed significantly more MI skills within the MI condition and more didactic skills in the AME condition. With respect to youth ethnicity, across both conditions (MI and AME), therapists used less MI skills with Hispanic youth. Contrary to expectations, therapists’ use of MI skills was not connected to poorer outcomes for Hispanic youth across the board (e.g., for binge drinking days, marijuana use days, or marijuana-related problems). Rather, for Hispanic youth, therapists’ use of lower MI skills was only related to poorer treatment outcomes in the context of alcohol-related problems. The observed relationships highlight the importance of investigating salient treatment interactions between therapist factors and youth ethnicity to guide improvements in youth treatment response. PMID:25961144

  3. Virus removal during simulated soil-aquifer treatment.

    PubMed

    Quanrud, David M; Carroll, Sean M; Gerba, Charles P; Arnold, Robert G

    2003-02-01

    Removals of indigenous coliphage and seeded poliovirus type 1 during simulated soil-aquifer treatment were evaluated during transport of secondary effluent under unsaturated flow conditions in 1-m soil columns. Independent variables included soil type (river sand or sandy loam) and infiltration rate. Removal of coliphage was in all cases less than removal of poliovirus type 1 (strain LSc-2ab), supporting contentions that indigenous coliphage can act as a conservative indicator of groundwater contamination by viral pathogens of human origin. Coliphage retention was significantly more efficient (p<0.001) in the finer-grained sandy loam (93%) than in sand (76%). Increasing reactor detention time from 5 to 20 h increased coliphage attenuation from 70% to 99% in a 1-m sand column. There was a significant linear correlation (p=0.012) between log-transformed (fractional) coliphage concentration [log(C/C(0))] and reactor detention time. Re-mobilization of attached coliphage occurred during simulated rainfall using low-ionic-strength water. Inhibition of aerobic respiration resulted in significantly less efficient coliphage attenuation (p=0.033), suggesting the involvement of aerobic microorganisms in the survival/retention of this virus.

  4. Electrokinetic In Situ Treatment of Metal-Contaminated Soil

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Clausen, Christian A., III; Geiger, Cherie; Reinhart, Debra

    2004-01-01

    An electrokinetic technique has been developed as a means of in situ remediation of soils, sludges, and sediments that are contaminated with heavy metals. Examples of common metal contaminants that can be removed by this technique include cadmium, chromium, zinc, lead, mercury, and radionuclides. Some organic contaminants can also be removed by this technique. In the electrokinetic technique, a low-intensity direct current is applied between electrodes that have been implanted in the ground on each side of a contaminated soil mass. The electric current causes electro-osmosis and migration of ions, thereby moving aqueous-phase subsurface contaminants from one electrode to the other. The half reaction at the anode yields H+, thereby generating an acid front that travels from the anode toward the cathode. As this acid front passes through a given location, the local increase in acidity increases the solubility of cations that were previously adsorbed on soil particles. Ions are transported towards one electrode or the other which one depending on their respective electric charges. Upon arrival at the electrodes, the ionic contaminants can be allowed to become deposited on the electrodes or can be extracted to a recovery system. Surfactants and other reagents can be introduced at the electrodes to enhance rates of removal of contaminants. Placements of electrodes and concentrations and rates of pumping of reagents can be adjusted to maximize efficiency. The basic concept of electrokinetic treatment of soil is not new. What is new here are some of the details of application and the utilization of this technique as an alternative to other techniques (e.g., flushing or bioremediation) that are not suitable for treating soils of low hydraulic conductivity. Another novel aspect is the use of this technique as a less expensive alternative to excavation: The cost advantage over excavation is especially large in settings in which contaminated soil lies near and/or under

  5. Treating Self-Injection Phobia in Patients Prescribed Injectable Medications: A Case Example Illustrating a Six-Session Treatment Model

    ERIC Educational Resources Information Center

    Cox, Darcy; Mohr, David C.; Epstein, Lucy

    2004-01-01

    This article provides a case description of a patient with multiple sclerosis prescribed interferon beta-1a (IFN[beta]-1a), a weekly intramuscular injection, who met "DSM-IV" criteria for specific phobia, blood/injection type. This patient successfully completed a 6-week manualized cognitive-behavioral treatment for self-injection anxiety. Issues…

  6. Steam-treatment-based soil remediation promotes heat-tolerant, potentially pathogenic microbiota.

    PubMed

    Altenburger, Andreas; Bender, Mikkel; Ekelund, Flemming; Elmholt, Susanne; Jacobsen, Carsten Suhr

    2014-01-01

    We investigated microbiota in surface and subsurface soil from a site, above steam-treated deep sub-soil originally contaminated with chlorinated solvents. During the steam treatment, the surface soil reached temperatures c. 30 degrees C higher than the temperature in untreated soil; whereas the subsurface soil, at a depth of about 40 cm, reached a temperature c. 45 degrees C higher than untreated soil. The soil was examined prior to, during, and 6, 12, 14, 20 and 31 months after treatment. Numbers of bacteria cultivable at 42 degrees C increased significantly in subsurface soil. Similarly, substrate utilization in ECOLOG plates, incubated at 42 degrees C, increased from less than 10% of available carbon sources in the untreated soil to more than 60% of the available carbon sources in the steam-treated soil. Aspergillus fumigatus was quantified as an example ofheat-tolerant fungi normally found in compost. These organisms are rarely detected in Danish soils but high numbers (c. 10(5) hyphal forming units g(-1)) occurred in the treated soil up to 31 months after the steam-treatment. We conclude that steam-treatment leads to changes of the microbial communities. Some changes are temporary while others can last for years after termination of the steam-treatment; reflecting different strategies that soil microorganisms follow.

  7. The "Session Libre".

    ERIC Educational Resources Information Center

    Roberts, J. T.

    At the Institut Universitaire de Technologie in Nancy, France, most English language teaching has been organized on a mixed extensive/intensive pattern. As a result of certain negative effects of the established "session intensive," another methodology was tried, called "session libre." This session involved several techniques: first, the…

  8. SITE DEMONSTRATION BULLETIN: SOIL RECYCLING TREATMENT TRAIN - THE TORONTO HARBOUR COMMISSIONERS

    EPA Science Inventory

    The Toronto Harbour Commissioners (THC) have developed a soil treatment train designed to treat inorganic and organic contaminants in soils. THC has conducted a large-scale demonstration of these technologies in an attempt to establish that contaminated soils at the Toronto Port...

  9. TORONTO HARBOUR COMMISSIONERS (THC) SOIL RECYCLE TREATMENT TRAIN - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    The Toronto Harbour Commissioners (THC) have developed a soil treatment train designed to treat inorganic and organic contaminants in soils. THC has conducted a large-scale demonstration of these technologies in an attempt to establish that contaminated soils at the Toronto Port ...

  10. Construction of disturbed and intact soil blocks to develop percolating soil based treatment systems for dirty water from dairy farms.

    PubMed

    Brookman, S K E; Chadwick, D R; Headon, D M

    2002-03-01

    Intact soil blocks with a surface area of 1.8 x 1.6 m, 1.0 m deep, were excavated in a coarse sandy loam. The sides of the soil blocks were supported with plywood before using hydraulic rams to force a steel cutting plate beneath them. Disturbed soil blocks of the same depth as the intact blocks were also established. Experiments were conducted to determine purification efficiencies for biological oxygen demand (BOD), molybdate reactive phosphorus (MRP), nitrate and ammonium-N after the application of dirty water. A preliminary experiment is described where a low application of dirty water was applied to the soil blocks, 2 mm day(-1). In addition, a chloride tracer was conducted for the duration of the experiment. Disturbed soil had a purification efficiency for BOD of 99% compared to 96% from intact soil (P<0.001). Purification efficiencies for MRP and ammonium-N were 100 and 99%, respectively, for the intact and disturbed soils. Nitrate-N concentration increased in leachate from both treatments reaching maximum concentrations of 15 and 8 mg l(-1) from disturbed and intact soils, respectively. Chloride traces for each soil block followed similar patterns with 47 and 51% loss from disturbed and intact soils, respectively.

  11. Soil Aggregates and Organic Carbon Distribution in Red Soils after Long-term Fertilization with Different Fertilizer Treatments

    NASA Astrophysics Data System (ADS)

    Tang, J.; Wang, Y.

    2013-12-01

    Red soils, a typical Udic Ferrosols, widespread throughout the subtropical and tropical region in southern China, support the majority of grain production in this region. The red soil is naturally low in pH values, cation exchange capacity, fertility, and compaction, resulting in low organic matter contents and soil aggregation. Application of chemical fertilizers and a combination of organic-chemical fertilizers are two basic approaches to improve soil structure and organic matter contents. We studied the soil aggregation and the distribution of aggregate-associated organic carbon in red soils with a long-term fertilization experiment during 1988-2009. We established treatments including 1) NPK and NK in the chemical fertilizer plots, 2) CK (Control), and 3) CK+ Peanut Straw (PS), CK+ Rice Straw (RS), CK+ Fresh Radish (FR), and CK + Pig Manure (PM) in the organic-chemical fertilizer plots. Soil samples were fractionated into 6 different sized aggregate particles through the dry-wet sieving method according to the hierarchical model of aggregation. Organic carbon in the aggregate/size classes was analyzed. The results showed that the distribution of mechanically stable aggregates in red soils after long-term fertilization decreased with the size, from > 5mm, 5 ~ 2 mm, 2 ~ 1 mm, 1~ 0.25 mm, to < 0.25 mm, but the distribution of water-stable aggregates did not follow this pattern. Compared with the chemical fertilizer application alone, the addition of pig manure and green manure can significantly improve the distribution of aggregates in the 5-2 mm, 2-1 mm and 1-0.25 mm classes. The organic carbon (OC) contents in red soils were all increased after the long-term fertilization. Compared with Treatment NK, soil OC in Treatment NPK was increased by 45.4%. Compared with Treatment CK (low chemical fertilizer), organic fertilizer addition increased soil OC. The OC in the different particle of water-stable aggregates were all significantly increased after long

  12. Concentration of soil CO2 as an indicator of the decalcification rate after liming treatment

    NASA Astrophysics Data System (ADS)

    Chmiel, Stanisław; Hałas, Stanisław; Głowacki, Sławomir; Sposób, Joanna; Maciejewska, Ewa; Trembaczowski, Andrzej

    2016-04-01

    This paper presents the results of investigation of decalcification of acid sandy and loamy sand soils by infiltration waters, and potential Ca-leaching after liming treatment. For this purpose, monthly measurements were made of the concentration of CO2 in the soil air, dissolved inorganic carbon in the soil waters, and their ionic composition. The determined dissolved inorganic carbon ranged from 5.9 to 10.6 mg dm-3 and from 9.9 to 16.5 mg dm-3 for the sandy and loamy sand soil, respectively. The Ca concentration in soil waters was determined as 5.9-12.4 mg dm-3 in sandy soil and 14.2-19.8 mg dm-3 in soil loamy sand. The calculated rate of decalcification amounted to 23.0 kg ha-1 year-1 in soil sandy and 19.4 kg ha-1 year-1 in loamy sand soil. The potential Ca-leaching is predicted as 124 kg ha-1 year-1 for S and 87 kg ha-1 year-1 for loamy sand soil. At the treatment level of 3 000 kg ha-1 4 year-1 of CaO, ~20% of the Ca-fertilizer can be leached after the liming treatment. The results of the CO2 concentration in the soil air may be useful in estimation of Ca-leaching from soils developed by slightly clayey sands and clayey sands in zones with a moderate climate.

  13. Application of vegetable oils in the treatment of polycyclic aromatic hydrocarbons-contaminated soils.

    PubMed

    Yap, C L; Gan, S; Ng, H K

    2010-05-15

    A brief review is conducted on the application of vegetable oils in the treatment of PAH-contaminated soils. Three main scopes of treatment strategies are discussed in this work including soil washing by oil, integrated oil-biological treatment and integrated oil-non-biological treatment. For each of these, the arguments supporting vegetable oil application, the applied treatment techniques and their efficiencies, associated factors, as well as the feasibility of the techniques are detailed. Additionally, oil regeneration, the environmental impacts of oil residues in soil and comparison with other commonly employed techniques are also discussed.

  14. The Effects of Soil Type and Chemical Treatment on Nickel Speciation in Refinery Enriched Soils: A Multi-Technique Investigation

    SciTech Connect

    McNear, Jr.,D.; Chaney, R.; Sparks, D.

    2007-01-01

    Aerial deposition of Ni from a refinery in Port Colborne, Ontario, Canada has resulted in the enrichment of 29 km{sup 2} of land with Ni concentrations exceeding the Canadian Ministry of the Environment's remedial action level of 200 mg kg{sup -1}. Several studies on these soils have shown that making the soils calcareous was effective at reducing chemically extractable Ni, as well as alleviating Ni phytotoxicity symptoms in vegetable crops grown in the vicinity of the refinery. Conversely, dolomitic limestone additions resulted in increased uptake of Ni in the Ni hyperaccumulator Alyssum murale 'Kotodesh', a plant whose use was proposed as a remediation strategy for this area. In this paper we use multiple techniques to directly assess the role soil type and lime treatments play in altering the speciation of Ni in the Welland loam and Quarry muck soils around the refinery and relate these findings to Ni mobility and bioavailability. Stirred-flow dissolution experiments using pH 4 HNO{sub 3} showed that Ni release from the limed Quarry muck and Welland loam soils was reduced ({approx}0.10%) relative to the unlimed soils ({approx}2.0%). Electron microprobe analysis (EMPA) identified approximately spherical NiO and Ni metal particles, which are associated with no other metals, and range from 5 to 50 {mu}m in diameter. Synchrotron micro-X-ray absorption fine structure and X-ray fluorescence spectroscopies showed that Ni and Al layered double hydroxide (Ni-Al LDH) phases were present in both the limed and unlimed mineral soils, with a tendency towards more stable (e.g., aged-LDH and phyllosilicate) Ni species in the limed soil, possibly aided by the solubilization of Si with increasing pH. In the muck soils, Ni-organic complexes (namely fulvic acid) dominated the speciation in both limed and unlimed soils. The results reported herein show that both soil type and treatment have a pronounced effect on the speciation of Ni in the soils surrounding the Port Colborne

  15. The effects of soil type and chemical treatment on nickel speciation in refinery enriched soils: A multi-technique investigation

    NASA Astrophysics Data System (ADS)

    McNear, David H.; Chaney, Rufus L.; Sparks, Donald L.

    2007-05-01

    Aerial deposition of Ni from a refinery in Port Colborne, Ontario, Canada has resulted in the enrichment of 29 km 2 of land with Ni concentrations exceeding the Canadian Ministry of the Environment's remedial action level of 200 mg kg -1. Several studies on these soils have shown that making the soils calcareous was effective at reducing chemically extractable Ni, as well as alleviating Ni phytotoxicity symptoms in vegetable crops grown in the vicinity of the refinery. Conversely, dolomitic limestone additions resulted in increased uptake of Ni in the Ni hyperaccumulator Alyssum murale 'Kotodesh', a plant whose use was proposed as a remediation strategy for this area. In this paper we use multiple techniques to directly assess the role soil type and lime treatments play in altering the speciation of Ni in the Welland loam and Quarry muck soils around the refinery and relate these findings to Ni mobility and bioavailability. Stirred-flow dissolution experiments using pH 4 HNO 3 showed that Ni release from the limed Quarry muck and Welland loam soils was reduced (˜0.10%) relative to the unlimed soils (˜2.0%). Electron microprobe analysis (EMPA) identified approximately spherical NiO and Ni metal particles, which are associated with no other metals, and range from 5 to 50 μm in diameter. Synchrotron micro-X-ray absorption fine structure and X-ray fluorescence spectroscopies showed that Ni and Al layered double hydroxide (Ni-Al LDH) phases were present in both the limed and unlimed mineral soils, with a tendency towards more stable (e.g., aged-LDH and phyllosilicate) Ni species in the limed soil, possibly aided by the solubilization of Si with increasing pH. In the muck soils, Ni-organic complexes (namely fulvic acid) dominated the speciation in both limed and unlimed soils. The results reported herein show that both soil type and treatment have a pronounced effect on the speciation of Ni in the soils surrounding the Port Colborne refinery. We provide the first

  16. Ecotoxicological impact of two soil remediation treatments in Lactuca sativa seeds.

    PubMed

    Rede, Diana; Santos, Lúcia H M L M; Ramos, Sandra; Oliva-Teles, Filipe; Antão, Cristina; Sousa, Susana R; Delerue-Matos, Cristina

    2016-09-01

    Pharmaceuticals have been identified as environmental emerging pollutants and are present in different compartments, including soils. Chemical remediation showed to be a good and suitable approach for soil remediation, though the knowledge in their impact for terrestrial organisms is still limited. Therefore, in this work, two different chemical remediation treatments (Fenton oxidation and nanoremediation) were applied to a soil contaminated with an environmental representative concentration of ibuprofen (3 ng g(-1)). The phytotoxic impact of a traditional soil remediation treatment (Fenton oxidation) and of a new and more sustainable approach for soil remediation (nanoremediation using green nano-scale zero-valent iron nanoparticles (nZVIs)) was evaluated in Lactuca sativa seeds. Percentage of seed germination, root elongation, shoot length and leaf length were considered as endpoints to assess the possible acute phytotoxicity of the soil remediation treatments as well as of the ibuprofen contaminated soil. Both chemical remediation treatments showed to have a negative impact in the germination and development of lettuce seeds, exhibiting a reduction up to 45% in the percentage of seed germination and a decrease around 80% in root elongation comparatively to the contaminated soil. These results indicate that chemical soil remediation treatments could be more prejudicial for terrestrial organisms than contaminated soils. PMID:27289206

  17. Impact of different tillage treatments on soil respiration and microbial activity for different agricultural used soils in Austria

    NASA Astrophysics Data System (ADS)

    Klik, Andreas; Scholl, Gerlinde; Baatar, Undrakh-Od

    2015-04-01

    Soils can act as a net sink for sequestering carbon and thus attenuating the increase in atmospheric carbon dioxide if appropriate soil and crop management is applied. Adapted soil management strategies like less intensive or even no tillage treatments may result in slower mineralization of soil organic carbon and enhanced carbon sequestration. In order to assess the impact of different soil tillage systems on carbon dioxide emissions due to soil respiration and on soil biological activity parameters, a field study of three years duration (2007-2010)has been performed at different sites in Austria. Following tillage treatments were compared: 1) conventional tillage (CT) with plough with and without cover crop during winter period, 2) reduced tillage (RT) with cultivator with cover crop, and 3) no-till (NT) with cover crop. Each treatment was replicated three times. At two sites with similar climatic conditions but different soil textures soil CO2 efflux was measured during the growing seasons in intervals of one to two weeks using a portable soil respiration system consisting of a soil respiration chamber attached to an infrared gas analyzer. Additionally, concurrent soil temperature and soil water contents of the top layer (0-5 cm)were measured. For these and additional three other sites with different soil and climatic conditions soil samples were taken to assess the impact of tillage treatment on soil biological activity parameters. In spring, summer and autumn samples were taken from each plot at the soil depth of 0-10, 10-20, and 20-30 cm to analyze soil microbial respiration (MR), substrate induced respiration (SIR), beta-glucasidase activity (GLU) and dehydrogenase (BHY). Samples were sieved (2 mm) and stored at 4 °C in a refrigerator. Analyses of were performed within one month after sampling. The measurements show a high spatial variability of soil respiration data even within one plot. Nevertheless, the level of soil carbon dioxide efflux was similar for

  18. Effects of Vermicompost and Water Treatment Residuals on Soil Physical Properties and Wheat Yield

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mahmoud M.; Mahmoud, Essawy K.; Ibrahim, Doaa A.

    2015-04-01

    The application of vermicompost and water treatment residuals to improve the physical properties in the salt affected soils is a promising technology to meet the requirements of high plant growth and cost-effective reclamation. Therefore, the aim of this study was to investigate the effect of vermicompost and its mixtures with water treatment residuals on selected physical properties of saline sodic soil and on wheat yield. The treatments were vermicompost, water treatment residuals, vermicompost + water treatment residuals (1:1 and 2:1 wet weight ratio) at levels of 5 and 10 g dry weight kg-1 dry soil. The considered physical properties included aggregate stability, mean weight diameter, pore size distribution and dry bulk density. The addition of vermicompost and water treatment residuals had significant positive effects on the studied soil physical properties, and improved the grain yield of wheat. The treatment of (2 vermicompost + 1 water treatment residuals) at level of 5 g kg-1 soil gave the best grain yield. Combination of vermicompost and water treatment residuals improved the water treatment residuals efficiency in ameliorating the soil physical properties, and could be considered as an ameliorating material for the reclamation of salt affected soils.

  19. Feasibility for application of soil bioengineering techniques to natural wastewater treatment systems. Master's thesis

    SciTech Connect

    Cox, A.J.

    1992-12-01

    This report examines the general feasibility for application of Soil Bioengineering techniques in construction, operation, and management of natural wastewater treatment systems. Soil Bioengineering is an applied science that combines structural, biological, and ecological concepts to construct living structures for erosion, sediment, and flood control (Sotir and Gray, 1989). Using live plant parts as major structural components to reinforce the soil mantle, Soil Bioengineering offers natural and effective solutions to land instability problems along streams and rivers, transportation and utilities transmission corridors, and in forest and wetlands sites. Natural treatment systems are wastewater treatment processes which use the soil-water-plant matrix as a 'natural reactor' for physically, chemically, and biologically stabilizing applied wastes. Recognized natural treatment systems currently include constructed and natural wetlands, aquatic plant systems(aquaculture), wastewater stabilization ponds, and land application of wastes, termed 'land treatment'.

  20. Mutagenicity of an aged gasworks soil during bioslurry treatment

    PubMed Central

    Lemieux, Christine L; Lynes, Krista D; White, Paul A; Lundstedt, Staffan; Öberg, Lars; Lambert, Iain B

    2009-01-01

    This study investigated changes in the mutagenic activity of organic fractions from soil contaminated with polycyclic aromatic hydrocarbons (PAHs) during pilot-scale bioslurry remediation. Slurry samples were previously analyzed for changes in PAH and polycyclic aromatic compound content, and this study examined the correspondence between the chemical and toxicological metrics. Nonpolar neutral and semipolar aromatic fractions of samples obtained on days 0, 3, 7, 24, and 29 of treatment were assayed for mutagenicity using the Salmonella mutation assay. Most samples elicited a significant positive response on Salmonella strains TA98, YG1041, and YG1042 with and without S9 metabolic activation; however, TA100 failed to detect mutagenicity in any sample. Changes in the mutagenic activity of the fractions across treatment time and metabolic activation conditions suggests a pattern of formation and transformation of mutagenic compounds that may include a wide range of PAH derivatives such as aromatic amines, oxygenated PAHs, and S-heterocyclic compounds. The prior chemical analyses documented the formation of oxygenated PAHs during the treatment (e.g., 4-oxapyrene-5-one), and the mutagenicity analyses showed high corresponding activity in the semipolar fraction with and without metabolic activation. However, it could not be verified that these specific compounds were the underlying cause of the observed changes in mutagenic activity. The results highlight the need for concurrent chemical and toxicological profiling of contaminated sites undergoing remediation to ensure elimination of priority contaminants as well as a reduction in toxicological hazard. Moreover, the results imply that remediation efficacy and utility be evaluated using both chemical and toxicological metrics. Environ. Mol. Mutagen. 2009. © 2009 Wiley-Liss, Inc. PMID:19274766

  1. Mutagenicity of an aged gasworks soil during bioslurry treatment.

    PubMed

    Lemieux, Christine L; Lynes, Krista D; White, Paul A; Lundstedt, Staffan; Oberg, Lars; Lambert, Iain B

    2009-06-01

    This study investigated changes in the mutagenic activity of organic fractions from soil contaminated with polycyclic aromatic hydrocarbons (PAHs) during pilot-scale bioslurry remediation. Slurry samples were previously analyzed for changes in PAH and polycyclic aromatic compound content, and this study examined the correspondence between the chemical and toxicological metrics. Nonpolar neutral and semipolar aromatic fractions of samples obtained on days 0, 3, 7, 24, and 29 of treatment were assayed for mutagenicity using the Salmonella mutation assay. Most samples elicited a significant positive response on Salmonella strains TA98, YG1041, and YG1042 with and without S9 metabolic activation; however, TA100 failed to detect mutagenicity in any sample. Changes in the mutagenic activity of the fractions across treatment time and metabolic activation conditions suggests a pattern of formation and transformation of mutagenic compounds that may include a wide range of PAH derivatives such as aromatic amines, oxygenated PAHs, and S-heterocyclic compounds. The prior chemical analyses documented the formation of oxygenated PAHs during the treatment (e.g., 4-oxapyrene-5-one), and the mutagenicity analyses showed high corresponding activity in the semipolar fraction with and without metabolic activation. However, it could not be verified that these specific compounds were the underlying cause of the observed changes in mutagenic activity. The results highlight the need for concurrent chemical and toxicological profiling of contaminated sites undergoing remediation to ensure elimination of priority contaminants as well as a reduction in toxicological hazard. Moreover, the results imply that remediation efficacy and utility be evaluated using both chemical and toxicological metrics. PMID:19274766

  2. Mercury removal from contaminated soil by thermal treatment with FeCl₃ at reduced temperature.

    PubMed

    Ma, Fujun; Zhang, Qian; Xu, Duanping; Hou, Deyi; Li, Fasheng; Gu, Qingbao

    2014-12-01

    Thermal treatment has been used to remediate mercury-contaminated soils; however, existing thermal technologies use high temperatures (e.g., 600-800°C) and require high energy costs. Moreover, the treated soil is unfavorable for agricultural reuse. To address these issues, the present study developed a method for the thermal treatment of mercury-contaminated soils at a reduced temperature (400°C) by adding FeCl3. A FeCl3/Hg molar ratio of 100:1 in the soil was adopted as the optimum dosage of FeCl3 required to achieve maximum reduction of mercury. The mercury concentration in soils was successfully reduced to 0.8 mg kg(-)(1) when treated at 400°C for 60 min and the treated soil retained most of its original soil properties. FeCl3 addition during thermal treatment not only accelerated the volatilization of mercury in the easily removed fraction but also reduced the volatilization temperature of mercury in the hardly removed fraction. The adsorbable organic halogens and PCDD/Fs formed during thermal treatment with FeCl3 would not affect the soil reuse in agriculture. The thermal decontamination method reduces energy costs and leads to agricultural soil reuse, thus providing a greener and more sustainable remediation method for treating mercury-contaminated soil in future engineering applications.

  3. An enzymatic treatment of soil-bound prions effectively inhibits replication.

    PubMed

    Saunders, Samuel E; Bartz, Jason C; Vercauteren, Kurt C; Bartelt-Hunt, Shannon L

    2011-07-01

    Chronic wasting disease (CWD) and scrapie can be transmitted through indirect environmental routes, possibly via soil, and a practical decontamination strategy for prion-contaminated soil is currently unavailable. In the laboratory, an enzymatic treatment under environmentally relevant conditions (22°C, pH 7.4) can degrade soil-bound PrPSc below the limits of Western blot detection. We developed and used a quantitative serial protein misfolding cyclic amplification (PMCA) protocol to characterize the amplification efficiency of treated soil samples relative to controls of known infectious titer. Our results suggest large (10(4)- to >10(6)-fold) decreases in soil-bound prion infectivity following enzyme treatment, demonstrating that a mild enzymatic treatment could effectively reduce the risk of prion disease transmission via soil or other environmental surfaces.

  4. Soil Respiration Responses to Variation in Temperature Treatment and Vegetation Type

    NASA Astrophysics Data System (ADS)

    Liu, S.; Pavao-zuckerman, M.

    2013-12-01

    Complex linkages exist between terrestrial vegetation, soil moisture, soil organic matter (SOM), local climate, and soil microorganisms. Thus, large-scale changes in vegetation, such as the woody plant encroachment observed in many historically semiarid and arid grasslands worldwide, could potentially alter the flux of carbon from soil reserves to the atmosphere. Mathematical models that attempt to project the long-term impact of vegetative shifts on soil fluxes largely rely on assumptions such as first-order donor control rather than incorporate the biological aspects of soil respiration such as microbial activity. To examine the impact of vegetation type on soil physicochemical properties and soil microbial respiration and provide experimental data to refine existing predictive models, we compared soil (ground basalt from northern Arizona) in mesocosms established with no vegetation, velvet mesquites (Prosopis velutina; woody shrub), or sideoats gramas (Bouteloua curtipendula; grass) for 2 years, The temperature sensitivity of soil respiration was examined by incubating soil (0-10 and 10-30 cm depth fractions) from each vegetation treatment at 10, 20, 30, and 40 °C for 24 hours. Vegetated soils contained more SOM (~0.1% for mesquite and grass mesocosms) than non-vegetated soils (~0.02%). Respiration rates were generally highest from grass-established soils, intermediate from mesquite-established soils, and lowest from non-vegetated soils. Respiration rates of samples incubated without the addition of substrate peaked at approximately 30 °C, whereas respiration rates of samples incubated with dextrose were highest at 40 °C. Further, the respiration assays suggest that while respiration rates are overall higher in grass-established soils, mesquite-established soils are more temperature sensitive which may have significant implications in the context of global warming and current fire management practices.

  5. SOLVENT EXTRACTION AND SOIL WASHING TREATMENT OF CONTAMINATED SOILS FROM WOOD PRESERVING SITES: BENCH SCALE STUDIES

    EPA Science Inventory

    Bench-scale solvent extraction and soil washing studies were performed on soil samples obtained from three abandoned wood preserving sites that included in the NPL. The soil samples from these sites were contaminated with high levels of polyaromatic hydrocarbons (PAHs), pentachlo...

  6. Improving revegetation success: Evaluation of several soil treatments

    SciTech Connect

    Hayward, W.M.; Sackschewsky, M.R.; Kemp, C.J.

    1993-09-01

    The current Hanford practice for stabilizing contaminated soil sites and retired burial grounds involves placing clean soil over the surface, followed by revegetation. This procedure has resulted in the establishment of a viable plant cover at a number of locations. In other cases, however, these efforts have failed to establish healthy shallow-rooted grass coverage. The establishment of a viable plant community is inherently difficult on the Hanford Site for a variety of reasons, including inadequate and sporadic natural precipitation; windy conditions that produce large erosive forces; soils low in nutrients and organic matter; invasion of disturbed sites by aggressive, weedy annuals; and limited supplies of quality topsoil. This report describes the results of work designed to address three environmental issues (soil moisture, erosion, and soil nutrients). Compost and soil sealants were evaluated in various combinations with the expectation of developing revegetation procedures with a higher probability of success.

  7. The "Session Libre"

    ERIC Educational Resources Information Center

    Roberts, J. T.

    1975-01-01

    Outlines a strategy attempted as an alternative to the traditional instruction in intensive sessions of English at the Institut Universitaitre de Technologie in Nancy, France. Included were six basic activities (films, TV, press, tape library, games, and language laboratory) in a minimally-structured three-day session. (MSE)

  8. The Public Poster Session

    ERIC Educational Resources Information Center

    Levine-Rasky, Cynthia

    2009-01-01

    This note describes the use of a student poster session as an innovative approach to student learning. The local context for the assignment is provided, followed by a description of the course for which the poster was prepared, details about the assignment including its evaluation, and practical considerations for planning a poster session. The…

  9. A Radical Poster Session.

    ERIC Educational Resources Information Center

    Gore, Paul A., Jr.; Camp, Cameron J.

    1987-01-01

    Presents the use of a poster session as an integral part of an experimental design course. Describes how the principles of experimental design are demonstrated when undergraduates design and conduct original experiments, using radishes as subjects, and present their results in a poster session. Discusses the benefits of using radishes as subjects.…

  10. Soil treatment to remove uranium and related mixed radioactive contaminants. Final report September 1992--October 1995

    SciTech Connect

    1996-07-01

    A research and development project to remove uranium and related radioactive contaminants from soil by an ultrasonically-aided chemical leaching process began in 1993. The project objective was to develop and design, on the basis of bench-scale and pilot-scale experimental studies, a cost-effective soil decontamination process to produce a treated soil containing less than 35 pCi/g. The project, to cover a period of about thirty months, was designed to include bench-scale and pilot-scale studies to remove primarily uranium from the Incinerator Area soil, at Fernald, Ohio, as well as strontium-90, cobalt-60 and cesium-137 from a Chalk River soil, at the Chalk River Laboratories, Ontario. The project goal was to develop, design and cost estimate, on the basis of bench-scale and pilot-scale ex-situ soil treatment studies, a process to remove radionuclides form the soils to a residual level of 35 pCi/g of soil or less, and to provide a dischargeable water effluent as a result of soil leaching and a concentrate that can be recovered for reuse or solidified as a waste for disposal. In addition, a supplementary goal was to test the effectiveness of in-situ soil treatment through a field study using the Chalk River soil.

  11. Pyrolytic Treatment and Fertility Enhancement of Soils Contaminated with Heavy Hydrocarbons.

    PubMed

    Vidonish, Julia E; Zygourakis, Kyriacos; Masiello, Caroline A; Gao, Xiaodong; Mathieu, Jacques; Alvarez, Pedro J J

    2016-03-01

    Pyrolysis of contaminated soils at 420 °C converted recalcitrant heavy hydrocarbons into "char" (a carbonaceous material similar to petroleum coke) and enhanced soil fertility. Pyrolytic treatment reduced total petroleum hydrocarbons (TPH) to below regulatory standards (typically <1% by weight) within 3 h using only 40-60% of the energy required for incineration at 600-1200 °C. Formation of polycyclic aromatic hydrocarbons (PAHs) was not observed, with post-pyrolysis levels well below applicable standards. Plant growth studies showed a higher biomass production of Arabidopsis thaliana and Lactuca sativa (Simpson black-seeded lettuce) (80-900% heavier) in pyrolyzed soils than in contaminated or incinerated soils. Elemental analysis showed that pyrolyzed soils contained more carbon than incinerated soils (1.4-3.2% versus 0.3-0.4%). The stark color differences between pyrolyzed and incinerated soils suggest that the carbonaceous material produced via pyrolysis was dispersed in the form of a layer coating the soil particles. Overall, these results suggest that soil pyrolysis could be a viable thermal treatment to quickly remediate soils impacted by weathered oil while improving soil fertility, potentially enhancing revegetation.

  12. Thrice-weekly temocillin administered after each dialysis session is appropriate for the treatment of serious Gram-negative infections in haemodialysis patients.

    PubMed

    Vandecasteele, Stefaan J; Miranda Bastos, Ana C; Capron, Arnaud; Spinewine, Anne; Tulkens, Paul M; Van Bambeke, Françoise

    2015-12-01

    In patients with end-stage renal disease (ESRD) treated with intermittent haemodialysis, a limited number of antibiotics have been studied for their suitability for parenteral administration after dialysis sessions only in a thrice-weekly regimen. Temocillin is a β-lactam antibiotic with a long half-live and enhanced activity against most Gram-negative bacteria, including extended-spectrum β-lactamase-producers, thus making it an ideal candidate for use in this setting. This study aimed to evaluate the reliability of thrice-weekly parenteral temocillin in haemodialysis patients by characterising the pharmacokinetics of total and free temocillin. Free and total temocillin concentrations were determined with a validated HPLC method in 448 samples derived from 48 administration cycles in 16 patients with ESRD treated with intermittent haemodialysis and temocillin. Pharmacokinetics were non-linear partly due to saturation in protein binding. Median clearance and half-life for the free drug during intradialysis and interdialysis periods were 113 mL/min vs. 26 mL/min and 3.6 h vs. 24 h, respectively, with dialysis extracting approximately one-half of the residual concentration. The free temocillin concentration remained >16 mg/L (MIC90 threshold for most Enterobacteriaceae) during 48%, 67% and 71% of the dosing interval for patients receiving 1 g q24h, 2 g q48h and 3 g q72h, respectively, suggesting appropriate exposure for the two latter therapeutic schemes. Temocillin administered on dialysis days only in a dosing schedule of 2 g q48h and 3 g q72h is appropriate for the treatment of serious and/or resistant Gram-negative infections in patients with ESRD undergoing intermittent haemodialysis. These doses are higher than those previously recommended.

  13. Remediation of polluted soil by a two-stage treatment system: desorption of phenanthrene in soil and electrochemical treatment to recover the extraction agent.

    PubMed

    Gómez, J; Alcántara, M T; Pazos, M; Sanromán, M A

    2010-01-15

    In this study, the feasibility of a two-stage treatment process for the remediation of soil contaminated with phenanthrene as a model polycyclic aromatic hydrocarbon (PAH) has been assessed at laboratory scale. The initial stage of the process involved contacting contaminated soil with a solution of Tween 80 to enhance the desorption of phenanthrene from soil. In order to simulate a flushing process this initial stage was carried out in a washing packed-bed soil column. At the optimised conditions the total phenanthrene removal attained a value of almost 65% after 3 days. The second stage of the suggested treatment involved regeneration of the washing solution via phenanthrene degradation. The use of an electrochemical treatment was proposed for surfactant recovery and degradation of contaminants present in the solution collected. This oxidation was accomplished via an electrochemical cell by using graphite as electrode material. The phenanthrene was almost totally degraded in 3 days, reaching a degradation of about 96%. In addition, a test in which this regenerated solution was employed in the washing process was carried out in shake flask and washing column. The results demonstrate that selective degradation of pollutants by electrochemical treatment is potentially effective in reusing surfactant in another polluted soil treatment. PMID:19758751

  14. Removal of dissolved organic carbon and nitrogen during simulated soil aquifer treatment.

    PubMed

    Essandoh, H M K; Tizaoui, C; Mohamed, M H A

    2013-07-01

    Soil aquifer treatment was simulated in 1 m laboratory soil columns containing silica sand under saturated and unsaturated soil conditions to examine the effect of travel length through the unsaturated zone on the removal of wastewater organic matter, the effect of soil type on dissolved organic carbon removal and also the type of microorganisms involved in the removal process. Dissolved organic carbon removal and nitrification did enhance when the wastewater travelled a longer length through the unsaturated zone. A similar consortium of microorganisms was found to exist in both saturated and unsaturated columns. Microbial concentrations however were lowest in the soil column containing silt and clay in addition to silica sand. The presence of silt and clay was detrimental to DOC removal efficiency under saturated soil conditions due to their negative effect on the hydraulic performance of the soil column and microbial growth.

  15. Assessment of existing roadside swales with engineered filter soil: II. Treatment efficiency and in situ mobilization in soil columns.

    PubMed

    Ingvertsen, Simon T; Cederkvist, Karin; Jensen, Marina B; Magid, Jakob

    2012-01-01

    Use of roadside infiltration systems using engineered filter soil for optimized treatment has been common practice in Germany for decades, but little documentation is available regarding their long-term treatment performance. Here we present the results of laboratory leaching experiments with intact soil columns (15 cm i.d., 25-30 cm length) collected from two German roadside infiltration swales constructed in 1997. The columns were irrigated with synthetic solutions of unpolluted or polluted (dissolved heavy metals and fine suspended solids) road runoff, as well as a soluble nonreactive tracer (bromide) and a dye (brilliant blue). The experiments were performed at two irrigation rates corresponding to catchment rainfall intensities of approximately 5.1 and 34 mm/h. The bromide curves indicated that preferential flow was more pronounced at high irrigation rates, which was supported by the flow patterns revealed in the dye tracing experiment. Nonetheless, the soils seemed to be capable of retaining most of the dissolved heavy metals from the polluted road runoff at both low and high irrigation rates, except for Cr, which appears to pass through the soil as chromate. Fluorescent microspheres (diameter = 5 μm) used as surrogates for fine suspended solids were efficiently retained by the soils (>99%). However, despite promising treatment abilities, internal mobilization of heavy metals and P from the soil was observed, resulting in potentially critical effluent concentrations of Cu, Zn, and Pb. This is mainly ascribed to high concentrations of in situ mobilized dissolved organic carbon (DOC). Suggestions are provided for possible improvements and further research to minimize DOC mobilization in engineered filter soils. PMID:23128754

  16. Evaluating Microbial Purification during Soil Treatment of Wastewater with Multicomponent Tracer and Surrogate Tests

    USGS Publications Warehouse

    Van Cuyk, S.; Siegrist, R.L.; Lowe, K.; Harvey, R.W.

    2004-01-01

    Soil treatment of wastewater has the potential to achieve high purification efficiency, yet the understanding and predictability of purification with respect to removal of viruses and other pathogens is limited. Research has been completed to quantify the removal of virus and bacteria through the use of microbial surrogates and conservative tracers during controlled experiments with three-dimensional pilot-scale soil treatment systems in the laboratory and during the testing of full-scale systems under field conditions. The surrogates and tracers employed included two viruses (MS-2 and PRID-1 bacteriophages), one bacterium (ice-nucleating active Pseudomonas), and one conservative tracer (bromide ion). Efforts have also been made to determine the relationship between viruses and fecal coliform bacteria in soil samples below the wastewater infiltrative surface, and the correlation between Escherichia coil concentrations measured in percolating soil solution as compared with those estimated from analyses of soil solids. The results suggest episodic breakthrough of virus and bacteria during soil treatment of wastewater and a 2 to 3 log (99-99.9%) removal of virus and near complete removal of fecal coliform bacteria during unsaturated flow through 60 to 90 cm of sandy medium. Results also suggest that the fate of fecal coliform bacteria may be indicative of that of viruses in soil media near the infiltrative surface receiving wastewater effluent. Concentrations of fecal coliform in percolating soil solution may be conservatively estimated from analysis of extracted soil solids.

  17. AIR EMISSIONS FROM THE TREATMENT OF SOILS CONTAMINATED WITH PETROLEUM FUELS AND OTHER SUBSTANCES

    EPA Science Inventory

    The report updates a 1992 report that summarizes available information on air emissions from the treatment of soils contaminated with fuels. Soils contaminated by leaks or spills of fuel products, such as gasoline or jet fuel, are a nationwide concern. Air emissions during remedi...

  18. Citric acid facilitated thermal treatment: An innovative method for the remediation of mercury contaminated soil.

    PubMed

    Ma, Fujun; Peng, Changsheng; Hou, Deyi; Wu, Bin; Zhang, Qian; Li, Fasheng; Gu, Qingbao

    2015-12-30

    Thermal treatment is a promising technology for the remediation of mercury contaminated soils, but it often requires high energy input at heating temperatures above 600°C, and the treated soil is not suitable for agricultural reuse. The present study developed a novel method for the thermal treatment of mercury contaminated soils with the facilitation of citric acid (CA). A CA/Hg molar ratio of 15 was adopted as the optimum dosage. The mercury concentration in soils was successfully reduced from 134 mg/kg to 1.1mg/kg when treated at 400°C for 60 min and the treated soil retained most of its original soil physiochemical properties. During the treatment process, CA was found to provide an acidic environment which enhanced the volatilization of mercury. This method is expected to reduce energy input by 35% comparing to the traditional thermal treatment method, and lead to agricultural soil reuse, thus providing a greener and more sustainable remediation method for treating mercury contaminated soil in future engineering applications. PMID:26253234

  19. Influence of attrition scrubbing, ultrasonic treatment, and oxidant additions on uranium removal from contaminated soils

    SciTech Connect

    Timpson, M.E.; Elless, M.P.; Francis, C.W.

    1994-06-01

    As part of the Uranium in Soils Integrated Demonstration Project being conducted by the US Department of Energy, bench-scale investigations of selective leaching of uranium from soils at the Fernald Environmental Management Project site in Ohio were conducted at Oak Ridge National Laboratory. Two soils (storage pad soil and incinerator soil), representing the major contaminant sources at the site, were extracted using carbonate- and citric acid-based lixiviants. Physical and chemical processes were used in combination with the two extractants to increase the rate of uranium release from these soils. Attrition scrubbing and ultrasonic dispersion were the two physical processes utilized. Potassium permanganate was used as an oxidizing agent to transform tetravalent uranium to the hexavalent state. Hexavalent uranium is easily complexed in solution by the carbonate radical. Attrition scrubbing increased the rate of uranium release from both soils when compared with rotary shaking. At equivalent extraction times and solids loadings, however, attrition scrubbing proved effective only on the incinerator soil. Ultrasonic treatments on the incinerator soil removed 71% of the uranium contamination in a single extraction. Multiple extractions of the same sample removed up to 90% of the uranium. Additions of potassium permanganate to the carbonate extractant resulted in significant changes in the extractability of uranium from the incinerator soil but had no effect on the storage pad soil.

  20. Thermal treatment of low permeability soils using electrical resistance heating

    SciTech Connect

    Udell, K.S.

    1996-08-01

    The acceleration of recovery rates of second phase liquid contaminants from the subsurface during gas or water pumping operations is realized by increasing the soil and ground water temperature. Electrical heating with AC current is one method of increasing the soil and groundwater temperature and has particular applicability to low permeability soils. Several mechanisms have been identified that account for the enhanced removal of the contaminants during electrical heating. These are vaporization of liquid contaminants with low boiling points, temperature-enhanced evaporation rates of semi-volatile components, and removal of residual contaminants by the boiling of residual water. Field scale studies of electrical heating and fluid extraction show the effectiveness of this technique and its applicability to contaminants found both above and below the water table and within low permeability soils. 10 refs., 8 figs.

  1. Plasma treatment of INEL soil contaminated with heavy metals

    SciTech Connect

    Detering, B.A.; Batdorf, J.A.

    1992-01-01

    INEL soil spiked with inorganic salts of chromium, lead, mercury, silver, and zinc was melted in a 150 kW plasma furnace to produce a glassy slag product. This glassy slag is an environmentally safe waste form. In order to reduce the melting temperature of the soil, sodium carbonate was added to half of the test batches. Random sample from each batch of glassy slag product were analyzed by an independent laboratory for total metals concentration and leachability of metals via the Environmental Protection Agency (EPA) toxicity characterization leaching procedure (RCLP) tests. These tests showed the residual metals were very tightly bound to the slag matrix and were within EPA TCLP limits under these test conditions. Additionally, scanning electron microscopy (SEM) and emissions dispersive spectroscopy (EDS) analysis of the vitrified soil also confirmed that the added metals present in the vitrified soil were totally contained in the crystalline phase as distinct oxide crystallites.

  2. IN SITU TREATMENT OF SOIL AND GROUNDWATER CONTAMINATED WITH CHROMIUM - TECHNICAL RESOURCE GUIDE

    EPA Science Inventory

    New information and treatment approaches have been developed for chromium-contaminated soil and groundwater treatment. The prupose of this report is to bring together the most current information pertaining to the science of chromium contamination and the insitu treatment and co...

  3. Abstracts of SIG Sessions.

    ERIC Educational Resources Information Center

    Proceedings of the ASIS Annual Meeting, 1991

    1991-01-01

    Presents abstracts of 36 special interest group (SIG) sessions. Highlights include the Chemistry Online Retrieval Experiment; organizing and retrieving images; intelligent information retrieval using natural language processing; interdisciplinarity; libraries as publishers; indexing hypermedia; cognitive aspects of classification; computer-aided…

  4. Degradation and formation of polycyclic aromatic compounds during bioslurry treatment of an aged gasworks soil.

    PubMed

    Lundstedt, Staffan; Haglund, Peter; Oberg, Lars

    2003-07-01

    The goals of this study were to investigate the relative degradation rates of polycyclic aromatic compounds (PACs) in contaminated soil, and to assess whether persistent oxidation products are formed during their degradation. Samples were taken on five occasions during a pilot-scale bioslurry treatment of soil from a former gasworks site. More than 100 PACs were identified in the soil, including unsubstituted polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs (alkyl-PAHs), heterocyclic PACs, and oxygenated PAHs (oxy-PAHs), such as ketones, quinones, and coumarins. During the treatment, the low molecular weight PAHs and heterocyclics were degraded faster than the high molecular weight compounds. The unsubstituted PAHs also appear to have degraded more quickly than the corresponding alkyl-PAHs and nitrogen-containing heterocyclics. No new oxidation products that were not present in the untreated soil were identified after the soil treatment. However, oxy-PAHs that were present in the untreated soil were generally degraded more slowly than the parent compounds, suggesting that they were formed during the treatment or that they are more persistent. Two oxidation products, 1-acenaphthenone and 4-oxapyrene-5-one, were found at significantly higher concentrations at the end of the study. Because oxy-PAHs can be acutely toxic, mutagenic, or carcinogenic, we suggest that this group of compounds should also be monitored during the treatment of PAH-contaminated soil. PMID:12836964

  5. ON-SITE TREATMENT OF CREOSOTE AND PENTACHLOROPHENOL SLUDGES AND CONTAMINATED SOIL

    EPA Science Inventory

    Information is presented for quantitative evaluation of treatment potential for creosote and pentachlorophenol (PCP) wood treating contaminants in soil systems. The study was conducted in three phases: 1) characterization, (2) treatability screening and (3) field evaluation. Data...

  6. ANAEROBIC TREATMENT OF SOIL WASH FLUIDS FROM A WOOD PRESERVING SITE

    EPA Science Inventory

    An integrated system has been developed to remediate sols contaminated with pentachlorophenol (PCP) and polycyclic aromatic hydrocarbons (PAHs). This system involves the coupling of two treatment technologies, soil solvent washing and anaerobic biotreatment of the extract. Specif...

  7. Plant treatment, pollutant load, and soil type effects in rhizosphere ecology of trace element polluted soils.

    PubMed

    Belén Hinojosa, M; Carreira, José A; García-Ruíz, Roberto; Rodríguez-Maroto, José M; Daniell, Tim J; Griffiths, Bryan S

    2010-07-01

    Re-vegetation of trace element contaminated soils can alter the pH and chelating capacity in the rhizosphere, increasing the mobility of pollutants, which, in turn, may impact on rhizosphere ecology. In this study a short-term pot experiment was carried out in order to investigate the multi-factorial effects of: buffering capacity (sandy-loam and loam soils); pollutant load (0%, 1.3%, and 4% of pyrite sludge), and the presence/absence of plant (Lolium perenne L. and Medicago sativa L.) on the mobility of trace elements, soil biochemical functionality (hydrolase activities), and biological diversity (bacterial and nematode communities). The experiment was carried out with representative soils from the Guadiamar basin (SW Spain), an area where the Aznalcóllar mining spill affected over 4000ha. Results indicated that the development of rhizospheres in polluted soils (coarse-textured) increases the mobilization of trace elements. In general the presence of roots has stimulatory effects on soil quality indicators such as hydrolase activities and both bacterial and nematode communities. However, the presence of high amount of metals interferes with these beneficial effects. This study provided evidence about the complexity of the impact of growing plants on trace element polluted soils. Trace element mobilization, hydrolase activities and bacterial and nematode communities in the rhizosphere are dependent on plant species, soil type, and pollution dose.

  8. Phosphorus forms in biosolids-amended soils and losses in runoff: effects of wastewater treatment process.

    PubMed

    Penn, Chad J; Sims, J Thomas

    2002-01-01

    Continuous addition of municipal biosolids to soils based on plant nitrogen (N) requirements can cause buildup of soil phosphorus (P) in excess of crop requirements; runoff from these soils can potentially contribute to nonpoint P pollution of surface waters. However, because biosolids are often produced using lime and/or metal salts, the potential for biosolids P to cause runoff P losses can vary with wastewater treatment plant (WWTP) process. This study was conducted to determine the effect of wastewater treatment process on the forms and amounts of P in biosolids, biosolids-amended soils, and in runoff from biosolids-amended soils. We amended two soil types with eight biosolids and a poultry litter (PL) at equal rates of total P (200 kg ha(-1); unamended soils were used as controls. All biosolids and amended soils were analyzed for various types of extractable P, inorganic P fractions, and the degree of P saturation (acid ammonium oxalate method). Amended soils were placed under a simulated rainfall and all runoff was collected and analyzed for dissolved reactive phosphorus (DRP), iron-oxide-coated filter paper strip-extractable phosphorus (FeO-P), and total phosphorus (EPA3050 P). Results showed that biosolids produced with a biological nutrient removal (BNR) process caused the highest increases in extractable soil P and runoff DRP. Alternatively, biosolids produced with iron only consistently had the lowest extractable P and caused the lowest increases in extractable soil P and runoff DRP when added to soils. Differences in soil and biosolids extractable P levels as well as P runoff losses were related to the inorganic P forms of the biosolids.

  9. Changes in quantity and spectroscopic properties of water-extractable organic matter during soil aquifer treatment.

    PubMed

    Xue, S; Zhao, Q L; Wei, L L; Ma, X P; Tie, M

    2013-01-01

    The aim of this study was to identify qualitative and quantitative changes in the character of water-extractable organic matter (WEOM) in soils as a consequence of soil aquifer treatment (SAT). Soil samples were obtained from a soil-column system with a 2-year operation, and divided into seven layers from top to bottom: CS1 (0-12.5 cm), CS2 (12.5-25 cm), CS3 (25-50 cm), CS4 (50-75 cm), CS5 (75-100 cm), CS6 (100-125 cm) and CS7 (125-150 cm). A sample of the original soil used to pack the columns was also analysed to determine the effects of SAT. Following 2 years of SAT operation, both soil organic carbon and water-extractable organic carbon were shown to accumulate in the top soil layer (0-12.5 cm), and to decrease in soil layers deeper than 12.5 cm. The WEOM in the top soil layer was characterized by low aromaticity index (AI), low emission humification index (HIX) and low fluorescence efficiency index (F(eff)). On the other hand, the WEOM in soil layers deeper than 12.5 cm had increased values of HIX and F(eff), as well as decreased AI values relative to the original soil before SAT. In all soil layers, the percentage of hydrophobic and transphilic fractions decreased, while that of the hydrophilic fraction increased, as a result of SAT. The production of the amide-2 functional groups was observed in the top soil layer. SAT operation also led to the enrichment of hydrocarbon and amide-1 functional groups, as well as the depletion of oxygen-containing functional groups in soil layers deeper than 12.5 cm.

  10. Study on ozone treatment of soil for agricultural application of surface dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Nagatomo, Takuya; Abiru, Tomoya; Mitsugi, Fumiaki; Ebihara, Kenji; Nagahama, Kazuhiro

    2016-01-01

    Recently, application of plasma technologies to the agricultural field has attracted much interest because residual pesticides and excessive nitrogen oxides contained in plants, soil, and groundwater have become a serious issue worldwide. Since almost all of the atmospheric discharge plasma generates ozone, the effects of ozone are among the key factors for their agricultural applications. We have proposed the use of ozone generated using surface barrier discharge plasma for soil disinfection or sterilization. In this work, the ozone consumption coefficient and diffusion coefficient in soil were measured by the ultraviolet absorption method. The pH(H2O) and amount of nitrogen nutrient in soil after ozone diffusion treatment were studied and plant growth was observed simultaneously. The effect of ozone treatment on the amount of DNA in soil was also investigated and compared with that determined from the obtained ozone consumption coefficient.

  11. Evaluation of aromatic pathway induction for creosote contaminated soils in slurried soil media designed to achieve environmentally acceptable treatment endpoints

    SciTech Connect

    Glaser, J.; McCauley, P.; Potter, C.; Herrmann, R.; Dosani, M.

    1995-12-31

    Polyaromatic hydrocarbon contaminants (PAHs) are commonly associated with the use of creosote for wood preservation and the process residues left by municipal gas production. The biological treatment of this set of organic compounds has been found to be difficult since they have low water solubility and reactivity in soil systems. Liquid culture studies have shown that inducer chemicals may assist the biotreatment of PAH contaminated soils. A set of designed experimental treatments were conducted to evaluate the incorporation of potential inducer compounds. The inducers chosen for evaluation were 2-hydroxybenzoic acid and phthalic acid with treatment controls of 3-hydroxybenzoic acid and terephthalic acid at three concentrations in slurried creosote-contaminated soil. An abiotic treatment control of formaldehyde was used for contrast. The designed treatment evaluation used 250mL Erlenmeyer flask slurry reaction vessels. The flask study used an orbital shaker to maintain slurry suspension. At selected time points throughout the study individual flask reactors were sacrificed and the contents were analyzed for PAH concentration, nutrients, and biomass (FAME Analysis). Depletion of individual PAHs, total PAHs, 2 and 3-ring, and 4 and 6-ring PAHs was correlation with the biomass. The effect of selected surfactant addition was also evaluated. Rates of PAH depletion and applications to larger scale investigations will be discussed.

  12. Response of autochthonous microbiota of diesel polluted soils to land-farming treatments.

    PubMed

    Silva-Castro, Gloria Andrea; Uad, Imane; Rodríguez-Calvo, Alfonso; González-López, Jesús; Calvo, Concepción

    2015-02-01

    This study investigated the response of autochthonous microorganisms of diesel polluted soils to land-farming treatments. Inorganic NPK (nitrogen, phosphorous, and potassium) fertilizer and Ivey surfactant were applied alone or in combination as biostimulating agents. The study was carried out in experimental separated land-farming plots performed with two soils: a sandy clay soil with low biological activity and a sandy clay soil with higher biological activity, contaminated with two concentrations of diesel: 10,000 and 20,000mgkg(-1). Bacterial growth, dehydrogenase activity and CO2 production were the biological parameters evaluated. Non-metric multidimensional scaling analysis proved that moisture content showed a tendency related to microbial growth and that heterotrophic and degrading microorganisms had the best relationship. Initial biological activity of soil influenced the response with 11.1% of variability attributed to this parameter. Soils with low activity had higher degree of response to nutrient addition. PMID:25486545

  13. Response of autochthonous microbiota of diesel polluted soils to land-farming treatments.

    PubMed

    Silva-Castro, Gloria Andrea; Uad, Imane; Rodríguez-Calvo, Alfonso; González-López, Jesús; Calvo, Concepción

    2015-02-01

    This study investigated the response of autochthonous microorganisms of diesel polluted soils to land-farming treatments. Inorganic NPK (nitrogen, phosphorous, and potassium) fertilizer and Ivey surfactant were applied alone or in combination as biostimulating agents. The study was carried out in experimental separated land-farming plots performed with two soils: a sandy clay soil with low biological activity and a sandy clay soil with higher biological activity, contaminated with two concentrations of diesel: 10,000 and 20,000mgkg(-1). Bacterial growth, dehydrogenase activity and CO2 production were the biological parameters evaluated. Non-metric multidimensional scaling analysis proved that moisture content showed a tendency related to microbial growth and that heterotrophic and degrading microorganisms had the best relationship. Initial biological activity of soil influenced the response with 11.1% of variability attributed to this parameter. Soils with low activity had higher degree of response to nutrient addition.

  14. Effect of imidacloprid soil treatments on occurrence of Formosan subterranean termites (Isoptera: Rhinotermitidae) in independent monitors.

    PubMed

    Osbrink, Weste L A; Cornelius, Mary L; Lax, Alan R

    2005-12-01

    Periodic sampling of 30 independent monitors, initially active with the Formosan subterranean termite, Coptotermes formosanus Shiraki, was conducted to evaluate the effects of soil treated with imidacloprid on nearby termite activity. Monitors were located adjacent (1-3 m) to the buildings. Soil around and under the buildings was treated with 0.05% imidacloprid. None of the termites collected showed latent mortality attributed to imidacloprid intoxication. Imidacloprid soil treatments did not measurably reduce C. formosanus populations adjacent to the treatments. Imidacloprid does not seem to fit the liquid-bait model. PMID:16539146

  15. Remediation of hydrocarbon-contaminated soils by ex situ microwave treatment: technical, energy and economic considerations.

    PubMed

    Falciglia, P P; Vagliasindi, F G A

    2014-01-01

    In this study, the remediation of diesel-polluted soils was investigated by simulating an ex situ microwave (MW) heating treatment under different conditions, including soil moisture, operating power and heating duration. Based on experimental data, a technical, energy and economic assessment for the optimization of full-scale remediation activities was carried out. Main results show that the operating power applied significantly influences the contaminant removal kinetics and the moisture content in soil has a major effect on the final temperature reachable during MW heating. The first-order kinetic model showed an excellent correlation (r2 > 0.976) with the experimental data for residual concentration at all operating powers and for all soil moistures tested. Excellent contaminant removal values up to 94.8% were observed for wet soils at power higher than 600 W for heating duration longer than 30 min. The use of MW heating with respect to a conventional ex situ thermal desorption treatment could significantly decrease the energy consumption needed for the removal of hydrocarbon contaminants from soils. Therefore, the MW treatment could represent a suitable cost-effective alternative to the conventional thermal treatment for the remediation of hydrocarbon-polluted soil.

  16. Reducing phosphorus flux from organic soils in surface flow treatment wetlands.

    PubMed

    Lindstrom, Susan M; White, John R

    2011-10-01

    Treatment wetlands have a finite period of effective nutrient removal after which treatment efficiency declines. This is due to the accumulation of organic matter which decreases the capacity and hydraulic retention time of the wetland. We investigated four potential solutions to improve the soluble reactive P (SRP) removal of a municipal wastewater treatment wetland soil including; dry down, surface additions of alum or calcium carbonate and physical removal of the accreted organic soil under both aerobic and anaerobic water column conditions. The flux of SRP from the soil to the water column under aerobic conditions was higher for the continuously flooded controls (1.1±0.4 mg P m(-2) d(-1)), dry down (1.5±0.9 mg P m(-2) d(-1)) and CaCO3 (0.8±0.7 mg P m(-2) d(-1)) treatments while the soil removal and alum treatments were significantly lower at 0.02±0.10 and -0.07±0.02 mg P m(-2) d(-1), respectively. These results demonstrate that the two most effective management strategies at sequestering SRP were organic soil removal and alum additions. There are difficulties and costs associated with removal and disposal of soils from a treatment wetland. Therefore our findings suggest that alum addition may be the most cost effective and efficient means of increasing the sequestering of P in aging treatment wetlands experiencing reduced P removal rates. However, more research is needed to determine the longer term effects of alum buildup in the organic soil on the wetland biota, in particular, on the macrophytes and invertebrates. Since alum effectiveness is time limited, a longer term solution to P flux may favor the organic soil removal. PMID:21802114

  17. Responses of soil buffering capacity to acid treatment in three typical subtropical forests.

    PubMed

    Jiang, Jun; Wang, Ying-Ping; Yu, Mengxiao; Li, Kun; Shao, Yijing; Yan, Junhua

    2016-09-01

    Elevated anthropogenic acid deposition can significantly affect forest ecosystem functioning by changing soil pH, nutrient balance, and chemical leaching and so on. These effects generally differ among different forests, and the dominant mechanisms for those observed responses often vary, depending on climate, soil conditions and vegetation types. Using soil monoliths (0-40cm) from pine forest (pioneer), coniferous and broadleaved mixed forest (transitional) and broadleaved forest (mature) in southern China, we conducted a leaching experiment with acid treatments at different pH levels (control: pH≈4.5; pH=3.5; pH=2.5). We found that pH3.5 treatment significantly reduced dissolved organic carbon (DOC) concentrations in leachate from the pioneer forest soil. pH2.5 treatment significantly increased concentrations of NO3(-), SO4(2-), Ca(2+), Mg(2+), Al(3+), Fe(3+) and DOC in leachate from the pioneer forest soil, and also concentrations of NO3(-), SO4(2-), Mg(2+), Al(3+), Fe(3+) and DOC in leachate from the transitional forest soil. All acid treatments had no significant effects on concentrations of these chemicals in leachate from the mature forest soil. The responses can be explained by the changes in soil pH, acid neutralizing capacity (ANC) and concentrations of Al and Fe. Our results showed that acid buffering capacity of the pioneer or transitional forest soil was lower than that of the mature forest soil. Therefore preserving mature forests in southern China is important for reducing the adverse impacts of high acid deposition on stream water quality at present and into the future. PMID:27185346

  18. Treatment of dirty water from dairy farms using a soil-based batch recirculation system.

    PubMed

    Tyrrel, S F; Leeds-Harrison, P B

    2005-01-01

    "Dirty water", a wastewater produced on dairy farms, is typically disposed of by application to land with no prior treatment. Pollution can occur if the dirty water reaches a watercourse following an inadequate period of retention in the soil. This paper describes experiments using a novel, soil-based batch recirculation system for pre-treating dirty water prior to land application. Three polythene-lined, vegetated soil-based treatment planes (23 m long, 1 m wide, 0.25 m deep) were constructed. Each treatment plane was supplied with approximately 1 m3 of dirty water which was recirculated until a clear treatment pattern had emerged. Five batches were treated over a six-month period. The soil-based treatment system could typically be expected to achieve a 90% removal of key pollutants in approximately two weeks for BODs and NH4-N, and three weeks for MRP and total solids. An exponential trendline gave a good fit to the treatment curves for BOD5, NH4-N and MRP after the first day or two of batch treatment. The data for total solids removal were more variable. Treatment rates were sustained throughout the five runs for BOD5 and NH4-N, indicating no apparent effect of seasonal weather on the treatment process. The apparent progressive slowing of the MRP removal rate throughout the treatment of the five batches may have implications for the sustainable use of this technology for phosphorus control.

  19. Electrokinetic treatment of firing ranges containing tungsten-contaminated soils.

    PubMed

    Braida, Washington; Christodoulatos, Christos; Ogundipe, Adebayo; Dermatas, Dimitris; O'Connor, Gregory

    2007-11-19

    Tungsten-based alloys and composites are being used and new formulations are being considered for use in the manufacturing of different types of ammunition. The use of tungsten heavy alloys (WHA) in new munitions systems and tungsten composites in small caliber ammunition could potentially release substantial amounts of this element into the environment. Although tungsten is widely used in industrial and military applications, tungsten's potential environmental and health impacts have not been thoroughly addressed. This necessitates the research and development of remedial technologies to contain and/or remove tungsten from soils that may serve as a source for water contamination. The current work investigates the feasibility of using electrokinetics for the remediation of tungsten-contaminated soils in the presence of other heavy metals of concern such as Cu and Pb with aim to removing W from the soil while stabilizing in situ, Pb and Cu. PMID:17686582

  20. Solvent extraction treatment of PCB contaminated soil at Sparrevohn Long Range Radar Station, Alaska

    SciTech Connect

    Weimer, L.D.

    1999-07-01

    This technical paper describes an on-site soil treatment project at the Sparrevohn Long-Range Radar Station (LRRS), Alaska. The project was conducted during the summer of 1996. Sparrevohn LLRS is located approximately 200 miles west of Anchorage, Alaska and is accessible only by aircraft. Polychlorinated biphenyls (PCB) contaminated soil containing between 50 and 350 milligrams/kilogram (mg/kg) was stockpiled on-site. Terra Kleen Response Group, Inc.'s (Terra Kleen's) solvent extraction process successfully treated the stockpiled PCB contaminated soil ({approximately}290 yd{sup 3}). The PCB concentrations in the treated soil were reduced below the target treatment level of 15 mg/kg. On-site solvent extraction treatment realized considerable savings ({gt}$1,000,000) to the Government over the traditional method of hauling and off-site disposal.

  1. On site experiments of the slanted soil treatment systems for domestic gray water.

    PubMed

    Itayama, Tomoaki; Kiji, Masato; Suetsugu, Aya; Tanaka, Nobuyuki; Saito, Takeshi; Iwami, Norio; Mizuochi, Motoyuki; Inamori, Yuhei

    2006-01-01

    In order to make a breakthrough for the acute problem of water shortage in the world, the key words "decentralization and re-use" are very important for new sustainable sanitation systems that will be developed. Therefore, we focused on a new treatments system called "a slanted soil treatment system" which combines a biotoilet system with a domestic grey water treatment system. Because this system is a low cost and compact system, the system can be easily introduced to homes in urban areas or in the suburbs of cities in many developing countries. In this study, we performed on site experiments carried out on Shikoku Island, Japan, for several years. We obtained the following results. The slanted soil treatment system could remove organic pollutants and total nitrogen and total phosphorus in grey water effectively. Furthermore, the system performance became high in the case of the high concentration of the influent water. The nitrification reaction and denitrification reaction were speculated to exist due to aerobic zones and anaerobic zones present in the slanted soil treatment system. The slanted soil treatment system could perform for approximately 3 years with zero maintenance. The plug flow model of 1st order reaction kinetics could describe the reaction in the slanted soil treatment system. However, it is necessary to improve the system to maintain the performance in all seasons.

  2. Land treatment of PAH-contaminated soil: Performance measured by chemical and toxicity assays

    SciTech Connect

    Sayles, G.D.; Acheson, C.M.; Kupferle, M.J.; Shan, Y.; Zhou, Q.; Meier, J.R.; Chang, L.; Brenner, R.C.

    1999-12-01

    The performance of a soil remediation process can be determined by measuring the reduction in target soil contaminant concentrations and by assessing the treatment's ability to lower soil toxicity. Land treatment of polycyclic aromatic hydrocarbon (PAH)-contaminated soil from a former wood-treating site was simulated at pilot scale in temperature-controlled sol pans. Nineteen two- through six-ring PAHs were monitored with time (initial total PAHs = 2,800 mg/kg). Twenty-five weeks of treatment yielded a final total PAH level of 1,160 mg/kg. Statistically significant decreases in concentrations were seen in total, two-, three-, and four-ring PAHs. Carcinogenic and five- and six-ring PAHs showed no significant change in concentration. Land treatment resulted in significant toxicity reduction based on root elongation, Allium chromosomal aberration, and solid-phase Microtox bioassays. Acute toxicity, as measured by the earthworm survival assay, was significantly reduced and completely removed. The Ames spiral plate mutagenicity assay revealed that the untreated soil was slightly mutagenic and that treatment may have reduced mutagenicity. The variety of results generated from the chemical and toxicity assays emphasize the need for conducting a battery of such tests to fully understand soil remediation processes.

  3. Soil treatment with hot air (Cultivit) as alternative to methyl bromide.

    PubMed

    Runia, W T; Molendijk, L P G; Neophytou, G; Greenberger, A

    2006-01-01

    A new development in physical soil treatment is the application of hot air. Hot air treatment is based on blowing extremely hot air into rotavating humid soil. The method has been developed and applied commercially in Israel for the last few years. An increased growth response (IGR) was observed in several crops like potato, cauliflower, kohlrabi and the flower Esclepia, when the soil was treated with hot air prior to planting. Scientific trials were performed in Israel and Cyprus to quantify IGR and to evaluate the efficacy against plant-parasitic nematodes. Squash was grown in tunnels on root-knot nematodes (Meloidogyne javanica and M. incognita) infested fields in sandy (Israel) and clay loam (Cyprus) soils. In Israel hot air treatment was compared with metam sodium and methyl bromide and a cold air treated control. In Cyprus hot air treatment was compared with untreated control. Hot air treatment increased squash yield in Israel with 90 % and in Cyprus with 150%. Root assessments showed that after hot air treatment the root-knot nematodes were still able to infest plants and cause galling damage. Nematode counts were not reduced by hot air treatment. It may be concluded that the general concept of soil disinfestation is not applicable to hot air treatment. Any positive effect in yield could not be explained by reduction in nematode populations in soil. Possible chemical and biological changes in the hot air treated soils need to be identified. Further research will determine the possibilities and limitations of this method in other crops and under various climatic conditions.

  4. Medium-long term soil resilience against different disturbances: wildfires, silvicultural treatments and climate change

    NASA Astrophysics Data System (ADS)

    Hedo de Santiago, Javier; Borja, Manuel Esteban Lucas; de las Heras, Jorge

    2016-04-01

    Soils of semiarid Mediterranean forest ecosystems are very fragile and sensitive to changes due to different anthropogenic and natural disturbances. The increasing vulnerability of semiarid lands within this world framework has generated growing awareness in the field of research, with highly intensified study into soils properties. One of the main problems of Mediterranean forests is wildfire disturbance. Fire should be considered more an ecological factor but, in contrast to the role of fire, it is now a closely related factor to human action. On the other hand, to improve the recovery of forest communities after fire, silvicultural treatments are needed and, for that matter, another disturbance is added to the ecosystem. By last, climate change is also affecting the fire regime increasing fire frequency and burned area, enhancing the destructiveness to Mediterranean ecosystems. After all of these three disturbances, changes in vegetation dynamics and soil properties are expected to occur due to the plant-soil feedback. Soil plays an essential role in the forest ecosystem's fertility and stability and specifically soil microorganisms, which accomplish reactions to release soil nutrients for vegetation development, for that is essential to enlarge knowledge about soil properties resilience in semiarid forest ecosystems. Physico-chemical and microbiological soil properties, and enzyme activities have been studied in two Aleppo pine forest stands that have suffered three disturbances: 1) a wildfire event, 2) silvicultural treatments (thinning) and 3) an artificial drought (simulating climate change) and results showed that soil recovered after 15 years. Final results showed that soils have been recovered from the three disturbances at the medium-long term.

  5. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system

    USGS Publications Warehouse

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Meyer, M.T.

    2010-01-01

    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. ?? 2009 SETAC.

  6. Changes in physical properties of sandy soil after long-term compost treatment

    NASA Astrophysics Data System (ADS)

    Aranyos, József Tibor; Tomócsik, Attila; Makádi, Marianna; Mészáros, József; Blaskó, Lajos

    2016-07-01

    Studying the long-term effect of composted sewage sludge application on chemical, physical and biological properties of soil, an experiment was established in 2003 at the Research Institute of Nyíregyháza in Hungary. The applied compost was prepared from sewage sludge (40%), straw (25%), bentonite (5%) and rhyolite (30%). The compost was ploughed into the 0-25 cm soil layer every 3rd year in the following amounts: 0, 9, 18 and 27 Mg ha-1 of dry matter. As expected, the compost application improved the structure of sandy soil, which is related with an increase in the organic matter content of soil. The infiltration into soil was improved significantly, reducing the water erosion under simulated high intensity rainfall. The soil compaction level was reduced in the first year after compost re-treatment. In accordance with the decrease in bulk density, the air permeability of soil increased tendentially. However, in the second year the positive effects of compost application were observed only in the plots treated with the highest compost dose because of quick degradation of the organic matter. According to the results, the sewage sludge compost seems to be an effective soil improving material for acidic sandy soils, but the beneficial effect of application lasts only for two years.

  7. Physician's Breakout Session

    NASA Technical Reports Server (NTRS)

    Barry, William

    2001-01-01

    Dr. William Barry, Manager, NASA Occupational Health Program, moderated this session. As in one of the opening sessions, he re-iterated that the overall theme for the next year will be facilitating and implementing NIAT-1 (NASA Integrated Action Team - Action 1). He presented a candidate list of topics for consideration and discussion: (1) NIAT-1; (2) Skin cancer detection and the NASA Solar Safe Program; (3) Weapons of mass destruction; (4) Quality assurance; (5) Audits; (6) Environment of care; (7) Infection control; (8) Medication management; and (9) Confidentiality of medical records.

  8. 40 CFR 268.49 - Alternative LDR treatment standards for contaminated soil.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Treatment Standards are identified in 40 CFR 268.48 Table UTS. (2) Soils that exhibit the characteristic of... applicability, see 40 CFR Part 268 Appendix VII. To determine the date any given listed hazardous waste... section or according to the Universal Treatment Standards specified in 40 CFR 268.48 applicable to...

  9. 40 CFR 268.49 - Alternative LDR treatment standards for contaminated soil.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Treatment Standards are identified in 40 CFR 268.48 Table UTS. (2) Soils that exhibit the characteristic of... applicability, see 40 CFR Part 268 Appendix VII. To determine the date any given listed hazardous waste... section or according to the Universal Treatment Standards specified in 40 CFR 268.48 applicable to...

  10. 40 CFR 268.49 - Alternative LDR treatment standards for contaminated soil.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Treatment Standards are identified in 40 CFR 268.48 Table UTS. (2) Soils that exhibit the characteristic of... applicability, see 40 CFR Part 268 Appendix VII. To determine the date any given listed hazardous waste... section or according to the Universal Treatment Standards specified in 40 CFR 268.48 applicable to...

  11. 40 CFR 268.49 - Alternative LDR treatment standards for contaminated soil.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Treatment Standards are identified in 40 CFR 268.48 Table UTS. (2) Soils that exhibit the characteristic of... applicability, see 40 CFR Part 268 Appendix VII. To determine the date any given listed hazardous waste... section or according to the Universal Treatment Standards specified in 40 CFR 268.48 applicable to...

  12. 40 CFR 268.49 - Alternative LDR treatment standards for contaminated soil.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Treatment Standards are identified in 40 CFR 268.48 Table UTS. (2) Soils that exhibit the characteristic of... applicability, see 40 CFR Part 268 Appendix VII. To determine the date any given listed hazardous waste... section or according to the Universal Treatment Standards specified in 40 CFR 268.48 applicable to...

  13. IN SITU SOIL TREATMENTS TO REDUCE THE PHYTO- AND BIOAVAILABILITY OF LEAD, ZINC, AND CADMIUM

    EPA Science Inventory

    A study was established in Joplin, MO near a former Pb smelter to test a range of treatments to reduce the avialability of Pb, Zn, and Cd in situ. Soil from the field was incubated in lab studies prior to amendment addition in the field. Treatments induded P added as triple sup...

  14. LAND TREATMENT AND THE TOXICITY RESPONSE OF SOIL CONTAMINATED WITH WOOD PRESERVING WASTE

    EPA Science Inventory

    Soils contaminated with wood preserving wastes, including pentachlo-rophenol (PCP) and creosote, are treated at field-scale in an engineered prepared-bed system consisting of two one-acre land treatment units (LTUs). The concentration of selected indicator compounds of treatment ...

  15. An Observing Session

    NASA Astrophysics Data System (ADS)

    Argyle, Bob; Argyle, R. W.

    In this chapter I describe a typical observing session with the 8-in. (20-cm) Thorrowgood refractor at the Institute of Astronomy in Cambridge. The telescope belongs to the Royal Astronomical Society but is on permanent loan to the Cambridge University Astronomical Society and has been on its present site since 1930 (Fig. 24.1).

  16. Summary of Session 3

    NASA Astrophysics Data System (ADS)

    Fleischer, J.

    2004-11-01

    In Session 3, the speakers were dealing with the following topics: Automatization of Feynman Diagram Calculations (FDC), Event generators, Analytical approaches to FDC and various Mathematical innovations related to different physical problems. A more general, ` brainstorming', talk was given by J. Vermaseren as first talk.

  17. The outreach sessions

    SciTech Connect

    Trache, Livius

    2015-02-24

    These are moderator’s remarks about the outreach day in the middle of the CSSP14, and in particular about the afternoon outreach session in round table format with the announced theme: “CERN at 60 and the internationalization of science”.

  18. Abstracts of SIG Sessions.

    ERIC Educational Resources Information Center

    Proceedings of the ASIS Annual Meeting, 1995

    1995-01-01

    Presents abstracts of 15 special interest group (SIG) sessions. Topics include navigation and information utilization in the Internet, natural language processing, automatic indexing, image indexing, classification, users' models of database searching, online public access catalogs, education for information professions, information services,…

  19. Session: Hard Rock Penetration

    SciTech Connect

    Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

  20. Phosphate Treatment of Lead-Contaminated Soil: Effects on Water Quality, Plant Uptake, and Lead Speciation.

    PubMed

    Weber, John S; Goyne, Keith W; Luxton, Todd P; Thompson, Allen L

    2015-07-01

    Water quality threats associated with using phosphate-based amendments to remediate Pb-contaminated soils are a concern, particularly in riparian areas. This study investigated the effects of P application rates to a Pb-contaminated alluvial soil on Pb and P loss via surface water runoff, Pb accumulation in tall fescue ( Schreb; Kentucky 31), and Pb speciation. An alluvial soil was treated with triple superphosphate at P to Pb molar ratios of 0:1 (control), 4:1, 8:1, and 16:1. After a 6-mo reaction period, rainfall simulation (RFS) studies were conducted, followed by tall fescue establishment and a second set of RFS studies (1 yr after treatment). Results from the first RFS study (unvegetated) demonstrated that the total Pb and P concentrations in the effluents of 8:1 and 16:1 (P:Pb molar ratio) treatment levels were significantly greater ( < 0.05) than the control. One year after P treatment and 6 mo after vegetation establishment, total P and Pb concentrations of the effluents from a second RFS decreased by one to three orders of magnitude. Total and dissolved P concentration in runoff from the 16:1 P:Pb treatment remained significantly greater than all other treatments. However, total Pb concentration in the runoff was comparable among the treatments. Phosphorus treatment also reduced Pb uptake into tall fescue by >55%. X-ray absorption near-edge structure spectroscopy data showed that pyromorphite [Pb(PO)OH,Cl,F] abundance ranged from 0% (control) to 32% (16:1 P:Pb; 1 yr after treatment) of the total soil Pb. Although P treatment stimulated pyromorphite formation, pyromorphite abundance was comparable between the P-treated soils. These findings suggest that a 4:1 (P:Pb molar ratio) P treatment may be a sufficient means of reducing Pb bioavailability while minimizing concerns related to P loss in an alluvial setting. PMID:26437094

  1. Phosphate Treatment of Lead-Contaminated Soil: Effects on Water Quality, Plant Uptake, and Lead Speciation.

    PubMed

    Weber, John S; Goyne, Keith W; Luxton, Todd P; Thompson, Allen L

    2015-07-01

    Water quality threats associated with using phosphate-based amendments to remediate Pb-contaminated soils are a concern, particularly in riparian areas. This study investigated the effects of P application rates to a Pb-contaminated alluvial soil on Pb and P loss via surface water runoff, Pb accumulation in tall fescue ( Schreb; Kentucky 31), and Pb speciation. An alluvial soil was treated with triple superphosphate at P to Pb molar ratios of 0:1 (control), 4:1, 8:1, and 16:1. After a 6-mo reaction period, rainfall simulation (RFS) studies were conducted, followed by tall fescue establishment and a second set of RFS studies (1 yr after treatment). Results from the first RFS study (unvegetated) demonstrated that the total Pb and P concentrations in the effluents of 8:1 and 16:1 (P:Pb molar ratio) treatment levels were significantly greater ( < 0.05) than the control. One year after P treatment and 6 mo after vegetation establishment, total P and Pb concentrations of the effluents from a second RFS decreased by one to three orders of magnitude. Total and dissolved P concentration in runoff from the 16:1 P:Pb treatment remained significantly greater than all other treatments. However, total Pb concentration in the runoff was comparable among the treatments. Phosphorus treatment also reduced Pb uptake into tall fescue by >55%. X-ray absorption near-edge structure spectroscopy data showed that pyromorphite [Pb(PO)OH,Cl,F] abundance ranged from 0% (control) to 32% (16:1 P:Pb; 1 yr after treatment) of the total soil Pb. Although P treatment stimulated pyromorphite formation, pyromorphite abundance was comparable between the P-treated soils. These findings suggest that a 4:1 (P:Pb molar ratio) P treatment may be a sufficient means of reducing Pb bioavailability while minimizing concerns related to P loss in an alluvial setting.

  2. Scaling up a treatment to simultaneously remove persistent organic pollutants and heavy metals from contaminated soils.

    PubMed

    Rivero-Huguet, Mario; Marshall, William D

    2011-04-01

    Soil washing is a treatment process that can be used to remediate both organic and inorganic pollutants from contaminated soils, sludges, and sediments. A soil washing procedure was evaluated utilizing about 100g samples of soil that had been field-contaminated with arsenic, chromium, copper, pentachlorophenol (PCP), polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). The highest level of mobilization/detoxification was achieved in three soil washes with a mixture of 0.1M [S,S]-ethyelnediaminedisuccinate ([S,S]-EDDS) and 2% Brij 98 at pH 9 with 20 min of ultrasonication treatment at room temperature. This combination mobilized 70% of arsenic, 75% of chromium, 80% of copper, 90% of PCP, and 79% of PCDDs and PCDFs, so that the decontaminated soil met the maximum acceptable concentrations of the generic C-level criteria regulated by the Ministère du Développement Durable, de l'Environnement et des Parcs for the Province of Québec, Canada. The organic pollutants were back-extracted from the aqueous suspension with hexane. Heavy metals were virtually completely precipitated from the aqueous washing suspension with Mg(0) particles at room temperature. The PCP was detoxified by catalytic hydrodechlorination with a stream of 5% (v/v) H(2)-supercritical CO(2) that transported the organosoluble fraction through a reaction chamber containing 2% Pd/γ-Al(2)O(3). In toto, this soil washing procedure demonstrates that persistent organic pollutants and selected heavy metals can be co-extracted efficiently from a field-contaminated soil with three successive washes with the same soil washing solution containing [S,S]-EDDS and a non-ionic surfactant (Brij 98) in admixture. An industrial-scale ex situ soil washing procedure with a combination of a non-ionic surfactant and a complexing reagent seems to be a plausible remediation technique for this former wooden utility pole storage facility. PMID:21354593

  3. [Biological treatments for contaminated soils: hydrocarbon contamination. Fungal applications in bioremediation treatment].

    PubMed

    Martín Moreno, Carmen; González Becerra, Aldo; Blanco Santos, María José

    2004-09-01

    Bioremediation is a spontaneous or controlled process in which biological, mainly microbiological, methods are used to degrade or transform contaminants to non or less toxic products, reducing the environmental pollution. The most important parameters to define a contaminated site are: biodegradability, contaminant distribution, lixiviation grade, chemical reactivity of the contaminants, soil type and properties, oxygen availability and occurrence of inhibitory substances. Biological treatments of organic contaminations are based on the degradative abilities of the microorganisms. Therefore the knowledge on the physiology and ecology of the biological species or consortia involved as well as the characteristics of the polluted sites are decisive factors to select an adequate biorremediation protocol. Basidiomycetes which cause white rot decay of wood are able to degrade lignin and a variety of environmentally persistent pollutants. Thus, white rot fungi and their enzymes are thought to be useful not only in some industrial process like biopulping and biobleaching but also in bioremediation. This paper provides a review of different aspects of bioremediation technologies and recent advances on ligninolytic metabolism research.

  4. Removal of PAHs and pesticides from polluted soils by enhanced electrokinetic-Fenton treatment.

    PubMed

    Bocos, Elvira; Fernández-Costas, Carmen; Pazos, Marta; Sanromán, M Ángeles

    2015-04-01

    In this study, electrokinetic-Fenton treatment was used to remediate a soil polluted with PAHs and the pesticide pyrimethanil. Recently, this treatment has emerged as an interesting alternative to conventional soil treatments due to its peculiar advantages, namely the capability of treating fine and low-permeability materials, as well as that of achieving a high yield in the removals of salt content and inorganic and organic pollutants. In a standard electrokinetic-Fenton treatment, the maximum degradation of the pollutant load achieved was 67%, due to the precipitation of the metals near the cathode chamber that reduces the electro-osmotic flow of the system and thus the efficiency of the treatment. To overcome this problem, different complexing agents and pH control in the cathode chamber were evaluated to increase the electro-osmotic flux as well as to render easier the solubilization of the metal species present in the soil. Four complexing agents (ascorbic acid, citric acid, oxalic acid and ethylenediaminetetraacetic acid) in the Fenton-like treatment were evaluated. Results revealed the citric acid as the most suitable complexing agent. Thereby its efficiency was tested as pH controller by flushing it in the cathode chamber (pH 2 and 5). For the latter treatments, near total degradation was achieved after 27 d. Finally, phytotoxicity tests for polluted and treated samples were carried out. The high germination levels of the soil treated under enhanced conditions concluded that nearly complete restoration was achieved. PMID:25577698

  5. Removal of PAHs and pesticides from polluted soils by enhanced electrokinetic-Fenton treatment.

    PubMed

    Bocos, Elvira; Fernández-Costas, Carmen; Pazos, Marta; Sanromán, M Ángeles

    2015-04-01

    In this study, electrokinetic-Fenton treatment was used to remediate a soil polluted with PAHs and the pesticide pyrimethanil. Recently, this treatment has emerged as an interesting alternative to conventional soil treatments due to its peculiar advantages, namely the capability of treating fine and low-permeability materials, as well as that of achieving a high yield in the removals of salt content and inorganic and organic pollutants. In a standard electrokinetic-Fenton treatment, the maximum degradation of the pollutant load achieved was 67%, due to the precipitation of the metals near the cathode chamber that reduces the electro-osmotic flow of the system and thus the efficiency of the treatment. To overcome this problem, different complexing agents and pH control in the cathode chamber were evaluated to increase the electro-osmotic flux as well as to render easier the solubilization of the metal species present in the soil. Four complexing agents (ascorbic acid, citric acid, oxalic acid and ethylenediaminetetraacetic acid) in the Fenton-like treatment were evaluated. Results revealed the citric acid as the most suitable complexing agent. Thereby its efficiency was tested as pH controller by flushing it in the cathode chamber (pH 2 and 5). For the latter treatments, near total degradation was achieved after 27 d. Finally, phytotoxicity tests for polluted and treated samples were carried out. The high germination levels of the soil treated under enhanced conditions concluded that nearly complete restoration was achieved.

  6. Treatment of landfill leachate by using lateritic soil as a natural coagulant.

    PubMed

    Syafalni; Lim, Han Khim; Ismail, Norli; Abustan, Ismail; Murshed, Mohamad Fared; Ahmad, Anees

    2012-12-15

    In this research, the capability of lateritic soil used as coagulant for the treatment of stabilized leachate from the Penang-Malaysia Landfill Site was investigated. The evaluation of lateritic soil coagulant in comparison with commercialized chemical coagulants, such as alum, was performed using conventional jar test experiments. The optimum pH and coagulant dosage were identified for the lateritic soil coagulant and the comparative alum coagulant. It was found that the application of lateritic soil coagulant was quite efficient in the removal of COD, color and ammoniacal-nitrogen content from the landfill leachate. The optimal pH value was 2.0, while 14 g/L of lateritic soil coagulant was sufficient in removing 65.7% COD, 81.8% color and 41.2% ammoniacal-nitrogen. Conversely, the optimal pH and coagulant dosage for the alum were pH 4.8 and 10 g/L respectively, where 85.4% COD, 96.4% color and 47.6% ammoniacal-nitrogen were removed from the same leachate sample. Additionally, the Sludge Volume Index (SVI) ratio of alum and lateritic soil coagulant was 53:1, which indicated that less sludge was produced and was an environmentally friendly product. Therefore, lateritic soil coagulant can be considered a viable alternative in the treatment of landfill leachate.

  7. Soil-based treatments of mechanically collected cyanobacterial blooms from Lake Taihu: efficiencies and potential risks.

    PubMed

    Chen, Wei; Jia, Yunlu; Li, Enhua; Zhao, Shuang; Zhou, Qichao; Liu, Liming; Song, Lirong

    2012-12-18

    In China, mechanical collection of cyanoblooms followed by soil-based treatments has been widely used as emergency strategies in many eutrophicated freshwaters. This study was to evaluate both efficiencies and potential risks of typical soil-based technologies. Results from this study indicated that over 90% of cyanobacterial biomass and 96% of dissolved microcystins (MCs) could be restrained in soils via three-level systems, which were much better than single-level systems. High concentrations of MCs, ranged from 65 to 276 ng g⁻¹ and from 2.12 to 6.6 ng g⁻¹, were found in soils around treatment systems and croplands, respectively. In the soil solutions, MCs ranged from 0.35 to 2.0 μg L⁻¹, showing a potentially high leaching risk. In the samples from shallow groundwater near the treatment systems, MC concentrations were detected as high as 1.2 μg L⁻¹. Moreover, bioaccumulations of MCs varied between 22 and 365 μg kg⁻¹, and 19-222 μg kg⁻¹ were found in 13 kinds of crops and 7 kinds of wild grass, respectively. Our results indicated for the first time that current soil-based technologies were effective but could pose potential environmental, ecological, and public health risks. Further improvements of these technologies were also proposed based on our findings.

  8. Amino acid treatment enhances protein recovery from sediment and soils for metaproteomic studies

    SciTech Connect

    Nicora, Carrie D.; Anderson, Brian J.; Callister, Stephen J.; Norbeck, Angela D.; Purvine, Samuel O.; Jansson, Janet K.; Mason, Olivia U.; David, Maude; Jurelevicius, Diogo D.; Smith, Richard D.; Lipton, Mary S.

    2013-10-01

    Characterization of geomicrobial protein expression provides information necessary to better understand the unique biological pathways that occur within soil microbial communities and the role they play in regulating atmospheric CO2 levels and the Earth’s climate. A significant challenge in studying soil microbial proteins is their initial dissociation from the complex mixture of particles found in natural soil. Due to bias of the most robust cells, the removal of intact bacterial cells limits the characterization of the complete representation of a microbial community. However, in-situ lysis of bacterial cells leads to the expulsion of proteins to the soil surface, which can lead to potentially high levels of adsorption due to the physicochemical properties of both the protein and the soil. We investigated various compounds for their ability to block protein adsorption soil sites prior to in-situ lysis of bacterial cells, as well as their compatibility with both tryptic digestion and mass spectrometric analysis. The treatments were tested by adding lysed Escherichia coli proteins to representative treated and untreated soil samples. The results show that it is possible to significantly increase protein identifications through blockage of binding sites on a variety of soil textures; use of an optimized desorption buffer further increases the number of identifications.

  9. Physical characterization of water treatment plant residual and top soil mixtures

    SciTech Connect

    Raghu, D.; Hsieh, H.N.; Basim, S.C.; Morgan, M.

    1997-12-31

    Disposal of water treatment plant residuals is not economically feasible due to their high moisture contents, high compressibilities and very low shear strengths. This paper evaluates the physical and geotechnical characteristics of water treatment residual-top soil mixtures for beneficial reuse in construction and land application. Index, compaction, consolidation, strength and durability tests were performed in accordance with the relevant ASTM standards. It was observed that the plasticity of the mixtures decreased and handling (compaction) and other engineering characteristics improved due to the addition of top soil to residuals. There is a potential for these mixtures to be used as liner material for landfills.

  10. Technology evaluation report: Toronto Harbour Commissioners (THC) soil recycle treatment train

    SciTech Connect

    Ehrenreich, L.C.; Matuson, A.; Peters, J.; Evans, J.

    1993-07-01

    The report summarizes the results and activities of the demonstration testing of Toronto Harbor Commissioners (THC) Soil Recycle Treatment Train. The Demonstration was conducted at a site within the Port Industrial District (PID) in Toronto, Ontario, Canada under the Superfund Innovative Technology Evaluation (SITE) Program developed by the US Environmental Protection Agency (EPA). The demonstration examined a part of THC's on-going evaluation of the treatment train during the first nine months of 1992. EPA elected to sample the process during the processing of Soil B, which based on field sampling, was expected to exhibit relatively high organic (oil and grease, s) and inorganic (heavy metals) contaminants.

  11. Session: Offshore wind

    SciTech Connect

    Gaarde, Jette; Ram, Bonnie

    2004-09-01

    This session at the Wind Energy and Birds/Bats workshop consisted of two presentations. Due to time constraints, a discussion period was not possible. The session addressed the current state of offshore wind energy development. The first presentation ''Monitoring Program and Results: Horns Rev and Nysted'' by Jette Gaarde summarized selected environmental studies conducted to date at operating offshore wind turbine projects in Denmark and lessons from other offshore wind developments in Europe. Wildlife impacts studies from the Danish sites focused on birds, fish, and mammals. The second presentation ''What has the U.S. Wind Industry Learned from the European Example'' by Bonnie Ram provided an update on current permit applications for offshore wind developments in the U.S. as well as lessons that may be drawn from the European experience.

  12. Land Application of Wastes: An Educational Program. Soil as a Treatment Medium - Module 3, Objectives, Script and Booklet.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This module examines the basic properties of soil which have an influence on the success of land treatment of wastes. These relevant properties include soil texture, soil structure, permeability, infiltration, available water capacity, and cation exchange capacity. Biological, chemical and physical mechanisms work to remove and renovate wastes…

  13. Session: Reservoir Technology

    SciTech Connect

    Renner, Joel L.; Bodvarsson, Gudmundur S.; Wannamaker, Philip E.; Horne, Roland N.; Shook, G. Michael

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five papers: ''Reservoir Technology'' by Joel L. Renner; ''LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies'' by Gudmundur S. Bodvarsson; ''Geothermal Geophysical Research in Electrical Methods at UURI'' by Philip E. Wannamaker; ''Optimizing Reinjection Strategy at Palinpinon, Philippines Based on Chloride Data'' by Roland N. Horne; ''TETRAD Reservoir Simulation'' by G. Michael Shook

  14. Session: Geopressured-Geothermal

    SciTech Connect

    Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael; Birkinshaw, Kelly; Negus-de Wys, Jane

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

  15. Country break-out session highlights.

    PubMed

    Fazekas, Franz; Gehring, Klaus; Gallo, Paolo; Lebrun-Frénay, Christine; Moral, Ester; Myhr, Kjell-Morten

    2015-01-01

    Individuals with multiple sclerosis (MS) spasticity present a wide range of symptoms and disability levels that are frequently challenging to manage. At the MS Experts Summit 2015, five country breakout sessions were conducted in parallel, and mainly in the native language, to examine various aspects about the management of treatment-resistant MS spasticity. Topics covered included video documentation of MS spasticity management (Germany), use of cannabinoid medicines in daily practice (Italy), multidisciplinary approach to MS spasticity care (France), titration and adherence to treatments for MS spasticity (Spain) and management of MS symptoms (Norway/Rest of World). For the benefit of all attendees, session highlights were collated and presented in a Plenary Session which is summarized herein. PMID:26611270

  16. Remediation of arsenic contaminated soil by coupling oxalate washing with subsequent ZVI/Air treatment.

    PubMed

    Cao, Menghua; Ye, Yuanyao; Chen, Jing; Lu, Xiaohua

    2016-02-01

    The application of a novel coupled process with oxalate washing and subsequent zero-valent iron (ZVI)/Air treatment for remediation of arsenic contaminated soil was investigated in the present study. Oxalate is biodegradable and widely present in the environment. With addition of 0.1 mol L(-1) oxalate under circumneutral condition, 83.7% and 52.6% of arsenic could be removed from a spiked kaolin and an actual contaminated soil respectively. Much more oxalate adsorption on the actual soil was attributed to the higher soil organic matter and clay content. Interestingly, oxalate retained in the washing effluent could act as an organic ligand to promote the oxidation efficiency of ZVI/Air at near neutral pH. Compared with the absence of oxalate, much more As(III) was oxidized. Arsenic was effectively adsorbed on iron (hydr)oxides as the consumption of oxalate and the increase of pH value. For the actual soil washing effluent, about 94.9% of total arsenic was removed after 120 min's treatment without pH adjustment. It has been demonstrated that As(V) was the dominant arsenic speciation adsorbed on iron (hydr)oxides. This study provides a promising alternative for remediation of arsenic contaminated soil in view of its low cost and environmental benign. PMID:26476769

  17. Remediation of arsenic contaminated soil by coupling oxalate washing with subsequent ZVI/Air treatment.

    PubMed

    Cao, Menghua; Ye, Yuanyao; Chen, Jing; Lu, Xiaohua

    2016-02-01

    The application of a novel coupled process with oxalate washing and subsequent zero-valent iron (ZVI)/Air treatment for remediation of arsenic contaminated soil was investigated in the present study. Oxalate is biodegradable and widely present in the environment. With addition of 0.1 mol L(-1) oxalate under circumneutral condition, 83.7% and 52.6% of arsenic could be removed from a spiked kaolin and an actual contaminated soil respectively. Much more oxalate adsorption on the actual soil was attributed to the higher soil organic matter and clay content. Interestingly, oxalate retained in the washing effluent could act as an organic ligand to promote the oxidation efficiency of ZVI/Air at near neutral pH. Compared with the absence of oxalate, much more As(III) was oxidized. Arsenic was effectively adsorbed on iron (hydr)oxides as the consumption of oxalate and the increase of pH value. For the actual soil washing effluent, about 94.9% of total arsenic was removed after 120 min's treatment without pH adjustment. It has been demonstrated that As(V) was the dominant arsenic speciation adsorbed on iron (hydr)oxides. This study provides a promising alternative for remediation of arsenic contaminated soil in view of its low cost and environmental benign.

  18. 98th LHCC meeting Agenda OPEN Session and CLOSED Session

    ScienceCinema

    None

    2016-07-12

    OPEN Session on Wednesday, 8 July at 9h00-11h00 in Main Auditorium, Live webcast, followed by CLOSED Session, Conference room 160-1-009 11h20-17h00. CLOSED Session continued on Thursday, 9 July at 9h00-12h30

  19. EDTA leaching of Cu contaminated soil using electrochemical treatment of the washing solution.

    PubMed

    Pociecha, Maja; Lestan, Domen

    2009-06-15

    The feasibility of a two-phase method for remediation of Cu (364+/-2 mg kg(-1)) contaminated vineyard soil was evaluated. In the first phase we used ethylenediamine tetraacetae (EDTA) for Cu leaching, while in the second phase we used an electrochemical advanced oxidation process (EAOP) for the treatment and reuse of the washing solution for soil rinsing (removal of soil-retained, chelant-mobilized Cu complexes) in a closed loop. In the EAOP, a boron-doped diamond anode was used for the generation of hydroxyl radicals and oxidative decomposition of EDTA-metal complexes at a constant current density (40 mA cm(-2)). The released Cu was removed from the solution mostly as an electro-deposit on the cathode. Two consecutive additions of 10 mmol kg(-1) EDTA removed 26% of Cu from the soil, mostly from carbonate and oxide soil fractions (58% and 40% Cu reduction). The soil Cu oral availability (in vitro Physiologically Based Extraction Test) was reduced after remediation by 42% and 51% in the simulated stomach and intestinal phases. The discharge solution was clear, almost colorless, with pH 8.4 and 0.5 mg L(-1) Cu and 0.07 mM EDTA. The novel method enables soil Cu availability stripping using small volumes of process waters, and no wastewater generation or other emissions into the environment. PMID:19022571

  20. Organic wastes to enhance phyto-treatment of diesel-contaminated soil.

    PubMed

    Dadrasnia, Arezoo; Agamuthu, P

    2013-11-01

    Toxic inorganic and organic chemicals are major contributors to environmental contamination and pose major health risks to human population. In this work, Dracaena reflexa and Podocarpus polystachyus were investigated for their potential to remove hydrocarbons from 2.5% and 1% diesel fuel-contaminated soil amended individually with 5% organic wastes (tea leaf, soy cake and potato skin) for a period of 270 days. Loss of 90% and 99% oil was recorded in soil contaminated with 2.5% and 1% oil with soy cake amendment, respectively, compared with 52% and 62% in unamended soil with D. reflexa at the end of 270 days. Similarly, 84% and 91% oil loss was recorded for P. polystachyus amended with organic wastes in 2.5% and 1% oil, respectively. Diesel fuel disappeared more rapidly in the soil amendment with SC than in other organic waste supplementation. It was evident that plants did not accumulate hydrocarbon from the soil, while the number of hydrocarbon-utilizing bacteria was high in the rhizosphere, thus suggesting that the mechanism of the oil degradation was rhizodegradation. The kinetic model result indicated a high rate of degradation in soil amendment with SC at 1% with D. reflexa compared with other treatments. Thus, a positive relationship was observed between diesel hydrocarbon degradation with plant biomass production. Dracaena reflexa with organic wastes amendment has a greater potential of restoring hydrocarbon-contaminated soil compared to P. polystachyus plant. PMID:24025373

  1. Removal of fluorine from contaminated soil by electrokinetic treatment driven by solar energy.

    PubMed

    Zhou, Ming; Zhu, Shufa; Liu, Yana; Wang, Xuejian

    2013-08-01

    Instead of direct current power supply, a series of electrokinetic remediation experiments driven by solar energy on fluorine-contaminated soil were conducted in a self-made electrolyzer, in order to reduce energy expenditure of electrokinetic remediation. After the 12-day electrokinetic remediation driven by solar energy, the removal efficiency of fluorine was 22.3%, and electrokinetic treatment had an impact on changes in partitioning of fluorine in soil. It proved that the combination of electrokinetics and solar energy was feasible and effective to some extent for the remediation of fluorine-contaminated soil. Meanwhile, the experimental results also indicated that the electromigration was a more dominant transport mechanism for the removal of fluorine from contaminated soil than electroosmosis, and the weather condition was the important factor in affecting the removal efficiency.

  2. Pumice soil: a potential wetland substrate for treatment of domestic wastewater.

    PubMed

    Njau, K N; Minja, R J A; Katima, J H Y

    2003-01-01

    Laboratory and fieldwork studies were carried out to evaluate the potential of pumice soil for use as a wetland substrate in wastewater treatment. The composition of pumice soil was analysed by x-ray fluorescence (XRF) and x-ray diffraction (XRD) techniques. Adsorption kinetic studies were carried out in a semi-batch recycle system. Fieldwork tests were carried out on Subsurface Flow Constructed Wetland (SSFCW) cells planted with Phragmites mauritianus and Vetiveria zizanioides. The results have shown that pumice soil composition contains among other elements Al, Ca, Fe and Mg, which are positive indicators for phosphorus adsorption. The main minerals observed by XRD were augite, hematite, and sodium titanium silicate. Phosphorus adsorption kinetics have shown that phosphorus is adsorbed on pumice soil following first order kinetics and the adsorption was highly influenced by mass transfer. Approximately 3% of the phosphorus was removed by plant uptake.

  3. Removal of fluorine from contaminated soil by electrokinetic treatment driven by solar energy.

    PubMed

    Zhou, Ming; Zhu, Shufa; Liu, Yana; Wang, Xuejian

    2013-08-01

    Instead of direct current power supply, a series of electrokinetic remediation experiments driven by solar energy on fluorine-contaminated soil were conducted in a self-made electrolyzer, in order to reduce energy expenditure of electrokinetic remediation. After the 12-day electrokinetic remediation driven by solar energy, the removal efficiency of fluorine was 22.3%, and electrokinetic treatment had an impact on changes in partitioning of fluorine in soil. It proved that the combination of electrokinetics and solar energy was feasible and effective to some extent for the remediation of fluorine-contaminated soil. Meanwhile, the experimental results also indicated that the electromigration was a more dominant transport mechanism for the removal of fluorine from contaminated soil than electroosmosis, and the weather condition was the important factor in affecting the removal efficiency. PMID:23475445

  4. Plant reestablishment after soil disturbance: Effects of soils, treatment, and time

    SciTech Connect

    Brandt, C.A.; Alford, K.; McIlveny, G.; Tijerina, A.

    1993-11-01

    The Pacific Northwest Laboratory examined plant growth and establishment on 16 sites where severe land disturbance had taken place. The purpose of the study was to evaluate the relative effectiveness of the different methods in term of their effects on establishment of native and alien plants. Disturbances ranged from 1 to 50 years in age. Revegetation using native plants had been attempted at 14 of the sites; the remainder were abandoned without any further management. Revegetation efforts variously included seeding, fertilizer application, mulching with various organic sources, compost application, application of Warden silt loam topsoil over sand and gravel soils, and moderate irrigation.

  5. Hydrologic Treatments Affect Gaseous Carbon Loss From Organic Soils, Twitchell Island, California, October 1995-December 1997

    USGS Publications Warehouse

    Miller, Robin L.; Hastings, Lauren; Fujii, Roger

    2000-01-01

    Subsidence of organic soils in the Sacramento-San Joaquin Delta, California, has increased the potential for levee failure and flooding in the region. Because oxidation of the peat soils is a primary cause of subsidence, reversion of affected lands to wetlands has been proposed as a mitigation tool. To test this hypothesis, three 10 x 10 meter enclosures were built on Twitchell Island in the Delta and managed as different wetland habitats. Emissions of carbon dioxide and methane were measured in situ from October 1995 through December 1997, from the systems that developed under the different water-management treatments. Treatments included a seasonal control (SC) under current island management conditions; reverse flooding (RF), where the land is intentionally flooded from early dry season until midsummer; permanent shallow flooding (F); and a more deeply flooded, open-water (OW) treatment. Hydrologic treatments affected microbial processes, plant community and temperature dynamics which, in turn, affected carbon cycling. Water-management treatments with a period of flooding significantly decreased gaseous carbon emissions compared to the seasonal control. Permanent flooding treatments showed significantly higher methane fluxes than treatments with some period of aerobic conditions. Shallow flooding treatments created conditions that support cattail [Typha species (spp.)] marshes, while deep flooding precluded emergent vegetation. Carbon inputs to the permanent shallow flooding treatment tended to be greater than the measured losses. This suggests that permanent shallow flooding has the greatest potential for managing subsidence of these soils by generating organic substrate more rapidly than is lost through decomposition. Carbon input estimates of plant biomass compared to measurements of gaseous carbon losses indicate the potential for mitigation of subsidence through hydrologic management of the organic soils in the area.

  6. Operating and life-cycle costs for uranium-contaminated soil treatment technologies

    SciTech Connect

    Douthat, D.M.; Armstrong, A.Q.; Stewart, R.N.

    1995-09-01

    The development of a nuclear industry in the US required mining, milling, and fabricating a large variety of uranium products. One of these products was purified uranium metal which was used in the Savannah River and Hanford Site reactors. Most of this feed material was produced at the US Department of Energy (DOE) facility formerly called the Feed Materials Production Center at Fernald, Ohio. During operation of this facility, soils became contaminated with uranium from a variety of sources. To avoid disposal of these soils in low-level radioactive waste burial sites, increasing emphasis has been placed on the remediating soils contaminated with uranium and other radionuclides. To address remediation and management of uranium-contaminated soils at sites owned by DOE, the DOE Office of Technology Development (OTD) evaluates and compares the versatility, efficiency, and economics of various technologies that may be combined into systems designed to characterize and remediate uranium-contaminated soils. Each technology must be able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from soil, (3) treat or dispose of resulting waste streams, (4) meet necessary state and federal regulations, and (5) meet performance assessment objectives. The role of the performance assessment objectives is to provide the information necessary to conduct evaluations of the technologies. These performance assessments provide the basis for selecting the optimum system for remediation of large areas contaminated with uranium. One of the performance assessment tasks is to address the economics of full-scale implementation of soil treatment technologies. The cost of treating contaminated soil is one of the criteria used in the decision-making process for selecting remedial alternatives.

  7. Field assessment of treatment efficacy by three methods of phosphoric acid application in lead-contaminated urban soil.

    PubMed

    Yang, John; Mosby, David

    2006-07-31

    In situ soil treatment using phosphoric acid (H(3)PO(4)) may be an effective remedial technology for immobilizing soil Pb and reducing Pb risk to human health and ecosystem. The treatment efficacy of three H(3)PO(4) application methods was assessed in a smelter-contaminated urban soil located in the Jasper County Superfund Site, Missouri. Soil, with an average of 3529 mg Pb kg(-1) and in the 2- by 4-m plot size, was treated with H(3)PO(4) at a rate of 10 g P kg(-1) in four replicates by each of three methods: rototilling; surface application; pressure injection. Three soil cores, 2.5-cm diameter and 30-cm long, were taken from each plot before and 90 days after treatment and analyzed for soluble P, bioaccessible Pb and solid-Pb speciation. Applications of H(3)PO(4) induced the heterogeneity of soluble P in soil, with the highest concentrations in the surface. Three application methods mixed the H(3)PO(4) more effectively in the horizontals than the verticals of treated soil zone. The H(3)PO(4) applications significantly reduced Pb bioaccessibility in the soil, which was influenced by the concentrations of soil soluble P and solid-Pb species. The risk reductions of soil Pb were achieved by formation of pyromorphites or pyromorphite-like minerals. The rototilling appears to be the most effective treatment method in context of the homogeneity of soluble P and the reduction of Pb bioaccessibility in treated soil.

  8. Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil.

    PubMed

    Mena, Esperanza; Ruiz, Clara; Villaseñor, José; Rodrigo, Manuel A; Cañizares, Pablo

    2015-01-01

    Removal of diesel from spiked kaolin has been studied in the laboratory using coupled electrokinetic soil flushing (EKSF) and bioremediation through an innovative biological permeable reactive barriers (Bio-PRBs) positioned between electrode wells. The results show that this technology is efficient in the removal of pollutants and allows the soil to maintain the appropriate conditions for microorganism growth in terms of pH, temperature, and nutrients. At the same time, EKSF was demonstrated to be a very interesting technology for transporting pollutants, microorganisms and nutrients, although results indicate that careful management is necessary to avoid the depletion of nutrients, which are effectively transported by electro-migration. After two weeks of operation, 30% of pollutants are removed and energy consumption is under 70 kWh m(-3). Main fluxes (electroosmosis and evaporation) and changes in the most relevant parameters (nutrients, diesel, microorganisms, surfactants, moisture conductivity and pH) during treatment and in a complete post-study analysis are studied to give a comprehensive description of the most relevant processes occurring in the soil (pollutant transport and biodegradation).

  9. Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil.

    PubMed

    Mena, Esperanza; Ruiz, Clara; Villaseñor, José; Rodrigo, Manuel A; Cañizares, Pablo

    2015-01-01

    Removal of diesel from spiked kaolin has been studied in the laboratory using coupled electrokinetic soil flushing (EKSF) and bioremediation through an innovative biological permeable reactive barriers (Bio-PRBs) positioned between electrode wells. The results show that this technology is efficient in the removal of pollutants and allows the soil to maintain the appropriate conditions for microorganism growth in terms of pH, temperature, and nutrients. At the same time, EKSF was demonstrated to be a very interesting technology for transporting pollutants, microorganisms and nutrients, although results indicate that careful management is necessary to avoid the depletion of nutrients, which are effectively transported by electro-migration. After two weeks of operation, 30% of pollutants are removed and energy consumption is under 70 kWh m(-3). Main fluxes (electroosmosis and evaporation) and changes in the most relevant parameters (nutrients, diesel, microorganisms, surfactants, moisture conductivity and pH) during treatment and in a complete post-study analysis are studied to give a comprehensive description of the most relevant processes occurring in the soil (pollutant transport and biodegradation). PMID:25262485

  10. An Exploration of Mercury Soils Treatment Technologies for the Y-12 Plant - 13217

    SciTech Connect

    Wrapp, John; Julius, Jonathon; Browning, Debbie; Kane, Michael; Whaley, Katherine; Estes, Chuck; Witzeman, John

    2013-07-01

    There are a number of areas at the Y-12 National Security Complex (Y-12) that have been contaminated with mercury due to historical mercury use and storage. Remediation of these areas is expected to generate large volumes of waste that are Resource Conservation and Recovery Act (RCRA) characteristically hazardous. These soils will require treatment to meet RCRA Land Disposal Restrictions (LDR) prior to disposal. URS - CH2M Oak Ridge LLC (UCOR) performed a feasibility assessment to evaluate on-site and off-site options for the treatment and disposal of mercury-contaminated soil from the Y-12 Site. The focus of the feasibility assessment was on treatment for disposal at the Environmental Management Waste Management Facility (EMWMF) located on the Oak Ridge Reservation. A two-phase approach was used in the evaluation process of treatment technologies. Phase 1 involved the selection of three vendors to perform treatability studies using their stabilization treatment technology on actual Y-12 soil. Phase II involved a team of waste management specialists performing an in-depth literature review of all available treatment technologies for treating mercury contaminated soil using the following evaluation criteria: effectiveness, feasibility of implementation, and cost. The result of the treatability study and the literature review revealed several viable on-site and off-site treatment options. This paper presents the methodology used by the team in the evaluation of technologies especially as related to EMWMF waste acceptance criteria, the results of the physical treatability studies, and a regulatory analysis for obtaining regulator approval for the treatment/disposal at the EMWMF. (authors)

  11. TECHNOLOGY EVALUATION REPORT: BIOTROL SOIL WASHING SYSTEM FOR TREATMENT OF A WOOD PRESERVING SITE - VOLUME I

    EPA Science Inventory

    The report presents and evaluates the extensive database from the SITE Program demonstration at the MacGillis and Gibbs wood treatment facility in New Brighton, MN. Soil washing and segregation, biotreatment of contaminated process water, and biodegradation of a slurry of the con...

  12. BIOTROL SOIL WASHING SYSTEM FOR TREATMENT OF A WOOD PRESERVING SITE - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    The report analyzes the results of the SITE Program demonstration of BioTrol's Soil Washing System at the MacGillis & Gibbs wood treatment facility in New Brighton, MN. The contaminants of primary interest are pentachlorophenol (penta) and polynuclear aromatic hydrocarbons (PAHs)...

  13. Treatment Of Polychlorinated Biphenyls In Two Surface Soils Using Catalyzed H2O2 Propagations

    EPA Science Inventory

    Two surface soils contaminated with polychlorinated biphenyls (PCBs) collected from Superfund sites in the New England region of the United States, Fletcher Paints and Merrimack Industrial Metals, were evaluated for field treatment at the bench level using catalyzed H2...

  14. Toronto Harbour Commissioners (THC) soil recycle treatment train. Applications analysis report

    SciTech Connect

    Ehrenreich, L.C.; Matuson, A.; Peters, J.; Evans, J.

    1993-04-01

    This project consists of a demonstration of the Toronto Harbour Commissioners (THC) Soil Recycle Treatment Train. The treatment train consists of three processes. The first process utilizes an attrition soil wash process to separate relatively uncontaminated soil from a more heavily contaminated fine slurry. The contaminated fine slurry is then further processed in a metals removal process or a bioslurry reactor process or both to remove organic contaminants and heavy metals contamination. The Toronto Harbour Commissioners conducted a long-term evaluation of this treatment train at a 55 tons per day pilot plant at 185 Cherry Street in the port of Toronto, located in Toronto, Ontario, Canada. The Superfund Innovative Technology Evaluation (SITE) Program conducted a demonstration project that examined in detail the processing of soil from one of the sites being evaluated in the overall project. The goals of this study were to evaluate the technical effectiveness and economics of a treatment process sequence and to assess the potential applicability of the process to other wastes and/or other Superfund and hazardous waste sites.

  15. SOLID-PHASE TREATMENT OF A PENTACHLOROPHENOL- CONTAMINATED SOIL USING LIGNIN-DEGRADING FUNGI

    EPA Science Inventory

    The abilities of three lignin-degrading fungi, Phanerochaete chrysosporium, Phanerochaete sordida, and Trametes hirsuta, to deplete pentachlorophenol (PCP) from soil contaminated with PCP and creosote were evaluated. A total of seven fungal and three control treatments ...

  16. X-231B technology demonstration for in situ treatment of contaminated soil: Laboratory evaluation of in situ vapor stripping

    SciTech Connect

    West, O.R.; Siegrist, R.L.; Jennings, H.L.; Lucero, A.J.; Greene, D.W.; Schmunk, S.W.

    1993-06-01

    The goal of the study described in this report was to determine the efficiency of vapor stripping coupled with soil mixing for removing volatile organic compounds (VOCs) from clay soils such as those that underlie the PORTS X-231B Solid Waste Management Unit. This was accomplished by conducting experiments wherein contaminated soil cores were treated in the laboratory using a system that simulated a field-scale vapor stripping/soil mixing treatment process. Treatment efficiencies obtained using several sets of process conditions, such as air temperature and flow rate, were determined through subsampling of the soil cores to establish pre- and posttreatment levels of VOCs in the soil. Two series of experiments were conducted under this study. In the first series, laboratory treatment was performed on intact soil cores that were taken from contaminated zones within the PORTS X-231B Unit using sampler liners that could be adapted as reaction lysimeters. Since soil core disturbance was minimized using this approach, the treatability experiments were conducted on soil that was fairly close to in situ conditions in terms of both soil structure and contaminant levels. The second series of experiments were performed on cores that were packed using X-231B soil and spiked with known amounts of trichloroethylene (TCE). This approach was taken for the second series because the VOC levels in the intact cores were found to be much lower than field values. In addition, the packed cores were smaller than the intact soil cores, with treatment volumes that were about a fifth of the treatment volumes in the intact soil cores. The smaller packed cores were not only easier to handle but were also more reliably characterized due to smaller treatment volumes from which samples were taken.

  17. Effects of different remediation treatments on crude oil contaminated saline soil.

    PubMed

    Gao, Yong-Chao; Guo, Shu-Hai; Wang, Jia-Ning; Li, Dan; Wang, Hui; Zeng, De-Hui

    2014-12-01

    Remediation of the petroleum contaminated soil is essential to maintain the sustainable development of soil ecosystem. Bioremediation using microorganisms and plants is a promising method for the degradation of crude oil contaminants. The effects of different remediation treatments, including nitrogen addition, Suaeda salsa planting, and arbuscular mycorrhiza (AM) fungi inoculation individually or combined, on crude oil contaminated saline soil were assessed using a microcosm experiment. The results showed that different remediation treatments significantly affected the physicochemical properties, oil contaminant degradation and bacterial community structure of the oil contaminated saline soil. Nitrogen addition stimulated the degradation of total petroleum hydrocarbon significantly at the initial 30d of remediation. Coupling of different remediation techniques was more effective in degrading crude oil contaminants. Applications of nitrogen, AM fungi and their combination enhanced the phytoremediation efficiency of S. salsa significantly. The main bacterial community composition in the crude oil contaminated saline soil shifted with the remediation processes. γ-Proteobacteria, β-Proteobacteria, and Actinobacteria were the pioneer oil-degraders at the initial stage, and Firmicutes were considered to be able to degrade the recalcitrant components at the later stage.

  18. Application of pig slurry to soils. Effect of air stripping treatment on nitrogen and TOC leaching.

    PubMed

    Bolado-Rodríguez, Silvia; García-Sinovas, David; Alvarez-Benedí, Javier

    2010-12-01

    The effect of physical-chemical slurry treatment on the mobility and transformation of nitrogen and organic matter from pig slurry after soil application is evaluated. Two different pig slurries (one treated by stripping with air at pH=9 and another non-treated) were applied at the top of a soil column, containing approximately 100 kg of soil. Effluents were monitored measuring concentration values of ammonia, nitrites, nitrates and total organic carbon (TOC). The breakthrough curves were modelled using STANMOD and HYDRUS 1D codes. Low concentrations of ammonia were detected in the effluent recovered at the bottom of the soil profile for both types of slurry. Nitrate concentration in effluent was lower and more homogenous over time when applying stripping treated pig slurry. In N modelling, adsorption of ammonia by soil proved an important process, nitrite and nitrate adsorption being less significant, although not negligible. Transformation from ammonia to nitrite controls the kinetics of the nitrification process. Total organic carbon in the column effluent was higher in the experiment using treated pig slurry, which can be attributed to organic matter solubilisation in the stripping treatment process.

  19. Efficient remediation of pentachlorophenol contaminated soil with tetrapolyphosphate washing and subsequent ZVI/Air treatment.

    PubMed

    Cao, Menghua; Wang, Li; Ai, Zhihui; Zhang, Lizhi

    2015-07-15

    In this study, we demonstrate that pentachlorophenol contaminated soil can be efficiently remediated with tetrapolyphosphate washing and subsequent zerovalent iron (ZVI)/Air treatment. 2 mmol L(-1) of tetrapolyphosphate could wash away 52.8% of pentachlorophenol (PCP) at pH 7.0 and 84.2% of pentachlorophenol at pH 11.0 from contaminated soil owing to the promotion effect of tetrapolyphosphate on the soil matrix dispersion and the subsequent solubilization of pentachlorophenol. More importantly, tetrapolyphosphate ions remained in the washing effluent could greatly enhance the molecular oxygen activation by ZVI to oxidize the desorbed PCP without any pH adjustment, and also avoid the competitive consumption of reactive oxygen species, as caused by the common organic surfactants in the washing effluent. Therefore, 85.1% of pentachlorophenol could be aerobically removed from the washing effluent by merely using 5 g L(-1) of ZVI. We also interestingly found that the dissolved iron ions released from the soil could enhance the oxidation of pentachlorophenol in the washing effluent, but the dissolved organic matter had the opposite effect. This study suggests the coupling tetrapolyphosphate washing and subsequent ZVI/Air treatment is an optional approach to remediate pentachlorophenol contaminated soil in view of its low cost and environmental benign.

  20. Thermal treatment of polychlorinated dibenzo-p-dioxins and dibenzofurans from contaminated soils.

    PubMed

    Lee, Wen-Jhy; Shih, Shun-I; Chang, Chih-Yuan; Lai, Yi-Chieh; Wang, Lin-Chi; Chang-Chien, Guo-Ping

    2008-12-15

    Thermal treatment technology was used to remove polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from heavily contaminated soil. For a soil with an original PCDD/F content of 35,970ng International Toxic Equivalents (I-TEQ)/kg, >99.99% PCDD/F removal efficiency was obtained with a primary furnace at two different treatment temperatures (750 degrees C and 850 degrees C), while a secondary furnace at 1200 degrees C gave >98% decomposition efficiency. The total PCDD/F I-TEQ contents in treated soils at 750 degrees C and 850 degrees C were 1.56ngI-TEQ/kg and 2.15ngI-TEQ/kg, respectively, which were far below the soil pollution standard of Taiwan (1000ngI-TEQ/kg soil). Although air pollution control devices had significant effects on the removal of PCDD/Fs, the total I-TEQ concentrations in the upstream flue gas of PUF cartridge at 750 degrees C and 850 degrees C (2.61ngI-TEQ/Nm(3) and 2.38ngI-TEQ/Nm(3), respectively) were still higher than the stationary emission limit of the Taiwan EPA (0.5ngI-TEQ/Nm(3)). The above results also suggested that additional APCDs, such as activated carbon injection in front of the filter are needed to enhance PCDD/F removal efficiency.

  1. Persistence and efficacy of termiticides used in preconstruction treatments to soil in Mississippi.

    PubMed

    Mulrooney, J E; Davis, M K; Wagner, T L; Ingram, R L

    2006-04-01

    Laboratory and field studies were conducted to determine the persistence and efficacy of termiticides used as preconstruction treatments against subterranean termites. Bifenthrin (0.067%), chlorpyrifos (0.75%), and imidacloprid (0.05%) ([AI]; wt:wt) were applied to soil beneath a monolithic concrete slab at their minimum labeled rates. Soil samples were taken from three depths (0-2.5, 2.6-7.6, and 7.7-15.2 cm) at six sampling times (0, 3, 6, 9, 12 and 48 mo) from sites in Harrison and Oktibbeha counties in Mississippi. Residue analyses were conducted on the 0-2.5- and 2.6-7.5-cm depths, and bioassays were conducted using all three depths. In field studies, significant termiticide degradation occurred between sampling times 0 and 48 mo for all termiticides. At all sampling times, the top 2.5 cm of soil contained more termiticide than the other depths. Time to 50% dissipation of termiticide in the 0-2.5-cm depth was 9, 6, and 2 mo for bifenthrin, chlorpyrifos, and imidacloprid, respectively. Termite mortalities in contact bioassays remained high for bifenthrin and chlorpyrifos throughout the 48-mo sampling period; however, mortality of termites exposed to imidacloprid-treated soil dropped after the initial sampling. Termites readily penetrated all termiticide-treated soil in bioassays of 52-mm soil cores at 48 mo. Percentage of mortality in these bioassays was 15, 43, and 13 for bifenthrin, chlorpyrifos, and imidacloprid respectively. PMID:16686149

  2. Overland flow generation mechanisms affected by topsoil treatment: Application to soil conservation

    NASA Astrophysics Data System (ADS)

    Hueso-González, P.; Ruiz-Sinoga, J. D.; Martínez-Murillo, J. F.; Lavee, H.

    2015-01-01

    Hortonian overland-flow is responsible for significant amounts of soil loss in Mediterranean geomorphological systems. Restoring the native vegetation is the most effective way to control runoff and sediment yield. During the seeding and plant establishment, vegetation cover may be better sustained if soil is amended with an external source. Four amendments were applied in an experimental set of plots: straw mulching (SM); mulch with chipped branches of Aleppo Pine (Pinus halepensis L.) (PM); TerraCottem hydroabsorbent polymer (HP); and sewage sludge (RU). Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha- 1. This research demonstrates the role played by the treatments in overland flow generation mechanism. On one hand, the high macroporosity of SM and PM, together with the fact that soil moisture increased with depth, explains weak overland flow and thus low sediment yield due to saturation conditions. Therefore, regarding overland flow and sediment yield, RU behaves similarly to SM and PM. On the other hand, when HP was applied, overland flow developed quickly with relatively high amounts. This, together with the decrease downward in soil moisture along the soil profile, proved that mechanisms of overland flow are of the Hortonian type.

  3. Arsenic immobilization in soils amended with drinking-water treatment residuals.

    PubMed

    Sarkar, Dibyendu; Makris, Konstantinos C; Vandanapu, Vandana; Datta, Rupali

    2007-03-01

    Use of Fe/Al hydroxide-containing materials to remediate As-contaminated sites is based on the general notion that As adsorption in soils is primarily controlled by Fe/Al (hydr)oxides. A low-cost and potentially effective substitute for natural Fe/Al hydroxides could be the drinking-water treatment residuals (WTRs). Earlier work in our laboratory has shown that WTRs are effective sorbents for As in water. We hypothesized that land-applied WTRs would work equally well for As-contaminated soils. Results showed that WTRs significantly (p<0.001) increased the soil As sorption capacity. All WTR loads (2.5, 5, and 10%) significantly (p<0.001) increased the overall amount of As sorbed by both soils when compared with that of the unamended controls. The amount of As desorbed with phosphate (7500 mg kg(-1) load) was approximately 50%. The WTR effectiveness in increasing soil As sorption capacities was unaffected by differences in both soils' chemical properties.

  4. Integrated monitoring and assessment of soil restoration treatments in the Lake Tahoe Basin.

    PubMed

    Grismer, M E; Schnurrenberger, C; Arst, R; Hogan, M P

    2009-03-01

    Revegetation and soil restoration efforts, often associated with erosion control measures on disturbed soils, are rarely monitored or otherwise evaluated in terms of improved hydrologic, much less, ecologic function and longer term sustainability. As in many watersheds, sediment is a key parameter of concern in the Tahoe Basin, particularly fine sediments less than about ten microns. Numerous erosion control measures deployed in the Basin during the past several decades have under-performed, or simply failed after a few years and new soil restoration methods of erosion control are under investigation. We outline a comprehensive, integrated field-based evaluation and assessment of the hydrologic function associated with these soil restoration methods with the hypothesis that restoration of sustainable function will result in longer term erosion control benefits than that currently achieved with more commonly used surface treatment methods (e.g. straw/mulch covers and hydroseeding). The monitoring includes cover-point and ocular assessments of plant cover, species type and diversity; soil sampling for nutrient status; rainfall simulation measurement of infiltration and runoff rates; cone penetrometer measurements of soil compaction and thickness of mulch layer depths. Through multi-year hydrologic and vegetation monitoring at ten sites and 120 plots, we illustrate the results obtained from the integrated monitoring program and describe how it might guide future restoration efforts and monitoring assessments.

  5. A new technology for the treatment of mercury contaminated water and soils.

    PubMed

    Zhuang, J M; Walsh, T; Lam, T

    2003-07-01

    A new technology has been developed for the treatment of contaminated water and soils with lignin derivatives. It has been demonstrated that this technology can be used in the process of removal of high levels of mercury from water, and in the immobilization of leachable mercury in contaminated soils. Lignin derivatives contain an abundance of oxygen-containing functional groups such as phenolic, carboxyl, sulfonyl, alcoholic and enolic structures, which will form lignin-metal macromolecular complexes with high stability through ionic and coordinate covalent bonding. This feature is the basis for the application of lignin derivatives in the removal of metal contaminants from water and in the immobilization of leachable metal in soils or sediments. Tests have confirmed that lignin derivatives are capable of combining with a variety of metal ions including chromium, copper, lead, zinc, mercury, nickel and aluminum. In the new water treatment process, lignin derivatives are dissolved in mercury contaminated water to complex mercury in an exceptionally stable form of a lignin-mercury colloid. The lignin-mercury colloid is then coagulated through the addition of a flocculating agent such as ferric chloride. Under optimized conditions, a dean effluent is produced with a residual mercury level of less than 1 microg l(-1), together with a ferric sludge that is not leachable by TCLP, EPA Method 1311. In the new soil stabilization process, a new solid adsorbent of ferric-lignin is blended with mercury contaminated soil. This solid adsorbent can stabilize the soil by complexing with mercury and, thereby, greatly reduce the TCLP mercury of soil. PMID:12916841

  6. Transformation of PAHs during ethanol-Fenton treatment of an aged gasworks' soil.

    PubMed

    Lundstedt, Staffan; Persson, Ylva; Oberg, Lars

    2006-11-01

    PAH-contaminated soil from a former gasworks site was treated with Fenton's reagent in a number of lab-scale slurry reactors. The degradation result obtained by traditional Fenton oxidation and Fenton oxidation preceded by ethanol treatment were compared. The ethanol pre-treatment enhanced the depletion of all PAHs in the soil by facilitating their desorption from the soil matrix. However, some PAHs, especially anthracene, benzo[a]pyrene and perylene, were more extensively depleted than other PAHs with fewer or equal numbers of fused rings, indicating that the hydroxyl radicals react faster with these PAHs than with other kinds. The ethanol present in the slurry also appeared to influence the relative reactivity of the PAHs. Furthermore, the enhanced oxidation that occurred in the ethanol pre-treated soil resulted in the accumulation of oxidation products. For example, 1-indanone, anthracene-9,10-dione, 1-methylanthracenedione, 2-methylanthracenedione, 1,8-naphthalic anhydride, benz[a]anthracene-7,12-dione and two compounds tentatively identified as hydroxy-9-fluorenones were found at higher concentrations after the treatment than before it. The accumulation was most evident for the quinones, and in many cases it could be attributed to extensive oxidation of their parent PAHs, although the total oxidation efficiency in this study was relatively poor. PMID:16735053

  7. Efficiency and sustainability of soil-aquifer treatment for indirect potable reuse of reclaimed water.

    PubMed

    Drewes, J E; Fox, P; Nellor, M H

    2000-01-01

    An increasing number of municipalities are considering the indirect reuse of treated wastewater (recycled water) by groundwater recharge as a feasible option to augment potable water supplies. This planned approach offers several advantages compared to the conventional way of discharging effluents into surface waters, including the additional treatment afforded as the water percolates and co-mingles with groundwater (soil aquifer treatment). While groundwater recharge has been used in the United States (U.S.) for several decades and has been the subject of a number of studies, limitations in methodology and testing have prevented many within the scientific and technical community from being able to fully address a number of complex public health questions related to organic chemicals, nitrogen and microorganisms. Ongoing research being conducted in Arizona and California is directed at reducing the uncertainties about the efficiency and sustainability of soil aquifer treatment for indirect potable reuse of recycled water.

  8. Treatment of soil-transmitted nematode infections in children with mebendazole.

    PubMed

    Chongsuphajaisiddhi, T; Sabcharoen, A; Attanath, P; Panasoponkul, C; Radomyos, P

    1978-02-01

    Treatment of soil-transmitted nematodes with mebendazole was carried out in 137 children aged 6--15 years in Thailand. There were 100 cases of hookworm infection, 37 of ascariasis, 16 of trichuriasis and 32 of strongyloidiasis. Mebendazole was given at 100 mg twice daily for three consecutive days irrespective of age or weight. The reduction rates as seen by mean egg counts four weeks after treatment were 94.9% for hookworm infection, 100% for ascariasis and 93.9% for trichuriasis; the reduction rates of the mean larval count in 15 cases of strongyloidiasis was 82.1%. No side-effects were observed. Mebendazole was thus confirmed as effective and safe in the treatment of soil-transmitted nematode infections in children in Thailand.

  9. Modified Fenton oxidation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils and the potential of bioremediation as post-treatment.

    PubMed

    Venny; Gan, Suyin; Ng, Hoon Kiat

    2012-03-01

    This work focuses on the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil using modified Fenton (MF) treatment coupled with a novel chelating agent (CA), a more effective technique among currently available technologies. The performance of MF treatment to promote PAH oxidation in artificially contaminated soil was investigated in a packed column with a hydrogen peroxide (H(2)O(2)) delivery system simulating in-situ soil flushing which is more representative of field conditions. The effectiveness of process parameters H(2)O(2)/soil, Fe(3+)/soil, CA/soil weight ratios and reaction time were studied using a 2(4) three level factorial design experiments. An optimised operating condition of the MF treatment was observed at H(2)O(2)/soil 0.05, Fe(3+)/soil 0.025, CA/soil 0.04 and 3h reaction time with 79.42% and 68.08% PAH removals attainable for the upper and lower parts of the soil column respectively. The effects of natural attenuation and biostimulation process as post-treatment in the remediation of the PAH-contaminated soil were also studied. In all cases, 3-aromatic ring PAH (phenanthrene) was more readily degraded than 4-aromatic ring PAH (fluoranthene) regardless of the bioremediation approach. The results revealed that both natural attenuation and biostimulation could offer remarkable enhancement of up to 6.34% and 9.38% in PAH removals respectively after 8 weeks of incubation period. Overall, the results demonstrated that combined inorganic CA-enhanced MF treatment and bioremediation serves as a suitable strategy to enhance soil quality particularly to remediate soils heavily contaminated with mixtures of PAHs.

  10. Overland flow generation mechanisms affected by topsoil treatment: Application to soil conservation

    NASA Astrophysics Data System (ADS)

    González Paloma, Hueso; Juan Francisco, Martinez-Murillo; Damian, Ruiz-Sinoga Jose; Hanoch, Lavee

    2015-04-01

    Hortonian overland-flow is responsible for significant amounts of soil loss in Mediterranean geomorphological systems. Restoring the native vegetation is the most effective way to control runoff and sediment yield. During the seeding and plant establishment, vegetation cover may be better sustained if soil is amended with an external source. Four amendments were applied in an experimental set of plots: straw mulching (SM); mulch with chipped branches of Aleppo Pine (Pinus halepensis L.) (PM); TerraCotten hydroabsobent polymers (HP); sewage sludge (RU); and control (C). Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha-1. This research demonstrates the role played by the treatments in overland flow generation mechanism (runoff, overland flow and soil moisture along the soil profile). The general overland flow characteristics showed that in the C plots the average overland flow was 8.0 ± 22.0 l per event, and the HP plots produced a similar mean value (8.1 ± 20.1 l). The average overland flow per event was significantly less for soil amended with SM, PM or RU (2.7 ± 8.3 l; 1.3 ± 3.5 l and 2.2 ± 5.9 l, respectively). There was a similar trend with respect to the maximum overland flow. The mean sediment yield per event was relatively high in the C and HP plots (8.6 ± 27.8 kg and 14.8 ± 43.4 kg, respectively), while significantly lower values were registered in the SM, PM and RU plots (0.4 ± 1.0 kg; 0.2 ± 0.3 kg and 0.2 ± 0.3 kg, respectively). Very similar trends were found for the maximum sediment yield. Regarding to the soil moisture values, there was a difference in the trends between the C and HP plots and the SM, PM and RU plots. In the C and HP plots the general trend was for a decrease in soil moisture downward through the soil profile, while in the SM, PM and RU plots the soil moisture remained relatively constant or increased, except for the RU treatment in which the soil moisture

  11. Bioavailability of (Geno)toxic Contaminants in Polycyclic Aromatic Hydrocarbon–Contaminated Soil Before and After Biological Treatment

    PubMed Central

    Hu, Jing; Adrion, Alden C.; Nakamura, Jun; Shea, Damian; Aitken, Michael D.

    2014-01-01

    Abstract Contaminated soil from a former manufactured-gas plant site was treated in a laboratory-scale bioreactor. Desorbability and biodegradability of 14 polycyclic aromatic hydrocarbons (PAHs) and 4 oxygenated PAHs (oxy-PAHs) were investigated throughout a treatment cycle. Desorbability was determined using a mixed-function sorbent (Oasis® HLB) or a hydrophobic sorbent (Tenax®) in dialysis tubing suspended in the soil slurry. Toxicity and genotoxicity of the whole soil and the desorbable fractions were determined by DNA damage response analysis with the chicken DT40 B-lymphocyte isogenic cell line and its DNA repair-deficient mutant Rad54−/−. Biological treatment significantly removed both PAHs and oxy-PAHs, and their desorbability decreased throughout the bioreactor treatment cycle. Collectively, oxy-PAHs were more desorbable and biodegradable than the corresponding PAHs; for example, the oxy-PAH present at the highest concentration, 9,10-anthraquinone, was more desorbable and biodegradable than anthracene. For both PAHs and oxy-PAHs, the percentage removed in the bioreactor significantly exceeded the percentage desorbed from untreated soil, indicating that desorption did not control the extent of biodegradation. Consistent with previous results on the same soil, genotoxicity of the whole soil slightly increased after biological treatment. However, both toxicity and genotoxicity of the desorbable constituents in the soil decreased after treatment, suggesting that any genotoxic constituents that may have formed during treatment were primarily associated with less accessible domains in the soil. PMID:24803838

  12. Occurrence and distribution of organophosphorus esters in soils and wheat plants in a plastic waste treatment area in China.

    PubMed

    Wan, Weining; Zhang, Shuzhen; Huang, Honglin; Wu, Tong

    2016-07-01

    This study for the first time reported the occurrence, distribution and concentrations of organophosphate esters (OPEs) in soils caused by plastic waste treatment, as well as their influence on OPE accumulation in wheat (Triticum aestivum L.). Eight OPEs were detected with the total concentrations of 38-1250 ng/g dry weight in the soils from the treatment sites, and tributoxyethyl phosphate and tri(2-chloroethyl) phosphate present as the dominant OPEs. There were similar distribution patterns of OPEs and significant correlations between the total OPE concentrations in the soils from the plastic waste treatment sites with those in the nearby farmlands (P < 0.005), indicating that plastic waste treatment caused the OPE contamination of farmland soils. The uptake and translocation of OPEs by wheat were determined, with OPEs of high hydrophobicity more easily taken up from soils and OPEs with low hydrophobicity more liable to be translocated acropetally.

  13. The Hydro Models Session

    NASA Astrophysics Data System (ADS)

    López, J. A.

    2004-07-01

    Hydrodynamic models play a central role in our understanding of how planetary nebulae form and evolve. The hydro models session at this conference was particularly interesting for it included excellent talks ranging from the development of large scale structures in PNe, such as halos, to studies of collimated outflows and hypersonic bullets, the effects of stellar rotation on the nebular shell and warped toroids as a way to explain the origin of point-symmetry and poly-polarity. This diversity of topics exemplifies the current vigorous quest in the field for answers to topical problems in PN research. I present here a brief overview of these talks in the order they were scheduled during the conference.

  14. Nutrition Session Summary

    NASA Technical Reports Server (NTRS)

    Lane, Helen; Stein, T. P.

    1999-01-01

    Nutrition deficiencies affect multiple systems including muscle, bone, cardiovascular, renal, and gastrointestinal. Humans require many nutrients, ranging from the macronutrients (water, protein, energy sources) to micronutrients (minerals, vitamins). The ability to withstand shortfalls in intake of individual nutrients ranges from one or two days (e.g., water) to weeks (energy, protein, potassium) and months (some vitamins, minerals). In addition to putting humans at risk for nutrition deficiencies, space flight may also change the absorption, hence the pharmacodynamics, of several important medications. Papers given in this session dealt with all of these nutritional and pharmacological factors related to space flight: (1) Protein metabolism and muscle formation. (2) Pharmacodynamics. (3) Calcium metabolism and bone formation/resorption. and (4) Fluid and electrolytes.

  15. Three featured plenary sessions

    NASA Astrophysics Data System (ADS)

    2012-07-01

    The conference included three plenary sessions. The plenary on Governance, Security, Economy, and the Ecosystem of the Changing Arctic featured Vera Alexander, president, Arctic Research Consortium of the U.S.; Alan Thornhill, chief environmental officer, U.S. Department of the Interior's Bureau of Ocean Energy Management; and Fran Ulmer, chair, U.S. Arctic Research Commission. A plenary on the U.N. Convention on the Law of the Sea featured Ambassador David Balton, deputy assistant secretary for oceans and fisheries, U.S. Department of State; and Rear Admiral Frederick Kenney Jr., judge advocate general and chief counsel, U.S. Coast Guard. The plenary on Science and the 21st Century featured Phil Keslin, chief technology officer, small lab within Google.

  16. Neonicotinoid insecticide residues in soil dust and associated parent soil in fields with a history of seed treatment use on crops in southwestern Ontario.

    PubMed

    Limay-Rios, Victor; Forero, Luis Gabriel; Xue, Yingen; Smith, Jocelyn; Baute, Tracey; Schaafsma, Arthur

    2016-02-01

    Using neonicotinoid insecticides as seed treatments is a common practice in field crop production. Exposure of nontarget organisms to neonicotinoids present in various environmental matrices is debated. In the present study, concentrations of neonicotinoid residues were measured in the top 5 cm of soil and overlying soil surface dust before planting in 25 commercial fields with a history of neonicotinoid seed treatment use in southwestern Ontario in 2013 and 2014 using liquid chromatography-electrospray ionization tandem mass spectrometry. The mean total concentrations were 3.05 ng/g and 47.84 ng/g in 2013 and 5.59 ng/g and 71.17 ng/g in 2014 for parent soil and soil surface dust, respectively. When surface and parent soil residues were compared the mean concentration in surface dust was 15.6-fold and 12.7-fold higher than that in parent soil in 2013 and 2014, respectively. Pooled over years, the surface dust to parent soil ratio was 13.7, with mean concentrations of 4.36 ng/g and 59.86 ng/g for parent soil and surface dust, respectively. The present study's results will contribute important knowledge about the role these residues may play in the overall risk assessment currently under way for the source, transport, and impact of neonicotinoid insecticide residues in a maize ecosystem.

  17. Synergistic effects of dissolved organic carbon and inorganic nitrogen on methane uptake in forest soils without and with freezing treatment.

    PubMed

    Wu, Haohao; Xu, Xingkai; Duan, Cuntao; Li, Tuansheng; Cheng, Weiguo

    2016-01-01

    There is limited knowledge about how the interaction of dissolved organic carbon (DOC) and inorganic nitrogen (N) released into the soil just after freezing can affect methane (CH4) uptake in forest soils. Here, we present how freezing treatment and glucose, as a DOC source, can affect the roles of NH4(+)-N and NO3(-)-N in inhibiting soil CH4 uptake, by using soil-core incubation experiments. A long-term freezing at low temperature reduced cumulative CH4 uptake in the soils sampled from two temperate forest stands without carbon (C) and N addition. The inhibition effects of N addition as NH4Cl and KNO3 on the soil CH4 uptake were much larger than C addition. Freezing treatment eliminated the inhibition effect of NH4Cl and KNO3 addition on CH4 uptake, and this response was affected by glucose addition and forest types. The addition of glucose eliminated the inhibition effect of NO3(-)-N on CH4 uptake in the forest soils without and with freezing treatment, while the addition of NH4(+)-N and glucose inhibited synergistically the soil CH4 uptake. The results highlight the importance of synergistic effects of DOC and N inputs on the soil CH4 uptake under forest stands during soil wetting and thawing periods. PMID:27572826

  18. Synergistic effects of dissolved organic carbon and inorganic nitrogen on methane uptake in forest soils without and with freezing treatment

    PubMed Central

    Wu, Haohao; Xu, Xingkai; Duan, Cuntao; Li, Tuansheng; Cheng, Weiguo

    2016-01-01

    There is limited knowledge about how the interaction of dissolved organic carbon (DOC) and inorganic nitrogen (N) released into the soil just after freezing can affect methane (CH4) uptake in forest soils. Here, we present how freezing treatment and glucose, as a DOC source, can affect the roles of NH4+-N and NO3−-N in inhibiting soil CH4 uptake, by using soil-core incubation experiments. A long-term freezing at low temperature reduced cumulative CH4 uptake in the soils sampled from two temperate forest stands without carbon (C) and N addition. The inhibition effects of N addition as NH4Cl and KNO3 on the soil CH4 uptake were much larger than C addition. Freezing treatment eliminated the inhibition effect of NH4Cl and KNO3 addition on CH4 uptake, and this response was affected by glucose addition and forest types. The addition of glucose eliminated the inhibition effect of NO3−-N on CH4 uptake in the forest soils without and with freezing treatment, while the addition of NH4+-N and glucose inhibited synergistically the soil CH4 uptake. The results highlight the importance of synergistic effects of DOC and N inputs on the soil CH4 uptake under forest stands during soil wetting and thawing periods. PMID:27572826

  19. Does ochre have the potential to be a remedial treatment for As-contaminated soils?

    PubMed

    Olimah, J A; Shaw, L J; Hodson, M E

    2015-11-01

    Ochre is an iron oxyhydroxide-rich waste that accumulates in water bodies associated with disused mines. Laboratory experiments were conducted to examine the potential of four different ochres to be used as remedial agents for As contaminated soils. The ochres removed As from solution (200 and 500 mg L(-1)) in adsorption experiments at pH 3 and 8 and, when added to As contaminated soil (5% w/w) significantly reduced As release to solution. In both these experiments the highest surface area ochres performed best. The impact of ochre amendments on uptake of As from soil by plants and humans and release of As to ground water was assessed in a year-long incubation study. Ochres increased soil pH and reduced CaCl2 extractable As but had no consistent effect on plant growth, plant As uptake or As extraction in physiologically-based extraction tests. Ochre may be better used for water treatment than soil remediation.

  20. [Stabilization Treatment of Pb and Zn in Contaminated Soils and Mechanism Studies].

    PubMed

    Xie, Wei-qiang; Li, Xiao-mingi; Chen, Can; Chen, Xun-feng; Zhong, Yu; Zhong, Zhen-yu; Wan, Yong; Wang, Yan

    2015-12-01

    In the present work, the combined application of potassium dihydrogen phosphate, quick lime and potassium chloride was used to immobilize the Pb and Zn in contaminated soils. The efficiency of the process was evaluated through leaching tests and Tessier sequential extraction procedure. The mechanism of stabilization was analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) to reveal the mechanism of stabilization. The results showed that the stabilizing efficiency of Pb contaminated soils was above 80% and the leaching concentrations of Pb, Zn were far below the threshold when the ratio of exogenous P and soil (mol · mol⁻¹) was 2:1-4: 1, the dosing ratio of CaO was 0.1%-0.5% ( mass fraction) and the dosage of potassium chloride was 0.02-0. 04 mol. Meanwhile, Pb and Zn in soil were transformed from the exchangeable fraction into residual fraction, which implied that the migration of Pb, Zn in soil could be confined by the stabilization treatment. XRD and SEM analysis revealed that Ca-P-Pb precipitation, lead orthophosphate [PbHP0₄, Pb₃ (PO₄)₂], pyromorphite (Pb-PO₄-Cl/OH) and mixed heavy metal deposits (Fe-PO₄- Ca-Pb-Zn-OH) could be formed after solidification/stabilization in which Pb and Zn could be wrapped up to form a solidified composition and to prevent leaching. PMID:27012000

  1. Does ochre have the potential to be a remedial treatment for As-contaminated soils?

    PubMed

    Olimah, J A; Shaw, L J; Hodson, M E

    2015-11-01

    Ochre is an iron oxyhydroxide-rich waste that accumulates in water bodies associated with disused mines. Laboratory experiments were conducted to examine the potential of four different ochres to be used as remedial agents for As contaminated soils. The ochres removed As from solution (200 and 500 mg L(-1)) in adsorption experiments at pH 3 and 8 and, when added to As contaminated soil (5% w/w) significantly reduced As release to solution. In both these experiments the highest surface area ochres performed best. The impact of ochre amendments on uptake of As from soil by plants and humans and release of As to ground water was assessed in a year-long incubation study. Ochres increased soil pH and reduced CaCl2 extractable As but had no consistent effect on plant growth, plant As uptake or As extraction in physiologically-based extraction tests. Ochre may be better used for water treatment than soil remediation. PMID:26162334

  2. Evaluation of wastewater effluents for soil aquifer treatment in South Korea.

    PubMed

    Cha, W; Choi, H; Kim, J; Kim, I S

    2004-01-01

    Soil batch and column experiments were performed to characterize the wastewater effluents from seven different wastewater treatment plants in the Jonnam province, South Korea, with the purpose of evaluating the effluents for possible application of a soil aquifer treatment (SAT) in Korea. Batch experiments were conducted to measure the biodegradable dissolved organic carbon (BDOC) while 1 m soil columns, for simulating SAT, were employed to further analyze dissolved organic carbon (DOC) removal. The soils were collected from a river bottom in Jonnam. The BDOC fractions and the residual DOC concentrations for the effluents ranged from 19.3 to 59.9% and from 1.0 to 7.5 mg/L, respectively, depending on the reaction time. Applying the tentative criteria based on the data obtained for the BDOC and residual DOC, three effluents, from Gwangju, Hwasoon, and Jangsung, were found to be the most suitable for SAT applications. It was also concluded that the site characteristics should be also considered with regard to the retention time when evaluating the feasibility of SAT application in a certain region.

  3. On the potential of biological treatment for arsenic contaminated soils and groundwater.

    PubMed

    Wang, Suiling; Zhao, Xiangyu

    2009-06-01

    Bioremediation of arsenic contaminated soils and groundwater shows a great potential for future development due to its environmental compatibility and possible cost-effectiveness. It relies on microbial activity to remove, mobilize, and contain arsenic through sorption, biomethylation-demethylation, complexation, coprecipitation, and oxidation-reduction processes. This paper gives an evaluation on the feasibility of using biological methods for the remediation of arsenic contaminated soils and groundwater. Ex-situ bioleaching can effectively remove bulk arsenic from contaminated soils. Biostimulation such as addition of carbon sources and mineral nutrients can be applied to promote the leaching rate. Biosorption can be used either ex-situ or in-situ to remove arsenic from groundwater by sorption to biomass and/or coprecipitation with biogenic solids or sulfides. Introduction of proper biosorbents or microorganisms to produce active biosorbents in-situ is the key to the success of this method. Phytoremediation depends on arsenic-hyperaccumulating plants to remove arsenic from soils and shallow groundwater by translocating it into plant tissues. Engineering genetic strategies can be employed to increase the arsenic-hyperaccumulating capacity of the plants. Biovolatilization may be developed potentially as an ex-situ treatment technology. Further efforts are needed to focus on increasing the volatilization rate and the post-treatment of volatilization products.

  4. A new separation and treatment method for soil and groundwater restoration

    SciTech Connect

    Hitchens, G.D.

    1997-10-01

    Soil and groundwater contamination by organic compounds is a widespread environmental pollution problem. In many cases, contaminated soil is excavated and transported to a landfill or is incinerated to remove contaminants. These remediation practices are expensive, environmentally disruptive, require extensive permitting, and only move contamination from one location to another. Onsite and in situ treatment techniques offer a safer, more cost-effective, and permanent solution. Many soil and groundwater contaminants are highly volatile, enabling the use of methods such as in situ vacuum extraction and air injection for their removal. However, these methods are often difficult to use because of slow volatilization rates and the lack of effective methods to treat the extracted hazardous material. This Phase I Small Business Innovation Research program focuses on developing an in situ soil and groundwater remediation technique that is effective against volatile as well as nonvolatile compounds and that will shorten treatment times. The technique forms the basis of a new catalytic process to degrade extracted contaminants onsite. Key hardware elements on which the new technique is based have been proven in preliminary research. The method has a high potential for public and regulatory acceptance because of its low environment impact.

  5. Electrochemical Processes for In-Situ Treatment of Contaminated Soils - Final Report - 09/15/1996 - 01/31/2001

    SciTech Connect

    Huang, Chin-Pao

    2001-05-31

    This project will study electrochemical processes for the in situ treatment of soils contaminated by mixed wastes, i.e., organic and inorganic. Soil samples collected form selected DOE waste sites will be characterized for specific organic and metal contaminants and hydraulic permeability. The soil samples are then subject to desorption experiments under various physical-chemical conditions such as pH and the presence of surfactants. Batch electro-osmosis experiments will be conducted to study the transport of contaminants in the soil-water systems. Organic contaminants that are released from the soil substrate will be treated by an advanced oxidation process, i.e., electron-Fantan. Finally, laboratory reactor integrating the elector-osmosis and elector-Fantan processes will be used to study the treatment of contaminated soil in situ.

  6. 96th LHCC meeting Agenda OPEN Session and CLOSED Session

    ScienceCinema

    None

    2016-07-12

    OPEN Session on Wednesday, 19 November 2008 at 9h00-11h00 in Main Auditorium, Live webcast. Followed by CLOSED Session , 6th floor Conference room and continued on Thursday, 20 November 2008 9h00-13h00

  7. Advanced fuel hydrocarbon remediation national test location - biocell treatment of petroleum contaminated soils

    SciTech Connect

    Heath, J.; Lory, E.

    1997-03-01

    Biocells are engineered systems that use naturally occurring microbes to degrade fuels and oils into simpler, nonhazardous, and nontoxic compounds. Biocells are able to treat soils contaminated with petroleum based fuels and lubricants, including diesel, jet fuel, and lubricating and hydraulic oils. The microbes use the contaminants as a food source and thus destroy them. By carefully monitoring and controlling air and moisture levels, degradation rates can be increased and total treatment time reduced over natural systems.

  8. Effectiveness of mass treatment with mebendazole in the control of soil transmitted helminths in Sri Lanka.

    PubMed

    Balasuriya, S; Edirisinghe, J S; Rajudeen, N M

    1990-03-01

    The efficacy of a single large dose of mebendazole was compared with the three-day multiple dose in mass treatment. The subjects were selected from among plantation workers of a tea estate in Kandy. The multiple dose regime showed consistently better egg reduction rates and cure rates when compared to the single large dose in subjects harbouring one or more soil-transmitted helminths.

  9. Effectiveness of mass treatment with mebendazole in the control of soil transmitted helminths in Sri Lanka.

    PubMed

    Balasuriya, S; Edirisinghe, J S; Rajudeen, N M

    1990-03-01

    The efficacy of a single large dose of mebendazole was compared with the three-day multiple dose in mass treatment. The subjects were selected from among plantation workers of a tea estate in Kandy. The multiple dose regime showed consistently better egg reduction rates and cure rates when compared to the single large dose in subjects harbouring one or more soil-transmitted helminths. PMID:2361225

  10. Impact of reclamation treatment on the biological activity of soils of the solonetz complex in Western Siberia

    NASA Astrophysics Data System (ADS)

    Berezin, L. V.; Khamova, O. F.; Paderina, E. V.; Gindemit, A. M.

    2014-11-01

    The abundance and activity of the soil microflora were studied in a field experiment with the use of green manure crops to assess the impact of reclamation measures on the biological activity of soils of the solonetz complex. The number of microorganisms in the plow soil horizon increased in the background of the green fallows as compared to the black ones. Coefficients of mineralization, immobilization, and transformation of organic compounds were calculated for different variants of the soil treatment. The value of the mineralization coefficient indicates the intense decomposition of the green manure that entered the soil. In the first year, peas were actively decomposed, while oats, in the second year (aftereffect). The activity of the soil enzymes (invertase, urease, and catalase) was determined. A close relationship between the catalase activity and the intensity of the microbiological processes in the soils was revealed.

  11. Laboratory and field evaluation of the gas treatment approach for insitu remediation of chromate-contaminated soils

    SciTech Connect

    Thornton, E.C.; Jackson, R.L.

    1994-04-01

    Laboratory scale soil treatment tests have been conducted as part of an effort to develop and implement an in situ chemical treatment approach to the remediation of chromate-contaminated soils through the use of reactive gases. These tests involved three different soil samples that were contaminated with Cr(VI) at the 200 ppM level. Treatment of the contaminated soils was performed by passing 100 ppM and 2000 ppM concentrations of hydrogen sulfide in nitrogen through soil columns until a S:Cr mole ratio of 10:1 was achieved. The treated soils were then leached with groundwater or deionized water and analyzed to assess the extent of chromium immobilization. Test results indicate >90% immobilization of chromium and demonstrate that the treatment process is irreversible. Ongoing developmental efforts are being directed towards the demonstration and evaluation of the gas treatment approach in a field test at a chromate-contaminated site. Major planned activities associated with this demonstration include laboratory testing of waste site soil samples, design of the treatment system and injection/extraction well network, geotechnical and geochemical characterization of the test site, and identification and resolution of regulatory and safety requirements.

  12. Ecotoxicological risks associated with land treatment of petrochemical wastes. I. Residual soil contamination and bioaccumulation by cotton rats (Sigmodon hispidus).

    PubMed

    Schroder, Jackie; Basta, Nicholas; Payton, Mark; Wilson, James; Carlson, Ruth; Janz, David; Lochmiller, Robert

    2003-02-28

    Petrochemical waste contains both organic and inorganic contaminants that can pollute soil and may pose significant ecological risks to wildlife. Petrochemical waste typically is disposed of in land treatment units, which are widespread throughout Oklahoma and the United States. Few studies have been conducted evaluating possible toxicity risks to terrestrial organisms residing on these units. In this study, the extent of soil contamination with fluoride (F), metals, and organic hydrocarbons, the bioaccumulation of F and metals in cotton rats (Sigmodon hispidus), the relationship between contaminants in soil and in tissues of cotton rats, and the level of potentially toxic polycyclic aromatic hydrocarbons (PAHs) in soil were determined on land treatment units. Over a 2-yr period, cotton rats and soils were collected and analyzed from 5 land treatment and matched reference units. The number of land treatment units with soil metal contamination (in parentheses) included: Cr, Cu, Pb (5). Al, As, Ni, Sr, Zn (4). Ba (3). and Cd, V (2). The number of land treatment units with soil PAH contamination (in parentheses) were naphthalene, phenanthrene, benzo[g,h,i]perylene (3). acenaphthene, anthracene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[a]pyrene, indeno[1,2,3-c,d]pyrene, dibenz[a,h]anthracene (2). and acenaphthylene, fluorene, fluoranthene, benzo[k]fluoranthene (1). Total PAH and total petroleum hydrocarbons (TPH) were elevated at all five land treatment units. Mean sums of benzo[a]pyrene (BaP) equivalents (BaPequiv ) were not affected on

  13. Ex situ bioremediation of mineral oil in soils: Land treatment and composting. Final report

    SciTech Connect

    Gauger, K.

    1998-06-01

    Mineral oil dielectric fluid (MODF) has replaced PCB oil as the insulating medium in electrical transformers. Although eliminating PCBs has reduced the environmental impact resulting from transformer leaks, soil contaminated with mineral oil still often requires remediation. This study evaluated the feasibility of ex situ biotreatment by land farming and composting for Southern Company Services/Georgia Power. Research results indicate that composting does not enhance the biodegradation of mineral oil compared to land treatment. Furthermore, while land treatment does degrade mineral oil, the process takes nearly a year and may not meet regulatory limits. Because the environmental impact of MODF spills into soil is not well understood, states regulate this fluid similarly to petroleum fuel oil for cleanup purposes. This has led to costly remedial efforts, with utilities excavating contaminated media and disposing it in landfills. However, landfills are becoming increasingly regulated, and their use leaves future liability issues unresolved. Southern Company Services/Georgia Power and EPRI sought to explore the effectiveness of ex situ treatment technologies of land farming and composting to decontaminate soil for on-site reuse.

  14. Application of CFG Piles to Soft Soil Treatment of Municipal Engineering

    NASA Astrophysics Data System (ADS)

    Xu, Qingli; Song, Yan; Han, Xinzhan

    With rapid development of constructional engineering, methods used for soft soil foundation treatment become increasingly diversified. Because composite foundation has the peculiar advantage that that it makes full use of earth among piles and piles and is featured by short construction period, large treatment depth and relatively good effect, it has been applied more and more widely. The engineering applies CFG pipes, utilizes high bearing capacity of piles and gives full play to carrying capacity of earth among piles by establishing a mattress layer.

  15. Effect of thermal pre-treatment on the availability of PAHs for successive chemical oxidation in contaminated soils.

    PubMed

    Usman, M; Chaudhary, A; Biache, C; Faure, P; Hanna, K

    2016-01-01

    This is the premier study designed to evaluate the impact of thermal pre-treatment on the availability of polycyclic aromatic hydrocarbons (PAHs) for successive removal by chemical oxidation. Experiments were conducted in two soils having different PAH distribution originating from former coking plant sites (Homécourt, H, and Neuves Maisons, NM) located in northeast of France. Soil samples were pre-heated at 60, 100, and 150 °C for 1 week under inert atmosphere (N2). Pre-heating resulted in slight removal of PAHs (<10%) and loss of extractable organic matter (EOM). Then, these pre-heated soil samples were subjected to Fenton-like oxidation (H2O2 and magnetite) at room temperature. Chemical oxidation in soil without any pre-treatment showed almost no PAH degradation underscoring the unavailability of PAHs. However, chemical oxidation in pre-heated soils showed significant PAH degradation (19, 29, and 43% in NM soil and 31, 36, and 47% in H soil pre-treated at 60, 100, and 150 °C, respectively). No preferential removal of PAHs was observed after chemical oxidation in both soils. These results indicated the significant impact of pre-heating temperature on the availability of PAHs in contaminated soils and therefore may have strong implications in the remediation of contaminated soils especially where pollutant availability is a limiting factor.

  16. SUPERFUND TREATABILITY CLEARINGHOUSE: LOW TEMPERATURE TREATMENT OF CERCLA SOILS AND DEBRIS USING THE IT LABORATORY SCALE THERMAL DESORPTION FURNACES

    EPA Science Inventory

    This study report on laboratory experiments on low temperature treatment of soils using thermal desorption. The purpose of the study was to determine if thermal desorption could remove volatile and semi-volatile contaminants from a synthetically prepared soil spiked with pre...

  17. ASCO Plenary Sessions: impact, legacy, future.

    PubMed

    Vandross, Andrae; Prasad, Vinay; Mailankody, Sham

    2016-06-01

    The ASCO annual meeting draws a large crowd of physicians, cancer researchers, policy makers, and industry representatives. The crown jewel of the annual events is the Plenary session where impactful, influential and visible abstracts are selected for the largest audience. Plenary topics are frequently paired with concurrent New England Journal or Lancet publications.  Here, we review 9 years of ASCO plenary sessions.  Several themes emerge.  First, many of the topics selected have indeed been practice changing, such as the use of ALK inhibitors for ALK rearranged NSCLC, or checkpoint inhibitors in metastatic melanoma.  Second, although some plenary topics seemed destined to change practice, they ultimately falter, such as the use of Cetuximab in NSCLC, vaccine therapy for follicular lymphoma, and even Bevacizumab in metastatic renal cell cancer. Who could have forseen bevacizumab displaced by several VEGF TKIs?  Third, negative trials are rare among Plenary sessions, but when they are presented they are immensely important.  Examples include a seminal study using CA-125 levels to guide treatment of relapsed ovarian cancer, the use of lapatinib combined with traztuzumab in the adjuvant treatment of HER2 + disease, and studies showing no survival benefit to upfront bevacizumab in glioblastoma multiforme.   Fourth, we note a large industry presence among Plenary sessions, as the Industry in part sponsored 62% of Plenary abstracts.  Ultimately a review of 9 years of ASCO plenary reveals the plenary for what it is: a conservative selection of abstracts that, at the time, are thought to change the face of oncology.  Time, however, is the true arbiter, and some succeed in this quest, while others falter.  ASCO plenary sessions reveal the influence, legacy and future of cancer care.

  18. Evaluation of water quality functions of conventional and advanced soil-based onsite wastewater treatment systems.

    PubMed

    Cooper, Jennifer A; Loomis, George W; Kalen, David V; Amador, Jose A

    2015-05-01

    Shallow narrow drainfields are assumed to provide better wastewater renovation than conventional drainfields and are used for protection of surface and ground water. To test this assumption, we evaluated the water quality functions of two advanced onsite wastewater treatment system (OWTS) drainfields-shallow narrow (SND) and Geomat (GEO)-and a conventional pipe and stone (P&S) drainfield over 12 mo using replicated ( = 3) intact soil mesocosms. The SND and GEO mesocosms received effluent from a single-pass sand filter, whereas the P&S received septic tank effluent. Between 97.1 and 100% of 5-d biochemical oxygen demand (BOD), fecal coliform bacteria, and total phosphorus (P) were removed in all drainfield types. Total nitrogen (N) removal averaged 12.0% for P&S, 4.8% for SND, and 5.4% for GEO. A mass balance analysis accounted for 95.1% (SND), 94.1% (GEO), and 87.6% (P&S) of N inputs. When the whole treatment train (excluding the septic tank) is considered, advanced systems, including sand filter pretreatment and SND or GEO soil-based treatment, removed 99.8 to 99.9% of BOD, 100% of fecal coliform bacteria and P, and 26.0 to 27.0% of N. In contrast, the conventional system removed 99.4% of BOD and 100% of fecal coliform bacteria and P but only 12.0% of N. All drainfield types performed similarly for most water quality functions despite differences in placement within the soil profile. However, inclusion of the pretreatment step in advanced system treatment trains results in better N removal than in conventional treatment systems despite higher drainfield N removal rates in the latter.

  19. A session-to-session examination of homework engagement in cognitive therapy for depression: Do patients experience immediate benefits?

    PubMed

    Conklin, Laren R; Strunk, Daniel R

    2015-09-01

    Homework is a key component of Cognitive Therapy (CT) for depression. Although previous research has found evidence for a positive relationship between homework compliance and treatment outcome, the methods used in previous studies have often not been optimal. In this study, we examine the relation of specific aspects of homework engagement and symptom change over successive session-to-session intervals. In a sample of 53 depressed adults participating in CT, we examined the relation of observer-rated homework engagement and session-to-session symptom change across the first five sessions. Within patient (and not between patient) variability in homework engagement was significantly related to greater session-to-session symptom improvements. These findings were similar when homework engagement was assessed through a measure of general engagement with homework assignments and a measure assessing engagement in specific assignments often used in CT. Secondary analyses suggested that observer ratings of the effort patients made on homework and the completion of cognitive homework were the numerically strongest predictors of depressive symptom improvements. Patient engagement with homework assignments appears to be an important predictor of early session-to-session symptom improvements. Future research is needed to identify what therapist behaviors promote homework engagement. PMID:26183022

  20. Toxicity of emerging energetic soil contaminant CL-20 to potworm Enchytraeus crypticus in freshly amended or weathered and aged treatments.

    PubMed

    Kuperman, Roman G; Checkai, Ronald T; Simini, Michael; Phillips, Carlton T; Anthony, J Steven; Kolakowski, Jan E; Davis, Emily A

    2006-03-01

    We investigated the toxicity of an emerging polynitramine energetic material hexanitrohexaazaisowurtzitane (CL-20) to the soil invertebrate species Enchytraeus crypticus by adapting then using the Enchytraeid Reproduction Test (ISO/16387:2003). Studies were designed to develop ecotoxicological benchmark values for ecological risk assessment of the potential impacts of accidental release of this compound into the environment. Tests were conducted in Sassafras Sandy Loam soil, which supports relatively high bioavailability of CL-20. Weathering and aging procedures for CL-20 amended into test soil were incorporated into the study design to produce toxicity data that better reflect soil exposure conditions in the field compared with the toxicity in freshly amended soils. Concentration-response relationships for measurement endpoints were determined using nonlinear regressions. Definitive tests showed that toxicities for E. crypticus adult survival and juvenile production were significantly increased in weathered and aged soil treatments compared with toxicity in freshly amended soil, based on 95% confidence intervals. The median effect concentration (EC50) and EC20 values for juvenile production were 0.3 and 0.1 mg kg-1, respectively, for CL-20 freshly amended into soil, and 0.1 and 0.035 mg kg-1, respectively, for weathered and aged CL-20 soil treatments. These findings of increased toxicity to E. crypticus in weathered and aged CL-20 soil treatments compared with exposures in freshly amended soils show that future investigations should include a weathering and aging component to generate toxicity data that provide more complete information on ecotoxicological effects of emerging energetic contaminants in soil.

  1. Toxicity of emerging energetic soil contaminant CL-20 to potworm Enchytraeus crypticus in freshly amended or weathered and aged treatments.

    PubMed

    Kuperman, Roman G; Checkai, Ronald T; Simini, Michael; Phillips, Carlton T; Anthony, J Steven; Kolakowski, Jan E; Davis, Emily A

    2006-03-01

    We investigated the toxicity of an emerging polynitramine energetic material hexanitrohexaazaisowurtzitane (CL-20) to the soil invertebrate species Enchytraeus crypticus by adapting then using the Enchytraeid Reproduction Test (ISO/16387:2003). Studies were designed to develop ecotoxicological benchmark values for ecological risk assessment of the potential impacts of accidental release of this compound into the environment. Tests were conducted in Sassafras Sandy Loam soil, which supports relatively high bioavailability of CL-20. Weathering and aging procedures for CL-20 amended into test soil were incorporated into the study design to produce toxicity data that better reflect soil exposure conditions in the field compared with the toxicity in freshly amended soils. Concentration-response relationships for measurement endpoints were determined using nonlinear regressions. Definitive tests showed that toxicities for E. crypticus adult survival and juvenile production were significantly increased in weathered and aged soil treatments compared with toxicity in freshly amended soil, based on 95% confidence intervals. The median effect concentration (EC50) and EC20 values for juvenile production were 0.3 and 0.1 mg kg-1, respectively, for CL-20 freshly amended into soil, and 0.1 and 0.035 mg kg-1, respectively, for weathered and aged CL-20 soil treatments. These findings of increased toxicity to E. crypticus in weathered and aged CL-20 soil treatments compared with exposures in freshly amended soils show that future investigations should include a weathering and aging component to generate toxicity data that provide more complete information on ecotoxicological effects of emerging energetic contaminants in soil. PMID:16213571

  2. Soil and phosphorus accretion rates in sub-tropical wetlands: Everglades Stormwater Treatment Areas as a case example.

    PubMed

    Bhomia, R K; Inglett, P W; Reddy, K R

    2015-11-15

    Wetlands are known to serve as sinks for particulate matter and associated nutrients and contaminants. Consequently rate of soil accretion is critical for continued performance of wetlands to provide ecosystem services including water quality improvement and reduce excess contaminant loads into downstream waters. Here we demonstrate a new technique to determine rate of soil accretion in selected subtropical treatment wetlands located in southern USA. We also report changes in soil accretion rates and subsequent phosphorus (P) removal efficiency with increasing operational history of these treatment wetlands. Utilizing discernible signatures preserved within the soil depth profiles, 'change points' (CP) that corresponded to specific events in the life history of a wetland were determined. The CP was observed as an abrupt transition in the physico-chemical properties of soil as a manifestation of prevailing historical conditions (e.g. startup of treatment wetlands in this case). Vertical depth of CP from the soil surface was equivalent to the depth of recently accreted soil (RAS) and used for soil accretion rate calculations. Annual soil and P accretion rates determined using CP technique (CPT) in studied wetlands ranged from 1.0±0.3 to 1.7±0.8 cm yr(-1) and 1.3±0.6 to 3.3±2 g m(-2) yr(-1), respectively. There was no difference in RAS depth between emergent and submerged aquatic vegetation communities found at the study location. Our results showed that soil and P accretion rates leveled off after 10 yr of treatment wetlands' operation. On comparison, soil accretion rates and RAS depth determined by CPT were commensurate with that measured by other techniques. CPT can be easily used where a reliable record of wetland establishment date or some significant alteration/perturbation is available. This technique offers a relatively simple alternative to determine vertical accretion rates in free-water surface wetlands. PMID:26172597

  3. EMERGING TECHNOLOGY BULLETIN: PROCESS FOR THE TREATMENT OF VOLATILE ORGANIC CARBON AND HEAVY-METAL- CONTAMINATED SOIL - INTERNATIONAL TECHNOLOGY CORPORATION

    EPA Science Inventory

    The batch steam distillation and metal extraction treatment process is a two-stage system that treats soils contaminated with organics and inorganics. This system uses conventional, readily available process equipment, and does not produce hazardous combustion products. Hazar...

  4. Neurovestibular Session Summary

    NASA Technical Reports Server (NTRS)

    Oman, Charles; Cohen, Malcolm

    1999-01-01

    . Three examples were presented at this meeting: 1) Transgenic animal experiments suggest that in addition to the light illumination cycle, vestibular inputs may also serve as an important input to the circadian system. 2) Radiation can cause important CNS effects in animals, including loss of spatial memory. 3) As described in our session, otolith inputs may contribute to cardiovascular regulation of orthostatic tolerance. Over the past three days, we've all enjoyed catching up with old friends, and making many new ones. On behalf of my colleagues, I want to thank Al Coats and the USRA DSLS staff for the great job they did in running this meeting. And keeping the emphasis on fun. And also my Co- Chair, Mal Cohen, who had more stamina than many of us, despite major surgery only three weeks ago. Mal and I have written a few lines describing each of the seventeen papers in our session, to give you a quick over-view, and as a guide to the full abstracts, We have grouped them under five themes: preflight and inflight countermeasurements, postlanding posture and locomotion deficits: assessment and prediction, adaptive processes, relationships among physical simuli, perceptions, and eye movements, vestibular contribution to human autonomic responses, and implications and recommendations.

  5. Resilience of soil microbial and nematode communities after biofumigant treatment with defatted seed meals

    NASA Astrophysics Data System (ADS)

    Mocali, Stefano; Landi, Silvia; Curto, Giovanna; Elisabetta, Dallavalle; Infantino, Alessandro; Colzi, Claudia; d'Errico, Giada; Roversi, Pio Federico; D'Avino, Lorenzo; Lazzeri, Luca

    2015-04-01

    The use of alternative biocidal compounds to replace chemical pesticides after the Directive 2009/128/EC has raised renewed interest in the biofumigation technique. In particular, the defatted seed meals (DSM) derived from brassicaceae plant tissues with high glucosinolate content represent an efficient practice to control soil-born plant pathogens and pests that can be applied in synergy to catch crop green manures. For a wider and safer application of this technique, the impacts on non-target soil microorganisms and free-living nematodes have to be investigated in more depth. In this pot-scale experiment a naturally nematode-infected soil was amended with a glucosinolate-containing DSM from Brassica carinata (CAR), a non-glucosinolate-containing DSM from sunflower (SUN) and the metham-sodium fumigant (VAP). Tomato plants were transplanted and checked for the presence of pests and/or pathogens and plant vigour. The response of soil microbial communities was assessed through 454-pyrosequencing analysis of bacterial 16S rRNA and fungal 18S rRNA genes, whereas nematode indices were applied to assess their community structure 0, 10, 32 and 62 days after the treatments. Significant shifts were observed among both bacterial and fungal communities, whereas various changes of nematode communities occurred depending on the nematode family. Similar changes initially occurred in both bacterial and fungal community structure in response to DSM and VAP amendments, but after 62 days fungal communities were more strongly shaped by VAP fumigation than bacteria. The non-biofumigant SUN treatment added organic matter into the soil inducing significant changes in microbial communities, but it was not effective against M. incognita root infestation. Although the free-living nematode structure was negatively influenced by all treatments, B. carinata DMS proved the best compromise between efficiency to control M. incognita and environmental impact. These results confirmed the

  6. Modeling Soil Aquifer Treatment for Artificial Recharge for Sustainable Wastewater Reuse

    NASA Astrophysics Data System (ADS)

    Kim, J.; Choi, H.; Schwartz, F.

    2002-12-01

    Growing populations, increasing water demands, and worsening environmental conditions have led to the need for new water supplies in addition to existing surface and groundwater. Recycled water is being considered as one of new water supplies, and a wide variety of options to reuse water has been developed. Where soil and groundwater conditions are favorable, artificial recharge of water through infiltration basins results in a significant improvement in water quality. The unsaturated (vadose) zone acts as a natural filter where physico-chemical and biological processes operate to remove pollutants of concern such as suspended solids, organic and inorganic materials, bacteria, and viruses. The saturated subsurface provide seasonal and longer storage, as well as additional treatment. We developed a 3-dimensional numerical model to simulate the physico-chemical and biological behavior of key constituents, including nitrate, organic carbon, oxygen, ammonia, in recycled water as a consequence of transport in soil/groundwater systems. The model developed in this study was found to effectively describe the dynamics of the key constituents and microorganisms in both unsaturated and saturated subsurface environments. Then, the model was employed to estimate optimum operational conditions of the soil aquifer treatment process. Operation conditions relating to dissolved oxygen levels were found to be a key to obtaining desired water quality improvements. Our ultimate goal is to estimate long-term sustainability of systems and evaluate the efficacy of this approach.

  7. Plant uptake/bioavailability of heavy metals from the contaminated soil after treatment with humus soil and hydroxyapatite.

    PubMed

    Misra, Virendra; Chaturvedi, Pranav Kumar

    2007-10-01

    Uptake /bioavailability study using the Indian mustard plant (Brassica juncea) was undertaken at the interval of 7, 14 and 21 days to test the immobilization of heavy metals from contaminated soil that were amended with humus soil and/or hydroxyapatite. For this, four sets consisting of non-humus soil + metals (Cd, Cr, Ni and Pb), humus soil + metals, non-humus and humus soil in the ratio of 1:3 + metals and non-humus soil: humus soil in the ratio of 1:3 + metals + 1% hydroxyapatite were prepared. The bioavailability of Pb, Cd, Cr and Ni in non-humus soil system was 58%, 67%, 65% and 63%, respectively in 7 days, more than 80% in 14 days and more than 90% in 21 days. Use of non-humus, humus soil in the ratio of 1:3 and addition of 1% hydroxyapatite decreased the bioavailability of lead around 21 to 22.5%, Cd 35 to 36%, Cr 25.5 to 26.9%, Ni 34 to 39% in 7, 14 and 21 days. Apart from this increase in the fresh weight of the plant was also noticed during the experiment. The data showed that addition of 1% hydroxyapatite in the non-humus-humus soil system caused the increase in the fresh weight around 90% in 7, 14 and 21 days as compared to plant grown in non-humus and metal soil system.

  8. Reactivity to nicotine cues over repeated cue reactivity sessions.

    PubMed

    LaRowe, Steven D; Saladin, Michael E; Carpenter, Matthew J; Upadhyaya, Himanshu P

    2007-12-01

    The present study investigated whether reactivity to nicotine-related cues would attenuate across four experimental sessions held 1 week apart. Participants were nineteen non-treatment seeking, nicotine-dependent males. Cue reactivity sessions were performed in an outpatient research center using in vivo cues consisting of standardized smoking-related paraphernalia (e.g., cigarettes) and neutral comparison paraphernalia (e.g., pencils). Craving ratings were collected before and after both cue presentations while physiological measures (heart rate, skin conductance) were collected before and during the cue presentations. Although craving levels decreased across sessions, smoking-related cues consistently evoked significantly greater increases in craving relative to neutral cues over all four experimental sessions. Skin conductance was higher in response to smoking cues, though this effect was not as robust as that observed for craving. Results suggest that, under the described experimental parameters, craving can be reliably elicited over repeated cue reactivity sessions.

  9. Enhanced infiltration regime for treated-wastewater purification in soil aquifer treatment (SAT)

    NASA Astrophysics Data System (ADS)

    Nadav, Itamar; Arye, Gilboa; Tarchitzky, Jorge; Chen, Yona

    2012-02-01

    SummaryUtilization of treated wastewater (TWW) for agriculture is a widely accepted practice in regions suffering from freshwater (FW) shortages. Soil aquifer treatment is often employed for wastewater purification in regions with sandy soil. Infiltration rates of water through the soil can decrease as a result organic matter (OM) accumulation and the consequential water repellency. We examined several infiltration regimes with the aim of achieving lower levels of OM accumulation, reduced water repellency and increased infiltration rate in the topsoil layer of the infiltration basin. OM accumulation in the topsoil layer was found to be the main factor adversely affecting soil permeability. In measurements performed in the infiltration basins of the Tel Aviv wastewater-purification facility over a 1-year period, infiltration rates were found to differ with season, being low in the winter and high in the summer. Similar observations were made on small model infiltration ponds established to simulate the large basins. Several water-application regimes were tested for enhancement of the infiltration rates. Rapid application of TWW was the most efficient method in terms of reducing OM accumulation and water repellency in the topsoil layer. Low-rate, and spraying of TWW over the soil using sprinklers produced the highest OM accumulation and consequently, higher water repellency. Low-rate, single outlet application—the conventional infiltration method employed in the commercial infiltration basins—exhibited moderate OM accumulation and water repellency. Neither water repellency nor OM accumulation were observed in the FW-application regime. Accumulation of OM originating from the percolating TWW, at the topsoil layer was identified as dominating infiltration rate at the infiltration basins. Reduction of OM content by the means proposed and evaluated in this experiment can drastically increase infiltration rates.

  10. Soil amendment using poplar woodchips to enhance the treatment of wastewater-originated nutrients.

    PubMed

    Meffe, Raffaella; de Miguel, Ángel; Martínez Hernández, Virtudes; Lillo, Javier; de Bustamante, Irene

    2016-09-15

    Vegetation filters, a nature based wastewater regeneration technology, have been reported as a feasible solution for small municipalities and scattered populations with limited access to sewage networks. However even when such a treatment is properly planned, the leaching of contaminants through the unsaturated zone may occur. The amendment of soil with a readily-labile source of carbon is supposed to ameliorate the removal of contaminants by stimulating microbial activity and enhancing sorption processes. In this study, lab-scale leaching column experiments were carried out to explore if the addition of woodchips to the soil could be a feasible strategy to be integrated in a vegetation filter. Two different types of arrangement of soil and woodchips layers were tested. The soil was collected from an operating vegetation filter treating wastewater of an office building characterised by a high nutrient load. Daily pulse of synthetic wastewater were applied into the columns and effluent samples were collected and analyzed for major ions, total nitrogen (NT), total phosphorous (PT) and chemical oxygen demand (COD). By the end of the experiment, NT, NO3-N and PT soil contents were also measured. Results indicate that amendments with woodchips enhance the elimination of wastewater-originated contaminants. NT removal in the columns with woodchips reaches a value of 99.4%. The main processes responsible for this elimination are NH4-N sorption and nitrification/denitrification. This latter fostered by the reduced redox conditions due to the enhanced microbial activity. High removal of PT (99%) is achieved independently of the woodchips presence due to retention and/or precipitation phenomena. The COD removal efficiency is not affected by the presence of the woodchips. The leaching of organic carbon occurs only during the experimental start-up period. PMID:27288555

  11. Electrochemical treatment of spent solution after EDTA-based soil washing.

    PubMed

    Voglar, David; Lestan, Domen

    2012-04-15

    The use of EDTA in soil washing technologies to remediate soils contaminated with toxic metals is prohibitive because of the large volumes of waste washing solution generated, which must be treated before disposal. Degradation of EDTA in the waste solution and the removal of Pb, Zn and Cd were investigated using electrochemical advanced oxidation processes (EAOP) with a boron-doped diamond anode (BDDA), graphite and iron anodes and a stainless-steel cathode. In addition to EAOP, the efficiency of electro-Fenton reactions, induced by the addition of H(2)O(2) and the regulation of electrochemical systems to pH 3, was also investigated. Soil extraction with 15 mmol kg(-1) of soil EDTA yielded waste washing solution with 566 ± 1, 152 ± 1 and 5.5 ± 0.1 mg L(-1) of Pb, Zn and Cd, respectively. Treatments of the waste solution in pH unregulated electrochemical systems with a BDDA and graphite anode (current density 67 mA cm(-2)) were the most efficient and removed up to 98 ± 1, 96 ± 1, 99 ± 1% of Pb, Zn and Cd, respectively, by electrodeposition on the cathode and oxidatively degraded up to 99 ± 1% of chelant. In the electrochemical system with an Fe anode operated at pH 3, the chelant remained preserved in the treated solution, while metals were removed by electrodeposition. This separation opens up the possibility of a new EDTA recycling method from waste soil washing solution. PMID:22305659

  12. Modified clay sorbents for wastewater treatment and immobilization of heavy metals in soils

    NASA Astrophysics Data System (ADS)

    Burlakovs, Juris; Klavins, Maris; Vincevica-Gaile, Zane; Stapkevica, Mara

    2014-05-01

    Soil and groundwater pollution with heavy metals is the result of both, anthropogenic and natural processes in the environment. Anthropogenic influence in great extent appears from industry, mining, treatment of metal ores and waste incineration. Contamination of soil and water can be induced by diffuse sources such as applications of agrochemicals and fertilizers in agriculture, air pollution from industry and transport, and by point sources, e.g., wastewater streams, runoff from dump sites and factories. Treatment processes used for metal removal from polluted soil and water include methodologies based on chemical precipitation, ion exchange, carbon adsorption, membrane filtration, adsorption and co-precipitation. Optimal removal of heavy metal ions from aqueous medium can be achieved by adsorption process which is considered as one of the most effective methods due to its cost-effectiveness and high efficiency. Immobilization of metals in contaminated soil also can be done with different adsorbents as the in situ technology. Use of natural and modified clay can be developed as one of the solutions in immobilization of lead, zinc, copper and other elements in polluted sites. Within the present study clay samples of different geological genesis were modified with sodium and calcium chlorides, iron oxyhydroxides and ammonium dihydrogen phosphate in variable proportions of Ca/P equimolar ratio to test and compare immobilization efficiency of metals by sorption and batch leaching tests. Sorption capacity for raw clay samples was considered as relatively lower referring to the modified species of the same clay type. In addition, clay samples were tested for powder X-ray difractometry, cation exchange, surface area properties, elemental composition, as well as scanning electron microscopy pictures of clay sample surface structures were obtained. Modified clay sorbents were tested for sorption of lead as monocontaminant and for complex contamination of heavy metals. The

  13. Occurrence and treatment of arsenic in groundwater and soil in northern Mexico and southwestern USA.

    PubMed

    Camacho, Lucy Mar; Gutiérrez, Mélida; Alarcón-Herrera, Maria Teresa; Villalba, Maria de Lourdes; Deng, Shuguang

    2011-04-01

    This review focuses on the occurrence and treatment of arsenic (As) in the arid region of northern Mexico (states of Chihuahua and Coahuila) and bordering states of the southwestern US (New Mexico, Arizona, and Texas), an area known for having high As concentrations. Information assembled and assessed includes the content and probable source of As in water, soil, and sediments and treatment methods that have been applied in the area. High As concentrations were found mainly in groundwater, their source being mostly from natural origin related to volcanic processes with significant anthropogenic contributions near mining and smelting of ores containing arsenic. The affinity of As for solid phases in alkaline conditions common to arid areas precludes it from being present in surface waters, accumulating instead in sediments and shifting its threat to its potential remobilization in reservoir sediments and irrigation waterways. Factors such as oxidation and pH that affect the mobility of As in the subsurface environment are mentioned. Independent of socio-demographic variables, nutritional status, and levels of blood lead, cognitive development in children is being affected when exposed to As. Treatments known to effectively reduce As content to safe drinking water levels as well as those that are capable of reducing As content in soils are discussed. Besides conventional methods, emergent technologies, such as phytoremediation, offer a viable solution to As contamination in drinking water.

  14. Final report from VFL technologies for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils: LEFPC appendices, volume 1, appendix I-IV

    SciTech Connect

    1994-09-01

    This document contains Appendix I-IV for the pilot-scale thermal treatment of lower East Fork Poplar Creek floodplain soils. Included are calibration records; quality assurance; soils characterization; pilot scale trial runs.

  15. A Model to Predict Nitrogen Losses in Advanced Soil-Based Wastewater Treatment Systems

    NASA Astrophysics Data System (ADS)

    Morales, I.; Cooper, J.; Loomis, G.; Kalen, D.; Amador, J.; Boving, T. B.

    2014-12-01

    Most of the non-point source Nitrogen (N) load in rural areas is attributed to onsite wastewater treatment systems (OWTS). Nitrogen compounds are considered environmental pollutants because they deplete the oxygen availability in water bodies and produce eutrophication. The objective of this study was to simulate the fate and transport of Nitrogen in OWTS. The commercially-available 2D/3D HYDRUS software was used to develop a transport and fate model. Experimental data from a laboratory meso-cosm study included the soil moisture content, NH4 and NO3- data. That data set was used to calibrate the model. Three types of OWTS were simulated: (1) pipe-and-stone (P&S), (2) advanced soil drainfields, pressurized shallow narrow drainfield (SND) and (3) Geomat (GEO), a variation of SND. To better understand the nitrogen removal mechanism and the performance of OWTS technologies, replicate (n = 3) intact soil mesocosms were used with 15N-labelled nitrogen inputs. As a result, it was estimated that N removal by denitrification was predominant in P&S. However, it is suggested that N was removed by nitrification in SND and GEO. The calibrated model was used to estimate Nitrogen fluxes for both conventional and advanced OWTS. Also, the model predicted the N losses from nitrification and denitrification in all OWTS. These findings help to provide practitioners with guidelines to estimate N removal efficiencies for OWTS, and predict N loads and spatial distribution for identifying non-point sources.

  16. [Matching study on treatment of sewage from highway service area by ecological soil system in Chongqing].

    PubMed

    Chen, Yu-Cheng; Yang, Zhi-Min; He, Juan

    2011-04-01

    The osmotic coefficient by clear water and sewage, static adsorption, dynamic and water penetration tests were conducted to determine the parameters, which including materials matching, hydraulic loading, and wet to dry ratio, in the treatment of sewage from highway service area (SHSA) in Chongqing by ecological soil system. The results showed that, according to principles of easier getting, high and stable hydraulic load, large decontamination capability, the materials matching of working layer SHSA was made of 30.67% soil, 61.33% sand and 8.00% cinder in Chongqing, and the supporting layer was consisted of 0.20 m cable and 0.10 m broken stone (height). The total height of the ecological soil system was 1.6 m, at which 1.00, 1.20, 1.40, 1.60 m department of hydraulic loading were 0.344, 0.322, 0.307, 0.298 m x d(-1), respectively. The flooding period of working layer was 1 d and the drying period 1.5 d, i. e, the ratio of wet to dry was 1:1.5.

  17. Investigation on reusing water treatment residuals to remedy soil contaminated with multiple metals in Baiyin, China.

    PubMed

    Wang, Changhui; Zhao, Yuanyuan; Pei, Yuansheng

    2012-10-30

    In this work, the remediation of soils contaminated with multiple metals using ferric and alum water treatment residuals (FARs) in Baiyin, China, was investigated. The results of metals fractionation indicated that after the soil was treated with FARs, arsenic (As), lead (Pb), nickel (Ni), zinc (Zn) and copper (Cu) could be transformed into more stable forms, i.e., As bound in crystalline Fe/Al oxides and other metals in the oxidable and residual forms. However, the forms of chromium (Cr) and cadmium (Cd) were unaffected. Interestingly, due to the effect of FARs, barium (Ba) was predominantly transformed into more mobile forms. The bioaccessibility extraction test demonstrated that the FARs reduced the bioaccessibility of As by 25%, followed by Cu, Cr, Zn, Ni and Pb. The bioaccessibility of Cd and Ba were increased; in particular, there was an increase of 41% for Ba at the end of the test. In conclusion, the FARs can be used to remedy soil contaminated with multiple metals, but comprehensive studies are needed before practical applications of this work. PMID:22954606

  18. Fate and transport of carbamazepine in a soil aquifer treatment (SAT) system: evaluation of a monitoring study and soil column experiments

    NASA Astrophysics Data System (ADS)

    Arye, G.; Dror, I.; Berkowitz, B.

    2009-12-01

    Carbamazepine (CBZ), an anticonvulsant and mood stabilizing drug, is found to be highly persistent in wastewater treatment plants and when subsequently released to the environment. Because of its physicochemical properties, CBZ is only weakly sorbed to mineral soils and is resistant to biodegradation. As a consequence, CBZ has been suggested as an appropriate anthropogenic marker to track the fate of wastewater in aquatic systems. We study the fate and transport of CBZ in the Dan Region Reclamation Project (Shafdan) in Israel, where about one quarter of the country’s wastewater undergoes purification. The secondary treatment of raw wastewater consists of mechanical and biological treatment by activated sludge, with an additional step of nitrification-denitrification, and subsequent recharge of treated effluent to groundwater via infiltration basins, as a complementary tertiary treatment known as soil aquifer treatment (SAT). Water produced from the SAT system is pumped from a depth of 100-200 m by means of approximately 100 recovery wells, located 300-1,500 m from the recharge basins. This water is then delivered through a single 87 km long pipeline to the southern part of the country, where it is used for irrigation. We examine the fate of CBZ before and after treatment with the SAT system. To date, our monitoring has detected up to 1300 ng/L of CBZ in the recharged effluent before SAT, and up to 700 ng/L after treatment, prior to use for irrigation. The latter may considered as an aggregate value from all recovery wells. Additional information on CBZ transport characteristics has been gained from a series of soil column experiments using soil samples taken from the SAT infiltration basin to a depth of 170 cm. For each soil layer examined, the soil column was first leached of CBZ and subsequently loaded with secondary treated wastewater containing CBZ. The CBZ breakthrough curves resemble transport of a conservative tracer in most of the soil samples. We

  19. Soil organic matter-hydrogen peroxide dynamics in the treatment of contaminated soils and groundwater using catalyzed H2O2 propagations (modified Fenton's reagent).

    PubMed

    Bissey, Lauren L; Smith, Jeffrey L; Watts, Richard J

    2006-07-01

    The interactions between catalyzed H(2)O(2) propagations (CHP-i.e. modified Fenton's reagent) and soil organic matter (SOM) during the treatment of contaminated soils and groundwater was studied in a well-characterized surface soil. The fate of two fractions of SOM, particulate organic matter (POM) and nonparticulate organic matter (NPOM), during CHP reactions was evaluated using concentrations of hydrogen peroxide from 0.5 to 3M catalyzed by soluble iron (III), an iron (III)-ethylenediamine tetraacetic acid (EDTA) chelate, or naturally-occurring soil minerals. The destruction of total SOM in CHP systems was directly proportional to the hydrogen peroxide dosage, and was significantly greater at pH 3 than at neutral pH; furthermore, SOM destruction occurred predominantly in the NPOM fraction. At pH 3, SOM did not affect hydrogen peroxide decomposition rates or hydroxyl radical activity in CHP reactions. However, at neutral pH, increasing the mass of SOM decreased the hydrogen peroxide decomposition rate and increased the rate of hydroxyl radical generation in CHP systems. These results show that, while CHP reactions destroy some of the organic carbon pools, SOM does not have a significant effect on the CHP treatment of soils and groundwater. PMID:16815526

  20. Integrated monitoring technologies for the management of a Soil-Aquifer-Treatment (SAT) system.

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Alexandros; Kallioras, Andreas; Kofakis, Petros; Bumberger, Jan; Schmidt, Felix; Athanasiou, Georgios; Uzunoglou, Nikolaos; Amditis, Angelos; Dietrich, Peter

    2016-04-01

    Artificial recharge of groundwater has an important role to play in water reuse as treated wastewater effluent can be infiltrated into the ground for aquifer recharge. As the effluent moves through the soil and the aquifer, it undergoes significant quality improvements through physical, chemical, and biological processes in the underground environment. Collectively, these processes and the water quality improvement obtained are called soil-aquifer-treatment (SAT) or geopurification. The pilot site of Lavrion Technological & Cultural Park (LTCP) of the National Technical University of Athens (NTUA), involves the employment of plot infiltration basins at experimental scale, which will be using waters of impaired quality as a recharge source, and hence acting as a Soil-Aquifer-Treatment, SAT, system. Τhe LTCP site will be employed as a pilot SAT system complemented by new technological developments, which will be providing continuous monitoring of the quantitative and qualitative characteristics of infiltrating groundwater through all hydrologic zones (i.e. surface, unsaturated and saturated zone). This will be achieved by the development and installation of an integrated system of prototype sensing technologies, installed on-site, and offering a continuous evaluation of the performance of the SAT system. An integrated approach of the performance evaluation of any operating SAT system should aim at parallel monitoring of all hydrologic zones, proving the sustainability of all involved water quality treatment processes within unsaturated and saturated zone. Hence a prototype system of Time and Frequency Domain Reflectometry (TDR & FDR) sensors is developed and will be installed, in order to achieve continuous quantitative monitoring of the unsaturated zone through the entire soil column down to significant depths below the SAT basin. Additionally, the system contains two different radar-based sensing systems that will be offering (i) identification of preferential

  1. Integrated monitoring technologies for the management of a Soil-Aquifer-Treatment (SAT) system

    NASA Astrophysics Data System (ADS)

    Kallioras, Andreas; Kofakis, Petros; Bumberger, Jan; Athanasiou, Georgios; Schimdt, Felix; Apostolopoulos, Georgios; Uzunoglou, Nikolaos; Dietrich, Peter; Schuth, Christoph

    2015-04-01

    Artificial recharge of groundwater has an important role to play in water reuse as treated wastewater effluent can be infiltrated into the ground for aquifer recharge. As the effluent moves through the soil and the aquifer, it undergoes significant quality improvements through physical, chemical, and biological processes in the underground environment. Collectively, these processes and the water quality improvement obtained are called soil-aquifer-treatment (SAT) or geopurification. The pilot site of Lavrion Technological & Cultural Park (LTCP) of the National Technical University of Athens (NTUA), involves the employment of plot infiltration basins at experimental scale, which will be using waters of impaired quality as a recharge source, and hence acting as a Soil-Aquifer-Treatment, SAT, system. Τhe LTCP site will be employed as a pilot SAT system complemented by new technological developments, which will be providing continuous monitoring of the quantitative and qualitative characteristics of infiltrating groundwater through all hydrologic zones (i.e. surface, unsaturated and saturated zone). This will be achieved by the development and installation of an integrated system of prototype sensing technologies, installed on-site, and offering a continuous evaluation of the performance of the SAT system. An integrated approach of the performance evaluation of any operating SAT system should aim at parallel monitoring of all hydrologic zones, proving the sustainability of all involved water quality treatment processes within unsaturated and saturated zone. Hence a prototype system of Time and Frequency Domain Reflectometry (TDR & FDR) sensors is developed and will be installed, in order to achieve continuous quantitative monitoring of the unsaturated zone through the entire soil column down to significant depths below the SAT basin. Additionally, the system contains two different radar-based sensing systems that will be offering (i) identification of preferential

  2. Autoclave treatment of pig manure does not reduce the risk of transmission and transfer of tetracycline resistance genes in soil: successive determinations with soil column experiments.

    PubMed

    Kang, Yijun; Gu, Xian; Hao, Yangyang; Hu, Jian

    2016-03-01

    The increasing use of antibiotics, especially tetracycline, in livestock feed adversely affects animal health and ecological integrity. Therefore, approaches to decrease this risk are urgently needed. High temperatures facilitate antibiotic degradation; whether this reduces transmission risk and transfer of tetracycline-resistant bacteria (TRBs) and tetracycline resistance genes (TRGs) in soil remains unknown. Successive experiments with soil columns evaluated the effects of autoclaving pig manure (APM) on soil TRB populations and TRGs over time at different soil depths. The data showed sharp increases in TRB populations and TRGs in each subsoil layer of PM (non-APM) and APM treatments within 30 days, indicating that TRBs and TRGs transferred rapidly. The level of TRBs in the upper soil layers was approximately 15-fold higher than in subsoils. TRBs were not dependent on PM and APM levels, especially in the late phase. Nevertheless, higher levels of APM led to rapid expansion of TRBs as compared to PM. Moreover, temporal changes in TRB frequencies in total culturable bacteria (TCBs) were similar to TRBs, indicating that the impact of PM or APM on TRBs was more obvious than for TCBs. TRBs were hypothesized to depend on the numbers of TRGs and indigenous recipient bacteria. In the plough layer, five TRGs (tetB, tetG, tetM, tetW, and tetB/P) existed in each treatment within 150 days. Selective pressure of TC may not be a necessary condition for the transfer and persistence of TRGs in soil. High temperatures might reduce TRBs in PM, which had minimal impact on the transmission and transfer of TRGs in soil. Identifying alternatives to decrease TRG transmission remains a major challenge.

  3. Soil biodiversity in artificial black pine stands after selective silvicultural treatments: preliminary results

    NASA Astrophysics Data System (ADS)

    Mocali, Stefano; Fabiani, Arturo; Butti, Fabrizio; De Meo, Isabella; Bianchetto, Elisa; Landi, Silvia; Montini, Piergiuseppe; Samaden, Stefano; Cantiani, Paolo

    2016-04-01

    The decay of forest cover and soil erosion is a consequence of continual intensive forest exploitation, such as grazing and wildfires over the centuries. From the end of the eighteenth century up to the mid-1900s, black pine plantations were established throughout the Apennines' range in Italy, to improve forest soil quality. The main aim of this reafforestation was to re-establish the pine as a first cover, pioneer species. A series of thinning activities were therefore planned by foresters when these plantations were designed. The project Selpibiolife (LIFE13 BIO/IT/000282) has the main objective to demonstrate the potential of an innovative silvicultural treatment to enhance soil biodiversity under black pine stands. The monitoring will be carried out by comparing selective and traditional thinning methods (selecting trees from below leaving well-spaced, highest-quality trees) to areas without any silvicultural treatments (e.g. weeding, cleaning, liberation cutting). The monitoring survey was carried out in Pratomagno and Amiata Val D'Orcia areas on the Appennines (Italy) and involved different biotic levels: microorganisms, mesofauna, nematodes and macrofauna (Coleoptera). The results displayed a significant difference between the overall biodiversity of the two areas. In particular, microbial diversity assessed by both biochemical (microbial biomass, microbial respiration, metabolic quotient) and molecular (PCR-DGGE) approaches highlighted different a composition and activity of microbial communities within the two areas before thinning. Furthermore, little but significant differences were observed for mesofauna and nematode community as well which displayed a higher diversity level in Amiata areas compared to Pratomagno. In contrast, Coleoptera showed higher richness values in Pratomagno, where the wood degrader Nebria tibialis specie dominated, compared to Amiata. As expected, a general degraded biodiversity was observed in both areas before thinning.

  4. Evaluation of Water Quality Renovation by Advanced Soil-Based Wastewater Treatment Systems

    NASA Astrophysics Data System (ADS)

    Cooper, J.; Loomis, G.; Kalen, D.; Boving, T.; Morales, I.; DeLuca, J.; Amador, J.

    2013-12-01

    25% of US households utilize onsite wastewater treatment systems (OWTS) for wastewater management. Advanced technologies were designed to overcome the inadequate wastewater treatment by conventional OWTS in critical shallow water table areas, such as coastal zones, in order to protect ground water quality. In addition to the septic tank and soil drainfield that comprise a conventional OWTS, advanced systems claim improved water renovation with the addition of sand filtration, timed dosing controls, and shallow placement of the infiltrative zone. We determined water quality renovation functions under current water table and temperature conditions, in anticipation of an experiment to measure OWTS response to a climate change scenario of 30-cm increase in water table elevation and 4C temperature increase. Replicate (n=3) intact soil mesocosms were used to evaluate the effectiveness of drainfields with a conventional wastewater delivery (pipe-and-stone) compared to two types of pressurized, shallow narrow drainfield. Results under steady state conditions indicate complete removal of fecal coliform bacteria, phosphorus and BOD by all soil-based systems. By contrast, removal of total nitrogen inputs was 16% in conventional and 11% for both advanced drainfields. Effluent waters maintained a steady state pH between 3.2 - 3.7 for all technologies. Average DO readings were 2.9mg/L for conventional drainfield effluent and 4.6mg/L for advanced, showing the expected oxygen uptake with shallow placement of the infiltrative zone. The conventional OWTS is outperforming the advanced with respect to nitrogen removal, but renovating wastewater equivalently for all other contaminants of concern. The results of this study are expected to facilitate development of future OWTS regulation and planning guidelines, particularly in coastal zones and in the face of a changing climate.

  5. Soil infiltration bioreactor incorporated with pyrite-based (mixotrophic) denitrification for domestic wastewater treatment.

    PubMed

    Kong, Zhe; Li, Lu; Feng, Chuanping; Chen, Nan; Dong, Shanshan; Hu, Weiwu

    2015-01-01

    In this study, an integrated two-stage soil infiltration bioreactor incorporated with pyrite-based (mixotrophic) denitrification (SIBPD) was designed for domestic wastewater treatment. Benefited from excellent adsorption ability and water-permeability, soil infiltration could avoid clogging, shorten operating time and lower maintenance cost. Respiration and nitrification were mostly engaged in aerobic stage (AES), while nitrate was majorly removed by pyrite-based mixotrophic denitrification mainly occurred in anaerobic stage (ANS). Fed with synthetic and real wastewater for 120days at 1.5h HRT, SIBPD demonstrated good removal performance showing 87.14% for COD, 92.84% for NH4(+)-N and 82.58% for TP along with 80.72% of nitrate removed by ANS. TN removal efficiency was 83.74% when conducting real wastewater. Compared with sulfur-based process, the effluent pH of SIBPD was maintained at 6.99-7.34 and the highest SO4(2-) concentration was only 64.63mgL(-1). This study revealed a promising and feasible application prospect for on-site domestic wastewater treatment. PMID:25827248

  6. Soil infiltration bioreactor incorporated with pyrite-based (mixotrophic) denitrification for domestic wastewater treatment.

    PubMed

    Kong, Zhe; Li, Lu; Feng, Chuanping; Chen, Nan; Dong, Shanshan; Hu, Weiwu

    2015-01-01

    In this study, an integrated two-stage soil infiltration bioreactor incorporated with pyrite-based (mixotrophic) denitrification (SIBPD) was designed for domestic wastewater treatment. Benefited from excellent adsorption ability and water-permeability, soil infiltration could avoid clogging, shorten operating time and lower maintenance cost. Respiration and nitrification were mostly engaged in aerobic stage (AES), while nitrate was majorly removed by pyrite-based mixotrophic denitrification mainly occurred in anaerobic stage (ANS). Fed with synthetic and real wastewater for 120days at 1.5h HRT, SIBPD demonstrated good removal performance showing 87.14% for COD, 92.84% for NH4(+)-N and 82.58% for TP along with 80.72% of nitrate removed by ANS. TN removal efficiency was 83.74% when conducting real wastewater. Compared with sulfur-based process, the effluent pH of SIBPD was maintained at 6.99-7.34 and the highest SO4(2-) concentration was only 64.63mgL(-1). This study revealed a promising and feasible application prospect for on-site domestic wastewater treatment.

  7. Soil resources influence vegetation and response to fire and fire-surrogate treatments in sagebrush-steppe ecosystems

    USGS Publications Warehouse

    Rau, Benjamin M.; Chambers, Jeanne C.; Pyke, David A.; Roundy, Bruce A.; Schupp, Eugene W.; Doescher, Paul; Caldwell, Todd G.

    2014-01-01

    Current paradigm suggests that spatial and temporal competition for resources limit an exotic invader, cheatgrass (Bromus tectorum L.), which once established, alters fire regimes and can result in annual grass dominance in sagebrush steppe. Prescribed fire and fire surrogate treatments (mowing, tebuthiuron, and imazapic) are used to reduce woody fuels and increase resistance to exotic annuals, but may alter resource availability and inadvertently favor invasive species. We used four study sites within the Sagebrush Steppe Treatment Evaluation Project (SageSTEP) to evaluate 1) how vegetation and soil resources were affected by treatment, and 2) how soil resources influenced native herbaceous perennial and exotic annual grass cover before and following treatment. Treatments increased resin exchangeable NH4+, NO3−, H2PO4−, and K+, with the largest increases caused by prescribed fire and prolonged by application of imazapic. Burning with imazapic application also increased the number of wet growing degree days. Tebuthiuron and imazapic reduced exotic annual grass cover, but imazapic also reduced herbaceous perennial cover when used with prescribed fire. Native perennial herbaceous species cover was higher where mean annual precipitation and soil water resources were relatively high. Exotic annual grass cover was higher where resin exchangeable H2PO4− was high and gaps between perennial plants were large. Prescribed fire, mowing, and tebuthiuron were successful at increasing perennial herbaceous cover, but the results were often ephemeral and inconsistent among sites. Locations with sandy soil, low mean annual precipitation, or low soil water holding capacity were more likely to experience increased exotic annual grass cover after treatment, and treatments that result in slow release of resources are needed on these sites. This is one of few studies that correlate abiotic variables to native and exotic species cover across a broad geographic setting, and that

  8. Clothianidin in agricultural soils and uptake into corn pollen and canola nectar after multiyear seed treatment applications.

    PubMed

    Xu, Tianbo; Dyer, Dan G; McConnell, Laura L; Bondarenko, Svetlana; Allen, Richard; Heinemann, Oliver

    2016-02-01

    Limited data are available on the fate of clothianidin under realistic agricultural production conditions. The present study is the first large-scale assessment of clothianidin residues in soil and bee-relevant matrices from corn and canola fields after multiple years of seed-treatment use. The average soil concentration from 50 Midwest US corn fields with 2 yr to 11 yr of planting clothianidin-treated seeds was 7.0 ng/g, similar to predicted concentrations from a single planting of Poncho 250-treated corn seeds (6.3 ng/g). The water-extractable (i.e., plant-bioavailable) clothianidin residues in soil were only 10% of total residues. Clothianidin concentrations in soil reached a plateau concentration (amount applied equals amount dissipated) in fields with 4 or more application years. Concentrations in corn pollen from these fields were low (mean: 1.8 ng/g) with no correlation to total years of use or soil concentrations. For canola, soil concentrations from 27 Canadian fields with 2 yr to 4 yr of seed treatment use (mean = 5.7 ng/g) were not correlated with use history, and plant bioavailability was 6% of clothianidin soil residues. Average canola nectar concentrations were 0.6 ng/g and not correlated to use history or soil concentrations. Under typical cropping practices, therefore, clothianidin residues are not accumulating significantly in soil, plant bioavailability of residues in soil is limited, and exposure to pollinators will not increase over time in fields receiving multiple applications of clothianidin. PMID:26467536

  9. Clothianidin in agricultural soils and uptake into corn pollen and canola nectar after multiyear seed treatment applications.

    PubMed

    Xu, Tianbo; Dyer, Dan G; McConnell, Laura L; Bondarenko, Svetlana; Allen, Richard; Heinemann, Oliver

    2016-02-01

    Limited data are available on the fate of clothianidin under realistic agricultural production conditions. The present study is the first large-scale assessment of clothianidin residues in soil and bee-relevant matrices from corn and canola fields after multiple years of seed-treatment use. The average soil concentration from 50 Midwest US corn fields with 2 yr to 11 yr of planting clothianidin-treated seeds was 7.0 ng/g, similar to predicted concentrations from a single planting of Poncho 250-treated corn seeds (6.3 ng/g). The water-extractable (i.e., plant-bioavailable) clothianidin residues in soil were only 10% of total residues. Clothianidin concentrations in soil reached a plateau concentration (amount applied equals amount dissipated) in fields with 4 or more application years. Concentrations in corn pollen from these fields were low (mean: 1.8 ng/g) with no correlation to total years of use or soil concentrations. For canola, soil concentrations from 27 Canadian fields with 2 yr to 4 yr of seed treatment use (mean = 5.7 ng/g) were not correlated with use history, and plant bioavailability was 6% of clothianidin soil residues. Average canola nectar concentrations were 0.6 ng/g and not correlated to use history or soil concentrations. Under typical cropping practices, therefore, clothianidin residues are not accumulating significantly in soil, plant bioavailability of residues in soil is limited, and exposure to pollinators will not increase over time in fields receiving multiple applications of clothianidin.

  10. Clothianidin in agricultural soils and uptake into corn pollen and canola nectar after multiyear seed treatment applications

    PubMed Central

    Dyer, Dan G.; McConnell, Laura L.; Bondarenko, Svetlana; Allen, Richard; Heinemann, Oliver

    2016-01-01

    Abstract Limited data are available on the fate of clothianidin under realistic agricultural production conditions. The present study is the first large‐scale assessment of clothianidin residues in soil and bee‐relevant matrices from corn and canola fields after multiple years of seed‐treatment use. The average soil concentration from 50 Midwest US corn fields with 2 yr to 11 yr of planting clothianidin‐treated seeds was 7.0 ng/g, similar to predicted concentrations from a single planting of Poncho 250‐treated corn seeds (6.3 ng/g). The water‐extractable (i.e., plant‐bioavailable) clothianidin residues in soil were only 10% of total residues. Clothianidin concentrations in soil reached a plateau concentration (amount applied equals amount dissipated) in fields with 4 or more application years. Concentrations in corn pollen from these fields were low (mean: 1.8 ng/g) with no correlation to total years of use or soil concentrations. For canola, soil concentrations from 27 Canadian fields with 2 yr to 4 yr of seed treatment use (mean = 5.7 ng/g) were not correlated with use history, and plant bioavailability was 6% of clothianidin soil residues. Average canola nectar concentrations were 0.6 ng/g and not correlated to use history or soil concentrations. Under typical cropping practices, therefore, clothianidin residues are not accumulating significantly in soil, plant bioavailability of residues in soil is limited, and exposure to pollinators will not increase over time in fields receiving multiple applications of clothianidin. Environ Toxicol Chem 2016;35:311–321. © 2015 The Authors. Published by Wiley Periodicals, Inc. on behalf of SETAC. PMID:26467536

  11. Petroleum contaminated soil in Oman: evaluation of bioremediation treatment and potential for reuse in hot asphalt mix concrete.

    PubMed

    Jamrah, Ahmad; Al-Futaisi, Ahmed; Hassan, Hossam; Al-Oraimi, Salem

    2007-01-01

    This paper presents a study that aims at evaluating the leaching characteristics of petroleum contaminated soils as well as their application in hot mix asphalt concrete. Soil samples are environmentally characterized in terms of their total heavy metals and hydrocarbon compounds and leachability. The total petroleum hydrocarbon (TPH) present in the PCS before and after treatment was determined to be 6.8% and 5.3% by dry weight, indicating a reduction of 1% in the TPH of PCS due to the current treatment employed. Results of the total heavy metal analysis on soils indicate that the concentrations of heavy metals are lower when extraction of the soil samples is carried out using hexane in comparison to TCE. The results show that the clean soils present in the vicinity of contaminated sites contain heavy metals in the following decreasing order: nickel (Ni), followed by chromium (Cr), zinc (Zn), copper (Cu), lead (Pb), and vanadium (V). The current treatment practice employed for remediation of the contaminated soil reduces the concentrations of nickel and chromium, but increases the concentrations of all remaining heavy metals. PMID:16957858

  12. Designing slanted soil system for greywater treatment for irrigation purposes in rural area of arid regions.

    PubMed

    Maiga, Y; Moyenga, D; Nikiema, B C; Ushijima, K; Maiga, A H; Funamizu, N

    2014-01-01

    To solve the unpleasant disposal of greywater in rural area and allow its collection for reuse in gardening, a slanted soil treatment system (SSTS) was designed and installed in two households. Granitic gravel of 1-9 mm size was used as the filter medium. The aim of this study was to design a SSTS and assess its suitability as a treatment system allowing greywater reuse in gardening. The efficiency of the SSTS was assessed based on organic matter and bacterial pollution removal. The developed SSTS allowed the collection of greywater from three main sources (shower, dishwashing and laundry) in rural area. The SSTS is efficient in removing at least 50% of suspended solids, chemical oxygen demand and biological oxygen demand. The study highlighted that, contrary to the common perception, greywater streams in rural area are heavily polluted with faecal indicators. The removal efficiency of faecal indicators was lower than 2 log units, and the bacteriological quality of the effluents is generally higher than the WHO reuse guidelines for restricted irrigation. Longer retention time is required to increase the efficiency. The possibility of reusing the treated greywater as irrigation water is discussed on the basis of various qualitative parameters. The SSTS is a promising greywater treatment system for small communities in the rural area in the Sahelian region. To increase the treatment efficiency, future research will focus on the characteristics of the SSTS, the grain size and the establishment of a pretreatment step.

  13. Summary report of session VI

    SciTech Connect

    Weiren Chou et al.

    2002-08-19

    This report gives a brief review of the presentations in Session VI of the Ecloud'02 Workshop and summarizes the major points during the discussions. Some points (e.g., the critical mass phenomenon) are not conclusive and even controversial. But it has been agreed that further investigations are warranted. The topic of Session VI in the Ecloud'02 workshop is ''Discussions of future studies, collaborations and possible solutions.'' Half of the session is devoted to presentations, another half to discussions. This report will focus on the latter. There are six presentations: (1) R. Macek, Possible cures to the e-cloud problem; (2) G. Rumolo, Driving the electron-cloud instability by an electron cooler; (3) U. Iriso Ariz, RF test benches for electron-cloud studies; (4) F. Caspers, Stealth clearing electrodes; (5) F. Ruggiero, Future electron-cloud studies at CERN; and (6) E. Perevedentsev, Beam-beam and transverse impedance model.

  14. Treatment of a Chromate-Contaminated Soil Site by In Situ Gaseous Reduction

    SciTech Connect

    Thornton, Edward C.; Gilmore, Tyler J.; Olsen, Khris B.; Giblin, Joel T.; Phelan, J. M.

    2007-01-01

    Laboratory testing activities indicate that hexavalent chromium, a vadose zone contaminant at many waste sites owing to its mobility and toxicity, can be immobilized in place through chemical reduction to the nontoxic trivalent oxidation state using diluted hydrogen sulfide gas. Treating vadose zone contamination by in situ gaseous reduction thus may be potentially applied as part of an overall strategy for groundwater protection and remediation. A proof-of-concept field test has been undertaken by the U.S. Department of Energy and U.S. Department of Defense in a joint demonstration conducted at White Sands Missile Range, New Mexico, to evaluate this remedial approach. This test involved injecting hydrogen sulfide diluted in air into contaminated vadose zone sediments via a centrally located borehole over a 76-day period. The gas mixture was then directed through the sediments using a vacuum applied to six extraction boreholes at the site periphery. Comparison of soil samples taken before and after the test indicated that 70% of the total mass of hexavalent chromium originally present at the site was reduced and immobilized. The zone of highest Cr(VI) contamination was nearly completely treated, with Cr(VI) concentrations of soil samples decreasing from an average of 8.1 mg/kg before treatment to 1.14 mg/kg after treatment and a mass reduction of 88% achieved. Treatment was generally better in zones of higher permeability sand containing less silt and clay. However, all Cr(VI) concentrations measured in post-test samples were well below the EPA Region 9 Residential Preliminary Remediation Goal of 30 mg/kg, compared to a maximum pre-test concentration as high as 85 mg/kg, thus indicating the viability of the technology as a remediation approach.

  15. Soil, Vegetation, and Seed Bank of a Sonoran Desert Ecosystem Along an Exotic Plant ( Pennisetum ciliare) Treatment Gradient

    NASA Astrophysics Data System (ADS)

    Abella, Scott R.; Chiquoine, Lindsay P.; Backer, Dana M.

    2013-10-01

    Ecological conditions following removal of exotic plants are a key part of comprehensive environmental management strategies to combat exotic plant invasions. We examined ecological conditions following removal of the management-priority buffelgrass ( Pennisetum ciliare) in Saguaro National Park of the North American Sonoran Desert. We assessed soil, vegetation, and soil seed banks on seven buffelgrass site types: five different frequencies of buffelgrass herbicide plus hand removal treatments (ranging from 5 years of annual treatment to a single year of treatment), untreated sites, and non-invaded sites, with three replicates for each of the seven site types. The 22 measured soil properties (e.g., pH) differed little among sites. Regarding vegetation, buffelgrass cover was low (≤1 % median cover), or absent, across all treated sites but was high (10-70 %) in untreated sites. Native vegetation cover, diversity, and composition were indistinguishable across site types. Species composition was dominated by native species (>93 % relative cover) across all sites except untreated buffelgrass sites. Most (38 species, 93 %) of the 41 species detected in soil seed banks were native, and native seed density did not differ significantly across sites. Results suggest that: (1) buffelgrass cover was minimal across treated sites; (2) aside from high buffelgrass cover in untreated sites, ecological conditions were largely indistinguishable across sites; (3) soil seed banks harbored ≥12 species that were frequent in the aboveground vegetation; and (4) native species dominated post-treatment vegetation composition, and removing buffelgrass did not result in replacement by other exotic species.

  16. Soil, vegetation, and seed bank of a Sonoran Desert ecosystem along an exotic plant (Pennisetum ciliare) treatment gradient.

    PubMed

    Abella, Scott R; Chiquoine, Lindsay P; Backer, Dana M

    2013-10-01

    Ecological conditions following removal of exotic plants are a key part of comprehensive environmental management strategies to combat exotic plant invasions. We examined ecological conditions following removal of the management-priority buffelgrass (Pennisetum ciliare) in Saguaro National Park of the North American Sonoran Desert. We assessed soil, vegetation, and soil seed banks on seven buffelgrass site types: five different frequencies of buffelgrass herbicide plus hand removal treatments (ranging from 5 years of annual treatment to a single year of treatment), untreated sites, and non-invaded sites, with three replicates for each of the seven site types. The 22 measured soil properties (e.g., pH) differed little among sites. Regarding vegetation, buffelgrass cover was low (≤1% median cover), or absent, across all treated sites but was high (10-70%) in untreated sites. Native vegetation cover, diversity, and composition were indistinguishable across site types. Species composition was dominated by native species (>93% relative cover) across all sites except untreated buffelgrass sites. Most (38 species, 93%) of the 41 species detected in soil seed banks were native, and native seed density did not differ significantly across sites. Results suggest that: (1) buffelgrass cover was minimal across treated sites; (2) aside from high buffelgrass cover in untreated sites, ecological conditions were largely indistinguishable across sites; (3) soil seed banks harbored ≥12 species that were frequent in the aboveground vegetation; and (4) native species dominated post-treatment vegetation composition, and removing buffelgrass did not result in replacement by other exotic species.

  17. [Studies of on-site night soil and kitchen garbage treatment].

    PubMed

    Chen, Zhu-Lei; Zhou, Lei; Jiang, Juan; Xiong, Shang-Ling; Huang, Liang; Sun, Wei-Min; Lu, Zhi-Zhong; Liao, Bo

    2005-09-01

    The biological treatment technique of collection at source and disposition on-site of night soil and kitchen garbage were presented. By design project of overall technics, the lab-scale experiments were performed. It was revealed that water consumption of vacuum closestool was about 1 L/time. It consumed 0.4- 0.6L water to shred 1 kg kitchen garbage. Night soil covered 40%, kitchen garbage covered 60% in the influent. Water was controlled at about 93%, the C:N ratio was about 25:1, pH was between 6.2 and 7.3, the optical blend frequency was 6h/d and the overall solid retention time was 28 days in anaerobic digestion reactor. The COD removal rate of mixed supernatant was 91% in anaerobic baffled reactor. It was identified that these phosphorus strains and potassium strains were Bacillus. sp, and biological activated fertilizer was obtained by mixed these strains with digestion sludge which had been dehydrated and deodorized. These strains ability of forming phosphorus and potassium were determined, and the concentration of phosphorus increased 67.5%, potassium increased 33.4%.

  18. Poster Session B

    PubMed Central

    2014-01-01

    proteins which are fundamental regulators of PPARg and the fat cell commitment decision. B.6 Application of Quantitative and Functional Phosphoproteomics In Study of Ethylene Signaling Ning Li 1 1The Hong Kong University of Science and Technology, Hong Kong, China Ethylene is a major plant hormone that regulates a diverse aspect of plant growth and development. The regulatory roles of ethylene in plants include promotion of leaf and flower petal senescence, yellowing and abscission, as well as promotion of fruit abscission and ripening. This key hormone is also involved in regulation of a number of plant biotic and abiotic stress responses. A dramatic effect of ethylene on tropic response is the dual-and-opposing effect of ethylene on stem negative gravitropic response, in which short-term ethylene treatment (0.5 hour) appears to inhibit stem bending up following re-orientation of inflorescence of Arabidopsis. In contrast, a long-term treatment (12 hours) stimulates gravitropic response and promote stem curve up faster. This time-dependent and dose- independent dual-and-opposing effect of ethylene on stem gravitropism may involve multiple signaling pathways. Stable isotope metabolic labeling-based quantitative phosphoproteomics performed on ein2–5, ctr1–1 and rcn1–1 ethylene signaling mutants indeed confirmed the time-dependent protein phosphorylation changes and some of phosphorylation events are independent to ein2 loss-of- function gene in response to ethylene treatment. Functional studies on the phosphorylated transcription factor ERF110 isoform suggest that it is required for the control of flowering time via multiple ethylene signaling pathways. B.7 Intact N- and O-linked Glycopeptide Identification from HCD Data Using Byonic Katalin F. Medzihradszky1, Jason Maynard1, Krista Kaasik1, Marshall Bern2 1University of California, San Francisco, CA, USA; 2Protein Metrics, San Carlos, CA, USA The importance of high quality analysis of glycosylated proteins is steadily

  19. Monitoring technologies for the evaluation of a Soil-Aquifer-Treatment system in coastal aquifer environments.

    NASA Astrophysics Data System (ADS)

    Kallioras, Andreas; Tsertou, Athanasia; Foglia, Laura; Bumberger, Jan; Vienken, Thomas; Dietrich, Peter; Schüth, Christoph

    2014-05-01

    Artificial recharge of groundwater has an important role to play in water reuse. Treated sewage effluent can be infiltrated into the ground for recharge of aquifers. As the effluent water moves through the soil and the aquifer, it undergoes significant quality improvements through physical, chemical, and biological processes in the underground environment. Collectively, these processes and the water quality improvement obtained are called soil-aquifer-treatment (SAT) or geopurification. Recharge systems for SAT can be designed as infiltration-recovery systems, where all effluent water is recovered as such from the aquifer, or after blending with native groundwater. SAT typically removes essentially all suspended solids, biochemical oxygen demand (BOD), and pathogens (viruses, bacteria, protozoa, and helminthic eggs). Concentrations of synthetic organic carbon, phosphorous, and heavy metals are greatly reduced. The pilot site of LTCP will involve the employment of infiltration basins, which will be using waters of impaired quality as a recharge source, and hence acting as a Soil-Aquifer-Treatment, SAT, system. T he LTCP site will be employed as a pilot SAT system complemented by new technological developments, which will be providing continuous monitoring of the quantitative and qualitative characteristics of infiltrating groundwater through all hydrologic zones (i.e. surface, unsaturated and saturated zone). This will be achieved through the development and installation of an integrated system of prototype sensors, installed on-site, and offering a continuous evaluation of the performance of the SAT system. An integrated approach of the performance evaluation of any operating SAT system should aim at parallel monitoring of all hydrologic zones, proving the sustainability of all involved water quality treatment processes within unsaturated and saturated zone. Hence a prototype system of Time Domain Reflectometry (TDR) sensors will be developed, in order to achieve

  20. Introduction to Session 1A

    NASA Astrophysics Data System (ADS)

    Himmel, Michael E.

    Understanding and overcoming the natural resistance of plant cell walls to enzymatic hydrolysis remains one of the most active research areas in biofuels production (as indicated by the number of abstracts and papers submitted to this session). A number of the oral presentations given during the Enzyme Catalysis and Engineering session highlighted the use of new and innovative tools for advancing our understanding of plant cell wall deconstruction. The oral presentations and posters given for this session included applications of imaging tools and computational models to advance our understanding of biomass recalcitrance relative to enzymatic deconstruction. This session was opened with a presentation by Dr. Danny Akin, who outlined the structural and chemical barriers for the bioconversion of grasses to sugars. Lignocelluloses from grasses, such as switch grass, are resistant to bioconversion by various aromatic constituuents, which include both lignins and phenolic acid esters. However, Akin and coworkers demonstrated the use of selected white rot fungal enzymes, which lack cellulases that could be used to produce delignified lignocellulosic materials, resulting in improved bioconversion.

  1. Poster Session C

    PubMed Central

    2014-01-01

    systematically examined. Imported raw data were first smoothed and peaks were detected using one of three peak detection methods. Overlapping peaks were found using a second derivative method and the number of underlying peaks and their parameters were estimated. Peaks were fitted with a theoretical line shape. Then, charge state envelopes were matched. Finally, linear combinations of five charge state envelopes were fitted to the experimental data in parallel to address the issue of overlapping charge-state distributions. Our method, unlike previous peak detection methods, does not require that underlying peaks register as local minima and therefore is more robust in detecting severely overlapping peaks. This is demonstrated by use of a spectrum from synthetic mononucleosome preparations in which the octameric histone core is bound to a 147 bp strand of DNA. Heterogeneity consistent with variability in the length of the nucleic acid chain is successfully deconvolved with our method. Additionally, we demonstrate improved performance on a complex spectrum containing two different RNA polymerase II assemblies non-covalently bound to multiple molecules of the inhibitor a-amanitin relative to other approaches. Finally, our algorithm accurately retrieves the original signals in a simulated spectrum with severely overlapping peaks and charge envelopes. Financial support was provided by NIH NIGMS 8P41GM103481 and a UCSF ETAC Award for purchase of Orbitrap Exactive EMR platform. C.5 Targeted Proteomic Analysis Reveals Potential Saliva Biomarker for Recurrence Monitoring of Oral Cavity Squamous Cell Carcinoma Li-Chieh Julie Chu, Yi-Ting Chen, Jau-Song Yu, Yu-Sun Chang Chang Gung University, Tao-Yuan, Taiwan In Taiwan, oral cavity squamous cell carcinoma (OSCC) is the fourth most common cancer type in men. Despite significant advances in treatment over the recent decades, 40–50% of OSCC patients die within 5 years of diagnosis, mostly due to metastasis and/or local recurrence

  2. Bacterial and fungal growth for monitoring the impact of wildfire combined or not with different soil stabilization treatments

    NASA Astrophysics Data System (ADS)

    Barreiro, Ana; Baath, Erland; Díaz-Raviña, Montserrat

    2015-04-01

    Soil stabilization techniques are rapidly gaining acceptance as efficient tool for reducing post-fire erosion. However, despite its interest, information concerning their impact on soil biota is scarce. We examined, under field conditions, the bacterial and fungal medium-term responses in a hillslope area located in Laza (NW Spain) affected by a high severity wildfire with the following treatments established by triplicate (4 x 20 m plots): unburnt control soil, burnt control soil, burnt soil with rye seeding and burnt soil with straw mulch. The bacterial and fungal growth, as well as respiration, were measured 4 years after fire and application of treatments using leucine incorporation for bacterial growth and acetate-in-ergosterol incorporation for fungal growth. The results showed that soil respiration and fungal biomass were negatively affected by fire, in the top layer (0-5 cm), while bacterial and fungal growth was stimulated. These microbial changes induced by fire were associated with modifications in organic matter (50% reduction in C content) and soil pH (increase of 0.5-0.9 units). Thus, the results suggested that under acid environment (pH in water 3.5) post-fire conditions might have favoured both microbial groups, which is supported by the fact that estimated bacterial and fungal growth were positive and significant correlated with soil pH (range of 3.5-4.5). This contrast with the well-known reported investigations showing that bacteria rather than fungi proliferation occurred after prescribed fire or wildfire; it should be noticed, however, that soils with a higher pH than that in the present study were used. Our data also indicated that bacterial and fungal communities were not significantly affected by seeding and mulching treatments. The results highlighted the importance of pre-fire soil pH as key factor in determining the microbial response after fire. Acknowledgements. A. Barreiro is recipient of FPU grant from Spanish Ministry of Education

  3. Development of Site-Specific Soil Design Basis Earthquake (DBE) Parameters for the Integrated Waste Treatment Unit (IWTU)

    SciTech Connect

    Payne, Suzette

    2008-08-01

    Horizontal and vertical PC 3 (2,500 yr) Soil Design Basis Earthquake (DBE) 5% damped spectra, corresponding time histories, and strain-compatible soil properties were developed for the Integrated Waste Treatment Unit (IWTU). The IWTU is located at the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Laboratory (INL). Mean and 84th percentile horizontal DBE spectra derived from site-specific site response analyses were evaluated for the IWTU. The horizontal and vertical PC 3 (2,500 yr) Soil DBE 5% damped spectra at the 84th percentile were selected for Soil Structure Interaction (SSI) analyses at IWTU. The site response analyses were performed consistent with applicable Department of Energy (DOE) Standards, recommended guidance of the Nuclear Regulatory Commission (NRC), American Society of Civil Engineers (ASCE) Standards, and recommendations of the Blue Ribbon Panel (BRP) and Defense Nuclear Facilities Safety Board (DNFSB).

  4. Design and field-scale implementation of an "on site" bioremediation treatment in PAH-polluted soil.

    PubMed

    Pelaez, A I; Lores, I; Sotres, A; Mendez-Garcia, C; Fernandez-Velarde, C; Santos, J A; Gallego, J L R; Sanchez, J

    2013-10-01

    An "on site" bioremediation program was designed and implemented in soil polluted with polycyclic aromatic hydrocarbons (PAHs), especially naphthalene. We began by characterizing the soil's physical and chemical properties. A microbiological screening corroborated the presence of microorganisms capable of metabolizing PAHs. We then analyzed the viability of bioremediation by developing laboratory microcosms and pilot scale studies, to optimize the costs and time associated with remediation. The treatment assays were based on different types of biostimulants, such as a slow or fast-release fertilizer, combined with commercial surfactants. Once the feasibility of the biostimulation was confirmed, a real-scale bioremediation program was undertaken in 900 m(3) of contaminated soil. The three-step design reduced PAH contamination by 94.4% at the end of treatment (161 days). The decrease in pollutants was concomitant with the selection of autochthonous bacteria capable of degrading PAHs, with Bacillus and Pseudomonas the most abundant genera.

  5. Biochar's effect on soil nitrous oxide emissions from a maize field with lime adjusted pH treatment

    NASA Astrophysics Data System (ADS)

    Hüppi, Roman; Leifeld, Jens; Felber, Raphael; Neftel, Albrecht; Six, Johan

    2015-04-01

    Biochar is a carbon-rich, porous product from pyrolysis of organic residues. Especially tropical soils have shown positive response in yield to biochar addition. Its high stability in soil makes biochar a potent carbon sequestration option at the same time. A number of laboratory incubations have shown significantly reduced nitrous oxide (N2O) emissions from soil when mixed with biochar. Emission measurements from the field show the same trend but are much more scarce. One of the hypothesized mechanisms for reduced N2O emissions from soil is owing to the increase in soil pH from the application of alkaline biochar. To test the effect of biochar on N2O emissions from a temperate maize system, we set up a field trial with a 20 t/ha biochar treatment, a limestone treatment adjusted to the same pH as with biochar and a control without addition. An automated static chamber greenhouse gas measurement system measured N2O emissions for each replicated (n=3) every 3.6 hours. The field was conventionally fertilised at a rate of 160 kg-N/ha in 3 doses of 40, 80 and 40 kg-N/ha. Cumulative emissions show a significant reduction for N2O in the biochar treatment by about 55 % relative to the control. The limed treatment shows similar emissions than control but with higher variability. This suggests that the N2O reduction effect of biochar is not mainly due to its liming effect. In conclusion, we confirm that biochar is a promising material to reduce N2O emissions from intensively managed agricultural soils.

  6. Biological treatment of TNT-contaminated soil. 2: Biologically induced immobilization of the contaminants and full-scale application

    SciTech Connect

    Lenke, H.; Daun, G.; Sieglen, U.; Knackmuss, H.J.; Warrelmann, J.; Walter, U.; Hund, K.

    1998-07-01

    Anaerobic treatment of originally contaminated soil from a former ammunition plant was carried out in a laboratory slurry reactor. While fermenting glucose to ethanol, acetate, and propionate, the anaerobic bacteria completely reduced the nitro groups of 2,4,6-trinitrotoluene (TNT) and aminodinitrotoluenes, which led to a complete and irreversible binding of the reduced products to the soil. 2,4-dinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine were also reduced in the soil slurry and were no longer detectable after the anaerobic treatment. To mineralize the fermentation products, a subsequent aerobic treatment was necessary to complete the bioremediation process. This bioremediation process was tested in a technical scale at Hessisch Lichtenau-Hirschhagen, Germany. A sludge reactor (Terranox system) was filled with 18 m{sup 3} of contaminated soil (main contaminants were TNT, 2,4-dinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine) and 10 m{sup 3} of water. The anaerobic stage was carried out by periodical feeding of sucrose. The sludge was subsequently dewatered and treated aerobically. Chemical analysis revealed an overall reduction of more than 99% of the contaminants. Ecotoxicological tests performed with various aquatic systems (luminescent bacteria, daphnids, algae) and terrestrial systems (respiring bacteria, nitrifying bacteria, cress plants, earth worms) showed that residual toxicity could not be detected after the anaerobic/aerobic treatment.

  7. The effectiveness of one session of therapy using a single-session therapy approach for children and adolescents with mental health problems.

    PubMed

    Perkins, Ruth

    2006-06-01

    This study applied a solution-focused single session therapy (SST) approach to all clients presenting to an urban child and adolescent mental health clinic over 14 months. The effectiveness of a single 2-hour assessment and treatment session in treating mental health problems was investigated using parent, teacher and clinician outcome measures. Teachers reported low levels of psychopathology at intake with no significant change 1 month after treatment. However, using parent and clinician measures, clinical levels of psychopathology were found at intake, with significant improvement 1 month after a single session of treatment. The effect sizes for these improvements measured medium to large, demonstrating observable improvement of clinical significance from the 1 session of SST treatment. Respondents reported 95% satisfaction with service. The study adds weight to the argument that a solution-focused SST approach can be effective for the treatment of children and adolescents with mental health problems. It recommends SST as the initial choice of treatment for these clients.

  8. On-farm treatment of dairy soiled water using aerobic woodchip filters.

    PubMed

    Ruane, Eimear M; Murphy, Paul N C; Healy, Mark G; French, Padraig; Rodgers, Michael

    2011-12-15

    Dairy soiled water (DSW) is produced on dairy farms through the washing-down of milking parlours and holding areas, and is generally applied to land. However, there is a risk of nutrient loss to surface and ground waters from land application. The aim of this study was to use aerobic woodchip filters to remove organic matter, suspended solids (SS) and nutrients from DSW. This novel treatment method would allow the re-use of the final effluent from the woodchip filters to wash down yards, thereby reducing water usage and environmental risks associated with land spreading. Three replicate 100 m(2) farm-scale woodchip filters, each 1 m deep, were constructed and operated to treat DSW from 300 cows over an 11-month study duration. The filters were loaded at a hydraulic loading rate of 30 L m(-2) d(-1), applied in four doses through a network of pipes on the filter surface. Average influent concentrations of chemical oxygen demand (COD), SS and total nitrogen (TN) of 5750 ± 1441 mg L(-1), 602 ± 303 mg L(-1) and 357 ± 100 mg L(-1), respectively, were reduced by 66, 86 and 57% in the filters. Effluent nutrient concentrations remained relatively stable over the study period, indicating the effectiveness of the filter despite increasing and/or fluctuating influent concentrations. Woodchip filters are a low cost, minimal maintenance treatment system, using a renewable resource that can be easily integrated into existing farm infrastructure.

  9. X-231B technology demonstration for in situ treatment of contaminated soil: Technology evaluation and screening

    SciTech Connect

    Siegrist, R.L.; Morris, M.I.; Donaldson, T.L.; Palumbo, A.V.; Herbes, S.E.; Jenkins, R.A.; Morrissey, C.M.; Harris, M.T.

    1993-08-01

    The Portsmouth Gaseous Diffusion Plant (Ports) is located approximately 70 miles south of Columbus in southern Ohio. Among the several waste management units on the facility, the X-231B unit consists of two adjacent oil biodegradation plots. The plots encompass {approximately} 0.8 acres and were reportedly used from 1976 to 1983 for the treatment and disposal of waste oils and degreasing solvents, some containing uranium-235 and technetium-99. The X-231B unit is a regulated solid waste management unit (SWMU) under the Resource Conservation and Recovery Act (RCRA). The X-231B unit is also a designated SWMU located within Quadrant I of the site as defined in an ongoing RCRA Facilities Investigation and Corrective Measures Study (RFI/CMS). Before implementing one or more Technology Demonstration Project must be completed. The principal goal of this project was to elect and successfully demonstrate one ore more technologies for effective treatment of the contaminated soils associated with the X-231B unit at PORTS. The project was divided into two major phases. Phase 1 involved a technology evaluation and screening process. The second phase (i.e., Phase 2) was to involve field demonstration, testing and evaluation of the technology(s) selected during Phase 1. This report presents the methods, results, and conclusions of the technology evaluation and screening portion of the project.

  10. Soil-transmitted nematode infections and mebendazole treatment in Mafia Island schoolchildren.

    PubMed

    Albonico, M; Ramsan, M; Wright, V; Jape, K; Haji, H J; Taylor, M; Savioli, L; Bickle, Q

    2002-10-01

    In August 2000, a cross-sectional study was performed to assess the prevalence and intensity of soil-transmitted nematode infections in schoolchildren on Mafia Island. Hookworm infection was widespread (72.5% prevalence) whereas Trichuris trichiura was less prevalent (39.7%) and Ascaris lumbricoides was present at a low prevalence (4.2%), mainly in urban areas. In a subsample of the study population, both Necator americanus and Ancylostoma duodenale were found, although N. americanus was more prevalent. This survey was followed by a parasitological evaluation of mebendazole treatment using a single, 500-mg dose. The data on outcome were used for comparison with those from recent studies of similar treatment regimens in the neighbouring island of Pemba, Zanzibar, where periodic chemotherapy with mebendazole to schoolchildren has been implemented as part of a helminth-control programme since 1994. A higher efficacy of mebendazole against hookworm infection was found in Mafia Island (where a cure 'rate' of 31.3% and an egg-reduction 'rate' of 78.1% were recorded) when compared with that observed in Pemba Island, possibly indicating that hookworms may be developing mebendazole resistance on Pemba Island as a result of intense exposure to the drug there.

  11. Modeling the transport behavior of 16 emerging organic contaminants during soil aquifer treatment.

    PubMed

    Nham, Hang Thuy Thi; Greskowiak, Janek; Nödler, Karsten; Rahman, Mohammad Azizur; Spachos, Thomas; Rusteberg, Bernd; Massmann, Gudrun; Sauter, Martin; Licha, Tobias

    2015-05-01

    In this study, four one-dimensional flow and transport models based on the data of a field scale experiment in Greece were constructed to investigate the transport behavior of sixteen organic trace pollutants during soil aquifer treatment. At the site, tap water and treated wastewater were intermittently infiltrated into a porous aquifer via a small pilot pond. Electrical conductivity data was used to calibrate the non-reactive transport models. Transport and attenuation of the organic trace pollutants were simulated assuming 1st order degradation and linear adsorption. Sorption was found to be largely insignificant at this site for the compounds under investigation. In contrast, flow path averaged first order degradation rate constants were mostly higher compared to the literature and lay between 0.036 d(-1) for clofibric acid and 0.9 d(-1) for ibuprofen, presumably owing to the high temperatures and a well adapted microbial community originating from the wastewater treatment process. The study highlights the necessity to obtain intrinsic attenuation parameters at each site, as findings cannot easily be transferred from one site to another. PMID:25687671

  12. Mobilization of metals during treatment of contaminated soils by modified Fenton's reagent using different chelating agents.

    PubMed

    Bennedsen, Lars R; Krischker, Anne; Jørgensen, Torben H; Søgaard, Erik G

    2012-01-15

    Changes in pH and redox conditions and the application of chelating agents when applying in situ chemical oxidation (ISCO) for remediation of contaminated sites can cause mobilization of metals to the groundwater above threshold limit values. The mechanisms causing the mobilization are not fully understood and have only been investigated in few studies. The present work investigated the mobilization of 9 metals from two very different contaminated soils in bench and pilot tests during treatment with modified Fenton's reagent (MFR) and found significant mobilization of Cu and Pb to the water in mg/l levels. Also Fe, As, Mn, Ni, Zn, Mg, and Ca mobilization was observed. These findings were confirmed in a pilot test where concentrations of Cu and Pb up to 52.2 and 33.7 mg/l were observed, respectively. Overall, the chelating agents tested (EDTA, citrate and pyrophosphate) did not seem to increase mobilization of metals compared to treatment with only hydrogen peroxide and iron. The results strongly indicate that the mobilization is caused by hydrogen peroxide and reactive species including oxidants and reductants formed with MFR. Based on these results, the use of chelating agents for ISCO will not cause an increase in metal mobilization.

  13. Soil microbial community structure and target organisms under different fumigation treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several high-value crop producers in California rely heavily on soil fumigants to control key diseases, nematodes, weeds and volunteer crops. Fumigants with broad biocidal activity can affect both target and non-target soil organisms. The ability of non-target soil organisms to recover after fumigat...

  14. Introduction to Session 1B

    NASA Astrophysics Data System (ADS)

    Sticklen, Mariam B.

    Topics presented in the "Plant Biotechnology and Genomics" session focused on technologies that highlight the important role of plant biotechnology and genomics in the development of future energy crops. Several excellent presentations demonstrated the latest advances in energy crop development through the use of plant cell wall regulation and by engineering new energy crops such as brown midrib sweet sorghum. Approaches included the control of cellulose production by increased expression of cellulase synthase genes and the selection of high-yield varieties of shrub willows. The potential of producing hydrolytic enzymes using transgenic plants as a cost-effective means for the large-scale production of these enzymes was also explored in the session, as was the role of posttranslational modifications on the activities of heterologous expressed cellulases in hosts such as Pichia pastoris.

  15. Artificial soils from alluvial tin mining wastes in Malaysia--a study of soil chemistry following experimental treatments and the impact of mycorrhizal treatment on growth and foliar chemistry.

    PubMed

    Tompkins, David S; Bakar, Baki B; Hill, Steve J

    2012-01-01

    For decades Malaysia was the world's largest producer of Sn, but now the vast open cast mining operations have left a legacy of some 100,000 ha of what is effectively wasteland, covered with a mosaic of tailings and lagoons. Few plants naturally recolonise these areas. The demand for such land for both urban expansion and agricultural use has presented an urgent need for better characterisation. This study reports on the formation of artificial soils from alluvial Sn mining waste with a focus on the effects of experimental treatments on soil chemistry. Soil organic matter, clay, and pH were manipulated in a controlled environment. Adding both clay tailings and peat enhanced the cation exchange capacity of sand tailings but also reduced the pH. The addition of peat reduced the extractable levels of some elements but increased the availability of Ca and Mg, thus proving beneficial. The use of clay tailings increased the levels of macro and micronutrients but also released Al, As, La, Pb and U. Additionally, the effects of soil mix and mycorrhizal treatments on growth and foliar chemistry were studied. Two plant species were selected: Panicum milicaeum and Pueraria phaseoloides. Different growth patterns were observed with respect to the additions of peat and clay. The results for mycorrhizal treatment (live inoculum or sterile carrier medium) are more complex, but both resulted in improved growth. The use of mycorrhizal fungi could greatly enhance rehabilitation efforts on sand tailings.

  16. Session: Long Valley Exploratory Well

    SciTech Connect

    Tennyson, George P. Jr.; Finger, John T.; Eichelberger, John C.; Hickox, Charles E.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Long Valley Exploratory Well - Summary'' by George P. Tennyson, Jr.; ''The Long Valley Well - Phase II Operations'' by John T. Finger; ''Geologic results from the Long Valley Exploratory Well'' by John C. Eichelberger; and ''A Model for Large-Scale Thermal Convection in the Long Valley Geothermal Region'' by Charles E. Hickox.

  17. Quantification of the effects of various soil fumigation treatments on nitrogen mineralization and nitrification in laboratory incubation and field studies.

    PubMed

    Yan, Dongdong; Wang, Qiuxia; Mao, Liangang; Li, Wei; Xie, Hongwei; Guo, Meixia; Cao, Aocheng

    2013-01-01

    Better quantification of nitrogen mineralization and nitrification after fumigation would indicate if any adjustment is needed in fertilizer application. The effects of chloropicrin (Pic), 1,3-dichloropropene (1,3-D), dimethyl disulfide (DMDS) and metham sodium (MS) fumigation on soil nitrogen dynamics were evaluated in lab incubation and field studies. Although some differences were observed in NH(4)(+)-N and NO(3)(-)-N concentrations in lab incubation and field experiments, both studies led to the same conclusions: (1) Soil fumigation was shown to increase soil mineral nitrogen only during the first 2 weeks after fumigation (WAF). In particular, Pic significantly increased soil mineral nitrogen in both studies at 1 WAF. However, for all fumigant treatments the observed effect was temporary; the soil mineral content of treated samples recovered to the general level observed in the untreated control. (2) All the fumigation treatments depressed nitrification temporarily, although the treatments exhibited significant differences in the duration of nitrification inhibition. In both studies, for a limited period of time, Pic showed a stronger inhibitory effect on nitrification compared to other fumigant treatments. An S-shaped function was fitted to the concentrations of NO(3)(-)-N in lab incubation samples. The times of maximum nitrification (t(max)) in DMDS and MS treatments were 0.97 week and 1.03 week, which is similar to the untreated control (t(max)=1.02 week). While Pic has the longest effect on nitrifying bacteria, nitrification appears to restart at a later time (t(max)=14.37 week). PMID:23062947

  18. Biological treatment of TNT-contaminated soil. 1: Anaerobic cometabolic reduction and interaction of TNT and metabolites with soil components

    SciTech Connect

    Daun, G.; Lenke, H.; Knackmuss, H.J.; Reuss, M.

    1998-07-01

    The explosive 2,4,6-trinitrotoluene (TNT), found as a major contaminant at armament plants from the two world wars, is reduced by a variety of microorganisms when electron donors such as glucose are added. This study shows that the cometabolic reduction of TNT to 2,4,6-triaminotoluene by an undefined anaerobic consortium increased considerably with increasing TNT concentrations and decreased with decreasing concentrations and feeding rates of glucose. The interactions of TNT and its reduction products with montmorillonitic clay and humic acids were investigated in abiotic adsorption experiments and during the microbial reduction of TNT. The results indicate that reduction products of TNT particularly hydroxylaminodinitrotoluenes and 2,4,6-triaminotoluene bind irreversibly to soil components, which would prevent or prolong mineralization of the contaminants. Irreversible binding also hinders a further spread of the contaminants through soil or leaching into the groundwater.

  19. SRS Data Report for Lynntech Soil Ozone Treatment Demonstration Adjacent to the 321-M Solvent Storage Tank Pad

    SciTech Connect

    Vangelas, K.M.

    2000-08-29

    At large industrial sites like the A/M Area of the Savannah River Site (SRS), undissolved dense non-aqueous phase liquid (DNAPL) in soil and groundwater is the most significant barrier to successful clean up. DNAPL acts as a reservoir that will continue to generate contaminant levels far above remediation concentration goals well into the future. In an effort to achieve remediation goals and reduce future costs, the SRS DNAPL program is evaluating technologies that will recycle or destroy DNAPL. In situ oxidation is one class of DNAPL destruction technologies. A demonstration of this class of technologies was conducted at SRS in the winter of 1999 and spring of 2000 employing ozone as the oxidant. Lynntech Inc. through a Small Business Innovative Research grant partnered with the Savannah River Site to demonstrate their soil ozone treatment technology. The Savannah River Site provided the demonstration location and field support of the test. This demonstration involved treating a small vadose zone DNAPL plume in the A/M Area over a 29 day period. Approximately 2000 pounds of DNAPL (perchloroethylene [PCE] and trichloroethylene [TCE]) were removed through the soil vapor extraction unit (SVEU). Soil core data indicate that approximately 300 pounds of DNAPL were removed from the test site. This report documents the data collected by SRS personnel during the demonstration of Lynntech's Soil Ozone Treatment Technology.

  20. Kinetic modeling of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation in soil slurry by anodic fenton treatment.

    PubMed

    Kong, Lingjun; Lemley, Ann T

    2006-05-31

    Anodic Fenton treatment (AFT) has been shown to be a promising technology in pesticide wastewater treatment. However, no research has been conducted on the AFT application to contaminated soils. In this study, the 2,4-D degradation kinetics of AFT in a silt loam soil slurry were investigated for the first time, and the effects of various experimental conditions including initial 2,4-D concentration, Fenton reagent delivery rate, amount of humic acid (HA) addition, and pH were examined. The 2,4-D degradation in soil slurry by AFT was found to follow a two-stage kinetic model. During the early stage of AFT (the first 4-5 min), the 2,4-D concentration profile followed a pseudo-first-order kinetic model. In the later stage (typically after 5 or 6 min), the AFT kinetic model provided a better fit. This result is most likely due to the existence of (*)OH scavengers and 2,4-D sorption on soil. The Fe(2+) delivery rate was shown to be a more significant factor in degradation rate than the H(2)O(2) delivery rate when the Fe(2+)/H(2)O(2) ratios were in the range of 1:2 to 1:10. The presence of HA in soil lowered the AFT rate, most probably due to the competition with 2,4-D for consumption of (*)OH and increased sorption of 2,4-D on soil. The optimal pH for 2,4-D degradation in soil slurry by AFT was observed to be in the range of pH 2-3.

  1. Arsenic bioaccessibility in a soil amended with drinking-water treatment residuals in the presence of phosphorus fertilizer.

    PubMed

    Sarkar, D; Quazi, S; Makris, K C; Datta, R; Khairom, A

    2007-10-01

    A laboratory incubation study was conducted to determine the effect of drinking-water treatment residuals (WTRs) on arsenic (As) bioaccessibility and phytoavailability in a poorly As-sorbing soil contaminated with arsenical pesticides and fertilized with triple super phosphate (TSP). The Immokalee soil (a sandy spodosol with minimal As-retention capacity) was amended with 2 WTRs (Al and Fe) at 5 application rates ranging between 0% and 5% wt/wt. Sodium arsenate and TSP were used to spike the soil with 90 mg As kg(-1) and 115 mg P kg(-1), respectively. Bioaccessible As was determined at time 0 (immediately after spiking), and at 6 and 12 months of equilibration using an in vitro gastrointestinal test, and As phytoavailability was measured with a 1-M KC1 extraction test. Arsenic phytoavailability decreased immediately after spiking (20% availability at 5% rate), but only after 6 months for the Al-WTR- and the Fe-WTR-amended soil, respectively. Arsenic bioaccessibility simulated for the stomach and intestine phases showed that the Fe-WTR was more effective than the Al-WTR in resisting the harsh acidic conditions of the human stomach, thus preventing As release. Both the phytoavailable As and the bioaccessible As were significantly correlated (p < 0.001) for soil spiked with either Al- or Fe-WTR. Both WTRs were able to decrease soil As bioaccessibility irrespective of the presence or absence of P, which was added as TSP. Results indicate the potential of WTRs in immobilizing As in contaminated soils fertilized with P, thereby minimizing soil As bioaccessibility and phytoavailability.

  2. Correlation of six anthropogenic markers in wastewater, surface water, bank filtrate, and soil aquifer treatment.

    PubMed

    Scheurer, Marco; Storck, Florian Rüdiger; Graf, Carola; Brauch, Heinz-Jürgen; Ruck, Wolfgang; Lev, Ovadia; Lange, Frank Thomas

    2011-04-01

    Six trace contaminants (acesulfame (ACE), sucralose (SUC), carbamazepine (CBZ), diatrizoic acid (DTA), 1H-benzotriazole (BTZ) and its 4-methyl analogue (4-TTri)) were traced from wastewater treatment plants (WWTPs) to receiving waters and further to riverbank filtration (RBF) wells to evaluate their prediction power as potential wastewater markers. Furthermore, the persistence of some compounds was investigated in advanced wastewater treatment by soil aquifer treatment (SAT). During wastewater treatment in four conventional activated sludge WWTPs ACE, SUC, and CBZ showed a pronounced stability expressed by stable concentration ratios in influent (in) and effluent (out) (ACE/CBZ: in45, out40; SUC/CBZ: in1.8, out1.7; and ACE/SUC: in24, out24). In a fifth WWTP, additional treatment with powdered activated carbon led to a strong elimination of CBZ, BTZ, and 4-TTri of about 80% and consequently to a distinctive shift of their ratios with unaffected compounds. Data from a seven month monitoring program at seven sampling locations at the rivers Rhine and Main in Germany revealed the best concentration correlation for ACE and CBZ (r(2) = 0.94) and also a good correlation of ACE and CBZ concentrations to BTZ and 4-TTri levels (r(2) = 0.66 to 0.82). The comparison of ratios at different sampling sites allowed for the identification of a CBZ point source. Furthermore, in Switzerland a higher consumption of SUC compared to Germany can be assumed, as a steadily increasing ACE/SUC ratio along the river Rhine was observed. In RBF wells a good correlation (r(2) = 0.85) was again observed for ACE and CBZ. Both also showed the highest stability at a prolonged residence time in the subsurface of a SAT field. In the most peripheral wells ACE and CBZ were still detected with mean values higher than 36 µg L(-1) and 1.3 µg L(-1), respectively. Although SUC concentrations in wastewater used for SAT decreased by more than 80% from about 18 µg L(-1) to 2.1 µg L(-1) and 3.5 µg L(-1) in

  3. Soil-borne reservoirs of antibiotic-resistant bacteria are established following therapeutic treatment of dairy calves.

    PubMed

    Liu, Jinxin; Zhao, Zhe; Orfe, Lisa; Subbiah, Murugan; Call, Douglas R

    2016-02-01

    We determined if antibiotics residues that are excreted from treated animals can contribute to persistence of resistant bacteria in agricultural environments. Administration of ceftiofur, a third-generation cephalosporin, resulted in a ∼ 3 log increase in ceftiofur-resistant Escherichia coli found in the faeces and pen soils by day 10 (P = 0.005). This resistant population quickly subsided in faeces, but was sustained in the pen soil (∼ 4.5 log bacteria g(-1)) throughout the trial (1 month). Florfenicol treatment resulted in a similar pattern although the loss of florfenicol-resistant E. coli was slower for faeces and remained stable at ∼ 6 log bacteria g(-1) in the soil. Calves were treated in pens where eGFP-labelled E. coli were present in the bedding (∼ 2 log g(-1)) resulting in amplification of the eGFP E. coli population ∼ 2.1 log more than eGFP E. coli populations in pens with untreated calves (day 4; P < 0.005). Excreted residues accounted for > 10-fold greater contribution to the bedding reservoir compared with shedding of resistant bacteria in faeces. Treatment with therapeutic doses of ceftiofur or florfenicol resulted in 2-3 log g(-1) more bacteria than the estimated ID50 (2.83 CFU g(-1)), consistent with a soil-borne reservoir emerging after antibiotic treatment that can contribute to the long-term persistence of antibiotic resistance in animal agriculture.

  4. X-231B technology demonstration for in situ treatment of contaminated soil: Laboratory evaluation of chemical oxidation using hydrogen peroxide

    SciTech Connect

    Gates, D.D.; Siegrist, R.L.

    1993-09-01

    Treatability studies were conducted as part of a comprehensive research project initiated to demonstrate as well as evaluate in situ treatment technologies for volatile organic compounds (VOCs) and radioactive substances in wet, slowly permeable soils. The site of interest for this project was the X-231B Oil Biodegradation unit at the Portsmouth Gaseous Diffusion Plant, a US Department of Energy (DOE) facility in southern Ohio. This report describes the treatability studies that investigated the feasibility of the application of low-strength hydrogen peroxide (H{sub 2}O{sub 2}) solutions to treat trichloroethylene (TCE)-contaminated soil.

  5. Soil, vegetation, and seed bank of a Sonoran Desert ecosystem along an exotic plant (Pennisetum ciliare) treatment gradient.

    PubMed

    Abella, Scott R; Chiquoine, Lindsay P; Backer, Dana M

    2013-10-01

    Ecological conditions following removal of exotic plants are a key part of comprehensive environmental management strategies to combat exotic plant invasions. We examined ecological conditions following removal of the management-priority buffelgrass (Pennisetum ciliare) in Saguaro National Park of the North American Sonoran Desert. We assessed soil, vegetation, and soil seed banks on seven buffelgrass site types: five different frequencies of buffelgrass herbicide plus hand removal treatments (ranging from 5 years of annual treatment to a single year of treatment), untreated sites, and non-invaded sites, with three replicates for each of the seven site types. The 22 measured soil properties (e.g., pH) differed little among sites. Regarding vegetation, buffelgrass cover was low (≤1% median cover), or absent, across all treated sites but was high (10-70%) in untreated sites. Native vegetation cover, diversity, and composition were indistinguishable across site types. Species composition was dominated by native species (>93% relative cover) across all sites except untreated buffelgrass sites. Most (38 species, 93%) of the 41 species detected in soil seed banks were native, and native seed density did not differ significantly across sites. Results suggest that: (1) buffelgrass cover was minimal across treated sites; (2) aside from high buffelgrass cover in untreated sites, ecological conditions were largely indistinguishable across sites; (3) soil seed banks harbored ≥12 species that were frequent in the aboveground vegetation; and (4) native species dominated post-treatment vegetation composition, and removing buffelgrass did not result in replacement by other exotic species. PMID:23771285

  6. Image Interpretation Session: Sunday, November 27, 2005.

    PubMed

    Rubin, Geoffrey D; Bradley, William G; Foley, W Dennis; Herold, Christian J; Jaramillo, Diego; Seeger, Leanne L

    2005-01-01

    The Sunday afternoon Image Interpretation Session has been a high point of the annual meeting of the Radiological Society of North America for over 65 years. A panel of five experts has been selected, representing the very best from the fields of neurologic, abdominal, thoracic, pediatric, and musculoskeletal radiology. Each panelist will dazzle us with an insightful analysis of two difficult cases in their area of expertise. The panelists are to be lauded for their bravery in subjecting their diagnostic acumen to the scrutiny of the thousands of radiologists in the audience. The cases, representing a diverse spectrum of diseases and disease manifestations, were selected from recent clinical imaging studies performed at the Stanford University Medical Center or the Lucille Salter Packard Children's Hospital. This session celebrates the skills of diagnostic radiologists worldwide, who are called on daily to amalgamate disparate clinical information with complex imaging data into focused differential diagnoses and effective treatment planning. We hope that these cases will serve to illustrate the central role that expert image interpretation plays in the care of patients. We welcome our audience of RSNA attendees, readers of RadioGraphics, and cyberspace denizens to join with our experts in solving these medical puzzles and to enjoy the excitement of unraveling the unknown. PMID:16163794

  7. Three-phase Discussion Sessions.

    ERIC Educational Resources Information Center

    Karr, M. C.; And Others

    1988-01-01

    Describes the procedures, organizational pattern and design of basic soils course used by teaching assistants. Cites studies which support small-group discussion for promoting higher levels of intellectual functioning. Presents tables showing survey evaluation results of this method. (RT)

  8. Treatment of swine wastewater using a saturated-soil-culture soybean and flooded rice system

    SciTech Connect

    Szoegi, A.A.; Hunt, P.G.; Humenik, F.J.

    2000-04-01

    Constructed wetlands have potential for treatment of livestock wastewater, but they generally contain wetland plants rather than agronomic crops. The authors evaluated two agronomic crops, saturated-soil-culture (SSC) soybean and flooded rice, in a constructed wetland system used for swine wastewater treatment. Both crop production and treatment efficiency were evaluated from 1993 to 1996 in two 4-m x 33.5-m constructed wetland cells that were connected in series. The first cell contained SSC soybean--four cultivars planted in a randomized complete block design with four replications. Flooded rice Maybelle was planted in the second cell. From the first to fourth year, wastewater application rates were gradually increased to obtain rates of 2.0 to 8.8 and 0.5 to 2.2 kg/ha d for total N and P, respectively. The best soybean grain and dry matter yields were 4.0 and 9.1 Mg/ha, respectively. These were obtained with soybean Young at the lowest wastewater application rate. Increasing total N loading rates and the associated higher NH{sub 4}-N concentrations depressed soybean seed yield and dry matter production. On the other hand, both rice grain and dry matter production were stable over the application range; mean values were 4.0 and 10.9 Mg ha{sup {minus}1}, respectively. Nutrient mass reductions were good; removal values increased linearly with loading rates (y = 0.69N load + 0.45, R{sup 2} = 0.99 and y = 0.45P load + 0.20, R{sup 2} = 0.95). At the highest loading rate, the system removed 751 and 156 kg/ha yr N and P, respectively. It appears that the SSC soybean and flooded rice system could be useful for liquid manure management in confined livestock production. The system produced comparable treatment to systems with natural wetland plants; moreover, the soybean and rice are marketable crops. However, the flooded rice seems to be the more robust component for high wastewater application rates.

  9. Hypnosis and Smoking: A Five-Session Approach.

    ERIC Educational Resources Information Center

    Watkins, Helen H.

    An active five-session, individualized treatment approach to the stopping of smoking is described. This approach emphasized the following: (a) the feedback, in and out of hypnosis, of the client's own reasons for quitting, (b) the visualization of both positive and negative smoking experiences meaningful to the client, (c) maintaining contact with…

  10. Bioremediation of Crude Oil Contaminated Desert Soil: Effect of Biostimulation, Bioaugmentation and Bioavailability in Biopile Treatment Systems.

    PubMed

    Benyahia, Farid; Embaby, Ahmed Shams

    2016-02-01

    This work was aimed at evaluating the relative merits of bioaugmentation, biostimulation and surfactant-enhanced bioavailability of a desert soil contaminated by crude oil through biopile treatment. The results show that the desert soil required bioaugmentation and biostimulation for bioremediation of crude oil. The bioaugmented biopile system led to a total petroleum hydrocarbon (TPH) reduction of 77% over 156 days while the system with polyoxyethylene (20) sorbitan monooleate (Tween 80) gave a 56% decrease in TPH. The biostimulated system with indigenous micro-organisms gave 23% reduction in TPH. The control system gave 4% TPH reduction. The addition of Tween 80 led to a respiration rate that peaked in 48 days compared to 88 days for the bioaugmented system and respiration declined rapidly due to nitrogen depletion. The residual hydrocarbon in the biopile systems studied contained polyaromatics (PAH) in quantities that may be considered as hazardous. Nitrogen was found to be a limiting nutrient in desert soil bioremediation. PMID:26891314

  11. Bioremediation of Crude Oil Contaminated Desert Soil: Effect of Biostimulation, Bioaugmentation and Bioavailability in Biopile Treatment Systems.

    PubMed

    Benyahia, Farid; Embaby, Ahmed Shams

    2016-02-15

    This work was aimed at evaluating the relative merits of bioaugmentation, biostimulation and surfactant-enhanced bioavailability of a desert soil contaminated by crude oil through biopile treatment. The results show that the desert soil required bioaugmentation and biostimulation for bioremediation of crude oil. The bioaugmented biopile system led to a total petroleum hydrocarbon (TPH) reduction of 77% over 156 days while the system with polyoxyethylene (20) sorbitan monooleate (Tween 80) gave a 56% decrease in TPH. The biostimulated system with indigenous micro-organisms gave 23% reduction in TPH. The control system gave 4% TPH reduction. The addition of Tween 80 led to a respiration rate that peaked in 48 days compared to 88 days for the bioaugmented system and respiration declined rapidly due to nitrogen depletion. The residual hydrocarbon in the biopile systems studied contained polyaromatics (PAH) in quantities that may be considered as hazardous. Nitrogen was found to be a limiting nutrient in desert soil bioremediation.

  12. Bioremediation of Crude Oil Contaminated Desert Soil: Effect of Biostimulation, Bioaugmentation and Bioavailability in Biopile Treatment Systems

    PubMed Central

    Benyahia, Farid; Embaby, Ahmed Shams

    2016-01-01

    This work was aimed at evaluating the relative merits of bioaugmentation, biostimulation and surfactant-enhanced bioavailability of a desert soil contaminated by crude oil through biopile treatment. The results show that the desert soil required bioaugmentation and biostimulation for bioremediation of crude oil. The bioaugmented biopile system led to a total petroleum hydrocarbon (TPH) reduction of 77% over 156 days while the system with polyoxyethylene (20) sorbitan monooleate (Tween 80) gave a 56% decrease in TPH. The biostimulated system with indigenous micro-organisms gave 23% reduction in TPH. The control system gave 4% TPH reduction. The addition of Tween 80 led to a respiration rate that peaked in 48 days compared to 88 days for the bioaugmented system and respiration declined rapidly due to nitrogen depletion. The residual hydrocarbon in the biopile systems studied contained polyaromatics (PAH) in quantities that may be considered as hazardous. Nitrogen was found to be a limiting nutrient in desert soil bioremediation. PMID:26891314

  13. Ammonia-oxidizing archaea versus bacteria in two soil aquifer treatment systems.

    PubMed

    Ding, Kun; Wen, Xianghua; Li, Yuyang; Shen, Bo; Zhang, Bing

    2015-02-01

    So far, the contribution of ammonia-oxidizing archaea (AOA) to ammonia oxidation in wastewater treatment processes has not been well understood. In this study, two soil aquifer treatment (SATs) systems were built up to treat synthetic domestic wastewater (column 1) and secondary effluent (column 4), accomplishing an average of 95% ammonia removal during over 550 days of operation. Except at day 322, archaeal amoA genes always outnumbered bacterial amoA genes in both SATs as determined by using quantitative polymerase chain reaction (q-PCR). The ratios of archaeal amoA to 16S rRNA gene averaged at 0.70 ± 0.56 and 0.82 ± 0.62 in column 1 and column 4, respectively, indicating that all the archaea could be AOA carrying amoA gene in the SATs. The results of MiSeq-pyrosequencing targeting on archaeal and bacterial 16S rRNA genes with the primer pair of modified 515R/806R indicated that Nitrososphaera cluster affiliated with thaumarchaeal group I.1b was the dominant AOA species, while Nitrosospira cluster was the dominant ammonia-oxidizing bacteria (AOB). The statistical analysis showed significant relationship between AOA abundance (compared to AOB abundance) and inorganic and total nitrogen concentrations. Based on the mathematical model calculation for microbial growth, AOA had much greater capacity of ammonia oxidation as compared to the specific influent ammonia loading for AOA in the SATs, implying that a small fraction of the total AOA would actively work to oxidize ammonia chemoautotrophically whereas most of AOA would exhibit some level of functional redundancy. These results all pointed that AOA involved in microbial ammonia oxidation in the SATs.

  14. Kinetics of model high molecular weight organic compounds biodegradation in soil aquifer treatment.

    PubMed

    Fox, Peter; Makam, Roshan

    2011-10-01

    Soil Aquifer Treatment (SAT) is a process where treated wastewater is purified during transport through unsaturated and saturated zones. Easily biodegradable compounds are rapidly removed in the unsaturated zone and the residual organic carbon is comprised of primarily high molecular weight compounds. This research focuses on flow in the saturated zone where flow conditions are predictable and high molecular weight compounds are degraded. Flow through the saturated zone was investigated with 4 reactors packed with 2 different particle sizes and operated at 4 different flow rates. The objective was to evaluate the kinetics of transformation for high molecular weight organics during SAT. Dextran was used as a model compound to eliminate the complexity associated with studying a mixture of high molecular weight organics. The hydrolysis products of dextran are easily degradable sugars. Batch experiments with media taken from the reactors were used to determine the distribution of microbial activity in the reactors. Zero-order kinetics were observed for the removal of dextran in batch experiments which is consistent with hydrolysis of high molecular weight organics where extracellular enzymes limit the substrate utilization rate. Biomass and microbial activity measurements demonstrated that the biomass was independent of position in the reactors. A Monod based substrate/biomass growth kinetic model predicted the performance of dextran removal in the reactors. The rate limiting step appears to be hydrolysis and the overall rate was not affected by surface area even though greater biomass accumulation occurred as the surface area decreased. PMID:21723581

  15. Kinetics of model high molecular weight organic compounds biodegradation in soil aquifer treatment.

    PubMed

    Fox, Peter; Makam, Roshan

    2011-10-01

    Soil Aquifer Treatment (SAT) is a process where treated wastewater is purified during transport through unsaturated and saturated zones. Easily biodegradable compounds are rapidly removed in the unsaturated zone and the residual organic carbon is comprised of primarily high molecular weight compounds. This research focuses on flow in the saturated zone where flow conditions are predictable and high molecular weight compounds are degraded. Flow through the saturated zone was investigated with 4 reactors packed with 2 different particle sizes and operated at 4 different flow rates. The objective was to evaluate the kinetics of transformation for high molecular weight organics during SAT. Dextran was used as a model compound to eliminate the complexity associated with studying a mixture of high molecular weight organics. The hydrolysis products of dextran are easily degradable sugars. Batch experiments with media taken from the reactors were used to determine the distribution of microbial activity in the reactors. Zero-order kinetics were observed for the removal of dextran in batch experiments which is consistent with hydrolysis of high molecular weight organics where extracellular enzymes limit the substrate utilization rate. Biomass and microbial activity measurements demonstrated that the biomass was independent of position in the reactors. A Monod based substrate/biomass growth kinetic model predicted the performance of dextran removal in the reactors. The rate limiting step appears to be hydrolysis and the overall rate was not affected by surface area even though greater biomass accumulation occurred as the surface area decreased.

  16. Working session 3: Tubing integrity

    SciTech Connect

    Cueto-Felgueroso, C.; Strosnider, J.

    1997-02-01

    Twenty-three individuals representing nine countries (Belgium, Canada, the Czech Republic, France, Japan, the Slovak Republic, Spain, the UK, and the US) participated in the session on tube integrity. These individuals represented utilities, vendors, consultants and regulatory authorities. The major subjects discussed by the group included overall objectives of managing steam generator tube degradation, necessary elements of a steam generator degradation management program, the concept of degradation specific management, structural integrity evaluations, leakage evaluations, and specific degradation mechanisms. The group`s discussions on these subjects, including conclusions and recommendations, are summarized in this article.

  17. Institutional computing (IC) information session

    SciTech Connect

    Koch, Kenneth R; Lally, Bryan R

    2011-01-19

    The LANL Institutional Computing Program (IC) will host an information session about the current state of unclassified Institutional Computing at Los Alamos, exciting plans for the future, and the current call for proposals for science and engineering projects requiring computing. Program representatives will give short presentations and field questions about the call for proposals and future planned machines, and discuss technical support available to existing and future projects. Los Alamos has started making a serious institutional investment in open computing available to our science projects, and that investment is expected to increase even more.

  18. Practical Session: Simple Linear Regression

    NASA Astrophysics Data System (ADS)

    Clausel, M.; Grégoire, G.

    2014-12-01

    Two exercises are proposed to illustrate the simple linear regression. The first one is based on the famous Galton's data set on heredity. We use the lm R command and get coefficients estimates, standard error of the error, R2, residuals …In the second example, devoted to data related to the vapor tension of mercury, we fit a simple linear regression, predict values, and anticipate on multiple linear regression. This pratical session is an excerpt from practical exercises proposed by A. Dalalyan at EPNC (see Exercises 1 and 2 of http://certis.enpc.fr/~dalalyan/Download/TP_ENPC_4.pdf).

  19. Dissolved organic matter removal during coal slag additive soil aquifer treatment for secondary effluent recharging: Contribution of aerobic biodegradation.

    PubMed

    Wei, Liangliang; Li, Siliang; Noguera, Daniel R; Qin, Kena; Jiang, Junqiu; Zhao, Qingliang; Kong, Xiangjuan; Cui, Fuyi

    2015-06-01

    Recycling wastewater treatment plant (WWTP) effluent at low cost via the soil aquifer treatment (SAT), which has been considered as a renewable approach in regenerating potable and non-potable water, is welcome in arid and semi-arid regions throughout the world. In this study, the effect of a coal slag additive on the bulk removal of the dissolved organic matter (DOM) in WWTP effluent during SAT operation was explored via the matrix configurations of both coal slag layer and natural soil layer. Azide inhibition and XAD-resins fractionation experiments indicated that the appropriate configuration designing of an upper soil layer (25 cm) and a mixture of soil/coal slag underneath would enhance the removal efficiency of adsorption and anaerobic biodegradation to the same level as that of aerobic biodegradation (31.7% vs 32.2%), while it was only 29.4% compared with the aerobic biodegradation during traditional 50 cm soil column operation. The added coal slag would preferentially adsorb the hydrophobic DOM, and those adsorbed organics could be partially biodegraded by the biomass within the SAT systems. Compared with the relatively lower dissolved organic carbon (DOC), ultraviolet light adsorption at 254 nm (UV-254) and trihalomethane formation potential (THMFP) removal rate of the original soil column (42.0%, 32.9%, and 28.0%, respectively), SSL2 and SSL4 columns would enhance the bulk removal efficiency to more than 60%. Moreover, a coal slag additive in the SAT columns could decline the aromatic components (fulvic-like organics and tryptophan-like proteins) significantly. PMID:25845997

  20. Dissolved organic matter removal during coal slag additive soil aquifer treatment for secondary effluent recharging: Contribution of aerobic biodegradation.

    PubMed

    Wei, Liangliang; Li, Siliang; Noguera, Daniel R; Qin, Kena; Jiang, Junqiu; Zhao, Qingliang; Kong, Xiangjuan; Cui, Fuyi

    2015-06-01

    Recycling wastewater treatment plant (WWTP) effluent at low cost via the soil aquifer treatment (SAT), which has been considered as a renewable approach in regenerating potable and non-potable water, is welcome in arid and semi-arid regions throughout the world. In this study, the effect of a coal slag additive on the bulk removal of the dissolved organic matter (DOM) in WWTP effluent during SAT operation was explored via the matrix configurations of both coal slag layer and natural soil layer. Azide inhibition and XAD-resins fractionation experiments indicated that the appropriate configuration designing of an upper soil layer (25 cm) and a mixture of soil/coal slag underneath would enhance the removal efficiency of adsorption and anaerobic biodegradation to the same level as that of aerobic biodegradation (31.7% vs 32.2%), while it was only 29.4% compared with the aerobic biodegradation during traditional 50 cm soil column operation. The added coal slag would preferentially adsorb the hydrophobic DOM, and those adsorbed organics could be partially biodegraded by the biomass within the SAT systems. Compared with the relatively lower dissolved organic carbon (DOC), ultraviolet light adsorption at 254 nm (UV-254) and trihalomethane formation potential (THMFP) removal rate of the original soil column (42.0%, 32.9%, and 28.0%, respectively), SSL2 and SSL4 columns would enhance the bulk removal efficiency to more than 60%. Moreover, a coal slag additive in the SAT columns could decline the aromatic components (fulvic-like organics and tryptophan-like proteins) significantly.

  1. Treatment of plutonium contaminated soil/sediment from the Mound site using the ACT*DE*CON{sup SM} process

    SciTech Connect

    Negri, M.C.; Swift, N.A.; North, J.P.

    1996-10-01

    The removal and/or treatment of contaminated soil is a major problem facing the US DOE. The EG&G Mound Applied Technologies site in Miamisburg, Ohio, has an estimated 1.5 million cubic feet of soils from past disposal and waste burial practices awaiting remediation from plutonium contamination. This amount includes sediment from the Miami-Erie Canal that was contaminated in 1969 following a pipe- rupture accident. Conventional soil washing techniques that use particle separation would generate too large a waste volume to be economically feasible. Therefore, innovative technologies are needed for the cleanup. The ACT*DE*CON process was developed by SELENTEC for washing soils to selectively dissolve and remove heavy metals and radionuclides. ACT*DE*CON chemically dissolves and removes heavy metals and radionuclides from soils and sediments into an aqueous medium. The ACT*DE*CON process uses oxidative carbonate/chelant chemistry to dissolve the contaminant from the sediment and hold the contaminant in solution. The objective of recent work was to document the proves conditions necessary to achieve the Mound-site and regulatory-cleanup goals using the ACT*DE*CON technology.

  2. Alkylphenol Polyethoxylate Metabolite Behavior During Short-Term Soil Aquifer Treatment

    NASA Astrophysics Data System (ADS)

    Reinhard, M.

    2002-12-01

    The attenuation of alkylphenol polyethoxylate (APEO) metabolites was studied at a soil aquifer treatment (SAT) facility located in Mesa, Arizona, USA. SAT is a technique commonly used in arid environments to augment groundwater supplies. In SAT, municipal wastewater is discharged into basins and allowed to infiltrate into the subsurface; the basins are most often filled for several days and then allowed to dry out. During SAT the quality of the recharged water is substantially improved. Because this water may eventually be used to augment drinking water supplies, there is a concern whether organic contaminants survive SAT. APEO metabolites are among the most frequently detected anthropogenic contaminants in the environment. The ubiquitous presence of these compounds may be of concern because they are relatively recalcitrant, can sorb and accumulate in soils and sediments, can bioaccumulate in plants and animals, and can be estrogenic to wildlife at low concentrations. In this study, two parcels of water were monitored during SAT -- one aerobic, the other anaerobic. During infiltration, under aerobic and anaerobic conditions, both alkylphenol ethoxycarboxylates (APECs) and carboxyalkylphenol ethoxycarboxylates (CAPECs) were substantially attenuated (> 90%) within 3 m. As expected, nonylphenol was removed under aerobic conditions, but produced under anaerobic conditions. Interestingly, no short-chained APEOs were detected. The rapid attenuation of CAPECs was surprising, as other researchers have found these metabolites to be very persistent. During infiltration, APEO metabolites with the longest ethoxycarboxylate side chain are attenuated fastest. Unlike several recent studies, alkylphenoxyacetic acids (AP1ECs) and carboxyalkylphenoxyacetic acids (CAP1ECs) were almost twice as abundant as alkylphenoxyethoxyacetic acids (AP2ECs) and carboxyalkylphenoxyethoxyacetic acids (CAP2ECs). Nonylphenol concentrations in both the wastewater and effluent SAT water were > 10

  3. Studies on the integration of nanofiltration and soil treatment for municipal effluent reclamation as a groundwater supplement.

    PubMed

    Linlin, Wu; Xuan, Zhao; Meng, Zhang

    2010-01-01

    Water shortage leads to increasing attention to artificial groundwater recharge by reclaimed water. An injection well is the most common recharge approach. In this paper, a new kind of integrated technology-short-term vadose soil treatment followed by nanofiltration-is recommended as pretreatment for artificial groundwater recharge by an injection well. Laboratory-scale experiments demonstrate that the short-term vadose soil can remove approximately 30% of the total dissolved organic carbon (DOC) content and 40% of dissolved organic matter with a molecular weight less than 1 kDa. As a compensatory process of soil treatment, nanofiltration offers a favorable desalination and additional organics removal. The removal efficiencies for total dissolved solids and conductivity amount to 45 and 48%, respectively. The residual DOC in the final effluent is below 1.0 mg/L. In addition, short-term vadose soil offers effective elimination of aromatic protein-like and polysaccharide-like substances, which are detected as components of the membrane foulant.

  4. Studies on the integration of nanofiltration and soil treatment for municipal effluent reclamation as a groundwater supplement.

    PubMed

    Linlin, Wu; Xuan, Zhao; Meng, Zhang

    2010-01-01

    Water shortage leads to increasing attention to artificial groundwater recharge by reclaimed water. An injection well is the most common recharge approach. In this paper, a new kind of integrated technology-short-term vadose soil treatment followed by nanofiltration-is recommended as pretreatment for artificial groundwater recharge by an injection well. Laboratory-scale experiments demonstrate that the short-term vadose soil can remove approximately 30% of the total dissolved organic carbon (DOC) content and 40% of dissolved organic matter with a molecular weight less than 1 kDa. As a compensatory process of soil treatment, nanofiltration offers a favorable desalination and additional organics removal. The removal efficiencies for total dissolved solids and conductivity amount to 45 and 48%, respectively. The residual DOC in the final effluent is below 1.0 mg/L. In addition, short-term vadose soil offers effective elimination of aromatic protein-like and polysaccharide-like substances, which are detected as components of the membrane foulant. PMID:20112534

  5. Immobilization of tetracyclines in manure and manure-amended soils using aluminum-based drinking water treatment residuals.

    PubMed

    Punamiya, Pravin; Sarkar, Dibyendu; Rakshit, Sudipta; Elzinga, Evert J; Datta, Rupali

    2016-02-01

    Veterinary antibiotics (VAs) are emerging contaminants of concern in the environment, mainly due to the potential for development of antibiotic-resistant bacteria and effect on microbiota that could interfere with crucial ecosystem functions such as nutrient cycling and decomposition. High levels of VAs such as tetracyclines (TCs) have been reported in agricultural soils amended with manure, which also has the potential to cause surface and groundwater contamination. Several recent studies have focused on developing methods to immobilize VAs such as composting with straw, hardwood chips, commercial biochar, aeration, mixing, heat treatment, etc. The major shortcomings of these methods include high cost and limited effectiveness. In the current study, we assessed the effectiveness of aluminum-based drinking water treatment residuals (Al-WTR) as a "green" sorbent to immobilize TCs in manure and manure-applied soils with varying physicochemical properties by laboratory incubation study. Results show that Al-WTR is very effective in immobilizing tetracycline (TTC) and oxytetracycline (OTC). The presence of phosphate resulted in significant (p < 0.01) decrease in TTC/OTC sorption by Al-WTR, but the presence of sulfate did not. attenuated total reflection (ATR)-FTIR spectroscopy indicate that TTC and OTC likely forming surface complexes via inner-sphere-type bonds in soils, manure, and manure-applied soils amended with Al-WTR.

  6. Working session 1: Tubing degradation

    SciTech Connect

    Kharshafdjian, G.; Turluer, G.

    1997-02-01

    A general introductory overview of the purpose of the group and the general subject area of SG tubing degradation was given by the facilitator. The purpose of the session was described as to {open_quotes}develop conclusions and proposals on regulatory and technical needs required to deal with the issues of SG tubing degradation.{close_quotes} Types, locations and characteristics of tubing degradation in steam generators were briefly reviewed. The well-known synergistic effects of materials, environment, and stress and strain/strain rate, subsequently referred to by the acronym {open_quotes}MESS{close_quotes} by some of the group members, were noted. The element of time (i.e., evolution of these variables with time) was emphasized. It was also suggested that the group might want to consider the related topics of inspection capabilities, operational variables, degradation remedies, and validity of test data, and some background information in these areas was provided. The presentation given by Peter Millet during the Plenary Session was reviewed; Specifically, the chemical aspects and the degradation from the secondary side of the steam generator were noted. The main issues discussed during the October 1995 EPRI meeting on secondary side corrosion were reported, and a listing of the potential SG tube degradations was provided and discussed.

  7. Session: Wind industry project development

    SciTech Connect

    Gray, Tom; Enfield, Sam

    2004-09-01

    This first session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a question and answer period. The session was intended to provide a general overview of wind energy product development, from the industry's perspective. Tom Gray of AWEA presented a paper titled ''State of the Wind Energy Industry in 2004'', highlighting improved performance and lower cost, efforts to address avian impacts, a status of wind energy in comparison to other energy-producing sources, and ending on expectations for the near future. Sam Enfield of Atlantic Renewable Energy Corporation presented a paper titled ''Key Factors for Consideration in Wind Plant Siting'', highlighting factors that wind facility developers must consider when choosing a site to build wind turbines and associated structures. Factors covered include wind resources available, ownership and land use patterns, access to transmission lines, accessibility and environmental impacts. The question and answer sum mary included topics related to risk taking, research and development, regulatory requirements, and dealing with utilities.

  8. BESCORP SOIL WASHING SYSTEM FOR LEAD BATTERY SITE TREATMENT - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    This report evaluates the Brice Environmental Services Corporation (BESCORP) Soil Washing System (BSWS) and Its applicability in remediating lead-contaminated soil at lead battery sites. It presents performance and economic data, developed from the U.S. Environmental Protection A...

  9. Phosphate Treatment of Lead-Contaminated Soil: Effects on Water Quality, Plant Uptake, and Lead Speciation

    EPA Science Inventory

    Water quality threats associated with using phosphate-based amendments to remediate Pb-contaminated soils are a concern, particularly in riparian areas. This study investigated the effects of P application rates to a Pb-contaminated alluvial soil on Pb and P loss via surface wat...

  10. POLYNUCLEAR AROMATIC HYDROCARBON (PAH) RELEASE FROM SOIL DURING TREATMENT WITH FENTON'S REAGENT

    EPA Science Inventory

    Fenton's Reagent was used to treat soil from a wood-treating site in southeastern Ohio which had been contaminated with creosote. Slurries, consisting of 10 µg of contaminated soil and 30 mL water were treated with 40 mL of Fenton's Reagent (1:1 of 30% H2O2 ...

  11. Bioslurry treatment for soils contaminated with very high concentrations of 2,4,6-trinitrophenylmethylnitramine (tetryl).

    PubMed

    Fuller, Mark E; Kruczek, Jessica; Schuster, Rachel L; Sheehan, Pamela L; Arienti, Per M

    2003-06-27

    Past and current DoD activities have resulted in the contamination of soil, sediment and groundwater with various explosive compounds. This research was undertaken to determine the effectiveness of a soil bioslurry process for remediation of soil with very high concentrations of 2,4,6-trinitrophenylmethylnitramine (tetryl). A 99.9% reduction in tetryl concentrations (from 100,000 to below 100 mg/kg) was achieved in 180 to 200 days. A variety of process modifications (i.e. addition of fertilizer, microbial biomass, purging with nitrogen, etc.) that were performed during the course of the experiment did not increase the tetryl biodegradation rate beyond the rates of degradation without modifications. Subsequent batches of soil added as a 25% (v/v) replacement of the slurry were also degraded. These results indicate the potential for this process to remediate highly contaminated soils at many former and current ammunition manufacturing sites.

  12. Electrokinetic treatment of polluted soil at pilot level coupled to an advanced oxidation process of its wastewater

    NASA Astrophysics Data System (ADS)

    Ochoa, B.; Ramos, L.; Garibay, A.; Pérez-Corona, M.; Cuevas, M. C.; Cárdenas, J.; Teutli, M.; Bustos, E.

    2016-02-01

    Soil contaminated with hydrocarbons is a current problem of great importance. These contaminants may be toxic, can retain water and block gas exchange with the atmosphere, which produces a poor-quality soil unsuitable for ecological health. Electroremediation is among the treatments for the removal of such contaminants. In this research, a pilot-level electroremediation test was applied using a circular arrangement of electrodes with a Ti cathode at the middle of the cell surrounded by six IrO2-Ta2O5 | Ti anodes. The presence of an NaOH electrolyte helps to develop the electromigration and electro-osmosis of gasoline molecules (at 1126 mg kg-1) surrounded by Na+ ions. The hydrocarbons are directed towards the cathode and subsequently removed in an aqueous Na+ - hydrocarbon solution, and the -OH migrates to the anode. During electrokinetic treatment, the physicochemical characteristics of the soil close to either the cathode or anode and at the half-cell were evaluated during the three weeks of treatment. During that time, more than 80% of hydrocarbons were removed. Hydrocarbons removed by the electrokinetic treatment of gasoline-polluted soil were collected in a central wastewater compartment and subsequently treated with a Fenton-type advanced oxidation process. This achieved more than 70% mineralization of the hydrocarbons to CO2 and H2O within 1.5 h; its low toxicity status was verified using the Deltatox® kit test. With this approach, the residual water complied with the permissible limits of COD, pH, and electrical conductivity for being discharged into water bodies, according to Mexican norm NOM-001-SEMARNAT-1996.

  13. Electrokinetic treatment of polluted soil at pilot level coupled to an advanced oxidation process of its wastewater

    NASA Astrophysics Data System (ADS)

    Ochoa, B.; Ramos, L.; Garibay, A.; Pérez-Corona, M.; Cuevas, M. C.; Cárdenas, J.; Teutli, M.; Bustos, E.

    2016-02-01

    Soil contaminated with hydrocarbons is a current problem of great importance. These contaminants may be toxic, can retain water and block gas exchange with the atmosphere, which produces a poor-quality soil unsuitable for ecological health. Electroremediation is among the treatments for the removal of such contaminants. In this research, a pilot-level electroremediation test was applied using a circular arrangement of electrodes with a Ti cathode at the middle of the cell surrounded by six IrO2-Ta2O5 | Ti anodes. The presence of an NaOH electrolyte helps to develop the electromigration and electro-osmosis of gasoline molecules (at 1126 mg kg-1) surrounded by Na+ ions. The hydrocarbons are directed towards the cathode and subsequently removed in an aqueous Na+ - hydrocarbon solution, and the -OH migrates to the anode. During electrokinetic treatment, the physicochemical characteristics of the soil close to either the cathode or anode and at the half-cell were evaluated during the three weeks of treatment. During that time, more than 80% of hydrocarbons were removed. Hydrocarbons removed by the electrokinetic treatment of gasoline-polluted soil were collected in a central wastewater compartment and subsequently treated with a Fenton-type advanced oxidation process. This achieved more than 70% mineralization of the hydrocarbons to CO2 and H2O within 1.5 h; its low toxicity status was verified using the Deltatox® kit test. With this approach, the residual water complied with the permissible limits of COD, pH, and electrical conductivity for being discharged into water bodies, according to Mexican norm NOM-001-SEMARNAT-1996.

  14. From In-Session Behaviors to Drinking Outcomes: A Causal Chain for Motivational Interviewing

    ERIC Educational Resources Information Center

    Moyers, Theresa B.; Martin, Tim; Houck, Jon M.; Christopher, Paulette J.; Tonigan, J. Scott

    2009-01-01

    Client speech in favor of change within motivational interviewing sessions has been linked to treatment outcomes, but a causal chain has not yet been demonstrated. Using a sequential behavioral coding system for client speech, the authors found that, at both the session and utterance levels, specific therapist behaviors predict client change talk.…

  15. Correspondence of Motivational Interviewing Adherence and Competence Ratings in Real and Role-Played Client Sessions

    ERIC Educational Resources Information Center

    Decker, Suzanne E.; Carroll, Kathleen M.; Nich, Charla; Canning-Ball, Monica; Martino, Steve

    2013-01-01

    Treatment integrity ratings (adherence and competence) are frequently used as outcome measures in clinician training studies, drawn from recorded real client or role-played client sessions. However, it is unknown whether clinician adherence and competence are similar in real client and role-played sessions or whether real and role-play clients…

  16. Treatment of turtle aquaculture effluent by an improved multi-soil-layer system.

    PubMed

    Song, Ying; Huang, Yu-ting; Ji, Hong-fang; Nie, Xin-jun; Zhang, Zhi-yuan; Ge, Chuan; Luo, An-cheng; Chen, Xin

    2015-02-01

    Concentrated turtle aquaculture effluent poses an environmental threat to water bodies, and therefore needs to be treated prior to disposal. This study was conducted to assess the effect of multi-soil-layer (MSL) systems treating turtle aquaculture effluent with adding different amounts of sludge. Four MSL systems were constructed with dry weight ratios of sludge with 0%, 5%, 10%, and 20% (MSL 1, MSL 2, MSL 3, and MSL 4, respectively). The turtle aquaculture effluent had an average chemical oxygen demand (COD), ammonia nitrogen (NH4(+)-N) and total nitrogen (TN) concentration of 288.4, 213.4, and 252.0 mg/L, respectively. The COD/TN (C/N) ratio was 1.2. The results showed that the four MSL systems could effectively treat the COD, NH4(+)-N, and TN, and MSL 4 showed significantly improved NH4(+)-N removal efficiency, suggesting the potential of sludge addition to improve the turtle aquaculture effluent treatment. The average COD, TN, and NH4(+)-N removal efficiencies of MSL 4 were 70.3%, 66.5%, and 72.7%, respectively. To further interpret the contribution of microorganisms to the removal, the microbial community compositions and diversities of the four MSL systems were measured. Comparisons of the denaturing gradient gel electrophoresis (DGGE) profiles revealed that the amount of nitrifying bacteria and diversity in MSL 4 were higher than those in the other three systems. We concluded that adding 20% of sludge improved the NH4(+)-N removal and stability of the system for nitrification, due to the enrichment of the nitrifying bacteria in MSL 4. PMID:25644469

  17. Treatment of turtle aquaculture effluent by an improved multi-soil-layer system*

    PubMed Central

    Song, Ying; Huang, Yu-ting; Ji, Hong-fang; Nie, Xin-jun; Zhang, Zhi-yuan; Ge, Chuan; Luo, An-cheng; Chen, Xin

    2015-01-01

    Concentrated turtle aquaculture effluent poses an environmental threat to water bodies, and therefore needs to be treated prior to disposal. This study was conducted to assess the effect of multi-soil-layer (MSL) systems treating turtle aquaculture effluent with adding different amounts of sludge. Four MSL systems were constructed with dry weight ratios of sludge with 0%, 5%, 10%, and 20% (MSL 1, MSL 2, MSL 3, and MSL 4, respectively). The turtle aquaculture effluent had an average chemical oxygen demand (COD), ammonia nitrogen (NH4 +-N) and total nitrogen (TN) concentration of 288.4, 213.4, and 252.0 mg/L, respectively. The COD/TN (C/N) ratio was 1.2. The results showed that the four MSL systems could effectively treat the COD, NH4 +-N, and TN, and MSL 4 showed significantly improved NH4 +-N removal efficiency, suggesting the potential of sludge addition to improve the turtle aquaculture effluent treatment. The average COD, TN, and NH4 +-N removal efficiencies of MSL 4 were 70.3%, 66.5%, and 72.7%, respectively. To further interpret the contribution of microorganisms to the removal, the microbial community compositions and diversities of the four MSL systems were measured. Comparisons of the denaturing gradient gel electrophoresis (DGGE) profiles revealed that the amount of nitrifying bacteria and diversity in MSL 4 were higher than those in the other three systems. We concluded that adding 20% of sludge improved the NH4 +-N removal and stability of the system for nitrification, due to the enrichment of the nitrifying bacteria in MSL 4. PMID:25644469

  18. Treatment of turtle aquaculture effluent by an improved multi-soil-layer system.

    PubMed

    Song, Ying; Huang, Yu-ting; Ji, Hong-fang; Nie, Xin-jun; Zhang, Zhi-yuan; Ge, Chuan; Luo, An-cheng; Chen, Xin

    2015-02-01

    Concentrated turtle aquaculture effluent poses an environmental threat to water bodies, and therefore needs to be treated prior to disposal. This study was conducted to assess the effect of multi-soil-layer (MSL) systems treating turtle aquaculture effluent with adding different amounts of sludge. Four MSL systems were constructed with dry weight ratios of sludge with 0%, 5%, 10%, and 20% (MSL 1, MSL 2, MSL 3, and MSL 4, respectively). The turtle aquaculture effluent had an average chemical oxygen demand (COD), ammonia nitrogen (NH4(+)-N) and total nitrogen (TN) concentration of 288.4, 213.4, and 252.0 mg/L, respectively. The COD/TN (C/N) ratio was 1.2. The results showed that the four MSL systems could effectively treat the COD, NH4(+)-N, and TN, and MSL 4 showed significantly improved NH4(+)-N removal efficiency, suggesting the potential of sludge addition to improve the turtle aquaculture effluent treatment. The average COD, TN, and NH4(+)-N removal efficiencies of MSL 4 were 70.3%, 66.5%, and 72.7%, respectively. To further interpret the contribution of microorganisms to the removal, the microbial community compositions and diversities of the four MSL systems were measured. Comparisons of the denaturing gradient gel electrophoresis (DGGE) profiles revealed that the amount of nitrifying bacteria and diversity in MSL 4 were higher than those in the other three systems. We concluded that adding 20% of sludge improved the NH4(+)-N removal and stability of the system for nitrification, due to the enrichment of the nitrifying bacteria in MSL 4.

  19. Comparative trials using albendazole and mebendazole in the treatment of soil-transmitted helminths in schoolchildren on Penang, Malaysia.

    PubMed

    Rahman, W A

    1996-12-01

    Trials using albendazole and mebendazole, as single 400 mg dose treatments, against soil-transmitted helminths, were carried out in 7-9 and 10-12 years-old schoolchildren living in urban and rural environments in Penang, Malaysia. Both drugs were equally effective in treating trichuriasis and ascariasis in both age groups and environments. However, mebendazole is not so effective in the treatment for hookworms when compared to albendazole. It is suggested that albendazole should be considered the drug of choice for mass chemotherapy for Penang.

  20. Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron.

    PubMed

    Xenidis, Anthimos; Stouraiti, Christina; Papassiopi, Nymphodora

    2010-05-15

    The chemical immobilization of Pb and As in contaminated soil from Lavrion, Greece, using monocalcium phosphate and ferrous sulfate as stabilizing agents was investigated. Monocalcium phosphate was added to contaminated soil at PO(4) to Pb molar ratios equal to 0, 0.5, 1, 1.5 and 2.5, whereas ferrous sulfate was added at Fe to As molar ratios equal to 0, 2.5, 5, 10 and 20. Phosphates addition to contaminated soil decreased Pb leachability, but resulted in significant mobilization of As. Simultaneous immobilization of Pb and As was obtained only when soil was treated with mixtures of phosphates and ferrous sulfate. Arsenic uptake by plants was also seen to increase when soil was treated only with phosphates, but co-addition of ferrous sulfate was efficient in maintaining As phytoaccumulation at low levels. The addition of at least 1.5M/M phosphates and 10M/M iron sulfate to soil reduced the dissolved levels of Pb and As in the water extracts to values in compliance with the EU drinking water standards. However, both additives contributed in the acidification of soil, decreasing pH from 7.8 to values as low as 5.6 and induced the mobilization of pH sensitive elements, such as Zn and Cd.

  1. Surface study of stainless steel electrode deposition from soil electrokinetic (EK) treatment using X-ray photoelectron spectroscopy (XPS)

    SciTech Connect

    Embong, Zaidi; Johar, Saffuwan; Tajudin, Saiful Azhar Ahmad; Sahdan, Mohd Zainizan

    2015-04-29

    Electrokinetic (EK) remediation relies upon application of a low-intensity direct current through the soil between stainless steel electrodes that are divided into a cathode array and an anode array. This mobilizes charged species, causing ions and water to move toward the electrodes. Metal ions and positively charged organic compounds move toward the cathode. Anions such as chloride, fluoride, nitrate, and negatively charged organic compounds move toward the anode. Here, this remediation techniques lead to a formation of a deposition at the both cathode and anode surface that mainly contributed byanion and cation from the remediated soil. In this research, Renggam-Jerangau soil species (HaplicAcrisol + RhodicFerralsol) with a surveymeter reading of 38.0 ± 3.9 μR/hr has been investigation in order to study the mobility of the anion and cation under the influence electric field. Prior to the EK treatment, the elemental composition of the soil and the stainless steel electrode are measured using XRF analyses. Next, the soil sample is remediated at a constant electric potential of 30 V within an hour of treatment period. A surface study for the deposition layer of the cathode and anode using X-ray Photoelectron spectroscopy (XPS) revealed that a narrow photoelectron signal from oxygen O 1s, carbon, C 1s silica, Si 2p, aluminium, Al 2p and chromium, Cr 2p exhibited on the electrode surface and indicate that a different in photoelectron intensity for each element on both electrode surface. In this paper, the mechanism of Si{sup 2+} and Al{sup 2+} cation mobility under the influence of voltage potential between the cathode and anode will be discussed in detail.

  2. Surface study of stainless steel electrode deposition from soil electrokinetic (EK) treatment using X-ray photoelectron spectroscopy (XPS)

    NASA Astrophysics Data System (ADS)

    Embong, Zaidi; Johar, Saffuwan; Tajudin, Saiful Azhar Ahmad; Sahdan, Mohd Zainizan

    2015-04-01

    Electrokinetic (EK) remediation relies upon application of a low-intensity direct current through the soil between stainless steel electrodes that are divided into a cathode array and an anode array. This mobilizes charged species, causing ions and water to move toward the electrodes. Metal ions and positively charged organic compounds move toward the cathode. Anions such as chloride, fluoride, nitrate, and negatively charged organic compounds move toward the anode. Here, this remediation techniques lead to a formation of a deposition at the both cathode and anode surface that mainly contributed byanion and cation from the remediated soil. In this research, Renggam-Jerangau soil species (HaplicAcrisol + RhodicFerralsol) with a surveymeter reading of 38.0 ± 3.9 μR/hr has been investigation in order to study the mobility of the anion and cation under the influence electric field. Prior to the EK treatment, the elemental composition of the soil and the stainless steel electrode are measured using XRF analyses. Next, the soil sample is remediated at a constant electric potential of 30 V within an hour of treatment period. A surface study for the deposition layer of the cathode and anode using X-ray Photoelectron spectroscopy (XPS) revealed that a narrow photoelectron signal from oxygen O 1s, carbon, C 1s silica, Si 2p, aluminium, Al 2p and chromium, Cr 2p exhibited on the electrode surface and indicate that a different in photoelectron intensity for each element on both electrode surface. In this paper, the mechanism of Si2+ and Al2+ cation mobility under the influence of voltage potential between the cathode and anode will be discussed in detail.

  3. Fenton oxidation and combined Fenton-microbial treatment for remediation of crude oil contaminated soil in Assam - India.

    PubMed

    Buragohain, Surabhi; Deka, Dibakar Chandra; Devi, Arundhuti

    2013-10-01

    The study is aimed at the remediation of soil spiked with crude oil (5%) by employing Fenton oxidation, biological treatment and combined Fenton-biological treatment. A spiked concentration of 5% crude oil was selected on the basis of contamination levels of 0-5% as found in the soil of upper Assam oil fields (India). The degradation of the aliphatic fraction (C14-C28) of the crude oil was investigated by gas chromatography. Fenton oxidation was carried out at different pH (3 to 8) in a laboratory batch reactor and maximum oxidative degradation was observed at pH 3-5. At pH 3, single Fenton oxidation resulted in 36 and 57% degradation in 5 and 10 days respectively. Biological treatment (with Fusarium solani) and combined Fenton-biological treatment were carried out with a one month incubation period. Biological treatment alone brought about 61% degradation of the crude oil while the combined process could achieve as much as 75% degradation of the aliphatic fractions of the crude oil.

  4. Fenton oxidation and combined Fenton-microbial treatment for remediation of crude oil contaminated soil in Assam - India.

    PubMed

    Buragohain, Surabhi; Deka, Dibakar Chandra; Devi, Arundhuti

    2013-10-01

    The study is aimed at the remediation of soil spiked with crude oil (5%) by employing Fenton oxidation, biological treatment and combined Fenton-biological treatment. A spiked concentration of 5% crude oil was selected on the basis of contamination levels of 0-5% as found in the soil of upper Assam oil fields (India). The degradation of the aliphatic fraction (C14-C28) of the crude oil was investigated by gas chromatography. Fenton oxidation was carried out at different pH (3 to 8) in a laboratory batch reactor and maximum oxidative degradation was observed at pH 3-5. At pH 3, single Fenton oxidation resulted in 36 and 57% degradation in 5 and 10 days respectively. Biological treatment (with Fusarium solani) and combined Fenton-biological treatment were carried out with a one month incubation period. Biological treatment alone brought about 61% degradation of the crude oil while the combined process could achieve as much as 75% degradation of the aliphatic fractions of the crude oil. PMID:24056615

  5. Working session 2: Tubing inspection

    SciTech Connect

    Guerra, J.; Tapping, R.L.

    1997-02-01

    This session was attended by delegates from 10 countries, and four papers were presented. A wide range of issues was tabled for discussion. Realizing that there was limited time available for more detailed discussion, three topics were chosen for the more detailed discussion: circumferential cracking, performance demonstration (to focus on POD and sizing), and limits of methods. Two other subsessions were organized: one dealt with some challenges related to the robustness of current inspection methods, especially with respect to leaving cracked tubes in service, and the other with developing a chart of current NDE technology with recommendations for future development. These three areas are summarized in turn, along with conclusions and/or recommendations. During the discussions there were four presentations. There were two (Canada, Japan) on eddy current probe developments, both of which addressed multiarray probes that would detect a range of flaws, one (Spain) on circumferential crack detection, and one (JRC, Petten) on the recent PISC III results.

  6. Session: Discussion of Research Needs

    SciTech Connect

    anon.

    2004-09-01

    This final session at the Wind Energy and Birds/Bats workshop was lead by a facilitator who asked participants for their overall reaction to the research that had been presented during the workshop. Questions addressed by workshop participants included: how do you develop trust and confidence in the research, what are some of the specific gaps in our understanding of wind energy's impact on birds and bats; how do we prioritize and proceed with closing the data/research gaps; how do we connect the dots and bring various research and mapping efforts together; given gaps in the data, what are the critical questions we need to answer to make project decisions now; and, how do we track/influence the policies that will shape wind energy development. Conclusions reached regarding these questions are included in summary form.

  7. VAPOR PHASE TREATMENT OF PCE IN A SOIL COLUMN BY LAB-SCALE ANAEROBIC BIOVENTING

    EPA Science Inventory

    Microbial destruction of highly chlorinated organic compounds must be initiated by anaerobic followed by aerobic dechlorination. In-situ dechlorination of vadose zone soil contaminated with these compounds requires, among other factors, the establishment of highly reductive anaer...

  8. LOW COST SOLIDIFICATION/STABILIZATION TREATMENT FOR SOILS CONTAMINATED WITH DIOXIN, PCP AND CREOSOTE

    EPA Science Inventory

    The USEPA's NRMRL conducted successful treatability tests of innovative solidification/stabilization (S/S) formulations to treat soils contaminated with dioxins, pentachlorophenol (PCP), and creosote from four wood preserving sites. Formulations developed during these studies wer...

  9. LOW COST SOLIDIFICATION/STABILIZATION TREATMENT FOR SOILS CONTAMINATED WITH DIOXIN, PCP, AND CREOSOTE

    EPA Science Inventory

    The USEPA's National Risk Management Research Laboratory condcuted successful treatability tests of innovative solidification/stablization (S/S) formulations to treat soils contaminated with dioxins, pentachlorophenol (PCP), and creosote from four wood preserving sites. For one o...

  10. Final report from VFL Technologies for the pilot-scale thermal treatment of lower East Fork Poplar Creek floodplain soils. LEFPC appendices, Volume 4, Appendix V-C

    SciTech Connect

    1994-09-01

    This is the the final verification run data package for pilot scale thermal treatment of lower East Fork Poplar Creek floodplain soils. Included are data on volatiles, semivolatiles, and TCLP volatiles.

  11. Herbicide treatment effects on properties of mountain big sagebrush soils after fourteen years

    NASA Technical Reports Server (NTRS)

    Burke, I. C.; Reiners, W. A.; Sturges, D. L.; Matson, P. A.

    1987-01-01

    The effects of sagebrush conversion on the soil properties of a high-elevation portion of the Western Intermountain Sagebrush Steppe (West, 1983) are described. Changes were found in only a few soil chemical properties after conversion to grassland. It was found that surface concentrations of N were lower under grass vegetation than under undisturbed vegetation. Undershrub net N mineralization rates were higher under shrubs in the sagebrush vegetation than under former shrubs in the grass vegetation.

  12. Stabilization treatment of soft subgrade soil by sewage sludge ash and cement.

    PubMed

    Chen, Li; Lin, Deng-Fong

    2009-02-15

    In this study, incinerated sewage sludge ash (ISSA) is mixed with cement in a fixed ratio of 4:1 for use as a stabilizer to improve the strength of soft, cohesive, subgrade soil. Five different ratios (in wt%: 0%, 2%, 4%, 8%, and 16%) of ISSA/cement admixture are mixed with cohesive soil to make soil samples. In order to understand the influences of admixtures on the soil properties, tests of the pH value, Atterberg limits, compaction, California bearing ratio (CBR), unconfined compressive strength, and triaxial compression were performed on those samples. The study shows that the unconfined compressive strength of specimens with the ISSA/cement addition was improved to approximately 3-7 times better than that of the untreated soil; furthermore, the swelling behavior was also effectively reduced as much as 10-60% for those samples. In some samples, the ISSA/cement additive improved the CBR values by up to 30 times that of untreated soil. This suggests that ISSA/cement has many potential applications in the field of geotechnical engineering. PMID:18579294

  13. Application of an electrochemical treatment for EDDS soil washing solution regeneration and reuse in a multi-step soil washing process: Case of a Cu contaminated soil.

    PubMed

    Ferraro, Alberto; van Hullebusch, Eric D; Huguenot, David; Fabbricino, Massimiliano; Esposito, Giovanni

    2015-11-01

    Soil washing is an extensively used process for remediation of heavy metals contaminated soils. However the amount of fresh washing solution to be used represents a significant economical drawback of this process. This paper investigates the application of an electrochemical process (Fe/Fe electrodes couple) for the regeneration of a spent EDDS solution, containing Cu and major competitor cations (Ca, Fe, Mg, and Mn). The effect of current density, pH and conductivity of the washing solution on the recovery process performances was investigated. Current density showed the highest influence on Cu, Mg and Mn removal yields. Maximum removal yields reached 99% for Cu, 77% for Mn and 49% for Mg. No influence of the investigated parameters on Ca removal was observed, while an increase of Fe concentration due to anode dissolution occurred. Characterization of sludge produced from the 2 h electrochemical test (5 mA cm(-2), pH = 8, 8 mS cm(-1)) displayed concentrations of 2.8 g kg(-1) for Ca, 0.4 g kg(-1) for Cu, 535.6 g kg(-1) for Fe, 2.6 g kg(-1) for Mg. TCLP tests at pH 2.88 and 4.93 showed a low leaching percentage (Ca, 10-21%; Cu, 6-12%; Fe, 0.22% Mg, 27-36%). Multi-washing tests were carried out to assess the decrease of the chelating ability of the regenerated washing solution and the Cu extraction efficiency.

  14. Maintenance Sessions Prolong Cigarette Abstinence.

    ERIC Educational Resources Information Center

    Brandon, Thomas H.; And Others

    Recent smoking treatment programs have shifted emphasis from initial cessation rates to long-term abstinence, with aversion therapy and coping response training having had the most success. A smoking cessation treatment consisting of rapid smoking and behavioral counseling was supplemented with two maintenance treatments. After completing the…

  15. Correspondence of Motivational Interviewing Adherence and Competence Ratings in Real and Role-Played Client Sessions

    PubMed Central

    Decker, Suzanne E.; Carroll, Kathleen M.; Nich, Charla; Canning-Ball, Monica; Martino, Steve

    2013-01-01

    Treatment integrity ratings (adherence and competence) are frequently used as outcome measures in clinician training studies, drawn from recorded real client or role-played client sessions. However, it is unknown whether clinician adherence and competence are similar in real client and role-played sessions or whether real and role-play clients provide similar opportunities for skill demonstration. This study examined the correspondence of treatment adherence and competence ratings obtained in real client and role-played sessions for 91 clinicians trained in Motivational Interviewing (MI), using data from a multi-site trial examining three methods of clinician training (Martino et al., 2011). Results indicated overall poor integrity rating correspondence across the two session types, as indicated by weak correlations (r = .05–.27). Clinicians were rated significantly more MI adherent overall and specifically used more advanced MI strategies in role-played than real client sessions at several assessment time points (d = 0.36, 0.42). Real clients, in comparison to the role-play actor, demonstrated greater motivation at the beginning of the session (d = 1.09), discussion of unrelated topics (d = 0.70), and alliance with the clinician (d = 0.72). These findings suggest that MI integrity rating data obtained from real client and role-played sessions may not be interchangeable. More research is needed to improve the procedures and psychometric strength of treatment integrity assessment based on role-played sessions. PMID:23205626

  16. Effect of operating conditions in soil aquifer treatment on the removals of pharmaceuticals and personal care products.

    PubMed

    He, Kai; Echigo, Shinya; Itoh, Sadahiko

    2016-09-15

    Soil aquifer treatment (SAT) is an alternative advanced treatment for wastewater reclamation, and it has the potential to control micropollutants including pharmaceuticals and personal care products (PPCPs). However, the relationship of operating conditions in SAT and removals of micropollutants was not clear. In this study, the effects of operating conditions on the removals of PPCPs were evaluated by using lab-scale columns and plant pilot-scale reactors under different operating conditions. Firstly, weathered granite soil (WGS), standard sand (SAND) and Toyoura standard sand (TS) have different soil characteristics such as total organic carbon (TOC) and cation exchange capacity (CEC). In the columns with these packing materials, the removals of carboxylic analgesics and antilipidemics were effective regardless packing materials. The removals of antibiotics were more effective in WGS than in TS and SAND, indicating high TOC and CEC enhance the sorption in SAT. Secondly, with the extension of hydraulic retention time (HRT), the removals of sulfamethoxazole, acetaminophen, crotamiton, and antipyrine were improved in WGS columns, and adaptable biodegradation for moderately removable PPCPs was formed. Thirdly, the removal efficiencies of sulfamethoxazole and crotamiton were higher in the WGS column under vadose condition than in the WGS column under saturated condition, because of aerobic condition in WGS column under vadose condition. Though long HRT and vadose condition had positive influence on the removals of several PPCPs such as sulfamethoxazole, WGS column with an HRT of 7days under saturated condition removed most PPCPs. PMID:27213846

  17. Effect of operating conditions in soil aquifer treatment on the removals of pharmaceuticals and personal care products.

    PubMed

    He, Kai; Echigo, Shinya; Itoh, Sadahiko

    2016-09-15

    Soil aquifer treatment (SAT) is an alternative advanced treatment for wastewater reclamation, and it has the potential to control micropollutants including pharmaceuticals and personal care products (PPCPs). However, the relationship of operating conditions in SAT and removals of micropollutants was not clear. In this study, the effects of operating conditions on the removals of PPCPs were evaluated by using lab-scale columns and plant pilot-scale reactors under different operating conditions. Firstly, weathered granite soil (WGS), standard sand (SAND) and Toyoura standard sand (TS) have different soil characteristics such as total organic carbon (TOC) and cation exchange capacity (CEC). In the columns with these packing materials, the removals of carboxylic analgesics and antilipidemics were effective regardless packing materials. The removals of antibiotics were more effective in WGS than in TS and SAND, indicating high TOC and CEC enhance the sorption in SAT. Secondly, with the extension of hydraulic retention time (HRT), the removals of sulfamethoxazole, acetaminophen, crotamiton, and antipyrine were improved in WGS columns, and adaptable biodegradation for moderately removable PPCPs was formed. Thirdly, the removal efficiencies of sulfamethoxazole and crotamiton were higher in the WGS column under vadose condition than in the WGS column under saturated condition, because of aerobic condition in WGS column under vadose condition. Though long HRT and vadose condition had positive influence on the removals of several PPCPs such as sulfamethoxazole, WGS column with an HRT of 7days under saturated condition removed most PPCPs.

  18. Evaluation of wastewater treatment by-products as soil amendment: Growth of sorghum-sudan grass and trace elements concentrations.

    PubMed

    Sivapatham, Paramasivam; Potts, Mariel C; Delise, Jeffrey A; Sajwan, Kenneth S; Alva, Ashok K; Jayaraman, Kuppuswamy; Chakraborty, Paromita

    2012-01-01

    Wastewater treatment by-products (WTBP), such as sewage sludge (SS) may be used to enhance soil chemical, physical, and biological properties. These enhanced soil properties, in turn, could from its source of production to its site of application. These concerns may be mitigated by incineration of the SS to produce ash (SSA) and dissolved in water and stored in ponds as contribute to an increase in plant growth, production, mineral nutrition. Some SS is difficult to handle due to bad odor in its raw state and has large mass, hence expensive for transportation weathered SSA (WSSA). A greenhouse study was conducted using Candler fine sand CFS; (CFS; pH = 6.8) and Ogeechee loamy sand OLS; (pH = 5.2) with application of either 0, 24.7, 49.4, 98.8, or 148.2 Mg ha(-1) as either SS, SSA, or WSSA to evaluate the biomass production and elemental composition responses of sorghum-sudan grass (Sorghum vulgaris var. Sudanese hitche). Shoot and root biomass were 2 to 3 fold greater in the soil amended with SS, than either SSA or WSSA. Concentrations of nutrient and trace elements in the shoots and roots increased with increasing rates of amendments. Application of these by-products up to 98.8 Mg ha(-1) rate did not adversely affect growth or accumulation of trace elements in sorghum-sudan grass. Long-term field studies are recommended to investigate the potential leaching of various elements from the amended soils in addition to evaluation of plant growth and production responses to determine the acceptable rates of these by-products as amendments to agricultural soils.

  19. Sustainable measures for sewage sludge treatment - evaluating the effects on P reaction in soils and plant P uptake

    NASA Astrophysics Data System (ADS)

    Shenker, Moshe; Einhoren, Hana

    2016-04-01

    Wastewater treatment, whether for water reusing or for releasing into the environment, results in sewage sludge rich in organic matter and nutrients. If free of pathogens and pollutants, this waste material is a widely used as soil amendment and source of valuable nutrients for agronomic use. Nevertheless, its P/N ratio largely exceeds plant P/N demand. Limiting its application rates according to the P demand of crops will largely limit its application rates and its beneficial effect as a soil amendment and as a source for other nutrients. An alternative approach, in which P is stabilized before application, was evaluated in this study. Anaerobically digested fresh sewage sludge (FSS) was stabilized by aluminum sulfate, ferrous sulfate, and calcium oxide (CaO), as well as by composting with shredded woody yard-waste to produce Al-FSS, Fe-FSS, CaO-FSS, and FSS-compost, respectively. Defined organic-P sources (glucose-1-phosphate and inositol-hexa-phosphate) and a P fertilizer (KH2PO4) were included as well and a control with no P amendments was included as a reference. Each material was applied at a fixed P load of 50 mg kg-1 to each of three soils and P speciation and plants P uptake were tested along 112 days of incubation at moderate (near field capacity) water content. Tomato seedlings were used for the P uptake test. The large set of data was used to evaluate the effect of each treatment on P reactions and mechanisms of retention in the tested soils and to correlate various P indices to P availability for plants. Plant P uptake was highly correlated to Olsen-P as well as to water-soluble inorganic-P, but not to water-soluble organic-P and not to total P or other experimentally-defined stable P fractions. We conclude that the P stabilization in the sludge will allow beneficial and sustainable use of sewage sludge as a soil amendment and source of nutrients, but the stabilization method should be selected in accordance with the target soil properties.

  20. Single-Session Radiofrequency Ablation of Bilateral Lung Metastases

    SciTech Connect

    Palussiere, Jean Gomez, Fernando; Cannella, Matthieu; Ferron, Stephane; Descat, Edouard; Fonck, Marianne; Brouste, Veronique; Avril, Antoine

    2012-08-15

    Purpose: This retrospective study examined the feasibility and efficacy of bilateral lung radiofrequency ablation (RFA) performed in a single session. Methods: From 2002-2009, patients with bilateral lung metastases were treated by RFA, where possible in a single session under general anesthesia with CT guidance. The second lung was punctured only if no complications occurred after treatment of the first lung. Five lung metastases maximum per patient were treated by RFA and prospectively followed. The primary endpoint was the evaluation of acute and delayed complications. Secondary endpoints were calculation of hospitalization duration, local efficacy, median survival, and median time to tumor progression. Local efficacy was evaluated on CT or positron emission tomography (PET) CT. Results: Sixty-seven patients were treated for bilateral lung metastases with RFA (mean age, 62 years). Single-session treatment was not possible in 40 due to severe pneumothoraces (n = 24), bilateral pleural contact (n = 14), and operational exclusions (n = 2). Twenty-seven (41%) received single-session RFA of lesions in both lungs for 66 metastases overall. Fourteen unilateral and four bilateral pneumothoraces occurred (18 overall, 66.7%). Unilateral (n = 13) and bilateral (n = 2) chest tube drainage was required. Median hospitalization was 3 (range, 2-8) days. Median survival was 26 months (95% confidence interval (CI), 19-33). Four recurrences on RFA sites were observed (4 patients). Median time to tumor progression was 9.5 months (95% CI, 4.2-23.5). Conclusions: Although performing single-session bilateral lung RFA is not always possible due to pneumothoraces after RFA of first lung, when it is performed, this technique is safe and effective.

  1. Treatment of TNT contaminated soil and groundwater using plant-based enzyme systems

    SciTech Connect

    Medina, V.F.; Wolfe, L.; McCutcheon, S.C.

    1995-12-31

    Trinitrotoluene (TNT) is considered toxic and a mutagen. For over 100 years, TNT has been widely used in explosives for both military and commercial applications. Soil and groundwater contamination by TNT is prevalent at military bases, manufacturing facilities and at commercial (such as mining) sites were TNT was used or stored. TNT is a difficult compound to treat. It is resistant to complete microbial degradation. Although incineration is feasible, it can be costly. One promising technology is degradation using plant enzyme systems, which has become known as phytoremediation. This paper will highlight bench and field studies of phytoremediation of TNT contaminated soil and groundwater. Parameters for developing a model will be discussed.

  2. Early Adolescence: Experiment with Poster Sessions.

    ERIC Educational Resources Information Center

    Padilla, Michael J.; Shaw, Edward

    1983-01-01

    In a poster session, students explain an experiment with the help of a poster that outlines the experimental procedures followed. Suggestions for preparing posters and conducting poster sessions are provided. A sample poster on the strength of electromagnets is also provided. (JN)

  3. The International Mathematical Olympiad Training Session.

    ERIC Educational Resources Information Center

    Rousseau, Cecil; Patruno, Gregg

    1985-01-01

    The Mathematical Olympiad Training Session is designed to give United States students a problem-oriented exposure to subject areas (algebra, geometry, number theory, combinatorics, and inequalities) through an intensive three-week course. Techniques used during the session, with three sample problems and their solutions, are presented. (JN)

  4. Undergraduate Researchers and the Poster Session

    ERIC Educational Resources Information Center

    Johnson, Gail; Green, Raymond

    2007-01-01

    Undergraduates presented original research in classroom poster sessions open to students, faculty, and friends. We assessed the reaction of the students to the experience and their reported change in their interest in presenting at conferences. Students enjoyed the poster session experience and indicated they preferred this method over other…

  5. 48 CFR 9901.311 - Executive sessions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Executive sessions. During the course of a Board meeting, any Board Member may request that for any portion of the meeting, the Board meet in executive session. The Chairman shall thereupon order such a....311 Section 9901.311 Federal Acquisition Regulations System COST ACCOUNTING STANDARDS BOARD, OFFICE...

  6. Effects of Post-Session Wheel Running on Within-Session Changes in Operant Responding

    ERIC Educational Resources Information Center

    Aoyama, Kenjiro

    2007-01-01

    This study tested the effects of post-session wheel running on within-session changes in operant responding. Lever-pressing by six rats was reinforced by a food pellet under a continuous reinforcement (CRF) schedule in 30-min sessions. Two different flavored food pellets were used as reinforcers. In the wheel conditions, 30-min operant-sessions…

  7. Calcineurin inhibition blocks within-, but not between-session fear extinction in mice.

    PubMed

    Almeida-Corrêa, Suellen; Moulin, Thiago C; Carneiro, Clarissa F D; Gonçalves, Marina M C; Junqueira, Lara S; Amaral, Olavo B

    2015-03-01

    Memory extinction involves the formation of a new associative memory that inhibits a previously conditioned association. Nonetheless, it could also depend on weakening of the original memory trace if extinction is assumed to have multiple components. The phosphatase calcineurin (CaN) has been described as being involved in extinction but not in the initial consolidation of fear learning. With this in mind, we set to study whether CaN could have different roles in distinct components of extinction. Systemic treatment with the CaN inhibitors cyclosporin A (CsA) or FK-506, as well as i.c.v. administration of CsA, blocked within-session, but not between-session extinction or initial learning of contextual fear conditioning. Similar effects were found in multiple-session extinction of contextual fear conditioning and in auditory fear conditioning, indicating that CaN is involved in different types of short-term extinction. Meanwhile, inhibition of protein synthesis by cycloheximide (CHX) treatment did not affect within-session extinction, but disrupted fear acquisition and slightly impaired between-session extinction. Our results point to a dissociation of within- and between-session extinction of fear conditioning, with the former being more dependent on CaN activity and the latter on protein synthesis. Moreover, the modulation of within-session extinction did not affect between-session extinction, suggesting that these components are at least partially independent.

  8. Development and Validation of the Documentation of Occupational Therapy Session during Intervention (D.O.T.S.I.)

    ERIC Educational Resources Information Center

    Bart, O.; Avrech Bar, M.; Rosenberg, L.; Hamudot, V.; Jarus, T.

    2011-01-01

    Objective: To develop and validate a form for Documentation of Occupational Therapy Session during Intervention (D.O.T.S.I) based on the OTPF. This form may fill the need for more consistent and detailed documentation of the intervention process. Method: Fifty five pediatric OT's documented 2-3 treatment sessions. A total of 120 treatment sessions…

  9. Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.).

    PubMed

    Anand, Anjali; Nagarajan, Shantha; Verma, A P S; Joshi, D K; Pathak, P C; Bhardwaj, Jyotsna

    2012-02-01

    The effect of magnetic field (MF) treatments of maize (Zea mays L.) var. Ganga Safed 2 seeds on the growth, leaf water status, photosynthesis and antioxidant enzyme system under soil water stress was investigated under greenhouse conditions. The seeds were exposed to static MFs of 100 and 200 mT for 2 and 1 h, respectively. The treated seeds were sown in sand beds for seven days and transplanted in pots that were maintained at -0.03, -0.2 and -0.4 MPa soil water potentials under greenhouse conditions. MF exposure of seeds significantly enhanced all growth parameters, compared to the control seedlings. The significant increase in root parameters in seedlings from magnetically-exposed seeds resulted in maintenance of better leaf water status in terms of increase in leaf water potential, turgor potential and relative water content. Photosynthesis, stomatal conductance and chlorophyll content increased in plants from treated seeds, compared to control under irrigated and mild stress condition. Leaves from plants of magnetically-treated seeds showed decreased levels of hydrogen peroxide and antioxidant defense system enzymes (peroxidases, catalase and superoxide dismutase) under moisture stress conditions, when compared with untreated controls. Mild stress of -0.2 MPa induced a stimulating effect on functional root parameters, especially in 200 mT treated seedlings which can be exploited profitably for rain fed conditions. Our results suggested that MF treatment (100 mT for 2 h and 200 for 1 h) of maize seeds enhanced the seedling growth, leaf water status, photosynthesis rate and lowered the antioxidant defense system of seedlings under soil water stress. Thus, pre sowing static magnetic field treatment of seeds can be effectively used for improving growth under water stress. PMID:22435146

  10. Mixed yeasts inocula for simultaneous production of SCP and treatment of vinasse to reduce soil and fresh water pollution.

    PubMed

    Pires, Josiane F; Ferreira, Gustavo M R; Reis, Kelly C; Schwan, Rosane F; Silva, Cristina F

    2016-11-01

    This study evaluated the use of vinasse as a substrate for microbial biomass production and its disposal impact on the environment. After grown in vinasse, the microbial biomass (SCP) of two Saccharomyces cerevisiae strains, CCMA 0137 and CCMA 0188, showed high levels of essential amino acids (3.78%), varying levels of chemical elements, and low nucleic acid content (2.38%), i. e, good characteristics to food supplemements. Following biological treatment, spent vinasse biochemical oxygen demand (BOD) and chemical oxygen demand (COD) decreased to 51.56 and 29.29%, respectively. Cultivation with S. cerevisiae significantly reduced short term phytotoxicity and toxicity on soil microbiota of spent vinasse.

  11. A mechanistic treatment of the dominant soil nitrogen cycling processes: Model development, testing, and application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development and initial application of a mechanistic model (TOUGHREACT-N) designed to characterize soil nitrogen (N) cycling and losses are described. The model couples advective and diffusive nutrient transport, multiple microbial biomass dynamics, and equilibrium and kinetic chemical reactions...

  12. TECHNOLOGY EVALUATION REPORT: BIOTROL SOIL WASHING SYSTEM FOR TREATMENT OF A WOOD PRESERVING SITE - VOLUME II

    EPA Science Inventory

    The SITE Program demonstration of one configuration of the BioTrol Soil Washing System (BSWS) was conducted to obtain reliable performance and cost data that can be used to evaluate the potential applicability of the technology as a remediation alternative for sites contaminated ...

  13. FIELD EVALUATION OF IN-SITU TREATMENTS TO REDUCE SOIL-LEAD BIOAVAILABILITY: INTRODUCTION & BACKGROUND

    EPA Science Inventory

    The In-place Inactivation and Natural Ecological Restoration Technologies (IINERT) Soil-Metals Action Team was established in 11/95 as one of several Action Teams under the USEPA Remediation Technologies Development Forum (RTDF). Its primary goal was to examine in situ remediatio...

  14. UTILIZATION OF BACTERIA TO REMEDIATE CONTAMINATED SOILS AND SEDIMENTS IN THE US: LASAGNA AND OTHER TREATMENTS

    EPA Science Inventory

    This is an overview of the work underway at USEPA/ORD/NRMRL's Center Hill Microbiology Laboratory on bioremediation of contaminated soils and sediments. The Laboratory has isolated and naturally selected for various isolates. An isolate that will be reviewed is CHL-004, a Pseudom...

  15. EFFECTS OF TREATMENTS ON SOIL-LEAD BIOAVAILABILITY: IMPLICATIONS OF IN-VITRO EXTRACTION TESTING

    EPA Science Inventory

    A field-scale study on the use of phosphate amendments to reduce lead bioavailabity from soil is being conducted at the Joplin site. One of the tools used to evaluate whether lead bioavailability is being reduced is an in vitro extraction test. The in vitro test simulates the gas...

  16. Treatment and Remediation of Petroleum-Contaminated Soils Using Selective Ornamental Plants

    PubMed Central

    Liu, Rui; Jadeja, Rajendrasinh N.; Zhou, Qixing; Liu, Zhe

    2012-01-01

    Abstract Pot-culture experiments were carried out to assess the phytoremediation potential of 14 ornamental plants in weathered petroleum-contaminated soil, which was collected in the Shengli Oil Field, one of the biggest oil fields in China, by examining their impact on the degradation potential of total petroleum hydrocarbons (TPHs) and its composition. Results showed Gaillardia aristata, Echinacea purpurea, Fawn (Festuca arundinacea Schreb), Fire Phoenix (a combined F. arundinacea), and Medicago sativa L. could effectively reduce TPHs and its composition in 10,000 mg kg−1 TPH-contaminated soil. After a 30-day pot-culture experiment, the removal rates were 37.16%, 46.74%, 49.42%, 41.00%, and 37.93%, respectively, significantly higher than that in the control (only 12.93%). Removal rates of TPH composition including saturated hydrocarbon, aromatic hydrocarbon, asphaltene, and polar compound reached 39.41%, 38.47%, 45.11%, 42.92%, and 37.52%, respectively, also higher than that in the control (only 6.90%). Further, the total biomass did not significantly decrease for all plants tested in 10,000 mg kg−1 TPH-contaminated soil. Fourier transform infrared spectroscopy confirmed the presence of oil in the plant tissues. These results suggested that the typical ornamental species including G. aristata, E. purpurea, Fawn, Fire Phoenix, and M. sativa can be adopted in phytoremediation of oil-contaminated soil. PMID:22693416

  17. MANAGING ARSENIC CONTAMINATED SOIL, SEDIMENT, AND INDUSTRIAL WASTE WITH SOLIDIFICATION/STABILIZATION TREATMENT

    EPA Science Inventory

    Arsenic contamination of soil, sediment and groundwater is a widespread problem in certain areas and has caused great public concern due to increased awareness of the health risks. Often the contamination is naturally occurring, but it can also be a result of waste generated from...

  18. ONSITE ENGINEERING REPORT FOR SOLIDIFICATION/ STABILIZATION TREATMENT TESTING OF CONTAMINATED SOILS

    EPA Science Inventory

    The EPA's Office of Solid Waste and Emergency Response (OSWER) is currently developing land disposal restrictions (LDRs) for contaminated soil and debris (CS&D). The Office of Research and Development, through its Risk Reduction Engineering Laboratory (RREL), is providing support...

  19. The effect of compost treatments and a plant cover with Agrostis tenuis on the immobilization/mobilization of trace elements in a mine-contaminated soil.

    PubMed

    Alvarenga, P; de Varennes, A; Cunha-Queda, A C

    2014-01-01

    A semi-field experiment was conducted to evaluate the use of mixed municipal solid waste compost (MMSWC) and green waste-derived compost (GWC) as immobilizing agents in aided-phytostabilization of a highly acidic soil contaminated with trace elements, with and without a plant cover of Agrostis tenuis. The compost application ratio was 50 Mg ha(-1), and GWC amended soil was additionally limed and supplemented with mineral fertilizers. Both treatments had an equivalent capacity to raise soil organic matter and pH, without a significant increase in soil salinity and in pseudo-total As, Cu, Pb, and Zn concentrations, allowing the establishment of a plant cover. Effective bioavailable Cu and Zn decreased as a consequence of both compost treatments, while effective bioavailable As increased by more than twice but remained as a small fraction of its pseudo-total content. Amended soil had higher soil enzymatic activities, especially in the presence of plants. Accumulation factors for As, Cu, Pb, and Zn by A. tenuis were low, and their concentrations in the plant were lower than the maximum tolerable levels for cattle. As a consequence, the use of A. tenuis can be recommended for assisted phytostabilization of this type of mine soil, in combination with one of the compost treatments evaluated.

  20. Subcritical water treatment of explosive and heavy metals co-contaminated soil: Removal of the explosive, and immobilization and risk assessment of heavy metals.

    PubMed

    Islam, Mohammad Nazrul; Jung, Ho-Young; Park, Jeong-Hun

    2015-11-01

    Co-contamination of explosives and heavy metals (HMs) in soil, particularly army shooting range soil, has received increasing environmental concern due to toxicity and risks to ecological systems. In this study, a subcritical water (SCW) extraction process was used to remediate the explosives-plus-HMs-co-contaminated soil. A quantitative evaluation of explosives in the treated soil, compared with untreated soil, was applied to assess explosive removal. The immobilization of HMs was assessed by toxicity characteristic leaching procedure tests, and by investigating the migration of HMs fractions. The environmental risk of HMs in the soil residue was assessed according to the risk assessment code (RAC) and ecological risk indices (Er and RI). The results indicated that SCW treatment could eliminate the explosives, >99%, during the remediation, while the HM was effectively immobilized. The effect of water temperature on reducing the explosives and the risk of HMs in soil was observed. A marked increase in the non-bioavailable concentration of each HM was observed, and the leaching rate of HMs was decreased by 70-97% after SCW treatment at 250 °C, showing the effective immobilization of HMs. According to the RAC or RI, each tested HM showed no or low risk to the environment after treatment.

  1. The survival of Escherichia coli, faecal coliforms and enterobacteriaceae in general in soil treated with sludge from wastewater treatment plants.

    PubMed

    Estrada, I B; Aller, A; Aller, F; Gómez, X; Morán, A

    2004-06-01

    We monitored the effect of the application of treated sludge on the behaviour of enterobacteriaceae (mainly faecal coliforms and especially Escherichia coli) in the soil, and studied their evolution over time after application. Three different sludges were used: two from a municipal sewage plant, one of them had been subjected to anaerobic digestion and heat drying, and the other to anaerobic digestion and mechanical dehydration, and one from a dairy waste treatment to aerobic digestion and gravity thickening. Two types of tests were carried out: type O, in the open air, with no possibility of controlling humidity or temperature; and type L, under laboratory conditions, with controlled temperature and humidity. Sludge tests were also run on unscreened soil previously treated with chemical fertilizer. After 80 days of experimentation the populations of faecal coliforms and E. coli had decreased considerably or were undetectable in assays carried out on the soil/sludge mixtures, under both open-air and laboratory conditions, but that, over the same period, in the mixtures containing chemical fertilizer (calcium ammonium nitrate) there had been a considerable increase in the micro-organism populations studied. PMID:15051081

  2. Modeling Nitrogen Losses in Conventional and Advanced Soil-Based Onsite Wastewater Treatment Systems under Current and Changing Climate Conditions.

    PubMed

    Morales, Ivan; Cooper, Jennifer; Amador, José A; Boving, Thomas B

    2016-01-01

    Most of the non-point source nitrogen (N) load in rural areas is attributed to onsite wastewater treatment systems (OWTS). Nitrogen compounds cause eutrophication, depleting the oxygen in marine ecosystems. OWTS rely on physical, chemical and biological soil processes to treat wastewater and these processes may be affected by climate change. We simulated the fate and transport of N in different types of OWTS drainfields, or soil treatment areas (STA) under current and changing climate scenarios, using 2D/3D HYDRUS software. Experimental data from a mesocosm-scale study, including soil moisture content, and total N, ammonium (NH4+) and nitrate (NO3-) concentrations, were used to calibrate the model. A water content-dependent function was used to compute the nitrification and denitrification rates. Three types of drainfields were simulated: (1) a pipe-and-stone (P&S), (2) advanced soil drainfields, pressurized shallow narrow drainfield (PSND) and (3) Geomat (GEO), a variation of SND. The model was calibrated with acceptable goodness-of-fit between the observed and measured values. Average root mean square error (RSME) ranged from 0.18 and 2.88 mg L-1 for NH4+ and 4.45 mg L-1 to 9.65 mg L-1 for NO3- in all drainfield types. The calibrated model was used to estimate N fluxes for both conventional and advanced STAs under current and changing climate conditions, i.e. increased soil temperature and higher water table. The model computed N losses from nitrification and denitrification differed little from measured losses in all STAs. The modeled N losses occurred mostly as NO3- in water outputs, accounting for more than 82% of N inputs in all drainfields. Losses as N2 were estimated to be 10.4% and 9.7% of total N input concentration for SND and Geo, respectively. The highest N2 losses, 17.6%, were estimated for P&S. Losses as N2 increased to 22%, 37% and 21% under changing climate conditions for Geo, PSND and P&S, respectively. These findings can provide practitioners

  3. Modeling Nitrogen Losses in Conventional and Advanced Soil-Based Onsite Wastewater Treatment Systems under Current and Changing Climate Conditions

    PubMed Central

    Cooper, Jennifer

    2016-01-01

    Most of the non-point source nitrogen (N) load in rural areas is attributed to onsite wastewater treatment systems (OWTS). Nitrogen compounds cause eutrophication, depleting the oxygen in marine ecosystems. OWTS rely on physical, chemical and biological soil processes to treat wastewater and these processes may be affected by climate change. We simulated the fate and transport of N in different types of OWTS drainfields, or soil treatment areas (STA) under current and changing climate scenarios, using 2D/3D HYDRUS software. Experimental data from a mesocosm-scale study, including soil moisture content, and total N, ammonium (NH4+) and nitrate (NO3-) concentrations, were used to calibrate the model. A water content-dependent function was used to compute the nitrification and denitrification rates. Three types of drainfields were simulated: (1) a pipe-and-stone (P&S), (2) advanced soil drainfields, pressurized shallow narrow drainfield (PSND) and (3) Geomat (GEO), a variation of SND. The model was calibrated with acceptable goodness-of-fit between the observed and measured values. Average root mean square error (RSME) ranged from 0.18 and 2.88 mg L-1 for NH4+ and 4.45 mg L-1 to 9.65 mg L-1 for NO3- in all drainfield types. The calibrated model was used to estimate N fluxes for both conventional and advanced STAs under current and changing climate conditions, i.e. increased soil temperature and higher water table. The model computed N losses from nitrification and denitrification differed little from measured losses in all STAs. The modeled N losses occurred mostly as NO3- in water outputs, accounting for more than 82% of N inputs in all drainfields. Losses as N2 were estimated to be 10.4% and 9.7% of total N input concentration for SND and Geo, respectively. The highest N2 losses, 17.6%, were estimated for P&S. Losses as N2 increased to 22%, 37% and 21% under changing climate conditions for Geo, PSND and P&S, respectively. These findings can provide practitioners

  4. Modeling Nitrogen Losses in Conventional and Advanced Soil-Based Onsite Wastewater Treatment Systems under Current and Changing Climate Conditions.

    PubMed

    Morales, Ivan; Cooper, Jennifer; Amador, José A; Boving, Thomas B

    2016-01-01

    Most of the non-point source nitrogen (N) load in rural areas is attributed to onsite wastewater treatment systems (OWTS). Nitrogen compounds cause eutrophication, depleting the oxygen in marine ecosystems. OWTS rely on physical, chemical and biological soil processes to treat wastewater and these processes may be affected by climate change. We simulated the fate and transport of N in different types of OWTS drainfields, or soil treatment areas (STA) under current and changing climate scenarios, using 2D/3D HYDRUS software. Experimental data from a mesocosm-scale study, including soil moisture content, and total N, ammonium (NH4+) and nitrate (NO3-) concentrations, were used to calibrate the model. A water content-dependent function was used to compute the nitrification and denitrification rates. Three types of drainfields were simulated: (1) a pipe-and-stone (P&S), (2) advanced soil drainfields, pressurized shallow narrow drainfield (PSND) and (3) Geomat (GEO), a variation of SND. The model was calibrated with acceptable goodness-of-fit between the observed and measured values. Average root mean square error (RSME) ranged from 0.18 and 2.88 mg L-1 for NH4+ and 4.45 mg L-1 to 9.65 mg L-1 for NO3- in all drainfield types. The calibrated model was used to estimate N fluxes for both conventional and advanced STAs under current and changing climate conditions, i.e. increased soil temperature and higher water table. The model computed N losses from nitrification and denitrification differed little from measured losses in all STAs. The modeled N losses occurred mostly as NO3- in water outputs, accounting for more than 82% of N inputs in all drainfields. Losses as N2 were estimated to be 10.4% and 9.7% of total N input concentration for SND and Geo, respectively. The highest N2 losses, 17.6%, were estimated for P&S. Losses as N2 increased to 22%, 37% and 21% under changing climate conditions for Geo, PSND and P&S, respectively. These findings can provide practitioners

  5. Feasibility of treating aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soils using ethyl lactate-based Fenton treatment via parametric and kinetic studies.

    PubMed

    Yap, Chiew Lin; Gan, Suyin; Ng, Hoon Kiat

    2015-01-01

    This study focuses on the feasibility of treating aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soils using ethyl lactate (EL)-based Fenton treatment via a combination of parametric and kinetic studies. An optimised operating condition was observed at 66.7 M H2O2 with H2O2/Fe(2+) of 40:1 for low soil organic carbon (SOC) content and mildly acidic soil (pH 6.2), and 10:1 for high SOC and very acidic soil (pH 4.4) with no soil pH adjustment. The desorption kinetic was only mildly shifted from single equilibrium to dual equilibrium of the first-order kinetic model upon ageing. Pretreatment with EL fc = 0.60 greatly reduced the mass transfer coefficient especially for the slow desorbed fraction (kslow) of high molecular weight (HMW) PAHs, largely contributed by the concentration gradient created by EL-enhanced solubility. As the major desorption obstacle was almost fully overcome by the pretreatment, the pseudo-first-order kinetic reaction rate constant of PAHs degradation of aged soils was statistically discernible from that of freshly contaminated soils but slightly reduced in high SOC and high acidity soil. Stabilisation of H2O2 by EL addition in combination with reduced Fe(2+) catalyst were able to slow the decomposition rate of H2O2 even at higher soil pH. PMID:25065478

  6. Feasibility of treating aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soils using ethyl lactate-based Fenton treatment via parametric and kinetic studies.

    PubMed

    Yap, Chiew Lin; Gan, Suyin; Ng, Hoon Kiat

    2015-01-01

    This study focuses on the feasibility of treating aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soils using ethyl lactate (EL)-based Fenton treatment via a combination of parametric and kinetic studies. An optimised operating condition was observed at 66.7 M H2O2 with H2O2/Fe(2+) of 40:1 for low soil organic carbon (SOC) content and mildly acidic soil (pH 6.2), and 10:1 for high SOC and very acidic soil (pH 4.4) with no soil pH adjustment. The desorption kinetic was only mildly shifted from single equilibrium to dual equilibrium of the first-order kinetic model upon ageing. Pretreatment with EL fc = 0.60 greatly reduced the mass transfer coefficient especially for the slow desorbed fraction (kslow) of high molecular weight (HMW) PAHs, largely contributed by the concentration gradient created by EL-enhanced solubility. As the major desorption obstacle was almost fully overcome by the pretreatment, the pseudo-first-order kinetic reaction rate constant of PAHs degradation of aged soils was statistically discernible from that of freshly contaminated soils but slightly reduced in high SOC and high acidity soil. Stabilisation of H2O2 by EL addition in combination with reduced Fe(2+) catalyst were able to slow the decomposition rate of H2O2 even at higher soil pH.

  7. Practical removal of radioactivity from soil in Fukushima using immobilized photosynthetic bacteria combined with anaerobic digestion and lactic acid fermentation as pre-treatment.

    PubMed

    Sasaki, Ken; Morikawa, Hiroyo; Kishibe, Takashi; Takeno, Kenji; Mikami, Ayaka; Harada, Toshihiko; Ohta, Masahiro

    2012-01-01

    Practical removal of radioactivity from polluted soil in Fukushima, Japan was done using a photosynthetic bacterium, Rhodobacter sphaeroides SSI, immobilized in alginate beads. The beads were put in a mesh bag and soaked in which soil was suspended (5 kg of soil/10 L of tap water). The radioactivity of the broth decreased by 31% after 15 d of aerobic treatment. When lactic acid bacterial culture broth was added to the suspend broth, about 50% of the radioactivity was transferred to a suspend broth fraction consisting of small particles from the soil after 3 d of fermentation and 20 s of sedimentation. The results suggest that organic matter in the soil was decomposed by anaerobic digestion and lactic acid fermentation simultaneously, and was then transferred into the liquid as small particles. With combined treatment by anaerobic digestion and lactic acid fermentation for 5 d and immobilized bead aerobic treatment for an additional 19 d, the radioactivity of suspend broth decreased by 66%. The radioactivity of the original soil (10.56 µSv/h) ultimately decreased by 67% (3.52 µSv/h) after the combined treatment.

  8. Effects of Different Regeneration Scenarios and Fertilizer Treatments on Soil Microbial Ecology in Reclaimed Opencast Mining Areas on the Loess Plateau, China

    PubMed Central

    Li, Junjian; Zheng, Yuanming; Yan, Junxia; Li, Hongjian; Wang, Xiang; He, Jizheng; Ding, Guangwei

    2013-01-01

    The soil microbial community in reclaimed mining areas is fundamental to vegetative establishment. However, how this community responds to different regeneration scenarios and fertilizer treatments is poorly understood. This research evaluated plant and soil microbial communities from different regeneration scenarios and different fertilizer treatments. Regeneration scenarios significantly influenced soil bacterial, archaeal, and fungal rDNA abundance. The ratios of fungi to bacteria or archaea were increased with fertilizer application. The diversity of both plants and microbes was lowest in Lotus corniculatus grasslands. Regeneration scenario, fertilizer treatment, and their interaction influenced soil microbial richness, diversity and evenness indices. Labile carbon pool 2 was a significant factor affected plant and microbe communities in July, suggesting that plants and microbes may be competing for nutrients. The higher ratios of positive to negative association were found in soil bacteria and total microbe than in archaea and fungi. Stronger clustering of microbial communities from the same regeneration scenario indicated that the vegetative composition of regeneration site may have a greater influence on soil microbial communities than fertilizer treatment. PMID:23658819

  9. Effects of different regeneration scenarios and fertilizer treatments on soil microbial ecology in reclaimed opencast mining areas on the Loess Plateau, China.

    PubMed

    Li, Junjian; Zheng, Yuanming; Yan, Junxia; Li, Hongjian; Wang, Xiang; He, Jizheng; Ding, Guangwei

    2013-01-01

    The soil microbial community in reclaimed mining areas is fundamental to vegetative establishment. However, how this community responds to different regeneration scenarios and fertilizer treatments is poorly understood. This research evaluated plant and soil microbial communities from different regeneration scenarios and different fertilizer treatments. Regeneration scenarios significantly influenced soil bacterial, archaeal, and fungal rDNA abundance. The ratios of fungi to bacteria or archaea were increased with fertilizer application. The diversity of both plants and microbes was lowest in Lotus corniculatus grasslands. Regeneration scenario, fertilizer treatment, and their interaction influenced soil microbial richness, diversity and evenness indices. Labile carbon pool 2 was a significant factor affected plant and microbe communities in July, suggesting that plants and microbes may be competing for nutrients. The higher ratios of positive to negative association were found in soil bacteria and total microbe than in archaea and fungi. Stronger clustering of microbial communities from the same regeneration scenario indicated that the vegetative composition of regeneration site may have a greater influence on soil microbial communities than fertilizer treatment.

  10. Comparative assessment of fungal augmentation treatments of a fine-textured and historically oil-contaminated soil.

    PubMed

    Covino, Stefano; Stella, Tatiana; D'Annibale, Alessandro; Lladó, Salvador; Baldrian, Petr; Čvančarová, Monika; Cajthaml, Tomas; Petruccioli, Maurizio

    2016-10-01

    The removal of aged hydrophobic contaminants from fine-textured soils is a challenging issue in remediation. The objective of this study was to compare the efficacy of augmentation treatments to that of biostimulation in terms of total aliphatic hydrocarbon (TAH) and toxicity removal from a historically contaminated clay soil and to assess their impact on the resident microbial community. To this aim, Pleurotus ostreatus, Botryosphaeria rhodina and a combination of both were used as the inoculants while the addition of a sterilized lignocellulose mixture to soil (1:5, w/w) was used as a biostimulation approach. As opposed to the non-amended control soil, where no changes in TAH concentration and residual toxicity were observed after 60days, the activation of specialized bacteria was found in the biostimulated microcosms resulting in significant TAH removal (79.8%). The bacterial community structure in B. rhodina-augmented microcosms did not differ from the biostimulated microcosms due to the inability of the fungus to be retained within the resident microbiota. Best TAH removals were observed in microcosms inoculated with P. ostreatus alone (Po) and in binary consortium with B. rhodina (BC) (86.8 and 88.2%, respectively). In these microcosms, contaminant degradation exceeded their bioavailability thresholds determined by sequential supercritical CO2 extraction. Illumina metabarcoding of 16S rRNA gene showed that the augmentation with Po and BC led to lower relative abundances of Gram(+) taxa, Actinobacteria in particular, than those in biostimulated microcosms. Best detoxification, with respect to the non-amended incubation control, was found in Po microcosms where a drop in collembola mortality (from 90 to 22%) occurred. At the end of incubation, in both Po and BC, the relative abundances of P. ostreatus sequences were higher than 60% thus showing the suitability of this fungus in bioaugmentation-based remediation applications. PMID:27220102

  11. Comparative assessment of fungal augmentation treatments of a fine-textured and historically oil-contaminated soil.

    PubMed

    Covino, Stefano; Stella, Tatiana; D'Annibale, Alessandro; Lladó, Salvador; Baldrian, Petr; Čvančarová, Monika; Cajthaml, Tomas; Petruccioli, Maurizio

    2016-10-01

    The removal of aged hydrophobic contaminants from fine-textured soils is a challenging issue in remediation. The objective of this study was to compare the efficacy of augmentation treatments to that of biostimulation in terms of total aliphatic hydrocarbon (TAH) and toxicity removal from a historically contaminated clay soil and to assess their impact on the resident microbial community. To this aim, Pleurotus ostreatus, Botryosphaeria rhodina and a combination of both were used as the inoculants while the addition of a sterilized lignocellulose mixture to soil (1:5, w/w) was used as a biostimulation approach. As opposed to the non-amended control soil, where no changes in TAH concentration and residual toxicity were observed after 60days, the activation of specialized bacteria was found in the biostimulated microcosms resulting in significant TAH removal (79.8%). The bacterial community structure in B. rhodina-augmented microcosms did not differ from the biostimulated microcosms due to the inability of the fungus to be retained within the resident microbiota. Best TAH removals were observed in microcosms inoculated with P. ostreatus alone (Po) and in binary consortium with B. rhodina (BC) (86.8 and 88.2%, respectively). In these microcosms, contaminant degradation exceeded their bioavailability thresholds determined by sequential supercritical CO2 extraction. Illumina metabarcoding of 16S rRNA gene showed that the augmentation with Po and BC led to lower relative abundances of Gram(+) taxa, Actinobacteria in particular, than those in biostimulated microcosms. Best detoxification, with respect to the non-amended incubation control, was found in Po microcosms where a drop in collembola mortality (from 90 to 22%) occurred. At the end of incubation, in both Po and BC, the relative abundances of P. ostreatus sequences were higher than 60% thus showing the suitability of this fungus in bioaugmentation-based remediation applications.

  12. Flexible session management in a distributed environment

    SciTech Connect

    Miller, Zach; Bradley, Dan; Tannenbaum, Todd; Sfiligoi, Igor; /Fermilab

    2010-01-01

    Many secure communication libraries used by distributed systems, such as SSL, TLS, and Kerberos, fail to make a clear distinction between the authentication, session, and communication layers. In this paper we introduce CEDAR, the secure communication library used by the Condor High Throughput Computing software, and present the advantages to a distributed computing system resulting from CEDAR's separation of these layers. Regardless of the authentication method used, CEDAR establishes a secure session key, which has the flexibility to be used for multiple capabilities. We demonstrate how a layered approach to security sessions can avoid round-trips and latency inherent in network authentication. The creation of a distinct session management layer allows for optimizations to improve scalability by way of delegating sessions to other components in the system. This session delegation creates a chain of trust that reduces the overhead of establishing secure connections and enables centralized enforcement of system-wide security policies. Additionally, secure channels based upon UDP datagrams are often overlooked by existing libraries; we show how CEDAR's structure accommodates this as well. As an example of the utility of this work, we show how the use of delegated security sessions and other techniques inherent in CEDAR's architecture enables US CMS to meet their scalability requirements in deploying Condor over large-scale, wide-area grid systems.

  13. Flexible session management in a distributed environment

    NASA Astrophysics Data System (ADS)

    Miller, Zach; Bradley, Dan; Tannenbaum, Todd; Sfiligoi, Igor

    2010-04-01

    Many secure communication libraries used by distributed systems, such as SSL, TLS, and Kerberos, fail to make a clear distinction between the authentication, session, and communication layers. In this paper we introduce CEDAR, the secure communication library used by the Condor High Throughput Computing software, and present the advantages to a distributed computing system resulting from CEDAR's separation of these layers. Regardless of the authentication method used, CEDAR establishes a secure session key, which has the flexibility to be used for multiple capabilities. We demonstrate how a layered approach to security sessions can avoid round-trips and latency inherent in network authentication. The creation of a distinct session management layer allows for optimizations to improve scalability by way of delegating sessions to other components in the system. This session delegation creates a chain of trust that reduces the overhead of establishing secure connections and enables centralized enforcement of system-wide security policies. Additionally, secure channels based upon UDP datagrams are often overlooked by existing libraries; we show how CEDAR's structure accommodates this as well. As an example of the utility of this work, we show how the use of delegated security sessions and other techniques inherent in CEDAR's architecture enables US CMS to meet their scalability requirements in deploying Condor over large-scale, wide-area grid systems.

  14. Soil erosion measurements under organic and conventional land use treatments and different tillage systems using micro-scale runoff plots and a portable rainfall simulator

    NASA Astrophysics Data System (ADS)

    Seitz, Steffen; Goebes, Philipp; Song, Zhengshan; Wittwer, Raphaël; van der Heijden, Marcel; Scholten, Thomas

    2015-04-01

    Soil erosion is a major environmental problem of our time and negatively affects soil organic matter (SOM), aggregate stability or nutrient availability for instance. It is well known that agricultural practices have a severe influence on soil erosion by water. Several long-term field trials show that the use of low input strategies (e.g. organic farming) instead of conventional high-input farming systems leads to considerable changes of soil characteristics. Organic farming relies on crop rotation, absence of agrochemicals, green manure and weed control without herbicides. As a consequence, SOM content in the top soil layer is usually higher than on arable land under conventional use. Furthermore, the soil surface is better protected against particle detachment and overland flow due to a continuous vegetation cover and a well-developed root system increases soil stability. Likewise, tillage itself can cause soil erosion on arable land. In this respect, conservation and reduced tillage systems like No-Till or Ridge-Till provide a protecting cover from the previous year's residue and reduce soil disturbance. Many studies have been carried out on the effect of farming practices on soil erosion, but with contrasting results. To our knowledge, most of those studies rely on soil erosion models to calculate soil erosion rates and replicated experimental field measurement designs are rarely used. In this study, we performed direct field assessment on a farming system trial in Rümlang, Switzerland (FAST: Farming System and Tillage experiment Agroscope) to investigate the effect of organic farming practises and tillage systems on soil erosion. A portable single nozzle rainfall simulator and a light weight tent have been used with micro-scale runoff plots (0.4 m x 0.4 m). Four treatments (Conventional/Tillage, Conventional/No-Tillage, Organic/Tillage, Organic/Reduced-tillage) have been sampled with 8 replications each for a total of 32 runoff plots. All plots have been

  15. Augmentation of exposure therapy with post-session administration of d-cycloserine

    PubMed Central

    Tart, Candyce D.; Handelsman, Pamela R.; DeBoer, Lindsey B.; Rosenfield, David; Pollack, Mark H.; Hofmann, Stefan G.; Powers, Mark B.; Otto, Michael W.; Smits, Jasper A.J.

    2013-01-01

    Background Pre-session administration of d-cycloserine (DCS) has been found to augment exposure therapy outcomes in a variety of anxiety disorders. To be able to enhance learning only for successful exposure sessions, it would be beneficial to have the option of administering DCS after rather than before the session, a strategy encouraged by pre-clinical work. We believe the present study is the first published report on the efficacy of post-session administration of DCS in humans. Method Adults (N = 29) with a DSM-IV diagnosis of acrophobia were randomized to receive two sessions of virtual reality exposure therapy (VRE) in combination with placebo or 50 mg of DCS. Instead of administering the pill prior to each of the sessions, as has been done in extant work, we administered the pill immediately following each session. Measures of acrophobia severity were collected at baseline, at each treatment session, 1-week post-treatment, and at 1-month follow-up. Results Mixed-effects repeated-measures ANOVAs and GLMMs revealed significant improvement in all outcome measures over time, but no between-group differences were observed. At post-treatment, 63.5% of patients in the placebo condition vs. 60.0% of those in the DCS condition were in remission. At 1-month follow up, 63.4% of those in the placebo condition vs. 66.6% of those in the DCS condition were in remission. Conclusions These findings do not support the application of post-session DCS administration for augmenting the efficacy of exposure-based treatments. Possible reasons for these findings are discussed. Trial Registry: The Trial is registered at ClinicalTrials.gov (NCT01102803). PMID:23098672

  16. Assessment of a school-based mass treatment for soil-transmitted helminth infections in Capiz, the Philippines.

    PubMed

    Bacon, Kristina M; Shah, Mirat; Taylor, Laura; Macatangay, Bernard Jonas C; Veldkamp, Peter; Belizario, Vicente Y

    2012-05-01

    We evaluated the War on Worms in the Western Visayas (WOW-V) school-based mass treatment strategy in Capiz, the Philippines by assessing potential determinants of program acceptance among parents, teachers, and local health and education officials involved. Written surveys were distributed to parents and teachers assessing knowledge, attitudes and practices regarding soil-transmitted helminth (STH) infections. Associations between data were examined using the Fisher's exact test (alpha = 0.05). Descriptive statistics and t-tests were employed to analyze teacher survey results. Local health and education officials participated in key-informant interviews (KIs) to evaluate their attitudes and practices regarding WOW-V; data was qualitatively analyzed and grouped. A strong association was observed between parental consent during the first two rounds of treatment and willingness to do so again. Most parents gave consent for their child to receive treatment at least once and demonstrated a high level of knowledge regarding STH infections. The majority of teachers had positive attitudes toward their role in the program. Many identified lack of training and a fear of side effects as barriers to higher coverage. Lack of funding, program monitoring difficulties and insufficient parental education were identified by local officials as barriers. Proper planning and design is important to achieve high initial consent for program acceptance. The results correlate with studies showing relationships between health education and treatment acceptance. The implementation of health education and monitoring measures has the potential to greatly improve both treatment coverage and program infrastructure.

  17. Active cooling-based surface confinement system for thermal soil treatment

    DOEpatents

    Aines, R.D.; Newmark, R.L.

    1997-10-28

    A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders. 1 fig.

  18. Active cooling-based surface confinement system for thermal soil treatment

    DOEpatents

    Aines, Roger D.; Newmark, Robin L.

    1997-01-01

    A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders.

  19. Soil sampling and analysis plan for the 3718-F Alkali Metal Treatment and Storage Facility closure activities

    SciTech Connect

    Sonnichsen, J.C.

    1997-05-01

    Amendment V.13.B.b to the approved closure plan (DOE-RL 1995a) requires that a soil sampling and analysis plan be prepared and submitted to the Washington State Department of Ecology (Ecology) for review and approval. Amendment V.13.B.c requires that a diagram of the 3718-F Alkali Metal Treatment and Storage Facility unit (the treatment, storage, and disposal [TSD] unit) boundary that is to be closed, including the maximum extent of operation, be prepared and submitted as part is of the soil sampling and analysis plan. This document describes the sampling and analysis that is to be performed in response to these requirements and amends the closure plan. Specifically, this document supersedes Section 6.2, lines 43--46, and Section 7.3.6 of the closure plan. Results from the analysis will be compared to cleanup levels identified in the closure plan. These cleanup levels will be established using residential exposure assumptions in accordance with the Model Toxics Control Act (MTCA) Cleanup Regulation (Washington Administrative Code [WAC] 173-340) as required in Amendment V.13.B.I. Results of all sampling, including the raw analytical data, a summary of analytical results, a data validation package, and a narrative summary with conclusions will be provided to Ecology as specified in Amendment V.13.B.e. The results and process used to collect and analyze the soil samples will be certified by a licensed professional engineer. These results and a certificate of closure for the balance of the TSD unit, as outlined in Chapter 7.0 of the approved closure plan (storage shed, concrete pad, burn building, scrubber, and reaction tanks), will provide the basis for a closure determination.

  20. Transformation of soil organic matter in leached chernozems under minimized treatment in the forest-steppe of West Siberia

    NASA Astrophysics Data System (ADS)

    Sharkov, I. N.; Samokhvalova, L. M.; Mishina, P. V.

    2016-07-01

    Changes in the contents of total organic carbon and the carbon of easily mineralizable fractions of organic matter (labile humus, detritus, and mortmass) in the layers of 0-10, 10-25, and 0-25 cm were studied in leached chernozems ((Luvic Chernozems (Loamic, Aric)) subjected to deep plowing and surface tillage for nine years. In the layer of 0-25 cm, the content of Corg did not show significant difference between these two treatments and comprised 3.68-3.92% in the case of deep plowing and 3.63-4.08% in the case of surface tillage. Tillage practices greatly affected the distribution of easily mineralizable fractions of organic matter in the layers of 0-10 and 10-25 cm, though the difference between two treatments for the entire layer (0-25 cm) was insignificant. Surface tillage resulted in the increase in the contents of mortmass (by 59%), detritus (by 32%), and labile humus (by 8%) in the layer of 0-10 cm in comparison with deep plowing. At the same time, the contents of these fractions in the layer of 10-25 cm in the surface tillage treatment decreased by 67, 46, and 3%, respectively. The estimate of the nitrogen-mineralizing capacity made according to the data on the uptake of soil nitrogen by oat plants in a special greenhouse experiment confirmed the observed regularities of the redistribution of easily mineralizable organic matter fractions by the soil layers. In case of surface tillage, it increased by 23% in the layer of 0-10 cm; for the layer of 0-25 cm, no significant differences in the uptake of nitrogen by oat plants were found for the two studied treatments.

  1. Impact of mechanical mowing and chemical treatment on phytosociological, pedochemical and biological parameters in roadside soils and vegetation.

    PubMed

    Pellegrini, Elisa; Falcone, Lino; Loppi, Stefano; Lorenzini, Giacomo; Nali, Cristina

    2016-03-01

    Many chemical and non-chemical strategies have been applied to control weeds in agricultural and industrial areas. Knowledge regarding the effects of these methods on roadside vegetation is still poor. A 2-year field experiment was performed along a road located near Livorno (Tuscany, central Italy). Eight plots/strips were identified, of which four were subjected to periodical mechanical mowing and the remaining four were treated with a chemical herbicide based on glyphosate (the producer's recommended rates were used for the selective control of broad-leaved weeds). Our results clearly showed that roadside soil and vegetation are a significant reservoir of anthropogenic activities which have a strong negative effect on several phytosociological, pedochemical and biological parameters. Compared with conventional mechanical mowing, chemical treatment induced (i) a significant increase in organic matter in the upper plot layers (+18%), and (ii) a marked reduction in weed height throughout the entire period of the experiment. Irrespectively of the kind of treatment, no significance differences were detected in terms of (i) biological quality of soil (the abundance and diversity of arthropod communities did not change), and (ii) plant elemental content (bulk concentrations of analysed trace elements had a good fit within ranges of occurrence in the "reference plant"). The glyphosate partially controlled broad-leaved weeds and this moderate efficacy is dependent upon the season/time of application. In conclusion, the rational and sustainable use of chemical herbicides may be a useful tool for the management of roadside vegetation.

  2. Final report for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils

    SciTech Connect

    1994-09-01

    IT Corporation (IT) was contracted by Martin Marietta Energy Systems, Inc. (Energy Systems) to perform a pilot-scale demonstration of the effectiveness of thermal desorption as a remedial technology for removing mercury from the Lower East Fork Poplar Creek (LEFPC) floodplain soil. Previous laboratory studies by Energy Systems suggested that this technology could reduce mercury to very low levels. This pilot-scale demonstration study was initiated to verify on an engineering scale the performance of thermal desorption. This report includes the details of the demonstration study, including descriptions of experimental equipment and procedures, test conditions, sampling and analysis, quality assurance (QA), detailed test results, and an engineering assessment of a conceptual full-scale treatment facility. The specific project tasks addressed in this report were performed between October 1993 and June 1994. These tasks include soil receipt, preparation, and characterization; prepilot (bench-scale) desorption tests; front-end materials handling tests; pilot tests; back-end materials handling tests; residuals treatment; and engineering scale-up assessment.

  3. Impact of mechanical mowing and chemical treatment on phytosociological, pedochemical and biological parameters in roadside soils and vegetation.

    PubMed

    Pellegrini, Elisa; Falcone, Lino; Loppi, Stefano; Lorenzini, Giacomo; Nali, Cristina

    2016-03-01

    Many chemical and non-chemical strategies have been applied to control weeds in agricultural and industrial areas. Knowledge regarding the effects of these methods on roadside vegetation is still poor. A 2-year field experiment was performed along a road located near Livorno (Tuscany, central Italy). Eight plots/strips were identified, of which four were subjected to periodical mechanical mowing and the remaining four were treated with a chemical herbicide based on glyphosate (the producer's recommended rates were used for the selective control of broad-leaved weeds). Our results clearly showed that roadside soil and vegetation are a significant reservoir of anthropogenic activities which have a strong negative effect on several phytosociological, pedochemical and biological parameters. Compared with conventional mechanical mowing, chemical treatment induced (i) a significant increase in organic matter in the upper plot layers (+18%), and (ii) a marked reduction in weed height throughout the entire period of the experiment. Irrespectively of the kind of treatment, no significance differences were detected in terms of (i) biological quality of soil (the abundance and diversity of arthropod communities did not change), and (ii) plant elemental content (bulk concentrations of analysed trace elements had a good fit within ranges of occurrence in the "reference plant"). The glyphosate partially controlled broad-leaved weeds and this moderate efficacy is dependent upon the season/time of application. In conclusion, the rational and sustainable use of chemical herbicides may be a useful tool for the management of roadside vegetation. PMID:26573685

  4. Treatment of soil eluate containing nitro aromatic compounds by adsorption on activated coke (AC).

    PubMed

    Zhang, Yiping; Jiang, Zhenming; Zhao, Quanlin; Zhang, Zhenzhong; Su, Hongping; Gao, Xuewen; Ye, Zhengfang

    2016-01-01

    Soil washing is a kind of physical method to remove organic matters from contaminated soil. However, its eluate after washing may result in secondary pollution to the environment. In this study, activated coke (AC) was used to remove organic pollutants from contaminated soil eluate. The effect of temperature, initial chemical oxygen demand (COD) and AC dosage on COD removal efficiency was investigated. The results showed that the organic matter can be removed in the eluate because the COD dropped a lot. When the AC dosage was 20 g·L(-1), 88.92% of COD decreased after 480 min of adsorption at 50 °C. The process of adsorption can be described by the Redlich-Peterson isotherm. The adsorption was spontaneous and endothermic. The pseudo-second-order model can be used to describe the adsorption process. After adsorption, the acute toxicity of the eluate was reduced by 76%, and the water qualities were in agreement with Chinese discharge standard GB 14470.1-2002, which means the eluate could be discharged to the environment. PMID:27003071

  5. Treatment of a suspension of PCB contaminated soil using iron nanoparticles and electric current.

    PubMed

    Gomes, Helena I; Ottosen, Lisbeth M; Ribeiro, Alexandra B; Dias-Ferreira, Celia

    2015-03-15

    Contaminated soils and sediments with polychlorinated biphenyls (PCB) are an important environmental problem due to the persistence of these synthetic aromatic compounds and to the lack of a cost-effective and sustainable remediation technology. Recently, a new experimental setup has been proposed using electrodialytic remediation and iron nanoparticles. The current work compares the performance of this new setup (A) with conventional electrokinetics (setup B). An historically contaminated soil with an initial PCB concentration of 258 μg kg(-1) was treated during 5, 10, 20 and 45 d using different amounts of iron nanoparticles in both setups A and B. A PCB removal of 83% was obtained in setup A compared with 58% of setup B. Setup A also showed additional advantages, such as a higher PCB dechlorination, in a shorter time, with lower nZVI consumption, and with the use of half of the voltage gradient when compared with the traditional setup (B). Energy and nZVI costs for a full-scale reactor are estimated at 72 € for each cubic meter of PCB contaminated soil treated on-site, making this technology competitive when compared with average off-site incineration (885 € m(-3)) or landfilling (231 € m(-3)) cost in Europe and in the USA (327 USD m(-3)).

  6. Treatment of soil eluate containing nitro aromatic compounds by adsorption on activated coke (AC).

    PubMed

    Zhang, Yiping; Jiang, Zhenming; Zhao, Quanlin; Zhang, Zhenzhong; Su, Hongping; Gao, Xuewen; Ye, Zhengfang

    2016-01-01

    Soil washing is a kind of physical method to remove organic matters from contaminated soil. However, its eluate after washing may result in secondary pollution to the environment. In this study, activated coke (AC) was used to remove organic pollutants from contaminated soil eluate. The effect of temperature, initial chemical oxygen demand (COD) and AC dosage on COD removal efficiency was investigated. The results showed that the organic matter can be removed in the eluate because the COD dropped a lot. When the AC dosage was 20 g·L(-1), 88.92% of COD decreased after 480 min of adsorption at 50 °C. The process of adsorption can be described by the Redlich-Peterson isotherm. The adsorption was spontaneous and endothermic. The pseudo-second-order model can be used to describe the adsorption process. After adsorption, the acute toxicity of the eluate was reduced by 76%, and the water qualities were in agreement with Chinese discharge standard GB 14470.1-2002, which means the eluate could be discharged to the environment.

  7. Innovative treatment of soil contamination: Radiolytic destruction of dioxin and co-contaminants by cobalt-60

    SciTech Connect

    Hilarides, R.J.; Gray, K.A.

    1994-12-31

    Recent work in the laboratory has demonstrated that gamma radiolysis is a feasible method by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can bee converted to products of negligible toxicity. A standard soil has been artificially contaminated to a level of 100 ppb TCDD and destruction to a level less than 1 ppb has been achieved at a radiation dose of 800 KGy and with the addition of certain soil amendments (water and surfactant). By-product analysis has illustrated that the destruction occurs via step-wise reductive dechlorination and mass balance on carbon has been demonstrated. The presence of co-contaminants at much higher levels does not interfere with TCDD destruction. These results in combination with scavenger studies and target theory calculations indicate that direct radiation effects account for the major route of destruction. Process efficiency has been verified using real contaminated soils and sediments. A reactor design is proposed and an economic analysis is presented to show that radiolysis is technically feasible and economically competitive.

  8. Working alliance, real relationship, session quality, and client improvement in psychodynamic psychotherapy: A longitudinal actor partner interdependence model.

    PubMed

    Kivlighan, Dennis M; Hill, Clara E; Gelso, Charles J; Baumann, Ellen

    2016-03-01

    We used the Actor Partner Interdependence Model (APIM; Kashy & Kenny, 2000) to examine the dyadic associations of 74 clients and 23 therapists in their evaluations of working alliance, real relationship, session quality, and client improvement over time in ongoing psychodynamic or interpersonal psychotherapy. There were significant actor effects for both therapists and clients, with the participant's own ratings of working alliance and real relationship independently predicting their own evaluations of session quality. There were significant client partner effects, with clients' working alliance and real relationship independently predicting their therapists' evaluations of session quality. The client partner real relationship effect was stronger in later sessions than in earlier sessions. Therapists' real relationship ratings (partner effect) were a stronger predictor of clients' session quality ratings in later sessions than in earlier sessions. Therapists' working alliance ratings (partner effect) were a stronger predictor of clients' session quality ratings when clients made greater improvement than when clients made lesser improvement. For clients' session outcome ratings, there were complex three-way interactions, such that both Client real relationship and working alliance interacted with client improvement and time in treatment to predict clients' session quality. These findings strongly suggest both individual and partner effects when clients and therapists evaluate psychotherapy process and outcome. Implications for research and practice are discussed.

  9. Drug Abuse Office, Prevention, and Treatment Amendments of 1978. Hearing Before the Subcommittee on Alcoholism and Drug Abuse of the Committee on Human Resources, United States Senate, Ninety-Fifth Congress, Second Session on S. 2916.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Human Resources.

    The purpose of the testimony presented before the Subcommittee on Alcoholism and Drug Abuse in April, 1978 was to amend the drug abuse office and treatment act of 1972, thereby extending assistance programs for drug abuse prevention, education, treatment, rehabilitation and other purposes. Speakers represented such organizations as National…

  10. Plenary Session: Resolutions and Plans for Implementation.

    ERIC Educational Resources Information Center

    Journal of Nutrition Education, 1980

    1980-01-01

    Presented are two resolutions adopted by the participants at the plenary session of the National Conference on Nutrition Education. Agencies which will receive these recommendations are also identified. (SA)

  11. Einstein Session of the Pontifical Academy.

    ERIC Educational Resources Information Center

    Science, 1980

    1980-01-01

    The texts of four speeches, given at the 1979 Einstein Session of the Pontifical Academy held in Rome, are presented. Each address relates to some aspect of the life and times of Albert Einstein. (SA)

  12. Report of the Stability and Dynamics Session

    NASA Technical Reports Server (NTRS)

    Alexander, Iwan; Chato, David; Collicott, Steven; Dadzic, Nihad; Duval, Walter; Garoff, Steven; Grayson, Gary; Hochstein, John; Kassemi, Mo; Nelson, Emily

    2003-01-01

    The plan for session are: 1. Are issues in the draft document appropriate and complete? 2. Are the issues properly organized and prioritized? 3. Is the plan well defined and suitable? 4. Are the proposed facilities adequate?

  13. Use of Fe/Al drinking water treatment residuals as amendments for enhancing the retention capacity of glyphosate in agricultural soils.

    PubMed

    Zhao, Yuanyuan; Wendling, Laura A; Wang, Changhui; Pei, Yuansheng

    2015-08-01

    Fe/Al drinking water treatment residuals (WTRs), ubiquitous and non-hazardous by-products of drinking water purification, are cost-effective adsorbents for glyphosate. Given that repeated glyphosate applications could significantly decrease glyphosate retention by soils and that the adsorbed glyphosate is potentially mobile, high sorption capacity and stability of glyphosate in agricultural soils are needed to prevent pollution of water by glyphosate. Therefore, we investigated the feasibility of reusing Fe/Al WTR as a soil amendment to enhance the retention capacity of glyphosate in two agricultural soils. The results of batch experiments showed that the Fe/Al WTR amendment significantly enhanced the glyphosate sorption capacity of both soils (p<0.001). Up to 30% of the previously adsorbed glyphosate desorbed from the non-amended soils, and the Fe/Al WTR amendment effectively decreased the proportion of glyphosate desorbed. Fractionation analyses further demonstrated that glyphosate adsorbed to non-amended soils was primarily retained in the readily labile fraction (NaHCO3-glyphosate). The WTR amendment significantly increased the relative proportion of the moderately labile fraction (HCl-glyphosate) and concomitantly reduced that of the NaHCO3-glyphosate, hence reducing the potential for the release of soil-adsorbed glyphosate into the aqueous phase. Furthermore, Fe/Al WTR amendment minimized the inhibitory effect of increasing solution pH on glyphosate sorption by soils and mitigated the effects of increasing solution ionic strength. The present results indicate that Fe/Al WTR is suitable for use as a soil amendment to prevent glyphosate pollution of aquatic ecosystems by enhancing the glyphosate retention capacity in soils.

  14. Ozonation products of carbamazepine and their removal from secondary effluents by soil aquifer treatment--indications from column experiments.

    PubMed

    Hübner, U; Seiwert, B; Reemtsma, T; Jekel, M

    2014-02-01

    Ozonation is known as an efficient treatment to reduce the concentration of many trace organic compounds from WWTP effluents, but the formation of unknown and possibly persistent and toxic transformation products has to be considered. In this paper tertiary treatment of wastewater by the combination of ozone and soil aquifer treatment was investigated with respect to the removal of the antiepileptic drug carbamazepine (CBZ, 10 μg/L) and its transformation products. Batch tests and pilot experiments confirmed efficient removal of carbamazepine from secondary effluent by ozone. With typical ozone consumption of 0.7 mg O3/mg DOC0, approx. 50% of the transformed CBZ was detected as its primary product 1-(2-benzaldehyde)-4-hydro-(1H,3H)-quinazoline-2-one (BQM). Structure proposals and a formation pathway were elaborated for a total of 13 ozonation products of CBZ. In subsequent biological treatment BQM turned out to be more effectively biodegraded than CBZ. Its aldehyde group was quickly oxidized to a carboxylic acid (BaQM), which was removed in sand column experiments. Most of the minor ozonation products of CBZ persisted in sand column experiments with residence times of 5-6 days. Non-target screening of column effluent revealed no formation of persistent biotransformation products.

  15. Potential dual use of biochar for wastewater treatment and soil amelioration

    NASA Astrophysics Data System (ADS)

    Marschner, Bernd; Werner, Steffen; Alfes, Karsten; Lübken, Manfred

    2013-04-01

    Irrigating crops with wastewater from open drainage channels is a common practice in urban agricultural production in many dry regions of Africa, Asia and Latin America. While the wastewater-borne nutrients reduce the need for inputs of mineral fertilizers or manures and thus reduce production costs, wastewater-borne pathogens and contaminants pose a health risk for the producers and consumers of the crops. Furthermore, the input of nutrients with the irrigation water may greatly exceed crop requirements and thus lead to unproductive leaching losses of nutrients. It is generally acknowledged that biochar additions can increase the soil's sorption and retention capacity for nutrients and water. However, positive effects on crop production are generally only observed, if this is combined with mineral fertilizers or manures due to the low nutrient content of biochars. Biochar possibly also has a high potential for use in water purification, replacing the coal-based activated carbon as a sorbent for contaminants and pathogens. It was therefore hypothesized that biochar can be used for pathogen removal from wastewater while at the same time being loaded with nutrients and contaminants. If contaminants are of minor concern the "loaded" biochar can be used as a soil amendment, providing not only long-term sorption capacity but also nutrients. Experiments were conducted with pyrochar from Miscanthus, rice husks and wood chips, which strongly differed in elemental composition, MIR-DRIFT spectra, surface charge properties and sorption potential for DOC and phosphate. When used as top filter layer in a sand column system, the biochars effectively reduced E. coli concentrations from raw wastewater by up to 2 log units. While biochars from rice husks and Miscanthus accumulated N substantially, wood chip biochar showed no N retention. On the other hand, P accumulation was most pronounced for wood chip biochar. Ongoing incubation experiments with the "loaded" and fresh biochar in

  16. Minimum effective doses of mebendazole in treatment of soil-transmitted helminths.

    PubMed

    Nontasut, P; Waikagul, J; Muennoo, C; Sanguankait, S; Nuamtanong, S; Maipanich, W

    1997-06-01

    Three hundred and fifteen primary school children infected with soil-transmitted helminths were divided into 5 groups. Three groups were treated with 25, 50 and 75 mg mebendazole (MBZ) single dose. One group was given MBZ conventional dose of 100 mg twice daily for 3 days and another group was given albendazole (ABZ) standard dose of 400 mg single dose. Every trial lower MBZ dose 75 mg, 50 mg and 25 mg regimen were highly effective against Ascaris lumbricoides but only moderately effective against Trichuris trichiura and Necator americanus.

  17. On the treatment of evapotranspiration, soil moisture accounting, and aquifer recharge in monthly water balance models.

    USGS Publications Warehouse

    Alley, W.M.

    1984-01-01

    Several two- to six-parameter regional water balance models are examined by using 50-year records of monthly streamflow at 10 sites in New Jersey. These models include variants of the Thornthwaite-Mather model, the Palmer model, and the more recent Thomas abcd model. Prediction errors are relatively similar among the models. However, simulated values of state variables such as soil moisture storage differ substantially among the models, and fitted parameter values for different models sometimes indicated an entirely different type of basin response to precipitation.-from Author

  18. Ipomoea hederifolia rooted soil bed and Ipomoea aquatica rhizofiltration coupled phytoreactors for efficient treatment of textile wastewater.

    PubMed

    Rane, Niraj R; Patil, Swapnil M; Chandanshive, Vishal V; Kadam, Suhas K; Khandare, Rahul V; Jadhav, Jyoti P; Govindwar, Sanjay P

    2016-06-01

    Ipomoea aquatica, a macrophyte was found to degrade a highly sulfonated and diazo textile dye Brown 5R up to 94% within 72 h at a concentration of 200 mg L(-1). Induction in the activities of enzymes such as azoreductase, lignin peroxidase, laccase, DCIP reductase, tyrosinase, veratryl alcohol oxidase, catalase and superoxide dismutase was observed in leaf and root tissue in response to Brown 5R exposure. There was significant reduction in contents of chlorophyll a (25%), chlorophyll b (17%) and carotenoids (30%) in the leaves of plants. HPLC, FTIR, UV-vis spectrophotometric and HPTLC analyses confirmed the biotransformation and removal of parent dye from solution. Enzymes activities and GC-MS analysis of degradation products lead to the proposal of a possible pathway of phytotransformation of dye. The proposed pathway of dye metabolism revealed the formation of Napthalene-1,2-diamine and methylbenzene. Toxicity study on HepG2 cell lines showed a 3 fold decrease in toxicity of Brown 5R after phytoremediation by I. aquatica. Hydrophytic nature of I. aquatica leads to its exploration in a combinatorial phytoreactor with Ipomoea hederifolia soil bed system. Rhizofiltration with I. aquatica and soil bed treatment by I. hederifolia treated 510 L of effluent effectively within 72 h. I. aquatica along with I. hederifolia could decolorize textile industry effluent within 72 h of treatment as evident from the significant reductions in the values of COD, BOD, solids and ADMI. Further on field trials of treatment of textile wastewater was successfully carried out in a constructed lagoon. PMID:27016633

  19. 78 FR 44922 - Notice of an Education Listening Session Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-25

    ...; ] DEPARTMENT OF AGRICULTURE Notice of an Education Listening Session Meeting SUMMARY: The Education... an Education Listening Session stakeholder meeting for all interested agricultural education stakeholders. DATES: The Education Listening Session will be held August 1, 2013. The public may file...

  20. Are 60-minute prolonged exposure sessions with 20-minute imaginal exposure to traumatic memories sufficient to successfully treat PTSD? A randomized noninferiority clinical trial.

    PubMed

    Nacasch, Nitsa; Huppert, Jonathan D; Su, Yi-Jen; Kivity, Yogev; Dinshtein, Yula; Yeh, Rebecca; Foa, Edna B

    2015-05-01

    The study aims to determine whether 60-minute sessions of prolonged exposure (PE) that include 20 minutes of imaginal exposure (IE) are noninferior to the standard 90-minute sessions that include 40 minutes of IE in treating posttraumatic stress disorder (PTSD) and to explore the relationship of treatment outcome to within- and between-session habituation and change in negative cognitions. Thirty-nine adult veterans with chronic PTSD were randomly assigned to 90-minute (n=19) or 60-minute (n=20) sessions of PE. PTSD symptoms were assessed by an unaware independent evaluator before and after treatment and at 6-month follow-up. Self-reports of depression and negative cognitions were assessed before and after treatment. Participants in both conditions showed significant reductions in PTSD symptoms. Sixty-minute sessions were found to be noninferior to 90-minute sessions in reducing PTSD symptoms, as the upper bound of the 95% confidence interval for the difference between conditions in the PTSD Symptom Scale-Interview (posttreatment: 6.00; follow-up: 6.77) was below the predefined noninferiority margin (7.00). Participants receiving shorter sessions showed less within- and between-session habituation than those receiving longer sessions, but no group differences in reductions in negative cognitions were found. The current findings indicate that the outcomes of 60-minute sessions of PE do not differ from those of 90-minute sessions. In addition, change in trauma-related cognitions and between-session habituation are both potential mechanisms of PE.

  1. Bioslurry reactor for treatment of slurries containing minerals, soils and sludges

    SciTech Connect

    Hanify, D.E.; Duncan, S.P.; Emmett, R.C. Jr.; Brox, G.H.; O'Connor, L.T.

    1993-07-13

    Apparatus for use in treating, through use of bacteria, minerals, soils or sludges which have been contaminated with hazardous waste organic compounds, said apparatus is described comprising: slurry-forming means for adding water to said minerals, soils or sludges to form a slurry; screening means, associated with said slurry-forming means, for removing all solid material of a preselected size from said slurry; a container means associated with said screening means for containing a quantity of slurry and bacteria suited to treat hazardous waste organic compounds; an oxygen supply means mounted within said container means, said oxygen supply means including at least one flexible porous membrane diffuser adapted for receiving a supply of oxygen-containing gas and distributing said gas into said container means in a form of fine bubbles; a mixing means mounted within said container means for mixing and recirculating the slurry contained within said container means; an exhaust gas recycling means mounted on said container means for drawing off a quantity of exhaust gases from said container means, treating said exhaust gas by extracting carbon dioxide therefrom, injecting oxygen into said quantity of exhaust gas and thereafter reintroducing said treated exhaust gas into said container means by means of said oxygen supply means, wherein said container means is sealed to prevent escape of exhaust gases; and dewatering means, associated with said container means, for receiving said slurry from said container means and dewatering said slurry.

  2. SEPARATION OF HAZARDOUS ORGANICS BY LOW PRESSURE MEMBRANES: TREATMENT OF SOIL-WASH RINSE-WATER LEACHATES

    EPA Science Inventory

    Soil washing is a promising technology for treating contaminated soils. In the present work, low-pressure, thin-film composite membranes were evaluated to treat the soil-wash leachates so that the treated water could be recycled back to the soil washing step. Experiments were don...

  3. Dynamic immobilization of simulated radionuclide 133Cs in soil by thermal treatment/vitrification with nanometallic Ca/CaO composites.

    PubMed

    Mallampati, Srinivasa Reddy; Mitoma, Yoshiharu; Okuda, Tetsuji; Simion, Cristian; Lee, Byeong Kyu

    2015-01-01

    Although direct radiation induced health impacts were considered benign, soil contamination with (137)Cs, due to its long-term radiological impact (30 years half-life) and its high biological availability is of a major concern in Japan in the aftermath of the Fukushima nuclear power plant disaster. Therefore (137)Cs reduction and immobilization in contaminated soil are recognized as important problems to be solved using suitable and effective technologies. One such thermal treatment/vitrification with nanometallic Ca/CaO amendments is a promising treatment for the ultimate immobilization of simulated radionuclide (133)Cs in soil, showing low leachability and zero evaporation. Immobilization efficiencies were 88%, 95% and 96% when the (133)Cs soil was treated at 1200 °C with activated carbon, fly ash and nanometallic Ca/CaO additives. In addition, the combination of nanometallic Ca/CaO and fly ash (1:1) enhanced the immobilization efficiency to 99%, while no evaporation of (133)Cs was observed. At lower temperatures (800 °C) the leachable fraction of Cs was only 6% (94% immobilization). Through the SEM-EDS analysis, decrease in the amount of Cs mass percent detectable on soil particle surface was observed after soil vitrified with nCa/CaO + FA. The (133)Cs soil was subjected to vitrified with nCa/CaO + FA peaks related to Ca, crystalline phases (CaCO3/Ca(OH)2), wollastonite, pollucite and hematite appeared in addition to quartz, kaolinite and bentonite, which probably indicates that the main fraction of enclosed/bound materials includes Ca-associated complexes. Thus, the thermal treatment with the addition of nanometallic Ca/CaO and fly ash may be considered potentially applicable for the remediation of radioactive Cs contaminated soil at zero evaporation, relatively at low temperature.

  4. Dynamic immobilization of simulated radionuclide 133Cs in soil by thermal treatment/vitrification with nanometallic Ca/CaO composites.

    PubMed

    Mallampati, Srinivasa Reddy; Mitoma, Yoshiharu; Okuda, Tetsuji; Simion, Cristian; Lee, Byeong Kyu

    2015-01-01

    Although direct radiation induced health impacts were considered benign, soil contamination with (137)Cs, due to its long-term radiological impact (30 years half-life) and its high biological availability is of a major concern in Japan in the aftermath of the Fukushima nuclear power plant disaster. Therefore (137)Cs reduction and immobilization in contaminated soil are recognized as important problems to be solved using suitable and effective technologies. One such thermal treatment/vitrification with nanometallic Ca/CaO amendments is a promising treatment for the ultimate immobilization of simulated radionuclide (133)Cs in soil, showing low leachability and zero evaporation. Immobilization efficiencies were 88%, 95% and 96% when the (133)Cs soil was treated at 1200 °C with activated carbon, fly ash and nanometallic Ca/CaO additives. In addition, the combination of nanometallic Ca/CaO and fly ash (1:1) enhanced the immobilization efficiency to 99%, while no evaporation of (133)Cs was observed. At lower temperatures (800 °C) the leachable fraction of Cs was only 6% (94% immobilization). Through the SEM-EDS analysis, decrease in the amount of Cs mass percent detectable on soil particle surface was observed after soil vitrified with nCa/CaO + FA. The (133)Cs soil was subjected to vitrified with nCa/CaO + FA peaks related to Ca, crystalline phases (CaCO3/Ca(OH)2), wollastonite, pollucite and hematite appeared in addition to quartz, kaolinite and bentonite, which probably indicates that the main fraction of enclosed/bound materials includes Ca-associated complexes. Thus, the thermal treatment with the addition of nanometallic Ca/CaO and fly ash may be considered potentially applicable for the remediation of radioactive Cs contaminated soil at zero evaporation, relatively at low temperature. PMID:25464047

  5. Editorial: Organic wastes in soils: Biogeochemical and Environmental Aspects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This special issue of Soil Biology and Biochemistry presents papers from the Second General Annual Conference of European Geosciences Union, Session SSS12 Recycling of Organic Wastes in Soils: Biogeochemical and Environmental Issues, held at the Austria Center Vienna, 24-29 April 2005. Session SSS12...

  6. A COMPARISON OF IN-SITU VITRIFICATION AND ROTARY KILN INCINERATION FOR SOILS TREATMENT

    EPA Science Inventory

    In the hazardous waste community, the term "thermal destruction" is a catch-all phrase that broadly refers to high temperature destruction of hazardous contaminants. ncluded in the thermal destruction category are treatment technologies such as rotary kiln incineration, fluidized...

  7. Effectiveness of the bran media and bacteria inoculum treatments in increasing pH and reducing sulfur-total of acid sulfate soils

    NASA Astrophysics Data System (ADS)

    Taufieq, Nur Anny Suryaningsih; Rahim, Sahibin Abdul; Jamil, Habibah

    2013-11-01

    This study was carried out to determine the effectiveness ofsulfate reducing bacteria (SRB) in using bran as a source of food and energy, and to see the effectiveness of the bran media and bacteria inoculums treatments for pH and sulfur-total of acid sulfate reduction insoils. This study used two factors in group random designs with four treatments for bacteria inoculum of B1 (1%), B2 (5%), B3 (10%), B4 (15%) and two treatments for organic media (bran) of D1 (1:1) and D2 (1:19). Based on three replications, the combination resulted in a total of 24 treatments. Soil pH was measured using the Duddridge and Wainright method and determination of sulfate content in soil was conducted by the spectrophotometry method. The data obtained was analyzed for significance by Analysis of Variance and the Least Significant Difference Test. The pH of the initial acid sulfate soils ranged from 3 to 4 and the soil sulfur-total ranged from 1.4% to 10%. After mixing sulfate reducing bacteria with the bran mediaand incubated for four days, the pH of the acid sulfate soils increased from 3.67 to 4.20, while the soil sulfur-total contents had been reduced by 2.85% to 0.35%. This experiment has proven that an acid sulfate soil with low pH is a good growth medium for the sulfate reducing bacteria. The bestincubation period to achieve an effective bioremediation resultthrough sulfate percentage reduction by sulfate reducing bacteria was 10 days, while the optimum bran media dose was 1:19, and the bacteria inoculums dose was 10%.

  8. Remediation of phenol-contaminated soil by a bacterial consortium and Acinetobacter calcoaceticus isolated from an industrial wastewater treatment plant.

    PubMed

    Cordova-Rosa, S M; Dams, R I; Cordova-Rosa, E V; Radetski, M R; Corrêa, A X R; Radetski, C M

    2009-05-15

    Time-course performance of a phenol-degrading indigenous bacterial consortium, and of Acinetobacter calcoaceticus var. anitratus, isolated from an industrial coal wastewater treatment plant was evaluated. This bacterial consortium was able to survive in the presence of phenol concentrations as high as 1200mgL(-1) and the consortium was more fast in degrading phenol than a pure culture of the A. calcoaceticus strain. In a batch system, 86% of phenol biodegradation occurred in around 30h at pH 6.0, while at pH 3.0, 95.2% of phenol biodegradation occurred in 8h. A high phenol biodegradation (above 95%) by the mixed culture in a bioreactor was obtained in both continuous and batch systems, but when test was carried out in coke gasification wastewater, no biodegradation was observed after 10 days at pH 9-11 for both pure strain or the isolated consortium. An activated sludge with the same bacterial consortium characterized above was mixed with a textile sludge-contaminated soil with a phenol concentration of 19.48mgkg(-1). After 20 days of bioaugmentation, the remanescent phenol concentration of the sludge-soil matrix was 1.13mgkg(-1).

  9. Molecular evaluation of soil organic matter characteristics in three agricultural soils by improved off-line thermochemolysis: the effect of hydrofluoric acid demineralisation treatment.

    PubMed

    Spaccini, Riccardo; Song, XiangYun; Cozzolino, Vincenza; Piccolo, Alessandro

    2013-11-13

    The molecular composition of soil organic matter (SOM) in three agricultural fields under different managements, was evaluated by off-line thermochemolysis followed by gas chromatography mass spectrometry analysis (THM-GC-MS). While this technique enabled the characterization of SOM components in coarse textured soil, its efficiency in heavy textured soils was seriously affected by the interference of clay minerals, which catalyzed the formation of secondary artifacts in pyrolysates. Soil demineralization with hydrofluoric acid (HF) solutions effectively improved the reliable characterization of organic compounds in clayey soils by thermochemolysis, while did not alter significantly the results of coarse textured soil. A wide range of lignin monomers and lipids molecules, of plant and microbial origin, were identified in the pyrograms of HF treated soils, thereby revealing interesting molecular differences between SOM management practices. Our results indicated that clay removal provided by HF pretreatment enhanced the capacity of thermochemolysis to be a valuable and accurate technique to study the SOM dynamics also in heavy-textured and OC-depleted cultivated soils.

  10. Getting Straight: Overcoming Treatment Barriers for Addicted Women and Their Children. Hearing before the Select Committee on Children, Youth, and Families. House of Representatives, One Hundred First Congress, Second Session (Detroit, Michigan, April 23, 1990).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Select Committee on Children, Youth, and Families.

    This document contains the second in a series of Congressional hearings being held by the Select Committee on Children, Youth, and Families to examine substance abuse among pregnant and parenting women and to explore prevention and treatment strategies. In his opening statement, Committee Chairman George Miller expresses hope that testimony…

  11. Mixed yeasts inocula for simultaneous production of SCP and treatment of vinasse to reduce soil and fresh water pollution.

    PubMed

    Pires, Josiane F; Ferreira, Gustavo M R; Reis, Kelly C; Schwan, Rosane F; Silva, Cristina F

    2016-11-01

    This study evaluated the use of vinasse as a substrate for microbial biomass production and its disposal impact on the environment. After grown in vinasse, the microbial biomass (SCP) of two Saccharomyces cerevisiae strains, CCMA 0137 and CCMA 0188, showed high levels of essential amino acids (3.78%), varying levels of chemical elements, and low nucleic acid content (2.38%), i. e, good characteristics to food supplemements. Following biological treatment, spent vinasse biochemical oxygen demand (BOD) and chemical oxygen demand (COD) decreased to 51.56 and 29.29%, respectively. Cultivation with S. cerevisiae significantly reduced short term phytotoxicity and toxicity on soil microbiota of spent vinasse. PMID:27526083

  12. Single- or multiple-session viscosupplementation protocols for temporomandibular joint degenerative disorders: a randomized clinical trial.

    PubMed

    Guarda-Nardini, L; Rossi, A; Arboretti, R; Bonnini, S; Stellini, E; Manfredini, D

    2015-07-01

    The aim of the study was to compare the effectiveness of two single-session protocols, either adopting high- (protocol A) or medium-molecular weight hyaluronic acid (protocol B), with the reference five-session protocol of temporomandibular joint (TMJ) lavage plus viscosupplementation (protocol C) in the management of chronic TMJ degenerative disorders. A randomized clinical trial (RCT) with ten participants per treatment group was designed, with multiple observation points, ending at 6 months after treatment. Pain levels on a 10-point VAS scale were selected as the primary outcome variable to rate treatment effectiveness, along with a number of secondary outcome parameters. Findings showed that Group C patients had the highest decrease in pain levels. Nonparametric permutation analyses revealed that the global effect of treatment was significantly different between the three protocols (P = 0·024). Pairwise comparisons showed that the differences of treatment effect between the two single-session interventions were negligible (global P-value = 0·93). On the contrary, the five-session protocol was significantly superior to both single-session protocols (global P-values ranging from 0·003 to 0·012). In conclusion, in a population of age-, sex-, and psychosocial aspects-matched study groups, the standard of reference five-session protocol proved to be superior at 6 months as far as the decrease in pain levels was concerned, whilst there were no differences between the two single-session interventions. The absence of differences in treatment effect as for some other secondary clinical outcome variables may suggest that there is further space for future investigations attempting to reduce the number of multiple interventions for TMJ viscosupplementation.

  13. Influence of a compost layer on the attenuation of 28 selected organic micropollutants under realistic soil aquifer treatment conditions: insights from a large scale column experiment.

    PubMed

    Schaffer, Mario; Kröger, Kerrin Franziska; Nödler, Karsten; Ayora, Carlos; Carrera, Jesús; Hernández, Marta; Licha, Tobias

    2015-05-01

    Soil aquifer treatment is widely applied to improve the quality of treated wastewater in its reuse as alternative source of water. To gain a deeper understanding of the fate of thereby introduced organic micropollutants, the attenuation of 28 compounds was investigated in column experiments using two large scale column systems in duplicate. The influence of increasing proportions of solid organic matter (0.04% vs. 0.17%) and decreasing redox potentials (denitrification vs. iron reduction) was studied by introducing a layer of compost. Secondary effluent from a wastewater treatment plant was used as water matrix for simulating soil aquifer treatment. For neutral and anionic compounds, sorption generally increases with the compound hydrophobicity and the solid organic matter in the column system. Organic cations showed the highest attenuation. Among them, breakthroughs were only registered for the cationic beta-blockers atenolol and metoprolol. An enhanced degradation in the columns with organic infiltration layer was observed for the majority of the compounds, suggesting an improved degradation for higher levels of biodegradable dissolved organic carbon. Solely the degradation of sulfamethoxazole could clearly be attributed to redox effects (when reaching iron reducing conditions). The study provides valuable insights into the attenuation potential for a wide spectrum of organic micropollutants under realistic soil aquifer treatment conditions. Furthermore, the introduction of the compost layer generally showed positive effects on the removal of compounds preferentially degraded under reducing conditions and also increases the residence times in the soil aquifer treatment system via sorption.

  14. Arsenic bioaccessibility and speciation in the soils amended with organoarsenicals and drinking-water treatment residuals based on a long-term greenhouse study

    NASA Astrophysics Data System (ADS)

    Nagar, Rachana; Sarkar, Dibyendu; Makris, Konstantinos C.; Datta, Rupali

    2014-10-01

    SummaryAlthough organoarsenical pesticides are no longer applied to agricultural fields in the US, their widespread use until recently, toxicity, and potential transformation to inorganic arsenic has raised serious concern. Drinking-water treatment residuals (WTRs) have been proposed as a low-cost amendment for remediation of organoarsenical pesticide contaminated soils. A long-term greenhouse study was initiated to evaluate the effect WTR application on bioaccessibility, geochemical partitioning, and speciation of the Dimethylarsinic acid (DMA). Two soils (Immokalee and Orelia series) were spiked with DMA (1500 mg As kg-1) and amended with an Al- and Fe-based WTR at two rates (5% and 10% by wt.). Soil sampling was done immediately after spiking (time zero) and after 0.25, 0.5, 1, and 3 (time final) years of equilibration and subjected to bioaccessibility test and sequential extraction. Results showed that compared to the unamended (no WTR) control, As bioaccessibility in the WTR-amended soils significantly (p < 0.001) decreased by 40-70% in 3 years. The Fe-WTR was more effective than Al-WTR in decreasing soil As bioaccessibility. The in vitro and water-extracted samples were subjected to As speciation at time zero and time final. Results showed transformation of DMA into inorganic As, irrespective of WTR amendments. The Orelia soil showed significantly (p < 0.001) higher transformation than the Immokalee soil.

  15. Impact of aging on the formation of bound residues after peroxidase-mediated treatment of 2,4-DCP contaminated soils.

    PubMed

    Palomo, Mónica; Bhandari, Alok

    2006-05-15

    This study evaluated the impact of solute-soil contact time on the formation of "bound" residue in two surface soils exposed to solutions containing 2,4-dichlorophenol (DCP) or DCP polymerization products (DPP). DPP was generated by horseradish peroxidase (HRP) mediated oxidative polymerization of 14C-labeled DCP in the soil slurry. Soils were preloaded with DCP or DPP for durations ranging from 2 h to 84 days. Bound residue was described as solute that was resistant to methanol extraction. Alkali extractions were conducted to estimate the 14C-activity associated with the humic acid, fulvic acid, and humin/mineral components of the soil. Changes in the distribution of the preloaded 14C-DCP and 14C-DPP were observed as a function of the solute-soil contact time. Results suggest that an assumption of sorption equilibrium based solely on the achievement of constant aqueous- or solid-phase solute concentrations can lead to erroneous conclusions about the establishment of true thermodynamic sorption equilibrium. This work also illustrated that (i) significant "irreversible" binding of phenolic contaminants to soils can be achieved during peroxidase-mediated treatment; and (ii) the "aging" process can lead to greater bound-residue formation over time.

  16. Anaerobic incorporation of the radiolabeled explosive TNT and metabolites into the organic soil matrix of contaminated soil after different treatment procedures.

    PubMed

    Drzyzga, O; Bruns-Nagel, D; Gorontzy, T; Blotevogel, K H; von Löw, E

    1999-04-01

    Four bioreactor designs were performed to evaluate the level of incorporation of 14C-labeled 2,4,6-trinitrotoluene (TNT) and metabolites into the organic soil matrix of different anaerobically treated contaminated soils. The contaminated soils were amended with molasses slivers (80:20% per weight) as auxiliary substrate to enhance microbial activity. After 5 weeks (bioreactors 1 and 2), 8 weeks (bioreactor 3) and 12 weeks (bioreactor 4) of anaerobic incubation, we determined 41%, 58%, 72%, and 54%, respectively, of the initially applied radioactivity immobilized in various soil fractions. After alkaline hydrolyses of the solvent-extracted soils, low quantities of radiolabel were found in the humic and fulvic acid fractions, whereas the bulk of 14C activity was found to be strongly bound to the humin fraction (solid soil residues). The amounts of solvent extractable radioactivity were 53%, 40%, 16%, and 29% for bioreactors 1, 2, 3, and 4, respectively. The level of TNT transformation at the end of the experiments was within 90-94%. Regarding the results presented in this study, we can assume that there is the possibility of high incorporation levels of TNT metabolites into the soil organic matrix mediated by microbial cometabolism under strictly anoxic conditions.

  17. Biological removal of pharmaceuticals and personal care products during laboratory soil aquifer treatment simulation with different primary substrate concentrations.

    PubMed

    Onesios, Kathryn M; Bouwer, Edward J

    2012-05-01

    Pharmaceuticals and personal care products (PPCPs) have been detected in bodies of water worldwide, yet their effects on the environment are not fully understood. Recent toxicity studies suggest that mixtures of PPCPs at low concentrations may be detrimental to exposed organisms, highlighting the need to remove PPCPs from wastewater treatment plant effluent before it is discharged to the environment. In this study, the utility of biofilm-based PPCP removal as a means to prevent environmental PPCP contamination was investigated. The removal of 14 PPCPs, each at an initial concentration of 10 μg/L, was studied in laboratory sand columns inoculated with wastewater treatment plant effluent. The examined PPCPs included biosol, biphenylol, p-chloro-m-cresol, p-chloro-m-xylenol, chlorophene, sodium diclofenac, gabapentin, gemfibrozil, 5-fluorouracil, ibuprofen, ketoprofen, naproxen, triclosan, and valproic acid. Ten of the PPCPs were removed by greater than 95% during column passage, while the four other compounds proved more recalcitrant. The effect of the concentration (either 50 or 1000 μg/L) of an easily degradable primary substrate (acetate) supplied along with the mixture of PPCPs was examined. Most of the tested PPCPs were removed consistently by the biofilms regardless of the concentration of acetate, although the extent of removal for three compounds showed dependence on acetate concentration, and two behaved with no reproducible pattern over time. Biofilm protein measurements indicated that the mixture of PPCPs supplied to columns suppressed biofilm growth, suggesting toxicity of the PPCPs to the biofilm communities. This laboratory-scale experiment suggests that biofilm-based water treatment strategies, such as soil aquifer treatment and slow sand filtration, may be well-suited for the removal of many PPCPs from impacted water. PMID:22374299

  18. Biological removal of pharmaceuticals and personal care products during laboratory soil aquifer treatment simulation with different primary substrate concentrations.

    PubMed

    Onesios, Kathryn M; Bouwer, Edward J

    2012-05-01

    Pharmaceuticals and personal care products (PPCPs) have been detected in bodies of water worldwide, yet their effects on the environment are not fully understood. Recent toxicity studies suggest that mixtures of PPCPs at low concentrations may be detrimental to exposed organisms, highlighting the need to remove PPCPs from wastewater treatment plant effluent before it is discharged to the environment. In this study, the utility of biofilm-based PPCP removal as a means to prevent environmental PPCP contamination was investigated. The removal of 14 PPCPs, each at an initial concentration of 10 μg/L, was studied in laboratory sand columns inoculated with wastewater treatment plant effluent. The examined PPCPs included biosol, biphenylol, p-chloro-m-cresol, p-chloro-m-xylenol, chlorophene, sodium diclofenac, gabapentin, gemfibrozil, 5-fluorouracil, ibuprofen, ketoprofen, naproxen, triclosan, and valproic acid. Ten of the PPCPs were removed by greater than 95% during column passage, while the four other compounds proved more recalcitrant. The effect of the concentration (either 50 or 1000 μg/L) of an easily degradable primary substrate (acetate) supplied along with the mixture of PPCPs was examined. Most of the tested PPCPs were removed consistently by the biofilms regardless of the concentration of acetate, although the extent of removal for three compounds showed dependence on acetate concentration, and two behaved with no reproducible pattern over time. Biofilm protein measurements indicated that the mixture of PPCPs supplied to columns suppressed biofilm growth, suggesting toxicity of the PPCPs to the biofilm communities. This laboratory-scale experiment suggests that biofilm-based water treatment strategies, such as soil aquifer treatment and slow sand filtration, may be well-suited for the removal of many PPCPs from impacted water.

  19. Using session-by-session measurement to compare mechanisms of action for acceptance and commitment therapy and cognitive therapy.

    PubMed

    Forman, Evan M; Chapman, Jason E; Herbert, James D; Goetter, Elizabeth M; Yuen, Erica K; Moitra, Ethan

    2012-06-01

    Debate continues about the extent to which postulated mechanisms of action of cognitive behavior therapies (CBT), including standard CBT (i.e., Beckian cognitive therapy [CT]) and acceptance and commitment therapy (ACT) are supported by mediational analyses. Moreover, the distinctiveness of CT and ACT has been called into question. One contributor to ongoing uncertainty in this arena is the lack of time-varying process data. In this study, 174 patients presenting to a university clinic with anxiety or depression who had been randomly assigned to receive either ACT or CT completed an assessment of theorized mediators and outcomes before each session. Hierarchical linear modeling of session-by-session data revealed that increased utilization of cognitive and affective change strategies relative to utilization of psychological acceptance strategies mediated outcome for CT, whereas for ACT the mediation effect was in the opposite direction. Decreases in self-reported dysfunctional thinking, cognitive "defusion" (the ability to see one's thoughts as mental events rather than necessarily as representations of reality), and willingness to engage in behavioral activity despite unpleasant thoughts or emotions were equivalent mediators across treatments. These results have potential implications for the theoretical arguments behind, and distinctiveness of, CT and ACT.

  20. A mechanistic treatment of the dominant soil nitrogen cycling processes: Model development, testing, and application

    NASA Astrophysics Data System (ADS)

    Maggi, F.; Gu, C.; Riley, W. J.; Hornberger, G. M.; Venterea, R. T.; Xu, T.; Spycher, N.; Steefel, C.; Miller, N. L.; Oldenburg, C. M.

    2008-06-01

    The development and initial application of a mechanistic model (TOUGHREACT-N) designed to characterize soil nitrogen (N) cycling and losses are described. The model couples advective and diffusive nutrient transport, multiple microbial biomass dynamics, and equilibrium and kinetic chemical reactions. TOUGHREACT-N was calibrated and tested against field measurements to assess pathways of N loss as either gas emission or solute leachate following fertilization and irrigation in a Central Valley, California, agricultural field as functions of fertilizer application rate and depth, and irrigation water volume. Our results, relative to the period before plants emerge, show that an increase in fertilizer rate produced a nonlinear response in terms of N losses. An increase of irrigation volume produced NO2- and NO3- leaching, whereas an increase in fertilization depth mainly increased leaching of all N solutes. In addition, nitrifying bacteria largely increased in mass with increasing fertilizer rate. Increases in water application caused nitrifiers and denitrifiers to decrease and increase their mass, respectively, while nitrifiers and denitrifiers reversed their spatial stratification when fertilizer was applied below 15 cm depth. Coupling aqueous advection and diffusion, and gaseous diffusion with biological processes, closely captured actual conditions and, in the system explored here, significantly clarified interpretation of field measurements.

  1. A Mechanistic Treatment of the Dominant Soil Nitrogen Cycling Processes: Model Development, Testing, and Application

    SciTech Connect

    Riley, William; Maggi, F.; Gu, C.; Riley, W.J.; Hornberger, G.M.; Venterea, R.T.; Xu, T.; Spycher, N.; Steefel, C.; Miller, N.L.; Oldenburg, C.M.

    2008-05-01

    The development and initial application of a mechanistic model (TOUGHREACT-N) designed to characterize soil nitrogen (N) cycling and losses are described. The model couples advective and diffusive nutrient transport, multiple microbial biomass dynamics, and equilibrium and kinetic chemical reactions. TOUGHREACT-N was calibrated and tested against field measurements to assess pathways of N loss as either gas emission or solute leachate following fertilization and irrigation in a Central Valley, California, agricultural field as functions of fertilizer application rate and depth, and irrigation water volume. Our results, relative to the period before plants emerge, show that an increase in fertilizer rate produced a nonlinear response in terms of N losses. An increase of irrigation volume produced NO{sub 2}{sup -} and NO{sub 3}{sup -} leaching, whereas an increase in fertilization depth mainly increased leaching of all N solutes. In addition, nitrifying bacteria largely increased in mass with increasing fertilizer rate. Increases in water application caused nitrifiers and denitrifiers to decrease and increase their mass, respectively, while nitrifiers and denitrifiers reversed their spatial stratification when fertilizer was applied below 15 cm depth. Coupling aqueous advection and diffusion, and gaseous diffusion with biological processes, closely captured actual conditions and, in the system explored here, significantly clarified interpretation of field measurements.

  2. Schistosomiasis and soil-transmitted helminthiasis: common drugs for treatment and control.

    PubMed

    Utzinger, Jürg; Keiser, Jennifer

    2004-02-01

    Schistosomiasis is a disease caused by parasitic trematode worms (schistosomes) that currently affects 200 million people living in tropical and subtropical environments. It is a chronic disease and the latest estimates for sub-Saharan Africa are that it kills > 200000 people every year. Soil-transmitted helminthiasis (STH) is caused by intestinal nematodes. More than 2 billion people are infected worldwide and the disease burden might approach that of malaria. Recognising the enormous public health significance of schistosomiasis and STH, particularly among the poor, and in view of readily available drugs that are safe, efficacious and inexpensive, the World Health Assembly recently set forth a resolution for a combined approach for morbidity control of both diseases. This review briefly summarises the geographical distribution, life cycle and global burden of schistosomiasis and STH. The current arsenal of drugs available for morbidity control, including discovery, chemistry, pharmacological properties and aspects of therapeutic efficacy and adverse events in clinical human use is then discussed. The emphasis is on praziquantel, oxamniquine and artemisinin derivatives (against schistosomes) and albendazole, mebendazole, levamisole, pyrantel pamoate and other compounds (against intestinal nematodes). The experience gained with combination chemotherapy in schistosomiasis and STH is briefly discussed. Finally, current research needs and the critical importance for development of novel anthelmintic drugs, so that chemotherapy can continue to serve as the backbone of integrated and sustainable control of schistosomiasis and STH, is highlighted.

  3. Experimental assessment of wind erosion after soil stabilization treatments at Eneabba, Western Australia.

    PubMed

    Bell, D T; Carter, D J; Hetherington, R E

    1986-12-01

    Wind tunnel experiments on rehabilitation surfaces at Eneabba, Western Australia evaluated the techniques used by Associated Minerals Consolidated Ltd. (AMC) and Allied Eneabba Ltd. (AEL) to stabilize regions being revegetated following heavy mineral sand mining.Newly landscaped areas proved to be the most erodible, beginning to erode at 9 m sec(-1) and producing a soil flux of 10 kg m(-1) min(-1) at 18 m sec(-1) wind speeds. Sandier, more organically-rich, surfaces in the rehabilitation areas were somewhat less erodible with losses of only 2 kg m(-1) min(-1) at wind speeds of 18 m sec(-1).The mining companies use various nurse crops and top dressing mulch for surface stabilization. Rows of oats, sparse plantings of the grass cultivar "SUDAX" (Dekalb ST6) supplied by Westfarmers Ltd. and applications of Terolas, a cold, bituminous surface binding material supplied by Shell Co. of Australia Ltd., all proved successful in reducing wind erosion in this semi-arid region where more than 25% of summer days experience winds greater than 8 m sec(-1).

  4. Efficient Session Type Guided Distributed Interaction

    NASA Astrophysics Data System (ADS)

    Sivaramakrishnan, K. C.; Nagaraj, Karthik; Ziarek, Lukasz; Eugster, Patrick

    Recently, there has been much interest in multi-party session types (MPSTs) as a means of rigorously specifying protocols for interaction among multiple distributed participants. By capturing distributed interaction as series of typed interactions, MPSTs allow for the static verification of compliance of corresponding distributed object programs. We observe that explicit control flow information manifested by MPST opens intriguing avenues also for performance enhancements. In this paper, we present a session type assisted performance enhancement framework for distributed object interaction in Java. Experimental evaluation within our distributed runtime infrastructure illustrates the costs and benefits of our composable enhancement strategies.

  5. Poster Sessions in Marketing Education: An Empirical Examination

    ERIC Educational Resources Information Center

    Stegemann, Nicole; Sutton-Brady, Catherine

    2009-01-01

    Poster sessions provide a creative and stimulating alternative to traditional assessment methods in marketing. Poster sessions, as a means of assessment, have long been used in science fields. This article presents the successful implementation of poster sessions as a means of assessment in a postgraduate unit of study. Poster sessions in…

  6. Final report from VFL Technologies for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils. LEFPC appendices. Volume 5. Appendix V-D

    SciTech Connect

    1994-09-01

    This final report from VFL Technologies for the pilot-scale thermal treatment of lower East Fork Poplar Creek floodplain soils dated September 1994 contains LEFPC Appendices, Volume 5, Appendix V - D. This appendix includes the final verification run data package (PAH, TCLP herbicides, TCLP pesticides).

  7. Final report from VFL technologies for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils. LEFPC Appendices, Volume 2, Appendix V-A

    SciTech Connect

    1994-09-01

    This document contains information concerning validation of analytical data for the pilot-scale thermal treatment of Lower East Fork Poplar Creek Floodplain soils located at the Y-12 Plant site. This volume is an appendix of compiled data from this validation process.

  8. Analysis and occurrence of seven artificial sweeteners in German waste water and surface water and in soil aquifer treatment (SAT).

    PubMed

    Scheurer, Marco; Brauch, Heinz-J; Lange, Frank T

    2009-07-01

    A method for the simultaneous determination of seven commonly used artificial sweeteners in water is presented. The analytes were extracted by solid phase extraction using Bakerbond SDB 1 cartridges at pH 3 and analyzed by liquid chromatography electrospray ionization tandem mass spectrometry in negative ionization mode. Ionization was enhanced by post-column addition of the alkaline modifier Tris(hydroxymethyl)amino methane. Except for aspartame and neohesperidin dihydrochalcone, recoveries were higher than 75% in potable water with comparable results for surface water. Matrix effects due to reduced extraction yields in undiluted waste water were negligible for aspartame and neotame but considerable for the other compounds. The widespread distribution of acesulfame, saccharin, cyclamate, and sucralose in the aquatic environment could be proven. Concentrations in two influents of German sewage treatment plants (STPs) were up to 190 microg/L for cyclamate, about 40 microg/L for acesulfame and saccharin, and less than 1 microg/L for sucralose. Removal in the STPs was limited for acesulfame and sucralose and >94% for saccharin and cyclamate. The persistence of some artificial sweeteners during soil aquifer treatment was demonstrated and confirmed their environmental relevance. The use of sucralose and acesulfame as tracers for anthropogenic contamination is conceivable. In German surface waters, acesulfame was the predominant artificial sweetener with concentrations exceeding 2 microg/L. Other sweeteners were detected up to several hundred nanograms per liter in the order saccharin approximately cyclamate > sucralose. PMID:19533103

  9. Analysis and occurrence of seven artificial sweeteners in German waste water and surface water and in soil aquifer treatment (SAT).

    PubMed

    Scheurer, Marco; Brauch, Heinz-J; Lange, Frank T

    2009-07-01

    A method for the simultaneous determination of seven commonly used artificial sweeteners in water is presented. The analytes were extracted by solid phase extraction using Bakerbond SDB 1 cartridges at pH 3 and analyzed by liquid chromatography electrospray ionization tandem mass spectrometry in negative ionization mode. Ionization was enhanced by post-column addition of the alkaline modifier Tris(hydroxymethyl)amino methane. Except for aspartame and neohesperidin dihydrochalcone, recoveries were higher than 75% in potable water with comparable results for surface water. Matrix effects due to reduced extraction yields in undiluted waste water were negligible for aspartame and neotame but considerable for the other compounds. The widespread distribution of acesulfame, saccharin, cyclamate, and sucralose in the aquatic environment could be proven. Concentrations in two influents of German sewage treatment plants (STPs) were up to 190 microg/L for cyclamate, about 40 microg/L for acesulfame and saccharin, and less than 1 microg/L for sucralose. Removal in the STPs was limited for acesulfame and sucralose and >94% for saccharin and cyclamate. The persistence of some artificial sweeteners during soil aquifer treatment was demonstrated and confirmed their environmental relevance. The use of sucralose and acesulfame as tracers for anthropogenic contamination is conceivable. In German surface waters, acesulfame was the predominant artificial sweetener with concentrations exceeding 2 microg/L. Other sweeteners were detected up to several hundred nanograms per liter in the order saccharin approximately cyclamate > sucralose.

  10. Comparison of tillage treatments on greenhouse gas and soil carbon and nitrogen cycling in established winter wheat production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tillage is commonly used to control weeds and prepare fields for planting. Repeated tillage can result in soil drying, sudden bursts of mineralized carbon and nitrogen from soil organic matter, and alterations in soil microbial communities. The effects of tillage on winter wheat cropping systems an...

  11. Report of the American Heart Association (AHA) Scientific Sessions 2015, Orlando.

    PubMed

    Aizawa, Yoshiyasu; Kimura, Mai; Kohno, Takashi; Fujita, Jun; Fukuda, Keiichi

    2016-01-01

    The American Heart Association Scientific Sessions were held in Orlando on November 7-15, 2015. The meeting attracted more than 18,000 participants, including physicians, research scientists, students, and paramedical personnel, from more than 100 countries. Sessions over the 5 days included a comprehensive and unparalleled education delivered via more than 5,000 presentations, with 1,000 invited faculty members and 4,000 abstract presentations from the world leaders in cardiovascular disease. It also displayed the newest cardiovascular technology and resources by more than 200 exhibitors. There were 19 trials scheduled in 6 late-breaking clinical trial sessions. The Systolic Blood Pressure Intervention Trial (SPRINT) aimed to determine the most appropriate targets for the systolic blood pressure among persons without diabetes. A total of 9,361 persons with systolic blood pressure of ≥130 mmHg and an increased cardiovascular risk, but without diabetes, were randomly assigned to a target systolic blood pressure of <120 mmHg (intensive treatment) or a target of <140 mmHg (standard treatment). A significantly lower rate of the primary composite outcome and all-cause mortality in the intensive-treatment group than in the standard-treatment group was observed. Summaries and overviews of the late-breaking trials, clinical science special report sessions, and sessions to which members of the Japanese Circulation Society contributed are presented.

  12. Determination of selected parabens, benzophenones, triclosan and triclocarban in agricultural soils after and before treatment with compost from sewage sludge: A lixiviation study.

    PubMed

    Camino-Sánchez, F J; Zafra-Gómez, A; Dorival-García, N; Juárez-Jiménez, B; Vílchez, J L

    2016-04-01

    An accurate and sensitive method for the determination of selected EDCs in soil and compost from wastewater treatment plants is developed and validated. Five parabens, six benzophenone-UV filters and the antibacterials triclosan and triclocarban were selected as target analytes. The parameters for ultrasound-assisted extraction were thoroughly optimized. After extraction, the analytes were detected and quantified using ultra-high performance liquid chromatography tandem mass spectrometry. Ethylparaben (ring-(13)C6 labelled) and deuterated benzophenone (BP-d10) were used as internal standards. The method was validated using matrix-matched calibration and recovery assays with spiked samples. The limits of detection ranged from 0.03 to 0.40 ng g(-1) and the limits of quantification from 0.1 to 1.0 ng g(-1), while precision in terms of relative standard deviation was between 9% and 21%. Recovery rates ranged from 83% to 107%. The validated method was applied for the study of the behavior of the selected compounds in agricultural soils treated and un-treated with compost from WWTP. A lixiviation study was developed in both agricultural soil and treated soil and first order kinetic models of their disappearance at different depths are proposed. The application of organic composts in the soil leads to an increase of the disappearance rate of the studied compounds. The lixiviation study also shows the risk of pollution of groundwater aquifers after disposal or waste of these EDCs in agricultural soils is not high. PMID:26838425

  13. Legislative Update--104th Congress, First Session.

    ERIC Educational Resources Information Center

    McMillan, Cindy

    1996-01-01

    Discusses major issues pending in the Second Session of the 104th Congress, noting the impact on language education and focusing on educational reform agendas, recissions, the budget process, appropriations, and English as the official U.S. government language. Individuals in related professional organizations are urged to take steps to influence…

  14. Posters. [Poster Session at AHRD Conference, 2001].

    ERIC Educational Resources Information Center

    2001

    The first of the papers in this poster session, "Developing the Employment Brand: Targeting MBA Campus Hires" (Diane M. Bergeron), posits that employment branding benefits both individuals and organizations. It functions as a campus recruiting tool in a competitive labor market and communicates the organization's values and work environment to…

  15. 48 CFR 9901.311 - Executive sessions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 7 2011-10-01 2011-10-01 false Executive sessions. 9901.311 Section 9901.311 Federal Acquisition Regulations System COST ACCOUNTING STANDARDS BOARD, OFFICE OF FEDERAL PROCUREMENT POLICY, OFFICE OF MANAGEMENT AND BUDGET ADMINISTRATION RULES AND PROCEDURES...

  16. My Session With André.

    PubMed

    Eigen, Michael

    2015-10-01

    The author shares personal reminiscences of a therapy session with André Green, as well as impressions of professional meetings, readings, and clinical work. He describes personal help he received and aspects of Green's writings on dynamics of madness, as well as the latter's end-of-life discussion of therapeutic limits.

  17. Summary of the pion production sessions

    SciTech Connect

    Dytman, S. A.

    2015-05-15

    This is a short summary of the 10 talks given in the Pion Production Sessions at NUINT12. There were 2 very interesting themes that spanned talks - problems with data for single nucleons and pion absorption in the nuclear medium. In addition, a number of interesting new efforts were described.

  18. My Session With André.

    PubMed

    Eigen, Michael

    2015-10-01

    The author shares personal reminiscences of a therapy session with André Green, as well as impressions of professional meetings, readings, and clinical work. He describes personal help he received and aspects of Green's writings on dynamics of madness, as well as the latter's end-of-life discussion of therapeutic limits. PMID:26485484

  19. Students' Roles during Peer Response Sessions

    ERIC Educational Resources Information Center

    Lin, Sandra Sim Phek; Samuel, Moses

    2013-01-01

    This study examined the types of roles played by students during peer response sessions and investigated how the students' roles facilitated learning. This qualitative case study involved six Grade 10 mixed-proficiency level students from a secondary school in Malaysia. Data were collected through multiple sources. The findings indicated that the…

  20. OJJDP Family Listening Sessions. Executive Summary

    ERIC Educational Resources Information Center

    Office of Juvenile Justice and Delinquency Prevention, 2013

    2013-01-01

    From March through July 2011, the Office of Juvenile Justice and Delinquency Prevention (OJJDP), in collaboration with the Campaign for Youth Justice and the Education Development Center, convened four listening sessions with families and youth who had direct experiences with the juvenile justice system at the local and state levels. The…

  1. Aeropropulsion 1987. Session 2: Aeropropulsion Structures Research

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Aeropropulsion systems present unique problems to the structural engineer. The extremes in operating temperatures, rotational effects, and behaviors of advanced material systems combine into complexities that require advances in many scientific disciplines involved in structural analysis and design procedures. This session provides an overview of the complexities of aeropropulsion structures and the theoretical, computational, and experimental research conducted to achieve the needed advances.

  2. Organizing a Practice Session for Maximum Effectiveness

    ERIC Educational Resources Information Center

    DeGroot, Joanna

    2009-01-01

    According to Jason Paulk, director of choral activities at Eastern New Mexico University, progress is made during those in-between times and that progress magnifies with efficient time spent alone. Paulk is a firm believer in the importance of singers organizing their practice sessions, and he details some effective organization methods, including…

  3. Working session 4: Preventative and corrective measures

    SciTech Connect

    Clark, R.; Slama, G.

    1997-02-01

    The Preventive and Corrective Measures working session included 13 members from France, Germany, Japan, Spain, Slovenia, and the United States. Attendee experience included regulators, utilities, three steam generator vendors, consultants and researchers. Discussions centered on four principal topics: (1) alternate materials, (2) mechanical mitigation, (3) maintenance, and (4) water chemistry. New or replacement steam generators and original equipment steam generators were separately addressed. Four papers were presented to the session, to provide information and stimulate various discussion topics. Topics discussed and issues raised during the several meeting sessions are provided below, followed by summary conclusions and recommendations on which the group was able to reach a majority consensus. The working session was composed of individuals with diverse experience and varied areas of specialized expertise. The somewhat broad range of topics addressed by the group at times saw discussion participation by only a few individuals. As in any technical meeting where all are allowed the opportunity to speak their mind, straying from an Individual topic was not unusual. Where useful, these stray topics are also presented below within the context In which they occurred. The main categories of discussion were: minimize sludge; new steam generators; maintenance; mechanical mitigation; water chemistry.

  4. Three Intermittent Sessions of Cryotherapy Reduce the Secondary Muscle Injury in Skeletal Muscle of Rat

    PubMed Central

    Oliveira, Nuno M. L.; Rainero, Elaine P.; Salvini, Tania F.

    2006-01-01

    Although cryotherapy associated to compression is recommended as immediate treatment after muscle injury, the effect of intermittent sessions of these procedures in the area of secondary muscle injury is not established. This study examined the effect of three sessions of cryotherapy (30 min of ice pack each 2h) and muscle compression (sand pack) in the muscle-injured area. Twenty-four Wistar rats (312 ± 20g) were evaluated. In three groups, the middle belly of tibialis anterior (TA) muscle was injured by a frozen iron bar and received one of the following treatments: a) three sessions of cryotherapy; b) three sessions of compression; c) not treated. An uninjured group received sessions of cryotherapy. Frozen muscles were cross- sectioned (10 µm) and stained for the measurement of injured and uninjured muscle area. Injured muscles submitted to cryotherapy showed the smallest injured area (29.83 ± 6.6%), compared to compressed (39.2 ± 2.8%, p= 0.003) and untreated muscles (41.74 ± 4.0%, p = 0.0008). No difference was found between injured compressed and injured untreated muscles. In conclusion, three intermittent sessions of cryotherapy applied immediately after muscle damage was able to reduce the secondary muscle injury, while only the muscle compression did not provide the same effectiveness. Key Points Three sessions of cryotherapy (30 min each 2 hours) applied immediately after muscle damage reduce the secondary muscle injury. Sessions of compression applied after muscle damage are not able to reduce the secondary muscle injury. PMID:24259995

  5. Treatment of Palm Oil Mill Effluent by a Microbial Consortium Developed from Compost Soils

    PubMed Central

    Nwuche, Charles O.; Ogbonna, James C.

    2014-01-01

    A method for the aerobic treatment of palm oil mill effluent (POME) was investigated in shake-flask experiments using a consortium developed from POME compost. POME was initially centrifuged at 4,000 g for 15 min and the supernatant was enriched with (NH4)2SO4 (0.5%) and yeast extract (0.25%) to boost its nitrogen content. At optimum pH (pH 4) and temperature (40°C) conditions, the chemical oxygen demand (COD) of the effluent decreased from 10,350 to 1,000 mg/L (90.3%) after 7 days. The total bacterial population determined by plate count enumeration was 2.4 × 106 CFU/mL, while the fungal count was 1.8 × 103 colonies/mL. Bacteria of the genera Pseudomonas, Flavobacterium, Micrococcus, and Bacillus were isolated, while the fungal genera included Aspergillus, Penicillium, Trichoderma, and Mucor. When the isolated species were each inoculated into separate batches of the raw effluent, both pH and COD were unchanged. However, at 75 and 50% POME dilutions, the COD dropped by 52 and 44%, respectively, while the pH increased from 4 to 7.53. POME treatment by aerobic method is sustainable and holds promising prospects for cushioning the environment from the problems associated with the use of anaerobic systems. PMID:27433536

  6. [Treatment of soil-transmitted helminth infections by anthelmintics in current use].

    PubMed

    Zu, L Q; Jiang, Z X; Yu, S H; Ding, X M; Bin, X H; Yang, H F; Zhu, H Q; Kuang, C S; Chen, Q W; Zhou, C H

    1992-01-01

    The efficacy of broad-spectrum anthelmintics in current use was studied in Hengshan County, Hunan Province. The vermicides under study include albendazole (400mg, single dose), mebendazole composite (mebendazole 100 mg and levamisole 25mg bid x 3d), oxantel pyrantel pamoate composite (pyrantel pamoate 150 mg and oxantel pamoate 150 mg bid x 2d), and pyrantel pamoate composite (base 10 mg/kg, single dose). Therapeutic effect assessed 2 weeks after medication revealed Ascaris egg negative rates or cure rates (CR) of 97.5-100% for the former 3 regimens, and 80.9% for the latter one; while CR for hookworm infection were 95.4%, 78.6-100%, 96.7% and 83.3%, respectively. A follow-up survey pursued 4 weeks post treatment showed no significant difference in CR for the above regimens. Judging from CR in Trichuris trichiura infection, pyrantel pamoate composite was recommended as the drug of choice (89.3%), which was followed by mebendazole composite (64.6-83.8%) and albendazole (28.2-42.6%), whereas pyrantel pamoate was inefficacious. Obvious egg reduction rates were evidenced post application of the above drugs in trichuriasis treatment except pyrantel pamoate at single dose.

  7. Improving the biotreatment of hydrocarbons-contaminated soils by addition of activated sludge taken from the wastewater treatment facilities of an oil refinery.

    PubMed

    Juteau, Pierre; Bisaillon, Jean-Guy; Lépine, François; Ratheau, Valérie; Beaudet, Réjean; Villemur, Richard

    2003-01-01

    Addition of activated sludge taken from the wastewater treatment facilities of an oil refinery to a soil contaminated with oily sludge stimulated hydrocarbon biodegradation in microcosms, bioreactors and biopile. Microcosms containing 50 g of soil to which 0.07% (w/w) of activated sludge was added presented a higher degradation of alkanes (80% vs 24%) and polycyclic aromatic hydrocarbons (PAHs) (77% vs 49%) as compared to the one receiving only water, after 30 days of incubation at room temperature. Addition of ammonium nitrate or sterile sludge filtrate instead of activated sludge resulted in a similar removal of PAHs but not of alkanes suggesting that the nitrogen contained in the activated sludge plays a major role in the degradation of PAHs while microorganisms of the sludge are active against alkanes. Addition of sludge also stimulated hydrocarbon biodegradation in 10-kg bioreactors operated during 60 days and in a 50-m3 biopile operated during 126 days. This biopile treatment allowed the use of the soil for industrial purpose based on provincial regulation ("C" criteria). In contrast, the soil of the control biopile that received only water still exceeded C criteria for C10-C50 hydrocarbons, total PAHs, chrysene and benzo[a]anthracene. The stimulation effect of sludge was stronger on the 4-rings than on 2-rings PAHs. The soil of the biopile that received sludge was 4-5 times less toxic than the control. These results suggest that this particular type of activated sludge could be used to increase the efficiency of the treatment of hydrocarbon-contaminated soils in a biopile.

  8. Probabilistic assessment of environmental exposure to the polycyclic musk, HHCB and associated risks in wastewater treatment plant mixing zones and sludge amended soils in the United States.

    PubMed

    Federle, Thomas; Sun, Ping; Dyer, Scott; Kiel, Brian

    2014-09-15

    The objective of this work was to conduct an environmental risk assessment for the consumer use of the polycyclic musk, HHCB (CAS No. 1222-05-5) in the U.S. focusing on mixing zones downstream from municipal wastewater treatment plants (WWTPs) and sludge amended soils. A probabilistic exposure approach was utilized combining statistical distributions of effluent and sludge concentrations for the U.S. WWTPs with distributions of mixing zone dilution factors and sludge loading rates to soil to estimate HHCB concentrations in surface waters and sediments below WWTPs and sludge amended soils. These concentrations were then compared to various toxicity values. Measured concentrations of HHCB in effluent and sludge from a monitoring program of 40 WWTPs across the U.S. formed the basis for estimating environmental loadings. Based upon a Monte Carlo analysis, the probability of HHCB concentrations being below the PNEC (predicted no effect concentration) for pelagic freshwater organisms was greater than or equal to 99.87% under both mean and low flow regimes. Similarly, the probability of HHCB concentrations being less than the PNEC for freshwater sediment organisms was greater than or equal to 99.98%. Concentrations of HHCB in sludge amended soils were estimated for single and repeated annual sludge applications with tilling of the sludge into the soil, surface application without tilling and a combination reflecting current practice. The probability of soil HHCB concentrations being below the PNEC for soil organisms after repeated sludge applications was 94.35% with current sludge practice. Probabilistic estimates of HHCB exposures in surface waters, sediments and sludge amended soils are consistent with the published values for the U.S. In addition, the results of these analyses indicate that HHCB entering the environment in WWTP effluent and sludge poses negligible risk to aquatic and terrestrial organisms in nearly all exposure scenarios.

  9. Parameter selection and testing the soil water model SOIL

    NASA Astrophysics Data System (ADS)

    McGechan, M. B.; Graham, R.; Vinten, A. J. A.; Douglas, J. T.; Hooda, P. S.

    1997-08-01

    The soil water and heat simulation model SOIL was tested for its suitability to study the processes of transport of water in soil. Required parameters, particularly soil hydraulic parameters, were determined by field and laboratory tests for some common soil types and for soils subjected to contrasting treatments of long-term grassland and tilled land under cereal crops. Outputs from simulations were shown to be in reasonable agreement with independently measured field drain outflows and soil water content histories.

  10. Discourse analytic study of counseling sessions in stroke physiotherapy.

    PubMed

    Talvitie, Ulla; Pyöriä, Outi

    2006-01-01

    Studies on the interaction between physiotherapists and patients during treatment sessions have found low levels of communicative participation by patients and lack of direct influence by patients on the content of their treatment. This article reports the results of 7 counseling sessions in which physiotherapists and patients with stroke and their caregivers discussed the patients' postural control and balance, which had been tested and videotaped at different stages of the rehabilitation process. The physiotherapists' discourses relating to the videotaped test performances were either brief comments on the patient's performance or critical appraisals with references to difficulties encountered during performance. Performances of the easier tasks were treated by the physiotherapists with rhetorical questions. The second type of discourse consisted of the physiotherapists directing the patients' attention to their problems, and of the patients' and caregivers' initiatives leading to conversation about the patients' problems. The patients understood the significance of the test performance for their life at home in varying ways. The results of this study showed that successful counseling calls for physiotherapists to develop dialogic communication skills to help patients in coconstructing their home exercise together with their social network.

  11. Zebrafish and clean water technology: assessing soil bioretention as a protective treatment for toxic urban runoff.

    PubMed

    McIntyre, J K; Davis, J W; Incardona, J P; Stark, J D; Anulacion, B F; Scholz, N L

    2014-12-01

    Urban stormwater contains a complex mixture of contaminants that can be acutely toxic to aquatic biota. Green stormwater infrastructure (GSI) is a set of evolving technologies intended to reduce impacts on natural systems by slowing and filtering runoff. The extent to which GSI methods work as intended is usually assessed in terms of water quantity (hydrology) and quality (chemistry). Biological indicators of GSI effectiveness have received less attention, despite an overarching goal of protecting the health of aquatic species. Here we use the zebrafish (Danio rerio) experimental model to evaluate bioinfiltration as a relatively inexpensive technology for treating runoff from an urban highway with dense motor vehicle traffic. Zebrafish embryos exposed to untreated runoff (48-96h; six storm events) displayed an array of developmental abnormalities, including delayed hatching, reduced growth, pericardial edema, microphthalmia (small eyes), and reduced swim bladder inflation. Three of the six storms were acutely lethal, and sublethal toxicity was evident across all storms, even when stormwater was diluted by as much as 95% in clean water. As anticipated from exposure to cardiotoxic polycyclic aromatic hydrocarbons (PAHs), untreated runoff also caused heart failure, as indicated by circulatory stasis, pericardial edema, and looping defects. Bioretention treatment dramatically improved stormwater quality and reversed nearly all forms of developmental toxicity. The zebrafish model therefore provides a versatile experimental platform for rapidly assessing GSI effectiveness.

  12. Characteristics of the soil-like substrates produced with a novel technique combining aerobic fermentation and earthworm treatment

    NASA Astrophysics Data System (ADS)

    Kang, Wenli; He, Wenting; Li, Leyuan; Liu, Hong

    2012-12-01

    The soil-like substrate (SLS) technique is key for improving the closure of bioregenerative life support system (BLSS) by recycling the inedible biomass of higher plants. In this study, a novel SLS technique (NSLST) was proposed: aerobic fermentations at 35 °C for 1 day, then 60 °C for 6 days, finally 30 °C for 3 days, followed by earthworm treatment for 70 days. Comparing with the original SLS technique (OSLST), its process cycle was 13 days shorter, and the dry weight loss rate (81.1%) was improved by 24.77%. The cellulose and lignin degradation rates were 96.6% and 94.6%. The concentrations of available N, P and K in mature SLS were respectively 776.1 mg/L, 348.0 mg/L and 7943.0 mg/L. Low CH4 and NH3 production was observed, but no accumulation. According to the seed germination test, the SLSs were feasible for plant growth. This investigation will provide a preliminary foundation for BLSS design.

  13. Heat pre-treatment and the germination of soil- and canopy-stored seeds of south-western Australian species

    NASA Astrophysics Data System (ADS)

    Hanley, Mick E.; Lamont, Byron B.

    2000-12-01

    The role of heat (shock) in stimulating the germination of soil-stored hard seeds from fire-following species is well known. However, the effects of high temperatures on germination of canopy-stored (serotinous) seeds are less well understood. In this study, we examined the effect of heat shock at four temperatures (60, 80, 100 and 120 °C) applied for 10 min on the germination of ten co-occurring Western Australian fire-following species (five hardseeded, five serotinous). Unlike previous studies, we distinguished between the effects of heat shock on germination rate, as well as total seedling emergence. In comparison with unheated controls, a heat pulse at one or more temperatures increased total germination and germination rate for three of the hardseeded species ( Acacia pulchella, Daviesia cordata and Trymalium ledifolium). The precise pattern of germination response for D. cordata was influenced by whether we examined total germination or germination rate. Germination of four serotinous species ( Calothamnus quadrifidus and three Hakea species) was unaffected by pre-treatments at one or more above-ambient temperatures. Only Allocasuarina humilis displayed both increased rate and total germination at higher temperatures. Our results show that germination in some serotinous species may respond favourably to, or at least be unaffected by, the passage of fire.

  14. Manganese mobilization and enrichment during soil aquifer treatment (SAT) of effluents, the Dan Region Sewage Reclamation Project (Shafdan), Israel.

    PubMed

    Oren, Orly; Gavrieli, Ittai; Burg, Avihu; Guttman, Joseph; Lazar, Boaz

    2007-02-01

    The composition of groundwater reclaimed from tertiary soil aquifer treatment systems reflects the dynamic processes taking place in the subsurface, between the infiltration basin and the production wells. At the end of year 2000, following more than a decade of operation, high Mn concentrations (2 micromol L(-1) < or = Mn < or = 40 micromol L(-1)) appeared in the reclaimed effluents of the Dan Region Sewage Reclamation Project (Shafdan), Israel. A mass balance indicates that the high Mn excess originated from the aquifer rocks, most likely following reduction of sedimentary Mn-oxides under suboxic conditions. The subsequent adsorption of the Mn2+ results in a slow Mn2+ front that advances in the direction of groundwater flow only when all the Mn2+ exchangeable sites are saturated. A retardation factor obtained from two independent estimates based on a simple reduction-adsorption-advection model yields a value of about 10. This explains the delayed appearance of the high Mn concentrations at a distance of only -500 m from the infiltration basin.

  15. Effects of cattle-slurry treatment by acidification and separation on nitrogen dynamics and global warming potential after surface application to an acidic soil.

    PubMed

    Fangueiro, David; Pereira, José; Bichana, André; Surgy, Sónia; Cabral, Fernanda; Coutinho, João

    2015-10-01

    Cattle-slurry (liquid manure) application to soil is a common practice to provide nutrients and organic matter for crop growth but it also strongly impacts the environment. The objective of the present study was to assess the efficiency of cattle-slurry treatment by solid-liquid separation and/or acidification on nitrogen dynamics and global warming potential (GWP) following application to an acidic soil. An aerobic laboratory incubation was performed over 92 days with a Dystric Cambisol amended with raw cattle-slurry or separated liquid fraction (LF) treated or not by acidification to pH 5.5 by addition of sulphuric acid. Soil mineral N contents and NH3, N2O, CH4 and CO2 emissions were measured. Results obtained suggest that the acidification of raw cattle-slurry reduced significantly NH3 emissions (-88%) but also the GWP (-28%) while increased the N availability relative to raw cattle-slurry (15% of organic N applied mineralised against negative mineralisation in raw slurry). However, similar NH3 emissions and GWP were observed in acidified LF and non-acidified LF treatments. On the other hand, soil application of acidified cattle-slurry rather than non-acidified LF should be preferred attending the lower costs associated to acidification compared to solid-liquid separation. It can then be concluded that cattle-slurry acidification is a solution to minimise NH3 emissions from amended soil and an efficient strategy to decrease the GWP associated with slurry application to soil. Furthermore, the more intense N mineralisation observed with acidified slurry should lead to a higher amount of plant available N and consequently to higher crop yields.

  16. Effects of cattle-slurry treatment by acidification and separation on nitrogen dynamics and global warming potential after surface application to an acidic soil.

    PubMed

    Fangueiro, David; Pereira, José; Bichana, André; Surgy, Sónia; Cabral, Fernanda; Coutinho, João

    2015-10-01

    Cattle-slurry (liquid manure) application to soil is a common practice to provide nutrients and organic matter for crop growth but it also strongly impacts the environment. The objective of the present study was to assess the efficiency of cattle-slurry treatment by solid-liquid separation and/or acidification on nitrogen dynamics and global warming potential (GWP) following application to an acidic soil. An aerobic laboratory incubation was performed over 92 days with a Dystric Cambisol amended with raw cattle-slurry or separated liquid fraction (LF) treated or not by acidification to pH 5.5 by addition of sulphuric acid. Soil mineral N contents and NH3, N2O, CH4 and CO2 emissions were measured. Results obtained suggest that the acidification of raw cattle-slurry reduced significantly NH3 emissions (-88%) but also the GWP (-28%) while increased the N availability relative to raw cattle-slurry (15% of organic N applied mineralised against negative mineralisation in raw slurry). However, similar NH3 emissions and GWP were observed in acidified LF and non-acidified LF treatments. On the other hand, soil application of acidified cattle-slurry rather than non-acidified LF should be preferred attending the lower costs associated to acidification compared to solid-liquid separation. It can then be concluded that cattle-slurry acidification is a solution to minimise NH3 emissions from amended soil and an efficient strategy to decrease the GWP associated with slurry application to soil. Furthermore, the more intense N mineralisation observed with acidified slurry should lead to a higher amount of plant available N and consequently to higher crop yields. PMID:26217884

  17. Scenario Crisis Cases in Distance Learning Sessions

    NASA Astrophysics Data System (ADS)

    Antunes, A.

    2013-04-01

    We discuss early results using student-lead role-play of crises and disaster scenarios to encourage engagement in distance learning sessions. The disadvantage of distance learning via web interface—the lack of face-to-face and the ease with which a student can remain quiet—is balanced by the wealth of Internet-accessible media reports of past mission disasters. Capitol College minimizes the lecture component to simply frame each session's open-ended crisis in our Mission Operations engineering course. The students are presented with a historical ‘disaster’ but not its resolution; they present their course of action, then the lecturer steps in to debrief. With a wealth of past cases available on the web, use of scenarios rather than lectures shows early signs of being viable model for encouraging discussion and interaction within distance learning for a variety of course topics.

  18. Expert system for scheduling simulation lab sessions

    NASA Technical Reports Server (NTRS)

    Lund, Chet

    1990-01-01

    Implementation and results of an expert system used for scheduling session requests for the Systems Engineering Simulator (SES) laboratory at the NASA Johnson Space Center (JSC) are discussed. Weekly session requests are received from astronaut crew trainers, procedures developers, engineering assessment personnel, software developers, and various others who wish to access the computers, scene generators, and other simulation equipment available to them in the SES lab. The expert system under discussion is comprised of a data acquisition portion - two Pascal programs run on a personal computer - and a CLIPS program installed on a minicomputer. A brief introduction to the SES lab and its scheduling background is given. A general overview of the system is provided, followed by a detailed description of the constraint-reduction process and of the scheduler itself. Results from a ten-week trial period using this approach are discussed. Finally, a summary of the expert system's strengths and shortcomings are provided.

  19. Buffered Communication Analysis in Distributed Multiparty Sessions

    NASA Astrophysics Data System (ADS)

    Deniélou, Pierre-Malo; Yoshida, Nobuko

    Many communication-centred systems today rely on asynchronous messaging among distributed peers to make efficient use of parallel execution and resource access. With such asynchrony, the communication buffers can happen to grow inconsiderately over time. This paper proposes a static verification methodology based on multiparty session types which can efficiently compute the upper bounds on buffer sizes. Our analysis relies on a uniform causality audit of the entire collaboration pattern - an examination that is not always possible from each end-point type. We extend this method to design algorithms that allocate communication channels in order to optimise the memory requirements of session executions. From these analyses, we propose two refinements methods which respect buffer bounds: a global protocol refinement that automatically inserts confirmation messages to guarantee stipulated buffer sizes and a local protocol refinement to optimise asynchronous messaging without buffer overflow. Finally our work is applied to overcome a buffer overflow problem of the multi-buffering algorithm.

  20. The two-phase leaching of Pb, Zn and Cd contaminated soil using EDTA and electrochemical treatment of the washing solution.

    PubMed

    Finzgar, Neza; Lestan, Domen

    2008-11-01

    The feasibility of a novel two-phase method for remediation of Pb (1374 mg kg(-1)), Zn (1007 mg kg(-1)), and Cd (9.1 mg kg(-1)) contaminated soil was evaluated. In the first phase we used EDTA for leaching heavy metals from the soil. In the second phase we used an electrochemical advanced oxidation process (EAOP) for the treatment and reuse of washing solution for soil rinsing (removal of the soil-retained, chelant-mobilized metallic species). In EAOP, a boron-doped diamond anode was used for the generation of hydroxyl radicals and oxidative decomposition of EDTA-metal complexes at a constant current density (15 mA cm(-2)). The released metals were removed from the solution by filtration as insoluble participate and by electro-deposition on the cathode. Four consecutive additions of 5.0 mm ol kg(-1) EDTA (total 20 mmol kg(-1)) removed 44% Pb, 14% Zn and 35% Cd from the soil. The mobility of the Pb, Zn and Cd (Toxicity Characteristic Leaching Procedure) left in the soil after remediation was reduced by 1.6, 3.4 and 1.5 times, respectively. The Pb oral availability (Physiologically Based Extraction Test) in the simulated stomach phase was reduced by 2.4 and in the intestinal phase by 1.7 times. The discharge solution was clear, almost colorless, with pH 7.73 and 0.47 mg L(-1) Pb, 1.03 mg L(-1) Zn, bellow the limits of quantification of Cd and 0.023 mM EDTA. The novel method enables soil leaching with small water requirements and no wastewater generation or other emissions into the environment. PMID:18762318

  1. Fate of heavy metals and major nutrients in a sludge-soil-plant-leachate system during the sludge phyto-treatment process.

    PubMed

    Xu, Tianfen; Qiu, Jinrong; Wu, Qi-Tang; Guo, Xiaofang; Wei, Zebin; Xie, Fangwen; Wong, Jonathan W C

    2013-01-01

    Land application of sewage sludge usually leads to increased levels of heavy metals in soil, plants and groundwater. Pre-treatment using plants has been proposed to reduce the contents of heavy metals and water in sludge prior to land application. This study quantified the transfer of Zn, Cd, Pb and major nutrients in a sludge-soil-plant-leachate system during the treatment of sewage sludge. To accomplish this, a two year pot experiment was carried out to collect leachate, mono- and co-cropping of Sedum alfredii and feed crops was conducted in sludge with an under-layer soil support. Sludge phyto-treatment increased Zn and Cd concentrations in the under-layer soil, but not Pb. Specifically, 70%, 70% and 80% of the original Zn, Cd and Pb, respectively, remained in the sludge, while about 40%, 70% and 60% of the original N, P and K remained. Only 3% to 5% of Cd and Zn and < 1% of Pb were transferred into the under-layer soils or leachates, while more than 12% of the N and P were transferred. Co-planting S. alfredii and feed crops led to a significant reduction of heavy metals in leachates when compared with sludge without planting. Overall, sludge leachate is more appropriate than whole sludge for recycling in agriculture since it reduces the chance of heavy metal contamination in the agro-ecosystem; therefore, co-cropping phytotreatment of sludge can be coupled with sludge leachate recycling for crop production and re-collection of the sludge residue for landfilling.

  2. Upscaling Self-Sustaining Treatment for Active Remediation (STAR): Experimental Study of Scaling Relationships for Smouldering Combustion to Remediate Soil

    NASA Astrophysics Data System (ADS)

    Kinsman, L.; Gerhard, J.; Torero, J.; Scholes, G.; Murray, C.

    2013-12-01

    Self-sustaining Treatment for Active Remediation (STAR) is a relatively new remediation approach for soil contaminated with organic industrial liquids. This technology uses smouldering combustion, a controlled, self-sustaining burning reaction, to destroy nonaqueous phase liquids (NAPLs) and thereby render soil clean. While STAR has been proven at the bench scale, success at industrial scales requires the process to be scaled-up significantly. The objective of this study was to conduct an experimental investigation into how liquid smouldering combustion phenomena scale. A suite of detailed forward smouldering experiments were conducted in short (16 cm dia. x 22 cm high), intermediate (16 cm dia. x 127 cm high), and large (97 cm dia. x 300 cm high; a prototype ex-situ reactor) columns; this represents scaling of up to 530 times based on the volume treated. A range of fuels were investigated, with the majority of experiments conducted using crude oil sludge as well as canola oil as a non-toxic surrogate for hazardous contaminants. To provide directly comparable data sets and to isolate changes in the smouldering reaction which occurred solely due to scaling effects, sand grain size, contaminant type, contaminant concentration and air injection rates were controlled between the experimental scales. Several processes could not be controlled and were identified to be susceptible to changes in scale, including: mobility of the contaminant, heat losses, and buoyant flow effects. For each experiment, the propagation of the smouldering front was recorded using thermocouples and analyzed by way of temperature-time and temperature-distance plots. In combination with the measurement of continuous mass loss and gaseous emissions, these results were used to evaluate the fundamental differences in the way the reaction front propagates through the mixture of sand and fuel across the various scales. Key governing parameters were compared between the small, intermediate, and large

  3. Identification of significant transport processes for organic micropollutant classes during soil aquifer treatment (SAT) - a controlled field experiment

    NASA Astrophysics Data System (ADS)

    Nödler, Karsten; Licha, Tobias; Sauter, Martin

    2010-05-01

    Supplementing existing water resources with alternative sources of water is a challenge in semi-arid areas, as deterioration of water quality must be avoided. Soil aquifer treatment (SAT) can greatly improve the quality of the injected water by attenuation of organic pollutants via sorption and degradation processes. However, only little is known about the specific transport processes of organic micropollutants under artificial recharge conditions. Organic micropollutants such as pharmaceuticals and their metabolites exhibit a wide range of chemical properties and may undergo very different environmental processes resulting in specific reactions within specified environments. In the presented study fate and transport processes of 25 organic micropollutants (iodinated contrast media, antihypertensive agents, antibiotics, anticonvulsants, lipid regulators, anti-inflammatories, antihistamines and analgesics) were investigated under SAT conditions in a controlled field experiment. Secondary treated effluent (STE) containing the compounds of interest was introduced into the aquifer by an infiltration pond and shallow wells in the vicinity were used for water quality monitoring. By means of strategic sampling procedure and a specialized multi-residue analytical method based on high-performance liquid chromatography / tandem mass spectrometry (LC/MS-MS) 3 main transport processes were identified: 1. Transport of non-polar compounds according to their respective octanol-water distribution coefficient (Kow) 2. Cation exchange 3. Colloidal transport Identification of transport processes 2 & 3 was not expected to act as a transport controlling process. Results of the positively charged beta-blockers sotalol, atenolol and metoprolol gave clear evidence for cation exchange processes of the compounds with the aquifer material. Correlation of turbidity and concentrations of macrolide antibiotics (clarithromycin, erythromycin and roxithromycin) demonstrated the colloidal transport

  4. Evaluation of a single-session brief motivational enhancement intervention for partner abusive men.

    PubMed

    Crane, Cory A; Eckhardt, Christopher I

    2013-04-01

    The current study evaluated the efficacy of a single-session brief motivational enhancement (BME) interview to increase treatment compliance and reduce recidivism rates in a sample of 82 recently adjudicated male perpetrators of intimate partner violence (IPV). Batterer intervention program attendance and completion as well as re-arrest records served as the primary outcome measures and were collected 6 months post-adjudication. Results indicated that BME was associated with increases in session attendance and treatment compliance. BME was not directly associated with reductions in recidivism. The relationship between BME and treatment compliance was moderated by readiness to change such that BME participants with low readiness to change attended more sessions and were more likely to be in compliance with the terms of a treatment than control participants with low readiness, while participants with high readiness attended sessions equally, regardless of study condition. Results indicate that outcomes may be improved through treatment efforts that consider individual differences, such as one's readiness to change, in planning interventions for IPV perpetrators.

  5. The effectiveness of various treatments in changing the nutrient status and bioavailability of risk elements in multi-element contaminated soil.

    PubMed

    García-Sánchez, Mercedes; García-Romera, Inmaculada; Száková, Jiřina; Kaplan, Lukáš; Tlustoš, Pavel

    2015-09-01

    Potential changes in the mobility and bioavailability of risk and essential macro- and micro-elements achieved by adding various ameliorative materials were evaluated in a model pot experiment. Spring wheat (Triticum aestivum L.) was cultivated under controlled condition for 60 days in two soils, uncontaminated Chernozem and multi-element contaminated Fluvisol containing 4900 ± 200 mg/kg Zn, 35.4 ± 3.6 mg/kg Cd, and 3035 ± 26 mg/kg Pb. The treatments were all contained the same amount of sulfur and were as follows: (i) digestate from the anaerobic fermentation of biowaste, (ii) fly ash from wood chip combustion, and (iii) ammonium sulfate. Macro- and micro-nutrients Ca, Mg, K, Fe, Mn, Cu, P, and S, and risk elements Cd, Cr, Pb, and Zn were assayed in soil extracts with 0.11 mol/l solution of CH3COOH and in roots, shoots, and grain of wheat after 30 and 60 days of cultivation. Both digestate and fly ash increased levels of macro- and micro-nutrients as well as risk elements (especially Cd and Zn; the mobility of Pb decreased after 30 days of cultivation). The changes in element mobility in ammonium sulfate-treated soils appear to be due to both changes in soil pH level and inter-element interactions. Ammonium sulfate tended to be the most effective measure for increasing nutrient uptake by plants in Chernozem but with opposite pattern in Fluvisol. Changes in plant yield and element uptake in treated plants may have been associated with the higher proline content of wheat shoots cultivated in both soils compared to control. None of the treatments decreased uptake of risk elements by wheat plants in the extremely contaminated Fluvisol, and their accumulation in wheat grains significantly exceeded maximum permissible levels; these treatments cannot be used to enable cereal and other crop production in such soils. However, the combination of increased plant growth alongside unchanged element content in plant biomass in pots treated with digestate

  6. The effectiveness of various treatments in changing the nutrient status and bioavailability of risk elements in multi-element contaminated soil.

    PubMed

    García-Sánchez, Mercedes; García-Romera, Inmaculada; Száková, Jiřina; Kaplan, Lukáš; Tlustoš, Pavel

    2015-09-01

    Potential changes in the mobility and bioavailability of risk and essential macro- and micro-elements achieved by adding various ameliorative materials were evaluated in a model pot experiment. Spring wheat (Triticum aestivum L.) was cultivated under controlled condition for 60 days in two soils, uncontaminated Chernozem and multi-element contaminated Fluvisol containing 4900 ± 200 mg/kg Zn, 35.4 ± 3.6 mg/kg Cd, and 3035 ± 26 mg/kg Pb. The treatments were all contained the same amount of sulfur and were as follows: (i) digestate from the anaerobic fermentation of biowaste, (ii) fly ash from wood chip combustion, and (iii) ammonium sulfate. Macro- and micro-nutrients Ca, Mg, K, Fe, Mn, Cu, P, and S, and risk elements Cd, Cr, Pb, and Zn were assayed in soil extracts with 0.11 mol/l solution of CH3COOH and in roots, shoots, and grain of wheat after 30 and 60 days of cultivation. Both digestate and fly ash increased levels of macro- and micro-nutrients as well as risk elements (especially Cd and Zn; the mobility of Pb decreased after 30 days of cultivation). The changes in element mobility in ammonium sulfate-treated soils appear to be due to both changes in soil pH level and inter-element interactions. Ammonium sulfate tended to be the most effective measure for increasing nutrient uptake by plants in Chernozem but with opposite pattern in Fluvisol. Changes in plant yield and element uptake in treated plants may have been associated with the higher proline content of wheat shoots cultivated in both soils compared to control. None of the treatments decreased uptake of risk elements by wheat plants in the extremely contaminated Fluvisol, and their accumulation in wheat grains significantly exceeded maximum permissible levels; these treatments cannot be used to enable cereal and other crop production in such soils. However, the combination of increased plant growth alongside unchanged element content in plant biomass in pots treated with digestate

  7. 78 FR 53497 - Commercial Space Transportation Advisory Committee; Closed Session

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... Federal Aviation Administration Commercial Space Transportation Advisory Committee; Closed Session AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory... closed session of the Commercial Space Transportation Advisory Committee (COMSTAC). The special...

  8. 77 FR 60373 - Board of Directors Executive Session Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ...; ] AFRICAN DEVELOPMENT FOUNDATION Board of Directors Executive Session Meeting Meeting: African Development Foundation, Board of Directors Executive Session Meeting. Time: Thursday, October 11, 2012, 5 p.m. to 6:30...

  9. 77 FR 62211 - Board of Directors Executive Session Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ...; ] AFRICAN DEVELOPMENT FOUNDATION Board of Directors Executive Session Meeting Meeting: African Development Foundation, Board of Directors Executive Session Meeting. Time: Tuesday, October 23, 2012, 8:30 a.m. to...

  10. 78 FR 61321 - Board of Directors Executive Session Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ...; ] AFRICAN DEVELOPMENT FOUNDATION Board of Directors Executive Session Meeting Meeting: African Development Foundation, Board of Directors Executive Session Meeting Time: Tuesday, October 22, 2013 9:00 a.m. to 1:00...

  11. 78 FR 5164 - Board of Directors Executive Session Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ...; ] AFRICAN DEVELOPMENT FOUNDATION Board of Directors Executive Session Meeting Meeting: African Development Foundation, Board of Directors Executive Session Meeting Time: Tuesday, February 5, 2013, 9:00 a.m. to 1:00...

  12. 78 FR 46312 - Board of Directors Executive Session Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ...; ] AFRICAN DEVELOPMENT FOUNDATION Board of Directors Executive Session Meeting Meeting: African Development Foundation, Board of Directors Executive Session Meeting Time: Tuesday, August 6, 2013 8:30 a.m. to 1:00...

  13. 78 FR 45494 - Plant Breeding Listening Session meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ...; ] DEPARTMENT OF AGRICULTURE Plant Breeding Listening Session meeting ACTION: Notice of a Plant Breeding... Agriculture (USDA) announces a Plant Breeding Listening Session stakeholder meeting for all interested plant breeding and cultivar development stakeholders. DATES: The Plant Breeding Listening Session will be...

  14. 46 CFR 4.09-17 - Sessions to be public.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Sessions to be public. 4.09-17 Section 4.09-17 Shipping... INVESTIGATIONS Marine Board of Investigation § 4.09-17 Sessions to be public. (a) All sessions of a Marine Board of Investigation for the purpose of obtaining evidence shall normally be open to the public,...

  15. 46 CFR 4.09-17 - Sessions to be public.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Sessions to be public. 4.09-17 Section 4.09-17 Shipping... INVESTIGATIONS Marine Board of Investigation § 4.09-17 Sessions to be public. (a) All sessions of a Marine Board of Investigation for the purpose of obtaining evidence shall normally be open to the public,...

  16. 46 CFR 4.09-17 - Sessions to be public.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Sessions to be public. 4.09-17 Section 4.09-17 Shipping... INVESTIGATIONS Marine Board of Investigation § 4.09-17 Sessions to be public. (a) All sessions of a Marine Board of Investigation for the purpose of obtaining evidence shall normally be open to the public,...

  17. 46 CFR 4.09-17 - Sessions to be public.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Sessions to be public. 4.09-17 Section 4.09-17 Shipping... INVESTIGATIONS Marine Board of Investigation § 4.09-17 Sessions to be public. (a) All sessions of a Marine Board of Investigation for the purpose of obtaining evidence shall normally be open to the public,...

  18. 46 CFR 4.09-17 - Sessions to be public.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Sessions to be public. 4.09-17 Section 4.09-17 Shipping... INVESTIGATIONS Marine Board of Investigation § 4.09-17 Sessions to be public. (a) All sessions of a Marine Board of Investigation for the purpose of obtaining evidence shall normally be open to the public,...

  19. 101st LHCC Meeting AGENDA OPEN Sessions I and II

    ScienceCinema

    None

    2016-07-12

    OPEN Sessions I and II on Wednesday, 5 May from 9h00 to 16h30 in MAIN AUDITORIUM, CERN staff and Users are welcome to attend Open Sessions -LIVE WEBCAST. CLOSED Sessions on Wednesday, 5 May at 16h30 and Thursday, 6 May 8h15 in Conference room 60-6-015

  20. Hydrogeophysical Monitoring of Water Infiltration in the Context of Soil Aquifer Treatment at the Shafdan Site (Israel)

    NASA Astrophysics Data System (ADS)

    Haaken, K.; Furman, A.; Weisbrod, N.; Kemna, A.

    2014-12-01

    Soil Aquifer Treatment (SAT) is a sustainable technology in modern waste water management. The Shafdan SAT facility in Israel, one of the largest in the world, is being successfully operated for many years. However, due to increasing amounts of waste water the infiltration capacity approaches its limit. Our study aims at better understanding the infiltration process and hereupon improving the efficiency of the infiltration management using Electrical Resistivity Tomography (ERT) in combination with hydrological methods. We installed three permanent ERT lines within one infiltration pond close to the city of Yavneh, south of Tel Aviv. Each line comprises 96 electrodes, separated by 2 m in one line and 0.5 m in the other two lines. The sediments below the pond are mainly composed of sands and porous sandstone. In order to calibrate the ERT results, water content, temperature, and electrical conductivity were measured in-situ at different depths in shallow regions of the pond, and cores from Geoprobe drillings were taken for lithological analyses. Continuous ERT monitoring was conducted over two months spanning infiltration scenarios characterized by different flooding sequences. The averaged apparent resistivity data over time show a clear response which can be related to the overall water content dynamics in the vadose zone (over 30 m). The inverted ERT images indicate that the infiltration is strongly affected by subsurface heterogeneity. With a view to setting up a hydrological model, we analyzed the transient behavior of the local drying curves after breakthrough of the infiltration front for each pixel of the ERT image sequence. This approach represents a new, "dynamic" method for subsurface hydraulic zonation based on time-lapse ERT. Our study shows that ERT helps to better understand the dynamics of water infiltration processes in the context of SAT under real-world conditions, and by this may contribute to enhancing the efficiency of SAT facilities.