USDA-ARS?s Scientific Manuscript database
Studies demonstrated that carbon input type influenced control of various fungi, oomycetes and plant parasitic nematodes with anaerobic soil disinfestation (ASD). Findings implicated multiple mechanisms may contribute to the overall level of disease control attained. In strawberry field trials, ASD ...
You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin
2016-03-01
Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models.
You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin
2016-01-01
Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models. PMID:26925871
Survival of microorganisms in smectite clays - Implications for Martian exobiology
NASA Technical Reports Server (NTRS)
Moll, Deborah M.; Vestal, J. R.
1992-01-01
The survival of Baccillus subtilis, Azotobacter chroococcum, and the enteric bacteriophage MS2 has been examined in clays representing terrestrial (Wyoming type montmorillonite) and Martian (Fe3+ montmorillonite) soils exposed to terrestrial and Martian environmental conditions of temperature and atmospheric composition and pressure. An important finding is that MS2 survived simulated Mars conditions better than the terrestrial environment, probably owing to stabilization of the virus caused by the cold and dry conditions of the simulated Mars environment. This finding, the first published indication that viruses may be able to survive in Mars-type soils, may have important implications for future missions to Mars.
NASA Astrophysics Data System (ADS)
Leigh, D.; Gragson, T. L.
2017-12-01
Summits of the humid-temperate western Pyrenees were converted from mixed forests to managed grasslands thousands of years ago, including use of fire. We hypothesize differences in soil chemical and physical traits evolved because of this transformation. Paired forest versus grassland soils were sampled at four separate hillslope sites having a clear boundary between the two vegetation types. Factors of climate, topography, parent material, and time of soil formation were essentially identical in the forests and pastures of each site, but the time of soil under grassland vegetation may have varied. Each paired hillslope site included five core samples from the upper 7.6 cm of the mineral soil within each vegetation type and the A horizon thickness was recorded at each core hole. In addition, one complete soil profile was sampled in each vegetation type at each site, making a total of 20 core samples and 4 complete profiles from each respective vegetation type. Analyses included bulk density, pH, plant-available nutrients, organic matter, fulvic versus humic acids, total carbon and nitrogen, amorphous silica, and charcoal content. Results indicate pastured A horizons are about three times as thick as forested soils, contain more organic matter, and have lower bulk densities. These traits favor much greater infiltration and water holding capacities of the pastured soils, which we validated with saturated hydraulic conductivity tests. Melanization has been more pronounced in the managed pastures, which contain significantly more humic acids than forests. Significantly more charcoal (black carbon) is present in the pastured soils from long-term use of fire, and having implications for sequestration of carbon. Pastures register significantly higher soil magnetic susceptibility than forests, also related to past use of fire as a management tool. Pastures contain greater contents of amorphous silica due to more rapid phytolith production from grasses as opposed to trees. Anthropic manipulation of the biotic factor of pedogenesis has created new soil materials, processes, and functions. Our results indicate better soil quality in pastured soils, counter to stereotypical concepts of soil degradation due to grazing, and having important implications for soil sustainability
Sutton, Nora B; van Gaans, Pauline; Langenhoff, Alette A M; Maphosa, Farai; Smidt, Hauke; Grotenhuis, Tim; Rijnaarts, Huub H M
2013-07-01
While bioremediation of total petroleum hydrocarbons (TPH) is in general a robust technique, heterogeneity in terms of contaminant and environmental characteristics can impact the extent of biodegradation. The current study investigates the implications of different soil matrix types (anthropogenic fill layer, peat, clay, and sand) and bioavailability on bioremediation of an aged diesel contamination from a heterogeneous site. In addition to an uncontaminated sample for each soil type, samples representing two levels of contamination (high and low) were also used; initial TPH concentrations varied between 1.6 and 26.6 g TPH/kg and bioavailability between 36 and 100 %. While significant biodegradation occurred during 100 days of incubation under biostimulating conditions (64.4-100 % remediation efficiency), low bioavailability restricted full biodegradation, yielding a residual TPH concentration. Respiration levels, as well as the abundance of alkB, encoding mono-oxygenases pivotal for hydrocarbon metabolism, were positively correlated with TPH degradation, demonstrating their usefulness as a proxy for hydrocarbon biodegradation. However, absolute respiration and alkB presence were dependent on soil matrix type, indicating the sensitivity of results to initial environmental conditions. Through investigating biodegradation potential across a heterogeneous site, this research illuminates the interplay between soil matrix type, bioavailability, and bioremediation and the implications of these parameters for the effectiveness of an in situ treatment.
Woody overstorey effects on soil carbon and nitrogen pools in South African savanna
A. T. Hudak; C. A. Wessman; T. R. Seastedt
2003-01-01
Woody plant encroachment in savannas may alter carbon (C) and nitrogen (N) pools over the longterm, which could have regional or global biogeochemical implications given the widespread encroachment observed in the vast savanna biome. Soil and litter %C and %N were surveyed across four soil types in two encroached, semiarid savanna landscapes in northern South Africa....
NASA Astrophysics Data System (ADS)
Landhäusser, Simon; Karst, Justine; Wiley, Erin; Gaster, Jacob
2016-04-01
Environmental stress can influence carbon assimilation and the accumulation and distribution of carbon between growth, reserves, and exudation; however, it is unclear how these processes vary by different stress types. Partitioning of carbon to growth and reserves in plants might also vary between different organs. Roots reserves are of particular interest as they link the plant with the soil carbon cycle through exudation. Simple models of diffusion across concentration gradients predict the more C reserves in roots, the more C should be exuded from roots. However, the mechanisms underlying the accumulation and loss of C from roots may differ depending on the stress experienced by the plants. In a controlled study we tested whether different types of stresses (shade, cold soil, and drought) have differential effects on the distribution, abundance, and form (sugar vs. starch) of carbohydrates in seedlings, and whether these changes alone could explain differences in root exudation between stress types. Non-structural carbohydrate (NSC) concentration and pool sizes varied by stress type and between organs. Mass-specific C exudation increased with fine root sugar concentration; however, stress type affected exudation independently of reserve concentration. Seedlings exposed to cold soils exuded the most C on a per root mass basis followed by shade and drought. Through 13C labeling, we also found that depending on the stress type, aspen seedlings may be less able to control the loss of C to the soil compared with unstressed seedlings, resulting in more C leaked to the rhizosphere. The loss of C beyond that predicted by simple concentration gradients might have important implications for ecosystem functioning and carbon balance. If stressed plants lose proportionally more carbon to the soil, existing interactions between plants and soils may decouple under stress, and may include unexpected C fluxes between trees, soils and the atmosphere with a changing climate.
NASA Astrophysics Data System (ADS)
Shuster, W.; Schifman, L. A.; Herrmann, D.
2017-12-01
Green infrastructure represents a broad set of site- to landscape-scale practices that can be flexibly implemented to increase sewershed retention capacity, and can thereby improve on the management of water quantity and quality. Although much green infrastructure presents as formal engineered designs, urbanized landscapes with highly-interspersed pervious surfaces (e.g., right-of-way, parks, lawns, vacant land) may offer ecosystem services as passive, infiltrative green infrastructure. Yet, infiltration and drainage processes are regulated by soil surface conditions, and then the layering of subsoil horizons, respectively. Drawing on a unique urban soil taxonomic and hydrologic dataset collected in 12 cities (each city representing a major soil order), we determined how urbanization processes altered the sequence of soil horizons (compared to pre-urbanized reference soil pedons) and modeled the hydrologic implications of these shifts in layering with an unsaturated zone code (HYDRUS2D). We found that the different layering sequences in urbanized soils render different types and extents of supporting (plant-available soil water), provisioning (productive vegetation), and regulating (runoff mitigation) ecosystem services.
Spectral analysis of charcoal on soils: Implications for wildland fire severity mapping methods
Alistair M. S. Smith; Jan U. H. Eitel; Andrew T. Hudak
2010-01-01
Recent studies in the Western United States have supported climate scenarios that predict a higher occurrence of large and severe wildfires. Knowledge of the severity is important to infer long-term biogeochemical, ecological, and societal impacts, but understanding the sensitivity of any severity mapping method to variations in soil type and increasing charcoal (char...
NEW ENVIRONMENTAL PUBLIC HEALTH INDICATOR LINKING ORGANOCHLORINE COMPOUNDS AND TYPE 2 DIABETES
The project will develop an environmental public health indicator (EPHI) by linking soil residues of organochlorine (OC) insecticides and metabolites/degradates, OC compound levels in people and a disease with which they are implicated, type 2 diabetes (T2D). The proposed E...
Chemistry and Mineralogy of Antarctica Dry Valley Soils: Implications for Mars
NASA Technical Reports Server (NTRS)
Quinn, J. E.; Golden, D. C.; Graff, T. G.; Ming, D. W.; Morris, R. V.; Douglas, S.; Kounaves, S. P.; McKay, C. P.; Tamppari, L, K.; Smith, P. H.;
2011-01-01
The Antarctic Dry Valleys (ADV) comprise the largest ice-free region of Antarctica. Precipitation almost always occurs as snow, relative humidity is frequently low, and mean annual temperatures are about -20 C. The ADV soils have previously been categorized into three soil moisture regimes: subxerous, xerous and ultraxerous, based on elevation and climate influences. The subxerous regime is predominately a coastal zone soil, and has the highest average temperature and precipitation, while the ultraxerous regime occurs at high elevation (>1000 m) and have very low temperature and precipitation. The amounts and types of salts present in the soils vary between regions. The nature, origin and significance of salts in the ADV have been previously investigated. Substantial work has focused on soil formation in the ADVs, however, little work has focused on the mineralogy of secondary alteration phases. The dominant weathering process in the ADV region is physical weathering, however, chemical weathering has been well documented. The objective of this study was to characterize the chemistry and mineralogy, including the alteration mineralogy, of soils from two sites, a subxerous soil in Taylor Valley, and an ultraxerous soil in University Valley. The style of aqueous alteration in the ADVs may have implications for pedogenic processes on Mars.
Implications of altered rainfall and exotic plants on soil microbial communities and carbon biomass
NASA Astrophysics Data System (ADS)
Castro, S.; Lipson, D.; Cleland, E. E.
2016-12-01
Climate and exotic plant disturbances are among the most significant threats to Mediterranean-type ecosystems, compromising their renowned biodiversity and role in the global carbon cycle. Predicted shifts in rainfall patterns have become a particular concern, especially when interactions with other stressors and effects on biogeochemical processes remain poorly understood. To understand the impacts of altered rainfall on belowground dynamics as well as the role of inter- and intra-annual variation and plant community composition, we monitored soil microbial communities under native and exotic plant dominated plots with rainfall manipulation treatments in a semi-arid Mediterranean-type ecosystem. We measured microbial biomass, respiration rates, and community structure across treatments and vegetation types. Soil moisture and dissolved organic carbon were also measured to characterize abiotic soil properties. The soil moisture gradient established by the rainfall treatments had a positive correlation with microbial biomass carbon under native- and exotic-dominated plots but had no effect on respiration rates. A significant reduction in microbial biomass under exotic plants was found in 2013 but not in 2014 and 2015. Substrate-induced respiration values were higher in the exotic-dominated plots during the spring seasons, resulting in a significant interaction between plant community type and season. Bacterial communities showed little variation except in the Proteobacteria phyla, which was lower in exotic plants-dominated plots. Dissolved organic carbon was significantly reduced in exotic-dominated plots by approximately 26% based on average values of all plots throughout. Our results illustrate that rainfall quantity and exotic plants can cause changes in microbial biomass, community composition and respiration rates jeopardizing soil carbon storage. They also reinforce the importance of temporal variability and the need for repeated sampling to correctly interpret environmental changes in semi-arid ecosystems. We conclude that to improve predictions of the implications of global stressors on biogeochemical cycles in semi-arid ecosystems, there is a need to incorporate microbial data with the understanding that it is highly dependent on temporal dynamics and plant community.
Liming impacts on soils, crops and biodiversity in the UK: A review.
Holland, J E; Bennett, A E; Newton, A C; White, P J; McKenzie, B M; George, T S; Pakeman, R J; Bailey, J S; Fornara, D A; Hayes, R C
2018-01-01
Fertile soil is fundamental to our ability to achieve food security, but problems with soil degradation (such as acidification) are exacerbated by poor management. Consequently, there is a need to better understand management approaches that deliver multiple ecosystem services from agricultural land. There is global interest in sustainable soil management including the re-evaluation of existing management practices. Liming is a long established practice to ameliorate acidic soils and many liming-induced changes are well understood. For instance, short-term liming impacts are detected on soil biota and in soil biological processes (such as in N cycling where liming can increase N availability for plant uptake). The impacts of liming on soil carbon storage are variable and strongly relate to soil type, land use, climate and multiple management factors. Liming influences all elements in soils and as such there are numerous simultaneous changes to soil processes which in turn affect the plant nutrient uptake; two examples of positive impact for crops are increased P availability and decreased uptake of toxic heavy metals. Soil physical conditions are at least maintained or improved by liming, but the time taken to detect change varies significantly. Arable crops differ in their sensitivity to soil pH and for most crops there is a positive yield response. Liming also introduces implications for the development of different crop diseases and liming management is adjusted according to crop type within a given rotation. Repeated lime applications tend to improve grassland biomass production, although grassland response is variable and indirect as it relates to changes in nutrient availability. Other indicators of liming response in grassland are detected in mineral content and herbage quality which have implications for livestock-based production systems. Ecological studies have shown positive impacts of liming on biodiversity; such as increased earthworm abundance that provides habitat for wading birds in upland grasslands. Finally, understanding of liming impacts on soil and crop processes are explored together with functional aspects (in terms of ecosystems services) in a new qualitative framework that includes consideration of how liming impacts change with time. This holistic approach provides insights into the far-reaching impacts that liming has on ecosystems and the potential for liming to enhance the multiple benefits from agriculturally managed land. Recommendations are given for future research on the impact of liming and the implications for ecosystem services. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Yu, Xinxiao; Zhao, Yutao; Zhang, Zhiqiang; Cheng, Genwei
2003-01-01
Dark coniferous forest is the predominant type of vegetation in the upper reaches of Yangtze River. Difference among different types of soil exists. The sand content of soil is higher and the soil texture is coarser in the early stage of forest succession. The sand content of soil decreases with the advancement of the forest succession while that of soil in Abies fabri over-mature forest is the lowest. In slope wash soil, the sand content of soil decreases with the increasing soil depth. The soil porosity and soil water-holding capacity increases and soil bulk density decreases with the advancement of forest succession and decrease of soil depth. The deeper soil depth or the smaller soil water content are, the smaller the unsaturated hydraulic conductivity of soil measured by CGA method. Moreover, the correlation of soil water content with unsaturated hydraulic conductivity of soil can be simulated by an exponential function. The saturated hydraulic conductivity of soil decreases exponentially with the increasing soil depth. The time to attain the stable infiltration rate is different among different soil depth, while the deeper the soil depth is, the longer the time needs. The variation in soil texture, soil physical properties and the high infiltration rate of soil there implicated that there are scarce surface runoff, but abundant in subsurface flow, return flow and seepage, which is the result of regulation by dark coniferous forest on hydrological processes.
Jimenez, Aguilar A.; Huber-Sannwald, E.; Belnap, J.; Smart, D.R.; Arredondo, Moreno J.T.
2009-01-01
In Northern Mexico, long-term grazing has substantially degraded semiarid landscapes. In semiarid systems, ecological and hydrological processes are strongly coupled by patchy plant distribution and biological soil crust (BSC) cover in plant-free interspaces. In this study, we asked: 1) how responsive are BSC cover/composition to a drying/wetting cycle and two-year grazing removal, and 2) what are the implications for soil erosion? We characterized BSC morphotypes and their influence on soil stability under grazed/non-grazed conditions during a dry and wet season. Light- and dark-colored cyanobacteria were dominant at the plant tussock and community level. Cover changes in these two groups differed after a rainy season and in response to grazing removal. Lichens with continuous thalli were more vulnerable to grazing than those with semi-continuous/discontinuous thalli after the dry season. Microsites around tussocks facilitated BSC colonization compared to interspaces. Lichen and cyanobacteria morphotypes differentially enhanced resistance to soil erosion; consequently, surface soil stability depends on the spatial distribution of BSC morphotypes, suggesting soil stability may be as dynamic as changes in the type of BSC cover. Longer-term spatially detailed studies are necessary to elicit spatiotemporal dynamics of BSC communities and their functional role in biotically and abiotically variable environments. ?? 2009 Elsevier Ltd.
Using greenhouse gas fluxes to define soil functional types
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrakis, Sandra; Barba, Josep; Bond-Lamberty, Ben
Soils provide key ecosystem services and directly control ecosystem functions; thus, there is a need to define the reference state of soil functionality. Most common functional classifications of ecosystems are vegetation-centered and neglect soil characteristics and processes. We propose Soil Functional Types (SFTs) as a conceptual approach to represent and describe the functionality of soils based on characteristics of their greenhouse gas (GHG) flux dynamics. We used automated measurements of CO2, CH4 and N2O in a forested area to define SFTs following a simple statistical framework. This study supports the hypothesis that SFTs provide additional insights on the spatial variabilitymore » of soil functionality beyond information represented by commonly measured soil parameters (e.g., soil moisture, soil temperature, litter biomass). We discuss the implications of this framework at the plot-scale and the potential of this approach at larger scales. This approach is a first step to provide a framework to define SFTs, but a community effort is necessary to harmonize any global classification for soil functionality. A global application of the proposed SFT framework will only be possible if there is a community-wide effort to share data and create a global database of GHG emissions from soils.« less
Tian, Liming; Zhao, Lin; Wu, Xiaodong; Fang, Hongbing; Zhao, Yonghua; Yue, Guangyang; Liu, Guimin; Chen, Hao
2017-12-31
Vertical patterns and determinants of soil nutrients are critical to understand nutrient cycling in high-altitude ecosystems; however, they remain poorly understood in the alpine grassland due to lack of systematic field observations. In this study, we examined vertical distributions of soil nutrients and their influencing factors within the upper 1m of soil, using data of 68 soil profiles surveyed in the alpine grassland of the eastern Qinghai-Tibet Plateau. Soil organic carbon (SOC) and total nitrogen (TN) stocks decreased with depth in both alpine meadow (AM) and alpine steppe (AS), but remain constant along the soil profile in alpine swamp meadow (ASM). Total phosphorus, Ca 2+ , and Mg 2+ stocks slightly increased with depth in ASM. K + stock decreased with depth, while Na + stock increased slightly with depth among different vegetation types; however, SO 4 2- and Cl - stocks remained relatively uniform throughout different depth intervals in the alpine grassland. Except for SOC and TN, soil nutrient stocks in the top 20cm soils were significantly lower in ASM compared to those in AM and AS. Correlation analyses showed that SOC and TN stocks in the alpine grassland positively correlated with vegetation coverage, soil moisture, clay content, and silt content, while they negatively related to sand content and soil pH. However, base cation stocks revealed contrary relationships with those environmental variables compared to SOC and TN stocks. These correlations varied between vegetation types. In addition, no significant relationship was detected between topographic factors and soil nutrients. Our findings suggest that plant cycling and soil moisture primarily control vertical distributions of soil nutrients (e.g. K) in the alpine grassland and highlight that vegetation types in high-altitude permafrost regions significantly affect soil nutrients. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Baustian, M. M.; Stagg, C. L.; Perry, C. L.; Moss, L.; Carruthers, T.; Allison, M. A.
2017-12-01
The vegetation community and environmental characteristics of marsh habitats influence how carbon is produced, decomposed, and accumulated. In coastal Louisiana, marsh habitats have historically been classified as fresh, intermediate, brackish, and saline based on their position along the salinity gradient. Changing environmental conditions, such as sea-level rise and coastal restoration activities, may change the relative extent of the four marsh habitats and how soil carbon is accumulated in the short and long term. Soil cores (100 cm) were collected at each of 24 sites within the four marsh habitats in two coastal Louisiana basins, Terrebonne and Barataria. Each core was sectioned into 2-cm depth intervals and analyzed for bulk density, organic matter, and radionuclide geochronology (137Cs and 210Pb). Feldspar marker horizon data was utilized to estimate short-term accretion rates. Short-term total carbon accumulation rates (using the top 10 cm soil properties and feldspar horizon markers) among marsh type categories were not significantly different (mean ± std. err of 190 ± 27 g TC m-2 yr-1, n = 15). However, regression analysis, on measured salinity at individual sites, indicated that mean annual salinity had a significant negative relationship suggesting that more saline marshes may be accumulating less carbon in the short term. Coastal Louisiana marsh area (1,433,700 ha) soils store in the short term about 2.7 to 3.3 Tg C yr-1. Long-term carbon accumulation rates of classified marsh type categories also did not differ (mean ± std. err of 80.0 ±8.9 g TC m-2 yr-1, n = 16) and were over two times lower than short-term accumulation rates. Coast-wide, in Louisiana, these soils bury approximately 1.2 Tg TC yr-1 in the long term and contribute about 1-5% of the global marsh/mangrove carbon sink budget. Carbon accumulation and storage rates tend to decrease over long time periods and estimating these rates from varying soil core depths (10 vs. 100 cm) has important implications to estimating carbon budgets and comparing rates in the literature. This study helps to characterize short and long-term carbon accumulation rates in four marsh salinity types and provides insight into how carbon accumulation may change with predicted changes in marsh type resulting from environmental change.
NASA Astrophysics Data System (ADS)
Bresehars, D. D.; Myers, O. B.; Barnes, F. J.
2003-12-01
Woody plant encroachment in dryland ecosystems is an issue of global concern, yet mechanisms related to encroachment are poorly understood. Mechanisms associated with woody plant encroachment likely relate to soil water dynamics, yet few long-term data sets exist to evaluate soil water heterogeneity. Here we highlight how soil water varies both temporally (wet vs. dry years and snow vs. rain dominated months) and spatially (vertically with depth and horizontally beneath vs. between the canopies of woody plants). We measured soil water content using neutron probe over a 15-year period in a pinyon-juniper woodland at the Mesita del Buey Research Site in northern New Mexico. Our objectives included assessing (1) the temporal variability of soil water, both as a function of depth and as a function of cover (canopy patches beneath trees, intercanopy patches between trees, and edges between the two patch types); and (2) implications for the vertical and horizontal distributions of plant-available water. Our results highlight (1) large temporal variations in soil water availability, driven largely by differences in winter precipitation, and (2) the potential importance of considering horizontal as well as vertical heterogeneity in soil moisture. The spatio-temporal variation in soil water that we quantify highlights the potential complexity of changes in the water budget that could be associated with woody plant encroachment and emphasizes the importance of considering horizontal as well as vertical heterogeneity in soil water in improving our understanding of mechanisms associated with woody plant encroachment.
To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd
2010-09-08
Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.
NASA Astrophysics Data System (ADS)
Alster, C. J.; Koyama, A.; Johnson, N. G.; von Fischer, J.
2015-12-01
Soil microbes catalyze many key ecosystem functions, including soil respiration, and are thus important for understanding global carbon cycles and other biogeochemical cycles. One important component in predicting rates of respiration is determining how microbial communities respond to temperature. A range of models have been developed for determining temperature sensitivity of soil biological activities, most of which are based on the Arrhenius equation. This equation predicts an exponential increase in rate with temperature, despite field and laboratory results suggesting a temperature optimum below the denaturation point. Recently, Schipper et al. (2014) developed a novel theory, Macromolecular Rate Theory (MMRT), which explains this trend due to heat capacity (CP) changes associated with enzymes. We applied MMRT to respiration data collected using a reciprocal transplant design with soils from three different sites across the U.S. Great Plains to isolate the effects of microbial community type from edaphic factors. We found that MMRT provided a better fit to the data than Arrhenius in 8 out of the 9 soil x inocula combinations. Our analysis revealed that the microbial communities have distinct CP values largely independent of soil type. These results have significant implications for fundamental understanding of microbial enzyme dynamics in soils as well as for ecosystem and global carbon modeling.
Soil water repellency under stones, forest residue mulch and bare soil following wildfire.
NASA Astrophysics Data System (ADS)
Martins, Martinho A. S.; Prats, Sérgio A.; van Keulen, Daan; Vieira, Diana C. S.; Silva, Flávio C.; Keizer, Jan J.; Verheijen, Frank G. A.
2017-04-01
Soil water repellency (SWR) is a physical property that is commonly defined as the aptitude of soil to resist wetting. It has been documented for a wide range of soil and vegetation types, and can vary with soil organic matter (SOM) content and type, soil texture, soil moisture content (SMC) and soil temperature. Fire can induce, enhance or destroy SWR and, therefore, lead to considerable changes in soil water infiltration and storage and increase soil erosion by water, thereby weakening soil quality. In Portugal, wildfires occur frequently and affect large areas, on average some 100000 ha per year, but over 300000 ha in extreme years such as 2003 and 2005. This can have important implications in geomorphological and hydrological processes, as evidenced by the strong and sometimes extreme responses in post-fire runoff and erosion reported from various parts of the world, including Portugal. Thereby, the application of mulches from various materials to cover burned areas has been found to be an efficient stabilization treatment. However, little is known about possible side effects on SWR, especially long term effects. Forest SWR is very heterogeneous, as a result of variation in proximity to trees/shrubs, litter type and thickness, cracks, roots, and stones. This study targeted the spatial heterogeneity of soil water repellency under eucalypt plantation, five years after a wildfire and forest residue mulching application. The main objectives of this work were: 1) to assess the long-term effect of mulching application on the strength and spatial heterogeneity of topsoil SWR, by comparing SWR on bare soil, under stones, and under mulching remains; 2) to assess SWR at 1 cm depth between O and Ah horizons. The soil surface results showed that untreated bare soil areas were slightly more water repellent than mulched areas. However, under stones there were no SWR differences between mulched and control areas. At 1 cm depth, there was a marked mulching effect on SWR, even 5 years after application.
NASA Astrophysics Data System (ADS)
Varga, T.; McKinney, A. L.; Bingham, E.; Handakumbura, P. P.; Jansson, C.
2017-12-01
Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere, as well as in processes with important implications to farming and thus human food supply. X-ray computed tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. Selected Brachypodium distachyon phenotypes were grown in both natural and artificial soil mixes. The specimens were imaged by XCT, and the root architectures were extracted from the data using three different software-based methods; RooTrak, ImageJ-based WEKA segmentation, and the segmentation feature in VG Studio MAX. The 3D root image was successfully segmented at 30 µm resolution by all three methods. In this presentation, ease of segmentation and the accuracy of the extracted quantitative information (root volume and surface area) will be compared between soil types and segmentation methods. The best route to easy and accurate segmentation and root analysis will be highlighted.
NASA Astrophysics Data System (ADS)
Merino, Agustin; Fonturbel, Maria T.; Omil, Beatriz; Chávez-Vergara, Bruno; Fernandez, Cristina; Garcia-Oliva, Felipe; Vega, Jose A.
2016-04-01
The design of emergency treatment for the rehabilitation of fire-affected soils requires a quick diagnosis to assess the degree of degradation. For its implication in the erosion and subsequent evolution, the quality of soil organic matter (OM) plays a particularly important role. This paper presents a methodology that combines the visual recognition of the severity of soil burning with the use of simple analytical techniques to assess the degree of degradation of OM. The content and quality of the OM was evaluated in litter and mineral soils using thermogravimetry-differential scanning calorimetry (DSC-TG) spectroscopy, and the results were contrasted with 13C CP-MAS NMR. The types of methodologies were texted to assess the thermal analysis: a) the direct calculation of the Q areas related to three degrees of thermal stabilities: Q1 (200-375 °C; labil OM); Q2 (375-475 °C, recalcitrant OM); and Q3 (475-550 °C). b) deconvolution of DSC curves and calculation of each peak was expressed as a fraction of the total DSC curve area. Additionally, a P fractionation was done following the Hedley sequential extraction method. The severity levels visually showed different degrees of SOM degradation. Although the fire caused important SOM losses in moderate severities, changes in the quality of OM only occurred at higher severities. Besides, the labile organic P fraction decreased and the occluded inorganic P fraction increased in the high severity soils. These changes affect the OM processes such as hydrophobicity and erosion largely responsible for soil degradation post-fire. The strong correlations between the thermal parameters and NMR regions and derived measurements such as hydrophobicity and aromaticity show the usefulness of this technique as rapid diagnosis to assess the soil degradation.The marked loss of polysaccharide and transition to highly thermic-resistant compounds, visible in deconvoluted thermograms, which would explain the changes in microbial activity and soil nutrients availability (basal respiration, microbial biomass, qCO2, and enzymatic activity). And also it would have implications in hydrophobicity and stability of soil aggregates, leading to the extreme erosion rates that occur usually are found in soils affected by higher severities.
Spatial Variation of Soil Lead in an Urban Community Garden: Implications for Risk-Based Sampling.
Bugdalski, Lauren; Lemke, Lawrence D; McElmurry, Shawn P
2014-01-01
Soil lead pollution is a recalcitrant problem in urban areas resulting from a combination of historical residential, industrial, and transportation practices. The emergence of urban gardening movements in postindustrial cities necessitates accurate assessment of soil lead levels to ensure safe gardening. In this study, we examined small-scale spatial variability of soil lead within a 15 × 30 m urban garden plot established on two adjacent residential lots located in Detroit, Michigan, USA. Eighty samples collected using a variably spaced sampling grid were analyzed for total, fine fraction (less than 250 μm), and bioaccessible soil lead. Measured concentrations varied at sampling scales of 1-10 m and a hot spot exceeding 400 ppm total soil lead was identified in the northwest portion of the site. An interpolated map of total lead was treated as an exhaustive data set, and random sampling was simulated to generate Monte Carlo distributions and evaluate alternative sampling strategies intended to estimate the average soil lead concentration or detect hot spots. Increasing the number of individual samples decreases the probability of overlooking the hot spot (type II error). However, the practice of compositing and averaging samples decreased the probability of overestimating the mean concentration (type I error) at the expense of increasing the chance for type II error. The results reported here suggest a need to reconsider U.S. Environmental Protection Agency sampling objectives and consequent guidelines for reclaimed city lots where soil lead distributions are expected to be nonuniform. © 2013 Society for Risk Analysis.
Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Ganjurjav, Hasbagan; Wang, Xuexia; Su, Xukun; Wu, Xiaoyu
2017-03-06
To understand effects of soil microbes on soil biochemistry in alpine grassland ecosystems under environmental changes, we explored relationships between soil microbial diversity and soil total nitrogen, organic carbon, available nitrogen and phosphorus, soil microbial biomass and soil enzyme activities in alpine meadow, alpine steppe and cultivated grassland on the Qinghai-Tibetan plateau under three-year warming, enhanced precipitation and yak overgrazing. Soil total nitrogen, organic carbon and NH 4 -N were little affected by overgrazing, warming or enhanced precipitation in three types of alpine grasslands. Soil microbial biomass carbon and phosphorus along with the sucrase and phosphatase activities were generally stable under different treatments. Soil NO 3 -N, available phosphorus, urease activity and microbial biomass nitrogen were increased by overgrazing in the cultivated grassland. Soil bacterial diversity was positively correlated with, while soil fungal diversity negatively with soil microbial biomass and enzyme activities. Soil bacterial diversity was negatively correlated with, while soil fungal diversity positively with soil available nutrients. Our findings indicated soil bacteria and fungi played different roles in affecting soil nutrients and microbiological activities that might provide an important implication to understand why soil biochemistry was generally stable under environmental changes in alpine grassland ecosystems.
NASA Astrophysics Data System (ADS)
Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Ganjurjav, Hasbagan; Wang, Xuexia; Su, Xukun; Wu, Xiaoyu
2017-03-01
To understand effects of soil microbes on soil biochemistry in alpine grassland ecosystems under environmental changes, we explored relationships between soil microbial diversity and soil total nitrogen, organic carbon, available nitrogen and phosphorus, soil microbial biomass and soil enzyme activities in alpine meadow, alpine steppe and cultivated grassland on the Qinghai-Tibetan plateau under three-year warming, enhanced precipitation and yak overgrazing. Soil total nitrogen, organic carbon and NH4-N were little affected by overgrazing, warming or enhanced precipitation in three types of alpine grasslands. Soil microbial biomass carbon and phosphorus along with the sucrase and phosphatase activities were generally stable under different treatments. Soil NO3-N, available phosphorus, urease activity and microbial biomass nitrogen were increased by overgrazing in the cultivated grassland. Soil bacterial diversity was positively correlated with, while soil fungal diversity negatively with soil microbial biomass and enzyme activities. Soil bacterial diversity was negatively correlated with, while soil fungal diversity positively with soil available nutrients. Our findings indicated soil bacteria and fungi played different roles in affecting soil nutrients and microbiological activities that might provide an important implication to understand why soil biochemistry was generally stable under environmental changes in alpine grassland ecosystems.
Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Ganjurjav, Hasbagan; Wang, Xuexia; Su, Xukun; Wu, Xiaoyu
2017-01-01
To understand effects of soil microbes on soil biochemistry in alpine grassland ecosystems under environmental changes, we explored relationships between soil microbial diversity and soil total nitrogen, organic carbon, available nitrogen and phosphorus, soil microbial biomass and soil enzyme activities in alpine meadow, alpine steppe and cultivated grassland on the Qinghai-Tibetan plateau under three-year warming, enhanced precipitation and yak overgrazing. Soil total nitrogen, organic carbon and NH4-N were little affected by overgrazing, warming or enhanced precipitation in three types of alpine grasslands. Soil microbial biomass carbon and phosphorus along with the sucrase and phosphatase activities were generally stable under different treatments. Soil NO3-N, available phosphorus, urease activity and microbial biomass nitrogen were increased by overgrazing in the cultivated grassland. Soil bacterial diversity was positively correlated with, while soil fungal diversity negatively with soil microbial biomass and enzyme activities. Soil bacterial diversity was negatively correlated with, while soil fungal diversity positively with soil available nutrients. Our findings indicated soil bacteria and fungi played different roles in affecting soil nutrients and microbiological activities that might provide an important implication to understand why soil biochemistry was generally stable under environmental changes in alpine grassland ecosystems. PMID:28262753
Evolving soils and hydrologic connectivity in semiarid hillslopes
NASA Astrophysics Data System (ADS)
Saco, Patricia M.
2015-04-01
Soil moisture availability is essential for the stability and resilience of semiarid ecosystems. In these ecosystems the amount of soil moisture available for vegetation growth and survival is intrinsically related to the way water is redistributed, that is from source to sink areas, and therefore prescribed by the hydrologic connectivity of the landscape. Recent studies have shown that hydrologic connectivity is highly dynamic and linked to the coevolution of geomorphic, soil and vegetation structures at a variety of spatial and temporal scales. This study investigates the effect of evolving soil depths on hydrologic connectivity using a modelling framework. The focus is on Australian semiarid hillslopes with patterned vegetation that result from coevolving landforms, soils, water redistribution, and vegetation patterns. We present and analyse results from simulations using a coupled landform evolution-dynamic vegetation model, which includes a soil depth evolution module and accounts for soil production and sediment erosion and deposition processes. We analyse the effect of soils depths on surface connectivity for a range of biotic (plant functional type strategies) and abiotic (slope and erodibility) conditions. The analysis shows that different plant functional types, through their varying facilitation strategies, have a profound effect on soils depths and therefore affect hydrologic connectivity and soil moisture patterns. This interplay becomes particularly important for systems that coevolve to have very shallow soils. In this case soil depth becomes the key factor prescribing surface connectivity and available soil moisture for plants, which affect the recovery of the system after disturbance. Conditions for the existence of threshold behaviour for which small perturbations can trigger a sudden increase in hydrologic connectivity, reduced soil moisture availability and decrease in productivity leading to degraded states are investigated. Critical implications for effective restoration efforts are discussed.
Understory vegetation and site factors : implications for a managed Wisconsin landscape
K.D. Brosofske; J. Chen; Thomas R. Crow
2001-01-01
We investigated relationships between edaphic and environmental factors (soil, forest floor, topography, and canopy) and understory vegetation (composition, richness, and Shannon-Wiener diversity index, H')among 77 plots representing seven major patch types comprising a landscape in northern Wisconsin that has a long history of human management. Sampled patch...
Effects of soil properties on the uptake of pharmaceuticals into earthworms.
Carter, Laura J; Ryan, Jim J; Boxall, Alistair B A
2016-06-01
Pharmaceuticals can enter the soil environment when animal slurries and sewage sludge are applied to land as a fertiliser or during irrigation with contaminated water. These pharmaceuticals may then be taken up by soil organisms possibly resulting in toxic effects and/or exposure of organisms higher up the food chain. This study investigated the influence of soil properties on the uptake and depuration of pharmaceuticals (carbamazepine, diclofenac, fluoxetine and orlistat) in the earthworm Eisenia fetida. The uptake and accumulation of pharmaceuticals into E. fetida changed depending on soil type. Orlistat exhibited the highest pore water based bioconcentration factors (BCFs) and displayed the largest differences between soil types with BCFs ranging between 30.5 and 115.9. For carbamazepine, diclofenac and fluoxetine BCFs ranged between 1.1 and 1.6, 7.0 and 69.6 and 14.1 and 20.4 respectively. Additional analysis demonstrated that in certain treatments the presence of these chemicals in the soil matrices changed the soil pH over time, with a statistically significant pH difference to control samples. The internal pH of E. fetida also changed as a result of incubation in pharmaceutically spiked soil, in comparison to the control earthworms. These results demonstrate that a combination of soil properties and pharmaceutical physico-chemical properties are important in terms of predicting pharmaceutical uptake in terrestrial systems and that pharmaceuticals can modify soil and internal earthworm chemistry which may hold wider implications for risk assessment. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
The effects of land use change on soil infiltration capacity in China: A meta-analysis.
Sun, Di; Yang, Hong; Guan, Dexin; Yang, Ming; Wu, Jiabing; Yuan, Fenghui; Jin, Changjie; Wang, Anzhi; Zhang, Yushu
2018-06-01
Land use changes are often considered to be the main factors influencing soil infiltration. But the difference of soil infiltration capacity for different land use type is less clear. In this paper, we conduct a meta-analysis of all 42 papers that could be found associated with the effects of land use changes on soil infiltration capacity. The results showed that soil initial and steady infiltration rates increased after land use changes from grassland to forest (+41.35%, /), shrubland to forest (+42.73%, /) and cropland to agroforestry (+70.28%, +84.17%). Soil infiltration rates declined after land use changes from grassland to cropland (/, -45.23%), shrubland to cropland (-64.24%, /) and forest to cropland (-53.58%, -42.15%). It was evident that soil infiltration rates were negatively related to soil bulk density and initial moisture and positively related to soil total porosity and organic matter content. In sum, establishing agroforestry ecosystem was beneficial to improve soil infiltration capacity compare to cropland and plantation, which has important implications for developing sustainable agriculture and forest from the viewpoint of soil and water conservation. Copyright © 2018 Elsevier B.V. All rights reserved.
Ossola, Alessandro; Hahs, Amy Kristin; Livesley, Stephen John
2015-08-15
Urban ecosystems have traditionally been considered to be pervious features of our cities. Their hydrological properties have largely been investigated at the landscape scale and in comparison with other urban land use types. However, hydrological properties can vary at smaller scales depending upon changes in soil, surface litter and vegetation components. Management practices can directly and indirectly affect each of these components and the overall habitat complexity, ultimately affecting hydrological processes. This study aims to investigate the influence that habitat components and habitat complexity have upon key hydrological processes and the implications for urban habitat management. Using a network of urban parks and remnant nature reserves in Melbourne, Australia, replicate plots representing three types of habitat complexity were established: low-complexity parks, high-complexity parks, and high-complexity remnants. Saturated soil hydraulic conductivity in low-complexity parks was an order of magnitude lower than that measured in the more complex habitat types, due to fewer soil macropores. Conversely, soil water holding capacity in low-complexity parks was significantly higher compared to the two more complex habitat types. Low-complexity parks would generate runoff during modest precipitation events, whereas high-complexity parks and remnants would be able to absorb the vast majority of rainfall events without generating runoff. Litter layers on the soil surface would absorb most of precipitation events in high-complexity parks and high-complexity remnants. To minimize the incidence of stormwater runoff from urban ecosystems, land managers could incrementally increase the complexity of habitat patches, by increasing canopy density and volume, preserving surface litter and maintaining soil macropore structure. Copyright © 2015 Elsevier Ltd. All rights reserved.
Malepfane, N M; Muchaonyerwa, P
2017-02-01
Disposal of hair wastes at landfills causes nitrate leaching to ground water, and use of the waste as fertiliser could be a viable option. This study was to determine elemental composition of major hair types in South Africa and their nitrogen (N) and phosphorus (P) release in soil. Wastes of African, White and Indian hair were obtained from local salons and analysed for carbon (C), N and sulphur (S) with the Leco CNS analyzer, and P, bases, aluminium (Al) and micronutrients, with the ICP. We also conducted an incubation study to determine changes in mineral N and P in soil. Hair wastes were added to soil at increasing rates based on N, incubated at 25 °C with destructive sampling after 0, 28, 56 and 84 days and pH, ammonium-N, nitrate-N and extractable P measured. All data were subjected to analysis of variance. Indian and White hair had higher N than African. White hair had higher C and lower potassium (K) than those of other types. The Fe levels in hair were in the order White > African > Indian, whilst those of Al were African > Indian > White. African hair had higher calcium (Ca), manganese (Mn), zinc (Zn) and cobalt (Co) than the other types. Ammonium-N and nitrate-N releases were in the order: Indian > African > White, especially at higher rates. Ammonium-N increased in the first 28 days and declined thereafter, when nitrate-N increased and pH decreased. The findings implied that hair types differ in elemental composition and nitrogen release in soil, with implications on pollution and soil fertility.
Dust emission and soil loss due to anthropogenic activities by wind erosion simulations
NASA Astrophysics Data System (ADS)
Katra, Itzhak; Swet, Nitzan; Tanner, Smadar
2017-04-01
Wind erosion is major process of soil loss and air pollution by dust emission of clays, nutrients, and microorganisms. Many soils throughout the world are currently or potentially associated with dust emissions, especially in dryland zones. The research focuses on wind erosion in semi-arid soils (Northern Negev, Israel) that are subjected to increased human activities of urban development and agriculture. A boundary-layer wind tunnel has been used to study dust emission and soil loss by simulation and quantification of high-resolution wind processes. Field experiments were conducted in various surface types of dry loess soils. The experimental plots represent soils with long-term and short term influences of land uses such as agriculture (conventional and organic practices), grazing, and natural preserves. The wind tunnel was operated under various wind velocities that are above the threshold velocity of aeolian erosion. Total soil sediment and particulate matter (PM) fluxes were calculated. Topsoil samples from the experimental plots were analysed in the laboratory for physical and chemical characteristics including aggregation, organic matter, and high-resolution particle size distribution. The results showed variations in dust emission in response to surface types and winds to provide quantitative estimates of soil loss over time. Substantial loss of particulate matter that is < 10 micrometer in diameter, including clays and nutrients, was recorded in most experimental conditions. Integrative analyses of the topsoil properties and dust experiment highlight the significant implications for soil nutrient resources and management strategies as well as for PM loading to the atmosphere and air pollution.
Recreation ecology research findings: Implications for wilderness and park managers
Marion, J.L.; Kirchner, Hannah
1998-01-01
Recreationists unintentionally trample vegetation, erode soil, and disturb wildlife. Such human-related impacts present a dilemma for managers charged with the dual objectives of providing recreational opportunities and preserving natural environments. This paper presents some of the principal findings and management implications from research on visitor impacts to protected areas, termed recreation ecology research. This field of study seeks to identify the type and extent of resource impacts and to evaluate relationships between use-related, environmental, and managerial factors. The capabilities and managerial utility of recreation impact monitoring are also described.
Howard, R.J.
2010-01-01
Genetic diversity within plant populations can influence plant community structure along environmental gradients. In wetland habitats, salinity and soil type are factors that can vary along gradients and therefore affect plant growth. To test for intraspecific growth variation in response to these factors, a greenhouse study was conducted using common plants that occur in northern Gulf of Mexico brackish and salt marshes. Individual plants of Distichlis spicata, Phragmites australis, Schoenoplectus californicus, and Schoenoplectus robustus were collected from several locations along the coast in Louisiana, USA. Plant identity, based on collection location, was used as a measure of intraspecific variability. Prepared soil mixtures were organic, silt, or clay, and salinity treatments were 0 or 18 psu. Significant intraspecific variation in stem number, total stem height, or biomass was found in all species. Within species, response to soil type varied, but increased salinity significantly decreased growth in all individuals. Findings indicate that inclusion of multiple genets within species is an important consideration for marsh restoration projects that include vegetation plantings. This strategy will facilitate establishment of plant communities that have the flexibility to adapt to changing environmental conditions and, therefore, are capable of persisting over time. ?? Coastal and Estuarine Research Federation 2009.
Devi, Ningombam Linthoingambi; Yadav, Ishwar Chandra
2018-03-28
While metal pollution and distribution in soil are well documented for many countries, the situation is more serious in developing countries because of the rapid increase in industrialization and urbanization during last decades. Although it is well documented in developed countries, data about substantial metal pollution in Indian soil, especially in eastern Ganges alluvial plain (GAP), are limited. In this study, eight different blocks of Patna district located in eastern GAP were selected to investigate the contamination, accumulation, and sources of metals in surface soil considering different land use types. Additionally, human health risk assessment was estimated to mark the potential carcinogenic and non-carcinogenic effect of metals in soil. The concentration of all metals (except Pb) in soil was below the Indian standard limit of the potential toxic element for agricultural soil. Pb was the most abundant in soil, followed by Zn and Cu, and accounted for 52, 33 and 8% of the total metal. In terms of land use types, roadside soil detected higher concentrations of all metals, followed by park/grassland soil. Principal component analysis results indicated traffic pollution and industrial emissions are the major sources of heavy metals in soil. This was further confirmed by strong inter-correlation of heavy metals (Cd, Cr, Ni, Cu and Pb). Human health risk assessment results indicated ingestion via soil as the primary pathway of heavy metal exposure to both adults and children population. The estimated hazard index was highest for Pb, suggesting significant non-carcinogenic effect to both adults and children population. The children were more prone to the non-carcinogenic effect of Pb than adults. However, relatively low cancer risk value estimated for all metals suggested non-significant carcinogenic risk in the soil.
NASA Astrophysics Data System (ADS)
Szymanski, L. M.; Marin-Spiotta, E.; Sanford, G. R.; Jackson, R. D.; Heckman, K. A.
2015-12-01
Bioenergy crops have the potential to provide a low carbon-intensive alternative to fossil fuels. More than a century of agricultural research has shown that conventional cropping systems can reduce soil organic matter (SOM) reservoirs, which cause long-term soil nutrient loss and C release to the atmosphere. In the face of climate change and other human disruptions to biogeochemical cycles, identifying biofuel crops that can maintain or enhance soil resources is desirable for the sustainable production of bioenergy. The objective of our study was to compare the effects of four biofuel crop treatments on SOM dynamics in two agricultural soils: Mollisols at Arlington Agricultural Research Station in Wisconsin and Alfisols at Kellogg Biological Station in Michigan, USA. We used fresh soils collected in 2013 and archived soils from 2008 to measure the effects of five years of crop management. Using a one-year long laboratory soil incubation coupled with a regression model and radiocarbon measurements, we separated soils into three SOM pools and their corresponding C turnover times. We found that the active pool, or biologically available C, was more sensitive to management and is an earlier indicator of changes to soil C dynamics than bulk soil C measurements. There was no effect of treatment on the active pool size at either site; however, the percent C in the active pool decreased, regardless of crop type, in surface soils with high clay content. At depth, the response of the slow pool differed between annual and perennial cropping systems. The distribution of C among SOM fractions varied between the two soil types, with greater C content associated with the active fraction in the coarser textured-soil and greater C content associated with the slow-cycling fraction in the soils with high clay content. These results suggest that the effects of bioenergy crops on soil resources will vary geographically, with implications for the carbon-cost of biocrop production.
The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent.
Pawlett, Mark; Ritz, Karl; Dorey, Robert A; Rocks, Sophie; Ramsden, Jeremy; Harris, Jim A
2013-02-01
Nanosized zero-valent iron (nZVI) is an effective land remediation tool, but there remains little information regarding its impact upon and interactions with the soil microbial community. nZVI stabilised with sodium carboxymethyl cellulose was applied to soils of three contrasting textures and organic matter contents to determine impacts on soil microbial biomass, phenotypic (phospholipid fatty acid (PLFA)), and functional (multiple substrate-induced respiration (MSIR)) profiles. The nZVI significantly reduced microbial biomass by 29 % but only where soil was amended with 5 % straw. Effects of nZVI on MSIR profiles were only evident in the clay soils and were independent of organic matter content. PLFA profiling indicated that the soil microbial community structure in sandy soils were apparently the most, and clay soils the least, vulnerable to nZVI suggesting a protective effect imparted by clays. Evidence of nZVI bactericidal effects on Gram-negative bacteria and a potential reduction of arbuscular mycorrhizal fungi are presented. Data imply that the impact of nZVI on soil microbial communities is dependent on organic matter content and soil mineral type. Thereby, evaluations of nZVI toxicity on soil microbial communities should consider context. The reduction of AM fungi following nZVI application may have implications for land remediation.
NASA Astrophysics Data System (ADS)
Cooper, Sarah; Agnew, Linda; Pereg, Lily
2015-04-01
Control of soilborne fungal root pathogens that severely compromise cotton production and other crops worldwide has historically been through the use of synthetic fungicides and fertilizers, these often have hazardous implications for environmental and soil health. The search for sustainable alternatives has lead to heightened interest in biocontrol, using soil microorganisms that suppress the growth of phytopathogens directly and biofertilization, the use of microorganisms to increasing the nutrient availability in soils, increasing seedling vigour. Soil properties and consequently soil microbial properties are strongly impacted by agricultural practices, therefore we are isolating indigenous microorganisms from soils collected from ten different geographical locations within the Australian cotton-growing region. These differ vastly in soil type and management practices. Soils are being analysed to compare the abundance of phosphate solubilising, auxin producing and nitrogen cycling bacteria. Rhizospheric bacteria capable of plant growth promoting through a multiple actions are being isolated. In addition, a method for isolating soilborne fungal suppressive microbes directly from soil samples has been designed and is currently being used. Comparisons between agricultural practices and the plant growth promoting microbial component of soil microbiome will be reported on. We will discuss the microbial isolates identified, their modes of action and their potential use as biocontrol agents and/or biofertilizers in Australian cotton growing soils.
Dermatas, Dimitris; Chrysochoou, Maria
2007-08-01
Six firing range soils were analyzed, representing different environments, firing conditions, and maintenance practices. The particle size distribution and lead (Pb) concentration in each soil fraction were determined for samples obtained from the backstop berms. The main factors that were found to influence Pb fragment size were the type of soil used to construct the berms and the type of weapon fired. The firing of high velocity weapons, i.e., rifles, onto highly angular soils induced significant fragmentation of the bullets and/or pulverization of the soil itself. This resulted in the accumulation of Pb in the finer soil fractions and the spread of Pb contamination beyond the vicinity of the backstop berm. Conversely, the use of clay as backstop and the use of low velocity pistols proved to be favorable for soil clean-up and range maintenance, since Pb was mainly present as large metallic fragments that can be recovered by a simple screening process. Other factors that played important roles in Pb particle size distribution were soil chemistry, firing distance, and maintenance practices, such as the use of water spray for dust suppression and deflectors prior to impact. Overall, coarse Pb particles provide much easier and more cost-effective maintenance, soil clean-up, and remediation via physical separation. Fine Pb particles release Pb more easily, pose an airborne Pb hazard, and require the application of stabilization/solidification treatment methods. Thus, to ensure sustainable firing range operations by means of cost-effective design, maintenance, and clean-up, especially when high velocity weapons are used, the above mentioned factors should be carefully considered.
Eastes, John W; Mason, George L; Kusinger, Alan E
2004-05-01
Thermal emissivity spectra (8-14 microm) of track impressions/background were determined in conjunction with operation of six military vehicle types, T-72 and M1 Tanks, an M2 Bradley Fighting Vehicle, a 5-ton truck, a D7 tractor, and a High Mobility Multipurpose Wheeled Vehicle (HMMWV), over diverse soil surfaces to determine if vehicle type could be related to track thermal signatures. Results suggest soil compaction and fragmentation/pulverization are primary parameters affecting track signatures and that soil and vehicle/terrain-contact type determine which parameter dominates. Steel-tracked vehicles exert relatively low ground-contact pressure but tend to fragment/pulverize soil more so than do rubber-tired vehicles, which tend mainly to compact. In quartz-rich, lean clay soil tracked vehicles produced impressions with spectral contrast of the quartz reststrahlen features decreased from that of the background. At the same time, 5-ton truck tracks exhibited increased contrast on the same surface, suggesting that steel tracks fragmented soil while rubber tires mainly produced compaction. The structure of materials such as sand and moist clay-rich river sediment makes them less subject to further fragmentation/pulverization; thus, compaction was the main factor affecting signatures in these media, and both tracked and wheeled vehicles created impressions with increased spectral contrast on these surfaces. These results suggest that remotely sensed thermal signatures could differentiate tracked and wheeled vehicles on terrain in many areas of the world of strategic interest. Significant applications include distinguishing visually/spectrally identical lightweight decoys from actual threat vehicles.
NASA Astrophysics Data System (ADS)
Dzene, Liva; Ferrage, Eric; Viennet, Jean-Christophe; Tertre, Emmanuel; Hubert, Fabien
2017-02-01
Radioactive caesium pollution resulting from Fukushima Dai-ichi and Chernobyl nuclear plant accidents involves strong interactions between Cs+ and clays, especially vermiculite-type minerals. In acidic soil environments, such as in Fukushima area, vermiculite is subjected to weathering processes, resulting in aluminization. The crystal structure of aluminized clays and its implications for Cs+ mobility in soils remain poorly understood due to the mixture of these minerals with other clays and organic matter. We performed acidic weathering of a vermiculite to mimic the aluminization process in soils. Combination of structure analysis and Cs+ extractability measurements show that the increase of aluminization is accompanied by an increase in Cs+ mobility. Crystal structure model for aluminized vermiculite is based on the interstratification of unaltered vermiculite layers and aluminized layers within the same particle. Cs+ in vermiculite layers is poorly mobile, while the extractability of Cs+ is greatly enhanced in aluminized layers. The overall reactivity of the weathered clay (cation exchange capacity, Cs+ mobility) is then governed by the relative abundance of the two types of layers. The proposed layer model for aluminized vermiculite with two coexisting populations of caesium is of prime importance for predicting the fate of caesium in contaminated soil environments.
Spatial modeling of biological soil crusts to support rangeland assessment and monitoring
Bowker, M.A.; Belnap, J.; Miller, M.E.
2006-01-01
Biological soil crusts are a diverse soil surface community, prevalent in semiarid regions, which function as ecosystem engineers and perform numerous important ecosystem services. Loss of crusts has been implicated as a factor leading to accelerated soil erosion and other forms of land degradation. To support assessment and monitoring efforts aimed at ensuring the sustainability of rangeland ecosystems, managers require spatially explicit information concerning potential cover and composition of biological soil crusts. We sampled low disturbance sites in Grand Staircase-Escalante National Monument (Utah, USA) to determine the feasibility of modeling the potential cover and composition of biological soil crusts in a large area. We used classification and regression trees to model cover of four crust types (light cyanobacterial, dark cyanobacterial, moss, lichen) and 1 cyanobacterial biomass proxy (chlorophyll a), based upon a parsimonious set of GIS (Geographic Information Systems) data layers (soil types, precipitation, and elevation). Soil type was consistently the best predictor, although elevation and precipitation were both invoked in the various models. Predicted and observed values for the dark cyanobacterial, moss, and lichen models corresponded moderately well (R 2 = 0.49, 0.64, 0.55, respectively). Cover of late successional crust elements (moss + lichen + dark cyanobacterial) was also successfully modeled (R2 = 0.64). We were less successful with models of light cyanobacterial cover (R2 = 0.22) and chlorophyll a (R2 = 0.09). We believe that our difficulty modeling chlorophyll a concentration is related to a severe drought and subsequent cyanobacterial mortality during the course of the study. These models provide the necessary reference conditions to facilitate the comparison between the actual cover and composition of biological soil crusts at a given site and their potential cover and composition condition so that sites in poor condition can be identified and management actions can be taken.
Pyrosequencing reveals bacteria carried in different wind-eroded sediments.
Gardner, Terrence; Acosta-Martinez, Veronica; Calderón, Francisco J; Zobeck, Ted M; Baddock, Matthew; Van Pelt, R Scott; Senwo, Zachary; Dowd, Scot; Cox, Stephen
2012-01-01
Little is known about the microbial communities carried in wind-eroded sediments from various soil types and land management systems. The novel technique of pyrosequencing promises to expand our understanding of the microbial diversity of soils and eroded sediments because it can sequence 10 to 100 times more DNA fragments than previous techniques, providing enhanced exploration into what microbes are being lost from soil due to wind erosion. Our study evaluated the bacterial diversity of two types of wind-eroded sediments collected from three different organic-rich soils in Michigan using a portable field wind tunnel. The wind-eroded sediments evaluated were a coarse sized fraction with 66% of particles >106 μm (coarse eroded sediment) and a finer eroded sediment with 72% of particles <106 μm. Our findings suggested that (i) bacteria carried in the coarser sediment and fine dust were effective fingerprints of the source soil, although their distribution may vary depending on the soil characteristics because certain bacteria may be more protected in soil surfaces than others; (ii) coarser wind-eroded sediment showed higher bacterial diversity than fine dust in two of the three soils evaluated; and (iii) certain bacteria were more predominant in fine dust (, , and ) than coarse sediment ( and ), revealing different locations and niches of bacteria in soil, which, depending on wind erosion processes, can have important implications on the soil sustainability and functioning. Infrared spectroscopy showed that wind erosion preferentially removes particular kinds of C from the soil that are lost via fine dust. Our study shows that eroded sediments remove the active labile organic soil particulates containing key microorganisms involved in soil biogeochemical processes, which can have a negative impact on the quality and functioning of the source soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Soil tension mediates isotope fractionation during soil water evaporation
NASA Astrophysics Data System (ADS)
Gaj, Marcel; McDonnell, Jeffrey
2017-04-01
Isotope tracing of the water cycle is increasing in its use and usefulness. Many new studies are extracting soil waters and relating these to streamflow, groundwater recharge and plant transpiration. Nevertheless, unlike isotope fractionation factors from open water bodies, soil water fractionation factors are poorly understood and until now, only empirically derived. In contrast to open water evaporation where temperature, humidity and vapor pressure gradient define fractionation (as codified in the well-known Craig and Gordon model), soil water evaporation includes additionally, fractionation by matrix effects. There is yet no physical explanation of kinetic and equilibrium fraction from soil water within the soil profile. Here we present a simple laboratory experiment with four admixtures of soil grain size (from sand to silt to clay). Oven-dried samples were spiked with water of known isotopic composition at different soil water contents. Soils were then stored in sealed bags and the headspace filled with dry air and allowed to equilibrate for 24hours. Isotopic analysis of the headspace vapor was done with a Los Gatos Inc. water vapor isotope analyzer. Soil water potential of subsamples were measured with a water potential meter. We show for the first time that soil tension controls isotope fractionation in the resident soil water. Below a Pf 3.5 the δ-values of 18O and 2H of the headspace vapor is more positive and increases with increasing soil water potential. Surprisingly, we find that the relationship between soil tension and equilibrium fractionation is independent of soil type. However, δ-values of each soil type plot along a distinct evaporation line. These results indicate that equilibrium fractionation is affected by soil tension in addition to temperature. Therefore, at high soil water tension (under dry conditions) equilibrium fractionation is not consistent with current empirical formulations that ignore these effects. These findings may have implications for plant water uptake studies since plant root water uptake imparts tension to extract water from the soil matrix. Since this is the same physical force as soil water potential, root water uptake at high soil water potential might cause fractionation of soil water. Our work is ongoing to examine these knock-on effects.
Ash, Christopher; Tejnecký, Václav; Borůvka, Luboš; Drábek, Ondřej
2016-04-01
Low-molecular-mass organic acids (LMMOA) are of key importance for mobilisation and fate of metals in soil, by functioning as ligands that increase the amount of dissolved metal in solution or by dissociation of metal binding minerals. Column leaching experiments were performed on soil polluted with As and Pb, in order to determine the specificity of LMMOA related release for individual elements, at varying organic acid concentrations. Acetic, citric and oxalic acids were applied in 12h leaching experiments over a concentration range (0.5-25 mM) to soil samples that represent organic and mineral horizons. The leaching of As followed the order: oxalic>citric>acetic acid in both soils. Arsenic leaching was attributed primarily to ligand-enhanced dissolution of mineral oxides followed by As released into solution, as shown by significant correlation between oxalic and citric acids and content of Al and Fe in leaching solutions. Results suggest that subsurface mineral soil layers are more vulnerable to As toxicity. Leaching of Pb from both soils followed the order: citric>oxalic>acetic acid. Mineral soil samples were shown to be more susceptible to leaching of Pb than samples characterised by a high content of organic matter. The leaching efficiency of citric acid was attributed to formation of stable complexes with Pb ions, which other acids are not capable of. Results obtained in the study are evidence that the extent of As and Pb leaching in contaminated surface and subsurface soil depends significantly on the types of carboxylic acid involved. The implications of the type of acid and the specific element that can be mobilised become increasingly significant where LMMOA concentrations are highest, such as in rhizosphere soil. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ash, Christopher; Tejnecký, Václav; Borůvka, Luboš; Drábek, Ondřej
2016-04-01
Low-molecular-mass organic acids (LMMOA) are of key importance for mobilisation and fate of metals in soil, by functioning as ligands that increase the amount of dissolved metal in solution or by dissociation of metal binding minerals. Column leaching experiments were performed on soil polluted with As and Pb, in order to determine the specificity of LMMOA related release for individual elements, at varying organic acid concentrations. Acetic, citric and oxalic acids were applied in 12 h leaching experiments over a concentration range (0.5-25 mM) to soil samples that represent organic and mineral horizons. The leaching of As followed the order: oxalic > citric > acetic acid in both soils. Arsenic leaching was attributed primarily to ligand-enhanced dissolution of mineral oxides followed by As released into solution, as shown by significant correlation between oxalic and citric acids and content of Al and Fe in leaching solutions. Results suggest that subsurface mineral soil layers are more vulnerable to As toxicity. Leaching of Pb from both soils followed the order: citric > oxalic > acetic acid. Mineral soil samples were shown to be more susceptible to leaching of Pb than samples characterised by a high content of organic matter. The leaching efficiency of citric acid was attributed to formation of stable complexes with Pb ions, which other acids are not capable of. Results obtained in the study are evidence that the extent of As and Pb leaching in contaminated surface and subsurface soil depends significantly on the types of carboxylic acid involved. The implications of the type of acid and the specific element that can be mobilised become increasingly significant where LMMOA concentrations are highest, such as in rhizosphere soil.
NASA Astrophysics Data System (ADS)
Stutter, M. I.; Alam, M. S.; Langan, S. J.; Woodin, S. J.; Smart, R. P.; Cresser, M. S.
2004-06-01
An experiment comparing effects of sulphuric acid and reduced N deposition on soil water quality and on chemical and physical growth indicators for forest ecosystems is described. Six H2SO4 and (NH4)2SO4 treatment loads, from 0 - 44 and 0 - 25 kmolc ha-1 yr-1, respectively, were applied to outdoor microcosms of Pinus sylvestris seedlings in 3 acid to intermediate upland soils (calc-silicate, quartzite and granite) for 2 years. Different soil types responded similarly to H2SO4 loads, resulting in decreased leachate pH, but differently to reduced N inputs. In microcosms of calc-silicate soil, nitrification of NH4 resulted in lower pH and higher cation leaching than in acid treatments. By contrast, in quartzite and granite soils, (NH4)2SO4 promoted direct cation leaching, although leachate pH increased. The results highlighted the importance of soil composition on the nature of the cations leached, the SO4 adsorption capacities and microbial N transformations. Greater seedling growth on calc-silicate soils under both treatment types was related to sustained nutrient availability. Reductions in foliar P and Mg with higher N treatments were observed for seedlings in the calc-silicate soil. There were few treatment effects on quartzite and granite microcosm tree seedlings since P limitation precluded seedling growth responses to treatments. Hence, any benefits of N deposition to seedlings on quartzite and granite soils appeared limited by availability of co-nutrients, exacerbated by rapid depletion of soil exchangeable base cations.
Geophagy in Northern Uganda: Perspectives from Consumers and Clinicians
Huebl, Lena; Leick, Stephan; Guettl, Lukas; Akello, Grace; Kutalek, Ruth
2016-01-01
The etiology and health consequences of geophagy are still poorly understood. The consumed soil, individual motives, consumption habits, and the clinical perspective of geophagy in northern Uganda were examined. A total of 50 semistructured interviews (17 pregnant, eight nonpregnant women, 10 men, and 15 health-care professionals) were conducted. Our results suggest that geophagy is not limited to pregnancy and can also be found among nonpregnant women and men. During gestation, excessive amounts of various soil types are consumed and can replace food at times. Nonpregnant women and men consume less soil and stick to one type. When pregnant, craving and alleviating gastrointestinal upset are the main motives. In men, the main reasons for geophagy were craving, hypersalivation, and natural stimulants. If soil is craved, it can show similarities to a dependency syndrome. When picked up in childhood, geophagy is more likely to be continued throughout life. The consumption habits differ and thereby vary in their possible implications on health. Our findings suggest that men should be included in further studies. Especially nurses from the antenatal care are exposed to geophagists; however, no national guidelines exist for geophagy. Further research is necessary to create guidelines to be included in medical training and practice. PMID:27698274
Marion, J.L.; Cole, D.N.
1996-01-01
We studied the impacts of camping on soil and vegetation at Delaware Water Gap National Recreation Area. We assessed the magnitude of impact on campsites that varied in amount of use and in topographic position. We also evaluated change over a 5-yr period on long-established, recently opened, and recently closed campsites, as well as on plots subjected to experimental trampling. Campsite impacts were intense and spatially variable. Amount of use and topographic position explained some of this variation. Soil and vegetation conditions changed rapidly when campsites were initially opened to use and when they were closed to use. Changes were less pronounced on the long-established campsites that remained open to use. In the trampling experiments, impact varied greatly with trampling intensity and between vegetation types. An open-canopy grassland vegetation type was much more resistant to trampling than a forb-dominated forest vegetation type. Campsite impacts increased rapidly with initial disturbance, stabilized with ongoing disturbance, and-in contrast to what has been found in most other studies-decreased rapidly once disturbance was terminated. Implications of these results for campsite management strategies, such as use concentration or dispersal, and rotation or closure of campsites, are discussed.
Cable, J.M.; Ogle, K.; Williams, D.G.; Weltzin, J.F.; Huxman, T. E.
2008-01-01
Climate change predictions for the desert southwestern U.S. are for shifts in precipitation patterns. The impacts of climate change may be significant, because desert soil processes are strongly controlled by precipitation inputs ('pulses') via their effect on soil water availability. This study examined the response of soil respiration-an important biological process that affects soil carbon (C) storage-to variation in pulses representative of climate change scenarios for the Sonoran Desert. Because deserts are mosaics of different plant cover types and soil textures-which create patchiness in soil respiration-we examined how these landscape characteristics interact to affect the response of soil respiration to pulses. Pulses were applied to experimental plots of bare and vegetated soil on contrasting soil textures typical of Sonoran Desert grasslands. The data were analyzed within a Bayesian framework to: (1) determine pulse size and antecedent moisture (soil moisture prior to the pulse) effects on soil respiration, (2) quantify soil texture (coarse vs. fine) and cover type (bare vs. vegetated) effects on the response of soil respiration and its components (plant vs. microbial) to pulses, and (3) explore the relationship between long-term variation in pulse regimes and seasonal soil respiration. Regarding objective (1), larger pulses resulted in higher respiration rates, particularly from vegetated fine-textured soil, and dry antecedent conditions amplified respiration responses to pulses (wet antecedent conditions dampened the pulse response). Regarding (2), autotrophic (plant) activity was a significant source (???60%) of respiration and was more sensitive to pulses on coarse- versus fine-textured soils. The sensitivity of heterotrophic (microbial) respiration to pulses was highly dependent on antecedent soil water. Regarding (3), seasonal soil respiration was predicted to increase with both growing season precipitation and mean pulse size (but only for pulses between 7 and 25 mm). Thus, the heterogeneity of the desert landscape and the timing or the number of medium-sized pulses is expected to significantly impact desert soil C loss with climate change. ?? 2008 Springer Science+Business Media, LLC.
van Heijnsbergen, E.; van Deursen, A.; Bouwknegt, M.; Bruin, J. P.; Schalk, J. A. C.
2016-01-01
ABSTRACT Garden soils were investigated as reservoirs and potential sources of pathogenic Legionella bacteria. Legionella bacteria were detected in 22 of 177 garden soil samples (12%) by amoebal coculture. Of these 22 Legionella-positive soil samples, seven contained Legionella pneumophila. Several other species were found, including the pathogenic Legionella longbeachae (4 gardens) and Legionella sainthelensi (9 gardens). The L. pneumophila isolates comprised 15 different sequence types (STs), and eight of these STs were previously isolated from patients according to the European Working Group for Legionella Infections (EWGLI) database. Six gardens that were found to be positive for L. pneumophila were resampled after several months, and in three gardens, L. pneumophila was again isolated. One of these gardens was resampled four times throughout the year and was found to be positive for L. pneumophila on all occasions. IMPORTANCE Tracking the source of infection for sporadic cases of Legionnaires' disease (LD) has proven to be hard. L. pneumophila ST47, the sequence type that is most frequently isolated from LD patients in the Netherlands, is rarely found in potential environmental sources. As L. pneumophila ST47 was previously isolated from a garden soil sample during an outbreak investigation, garden soils were investigated as reservoirs and potential sources of pathogenic Legionella bacteria. The detection of viable, clinically relevant Legionella strains indicates that garden soil is a potential source of Legionella bacteria, and future research should assess the public health implication of the presence of L. pneumophila in garden soil. PMID:27316958
van Heijnsbergen, E; van Deursen, A; Bouwknegt, M; Bruin, J P; de Roda Husman, A M; Schalk, J A C
2016-09-01
Garden soils were investigated as reservoirs and potential sources of pathogenic Legionella bacteria. Legionella bacteria were detected in 22 of 177 garden soil samples (12%) by amoebal coculture. Of these 22 Legionella-positive soil samples, seven contained Legionella pneumophila Several other species were found, including the pathogenic Legionella longbeachae (4 gardens) and Legionella sainthelensi (9 gardens). The L. pneumophila isolates comprised 15 different sequence types (STs), and eight of these STs were previously isolated from patients according to the European Working Group for Legionella Infections (EWGLI) database. Six gardens that were found to be positive for L. pneumophila were resampled after several months, and in three gardens, L. pneumophila was again isolated. One of these gardens was resampled four times throughout the year and was found to be positive for L. pneumophila on all occasions. Tracking the source of infection for sporadic cases of Legionnaires' disease (LD) has proven to be hard. L. pneumophila ST47, the sequence type that is most frequently isolated from LD patients in the Netherlands, is rarely found in potential environmental sources. As L. pneumophila ST47 was previously isolated from a garden soil sample during an outbreak investigation, garden soils were investigated as reservoirs and potential sources of pathogenic Legionella bacteria. The detection of viable, clinically relevant Legionella strains indicates that garden soil is a potential source of Legionella bacteria, and future research should assess the public health implication of the presence of L. pneumophila in garden soil. Copyright © 2016 van Heijnsbergen et al.
Managing ecotourism visitation in protected areas
Marion, J.L.; Farrell, T.A.; Lindberg, Kreg; Wood, Megan Epler; Engeldrum, David
1998-01-01
Ecotourism management seeks to integrate and balance several potentially conflicting objectives: protection of natural and cultural resources, provision of recreation opportunities and generation of economic benefits. In the absence of effective planning and management, ecotourism can lead to significant negative impacts on vegetation, soil, water, wildlife, historic resources, cultures, and visitor experiences. This chapter reviews visitor-related natural resource and experience impacts associated with ecotourism within protected areas. The influence of factors that control the nature and extent of impacts are also reviewed, including type and amount of use, the variable resistance and resilience of environmental attributes such as vegetation and soil types, and the role of management in shaping visitation, resources and facilities to support visitation while minimizing associated impacts. Implications for managing the effects of protected area visitation are highlighted, including carrying capacity decision frameworks and selecting management strategies and tactics.
An investigation into the reactions of biochar in soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, Stephen; Camps-Arbestain, Marta; Lin, Yun
2010-10-12
Interactions between biochar, soil, microbes and plant roots may occur within a short period of time after application to the soil. The extent, rates and implications of these interactions, however, are far from being understood. This review includes a description of the properties of biochars and suggests possible reactions that may occur after the addition of biochars to soil. These include dissolution-precipitation, adsorption-desorption, acid-base and redox reactions. Special attention is given to reactions occurring within pores, and to interactions with roots, microorganisms and soil fauna. The examination of biochars (from chicken litter, greenwaste and paper mill sludges) weathered for onemore » and two years in an Australian Ferrosol provides evidence for some of the mechanisms described in this review and offers an insight to reactions at a molecular scale. These interactions are biochar- and site-specific. Therefore, suitable experimental trials combining biochar types and different pedoclimatic conditions are needed to determine the extent to which these reactions influence the potential of biochar as a soil amendment and C-sequestration tool.« less
Xun, Erna; Zhang, Yanwen; Zhao, Jimin; Guo, Jixun
2017-11-01
Metals and metalloids in soil could be transferred into reproductive organs and floral rewards of hyperaccumulator plants and influence their reproductive success, yet little is known whether non-hyperaccumulator plants can translocate heavy metals from soil into their floral organs and rewards (i.e., nectar and pollen) and, if so, whether plant reproduction will be affected. In our studies, summer squash (Cucurbita pepo L. cv. Golden Apple) was exposed to heavy-metal treatments during bud stage to investigate the translocation of soil-supplemented zinc, copper, nickel and lead into its floral organs (pistil, anther and nectary) and rewards (nectar and pollen) as well as floral metal accumulation effects on its reproduction. The results showed that metals taken up by squash did translocate into its floral organs and rewards, although metal accumulation varied depending on different metal types and concentrations as well as floral organ/reward types. Mean foraging time of honey bees to each male and female flower of squash grown in metal-supplemented soils was shorter relative to that of plants grown in control soils, although the visitation rate of honeybees to both male and female flowers was not affected by metal treatments. Pollen viability, pollen removal and deposition as well as mean mass per seed produced by metal-treated squash that received pollen from plants grown in control soils decreased with elevated soil-supplemented metal concentrations. The fact that squash could translocate soil-supplemented heavy metals into floral organs and rewards indicated possible reproductive consequences caused either directly (i.e., decreasing pollen viability or seed mass) or indirectly (i.e., affecting pollinators' visitation behavior to flowers) to plant fitness. Copyright © 2017 Elsevier Inc. All rights reserved.
The weathering and transformation process of lead in China's shooting ranges.
Li, Yeling; Zhu, Yongbing; Zhao, Sanping; Liu, Xiaodong
2015-09-01
Corroding steel-core bullets from three shooting ranges in different climate zones of China were collected. Multiple technical methods (EMPA, SEM, XRD, and ICP-OES) were applied to investigate the structure, morphology, and weathering product of this type of bullet in China to analyze the weathering mechanisms in different types of soils. A scanning electron microscope (SEM) was used to view the morphology and microstructure of corrosion layers. On the corroded lead layer surface, unevenness, micro cracks, and spallation were usually present. Around the micro cracks, many types of euhedral and subhedral crystals of the secondary products of lead were formed, most of which were composed of cerussite (PbCO3), while hydrocerussite (Pb3(CO3)2(OH)2) was predominant in the bullet collected from the humid environment. X-ray power diffraction (XRD) results show that the secondary weathering products in the three shooting range soils are clearly different. In the Fangyan shooting range, which has a neutral and semi-arid soil, the lead weathering product was mainly hydrocerussite (Pb3(CO3)2(OH)2), while no substantial amount of crystal phase of lead compound could be found in acidic, damp soils from the Fenghuang shooting range, possibly due to the enhanced dissolution and mobilization of lead compounds at lower pH and higher content of organic matter in the soil. In hot and arid environment of the Baicheng shooting range, cerussite might have undergone thermal decomposition, thus generating shannonite (Pb2O(CO3)). These results indicate that the formation of secondary Pb minerals is largely affected by the climatic zone or the soil properties, which may have implications for range management practices.
Davie-Martin, Cleo L; Stratton, Kelly G; Teeguarden, Justin G; Waters, Katrina M; Simonich, Staci L Massey
2017-09-05
Bioremediation uses soil microorganisms to degrade polycyclic aromatic hydrocarbons (PAHs) into less toxic compounds and can be performed in situ, without the need for expensive infrastructure or amendments. This review provides insights into the cancer risks associated with PAH-contaminated soils and places bioremediation outcomes in a context relevant to human health. We evaluated which bioremediation strategies were most effective for degrading PAHs and estimated the cancer risks associated with PAH-contaminated soils. Cancer risk was statistically reduced in 89% of treated soils following bioremediation, with a mean degradation of 44% across the B2 group PAHs. However, all 180 treated soils had postbioremediation cancer risk values that exceeded the U.S. Environmental Protection Agency (USEPA) health-based acceptable risk level (by at least a factor of 2), with 32% of treated soils exceeding recommended levels by greater than 2 orders of magnitude. Composting treatments were most effective at biodegrading PAHs in soils (70% average reduction compared with 28-53% for the other treatment types), which was likely due to the combined influence of the rich source of nutrients and microflora introduced with organic compost amendments. Ultimately, bioremediation strategies, in the studies reviewed, were unable to successfully remove carcinogenic PAHs from contaminated soils to concentrations below the target cancer risk levels recommended by the USEPA.
NASA Astrophysics Data System (ADS)
Bouda, M.
2017-12-01
Root system architecture (RSA) can significantly affect plant access to water, total transpiration, as well as its partitioning by soil depth, with implications for surface heat, water, and carbon budgets. Despite recent advances in land surface model (LSM) descriptions of plant hydraulics, RSA has not been included because of its three-dimensional complexity, which makes RSA modelling generally too computationally costly. This work builds upon the recently introduced "RSA stencil," a process-based 1D layered model that captures the dynamic shifts in water potential gradients of 3D RSA in response to heterogeneous soil moisture profiles. In validations using root systems calibrated to the rooting profiles of four plant functional types (PFT) of the Community Land Model, the RSA stencil predicts plant water potentials within 2% of the outputs of full 3D models, despite its trivial computational cost. In transient simulations, the RSA stencil yields improved predictions of water uptake and soil moisture profiles compared to a 1D model based on root fraction alone. Here I show how the RSA stencil can be calibrated to time-series observations of soil moisture and transpiration to yield a water uptake PFT definition for use in terrestrial models. This model-data integration exercise aims to improve LSM predictions of soil moisture dynamics and, under water-limiting conditions, surface fluxes. These improvements can be expected to significantly impact predictions of downstream variables, including surface fluxes, climate-vegetation feedbacks and soil nutrient cycling.
NASA Astrophysics Data System (ADS)
Trautz, A.; Smits, K. M.; Illangasekare, T. H.; Schulte, P.
2014-12-01
The purpose of this study is to investigate the impacts of soil conditions (i.e. soil type, saturation) and atmospheric forcings (i.e. velocity, temperature, relative humidity) on the momentum, mass, and temperature boundary layers. The atmospheric conditions tested represent those typically found in semi-arid and arid climates and the soil conditions simulate the three stages of evaporation. The data generated will help identify the importance of different soil conditions and atmospheric forcings with respect to land-atmospheric interactions which will have direct implications on future numerical studies investigating the effects of turbulent air flow on evaporation. The experimental datasets generated for this study were performed using a unique climate controlled closed-circuit wind tunnel/porous media facility located at the Center for Experimental Study of Subsurface Environmental Processes (CESEP) at the Colorado School of Mines. The test apparatus consisting of a 7.3 m long porous media tank and wind tunnel, were outfitted with a sensor network to carefully measure wind velocity, air and soil temperature, relative humidity, soil moisture, and soil air pressure. Boundary layer measurements were made between the heights of 2 and 500 mm above the soil tank under constant conditions (i.e. wind velocity, temperature, relative humidity). The soil conditions (e.g. soil type, soil moisture) were varied between datasets to analyze their impact on the boundary layers. Experimental results show that the momentum boundary layer is very sensitive to the applied atmospheric conditions and soil conditions to a much less extent. Increases in velocity above porous media leads to momentum boundary layer thinning and closely reflect classical flat plate theory. The mass and thermal boundary layers are directly dependent on both atmospheric and soil conditions. Air pressure within the soil is independent of atmospheric temperature and relative humidity - wind velocity and soil moisture effects were observed. This data provides important insight into future work of accurately modeling the exchange processes associated with evaporation under various turbulent atmospheric conditions.
The Longterm Effects of Climate Change in European Shrubland Ecosystems
NASA Astrophysics Data System (ADS)
Emmett, B.; Sowerby, A.; Smith, A.; EU Increase-infrastructure Project Team
2011-12-01
Shrublands constitute significant and important parts of European landscapes providing a large number of important ecosystem services. Biogeochemical cycles in these ecosystems have gained little attention relative to forests and grassland systems. As climate change progresses the potential feedback from the biosphere to the atmosphere through changes in above and below-ground structure and functioning will become increasingly important. A series of replicate long term climate change experiments have been running for ca. 10 years in contrasting shrubland types across Europe to quantify; (a) the potential changes in carbon sequestration, GHG emissions and nutrient cycling, (b) the links to above and below-ground biodiversity, and (c) implications for water quality, in response to warming and repeated summer drought. Results indicate a relatively high rate of below-ground carbon allocation compared to forest systems and the importance of modifying factors such as past and current management, atmospheric deposition and soil type in determining resilience to change. Unexpectedly, sustained reduction in soil moisture over winter (between drought periods and despite major winter rainfall) was observed in the repeated summer drought treatment, along with a reduction in the maximum water-holding capacity attained. The persistent reduction in soil moisture throughout the year resulted in a year-round increase in soil respiration flux, a response that accelerated over time to 40% above control levels in the hydric, organic-rich UK system. As above-ground biomass, litter production and diversity was remarkably stable, changes in soil fungal communities and soil physical structure appear to be critical in driving changes in soil carbon fluxes in this organic-rich site. Current ecosystem models may under-estimate potential changes in carbon loss in response to climate change if changes in soil biological and physical properties are not included.
Determinants of arbuscular mycorrhizal communities - soil properties or land use?
NASA Astrophysics Data System (ADS)
Jansa, J.; Erb, A.; Oberholzer, H.-R.; Šmilauer, P.; Egli, S.
2012-04-01
Arbuscular mycorrhizal (AM) fungi accompanied terrestrial plants since some 500 million years of their evolution and are now widespread in all continents and virtually all soils of the world. They establish symbiotic interactions with a majority of extant higher plant species including most economically important plants. They are heavily implicated in plant nutrition, plant-soil carbon cycling, and tolerance to environmental stresses. Under field conditions, AM fungi usually form multispecies communities both in the soils and in plant roots, and it is becoming well established that various human interventions like cropping, crop rotation, tillage, and fertilization may all drive changes in the community composition of these fungi and, consequently, in the symbiotic benefits to the plants. Most of current evidence is stemming from individual short and long-term field trials, and the different studies usually employed diverse approaches, limiting the comparability of results across sites. Large scale sampling designs using unified research methods across different soil types and land use systems have hardly been employed so far. However, this would be imperative to allow direct comparisons of the effects of various environmental conditions (soil type, climate) and human land use practices on the indigenous soil-borne symbiotic microbes in general and the AM fungi in particular. To contribute to filling this gap, we conducted molecular profiling of AM communities in more than 150 Swiss agricultural soils, developed on a range of parent materials, covering a wide range of soil properties such as pH value, texture, carbon content and altitude, and including highly productive fields through alpine pastures. This study indicated strong correlations between AM fungal community patterns and features like soil pH and texture, as well as some consistent shifts in fungal communities due to specific aspects of land use like tillage or fertilization. These results thus appear to be of paramount importance for defining broadly valid thresholds in using AM communities as universal soil quality indicators. Expanding the current efforts on a global scale will be discussed.
Phenylurea herbicide sorption to biochars and agricultural soil
WANG, DAOYUAN; MUKOME, FUNGAI N. D.; YAN, DENGHUA; WANG, HAO; SCOW, KATE M.; PARIKH, SANJAI J.
2016-01-01
Biochar is increasingly been used as a soil amendment to improve water holding capacity, reduce nutrient leaching, increase soil pH and also as a means to reduce contamination through sorption of heavy metals or organic pollutants. The sorption behavior of three phenylurea herbicides (monuron, diuron, linuron) on five biochars (Enhanced Biochar, Hog Waste, Turkey Litter, Walnut Shell and Wood Feedstock) and an agricultural soil (Yolo silt loam) was investigated using a batch equilibration method. Sorption isotherms of herbicides to biochars were well described by the Freundlich model (R2 = 0.93 -- 0.97). The adsorption KF values ranged from 6.94 to 1306.95 mg kg−1 and indicated the sorption of herbicides in the biochars and Yolo soil was in the sequence of linuron > diuron > monuron and walnut shell biochar > wood feedstock biochar > turkey litter biochar > enhanced biochar > hog waste biochar > Yolo soil. These data show that sorption of herbicides to biochar can have both positive (reduced off-site transport) and negative (reduced herbicide efficacy) implications and specific biochar properties, such as H/C ratio and surface area, should be considered together with soil type, agriculture chemical and climate condition in biochar application to agricultural soil to optimize the system for both agricultural and environmental benefits. PMID:26065514
Bonnett, S A F; Blackwell, M S A; Leah, R; Cook, V; O'Connor, M; Maltby, E
2013-05-01
Soils are predicted to exhibit significant feedback to global warming via the temperature response of greenhouse gas (GHG) production. However, the temperature response of hydromorphic wetland soils is complicated by confounding factors such as oxygen (O2 ), nitrate (NO3-) and soil carbon (C). We examined the effect of a temperature gradient (2-25 °C) on denitrification rates and net nitrous oxide (N2 O), methane (CH4 ) production and heterotrophic respiration in mineral (Eutric cambisol and Fluvisol) and organic (Histosol) soil types in a river marginal landscape of the Tamar catchment, Devon, UK, under non-flooded and flooded with enriched NO3- conditions. It was hypothesized that the temperature response is dependent on interactions with NO3--enriched flooding, and the physicochemical conditions of these soil types. Denitrification rate (mean, 746 ± 97.3 μg m(-2) h(-1) ), net N2 O production (mean, 180 ± 26.6 μg m(-2) h(-1) ) and net CH4 production (mean, 1065 ± 183 μg m(-2) h(-1) ) were highest in the organic Histosol, with higher organic matter, ammonium and moisture, and lower NO3- concentrations. Heterotrophic respiration (mean, 127 ± 4.6 mg m(-2) h(-1) ) was not significantly different between soil types and dominated total GHG (CO2 eq) production in all soil types. Generally, the temperature responses of denitrification rate and net N2 O production were exponential, whilst net CH4 production was unresponsive, possibly due to substrate limitation, and heterotrophic respiration was exponential but limited in summer at higher temperatures. Flooding with NO3- increased denitrification rate, net N2 O production and heterotrophic respiration, but a reduction in net CH4 production suggests inhibition of methanogenesis by NO3- or N2 O produced from denitrification. Implications for management and policy are that warming and flood events may promote microbial interactions in soil between distinct microbial communities and increase denitrification of excess NO3- with N2 O production contributing to no more than 50% of increases in total GHG production. © 2013 Blackwell Publishing Ltd.
Fernández-Calviño, David; Bermúdez-Couso, Alipio; Arias-Estévez, Manuel; Nóvoa-Muñoz, Juan Carlos; Fernández-Sanjurjo, Maria J; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino
2015-01-01
The purpose of this work was to quantify retention/release of tetracycline, oxytetracycline, and chlortetracycline on two soils, paying attention to sorption kinetics and to implications of the adsorption/desorption processes on transfer of these pollutants to the various environmental compartments. We used the stirred flow chamber (SFC) procedure to achieve this goal. All three antibiotics showed high affinity for both soils, with greater adsorption intensity for soil 1, the one with the highest organic matter and Al and Fe oxides contents. Desorption was always <15%, exhibiting strong hysteresis in the adsorption/desorption processes. Adsorption was adequately modeled using a pseudo first-order equation with just one type of adsorption sites, whereas desorption was better adjusted considering both fast and slow sorption sites. The adsorption maximum (qmax) followed the sequence tetracycline > oxytetracycline > chlortetracycline in soil 1, with similar values for the three antibiotics and the sequence tetracycline > chlortetracycline > oxytetracycline in soil 2. The desorption sequences were oxytetracycline > tetracycline > chlortetracycline in soil 1 and oxytetracycline > chlortetracycline > tetracycline in soil 2. In conclusion, the SFC technique has yielded new kinetic data regarding tetracycline, oxytetracycline, and chlortetracycline adsorption/desorption on soils, indicating that it can be used to shed further light on the retention and transport processes affecting antibiotics on soils and other media, thus increasing knowledge on the behavior and evolution of these pharmaceutical residues in the environment.
Modern warfare as a significant form of zoogeomorphic disturbance upon the landscape
NASA Astrophysics Data System (ADS)
Hupy, Joseph P.; Koehler, Thomas
2012-07-01
The damage exerted by warfare on the physical landscape is one, of many, anthropogenic impacts upon the environment. Bombturbation is a term that describes the impacts of explosive munitions upon the landscape. Bombturbation, like many other forms of zoogeomorphology, is a disruptive force, capable of moving large amounts of sediments, and denuding landscapes to the point where changes in micro and mesotopography have long-term implications. The long term implication of bombturbative actions depends on the type and duration of explosive device that rendered the disturbance, and the geographic context of the landscape disturbed; i.e. cultural and physical factors. Recovery from bombturbative activity, in the context of this research, is measured by vegetative regrowth and soil development in cratered disturbances. A comparison and contrast between the two battlefields of Verdun, France and Khe Sanh, Vietnam show that bombturbative actions have significantly altered the topography at each location, thus influencing surface runoff and processes of soil development. Principals of the Runge pedogenic model, or the energy of water moving through the soil profile, best explain how the varying climate and parent material at each location influence post disturbance soil development rates. Whereas the data collected at Verdun suggest that explosive munitions have put that landscape on diverging path of development, thus rendering it much different post-disturbance landscape, Khe Sanh displays much different recovery patterns. Preliminary research at Khe Sanh indicates that reforestation and soil development following disturbance are not so much influenced by bombturbative patterns as land use activities in the area of study.
NASA Astrophysics Data System (ADS)
Dick, Jonathan; Tetzlaff, Doerthe; Bradford, John; Soulsby, Chris
2018-04-01
As the relationship between vegetation and soil moisture is complex and reciprocal, there is a need to understand how spatial patterns in soil moisture influence the distribution of vegetation, and how the structure of vegetation canopies and root networks regulates the partitioning of precipitation. Spatial patterns of soil moisture are often difficult to visualise as usually, soil moisture is measured at point scales, and often difficult to extrapolate. Here, we address the difficulties in collecting large amounts of spatial soil moisture data through a study combining plot- and transect-scale electrical resistivity tomography (ERT) surveys to estimate soil moisture in a 3.2 km2 upland catchment in the Scottish Highlands. The aim was to assess the spatio-temporal variability in soil moisture under Scots pine forest (Pinus sylvestris) and heather moorland shrubs (Calluna vulgaris); the two dominant vegetation types in the Scottish Highlands. The study focussed on one year of fortnightly ERT surveys. The surveyed resistivity data was inverted and Archie's law was used to calculate volumetric soil moisture by estimating parameters and comparing against field measured data. Results showed that spatial soil moisture patterns were more heterogeneous in the forest site, as were patterns of wetting and drying, which can be linked to vegetation distribution and canopy structure. The heather site showed a less heterogeneous response to wetting and drying, reflecting the more uniform vegetation cover of the shrubs. Comparing soil moisture temporal variability during growing and non-growing seasons revealed further contrasts: under the heather there was little change in soil moisture during the growing season. Greatest changes in the forest were in areas where the trees were concentrated reflecting water uptake and canopy partitioning. Such differences have implications for climate and land use changes; increased forest cover can lead to greater spatial variability, greater growing season temporal variability, and reduced levels of soil moisture, whilst projected decreasing summer precipitation may alter the feedbacks between soil moisture and vegetation water use and increase growing season soil moisture deficits.
Flockhart, D T Tyler; Kyser, T Kurt; Chipley, Don; Miller, Nathan G; Norris, D Ryan
2015-01-01
Strontium isotopes ((87)Sr/(86)Sr) can be useful biological markers for a wide range of forensic science applications, including wildlife tracking. However, one of the main advantages of using (87)Sr/(86)Sr values, that there is no fractionation from geological bedrock sources through the food web, also happens to be a critical assumption that has never been tested experimentally. We test this assumption by measuring (87)Sr/(86)Sr values across three trophic levels in a controlled greenhouse experiment. Adult monarch butterflies were raised on obligate larval host milkweed plants that were, in turn, grown on seven different soil types collected across Canada. We found no significant differences between (87)Sr/(86)Sr values in leachable Sr from soil minerals, organic soil, milkweed leaves, and monarch butterfly wings. Our results suggest that strontium isoscapes developed from (87)Sr/(86)Sr values in bedrock or soil may serve as a reliable biological marker in forensic science for a range of taxa and across large geographic areas.
Yi, S.; Manies, K.; Harden, J.; McGuire, A.D.
2009-01-01
Soil organic layers (OL) play an important role in landatmosphere exchanges of water, energy and carbon in cold environments. The proper implementation of OL in land surface and ecosystem models is important for predicting dynamic responses to climate warming. Based on the analysis of OL samples of black spruce (Picea mariana), we recommend that implementation of OL for cold regions modeling: (1) use three general organic horizon types (live, fibrous, and amorphous) to represent vertical soil heterogeneity; (2) implement dynamics of OL over the course of disturbance, as there are significant differences of OL thickness between young and mature stands; and (3) use two broad drainage classes to characterize spatial heterogeneity, as there are significant differences in OL thickness between dry and wet sites. Implementation of these suggestions into models has the potential to substantially improve how OL dynamics influence variability in surface temperature and soil moisture in cold regions. Copyright 2009 by the American Geophys.ical Union.
The impact of shrubbification on soil organic matter accumulation
NASA Astrophysics Data System (ADS)
Street, L.; Wookey, P. A.; Subke, J. A.; Baxter, R.; Garnett, M.
2017-12-01
The degree to which increasing vegetation productivity in the Arctic can offset permafrost carbon emissions under a warming climate is highly uncertain. Most ecosystem or earth system models predict that plant C inputs to permafrost soils will balance or exceed losses with warming, at least until about mid-century. Observations on the ground however, question whether vegetation change in Arctic ecosystems will result in even a transient net C sink. In the European Arctic, for example, rhizosphere processes associated with ectomycorrhizal (ECM) fungi have been implicated in driving rapid cycling - and thus lower storage - of soil organic C (SOC) under deciduous shrubs. Short-term incubation studies also show that decomposition of SOC can be stimulated or "primed" by new inputs of labile plant C. The implication is that as Arctic vegetation shifts towards a greater abundance of productive, and mostly ECM, deciduous trees and shrubs, net C losses from soils may result. Over decadal timescales however, the impact of changing vegetation and associated rhizosphere processes on C stock trajectories is complex - shifts in productivity and mycorrhizal status will be accompanied by other biological and physical changes that can impact decomposition. Encroachment of shrubs will likely influence both litter quality and quantity, as well as soil temperature and moisture regimes due to altered transpiration rates, shading and snow accumulation. Short-term studies, and those based on instantaneous flux measurements, can provide only limited information as to what the impact of shrubbification on SOC stocks will be. Here we use radiocarbon data, in combination with a vertically-resolved isotopic model, to examine how and why SOC accumulation in tundra soils differs between vegetation types over decades to centuries. We compare soil profiles under ECM birch, N-fixing alder, and ericaceous/lichen heath tundra in the Canadian Arctic. Early model results suggest that under alder, rates of C turnover in surface soils are similar to those in heath tundra without shrubs, and SOC accumulation is primarily driven by differences in productivity. Under birch soils rates of C turnover appear to be faster, if so a shift towards ECM associations could accelerate C losses from Arctic surface soils.
NASA Astrophysics Data System (ADS)
Bouda, Martin; Saiers, James E.
2017-12-01
Root system architecture (RSA) can significantly affect plant access to water, total transpiration, as well as its partitioning by soil depth, with implications for surface heat, water, and carbon budgets. Despite recent advances in land surface model (LSM) descriptions of plant hydraulics, descriptions of RSA have not been included because of their three-dimensional complexity, which makes them generally too computationally costly. Here we demonstrate a new, process-based 1D layered model that captures the dynamic shifts in water potential gradients of 3D RSA under different soil moisture conditions: the RSA stencil. Using root systems calibrated to the rooting profiles of four plant functional types (PFT) of the Community Land Model, we show that the RSA stencil predicts plant water potentials within 2% to the outputs of a full 3D model, under the same assumptions on soil moisture heterogeneity, despite its trivial computational cost, resulting in improved predictions of water uptake and soil moisture compared to a model without RSA in a transient simulation. Our results suggest that LSM predictions of soil moisture dynamics and dependent variables can be improved by the implementation of this model, calibrated for individual PFTs using field observations.
NASA Astrophysics Data System (ADS)
Cabolova, Anastasija
Peatlands cover a total area of approximately 3 million square kilometers and are one of the largest natural sources of atmospheric methane ( CH4) and carbon dioxide (CO 2). Most traditional methods used to estimate biogenic gas dynamics are invasive and provide little or no information about lateral distribution of gas. In contrast, Ground Penetrating Radar (GPR) is an emerging technique for non-invasive investigation of gas dynamics in peat soils. This thesis establishes a direct comparison between gas dynamics (i.e. build-up and release) of four different types of peat soil using GPR. Peat soil blocks were collected at peatlands with contrasting latitudes, including the Everglades, Maine and Minnesota. A unique two-antenna GPR setup was used to monitor biogenic gas buildup and ebullition events over a period of 4.5 months, constraining GPR data with surface deformation measurements and direct CH 4 and CO2 concentration measurements. The effect of atmospheric pressure was also investigated. This study has implications for better understanding global gas dynamics and carbon cycling in peat soils and its role in climate change.
Smidt, Samuel J; Tayyebi, Amin; Kendall, Anthony D; Pijanowski, Bryan C; Hyndman, David W
2018-07-01
Urbanization onto adjacent farmlands directly reduces the agricultural area available to meet the resource needs of a growing society. Soil conservation is a common objective in urban planning, but little focus has been placed on targeting soil value as a metric for conservation. This study assigns commodity and water storage values to the agricultural soils across all of the watersheds in Michigan's Lower Peninsula to evaluate how cities might respond to a soil conservation-based urbanization strategy. Land Transformation Model (LTM) simulations representing both traditional and soil conservation-based urbanization, are used to forecast urban area growth from 2010 to 2050 at five year intervals. The expansion of urban areas onto adjacent farmland is then evaluated to quantify the conservation effects of soil-based development. Results indicate that a soil-based protection strategy significantly conserves total farmland, especially more fertile soils within each soil type. In terms of revenue, ∼$88 million (in current dollars) would be conserved in 2050 using soil-based constraints, with the projected savings from 2011 to 2050 totaling more than $1.5 billion. Soil-based urbanization also increased urban density for each major metropolitan area. For example, there were 94,640 more acres directly adjacent to urban land by 2050 under traditional development compared to the soil-based urbanization strategy, indicating that urban sprawl was more tightly contained when including soil value as a metric to guide development. This study indicates that implementing a soil-based urbanization strategy would better satisfy future agricultural resource needs than traditional urban planning. Copyright © 2018. Published by Elsevier Ltd.
Soil Penetration Rates by Earthworms and Plant Roots- Mechanical and Energetic Considerations
NASA Astrophysics Data System (ADS)
Ruiz, Siul; Schymanski, Stan; Or, Dani
2016-04-01
We analyze the implications of different soil burrowing rates by earthworms and growing plant roots using mechanical models that consider soil rheological properties. We estimate the energetic requirements for soil elasto-viscoplastic displacement at different rates for similar burrows and water contents. In the core of the mechanical model is a transient cavity expansion into viscoplastic wet soil that mimic an earthworm or root tip cone-like penetration and subsequent cavity expansion due to pressurized earthworm hydrostatic skeleton or root radial growth. Soil matrix viscoplatic considerations enable separation of the respective energetic requirements for earthworms penetrating at 2 μm/s relative to plant roots growing at 0.2 μm/s . Typical mechanical and viscous parameters are obtained inversely for soils under different fixed water contents utilizing custom miniaturized cone penetrometers at different fixed penetration rates (1 to 1000 μm/s). Experimental results determine critical water contents where soil exhibits pronounced viscoplatic behavior (close to saturation), bellow which the soil strength limits earthworms activity and fracture propagation by expanding plant roots becomes the favorable mechanical mode. The soil mechanical parameters in conjunction with earthworm and plant root physiological pressure limitations (200 kPa and 2000 kPa respectively) enable delineation of the role of soil saturation in regulating biotic penetration rates for different soil types under different moisture contents. Furthermore, this study provides a quantitative framework for estimating rates of energy expenditure for soil penetration, which allowed us to determine maximum earthworm population densities considering soil mechanical properties and the energy stored in soil organic matter.
Survival of microorganisms in smectite clays: Implications for Martian exobiology
NASA Astrophysics Data System (ADS)
Moll, Deborah M.; Vestal, J. Robie
1992-08-01
Manned exploration of Mars may result in the contamination of that planet with terrestrial microbes, a situation requiring assessment of the survival potential of possible contaminating organisms. In this study, the survival of Bacillus subtilis, Azotobacter chroococcum, and the enteric bacteriophage MS2 was examined in clays representing terrestrial (Wyoming type montmorillonite) or Martian (Fe 3+-montmorillonite) soils exposed to terrestrial and Martian environmental conditions of temperature and atmospheric pressure and composition, but not to UV flux or oxidizing conditions. Survival of bacteria was determined by standard plate counts and biochemical and physiological measurements over 112 days. Extractable lipid phosphate was used to measure microbial biomass, and the rate of 14C-acetate incorporation into microbial lipids was used to determine physiological activity. MS2 survival was assayed by plaque counts. Both bacterial types survived terrestrial or Martian conditions in Wyoming montmorillonite better than Martian conditions in Fe 3+-montmorillonite. Decreased survival may have been caused by the lower pH of the Fe 3+-montmorillonite compared to Wyoming montmorillonite. MS2 survived simulated Mars conditions better than the terrestrial environment, likely due to stabilization of the virus caused by the cold and dry conditions of the simulated Martian environment. The survival of MS2 in the simulated Martian environment is the first published indication that viruses may be able to survive in Martian type soils. This work may have implications for planetary protection for future Mars missions.
NASA Astrophysics Data System (ADS)
Fu, Ching-Chou; Yang, Tsanyao Frank; Chen, Cheng-Hong; Lee, Lou-Chuang; Wu, Yih-Min; Liu, Tsung-Kwei; Walia, Vivek; Kumar, Arvind; Lai, Tzu-Hua
2017-11-01
In this paper, we study (1) the spatial anomalies and (2) the temporal anomalies of soil gas in northern Taiwan. The spatial anomalies of soil gas are related to tectonic faults, while the temporal anomalies of soil gas are associated with pre-earthquake activities. Detailed soil gas sampling was systematically performed, and the analysis of the collected gas species shows that high helium and nitrogen concentrations appear in samples from specific sites, which coincide with the structural setting of the area studied. This analysis indicates the possibility of using these soil gases to determine fault zones in the studied area. Based on the soil gas data, a station (Tapingti) for automatic soil gas monitoring was constructed on an appropriate site at the fault zone. Some anomalous high radon concentrations at certain times can be identified from the dataset, which was generated by the continuous monitoring of soil gas for over a year. Notably, many of these anomalies were observed several hours to a few days before the earthquakes (ML > 3) that occurred in northern Taiwan. By combining the information of epicenters and fault plane solutions of these earthquakes, we find that the shallow earthquakes (<15 km) were mainly strike-slip and normal-type earthquakes, and concentrated within a distance of 30 km to the monitoring site (Group A). The deep earthquakes (>20 km) were mainly thrust-type earthquakes and distributed in greater distances (>45 km) east of the monitoring site (Group B). Such focal mechanisms of earthquakes suggest an extensional and compressional structural domain in the continental crust for Group A and Group B earthquakes, respectively. It is suggested that the pre-earthquake activities associated with the seismicity of Group B may be transmitted along the major decollement in the region below the Tapingti station, leading to the observed soil gas enhancements.
Do traits of invasive species influence decomposition and soil respiration of disturbed ecosystems?
NASA Astrophysics Data System (ADS)
Wells, A. J.; Balster, N. J.
2009-12-01
Large-scale landscape disturbances typically alter the terrestrial carbon cycle leading to shifts in pools of soil carbon. Restoration of disturbed landscapes with prairie vegetation has thus been practiced with the intent of increasing carbon accrual in soils. However, since disturbed soils are prone to invasion by non-native invasive species, many ecological restorations have resulted in unexpected outcomes, which may be explained by differences in plant traits such as tissue quality and biomass allocation. Typically, the tissue of invasive species has lower C:N ratios relative to native species, and consequently, faster decomposition rates, which potentially can alter the balance in soil carbon. The primary objective of this research was to compare the effects of native prairie species versus non-native invasive species on the carbon cycling within a novel environment: a recently dewatered basin in southwestern Wisconsin following dam removal. We hypothesized that a higher invasive to native species ratio would result in faster litter decomposition and a higher rate of soil respiration. To test this hypothesis, we seeded newly exposed sediments with native prairie seeds in 2005, annually collected aboveground plant biomass (by species per plot), calculated decomposition rate of native and invasive litter (underneath both canopy types), and measured soil respiration during the growing season of 2009. After four years of seeding, the aboveground biomass of the native vegetation has increased significantly (p < 0.01) from 14.4 to 351 g m-2 while invasive species biomass has decreased from 459 to 296 g m-2. Senesced tissue from mixed native species had a higher C:N ratio, 27:1 (43% C: 1.6% N), than tissue from mixed invasive species, 24:1 (35% C: 1.5% N). However, after 7 months, we found that the rate of decomposition depended on both litter type and plant canopy type (p < 0.01); invasive plant tissue had a slightly faster decomposition rate than the native litter and this rate was elevated under invasive species. Mean soil respiration rates ranged from 4.1 to 7.7 µmol C m-2 s-1. Our preliminary results suggest that respiration increases exponentially with soil temperature, as soil temperature explained 20% of the variation in soil respiration. However, the vegetation type did not have a significant effect on the respiration rate. Our results suggest that vegetation traits may be influencing the cycling of carbon at this site, but that spatial variation in abiotic conditions above and belowground appear to control decomposition and soil respiration at a local scale. Moreover, the ecophysiological interactions measured here may have practical implications on the restoration of disturbed ecosystems and the manner in which invasive species are viewed relative to the accrual soil carbon.
The Influence of Plant Litter on Soil Water Repellency: Insight from 13C NMR Spectroscopy.
Cesarano, Gaspare; Incerti, Guido; Bonanomi, Giuliano
2016-01-01
Soil water repellency (SWR, i.e. reduced affinity for water owing to the presence of organic hydrophobic coatings on soil particles) has relevant hydrological implications because low rates of infiltration enhance water runoff, and untargeted diffusion of fertilizers and pesticides. Previous studies investigated the occurrence of SWR in ecosystems with different vegetation cover but did not clarify its relationships with litter biochemical quality. Here, we investigated the capability of different plant litter types to induce SWR by using fresh and decomposed leaf materials from 12 species, to amend a model sandy soil over a year-long microcosm experiment. Water repellency, measured by the Molarity of an Ethanol Droplet (MED) test, was tested for the effects of litter species and age, and compared with litter quality assessed by 13C-CPMAS NMR in solid state and elemental chemical parameters. All litter types were highly water repellent, with MED values of 18% or higher. In contrast, when litter was incorporated into the soil, only undecomposed materials induced SWR, but with a large variability of onset and peak dynamics among litter types. Surprisingly, SWR induced by litter addition was unrelated to the aliphatic fraction of litter. In contrast, lignin-poor but labile C-rich litter, as defined by O-alkyl C and N-alkyl and methoxyl C of 13C-CPMAS NMR spectral regions, respectively, induced a stronger SWR. This study suggests that biochemical quality of plant litter is a major controlling factor of SWR and, by defining litter quality with 13C-CPMAS NMR, our results provide a significant novel contribution towards a full understanding of the relationships between plant litter biochemistry and SWR.
Dairy manure applications and soil health implications
USDA-ARS?s Scientific Manuscript database
Dairy manure applications can potentially improve soil health by adding organic matter (OM) to the soil. However, intensive dairy manure applications can cause salt accumulations on arid, irrigated soils, impairing soil health, which can reduce crop growth and yield. Soil organic matter, a major c...
In situ remediation technologies for mercury-contaminated soil
He, Feng; Gao, Jie; Pierce, Eric; ...
2015-04-09
A pollutant that poses significant risks to humans and the environment is mercury from anthropogenic activities. In soils, mercury remediation can be technically challenging and costly, depending on the subsurface mercury distribution, the types of mercury species, and the regulatory requirements. Our paper introduces the chemistry of mercury and its implications for in situ mercury remediation, which is followed by a detailed discussion of several in situ Hg remediation technologies in terms of applicability, cost, advantages, and disadvantages. The effect of Hg speciation on remediation performance, as well as Hg transformation during different remediation processes, was detailed. Thermal desorption, electrokinetic,more » and soil flushing/washing treatments are removal technologies that mobilize and capture insoluble Hg species, while containment, solidification/stabilization, and vitrification immobilize Hg by converting it to less soluble forms. We also discussed two emerging technologies, phytoremediation and nanotechnology, in this review.« less
In situ remediation technologies for mercury-contaminated soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Feng; Gao, Jie; Pierce, Eric
A pollutant that poses significant risks to humans and the environment is mercury from anthropogenic activities. In soils, mercury remediation can be technically challenging and costly, depending on the subsurface mercury distribution, the types of mercury species, and the regulatory requirements. Our paper introduces the chemistry of mercury and its implications for in situ mercury remediation, which is followed by a detailed discussion of several in situ Hg remediation technologies in terms of applicability, cost, advantages, and disadvantages. The effect of Hg speciation on remediation performance, as well as Hg transformation during different remediation processes, was detailed. Thermal desorption, electrokinetic,more » and soil flushing/washing treatments are removal technologies that mobilize and capture insoluble Hg species, while containment, solidification/stabilization, and vitrification immobilize Hg by converting it to less soluble forms. We also discussed two emerging technologies, phytoremediation and nanotechnology, in this review.« less
Soil health paradigms and implications for disease management.
Larkin, Robert P
2015-01-01
Soil health has been defined as the capacity of soil to function as a vital living system to sustain biological productivity, maintain environmental quality, and promote plant, animal, and human health. Building and maintaining soil health are essential to agricultural sustainability and ecosystem function. Management practices that promote soil health, including the use of crop rotations, cover crops and green manures, organic amendments, and conservation tillage, also have generally positive effects on the management of soilborne diseases through a number of potential mechanisms, including increasing soil microbial biomass, activity, and diversity, resulting in greater biological suppression of pathogens and diseases. However, there also may be particular disease issues associated with some soil health management practices. In this review, research and progress made over the past twenty years regarding soil health, sustainability, and soil health management practices, with an emphasis on their implications for and effects on plant disease and disease management strategies, are summarized.
Soil manganese redox cycling in suboxic zones: Effects on soil carbon stability
Suboxic soil environments contain a disproportionately higher concentration of highly reactive free radicals relative to the surrounding soil matrix, which may have significant implications for soil organic matter cycling and stabilization. This study investigated how Mn-ozidizin...
Liu, Jiang; Jiang, Tao; Huang, Rong; Zhang, Jin-zhong; Chen, Hong
2016-04-15
Lead (Pb) in purple soil was selected as the research target, using one-step extraction method with 0.01 mol · L⁻¹ sodium nitrate as the background electrolyte to study the release effect of citric acid (CA), tartaric acid (TA) and acetic acid (AC) with different concentrations. Sequential extraction and geochemical model (Visual Minteq v3.0) were applied to analyze and predict the speciation of Pb in soil solid phase and soil solution phase. Then the ebvironmental implications and risks of low-molecule weight organic acid (LMWOA) on soil Pb were analyzed. The results indicated that all three types of LMWOA increased the desorption capacity of Pb in purple soil, and the effect followed the descending order of CA > TA > AC. After the action of LMWOAs, the exchangeable Pb increased; the carbonate-bound Pb and Fe-Mn oxide bound Pb dropped in soil solid phase. Organic bound Pb was the main speciation in soil solution phase, accounting for 45.16%-75.05%. The following speciation of Pb in soil solution was free Pb, accounting for 22.71%-50.25%. For CA and TA treatments, free Pb ions and inorganic bound Pb in soil solution increased with increasing LMWOAs concentration, while organic bound Pb suffered a decrease in this process. An opposite trend for AC treatment was observed compared with CA and TA treatments. Overall, LMWOAs boosted the bioavailability of Pb in purple soil and had a potential risk to contaminate underground water. Among the three LMWOAs in this study, CA had the largest potential to activate soil Pb.
NASA Astrophysics Data System (ADS)
Garcia-Vila, Margarita; Corselli, Rocco; Bonet, María Teresa; Lopapa, Giuseppe; Pillitteri, Valentina; Fereres, Elias
2017-04-01
In the past, the lack of technologies (e.g. synthetic fertilizers) to overcome biophysical limitations has played a central role in land use planning. Thus, landscape management and agronomic practices are reactions to local knowledge and perceptions on natural resources, particularly soil. In the framework of the European research project MEMOLA (FP7), the role of local farmers knowledge and perceptions on soil for the historical land use through the spatial distribution of crops and the various management practices have been assessed in three different areas of Monti di Trapani region (Sicily). The identification of the soil classification systems of farmers and the criteria on which it is based, linked to the evaluation of the farmers' ability to identify and map the different soil types, was a key step. Nevertheless, beyond the comparison of the ethnopedological classification approach versus standard soil classification systems, the study also aims at understanding local soil management and land use decisions. The applied methodology was based on an interdisciplinary approach, combining soil science methods and participatory appraisal tools, particularly: i) semi-structured interviews; ii) soil sampling and analysis; iii) discussion groups; and iv) a workshop with local edafologists and agronomists. A rich local glossary of terms associated with the soil conditions and an own soil classification system have been identified in the region. Also, a detailed soil map, including process of soil degradation and soil capability, has been generated. This traditional soil knowledge has conditioned the management and the spatial distribution of the crops, and therefore the configuration of the landscape, until the 1990s. Acknowledgements This work has been funded by the European Union project MEMOLA (Grant agreement no: 613265).
He, Y.; Zhuang, Q.; Harden, Jennifer W.; McGuire, A. David; Fan, Z.; Liu, Y.; Wickland, Kimberly P.
2014-01-01
The large amount of soil carbon in boreal forest ecosystems has the potential to influence the climate system if released in large quantities in response to warming. Thus, there is a need to better understand and represent the environmental sensitivity of soil carbon decomposition. Most soil carbon decomposition models rely on empirical relationships omitting key biogeochemical mechanisms and their response to climate change is highly uncertain. In this study, we developed a multi-layer microbial explicit soil decomposition model framework for boreal forest ecosystems. A thorough sensitivity analysis was conducted to identify dominating biogeochemical processes and to highlight structural limitations. Our results indicate that substrate availability (limited by soil water diffusion and substrate quality) is likely to be a major constraint on soil decomposition in the fibrous horizon (40–60% of soil organic carbon (SOC) pool size variation), while energy limited microbial activity in the amorphous horizon exerts a predominant control on soil decomposition (>70% of SOC pool size variation). Elevated temperature alleviated the energy constraint of microbial activity most notably in amorphous soils, whereas moisture only exhibited a marginal effect on dissolved substrate supply and microbial activity. Our study highlights the different decomposition properties and underlying mechanisms of soil dynamics between fibrous and amorphous soil horizons. Soil decomposition models should consider explicitly representing different boreal soil horizons and soil–microbial interactions to better characterize biogeochemical processes in boreal forest ecosystems. A more comprehensive representation of critical biogeochemical mechanisms of soil moisture effects may be required to improve the performance of the soil model we analyzed in this study.
Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota.
Bulgarelli, Davide; Rott, Matthias; Schlaeppi, Klaus; Ver Loren van Themaat, Emiel; Ahmadinejad, Nahal; Assenza, Federica; Rauf, Philipp; Huettel, Bruno; Reinhardt, Richard; Schmelzer, Elmon; Peplies, Joerg; Gloeckner, Frank Oliver; Amann, Rudolf; Eickhorst, Thilo; Schulze-Lefert, Paul
2012-08-02
The plant root defines the interface between a multicellular eukaryote and soil, one of the richest microbial ecosystems on Earth. Notably, soil bacteria are able to multiply inside roots as benign endophytes and modulate plant growth and development, with implications ranging from enhanced crop productivity to phytoremediation. Endophytic colonization represents an apparent paradox of plant innate immunity because plant cells can detect an array of microbe-associated molecular patterns (also known as MAMPs) to initiate immune responses to terminate microbial multiplication. Several studies attempted to describe the structure of bacterial root endophytes; however, different sampling protocols and low-resolution profiling methods make it difficult to infer general principles. Here we describe methodology to characterize and compare soil- and root-inhabiting bacterial communities, which reveals not only a function for metabolically active plant cells but also for inert cell-wall features in the selection of soil bacteria for host colonization. We show that the roots of Arabidopsis thaliana, grown in different natural soils under controlled environmental conditions, are preferentially colonized by Proteobacteria, Bacteroidetes and Actinobacteria, and each bacterial phylum is represented by a dominating class or family. Soil type defines the composition of root-inhabiting bacterial communities and host genotype determines their ribotype profiles to a limited extent. The identification of soil-type-specific members within the root-inhabiting assemblies supports our conclusion that these represent soil-derived root endophytes. Surprisingly, plant cell-wall features of other tested plant species seem to provide a sufficient cue for the assembly of approximately 40% of the Arabidopsis bacterial root-inhabiting microbiota, with a bias for Betaproteobacteria. Thus, this root sub-community may not be Arabidopsis-specific but saprophytic bacteria that would naturally be found on any plant root or plant debris in the tested soils. By contrast, colonization of Arabidopsis roots by members of the Actinobacteria depends on other cues from metabolically active host cells.
On the challenges of using field spectroscopy to measure the impact of soil type on leaf traits
NASA Astrophysics Data System (ADS)
Nunes, Matheus H.; Davey, Matthew P.; Coomes, David A.
2017-07-01
Understanding the causes of variation in functional plant traits is a central issue in ecology, particularly in the context of global change. Spectroscopy is increasingly used for rapid and non-destructive estimation of foliar traits, but few studies have evaluated its accuracy when assessing phenotypic variation in multiple traits. Working with 24 chemical and physical leaf traits of six European tree species growing on strongly contrasting soil types (i.e. deep alluvium versus nearby shallow chalk), we asked (i) whether variability in leaf traits is greater between tree species or soil type, and (ii) whether field spectroscopy is effective at predicting intraspecific variation in leaf traits as well as interspecific differences. Analysis of variance showed that interspecific differences in traits were generally much stronger than intraspecific differences related to soil type, accounting for 25 % versus 5 % of total trait variation, respectively. Structural traits, phenolic defences and pigments were barely affected by soil type. In contrast, foliar concentrations of rock-derived nutrients did vary: P and K concentrations were lower on chalk than alluvial soils, while Ca, Mg, B, Mn and Zn concentrations were all higher, consistent with the findings of previous ecological studies. Foliar traits were predicted from 400 to 2500 nm reflectance spectra collected by field spectroscopy using partial least square regression, a method that is commonly employed in chemometrics. Pigments were best modelled using reflectance data from the visible region (400-700 nm), while all other traits were best modelled using reflectance data from the shortwave infrared region (1100-2500 nm). Spectroscopy delivered accurate predictions of species-level variation in traits. However, it was ineffective at detecting intraspecific variation in rock-derived nutrients (with the notable exception of P). The explanation for this failure is that rock-derived elements do not have absorption features in the 400-2500 nm region, and their estimation is indirect, relying on elemental concentrations covarying with structural traits that do have absorption features in that spectral region (constellation effects
). Since the structural traits did not vary with soil type, it was impossible for our regression models to predict intraspecific variation in rock-derived nutrients via constellation effects. This study demonstrates the value of spectroscopy for rapid, non-destructive estimation of foliar traits across species, but highlights problems with predicting intraspecific variation indirectly. We discuss the implications of these findings for mapping functional traits by airborne imaging spectroscopy.
Multiscale variability of soil aggregate stability: implications for rangeland hydrology and erosion
USDA-ARS?s Scientific Manuscript database
Conservation of soil and water resources in rangelands is a crucial step in stopping desertification processes. The formation of water-stable soil aggregates reduces soil erodibility and can increase infiltration capacity in many soils. Soil aggregate stability is highly variable at scales ranging f...
NASA Astrophysics Data System (ADS)
Brunner, Philip; Doherty, J.; Simmons, Craig T.
2012-07-01
The data set used for calibration of regional numerical models which simulate groundwater flow and vadose zone processes is often dominated by head observations. It is to be expected therefore, that parameters describing vadose zone processes are poorly constrained. A number of studies on small spatial scales explored how additional data types used in calibration constrain vadose zone parameters or reduce predictive uncertainty. However, available studies focused on subsets of observation types and did not jointly account for different measurement accuracies or different hydrologic conditions. In this study, parameter identifiability and predictive uncertainty are quantified in simulation of a 1-D vadose zone soil system driven by infiltration, evaporation and transpiration. The worth of different types of observation data (employed individually, in combination, and with different measurement accuracies) is evaluated by using a linear methodology and a nonlinear Pareto-based methodology under different hydrological conditions. Our main conclusions are (1) Linear analysis provides valuable information on comparative parameter and predictive uncertainty reduction accrued through acquisition of different data types. Its use can be supplemented by nonlinear methods. (2) Measurements of water table elevation can support future water table predictions, even if such measurements inform the individual parameters of vadose zone models to only a small degree. (3) The benefits of including ET and soil moisture observations in the calibration data set are heavily dependent on depth to groundwater. (4) Measurements of groundwater levels, measurements of vadose ET or soil moisture poorly constrain regional groundwater system forcing functions.
Runoff sources and flowpaths in a partially burned, upland boreal catchment underlain by permafrost
Koch, Joshua C.; Kikuchi, Colin P.; Wickland, Kimberly P.; Schuster, Paul
2014-01-01
Boreal soils in permafrost regions contain vast quantities of frozen organic material that is released to terrestrial and aquatic environments via subsurface flowpaths as permafrost thaws. Longer flowpaths may allow chemical reduction of solutes, nutrients, and contaminants, with implications for greenhouse gas emissions and aqueous export. Predicting boreal catchment runoff is complicated by soil heterogeneities related to variability in active layer thickness, soil type, fire history, and preferential flow potential. By coupling measurements of permeability, infiltration potential, and water chemistry with a stream chemistry end member mixing model, we tested the hypothesis that organic soils and burned slopes are the primary sources of runoff, and that runoff from burned soils is greater due to increased hydraulic connectivity. Organic soils were more permeable than mineral soils, and 25% of infiltration moved laterally upon reaching the organic-mineral soil boundary on unburned hillslopes. A large portion of the remaining water infiltrated into deeper, less permeable soils. In contrast, burned hillslopes displayed poorly defined soil horizons, allowing rapid, mineral-rich runoff through preferential pathways at various depths. On the catchment scale, mineral/organic runoff ratios averaged 1.6 and were as high as 5.2 for an individual storm. Our results suggest that burned soils are the dominant source of water and solutes reaching the stream in summer, whereas unburned soils may provide longer term storage and residence times necessary for production of anaerobic compounds. These results are relevant to predicting how boreal catchment drainage networks and stream export will evolve given continued warming and altered fire regimes.
NASA Astrophysics Data System (ADS)
Opfergelt, S.; Williams, H. M.; Cornelis, J. T.; Guicharnaud, R. A.; Georg, R. B.; Siebert, C.; Gislason, S. R.; Halliday, A. N.; Burton, K. W.
2017-11-01
Incipient warming of peatlands at high latitudes is expected to modify soil drainage and hence the redox conditions, which has implications for Fe export from soils. This study uses Fe isotopes to assess the processes controlling Fe export in a range of Icelandic soils including peat soils derived from the same parent basalt, where Fe isotope variations principally reflect differences in weathering and drainage. In poorly weathered, well-drained soils (non-peat soils), the limited Fe isotope fractionation in soil solutions relative to the bulk soil (Δ57Fesolution-soil = -0.11 ± 0.12‰) is attributed to proton-promoted mineral dissolution. In the more weathered poorly drained soils (peat soils), the soil solutions are usually lighter than the bulk soil (Δ57Fesolution-soil = -0.41 ± 0.32‰), which indicates that Fe has been mobilised by reductive mineral dissolution and/or ligand-controlled dissolution. The results highlight the presence of Fe-organic complexes in solution in anoxic conditions. An additional constraint on soil weathering is provided by Si isotopes. The Si isotope composition of the soil solutions relative to the soil (Δ30Sisolution-soil = 0.92 ± 0.26‰) generally reflects the incorporation of light Si isotopes in secondary aluminosilicates. Under anoxic conditions in peat soils, the largest Si isotope fractionation in soil solutions relative to the bulk soil is observed (Δ30Sisolution-soil = 1.63 ± 0.40‰) and attributed to the cumulative contribution of secondary clay minerals and amorphous silica precipitation. Si supersaturation in solution with respect to amorphous silica is reached upon freezing when Al availability to form aluminosilicates is limited by the affinity of Al for metal-organic complexes. Therefore, the precipitation of amorphous silica in peat soils indirectly supports the formation of metal-organic complexes in poorly drained soils. These observations highlight that in a scenario of decreasing soil drainage with warming high latitude peatlands, Fe export from soils as Fe-organic complexes will increase, which in turn has implications for Fe transport in rivers, and ultimately the delivery of Fe to the oceans.
Soil water retention of a bare soil with changing bulk densities
USDA-ARS?s Scientific Manuscript database
Tillage changes the bulk density of the soil, lowering the density initially after which it increases as the soil settles. Implications of this for soil water content and soil water potential are obvious, but limited efforts have been made to monitor these changes continuously. We present in-situ me...
Zelikova, Tamara J.; Housman, David C.; Grote, Ed E.; Neher, Deborah A.; Belnap, Jayne
2012-01-01
Taken together, our results highlight the limited effects of warming alone on biological soil crust communities and soil chemistry, but demonstrate the substantially larger effects of altered summertime precipitation.
Hutchison, M L; Walters, L D; Moore, A; Crookes, K M; Avery, S M
2004-09-01
In response to reports that the contamination of food can occur during the on-farm primary phase of food production, we report data that describes a possible cost-effective intervention measure. The effect of time before soil incorporation of livestock wastes spread to land on the rate of decline of zoonotic agents present in the waste was investigated. Fresh livestock wastes were inoculated with laboratory-cultured Salmonella, Listeria, and Campylobacter spp. and Escherichia coli O157 before they were spread onto soil. Incorporation of the spread wastes was either immediate, delayed for 1 week, or did not occur at all. Bacterial decline was monitored over time and found to be significantly more rapid for all waste types when they were left on the soil surface. There were no significant differences in initial bacterial decline rates when wastes were spread in summer or winter. Our results indicate that not incorporating contaminated livestock wastes into soil is a potential intervention measure that may help to limit the spread of zoonotic agents further up the food chain. The implications of these findings are discussed in relation to current advice for livestock waste disposal.
Li, Yangjie; Chen, Zhenlou; Lou, Huanjie; Wang, Dongqi; Deng, Huanguang; Wang, Chu
2014-09-01
The purpose of this research was to thoroughly analyze the influences of environmental factors on denitrification processes in urban riparian soils. Besides, the study was also carried out to identify whether the denitrification processes in urban riparian soils could control nonpoint source nitrogen pollution in urban areas. The denitrification rates (DR) over 1 year were measured using an acetylene inhibition technique during the incubation of intact soil cores from six urban riparian sites, which could be divided into three types according to their vegetation. The soil samples were analyzed to determine the soil organic carbon (SOC), soil total nitrogen (STN), C/N ratio, extractable NO3 (-)-N and NH4 (+)-N, pH value, soil water content (SWC), and the soil nitrification potential to evaluate which of these factors determined the final outcome of denitrification. A nitrate amendment experiment further indicated that the riparian DR was responsive to added nitrate. Although the DRs were very low (0.099 ~ 33.23 ng N2O-N g(-1) h(-1)) due to the small amount of nitrogen moving into the urban riparian zone, the spatial and temporal patterns of denitrification differed significantly. The extractable NO3 (-)-N proved to be the dominant factor influencing the spatial distribution of denitrification, whereas the soil temperature was a determinant of the seasonal DR variation. The six riparian sites could also be divided into two types (a nitrate-abundant and a nitrate-stressed riparian system) according to the soil NO3 (-)-N concentration. The DR in nitrate-abundant riparian systems was significantly higher than that in the nitrate-stressed riparian systems. The DR in riparian zones that were covered with bushes and had adjacent cropland was higher than in grass-covered riparian sites. Furthermore, the riparian DR decreased with soil depth, which was mainly attributed to the concentrated nitrate in surface soils. The DR was not associated with the SOC, STN, C/N ratio, and pH. Nitrate supply and temperature finally decided the spatiotemporal distribution patterns of urban riparian denitrification. Considering both the low DR of existing riparian soils and the significance of nonpoint source nitrogen pollution, the substantial denitrification potential of urban riparian soils should be utilized to reduce nitrogen pollution using proper engineering measures that would collect the polluted urban rainfall runoff and make it flow through the riparian zones.
NASA Technical Reports Server (NTRS)
Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Johnson, Joel T.; Aksoy, Mustafa; Bringer, Alexandra
2015-01-01
The Soil Moisture Active Passive (SMAP) mission, launched in January 2015, provides global measurements of soil moisture using a microwave radiometer. SMAPs radiometer passband lies within the passive frequency allocation. However, both unauthorized in-band transmitters as well as out-of-band emissions from transmitters operating at frequencies adjacent to this allocated spectrum have been documented as sources of radio frequency interference (RFI) to the L-band radiometers on SMOS and Aquarius. The spectral environment consists of high RFI levels as well as significant occurrences of low level RFI equivalent to 0.1 to 10 K. The SMAP ground processor reports the antenna temperature both before and after RFI mitigation is applied. The difference between these quantities represents the detected RFI level. The presentation will review the SMAP RFI detection and mitigation procedure and discuss early on-orbit RFI measurements from the SMAP radiometer. Assessments of global RFI properties and source types will be provided, as well as the implications of these results for SMAP soil moisture measurements.
The effect of total carbon on microscopic soil properties and implications for crop production
USDA-ARS?s Scientific Manuscript database
Soil structure is a dynamic property affected by physical, chemical, and microbiological processes. Addition of organic matter to soils and the use of different management practices have been reported to impact soil structure and crop production. Moderation in soil temperature and increases in mic...
Soil erosion in humid regions: a review
Daniel J. Holz; Karl W.J. Williard; Pamela J. Edwards; Jon E. Schoonover
2015-01-01
Soil erosion has significant implications for land productivity and surface water quality, as sediment is the leading water pollutant worldwide. Here, erosion processes are defined. The dominant factors influencing soil erosion in humid areas are reviewed, with an emphasis on the roles of precipitation, soil moisture, soil porosity, slope steepness and length,...
Van Meter, Robin J; Glinski, Donna A; Henderson, W Matthew; Purucker, S Thomas
2016-11-01
Pesticides have been implicated as a major factor in global amphibian declines and may pose great risk to terrestrial phase amphibians moving to and from breeding ponds on agricultural landscapes. Dermal uptake from soil is known to occur in amphibians, but predicting pesticide availability and bioconcentration across soil types is not well understood. The present study was designed to compare uptake of 5 current-use pesticides (imidacloprid, atrazine, triadimefon, fipronil, and pendimethalin) in American toads (Bufo americanus) from exposure on soils with significant organic matter content differences (14.1% = high organic matter and 3.1% = low organic matter). We placed toads on high- or low-organic matter soil after applying individual current-use pesticides on the soil surface for an 8-h exposure duration. Whole body tissue homogenates and soils were extracted and analyzed using liquid chromatography-mass spectrometry to determine pesticide tissue and soil concentration, as well as bioconcentration factor in toads. Tissue concentrations were greater on the low-organic matter soil than the high-organic matter soil across all pesticides (average ± standard error; 1.23 ± 0.35 ppm and 0.78 ± 0.23 ppm, respectively), and bioconcentration was significantly higher for toads on the low-organic matter soil (analysis of covariance p = 0.002). Soil organic matter is known to play a significant role in the mobility of pesticides and bioavailability to living organisms. Agricultural soils typically have relatively lower organic matter content and serve as a functional habitat for amphibians. The potential for pesticide accumulation in amphibians moving throughout agricultural landscapes may be greater and should be considered in conservation and policy efforts. Environ Toxicol Chem 2016;35:2734-2741. © 2016 SETAC. © 2016 SETAC.
Comparing electronic probes for volumetric water content of low-density feathermoss
Overduin, P.P.; Yoshikawa, K.; Kane, D.L.; Harden, J.W.
2005-01-01
Purpose - Feathermoss is ubiquitous in the boreal forest and across various land-cover types of the arctic and subarctic. A variety of affordable commercial sensors for soil moisture content measurement have recently become available and are in use in such regions, often in conjunction with fire-susceptibility or ecological studies. Few come supplied with calibrations suitable or suggested for soils high in organics. Aims to test seven of these sensors for use in feathermoss, seeking calibrations between sensor output and volumetric water content. Design/methodology/approach - Measurements from seven sensors installed in live, dead and burned feathermoss samples, drying in a controlled manner, were compared to moisture content measurements. Empirical calibrations of sensor output to water content were determined. Findings - Almost all of the sensors tested were suitable for measuring the moss sample water content, and a unique calibration for each sensor for this material is presented. Differences in sensor design lead to changes in sensitivity as a function of volumetric water content, affecting the spatial averaging over the soil measurement volume. Research limitations/implications - The wide range of electromagnetic sensors available include frequency and time domain designs with variations in wave guide and sensor geometry, the location of sensor electronics and operating frequency. Practical implications - This study provides information for extending the use of electromagnetic sensors to feathermoss. Originality/value - A comparison of volumetric water content sensor mechanics and design is of general interest to researchers measuring soil water content. In particular, researchers working in wetlands, boreal forests and tundra regions will be able to apply these results. ?? Emerald Group Publishing Limited.
Erosion of soil organic carbon: implications for carbon sequestration
Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.; McPherson, B.J.; Sundquist, E.T.
2009-01-01
Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.
Modeling nonlinear responses of DOC transport in boreal catchments in Sweden
NASA Astrophysics Data System (ADS)
Kasurinen, Ville; Alfredsen, Knut; Ojala, Anne; Pumpanen, Jukka; Weyhenmeyer, Gesa A.; Futter, Martyn N.; Laudon, Hjalmar; Berninger, Frank
2016-07-01
Stream water dissolved organic carbon (DOC) concentrations display high spatial and temporal variation in boreal catchments. Understanding and predicting these patterns is a challenge with great implications for water quality projections and carbon balance estimates. Although several biogeochemical models have been used to estimate stream water DOC dynamics, model biases common during both rain and snow melt-driven events. The parsimonious DOC-model, K-DOC, with 10 calibrated parameters, uses a nonlinear discharge and catchment water storage relationship including soil temperature dependencies of DOC release and consumption. K-DOC was used to estimate the stream water DOC concentrations over 5 years for eighteen nested boreal catchments having total area of 68 km2 (varying from 0.04 to 67.9 km2). The model successfully simulated DOC concentrations during base flow conditions, as well as, hydrological events in catchments dominated by organic and mineral soils reaching NSEs from 0.46 to 0.76. Our semimechanistic model was parsimonious enough to have all parameters estimated using statistical methods. We did not find any clear differences between forest and mire-dominated catchments that could be explained by soil type or tree species composition. However, parameters controlling slow release and consumption of DOC from soil water behaved differently for small headwater catchments (less than 2 km2) than for those that integrate larger areas of different ecosystem types (10-68 km2). Our results emphasize that it is important to account for nonlinear dependencies of both, soil temperature, and catchment water storage, when simulating DOC dynamics of boreal catchments.
NASA Astrophysics Data System (ADS)
Alguacil, M. M.; Torrecillas, E.; Lozano, Z.; Torres, M. P.; Garcia-Orenes, F.; Roldan, A.
2012-04-01
Shortage of water is one of the most important environmental problem in the Mediterranean areas that implicates the search for strategies for saving good quality water. The use of treated waste water for the irrigation of agricultural land can be a good solution for this problem because it reduces the utilization of fresh water and potentially could improve soil key parameters, but can modify physical-chemical and biological properties of the same. The aim of this work was to study the effect of long-term irrigation with treated waste water on microbial diversity, mainly arbuscular mycorrhizal fungi (AMF) of the soil and other properties related with the microbial community. The experiment was developed in an agricultural area with Citrus orchard, located in Alicante in the southeast Spain. Here, we tested whether the communities of AMF as well as soil microbial properties were affected by irrigation with water coming from sewage treatment plant during 40 years in a soil. To carry out this study the soil properties (dehydrogenase, urease, protease-BAA, acid phosphatase, β-glucosidase, glomalin related soil protein, microbial biomass C and aggregate stability) and AMF diversity (the AM fungal small sub-unit (SSU) rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic analyses) were analysed in the soil from two different plots with the same soil but with different type of irrigation (irrigated with fresh water and irrigated with treated water). The first results did not show significant differences in some soil properties between soil irrigated with water treated or not.
Vertebrate Decomposition Is Accelerated by Soil Microbes
Lauber, Christian L.; Metcalf, Jessica L.; Keepers, Kyle; Ackermann, Gail; Carter, David O.
2014-01-01
Carrion decomposition is an ecologically important natural phenomenon influenced by a complex set of factors, including temperature, moisture, and the activity of microorganisms, invertebrates, and scavengers. The role of soil microbes as decomposers in this process is essential but not well understood and represents a knowledge gap in carrion ecology. To better define the role and sources of microbes in carrion decomposition, lab-reared mice were decomposed on either (i) soil with an intact microbial community or (ii) soil that was sterilized. We characterized the microbial community (16S rRNA gene for bacteria and archaea, and the 18S rRNA gene for fungi and microbial eukaryotes) for three body sites along with the underlying soil (i.e., gravesoils) at time intervals coinciding with visible changes in carrion morphology. Our results indicate that mice placed on soil with intact microbial communities reach advanced stages of decomposition 2 to 3 times faster than those placed on sterile soil. Microbial communities associated with skin and gravesoils of carrion in stages of active and advanced decay were significantly different between soil types (sterile versus untreated), suggesting that substrates on which carrion decompose may partially determine the microbial decomposer community. However, the source of the decomposer community (soil- versus carcass-associated microbes) was not clear in our data set, suggesting that greater sequencing depth needs to be employed to identify the origin of the decomposer communities in carrion decomposition. Overall, our data show that soil microbial communities have a significant impact on the rate at which carrion decomposes and have important implications for understanding carrion ecology. PMID:24907317
Orellana, L H; Rodriguez-R, L M; Higgins, S; Chee-Sanford, J C; Sanford, R A; Ritalahti, K M; Löffler, F E; Konstantinidis, K T
2014-06-03
Microbial activities in soils, such as (incomplete) denitrification, represent major sources of nitrous oxide (N2O), a potent greenhouse gas. The key enzyme for mitigating N2O emissions is NosZ, which catalyzes N2O reduction to N2. We recently described "atypical" functional NosZ proteins encoded by both denitrifiers and nondenitrifiers, which were missed in previous environmental surveys (R. A. Sanford et al., Proc. Natl. Acad. Sci. U. S. A. 109:19709-19714, 2012, doi:10.1073/pnas.1211238109). Here, we analyzed the abundance and diversity of both nosZ types in whole-genome shotgun metagenomes from sandy and silty loam agricultural soils that typify the U.S. Midwest corn belt. First, different search algorithms and parameters for detecting nosZ metagenomic reads were evaluated based on in silico-generated (mock) metagenomes. Using the derived cutoffs, 71 distinct alleles (95% amino acid identity level) encoding typical or atypical NosZ proteins were detected in both soil types. Remarkably, more than 70% of the total nosZ reads in both soils were classified as atypical, emphasizing that prior surveys underestimated nosZ abundance. Approximately 15% of the total nosZ reads were taxonomically related to Anaeromyxobacter, which was the most abundant genus encoding atypical NosZ-type proteins in both soil types. Further analyses revealed that atypical nosZ genes outnumbered typical nosZ genes in most publicly available soil metagenomes, underscoring their potential role in mediating N2O consumption in soils. Therefore, this study provides a bioinformatics strategy to reliably detect target genes in complex short-read metagenomes and suggests that the analysis of both typical and atypical nosZ sequences is required to understand and predict N2O flux in soils. Nitrous oxide (N2O) is a potent greenhouse gas with ozone layer destruction potential. Microbial activities control both the production and the consumption of N2O, i.e., its conversion to innocuous dinitrogen gas (N2). Until recently, consumption of N2O was attributed to bacteria encoding "typical" nitrous oxide reductase (NosZ). However, recent phylogenetic and physiological studies have shown that previously uncharacterized, functional, "atypical" NosZ proteins are encoded in genomes of diverse bacterial groups. The present study revealed that atypical nosZ genes outnumbered their typical counterparts, highlighting their potential role in N2O consumption in soils and possibly other environments. These findings advance our understanding of the diversity of microbes and functional genes involved in the nitrogen cycle and provide the means (e.g., gene sequences) to study N2O fluxes to the atmosphere and associated climate change. Copyright © 2014 Orellana et al.
NASA Astrophysics Data System (ADS)
Reynolds, B.; Emmett, B.; Spurgeon, D.; Rowe, E. C.; Mills, R.; Griffiths, R.; Jones, D.; Simfukwe, P.
2011-12-01
A soils monitoring programme which uses an ecosystem approach has been in place in Great Britain for 30 years.The findings from the latest survey in 2007 has been interpreted within a natural capital and ecosystem services context to assess the outcome of a range of policies to protect the natural environment and increase sustainability. Issues of interest included the impacts of declines in atmospheric deposition of acidity, nitrogen and metals, the benefits of agri-environment schemes and climate change on carbon storage in soils and soil biodiversity, and reduced fertiliser applications on eutrophication of soils and waters. Topsoil samples (0-15cm) were taken within 600 1km squares across the country stratified to cover all major habitat types. At the same time botanical surveys in permanent vegetation plots were recorded together with change in land use and management and stream and pond water quality and ecology. These data are used together with satellite images, digital cartography, and ancillary datasets to assess change in landcover for all of GB and upscaling of change data from the samples squares. Changes in topsoil were assessed in 1978, 1998 and again in 2007. An increase in pH but no change in soil carbon was observed between 1978 and 2007. Additional measures added in 1998 enabled a decline in Olsen-P,increase in C:N, decline in soil mesofauna diversity and decline in many metal concentrations to be identified over the last 10 years. In 2007, futher measurements were added to include carbon substrate utilisation, nitrogen mineralisation and bacterial diversity (fungi is in progress)enabling national maps to be created for the first time for these important soil parameters. Multi-variate statistics were used to explore the relationship between the different soil measures, the predictive capability of soil and vegetation type, and drivers of change to be identified. In addition, assigning measurements to specific functions which underpinned individual supporting and regulation services provided a method for assessing direction of change of a range of ecosystem services at national scale for the first time.
Fire effects on ponderosa pine soils and their management implications
W.W. Covington; S.S. Sackett
1990-01-01
Fire in southwestern ponderosa pine induces changes in soil properties including decreasing the amount of nutrients stored in fuels (forest floor, woody litter, and understory vegetation) increasing the amount of nutrients on the soil surface (the "ashbed effect"), and increasing the inorganic nitrogen and moisture content in the mineral soil. Soil...
NASA Astrophysics Data System (ADS)
Muñoz-Rojas, Miriam; Jiménez-Morillo, Nicasio T.; Jordan, Antonio; Zavala, Lorena M.; Stevens, Jason; González-Pérez, Jose Antonio
2017-04-01
Background Soil water repellency (SWR) can have a critical effect on the restoration of disturbed ecosystems causing poor plant establishment and promoting erosion processes. Although SWR has been reported in most continents of the world for different soil types, climate conditions and land uses, there are still many research gaps in the knowledge of its causes and controlling factors (Doerr et al.,2000; Jordan et al., 2013), particularly in Mediterranean arid semi arid environments which are largely affected by this phenomenon. The WIRE project aims to investigate SWR in soils under different vegetation types of dominant biodiverse ecosystems of Western Australia (WA), e.g. hummock grasslands and Banksia woodlands, as well as characterizing organic compounds that induce hydrophobicity in these soils. Banksia woodlands (BW) are of particular interest in this project. These are iconic ecosystems of WA composed by an overstorey dominated by Proteaceae that are threatened by sand mining activities and urban expansion. Conservation and restoration of these woodlands are critical but despite considerable efforts to restore these areas, the success of current rehabilitation programs is poor due to the high sensitivity of the ecosystem to drought stress and the disruption of water dynamics in mature BW soils that result in low seedling survival rates (5-30%). The main objectives of this collaborative research are: i) to identify SWR intensity and severity under different vegetation types and evaluate controlling factors in both hummock grasslands and BW (ii) to characterize hydrophobic compounds in soils using analytical pyrolysis techniques and iii) to investigate the impact of SWR on water economy in relation with soil functioning and plant strategies for water uptake in pristine BW. Methods In a series of field trials and experimental studies, we measured SWR of soil samples under lab conditions in oven-dry samples (48 h, 105 °C) that were previously collected under the canopy of a broad range of plant species composing the dominant vegetation communities of the study areas. Direct analytical pyrolysis (Py-GC/MS) allowed the structural characterization of soil organic matter (SOM) (Jiménez-Morillo et al., 2014). Basic soil physicochemical properties were analysed and soil microbial activity was measured with the 1-day CO2 test, which determine soil microbial respiration rate based on the measurement of the CO2 burst produced after moistening dry soil (Muñoz-Rojas et al., 2016). Results Main results of the project revealed that SWR is strongly correlated to microbial activity, pH and electrical conductivity. In soil samples under Banksia spp., Py-GC/MS analysis showed that SOM had clear signs of alteration (humified) that included a high contribution of stable families like unspecific aromatic compounds and alkane/alkene pairs. However, under Eucalyptus spp. soils showed a less altered SOM with a high relative contribution from lignocellulose (lignin and carbohydrates), together with a low relative content of recalcitrant families. In soil samples from hummock grasslands of the Pilbara region, very low contents of SOM were found. These results point to possible indirect links between organic substances released by roots and soil wettability involving soil microorganisms. Ecological plant strategies and specific adaptations for water uptake in arid and semi-arid ecosystems of WA are likely the main drivers of SWR. ACKNOWLEDGEMENTS This research has been funded by the University of Western Australia (Research Collaboration Award 2015: 'Soil water repellence in biodiverse semi arid environments: new insights and implications for ecological restoration') and the Spanish Ministry of Economy and Competitiveness (research projects GEOFIRE, CGL2012-38655-C04- 01, and POSTFIRE, CGL 2013-47862-C2-1-R. References Doerr SH, Shakesby RA, Walsh RPD. 2000. Soil water repellency: its causes, characteristics and hydrogeomorphological significance. Earth-Sci Rev 51: 33-65. DOI: 10.1016/S0012-8252(00)00011-8. Jiménez-Morillo NT, González-Pérez JA, Jordán A, Zavala LM, de la Rosa JM, Jiménez-González MA, González- Vila FJ. 2014 Organic matter fractions controlling soil water repellency in sandy soils from the Doñana National Park (Southwestern Spain). Land Degrad. Develop. published online. DOI: 10.1002/ldr.2314 Jordán A, Zavala LM, Mataix-Solera J, Doerr SH. 2013. Soil water repellency: origin, assessment and geomorphological consequences. Catena 108, 1-8. DOI: 10.1016/j.catena.2013.05.005 Muñoz-Rojas M, Erickson TE, Martini D, Dixon KW, Merritt DJ. 2016. Soil physicochemical and microbiological indicators of short, medium and long term post-fire recovery in semi-arid ecosystems. Ecological indicators 63, 14-22.DOI: 10.1016/j.ecolind.2015.11.038
NASA Astrophysics Data System (ADS)
Vincent, Sébastien; Lemercier, Blandine; Berthier, Lionel; Walter, Christian
2015-04-01
Accurate soil information over large extent is essential to manage agronomical and environmental issues. Where it exists, information on soil is often sparse or available at coarser resolution than required. Typically, the spatial distribution of soil at regional scale is represented as a set of polygons defining soil map units (SMU), each one describing several soil types not spatially delineated, and a semantic database describing these objects. Delineation of soil types within SMU, ie spatial disaggregation of SMU allows improved soil information's accuracy using legacy data. The aim of this study was to predict soil types by spatial disaggregation of SMU through a decision tree approach, considering expert knowledge on soil-landscape relationships embedded in soil databases. The DSMART (Disaggregation and Harmonization of Soil Map Units Through resampled Classification Trees) algorithm developed by Odgers et al. (2014) was used. It requires soil information, environmental covariates, and calibration samples, to build then extrapolate decision trees. To assign a soil type to a particular spatial position, a weighed random allocation approach is applied: each soil type in the SMU is weighted according to its assumed proportion of occurrence in the SMU. Thus soil-landscape relationships are not considered in the current version of DSMART. Expert rules on soil distribution considering the relief, parent material and wetlands location were proposed to drive the procedure of allocation of soil type to sampled positions, in order to integrate the soil-landscape relationships. Semantic information about spatial organization of soil types within SMU and exhaustive landscape descriptors were used. In the eastern part of Brittany (NW France), 171 soil types were described; their relative area in the SMU were estimated, geomorphological and geological contexts were recorded. The model predicted 144 soil types. An external validation was performed by comparing predicted with effectively observed soil types derived from available soil maps at scale of 1:25.000 or 1:50.000. Overall accuracies were 63.1% and 36.2%, respectively considering or not the adjacent pixels. The introduction of expert rules based on soil-landscape relationships to allocate soil types to calibration samples enhanced dramatically the results in comparison with a simple weighted random allocation procedure. It also enabled the production of a comprehensive soil map, retrieving expected spatial organization of soils. Estimation of soil properties for various depths is planned using disaggregated soil types, according to the GlobalSoilmap.net specifications. Odgers, N.P., Sun, W., McBratney, A.B., Minasny, B., Clifford, D., 2014. Disaggregating and harmonising soil map units through resampled classification trees. Geoderma 214, 91-100.
HYDRAULIC REDISTRIBUTION OF SOIL WATER: ECOSYSTEM IMPLICATIONS FOR PACIFIC NORTHWEST FORESTS
The physical process of hydraulic redistribution (HR) is driven by competing soil, tree and atmospheric water potential gradients, and may delay severe water stress for roots and other biota associated with the upper soil profile. We monitored soil moisture characteristics across...
Variations in water balance and recharge potential at three western desert sites
Gee, G.W.; Wierenga, P.J.; Andraski, Brian J.; Young, M.H.; Fayer, M.J.; Rockhold, M.L.
1994-01-01
Radioactive and hazardous waste landfills exist at numerous desert locations in the USA. At these locations, annual precipitation is low and soils are generally dry, yet little is known about recharge of water and transport of contaminants to the water table. Recent water balance measurements made at three desert locations, Las Cruces, NM, Beatty, NV, and the U.S. Department of Energy's Hanford Site in the state of Washington, provide information on recharge potential under three distinctly different climate and soil conditions. All three sites show water storage increases with time when soils are coarse textured and plants are removed from the surface, the rate of increase being influenced by climatic variables such as precipitation, radiation, temperature, and wind. Lysimeter data from Hanford and Las Cruces indicate that deep drainage (recharge) from bare, sandy soils can range from 10 to >50% of the annual precipitation. At Hanford, when desert plants are present on sandy or gravelly surface soils, deep drainage is reduced but not eliminated. When surface soils are silt loams, deep drainage is eliminated whether plants are present or not. At Las Cruces and Beatty, the presence of plants eliminated deep drainage at the measurement sites. Differences in water balance between sites are attributed to precipitation quantity and distribution and to soil and vegetation types. The implication for waste management at desert locations is that surface soil properties and plant characteristics must be considered in waste site design in order to minimize recharge potential.
Emma P. McCorkle; Asmeret Asefaw Berhe; Carolyn T. Hunsaker; Dale W. Johnson; Karis J. McFarlane; Marilyn L. Fogel; Stephen C. Hart
2016-01-01
Soil erosion continuously redistributes soil and associated soil organic matter (SOM) on the Earth's surface, with important implications for biogeochemical cycling of essential elements and terrestrial carbon sequestration. Despite the importance of soil erosion, surprisingly few studies have evaluated the sources of eroded carbon (C). We used natural abundance...
Shargil, Dorit; Fine, Pinchas; Gerstl, Zev; Nitsan, Ido; Kurtzman, Daniel
2016-01-15
We studied corticosterone occurrence in lettuce plants grown on three biosolids amended soils under irrigation with either tap water or secondary wastewater effluent. Corticosterone was examined as it has possible implications for human health. It is a major glucocorticoid, and as such has an effect on regulation of metabolism, immune functions and stress response. The plants were grown in 220-L lysimeters packed with 3 soils which represent a wide range of physicochemical properties. Lettuce was grown in cycles (two in summer and two in winter) during 3 years, and in every spring season the sludges were re-applied. Corticosterone was quantified using ELISA and LCMS, and was found in the biosolids, tap water, wastewater effluent and lettuce plants. The respective ranges of concentrations were: 11-92 ng g(-1), 0.5-1.6 ng L(-1), 4.2-4.7 ng L(-1); and 1-900 ng g(-1) dry weight. A positive relationship was found between corticosterone concentrations in winter-grown lettuces and the plants fresh weight. The corticosterone content of the plants did not correspond with either the type of irrigation water or the biosolids type and rate of application or the soil properties. Copyright © 2015 Elsevier B.V. All rights reserved.
Solid residues of incomplete combustion (biochar or char) are continuously being added to soils due to natural vegetation fires in many ecosystems. However, new strategies for carbon sequestration in soils are likely to include the active addition of biochar to soils. Since bioc...
Status of the World's Soil Resources Report, Intergovernmental Technical Panel on Soils
The scope of main objectives of the report are: (a) to provide a global scientific assessment of current and projected soil conditions built on regional data analysis and expertise (b) to explore the implications of these soil conditions for food security, climate change, water q...
Majid, Abdul Hafiz Ab; Ahmad, Abu Hassan
2013-12-01
Nine soil samples from nine buildings infested with Coptotermes gestroi in Pulau Pinang, Malaysia, were tested for the type of soil texture. The soil texture analysis procedures used the hydrometer method. Four of nine buildings (44%) yielded loamy sand-type soil, whereas five of nine buildings (56%) contained sandy loam-type soil.
Majid, Abdul Hafiz Ab; Ahmad, Abu Hassan
2013-01-01
Nine soil samples from nine buildings infested with Coptotermes gestroi in Pulau Pinang, Malaysia, were tested for the type of soil texture. The soil texture analysis procedures used the hydrometer method. Four of nine buildings (44%) yielded loamy sand-type soil, whereas five of nine buildings (56%) contained sandy loam-type soil. PMID:24575252
Evaporative losses from soils covered by physical and different types of biological soil crusts
Chamizo, S.; Cantón, Y.; Domingo, F.; Belnap, J.
2013-01-01
Evaporation of soil moisture is one of the most important processes affecting water availability in semiarid ecosystems. Biological soil crusts, which are widely distributed ground cover in these ecosystems, play a recognized role on water processes. Where they roughen surfaces, water residence time and thus infiltration can be greatly enhanced, whereas their ability to clog soil pores or cap the soil surface when wetted can greatly decrease infiltration rate, thus affecting evaporative losses. In this work, we compared evaporation in soils covered by physical crusts, biological crusts in different developmental stages and in the soils underlying the different biological crust types. Our results show that during the time of the highest evaporation (Day 1), there was no difference among any of the crust types or the soils underlying them. On Day 2, when soil moisture was moderately low (11%), evaporation was slightly higher in well-developed biological soil crusts than in physical or poorly developed biological soil crusts. However, crust removal did not cause significant changes in evaporation compared with the respective soil crust type. These results suggest that the small differences we observed in evaporation among crust types could be caused by differences in the properties of the soil underneath the biological crusts. At low soil moisture (<6%), there was no difference in evaporation among crust types or the underlying soils. Water loss for the complete evaporative cycle (from saturation to dry soil) was similar in both crusted and scraped soils. Therefore, we conclude that for the specific crust and soil types tested, the presence or the type of biological soil crust did not greatly modify evaporation with respect to physical crusts or scraped soils.
Thelusmond, Jean-Rene; Strathmann, Timothy J; Cupples, Alison M
2016-11-15
Carbamazepine (CBZ), an antiepileptic drug, has been introduced into agricultural soils via irrigation with treated wastewater and biosolids application. Such contamination is problematic because CBZ is persistent and the risks to ecosystems or human health are unknown. The current study examined CBZ biodegradation in two agricultural soils (soil 1 and 2) and the effects on the soil microbial communities during CBZ exposure. The experimental design involved three CBZ concentrations (50, 500, 5000ng/g), under aerobic as well as anaerobic conditions. CBZ concentrations were determined using solid phase extraction and LC MS/MS. The effect of CBZ on the soil microbial community was investigated using high throughput sequencing and a computational approach to predict functional composition of the metagenomes (phylogenetic investigation of communities by reconstruction of unobserved states, PICRUSt). The most significant CBZ biodegradation occurred in soil 1 under aerobic conditions. In contrast, CBZ biodegradation was limited under anaerobic conditions in soil 1 and under both conditions in soil 2. For soil 1, several phylotypes were enriched following CBZ degradation compared to the controls, including unclassified Sphingomonadaceae, Xanthomonadaceae and Rhodobacteraceae, as well as Sphingomonas, Aquicella and Microvirga. These phylotypes are considered putative CBZ degraders as they appear to be benefiting from CBZ biodegradation. PICRUSt revealed that soil 1 contained a greater abundance of xenobiotic degrading genes compared to soil 2, and thus, this analysis method offers a potential valuable approach for predicting CBZ attenuation in soils. PICRUSt analysis also implicated Sphingomonadaceae and Xanthomonadaceae in drug metabolism. Interestingly, numerous phylotypes decreased in abundance following CBZ exposure and these varied with soil type, concentration, duration of exposure, and the availability of oxygen. For three phylotypes (Flavobacterium, 3 genus incertae sedis and unclassified Bacteroidetes), the relative abundance was reduced in both soils, indicating a notable sensitivity to CBZ for these microorganisms. Copyright © 2016 Elsevier B.V. All rights reserved.
The Potential Use of Polarized Reflected Light in the Remote Sensing of Soil Moisture
to 89% for saturated soil, indicating that the polarization method may be viable as a remote sensing system for determining soil moistures. Background on the methods and implications of the results are presented.
Rock and Soil Types at Pathfinder Landing Site
NASA Technical Reports Server (NTRS)
1997-01-01
Type areas of rocks and soils. (A) Dark rock type and bright soil type: Shown is the dark rock Barnacle Bill. Reflectance spectra typical of fresh basalt and APXS spectra indicating more silica-rich basaltic andesite compositions characterize this type. These rocks are typically the small boulders and intermediate-sized cobbles at the Pathfinder site. The bright soil type is very common and in this case comprises Barnacle Bill's wind tail and much of the surround soil area. This soil has a high reflectance and a strongly reddened spectrum indicative of oxidized ferric minerals. (B) Bright rock type: Shown is the bright rock Wedge. Reflectance spectra typical of weathered basalt and APXS spectra indicating basaltic compositions characterize this type. These rocks are typically larger than 1 meter in diameter and many display morphologies indicating flood deposition. (C) Pink rock type: Shown is the pink rock Scooby Doo. APXS and reflectance spectra indicate a composition and optical characteristics similar to the drift soil. However, the morphology of the pink rock type indicates a cemented or rocklike structure. This material may be a chemically cemented hardpan that underlies much of the Pathfinder site. (D) Dark soil type: The dark soil type is typically found on the windward sides of rocks or in rock-free areas like Photometry Flats (shown here) where the bright soil has been striped away by aeolian action or in open areas. Other locations include the Mermaid Dune. (E) Disturbed soil type: The darkening of disturbed soil relative to its parent material, bright soil, as a result of changes in soil texture and compaction caused by movement of the rover and retraction of the lander airbag. (F) Lamb-like soil type: This soil type shows reflectance and spectral characteristics intermediate between the bright and dark soils. Its distinguishing feature is a weak spectral absorption near 900 nanometers not seen in either the bright or dark soils.
NOTE: original caption as published in Science MagazineMars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).Conceptualizing the self organization of cloud cells, cold pools and soil moisture
NASA Astrophysics Data System (ADS)
Henneberg, O.; Härter, J. O. M.
2017-12-01
Convective-type cloud is the cause of extreme, short-duration precipitation, challenging weather forecasting and climate modeling. Such extremes are ultimately tied to the uneven redistribution of water in the course of convective self organization and possibly the interaction between clouds [1]. Over land, moisture is organized through: cloud cells, cold pools, and the land surface. Each of these generally capture and release moisture at different rates, e.g. cold pools form quickly but dissipate slowly. Such distinct timescales have implications for the emergent dynamics.Incorporating such distinct time scales, we here present a conceptual model for the spatio-temporal self organization within the diurnal cycle of convection and describe the possible role of soil moisture memory in serving as a predisposition for extremes.We bolster our findings by high resolution, large eddy simulations: Sensible and latent heat fluxes, which are determined by the soil moisture content, can influence the stability of the atmosphere. The onset of initial precipitation is affected by such heat release, which in turn is modified by previous precipitation. Starting from static heat sources, we quantify how their spatial distribution affects the self organization and thus onset, duration and strength of precipitation events in an idealized model setup. Furthermore, an extended model setup with inhomogeneous, self organized distributions of latent and sensible heat fluxes is used to contrast how emergent soil moisture patterns impact on the selforganization structure of convection. Our findings may have implications for the role of land use changes regarding the development of extreme convective precipitation.Reference[1] Moseley et al. (2016) "Intensification of convective extremes driven by cloud-cloud interaction", Nature Geosc. , 9, 748-752
NASA Technical Reports Server (NTRS)
Valdivia-Silva, Julio E.; Karouia, Fathi; Navarro-Gonzalez, Rafael; McKay, Christopher
2016-01-01
Soil samples from the hyper-arid region in the Atacama 23 Desert in Southern Peru (La Joya Desert) were analyzed for total and labile organic carbon (TOC & LOC), phospholipid fatty acids analysis (PLFA), quantitative real time polymerase chain reaction (qRT-PCR), 4',6- diamidino-2-phenylindole (DAPI)-fluorescent microscopy, culturable microorganisms, and oxidant activity, in order to understand the relationship between the presence of organic matter and microorganisms in these types of soils. TOC content levels were similar to the labile pool of carbon suggesting the absence of recalcitrant carbon in these soils. The range of LOC was from 2 to 60 micro-g/g of soil. PLFA analysis indicated a maximum of 2.3 x 10(exp 5) cell equivalents/g. Culturing of soil extracts yielded 1.1 x 10(exp 2)-3.7 x 10(exp 3) CFU/g. qRT-PCR showed between 1.0 x 10(exp 2) and 8 x 10(exp 3) cells/g; and DAPI fluorescent staining indicated bacteria counts up to 5 x 104 cells/g. Arid and semiarid samples (controls) showed values between 10(exp 7) and 10(exp 11) cells/g with all of the methods used. Importantly, the concentration of microorganisms in hyper-arid soils did not show any correlation with the organic carbon content; however, there was a significant dependence on the oxidant activity present in these soil samples evaluated as the capacity to decompose sodium formate in 10 hours. We suggest that the analysis of oxidant activity could be a useful indicator of the microbial habitability in hyper-arid soils, obviating the need to measure water activity over time. This approach could be useful in astrobiological studies on other worlds.
Sun, Bo; Wang, Feng; Jiang, Yuji; Li, Yun; Dong, Zhixin; Li, Zhongpei; Zhang, Xue-Xian
2014-01-01
The spatial patterns of microbial communities are largely determined by the combined effects of historical contingencies and contemporary environmental disturbances, but their relative importance remains poorly understood. Empirical biogeographic data currently available are mostly based on the traditional method of observational survey, which typically involves comparing indigenous microbial communities across spatial scales. Here, we report a long-term soil transplantation experiment, whereby the same two soils (red Acrisol and purple Cambisol from Yingtan) were placed into two geographic locations of ∼1000 km apart (i.e., Yingtan in the mid-subtropical region and Fengqiu in warm-temperate region; both located in China). Twenty years after the transplantation, the resulting soil microbial communities were subject to high-throughput 454 pyrosequencing analysis of 16S and 18S rRNA genes. Additionally, bacteria and archaea involved in nitrogen cycling were estimated using clone library analysis of four genes: archaeal amoA, bacterial amoA,nirK, and nifH. Data of subsequent phylogenetic analysis show that bacteria, fungi, and other microbial eukaryotes, as well as the nitrogen cycling genes, are grouped primarily by the factor of geographic location rather than soil type. Moreover, a shift of microbial communities toward those in local soil (i.e., Chao soil in Fengqiu) has been observed. The results thus suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil. PMID:24772284
Ming, J.; Xianguo, L.; Hongqing, W.; Yuanchun, Z.; Haitao, W.
2011-01-01
Wetland soils are characterized by alternating redox process due to the fluctuation of waterlogged conditions. Iron is an important redox substance, and its transfer and transformation in the wetland ecosystem could be an effective indicator for the environment changes. In this paper, we selected the Naoli River catchment in the Sanjiang Plain, Northeast China as the study area to analyze the dynamics of transfer and transformation of soil iron, and the relationship between iron content change and environmental factors. The results show that the total and crystalline iron contents reach the peak in the depth of 60 cm in soil profile, while the amorphous iron content is higher in the topsoil. In the upper reaches, from the low to high landscape positions, the total and crystalline iron contents decrease from 62.98 g/kg to 41.61 g/kg, 22.82 g/kg to 10.53 g/kg respectively, while the amorphous iron content increases from 2.42 g/kg to 8.88 g/kg. Amorphous iron content has positive correlation with organic matter and soil water contents, while negative correlation with pH. Moreover, both the crystalline and amorphous iron contents present no correlation with total iron content, indicating that environmental factors play a more important role in the transfer and transformation of iron other than the content of the total iron. Different redoximorphic features were found along the soil profile due to the transfer and transformation of iron. E and B horizons of wetland soil in the study area have a matrix Chroma 2 or less, and all the soil types can meet the criteria of American hydric soil indicators except albic soil. ?? Science Press, Science Press, Northeast Institute of Geography and Agroecology, CAS and Springer-Verlag Berlin Heidelberg 2011.
Mao, Yingming; Sang, Shuxun; Liu, Shiqi; Jia, Jinlong
2014-05-01
The spatial variation of soil pH and soil organic matter (SOM) in the urban area of Xuzhou, China, was investigated in this study. Conventional statistics, geostatistics, and a geographical information system (GIS) were used to produce spatial distribution maps and to provide information about land use types. A total of 172 soil samples were collected based on grid method in the study area. Soil pH ranged from 6.47 to 8.48, with an average of 7.62. SOM content was very variable, ranging from 3.51 g/kg to 17.12 g/kg, with an average of 8.26 g/kg. Soil pH followed a normal distribution, while SOM followed a log-normal distribution. The results of semi-variograms indicated that soil pH and SOM had strong (21%) and moderate (44%) spatial dependence, respectively. The variogram model was spherical for soil pH and exponential for SOM. The spatial distribution maps were achieved using kriging interpolation. The high pH and high SOM tended to occur in the mixed forest land cover areas such as those in the southwestern part of the urban area, while the low values were found in the eastern and the northern parts, probably due to the effect of industrial and human activities. In the central urban area, the soil pH was low, but the SOM content was high, which is mainly attributed to the disturbance of regional resident activities and urban transportation. Furthermore, anthropogenic organic particles are possible sources of organic matter after entering the soil ecosystem in urban areas. These maps provide useful information for urban planning and environmental management. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Xin, Pei; Zhou, Tingzhang; Lu, Chunhui; Shen, Chengji; Zhang, Chenming; D'Alpaos, Andrea; Li, Ling
2017-05-01
Salt marshes, distributed globally at the land-ocean interface, are a highly productive eco-system with valuable ecological functions. While salt marshes are affected by various eco-geo-hydrological processes and factors, soil moisture and salinity affect plant growth and play a key role in determining the structure and functions of the marsh ecosystem. To examine the variations of both soil parameters, we simulated pore-water flow and salt transport in a creek-marsh system subjected to spring-neap tides, evaporation and rainfall. The results demonstrated that within a sandy-loam marsh, the tide-induced pore-water circulation averted salt build-up due to evaporation in the near-creek area. In the marsh interior where the horizontal drainage was weak, density-driven flow was responsible for dissipating salt accumulation in the shallow soil layer. In the sandy-loam marsh, the combined influences of spring-neap tides, rainfall and evaporation led to the formation of three characteristic zones, c.f., a near-creek zone with low soil water saturation (i.e., well-aerated) and low pore-water salinity as affected by the semi-diurnal spring tides, a less well-aerated zone with increased salinity where drainage occurred during the neap tides, and an interior zone where evaporation and rainfall infiltration regulated the soil conditions. These characteristics, however, varied with the soil type. In low-permeability silt-loam and clay-loam marshes, the tide-induced drainage weakened and the soil conditions over a large area became dominated by evaporation and rainfall. Sea level rise was found to worsen the soil aeration condition but inhibit salt accumulation due to evaporation. These findings shed lights on the soil conditions underpinned by various hydrogeological processes, and have important implications for further investigations on marsh plant growth and ecosystem functions.
NASA Astrophysics Data System (ADS)
Haghighi, E.; Kirchner, J. W.; Entekhabi, D.
2016-12-01
The relationship between soil moisture and evapotranspiration (ET) fluxes is an important component of land-atmosphere interactions controlling hydrology-climate feedback processes. Important as this relationship is, it remains empirical and physical mechanisms governing its dynamics are insufficiently studied. This is particularly of importance for semiarid regions (currently comprising about half of the Earth's land surface) where the shallow surface soil layer is the primary source of ET and direct evaporation from bare soil is likely a large component of the total flux. Hence, ET-soil moisture coupling in these regions is hypothesized to be strongly influenced by soil evaporation and associated mechanisms. Motivated by recent progress in mechanistic modeling of localized heat and mass exchange rates from bare soil surfaces covered by cylindrical bluff-body elements, we developed a physically based ET model explicitly incorporating coupled impacts of soil moisture and vegetation-induced turbulence in the near-surface region. Model predictions of ET and its partitioning were in good agreement with measured data and suggest that the strength and nature of ET-soil moisture interactions in sparsely vegetated areas are strongly influenced by aerodynamic (rather than radiative) forcing namely wind speed and near-surface turbulence generation as a function of vegetation type and cover fraction. The results demonstrated that the relationship between ET and soil moisture varies from a nonlinear function (the dual regime behavior) to a single moisture-limited regime (linear relationship) by increasing wind velocity and enhancing turbulence generation in the near-surface region (small-scale woody vegetation species of low cover fraction). Potential benefits of this study for improving accuracy and predictive capabilities of remote sensing techniques when applied to semiarid environments will also be discussed.
Geochemical Fate and Transport of Sildenafil in Natural Soils
NASA Astrophysics Data System (ADS)
Turner, A. E.; Vulava, V. M.
2016-12-01
In recent years, pharmaceutical drugs have become of increasing concern to the health of our environment. As a result of wastewater treatment plant discharge and various sources of surface runoff, pharmaceuticals can be found in trace amounts in our most common water resources. Sildenafil, a drug marketed to treat erectile dysfunction, is amongst the top 20 most prescribed pharmaceutical products in the U.S. Sildenafil is a complex polar organic molecule with multiple amine functional groups, which gives it acid-base functionality. The most common pKa of this molecule is approximately 6.0 and water solubility ranges from 3.5 to 4.6 mg/L. The goal of this project is to examine the sorption and transport behavior of sildenafil in natural organic matter- (OM) and clay-rich soils. Soils used for this study were collected from undisturbed forested areas in Francis Marion National Forest, Charleston, SC. A series of batch sorption isotherm and column transport experiments were conducted with these soils. Sildenafil was analyzed using high performance liquid chromatography (HPLC) and liquid chromatography mass spectrometry (LC-MS) techniques. Batch sorption isotherm experiments produced nonlinear data for both OM- and clay-rich soil types. The data shows that sildenafil sorbs more strongly to the clay-rich soils than to the OM-rich soils. This suggests that sildenafil behaved as a cation and preferentially sorbed with the negatively-charged clay minerals. The transport behavior of sildenafil as determined by experiments with soil-packed glass chromatography columns confirmed this behavior. The resulting breakthrough curves show that sildenafil is strongly retarded in clay-rich soils. Our studies do not show degradation or transformation of sildenafil in soils. The results from this study have strong implications for environmental management of pharmaceutical chemical effluents and disposal.
Bento, F de M M; Marques, R N; Costa, M L Z; Walder, J M M; Silva, A P; Parra, J R P
2010-08-01
This study aimed to evaluate adult emergence and duration of the pupal stage of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), and emergence of the fruit fly parasitoid, Diachasmimorpha longicaudata (Ashmead), under different moisture conditions in four soil types, using soil water matric potential. Pupal stage duration in C. capitata was influenced differently for males and females. In females, only soil type affected pupal stage duration, which was longer in a clay soil. In males, pupal stage duration was individually influenced by moisture and soil type, with a reduction in pupal stage duration in a heavy clay soil and in a sandy clay, with longer duration in the clay soil. As matric potential decreased, duration of the pupal stage of C. capitata males increased, regardless of soil type. C. capitata emergence was affected by moisture, regardless of soil type, and was higher in drier soils. The emergence of D. longicaudata adults was individually influenced by soil type and moisture factors, and the number of emerged D. longicaudata adults was three times higher in sandy loam and lower in a heavy clay soil. Always, the number of emerged adults was higher at higher moisture conditions. C. capitata and D. longicaudata pupal development was affected by moisture and soil type, which may facilitate pest sampling and allow release areas for the parasitoid to be defined under field conditions.
USDA-ARS?s Scientific Manuscript database
Resolving uncertainty in the carbon cycle is paramount to refining climate predictions. Soil organic carbon (SOC) is a major component of terrestrial C pools, and accuracy of SOC estimates are only as good as the measurements and assumptions used to obtain them. Dryland soils account for a substanti...
Lead (Pb) sorption onto oxide surfaces in soils may strongly influence the risk posed from incidental ingestion of lead-contaminated soils. In this study, Pb was sorbed to a model soil mineral, birnessite, and was placed in a simulated gastrointestinal tract (in vitro) to simula...
USDA-ARS?s Scientific Manuscript database
With greater awareness of the wide-ranging implications degraded soils have in the food chain, there is growing interest in developing technologies and management practices to improve soil quality. To date, such initiatives are at the forefront of soil science as climate change is expected to alter ...
Water and heat transport in boreal soils: Implications for soil response to climate change
Fan, Z.; Neff, J.C.; Harden, J.W.; Zhang, T.; Veldhuis, H.; Czimczik, C.I.; Winston, G.C.; O'Donnell, J. A.
2011-01-01
Soil water content strongly affects permafrost dynamics by changing the soil thermal properties. However, the movement of liquid water, which plays an important role in the heat transport of temperate soils, has been under-represented in boreal studies. Two different heat transport models with and without convective heat transport were compared to measurements of soil temperatures in four boreal sites with different stand ages and drainage classes. Overall, soil temperatures during the growing season tended to be over-estimated by 2-4??C when movement of liquid water and water vapor was not represented in the model. The role of heat transport in water has broad implications for site responses to warming and suggests reduced vulnerability of permafrost to thaw at drier sites. This result is consistent with field observations of faster thaw in response to warming in wet sites compared to drier sites over the past 30. years in Canadian boreal forests. These results highlight that representation of water flow in heat transport models is important to simulate future soil thermal or permafrost dynamics under a changing climate. ?? 2011 Elsevier B.V.
Water and heat transport in boreal soils: Implications for soil response to climate change
Fan, Zhaosheng; Harden, Jennifer W.; Winston, G.C.; O'Donnell, Jonathan A.; Neff, Jason C.; Zhang, Tingjun; Veldhuis, Hugo; Czimczik, C.I.
2011-01-01
Soil water content strongly affects permafrost dynamics by changing the soil thermal properties. However, the movement of liquid water, which plays an important role in the heat transport of temperate soils, has been under-represented in boreal studies. Two different heat transport models with and without convective heat transport were compared to measurements of soil temperatures in four boreal sites with different stand ages and drainage classes. Overall, soil temperatures during the growing season tended to be over-estimated by 2–4 °C when movement of liquid water and water vapor was not represented in the model. The role of heat transport in water has broad implications for site responses to warming and suggests reduced vulnerability of permafrost to thaw at drier sites. This result is consistent with field observations of faster thaw in response to warming in wet sites compared to drier sites over the past 30 years in Canadian boreal forests. These results highlight that representation of water flow in heat transport models is important to simulate future soil thermal or permafrost dynamics under a changing climate.
The effect of soil type on the bioremediation of petroleum contaminated soils.
Haghollahi, Ali; Fazaelipoor, Mohammad Hassan; Schaffie, Mahin
2016-09-15
In this research the bioremediation of four different types of contaminated soils was monitored as a function of time and moisture content. The soils were categorized as sandy soil containing 100% sand (type I), clay soil containing more than 95% clay (type II), coarse grained soil containing 68% gravel and 32% sand (type III), and coarse grained with high clay content containing 40% gravel, 20% sand, and 40% clay (type IV). The initially clean soils were contaminated with gasoil to the concentration of 100 g/kg, and left on the floor for the evaporation of light hydrocarbons. A full factorial experimental design with soil type (four levels), and moisture content (10 and 20%) as the factors was employed. The soils were inoculated with petroleum degrading microorganisms. Soil samples were taken on days 90, 180, and 270, and the residual total petroleum hydrocarbon (TPH) was extracted using soxhlet apparatus. The moisture content of the soils was kept almost constant during the process by intermittent addition of water. The results showed that the efficiency of bioremediation was affected significantly by the soil type (Pvalue < 0.05). The removal percentage was the highest (70%) for the sandy soil with the initial TPH content of 69.62 g/kg, and the lowest for the clay soil (23.5%) with the initial TPH content of 69.70 g/kg. The effect of moisture content on bioremediation was not statistically significant for the investigated levels. The removal percentage in the clay soil was improved to 57% (within a month) in a separate experiment by more frequent mixing of the soil, indicating low availability of oxygen as a reason for low degradation of hydrocarbons in the clay soil. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Asher, E. C. C.; Caputi, D.; Conley, S. A.; Faloona, I. C.
2016-12-01
Nitric oxide (NOx) emissions contribute to the production of tropospheric ozone and the nutrient supply fueling primary production. Current global estimates indicate that biomass burning, including wildfires, and soil emissions represent 15 - 25 % of the total emissions. Yet estimates suggest that in North America during the summer, natural sources, including biomass burning, soil emissions and lightning, are responsible for nearly half of total emissions. Thus, as domestic air quality standards grow stricter and anthropogenic sources more regulated, constraining natural sources of NOx becomes critical. NOx concentrations in wildfire smoke differ based on the age of the plume, fire intensity and vegetation type. NOx soil emissions depend on soil moisture, soil temperature, soil porosity, and nitrogen storage. We present two years of NOx and ozone (O3) measurements from a remote mountaintop monitoring site located on Chews Ridge in the coastal mountains of Central California, airborne observations, and remotely sensed NO2 tropospheric columns retrieved using the Ozone Monitoring Instrument (OMI). We explore controls on NOx concentrations at Chews Ridge, in Monterey County, such as the age of wildfire smoke plumes and wildfire intensity (i.e. burning vs. smoldering), as well as soil moisture and precipitation, which can lead to pulsed NOx fluxes. Most recently our in situ observations fortuitously captured differing amounts of the active plume of the Soberanes wildfire, which to date has burned >45,000 acres and is expected to continue partially contained through August 2016. Implications of these episodic sources of NOx on the regional ozone budget will be discussed.
J.A. Foote; T.W. Boutton; D.A. Scott
2015-01-01
Land management practices have strong potential to modify the biogeochemistry of forest soils, with implications for the long-term sustainability and productivity of forestlands. The Long-Term Soil Productivity (LTSP) program, a network of 62 sites across the USA and Canada, was initiated to address concerns over possible losses of soil productivity due to soil...
Implications of complete watershed soil moisture measurements to hydrologic modeling
NASA Technical Reports Server (NTRS)
Engman, E. T.; Jackson, T. J.; Schmugge, T. J.
1983-01-01
A series of six microwave data collection flights for measuring soil moisture were made over a small 7.8 square kilometer watershed in southwestern Minnesota. These flights were made to provide 100 percent coverage of the basin at a 400 m resolution. In addition, three flight lines were flown at preselected areas to provide a sample of data at a higher resolution of 60 m. The low level flights provide considerably more information on soil moisture variability. The results are discussed in terms of reproducibility, spatial variability and temporal variability, and their implications for hydrologic modeling.
Environmental implications of herbicide resistance: soil biology and ecology
USDA-ARS?s Scientific Manuscript database
Soil microbial community structure and activity are clearly linked to plant communities established in natural and agricultural ecosystems. A limited number of studies confirm that weeds alter their soil environment and select for specific microbial communities in the rhizosphere. Such rhizosphere m...
Climate change, soil health, and ecosystem goods and services
USDA-ARS?s Scientific Manuscript database
Worldwide, climate change is predicted to alter precipitation regimes, annual temperatures, and occurrence of severe weather events. These changes have important implications for soil health-- defined as the capacity of a soil to contribute to ecosystem function and sustain producers and consumers--...
NASA Astrophysics Data System (ADS)
Ahmed, I.; Karim, A.; Boutton, T. W.; Strom, K.; Fox, J.
2013-12-01
The thematic focus of this 3-year period multidisciplinary USDA-CBG collaborative applied research is integrated monitoring of soil organic carbon (SOC) loss from multi-use lands using state-of-the-art stable isotope science under uncertain hydrologic influences. In this study, SOC loss and water runoff are being monitored on a 150 square kilometer watershed in Houston, Texas, using natural rainfall events, and total organic carbon/nitrogen concentration (TOC/TN) and stable isotope ratio (δ13C, δ15N) measurements with different land-use types. The work presents the interdisciplinary research results to uncover statistically valid and scientifically sound ways to monitor SOC loss by (i) application of Bayesian Markov Chain Monte Carlo statistical models to assess the relationship between rainfall-runoff and SOC release during soil erosion in space and time, (ii) capturing the episodic nature of rainfall events and its role in the spatial distribution of SOC loss from water erosion, (iii) stable isotope composition guided fingerprinting (source and quantity) of SOC by considering various types of erosion processes common in a heterogeneous watershed, to be able to tell what percentage of SOC is lost from various land-use types (Fox and Papanicolaou, 2008), (iv) creating an integrated watershed scale statistical soil loss monitoring model driven by spatial and temporal correlation of flow and stable isotope composition (Ahmed et. al., 2013a,b), and (v) creation of an integrated decision support system (DSS) for sustainable management of SOC under hydrologic uncertainty to assist the end users. References: Ahmed, I., Karim, A., Boutton, T.W., and Strom, K.B. (2013a). 'Monitoring Soil Organic Carbon Loss from Erosion Using Stable Isotopes.' Proc., Soil Carbon Sequestration, International Conference, May 26-29, Reykjavik, Iceland. Ahmed, I, Bouttom, T.W., Strom, K. B., Karim, A., and Irvin-Smith, N. (2013b). 'Soil carbon distribution and loss monitoring in the urbanized Buffalo Bayou watershed, Houston, Texas.' Proc., 4th Annual All Investigators Meeting of the North American Carbon Program, February 4-7, Albuquerque, NM. Fox, J.F. and Papanicolaou, A.N. (2008). An un-mixing model to study watershed erosion processes. Advances in Water Resources, 31, 96-108. ______________________________ * Corresponding author';s e-mail: ifahmed@pvamu.edu
Luo, Yunjian; Zhang, Xiaoquan; Wang, Xiaoke; Ren, Yin
2014-01-01
Biomass conversion factors (BCFs, defined as the ratios of tree components (i.e. stem, branch, foliage and root), as well as aboveground and whole biomass of trees to growing stock volume, Mg m-3) are considered as important parameters in large-scale forest biomass carbon estimation. To date, knowledge of possible sources of the variation in BCFs is still limited at large scales. Using our compiled forest biomass dataset of China, we presented forest type-specific values of BCFs, and examined the variation in BCFs in relation to forest type, stand development and environmental factors (climate and soil fertility). BCFs exhibited remarkable variation across forest types, and also were significantly related to stand development (especially growing stock volume). BCFs (except Stem BCF) had significant relationships with mean annual temperature (MAT) and mean annual precipitation (MAP) (P<0.001). Climatic data (MAT and MAP) collectively explained 10.0-25.0% of the variation in BCFs (except Stem BCFs). Moreover, stronger climatic effects were found on BCFs for functional components (i.e. branch, foliage and root) than BCFs for combined components (i.e. aboveground section and whole trees). A general trend for BCFs was observed to decrease and then increase from low to high soil fertility. When qualitative soil fertility and climatic data (MAT and MAP) were combined, they explained 14.1-29.7% of the variation in in BCFs (except Stem BCFs), adding only 4.1-4.9% than climatic data used. Therefore, to reduce the uncertainty induced by BCFs in forest carbon estimates, we should apply values of BCFs for a specified forest type, and also consider climatic and edaphic effects, especially climatic effect, in developing predictive models of BCFs (except Stem BCF).
Wang, Xiaoke; Ren, Yin
2014-01-01
Biomass conversion factors (BCFs, defined as the ratios of tree components (i.e. stem, branch, foliage and root), as well as aboveground and whole biomass of trees to growing stock volume, Mg m−3) are considered as important parameters in large-scale forest biomass carbon estimation. To date, knowledge of possible sources of the variation in BCFs is still limited at large scales. Using our compiled forest biomass dataset of China, we presented forest type-specific values of BCFs, and examined the variation in BCFs in relation to forest type, stand development and environmental factors (climate and soil fertility). BCFs exhibited remarkable variation across forest types, and also were significantly related to stand development (especially growing stock volume). BCFs (except Stem BCF) had significant relationships with mean annual temperature (MAT) and mean annual precipitation (MAP) (P<0.001). Climatic data (MAT and MAP) collectively explained 10.0–25.0% of the variation in BCFs (except Stem BCFs). Moreover, stronger climatic effects were found on BCFs for functional components (i.e. branch, foliage and root) than BCFs for combined components (i.e. aboveground section and whole trees). A general trend for BCFs was observed to decrease and then increase from low to high soil fertility. When qualitative soil fertility and climatic data (MAT and MAP) were combined, they explained 14.1–29.7% of the variation in in BCFs (except Stem BCFs), adding only 4.1–4.9% than climatic data used. Therefore, to reduce the uncertainty induced by BCFs in forest carbon estimates, we should apply values of BCFs for a specified forest type, and also consider climatic and edaphic effects, especially climatic effect, in developing predictive models of BCFs (except Stem BCF). PMID:24728222
Phosphorus, carbon- and nitrogen interactions in productive and degraded tropical pastures
NASA Astrophysics Data System (ADS)
Oberson, A.; Hegglin, D. D.; Nesper, M.; Rao, I.; Fonte, S.; Ramirez, B.; Velasquez, J.; Tamburini, F.; Bünemann, E. K.; Frossard, E.
2011-12-01
Pastures are the main land use in deforested areas of tropical South America. The highly weathered soils of these regions usually have low total and available phosphorus (P) contents. Low P availability can strongly limit plant and animal productivity and other soil ecosystem functions. Most introduced pastures of Brachiaria spp. are grass-alone (GA) while some are grass-legume (GL) pastures. The majority of the introduced pastures, particularly the grass-alone are at some state of degradation (GD). Pasture degradation induces severe loss of plant biomass production, with drastic ecological and economic implications. Although the importance of P deficiency in pasture degradation has been recognized, the knowledge generated on stoichiometry of carbon (C), nitrogen (N) and P along pathways of the nutrient cycles of pastures, with different botanical composition and productivity, has been very limited. We will present results of a case study realized during 2010 to 2011 in the forest margins agro-ecosystem of the department of Caquetá, Colombia. Our objectives were to determine: i) whether P availability is lower in degraded compared to productive pastures, and ii) whether the introduction of legumes in the pasture increases P availability through enhanced biological P cycling through plant growth, plant litter decomposition and the soil microbial biomass; and iii) whether pasture types (GA vs GL) and the state of pasture degradation affect the C:N:P ratios in nutrient pools of the soil-plant system. An on-farm study was conducted on nine farms in the department of Caquetá, Colombia. On every farm three different pasture types were studied: degraded grass alone pastures (GD), productive grass-alone pastures (GA) and productive grass-legume pastures (GL). Basic soil characteristics and indicators on soil P status, microbial P cycling, plant biomass production, plant litter deposition and nutrient concentrations in plant tissue were determined. Analysis of P, C and N in the microbial biomass, particulate organic matter and soil aggregates is in progress. Results showed that plant biomass production, litter deposition, soil organic P and basal soil respiration rate were significantly lower in GD than GA pastures. Moreover, clear trends towards lower total C, N, total P and microbial P per unit soil mass and higher Al saturation were observed in soils of GD compared to GA pastures while available soil P content and P concentration in plant biomass did not differ. No significant differences were found in any of the measured soil parameters between the two productive pasture types, GA and GL, but legume biomass has significantly higher N concentration and tends to have higher P concentration than grasses. 15-N natural abundance data indicated that legume N was largely derived from symbiotic N2 fixation. Biological P cycling was clearly reduced in GD compared to productive GA and GL pastures. This work highlights the importance of biological P cycling for developing sustainable pastoral systems and provides new knowledge on interactions of P with C and N.
Bradová, Monika; Tejnecký, Václav; Borůvka, Luboš; Němeček, Karel; Ash, Christopher; Šebek, Ondřej; Svoboda, Miroslav; Zenáhlíková, Jitka; Drábek, Ondřej
2015-11-01
Aluminium (Al) speciation is a characteristic that can be used as a tool for describing the soil acidification process. The question that was answered is how tree species (beech vs spruce) and type of soil horizon affect Al speciation. Our hypotesis is that spruce and beech forest vegetation are able to modify the chemical characteristics of organic horizon, hence the content of Al species. Moreover, these characteristics are seasonally dependent. To answer these questions, a detailed chromatographic speciation of Al in forest soils under contrasting tree species was performed. The Jizera Mountains area (Czech Republic) was chosen as a representative mountainous soil ecosystem. A basic forestry survey was performed on the investigated area. Soil and precipitation samples (throughfall, stemflow) were collected under both beech and spruce stands at monthly intervals from April to November during the years 2008-2011. Total aluminium content and Al speciation, pH, and dissolved organic carbon were determined in aqueous soil extracts and in precipitation samples. We found that the most important factors affecting the chemistry of soils, hence content of the Al species, are soil horizons and vegetation cover. pH strongly affects the amount of Al species under both forests. Fermentation (F) and humified (H) organic horizons contain a higher content of water extractable Al and Al(3+) compared to organo-mineral (A) and mineral horizons (B). With increasing soil profile depth, the amount of water extractable Al, Al(3+) and moisture decreases. The prevailing water-extractable species of Al in all studied soils and profiles under both spruce and beech forests were organically bound monovalent Al species. Distinct seasonal variations in organic and mineral soil horizons were found under both spruce and beech forests. Maximum concentrations of water-extractable Al and Al(3+) were determined in the summer, and the lowest in spring.
Kathryn Resner; Kyungsoo Yoo; Cindy Hale; Anthony Aufdenkampe; Alex Blum; Stephen Sebestyen
2011-01-01
Minnesota forested soils have evolved without the presence of earthworms since the last glacial retreat. When exotic earthworms arrive, enhanced soil bioturbation often results in dramatic morphological and chemical changes in soils with negative implications for the forests' sustainability. However, the impacts of earthworm invasion on geochemical processes in...
Soil water sensing: Implications of sensor capabilities for variable rate irrigation management
USDA-ARS?s Scientific Manuscript database
Irrigation scheduling using soil water sensors aims at maintaining the soil water content in the crop root zone above a lower limit defined by the management allowed depletion (MAD) for that soil and crop, but not so wet that too much water is lost to deep percolation, evaporation and runoff or that...
Steven D. Warren
2014-01-01
Biological soil crusts, composed of soil surfaces stabilized by a consortium of cyanobacteria, algae, fungi, lichens, and/or bryophytes, are common in most deserts and perform functions of primary productivity, nitrogen fixation, nutrient cycling, water redistribution, and soil stabilization. The crusts are highly susceptible to disturbance. The degree of perturbation...
Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei
2017-01-01
Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, β-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils. PMID:28611747
Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei
2017-01-01
Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria , Chloroflexi , and Firmicutes increased whereas Cyanobacteria , β -proteobacteria , and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota , Thaumarchaeota , and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils.
A case study for evaluating potential soil sensitivity in aridland systems.
Peterman, Wendy L; Ferschweiler, Ken
2016-04-01
Globally, ecosystems are subjected to prolonged droughts and extreme heat events, leading to forest die-offs and dominance shifts in vegetation. Some scientists and managers view soil as the main resource to be considered in monitoring ecosystem responses to aridification. As the medium through which precipitation is received, stored, and redistributed for plant use, soil is an important factor in the sensitivity of ecosystems to a drying climate. This study presents a novel approach to evaluating where on a landscape soils may be most sensitive to drying, making them less resilient to disturbance, and where potential future vegetation changes could lead to such disturbance. The drying and devegetation of arid lands can increase wind erosion, contributing to aerosol and dust emissions. This has implications for air quality, human health, and water resources. This approach combines soil data with vegetation simulations, projecting future vegetation change, to create maps of potential areas of concern for soil sensitivity and dust production in a drying climate. Consistent with recent observations, the projections show shifts from grasslands and woodlands to shrublands in much of the southwestern region. An increase in forested area occurs, but shifts in the dominant types and spatial distribution of the forests also are seen. A net increase in desert ecosystems in the region and some changes in alpine and tundra ecosystems are seen. Approximately 124,000 km(2) of soils flagged as "sensitive" are projected to have vegetation change between 2041 and 2050, and 82,927 km(2) of soils may become sensitive because of future vegetation changes. These maps give managers a way to visualize and identify where soils and vegetation should be investigated and monitored for degradation in a drying climate, so restoration and mitigation strategies can be focused in these areas. © 2015 SETAC.
Grandy, A Stuart; Neff, Jason C
2008-10-15
Advances in spectroscopic and other chemical methods have greatly enhanced our ability to characterize soil organic matter chemistry. As a result, the molecular characteristics of soil C are now known for a range of ecosystems, soil types, and management intensities. Placing this knowledge into a broader ecological and management context is difficult, however, and remains one of the fundamental challenges of soil organic matter research. Here we present a conceptual model of molecular soil C dynamics to stimulate inter-disciplinary research into the ecological implications of molecular C turnover and its management- and process-level controls. Our model describes three properties of soil C dynamics: 1) soil size fractions have unique molecular patterns that reflect varying degrees of biological and physical control over decomposition; 2) there is a common decomposition sequence independent of plant inputs or other ecosystem properties; and 3) molecular decomposition sequences, although consistent, are not uniform and can be altered by processes that accelerate or slow the microbial transformation of specific molecules. The consequences of this model include several key points. First, lignin presents a constraint to decomposition of plant litter and particulate C (>53 microm) but exerts little influence on more stable mineral-associated soil fractions <53 microm. Second, carbon stabilized onto mineral fractions has a distinct composition related more to microbially processed organic matter than to plant-related compounds. Third, disturbances, such as N fertilization and tillage, which alter decomposition rates, can have "downstream effects"; that is, a disturbance that directly alters the molecular dynamics of particulate C may have a series of indirect effects on C stabilization in silt and clay fractions.
NASA Astrophysics Data System (ADS)
Ferreira, C. S. S.; Walsh, R. P. D.; Shakesby, R. A.; Keizer, J. J.; Soares, D.; González-Pelayo, O.; Coelho, C. O. A.; Ferreira, A. J. D.
2016-02-01
Forest hydrology has been widely investigated, but the impacts of different woodland types on hydrological processes within a peri-urban catchment mosaic are poorly understood. This paper investigates overland flow generation processes in three different types of woodland in a small (6.2 km2) catchment in central Portugal that has undergone strong urban development over the past 50 years. A semi-natural oak stand and a sparse eucalyptus stand on partly abandoned peri-urban land and a dense eucalyptus plantation were each instrumented with three 16 m2 runoff plots and 15 throughfall gauges, which were monitored at c. 1- to 2-week intervals over two hydrological years. In addition, surface soil moisture content (0-5 cm) and hydrophobicity (0-2 cm, 2-5 cm and 5-7 cm) were measured at the same time as overland flow and throughfall. Although all three woodland types produced relatively little overland flow (<3% of the incident rainfall overall), the dense eucalypt stand produced twice as much overland flow as the sparse eucalypt and oak woodland types. This contrast in overland flow can be attributed to infiltration-excess processes operating in storms following dry antecedent weather when severe hydrophobicity was widespread in the dense eucalypt plantation, whereas it was of moderate and low severity and less widespread in the sparse eucalypt and oak woodlands, respectively. In contrast, under wet conditions greater (albeit still small) percentages of overland flow were produced in oak woodland than in the two eucalypt plantations; this was probably linked to saturation-excess overland flow being generated more readily at the oak site as a result of its shallower soil. Differences in water retention in surface depressions affected overland flow generation and downslope flow transport. Implications of the seasonal differentials in overland flow generation between the three distinct woodland types for the hydrological response of peri-urban catchments are addressed.
Soil type-depending effect of paddy management: composition and distribution of soil organic matter
NASA Astrophysics Data System (ADS)
Urbanski, Livia; Kölbl, Angelika; Lehndorff, Eva; Houtermans, Miriam; Schad, Peter; Zhang, Gang-Lin; Rahayu Utami, Sri; Kögel-Knabner, Ingrid
2016-04-01
Paddy soil management is assumed to promote soil organic matter accumulation and specifically lignin caused by the resistance of the aromatic lignin structure against biodegradation under anaerobic conditions during inundation of paddy fields. The present study investigates the effect of paddy soil management on soil organic matter composition compared to agricultural soils which are not used for rice production (non-paddy soils). A variety of major soil types, were chosen in Indonesia (Java), including Alisol, Andosol and Vertisol sites (humid tropical climate of Java, Indonesia) and in China Alisol sites (humid subtropical climate, Nanjing). This soils are typically used for rice cultivation and represent a large range of soil properties to be expected in Asian paddy fields. All topsoils were analysed for their soil organic matter composition by solid-state 13C nuclear magnetic resonance spectroscopy and lignin-derived phenols by CuO oxidation method. The soil organic matter composition, revealed by solid-state 13C nuclear magnetic resonance, was similar for the above named different parent soil types (non-paddy soils) and was also not affected by the specific paddy soil management. The contribution of lignin-related carbon groups to total SOM was similar in the investigated paddy and non-paddy soils. A significant proportion of the total aromatic carbon in some paddy and non-paddy soils was attributed to the application of charcoal as a common management practise. The extraction of lignin-derived phenols revealed low VSC (vanillyl, syringyl, cinnamyl) values for all investigated soils, being typical for agricultural soils. An inherent accumulation of lignin-derived phenols due to paddy management was not found. Lignin-derived phenols seem to be soil type-dependent, shown by different VSC concentrations between the parent soil types. The specific paddy management only affects the lignin-derived phenols in Andosol-derived paddy soils which are characterized by significantly higher VSC values compared to their parent soil types. However, the higher organic carbon concentrations in Andosol and Alisol (China)-derived paddy soils compared to their parent soil types, could not be explained by an enrichment of lignin-derived phenols. It seems that site specific incorporation of crop residues and properties of the parent soil types are likely more important for organic carbon contents and soil organic matter composition than the effect of paddy management itself.
NASA Technical Reports Server (NTRS)
Larsen, K. W.; Arvidson, R. E.; Jolliff, B. L.; Clark, B. C.
2000-01-01
Correspondence and Least Squares Mixing Analysis techniques are applied to the chemical composition of Viking 1 soils and Pathfinder rocks and soils. Implications for the parent composition of local and global materials are discussed.
Han-Sup Han
2007-01-01
Economic implications of soil disturbance are discussed in four categories: planning and layout, selection of harvesting systems and equipment, long-term site productivity loss, and rehabilitation treatments. Preventive measures are more effective in minimizing impacts on soils than rehabilitation treatments because of the remedial expenses, loss of productivity until...
Arsenic in garden soils and vegetable crops in Cornwall, England: Implications for human health.
Xu, J; Thornton, I
1985-12-01
Total concentrations of arsenic in surface (0-15cm) garden soils in the historical mining area of Hayle-Camborne-Godolphin, Cornwall, England are large and range widely (144-892 μg/g). Amounts of water soluble and acid-fluoride extractable soil arsenic are significantly correlated with total content.Examination of 6 salad and vegetable crops grown in 32 gardens has shown arsenic concentrations in the edible tissues to be only slightly elevated. There were strong correlations between arsenic in beetroot, lettuce, onion and peas and soil arsenic (total, water soluble and acid extractable). Regression equations have been calculated. Ridge regression analysis applied to test the importance of other soil variables has shown both iron and phosphorus to influence the uptake of arsenic.Arsenic in all the vegetables sampled was below the statutory limit in the U.K. of 1 mg/kg fresh weight. Implications for health should be assessed in relation to other exposure routesvia water, air and directly ingested dust and soil.
Dar, Javid Ahmad; Sundarapandian, Somaiah
2015-02-01
An accurate characterization of tree, understory, deadwood, floor litter, and soil organic carbon (SOC) pools in temperate forest ecosystems is important to estimate their contribution to global carbon (C) stocks. However, this information on temperate forests of the Himalayas is lacking and fragmented. In this study, we measured C stocks of tree (aboveground and belowground biomass), understory (shrubs and herbaceous), deadwood (standing and fallen trees and stumps), floor litter, and soil from 111 plots of 50 m × 50 m each, in seven forest types: Populus deltoides (PD), Juglans regia (JR), Cedrus deodara (CD), Pinus wallichiana (PW), mixed coniferous (MC), Abies pindrow (AP), and Betula utilis (BU) in temperate forests of Kashmir Himalaya, India. The main objective of the present study is to quantify the ecosystem C pool in these seven forest types. The results showed that the tree biomass ranged from 100.8 Mg ha(-1) in BU forest to 294.8 Mg ha(-1) for the AP forest. The understory biomass ranged from 0.16 Mg ha(-1) in PD forest to 2.36 Mg ha(-1) in PW forest. Deadwood biomass ranged from 1.5 Mg ha(-1) in PD forest to 14.9 Mg ha(-1) for the AP forest, whereas forest floor litter ranged from 2.5 Mg ha(-1) in BU and JR forests to 3.1 Mg ha(-1) in MC forest. The total ecosystem carbon stocks varied from 112.5 to 205.7 Mg C ha(-1) across all the forest types. The C stocks of tree, understory, deadwood, litter, and soil ranged from 45.4 to 135.6, 0.08 to 1.18, 0.7 to 6.8, 1.1 to 1.4, and 39.1-91.4 Mg ha(-1), respectively, which accounted for 61.3, 0.2, 1.4, 0.8, and 36.3 % of the total carbon stock. BU forest accounted 65 % from soil C and 35 % from biomass, whereas PD forest contributed only 26 % from soil C and 74 % from biomass. Of the total C stock in the 0-30-cm soil, about 55 % was stored in the upper 0-10 cm. Soil C stocks in BU forest were significantly higher than those in other forests. The variability of C pools of different ecosystem components is influenced by vegetation type, stand structure, management history, and altitude. Our results reveal that a higher percentage (63 %) of C is stored in biomass and less in soil in these temperate forests except at the higher elevation broad-leaved BU forest. Results from this study will enhance our ability to evaluate the role of these forests in regional and global C cycles and have great implications for planning strategies for conservation. The study provides important data for developing and validating C cycling models for temperate forests.
Land-use change and soil type are drivers of fungal and archaeal communities in the Pampa biome.
Lupatini, Manoeli; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Suleiman, Afnan Khalil Ahmad; Fulthorpe, Roberta R; Roesch, Luiz Fernando Würdig
2013-02-01
The current study aimed to test the hypothesis that both land-use change and soil type are responsible for the major changes in the fungal and archaeal community structure and functioning of the soil microbial community in Brazilian Pampa biome. Soil samples were collected at sites with different land-uses (native grassland, native forest, Eucalyptus and Acacia plantation, soybean and watermelon field) and in a typical toposequence in Pampa biome formed by Paleudult, Albaqualf and alluvial soils. The structure of soil microbial community (archaeal and fungal) was evaluated by ribosomal intergenic spacer analysis and soil functional capabilities were measured by microbial biomass carbon and metabolic quotient. We detected different patterns in microbial community driven by land-use change and soil type, showing that both factors are significant drivers of fungal and archaeal community structure and biomass and microbial activity. Fungal community structure was more affected by land-use and archaeal community was more affected by soil type. Irrespective of the land-use or soil type, a large percentage of operational taxonomic unit were shared among the soils. We accepted the hypothesis that both land-use change and soil type are drivers of archaeal and fungal community structure and soil functional capabilities. Moreover, we also suggest the existence of a soil microbial core.
The tri-soil experiment: do plants discriminate among vegetation soil types?
USDA-ARS?s Scientific Manuscript database
We tested if rooting mass and root nutrient uptake of cheatgrass (Bromus tectorum) or creeping wildrye (Leymus triticoides) were influenced by vegetation soil type. Three soil types (A horizons), similar in gross physical and chemical properties, were freshly-collected. The soils varied in the veget...
Mechanisms of nickel uptake, and hyperaccumulation by plants and implications to soil remediation
USDA-ARS?s Scientific Manuscript database
Soil contamination by heavy metals like Ni was originally restricted to metalliferous soils but in recent years it has become a general problem due to the increasingly frequent anthropogenic activities. Because of the characteristics of cost-effectiveness, environmental friendliness, and fewer side...
Pore water effects on soil erodibility and its implication in ephemeral gully erosion modeling
USDA-ARS?s Scientific Manuscript database
Ephemeral gully erosion is the main source of sediment from the agricultural landscape, unfortunately, it has been overlooked in traditional soil erosion assessment. Field observations, and subsequent support from controlled lab experiments, have shown the linkage between transient soil hydraulic co...
Mark Miller; Jayne Belnap; Susan Beatty; Bruce Webb
2001-01-01
From January 1997 through October 1998, research was conducted at Canyonlands National Park to investigate soil traits responsible for distinct spatial patterns of cheatgrass (Bromus tectorum) occurrence. Field experiments were conducted at sites representing a broad range of soil conditions and cheatgrass abundances. Standard physicochemical soil measures in...
S-World: A high resolution global soil database for simulation modelling (Invited)
NASA Astrophysics Data System (ADS)
Stoorvogel, J. J.
2013-12-01
There is an increasing call for high resolution soil information at the global level. A good example for such a call is the Global Gridded Crop Model Intercomparison carried out within AgMIP. While local studies can make use of surveying techniques to collect additional techniques this is practically impossible at the global level. It is therefore important to rely on legacy data like the Harmonized World Soil Database. Several efforts do exist that aim at the development of global gridded soil property databases. These estimates of the variation of soil properties can be used to assess e.g., global soil carbon stocks. However, they do not allow for simulation runs with e.g., crop growth simulation models as these models require a description of the entire pedon rather than a few soil properties. This study provides the required quantitative description of pedons at a 1 km resolution for simulation modelling. It uses the Harmonized World Soil Database (HWSD) for the spatial distribution of soil types, the ISRIC-WISE soil profile database to derive information on soil properties per soil type, and a range of co-variables on topography, climate, and land cover to further disaggregate the available data. The methodology aims to take stock of these available data. The soil database is developed in five main steps. Step 1: All 148 soil types are ordered on the basis of their expected topographic position using e.g., drainage, salinization, and pedogenesis. Using the topographic ordering and combining the HWSD with a digital elevation model allows for the spatial disaggregation of the composite soil units. This results in a new soil map with homogeneous soil units. Step 2: The ranges of major soil properties for the topsoil and subsoil of each of the 148 soil types are derived from the ISRIC-WISE soil profile database. Step 3: A model of soil formation is developed that focuses on the basic conceptual question where we are within the range of a particular soil property at a particular location given a specific soil type. The soil properties are predicted for each grid cell based on the soil type, the corresponding ranges of soil properties, and the co-variables. Step 4: Standard depth profiles are developed for each of the soil types using the diagnostic criteria of the soil types and soil profile information from the ISRIC-WISE database. The standard soil profiles are combined with the the predicted values for the topsoil and subsoil yielding unique soil profiles at each location. Step 5: In a final step, additional soil properties are added to the database using averages for the soil types and pedo-transfer functions. The methodology, denominated S-World (Soils of the World), results in readily available global maps with quantitative pedon data for modelling purposes. It forms the basis for the Global Gridded Crop Model Intercomparison carried out within AgMIP.
NASA Astrophysics Data System (ADS)
Fan, Ying; Miguez-Macho, Gonzalo; Weaver, Christopher P.; Walko, Robert; Robock, Alan
2007-05-01
Soil moisture is a key participant in land-atmosphere interactions and an important determinant of terrestrial climate. In regions where the water table is shallow, soil moisture is coupled to the water table. This paper is the first of a two-part study to quantify this coupling and explore its implications in the context of climate modeling. We examine the observed water table depth in the lower 48 states of the United States in search of salient spatial and temporal features that are relevant to climate dynamics. As a means to interpolate and synthesize the scattered observations, we use a simple two-dimensional groundwater flow model to construct an equilibrium water table as a result of long-term climatic and geologic forcing. Model simulations suggest that the water table depth exhibits spatial organization at watershed, regional, and continental scales, which may have implications for the spatial organization of soil moisture at similar scales. The observations suggest that water table depth varies at diurnal, event, seasonal, and interannual scales, which may have implications for soil moisture memory at these scales.
Plant diversity enhances productivity and soil carbon storage
Chen, Shiping; Wang, Wantong; Xu, Wenting; Wang, Yang; Wan, Hongwei; Tang, Xuli; Zhou, Guoyi; Xie, Zongqiang; Zhou, Daowei; Shangguan, Zhouping; Huang, Jianhui; Wang, Yanfen; Sheng, Jiandong; Tang, Lisong; Li, Xinrong; Dong, Ming; Wu, Yan; Wang, Qiufeng; Wu, Jianguo; Chapin, F. Stuart; Bai, Yongfei
2018-01-01
Despite evidence from experimental grasslands that plant diversity increases biomass production and soil organic carbon (SOC) storage, it remains unclear whether this is true in natural ecosystems, especially under climatic variations and human disturbances. Based on field observations from 6,098 forest, shrubland, and grassland sites across China and predictions from an integrative model combining multiple theories, we systematically examined the direct effects of climate, soils, and human impacts on SOC storage versus the indirect effects mediated by species richness (SR), aboveground net primary productivity (ANPP), and belowground biomass (BB). We found that favorable climates (high temperature and precipitation) had a consistent negative effect on SOC storage in forests and shrublands, but not in grasslands. Climate favorability, particularly high precipitation, was associated with both higher SR and higher BB, which had consistent positive effects on SOC storage, thus offsetting the direct negative effect of favorable climate on SOC. The indirect effects of climate on SOC storage depended on the relationships of SR with ANPP and BB, which were consistently positive in all biome types. In addition, human disturbance and soil pH had both direct and indirect effects on SOC storage, with the indirect effects mediated by changes in SR, ANPP, and BB. High soil pH had a consistently negative effect on SOC storage. Our findings have important implications for improving global carbon cycling models and ecosystem management: Maintaining high levels of diversity can enhance soil carbon sequestration and help sustain the benefits of plant diversity and productivity. PMID:29666315
NASA Astrophysics Data System (ADS)
Longbottom, T. L.; Hockaday, W. C.
2016-12-01
Kerogen represents the largest terrestrial organic carbon (OC) reservoir on earth and is vulnerable to remineralization upon exposure to earth's atmosphere. Oxidative weathering of ancient sedimentary organic matter is an immensely transformative process with poorly-constrained mechanisms and flux values in contemporary carbon cycle models. The weathered residuum of organic-rich mudrocks serves as parent material for many modern soils, and it is likely that the structure and dynamics of the resulting soil organic matter pool is inherited directly from kerogen-rich bedrock. We used a combination of solid-state 13-C nuclear magnetic resonance (NMR) spectroscopy, and carbon isotope techniques to describe molecular and isotopic changes that occur throughout oxidative weathering of marine kerogens, and the subsequent formation of modern soils, in two outcropping Cretaceous mudstones of the Eagle Ford and Pepper Formations in central, TX. Gradational production of O-containing functionalities was observed, coupled with reductions in characteristically abundant polymethylenic components of type II kerogens. Organic matter structural parameters, derived from C-H dephasing NMR experiments, also provide the basis for a novel weathering index that accounts for the degree of post-sedimentary diagenetic alteration of samples along the kerogen-soil continuum. Molecular and isotopic mixing models were employed in estimating the proportions of modern and ancient C in soils, as increased incorporation and vulnerability of ancient OC under climatic shifts in temperature and/or precipitation is likely.
Plant diversity enhances productivity and soil carbon storage.
Chen, Shiping; Wang, Wantong; Xu, Wenting; Wang, Yang; Wan, Hongwei; Chen, Dima; Tang, Zhiyao; Tang, Xuli; Zhou, Guoyi; Xie, Zongqiang; Zhou, Daowei; Shangguan, Zhouping; Huang, Jianhui; He, Jin-Sheng; Wang, Yanfen; Sheng, Jiandong; Tang, Lisong; Li, Xinrong; Dong, Ming; Wu, Yan; Wang, Qiufeng; Wang, Zhiheng; Wu, Jianguo; Chapin, F Stuart; Bai, Yongfei
2018-04-17
Despite evidence from experimental grasslands that plant diversity increases biomass production and soil organic carbon (SOC) storage, it remains unclear whether this is true in natural ecosystems, especially under climatic variations and human disturbances. Based on field observations from 6,098 forest, shrubland, and grassland sites across China and predictions from an integrative model combining multiple theories, we systematically examined the direct effects of climate, soils, and human impacts on SOC storage versus the indirect effects mediated by species richness (SR), aboveground net primary productivity (ANPP), and belowground biomass (BB). We found that favorable climates (high temperature and precipitation) had a consistent negative effect on SOC storage in forests and shrublands, but not in grasslands. Climate favorability, particularly high precipitation, was associated with both higher SR and higher BB, which had consistent positive effects on SOC storage, thus offsetting the direct negative effect of favorable climate on SOC. The indirect effects of climate on SOC storage depended on the relationships of SR with ANPP and BB, which were consistently positive in all biome types. In addition, human disturbance and soil pH had both direct and indirect effects on SOC storage, with the indirect effects mediated by changes in SR, ANPP, and BB. High soil pH had a consistently negative effect on SOC storage. Our findings have important implications for improving global carbon cycling models and ecosystem management: Maintaining high levels of diversity can enhance soil carbon sequestration and help sustain the benefits of plant diversity and productivity.
Jessica E. Hancock; Kate L. Bradley; Christian P. Giardina; Kurt S. Pregitzer
2008-01-01
Plants influence soil carbon (C) formation through the quality and quantity of C released to soil. Soil type, in turn can modify a plant's influence on soil through effects on plant production, tissue quality and regulation of soil C decomposition and stabilization. Wild-type aspen and three transgenic aspen lines expressing reduced stem lignin concentrations and/...
Jia, Shengyao; Li, Hongyang; Wang, Yanjie; Tong, Renyuan; Li, Qing
2017-01-01
Soil is an important environment for crop growth. Quick and accurately access to soil nutrient content information is a prerequisite for scientific fertilization. In this work, hyperspectral imaging (HSI) technology was applied for the classification of soil types and the measurement of soil total nitrogen (TN) content. A total of 183 soil samples collected from Shangyu City (People’s Republic of China), were scanned by a near-infrared hyperspectral imaging system with a wavelength range of 874–1734 nm. The soil samples belonged to three major soil types typical of this area, including paddy soil, red soil and seashore saline soil. The successive projections algorithm (SPA) method was utilized to select effective wavelengths from the full spectrum. Pattern texture features (energy, contrast, homogeneity and entropy) were extracted from the gray-scale images at the effective wavelengths. The support vector machines (SVM) and partial least squares regression (PLSR) methods were used to establish classification and prediction models, respectively. The results showed that by using the combined data sets of effective wavelengths and texture features for modelling an optimal correct classification rate of 91.8%. could be achieved. The soil samples were first classified, then the local models were established for soil TN according to soil types, which achieved better prediction results than the general models. The overall results indicated that hyperspectral imaging technology could be used for soil type classification and soil TN determination, and data fusion combining spectral and image texture information showed advantages for the classification of soil types. PMID:28974005
Birkhofer, Klaus; Schöning, Ingo; Alt, Fabian; Herold, Nadine; Klarner, Bernhard; Maraun, Mark; Marhan, Sven; Oelmann, Yvonne; Wubet, Tesfaye; Yurkov, Andrey; Begerow, Dominik; Berner, Doreen; Buscot, François; Daniel, Rolf; Diekötter, Tim; Ehnes, Roswitha B.; Erdmann, Georgia; Fischer, Christiane; Foesel, Bärbel; Groh, Janine; Gutknecht, Jessica; Kandeler, Ellen; Lang, Christa; Lohaus, Gertrud; Meyer, Annabel; Nacke, Heiko; Näther, Astrid; Overmann, Jörg; Polle, Andrea; Pollierer, Melanie M.; Scheu, Stefan; Schloter, Michael; Schulze, Ernst-Detlef; Schulze, Waltraud; Weinert, Jan; Weisser, Wolfgang W.; Wolters, Volkmar; Schrumpf, Marion
2012-01-01
Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso- and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider larger spatial scales and different land-use types. PMID:22937029
NASA Astrophysics Data System (ADS)
Duan, Liangxia; Huang, Mingbin; Zhang, Luodan
2016-06-01
Extensive vegetation restoration practices have been implemented to control soil erosion on the Loess Plateau, China. However, no strict guidelines are available to determine the most suitable plant species for vegetation restoration within a given area. The objective of this study was to quantify the changes of each component (soil water storage, surface runoff, and actual evapotranspiration) of a water balance model and soil loss over time under eight different vegetation types, and to further determine the optimal vegetation type for soil and water conservation and sustainable ecological restoration on the steep slopes (>25°) on the Loess Plateau. The results indicated that vegetation type substantially affected soil water storage and that the greatest soil water storage in both the shallow (0-2 m) and the deep soil layers (2-5 m) occurred under Bothriochloa ischaemum L. (BOI). Vegetation type also affected surface runoff and soil losses. The most effective vegetation types for reducing soil erosion were BOI and Sea-buckthorn (Hippophae rhamnoides L.), while Chinese pine (Pinus tabulaeformis Carr.) and Chinese pine + Black locust (Robinia pseudoacacia L.) were the most ineffective types. Soil water dynamics and evapotranspiration varied considerably among the different vegetation types. A soil water surplus was only found under BOI, while insufficient water replenishment existed under the other seven vegetation types. The higher water consumption rates of the seven vegetation types could result in soil desiccation, which could lead to severe water stresses that would adversely affect plant growth. This study suggested that both vegetation type and its effect on controlling soil erosion should be considered when implementing vegetation restoration and that BOI should be highly recommended for vegetation restoration on the steep slopes of the Loess Plateau. A similar approach to the one used in this study could be applied to other regions of the world confronted by the same problems of water scarcity along with the need for vegetation restoration.
Moreno, Marta M; González-Mora, Sara; Villena, Jaime; Campos, Juan A; Moreno, Carmen
2017-09-15
Polyethylene plastic mulches are widely used in agriculture due to the countless advantages they have. However, the environmental problems associated with their use have led us to look for alternative mulch materials which degrade naturally and quickly, impact the environment less and function satisfactorily. To this end, biodegradable plastics and paper mulches are being used, but aspects related to their degradation should be studied more in-depth. This work provides the deterioration pattern of six biodegradable mulch materials (i.e. vegetable starch, polylactic acid plastic films or paper mulches) in horticultural crop in the edaphoclimatic conditions of Central Spain in two situations: over the lifetime of the mulches and after being incorporated into the soil. In the first situation, the deterioration levels were evaluated by recording the puncture resistance, weight and area covered in the above-soil and the in-soil part, and after soil incorporation by the number of fragments, their surfaces and weight. In the above-soil part, biodegradable plastics experienced further deterioration, particularly with no crop, while the paper mulch remained practically intact. However, the in-soil paper experienced complete and rapid degradation. At 200 days after soil incorporation, mulch residues were scarce, with the environmental effects it entails. These findings offer practical implications regarding the type of crop. The measurement of the surface covered, rather than the weight, was shown to be a more reliable indicator of the degradation of mulches. Furthermore, visual estimation was found to underestimate the functionality of mulches in comparison to that of the measurement of the surface covered. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yamada, Toshihiro; Yamada, Yuko; Okuda, Toshinori; Fletcher, Christine
2013-07-01
Differences in the density of conspecific tree individuals in response to environmental gradients are well documented for many tree species, but how such density differences are generated and maintained is poorly understood. We examined the segregation of six dipterocarp species among three soil types in the Pasoh tropical forest, Malaysia. We examined how individual performance and population dynamics changed across the soil types using 10-year demographic data to compare tree performance across soil types, and constructed population matrix models to analyze the population dynamics. Species showed only minor changes in mortality and juvenile growth across soil types, although recruitment differed greatly. Clear, interspecific demographic trade-offs between growth and mortality were found in all soil types. The relative trade-offs by a species did not differ substantially among the soil types. Population sizes were projected to remain stable in all soil types for all species with one exception. Our life-table response experiment demonstrated that the population dynamics of a species differed only subtly among soil types. Therefore, species with strong density differences across soil types do not necessarily differ greatly in their population dynamics across the soil types. In contrast, interspecific differences in population dynamics were large. The trade-off between mortality and growth led to a negative correlation between the contributions of mortality and growth to variations in the population growth rate (λ) and thus reduced their net contributions. Recruitment had little impact on the variation in λ. The combination of these factors resulted in little variation in λ among species.
Ecological and soil hydraulic implications of microbial responses to stress - A modeling analysis
NASA Astrophysics Data System (ADS)
Brangarí, Albert C.; Fernàndez-Garcia, Daniel; Sanchez-Vila, Xavier; Manzoni, Stefano
2018-06-01
A better understanding of microbial dynamics in porous media may lead to improvements in the design and management of a number of technological applications, ranging from the degradation of contaminants to the optimization of agricultural systems. To this aim, there is a recognized need for predicting the proliferation of soil microbial biomass (often organized in biofilms) under different environments and stresses. We present a general multi-compartment model to account for physiological responses that have been extensively reported in the literature. The model is used as an explorative tool to elucidate the ecological and soil hydraulic consequences of microbial responses, including the production of extracellular polymeric substances (EPS), the induction of cells into dormancy, and the allocation and reuse of resources between biofilm compartments. The mechanistic model is equipped with indicators allowing the microorganisms to monitor environmental and biological factors and react according to the current stress pressures. The feedbacks of biofilm accumulation on the soil water retention are also described. Model runs simulating different degrees of substrate and water shortage show that adaptive responses to the intensity and type of stress provide a clear benefit to microbial colonies. Results also demonstrate that the model may effectively predict qualitative patterns in microbial dynamics supported by empirical evidence, thereby improving our understanding of the effects of pore-scale physiological mechanisms on the soil macroscale phenomena.
Effects of fire on chaparral soils in Arizona and California and postfire management implications
Leonard F. DeBano
1989-01-01
Wildfires and prescribed burns are common throughout Arizona and California chaparral. Predicting fire effects requires understanding fire behavior, estimating soil heating, and predicting changes in soil properties. Substantial quantities of some nutrients, particularly nitrogen and phosphorus, are lost directly during combustion. Highly available nutrients released...
USDA-ARS?s Scientific Manuscript database
Nitrogen-limited soil microbial activity has important implications for soil carbon storage and nutrient availability, but previous methods for assessing resource limitation have been restricted, due to enrichment criteria (i.e., long incubation periods, high substrate amendments) and/or logistical ...
USDA-ARS?s Scientific Manuscript database
Insight to what underlies the seasonal dynamics of indigenous soil microbial communities in agricultural soils, especially after major activities such as nitrogen fertilization, remain elusive. More detailed understanding of population dynamics will have important implications for modeling efforts a...
NASA Astrophysics Data System (ADS)
Tavernier, Emma; Verdoodt, Ann; Cornelis, Wim; Delbecque, Nele; Tiebergijn, Lynn; Seynnaeve, Marleen; Gabriels, Donald
2015-04-01
The 'Heuvelland' region with a surface area of 94 km² is situated in the Province of West Flanders, Belgium, bordering with France. The region comprises a number of hills ("heuvel") on which a fast growing 'wine culture' is developing. Both professional as well as non-professional wine makers together cultivate about 19 ha of vineyards, and are still expanding. Grapes cultivated include Chardonnay, Pinot gris and Pinot noir among others. The small-scale, strongly dispersed vineyards are located in different landscape positions of variable aspect. The objective of our preliminary study was to assess the between-field and within-field variation in physico-chemical soil properties of these vineyards with the aim to better characterise the terroir(s) in Heuvelland and provide guidelines for soil management. Fourteen vineyards from five different wineries were selected for detailed soil sampling. Twenty-five sampling sites were chosen according to the topography, soil map units and observed variability in grape growth. The soil was sampled using 15 cm depth increments up to a depth of 60 cm or a shallower lithic contact. Composite samples of 5 sampling locations along the contour lines were taken per within-field zone. Besides the texture, pH, organic carbon, total nitrogen, available phosphorous and exchangeable base cations (Ca, Mg, K), also some micronutrients (Fe, B, Cu, Mn) were determined using standard laboratory procedures. The soils developed on Quaternary niveo-eolian sandy loam and loamy sediments of variable thickness covering marine sandy and clayey sediments of the Tertiary. Where the Tertiary clayey sediments occur at shallow depth, they can strongly influence the internal drainage. At higher positions in the landscape, iron-rich sandstone layers are found at shallow depth. Fragments of this iron-rich sandstone can also be found at lower positions (colluvial material). This iron sandstone is claimed to contribute to the unique character of this wine growing region. According to the soil map of Belgium (scale 1:20,000), the soils are characterized by variable depth, texture, internal drainage and profile development. As such, the 23 vineyards in Heuvelland are found on 21 different soil types; of which 12 different soil types are included within our sampling strategy. Our sampling furthermore revealed an even greater variability in physico-chemical soil properties than reflected by the soil map. This leads to a 'tentative' conclusion that Heuvelland cannot be considered as one natural terroir as such and that the wine growers can potentially improve their production by adapting their management to local soil properties using the improved knowledge on the vineyard soils.
NASA Astrophysics Data System (ADS)
Looker, N. T.; Kolka, R.; Colin, P. O.; Asbjornsen, H.
2017-12-01
The alteration of soil field-saturated hydraulic conductivity (Ksat) is a primary mechanism by which land-use/cover changes influence catchment hydrologic behavior. While previous studies have demonstrated declines in Ksat with forest cover loss, we lack a comprehensive framework for predicting the response of Ksat to increases in forest cover or to changes in land-use intensity (rather than changes in cover type per se). Variation in Ksat due to biophysical factors (e.g., climate or topography) may further obscure the effects of land cover or intensity. We assessed differences in Ksat between four cover types representative of a catchment in central Veracruz, Mexico (maize, pasture, shade coffee, and secondary cloud forest) and evaluated the factors that control variation across sites within cover types. In 38 sites distributed from 1200 m to 2900 m above sea level, we estimated Ksat at a depth of 25 cm using a Guelph permeameter. Ksat was significantly lower in soils under pasture and maize than in those under woody cover types (i.e., shade coffee and secondary forest), largely due to differences in horizon thickness. Variation in Ksat within woody cover types was associated with vegetation productivity and seasonality as inferred using remotely sensed vegetation indices. Unexpectedly, coffee and forest sites exhibited contrasting relationships between Ksat and vegetation indices. We propose possible mechanisms for these relationships and explore their implications for the regionalization of Ksat in catchment modeling applications.
The Soil Series in Soil Classifications of the United States
NASA Astrophysics Data System (ADS)
Indorante, Samuel; Beaudette, Dylan; Brevik, Eric C.
2014-05-01
Organized national soil survey began in the United States in 1899, with soil types as the units being mapped. The soil series concept was introduced into the U.S. soil survey in 1903 as a way to relate soils being mapped in one area to the soils of other areas. The original concept of a soil series was all soil types formed in the same parent materials that were of the same geologic age. However, within about 15 years soil series became the primary units being mapped in U.S. soil survey. Soil types became subdivisions of soil series, with the subdivisions based on changes in texture. As the soil series became the primary mapping unit the concept of what a soil series was also changed. Instead of being based on parent materials and geologic age, the soil series of the 1920s was based on the morphology and composition of the soil profile. Another major change in the concept of soil series occurred when U.S. Soil Taxonomy was released in 1975. Under Soil Taxonomy, the soil series subdivisions were based on the uses the soils might be put to, particularly their agricultural uses (Simonson, 1997). While the concept of the soil series has changed over the years, the term soil series has been the longest-lived term in U.S. soil classification. It has appeared in every official classification system used by the U.S. soil survey (Brevik and Hartemink, 2013). The first classification system was put together by Milton Whitney in 1909 and had soil series at its second lowest level, with soil type at the lowest level. The second classification system used by the U.S. soil survey was developed by C.F. Marbut, H.H. Bennett, J.E. Lapham, and M.H. Lapham in 1913. It had soil series at the second highest level, with soil classes and soil types at more detailed levels. This was followed by another system in 1938 developed by M. Baldwin, C.E. Kellogg, and J. Thorp. In this system soil series were again at the second lowest level with soil types at the lowest level. The soil type concept was dropped and replaced by the soil phase in the 1950s in a modification of the 1938 Baldwin et al. classification (Simonson, 1997). When Soil Taxonomy was released in 1975, soil series became the most detailed (lowest) level of the classification system, and the only term maintained throughout all U.S. classifications to date. While the number of recognized soil series have increased steadily throughout the history of U.S. soil survey, there was a rapid increase in the recognition of new soil series following the introduction of Soil Taxonomy (Brevik and Hartemink, 2013). References Brevik, E.C., and A.E. Hartemink. 2013. Soil maps of the United States of America. Soil Science Society of America Journal 77:1117-1132. doi:10.2136/sssaj2012.0390. Simonson, R.W. 1997. Evolution of soil series and type concepts in the United States. Advances in Geoecology 29:79-108.
The contentious nature of soil organic matter.
Lehmann, Johannes; Kleber, Markus
2015-12-03
The exchange of nutrients, energy and carbon between soil organic matter, the soil environment, aquatic systems and the atmosphere is important for agricultural productivity, water quality and climate. Long-standing theory suggests that soil organic matter is composed of inherently stable and chemically unique compounds. Here we argue that the available evidence does not support the formation of large-molecular-size and persistent 'humic substances' in soils. Instead, soil organic matter is a continuum of progressively decomposing organic compounds. We discuss implications of this view of the nature of soil organic matter for aquatic health, soil carbon-climate interactions and land management.
NASA Astrophysics Data System (ADS)
Wright, Hannah R.; Dodd, Ian C.; Blackwell, Martin S. A.; Surridge, Ben W. J.
2015-04-01
Soil drying and rewetting (DRW) affects the forms and availability of phosphorus (P). Water soluble P has been reported to increase 1.8- to 19-fold after air-drying with the majority of the increase (56-100%) attributable to organic P. Similarly, in two contrasting soil types DRW increased concentrations of total P and reactive P in leachate, likely due to enhanced P mineralisation and physiochemical processes causing detachment of soil colloids, with faster rewetting rates related to higher concentrations of P. The intensity of drying as well as the rate of rewetting influences organic and inorganic P cycling. How these dynamics are driven by soil water status, and impact crop P acquisition and growth, remains unclear. Improving P and water use efficiencies and crop yields is globally important as both P and water resources become increasingly scarce, whilst demand for food increases. Irrigation supply below the water requirement for full crop evapotranspiration is employed by agricultural practitioners where water supply is limited. Regulated deficit irrigation describes the scheduling of water supply to correspond to the times of highest crop demand. Alternate wetting and drying (AWD) is applied in lowland irrigated rice production to avoid flooding at certain times of crop development, and has benefited P nutrition and yields. This research aims to optimise the benefits of P availability and uptake achieved by DRW by guiding deficit irrigation management strategies. Further determination of underlying processes driving P cycling at fluctuating soil moisture status is required. Presented here is a summary of the literature on DRW effects on soil P availability and plant P uptake and partitioning, in a range of soil types and cropping systems, with emphasis on alternate wetting and drying irrigation (AWD) compared to continuous flooding in lowland irrigated rice production. Soil water contents and matric potentials, and effects on P dynamics, are highly variable across studies (at laboratory, greenhouse and field scales). Aiming to understand this variation, two sets of results are presented. Firstly, the effects of soil type on responses to DRW, and relationships between soil gravimetric water content and matric potential and thresholds at which DRW increases P availability, are shown and physiological implications suggested (from laboratory experiments). Further evidence is given for the role of the microbial biomass in elevated P availability, and P increased in soil that was partially air-dried and maintained above -1.5 MPa, the permanent wilting point. Secondly, effects of DRW on soil P availability, plant P nutrition, water use and physiology in pot-grown plants are shown (from glasshouse experiments). Soil P availability has been quantified by water and sodium bicarbonate extracts, and plant P concentrations via ICP-OES. Further understanding the effects of soil water status on P cycling is needed to improve irrigation and other management strategies to optimise P and water use efficiencies and crop yields. Thus, future experiments will investigate how different sources of P (organic and inorganic) respond to DRW regimes (including field experiments).
Cheng, Fei; Peng, Xiaobang; Zhao, Peng; Yuan, Jie; Zhong, Chonggao; Cheng, Yalong; Cui, Cui; Zhang, Shuoxin
2013-01-01
Different forest types exert essential impacts on soil physical-chemical characteristics by dominant tree species producing diverse litters and root exudates, thereby further regulating size and activity of soil microbial communities. However, the study accuracy is usually restricted by differences in climate, soil type and forest age. Our objective is to precisely quantify soil microbial biomass, basal respiration and enzyme activity of five natural secondary forest (NSF) types with the same stand age and soil type in a small climate region and to evaluate relationship between soil microbial and physical-chemical characters. We determined soil physical-chemical indices and used the chloroform fumigation-extraction method, alkali absorption method and titration or colorimetry to obtain the microbial data. Our results showed that soil physical-chemical characters remarkably differed among the NSFs. Microbial biomass carbon (Cmic) was the highest in wilson spruce soils, while microbial biomass nitrogen (Nmic) was the highest in sharptooth oak soils. Moreover, the highest basal respiration was found in the spruce soils, but mixed, Chinese pine and spruce stands exhibited a higher soil qCO2. The spruce soils had the highest Cmic/Nmic ratio, the greatest Nmic/TN and Cmic/Corg ratios were found in the oak soils. Additionally, the spruce soils had the maximum invertase activity and the minimum urease and catalase activities, but the maximum urease and catalase activities were found in the mixed stand. The Pearson correlation and principle component analyses revealed that the soils of spruce and oak stands obviously discriminated from other NSFs, whereas the others were similar. This suggested that the forest types affected soil microbial properties significantly due to differences in soil physical-chemical features. PMID:23840671
Workshop on Past and Present Solar Radiation: The Record in Meteoritic and Lunar Regolith Material
NASA Technical Reports Server (NTRS)
Pepin, R. O. (Compiler); Mckay, D. S. (Compiler)
1986-01-01
The principal question addressed in the workshop was the extent to which asteroidal and lunar regoliths have collected and preserved, in meteoritic regolith breccias and in lunar soils and regolith breccias, a record of the flux, energy, and compositional history of the solar wind and solar flares. Six central discussion topics were identified. They are: (1)Trapped solar wind and flare gases, tracks, and micrometeorite pits in regolith components; (2)Comparison between lunar regolith breccias, meteoritic regolith breccias, and the lunar soil; (3)The special role of regolith breccias and the challenge of dating their times of compaction; (4)Implications of the data for the flux and compositional history of solar particle emission, composition, and physical mechanisms in the solar source regions, and the composition of the early nebula; (5)How and to what extent have records of incident radiation been altered in various types of grains; (6)Future research directions
Predicting Regional Drought on Sub-Seasonal to Decadal Time Scales
NASA Technical Reports Server (NTRS)
Schubert, Siegfried; Wang, Hailan; Suarez, Max; Koster, Randal
2011-01-01
Drought occurs on a wide range of time scales, and within a variety of different types of regional climates. It is driven foremost by an extended period of reduced precipitation, but it is the impacts on such quantities as soil moisture, streamflow and crop yields that are often most important from a users perspective. While recognizing that different users have different needs for drought information, it is nevertheless important to understand that progress in predicting drought and satisfying such user needs, largely hinges on our ability to improve predictions of precipitation. This talk reviews our current understanding of the physical mechanisms that drive precipitation variations on subseasonal to decadal time scales, and the implications for predictability and prediction skill. Examples are given highlighting the phenomena and mechanisms controlling precipitation on monthly (e.g., stationary Rossby waves, soil moisture), seasonal (ENSO) and decadal time scales (PD and AMO).
[Humus composition of black soil and its organo-mineral complexes under different fertility level].
Zhao, Lanpo; Wang, Jie; Liu, Jingshuan; Liu, Shuxia; Wang, Yanling; Wang, Hongbin; Zhang, Zhidan
2005-01-01
Determinations by Kumada method showed that with the improvement of black soil fertility, the free and combined humus contents in soil and its different size organo-mineral complexes increased, but the humification degree of free humus decreased, which was more obvious in silt and fine sand size complexes. The organic carbon content in complexes, humus extraction rate, free humus content, and humification degree of free humic acid decreased with the increasing particle size of complexes. All free humic acids in fertile soil were Rp type, while in unfertile soil, they were Rp and B type. With the increasing particle size of complexes, the type of free humic acids changed in the sequence A type (clay)-->B type (silt)-->Rp type (fine sand). Combined form humic acid mainly belonged to A type, no matter what particle size the complex was. The improvement of soil fertility could make the humification degree of free humus in soil and its complexes decrease, and furthermore, result in type change. In black soil, the type change of free humic acid mainly occurred in silt size complex, and that of combined form humic acid mainly occurred in fine sand size complex.
NASA Astrophysics Data System (ADS)
Athmann, Miriam; Kautz, Timo; Köpke, Ulrich
2017-04-01
Large sized continuous biopores (diameter > 2 mm) in arable subsoils can contribute to enhance soil aeration, increase water infiltration, reduce water runoff and serve as preferential pathways for root growth. Biopores can be generated by taproots, but these pores probably have limited physical stability unless they are colonized by anecic earthworms and coated with worm cast. Long-term field experiments have shown that populations of anecic earthworms and numbers of biopores are promoted by perennial fodder cropping, no-till cropping and reduced tillage systems, i.e. extended soil rest. Potential effects of biopores on root growth of annual crops include accelerating access to deep soil layers, facilitating exploitation of water while simultaneously allowing nutrient acquisition from the pore wall and the bulk soil. Biopores can be considered as hot spots for nutrient acquisition of crops, especially when the pore wall is enriched in nutrients as a consequence of deposition of decaying plant material and feces of earthworms. However, the extent of such effects largely depends on physical properties of the bulk soil. Preferential root growth through biopores has been observed in many types of subsoil. The role of biopores is expected to be relevant especially when rooting in the bulk soil is impeded by high penetration resistance. Nevertheless, in hard-setting clay soils clumping of roots has been reported, when roots were unable to re-enter the bulk soil from biopores' lumen. Recent field experiments on a deep loamy Haplic Luvisol indicated increased biopore density in the subsoil promoting root growth of winter cereals and winter oilseed rape not necessarily resulting in significant effects on shoot parameters. Nevertheless, in a dry year increased biopore density had beneficial effects on N uptake, root and shoot growth and grain yield of spring crops.
NASA Astrophysics Data System (ADS)
Wentworth, G. R.; Murphy, J. G.; Gregoire, P. K.; Cheyne, C. A. L.; Tevlin, A. G.; Hems, R.
2014-10-01
A 50-day field study was carried out in a semi-natural, non-fertilized grassland in south-western Ontario, Canada during the late summer and early autumn of 2012. The purpose was to explore surface-atmosphere exchange processes of ammonia (NH3) with a focus on bi-directional fluxes between the soil and atmosphere. Measurements of soil pH and ammonium concentration ([NH4+]) yielded the first direct quantification of soil emission potential (Γsoil = [NH4+]/[H+]) for this land type, with values ranging from 35 to 1850 (an average of 290). The soil compensation point, the atmospheric NH3 mixing ratio below which net emission from the soil will occur, exhibited both a seasonal trend and diurnal trend. Higher daytime and August compensation points were attributed to higher soil temperature. Soil-atmosphere fluxes were estimated using NH3 measurements from the Ambient Ion Monitor Ion Chromatograph (AIM-IC) and a simple resistance model. Vegetative effects were ignored due to the short canopy height and significant Γsoil. Inferred fluxes were, on average, 2.6 ± 4.5 ng m-2 s-1 in August (i.e. net emission) and -5.8 ± 3.0 ng m-2 s-1 in September (i.e. net deposition). These results are in good agreement with the only other bi-directional exchange study in a semi-natural, non-fertilized grassland. A Lagrangian dispersion model (Hybrid Single-Particle Lagrangian Integrated Trajectory - HYSPLIT) was used to calculate air parcel back-trajectories throughout the campaign and revealed that NH3 mixing ratios had no directional bias throughout the campaign, unlike the other atmospheric constituents measured. This implies that soil-atmosphere exchange over a non-fertilized grassland can significantly moderate near-surface NH3 concentrations. In addition, we provide indirect evidence that dew and fog evaporation can cause a morning increase of [NH3]g. Implications of our findings on current NH3 bi-directional exchange modelling efforts are also discussed.
Hg Storage and Mobility in Tundra Soils of Northern Alaska
NASA Astrophysics Data System (ADS)
Olson, C.; Obrist, D.
2017-12-01
Atmospheric mercury (Hg) can be transported over long distances to remote regions such as the Arctic where it can then deposit and temporarily be stored in soils. This research aims to improve the understanding of terrestrial Hg storage and mobility in the arctic tundra, a large receptor area for atmospheric deposition and a major source of Hg to the Arctic Ocean. We aim to characterize spatial Hg pool sizes across various tundra sites and to quantify the mobility of Hg from thawing tundra soils using laboratory mobility experiments. Active layer and permafrost soil samples were collected in the summer of 2014 and 2015 at the Toolik Field Station in northern Alaska (68° 38' N) and along a 200 km transect extending from Toolik to the Arctic Ocean. Soil samples were analyzed for total Hg concentration, bulk density, and major and trace elements. Hg pool sizes were estimated by scaling up Hg soil concentrations using soil bulk density measurements. Mobility of Hg in tundra soils was quantified by shaking soil samples with ultrapure Milli-Q® water as an extracting solution for 24 and 72 hours. Additionally, meltwater samples were collected for analysis when present. The extracted supernatant was analyzed for total Hg, dissolved organic carbon, cations and anions, redox, and ph. Mobility of Hg from soil was calculated using Hg concentrations determined in solid soil samples and in supernatant of soil solution samples. Results of this study show Hg levels in tundra mineral soils that are 2-5 times higher than those observed at temperate sites closer to pollution sources. Most of the soil Hg was located in mineral horizons where Hg mass accounted for 72% of the total soil pool. Soil Hg pool sizes across the tundra sites were highly variable (166 - 1,365 g ha-1; avg. 419 g ha-1) due to the heterogeneity in soil type, bulk density, depth to frozen layer, and soil Hg concentration. Preliminary results from the laboratory experiment show higher mobility of Hg in mineral soils of active layer samples (0.062%) than in permafrost soils (0.026%) where soil Hg concentrations were lower. Mobilization of Hg stored in thawing permafrost soils could lead to accelerated export of Hg to aquatic systems, with major implications to Arctic wildlife and human health.
7 CFR 319.69-5 - Types of soil authorized for packing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 5 2010-01-01 2010-01-01 false Types of soil authorized for packing. 319.69-5 Section 319.69-5 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH... Regulations § 319.69-5 Types of soil authorized for packing. The following types of soil or earth are...
7 CFR 319.69-5 - Types of soil authorized for packing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 5 2011-01-01 2011-01-01 false Types of soil authorized for packing. 319.69-5 Section 319.69-5 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH... Regulations § 319.69-5 Types of soil authorized for packing. The following types of soil or earth are...
7 CFR 319.69-5 - Types of soil authorized for packing.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 5 2014-01-01 2014-01-01 false Types of soil authorized for packing. 319.69-5 Section 319.69-5 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH... Regulations § 319.69-5 Types of soil authorized for packing. The following types of soil or earth are...
7 CFR 319.69-5 - Types of soil authorized for packing.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 5 2013-01-01 2013-01-01 false Types of soil authorized for packing. 319.69-5 Section 319.69-5 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH... Regulations § 319.69-5 Types of soil authorized for packing. The following types of soil or earth are...
7 CFR 319.69-5 - Types of soil authorized for packing.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 5 2012-01-01 2012-01-01 false Types of soil authorized for packing. 319.69-5 Section 319.69-5 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH... Regulations § 319.69-5 Types of soil authorized for packing. The following types of soil or earth are...
John L. Campbell; Anne M. Socci; Pamela H. Templer
2014-01-01
The depth and duration of snow pack is declining in the northeastern United States as a result of warming air temperatures. Since snow insulates soil, a decreased snow pack can increase the frequency of soil freezing, which has been shown to have important biogeochemical implications. One of the most notable effects of soil freezing is increased inorganic nitrogen...
Plant selection and soil legacy enhance long-term biodiversity effects.
Zuppinger-Dingley, Debra; Flynn, Dan F B; De Deyn, Gerlinde B; Petermann, Jana S; Schmid, Bernhard
2016-04-01
Plant-plant and plant-soil interactions can help maintain plant diversity and ecosystem functions. Changes in these interactions may underlie experimentally observed increases in biodiversity effects over time via the selection of genotypes adapted to low or high plant diversity. Little is known, however, about such community-history effects and particularly the role of plant-soil interactions in this process. Soil-legacy effects may occur if co-evolved interactions with soil communities either positively or negatively modify plant biodiversity effects. We tested how plant selection and soil legacy influence biodiversity effects on productivity, and whether such effects increase the resistance of the communities to invasion by weeds. We used two plant selection treatments: parental plants growing in monoculture or in mixture over 8 yr in a grassland biodiversity experiment in the field, which we term monoculture types and mixture types. The two soil-legacy treatments used in this study were neutral soil inoculated with live or sterilized soil inocula collected from the same plots in the biodiversity experiment. For each of the four factorial combinations, seedlings of eight species were grown in monocultures or four-species mixtures in pots in an experimental garden over 15 weeks. Soil legacy (live inoculum) strongly increased biodiversity complementarity effects for communities of mixture types, and to a significantly weaker extent for communities of monoculture types. This may be attributed to negative plant-soil feedbacks suffered by mixture types in monocultures, whereas monoculture types had positive plant-soil feedbacks, in both monocultures and mixtures. Monocultures of mixture types were most strongly invaded by weeds, presumably due to increased pathogen susceptibility, reduced biomass, and altered plant-soil interactions of mixture types. These results show that biodiversity effects in experimental grassland communities can be modified by the evolution of positive vs. negative plant-soil feedbacks of plant monoculture vs. mixture types.
Saleh, Muneer Aziz; Ramli, Ahmad Termizi; bin Hamzah, Khaidzir; Alajerami, Yasser; Moharib, Mohammed; Saeed, Ismael
2015-10-01
This study aims to predict and estimate unmeasured terrestrial gamma dose rate (TGDR) using statistical analysis methods to derive a model from the actual measurement based on geological formation and soil type. The measurements of TGDR were conducted in the state of Johor with a total of 3873 measured points which covered all geological formations, soil types and districts. The measurements were taken 1 m above the soil surface using NaI [Ti] detector. The measured gamma dose rates ranged from 9 nGy h(-1) to 1237 nGy h(-1) with a mean value of 151 nGy h(-1). The data have been normalized to fit a normal distribution. Tests of significance were conducted among all geological formations and soil types, using the unbalanced one way ANOVA. The results indicated strong significant differences due to the different geological formations and soil types present in Johor State. Pearson Correlation was used to measure the relations between gamma dose rate based on geological formation and soil type (D(G,S)) with the gamma dose rate based on geological formation (D(G)) or soil type (D(s)). A very good correlation was found between D(G,S) and D(G) or D(G,S) and D(s). A total of 118 pairs of geological formations and soil types were used to derive the statistical contribution of geological formations and soil types to gamma dose rates. The contribution of the gamma dose rate from geological formation and soil type were found to be 0.594 and 0.399, respectively. The null hypotheses were accepted for 83% of examined data, therefore, the model could be used to predict gamma dose rates based on geological formation and soil type information. Copyright © 2015 Elsevier Ltd. All rights reserved.
Huang, Zhigang; Ouyang, Zhiyun; Li, Fengrui; Zheng, Hua; Wang, Xiaoke
2010-01-01
To evaluate the long-term effects of reforestation types on soil erosion on degraded land, vegetation and soil properties under conventional sloping farmland (CSF) and three different reforestation types including a Pinus massoniana secondary forest (PSF), an Eucommia ulmoides artificial economic forest (EEF) and a natural succession type forest (NST), were investigated at runoff plot scale over a six-year period in a red soil region of southern China. One hundred and thirty erosive rainfall events generating runoff in plots were grouped into four rainfall types by means of K-mean clustering method. Erosive rainfall type I is the dominant rainfall type. The amount of runoff and the soil loss under erosive rainfall type III were the most, followed by rain-fall type II, IV and I. Compared with CSF treatment, reforestation treatments decreased the average annual runoff depth and the soil loss by 25.5%-61.8% and 93.9%-96.2% during the study period respectively. Meanwhile, runoff depth at PSF and EEF treatments was significantly lower than that in NST treatment, but no significant difference existed in soil erosion modulus among the three reforestation treatments. This is mainly due to the improved vegetation properties (i.e., vegetation coverage, biomass of above- and below-ground and litter-fall mass) and soil properties (i.e., bulk density, total porosity, infiltration rate and organic carbon content) in the three reforestation treatments compared to CSF treatment. The PSF and EEF are recommended as the preferred reforestation types to control runoff and soil erosion in the red soil region of southern China, with the NST potentially being used as an important supplement.
Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce.
Schreiter, Susanne; Ding, Guo-Chun; Heuer, Holger; Neumann, Günter; Sandmann, Martin; Grosch, Rita; Kropf, Siegfried; Smalla, Kornelia
2014-01-01
The complex and enormous diversity of microorganisms associated with plant roots is important for plant health and growth and is shaped by numerous factors. This study aimed to unravel the effects of the soil type on bacterial communities in the rhizosphere of field-grown lettuce. We used an experimental plot system with three different soil types that were stored at the same site for 10 years under the same agricultural management to reveal differences directly linked to the soil type and not influenced by other factors such as climate or cropping history. Bulk soil and rhizosphere samples were collected 3 and 7 weeks after planting. The analysis of 16S rRNA gene fragments amplified from total community DNA by denaturing gradient gel electrophoresis and pyrosequencing revealed soil type dependent differences in the bacterial community structure of the bulk soils and the corresponding rhizospheres. The rhizosphere effect differed depending on the soil type and the plant growth developmental stage. Despite the soil type dependent differences in the bacterial community composition several genera such as Sphingomonas, Rhizobium, Pseudomonas, and Variovorax were significantly increased in the rhizosphere of lettuce grown in all three soils. The number of rhizosphere responders was highest 3 weeks after planting. Interestingly, in the soil with the highest numbers of responders the highest shoot dry weights were observed. Heatmap analysis revealed that many dominant operational taxonomic units were shared among rhizosphere samples of lettuce grown in diluvial sand, alluvial loam, and loess loam and that only a subset was increased in relative abundance in the rhizosphere compared to the corresponding bulk soil. The findings of the study provide insights into the effect of soil types on the rhizosphere microbiome of lettuce.
Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce
Schreiter, Susanne; Ding, Guo-Chun; Heuer, Holger; Neumann, Günter; Sandmann, Martin; Grosch, Rita; Kropf, Siegfried; Smalla, Kornelia
2014-01-01
The complex and enormous diversity of microorganisms associated with plant roots is important for plant health and growth and is shaped by numerous factors. This study aimed to unravel the effects of the soil type on bacterial communities in the rhizosphere of field-grown lettuce. We used an experimental plot system with three different soil types that were stored at the same site for 10 years under the same agricultural management to reveal differences directly linked to the soil type and not influenced by other factors such as climate or cropping history. Bulk soil and rhizosphere samples were collected 3 and 7 weeks after planting. The analysis of 16S rRNA gene fragments amplified from total community DNA by denaturing gradient gel electrophoresis and pyrosequencing revealed soil type dependent differences in the bacterial community structure of the bulk soils and the corresponding rhizospheres. The rhizosphere effect differed depending on the soil type and the plant growth developmental stage. Despite the soil type dependent differences in the bacterial community composition several genera such as Sphingomonas, Rhizobium, Pseudomonas, and Variovorax were significantly increased in the rhizosphere of lettuce grown in all three soils. The number of rhizosphere responders was highest 3 weeks after planting. Interestingly, in the soil with the highest numbers of responders the highest shoot dry weights were observed. Heatmap analysis revealed that many dominant operational taxonomic units were shared among rhizosphere samples of lettuce grown in diluvial sand, alluvial loam, and loess loam and that only a subset was increased in relative abundance in the rhizosphere compared to the corresponding bulk soil. The findings of the study provide insights into the effect of soil types on the rhizosphere microbiome of lettuce. PMID:24782839
Effects of Soil Type on the Damage Potential of Meloidogyne incognita on Soybean.
Windham, G L; Barker, K R
1986-07-01
Effects of soil type on the reproduction and damage potential of Meloidogyne incognita on soybean, Glycine max (L.) Merr., were determined at five locations in North Carolina, including one site where plots with six soil types were established. M. incognita reproduced readily on a susceptible soybean cultivar in most soil types, with somewhat limited reproduction in muck soils. The relationship between initial population densities and yield varied among soil types and nematode populations. Yield losses were greatest in sandy and muck soil types, with less nematode damage occurring in the clay soil types. A North Carolina and a Georgia population of M. incognita differed greatly in their ability to reproduce on soybean and suppress growth. The North Carolina population had a moderate effect on yield in 1981 and only a slight effect in 1982. In contrast, a Georgia population severely limited soybean growth and yield at lower initial population densities in 1983, Initial population densities of the nematodes and physical and chemical edaphic factors accounted for much of the variation of soybean yield and nematode reproduction.
Bedford, D.R.; Small, E.E.
2008-01-01
Spatial patterns of soil properties are linked to patchy vegetation in arid and semi-arid landscapes. The patterns of soil properties are generally assumed to be linked to the ecohydrological functioning of patchy dryland vegetation ecosystems. We studied the effects of vegetation canopy, its spatial pattern, and landforms on soil properties affecting overland flow and infiltration in shrublands at the Sevilleta National Wildlife Refuge/LTER in central New Mexico, USA. We studied the patterns of microtopography and saturated conductivity (Ksat), and generally found it to be affected by vegetation canopy and pattern, as well as landform type. On gently sloping alluvial fans, both microtopography and Ksat are high under vegetation canopy and decay with distance from plant center. On steeper hillslope landforms, only microtopography was significantly higher under vegetation canopy, while there was no significant difference in Ksat between vegetation and interspaces. Using geostatistics, we found that the spatial pattern of soil properties was determined by the spatial pattern of vegetation. Most importantly, the effects of vegetation were present in the unvegetated interspaces 2-4 times the extent of vegetation canopy, on the order of 2-3??m. Our results have implications for the understanding the ecohydrologic function of semi-arid ecosystems as well as the parameterization of hydrologic models. ?? 2007 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schuerger, Andrew C.; Nicholson, Wayne L.
2016-12-01
Bacterial growth at low pressure is a new research area with implications for predicting microbial activity in clouds and the bulk atmosphere on Earth and for modeling the forward contamination of planetary surfaces like Mars. Here, we describe experiments on the recovery and identification of 20 species of bacterial hypobarophiles (def., growth under hypobaric conditions of approximately 1-2 kPa) in 10 genera capable of growth at 0.7 kPa. Hypobarophilic bacteria, but not archaea or fungi, were recovered from diverse soils, and high numbers of hypobarophiles were recovered from Arctic and Siberian permafrost soils. Isolates were identified through 16S rRNA sequencing to belong to the genera Bacillus, Carnobacterium, Clostridium, Cryobacterium, Exiguobacterium, Paenibacillus, Rhodococcus, Streptomyces, and Trichococcus. The highest population of culturable hypobarophilic bacteria (5.1 × 104 cfu/g) was recovered from Colour Lake soils from Axel Heiberg Island in the Canadian Arctic. In addition, we extend the number of hypobarophilic species in the genus Serratia to six type-strains that include S. ficaria, S. fonticola, S. grimesii, S. liquefaciens, S. plymuthica, and S. quinivorans. Microbial growth at 0.7 kPa suggests that pressure alone will not be growth-limiting on the martian surface, or in Earth's atmosphere up to an altitude of 34 km.
ERIC Educational Resources Information Center
Bennett, J. McL.; Cattle, S. R.
2013-01-01
Purpose: There is inconsistency in the design, understanding, implementation and monitoring of soil health programmes. Despite mounting scientific evidence for the credibility of certain soil health indicators, an increase in the reporting of programme benefits, and progress in communicating these benefits, many farmers remain hesitant to…
The prokarotic, endogenous storage polymer poly--hydroxybutyrate (PHB) accumulated in soil from a methane-enriched, halogenated hydrocarbon-degrading soil column. Based on phospholipid ester-linked fatty acid (PLFA) profiles, this mocrocosm has been previously reported to be sign...
USDA-ARS?s Scientific Manuscript database
Managing cropping systems to sequester soil organic carbon (SOC) improves soil health and a system’s resiliency to impacts of changing climate. Our objectives were to 1) monitor SOC from a bio-energy cropping study in central Pennsylvania that included a corn-soybean-alfalfa rotation, switchgrass, a...
USDA-ARS?s Scientific Manuscript database
Managing cropping systems to sequester soil organic carbon (SOC) improves soil health and a system’s resiliency to impacts of changing climate. Our objectives were to 1) monitor SOC from a bio-energy cropping study in central Pennsylvania that included a corn-soybean-alfalfa rotation, switchgrass, ...
NASA Astrophysics Data System (ADS)
Valdivia-Silva, J. E.; Navarro-Gonzalez, R.; McKay, C. P.
2008-09-01
The Phoenix spacecraft will search for organics in the soil and ice in the Martian north polar regions using thermal volatilization (TV) followed by mass spectrometry (MS). This experiment is a combination of a high-temperature furnace and a mass spectrometer that will be use to analyze samples delivered to instrument via a robotic arm. The samples will be heated from ambient to 1000ºC while evolved gases, including organic molecules and fragments, if they are present, will be simultaneously measured by a magnetic sector mass spectrometer (1). Our laboratory has developed a sample characterization method using a pyrolizer integrated to a quadrupole mass spectrometer to support the interpretations of TV data. The Atacama Desert, on northern Chile and southern Peru, has been considered the most arid region over the world (2) and an excellent Mars-like soil analogous (3). These soils contain very low levels to organic matter (10-40 ppm of organic C), and exotic mineralogical composition including iron oxides, which are common characteristics expected on Mars. A previous paper that examined the release of organics from samples soils by flash TV (pyrolisis) coupled to GC-MS (4). This work showed low efficiency of flash TV in soils with low organics or high contents of iron minerals. In addition, other study of agricultural soils showed low correlation between organics concentration and TV response, when levels of total organic matter were below 50000 ppm C or high presence of iron oxides (5). However, the efficiency of gradual heating by TV analysis from hyperarid soils has not been investigated. Here we examine the thermal and evolved gas properties of six types of soils from the two hyperarid core regions from the Atacama Desert: Yungay (northern Chile) and Pampas de La Joya (southern Peru), in order to investigate the effect of soil matrix and low organics contents over TV response. Between 20 to 40 mg of soil was loaded in a capillary quartz tube and it was mounted in the center of platinum coil filament pyrolizer probe. Then sample into de quartz tube was subjected to a thermal treatment from 30°C to 1200°C with a heating rate of 20°C/min. The resulting volatiles evolved from the sample were carried away by helium and transferred into a HP quadrupole mass spectrometer operating in electron ionization mode at 70 eV with a resolution of 1m/z. The mass analyzer was scanned from 10 to 200 m/z at a rate 5.3 scans per second. The nominal sensitivity of the mass analyzer is 0.02 ppb of hexachlorobenzene. Blanks were prepared with no soil added. As expected, there were significant differences in the evolved gas behaviors between soils samples depending of the soil matrix under similar heating conditions. First, the samples belonging to the most arid environments (PE001, PE389) had significant differences compared with less arid soils (PE378, PE386). Carbon in hyperarid soils, in the form of CO2 (ion 44 m/z) began its release to 330±30°C, while the less arid soils to 245±45°C. Volatile ions released from soils during TV-MS analysis were analyzed searching organics fragments. Soil type VI (PE-001), which contains ~11.4 ppm organic C, showed the release of the following mass fragments: 18, 44, 48, 64, and 66. Sources for the release of CO2 in TV analysis of soils comes to oxidation of organic matter (<600ºC), and thermal decomposition of carbonates (>600ºC). Mass 18 originates from water releasing in the course of dehydration processes that is bound in soil minerals, and from oxidation of organics in different temperatures depending the mineral fraction in the soil. The masses 48, 64, and 66 have similar thermal properties, beginning to be released at ~370°C and continue to rise up to 1200°C. These masses are due to the decomposition of sulfates into SO+, SO2 +, and S34O2 +. Mass 66 is detected only if the abundance of mass 64 is very high. TV traces from soils type V (PE-276), type I (PE-361), and type II (PE-388), which contain low organics concentrations (3-23 ppm of organic C), presented similar ions released to soil type VI, but with some variations at times of peak start or maximum release. The TV-MS trace for soil type IV (PE-287) showed the release of the following ions: 16, 18, 36, 44, 48, and 64. In this soil, the mass 44 showed the highest value at >760°C, probably by thermal decomposition of carbonates at higher temperatures; however at 700ºC, CO2 could result from the decomposition oxidation of refractory organics that have been detected by pyrolisis-GC-MS at 750ºC (4). In contrast, the TV-MS trace for sample soil type III (PE-386), which contains 35 ppm of organic C, showed the release of the following major mass fragments (m/z): 18, 30, 36, 44, 48 and 64 (Figure 1). EPSC Abstracts, Vol. 3, EPSC2008-A-00490, 2008 European Planetary Science Congress, Author(s) 2008 Probably, the mass 30 is due to NO that evolves from the thermal oxidation of N-organics at low temperature or degradation of nitrates at high temperatures. Additionally, ion 36 could be due to thermal degradation to chlorides. Our results show interesting ions released from Marslike soils by TV analysis, however soils that have low levels to organic carbon (3-40 ppm), were not detected by this method. If the concentrations of organics in the soils and ice on Mars at the Phoenix landing site are low than 30 ppm, the experiment could fail. Recently, our laboratory investigated the presence of organics in the samples soils by the release of NO (mass 30) at low temperatures using TV-MS (Research submitted). Hence, Phoenix mission could have an option in the searching for organic matter on Mars. These data indicate the importance of the study of Mars-like soils to prevent similar problems in space research.
Zhang, Tai Dong; Wang, Chuan Kuan; Zhang, Quan Zhi
2017-10-01
Five forests under diverse site conditions but under identical climate in the Maoershan region of Northeast China were sampled for measuring contents of soil carbon (C), nitrogen (N), and phosphorus (P), soil bulk density, and soil thickness by soil profile horizons. The stands included two plantations (i.e., Pinus koraiensis and Larix gmelinii plantations) and three broadleaved forests (i.e., Quercus mongolica stand, Populus davidiana Betula platyphylla mixed stand, and hardwood stand). Our aim was to examine vertical distribution of the content, density, and stoichio metry of soil C, N and P for the five forest types. The results showed that the contents and densities of soil C, N and P differed significantly among the forest types, with the maxima of the soil C and N at both O and A horizons occurring in the hardwood stand. The contents of C and N decreased significantly with increasing soil depth in all the stands. P content decreased significantly only in the broadleaved stands, and P content had no significant difference among different soil layers in the coniferous stands. The soil C/N at the A horizon, N/P at the O horizon, and the C/P at A and B horizons were significantly different among the forest types. The soil C and N linearly correlated significantly across all the forest types without significant differences in the slopes and intercepts, and the soil N and P, or the soil C and P correlated significantly only in the broadleaved stands. This result suggested that the C-N coupling relationship tended to converge across the forest types, and the N-P and C-P relationships varied with forest types.
Soil Biogeochemistry in the Ent DGVM
NASA Astrophysics Data System (ADS)
Kharecha, P. A.; Kiang, N. Y.; Aleinov, I.; Moorcroft, P.; Koster, R.
2007-12-01
As the global climate continues to warm in the 21st century, it will be vital to assess the degree of carbon cycle feedbacks from the terrestrial biosphere, particularly the soil. Global soil carbon stocks, which amount to approximately double the carbon stored in vegetation, could provide either positive or negative climate feedbacks, depending on a given ecosystem's response to warming. To predict changes in net terrestrial CO2 fluxes and belowground organic carbon storage, we have developed and evaluated a soil biogeochemistry submodel for the Ent dynamic global vegetation model currently being tested within the GISS GCM. It is a modified version of the soil submodel in the CASA biosphere model (Potter et al., Glob. Biogeoch. Cyc. 7, 1993). We have enhanced it to allow for explicit depth structure (2 soil layers, 0-30 cm and 30-100 cm), first-order inter-layer (vertical) soil organic carbon transport, and a variable-Q10 temperature dependence for soil microbial respiration. We have tested the soil model in numerous offline runs. To spin up the simulated carbon pools offline, we conducted multi-century runs using meteorological and ecological data from various FLUXNET field sites that represent 7 of the 8 GISS GCM plant functional types: tundra, grassland, shrubland, savanna, deciduous forest, evergreen needleleaf forest, and tropical rainforest (the eighth, cropland, will be dealt with in a separate study). We then compare the magnitudes of the simulated spun-up soil pools to soil carbon stock data from these field sites as well as the biome-aggregated data from Post et al. (Nature 317, 1985). Net ecosystem CO2 fluxes and soil respiration are also compared to site-specific measurements where available. Preliminary results suggest that simulated fluxes are reasonably close to measured values, but simulated carbon storage tends to be lower than the measurements. In addition to site-specific comparisons, we discuss the broader implications of our results, e.g., the effects of including explicit depth structure and inter-layer soil carbon transport on simulated soil respiration, carbon storage, and estimation of the global carbon budget.
Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils.
Park, Jin Hee; Lamb, Dane; Paneerselvam, Periyasamy; Choppala, Girish; Bolan, Nanthi; Chung, Jae-Woo
2011-01-30
As land application becomes one of the important waste utilization and disposal practices, soil is increasingly being seen as a major source of metal(loid)s reaching food chain, mainly through plant uptake and animal transfer. With greater public awareness of the implications of contaminated soils on human and animal health there has been increasing interest in developing technologies to remediate contaminated sites. Bioremediation is a natural process which relies on soil microorganisms and higher plants to alter metal(loid) bioavailability and can be enhanced by addition of organic amendments to soils. Large quantities of organic amendments, such as manure compost, biosolid and municipal solid wastes are used as a source of nutrients and also as a conditioner to improve the physical properties and fertility of soils. These organic amendments that are low in metal(loid)s can be used as a sink for reducing the bioavailability of metal(loid)s in contaminated soils and sediments through their effect on the adsorption, complexation, reduction and volatilization of metal(loid)s. This review examines the mechanisms for the enhanced bioremediation of metal(loid)s by organic amendments and discusses the practical implications in relation to sequestration and bioavailability of metal(loid)s in soils. Copyright © 2010 Elsevier B.V. All rights reserved.
Genetic by environment interactions affect plant–soil linkages
Pregitzer, Clara C; Bailey, Joseph K; Schweitzer, Jennifer A
2013-01-01
The role of plant intraspecific variation in plant–soil linkages is poorly understood, especially in the context of natural environmental variation, but has important implications in evolutionary ecology. We utilized three 18- to 21-year-old common gardens across an elevational gradient, planted with replicates of five Populus angustifolia genotypes each, to address the hypothesis that tree genotype (G), environment (E), and G × E interactions would affect soil carbon and nitrogen dynamics beneath individual trees. We found that soil nitrogen and carbon varied by over 50% and 62%, respectively, across all common garden environments. We found that plant leaf litter (but not root) traits vary by genotype and environment while soil nutrient pools demonstrated genotype, environment, and sometimes G × E interactions, while process rates (net N mineralization and net nitrification) demonstrated G × E interactions. Plasticity in tree growth and litter chemistry was significantly related to the variation in soil nutrient pools and processes across environments, reflecting tight plant–soil linkages. These data overall suggest that plant genetic variation can have differential affects on carbon storage and nitrogen cycling, with implications for understanding the role of genetic variation in plant–soil feedback as well as management plans for conservation and restoration of forest habitats with a changing climate. PMID:23919173
NASA Astrophysics Data System (ADS)
Herbert, B. E.; McNeal, K. S.
2006-12-01
The dynamics of soil microbial ecosystems and labile fractions of soil organic matter in grasslands have important implications for the response of these critical ecosystems to perturbations. Organic, inorganic and genetic biomarkers in the solid (e.g. lipids, microbial DNA), liquid (e.g. porewater ions) or gaseous phases (e.g. carbon dioxide) have been used to characterize carbon cycling and soil microbial ecology. These proxies are generally limited in the amount of temporal information that they can provide (i.e., solid-phase proxies) or the amount of specific information they can provide about carbon sources or microbial community processes (e.g. inorganic gases). It is the aim of this research to validate the use of soil volatile organic carbon emissions (VOCs) as useful indicators of subsurface microbial community shifts and processes as a function of ecosystem perturbations. We present results of method validation using laboratory microcosm, where VOC metabolites as characterized by gas chromatography and mass spectrometry (GC-MS), were related to other proxies including carbon dioxide (CO2) via infra-red technology, and microbial community shifts as measured by Biolog© and fatty acid methyl ester (FAME) techniques. Experiments with soil collected from grasslands along the coastal margin region in southern Texas were preformed where environmental factors such as soil water content, soil type, and charcoal content are manipulated. Results indicate that over fifty identifiable VOC metabolites are produced from the soils, where many (~15) can be direct indicators of microbial ecology. Principle component analysis (PCA) evidences these trends through similar cluster patterns for the VOC results, the Biolog© results, and FAME. Regression analysis further shows that VOCs are significant (p < 0.05) indicators of microbial stress. Our results are encouraging that characterizing VOCs production in grassland soils are easy to measure, relatively inexpensive method, and useful proxies of subsurface microbial ecosystems and the dynamics of labile carbon in these systems.
Filter Membrane Effects on Water-Extractable Phosphorus Concentrations from Soil.
Norby, Jessica; Strawn, Daniel; Brooks, Erin
2018-03-01
To accurately assess P concentrations in soil extracts, standard laboratory practices for monitoring P concentrations are needed. Water-extractable P is a common analytical test to determine P availability for leaching from soils, and it is used to determine best management practices. Most P analytical tests require filtration through a filter membrane with 0.45-μm pore size to distinguish between particulate and dissolved P species. However, filter membrane type is rarely specified in method protocols, and many different types of membranes are available. In this study, three common filter membrane materials (polyether sulfone, nylon, and nitrocellulose), all with 0.45-μm pore sizes, were tested for analytical differences in total P concentrations and dissolved reactive P (DRP) concentrations in water extracts from six soils sampled from two regions. Three of the extracts from the six soil samples had different total P concentrations for all three membrane types. The other three soil extracts had significantly different total P results from at least one filter membrane type. Total P concentration differences were as great as 35%. The DRP concentrations in the extracts were dependent on filter type in five of the six soil types. Results from this research show that filter membrane type is an important parameter that affects concentrations of total P and DRP from soil extracts. Thus, membrane type should be specified in soil extraction protocols. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Quan, Miaohua; Liang, Juan
2017-01-01
Based on the characteristics of Lycoris aurea (L. aurea) natural distribution and local soil types, we selected four representative types of soil, including humus soil, sandy soil, garden soil and yellow-brown soil, for conducting the cultivation experiments to investigate key soil factors influencing its growth and development and to select the soil types suitable for cultivating it. We found that there existed significant differences in the contents of mineral elements and the activities of soil enzymes (urease, phosphatase, sucrase and catalase) etc. Among which, the contents of organic matters, alkali-hydrolysable nitrogen, Ca and Mg as well as the activities of soil enzymes in humus soil were the highest ones. In yellow-brown soil, except for Fe, the values of all the other items were the lowest ones. Net photosynthetic rate (Pn), biomass and lycorine content in humus soil were all the highest ones, which were increased by 31.02, 69.39 and 55.79%, respectively, as compared to those of yellow-brown soil. Stepwise multiple regression analysis and path analysis indicated that alkali-hydrolysable nitrogen, and Ca etc. were key soil factors influencing Pn, biomass and lycorine content of L. aurea. Thus, humus soil can be used as medium suitable for artificial cultivation of L. aurea. PMID:28240308
Quan, Miaohua; Liang, Juan
2017-02-27
Based on the characteristics of Lycoris aurea (L. aurea) natural distribution and local soil types, we selected four representative types of soil, including humus soil, sandy soil, garden soil and yellow-brown soil, for conducting the cultivation experiments to investigate key soil factors influencing its growth and development and to select the soil types suitable for cultivating it. We found that there existed significant differences in the contents of mineral elements and the activities of soil enzymes (urease, phosphatase, sucrase and catalase) etc. Among which, the contents of organic matters, alkali-hydrolysable nitrogen, Ca and Mg as well as the activities of soil enzymes in humus soil were the highest ones. In yellow-brown soil, except for Fe, the values of all the other items were the lowest ones. Net photosynthetic rate (P n ), biomass and lycorine content in humus soil were all the highest ones, which were increased by 31.02, 69.39 and 55.79%, respectively, as compared to those of yellow-brown soil. Stepwise multiple regression analysis and path analysis indicated that alkali-hydrolysable nitrogen, and Ca etc. were key soil factors influencing P n , biomass and lycorine content of L. aurea. Thus, humus soil can be used as medium suitable for artificial cultivation of L. aurea.
Steven, Blaire; Gallegos-Graves, La Verne; Belnap, Jayne; Kuske, Cheryl R.
2013-01-01
Biological soil crusts (biocrusts) are common to drylands worldwide. We employed replicated, spatially nested sampling and 16S rRNA gene sequencing to describe the soil microbial communities in three soils derived from different parent material (sandstone, shale, and gypsum). For each soil type, two depths (biocrusts, 0–1 cm; below-crust soils, 2–5 cm) and two horizontal spatial scales (15 cm and 5 m) were sampled. In all three soils, Cyanobacteria and Proteobacteria demonstrated significantly higher relative abundance in the biocrusts, while Chloroflexi and Archaea were significantly enriched in the below-crust soils. Biomass and diversity of the communities in biocrusts or below-crust soils did not differ with soil type. However, biocrusts on gypsum soil harbored significantly larger populations of Actinobacteria and Proteobacteria and lower populations of Cyanobacteria. Numerically dominant operational taxonomic units (OTU; 97% sequence identity) in the biocrusts were conserved across the soil types, whereas two dominant OTUs in the below-crust sand and shale soils were not identified in the gypsum soil. The uniformity with which small-scale vertical community differences are maintained across larger horizontal spatial scales and soil types is a feature of dryland ecosystems that should be considered when designing management plans and determining the response of biocrusts to environmental disturbances.
Kim, Han Sik; Jung, Myung Chae
2012-01-01
This survey aimed to compare mercury concentrations in soils related to geology and mineralization types of mines. A total of 16,386 surface soils (0~15 cm in depth) were taken from agricultural lands near 343 abandoned mines (within 2 km from each mine) and analyzed for Hg by AAS with a hydride-generation device. To meaningfully compare mercury levels in soils with geology and mineralization types, three subclassification criteria were adapted: (1) five mineralization types, (2) four valuable ore mineral types, and (3) four parent rock types. The average concentration of Hg in all soils was 0.204 mg kg(-1) with a range of 0.002-24.07 mg kg(-1). Based on the mineralization types, average Hg concentrations (mg kg(-1)) in the soils decreased in the order of pegmatite (0.250) > hydrothermal vein (0.208) > hydrothermal replacement (0.166) > skarn (0.121) > sedimentary deposits (0.045). In terms of the valuable ore mineral types, the concentrations decreased in the order of Au-Ag-base metal mines ≈ base metal mines > Au-Ag mines > Sn-W-Mo-Fe-Mn mines. For parent rock types, similar concentrations were found in the soils derived from sedimentary rocks and metamorphic rocks followed by heterogeneous rocks with igneous and metamorphic processes. Furthermore, farmland soils contained relatively higher Hg levels than paddy soils. Therefore, it can be concluded that soils in Au, Ag, and base metal mines derived from a hydrothermal vein type of metamorphic rocks and pegmatite deposits contained relatively higher concentrations of mercury in the surface environment.
NASA Astrophysics Data System (ADS)
Griselle Mellado Vazquez, Perla; Lange, Markus; Gleixner, Gerd
2016-04-01
This study investigates the influence of different vegetation types (C3 and C4 plants), soil type and seasonal changes on the soil microbial biomass, soil microbial community composition and soil microbial carbon (C) uptake. We collected soil samples in winter (non-growing season) and summer (growing season) in 2012 from an experimental site cropping C3 and C4 plants for 6 years on two different soil types (sandy and clayey). The amount of phospholipid fatty acids (PLFAs) and their compound-specific δ13C values were used to determined microbial biomass and the flow of C from plants to soil microorganisms, respectively. Higher microbial biomass was found in the growing season. The microbial community composition was mainly explained by soil type. Higher amounts of SOC were driving the predominance of G+ bacteria, actinobacteria and cyclic G- bacteria in sandy soils, whereas root biomass was significantly related to the increased proportions of G- bacteria in clayey soils. Plant-derived C in G- bacteria increased significantly in clayey soils in the growing season. This increase was positively and significantly driven by root biomass. Moreover, changes in plant-derived C among microbial groups pointed to specific capabilities of different microbial groups to decompose distinct sources of C. We concluded that soil texture and favorable growth conditions driven by rhizosphere interactions are the most important factors controlling the soil microbial community. Our results demonstrate that a change of C3 plants vs. C4 plants has only a minor effect on the soil microbial community. Thus, such experiments are well suited to investigate soil organic matter dynamics as they allow to trace the C flow from plants into the soil microbial community without changing the community abundance and composition.
Impact of Rotylenchulus reniformis on Cotton Yield as Affected by Soil Texture and Irrigation
Herring, Stephanie L.; Heitman, Joshua L.
2010-01-01
The effects of soil type, irrigation, and population density of Rotylenchulus reniformis on cotton were evaluated in a two-year microplot experiment. Six soil types, Fuquay sand, Norfolk sandy loam, Portsmouth loamy sand, Muck, Cecil sandy loam, and Cecil sandy clay, were arranged in randomized complete blocks with five replications. Each block had numerous plots previously inoculated with R. reniformis and two or more noninoculated microplots per soil type, one half of which were irrigated in each replicate for a total of 240 plots. Greatest cotton lint yields were achieved in the Muck, Norfolk sandy loam, and Portsmouth loamy sand soils. Cotton yield in the Portsmouth loamy sand did not differ from the Muck soil which averaged the greatest lint yield per plot of all soil types. Cotton yield was negatively related to R. reniformis PI (initial population density) in all soil types except for the Cecil sandy clay which had the highest clay content. Supplemental irrigation increased yields in the higher yielding Muck, Norfolk sandy loam, and Portsmouth loamy sand soils compared to the lower yielding Cecil sandy clay, Cecil sandy loam, and Fuquay sand soils. The Portsmouth sandy loam was among the highest yielding soils, and also supported the greatest R. reniformis population density. Cotton lint yield was affected more by R. reniformis Pi with irrigation in the Portsmouth loamy sand soil with a greater influence of Pi on lint yield in irrigated plots than other soils. A significant first degree PI × irrigation interaction for this soil type confirms this observation. PMID:22736865
Impact of Rotylenchulus reniformis on Cotton Yield as Affected by Soil Texture and Irrigation.
Herring, Stephanie L; Koenning, Stephen R; Heitman, Joshua L
2010-12-01
The effects of soil type, irrigation, and population density of Rotylenchulus reniformis on cotton were evaluated in a two-year microplot experiment. Six soil types, Fuquay sand, Norfolk sandy loam, Portsmouth loamy sand, Muck, Cecil sandy loam, and Cecil sandy clay, were arranged in randomized complete blocks with five replications. Each block had numerous plots previously inoculated with R. reniformis and two or more noninoculated microplots per soil type, one half of which were irrigated in each replicate for a total of 240 plots. Greatest cotton lint yields were achieved in the Muck, Norfolk sandy loam, and Portsmouth loamy sand soils. Cotton yield in the Portsmouth loamy sand did not differ from the Muck soil which averaged the greatest lint yield per plot of all soil types. Cotton yield was negatively related to R. reniformis PI (initial population density) in all soil types except for the Cecil sandy clay which had the highest clay content. Supplemental irrigation increased yields in the higher yielding Muck, Norfolk sandy loam, and Portsmouth loamy sand soils compared to the lower yielding Cecil sandy clay, Cecil sandy loam, and Fuquay sand soils. The Portsmouth sandy loam was among the highest yielding soils, and also supported the greatest R. reniformis population density. Cotton lint yield was affected more by R. reniformis Pi with irrigation in the Portsmouth loamy sand soil with a greater influence of Pi on lint yield in irrigated plots than other soils. A significant first degree PI × irrigation interaction for this soil type confirms this observation.
Tian, Qin; Taniguchi, Takeshi; Shi, Wei-Yu; Li, Guoqing; Yamanaka, Norikazu; Du, Sheng
2017-01-01
Similar land-use types usually have similar soil properties, and, most likely, similar microbial communities. Here, we assessed whether land-use types or soil chemical properties are the primary drivers of soil microbial community composition, and how changes in one part of the ecosystem affect another. We applied Ion Torrent sequencing to the bacterial and fungal communities of five different land-use (vegetation) types in the Loess Plateau of China. We found that the overall trend of soil quality was natural forest > plantation > bare land. Dominant bacterial phyla consisted of Proteobacteria (42.35%), Actinobacteria (15.61%), Acidobacteria (13.32%), Bacteroidetes (8.43%), and Gemmatimonadetes (6.0%). The dominant fungi phyla were Ascomycota (40.39%), Basidiomycota (38.01%), and Zygomycota (16.86%). The results of Canonical Correspondence Analysis (CCA) and Redundancy Analysis (RDA) based on land-use types displayed groups according to the land-use types. Furthermore, the bacterial communities were mainly organized by soil organic carbon (SOC). The fungal communities were mainly related to available phosphorus (P). The results suggested that the changes of land use type generated changes in soil chemical properties, controlling the composition of microbial community in the semiarid Loess Plateau region. The microbial community could be an indicator for soil quality with respect to ecological restoration. PMID:28349918
NASA Astrophysics Data System (ADS)
Tian, Qin; Taniguchi, Takeshi; Shi, Wei-Yu; Li, Guoqing; Yamanaka, Norikazu; Du, Sheng
2017-03-01
Similar land-use types usually have similar soil properties, and, most likely, similar microbial communities. Here, we assessed whether land-use types or soil chemical properties are the primary drivers of soil microbial community composition, and how changes in one part of the ecosystem affect another. We applied Ion Torrent sequencing to the bacterial and fungal communities of five different land-use (vegetation) types in the Loess Plateau of China. We found that the overall trend of soil quality was natural forest > plantation > bare land. Dominant bacterial phyla consisted of Proteobacteria (42.35%), Actinobacteria (15.61%), Acidobacteria (13.32%), Bacteroidetes (8.43%), and Gemmatimonadetes (6.0%). The dominant fungi phyla were Ascomycota (40.39%), Basidiomycota (38.01%), and Zygomycota (16.86%). The results of Canonical Correspondence Analysis (CCA) and Redundancy Analysis (RDA) based on land-use types displayed groups according to the land-use types. Furthermore, the bacterial communities were mainly organized by soil organic carbon (SOC). The fungal communities were mainly related to available phosphorus (P). The results suggested that the changes of land use type generated changes in soil chemical properties, controlling the composition of microbial community in the semiarid Loess Plateau region. The microbial community could be an indicator for soil quality with respect to ecological restoration.
Wang, Lingqing; Liang, Tao; Chong, Zhongyi; Zhang, Chaosheng
2011-01-01
Through leaching experiments and simulated rainfall experiments, characteristics of vertical leaching of exogenous rare earth elements (REEs) and phosphorus (P) and their losses with surface runoff during simulated rainfall in different types of soils (terra nera soil, cinnamon soil, red soil, loess soil, and purple soil) were investigated. Results of the leaching experiments showed that vertical transports of REEs and P were relatively low, with transport depths less than 6 cm. The vertical leaching rates of REEs and P in the different soils followed the order of purple soil > terra nera soil > red soil > cinnamon soil > loess soil. Results of the simulated rainfall experiments (83 mm h⁻¹) revealed that more than 92% of REEs and P transported with soil particles in runoff. The loss rates of REEs and P in surface runoff in the different soil types were in the order of loess soil > terra nera soil > cinnamon soil > red soil > purple soil. The total amounts of losses of REEs and P in runoff were significantly correlated.
NASA Astrophysics Data System (ADS)
Pathare, Asmin V.; Feldman, William C.; Prettyman, Thomas H.; Maurice, Sylvestre
2018-02-01
We present improved Mars Odyssey Neutron Spectrometer (MONS) maps of near-surface Water-Equivalent Hydrogen (WEH) on Mars that have intriguing implications for the global distribution of "excess" ice, which occurs when the mass fraction of water ice exceeds the threshold amount needed to saturate the pore volume in normal soils. We have refined the crossover technique of Feldman et al. (2011) by using spatial deconvolution and Gaussian weighting to create the first globally self-consistent map of WEH. At low latitudes, our new maps indicate that WEH exceeds 15% in several near-equatorial regions, such as Arabia Terra, which has important implications for the types of hydrated minerals present at low latitudes. At high latitudes, we demonstrate that the disparate MONS and Phoenix Robotic Arm (RA) observations of near surface WEH can be reconciled by a three-layer model incorporating dry soil over fully saturated pore ice over pure excess ice: such a three-layer model can also potentially explain the strong anticorrelation of subsurface ice content and ice table depth observed at high latitudes. At moderate latitudes, we show that the distribution of recently formed impact craters is also consistent with our latest MONS results, as both the shallowest ice-exposing crater and deepest non-ice-exposing crater at each impact site are in good agreement with our predictions of near-surface WEH. Overall, we find that our new mapping is consistent with the widespread presence at mid-to-high Martian latitudes of recently deposited shallow excess ice reservoirs that are not yet in equilibrium with the atmosphere.
[Soil infiltration characteristics under main vegetation types in Anji County of Zhejiang Province].
Liu, Dao-Ping; Chen, San-Xiong; Zhang, Jin-Chi; Xie, Li; Jiang, Jiang
2007-03-01
The study on the soil infiltration under different main vegetation types in Anji County of Zhejiang Province showed that the characteristics of soil infiltration differed significantly with land use type, and the test eight vegetation types could be classified into four groups, based on soil infiltration capability. The first group, deciduous broadleaved forest, had the strongest soil infiltration capability, and the second group with a stronger soil infiltration capability was composed of grass, pine forest, shrub community and tea bush. Bamboo and evergreen broadleaved forest were classified into the third group with a relatively strong soil infiltration capability, while bare land belonged to the fourth group because of the bad soil structure and poorest soil infiltration capability. The comprehensive parameters of soil infiltration (alpha) and root (beta) were obtained by principal component analysis, and the regression model of alpha and beta could be described as alpha = 0. 1708ebeta -0. 3122. Soil infiltration capability was greatly affected by soil physical and chemical characteristics and root system. Fine roots (< or = 1 mm in diameter) played effective roles on the improvement of soil physical and chemical properties, and the increase of soil infiltration capability was closely related to the amount of the fine roots.
Soil carbon storage in plantation forests and pastures: land-use change implications
NASA Astrophysics Data System (ADS)
Scott, Neal A.; Tate, Kevin R.; Ford-Robertson, Justin; Giltrap, David J.; Tattersall Smith, C.
1999-04-01
Afforestation may lead to an accumulation of carbon (C) in vegetation, but little is known about changes in soil C storage with establishment of plantation forests. Plantation forest carbon budget models often omit mineral soil C changes from stand-level C budget calculations, while including forest floor C accumulation, or predict continuous soil C increases over several rotations. We used national soil C databases to quantify differences in soil C content between pasture and exotic pine forest plantations dominated by P. radiata (D. Don), and paired site studies to quantify changes in soil C with conversion of pasture to plantation forest in New Zealand. Overall, mineral soil C to 0.10 m was 20 40% lower under pine for all soil types (p<0.01) except soils with high clay activity (HCA), where there was no difference. Similar trends were observed in the 0.1 0.3 m layer. Moreover, mineral soil C to 0.1 m was 17 40% lower under pine than pasture in side-by-side comparisons. The only non-significant difference occurred at a site located on a HCA soil (p=0.08). When averaged across the site studies and the national databases, the difference in soil C between pasture and pine was about 16 t C ha
1on non-HCA soils. This is similar to forest floor C averaged across our individual sites (about 20 t C ha
1). The decrease in mineral soil C could result in about a 15% reduction in the average C sequestration potential (112 t C ha
1) when pasture is converted to exotic plantation forest on non-HCA soils. The relative importance of this change in mineral soil C will likely vary depending on the productivity potential of a site and harvest impacts on the forest floor C pool. Our results emphasize that changes in soil C should be included in any calculations of C sequestration attributed to plantation forestry.
Soil seed banks in four 22-year-old plantations in South China: implications for restoration
Jun Wang; Hai Ren; Long Yang; Danyan Li; Qinfeng Guo
2009-01-01
To better understand the potentials of the soil seed banks in facilitating succession towards a morenatural forest of native tree species, we quantified the size and composition of the soil seed banks inestablished plantations in South China. The seed banks were from four typical 22-year-old plantations, i.e., legume, mixed-...
E.K. Peterson
2013-01-01
Phytophthora ramorum-infested soils have been implicated as a source of primary inoculum in natural ecosystems. Implicit in this pathway is the need for infection of understory vegetation during pathogen establishment, preceding infection of bole hosts. In support of soil dispersal, studies using artificiallyinoculated soils have shown that...
ERIC Educational Resources Information Center
Bruening, Thomas H.; Martin, Robert A.
A sample of 731 farmers was surveyed to identify perceptions regarding selected soil and water conservation practices. The sample was stratified and proportioned by conservation district to have a representative group of respondents across Iowa. Items on the mailed questionnaire were designed to assess perceptions regarding issues in soil and…
USDA-ARS?s Scientific Manuscript database
Climate change is expected to impact runoff and soil erosion on rangelands in the southwestern United States. This study was done to evaluate the potential impacts of precipitation changes on soil erosion and surface runoff in southeastern Arizona using seven GCM models with three emission scenarios...
USDA-ARS?s Scientific Manuscript database
Long-term soil conservation management decreases soil bulk density, increases water infiltration and water holding capacity. In the Virginia Coastal Plain, growers have been practicing rotational no-tillage and continuous no-tillage with and without biosolid application over 20 years to improve soi...
Jennifer M. Fraterrigo; Teri C. Balser; Monica g. Turner
2006-01-01
Past land use can impart soil legacies that have important implications for ecosystem function. Although these legacies have been linked with microbially mediated processes, little is known about the long-term influence of land use on soil microbial communities themselves. We examined whether historical land use affected soil microbial community composition (lipid...
NASA Astrophysics Data System (ADS)
Pereira, Paulo; Cerdà, Artemi
2013-04-01
Ash distribution on soil surface and impacts on soil properties received a great attention in recently (Pereira et al., 2010; Pereira et al., 2013). Ash it is a highly mobile material that can be easily transported wind, especially in severe wildland fires, where organic matter is reduced to dust, due the high temperatures of combustion. In the immediate period after the fire, ash cover rules soil erosion as previous researchers observed (Cerdà, 1998a; 1998b) and have strong influence on soil hydrological properties, such as water retention (Stoof et al. 2011 ) and wettability (Bodi et al., 2011). Ash it is also a valuable source of nutrients important for plant recuperation (Pereira et al., 2011; Pereira et al., 2012), but can act also as a source contamination, since are also rich in heavy metals (Pereira and Ubeda, 2010). Ash has different physical and chemical properties according the temperature of combustion, burned specie and time of exposition (Pereira et al., 2010). Thus this different properties will have different implications on soil properties including erosion that can increase due soil sealing (Onda et al. 2008) or decrease as consequence of raindrop impact reduction (Cerdà and Doerr, 2008). The current knowledge shows that ash has different impacts on soil properties and this depends not only from the type of ash produced, but of the soil properties (Woods and Balfour, 2010). After fire wind and water strong redistribute ash on soil surface, increasing the vulnerability of soil erosion in some areas, and reducing in others. Understand this mobility is fundamental have a better comprehension about the spatial and temporal effects of ash in soil erosion. Have a better knowledge about this mobility is a priority to future research. Other important aspects to have to be assessed in the future are how ash particulates percolate on soil and how ash chemical composition is important to induce soil aggregation and dispersion. How soil micro topography have implications on ash spatial distribution and if soil micro topography changes with time? What the factors that controls it? What it is the impact of ash in vegetation recuperation and the implications of this recover in ash spatial distribution? We need studies with better spatial and temporal resolution, especially in the immediate period after the fire, when the major spatial and temporal changes on ash distribution and impacts occur. Based on high level research conducted by Artemi Cerdà and others, our future research will be focused in these and other aspects in order to have a better knowledge about the impacts of ash on post-fire spatio-temporal erosion. Acknowledgements, Lithuanian Research Council. Project LITFIRE, Fire effects on Lithuanian soils and ecosystems (MIP-48/2011) and the research projects GL2008-02879/BTE and LEDDRA 243857. References Bodí, M., Mataix-Solera, J., Doerr, S., and Cerdà, A. 2011b. The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content. Geoderma, 160, 599-607. Cerdà, A. 1998a. Postfire dynamics of erosional processes under mediterranean climatic conditions. Z. Geomorphol., 42 (3) 373-398. Cerdà, A. 1998b. Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland.Hydrological Processes, 12, 1031-1042. Cerdà, A., and Doerr, S.H. 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74, 256-263. Onda, Y., Dietrich W. E., and Booker, F. 2008. Evolution of overland flow after severe forest fire, Point Reyes, California, Catena, 72, 13-20. Pereira, P. Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. 2013. Modelling the impacts of wildfire on ash thickness in a short-term period, Land Degradation and Development, (In press) Pereira, P., Bodi. M., Úbeda, X., Cerdà, A., Mataix-Solera, J., Balfour, V, Woods, S. 2010. Las cenizas y el ecosistema suelo, In: Cerdà, A. Jordan, A. (eds) Actualización en métodos y técnicas para el estudio de los suelos afectados por incendios forestales, 345-398. Càtedra de Divulgació de la Ciència. Universitat de Valencia. ISBN: 978-84-370-7887-8. Deposito Legal: V-3541-2010. Pereira, P., Úbeda, X. 2010. Spatial variation of heavy metals released from ashes after a wildfire, Journal of Environmental Engineering and Landscape Management, 18(1), 13-22. Pereira, P., Ubeda, X., Martin, D. 2012. Fire severity effects on ash chemical composition and water-extractable elements, Geoderma, 191, 105-114. Pereira, P., Úbeda, X., Martin, D., Mataix-Solera, J., Guerrero, C. 2011. Effects of a low prescribed fire in ash water soluble elements in a Cork Oak (Quercus suber) forest located in Northeast of Iberian Peninsula, Environmental Research, 111(2), 237-247. Stoff, C.R., Wesseling, J.G., Ritsema, C.J. 2011. Effects of ash on soil water retention, Geoderma, 159(3-4), 276-285. Woods, S.W., Balfour, V.N. 2010. The effects of soil texture and ash thickness on the post-fire hydrological response from ash-covered soils, Journal of Hydrology, 393, 274-286.
Donald D. Hook
1969-01-01
Swamp chestnut oak (Quercus michauxii Nutt.) seedlings were grown for 2 years in five soil types in drained and undrained pots. First-year height growth was related to soil type and pot drainage, but second-year height growth was related only to soil type. Results suggest that swamp chestnut oak is site-sensitive. But slow growth, a maximum of 2...
Forestry Tire Tractive Performance: New, Worn, and with Chains
C.R. Vechinski; C.R. Johnson; R.L. Raper; T.P. McDonald
1999-01-01
The tractive perfomance of a new tire, a worn tire, and a worn tire with forestry tire chains was measured in four soil types. Two of the soil types simulated forest-floor conditions with one soil type having a sulfate cover of pine straw and the other having a surface cover of sod. The two remaining soil types were bare. The worn tire with and without chains had...
Bu, Chongfeng; Wu, Shufang; Han, Fengpeng; Yang, Yongsheng; Meng, Jie
2015-01-01
Biological soil crusts (BSCs, or biocrusts) have important positive ecological functions such as erosion control and soil fertility improvement, and they may also have negative effects on soil moisture in some cases. Simultaneous discussions of the two-sided impacts of BSCs are key to the rational use of this resource. This study focused on the contribution of BSCs while combining with specific types of vegetation to erosion reduction and their effects on soil moisture, and it addressed the feasibility of removal or raking disturbance. Twelve plots measuring 4 m × 2 m and six treatments (two plots for each) were established on a 15° slope in a small watershed in the Loess Plateau using BSCs, bare land (as a control, BL), Stipa bungeana Trin. (STBU), Caragana korshinskii Kom. (CAKO), STBU planted with BSCs (STBU+BSCs) and CAKO planted with BSCs (CAKO+BSCs). The runoff, soil loss and soil moisture to a depth of 3 m were measured throughout the rainy season (from June to September) of 2010. The results showed that BSCs significantly reduced runoff by 37.3% and soil loss by 81.0% and increased infiltration by 12.4% in comparison with BL. However, when combined with STBU or CAKO, BSCs only made negligible contributions to erosion control (a runoff reduction of 7.4% and 5.7% and a soil loss reduction of 0.7% and 0.3%). Generally, the soil moisture of the vegetation plots was lower in the upper layer than that of the BL plots, although when accompanied with a higher amount of infiltration, this soil moisture consumption phenomenon was much clearer when combining vegetation with BSCs. Because of the trivial contributions from BSCs to erosion control and the remaining exacerbated consumption of soil water, moderate disturbance by BSCs should be considered in plots with adequate vegetation cover to improve soil moisture levels without a significant erosion increase, which was implied to be necessary and feasible. PMID:25993431
Bu, Chongfeng; Wu, Shufang; Han, Fengpeng; Yang, Yongsheng; Meng, Jie
2015-01-01
Biological soil crusts (BSCs, or biocrusts) have important positive ecological functions such as erosion control and soil fertility improvement, and they may also have negative effects on soil moisture in some cases. Simultaneous discussions of the two-sided impacts of BSCs are key to the rational use of this resource. This study focused on the contribution of BSCs while combining with specific types of vegetation to erosion reduction and their effects on soil moisture, and it addressed the feasibility of removal or raking disturbance. Twelve plots measuring 4 m × 2 m and six treatments (two plots for each) were established on a 15° slope in a small watershed in the Loess Plateau using BSCs, bare land (as a control, BL), Stipa bungeana Trin. (STBU), Caragana korshinskii Kom. (CAKO), STBU planted with BSCs (STBU+BSCs) and CAKO planted with BSCs (CAKO+BSCs). The runoff, soil loss and soil moisture to a depth of 3 m were measured throughout the rainy season (from June to September) of 2010. The results showed that BSCs significantly reduced runoff by 37.3% and soil loss by 81.0% and increased infiltration by 12.4% in comparison with BL. However, when combined with STBU or CAKO, BSCs only made negligible contributions to erosion control (a runoff reduction of 7.4% and 5.7% and a soil loss reduction of 0.7% and 0.3%). Generally, the soil moisture of the vegetation plots was lower in the upper layer than that of the BL plots, although when accompanied with a higher amount of infiltration, this soil moisture consumption phenomenon was much clearer when combining vegetation with BSCs. Because of the trivial contributions from BSCs to erosion control and the remaining exacerbated consumption of soil water, moderate disturbance by BSCs should be considered in plots with adequate vegetation cover to improve soil moisture levels without a significant erosion increase, which was implied to be necessary and feasible.
Jew, A.D.; Kim, C.S.; Rytuba, J.J.; Gustin, M.S.; Brown, Gordon E.
2011-01-01
Mercury in the environment is of prime concern to both ecosystem and human health. Determination of the molecular-level speciation of Hg in soils and mine wastes is important for understanding its sequestration, mobility, and availability for methylation. Extended X-ray absorption fine structure (EXAFS) spectroscopy carried out under ambient P-T conditions has been used in a number of past studies to determine Hg speciation in complex mine wastes and associated soils. However, this approach cannot detect elemental (liquid) mercury in Hg-polluted soils and sediments due to the significant structural disorder of liquid Hg at ambient-temperature. A new sample preparation protocol involving slow cooling through the crystallization temperature of Hg(0) (234 K) results in its transformation to crystalline ??-Hg(0). The presence and proportion of Hg(0), relative to other crystalline Hg-bearing phases, in samples prepared in this way can be quantified by low-temperature (77 K) EXAFS spectroscopy. Using this approach, we have determined the relative concentrations of liquid Hg(0) in Hg mine wastes from several sites in the California Coast Range and have found that they correlate well with measured fluxes of gaseous Hg released during light and dark exposure of the same samples, with higher evasion ratios from samples containing higher concentrations of liquid Hg(0). Two different linear relationships are observed in plots of the ratio of Hg emission under light and dark conditions vs % Hg(0), corresponding to silica-carbonate- and hot springs-type Hg deposits, with the hot springs-type samples exhibiting higher evasion fluxes than silica-carbonate type samples at similar Hg(0) concentrations. Our findings help explain significant differences in Hg evasion data for different mine sites in the California Coast Range. ?? 2011 American Chemical Society.
Wu, Haipeng; Lai, Cui; Zeng, Guangming; Liang, Jie; Chen, Jin; Xu, Jijun; Dai, Juan; Li, Xiaodong; Liu, Junfeng; Chen, Ming; Lu, Lunhui; Hu, Liang; Wan, Jia
2017-09-01
Compost and biochar, used for the remediation of soil, are seen as attractive waste management options for the increasing volume of organic wastes being produced. This paper reviews the interaction of biochar and composting and its implication for soil amendment and pollution remediation. The interaction of biochar and composting affect each other's properties. Biochar could change the physico-chemical properties, microorganisms, degradation, humification and gas emission of composting, such as the increase of nutrients, cation exchange capacity (CEC), organic matter and microbial activities. The composting could also change the physico-chemical properties and facial functional groups of biochar, such as the improvement of nutrients, CEC, functional groups and organic matter. These changes would potentially improve the efficiency of the biochar and composting for soil amendment and pollution remediation. Based on the above review, this paper also discusses the future research required in this field.
Socio-ecological implications of modifying rotation lengths in forestry.
Roberge, Jean-Michel; Laudon, Hjalmar; Björkman, Christer; Ranius, Thomas; Sandström, Camilla; Felton, Adam; Sténs, Anna; Nordin, Annika; Granström, Anders; Widemo, Fredrik; Bergh, Johan; Sonesson, Johan; Stenlid, Jan; Lundmark, Tomas
2016-02-01
The rotation length is a key component of even-aged forest management systems. Using Fennoscandian forestry as a case, we review the socio-ecological implications of modifying rotation lengths relative to current practice by evaluating effects on a range of ecosystem services and on biodiversity conservation. The effects of shortening rotations on provisioning services are expected to be mostly negative to neutral (e.g. production of wood, bilberries, reindeer forage), while those of extending rotations would be more varied. Shortening rotations may help limit damage by some of today's major damaging agents (e.g. root rot, cambium-feeding insects), but may also increase other damage types (e.g. regeneration pests) and impede climate mitigation. Supporting (water, soil nutrients) and cultural (aesthetics, cultural heritage) ecosystem services would generally be affected negatively by shortened rotations and positively by extended rotations, as would most biodiversity indicators. Several effect modifiers, such as changes to thinning regimes, could alter these patterns.
NASA Astrophysics Data System (ADS)
Fan, Linfeng; Lehmann, Peter; Or, Dani
2016-03-01
Spatial variations in soil properties affect key hydrological processes, yet their role in soil mechanical response to hydro-mechanical loading is rarely considered. This study aims to fill this gap by systematically quantifying effects of spatial variations in soil type and initial water content on rapid rainfall-induced shallow landslide predictions at the hillslope- and catchment-scales. We employed a physically-based landslide triggering model that considers mechanical interactions among soil columns governed by strength thresholds. At the hillslope scale, we found that the emergence of weak regions induced by spatial variations of soil type and initial water content resulted in early triggering of landslides with smaller volumes of released mass relative to a homogeneous slope. At the catchment scale, initial water content was linked to a topographic wetness index, whereas soil type varied deterministically with soil depth considering spatially correlated stochastic components. Results indicate that a strong spatial organization of initial water content delays landslide triggering, whereas spatially linked soil type with soil depth promoted landslide initiation. Increasing the standard deviation and correlation length of the stochastic component of soil type increases landslide volume and hastens onset of landslides. The study illustrates that for similar external boundary conditions and mean soil properties, landslide characteristics vary significantly with soil variability, hence it must be considered for improved landslide model predictions.
NASA Astrophysics Data System (ADS)
Reinsch, S.; Emmett, B.; Cosby, J.; Mercado, L. M.; Smart, S.; Glanville, H.; Alberola, M. B.; Clark, D.; Robinson, E.; Jones, D.
2015-12-01
The coupling of C, N and P cycles has rarely been studied through the air- land-water continuum. This is essential if we are to enhance land-atmosphere models to account for N and P limitations. It is also important for developing integrated catchment management solutions to deliver improved water quality combined with a wide range of other ecosystem functions and services.We present results from a project which is part of the interdisciplinary pan-UK NERC Macronutrient Cycles Programme (macronutrient-cycles.ouce.ox.ac.uk/). Our aim is to quantify how coupled C, N & P cycles change across a land use intensification gradient from arable to grass, woodland and bog ecosystems and identify the implications for land-atmosphere C exchange. We focus on three key processes; photosynthesis, annual net primary productivity (ANPP) and decomposition and explore their consequences for biodiversity. Other aspects of the project track delivery to, and transformations within, the freshwater and coastal systems. When we explore relationships between C, N and P, results indicate all habitat types fall on a single land use intensification gradient. Stoichiometry suggests plant productivity is primarily N limited. P limitation occurs rarely but at all levels of intensification. Soil priming shows our soils are primarily C limited and, surprisingly, soil acidity provides one of the most powerful single predictors of processes and ecosystem services perhaps as it is a good integrator of many soil properties. Incorporating this knowledge into the UK land-atmosphere model JULES will be used to improve ANPP projections. These will then be used as inputs into a plant species model called MULTIMOVE to enable future scenarios of climate change, land use and air pollution on habitat suitability for > 1400 plant species to be explored. The enhanced Jules model will ensure both N and P limitations on C fluxes from above and below-ground are incorporated into future UK scenario applications.
NASA Astrophysics Data System (ADS)
Reinsch, Sabine; Glanville, Helen; Smart, Simon; Jones, Davey; Mercado, Lina; Blanes-Alberola, Mamen; Cosby, Jack; Emmett, Bridget
2016-04-01
The coupling of C, N and P cycles has rarely been studied through the air- land-water continuum. This is essential if we are to enhance land-atmosphere models to account for N and P limitations. It is also important for developing integrated catchment management solutions to deliver improved water quality combined with a wide range of other ecosystem functions and services. We present results from a project which is part of the interdisciplinary pan-UK NERC Macronutrient Cycles Programme (macronutrient-cycles.ouce.ox.ac.uk/). Our aim is to quantify how coupled C, N & P cycles change across a land use intensification gradient from arable to grass, woodland and bog ecosystems and identify the implications for land-atmosphere C exchange. We focus on three key processes; photosynthesis, annual net primary productivity and decomposition and explore their consequences for biodiversity. Other aspects of the project track delivery to, and transformations within, the freshwater and coastal systems. When we explore relationships between C, N and P, results indicate all habitat types fall on a single land use intensification gradient. Stoichiometry suggests plant productivity is primarily N limited. P limitation occurs rarely but at all levels of intensification. Soil priming shows our soils are primarily C limited and, surprisingly, soil acidity provides one of the most powerful single predictors of processes and ecosystem services perhaps as it is a good integrator of many soil properties. Incorporating this knowledge into the UK land-atmosphere model JULES will improve aNPP projections. These are then being used as inputs into a plant species model called MULTIMOVE to enable future scenarios of climate change, land use and air pollution on habitat suitability for > 1400 plant species to be explored. The enhanced Jules model will ensure both N and P limitations on C fluxes from above and below-ground are incorporated into future UK scenario applications.
NASA Technical Reports Server (NTRS)
Laymon, Charles A.; Crosson, William L.; Limaye, Ashutosh; Manu, Andrew; Archer, Frank
2005-01-01
We compare soil moisture retrieved with an inverse algorithm with observations of mean moisture in the 0-6 cm soil layer. A significant discrepancy is noted between the retrieved and observed moisture. Using emitting depth functions as weighting functions to convert the observed mean moisture to observed effective moisture removes nearly one-half of the discrepancy noted. This result has important implications in remote sensing validation studies.
Windmöller, Cláudia C; Durão Júnior, Walter A; de Oliveira, Aline; do Valle, Cláudia M
2015-02-01
Investigations of the redox process and chemical speciation of Hg(II) lead to a better understanding of biogeochemical processes controlling the transformation of Hg(II) into toxic and bioaccumulative monomethyl mercury, mainly in areas contaminated with Hg(0). This study investigates the speciation and redox processes of Hg in soil samples from a small area contaminated with Hg(0) as a result of gold mining activities in the rural municipality of Descoberto (Minas Gerais, Brazil). Soil samples were prepared by adding Hg(0) and HgCl2 separately to dry soil, and the Hg redox process was monitored using thermodesorption coupled to atomic absorption spectrometry. A portion of the Hg(0) added was volatilized (up to 37.4±2.0%) or oxidized (from 36±7% to 88±16%). A correlation with Mn suggests that this oxidation is favored, but many other factors must be evaluated, such as the presence of microorganisms and the types of organic matter present. The interaction of Hg with the matrix is suggested to involve Hg(II)-complexes formed with inorganic and organic sulfur ligands and/or nonspecific adsorption onto oxides of Fe, Al and/or Mn. The kinetics of the oxidation reaction was approximated for two first-order reactions; the faster reaction was attributed to the oxidation of Hg(0)/Hg(I), and the slower reaction corresponded to Hg(I)/Hg(II). The second stage was 43-139 times slower than the first. The samples spiked with Hg(II) showed low volatilization and a shifting of the signal of Hg(II) to lower temperatures. These results show that the extent, rate and type of redox process can be adverse in soils. Descoberto can serve as an example for areas contaminated with Hg(0). Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moldrup, P.; Olesen, T.; Yamaguchi, T.
1999-08-01
Accurate description of gas diffusivity (ratio of gas diffusion coefficients in soil and free air, D{sub s}/D{sub 0}) in undisturbed soils is a prerequisite for predicting in situ transport and fate of volatile organic chemicals and greenhouse gases. Reference point gas diffusivities (R{sub p}) in completely dry soil were estimated for 20 undisturbed soils by assuming a power function relation between gas diffusivity and air-filled porosity ({epsilon}). Among the classical gas diffusivity models, the Buckingham (1904) expression, equal to the soil total porosity squared, best described R{sub p}. Inasmuch, as their previous works implied a soil-type dependency of D{sub s}/D{submore » 0}({epsilon}) in undisturbed soils, the Buckingham R{sub p} expression was inserted in two soil-type-dependent D{sub s}/D{sub 0}({epsilon}) models. One D{sub s}/D{sub 0}({epsilon}) model is a function of pore-size distribution (the Campbell water retention parameter used in a modified Burdine capillary tube model), and the other is a calibrated, empirical function of soil texture (silt + sand fraction). Both the Buckingham-Burdine-Campbell (BBC) and the Buckingham/soil texture-based D{sub s}/D{sub 0}({epsilon}) models described well the observed soil type effects on gas diffusivity and gave improved predictions compared with soil type independent models when tested against an independent data set for six undisturbed surface soils. This study emphasizes that simple but soil-type-dependent power function D{sub s}/D{sub 0}({epsilon}) models can adequately describe and predict gas diffusivity in undisturbed soil. The authors recommend the new BBC model as basis for modeling gas transport and reactions in undisturbed soil systems.« less
Soil Structure - A Neglected Component of Land-Surface Models
NASA Astrophysics Data System (ADS)
Fatichi, S.; Or, D.; Walko, R. L.; Vereecken, H.; Kollet, S. J.; Young, M.; Ghezzehei, T. A.; Hengl, T.; Agam, N.; Avissar, R.
2017-12-01
Soil structure is largely absent in most standard sampling and measurements and in the subsequent parameterization of soil hydraulic properties deduced from soil maps and used in Earth System Models. The apparent omission propagates into the pedotransfer functions that deduce parameters of soil hydraulic properties primarily from soil textural information. Such simple parameterization is an essential ingredient in the practical application of any land surface model. Despite the critical role of soil structure (biopores formed by decaying roots, aggregates, etc.) in defining soil hydraulic functions, only a few studies have attempted to incorporate soil structure into models. They mostly looked at the effects on preferential flow and solute transport pathways at the soil profile scale; yet, the role of soil structure in mediating large-scale fluxes remains understudied. Here, we focus on rectifying this gap and demonstrating potential impacts on surface and subsurface fluxes and system wide eco-hydrologic responses. The study proposes a systematic way for correcting the soil water retention and hydraulic conductivity functions—accounting for soil-structure—with major implications for near saturated hydraulic conductivity. Modification to the basic soil hydraulic parameterization is assumed as a function of biological activity summarized by Gross Primary Production. A land-surface model with dynamic vegetation is used to carry out numerical simulations with and without the role of soil-structure for 20 locations characterized by different climates and biomes across the globe. Including soil structure affects considerably the partition between infiltration and runoff and consequently leakage at the base of the soil profile (recharge). In several locations characterized by wet climates, a few hundreds of mm per year of surface runoff become deep-recharge accounting for soil-structure. Changes in energy fluxes, total evapotranspiration and vegetation productivity are less significant but they can reach up to 10% in specific locations. Significance for land-surface and hydrological modeling and implications for distributed domains are discussed.
F.C. Meinzer; J.R. Brooks; S. Bucci; G. Goldstein; F.G. Scholz; J.M. Arren
2004-01-01
We used concurrent measurements of soil water content and soil water potential (Ψsoil) to assess the effects of Ψsoil on uptake and hydraulic redistribution (HR) of soil water by roots during seasonal drought cycles at six sites characterized by differences in the types and amounts of woody vegetations and...
Vegetation types on acid soils of Micronesia
Marjorie C. Falanruw; Thomas G.. Cole; Craig D. Whitesell
1987-01-01
The soils and vegetation of the Caroline high islands, Federated States of Micronesia, are being mapped by the U.S. Department of Agriculture's Forest Service and Soil Conservation Service. By the end of 1987, vegetation maps and reports on Kosrae, Pohnpei, Yap, four Truk Islands, and Palau are expected to be available. To compare soil types with vegetation types...
Graham, Frances F; Harte, David Jg
2017-05-12
To investigate a possible link between liquefaction dust exposure and the noticeable increase in legionellosis cases in response to major earthquakes in 2010 and 2011 that resulted in widespread soil disturbance (liquefaction) in parts of Christchurch, New Zealand. We culture tested liquefaction-affected soil for Legionella spp. in the six months following the first earthquake in 2010. Thirty silt samples were collected randomly from locations within Christchurch's metropolitan area that were affected by liquefaction. The samples were tested to determine the presence of Legionella using qualitative and quantitative methods. Liquefaction-affected soil samples from three sites were further subjected to particle size distribution analysis and determination of major oxides. A controlled field study was established using six silt samples and one control (commercial compost), seeded with a wild-type strain of Legionella bozemanae serogroup (sg) 1 and persistence monitored over a 60-day period by culturing for the presence of Legionella. Dry matter determinations were undertaken so that total Legionella could be calculated on a dry weight basis. Legionella bacteria were undetectable after day one in the silt samples. However, L. bozemanae sg1 was detected in the control sample for the entire study period. This study showed that the liquefaction-affected soil could not contribute directly to the observed increase in legionellosis cases after the earthquakes due to its inability to support growth and survival of the Legionella bacteria.
NASA Astrophysics Data System (ADS)
Gaertner, Mirijam; Richardson, David M.; Privett, Sean D. J.
2011-07-01
We investigated the type and extent of degradation at three sites on the Agulhas Plain, South Africa: an old field dominated by the alien grass Pennisetum clandestinum Pers . (kikuyu), an abandoned Eucalyptus plantation, and a natural fynbos community invaded by nitrogen fixing—Australian Acacia species. These forms of degradation are representative of many areas in the region. By identifying the nature and degree of ecosystem degradation we aimed to determine appropriate strategies for restoration in this biodiversity hotspot. Vegetation surveys were conducted at degraded sites and carefully selected reference sites. Soil-stored propagule seed banks and macro- and micro-soil nutrients were determined. Species richness, diversity and native cover under Eucalyptus were extremely low compared to the reference site and alterations of the soil nutrients were the most severe. The cover of indigenous species under Acacia did not differ significantly from that in reference sites, but species richness was lower under Acacia and soils were considerably enriched. Native species richness was much lower in the kikuyu site, but soil nutrient status was similar to the reference site. Removal of the alien species alone may be sufficient to re-initiate ecosystem recovery at the kikuyu site, whereas active restoration is required to restore functioning ecosystems dominated by native species in the Acacia thicket and the Eucalyptus plantation. To restore native plant communities we suggest burning, mulching with sawdust and sowing of native species.
Mercury and Dissolved Organic Matter Dynamics During Snowmelt in the Upper Provo River, Utah, USA
NASA Astrophysics Data System (ADS)
Packer, B. N.; Carling, G. T.; Nelson, S.; Aanderud, Z.; Shepherd Barkdull, N.; Gabor, R. S.
2017-12-01
Mercury (Hg) is deposited to mountains by atmospheric deposition and mobilized during snowmelt runoff, leading to Hg contamination in otherwise pristine watersheds. Mercury is typically transported with dissolved organic matter (DOM) from soils to streams and lakes. This study focused on Hg and DOM dynamics in the snowmelt-dominated upper Provo River watershed, northern Utah, USA. We sampled Hg, dissolved organic carbon (DOC) concentrations, and DOM fluorescence in river water, snowpack, and ephemeral streams over four years from 2014-2017 to investigate Hg transport mechanisms. During the snowmelt season (April through June), Hg concentrations typically increased from 1 to 8 ng/L showing a strong positive correlation with DOC. The dissolved Hg fraction was dominant in the river, averaging 75% of total Hg concentrations, suggesting that DOC is more important for transport than suspended particulate matter. Ephemeral channels, which represent shallow flow paths with strong interactions with soils, had the highest Hg (>10 ng/L) and DOC (>10 mg/L) concentrations, suggesting a soil water source of Hg and organic matter. Fluorescence spectroscopy results showed important changes in DOM type and quality during the snowmelt season and the soil water flow paths are activated. Changes in DOM characteristics during snowmelt improve the understanding of Hg dynamics with organic matter and elucidate transport pathways from the soil surface, ephemeral channels and groundwater to the Provo River. This study has implications for understanding Hg sources and transport mechanisms in mountain watersheds.
Mao, Qizheng; Huang, Ganlin; Ma, Keming; Sun, Zexiang
2014-01-01
Understanding the spatial pattern of soil lead (Pb) levels is essential to protecting human health. Most previous studies have examined soil Pb distributions by either urbanization gradient or land-use type. Few studies, however, have examined both factors together. It remains unclear whether the impacts of land use on soil Pb levels are consistent along the urbanization gradient. To fill this gap, we investigated variations in soil Pb level under different land-use types along the urbanization gradient in Beijing, China. We classified the degree of urbanization as the urban core, transitional zone, or suburban area and the land-use type as industrial area, roadside, residential area, institutional area, road greenbelt, park, or forest. Our results showed that the range of soil Pb levels in Beijing is <1 mg/kg–292 mg/kg, with a mean of 22 mg/kg. Along the urbanization gradient, the mean soil Pb level increased from the suburban area to the urban core. Land-use types have an impact on soil Pb levels, however, when the degree of urbanization is considered, the impact from land use on soil Pb level was only significant in the transitional zone. Parks and road greenbelts were found to have lower soil Pb, primarily due to soil restoration. Roadside and residential areas were found to have higher soil Pb because of traffic emissions, leaded paint, and previous industrial contamination. In the urban core and suburban area, the soil Pb level showed no significant differences among various land-use types. Given the results of soil Pb in various land-use types, we suggest that future studies consider the urbanization gradient in which different land-use samples are located. PMID:24646863
Mao, Qizheng; Huang, Ganlin; Ma, Keming; Sun, Zexiang
2014-03-18
Understanding the spatial pattern of soil lead (Pb) levels is essential to protecting human health. Most previous studies have examined soil Pb distributions by either urbanization gradient or land-use type. Few studies, however, have examined both factors together. It remains unclear whether the impacts of land use on soil Pb levels are consistent along the urbanization gradient. To fill this gap, we investigated variations in soil Pb level under different land-use types along the urbanization gradient in Beijing, China. We classified the degree of urbanization as the urban core, transitional zone, or suburban area and the land-use type as industrial area, roadside, residential area, institutional area, road greenbelt, park, or forest. Our results showed that the range of soil Pb levels in Beijing is <1 mg/kg-292 mg/kg, with a mean of 22 mg/kg. Along the urbanization gradient, the mean soil Pb level increased from the suburban area to the urban core. Land-use types have an impact on soil Pb levels, however, when the degree of urbanization is considered, the impact from land use on soil Pb level was only significant in the transitional zone. Parks and road greenbelts were found to have lower soil Pb, primarily due to soil restoration. Roadside and residential areas were found to have higher soil Pb because of traffic emissions, leaded paint, and previous industrial contamination. In the urban core and suburban area, the soil Pb level showed no significant differences among various land-use types. Given the results of soil Pb in various land-use types, we suggest that future studies consider the urbanization gradient in which different land-use samples are located.
Li, Zhong-Wu; Guo, Wang; Wang, Xiao-Yan; Shen, Wei-Ping; Zhang, Xue; Chen, Xiao-Lin; Zhang, Yue-Nan
2012-04-01
The changes in organic carbon content in different sized soil particles under different land use patterns partly reflect the variation of soil carbon, being of significance in revealing the process of soil organic carbon cycle. Based on the long-term monitoring of soil erosion, and by the methods of soil particle size fractionation, this paper studied the effects of different land use types (wasteland, pinewood land, and grassland) on the distribution of organic carbon content in different sized soil particles and its relationships to the herb biomass. Land use type and slope position had obvious effects on the organic carbon content in different sized soil particles, and the organic carbon content was in the order of grassland > pinewood land > wasteland. The proportion of the organic carbon in different sized soil particles was mainly depended on the land use type, and had little relationships with slope position. According to the analysis of the ratio of particle-associated organic carbon to mineral-associated organic carbon (POC/MOC), the soil organic carbon in grassland was easily to be mineralized, whereas that in wasteland and pinewood land was relatively stable. On the slopes mainly in hilly red soil region, the soil organic carbon in sand fraction had great effects on herb biomass.
Understanding Cultivar-Specificity and Soil Determinants of the Cannabis Microbiome
Winston, Max E.; Hampton-Marcell, Jarrad; Zarraonaindia, Iratxe; ...
2014-06-16
Understanding microbial partnerships with the medicinally and economically important crop Cannabis has the potential to affect agricultural practice by improving plant fitness and production yield. Furthermore, Cannabis presents an interesting model to explore plant-microbiome interactions as it produces numerous secondary metabolic compounds. Here we present the first description of the endorhiza-, rhizosphere-, and bulk soil-associated microbiome of five distinct Cannabis cultivars. Bacterial communities of the endorhiza showed significant cultivar-specificity. When controlling cultivar and soil type the microbial community structure was significantly different between plant cultivars, soil types, and between the endorhiza, rhizosphere and soil. In conclusion, the influence of soilmore » type, plant cultivar and sample type differentiation on the microbial community structure provides support for a previously published two-tier selection model, whereby community composition across sample types is determined mainly by soil type, while community structure within endorhiza samples is determined mainly by host cultivar.« less
Understanding Cultivar-Specificity and Soil Determinants of the Cannabis Microbiome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winston, Max E.; Hampton-Marcell, Jarrad; Zarraonaindia, Iratxe
Understanding microbial partnerships with the medicinally and economically important crop Cannabis has the potential to affect agricultural practice by improving plant fitness and production yield. Furthermore, Cannabis presents an interesting model to explore plant-microbiome interactions as it produces numerous secondary metabolic compounds. Here we present the first description of the endorhiza-, rhizosphere-, and bulk soil-associated microbiome of five distinct Cannabis cultivars. Bacterial communities of the endorhiza showed significant cultivar-specificity. When controlling cultivar and soil type the microbial community structure was significantly different between plant cultivars, soil types, and between the endorhiza, rhizosphere and soil. In conclusion, the influence of soilmore » type, plant cultivar and sample type differentiation on the microbial community structure provides support for a previously published two-tier selection model, whereby community composition across sample types is determined mainly by soil type, while community structure within endorhiza samples is determined mainly by host cultivar.« less
Temporal changes in soil C-N-P stoichiometry over the past 60 years across subtropical China.
Yu, Zaipeng; Wang, Minhuang; Huang, Zhiqun; Lin, Teng-Chiu; Vadeboncoeur, Matthew A; Searle, Eric B; Chen, Han Y H
2018-03-01
Controlled experiments have shown that global changes decouple the biogeochemical cycles of carbon (C), nitrogen (N), and phosphorus (P), resulting in shifting stoichiometry that lies at the core of ecosystem functioning. However, the response of soil stoichiometry to global changes in natural ecosystems with different soil depths, vegetation types, and climate gradients remains poorly understood. Based on 2,736 observations along soil profiles of 0-150 cm depth from 1955 to 2016, we evaluated the temporal changes in soil C-N-P stoichiometry across subtropical China, where soils are P-impoverished, with diverse vegetation, soil, and parent material types and a wide range of climate gradients. We found a significant overall increase in soil total C concentration and a decrease in soil total P concentration, resulting in increasing soil C:P and N:P ratios during the past 60 years across all soil depths. Although average soil N concentration did not change, soil C:N increased in topsoil while decreasing in deeper soil. The temporal trends in soil C-N-P stoichiometry differed among vegetation, soil, parent material types, and spatial climate variations, with significantly increased C:P and N:P ratios for evergreen broadleaf forest and highly weathered Ultisols, and more pronounced temporal changes in soil C:N, N:P, and C:P ratios at low elevations. Our sensitivity analysis suggests that the temporal changes in soil stoichiometry resulted from elevated N deposition, rising atmospheric CO 2 concentration and regional warming. Our findings revealed that the responses of soil C-N-P and stoichiometry to long-term global changes have occurred across the whole soil depth in subtropical China and the magnitudes of the changes in soil stoichiometry are dependent on vegetation types, soil types, and spatial climate variations. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Merino, Agustin; Fonturbel, M. Teresa; Vega, Jose A.
2015-04-01
Severe wildfires can cause drastic changes in SOM content and quality with important implications for soil conservation and global C balance. Soil heating usually leads to loss of the most labile SOM compounds (e.g. carbohydrates, lipids and peptides) and to generation of aromatic substances. However, these fire-related damages are not uniform over large areas, because of the spatial heterogeneity of different factors such as fire type and environmental conditions. Rapid diagnosis of soil burn severity is required to enable the design of emergency post-fire rehabilitation treatments. The study was conducted in soils from NW Spain, an Atlantic-climate zone that is particularly prone to wildfires. Intact soil cores (forest floor and uppermost mineral soil layer) were taken from a soil developed under granitic rock and subjected to experimental burning (in a bench positioned at the outlet of a wind tunnel). Soil temperature during fire was monitorised and five visual levels of soil burn severity (SBS) were recorded immediately after fire. Solid-state 13C CP-MAS NMR spectroscopy analyses were performed in an Agilent (Varian) VNMRS-500-WB spectrometer. The samples were analyzed by differential scanning calorimetry and thermogravimetry (TGA/DSC, Mettler-Toledo Intl. Inc.). The analyses were performed with 4 mg of samples placed in open aluminium pans under dry air (flow rate, 50 mL-1) and at a scanning rate of 10 °C min-1. The temperature ranged between 50 and 600 °C. In the organic layer, the temperature reached during fire influenced the formation and characteristics of charred material. These materials showed an increasing degree of carbonization/aromatization in relation to the increase of temperature during burning. Burning also led to compounds of higher thermal recalcitrance (increases in T50 values -the temperature at which 50% of the energy stored in SOM is released-). However, values recorded in some samples were lower than those measured in highly polycondensed aromatic compounds. In the mineral soil, large reductions in SOM content were found in both moderate and high SBS (up to 70 %), whereas important effects on SOM quality were only associated with high SBS. NMR analysis revealed these changes as losses of O-alkyl, alkyl and carboxylic structures and increases of the aromatic structures (up to 50 %). In both organic and mineral soils the DSC analysis revealed decreased combustion heat released up to 375 °C, and increased T50. Relationships between thermal properties and chemical-shift regions in the NMR helped provide a better understanding of SOM quality after wildfire. The results also show that thermal analysis can be used as a rapid tool to assess the different degrees of SOM degradation, in areas where the complex heterogeneity of the fire damage requires different emergency post-fire rehabilitation treatments.
A toy model for estimating N2O emissions from natural soils
NASA Technical Reports Server (NTRS)
Fung, Inez
1992-01-01
A model of N2O emissions from natural soils, whose ultimate objective is to evaluate what contribution natural ecosystems make to the global N2O budget and how the contribution would change with global change, is presented. Topics covered include carbon and nitrogen available in the soil, delivery of nitrifiable N, soil water and oxygen status, soil water budget model, effects of drainage, nitrification and denitrification potentials, soil fertility, N2O production, and a model evaluation. A major implication of the toy model is that the tropics account for more than 80 percent of global emission.
Role of organic acids on the bioavailability of selenium in soil: A review.
Dinh, Quang Toan; Li, Zhe; Tran, Thi Anh Thu; Wang, Dan; Liang, Dongli
2017-10-01
Organic Acids (OAs) are important components in the rhizosphere soil and influence Se bioavailability in soil. OAs have a bidirectional contrasting effect on Se bioavailability. Understanding the interaction of OAs with Se is essential to assessing Se bioavailability in soil and clarifying the role of OAs in controlling the behavior and fate of Se in soil. This review examines the mechanisms for the (im)mobilization of Se by OAs and discusses the practical implications of these mechanisms in relation to sequestration and bioavailability of Se in soil. Copyright © 2017 Elsevier Ltd. All rights reserved.
Variation in Soil Respiration across Soil and Vegetation Types in an Alpine Valley
Rubin, Aurélie
2016-01-01
Background and Aims Soils of mountain regions and their associated plant communities are highly diverse over short spatial scales due to the heterogeneity of geological substrates and highly dynamic geomorphic processes. The consequences of this heterogeneity for biogeochemical transfers, however, remain poorly documented. The objective of this study was to quantify the variability of soil-surface carbon dioxide efflux, known as soil respiration (Rs), across soil and vegetation types in an Alpine valley. To this aim, we measured Rs rates during the peak and late growing season (July-October) in 48 plots located in pastoral areas of a small valley of the Swiss Alps. Findings Four herbaceous vegetation types were identified, three corresponding to different stages of primary succession (Petasition paradoxi in pioneer conditions, Seslerion in more advanced stages and Poion alpinae replacing the climactic forests), as well as one (Rumicion alpinae) corresponding to eutrophic grasslands in intensively grazed areas. Soils were developed on calcareous alluvial and colluvial fan deposits and were classified into six types including three Fluvisols grades and three Cambisols grades. Plant and soil types had a high level of co-occurrence. The strongest predictor of Rs was soil temperature, yet we detected additional explanatory power of sampling month, showing that temporal variation was not entirely reducible to variations in temperature. Vegetation and soil types were also major determinants of Rs. During the warmest month (August), Rs rates varied by over a factor three between soil and vegetation types, ranging from 2.5 μmol m-2 s-1 in pioneer environments (Petasition on Very Young Fluvisols) to 8.5 μmol m-2 s-1 in differentiated soils supporting nitrophilous species (Rumicion on Calcaric Cambisols). Conclusions Overall, this study provides quantitative estimates of spatial and temporal variability in Rs in the mountain environment, and demonstrates that estimations of soil carbon efflux at the watershed scale in complex geomorphic terrain have to account for soil and vegetation heterogeneity. PMID:27685955
USDA-ARS?s Scientific Manuscript database
Precipitation limits primary production by affecting soil moisture, and soil type interacts with soil moisture to determine soil water availability to plants. We used ALMANAC, a process-based model, to simulate switchgrass (Panicum virgatum var. Alamo) biomass production in Central Texas under thre...
Zhang, Shuai; Xu, Ming-Xiang; Zhang, Ya-Feng; Wang, Chao-Hua; Chen, Gai
2015-02-01
Response of soil active organic carbon to land-use change has become a hot topic in current soil carbon and nutrient cycling study. Soil active organic carbon distribution characteristics in soil profile under four land-use types were investigated in Ziwuling forest zone of the Hilly Loess Plateau region. The four types of land-use changes included natural woodland converted into artificial woodland, natural woodland converted into cropland, natural shrubland converted into cropland and natural shrubland converted into revegetated grassland. Effects of land-use changes on soil active organic carbon in deep soil layers (60-200 cm) were explored by comparison with the shallow soil layers (0-60 cm). The results showed that: (1) The labile organic carbon ( LOC) and microbial carbon (MBC) content were mainly concentrated in the shallow 0-60 cm soil, which accounted for 49%-66% and 71%-84% of soil active organic carbon in the profile (0-200 cm) under different land-use types. Soil active organic carbon content in shallow soil was significantly varied for the land-use changes types, while no obvious difference was observed in soil active organic carbon in deep soil layer. (2) Land-use changes exerted significant influence on soil active organic carbon, the active organic carbon in shallow soil was more sensitive than that in deep soil. The four types of land-use changes, including natural woodland to planted woodland, natural woodland to cropland, natural shrubland to revegetated grassland and natural shrubland to cropland, LOC in shallow soil was reduced by 10%, 60%, 29%, 40% and LOC in the deep layer was decreased by 9%, 21%, 12%, 1%, respectively. MBC in the shallow soil was reduced by 24% 73%, 23%, 56%, and that in the deep layer was decreased by 25%, 18%, 8% and 11%, respectively. (Land-use changes altered the distribution ratio of active organic carbon in soil profile. The ratio between LOC and SOC in shallow soil increased when natural woodland and shrubland were converted into farmland, but no obvious difference was observed in deep soil. The ratio of MBC/SOC in shallow soil decreased when natural shrubland was converted into farmland, also, no significant difference was detected in the ratio of MBC/SOC for other land-use change types. The results suggested that land-use change exerted significant influence on soil active organic carbon content and distribution proportion in soil profile. Soil organic carbon in deep soil was more stable than that in shallow soil.
How will Shrub Expansion Impact Soil Carbon Sequestration in Arctic Tundra?
NASA Astrophysics Data System (ADS)
Czimczik, C. I.; Holden, S. R.; He, Y.; Randerson, J. T.
2015-12-01
Multiple lines of evidence suggest that plant productivity, and especially shrub abundance, is increasing in the Arctic in response to climate change. This greening is substantiated by increases in the Normalized Difference Vegetation Index, repeat photography and field observations. The implications of a greener Arctic on carbon sequestration by tundra ecosystems remain poorly understood. Here, we explore existing datasets of plant productivity and soil carbon stocks to quantify how greening, and in particular an expansion of woody shrubs, may translate to the sequestration of carbon in arctic soils. As an estimate of carbon storage in arctic tundra soils, we used the Northern Circumpolar Soil Carbon Database v2. As estimates of tundra type and productivity, we used the Circumpolar Arctic Vegetation map as well as the MODIS and Landsat Vegetation Continuous Fields, and MODIS GPP/NPP (MOD17) products. Preliminary findings suggest that in graminoid tundra and erect-shrub tundra higher shrub abundance is associated with greater soil carbon stocks. However, this relationship between shrub abundance and soil carbon is not apparent in prostrate-shrub tundra, or when comparing across graminoid tundra, erect-shrub tundra and prostrate-shrub tundra. Uncertainties originate from the extreme spatial (vertical and horizontal) heterogeneity of organic matter distribution in cryoturbated soils, the fact that (some) permafrost carbon stocks, e.g. yedoma, reflect previous rather than current vegetative cover, and small sample sizes, esp. in the High Arctic. Using Vegetation Continuous Fields and MODIS GPP/NPP (MOD17), we develop quantitative trajectories of soil carbon storage as a function of shrub cover and plant productivity in the Arctic (>60°N). We then compare our greening-derived carbon sequestration estimates to projected losses of carbon from thawing permafrost. Our findings will reduce uncertainties in the magnitude and timing of the carbon-climate feedback from the terrestrial Arctic, and thus provide guidance for future climate mitigation and adaptation strategies.
NASA Astrophysics Data System (ADS)
Poveda, GermáN.; Jaramillo, Alvaro; Gil, Marta MaríA.; Quiceno, Natalia; Mantilla, Ricardo I.
2001-08-01
An analysis of hydrologic variability in Colombia shows different seasonal effects associated with El Niño/Southern Oscillation (ENSO) phenomenon. Spectral and cross-correlation analyses are developed between climatic indices of the tropical Pacific Ocean and the annual cycle of Colombia's hydrology: precipitation, river flows, soil moisture, and the Normalized Difference Vegetation Index (NDVI). Our findings indicate stronger anomalies during December-February and weaker during March-May. The effects of ENSO are stronger for streamflow than for precipitation, owing to concomitant effects on soil moisture and evapotranspiration. We studied time variability of 10-day average volumetric soil moisture, collected at the tropical Andes of central Colombia at depths of 20 and 40 cm, in coffee growing areas characterized by shading vegetation ("shaded coffee"), forest, and sunlit coffee. The annual and interannual variability of soil moisture are highly intertwined for the period 1997-1999, during strong El Niño and La Niña events. Soil moisture exhibited greater negative anomalies during 1997-1998 El Niño, being strongest during the two dry seasons that normally occur in central Colombia. Soil moisture deficits were more drastic at zones covered by sunlit coffee than at those covered by forest and shaded coffee. Soil moisture responds to wetter than normal precipitation conditions during La Niña 1998-1999, reaching maximum levels throughout that period. The probability density function of soil moisture records is highly skewed and exhibits different kinds of multimodality depending upon land cover type. NDVI exhibits strong negative anomalies throughout the year during El Niños, in particular during September-November (year 0) and June-August (year 0). The strong negative relation between NDVI and El Niño has enormous implications for carbon, water, and energy budgets over the region, including the tropical Andes and Amazon River basin.
NASA Astrophysics Data System (ADS)
Hassler, E.; Corre, M. D.; Tjoa, A.; Damris, M.; Utami, S. R.; Veldkamp, E.
2015-10-01
Expansion of palm oil and rubber production, for which global demand is increasing, causes rapid deforestation in Sumatra, Indonesia, and is expected to continue in the next decades. Our study aimed to (1) quantify changes in soil CO2 and CH4 fluxes with land-use change and (2) determine their controlling factors. In Jambi Province, Sumatra, we selected two landscapes on heavily weathered soils that differ mainly in texture: loam and clay Acrisol soils. In each landscape, we investigated the reference land-use types (forest and secondary forest with regenerating rubber) and the converted land-use types (rubber, 7-17 years old, and oil palm plantations, 9-16 years old). We measured soil CO2 and CH4 fluxes monthly from December 2012 to December 2013. Annual soil CO2 fluxes from the reference land-use types were correlated with soil fertility: low extractable phosphorus (P) coincided with high annual CO2 fluxes from the loam Acrisol soil that had lower fertility than the clay Acrisol soil (P < 0.05). Soil CO2 fluxes from the oil palm (107.2 to 115.7 mg C m-2 h-1) decreased compared to the other land-use types (between 178.7 and 195.9 mg C m-2 h-1; P < 0.01). Across land-use types, annual CO2 fluxes were positively correlated with soil organic carbon (C) and negatively correlated with 15N signatures, extractable P and base saturation. This suggests that the reduced soil CO2 fluxes from oil palm were the result of strongly decomposed soil organic matter and reduced soil C stocks due to reduced litter input as well as being due to a possible reduction in C allocation to roots due to improved soil fertility from liming and P fertilization in these plantations. Soil CH4 uptake in the reference land-use types was negatively correlated with net nitrogen (N) mineralization and soil mineral N, suggesting N limitation of CH4 uptake, and positively correlated with exchangeable aluminum (Al), indicating a decrease in methanotrophic activity at high Al saturation. Reduction in soil CH4 uptake in the converted land-use types (ranging from -3.0 to -14.9 μg C m-2 h-1) compared to the reference land-use types (ranging from -20.8 to -40.3 μg C m-2 h-1; P < 0.01) was due to a decrease in soil N availability in the converted land-use types. Our study shows for the first time that differences in soil fertility control the soil-atmosphere exchange of CO2 and CH4 in a tropical landscape, a mechanism that we were able to detect by conducting this study on the landscape scale.
Bellvert, Joaquim; Crombie, Kieran; Horgan, Finbarr G.
2008-01-01
The Fenwick can and Schuiling centrifuge are widely used to extract nematode cysts from soil samples. The comparative efficiencies of these two methods during cyst extraction have not been determined for different soil types under different cyst densities. Such information is vital for statutory laboratories that must choose a method for routine, high-throughput soil monitoring. In this study, samples of different soil types seeded with varying densities of potato cyst nematode (Globodera rostochiensis) cysts were processed using both methods. In one experiment, with 200 ml samples, recovery was similar between methods. In a second experiment with 500 ml samples, cyst recovery was higher using the Schuiling centrifuge. For each method and soil type, cyst extraction efficiency was similar across all densities tested. Extraction was efficient from pure sand (Fenwick 72%, Schuiling 84%) and naturally sandy soils (Fenwick 62%, Schuiling 73%), but was significantly less efficient from clay-soil (Fenwick 42%, Schuiling 44%) and peat-soil with high organic matter content (Fenwick 35%, Schuiling 33%). Residual moisture (<10% w/w) in samples prior to analyses reduced extraction efficiency, particularly for sand and sandy soils. For each soil type and method, there were significant linear relationships between the number of cysts extracted and the numbers of cysts in the samples. We discuss the advantages and disadvantages of each extraction method for cyst extraction in statutory soil laboratories. PMID:19259516
A method for soil moisture probes calibration and validation of satellite estimates.
Holzman, Mauro; Rivas, Raúl; Carmona, Facundo; Niclòs, Raquel
2017-01-01
Optimization of field techniques is crucial to ensure high quality soil moisture data. The aim of the work is to present a sampling method for undisturbed soil and soil water content to calibrated soil moisture probes, in a context of the SMOS (Soil Moisture and Ocean Salinity) mission MIRAS Level 2 soil moisture product validation in Pampean Region of Argentina. The method avoids soil alteration and is recommended to calibrated probes based on soil type under a freely drying process at ambient temperature. A detailed explanation of field and laboratory procedures to obtain reference soil moisture is shown. The calibration results reflected accurate operation for the Delta-T thetaProbe ML2x probes in most of analyzed cases (RMSE and bias ≤ 0.05 m 3 /m 3 ). Post-calibration results indicated that the accuracy improves significantly applying the adjustments of the calibration based on soil types (RMSE ≤ 0.022 m 3 /m 3 , bias ≤ -0.010 m 3 /m 3 ). •A sampling method that provides high quality data of soil water content for calibration of probes is described.•Importance of calibration based on soil types.•A calibration process for similar soil types could be suitable in practical terms, depending on the required accuracy level.
Effect of antecedent soil moisture on preferential flow in a texture-contrast soil
NASA Astrophysics Data System (ADS)
Hardie, Marcus A.; Cotching, William E.; Doyle, Richard B.; Holz, Greg; Lisson, Shaun; Mattern, Kathrin
2011-02-01
SummaryThe effect of soil moisture status on preferential flow in a texture-contrast soil was investigated by applying 25 mm Brilliant Blue dye tracer to soil profiles at high and low antecedent soil moisture. Differences in soil morphology and chemistry between soil profiles had little effect on the depth of dye infiltration and dye distribution down the profile. Antecedent soil moisture strongly influenced the type, depth and rate of dye tracer movement. In the wet treatment, the dye tracer infiltrated to depths between 0.24 and 0.40 m, at an average rate of 120 mm h -1. Whilst in the dry treatment, the same volume of dye tracer infiltrated to between 0.85 and 1.19 m depth at an average rate of 1160 mm h -1. In dry antecedent conditions, finger flow developed in the A1 horizon as a result of water repellency. In the wet treatment, the wetting front developed permutations but did not break into fingers. Despite similar particle size distributions, flow in the A2 e was slower than the A1 horizon, due to the absence of macropores. In the dry treatment, the dye tracer ponded on the upper surface of the B21 horizon, which then spilled down the sides of the large clay columns as rivulets, at rates of between 2000 and 3000 mm h -1. The dye tracer accumulated at the base of the columns resulting in backfilling of the inter column shrinkage cracks, at an estimated rate of 750 mm h -1. In the subsoil, water movement occurred via shrinkage cracks which resulted in flow by-passing 99% of the soil matrix in the B21 horizon and 94% of the soil matrix in the B22 horizon. Evidence of rapid and deep infiltration in 'dry' texture-contrast soils has implications for water and solute management. This knowledge could be used to: (i) improve irrigation and fertilizer efficiency (ii) explain variations in crop yield (iii) reduce salinity through improved leaching practices, (iv) reduce the risk of agrochemicals contaminating shallow groundwater.
Quantification of Microbial Osmolytes in a Drought Impacted California Grassland
NASA Astrophysics Data System (ADS)
Boot, C. M.; Schaeffer, S. M.; Doyle, A. P.; Schimel, J. P.
2008-12-01
With drought frequency and severity likely increasing in the future, understanding its effect on terrestrial carbon (C) and nitrogen (N) cycling has become essential for accurately modeling ecosystem responses to climate change. Microbes respond to drought stress by accumulating internal solutes, or osmolytes, such as amino acids, betaines and polyols, to balance cell membrane water potential as the soil dries. However, when seasonal rains arrive, internal solutes are released and rapidly mineralized. We have been studying these processes in a California grassland. Beginning in summer 2007, we made monthly measurements of soil moisture, individual amino acid concentration in total soil and in microbial biomass, total dissolved organic carbon and nitrogen (DOC and DON), and microbial biomass carbon and nitrogen (MBC and MBN). We expected microbial concentrations of the known amino acid osmolytes glutamate (glu) and proline (pro) to fluctuate inversely with soil moisture. However, pro was only recovered in Mar 2008 (0.30 μg C g-1 dry soil) and the glu concentration varied proportionally with soil moisture: lowest during summer (0.06 g H2O g-1 dry soil, 2.22 μg glutamate-C g-1 dry soil) and highest in winter (0.27 g H2O g-1 dry soil, 4.43 μg glutamate-C g-1 dry soil). The trend from DOC, MBC, and DON measurements was opposite, however, with all concentrations decreasing as soil moisture shifted from dry to wet, (DOC: 64.61 to 32.49 μg C g-1 dry soil respectively). MBN was the exception to this trend, with concentrations staying nearly constant across seasons. These patterns suggest that the expected amino acids glu and pro are not being used for microbial osmoregulation in the CA grassland, and given the summer to winter decrease in MBC, the primary osmolyte source is likely to be either polyol-type compounds such as mannitol or betaines. The implications for terrestrial carbon cycle are considerable because as the frequency of drought increases, the accumulation and release of osmolytes in response to drought has potential to pump carbon out of the grassland ecosystem.
Influence of elk grazing on soil properties in Rocky Mountain National Park
Binkley, Dan; Singer, F.; Kaye, M.; Rochelle, R.
2003-01-01
We used three 35-year exclosures to examine the effects of high elk populations on a variety of soil properties in three vegetation types: upland sagebrush, aspen, and meadow. Grazing and hoof action by elk significantly increased bulk density (from 0.87 kg/l ungrazed to 0.94 kg/l grazed), with greater effects on soils with fewer rocks. Grazing substantially reduced extractable calcium, magnesium, potassium and phosphorus in the sagebrush type, but not in the aspen or meadow types. The only grazing effect on pH came in aspen types, where grazing prevented aspen establishment, and kept soil pH about 0.7 units higher than under aspen inside the exclosures. Grazing had no overall effect on total soil C and N across all exclosures and vegetation types. The availability of soil nitrogen, indexed by in-field resin bags and net mineralization in soil cores, showed little overall effect of grazing. Limited data on soil leaching indicated a possibility of strong increases in nitrate leaching with grazing for an aspen vegetation type at one exclosure. Although we found little effect of grazing on soil N supply, we note that N fertilization doubled the production of grasses and shrubs; if grazing eventually led to changes in soil N supply, species composition and growth would likely change. ?? 2003 Elsevier B.V. All rights reserved.
Soil functional types: surveying the biophysical dimensions of soil security
NASA Astrophysics Data System (ADS)
Cécillon, Lauric; Barré, Pierre
2015-04-01
Soil is a natural capital that can deliver key ecosystem services (ES) to humans through the realization of a series of soil processes controlling ecosystem functioning. Soil is also a diverse and endangered natural resource. A huge pedodiversity has been described at all scales, which is strongly altered by global change. The multidimensional concept soil security, encompassing biophysical, economic, social, policy and legal frameworks of soils has recently been proposed, recognizing the role of soils in global environmental sustainability challenges. The biophysical dimensions of soil security focus on the functionality of a given soil that can be viewed as the combination of its capability and its condition [1]. Indeed, all soils are not equal in term of functionality. They show different processes, provide different ES to humans and respond specifically to global change. Knowledge of soil functionality in space and time is thus a crucial step towards the achievement soil security. All soil classification systems incorporate some functional information, but soil taxonomy alone cannot fully describe the functioning, limitations, resistance and resilience of soils. Droogers and Bouma [2] introduced functional variants (phenoforms) for each soil type (genoform) so as to fit more closely to soil functionality. However, different genoforms can have the same functionality. As stated by McBratney and colleagues [1], there is a great need of an agreed methodology for defining the reference state of soil functionality. Here, we propose soil functional types (SFT) as a relevant classification system for the biophysical dimensions of soil security. Following the definition of plant functional types widely used in ecology, we define a soil functional type as "a set of soil taxons or phenoforms sharing similar processes (e.g. soil respiration), similar effects on ecosystem functioning (e.g. primary productivity) and similar responses to global change (land-use, management or climate) for a particular soil-provided ecosystem service (e.g. climate regulation)". One SFT can thus include several soil types having the same functionality for a particular soil-provided ES. Another consequence is that SFT maps for two different ES may not superimpose over the same area, since some soils may fall in the same SFT for a service and in different SFT for another one. Soil functional types could be assessed and monitored in space and time by a combination of soil functional traits that correspond to inherent and manageable properties of soils. Their metrology would involve either classic (pedological observations) or advanced (molecular ecology, spectrometry, geophysics) tools. SFT could be studied and mapped at all scales, depending on the purpose of the soil security assessment (e.g. global climate modeling, land planning and management, biodiversity conservation). Overall, research is needed to find a pathway from soil pedological maps to SFT maps which would yield important benefits towards the assessment and monitoring of soil security. Indeed, this methodology would allow (i) reducing the spatial uncertainty on the assessment of ES; (ii) identifying and mapping multifunctional soils, which may be the most important soil resource to preserve. References [1] McBratney et al., 2014. Geoderma 213:203-213. [2] Droogers P, Bouma J, 1997. SSSAJ 61:1704-1710.
Wildfire as a hydrological and geomorphological agent
NASA Astrophysics Data System (ADS)
Shakesby, R. A.; Doerr, S. H.
2006-02-01
Wildfire can lead to considerable hydrological and geomorphological change, both directly by weathering bedrock surfaces and changing soil structure and properties, and indirectly through the effects of changes to the soil and vegetation on hydrological and geomorphological processes. This review summarizes current knowledge and identifies research gaps focusing particularly on the contribution of research from the Mediterranean Basin, Australia and South Africa over the last two decades or so to the state of knowledge mostly built on research carried out in the USA. Wildfire-induced weathering rates have been reported to be high relative to other weathering processes in fire-prone terrain, possibly as much as one or two magnitudes higher than frost action, with important implications for cosmogenic-isotope dating of the length of rock exposure. Wildfire impacts on soil properties have been a major focus of interest over the last two decades. Fire usually reduces soil aggregate stability and can induce, enhance or destroy soil water repellency depending on the temperature reached and its duration. These changes have implications for infiltration, overland flow and rainsplash detachment. A large proportion of publications concerned with fire impacts have focused on post-fire soil erosion by water, particularly at small scales. These have shown elevated, sometimes extremely large post-fire losses before geomorphological stability is re-established. Soil losses per unit area are generally negatively related to measurement scale reflecting increased opportunities for sediment storage at larger scales. Over the last 20 years, there has been much improvement in the understanding of the forms, causes and timing of debris flow and landslide activity on burnt terrain. Advances in previously largely unreported processes (e.g. bio-transfer of sediment and wind erosion) have also been made. Post-fire hydrological effects have generally also been studied at small rather than large scales, with soil water repellency effects on infiltration and overland flow being a particular focus. At catchment scales, post-fire accentuated peakflow has received more attention than changes in total flow, reflecting easier measurement and the greater hazard posed by the former. Post-fire changes to stream channels occur over both short and long terms with complex feedback mechanisms, though research to date has been limited. Research gaps identified include the need to: (1) develop a fire severity index relevant to soil changes rather than to degree of biomass destruction; (2) isolate the hydrological and geomorphological impacts of fire-induced soil water repellency changes from other important post-fire changes (e.g. litter and vegetation destruction); (3) improve knowledge of the hydrological and geomorphological impacts of wildfire in a wider range of fire-prone terrain types; (4) solve important problems in the determination and analysis of hillslope and catchment sediment yields including poor knowledge about soil losses other than at small spatial and short temporal scales, the lack of a clear measure of the degradational significance of post-fire soil losses, and confusion arising from errors in and lack of scale context for many quoted post-fire soil erosion rates; and (5) increase the research effort into past and potential future hydrological and geomorphological changes resulting from wildfire.
Kassidy N. Yatso; Erik A. Lilleskov
2016-01-01
Invasive earthworm communities are expanding into previously earthworm-free forests of North America, producing profound ecosystem changes. Lumbricus terrestris is an invasive anecic earthworm that consumes a large portion of the detritus on the soil surface, eliminating forest floor organic horizons and reducing soil organic matter. Two mesocosm...
Susan E. Crow; Kate Lajtha; Timothy R. Filley; Chris Swanston; Richard D. Bowden; Bruce A. Caldwell
2009-01-01
Alterations in forest productivity and changes in the relative proportion of above- and belowground biomass may have nonlinear effects on soil organic matter (SOM) storage. To study the influence of plant litter inputs on SOM accumulation, the Detritus Input Removal and Transfer (DIRT) Experiment continuously alters above- and belowground plant inputs to soil by a...
Rajapaksha, Anushka Upamali; Chen, Season S; Tsang, Daniel C W; Zhang, Ming; Vithanage, Meththika; Mandal, Sanchita; Gao, Bin; Bolan, Nanthi S; Ok, Yong Sik
2016-04-01
The use of biochar has been suggested as a means of remediating contaminated soil and water. The practical applications of conventional biochar for contaminant immobilization and removal however need further improvements. Hence, recent attention has focused on modification of biochar with novel structures and surface properties in order to improve its remediation efficacy and environmental benefits. Engineered/designer biochars are commonly used terms to indicate application-oriented, outcome-based biochar modification or synthesis. In recent years, biochar modifications involving various methods such as, acid treatment, base treatment, amination, surfactant modification, impregnation of mineral sorbents, steam activation and magnetic modification have been widely studied. This review summarizes and evaluates biochar modification methods, corresponding mechanisms, and their benefits for contaminant management in soil and water. Applicability and performance of modification methods depend on the type of contaminants (i.e., inorganic/organic, anionic/cationic, hydrophilic/hydrophobic, polar/non-polar), environmental conditions, remediation goals, and land use purpose. In general, modification to produce engineered/designer biochar is likely to enhance the sorption capacity of biochar and its potential applications for environmental remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Parental material and cultivation determine soil bacterial community structure and fertility.
Sun, Li; Gao, Jusheng; Huang, Ting; Kendall, Joshua R A; Shen, Qirong; Zhang, Ruifu
2015-01-01
Microbes are the key components of the soil environment, playing important roles during soil development. Soil parent material provides the foundation elements that comprise the basic nutritional environment for the development of microbial community. After 30 years artificial maturation of cultivation, the soil developments of three different parental materials were evaluated and bacterial community compositions were investigated using the high-throughput sequencing approach. Thirty years of cultivation increased the soil fertility and soil microbial biomass, richness and diversity, greatly changed the soil bacterial communities, the proportion of phylum Actinobacteria decreased significantly, while the relative abundances of the phyla Acidobacteria, Chloroflexi, Gemmatimonadetes, Armatimonadetes and Nitrospira were significantly increased. Soil bacterial communities of parental materials were separated with the cultivated ones, and comparisons of different soil types, granite soil and quaternary red clay soil were similar and different with purple sandy shale soil in both parental materials and cultivated treatments. Bacterial community variations in the three soil types were affected by different factors, and their alteration patterns in the soil development also varied with soil type. Soil properties (except total potassium) had a significant effect on the soil bacterial communities in all three soil types and a close relationship with abundant bacterial phyla. The amounts of nitrogen-fixing bacteria as well as the abundances of the nifH gene in all cultivated soils were higher than those in the parental materials; Burkholderia and Rhizobacte were enriched significantly with long-term cultivation. The results suggested that crop system would not deplete the nutrients of soil parental materials in early stage of soil maturation, instead it increased soil fertility and changed bacterial community, specially enriched the nitrogen-fixing bacteria to accumulate nitrogen during soil development. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Carminati, Andrea; Vetterlein, Doris
2013-01-01
Background It is known that the soil near roots, the so-called rhizosphere, has physical and chemical properties different from those of the bulk soil. Rhizosphere properties are the result of several processes: root and soil shrinking/swelling during drying/wetting cycles, soil compaction by root growth, mucilage exuded by root caps, interaction of mucilage with soil particles, mucilage shrinking/swelling and mucilage biodegradation. These processes may lead to variable rhizosphere properties, i.e. the presence of air-filled gaps between soil and roots; water repellence in the rhizosphere caused by drying of mucilage around the soil particles; or water accumulation in the rhizosphere due to the high water-holding capacity of mucilage. The resulting properties are not constant in time but they change as a function of soil condition, root growth rate and mucilage age. Scope We consider such a variability as an expression of rhizosphere plasticity, which may be a strategy for plants to control which part of the root system will have a facilitated access to water and which roots will be disconnected from the soil, for instance by air-filled gaps or by rhizosphere hydrophobicity. To describe such a dualism, we suggest classifying rhizosphere into two categories: class A refers to a rhizosphere covered with hydrated mucilage that optimally connects roots to soil and facilitates water uptake from dry soils. Class B refers to the case of air-filled gaps and/or hydrophobic rhizosphere, which isolate roots from the soil and may limit water uptake from the soil as well water loss to the soil. The main function of roots covered by class B will be long-distance transport of water. Outlook This concept has implications for soil and plant water relations at the plant scale. Root water uptake in dry conditions is expected to shift to regions covered with rhizosphere class A. On the other hand, hydraulic lift may be limited in regions covered with rhizosphere class B. New experimental methods need to be developed and applied to different plant species and soil types, in order to understand whether such dualism in rhizosphere properties is an important mechanism for efficient utilization of scarce resources and drought tolerance. PMID:23235697
Distinct Circular Single-Stranded DNA Viruses Exist in Different Soil Types
Swanson, Maud M.; Dawson, Lorna; Freitag, Thomas E.; Singh, Brajesh K.; Torrance, Lesley; Mushegian, Arcady R.
2015-01-01
The potential dependence of virus populations on soil types was examined by electron microscopy, and the total abundance of virus particles in four soil types was similar to that previously observed in soil samples. The four soil types examined differed in the relative abundances of four morphological groups of viruses. Machair, a unique type of coastal soil in western Scotland and Ireland, differed from the others tested in having a higher proportion of tailed bacteriophages. The other soils examined contained predominantly spherical and thin filamentous virus particles, but the Machair soil had a more even distribution of the virus types. As the first step in looking at differences in populations in detail, virus sequences from Machair and brown earth (agricultural pasture) soils were examined by metagenomic sequencing after enriching for circular Rep-encoding single-stranded DNA (ssDNA) (CRESS-DNA) virus genomes. Sequences from the family Microviridae (icosahedral viruses mainly infecting bacteria) of CRESS-DNA viruses were predominant in both soils. Phylogenetic analysis of Microviridae major coat protein sequences from the Machair viruses showed that they spanned most of the diversity of the subfamily Gokushovirinae, whose members mainly infect obligate intracellular parasites. The brown earth soil had a higher proportion of sequences that matched the morphologically similar family Circoviridae in BLAST searches. However, analysis of putative replicase proteins that were similar to those of viruses in the Circoviridae showed that they are a novel clade of Circoviridae-related CRESS-DNA viruses distinct from known Circoviridae genera. Different soils have substantially different taxonomic biodiversities even within ssDNA viruses, which may be driven by physicochemical factors. PMID:25841004
Cornelius, Mary L; Osbrink, Weste L A
2010-06-01
This study examined the influence of soil type and moisture availability on termite foraging behavior. Physical properties of the soil affected both tunneling behavior and shelter tube construction. Termites tunneled through sand faster than top soil and clay. In containers with top soil and clay, termites built shelter tubes on the sides of the containers. In containers with sand, termites built shelter tubes directly into the air and covered the sides of the container with a layer of sand. The interaction of soil type and moisture availability affected termite movement, feeding, and survival. In assays with moist soils, termites were more likely to aggregate in top soil over potting soil and peat moss. However, termites were more likely to move into containers with dry peat moss and potting soil than containers with dry sand and clay. Termites were also significantly more likely to move into containers with dry potting soil than dry top soil. In the assay with dry soils, termite mortality was high even though termites were able to travel freely between moist sand and dry soil, possibly due to desiccation caused by contact with dry soil. Evaporation from potting soil and peat moss resulted in significant mortality, whereas termites were able to retain enough moisture in top soil, sand, and clay to survive for 25 d. The interaction of soil type and moisture availability influences the distribution of foraging termites in microhabitats.
Jonathan A. O' Donnell; Jennifer W. Harden; A. David McGuire; Mikhail Z. Kanevskiy; M. Torre Jorgenson; Xiaomei Xu
2010-01-01
High-latitude regions store large amounts of organic carbon (OC) in active-layer soils and permafrost, accounting for nearly half of the global belowground OC pool. In the boreal region, recent warming has promoted changes in the fire regime, which may exacerbate rates of permafrost thaw and alter soil OC dynamics in both organic and mineral soil. We examined how...
Monaghan, J M; Hutchison, M L
2012-05-01
To improve our understanding of the survival and splash-mediated transfer of zoonotic agents and faecal indicator bacteria introduced into soils used for crop cultivation via contaminated irrigation waters. Zoonotic agents and an Escherichia coli marker bacterium were inoculated into borehole water, which was applied to two different soil types in early-, mid- and late summer. Decline of the zoonotic agents was influenced by soil type. Marker bacteria applied to columns of two soil types in irrigation water did not concentrate at the surface of the soils. Decline of zoonotic agents at the surface was influenced by soil type and environmental conditions. Typically, declines were rapid and bacteria were not detectable after 5 weeks. Selective agar strips were used to determine that the impact of water drops 24-87 μl could splash marker bacteria from soil surfaces horizontal distances of at least 25 cm and heights of 20 cm. Soil splash created by rain-sized water droplets can transfer enteric bacteria from soil to ready-to-eat crops. Persistence of zoonotic agents was reduced at the hottest part of the growing season when irrigation is most likely. Soil splash can cause crop contamination. We report the penetration depths and seasonally influenced declines of bacteria applied in irrigation water into two soil types. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.
Ethylene Participates in the Regulation of Fe Deficiency Responses in Strategy I Plants and in Rice.
Lucena, Carlos; Romera, Francisco J; García, María J; Alcántara, Esteban; Pérez-Vicente, Rafael
2015-01-01
Iron (Fe) is very abundant in most soils but its availability for plants is low, especially in calcareous soils. Plants have been divided into Strategy I and Strategy II species to acquire Fe from soils. Strategy I species apply a reduction-based uptake system which includes all higher plants except the Poaceae. Strategy II species apply a chelation-based uptake system which includes the Poaceae. To cope with Fe deficiency both type of species activate several Fe deficiency responses, mainly in their roots. These responses need to be tightly regulated to avoid Fe toxicity and to conserve energy. Their regulation is not totally understood but some hormones and signaling substances have been implicated. Several years ago it was suggested that ethylene could participate in the regulation of Fe deficiency responses in Strategy I species. In Strategy II species, the role of hormones and signaling substances has been less studied. However, in rice, traditionally considered a Strategy II species but that possesses some characteristics of Strategy I species, it has been recently shown that ethylene can also play a role in the regulation of some of its Fe deficiency responses. Here, we will review and discuss the data supporting a role for ethylene in the regulation of Fe deficiency responses in both Strategy I species and rice. In addition, we will review the data about ethylene and Fe responses related to Strategy II species. We will also discuss the results supporting the action of ethylene through different transduction pathways and its interaction with other signals, such as certain Fe-related repressive signals occurring in the phloem sap. Finally, the possible implication of ethylene in the interactions among Fe deficiency responses and the responses to other nutrient deficiencies in the plant will be addressed.
Ethylene Participates in the Regulation of Fe Deficiency Responses in Strategy I Plants and in Rice
Lucena, Carlos; Romera, Francisco J.; García, María J.; Alcántara, Esteban; Pérez-Vicente, Rafael
2015-01-01
Iron (Fe) is very abundant in most soils but its availability for plants is low, especially in calcareous soils. Plants have been divided into Strategy I and Strategy II species to acquire Fe from soils. Strategy I species apply a reduction-based uptake system which includes all higher plants except the Poaceae. Strategy II species apply a chelation-based uptake system which includes the Poaceae. To cope with Fe deficiency both type of species activate several Fe deficiency responses, mainly in their roots. These responses need to be tightly regulated to avoid Fe toxicity and to conserve energy. Their regulation is not totally understood but some hormones and signaling substances have been implicated. Several years ago it was suggested that ethylene could participate in the regulation of Fe deficiency responses in Strategy I species. In Strategy II species, the role of hormones and signaling substances has been less studied. However, in rice, traditionally considered a Strategy II species but that possesses some characteristics of Strategy I species, it has been recently shown that ethylene can also play a role in the regulation of some of its Fe deficiency responses. Here, we will review and discuss the data supporting a role for ethylene in the regulation of Fe deficiency responses in both Strategy I species and rice. In addition, we will review the data about ethylene and Fe responses related to Strategy II species. We will also discuss the results supporting the action of ethylene through different transduction pathways and its interaction with other signals, such as certain Fe-related repressive signals occurring in the phloem sap. Finally, the possible implication of ethylene in the interactions among Fe deficiency responses and the responses to other nutrient deficiencies in the plant will be addressed. PMID:26640474
Is the Pearl River basin, China, drying or wetting? Seasonal variations, causes and implications
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Li, Jianfeng; Gu, Xihui; Shi, Peijun
2018-07-01
Soil moisture plays crucial roles in the hydrological cycle and is also a critical link between land surface and atmosphere. The Pearl River basin (PRb) is climatically subtropical and tropical and is highly sensitive to climate changes. In this study, seasonal soil moisture changes across the PRb were analyzed using the Variable Infiltration Capacity (VIC) model forced by the gridded 0.5° × 0.5° climatic observations. Seasonal changes of soil moisture in both space and time were investigated using the Mann-Kendall trend test method. Potential influencing factors behind seasonal soil moisture changes such as precipitation and temperature were identified using the Maximum Covariance Analysis (MCA) technique. The results indicated that: (1) VIC model performs well in describing changing properties of soil moisture across the PRb; (2) Distinctly different seasonal features of soil moisture can be observed. Soil moisture in spring decreased from east to west parts of the PRb. In summer however, soil moisture was higher in east and west parts but was lower in central parts of the PRb; (3) A significant drying trend was identified over the PRb in autumn, while no significant drying trends can be detected in other seasons; (4) The increase/decrease in precipitation can generally explain the wetting/drying tendency of soil moisture. However, warming temperature contributed significantly to the drying trends and these drying trends were particularly evident during autumn and winter; (5) Significant decreasing precipitation and increasing temperature combined to trigger substantially decreasing soil moisture in autumn. In winter, warming temperature is the major reason behind decreased soil moisture although precipitation is in slightly decreasing tendency. Season variations of soil moisture and related implications for hydro-meteorological processes in the subtropical and tropical river basins over the globe should arouse considerable human concerns.
The distribution of microplastics in soil aggregate fractions in southwestern China.
Zhang, G S; Liu, Y F
2018-06-09
Plastic particle accumulation in arable soils is a growing contaminant of concern with unknown consequences for soil productivity and quality. This study aimed to investigate abundance and distribution of plastic particles among soil aggregate fractions in four cropped areas and an established riparian forest buffer zone at Dian Lake, southwestern China. Plastic particles (10-0.05 mm) from fifty soil samples were extracted and then sorted by size, counted, and categorized. Plastic particles were found in all soil samples. The concentration of plastic particles ranges from 7100 to 42,960 particles kg -1 (mean 18,760 particles kg -1 ). 95% of the sampled plastic particles are in the microplastic size (1-0.05 mm) range. The predominant form is plastic fibers, making up on average 92% of each sample followed by fragments and films that contributed with to 8%. Results of this study also show that 72% of plastic particles are associated with soil aggregates, and 28% of plastic particles are dispersed. The abundance of aggregate-associated plastic fibers is significantly greater in the micro-aggregate than that in the macro-aggregate, whereas the less concentrations of plastic films and fragments are found in the micro-aggregate. Compared to the adjacent vegetable soil, the less concentration of plastic particles in the buffer soil implicates that application of soil amendments and irrigation with wastewater must be controlled to reduce accumulation of microplastics in agricultural soils. While the implications of microplastic on ecological and human health are poorly understood, the staggering number of microplastic in agricultural soils should be continually concerned in the future. Copyright © 2018 Elsevier B.V. All rights reserved.
IMPLICATIONS OF BIOSOLIDS/COMPOST UTILIZATION ON THE RISK OF SOIL METALS
This presentation summarizes the current work on the fundamental changes in soil mineralogical accomplished by additions of biosolids and P to the system which results in changes in phytoavailability/bioavailability. The concepts of phytoavailability/bioavailability are rather s...
EFFECTIVENESS OF SOIL AND WATER CONSERVATION PRACTICES FOR POLLUTION CONTROL
The potential water quality effects and economic implications of soil and water conservation practices (SWCPs) are identified. Method for estimating the effects of SWCPs on pollutant losses from croplands are presented. Mathematical simulation and linear programming models were u...
Rousidou, Constantina; Karaiskos, Dionysis; Myti, Despoina; Karanasios, Evangelos; Karas, Panagiotis A; Tourna, Maria; Tzortzakakis, Emmanuel A; Karpouzas, Dimitrios G
2017-01-01
Synthetic carbamates constitute a significant pesticide group with oxamyl being a leading compound in the nematicide market. Oxamyl degradation in soil is mainly microbially mediated. However, the distribution and function of carbamate hydrolase genes (cehA, mcd, cahA) associated with the soil biodegradation of carbamates is not yet clear. We studied oxamyl degradation in 16 soils from a potato monoculture area in Greece where oxamyl is regularly used. Oxamyl showed low persistence (DT50 2.4-26.7 days). q-PCR detected the cehA and mcd genes in 10 and three soils, respectively. The abundance of the cehA gene was positively correlated with pH, while both cehA abundance and pH were negatively correlated with oxamyl DT50. Amongst the carbamates used in the study region, oxamyl stimulated the abundance and expression only of the cehA gene, while carbofuran stimulated the abundance and expression of both genes. The cehA gene was also detected in pristine soils upon repeated treatments with oxamyl and carbofuran and only in soils with pH ≥7.2, where the most rapid degradation of oxamyl was observed. These results have major implications regarding the maintenance of carbamate hydrolase genes in soils, have practical implications regarding the agricultural use of carbamates, and provide insights into the evolution of cehA. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Brad, Traian; Chiriac, Cecilia; Szekeres, Edina; Coman, Cristian; Rudi, Knut; Sandor, Mignon
2017-04-01
Twenty microcosm enclosures containing two types of soil (i.e. a rich Chernozemic and a poorer soil) were fertilized with mineral (NPK-complex) and organic (Gülle, manure and a green fertilizer) materials and placed under dry and wet water regimes. After 10, 20 and 30 days of the experiment, soil samples were analyzed for the structure and composition of microbial communities using next generation sequencing techniques (Illumina) and statistical analysis. The differences between bacteria communities in different soil types, and in different fertilization and hydric treatments were analyzed using quantitative phylogenetic distances and the ANOSIM test. The two types of soil especially selected for the structure of microbial communities, while moisture and the type of fertilizer appeared to have a smaller influence on microbial diversity in microcosms. The alpha-diversity indices (species richness, evenness and phylogenetic diversity) had higher values for the poorer soil compared to the rich Chernozemic soil. For both soil types, the highest bacteria diversity values were obtained after fertilization with manure. The microbial communities in the analyzed soils were complex and dominated by sequences belonging to Actinobacteria, Proteobacteria, Acidobacteria and Firmicutes.
NASA Astrophysics Data System (ADS)
Lu, Haiying; Shao, Hongbo; Xu, Zhaolong; Peng, Cheng
2017-04-01
Marshy reclamation in coastal area is becoming an important strategy for food safety security and economic development in China. After the reclamation of mudflat, the nutrient concentration in soil is one of the dominated factors restricting the development of marshy agriculture. However, little information is available for soil nutrient dynamics and its driving mechanisms under different types of man-made land uses. In this review, we summarized the soil nutrient dynamics under different types of man-made land uses (bare mudflat soil, rice-wheat rotation soil, aquaculture soil, and forest soil), including the change of physical and chemical features of the reclaimed soil; ii) the dynamics of soil organic matters and its driving mechanism in marshy land; iii) the migration of N, P, and K in marshy soil; and iv) the oriented cultivation and improvement for soil nutrient in marshy soil. This study contributes not only to understanding the soil nutrient cycling in marshy land, but also to providing valuable information for the sustainable development of salt-soil agriculture in marshy land along seaside cities of China.
Lin, Fen-Fang; Wang, Ke; Yang, Ning; Yan, Shi-Guang; Zheng, Xin-Yu
2012-02-01
In this paper, some main factors such as soil type, land use pattern, lithology type, topography, road, and industry type that affect soil quality were used to precisely obtain the spatial distribution characteristics of regional soil quality, mutual information theory was adopted to select the main environmental factors, and decision tree algorithm See 5.0 was applied to predict the grade of regional soil quality. The main factors affecting regional soil quality were soil type, land use, lithology type, distance to town, distance to water area, altitude, distance to road, and distance to industrial land. The prediction accuracy of the decision tree model with the variables selected by mutual information was obviously higher than that of the model with all variables, and, for the former model, whether of decision tree or of decision rule, its prediction accuracy was all higher than 80%. Based on the continuous and categorical data, the method of mutual information theory integrated with decision tree could not only reduce the number of input parameters for decision tree algorithm, but also predict and assess regional soil quality effectively.
Vegetation Response to Rainfall and Soil Moisture Variability in Botswana
1991-01-01
Effects of Varying Soil Type on the NDVI /Rainfall and NDVI /Soil Moisture...examine the effects of different soil types on the vegetation growth/rainfall relationship. The goals are to determine whether differences in the water-use...34first step" in removing the soil effect (Huete et al., 1985). Indeed, no large-scale soil corrections have been attempted as yet on NDVI data.
Key parameters in testing biodegradation of bio-based materials in soil.
Briassoulis, D; Mistriotis, A
2018-09-01
Biodegradation of plastics in soil is currently tested by international standard testing methods (e.g. ISO 17556-12 or ASTM D5988-12). Although these testing methods have been developed for plastics, it has been shown in project KBBPPS that they can be extended also to lubricants with small modifications. Reproducibility is a critical issue regarding biodegradation tests in the laboratory. Among the main testing variables are the soil types and nutrients available (mainly nitrogen). For this reason, the effect of the soil type on the biodegradation rates of various bio-based materials (cellulose and lubricants) was tested for five different natural soil types (loam, loamy sand, clay, clay-loam, and silt-loam organic). It was shown that use of samples containing 1 g of C in a substrate of 300 g of soil with the addition of 0.1 g of N as nutrient strongly improves the reproducibility of the test making the results practically independent of the soil type with the exception of the organic soil. The sandy soil was found to need addition of higher amount of nutrients to exhibit similar biodegradation rates as those achieved with the other soil types. Therefore, natural soils can be used for Standard biodegradation tests of bio-based materials yielding reproducible results with the addition of appropriate nutrients. Copyright © 2018 Elsevier Ltd. All rights reserved.
Liao, Hong-kai; Long, Jian
2011-09-01
This paper studied the variation characteristics of soil organic carbon (SOC) and different particle sizes soil particulate organic carbon (POC) in normal soil and in micro-habitats under different vegetation types in typical Karst mountain areas of southwest Guizhou. Under different vegetation types, the SOC content in normal soil and in micro-habitats was all in the order of bare land < grass < shrub < forest, with the variation range being 7.18-43.42 g x kg(-1) in normal soil and being 6.62-46.47 g x kg(-1) and 9.01-52.07 g x kg(-1) in earth surface and stone pit, respectively. The POC/MOC (mineral-associated organic carbon) ratio under different vegetation types was in the order of bare land < grass < forest < shrub. Under the same vegetation types, the POC/MOC in stone pit was the highest, as compared to that in normal soil and in earth surface. In the process of bare land-grass-shrub-forest, the contents of different particle sizes soil POC increased, while the SOC mainly existed in the forms of sand- and silt organic carbon, indicating that in Karst region, soil carbon sequestration and SOC stability were weak, soil was easily subjected to outside interference and led to organic carbon running off, and thus, soil quality had the risk of decline or degradation.
Morimoto, Sho; Hayatsu, Masahito; Takada Hoshino, Yuko; Nagaoka, Kazunari; Yamazaki, Masatsugu; Karasawa, Toshihiko; Takenaka, Makoto; Akiyama, Hiroko
2011-01-01
Soil type is one of the key factors affecting soil microbial communities. With regard to ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), however, it has not been determined how soil type affects their community size and soil nitrification activity. Here we quantitatively analyzed the ammonia monooxygenase genes (amoA) of these ammonia oxidizers in fields with three different soil types (Low-humic Andosol [LHA], Gray Lowland Soil [GLS], and Yellow Soil [YS]) under common cropping conditions, and assessed the relationships between soil nitrification activity and the abundance of each amoA. Nitrification activity of LHA was highest, followed by that of GLS and YS; this order was consistent with that for the abundance of AOB amoA. Abundance of AOB amoA showed temporal variation, which was similar to that observed in nitrification activity, and a strong relationship (adjusted R(2)=0.742) was observed between the abundance of AOB amoA and nitrification activity. Abundance of AOA amoA also exhibited a significant relationship (adjusted R(2)=0.228) with nitrification activity, although this relationship was much weaker. Our results indicate that soil type affects the community size of AOA and AOB and the resulting nitrification activity, and that AOB are major contributors to nitrification in soils, while AOA are partially responsible.
Carbon storage in US wetlands | Science Inventory | US EPA
This Nature Communications article is a product of legacy work that contributes to Safe and Sustainable Water Resources research on technical support and research on the enhancement of Office of Water’s National Aquatic Resource Surveys (NARS) (SSWR 3.01A). The research is also potentially relevant to SHC and ACE research program questions. The research was conducted under USEPA cooperative agreement number 83422601 with Michigan State University in association with Kenyon College. USEPA 2011 National Wetland Condition Assessment data used for this research are publically available from https://www.epa.gov/national-aquatic-resource-surveys/data-national-aquatic-resource-surveys. ***This is article is clearing for completion ONLY*** The research and conclusions in this article highlight the role of wetland soils in storing carbon and the implications of disturbance to wetlands for climate change. Specifically, we provide unbiased estimates of soil carbon stocks for wetlands at regional and national scales using field data from the 2011 National Wetland Condition Assessment (NWCA). This research also describes how soil carbon stocks vary by wetland type and soil depth, and by anthropogenic disturbance to the wetland. We find that wetlands in the conterminous US store a total of 11.52 PgC – roughly equivalent to four years of annual carbon emissions by the US. Freshwater inland wetlands, in part due to their substantial areal extent, hold nearly ten-fol
Sun, Ruibo; Dsouza, Melissa; Gilbert, Jack A; Guo, Xisheng; Wang, Daozhong; Guo, Zhibin; Ni, Yingying; Chu, Haiyan
2016-12-01
Organic matter application is a widely used practice to increase soil carbon content and maintain soil fertility. However, little is known about the effect of different types of organic matter, or the input of exogenous species from these materials, on soil fungal communities. In this study, fungal community composition was characterized from soils amended with three types of organic matter over a 30-year fertilization experiment. Chemical fertilization significantly changed soil fungal community composition and structure, which was exacerbated by the addition of organic matter, with the direction of change influenced by the type of organic matter used. The addition of organic matter significantly increased soil fungal richness, with the greatest richness achieved in soils amended with pig manure. Importantly, following addition of cow and pig manure, fungal taxa associated with these materials could be found in the soil, suggesting that these exogenous species can augment soil fungal composition. Moreover, the addition of organic matter decreased the relative abundance of potential pathogenic fungi. Overall, these results indicate that organic matter addition influences the composition and structure of soil fungal communities in predictable ways. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Predictor variable resolution governs modeled soil types
USDA-ARS?s Scientific Manuscript database
Soil mapping identifies different soil types by compressing a unique suite of spatial patterns and processes across multiple spatial scales. It can be quite difficult to quantify spatial patterns of soil properties with remotely sensed predictor variables. More specifically, matching the right scale...
Impact of Land Use Management and Soil Properties on Denitrifier Communities of Namibian Savannas.
Braker, Gesche; Matthies, Diethart; Hannig, Michael; Brandt, Franziska Barbara; Brenzinger, Kristof; Gröngröft, Alexander
2015-11-01
We studied potential denitrification activity and the underlying denitrifier communities in soils from a semiarid savanna ecosystem of the Kavango region in NE Namibia to help in predicting future changes in N(2)O emissions due to continuing changes of land use in this region. Soil type and land use (pristine, fallow, and cultivated soils) influenced physicochemical characteristics of the soils that are relevant to denitrification activity and N(2)O fluxes from soils and affected potential denitrification activity. Potential denitrification activity was assessed by using the denitrifier enzyme activity (DEA) assay as a proxy for denitrification activity in the soil. Soil type and land use influenced C and N contents of the soils. Pristine soils that had never been cultivated had a particularly high C content. Cultivation reduced soil C content and the abundance of denitrifiers and changed the composition of the denitrifier communities. DEA was strongly and positively correlated with soil C content and was higher in pristine than in fallow or recently cultivated soils. Soil type and the composition of both the nirK- and nirS-type denitrifier communities also influenced DEA. In contrast, other soil characteristics like N content, C:N ratio, and pH did not predict DEA. These findings suggest that due to greater availability of soil organic matter, and hence a more effective N cycling, the natural semiarid grasslands emit more N(2)O than managed lands in Namibia.
Soil types effect on grape and wine composition in Helan Mountain area of Ningxia.
Wang, Rui; Sun, Quan; Chang, Qingrui
2015-01-01
Different soil types can significantly affect the composition of wine grapes and the final wine product. In this study, the effects of soil types on the composition of Cabernet Sauvignon grapes and wine produced in the Helan Mountains were evaluated. Three different representative soil types--aeolian, sierozem and irrigation silting soil were studied. The compositions of grapes and wines were measured, and in addition, the weights of 100-berry samples were determined. The grapes that grown on the aeolian and sierozem soils matured sooner than those grown on the irrigation silting soil. The highest sugar content, total soluble solids content, sugar to acid ratio and anthocyanin content were found in the grapes that grown on the aeolian soil. The wine produced from this soil had improved chroma and tone and higher-quality phenols. The grapes grown on the sierozem soil had the highest total phenol and tannin contents, which affected the wine composition. The grapes grown on the irrigation silting soil had higher acidities, but the remaining indices were lower. In addition, the grapes grown on the aeolian soil resulted in wines with better chroma and aroma. The sierozem soil was beneficial for the formation of wine tannins and phenols and significantly affected the wine composition. The quality of the grapes from the irrigation silting soil was relatively low, resulting in lower-quality wine.
Zhang, Jun-Hua; Li, Guo-Dong; Wang, Yan-Song; Nan, Zhong-Ren; Zhao, Li-Ping
2012-12-01
Taking the seven typical land use types (paddy field, dry land, medium coverage grassland, saline-alkali field, bare land, desert, and sandlot) in the middle reaches of Heihe River as test objects, this paper studied the relationships of soil organic carbon content with its components. In the 0-100 cm soil profile, the contents of soil total organic carbon (TOC) , active organic carbon (AOC), and non-active organic carbon (NOC) decreased with increasing depth. The soil TOC, AOC, and NOC contents differed with land use type. Land use change induced the increase or decrease of soil organic carbon content. The tillage in paddy field was an available way to increase the contents of soil TOC, AOC, and NOC. After land use change, soil NOC rather than AOC contributed more to soil TOC content. For the same land use types, soil AOC and NOC contents increased together with increasing soil TOC content, and the NOC content increased faster than the AOC content. The soil TOC content corresponding to the crossing point of the variation trend lines of soil AOC and NOC contents could be considered as the boundary point of TOC accumulation or loss, and the saturation capacities of soil AOC and NOC could be obtained by the variation trend lines of the AOC and NOC.
Viral impacts on microbial carbon cycling in thawing permafrost soils
NASA Astrophysics Data System (ADS)
Trubl, G. G.; Roux, S.; Bolduc, B.; Jang, H. B.; Emerson, J. B.; Solonenko, N.; Li, F.; Solden, L. M.; Vik, D. R.; Wrighton, K. C.; Saleska, S. R.; Sullivan, M. B.; Rich, V. I.
2017-12-01
Permafrost contains 30-50% of global soil carbon (C) and is rapidly thawing. While the fate of this C is unknown, it will be shaped in part by microbes and their associated viruses, which modulate host activities via mortality and metabolic control. To date, viral research in soils has been outpaced by that in aquatic environments, due to the technical challenges of accessing viruses as well as the dramatic physicochemical heterogeneity in soils. Here, we describe advances in soil viromics from our research on permafrost-associated soils, and their implications for associated terrestrial C cycling. First, we optimized viral resuspension-DNA extraction methods for a range of soil types. Second, we applied cutting-edge viral-specific informatics methods to recover viral populations, define their gene content, connect them to potential hosts, and analyze their relationships to environmental parameters. A total of 781 viral populations were recovered from size-fractionated virus samples of three soils along a permafrost thaw gradient. Ecological analyses revealed endemism as recovered viral populations were largely unique to each habitat and unlike those in aquatic communities. Genome- and network-based classification assigned these viruses into 226 viral clusters (VCs; genus-level taxonomy), 55% of which were novel. This increases the number of VCs by a third and triples the number of soil viral populations in the RefSeq database (currently contains 256 VCs and 316 soil viral populations). Genomic analyses revealed 85% of the genes were functionally unknown, though 5% of the annotatable genes contained C-related auxiliary metabolic genes (AMGs; e.g. glycoside hydrolases). Using sequence-based features and microbial population genomes, we were able to in silico predict hosts for 30% of the viral populations. The identified hosts spanned 3 phyla and 6 genera but suggested these viruses have species-specific host ranges as >80% of hosts for a given virus were in the same species. Several identified hosts (e.g. Acidobacterium) are dominant community members that play major roles in C cycling through organic matter degradation. Together these findings show that permafrost viruses play a major role in the fate of soil C through infection of key hosts and metabolic reprogramming using specific C cycling AMGs.
Effects of Winter Climate Change on Plant and Soil Ecology of Cryoturbated Non-Sorted Circles Tundra
NASA Astrophysics Data System (ADS)
Monteux, S.; Krab, E. J.; Rönnefarth, J.; Becher, M.; Blume-Werry, G.; Kreyling, J.; Keuper, F.; Klaminder, J.; Kobayashi, M.; Lundin, E. J.; Milbau, A.; Teuber, L. M.; Weedon, J.; Dorrepaal, E.
2014-12-01
Cryoturbation is the movement of soil particles through repeated freeze-thaw events, resulting in the burial of large amounts of soil organic carbon (SOC). Non-sorted circles are a common type of cryoturbated ground in arctic and alpine areas underlain by permafrost. They appear as sparsely vegetated areas surrounded by denser tundra vegetation. Climate change in arctic environments will likely increase winter precipitation in large parts of the Arctic in Europe, Asia and America, resulting in deeper snow cover. Snow is a good thermal insulator and modifications in freezing intensity and freeze-thaw cycles are therefore likely, which could affect the burial of organic matter. Moreover, vegetation, soil fauna and soil microbial communities, which are important drivers of SOC dynamics, may be impacted directly by the altered winter conditions and indirectly by reduced cryoturbation. We aimed to investigate this, and therefore subjected non-sorted circles in North-Swedish subarctic alpine tundra to two years of increased thermal insulation in winter and spring, using snow fences or fibre cloth (Figure 1). Both snow fences and fibre cloth manipulations increased surface soil temperatures, especially daily minimum temperatures, and strongly reduced freeze-thaw frequency. We compared the impacts of these manipulations on plant performance, soil chemistry, soil fauna and soil microbial communities between the centre of the circles and the dense tundra heath just outside. Directly after snowmelt, the extra winter insulation decreased plant leaf damage, both in the centre and in adjacent tundra, but responses differed between species. We will further present the responses of plant phenology and growth, soil pH and dissolved organic carbon content, soil fauna activity, Collembola community composition and body size distribution, as well as fungal and bacterial diversity profiles and functional groups abundance. We expect that winter warming due to increased snow cover and its effects on cryoturbation will stimulate the biotic components of non-sorted circles, but may change the interactions between organisms at different trophic levels of this ecosystem. The resulting new balance between increased productivity and decomposer activity might have large implications for this important carbon pool.
Cemented Volcanic Soils, Martian Spectra and Implications for the Martian Climate
NASA Technical Reports Server (NTRS)
Bishop, J. L.; Schiffman, P.; Drief, A.; Southard, R. J.
2004-01-01
Cemented soils formed via reactions with salts are studied here and provide information about the climate when they formed. Spectroscopic and microprobe studies have been performed on cemented volcanic crusts in order to learn about the composition of these materials, how they formed, and what they can tell us about climatic interactions with surface material on Mars to form cemented soils. These crusts include carbonate, sulfate and opaline components that may all be present in cemented soil units on Mars.
Nutrient properties of five West Virginia forest soils
L. R. Auchmoody
1972-01-01
Nutrient levels in five well-drained forest soils of the northern mountain section of West Virginia were generally associated with the type of parent rocks from which the soils had formed. But in some instances, different rock types yielded soils of similar nutrient composition. Soils formed from limestone and calcareous shale were usually higher in fertility than...
USDA-ARS?s Scientific Manuscript database
This study examined the influence of soil type and moisture availability on termite foraging behavior. Physical properties of the soil affected both tunneling behavior and mud tube construction. Termites tunneled through sand faster than top soil and clay. In containers with top soil and clay, termi...
The Future of Soil Erosion Modelling
USDA-ARS?s Scientific Manuscript database
The movement of sediment and associated pollutants over the landscape and into water bodies is of increasing concern with respect to pollution control, prevention of muddy floods and environmental protection. In addition, the loss of soil on site has implications for declining agricultural productiv...
ISSUES IN ASSESSING LOW LEVEL IONIZABLE CONTAMINANT PARTITIONING IN SOILS AND SEDIMENTS
Solubilization has profound implications for such diverse risk assessment activities as assessing sediment contaminant porewater exposures to benthic fauna, determining half lives of refractory toxicants in natural soils and sediments, and assessing the fate and transport of th...
The potential for enhanced mobility of hydrophobic pollutants by cotransport with bacteria in saturated soils was evaluated from measurements of biosorption of "C-labeled hexachlorobenzene and dichlorodiphenyltrichloroethane (DDT) to five strains of soil and sewage bacteria. The ...
Jan E. Cipra; Eugene F. Kelly; Lee MacDonald; John Norman
2003-01-01
This team was asked to address three questions regarding soil properties, erosion and sedimentation, and how aquatic and terrestrial ecosystems have responded or could respond to various land management options. We have used soil survey maps, burn severity maps, and digital elevation model (DEM) maps as primary map data. We used our own field measurements and...
Clay mineral type effect on bacterial enteropathogen survival in soil.
Brennan, Fiona P; Moynihan, Emma; Griffiths, Bryan S; Hillier, Stephen; Owen, Jason; Pendlowski, Helen; Avery, Lisa M
2014-01-15
Enteropathogens released into the environment can represent a serious risk to public health. Soil clay content has long been known to have an important effect on enteropathogen survival in soil, generally enhancing survival. However, clay mineral composition in soils varies, and different clay minerals have specific physiochemical properties that would be expected to impact differentially on survival. This work investigated the effect of clay materials, with a predominance of a particular mineral type (montmorillonite, kaolinite, or illite), on the survival in soil microcosms over 96 days of Listeria monocytogenes, Salmonella Dublin, and Escherichia coli O157. Clay mineral addition was found to alter a number of physicochemical parameters in soil, including cation exchange capacity and surface area, and this was specific to the mineral type. Clay mineral addition enhanced enteropathogen survival in soil. The type of clay mineral was found to differentially affect enteropathogen survival and the effect was enteropathogen-specific. © 2013.
Advanced Sensors and Applications Study (ASAS)
NASA Technical Reports Server (NTRS)
Chism, S. B.; Hughes, C. L.
1976-01-01
The present EOD requirements for sensors in the space shuttle era are reported with emphasis on those applications which were deemed important enough to warrant separate sections. The application areas developed are: (1) agriculture; (2) atmospheric corrections; (3) cartography; (4) coastal studies; (5) forestry; (6) geology; (7) hydrology; (8) land use; (9) oceanography; and (10) soil moisture. For each application area. The following aspects were covered: (1) specific goals and techniques, (2) individual sensor requirements including types, bands, resolution, etc.; (3) definition of mission requirements, type orbits, coverages, etc.; and (4) discussion of anticipated problem areas and solutions. The remote sensors required for these application areas include; (1) camera systems; (2) multispectral scanners; (3) microwave scatterometers; (4) synthetic aperture radars; (5) microwave radiometers; and (6) vidicons. The emphasis in the remote sensor area was on the evaluation of present technology implications about future systems.
Bell, Terrence H; Stefani, Franck O P; Abram, Katrina; Champagne, Julie; Yergeau, Etienne; Hijri, Mohamed; St-Arnaud, Marc
2016-09-15
Soil microbiome modification may alter system function, which may enhance processes like bioremediation. In this study, we filled microcosms with gamma-irradiated soil that was reinoculated with the initial soil or cultivated bacterial subsets obtained on regular media (REG-M) or media containing crude oil (CO-M). We allowed 8 weeks for microbiome stabilization, added crude oil and monoammonium phosphate, incubated the microcosms for another 6 weeks, and then measured the biodegradation of crude oil components, bacterial taxonomy, and functional gene composition. We hypothesized that the biodegradation of targeted crude oil components would be enhanced by limiting the microbial taxa competing for resources and by specifically selecting bacteria involved in crude oil biodegradation (i.e., CO-M). Postincubation, large differences in taxonomy and functional gene composition between the three microbiome types remained, indicating that purposeful soil microbiome structuring is feasible. Although phylum-level bacterial taxonomy was constrained, operational taxonomic unit composition varied between microbiome types. Contrary to our hypothesis, the biodegradation of C10 to C50 hydrocarbons was highest when the original microbiome was reinoculated, despite a higher relative abundance of alkane hydroxylase genes in the CO-M microbiomes and of carbon-processing genes in the REG-M microbiomes. Despite increases in the relative abundances of genes potentially linked to hydrocarbon processing in cultivated subsets of the microbiome, reinoculation of the initial microbiome led to maximum biodegradation. In this study, we show that it is possible to sustainably modify microbial assemblages in soil. This has implications for biotechnology, as modification of gut microbial assemblages has led to improved treatments for diseases like Clostridium difficile infection. Although the soil environment determined which major phylogenetic groups of bacteria would dominate the assemblage, we saw differences at lower levels of taxonomy and in functional gene composition (e.g., genes related to hydrocarbon degradation). Further studies are needed to determine the success of such an approach in nonsterile environments. Although the biodegradation of certain crude oil fractions was still the highest when we inoculated with the diverse initial microbiome, the possibility of discovering and establishing microbiomes that are more efficient in crude oil degradation is not precluded. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Teng, Jia Ling; Jia, Rong Liang; Hu, Yi Gang; Xu, Bing Xin; Chen, Meng Chen; Zhao, Yun
2016-03-01
Based on the measurements of the fluxes of CO 2 , CH 4 and N 2 O from the soil covered by two types of biocrusts dominated separately by moss and algae-lichen, followed by 0 (control), 1 (shallow) and 10 (deep) mm depths of sand burial treatments, we studied the effects of sand burial on greenhouse gases fluxes and their relationships with soil temperature and moisture at Shapotou, southeastern edge of the Tengger Desert. The results showed that sand burial had significantly positive effects on CO 2 emission fluxes and CH 4 uptake fluxes of the soil covered by the two types of biocrusts, but imposed differential effects on N 2 O fluxes depending on the type of biocrust and the depth of burial. Deep burial (10 mm) dramatically increased the N 2 O uptake fluxes of the soil co-vered by the two types of biocrusts, while shallow burial (1 mm) decreased the N 2 O uptake flux of the soil co-vered by moss crust only and had no significant effects on N 2 O uptake flux of the soil covered by algae-lichen crust. In addition, CO 2 fluxes of the two biocrusts were closely related to the soil temperature and soil moisture, thereby increasing with the raised soil surface temperature and soil moisture caused by sand burial. However, the relationships of burial-induced changes of soil temperature and moisture with the changes in the other two greenhouse gases fluxes were not evident, indicating that the variations of soil temperature and moisture caused by sand burial were not the key factors affecting the fluxes of CH 4 and N 2 O of the soil covered by the two types of biocrusts.
Xie, Jin; Li, Zhao-Li; Li, Yong-Mei; Guo, Fang-Fang
2011-12-01
Eighty-six topsoil (0-20 cm) samples were collected from 8 land use types (natural forest land, maize field, tea garden, paddy field, rubber plantation, flax field, banana plantation, and sugarcane field) in the Naban River Watershed National Nature Reserve and its surrounding areas, and the soil physical and chemical properties were analyzed, aimed to study the effects of land use type on the soil quality by the method of soil quality index (SQI). Comparing with natural forest land, all the cultivated lands had somewhat decreased soil organic matter content and higher soil bulk density, and the soil bulk density was significantly higher in tea garden, paddy field, rubber plantation, and banana plantation. In cultivated lands, fertilization and reclamation made the soil available potassium and phosphorus contents maintained at a higher level, probably due to the input of mineral potassium and phosphorus and the decomposition of soil organic matter. The SQI of the 8 land use types was in the order of flax field (0.595) > natural forest land (0.532) > maize field (0.516) > banana plantation (0.485) tea garden (0.480) sugarcane field (0.463) > paddy field (0.416) > rubber plantation (0.362). The soils in higher altitude production demonstration areas (1614 +/-115 m) had significant higher SQI, compared to the soils in lower altitude buffer areas (908 +/- 98 m) and junction areas (926 +/- 131 m). Among the 8 land use types, the rubber plantation in lower altitude areas had the lowest SQI, due to the lower soil organic matter and available potassium and phosphorus contents and the highest soil bulk density. Application of organic manure or intercropping with leguminous plants could be an available practice to improve the soil quality of the rubber plantation.
Win, Khin Thuzar; Oo, Aung Zaw; Bellingrath-Kimura, Sonoko Dorothea
2017-04-01
A pot experiment was conducted to study the effects of soil types and osmotic levels on growth and 137 Cs accumulation in two blackgram varieties differing in salinity tolerance grown in Fukushima contaminated soils. The contamination levels of the sandy clay loam and clay soil were 1084 and 2046 Bq kg -1 DW, respectively. The 137 Cs activity was higher in both plants grown on the sandy clay loam than on the clay soil regardless of soil 137 Cs activity concentration. No significant differences were observed in all measured growth parameters between the two varieties under optimal water conditions for both types of soil. However, the growth, leaf water contents and 137 Cs activity concentrations in both plants were lower in both soil types when there was water stress induced by addition of polyethylene glycol. Water stress-induced reduction in total leaf area and total biomass, in addition to leaf relative water content, were higher in salt sensitive 'Mut Pe Khaing To' than in salt tolerant 'U-Taung-2' plants for both soil types. Varietal difference in decreased 137 Cs uptake under water stress was statically significant in the sandy clay loam soil, however, it was not in the clay soil. The transfer of 137 Cs from soil to plants (i.e., root, stem and leaf) was higher for the sandy clay loam for both plants when compared with those of the clay soil. The decreased activity of 137 Cs in the above ground samples (leaf and stem) in both plants in response to osmotic stress suggested that plant available 137 Cs decreased when soil water is limited by osmotic stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
Landa, B B; Montes-Borrego, M; Aranda, S; Soriano, M A; Gómez, J A; Navas-Cortés, J A
2014-04-01
Nowadays, there is a tendency in olive production systems to reduce tillage or keep a vegetative cover to reduce soil erosion and degradation. However, there is scarce information on the effects of different soil management systems (SMS) in soil bacterial community composition of olive groves. In this study, we have evaluated the effects of soil type and different SMS implemented to control weeds in the structure and diversity of bacterial communities of 58 soils in the two geographic areas that best represent the organic olive production systems in Spain. Bacterial community composition assessed by frequency and intensity of occurrence of terminal restriction profiles (TRFs) derived from terminal restriction fragment length polymorphism (T-RFLP) analysis of amplified 16S ribosomal deoxyribonucleic acid were strongly correlated with soil type/field site (Eutric/Calcaric) that differed mainly in soil particle size distribution and soil pH, followed by a strong effect of SMS, in that order. Canonical discriminant (CD) analysis of TRFs properly classified all of the olive orchard soils as belonging to their respective soil type or SMS. Furthermore, only a small set of TRFs were enough to clearly and significantly differentiate soil samples according to soil type or SMS. Those specific TRFs could be used as bioindicators to assess the effect of changes in SMS aimed to enhance soil quality in olive production systems. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Grote, Edmund E.; Belnap, Jayne; Housman, David C.; Sparks, Jed P.
2010-01-01
Biological soil crusts (biocrusts) are an integral part of the soil system in arid regions worldwide, stabilizing soil surfaces, aiding vascular plant establishment, and are significant sources of ecosystem nitrogen and carbon. Hydration and temperature primarily control ecosystem CO2 flux in these systems. Using constructed mesocosms for incubations under controlled laboratory conditions, we examined the effect of temperature (5-35 1C) and water content (WC, 20-100%) on CO2 exchange in light cyanobacterially dominated) and dark cyanobacteria/lichen and moss dominated) biocrusts of the cool Colorado Plateau Desert in Utah and the hot Chihuahuan Desert in New Mexico. In light crusts from both Utah and New Mexico, net photosynthesis was highest at temperatures 430 1C. Net photosynthesis in light crusts from Utah was relatively insensitive to changes in soil moisture. In contrast, light crusts from New Mexico tended to exhibit higher rates of net photosynthesis at higher soil moisture. Dark crusts originating from both sites exhibited the greatest net photosynthesis at intermediate soil water content (40-60%). Declines in net photosynthesis were observed in dark crusts with crusts from Utah showing declines at temperatures 425 1C and those originating from New Mexico showing declines at temperatures 435 1C. Maximum net photosynthesis in all crust types from all locations were strongly influenced by offsets in the optimal temperature and water content for gross photosynthesis compared with dark respiration. Gross photosynthesis tended to be maximized at some intermediate value of temperature and water content and dark respiration tended to increase linearly. The results of this study suggest biocrusts are capable of CO2 exchange under a wide range of conditions. However, significant changes in the magnitude of this exchange should be expected for the temperature and precipitation changes suggested by current climate models.
Staley, Christopher; Breuillin-Sessoms, Florence; Wang, Ping; Kaiser, Thomas; Venterea, Rodney T.; Sadowsky, Michael J.
2018-01-01
Application of nitrogen (N) fertilizers, predominantly as urea, is a major source of reactive N in the environment, with wide ranging effects including increased greenhouse gas accumulation in the atmosphere and aquatic eutrophication. The soil microbial community is the principal driver of soil N cycling; thus, improved understanding of microbial community responses to urea addition has widespread implications. We used next-generation amplicon sequencing of the 16S rRNA gene to characterize bacterial and archaeal communities in eight contrasting agricultural soil types amended with 0, 100, or 500 μg N g-1 of urea and incubated for 21 days. We hypothesized that urea amendment would have common, direct effects on the abundance and diversity of members of the microbial community associated with nitrification, across all soils, and would further affect the broader heterotrophic community resulting in decreased diversity and variation in abundances of specific taxa. Significant (P < 0.001) differences in bacterial community diversity and composition were observed by site, but amendment with only the greatest urea concentration significantly decreased Shannon indices. Expansion in the abundances of members of the families Microbacteriaceae, Chitinophagaceae, Comamonadaceae, Xanthomonadaceae, and Nitrosomonadaceae were also consistently observed among all soils (linear discriminant analysis score ≥ 3.0). Analysis of nitrifier genera revealed diverse, soil-specific distributions of oligotypes (strains), but few were correlated with nitrification gene abundances that were reported in a previous study. Our results suggest that the majority of the bacterial and archaeal community are likely unassociated with N cycling, but are significantly negatively impacted by urea application. Furthermore, these results reveal that amendment with high concentrations of urea may reduce nitrifier diversity, favoring specific strains, specifically those within the nitrifying genera Nitrobacter, Nitrospira, and Nitrosospira, that may play significant roles related to N cycling in soils receiving intensive urea inputs. PMID:29670600
Turnbull, Laura; Brazier, Richard E; Wainwright, John; Dixon, Liz; Bol, Roland
2008-06-01
Many semi-arid areas worldwide are becoming degraded, in the form of C(4) grasslands being replaced by C(3) shrublands, which causes an increase in surface runoff and erosion, and altered nutrient cycling, which may affect global biogeochemical cycling. The prevention or control of vegetation transitions is hindered by a lack of understanding of their temporal and spatial dynamics, particularly in terms of interactions between biotic and abiotic processes. This research investigates (1) the effects of soil erosion on the delta(13)C values of soil organic matter (SOM) throughout the soil profile and its implications for reconstructing vegetation change using carbon-isotope analysis and (2) the spatial properties of erosion over a grass-shrub transition to increase understanding of biotic-abiotic interactions by using delta(13)C signals of eroded material as a sediment tracer. Results demonstrate that the soils over grass-shrub transitions are not in steady state. A complex interplay of factors determines the input of SOM to the surface horizon of the soil and its subsequent retention and turnover through the soil profile. A positive correlation between event runoff and delta(13)C signatures of eroded sediment was found in all plots. This indicates that the delta(13)C signatures of eroded sediment may provide a means of distinguishing between changes in erosion dynamics over runoff events of different magnitudes and over different vegetation types. The development of this technique using delta(13)C signatures of eroded sediment provides a new means of furthering existing understanding of erosion dynamics over vegetation transitions. This is critical in terms of understanding biotic-abiotic feedbacks and the evolution of areas subject to vegetation change in semi-arid environments. John Wiley & Sons, Ltd
Kyriacou, Marios C.; Rouphael, Youssef; Colla, Giuseppe; Zrenner, Rita; Schwarz, Dietmar
2017-01-01
Grafting has become an imperative for intensive vegetable production since chlorofluorocarbon-based soil fumigants were banned from use on grounds of environmental protection. Compelled by this development, research into rootstock–scion interaction has broadened the potential applications of grafting in the vegetable industry beyond aspects of soil phytopathology. Grafting has been increasingly tapped for cultivation under adverse environs posing abiotic and biotic stresses to vegetable crops, thus enabling expansion of commercial production onto otherwise under-exploited land. Vigorous rootstocks have been employed not only in the open field but also under protected cultivation where increase in productivity improves distribution of infrastructural and energy costs. Applications of grafting have expanded mainly in two families: the Cucurbitaceae and the Solanaceae, both of which comprise major vegetable crops. As the main drives behind the expansion of vegetable grafting have been the resistance to soilborne pathogens, tolerance to abiotic stresses and increase in yields, rootstock selection and breeding have accordingly conformed to the prevailing demand for improving productivity, arguably at the expense of fruit quality. It is, however, compelling to assess the qualitative implications of this growing agronomic practice for human nutrition. Problems of impaired vegetable fruit quality have not infrequently been associated with the practice of grafting. Accordingly, the aim of the current review is to reassess how the practice of grafting and the prevalence of particular types of commercial rootstocks influence vegetable fruit quality and, partly, storability. Physical, sensorial and bioactive aspects of quality are examined with respect to grafting for watermelon, melon, cucumber, tomato, eggplant, and pepper. The physiological mechanisms at play which mediate rootstock effects on scion performance are discussed in interpreting the implications of grafting for the configuration of vegetable fruit physicochemical quality and nutritive value. PMID:28553298
Misiewicz, Tracy M; Fine, Paul V A
2014-05-01
Soil heterogeneity is an important driver of divergent natural selection in plants. Neotropical forests have the highest tree diversity on earth, and frequently, soil specialist congeners are distributed parapatrically. While the role of edaphic heterogeneity in the origin and maintenance of tropical tree diversity is unknown, it has been posited that natural selection across the patchwork of soils in the Amazon rainforest is important in driving and maintaining tree diversity. We examined genetic and morphological differentiation among populations of the tropical tree Protium subserratum growing parapatrically on the mosaic of white-sand, brown-sand and clay soils found throughout western Amazonia. Nuclear microsatellites and leaf morphology were used to (i) quantify the extent of phenotypic and genetic divergence across habitat types, (ii) assess the importance of natural selection vs. drift in population divergence, (iii) determine the extent of hybridization and introgression across habitat types, (iv) estimate migration rates among populations. We found significant morphological variation correlated with soil type. Higher levels of genetic differentiation and lower migration rates were observed between adjacent populations found on different soil types than between geographically distant populations on the same soil type. PST -FST comparisons indicate a role for natural selection in population divergence among soil types. A small number of hybrids were detected suggesting that gene flow among soil specialist populations may occur at low frequencies. Our results suggest that edaphic specialization has occurred multiple times in P. subserratum and that divergent natural selection across edaphic boundaries may be a general mechanism promoting and maintaining Amazonian tree diversity. © 2014 John Wiley & Sons Ltd.
This study was undertaken to evaluate in-situ soil bioremediation processes, including degradation and detoxification, for two types of wood preserving wastes and two types of petroleum refining wastes at high concentrations in an unacclimated soil. The soil solid phase, water so...
Katseanes, Chelsea K; Chappell, Mark A; Hopkins, Bryan G; Durham, Brian D; Price, Cynthia L; Porter, Beth E; Miller, Lesley F
2017-12-01
After nearly a century of use in numerous munition platforms, TNT and RDX contamination has turned up largely in the environment due to ammunition manufacturing or as part of releases from low-order detonations during training activities. Although the basic knowledge governing the environmental fate of TNT and RDX are known, accurate predictions of TNT and RDX persistence in soil remain elusive, particularly given the universal heterogeneity of pedomorphic soil types. In this work, we proposed overcoming this problem by considering the environmental persistence of these munition constituents (MC) as multivariate mathematical functions over a variety of taxonomically distinct soil types, instead of a single constant or parameter of a specific absolute value. To test this idea, we conducted experiments where the disappearance kinetics of TNT and RDX were measured over a >300 h period in taxonomically distinct soils. Classical fertility-based soil measurements were log-transformed, statistically decomposed, and correlated to TNT and RDX disappearance rates (k -TNT and k -RDX ) using multivariate dimension-reduction and correlation techniques. From these efforts, we generated multivariate linear functions for k parameters across different soil types based on a statistically reduced set of their chemical and physical properties: Calculations showed that the soil properties exhibited strong covariance, with a prominent latent structure emerging as the basis for relative comparisons of the samples in reduced space. Loadings describing TNT degradation were largely driven by properties associated with alkaline/calcareous soil characteristics, while the degradation of RDX was attributed to the soil organic matter content - reflective of an important soil fertility characteristic. In spite of the differing responses to the munitions, batch data suggested that the overall nutrient dynamics were consistent for each soil type, as well as readily distinguishable from the other soil types used in this study. Thus, we hypothesized that the latent structure arising from the strong covariance of full multivariate geochemical matrix describing taxonomically distinguished "soil types" may provide the means for potentially predicting complex phenomena in soils. Published by Elsevier Ltd.
Updating categorical soil maps using limited survey data by Bayesian Markov chain cosimulation.
Li, Weidong; Zhang, Chuanrong; Dey, Dipak K; Willig, Michael R
2013-01-01
Updating categorical soil maps is necessary for providing current, higher-quality soil data to agricultural and environmental management but may not require a costly thorough field survey because latest legacy maps may only need limited corrections. This study suggests a Markov chain random field (MCRF) sequential cosimulation (Co-MCSS) method for updating categorical soil maps using limited survey data provided that qualified legacy maps are available. A case study using synthetic data demonstrates that Co-MCSS can appreciably improve simulation accuracy of soil types with both contributions from a legacy map and limited sample data. The method indicates the following characteristics: (1) if a soil type indicates no change in an update survey or it has been reclassified into another type that similarly evinces no change, it will be simply reproduced in the updated map; (2) if a soil type has changes in some places, it will be simulated with uncertainty quantified by occurrence probability maps; (3) if a soil type has no change in an area but evinces changes in other distant areas, it still can be captured in the area with unobvious uncertainty. We concluded that Co-MCSS might be a practical method for updating categorical soil maps with limited survey data.
Updating Categorical Soil Maps Using Limited Survey Data by Bayesian Markov Chain Cosimulation
Dey, Dipak K.; Willig, Michael R.
2013-01-01
Updating categorical soil maps is necessary for providing current, higher-quality soil data to agricultural and environmental management but may not require a costly thorough field survey because latest legacy maps may only need limited corrections. This study suggests a Markov chain random field (MCRF) sequential cosimulation (Co-MCSS) method for updating categorical soil maps using limited survey data provided that qualified legacy maps are available. A case study using synthetic data demonstrates that Co-MCSS can appreciably improve simulation accuracy of soil types with both contributions from a legacy map and limited sample data. The method indicates the following characteristics: (1) if a soil type indicates no change in an update survey or it has been reclassified into another type that similarly evinces no change, it will be simply reproduced in the updated map; (2) if a soil type has changes in some places, it will be simulated with uncertainty quantified by occurrence probability maps; (3) if a soil type has no change in an area but evinces changes in other distant areas, it still can be captured in the area with unobvious uncertainty. We concluded that Co-MCSS might be a practical method for updating categorical soil maps with limited survey data. PMID:24027447
Hydraulic redistribution by two semi-arid shrub species: Implications for Sahelianagro-ecosystems
Hydraulic redistribution is the process of passive water movement from deeper moist soil to shallower dry soil layers using plant roots as conduits. Results from this study indicate that this phenomenon exists among two shrub species (Guiera senegalensis and Piliostigma reticulat...
IMPLICATION OF BIOSOLIDS ON ADSORPTION AND DESORPTION OF CD IN SOILS
Adsorption isotherms for soils from long-term biosolids-field experiments and their inorganic fractions were obtained by equilibration of the samples with cadmium nitrate. The cadmium nitrate solution was replaced with a calcium nitrate solution to obtain desorbed Cd. Results sho...
Soil transmitted helminthiases: implications of climate change and human behaviour.
USDA-ARS?s Scientific Manuscript database
Soil transmitted helminthiases (STH) collectively cause the highest global burden of parasitic disease after malaria and are most prevalent in the poorest communities, especially in sub-Saharan Africa. Climate change is predicted to alter the physical environment through cumulative impacts of warmin...
Phylogenetic conservatism in plant-soil feedback and its implications for plant abundance
USDA-ARS?s Scientific Manuscript database
Plant interactions with macro-mutualists (e.g., seed dispersers, pollinators) and antagonists (e.g., herbivores, pathogens) often exhibit phylogenetic conservatism, but conservatism of interactions with soil microorganisms is understudied. We assembled one of the best available datasets to examine c...
A tropical freshwater wetlands: I. Structure, growth, and regeneration
Allen, J.A.; Krauss, K.W.; Ewel, K.C.; Keeland, B.D.; Waguk, E.E.
2005-01-01
Forested wetlands dominated by Terminalia carolinensis are endemic to Micronesia but common only on the island of Kosrae, Federated States of Micronesia. On Kosrae, these forests occur on Nansepsep, Inkosr, and Sonahnpil soil types, which differ in degree of flooding and soil saturation. We compared forest structure, growth, nutrition, and regeneration on two sites each on Nansepsep and Inkosr soils and one site on the much less common Sonahnpil soil type. Terminalia tree sizes were similar on all three soil types, but forests differed in total basal area, species of smaller trees, and total plant species diversity. Terminalia regeneration was found only on the Inkosr soil type, which had the highest water table levels. Other Terminalia species are relatively light demanding, and T. carolinensis exhibited similar characteristics. It is therefore likely that Terminalia requires periodic, but perhaps naturally rare, stand-replacing disturbances (e.g., typhoons) in order to maintain its dominanace, except on the wettest sites, where competition from other species is reduced. Terminalia swamps in the Nansepsep soil type appeared to be at the greatest risk of conversion to other uses, but swamps on all three types may face reater pressure as Kosrae's population increases and the island's infrastrucure becomes more developed.
The preservation of microbial DNA in archived soils of various genetic types.
Ivanova, Ekaterina A; Korvigo, Ilia O; Aparin, Boris F; Chirak, Evgenii L; Pershina, Elizaveta V; Romaschenko, Nikolay S; Provorov, Nikolai A; Andronov, Evgeny E
2017-01-01
This study is a comparative analysis of samples of archived (stored for over 70-90 years) and modern soils of two different genetic types-chernozem and sod-podzolic soils. We revealed a reduction in biodiversity of archived soils relative to their modern state. Particularly, long-term storage in the museum exerted a greater impact on the microbiomes of sod-podzolic soils, while chernozem samples better preserved the native community. Thus, the persistence of microbial DNA in soil is largely determined by the physico-chemical characteristics that differ across soil types. Chernozems create better conditions for the long-term DNA preservation than sod-podzolic soils. This results in supposedly higher levels of biodiversity conservation in the microbiomes of chernozem with preservation of major microbial taxa dominant in the modern (control) soil samples, which makes archived chernozems a promising object for paleosoil studies.
NASA Astrophysics Data System (ADS)
He, L.; Ivanov, V. Y.; Schneider, C.
2012-12-01
The predictive accuracy of current land surface models has been limited by uncertainties in modeling transpiration and its sensitivity to the plant-available water in the root zone. Models usually distribute vegetation transpiration demand as sink terms in one-dimensional soil-water accounting model, according to the vertical root density profile. During water-limited situations, the sink terms are constrained using a heuristic "Feddes-type" water stress function. This approach significantly simplifies the actual three-dimensional physical process of root water uptake and may predict an early onset of water-limited transpiration. Recently, a microscopic root water uptake approach was proposed to simulate the three-dimensional radial moisture fluxes from the soil to roots, and water flux transfer processes along the root systems. During dry conditions, this approach permits the compensation of decreased root water uptake in water-stressed regions by increasing uptake density in moister regions. This effect cannot be captured by the Feddes heuristic function. This study "loosely" incorporates the microscopic root water uptake approach based on aRoot model into an ecohydrological model tRIBS+VEGGIE. The ecohydrological model provides boundary conditions for the microscopic root water uptake model (e.g., potential transpiration, soil evaporation, and precipitation influx), and the latter computes the actual transpiration and profiles of sink terms. Based on the departure of the actual latent heat flux from the potential value, the other energy budget components are adjusted. The study is conducted for a northern temperate mixed forest near the University of Michigan Biological Station. Observational evidence for this site suggests little-to-no control of transpiration by soil moisture yet the commonly used Feddes-type approach implies severe water limitation on transpiration during dry episodes. The study addresses two species: oak and aspen. The effects of differences in root architecture on actual transpiration are explored. The energy components simulated with the microscopic modeling approach are tested against observational data. Through the improved spatiotemporal representation of small-scale root water uptake process, the microscopic modeling framework leads to a better agreement with the observational data than the Feddes-type approach. During dry periods, relatively high transpiration is sustained, as water uptake regions shift from densely to sparsely rooted layers, or from drier to moister soil areas. Implications and approaches for incorporating microscopic modeling methodologies within large-scale land-surface parameterizations are discussed.
NASA Astrophysics Data System (ADS)
Kõlli, Raimo; Tõnutare, Tõnu; Rannik, Kaire; Krebstein, Kadri
2015-04-01
Estonian soil classification (ESC) has been used successfully during more than half of century in soil survey, teaching of soil science, generalization of soil databases, arrangement of soils sustainable management and others. The Estonian normally developed (postlithogenic) mineral soils (form 72.4% from total area) are characterized by mean of genetic-functional schema, where the pedo-ecological position of soils (ie. location among other soils) is given by means of three scalars: (i) 8 stage lithic-genetic scalar (from rendzina to podzols) separates soils each from other by parent material, lithic properties, calcareousness, character of soil processes and others, (ii) 6 stage moisture and aeration conditions scalar (from aridic or well aerated to permanently wet or reductic conditions), and (iii) 2-3 stage soil development scalar, which characterizes the intensity of soil forming processes (accumulation of humus, podzolization). The organic soils pedo-ecological schema, which links with histic postlithogenic soils, is elaborated for characterizing of peatlands superficial mantle (form 23.7% from whole soil cover). The position each peat soil species among others on this organic (peat) soil matrix schema is determined by mean of 3 scalars: (i) peat thickness, (ii) type of paludification or peat forming peculiarities, and (iii) stage of peat decomposition or peat type. On the matrix of abnormally developed (synlithogenic) soils (all together 3.9%) the soil species are positioned (i) by proceeding in actual time geological processes as erosion, fluvial processes (at vicinity of rivers, lakes or sea) or transforming by anthropogenic and technological processes, and (ii) by 7 stage moisture conditions (from aridic to subaqual) of soils. The most important functions of soil cover are: (i) being a suitable environment for plant productivity; (ii) forming adequate conditions for decomposition, transformation and conversion of falling litter (characterized by humus cover type); (iii) being compartment for deposition of humus, individual organic compounds, plant nutrition elements, air and water, and (iv) forming (bio)chemically variegated active space for soil type specific edaphon. For studying of ESC matching with others ecosystem compartments classifications the comparative analysis of corresponding classification schemas was done. It may be concluded that forest and natural grasslands site types as well the plant associations of forests and grasslands correlate (match) well with ESC and therefore these compartments may be adequately expressed on soil cover matrixes. Special interest merits humus cover (in many countries known as humus form), which is by the issue natural body between plant and soil or plant cover and soil cover. The humus cover, which lied on superficial part of soil cover, has been formed by functional interrelationships of plants and soils, reflects very well the local pedo-ecological conditions (both productivity and decomposition cycles) and, therefore, the humus cover types are good indicators for characterizing of local pedo-ecological conditions. The classification of humus covers (humus forms) should be bound with soil classifications. It is important to develop a pedocentric approach in treating of fabric and functioning of natural and agro-ecosystems. Such, based on soil properties, ecosystem approach to management and protection natural resources is highly recommended at least in temperate climatic regions. The sound matching of soil and plant cover is of decisive importance for sustainable functioning of ecosystem and in attaining a good environmental status of the area.
NASA Astrophysics Data System (ADS)
Schindewolf, Marcus; Schultze, Nico; Amorim, Ricardo S. S.; Schmidt, Jürgen
2015-04-01
The corridor along the Brazilian Highway 163 in the Southern Amazon is affected by radical changes in land use patterns. In order to enable a model based assessment of erosion risks on different land use and soil types a transportable disc type rainfall simulator is applied to identify the most important infiltration and erosion parameters of the EROSION 3D model. Since particle detachment highly depends on experimental plot length, a combined runoff supply is used for the virtually extension of the plot length to more than 20 m. Simulations were conducted on the most common regional land use, soil management and soil types for dry and wet runs. The experiments are characterized by high final infiltration rates (0.3 - 2.5 mm*min^-1), low sediment concentrations (0.2-6.5 g*L^-1) and accordingly low soil loss rates (0.002-50 Kg*m^-2), strongly related to land use, applied management and soil type. Ploughed pastures and clear cuts reveal highest soil losses whereas croplands are less affected. Due to higher aggregate stabilities Ferrasols are less endangered than Acrisols. Derived model parameters are plausible, comparable to existing data bases and reproduce the effects of land use and soil management on soil loss. Thus it is possible to apply the EROSION 3D soil loss model in Southern Amazonia for erosion risk assessment and scenario simulation under changing climate and land use conditions.
Spatio-temporal effects of low severity grassland fire on soil colour
NASA Astrophysics Data System (ADS)
Pereira, Paulo; Cerdà, Artemi; Bolutiene, Violeta; Pranskevicius, Mantas; Úbeda, Xavier; Jordán, Antonio; Zavala, Lorena; Mataix-Solera, Jorge
2013-04-01
Fire changes soil properties directly, through temperature, or indirectly with ash deposition and the temporal elimination of vegetal cover. Both influences change soil colour and soil properties. The degree of changes depends on fire severity that has important implications on soil organic matter, texture, mineralogy and hydrological properties and type of ash produced. The ash colour is different according to the temperature of combustion and burned specie and this property will have implications on soil colour. In addition, ash properties have a strong spatial variability. The aim of this work is to study the spatio-temporal effects of a low severity grassland fire on soil colour occurred in Lithuania, near Vilnius city (54° 42' N, 25° 08' E, 158 m.a.s.l.). After the fire it was designed a plot of 20x20m in a burned and unburned flat area. Soil colour was analysed immediately after the fire, and 2, 5, 7 and 9 months after the fire. In each sampling 25 soil samples were collected, carried out to the laboratory, dried at room temperature (20-24° C) and sieved with the <2mm mesh. Soil colour was observed with the Munsell colour chart and the soil chroma value (CV) was observed. Since data did not respected the Gaussian distribution a neperian logarithmic (ln) transformation was applied. Differences among time and between plots were observed with the repeated measures ANOVA test, followed by a Tukey HSD test. Differences were significant at a p<0.05. The spatial variability (SV) was assessed with the coefficient of variation using non transformed data. The results showed differences among time at a p<0.001, treatment at a p<0.01 and time x treatment at a p<0.01. This means that fire during the first 9 months changed significantly soil colour. The CV of the burned plot was lower than the control plot (darker colour), that is attributed to the deposition of charred material and charcoal. This ash produced in this fire was mainly black coloured. With the time the soil of the burned plot became lighter, due the movement of charred material and charcoal in depth through soil profile. After the fire SV was higher in the burned plot (13.27%) than in the unburned plot (7.95%). This major variability might be attributed to ash influence, since this fire did nit had direct effects on soil. Despite the reduced CV, some patches burned at higher severity, and ash was dark and light grey and this might had influences on soil colour SV. In the following measurements SV was very similar, but always slightly higher in the control plot than in the burned plot. Two months, unburned 15.52% and burned, 14.70%. Five months, unburned, 14.78% and burned 14.42%, Seven months, unburned, 15.15% and burned, 14.67%. Nine months, unburned, 18.96% and burned 17.84%. After the fire ash can be (re)distributed uncountable times. In the immediate period after the fire, finner ash produced at higher severities is easily transported by wind and can remix (Pereira et al., 2013a, Pereira et al., 2013b) and change soil colour. In this fire, vegetation recovered very fast, thus this process might occurred only in the first weeks after the fire (Pereira et al., 2013c). Since vegetation recovered fast, soil colour SV depended on carbon and charred material movement in depth soil profile. Further studies are needed on the soil colour evolution after the fire, since can be an indicator of soil properties such as temperature reached with implications in other soil properties. Acknowledgements The authors appreciated the support of the project "Litfire", Fire effects in Lithuanian soils and ecosystems (MIP-048/2011) funded by the Lithuanian Research Council, Spanish Ministry of Science and Innovation for funding through the HYDFIRE project CGL2010-21670-C02-01, FUEGORED (Spanish Network of Forest Fire Effects on Soils http://grupo.us.es/fuegored/) and to Comissionat per a Universitats i Recerca del DIUE de la Generalitat de Catalunya. References Pereira, P. Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. (2013a) Modelling the impacts of wildfire on ash thickness in a short-term period, Land Degradation and Development (In press) DOI: 10.1002/ldr.2195 Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Martin, D.A., Jordan, A. Burguet, M. (2013b) Effects of fire on ash thickness in a Lithuanian grassland and short-term spatio-temporal changes. Solid Earth Discussions, 4 (1), 1545-1584. doi:10.5194/sed-4-1-2012 Pereira, P., Pranskevicius, M., Cepanko, V., Vaitkute, D., Pundyte, N., Ubeda, X., Mataix-Soler, J., Cerda, A., Martin, D.A. (2013c) Short time vegetation recovers after a spring grassland fire in Lithuania. Temporal and slope position effect, Flamma, 4(1), 13-17.
NASA Astrophysics Data System (ADS)
Johnson, M.; Gloor, M.; Lloyd, J.
2012-04-01
Soils are complex systems which hold a wealth of information on both current and past conditions and many biogeochemical processes. The ability to model soil forming processes and predict soil properties will enable us to quantify such conditions and contribute to our understanding of long-term biogeochemical cycles, particularly the carbon cycle and plant nutrient cycles. However, attempts to confront such soil model predictions with data are rare, although increasingly more data from chronosquence studies is becoming available for such a purpose. Here we present initial results of an attempt to reproduce soil properties with a process-based soil evolution model similar to the model of Kirkby (1985, J. Soil Science). We specifically focus on the basaltic soils in both Hawaii and north Queensland, Australia. These soils are formed on a series of volcanic lava flows which provide sequences of different aged soils all with a relatively uniform parent material. These soil chronosequences provide a snapshot of a soil profile during different stages of development. Steep rainfall gradients in these regions also provide a system which allows us to test the model's ability to reproduce soil properties under differing climates. The mechanistic, soil evolution model presented here includes the major processes of soil formation such as i) mineral weathering, ii) percolation of rainfall through the soil, iii) leaching of solutes out of the soil profile iv) surface erosion and v) vegetation and biotic interactions. The model consists of a vertical profile and assumes simple geometry with a constantly sloping surface. The timescales of interest are on the order of tens to hundreds of thousand years. The specific properties the model predicts are, soil depth, the proportion of original elemental oxides remaining in each soil layer, pH of the soil solution, organic carbon distribution and CO2 production and concentration. The presentation will focus on a brief introduction of the model, followed by a description of novel methods using tracers such as optically stimulated luminescence (OSL) dates and meteoric 10Be to evaluate the modelled processes of bioturbation and surface erosion. We will also discuss comparisons of modelled properties with observations and conclude with implications on our understanding of soil evolution.
Torres, Maria Pilar; Montesinos-Navarro, Alicia; Roldán, Antonio
2016-01-01
ABSTRACT We investigated communities of arbuscular mycorrhizal fungi (AMF) in the roots and the rhizosphere soil of Brachypodium retusum in six different natural soils under field conditions. We explored phylogenetic patterns of AMF composition using indicator species analyses to find AMF associated with a given habitat (root versus rhizosphere) or soil type. We tested whether the AMF characteristics of different habitats or contrasting soils were more closely related than expected by chance. Then we used principal-component analysis and multivariate analysis of variance to test for the relative contribution of each factor in explaining the variation in fungal community composition. Finally, we used redundancy analysis to identify the soil properties that significantly explained the differences in AMF communities across soil types. The results pointed out a tendency of AMF communities in roots to be closely related and different from those in the rhizosphere soil. The indicator species analyses revealed AMF associated with rhizosphere soil and the root habitat. Soil type also determined the distribution of AMF communities in soils, and this effect could not be attributed to a single soil characteristic, as at least three soil properties related to microbial activity, i.e., pH and levels of two micronutrients (Mn and Zn), played significant roles in triggering AMF populations. IMPORTANCE Communities of arbuscular mycorrhizal fungi (AMF) are main components of soil biota that can determine the productivity of ecosystems. These fungal assemblages vary across host plants and ecosystems, but the main ecological processes that shape the structures of these communities are still largely unknown. A field study in six different soil types from semiarid areas revealed that AMF communities are significantly influenced by habitat (soil versus roots) and soil type. In addition, three soil properties related to microbiological activity (i.e., pH and manganese and zinc levels) were the main factors triggering the distribution of AMF. These results contribute to a better understanding of the ecological factors that can shape AMF communities, an important soil microbial group that affects multiple ecosystem functions. PMID:27016567
Alguacil, Maria Del Mar; Torres, Maria Pilar; Montesinos-Navarro, Alicia; Roldán, Antonio
2016-06-01
We investigated communities of arbuscular mycorrhizal fungi (AMF) in the roots and the rhizosphere soil of Brachypodium retusum in six different natural soils under field conditions. We explored phylogenetic patterns of AMF composition using indicator species analyses to find AMF associated with a given habitat (root versus rhizosphere) or soil type. We tested whether the AMF characteristics of different habitats or contrasting soils were more closely related than expected by chance. Then we used principal-component analysis and multivariate analysis of variance to test for the relative contribution of each factor in explaining the variation in fungal community composition. Finally, we used redundancy analysis to identify the soil properties that significantly explained the differences in AMF communities across soil types. The results pointed out a tendency of AMF communities in roots to be closely related and different from those in the rhizosphere soil. The indicator species analyses revealed AMF associated with rhizosphere soil and the root habitat. Soil type also determined the distribution of AMF communities in soils, and this effect could not be attributed to a single soil characteristic, as at least three soil properties related to microbial activity, i.e., pH and levels of two micronutrients (Mn and Zn), played significant roles in triggering AMF populations. Communities of arbuscular mycorrhizal fungi (AMF) are main components of soil biota that can determine the productivity of ecosystems. These fungal assemblages vary across host plants and ecosystems, but the main ecological processes that shape the structures of these communities are still largely unknown. A field study in six different soil types from semiarid areas revealed that AMF communities are significantly influenced by habitat (soil versus roots) and soil type. In addition, three soil properties related to microbiological activity (i.e., pH and manganese and zinc levels) were the main factors triggering the distribution of AMF. These results contribute to a better understanding of the ecological factors that can shape AMF communities, an important soil microbial group that affects multiple ecosystem functions. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
The implications of spatially variable pre‐emergence herbicide efficacy for weed management
Milne, Alice E; Hull, Richard; Murdoch, Alistair J; Storkey, Jonathan
2017-01-01
Abstract BACKGROUND The efficacy of pre‐emergence herbicides within fields is spatially variable as a consequence of soil heterogeneity. We quantified the effect of soil organic matter on the efficacy of two pre‐emergence herbicides, flufenacet and pendimethalin, against Alopecurus myosuroides and investigated the implications of variation in organic matter for weed management using a crop–weed competition model. RESULTS Soil organic matter played a critical role in determining the level of control achieved. The high organic matter soil had more surviving weeds with higher biomass than the low organic matter soil. In the absence of competition, surviving plants recovered to produce the same amount of seed as if no herbicide had been applied. The competition model predicted that weeds surviving pre‐emergence herbicides could compensate for sublethal effects even when competing with the crop. The ED50 (median effective dose) was higher for weed seed production than seedling mortality or biomass. This difference was greatest on high organic matter soil. CONCLUSION These results show that the application rate of herbicides should be adjusted to account for within‐field variation in soil organic matter. The results from the modelling emphasised the importance of crop competition in limiting the capacity of weeds surviving pre‐emergence herbicides to compensate and replenish the seedbank. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:29095563
Structure of peat soils and implications for biogeochemical processes and hydrological flow
NASA Astrophysics Data System (ADS)
Rezanezhad, F.; McCarter, C. P. R.; Gharedaghloo, B.; Kleimeier, C.; Milojevic, T.; Liu, H.; Weber, T. K. D.; Price, J. S.; Quinton, W. L.; Lenartz, B.; Van Cappellen, P.
2017-12-01
Permafrost peatlands contain globally important amounts of soil organic carbon and play major roles in global water, nutrient and biogeochemical cycles. The structure of peatland soils (i.e., peat) are highly complex with unique physical and hydraulic properties; where significant, and only partially reversible, shrinkage occurs during dewatering (including water table fluctuations), compression and/or decomposition. These distinct physical and hydraulic properties controls water flow, which in turn affect reactive and non-reactive solute transport (such as, sorption or degradation) and biogeochemical functions. Additionally, peat further attenuates solute migration through molecular diffusion into the inactive pores of Sphagnum dominated peat. These slow, diffusion-limited solute exchanges between the pore regions may give rise to pore-scale chemical gradients and heterogeneous distributions of microbial habitats and activity in peat soils. Permafrost peat plateaus have the same essential subsurface characteristics as other widely organic soil-covered peatlands, where the hydraulic conductivity is related to the degree of decomposition and soil compression. Increasing levels of decomposition correspond with a reduction of effective pore diameter and consequently restrict water and solute flow (by several orders of magnitude in hydraulic conductivity between the ground surface and a depth of 50 cm). In this presentation, we present the current knowledge of key physical and hydraulic properties related to the structure of globally available peat soils and discuss their implications for water storage, flow and the migration of solutes.
Organic nitrogen storage in mineral soil: Implications for policy and management.
Bingham, Andrew H; Cotrufo, M Francesca
2016-05-01
Nitrogen is one of the most important ecosystem nutrients and often its availability limits net primary production as well as stabilization of soil organic matter. The long-term storage of nitrogen-containing organic matter in soils was classically attributed to chemical complexity of plant and microbial residues that retarded microbial degradation. Recent advances have revised this framework, with the understanding that persistent soil organic matter consists largely of chemically labile, microbially processed organic compounds. Chemical bonding to minerals and physical protection in aggregates are more important to long-term (i.e., centuries to millennia) preservation of these organic compounds that contain the bulk of soil nitrogen rather than molecular complexity, with the exception of nitrogen in pyrogenic organic matter. This review examines for the first time the factors and mechanisms at each stage of movement into long-term storage that influence the sequestration of organic nitrogen in the mineral soil of natural temperate ecosystems. Because the factors which govern persistence are different under this newly accepted paradigm we examine the policy and management implications that are altered, such as critical load considerations, nitrogen saturation and mitigation consequences. Finally, it emphasizes how essential it is for this important but underappreciated pool to be better quantified and incorporated into policy and management decisions, especially given the lack of evidence for many soils having a finite capacity to sequester nitrogen. Published by Elsevier B.V.
Wang, Wei; Zeng, Wenjing; Chen, Weile; Zeng, Hui; Fang, Jingyun
2013-01-01
Soils are the largest terrestrial carbon store and soil respiration is the second-largest flux in ecosystem carbon cycling. Across China's temperate region, climatic changes and human activities have frequently caused the transformation of grasslands to woodlands. However, the effect of this transition on soil respiration and soil organic carbon (SOC) dynamics remains uncertain in this area. In this study, we measured in situ soil respiration and SOC storage over a two-year period (Jan. 2007-Dec. 2008) from five characteristic vegetation types in a forest-steppe ecotone of temperate China, including grassland (GR), shrubland (SH), as well as in evergreen coniferous (EC), deciduous coniferous (DC) and deciduous broadleaved forest (DB), to evaluate the changes of soil respiration and SOC storage with grassland conversions to diverse types of woodlands. Annual soil respiration increased by 3%, 6%, 14%, and 22% after the conversion from GR to EC, SH, DC, and DB, respectively. The variation in soil respiration among different vegetation types could be well explained by SOC and soil total nitrogen content. Despite higher soil respiration in woodlands, SOC storage and residence time increased in the upper 20 cm of soil. Our results suggest that the differences in soil environmental conditions, especially soil substrate availability, influenced the level of annual soil respiration produced by different vegetation types. Moreover, shifts from grassland to woody plant dominance resulted in increased SOC storage. Given the widespread increase in woody plant abundance caused by climate change and large-scale afforestation programs, the soils are expected to accumulate and store increased amounts of organic carbon in temperate areas of China.
Response of deep soil moisture to land use and afforestation in the semi-arid Loess Plateau, China
NASA Astrophysics Data System (ADS)
Yang, Lei; Wei, Wei; Chen, Liding; Mo, Baoru
2012-12-01
SummarySoil moisture is an effective water source for plant growth in the semi-arid Loess Plateau of China. Characterizing the response of deep soil moisture to land use and afforestation is important for the sustainability of vegetation restoration in this region. In this paper, the dynamics of soil moisture were quantified to evaluate the effect of land use on soil moisture at a depth of 2 m. Specifically, the gravimetric soil moisture content was measured in the soil layer between 0 and 8 m for five land use types in the Longtan catchment of the western Loess Plateau. The land use types included traditional farmland, native grassland, and lands converted from traditional farmland (pasture grassland, shrubland and forestland). Results indicate that the deep soil moisture content decreased more than 35% after land use conversion, and a soil moisture deficit appeared in all types of land with introduced vegetation. The introduced vegetation decreased the soil moisture content to levels lower than the reference value representing no human impact in the entire 0-8 m soil profile. No significant differences appeared between different land use types and introduced vegetation covers, especially in deeper soil layers, regardless of which plant species were introduced. High planting density was found to be the main reason for the severe deficit of soil moisture. Landscape management activities such as tillage activities, micro-topography reconstruction, and fallowed farmland affected soil moisture in both shallow and deep soil layers. Tillage and micro-topography reconstruction can be used as effective countermeasures to reduce the soil moisture deficit due to their ability to increase soil moisture content. For sustainable vegetation restoration in a vulnerable semi-arid region, the plant density should be optimized with local soil moisture conditions and appropriate landscape management practices.
NASA Astrophysics Data System (ADS)
Gomez, Jose Alfonso; Auxiliadora Soriano, Maria; Montes-Borrego, Miguel; Navas, Juan Antonio; Landa, Blanca B.
2014-05-01
One of the objectives of organic agriculture is to maintain and improve soil quality, while simultaneously producing an adequate yield. A key element in organic olive production is soil management, which properly implemented can optimize the use of rainfall water enhancing infiltration rates and controlling competition for soil water by weeds. There are different soil management strategies: eg. weed mowing (M), green manure with surface tillage in spring (T), or combination with animal grazing among the trees (G). That variability in soil management combined with the large variability in soil types on which organic olive trees are grown in Southern Spain, difficult the evaluation of the impact of different soil management on soil properties, and yield as well as its interpretation in terms of improvement of soil quality. This communications presents the results and analysis of soil physical, chemical and biological properties on 58 soils in Southern Spain during 2005 and 2006, and analyzed and evaluated in different studies since them. Those 58 soils were sampled in 46 certified commercial organic olive orchards with four soil types as well as 12 undisturbed areas with natural vegetation near the olive orchards. The four soil types considered were Eutric Regosol (RGeu, n= 16), Eutric Cambisol (CMeu, n=16), Calcaric Regosol (RGca, n=13 soils sampled) and Calcic Cambisol (CMcc), and the soil management systems (SMS) include were 10 light tillage (LT), 16 sheep grazing (G), 10 tillage (T), 10 mechanical mowing (M), and 12 undisturbed areas covered by natural vegetation (NV-C and NV-S). Our results indicate that soil management had a significant effect on olive yield as well as on key soil properties. Among these soil properties are physical ones, such as infiltration rate or bulk density, chemical ones, especially organic carbon concentration, and biological ones such as soil microbial respiration and bacterial community composition. Superimpose to that soil management induced variability, there was a strong interaction with soil type and climate conditions. There was also a relatively high variability within the same soil management and soil type class, indicating farm to farm variability in conditions and history of soil management. Based on this dataset two different approaches were taken to: A) evaluate the risk of soil degradation based on a limited set of soil properties, B) assess the effect of changes in SMS on soil biodiversity by using terminal restriction profiles (TRFs) derived from T-RFLP analysis of amplified 16S rDNA as. The results indicates the potential of both approaches to assess the risk of soil degradation (A) and the impact on soil biodiversity (B) upon appropriate benchmarking to characterize the interaction between soil management and soil type References Álvarez, S., Soriano, M.A., Landa, B.B., and Gómez, J.A. 2007. Soil properties in organic olive orchards compared with that in natural areas in a mountainous landscape in southern Spain. Soil Use Manage 23:404-416. Gómez, J.A., Álvarez, S., and Soriano, M.A. 2009. Development of a soil degradation assessment tool for organic olive groves in southern Spain. Catena 79:9-17. Landa, B.B., Montes-Borrego, M., Aranda, S., Soriano, M.A., Gómez, J.A., and Navas-Cortés, J.A. 2013. Soil factors involved in the diversity and structure of soil bacterial communities in commercial organic olive orchards in Southern Spain. Environmental Microbiology Reports (accepted) Soriano, M.A., Álvarez, S., Landa, B.B., and Gómez, J.A. 2013. Soil properties in organic olive orchards following different weed management in a rolling landscape of Andalusia, Spain. Renew Agr Food Syst (in press), doi:10.1017/S1742170512000361.
Remote sensing as a tool for estimating soil erosion potential
NASA Technical Reports Server (NTRS)
Morris-Jones, D. R.; Morgan, K. M.; Kiefer, R. W.
1979-01-01
The Universal Soil Loss Equation is a frequently used methodology for estimating soil erosion potential. The Universal Soil Loss Equation requires a variety of types of geographic information (e.g. topographic slope, soil erodibility, land use, crop type, and soil conservation practice) in order to function. This information is traditionally gathered from topographic maps, soil surveys, field surveys, and interviews with farmers. Remote sensing data sources and interpretation techniques provide an alternative method for collecting information regarding land use, crop type, and soil conservation practice. Airphoto interpretation techniques and medium altitude, multi-date color and color infrared positive transparencies (70mm) were utilized in this study to determine their effectiveness for gathering the desired land use/land cover data. Successful results were obtained within the test site, a 6136 hectare watershed in Dane County, Wisconsin.
NASA Astrophysics Data System (ADS)
Muhamad Fahmi, M. H.; Ahmad Bukhary, A. K.; Norma, H.; Idris, A. B.
2016-11-01
The main attractant compound for Eleidobius kamerunicus to male spikelet Elaeis guineensis (oil palm) were determined by analyzing volatile organic compound extracted from E. guineenses inflorescences planted on different soil types namely peat soil, clay soil and sandy soil. Anthesizing male oil palm inflorescences were randomly choosen from palm aged between 4-5 years old age. Extraction of the volatiles from the oil palm inflorescences were performed by Accelerated Solvent Extraction method (ASE). The extracted volatile compound were determined by using gas chromatography-mass spectrometry. Out of ten identified compound, estragole was found to be a major compound in sandy soil (37.49%), clay soil (30.71%) and peat soil (27.79%). Other compound such as 9,12-octadecadieonic acid and n-hexadecanoic acid were found as major compound in peat soil (27.18%) and (7.45%); sandy soil (14.15 %) and (9.31%); and clay soil (30.23%) and (4.99%). This study shows that estragole was the predominant volatile compound detected in oil palm inflorescences with highly concentrated in palm planted in sandy soil type.
Franciosa, Giovanna; Scalfaro, Concetta; Di Bonito, Paola; Vitale, Marco; Aureli, Paolo
2011-01-01
Since the first isolation of type E botulinum toxin-producing Clostridium butyricum from two infant botulism cases in Italy in 1984, this peculiar microorganism has been implicated in different forms of botulism worldwide. By applying particular pulsed-field gel electrophoresis run conditions, we were able to show for the first time that ten neurotoxigenic C. butyricum type E strains originated from Italy and China have linear megaplasmids in their genomes. At least four different megaplasmid sizes were identified among the ten neurotoxigenic C. butyricum type E strains. Each isolate displayed a single sized megaplasmid that was shown to possess a linear structure by ATP-dependent exonuclease digestion. Some of the neurotoxigenic C. butyricum type E strains possessed additional smaller circular plasmids. In order to investigate the genetic content of the newly identified megaplasmids, selected gene probes were designed and used in Southern hybridization experiments. Our results revealed that the type E botulinum neurotoxin gene was chromosome-located in all neurotoxigenic C. butyricum type E strains. Similar results were obtained with the 16S rRNA, the tetracycline tet(P) and the lincomycin resistance protein lmrB gene probes. A specific mobA gene probe only hybridized to the smaller plasmids of the Italian C. butyricum type E strains. Of note, a ß-lactamase gene probe hybridized to the megaplasmids of eight neurotoxigenic C. butyricum type E strains, of which seven from clinical sources and the remaining one from a food implicated in foodborne botulism, whereas this ß-lactam antibiotic resistance gene was absent form the megaplasmids of the two soil strains examined. The widespread occurrence among C. butyricum type E strains associated to human disease of linear megaplasmids harboring an antibiotic resistance gene strongly suggests that the megaplasmids could have played an important role in the emergence of C. butyricum type E as a human pathogen. PMID:21738770
Radar for Measuring Soil Moisture Under Vegetation
NASA Technical Reports Server (NTRS)
Moghaddam, Mahta; Moller, Delwyn; Rodriguez, Ernesto; Rahmat-Samii, Yahya
2004-01-01
A two-frequency, polarimetric, spaceborne synthetic-aperture radar (SAR) system has been proposed for measuring the moisture content of soil as a function of depth, even in the presence of overlying vegetation. These measurements are needed because data on soil moisture under vegetation canopies are not available now and are necessary for completing mathematical models of global energy and water balance with major implications for global variations in weather and climate.
Coeli M. Hoover; Linda S. Heath
2014-01-01
Forestry practitioners contacted us with their concerns about a recent review article by Buchholz T, Friedland AJ, Hornig CE, Keeton WS, Zanchi G, Nunery J (2013) GCB Bioenergy who questioned the way soil carbon is treated in many models and protocols, and indicated that an increasing number of research studies showed meaningful soil organic carbon (...
E.S. Kane; W.C. Hockaday; M.R. Turetsky; C.A. Masiello; D.W. Valentine; B.P. Finney; J.A. Badlock
2010-01-01
There is still much uncertainty as to how wildfire affects the accumulation of burn residues (such as black carbon [BC]) in the soil, and the corresponding changes in soil organic carbon (SOC) composition in boreal forests. We investigated SOC and BC composition in black spruce forests on different landscape positions in Alaska, USA. Mean BC stocks in surface mineral...
Nathan B. English; David G. Williams; Jake F. Weltzin
2003-01-01
We established a large-scale manipulative experiment in a semidesert grassland on the Santa Rita Experimental Range to determine how the recruitment and physiology of woody plants (Prosopis velutina Woot.) are affected by invasive grasses, seasonal precipitation regimes, and underlying soil characteristics. We established 72 2.8-m2 plots beneath six large rainout...
Agronomic and environmental implications of enhanced s-triazine degradation
Krutz, L. J.; Dale L. Shaner,; Mark A. Weaver,; Webb, Richard M.; Zablotowicz, Robert M.; Reddy, Krishna N.; Huang, Y.; Thompson, S. J.
2010-01-01
Novel catabolic pathways enabling rapid detoxification of s-triazine herbicides have been elucidated and detected at a growing number of locations. The genes responsible for s-triazine mineralization, i.e. atzABCDEF and trzNDF, occur in at least four bacterial phyla and are implicated in the development of enhanced degradation in agricultural soils from all continents except Antarctica. Enhanced degradation occurs in at least nine crops and six crop rotation systems that rely on s-triazine herbicides for weed control, and, with the exception of acidic soil conditions and s-triazine application frequency, adaptation of the microbial population is independent of soil physiochemical properties and cultural management practices. From an agronomic perspective, residual weed control could be reduced tenfold in s-triazine-adapted relative to non-adapted soils. From an environmental standpoint, the off-site loss of total s-triazine residues could be overestimated 13-fold in adapted soils if altered persistence estimates and metabolic pathways are not reflected in fate and transport models. Empirical models requiring soil pH and s-triazine use history as input parameters predict atrazine persistence more accurately than historical estimates, thereby allowing practitioners to adjust weed control strategies and model input values when warranted.
Ravindran, Anita; Yang, Shang-Shyng
2015-08-01
Microbial biomass plays an important role in nutrient transformation and conservation of forest and grassland ecosystems. The objective of this study was to determine the microbial biomass among three vegetation types in subalpine mountain forest soils of Taiwan. Tatachia is a typical high-altitude subalpine temperate forest ecosystem in Taiwan with an elevation of 1800-3952 m and consists of three vegetation types: spruce, hemlock, and grassland. Three plots were selected in each vegetation type. Soil samples were collected from the organic layer, topsoil, and subsoil. Microbial biomass carbon (Cmic) was determined by the chloroform fumigation-extraction method, and microbial biomass nitrogen (Nmic) was determined from the total nitrogen (Ntot) released during fumigation-extraction. Bacteria, actinomycetes, fungi, cellulolytic microbes, phosphate-solubilizing microbes, and nitrogen-fixing microbes were also counted. The Cmic and Nmic were highest in the surface soil and declined with the soil depth. These were also highest in spruce soils, followed by in hemlock soils, and were lowest in grassland soils. Cmic and Nmic had the highest values in the spring season and the lowest values in the winter season. Cmic and Nmic had significantly positive correlations with total organic carbon (Corg) and Ntot. Contributions of Cmic and Nmic, respectively, to Corg and Ntot indicated that the microbial biomass was immobilized more in spruce and hemlock soils than in grassland soils. Microbial populations of the tested vegetation types decreased with increasing soil depth. Cmic and Nmic were high in the organic layer and decreased with the depth of layers. These values were higher for spruce and hemlock soils than for grassland soils. Positive correlations were observed between Cmic and Nmic and between Corg and Ntot. Copyright © 2014. Published by Elsevier B.V.
Organic layer serves as a hotspot of microbial activity and abundance in Arctic tundra soils.
Lee, Seung-Hoon; Jang, Inyoung; Chae, Namyi; Choi, Taejin; Kang, Hojeong
2013-02-01
Tundra ecosystem is of importance for its high accumulation of organic carbon and vulnerability to future climate change. Microorganisms play a key role in carbon dynamics of the tundra ecosystem by mineralizing organic carbon. We assessed both ecosystem process rates and community structure of Bacteria, Archaea, and Fungi in different soil layers (surface organic layer and subsurface mineral soil) in an Arctic soil ecosystem located at Spitsbergen, Svalbard during the summer of 2008 by using biochemical and molecular analyses, such as enzymatic assay, terminal restriction fragment length polymorphism (T-RFLP), quantitative polymerase chain reaction (qPCR), and pyrosequencing. Activity of hydrolytic enzymes showed difference according to soil type. For all three microbial communities, the average gene copy number did not significantly differ between soil types. However, archaeal diversities appeared to differ according to soil type, whereas bacterial and fungal diversity indices did not show any variation. Correlation analysis between biogeochemical and microbial parameters exhibited a discriminating pattern according to microbial or soil types. Analysis of the microbial community structure showed that bacterial and archaeal communities have different profiles with unique phylotypes in terms of soil types. Water content and hydrolytic enzymes were found to be related with the structure of bacterial and archaeal communities, whereas soil organic matter (SOM) and total organic carbon (TOC) were related with bacterial communities. The overall results of this study indicate that microbial enzyme activity were generally higher in the organic layer than in mineral soils and that bacterial and archaeal communities differed between the organic layer and mineral soils in the Arctic region. Compared to mineral soil, peat-covered organic layer may represent a hotspot for secondary productivity and nutrient cycling in this ecosystem.
Zhang, Xing; Wang, Ke Lin; Fu, Zhi Yong; Chen, Hong Song; Zhang, Wei; Shi, Zhi Hua
2017-07-18
The traditional hydrology method, stable hydrogen and oxygen isotope technology, and rainfall simulation method were combined to investigate the hydrological function of small experimental plots (2 m×1.2 m) of contrasting architecture in Northwest Guangxi dolomite area. There were four typical catenary soils along the dolomite peak-cluster slope, which were the whole-sand, up-loam and down-sand, the whole loam, up-clay and down-sand soil types, respectively. All the experimental plots generated little amounts of overland runoff and had a high surface infiltration rate, ranging from 41 to 48 mm·h -1 , and the interflow and deep percolation were the dominant hydrological progress. The interflow was classified into interflow in soil clay A and C according to soil genetic layers. For interflow in soil clay A, matrix flow was generated from the whole-sand, up-loam and down-sand, up-clay and down-sand soil types, but preferential flow dominated in the whole-loam soil type. As for interflow in soil clay C, preferential flow dominated in the whole-loam, up-clay and down-sand, up-loam and down-sand soil types. The soils were shallow yet continuously distributed along the dolomite slope. The difference of hydrological characteristics in soil types with different architectures mainly existed in the runoff generation progress of each interface underground. It proved that the a 3-D perspective was needed to study the soil hydrological functions on dolomite slope of Northwest Guangxi, and a new way paying more attention on underground hydrological progress should be explored to fully reveal the near-surface hydrological processes on karst slope.
Loranty, Michael M; Berner, Logan T; Taber, Eric D; Kropp, Heather; Natali, Susan M; Alexander, Heather D; Davydov, Sergey P; Zimov, Nikita S
2018-01-01
Arctic ecosystems are characterized by a broad range of plant functional types that are highly heterogeneous at small (~1-2 m) spatial scales. Climatic changes can impact vegetation distribution directly, and also indirectly via impacts on disturbance regimes. Consequent changes in vegetation structure and function have implications for surface energy dynamics that may alter permafrost thermal dynamics, and are therefore of interest in the context of permafrost related climate feedbacks. In this study we examine small-scale heterogeneity in soil thermal properties and ecosystem carbon and water fluxes associated with varying understory vegetation in open-canopy larch forests in northeastern Siberia. We found that lichen mats comprise 16% of understory vegetation cover on average in open canopy larch forests, and lichen abundance was inversely related to canopy cover. Relative to adjacent areas dominated by shrubs and moss, lichen mats had 2-3 times deeper permafrost thaw depths and surface soils warmer by 1-2°C in summer and less than 1°C in autumn. Despite deeper thaw depths, ecosystem respiration did not differ across vegetation types, indicating that autotrophic respiration likely dominates areas with shrubs and moss. Summertime net ecosystem exchange of CO2 was negative (i.e. net uptake) in areas with high shrub cover, while positive (i.e. net loss) in lichen mats and areas with less shrub cover. Our results highlight relationships between vegetation and soil thermal dynamics in permafrost ecosystems, and underscore the necessity of considering both vegetation and permafrost dynamics in shaping carbon cycling in permafrost ecosystems.
NASA Astrophysics Data System (ADS)
Lowman, L.; Barros, A. P.
2016-12-01
Representation of plant photosynthesis in modeling studies requires phenologic indicators to scale carbon assimilation by plants. These indicators are typically the fraction of photosynthetically active radiation (FPAR) and leaf area index (LAI) which represent plant responses to light and water availability, as well as temperature constraints. In this study, a prognostic phenology model based on the growing season index is adapted to determine the phenologic indicators of LAI and FPAR at the sub-daily scale based on meteorological and soil conditions. Specifically, we directly model vegetation green-up and die-off responses to temperature, vapor pressure deficit, soil water potential, and incoming solar radiation. The indices are based on the properties of individual plant functional types, driven by observational data and prior modeling applications. First, we describe and test the sensitivity of the carbon uptake response to predicted phenology for different vegetation types. Second, the prognostic phenology model is incorporated into a land-surface hydrology model, the Duke Coupled Hydrology Model with Prognostic Vegetation (DCHM-PV), to demonstrate the impact of dynamic phenology on modeled carbon assimilation rates and hydrologic feedbacks. Preliminary results show reduced carbon uptake rates when incorporating a prognostic phenology model that match well against the eddy-covariance flux tower observations. Additionally, grassland vegetation shows the most variability in LAI and FPAR tied to meteorological and soil conditions. These results highlight the need to incorporate vegetation-specific responses to water limitation in order to accurately estimate the terrestrial carbon storage component of the global carbon budget.
Li, Fuyan; Zheng, Fengfeng; Wang, Yongli; Liu, Weiguo; Zhang, Chuanlun L.
2017-01-01
Crenarchaeol is a unique isoprenoid glycerol dibiphytanyl glycerol tetraether (iGDGT) lipid, which is only identified in cultures of ammonia-oxidizing Thaumarchaeota. However, the taxonomic origins of crenarchaeol have been debated recently. The archaeal populations, other than Thaumarchaeota, may have associations with the production of crenarchaeol in ecosystems characterized by non-thaumarchaeotal microorganisms. To this end, we investigated 47 surface soils from upland and wetland soils and rice fields and another three surface sediments from river banks. The goal was to examine the archaeal community compositions in comparison with patterns of iGDGTs in four fractional forms (intact polar-, core-, monoglycosidic- and diglycosidic-lipid fractions) along gradients of environments. The DistLM analysis identified that Group I.1b Thaumarchaeota were mainly responsible for changes in crenarchaeol in the overall soil samples; however, Thermoplasmatales may also contribute to it. This is further supported by the comparison of crenarchaeol between samples characterized by methanogens, Thermoplasmatales or Group I.1b Thaumarchaeota, which suggests that the former two may contribute to the crenarchaeol pool. Last, when samples containing enhanced abundance of Thermoplasmatales and methanogens were considered, crenarchaeol was observed to correlate positively with Thermoplasmatales and archaeol, respectively. Collectively, our data suggest that the crenarchaeol production is mainly derived from Thaumarchaeota and partly associated with uncultured representatives of Thermoplasmatales and archaeol-producing methanogens in soil environments that may be in favor of their growth. Our finding supports the notion that Thaumarchaeota may not be the sole source of crenarchaeol in the natural environment, which may have implication for the evolution of lipid synthesis among different types of archaea. PMID:28717356
Effects of sulfur in flooded paddy soils: Implications for iron chemistry and arsenic mobilization
NASA Astrophysics Data System (ADS)
Avancha, S.; Boye, K.
2013-12-01
In the Mekong delta in Cambodia, naturally occurring arsenic (amplified by erosion in the Himalaya Mountains) in paddy soils is mobilized during the seasonal flooding. As a consequence, rice grown on the flooded soils may take up arsenic and expose people eating the rice to this carcinogenic substance. Iron and sulfur both interact strongly with arsenic in paddy soils: iron oxides are strong adsorbents for arsenic in oxic conditions, and sulfur (in the form of sulfide) is a strong adsorbent under anoxic conditions. In the process of reductive dissolution of iron oxides, arsenic, which had been adsorbed to the iron oxides, is released. Therefore, higher levels of reduced iron (ferrous iron) will likely correlate with higher levels of mobilized arsenic. However, the mobilized arsenic may then co-precipitate with or adsorb to iron sulfides, which form under sulfate-reducing conditions and with the aid of certain microbes already present in the soil. In a batch experiment, we investigated how these processes correlate and which has the greatest influence on arsenic mobilization and potential plant availability. The experiment was designed to measure the effects of various sources of sulfur (dried rice straw, charred rice straw, and gypsum) on the iron and arsenic release in an arsenic-contaminated paddy soil from Cambodia under flooded conditions. The two types of rice straw were designed to introduce the same amount of organic sulfur (7.7 μg/g of soil), but different levels of available carbon, since carbon stimulates microbial activity in the soil. In comparison, two different levels of gypsum (calcium sulfate) were used, 7.7 and 34.65 μg/g of soil, to test the effect of directly available inorganic sulfate without carbon addition. The soil was flooded with a buffer solution at pH 7.07 in airtight serum vials and kept as a slurry on a shaker at 25 °C. We measured pH, alkalinity, ferrous iron, ferric iron, sulfide, sulfate, total iron, sulfur, and arsenic in the aqueous phase on days 1, 3, 8, 15, 22, 29 and 38 from the start of the experiment.
NASA Astrophysics Data System (ADS)
Owens, P. R.; Libohova, Z.; Seybold, C. A.; Wills, S. A.; Peaslee, S.; Beaudette, D.; Lindbo, D. L.
2017-12-01
The measurement errors and spatial prediction uncertainties of soil properties in the modeling community are usually assessed against measured values when available. However, of equal importance is the assessment of errors and uncertainty impacts on cost benefit analysis and risk assessments. Soil pH was selected as one of the most commonly measured soil properties used for liming recommendations. The objective of this study was to assess the error size from different sources and their implications with respect to management decisions. Error sources include measurement methods, laboratory sources, pedotransfer functions, database transections, spatial aggregations, etc. Several databases of measured and predicted soil pH were used for this study including the United States National Cooperative Soil Survey Characterization Database (NCSS-SCDB), the US Soil Survey Geographic (SSURGO) Database. The distribution of errors among different sources from measurement methods to spatial aggregation showed a wide range of values. The greatest RMSE of 0.79 pH units was from spatial aggregation (SSURGO vs Kriging), while the measurement methods had the lowest RMSE of 0.06 pH units. Assuming the order of data acquisition based on the transaction distance i.e. from measurement method to spatial aggregation the RMSE increased from 0.06 to 0.8 pH units suggesting an "error propagation". This has major implications for practitioners and modeling community. Most soil liming rate recommendations are based on 0.1 pH unit increments, while the desired soil pH level increments are based on 0.4 to 0.5 pH units. Thus, even when the measured and desired target soil pH are the same most guidelines recommend 1 ton ha-1 lime, which translates in 111 ha-1 that the farmer has to factor in the cost-benefit analysis. However, this analysis need to be based on uncertainty predictions (0.5-1.0 pH units) rather than measurement errors (0.1 pH units) which would translate in 555-1,111 investment that need to be assessed against the risk. The modeling community can benefit from such analysis, however, error size and spatial distribution for global and regional predictions need to be assessed against the variability of other drivers and impact on management decisions.
Statistical process control applied to mechanized peanut sowing as a function of soil texture.
Zerbato, Cristiano; Furlani, Carlos Eduardo Angeli; Ormond, Antonio Tassio Santana; Gírio, Lucas Augusto da Silva; Carneiro, Franciele Morlin; da Silva, Rouverson Pereira
2017-01-01
The successful establishment of agricultural crops depends on sowing quality, machinery performance, soil type and conditions, among other factors. This study evaluates the operational quality of mechanized peanut sowing in three soil types (sand, silt, and clay) with variable moisture contents. The experiment was conducted in three locations in the state of São Paulo, Brazil. The track-sampling scheme was used for 80 sampling locations of each soil type. Descriptive statistics and statistical process control (SPC) were used to evaluate the quality indicators of mechanized peanut sowing. The variables had normal distributions and were stable from the viewpoint of SPC. The best performance for peanut sowing density, normal spacing, and the initial seedling growing stand was found for clayey soil followed by sandy soil and then silty soil. Sandy or clayey soils displayed similar results regarding sowing depth, which was deeper than in the silty soil. Overall, the texture and the moisture of clayey soil provided the best operational performance for mechanized peanut sowing.
[Effects of bio-crust on soil microbial biomass and enzyme activities in copper mine tailings].
Chen, Zheng; Yang, Gui-de; Sun, Qing-ye
2009-09-01
Bio-crust is the initial stage of natural primary succession in copper mine tailings. With the Yangshanchong and Tongguanshan copper mine tailings in Tongling City of Anhui Province as test objects, this paper studied the soil microbial biomass C and N and the activities of dehydrogenase, catalase, alkaline phosphatase, and urease under different types of bio-crust. The bio-crusts improved the soil microbial biomass and enzyme activities in the upper layer of the tailings markedly. Algal crust had the best effect in improving soil microbial biomass C and N, followed by moss-algal crust, and moss crust. Soil microflora also varied with the type of bio-crust. No'significant difference was observed in the soil enzyme activities under the three types of bio-crust. Soil alkaline phosphatase activity was significantly positively correlated with soil microbial biomass and dehydrogenase and urease activities, but negatively correlated with soil pH. In addition, moss rhizoid could markedly enhance the soil microbial biomass and enzyme activities in moss crust rhizoid.
Statistical process control applied to mechanized peanut sowing as a function of soil texture
Furlani, Carlos Eduardo Angeli; da Silva, Rouverson Pereira
2017-01-01
The successful establishment of agricultural crops depends on sowing quality, machinery performance, soil type and conditions, among other factors. This study evaluates the operational quality of mechanized peanut sowing in three soil types (sand, silt, and clay) with variable moisture contents. The experiment was conducted in three locations in the state of São Paulo, Brazil. The track-sampling scheme was used for 80 sampling locations of each soil type. Descriptive statistics and statistical process control (SPC) were used to evaluate the quality indicators of mechanized peanut sowing. The variables had normal distributions and were stable from the viewpoint of SPC. The best performance for peanut sowing density, normal spacing, and the initial seedling growing stand was found for clayey soil followed by sandy soil and then silty soil. Sandy or clayey soils displayed similar results regarding sowing depth, which was deeper than in the silty soil. Overall, the texture and the moisture of clayey soil provided the best operational performance for mechanized peanut sowing. PMID:28742095
Efficient use of animal manure on cropland--economic analysis.
Araji, A A; Abdo, Z O; Joyce, P
2001-09-01
Manure contains all the macro- and microelements needed for plant growth; however, it represents one of the most underutilized resources in the US. The major problem with the use of manure on cropland is the direct effect of its composition on application cost. This cost is a function of the mineralization process of organic matter. The mineralization process is influenced by the properties of the manure, properties of the soil, moisture, and temperature. This study evaluates the simultaneous effect of these variables on the optimal use of manure on cropland. The results show that the properties of manure and soil significantly affect the mineralization of organic nitrogen and thus the optimal quantity of manure required to satisfy the nutrient requirement of crops in a given rotation system. Manure application costs range from a low of 18% of the cost of commercial fertilizer for chicken manure applied to one type of soil, to a high of 125% of the cost of commercial fertilizer for cow manure applied to another type of soil. The maximum distance to transfer manure to the field, that will equate its application cost to the cost of commercial fertilizer, ranges from a high of 35 km (22 miles) for chicken manure applied to one type of soil, to a low of 1 km (0.62 miles) for cow manure applied to another type of soil. For rotation system 2, manure application costs range from a low of 37% of the cost of commercial fertilizer for chicken manure applied to one type of soil, to a high of 136% of the cost of commercial fertilizer for cow manure applied to another type of soil. The maximum distance to transfer manure to the field, that will equate its cost to the cost of commercial fertilizer, ranges from a high of 20 km (12.5 miles) for chicken manure applied to one type of soil, to a low of 0 km (0 miles) for cow manure applied to another type of soil.
Estimating Soil Organic Carbon Stocks and Spatial Patterns with Statistical and GIS-Based Methods
Zhi, Junjun; Jing, Changwei; Lin, Shengpan; Zhang, Cao; Liu, Qiankun; DeGloria, Stephen D.; Wu, Jiaping
2014-01-01
Accurately quantifying soil organic carbon (SOC) is considered fundamental to studying soil quality, modeling the global carbon cycle, and assessing global climate change. This study evaluated the uncertainties caused by up-scaling of soil properties from the county scale to the provincial scale and from lower-level classification of Soil Species to Soil Group, using four methods: the mean, median, Soil Profile Statistics (SPS), and pedological professional knowledge based (PKB) methods. For the SPS method, SOC stock is calculated at the county scale by multiplying the mean SOC density value of each soil type in a county by its corresponding area. For the mean or median method, SOC density value of each soil type is calculated using provincial arithmetic mean or median. For the PKB method, SOC density value of each soil type is calculated at the county scale considering soil parent materials and spatial locations of all soil profiles. A newly constructed 1∶50,000 soil survey geographic database of Zhejiang Province, China, was used for evaluation. Results indicated that with soil classification levels up-scaling from Soil Species to Soil Group, the variation of estimated SOC stocks among different soil classification levels was obviously lower than that among different methods. The difference in the estimated SOC stocks among the four methods was lowest at the Soil Species level. The differences in SOC stocks among the mean, median, and PKB methods for different Soil Groups resulted from the differences in the procedure of aggregating soil profile properties to represent the attributes of one soil type. Compared with the other three estimation methods (i.e., the SPS, mean and median methods), the PKB method holds significant promise for characterizing spatial differences in SOC distribution because spatial locations of all soil profiles are considered during the aggregation procedure. PMID:24840890
The Influence of Plant Root Systems on Subsurface Flow: Implications for Slope Stability
Although research has explained how plant roots mechanically stabilize soils, in this article we explore how root systems create networks of preferential flow and thus influence water pressures in soils to trigger landslides. Root systems may alter subsurface flow: Hydrological m...
Pan, Ping; Zhao, Fang; Ning, Jinkui; Zhang, Ling; Ouyang, Xunzhi; Zang, Hao
2018-01-01
Understory vegetation plays a vital role in regulating soil carbon (C) and nitrogen (N) characteristics due to differences in plant functional traits. Different understory vegetation types have been reported following aerial seeding. While aerial seeding is common in areas with serious soil erosion, few studies have been conducted to investigate changes in soil C and N cycling as affected by understory vegetation in aerially seeded plantations. Here, we studied soil C and N characteristics under two naturally formed understory vegetation types (Dicranopteris and graminoid) in aerially seeded Pinus massoniana Lamb plantations. Across the two studied understory vegetation types, soil organic C was significantly correlated with all measured soil N variables, including total N, available N, microbial biomass N and water-soluble organic N, while microbial biomass C was correlated with all measured variables except soil organic C. Dicranopteris and graminoid differed in their effects on soil C and N process. Except water-soluble organic C, all the other C and N variables were higher in soils with graminoids. The higher levels of soil organic C, microbial biomass C, total N, available N, microbial biomass N and water-soluble organic N were consistent with the higher litter and root quality (C/N) of graminoid vegetation compared to Dicranopteris. Changes in soil C and N cycles might be impacted by understory vegetation types via differences in litter or root quality.
Pan, Ping; Zhao, Fang; Ning, Jinkui; Ouyang, Xunzhi; Zang, Hao
2018-01-01
Understory vegetation plays a vital role in regulating soil carbon (C) and nitrogen (N) characteristics due to differences in plant functional traits. Different understory vegetation types have been reported following aerial seeding. While aerial seeding is common in areas with serious soil erosion, few studies have been conducted to investigate changes in soil C and N cycling as affected by understory vegetation in aerially seeded plantations. Here, we studied soil C and N characteristics under two naturally formed understory vegetation types (Dicranopteris and graminoid) in aerially seeded Pinus massoniana Lamb plantations. Across the two studied understory vegetation types, soil organic C was significantly correlated with all measured soil N variables, including total N, available N, microbial biomass N and water-soluble organic N, while microbial biomass C was correlated with all measured variables except soil organic C. Dicranopteris and graminoid differed in their effects on soil C and N process. Except water-soluble organic C, all the other C and N variables were higher in soils with graminoids. The higher levels of soil organic C, microbial biomass C, total N, available N, microbial biomass N and water-soluble organic N were consistent with the higher litter and root quality (C/N) of graminoid vegetation compared to Dicranopteris. Changes in soil C and N cycles might be impacted by understory vegetation types via differences in litter or root quality. PMID:29377926
del Mar Alguacil, Maria; Torrecillas, Emma; Torres, Pilar; García-Orenes, Fuensanta; Roldán, Antonio
2012-01-01
The effects of irrigation with treated urban wastewater (WW) on the arbuscular mycorrhizal fungi (AMF) diversity and soil microbial activities were assayed on a long-term basis in a semiarid orange-tree orchard. After 43 years, the soil irrigated with fresh water (FW) had higher AMF diversity than soils irrigated with WW. Microbial activities were significantly higher in the soils irrigated with WW than in those irrigated with FW. Therefore, as no negative effects were observed on crop vitality and productivity, it seems that the ecosystem resilience gave rise to the selection of AMF species better able to thrive in soils with higher microbial activity and, thus, to higher soil fertility. PMID:23094075
Peatland carbon cycling at a Scottish wind farm: the role of plant-soil interactions
NASA Astrophysics Data System (ADS)
Richardson, Harriett; Whitaker, Jeanette; Waldron, Susan; Ostle, Nick
2013-04-01
Peatlands play a fundamental role in the terrestrial carbon cycle by storing 1/3 of the world's soil carbon (Limpens et al. 2008). In the UK, peatlands are often located in areas with potential for electricity generation by harvesting wind energy. Concerns have been raised, however, over the stability of these carbon stocks when large scale wind developments are sited upon them. This project aims to improve understanding of the impact of wind farms on carbon sequestration in peatlands. Wind turbine 'wake-effects' can alter microclimatic conditions, as a result of significant differences in air temperature, humidity, wind speed and turbulence (Baidya Roy and Traiteur 2010). These changes are likely to have a significant impact on above and below ground abiotic conditions and biotic properties, together with the processes they regulate that govern peatland carbon cycling. Specifically, the effects of interactions between typical peatland plant functional types (graminoids, bryophytes and shrubs) (Ward et al. 2009) and peat microbial community composition and function are poorly resolved. We examined a spatial gradient across an area of blanket bog at Black Law wind farm (Lanarkshire, Scotland) and executed a series of controlled mesocosm experiments to examine the impacts of potential microclimatic changes on plant-soil interactions and carbon sequestration processes. In particular we focused on the form and function of plant and microbial communities as determinants of decomposition (Ward et al. 2010) and greenhouse gas (GHG) emissions (Artz 2009). Measurements of plant-litter-soil carbon, nitrogen, microbial community composition (i.e. phospholipid fatty acid biomarkers) and litter mass loss have been made across the wind farm peatland to attribute spatial variance in biotic and biogeochemical properties. In addition, multi-factorial mesocosm experiments have been made to determine how abiotic and biotic changes caused by wind farm effects could influence peat GHG emissions. These experiments used intact peat cores to assess the interacting effects of temperature, water table and plant functional type on GHG fluxes and rates of peatland plant litter decomposition. Results show significant differences in soil chemistry and microbial community composition across the wind farm gradient with few seasonal effects. Findings from controlled mesocosm experiments offer evidence that CO2 and CH4 fluxes were significantly altered over a 4° C temperature range at three different water table heights. The more anaerobic cores produced greatest CH4 fluxes, whereas warmer more aerobic conditions favoured CO2 production. Plant functional types differentially influence emissions, with graminoid cores exerting the greatest control over GHG fluxes. Significant synergistic effects suggest that abiotic drivers are key, yet plant-soil biology interacts to mediate carbon cycling. Thus, changes to plant-soil interactions resulting from wind farm 'wake-effects' could have important implications for peatland carbon sequestration.
[Fine root biomass and production of four vegetation types in Loess Plateau, China].
Deng, Qiang; Li, Ting; Yuan, Zhi-You; Jiao, Feng
2014-11-01
Fine roots (≤ 2 mm) play a major role in biogeochemical cycling in ecosystems. By the methods of soil cores and ingrowth soil cores, we studied the biomass and annual production of fine roots in 0-40 cm soil layers of four main vegetation types, i. e. , Robinia pseudoacacia plantation, deciduous shrubs, abandoned grassland, and Artemisia desertorum community in Loess Plateau, China. The spatial patterns of fine root biomass and production were negatively associated with latitudes. The fine root biomass in the 0-40 cm soil layer was in the order of deciduous shrubs (220 g · m(-2)), R. pseudoacacia plantation (163 g · m(-2)), abandoned grassland (162 g · m(-2)) and A. desertorum community (79 g · m(-2)). The proportion of ≤ 1 mm fine root biomass (74.1%) in the 0-40 cm soil layer of abandoned grassland was significantly higher than those in the other three vegetation types. The fine root biomass of the four vegetation types was mainly distributed in the 0-10 cm soil layer and decreased with soil depth. The proportion of fine root biomass (44.1%) in the 0-10 cm soil layer of abandoned grassland was significantly higher than those in other three vegetation types. The fine root productions of four vegetation types were in the order of abandoned grassland (315 g · m(-2) · a(-1)) > deciduous shrubs (249 g · m(-2) a(-1)) > R. pseudoacacia plantation (219 g · m(-2) · a(-1)) > A. desertorum community (115 g · m(-2) · a(-1)), and mainly concentrated in the 0-10 cm top soil layer and decreased with the soil depth. The proportion of the annual production (40.4%) in the 0-10 cm soil layer was the highest in abandoned grassland. Fine roots of abandoned grassland turned over faster than those from the other three vegetation types.
Dynamic arsenic aging processes and their mechanisms in nine types of Chinese soils.
Wang, Yanan; Zeng, Xibai; Lu, Yahai; Bai, Lingyu; Su, Shiming; Wu, Cuixia
2017-11-01
Although specific soil properties controlling the arsenic (As) aging process have been studied extensively, few investigations have attempted to determine how soil types influence As bioavailability and fractionations in soils. Nine types of soil were selected from typical grain producing areas in China, and the bioavailability and fractionations of As during aging were measured. Results showed that available As in all soils rapidly decreased in the first 30 days and slowly declined thereafter. In spiked soils, As easily became less available and less toxic in low pH soils compared to high pH soils, demonstrating the importance of soil pH on As availability. Results from fitting kinetic equations revealed that the pseudo-second-order model described the As aging processes well in all soils (R 2 = 0.945-0.999, P < 0.01, SE = 0.09-4.25), implying that the mechanism for As aging combined adsorption, external diffusion, and internal diffusion. Fe oxides were more important than Al oxides for determining the As aging rate (|k|). Based on these results, we are the first to propose the approximate aging equilibrium time (T) for As, which was mainly influenced by soil clay content. The shortest time for approximate stabilization of As aging was 28 d in latosol soils (LS), while the longest approximate equilibrium time was 169 d in cinnamon soils (CS). Individual soil properties controlling the variation in different As fractionations further confirmed that the influences of soil types on As aging were the result of the combined effects of soil properties and a time-consuming redistribution process. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Parks, W. L.; Sewell, J. I. (Principal Investigator); Hilty, J. W.; Rennie, J. C.
1972-01-01
The author has identified the following significant results. A significant finding is the identification and delineation of a large soil association in Obion County, West Tennessee. These data are now being processed through the scanner and computer and will be included in the next report along with pictures of printout and imagery. Channel 7 appears to provide the most useful imagery related to soil differences. Soil types have been identified through the use of aircraft imagery. However, a soil association map appears to be the best that space imagery will provide. The exception to this will be large areas of a uniform soil type as occurs in the great plains.
Impacts of different types of measurements on estimating unsaturated flow parameters
NASA Astrophysics Data System (ADS)
Shi, Liangsheng; Song, Xuehang; Tong, Juxiu; Zhu, Yan; Zhang, Qiuru
2015-05-01
This paper assesses the value of different types of measurements for estimating soil hydraulic parameters. A numerical method based on ensemble Kalman filter (EnKF) is presented to solely or jointly assimilate point-scale soil water head data, point-scale soil water content data, surface soil water content data and groundwater level data. This study investigates the performance of EnKF under different types of data, the potential worth contained in these data, and the factors that may affect estimation accuracy. Results show that for all types of data, smaller measurements errors lead to faster convergence to the true values. Higher accuracy measurements are required to improve the parameter estimation if a large number of unknown parameters need to be identified simultaneously. The data worth implied by the surface soil water content data and groundwater level data is prone to corruption by a deviated initial guess. Surface soil moisture data are capable of identifying soil hydraulic parameters for the top layers, but exert less or no influence on deeper layers especially when estimating multiple parameters simultaneously. Groundwater level is one type of valuable information to infer the soil hydraulic parameters. However, based on the approach used in this study, the estimates from groundwater level data may suffer severe degradation if a large number of parameters must be identified. Combined use of two or more types of data is helpful to improve the parameter estimation.
Impacts of Different Types of Measurements on Estimating Unsaturatedflow Parameters
NASA Astrophysics Data System (ADS)
Shi, L.
2015-12-01
This study evaluates the value of different types of measurements for estimating soil hydraulic parameters. A numerical method based on ensemble Kalman filter (EnKF) is presented to solely or jointly assimilate point-scale soil water head data, point-scale soil water content data, surface soil water content data and groundwater level data. This study investigates the performance of EnKF under different types of data, the potential worth contained in these data, and the factors that may affect estimation accuracy. Results show that for all types of data, smaller measurements errors lead to faster convergence to the true values. Higher accuracy measurements are required to improve the parameter estimation if a large number of unknown parameters need to be identified simultaneously. The data worth implied by the surface soil water content data and groundwater level data is prone to corruption by a deviated initial guess. Surface soil moisture data are capable of identifying soil hydraulic parameters for the top layers, but exert less or no influence on deeper layers especially when estimating multiple parameters simultaneously. Groundwater level is one type of valuable information to infer the soil hydraulic parameters. However, based on the approach used in this study, the estimates from groundwater level data may suffer severe degradation if a large number of parameters must be identified. Combined use of two or more types of data is helpful to improve the parameter estimation.
Soil fauna, soil properties and geo-ecosystem functioning
NASA Astrophysics Data System (ADS)
Cammeraat, L. H.
2012-04-01
The impact of soil fauna on soil processes is of utmost importance, as the activity of soil fauna directly affects soil quality. This is expressed by the direct effects of soil fauna on soil physical and soil chemical properties that not only have great importance to food production and ecosystems services, but also on weathering and hydrological and geomorphological processes. Soil animals can be perceived as ecosystem engineers that directly affect the flow of water, sediments and nutrients through terrestrial ecosystems. The biodiversity of animals living in the soil is huge and shows a huge range in size, functions and effects. Most work has been focused on only a few species such as earthworms and termites, but in general the knowledge on the effect of soil biota on soil ecosystem functioning is limited as it is for their impact on processes in the soil and on the soil surface. In this presentation we would like to review some of the impacts of soil fauna on soil properties that have implications for geo-ecosystem functioning and soil formation processes.
NASA Astrophysics Data System (ADS)
Bachvarova, Darina; Rafi, Renay; Doichinov, Aleksandar
2017-03-01
Despite the last decade considerable advances in the study of nitrate and nitrite pollution of soil, there are still some gaps in research related to neglecting or ignoring the role of soil in the food chain and its effects on upper trophic units. The article presents the results of a study on the impact of air and soil humidity and temperature, as well as soil type and utilization on the amount of nitrates and nitrites in the soil solution at the end of vegetation period. It was proved that statistically significant impact on the amounts of residual nitrate and nitrite ions was caused by the temperature and moisture of soil, its type, and the specific properties of the crops grown.
Statistical Modelling of the Soil Dielectric Constant
NASA Astrophysics Data System (ADS)
Usowicz, Boguslaw; Marczewski, Wojciech; Bogdan Usowicz, Jerzy; Lipiec, Jerzy
2010-05-01
The dielectric constant of soil is the physical property being very sensitive on water content. It funds several electrical measurement techniques for determining the water content by means of direct (TDR, FDR, and others related to effects of electrical conductance and/or capacitance) and indirect RS (Remote Sensing) methods. The work is devoted to a particular statistical manner of modelling the dielectric constant as the property accounting a wide range of specific soil composition, porosity, and mass density, within the unsaturated water content. Usually, similar models are determined for few particular soil types, and changing the soil type one needs switching the model on another type or to adjust it by parametrization of soil compounds. Therefore, it is difficult comparing and referring results between models. The presented model was developed for a generic representation of soil being a hypothetical mixture of spheres, each representing a soil fraction, in its proper phase state. The model generates a serial-parallel mesh of conductive and capacitive paths, which is analysed for a total conductive or capacitive property. The model was firstly developed to determine the thermal conductivity property, and now it is extended on the dielectric constant by analysing the capacitive mesh. The analysis is provided by statistical means obeying physical laws related to the serial-parallel branching of the representative electrical mesh. Physical relevance of the analysis is established electrically, but the definition of the electrical mesh is controlled statistically by parametrization of compound fractions, by determining the number of representative spheres per unitary volume per fraction, and by determining the number of fractions. That way the model is capable covering properties of nearly all possible soil types, all phase states within recognition of the Lorenz and Knudsen conditions. In effect the model allows on generating a hypothetical representative of the soil type, and that way it enables clear comparing to results from other soil type dependent models. The paper is focused on proper representing possible range of porosity in commonly existing soils. This work is done with aim of implementing the statistical-physical model of the dielectric constant to a use in the model CMEM (Community Microwave Emission Model), applicable to SMOS (Soil Moisture and Ocean Salinity ESA Mission) data. The input data to the model clearly accepts definition of soil fractions in common physical measures, and in opposition to other empirical models, does not need calibrating. It is not dependent on recognition of the soil by type, but instead it offers the control of accuracy by proper determination of the soil compound fractions. SMOS employs CMEM being funded only by the sand-clay-silt composition. Common use of the soil data, is split on tens or even hundreds soil types depending on the region. We hope that only by determining three element compounds of sand-clay-silt, in few fractions may help resolving the question of relevance of soil data to the input of CMEM, for SMOS. Now, traditionally employed soil types are converted on sand-clay-silt compounds, but hardly cover effects of other specific properties like the porosity. It should bring advantageous effects in validating SMOS observation data, and is taken for the aim in the Cal/Val project 3275, in the campaigns for SVRT (SMOS Validation and Retrieval Team). Acknowledgements. This work was funded in part by the PECS - Programme for European Cooperating States, No. 98084 "SWEX/R - Soil Water and Energy Exchange/Research".
Fire vegetative ash and erosion in the Mediterranean areas. State of the art and future perspectives
NASA Astrophysics Data System (ADS)
Pereira, Paulo; Cerdà, Artemi
2013-04-01
Fire is a global phenomenon with important ecological impacts. Among all ecosystems, the Mediterranean is frequently visited by severe wildfires with serious impacts on soil properties and increase soil vulnerability to erosion due vegetation removal. After the fire the ash distributed in soil surface can mitigate soil exposition to erosion and rain splash (Cerda and Doerr, 2008), however, this depends on the fire severity that have implications on the type of ash produced (Pereira et al., 2010). High fire severities produced thinner ash that it is easily transported by wind, contrary to low severity wildfires where combustion is not so intense and the mass loss is less, providing a better soil protection in the immediate period after the fire. Soil protection after the fire highly depends on fire severity (Pereira et al. 2013a; Pereira et al. 2013b). Ash it is a highly mobile material, thus this protection can change in space and time, providing a better cover in some areas and worst in others. In the period immediate after the fire, ash can change soil hydrological properties, increasing water retention and reducing sediment transport in relation to bare soil areas (Cerda and Doerr, 2008), but also clog soil pores, seal the soil and increase erosion (Onda et al., 2008). In fact results are controversial and the impacts of vegetative ash in soil erosion may rely on the proprieties of ash produced, that can be extremely variable, even in small distances (Pereira and Úbeda, 2010), due the different conditions of combustions. Ash produced at low severity temperatures can be highly hydrophilic (Bodi et al., 2011) and induce soil hydrophobicity (Bodi et al., 2012). Other mechanisms as the direct impact of fire in soil, can induce soil water repellency, and do not have any interference of vegetative ash. This fire can induce direct (e.g temperature) and indirect (e.g. ash properties) on soil wettability, with obvious implications on spatio-temporal pattern of soil erosion. At this point we are dealing with a complex interaction since interactions, since low severity fires due ash, and high severity fires, due temperature induce soil hydrophobicity. After the fire, other ash properties may interact with soil erosion, as particulate size, and chemical composition, that can induce soil particulates flocculation or dispersion. Ash chemistry is strongly related with fire severity (Pereira et al., 2012). Further studies may be directed in the complex interaction between ash physico-chemical properties interaction with the degree of fire impacts on soil. These and other ideas will be discussed during the session. Acknowledgements, The authors appreciated the support of the project "Litfire", Fire effects in Lithuanian soils and ecosystems (MIP-048/2011) funded by the Lithuanian Research Council and FUEGORED (Spanish Network of Forest Fire Effects on Soils http://grupo.us.es/fuegored/). References Bodi, M., Doerr, S., Cerdà, A., Mataix-Solera, J. (2012) Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. Geoderma 191: 14-13. Bodi, M., Mataix-Solera, J., Doerr, S., Cerdà, A. (2011) The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic matter content. Geoderma, 160, 599-607. Cerdà, A., Doerr, S.H. (2008). The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74, 256-263. Onda Y, Dietrich WE, Booker F. 2008. Evolution of overland flow after a severe forest fire, Point Reyes, California. Catena. 72, 13-20. Pereira, P., Bodi. M., Úbeda, X., Cerdà, A., Mataix-Solera, J., Balfour, V, Woods, S. (2010) Las cenizas y el ecosistema suelo, In: Cerdà, A. Jordan, A. (eds) Actualización en métodos y técnicas para el estudio de los suelos afectados por incendios forestales, 345-398. Càtedra de Divulgació de la Ciència. Universitat de Valencia. ISBN: 978-84-370-7887-8. Deposito Legal: V-3541-2010. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. (2013a) Modelling the impacts of wildfire on ash thickness in a short-term period, Land Degradation and Development, (In Press), DOI: 10.1002/ldr.2195 Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Jordan, A. Burguet, M. (2013b) Effects of fire on ash thickness in a Lithuanian grassland and short-term spatio-temporal changes, Solid Earth Discussions,4, 1545-1584. Pereira, P., Úbeda, X. (2010) Spatial variation of heavy metals released from ashes after a wildfire, Journal of Environmental Engineering and Landscape Management 18(1), 13-22. Pereira, P., Úbeda, X., Martin, D. (2012) Fire severity effects on ash chemical composition and water-extractable elements, Geoderma, 191, 105-114.
Cai, Andong; Feng, Wenting; Zhang, Wenju; Xu, Minggang
2016-05-01
Mineral-associated organic carbon (MOC), that is stabilized by fine soil particles (i.e., silt plus clay, <53 μm), is important for soil organic carbon (SOC) persistence and sequestration, due to its large contribution to total SOC (TSOC) and long turnover time. Our objectives were to investigate how climate, soil type, soil texture, and agricultural managements affect MOC contributions to TSOC in China. We created a dataset from 103 published papers, including 1106 data points pairing MOC and TSOC across three major land use types: cropland, grassland, and forest. Overall, the MOC/TSOC ratio ranged from 0.27 to 0.80 and varied significantly among soil groups in cropland, grassland, and forest. Croplands and forest exhibited significantly higher median MOC/TSOC ratios than in grassland. Moreover, forest and grassland soils in temperate regions had higher MOC/TSOC ratios than in subtropical regions. Furthermore, the MOC/TSOC ratio was much higher in ultisol, compared with the other soil types. Both the MOC content and MOC/TSOC ratio were positively correlated with the amount of fine fraction (silt plus clay) in soil, highlighting the importance of soil texture in stabilizing organic carbon across various climate zones. In cropland, different fertilization practices and land uses (e.g., upland, paddy, and upland-paddy rotation) significantly altered MOC/TSOC ratios, but not in cropping systems (e.g., mono- and double-cropping) characterized by climatic differences. This study demonstrates that the MOC/TSOC ratio is mainly driven by soil texture, soil types, and related climate and land uses, and thus the variations in MOC/TSOC ratios should be taken into account when quantitatively estimating soil C sequestration potential of silt plus clay particles on a large scale. Copyright © 2016 Elsevier Ltd. All rights reserved.
We used concurrent measurements of soil water content and soil water potential (Ysoil) to assess the effects of Ysoil on uptake and hydraulic redistribution (HR) of soil water by roots during seasonal drought cycles in six sites characterized by different types and amounts of woo...
Fu, Qing-Long; Weng, Nanyan; Fujii, Manabu; Zhou, Dong-Mei
2018-03-01
Global warming has obtained increasing attentions due to its multiple impacts on agro-ecosystem. However, limited efforts had been devoted to reveal the temporal variability of metal speciation and phytotoxicity of heavy metal-polluted soils affected by elevated temperature under the global warming scenario. In this study, effects of elevated temperature (15 °C, 25 °C, and 35 °C) on the physicochemical properties, microbial metabolic activities, and phytotoxicity of three Cu-polluted soils were investigated by a laboratory incubation study. Soil physicochemical properties were observed to be significantly altered by elevated temperature with the degree of temperature effect varying in soil types and incubation time. The Biolog and enzymatic tests demonstrated that soil microbial activities were mainly controlled and decreased with increasing incubation temperature. Moreover, plant assays confirmed that the phytotoxicity and Cu uptake by wheat roots were highly dependent on soil types but less affected by incubation temperature. Overall, the findings in this study have highlighted the importance of soil types to better understand the temperature-dependent alternation of soil properties, Cu speciation and bioavailability, as well as phytotoxicity of Cu-polluted soils under global warming scenario. The present study also suggests the necessary of investigating effects of soil types on the transport and accumulation of toxic elements in soil-crop systems under global warming scenario. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterizing backcountry camping impacts in Great Smoky Mountains National Park
Leung, Y.-F.; Marion, J.L.
1999-01-01
This investigates resource impacts on backcounty campsites in the Great Smoky Mountains National Park, USA. Study objectives were to enhance our understanding of camping impacts and to improve campsite impact assessment procedures by means of multivariate techniques. Three-hundred and eight campsites at designated backcountry campgrounds, and 69 additional unofficial campsites were assessed. Factor analysis of 195 established campsites on eight impact indicator variables revealed three dimensions of campsite impact: area disturbance, soil and groundcover damage, and tree-related damage. Four distinctive backcountry campsite types were identified, three of which were derived from cluster analyses of factor scores. These four backcountry campsite types characterize the intensity and areal extent of resource impacts, and they vary in locational and environmental attributes. At an aggregate level, different campsite types contributed unequally to the cumulative level of impact. The dimensional structure and typology developed in this study demonstrates that campsite impacts can be viewed and examined holistically with the use of multivariate methods. Implications for assessment procedures, management and further research are discussed.
[Bare Soil Moisture Inversion Model Based on Visible-Shortwave Infrared Reflectance].
Zheng, Xiao-po; Sun, Yue-jun; Qin, Qi-ming; Ren, Hua-zhong; Gao, Zhong-ling; Wu, Ling; Meng, Qing-ye; Wang, Jin-liang; Wang, Jian-hua
2015-08-01
Soil is the loose solum of land surface that can support plants. It consists of minerals, organics, atmosphere, moisture, microbes, et al. Among its complex compositions, soil moisture varies greatly. Therefore, the fast and accurate inversion of soil moisture by using remote sensing is very crucial. In order to reduce the influence of soil type on the retrieval of soil moisture, this paper proposed a normalized spectral slope and absorption index named NSSAI to estimate soil moisture. The modeling of the new index contains several key steps: Firstly, soil samples with different moisture level were artificially prepared, and soil reflectance spectra was consequently measured using spectroradiometer produced by ASD Company. Secondly, the moisture absorption spectral feature located at shortwave wavelengths and the spectral slope of visible wavelengths were calculated after analyzing the regular spectral feature change patterns of different soil at different moisture conditions. Then advantages of the two features at reducing soil types' effects was synthesized to build the NSSAI. Thirdly, a linear relationship between NSSAI and soil moisture was established. The result showed that NSSAI worked better (correlation coefficient is 0.93) than most of other traditional methods in soil moisture extraction. It can weaken the influences caused by soil types at different moisture levels and improve the bare soil moisture inversion accuracy.
Lin, Qianxin; Mendelssohn, Irving A; Bryner, Nelson P; Walton, William D
2005-03-15
In-situ burning of oiled wetlands potentially provides a cleanup technique that is generally consistent with present wetland management procedures. The effects of water depth (+10, +2, and -2 cm), oil type (crude and diesel), and oil penetration of sediment before the burn on the relationship between vegetation recovery and soil temperature for three coastal marsh types were investigated. The water depth over the soil surface during in-situ burning was a key factor controlling marsh plant recovery. Both the 10- and 2-cm water depths were sufficient to protect marsh vegetation from burning impacts, with surface soil temperatures of <35 and 48 degrees C, respectively. Plant survival rate and growth responses at these water depth burns were not significantly different from the unburned control. In contrast, a water table 2 cm below the soil surface during the burn resulted in high soil temperatures, with 90-200 degrees C at 0-0.5 cm soil depth and 55-75 degrees C at 1-2 cm soil depth. The 2-cm soil exposure to fire significantly impeded the post-burn recovery of Spartina alterniflora and Sagittaria lancifolia but did not detrimentally affect the recovery of Spartina patens and Distichlis spicata. Oil type (crude vs diesel) and oil applied to the marsh soil surface (0.5 L x m(-2)) before the burn did not significantly affect plant recovery. Thus, recovery is species-specific when no surface water exists. Even water at the soil surface will most likely protect wetland plants from burning impact.
Zhang, Xinfang; Xu, Shijian; Li, Changming; Zhao, Lin; Feng, Huyuan; Yue, Guangyang; Ren, Zhengwei; Cheng, Guogdong
2014-01-01
In the Tibetan permafrost region, vegetation types and soil properties have been affected by permafrost degradation, but little is known about the corresponding patterns of their soil microbial communities. Thus, we analyzed the effects of vegetation types and their covariant soil properties on bacterial and fungal community structure and membership and bacterial community-level physiological patterns. Pyrosequencing and Biolog EcoPlates were used to analyze 19 permafrost-affected soil samples from four principal vegetation types: swamp meadow (SM), meadow (M), steppe (S) and desert steppe (DS). Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria dominated bacterial communities and the main fungal phyla were Ascomycota, Basidiomycota and Mucoromycotina. The ratios of Proteobacteria/Acidobacteria decreased in the order: SM>M>S>DS, whereas the Ascomycota/Basidiomycota ratios increased. The distributions of carbon and nitrogen cycling bacterial genera detected were related to soil properties. The bacterial communities in SM/M soils degraded amines/amino acids very rapidly, while polymers were degraded rapidly by S/DS communities. UniFrac analysis of bacterial communities detected differences among vegetation types. The fungal UniFrac community patterns of SM differed from the others. Redundancy analysis showed that the carbon/nitrogen ratio had the main effect on bacteria community structures and their diversity in alkaline soil, whereas soil moisture was mainly responsible for structuring fungal communities. Thus, microbial communities and their functioning are probably affected by soil environmental change in response to permafrost degradation. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
General soil map Lower Pantano wash area, Pima County, Arizona
NASA Technical Reports Server (NTRS)
Richardson, M. L.
1972-01-01
High altitude color photography was used to determine soil type variation over large areas at a contact print scale of 1:125,000. It was found that color variation and land form could be used as a basis for assigning seven soil mapping units to the area as depicted on stereoscopic pairs of the color photography. A unit is assigned by soil scientists on the basis of similarity of soil features in the area to predetermined physical and chemical characteristics of the same soil type.
Christou, Anastasis; Agüera, Ana; Bayona, Josep Maria; Cytryn, Eddie; Fotopoulos, Vasileios; Lambropoulou, Dimitra; Manaia, Célia M; Michael, Costas; Revitt, Mike; Schröder, Peter; Fatta-Kassinos, Despo
2017-10-15
The use of reclaimed wastewater (RWW) for the irrigation of crops may result in the continuous exposure of the agricultural environment to antibiotics, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In recent years, certain evidence indicate that antibiotics and resistance genes may become disseminated in agricultural soils as a result of the amendment with manure and biosolids and irrigation with RWW. Antibiotic residues and other contaminants may undergo sorption/desorption and transformation processes (both biotic and abiotic), and have the potential to affect the soil microbiota. Antibiotics found in the soil pore water (bioavailable fraction) as a result of RWW irrigation may be taken up by crop plants, bioaccumulate within plant tissues and subsequently enter the food webs; potentially resulting in detrimental public health implications. It can be also hypothesized that ARGs can spread among soil and plant-associated bacteria, a fact that may have serious human health implications. The majority of studies dealing with these environmental and social challenges related with the use of RWW for irrigation were conducted under laboratory or using, somehow, controlled conditions. This critical review discusses the state of the art on the fate of antibiotics, ARB and ARGs in agricultural environment where RWW is applied for irrigation. The implications associated with the uptake of antibiotics by plants (uptake mechanisms) and the potential risks to public health are highlighted. Additionally, knowledge gaps as well as challenges and opportunities are addressed, with the aim of boosting future research towards an enhanced understanding of the fate and implications of these contaminants of emerging concern in the agricultural environment. These are key issues in a world where the increasing water scarcity and the continuous appeal of circular economy demand answers for a long-term safe use of RWW for irrigation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Wei; Zeng, Wenjing; Chen, Weile; Zeng, Hui; Fang, Jingyun
2013-01-01
Soils are the largest terrestrial carbon store and soil respiration is the second-largest flux in ecosystem carbon cycling. Across China's temperate region, climatic changes and human activities have frequently caused the transformation of grasslands to woodlands. However, the effect of this transition on soil respiration and soil organic carbon (SOC) dynamics remains uncertain in this area. In this study, we measured in situ soil respiration and SOC storage over a two-year period (Jan. 2007–Dec. 2008) from five characteristic vegetation types in a forest-steppe ecotone of temperate China, including grassland (GR), shrubland (SH), as well as in evergreen coniferous (EC), deciduous coniferous (DC) and deciduous broadleaved forest (DB), to evaluate the changes of soil respiration and SOC storage with grassland conversions to diverse types of woodlands. Annual soil respiration increased by 3%, 6%, 14%, and 22% after the conversion from GR to EC, SH, DC, and DB, respectively. The variation in soil respiration among different vegetation types could be well explained by SOC and soil total nitrogen content. Despite higher soil respiration in woodlands, SOC storage and residence time increased in the upper 20 cm of soil. Our results suggest that the differences in soil environmental conditions, especially soil substrate availability, influenced the level of annual soil respiration produced by different vegetation types. Moreover, shifts from grassland to woody plant dominance resulted in increased SOC storage. Given the widespread increase in woody plant abundance caused by climate change and large-scale afforestation programs, the soils are expected to accumulate and store increased amounts of organic carbon in temperate areas of China. PMID:24058408
Wang, Xin-Xin; Zhao, Fengyan; Zhang, Guoxian; Zhang, Yongyong; Yang, Lijuan
2017-01-01
A greenhouse pot test was conducted to study the impacts of replacing mineral fertilizer with organic fertilizers for one full growing period on soil fertility, tomato yield and quality using soils with different tomato planting history. Four types of fertilization regimes were compared: (1) conventional fertilizer with urea, (2) chicken manure compost, (3) vermicompost, and (4) no fertilizer. The effects on plant growth, yield and fruit quality and soil properties (including microbial biomass carbon and nitrogen, NH4+-N, NO3--N, soil water-soluble organic carbon, soil pH and electrical conductivity) were investigated in samples collected from the experimental soils at different tomato growth stages. The main results showed that: (1) vermicompost and chicken manure compost more effectively promoted plant growth, including stem diameter and plant height compared with other fertilizer treatments, in all three types of soil; (2) vermicompost improved fruit quality in each type of soil, and increased the sugar/acid ratio, and decreased nitrate concentration in fresh fruit compared with the CK treatment; (3) vermicompost led to greater improvements in fruit yield (74%), vitamin C (47%), and soluble sugar (71%) in soils with no tomato planting history compared with those in soils with long tomato planting history; and (4) vermicompost led to greater improvements in soil quality than chicken manure compost, including higher pH (averaged 7.37 vs. averaged 7.23) and lower soil electrical conductivity (averaged 204.1 vs. averaged 234.6 μS/cm) at the end of experiment in each type of soil. We conclude that vermicompost can be recommended as a fertilizer to improve tomato fruit quality and yield and soil quality, particularly for soils with no tomato planting history. PMID:29209343
Wang, Xin-Xin; Zhao, Fengyan; Zhang, Guoxian; Zhang, Yongyong; Yang, Lijuan
2017-01-01
A greenhouse pot test was conducted to study the impacts of replacing mineral fertilizer with organic fertilizers for one full growing period on soil fertility, tomato yield and quality using soils with different tomato planting history. Four types of fertilization regimes were compared: (1) conventional fertilizer with urea, (2) chicken manure compost, (3) vermicompost, and (4) no fertilizer. The effects on plant growth, yield and fruit quality and soil properties (including microbial biomass carbon and nitrogen, [Formula: see text]-N, [Formula: see text]-N, soil water-soluble organic carbon, soil pH and electrical conductivity) were investigated in samples collected from the experimental soils at different tomato growth stages. The main results showed that: (1) vermicompost and chicken manure compost more effectively promoted plant growth, including stem diameter and plant height compared with other fertilizer treatments, in all three types of soil; (2) vermicompost improved fruit quality in each type of soil, and increased the sugar/acid ratio, and decreased nitrate concentration in fresh fruit compared with the CK treatment; (3) vermicompost led to greater improvements in fruit yield (74%), vitamin C (47%), and soluble sugar (71%) in soils with no tomato planting history compared with those in soils with long tomato planting history; and (4) vermicompost led to greater improvements in soil quality than chicken manure compost, including higher pH (averaged 7.37 vs. averaged 7.23) and lower soil electrical conductivity (averaged 204.1 vs. averaged 234.6 μS/cm) at the end of experiment in each type of soil. We conclude that vermicompost can be recommended as a fertilizer to improve tomato fruit quality and yield and soil quality, particularly for soils with no tomato planting history.
NASA Astrophysics Data System (ADS)
Tabi Tataw, James; Baier, Fabian; Krottenthaler, Florian; Pachler, Bernadette; Schwaiger, Elisabeth; Whylidal, Stefan; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas; Zaller, Johann G.
2014-05-01
Wheat is a crop of global importance supplying more than half of the world's population with carbohydrates. We examined, whether climate change induced rainfall patterns towards less frequent but heavier events alter wheat agroecosystem productivity and functioning under three different soil types. Therefore, in a full-factorial experiment Triticum aestivum L. was cultivated in 3 m2 lysimeter plots containing the soil types sandy calcaric phaeozem, gleyic phaeozem or calcic chernozem. Prognosticated rainfall patterns based on regionalised climate change model calculations were compared with current long-term rainfall patterns; each treatment combination was replicated three times. Future rainfall patterns significantly reduced wheat growth and yield, reduced the leaf area index, accelerated crop development, reduced arbuscular mycorrhizal fungi colonisation of roots, increased weed density and the stable carbon isotope signature (δ13C) of both old and young wheat leaves. Different soil types affected wheat growth and yield, ecosystem root production as well as weed abundance and biomass. The interaction between climate and soil type was significant only for the harvest index. Our results suggest that even slight changes in rainfall patterns can significantly affect the functioning of wheat agroecosystems. These rainfall effects seemed to be little influenced by soil types suggesting more general impacts of climate change across different soil types. Wheat production under future conditions will likely become more challenging as further concurrent climate change factors become prevalent.
Hydrocarbon status of soils in the asphalt deposit area (Samara Bend)
NASA Astrophysics Data System (ADS)
Pikovskiy, Yu. I.; Gennadiev, A. N.; Kovach, R. G.; Zhidkin, A. P.; Khlynina, N. I.; Kiseleva, A. Yu.
2017-04-01
The composition and distribution features of the main components of soil hydrocarbon complex― organic (noncarbonate) carbon, hexane bitumoids, and individual polycyclic aromatic hydrocarbons (PAHs)―in the area of depleted Bakhilovo asphalt deposit (Samara oblast) have been studied. According to their proportions, three genetic types of soil hydrocarbon status are distinguished: (a) emanation-injection type prevailing within the limits of the former production field and characterized by anomalous contents of heavy resinous bitumoids (5000-7000 mg/kg on the average) throughout the soil profile and a high content of PAHs (4-9 mg/kg on the average, 29 mg/kg as the maximum, with the dominance of naphthalene homologues); (b) emanation-biogeochemical type confined to mechanogenically undisturbed soils within and beyond the deposit area, where the emanation component is manifested in soils with heavy texture and higher concentrations and very light composition of bitumoids in the lower parts of the soil profile; and (c) atmosedimentation-biogeochemical type characteristic of conventionally background soils with light texture; benzo[ a]pyrene traces are detected among PAHs in the upper soil horizon, which indicates the input of this hydrocarbon with aerosols from the atmosphere; the concentrations of bitumoids and PAHs in parent rocks are lower than in the soils.
Latent Effect of Soil Organic Matter Oxidation on Mercury Cycling within a Southern Boreal Ecosystem
The focus of this study is to investigate processes causing the observed spatial variation of total mercury (THg) in the soil O horizon of watersheds within the Superior National Forest (Minnesota) and to determine if results have implications toward understanding long-term chang...
Pesticides have been implicated as a major factor in global amphibian declines and may pose great risk to terrestrial phase amphibians moving to and from breeding ponds on agricultural landscapes. Dermal uptake from soil is known to occur in amphibians, but predicting pesticide a...
USDA-ARS?s Scientific Manuscript database
Slow equilibration of introduced chemicals through tortuous pore space limits uniform substrate distribution in soil biodegradation studies. The necessity of introducing poorly soluble xenobiotics via organic solvents, the volume of which is minimized to limit toxicity, likely also affects xenobiot...
Our work centered on the possibility of using vacant land mass to infiltrate and otherwise absorb excess stormwater runoff quantity as a sustainable and putatively cost-effective way of managing combined sewer overflows (CSO). County-level, Order 2 soil surveys have been used for...
Wang, Jun; Fu, Bo-jie; Qiu, Yang; Chen, Li-ding
2003-03-01
Due to relatively strong human activities in the hilly area of Loess Plateau, the natural vegetation has been destroyed, and landscape pattern based on agricultural land matrix was land use mosaic composing of shrub land, grassland, woodland and orchard. This pattern has an important effect on soil moisture and soil nutrients. The Danangou catchment, a typical small catchment, was selected to study the effects of land use and its patterns on soil moisture and nutrients in this paper. The results are as follows: The comparisons of soil moisture among seven land uses for wet year and dry year were performed; (1) the average of soil moisture content for whole catchment was 12.11% in wet year, while it was 9.37% in dry year; (2) soil moisture among seven land uses significantly different in dry year, but not in wet year; (3) from wet year to dry year, the profile type of soil moisture changed from decreasing type to fluctuation-type and from fluctuant type to increasing type; (4) the increasing trend in soil moisture from the top to foot of hillslope occurred in simple land use along slope, while complicated distribution of soil moisture was observed in multiple land uses along slope. The relationship between soil nutrients and land uses and landscape positions were analysed: (1) five nutrient contents of soil organic matter (SOM), total N (TN), available N (AN), total P (TP) and available P (AP) in hilly area were lower than that in other area. SOM content was less than 1%, TN content less than 0.07%, and TP content between 0.05% and 0.06%; (2) SOM and TN contents in woodland, shrub land and grassland were significantly higher than that in fallow land and cropland, and higher level in soil fertility was found in crop-fruit intercropping land among croplands; (3) soil nutrient distribution and responses to landscape positions were variable depending on slope and the location of land use types.
Lindsey, Alexander J; Kilgore, Jason S
2013-08-01
Effects of drought stress and media type interactions on growth of Pinus ponderosa var. scopulorum germinants were investigated. • Soil properties and growth responses under drought were compared across four growth media types: two native soils (dolomitic limestone and granite), a soil-less industry standard conifer medium, and a custom-mixed conifer medium. After 35 d of growth, the seedlings under drought stress (reduced watering) produced less shoot and root biomass than watered control seedlings. Organic media led to decreased root biomass, but increased root length and shoot biomass relative to the mineral soils. • Media type affected root-to-shoot biomass partitioning of P. ponderosa var. scopulorum, which may influence net photosynthetic rates, growth, and long-term seedling survival. Further work should examine how specific soil properties like bulk density and organic matter influence biomass allocation in greenhouse studies.
Lindsey, Alexander J.; Kilgore, Jason S.
2013-01-01
• Premise of the study: Effects of drought stress and media type interactions on growth of Pinus ponderosa var. scopulorum germinants were investigated. • Methods and Results: Soil properties and growth responses under drought were compared across four growth media types: two native soils (dolomitic limestone and granite), a soil-less industry standard conifer medium, and a custom-mixed conifer medium. After 35 d of growth, the seedlings under drought stress (reduced watering) produced less shoot and root biomass than watered control seedlings. Organic media led to decreased root biomass, but increased root length and shoot biomass relative to the mineral soils. • Conclusions: Media type affected root-to-shoot biomass partitioning of P. ponderosa var. scopulorum, which may influence net photosynthetic rates, growth, and long-term seedling survival. Further work should examine how specific soil properties like bulk density and organic matter influence biomass allocation in greenhouse studies. PMID:25202578
NASA Astrophysics Data System (ADS)
Liu, Qi; Hao, Yonghong; Stebler, Elaine; Tanaka, Nobuaki; Zou, Chris B.
2017-12-01
Mapping the spatiotemporal patterns of soil moisture within heterogeneous landscapes is important for resource management and for the understanding of hydrological processes. A critical challenge in this mapping is comparing remotely sensed or in situ observations from areas with different vegetation cover but subject to the same precipitation regime. We address this challenge by wavelet analysis of multiyear observations of soil moisture profiles from adjacent areas with contrasting plant functional types (grassland, woodland, and encroached) and precipitation. The analysis reveals the differing soil moisture patterns and dynamics between plant functional types. The coherence at high-frequency periodicities between precipitation and soil moisture generally decreases with depth but this is much more pronounced under woodland compared to grassland. Wavelet analysis provides new insights on soil moisture dynamics across plant functional types and is useful for assessing differences and similarities in landscapes with heterogeneous vegetation cover.
NASA Astrophysics Data System (ADS)
Hugelius, G.; Ahlström, A.; Canadell, J.; Koven, C. D.; Jackson, R. B.; Luo, Y.
2016-12-01
Soils hold the largest reactive pool of carbon (C) on earth. Global soil organic C stocks (0-200 cm depth plus full peatland depth) are estimated to 2200 Pg C (adapted from Hugelius et al., 2014, Köchy et al., 2015 and Batjes, 2016). Soil C stocks in Earth system models (ESMs) can be generated by running the model over a longer time period until soil C pools are in or near steady-state. Inherent in this concept is the idea that soil C stocks are in (quasi)equilibrium as determined by the balance of net ecosystem input to soil organic matter and its turnover. The rate of turnover is sometimes subdivided into several pools and the rates are affected by various environmental factors. Here we break down the empirically based estimates of global soil C pools into equilibrium-type soils which current (Coupled Model Intercomparison Project, phase 5; CMIP5) generation ESMs are set-up to represent and non-equilibrium type soils which are generally not represented in current ESMs. We define equilibrium soils as those where pedogenesis (and associated soil C formation) is not significantly limited by the environmental factors perennial soil freezing, waterlogging/anoxia or limited unconsolidated soil substrate. This is essentially all permafrost-free mineral soils that are not in a wetland or alpine setting. On the other hand, non-equlibrium soils are defined as permafrost soils, peatlands and alpine soils with a limited fine-soil matrix. Based on geospatial analyses of state-of-the-art datasets on soil C stocks, we estimate that the global soil C pool is divided roughly equally between equilibrium and non-equlibrium type soils. We discuss the ways in which this result affects C cycling in ESMs and projections of soil C sensitivity under a changing climate. ReferencesBatjes N.H. (2016) Geoderma, 269, 61-68, doi: 10.1016/j.geoderma.2016.01.034 Hugelius G. et al. (2014) Biogeosciences, 11, 6573-6593, doi:10.5194/bg-11-6573-2014 Köchy M. et al. (2015) Soil 1, 351-365. DOI: doi:10.5194/soil-1-351-2015
L. Alessa; C. G. Earnhart
2000-01-01
Recreational use of wild lands can create areas, such as campsites, which may experience soil compaction and a decrease in vegetation cover and diversity. Plants are highly reliant on their rootsâ ability to uptake nutrients and water from soil. Any factors that affect the highly specialized root hairs (âfeeder cellsâ) compromise the overall health and survival of the...
Prediction of soil organic carbon partition coefficients by soil column liquid chromatography.
Guo, Rongbo; Liang, Xinmiao; Chen, Jiping; Wu, Wenzhong; Zhang, Qing; Martens, Dieter; Kettrup, Antonius
2004-04-30
To avoid the limitation of the widely used prediction methods of soil organic carbon partition coefficients (KOC) from hydrophobic parameters, e.g., the n-octanol/water partition coefficients (KOW) and the reversed phase high performance liquid chromatographic (RP-HPLC) retention factors, the soil column liquid chromatographic (SCLC) method was developed for KOC prediction. The real soils were used as the packing materials of RP-HPLC columns, and the correlations between the retention factors of organic compounds on soil columns (ksoil) and KOC measured by batch equilibrium method were studied. Good correlations were achieved between ksoil and KOC for three types of soils with different properties. All the square of the correlation coefficients (R2) of the linear regression between log ksoil and log KOC were higher than 0.89 with standard deviations of less than 0.21. In addition, the prediction of KOC from KOW and the RP-HPLC retention factors on cyanopropyl (CN) stationary phase (kCN) was comparatively evaluated for the three types of soils. The results show that the prediction of KOC from kCN and KOW is only applicable to some specific types of soils. The results obtained in the present study proved that the SCLC method is appropriate for the KOC prediction for different types of soils, however the applicability of using hydrophobic parameters to predict KOC largely depends on the properties of soil concerned.
NASA Astrophysics Data System (ADS)
Hughes, P. N.
2015-12-01
A soil's shear resistance is mainly dependent upon the magnitude of effective stress. For small to medium height slopes (up to 10m) in clay soils the total stress acting along potential failure planes will be low, therefore the magnitude of effective stress (and hence soil shear strength) will be dominated by the pore-water pressure. The stability of slopes on this scale through periods of increased precipitation is improved by the generation of negative pore pressures (soil suctions) during preceding, warmer, drier periods. These negative pore water pressures increase the effective stress within the soil and cause a corresponding increase in shearing resistance. The relationships between soil water content and pore water pressure (soil water retention curves) are known to be hysteretic, but for the purposes of the majority of slope stability assessments in partially saturated clay soils, these are assumed to be consistent with time. Similarly, the relationship between shear strength and water content is assumed to be consistent over time. This research presents a laboratory study in which specimens of compacted Glacial Till (typical of engineered slopes within the UK) were subjected to repeated cycles of wetting and drying to simulate seasonal cycles. At predetermined water contents, measurements of soil suction were made using tensiometer and dewpoint potentiometer methods. The undrained shear strength of the specimens was then measured using triaxial strength testing equipment. Results indicate that repeated wetting and drying cycles caused a change in the soil water retention behaviour. A reduction in undrained shear strength at corresponding water contents along the wetting and drying paths was also observed. The mechanism for the change in the relationship is believed to be a deterioration in the soil physical structure due to shrink/swell induced micro-cracking. The non-stationarity of these relationships has implications for slope stability assessment.
Microbial effects on two tropical soils amended with different types of biochar
NASA Astrophysics Data System (ADS)
Paz, Jorge; Méndez, Ana; Fun, Shenglei; Gascó, Gabriel
2013-04-01
There is an increasing interest in using biochar as soil amendment due to its potential to reduce greenhouse gas emissions from soils and to mitigate heavy metal pollution. In addition, sometimes biochar has been found to increase soil productivity due to its favourable effect on soil aggregation and water holding capacity. However, results obtained can differ greatly depending on the type of biochar utilised. On the other hand, the response of the microbial community to biochar addition is not so well understood. In our experiment we have sampled two soils, differing in their fertility status. A greenhouse pot experiment was established to see the effect of adding four different biochars, differing on their feedstock (Miscanthus, sewage sludge, paper mill waste and pinewood). Additionally, half of the samples excluded soil earthworms, while the other half had 3 individuals of the earthworm Pontoscolex corethrurus. Pots, containing 400 g of soil, were planted with proso millet. Assessed parameters included millet height, soil microbial biomass and soil enzymatic activity related to different biogeochemical cycles (invertase, B-glucosaminidase, B-glucosidase, urease, phosphomonoesterase, arylsulphatase) The effects of biochar on soil biological properties depended on the type of feedstock used for biochar production and pre-existent soil parameters such as soil fertility status. Earthworm presence generally had a positive effect on soil microbial properties.
Feng, Wei; Zhang, Yuqing; Jia, Xin; Wu, Bin; Zha, Tianshan; Qin, Shugao; Wang, Ben; Shao, Chenxi; Liu, Jiabin; Fa, Keyu
2014-01-01
The responses of soil respiration to environmental conditions have been studied extensively in various ecosystems. However, little is known about the impacts of temperature and moisture on soils respiration under biological soil crusts. In this study, CO2 efflux from biologically-crusted soils was measured continuously with an automated chamber system in Ningxia, northwest China, from June to October 2012. The highest soil respiration was observed in lichen-crusted soil (0.93±0.43 µmol m−2 s−1) and the lowest values in algae-crusted soil (0.73±0.31 µmol m−2 s−1). Over the diurnal scale, soil respiration was highest in the morning whereas soil temperature was highest in the midday, which resulted in diurnal hysteresis between the two variables. In addition, the lag time between soil respiration and soil temperature was negatively correlated with the soil volumetric water content and was reduced as soil water content increased. Over the seasonal scale, daily mean nighttime soil respiration was positively correlated with soil temperature when moisture exceeded 0.075 and 0.085 m3 m−3 in lichen- and moss-crusted soil, respectively. However, moisture did not affect on soil respiration in algae-crusted soil during the study period. Daily mean nighttime soil respiration normalized by soil temperature increased with water content in lichen- and moss-crusted soil. Our results indicated that different types of biological soil crusts could affect response of soil respiration to environmental factors. There is a need to consider the spatial distribution of different types of biological soil crusts and their relative contributions to the total C budgets at the ecosystem or landscape level. PMID:25050837
Mycorrhizal diversity in the rhizosphere of sugarcane and grass on different soil types
NASA Astrophysics Data System (ADS)
Ratri Cahyani, Vita; Rastikawati, Dewi; Yuniardi, Nestri; Syamsiyah, Jauhari; Suntoro
2017-11-01
Mycorrhiza has been known well as beneficial microbiota for supporting plant growth and production. Understanding of the variability and the consistency of the mycorrhizal diversity on various habitats is important for developing mycorrhizal utilization. Mycorrhizal diversity in the rhizosphere of sugarcane from 4 (four) soil types and the rhizosphere of grass from 3 (three) soil types were investigated in the present study. The results showed that Glomus indicated as a versatile genus because it was found as a common and dominant genus in the sugarcane rhizosphere on all of four soil types (Alfisol, Andisol, Inceptisol, Vertisol) and in the grass rhizosphere on all of three soil types (Ultisol, Oxisol, Histosol). In addition, Acaulospora was found as a common genus in grass rhizosphere. Statistical analysis indicated that P availability in the rhizosphere of sugarcane had a significantly negative correlation with mycorrhizal spore density, in which decreasing P availability significantly related with increasing spore density.
Study on Strength Behavior of Organic Soil Stabilized with Fly Ash
Molla, Md. Keramat Ali; Sarkar, Grytan
2017-01-01
The aim of this study is to investigate the effect of fly ash on the consistency, compactness, acidic properties, and strength of organic soil. The presence of organic content in the soil has detrimental impacts on the physical and strength behavior of soil. To investigate the effectiveness of fly ash in the stabilization of organic soil, two types of fly ashes (Type I and Type II) at different percentages were used. It is found that fly ash significantly reduces the plasticity index of the organic soil, whereas the liquid and plastic limits increase. The dry density of the fly ash-soil mixture increases significantly, while the water requirement reduces due to the addition of fly ash. The increase of dry density compromises higher strength. The increase of qu with the increase of fly ash content is mainly due to the pozzolanic reaction of fly ash, although the reduction in water content results from the addition of dry fly ash solid. Moreover, Type I fly ash contributes a higher value of qu compared to Type II fly ash. This is attributed to the characteristics of fly ash including CaO and CaO/SiO2 ratio. PMID:29085881
Dissolved organic carbon fluxes from soils in the Alaskan coastal temperate rainforest
NASA Astrophysics Data System (ADS)
D'Amore, D. V.; Edwards, R.; Hood, E. W.; Herendeen, P. A.; Valentine, D.
2011-12-01
Soil saturation and temperature are the primary factors that influence soil carbon cycling. Interactions between these factors vary by soil type, climate, and landscape position, causing uncertainty in predicting soil carbon flux from. The soils of the North American perhumid coastal temperate rainforest (NCTR) store massive amounts of carbon, yet there is no estimate of dissolved organic carbon (DOC) export from different soil types in the region. There are also no working models that describe the influence of soil saturation and temperature on the export of DOC from soils. To address this key information gap, we measured soil water table elevation, soil temperature, and soil and stream DOC concentrations to calculate DOC flux across a soil hydrologic gradient that included upland soils, forested wetland soils, and sloping bog soils in the NCTR of southeast Alaska. We found that increased soil temperature and frequent fluctuations of soil water tables promoted the export of large quantities of DOC from wetland soils and relatively high amounts of DOC from mineral soils. Average area-weighted DOC flux ranged from 7.7 to 33.0 g C m-2 y-1 across a gradient of hydropedologic soil types. The total area specific export of carbon as DOC for upland, forested wetland and sloping bog catchments was 77, 306, and 329 Kg C ha-1 y-1 respectively. The annual rate of carbon export from wetland soils in this region is among the highest reported in the literature. These findings highlight the importance of terrestrial-aquatic fluxes of DOC as a pathway for carbon loss in the NCTR.
Nielsen, Uffe N; Wall, Diana H
2013-03-01
The polar regions are experiencing rapid climate change with implications for terrestrial ecosystems. Here, despite limited knowledge, we make some early predictions on soil invertebrate community responses to predicted twenty-first century climate change. Geographic and environmental differences suggest that climate change responses will differ between the Arctic and Antarctic. We predict significant, but different, belowground community changes in both regions. This change will be driven mainly by vegetation type changes in the Arctic, while communities in Antarctica will respond to climate amelioration directly and indirectly through changes in microbial community composition and activity, and the development of, and/or changes in, plant communities. Climate amelioration is likely to allow a greater influx of non-native species into both the Arctic and Antarctic promoting landscape scale biodiversity change. Non-native competitive species could, however, have negative effects on local biodiversity particularly in the Arctic where the communities are already species rich. Species ranges will shift in both areas as the climate changes potentially posing a problem for endemic species in the Arctic where options for northward migration are limited. Greater soil biotic activity may move the Arctic towards a trajectory of being a substantial carbon source, while Antarctica could become a carbon sink. © 2013 Blackwell Publishing Ltd/CNRS.
A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi.
Hoeksema, Jason D; Chaudhary, V Bala; Gehring, Catherine A; Johnson, Nancy Collins; Karst, Justine; Koide, Roger T; Pringle, Anne; Zabinski, Catherine; Bever, James D; Moore, John C; Wilson, Gail W T; Klironomos, John N; Umbanhowar, James
2010-03-01
Ecology Letters (2010) 13: 394-407 Abstract Mycorrhizal fungi influence plant growth, local biodiversity and ecosystem function. Effects of the symbiosis on plants span the continuum from mutualism to parasitism. We sought to understand this variation in symbiotic function using meta-analysis with information theory-based model selection to assess the relative importance of factors in five categories: (1) identity of the host plant and its functional characteristics, (2) identity and type of mycorrhizal fungi (arbuscular mycorrhizal vs. ectomycorrhizal), (3) soil fertility, (4) biotic complexity of the soil and (5) experimental location (laboratory vs. field). Across most subsets of the data, host plant functional group and N-fertilization were surprisingly much more important in predicting plant responses to mycorrhizal inoculation ('plant response') than other factors. Non-N-fixing forbs and woody plants and C(4) grasses responded more positively to mycorrhizal inoculation than plants with N-fixing bacterial symbionts and C(3) grasses. In laboratory studies of the arbuscular mycorrhizal symbiosis, plant response was more positive when the soil community was more complex. Univariate analyses supported the hypothesis that plant response is most positive when plants are P-limited rather than N-limited. These results emphasize that mycorrhizal function depends on both abiotic and biotic context, and have implications for plant community theory and restoration ecology.
Evidence for montmorillonite or its compositional equivalent in Columbia Hills, Mars
Clark, B. C.; Arvidson, R. E.; Gellert, Ralf; Morris, R.V.; Ming, D. W.; Richter, L.; Ruff, S.W.; Michalski, J.R.; Farrand, W. H.; Yen, A. S.; Herkenhoff, K. E.; Li, R.; Squyres, S. W.; Schroder, C.; Klingelhofer, G.; Bell, J.F.
2007-01-01
During its exploration of the Columbia Hills, the Mars Exploration Rover "Spirit" encountered several similar samples that are distinctly different from Martian meteorites and known Gusev crater soils, rocks, and sediments. Occurring in a variety of contexts and locations, these "Independence class" samples are rough-textured, iron-poor (equivalent FeO ??? 4 wt%), have high Al/Si ratios, and often contain unexpectedly high concentrations of one or more minor or trace elements (including Cr, Ni, Cu, Sr, and Y). Apart from accessory minerals, the major component common to these samples has a compositional profile of major and minor elements which is similar to the smectite montmorillonite, implicating this mineral, or its compositional equivalent. Infrared thermal emission spectra do not indicate the presence of crystalline smectite. One of these samples was found spatially associated with a ferric sulfate-enriched soil horizon, possibly indicating a genetic relationship between these disparate types of materials. Compared to the nearby Wishstone and Watchtower class rocks, major aqueous alteration involving mineral dissolution and mobilization with consequent depletions of certain elements is implied for this setting and may be undetectable by remote sensing from orbit because of the small scale of the occurrences and obscuration by mantling with soil and dust. Copyright 2007 by the American Geophysical Union.
Environmental implications of coal development: an interdisciplinary research team approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, W.T.; Brun, L.; Enz, J.
In May, 1974 a team of researchers from North Dakota State University launched a project aimed at investigating The Implications of Coal Development on the Atmospheric Environment and Plant Ecosystems of Selected Sites in Western North Dakota. It was an interdisciplinary effort of four basic study areas, namely: Soils, Climatology, Engineering, and Botany. Support was provided by the US Forest Service, USDA, under a Surface Environment and Mining (SEAM) cooperative agreement with the North Dakota Agricultural Experiment Station. The investigations, which lasted 4-1/2 years, were designed to accomplish three primary objectives. First was to analyze the frequency, intensity, and durationmore » of low-level radiation inversions in western North Dakota. The second was to determine the probable dispersion of wastes to the atmosphere from various theoretical operational levels and types of coal development in the specified area. Lastly was evaluation of the effects of probable changes in air quality on the plant ecosystems in the area.« less
NASA Astrophysics Data System (ADS)
Yang, Yang; Dou, Yanxing; Liu, Dong; An, Shaoshan
2017-07-01
Spatial pattern and heterogeneity of soil moisture is important for the hydrological process on the Loess Plateau. This study combined the classical and geospatial statistical techniques to examine the spatial pattern and heterogeneity of soil moisture along a transect scale (e.g. land use types and topographical attributes) on the Loess Plateau. The average values of soil moisture were on the order of farmland > orchard > grassland > abandoned land > shrubland > forestland. Vertical distribution characteristics of soil moisture (0-500 cm) were similar among land use types. Highly significant (p < 0.01) negative correlations were found between soil moisture and elevation (h) except for shrubland (p > 0.05), whereas no significant correlations were found between soil moisture and plan curvature (Kh), stream power index (SPI), compound topographic index (CTI) (p > 0.05), indicating that topographical attributes (mainly h) have a negative effect on the soil moisture spatial heterogeneity. Besides, soil moisture spatial heterogeneity decreased from forestland to grassland and farmland, accompanied by a decline from 15° to 1° alongside upper to lower slope position. This study highlights the importance of land use types and topographical attributes on the soil moisture spatial heterogeneity from a combined analysis of the structural equation model (SEM) and generalized additive models (GAMs), and the relative contribution of land use types to the soil moisture spatial heterogeneity was higher than that of topographical attributes, which provides insights for researches focusing on soil moisture varitions on the Loess Plateau.
NASA Astrophysics Data System (ADS)
Avancha, S.; Boye, K.
2014-12-01
In the Mekong delta in Cambodia, naturally occurring arsenic (originating from erosion in the Himalaya Mountains) in paddy soils is mobilized during the seasonal flooding. As a consequence, rice grown on the flooded soils may take up arsenic and expose people eating the rice to this carcinogenic substance. Microbial activity will enhance or decrease the mobilization of arsenic depending on their metabolic pathways. Among the microbes naturally residing in the soil are denitrifying bacteria, sulfate reducers, metal reducers (Fe, Mn), arsenic reducers, methanogens, and fermenters, whose activity varies based on the presence of oxygen. The purpose of the experiment was to assess how different amendments affect the microbial activity and the arsenic mobilization during the transition from aerobic to anaerobic metabolism after flooding of naturally contaminated Cambodian soil. In a batch experiment, we investigated how the relative metabolic rate of naturally occurring microbes could vary with different types of organic carbon. The experiment was designed to measure the effects of various sources of carbon (dried rice straw, charred rice straw, manure, and glucose) on the microbial activity and arsenic release in an arsenic-contaminated paddy soil from Cambodia under flooded conditions. All amendments were added based on the carbon content in order to add 0.036 g of carbon per vial. The soil was flooded with a 10mM TRIS buffer solution at pH 7.04 in airtight 25mL serum vials and kept at 25 °C. We prepared 14 replicates per treatment to sample both gas and solution. On each sampling point, the solution replicates were sampled destructively. The gas replicates continued on and were sampled for both gas and solution on the final day of the experiment. We measured pH, total arsenic, methane, carbon dioxide, and nitrous oxide at 8 hours, 1.5 days, 3.33 days, and 6.33 days from the start of the experiment.
NASA Technical Reports Server (NTRS)
Newsom, H. E.; Nelson, M. J.; Shearer, C. K.; Draper, D. S.
2005-01-01
Hydrothermal and aqueous alteration can explain some of the exciting results from the MER team s analyses of the martian soil, including the major elements, mobile elements, and the nickel enrichment. Published results from the five lander missions lead to the following conclusions: 1) The soil appears to be globally mixed and basaltic with only small local variations in chemistry. Relative to martian basaltic meteorites and Gusev rocks the soils are depleted in the fluid-mobile element calcium, but only slightly enriched to somewhat depleted in iron oxide. 2) The presence of olivine in the soils based on M ssbauer data argues that the soil is only partly weathered and is more akin to a lunar regolith than a terrestrial soil. 3) The presence of bromine along with sulfur and chlorine in the soils is consistent with addition of a mobile element component to the soil.
Does powder and granular activated carbon perform equally in immobilizing chlorobenzenes in soil?
Song, Yang; Wang, Fang; Kengara, Fredrick Orori; Bian, Yongrong; Yang, Xinglun; Gu, Chenggang; Ye, Mao; Jiang, Xin
2015-01-01
The objective of this study is to compare the efficacies of powder activated carbon (PAC) and granular activated carbon (GAC) as amendments for the immobilization of volatile compounds in soil. Soil artificially-spiked with chlorobenzenes (CBs) was amended with either PAC or GAC to obtain an application rate of 1%. The results showed that the dissipation and volatilization of CBs from the amended soil significantly decreased compared to the unamended soil. The bioavailabilities of CBs, which is expressed as butanol extraction and earthworm accumulation, were significantly reduced in PAC and GAC amended soils. The lower chlorinated and hence more volatile CBs experienced higher reductions in both dissipation and bioavailability in the amended soils. The GAC and PAC equally immobilized more volatile CBs in soil. Therefore, it could be concluded that along with environmental implication, applying GAC was the more promising approach for the effective immobilization of volatile compounds in soil.
Belnap, Jayne
1996-01-01
CyanobacteriaMichen soil crusts can be a dominant source of nitrogen for cold-desert ecosystems. Effects of surface disturbance from footprints, bike and vehicle tracks on the nitrogenase activity in these crusts was investigated. Surface disturbances reduced nitrogenase activity by 30-100%. Crusts dominated by the cyanobacterium Microcoleus vaginatus on sandy soils were the most susceptible to disruption; crusts on gypsiferous soils were the least susceptible. Crusts where the soil lichen Collema tenax was present showed less immediate effects; however, nitrogenase activity still declined over time. Levels of nitrogenase activity reduction were affected by the degree of soil disruption and whether sites were dominated by cyanobacteria with or without heterocysts. Consequently, anthropogenic surface disturbances may have serious implications for nitrogen budgets in these ecosystems.
Changes in the Mechanisms Causing Rapid Drought Cessation in the Southeastern United States
NASA Astrophysics Data System (ADS)
Maxwell, Justin T.; Knapp, Paul A.; Ortegren, Jason T.; Ficklin, Darren L.; Soulé, Peter T.
2017-12-01
The synoptic processes that end droughts are poorly understood, yet have significant climatological implications. Here we examined the spatiotemporal patterns of rapid drought cessation (RDC) in the southeastern United States during the1979-2013 warm season (April-November) for three storm types: Frontal, Tropical, and Air mass. We defined RDC as a 1 month shift in soil moisture sufficient to alleviate an existing drought. We found that 73% of all warm-season droughts were ended by RDC events and the three storm-type groups ended droughts over similar spatial areas. Frontal storms were the most frequent mechanism for RDC events, yet their occurrences significantly decreased and were negatively related to increases in Northern Hemisphere air temperatures. Projected future warming in the Northern Hemisphere suggests a continued decline in the frequency and relative contribution of Frontal storms as RDC events, potentially influencing the timing and spatial scale of drought cessation in the southeastern U.S.
The regolith at the Apollo 15 site and its stratigraphic implications
Carr, M.H.; Meyer, C.E.
1974-01-01
Regolith samples from the Apollo 15 landing site are described in terms of two major fractions, a homogeneous glass fraction and a non-homogeneous glass fraction. The proportions of different components in the homogeneous glass fraction were determined directly by chemical analyses of individual particles. They are mainly green glass, a mare-like glass, and different types of Fra Mauro and Highland type glasses. The proportions of various components in the remainder of each of the soils were determined indirectly by finding the mix of components that best fits their bulk compositions. The mixing model suggests that the Apennine Front consists mainly of rocks of low-K Fra Mauro basalt composition. These may overlie rocks with the composition of anorthositic gabbro. Green glass, which occurs widely throughout the site is believed to be derived from a green glass layer which darkens upland surfaces and lies beneath the local mare surface. ?? 1974.
NASA Astrophysics Data System (ADS)
Varinlioglu, Ahmet; Tugrul, A. Beril
2018-02-01
Cs-137 is an important fission product that is produced in the nuclear reactors. Therefore it can create risk for the environment during the accident condition of the nuclear plants. In this study, vertical transportation of Cs-137 in the soil searched for three different soil types and three different raining regimes. The experiments observed in lyzimetric conditions in the laboratory. The results of the experiments show that in every raining regime the activities of different types of soils (sand, loam and clay) were related with descending activity order. When the results of the experiments were evaluated according to the raining regime it can be seen that the relative activity for every type of soil is always towards higher to lower raining conditions.
NASA Astrophysics Data System (ADS)
Olson, Mitchell R.; Sale, Tom C.
2015-06-01
Soil remediation is often inhibited by subsurface heterogeneity, which constrains contaminant/reagent contact. Use of soil mixing techniques for reagent delivery provides a means to overcome contaminant/reagent contact limitations. Furthermore, soil mixing reduces the permeability of treated soils, thus extending the time for reactions to proceed. This paper describes research conducted to evaluate implications of soil mixing on remediation of non-aqueous phase liquid (NAPL) source zones. The research consisted of column studies and subsequent modeling of field-scale systems. For column studies, clean influent water was flushed through columns containing homogenized soils, granular zero valent iron (ZVI), and trichloroethene (TCE) NAPL. Within the columns, NAPL depletion occurred due to dissolution, followed by either column-effluent discharge or ZVI-mediated degradation. Complete removal of TCE NAPL from the columns occurred in 6-8 pore volumes of flow. However, most of the TCE (> 96%) was discharged in the column effluent; less than 4% of TCE was degraded. The low fraction of TCE degraded is attributed to the short hydraulic residence time (< 4 days) in the columns. Subsequently, modeling was conducted to scale up column results. By scaling up to field-relevant system sizes (> 10 m) and reducing permeability by one-or-more orders of magnitude, the residence time could be greatly extended, potentially for periods of years to decades. Model output indicates that the fraction of TCE degraded can be increased to > 99.9%, given typical post-mixing soil permeability values. These results suggest that remediation performance can be greatly enhanced by combining contaminant degradation with an extended residence time.
NASA Astrophysics Data System (ADS)
Stern, C.; Pavao-Zuckerman, M.
2014-12-01
Rain basins have been an increasingly popular Green Infrastructure (GI) solution to the redistribution of water flow caused by urbanization. This study was conducted to examine how different approaches to basin design, specifically mulching (gravel vs. compost and gravel), influence the water availability of rain basins and the effects this has on the soil microbial activity of the basins. Soil microbes are a driving force of biogeochemical process and may impact the carbon and nitrogen dynamics of rain basin GI. In this study we sampled 12 different residential-scale rain basins, differing in design established at Biosphere 2, Arizona in 2013. Soil samples and measurements were collected before and after the onset of the monsoon season in 2014 to determine how the design of basins mediates the transition from dry to wet conditions. Soil abiotic factors were measured, such as moisture content, soil organic matter (SOM) content, texture and pH, and were related to the microbial biomass size within the basins. Field and lab potential N-mineralization and soil respiration were measured to determine how basin design influences microbial activity and N dynamics. We found that pre-monsoon basins with compost had higher moisture contents and that there was a positive correlation between the moisture content and the soil microbial biomass size of the basins. Pre-monsoon data also suggests that N-mineralization rates for basins with compost were higher than those with only gravel. These design influences on basin-scale biogeochemical dynamics and nitrogen retention may have important implications for urban biogeochemistry at neighborhood and watershed scales.
Schuerger, Andrew C; Nicholson, Wayne L
2016-12-01
Bacterial growth at low pressure is a new research area with implications for predicting microbial activity in clouds and the bulk atmosphere on Earth and for modeling the forward contamination of planetary surfaces like Mars. Here, we describe experiments on the recovery and identification of 20 species of bacterial hypobarophiles (def., growth under hypobaric conditions of approximately 1-2 kPa) in 10 genera capable of growth at 0.7 kPa. Hypobarophilic bacteria, but not archaea or fungi, were recovered from diverse soils, and high numbers of hypobarophiles were recovered from Arctic and Siberian permafrost soils. Isolates were identified through 16S rRNA sequencing to belong to the genera Bacillus, Carnobacterium, Clostridium, Cryobacterium, Exiguobacterium, Paenibacillus, Rhodococcus, Streptomyces, and Trichococcus. The highest population of culturable hypobarophilic bacteria (5.1 × 10 4 cfu/g) was recovered from Colour Lake soils from Axel Heiberg Island in the Canadian Arctic. In addition, we extend the number of hypobarophilic species in the genus Serratia to six type-strains that include S. ficaria, S. fonticola, S. grimesii, S. liquefaciens, S. plymuthica, and S. quinivorans. Microbial growth at 0.7 kPa suggests that pressure alone will not be growth-limiting on the martian surface, or in Earth's atmosphere up to an altitude of 34 km. Key Words: Barophile-Extremophilic microorganisms-Habitability-Mars-Special Region. Astrobiology 16, 964-976.
Václav, Radovan; Kalúz, Stanislav
2014-03-01
Oribatid mites may be of epidemiological and medical importance because several species have been shown to serve as intermediate hosts for anoplocephalid tapeworms of wild and domestic animals. Despite their economic and conservation significance, relatively few studies examined factors influencing the effective number of oribatid mites that can serve as intermediate hosts. We examined variation in the structure of the edaphic arthropod community in functionally different territory parts of the Alpine marmot (Marmota marmota latirostris), a known definitive host of a prevalent anoplocephalid tapeworm, Ctenotaenia marmotae. We used a field experiment to test whether the abundance of oribatid mites in marmot pastures is affected by the presence of fresh herbivore faeces. We found that the abundance of soil and litter dwelling oribatid mites in marmot pastures did not change shortly after faeces addition. In contrast, numbers of other predominant soil-litter and phoretic microarthropods increased after faeces addition. The abundance of the two predominant phoretic mites colonizing the faeces was inversely related to the abundance of oribatid mites. In contrast, the abundance of a ubiquitous soil-litter mesostigmatid mite was a positive function of oribatid numbers. Although absolute numbers of oribatid mites did not change after faeces addition, our study suggests that, depending on soil quality or type, the probability of tapeworm egg ingestion by oribatid mites can be reduced due to increased interspecific prey-predatory and trophic interactions. Latrine site selection in Alpine marmots is consistent with a reduced probability of tapeworm transmission by oribatids.
NASA Astrophysics Data System (ADS)
Fonseca, João
2017-04-01
The regional and local climate, heavily influenced by global climate change, has strong implications for agriculture. Wine production which has specific characteristics in terms of climate and soil is undoubtedly one of the economic activities strongly influenced by climate change. Quinta dos Termos located in Beira Interior (Belmonte, Portugal) is the largest wine producer in the DOC Beira Interior region, producing premium to hiper premium wines of excellence, marketed at both national and international levels, and cultivates the vineyards according to the rules of Integrated Crop Management. Moreover, grapes are free from herbicides, pesticides or any other chemicals that can be harmful to the environment and health. These factors have contributed to the socio-economic development of the region, creating wealth, favoring employment and promoting tourism. The quality of the wines produced by Quinta dos Termos result from its terroir, given its granite region, the sun exposure, the wind protection, the atmospheric humidity and temperature, the soil water content, the mineralogical/organic composition and soil porosity. These factors favor unique conditions for the cultivation of Touriga Nacional grape variety, which is recognized by its extremely complex color and aroma, which allows the production of wines with great balance and a good ageing potential. Touriga Nacional, a red grape variety of Portuguese origin with high qualitative excellence and reputation and much appreciated worldwide, is versatile to several types of soils and resistant to high thermal amplitudes. Nevertheless, the climatic changes that has been gradually verified, the type of crop management, and in particular the reputation of Touriga Nacional grape variety, may be compromised in the long term, given that these characteristics are strongly influenced by the climate and soil. Aware of that, Quinta dos Termos has been performing a monitoring of the vineyards in terms of pedological treatment, disease control and water stress. With the present essay we intend to present the results achieved by the monitoring of the main influencing factors in grape production and therefore the quality of wines produced, over the years, by Quinta dos Termos.
Change Analysis on Soil Erosion of Fujian Province from 1990 TO 2015
NASA Astrophysics Data System (ADS)
Wang, X. Q.; Zeng, S. J.; Chen, X. G.; Lin, J. L.; Chen, S. M.
2017-09-01
Soil erosion is one of major environment problems in the world, and China is one of the most serious soil erosion country. In this paper, Fujian province was used as a study area for its typical red soil region. Based on USLE model, the soil erosion modulus in 1990 and 2015 were calculated and turned to soil erosion intensity. The soil erosion distribution trend in Fujian province was decrease from south-east coastal zone to north-west inland region. In soil erosion areas, the main erosion type was light level with about 80 %, and the soil erosion levels above serious type were mainly sporadic distribution with less than 10 %. The soil erosion improved for the past 25 years. The areas of different erosion types all decreased, and the total erosion area reduced by 26.59 %. The improvement area mainly located in north-east, south and west region. The aggravation area mainly located in the north and some middle hilly regions. The impact of human activities is more significant for erosion control.
Ash effects on the thermal conductivity of a mediterranean loam soil
NASA Astrophysics Data System (ADS)
Rubio, Carles; Pereira, Paulo; Ubeda, Xavier
2014-05-01
The purpose of this work is to explore the variability on the soil thermal conductivity for a burnt soil and assessing the effects of the ashes on the heat transfer when they were incorporated into the soil matrix. A set of 42 soil samples from the Montgrí massif experimental plot between surface and 5 cm depth was collected before and after the soil was burnt. A thermal characterization of the soil was carried out. For that a dry out curve was constructed, which presented the relationship between water content and thermal conductivity for both types of soil samples, burnt and non-burnt soil. The results shown changes in the heat pulse transfer, being more conductive the soil before to be burnt (0.378 W•m-1•C-1) than the soil after to be exposed to the fire (0.337 W•m-1•C-1). Indeed, on the whole of moisture scenarios the values of thermal conductivity decreased after soil was burnt. Another experimental concern was based on to observe the soil thermal behaviour when ash collected after fire was incorporated into the burnt soil matrix. In this case, soil thermal and soil hydrodynamic behaviour presented differences according to the type of ash. Soil mixed with fly ash showed higher thermal conductivity than soil mixed with bottom ash. To sum up; the soil thermal conductivity decreased when soil was burnt. On the other hand, soil thermal conductivity shown differences depending on the type of ash incorporated into the matrix. Fly ash transferred the heat pulse better than bottom ash.
Listeria monocytogenes Internalizes in Romaine Lettuce Grown in Greenhouse Conditions.
Shenoy, Archana G; Oliver, Haley F; Deering, Amanda J
2017-04-01
Listeria monocytogenes has been implicated in a number of outbreaks involving fresh produce, including an outbreak in 2016 resulting from contaminated packaged salads. The persistence and internalization potential of L. monocytogenes in romaine lettuce was evaluated, and the persistence of two L. monocytogenes strains was assessed on three romaine lettuce cultivars. Seeds were germinated, and plants grown in three soil types (i.e., standard potting mix, autoclaved potting mix, and top soil) and sterile soft-top agar for up to 21 days. Average CFU per gram of L. monocytogenes on seeds and plants was calculated from five replicates per harvest day. Up to 8.2 log CFU/g L. monocytogenes persisted on romaine lettuce plants (Braveheart cultivar) grown in soft-top agar, while those grown in commercial potting mix (initial soil aerobic plate count of 4.0 × 10 4 CFU/g) had a final concentration of 5.4 log CFU/g, and autoclaved commercial potting mix had a final concentration of 3.8 ± 0.2 log CFU/g after a 21-day period. Pathogen levels dropped below the limit of detection (2 log CFU/g) by day 18 in 75% topsoil (initial soil aerobic plate count of 4.0 × 10 1 CFU/g); this did not occur in sterile media. Although L. monocytogenes strain differences and presence of a clay coating on seeds did not affect persistence, differences were observed in L. monocytogenes growth and survival among cultivars. To assess internalization, seeds were inoculated with L. monocytogenes expressing green fluorescent protein. Three plants were fixed, paraffin embedded, and sectioned; localization was studied by using standard immunohistochemistry techniques. A total of 539 internalized L. monocytogenes cells were visualized among three 20-day seedlings. L. monocytogenes cells were located in all major tissue types (pith followed by cortex, xylem, phloem, and epidermis). The presence of L. monocytogenes in the plant vasculature suggests potential for transport throughout the plant into edible tissue.
Acid sulfate soils and human health--a Millennium Ecosystem Assessment.
Ljung, Karin; Maley, Fiona; Cook, Angus; Weinstein, Philip
2009-11-01
Acid sulfate soils have been described as the "nastiest soils on earth" because of their strong acidity, increased mobility of potentially toxic elements and limited bioavailability of nutrients. They only cover a small area of the world's total problem soils, but often have significant adverse effects on agriculture, aquaculture and the environment on a local scale. Their location often coincides with high population density areas along the coasts of many developing countries. As a result, their negative impacts on ecosystems can have serious implications to those least equipped for coping with the low crop yields and reduced water quality that can result from acid sulfate soil disturbance. The Millennium Ecosystem Assessment called on by the United Nations in 2000 emphasised the importance of ecosystems for human health and well-being. These include the service they provide as sources of food and water, through the control of pollution and disease, as well as for the cultural services ecosystems provide. While the problems related to agriculture, aquaculture and the environment have been the focus of many acid sulfate soil management efforts, the connection to human health has largely been ignored. This paper presents the potential health issues of acid sulfate soils, in relation to the ecosystem services identified in the Millennium Ecosystem Assessment. It is recognised that significant implications on food security and livelihood can result, as well as on community cohesiveness and the spread of vector-borne disease. However, the connection between these outcomes and acid sulfate soils is often not obvious and it is therefore argued that the impact of such soils on human well-being needs to be recognised in order to raise awareness among the public and decision makers, to in turn facilitate proper management and avoid potential human ill-health.
Complexity in Soil Systems: What Does It Mean and How Should We Proceed?
NASA Astrophysics Data System (ADS)
Faybishenko, B.; Molz, F. J.; Brodie, E.; Hubbard, S. S.
2015-12-01
The complex soil systems approach is needed fundamentally for the development of integrated, interdisciplinary methods to measure and quantify the physical, chemical and biological processes taking place in soil, and to determine the role of fine-scale heterogeneities. This presentation is aimed at a review of the concepts and observations concerning complexity and complex systems theory, including terminology, emergent complexity and simplicity, self-organization and a general approach to the study of complex systems using the Weaver (1948) concept of "organized complexity." These concepts are used to provide understanding of complex soil systems, and to develop experimental and mathematical approaches to soil microbiological processes. The results of numerical simulations, observations and experiments are presented that indicate the presence of deterministic chaotic dynamics in soil microbial systems. So what are the implications for the scientists who wish to develop mathematical models in the area of organized complexity or to perform experiments to help clarify an aspect of an organized complex system? The modelers have to deal with coupled systems having at least three dependent variables, and they have to forgo making linear approximations to nonlinear phenomena. The analogous rule for experimentalists is that they need to perform experiments that involve measurement of at least three interacting entities (variables depending on time, space, and each other). These entities could be microbes in soil penetrated by roots. If a process being studied in a soil affects the soil properties, like biofilm formation, then this effect has to be measured and included. The mathematical implications of this viewpoint are examined, and results of numerical solutions to a system of equations demonstrating deterministic chaotic behavior are also discussed using time series and the 3D strange attractors.
Sopeña, Fatima; Semple, Kirk; Sohi, Saran; Bending, Gary
2012-06-01
There is considerable current interest in using biochar (BC) as a soil amendment to sequester carbon to mitigate climate change. However, the implications of adding BC to agricultural soil for the environmental fate of pesticides remain unclear. In particular, the effect of biochars on desorption behavior of compounds is poorly understood. This study examined the influence of BC on pesticide chemical and biological accessibility using the herbicide isoproturon (IPU). Soils amended with 1% and 2% BC showed enhanced sorption, slower desorption, and reduced biodegradation of IPU. Addition of 0.1% BC had no effect on sorption, desorption or biodegradation of IPU. However, the mineralization of (14)C-IPU was reduced by all BC concentrations, reducing by 13.6%, 40.1% and 49.8% at BC concentrations of 0.1%, 1% and 2% respectively. Further, the ratio of the toxic metabolite 4-isopropyl-aniline to intact IPU was substantially reduced by higher BC concentrations. Hydroxypropyl-β-cyclodextrin (HPCD) extractions were used to estimate the IPU bioaccessibility in the BC-amended soil. Significant correlations were found between HPCD-extracted (14)C-IPU and the IPU desorbed (%) (r(2)=0.8518, p<0.01), and also the (14)C-IPU mineralized (%) (r(2)=0.733; p<0.01) for all BC-amended soils. This study clearly demonstrates how desorption in the presence of BC is intimately related to pesticide biodegradation by the indigenous soil microbiota. BC application to agricultural soils can affect the persistence of pesticides as well as the fate of their degradation products. This has important implications for the effectiveness of pesticides as well as the sequestration of contaminants in soils. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pena, Rodica; Lang, Christa; Lohaus, Gertrud; Boch, Steffen; Schall, Peter; Schöning, Ingo; Ammer, Christian; Fischer, Markus; Polle, Andrea
2017-04-01
Ectomycorrhizal (EM) fungal taxonomic, phylogenetic, and trait diversity (exploration types) were analyzed in beech and conifer forests along a north-to-south gradient in three biogeographic regions in Germany. The taxonomic community structures of the ectomycorrhizal assemblages in top soil were influenced by stand density and forest type, by biogeographic environmental factors (soil physical properties, temperature, and precipitation), and by nitrogen forms (amino acids, ammonium, and nitrate). While α-diversity did not differ between forest types, β-diversity increased, leading to higher γ-diversity on the landscape level when both forest types were present. The highest taxonomic diversity of EM was found in forests in cool, moist climate on clay and silty soils and the lowest in the forests in warm, dry climate on sandy soils. In the region with higher taxonomic diversity, phylogenetic clustering was found, but not trait clustering. In the warm region, trait clustering occurred despite neutral phylogenetic effects. These results suggest that different forest types and favorable environmental conditions in forests promote high EM species richness in top soil presumably with both high functional diversity and phylogenetic redundancy, while stressful environmental conditions lead to lower species richness and functional redundancy.
NASA Astrophysics Data System (ADS)
Lee, Pei-Chen; Cheng, Chih-Hsin
2017-04-01
Landslides are critical natural disturbances in tropical and temperate areas and exert immense impacts on forest ecosystems and soil properties. The impacts of landslides on soil properties not only vary with their movement type, scale, or location but also have great spatial variation inside landslide. In this study, the effects of movement type (erosion and deposition) and succeeding vegetation on soil properties inside a landslide scar were evaluated. The study site was located in Chiufenernshan, central Taiwan. The landslide was triggered by the Chi-Chi Earthquake (Ritch magnitude 7.3) in 1999. A huge amount of waste debris (30 million m3) was moved along the sliding slope (with a tipping degree at 26o) and deposited in the lower parts. Total area size of landslide scar was 200 ha and about 30 - 50 m depth waste material was eroded/deposited in the upper/lower scar areas. After 17 years, the succeeding vegetation varied inside landslide scar. The erosion areas were covered with grass (Miscanthus floridulus) or left barren in some slopes. In contrast, a secondary forest, dominated with Trema orientalis, Lithocarpus konishii, Mallotus paniculatus, and Smilax bracteata, developed in the deposition areas. We collected soil samples in different landscape areas including (i) erosion areas without vegetation, (ii) erosion areas with grass vegetation, (iii) deposition areas, and (iv) adjacent undisturbed areas. Our results indicated that the erosion areas had higher bulk density, rock fragment and pH value, but less soil organic carbon, total nitrogen, total phosphorus and N-mineralization rate than both deposition and adjacent undisturbed areas. The soil properties without vegetation even showed the extreme end compared to the soils with grass vegetation. Soils at the deposition zone had similar rock fragment, bulk density, soil pH, soil organic carbon and N-mineralization rate values to the undisturbed site (p > 0.05). We speculate that movement types could determine the initial establishment of vegetation types and then influence soil properties under vegetation succession. Therefore, both waste movement types and vegetation and their interactions play important roles on soil properties.
NASA Astrophysics Data System (ADS)
Hicks Pries, C.; Hatton, P.; Castanha, C.; Bird, J. A.; Torn, M. S.
2013-12-01
All soil organic matter (SOM) is ultimately derived from plant litter. The fate of plant litter in ecosystems determines soil carbon (C) storage and nutrient availability with far-reaching implications for ecosystems and global change. However, little is known about the process by which litter becomes SOM (as opposed to the well-studied controls on rates of C and nitrogen (N) loss from litter). We are investigating whether litter type affects where in soils litter-derived C and N eventually reside. Specifically, we are investigating whether litter type affects which minerals the C and N are associated with and how much C is in the microbial pool after a decade. We incubated 15N and 13C-labeled Pinus ponderosa needle and fine root litter in the Blodgett Experimental Forest in the Sierra Nevada foothills for 10 years. A two-way factorial design was used with needle and root litter placed into O and A soil horizons. In 2001, litter was inserted into the given horizon within soil mesocosms (10.2 cm diameter x 24 cm long PVC) that had two 5 x 5 cm mesh windows to allow contact with the surrounding soil. After 0.5, 1, 1.5, 4.5, and 10 years, the soil mesocosms were collected from the field. Isotopes were used to measure the percent recovery of the litter C and N in the bulk soil of the O and A horizons. To investigate mineral associations of the added litter C and N after 10 years, we sequentially fractionated the soils by density. The fractions were a free light fraction (<1.75 g cm-3), a fraction dominated by phyllosilicate secondary minerals (1.75-2.5 g cm-3), a quartz and feldspar-dominated fraction (2.5-2.78 g cm-3), and a fraction dominated by biotite with kaolinite and iron oxide coatings (>2.78 g cm-3). To quantify the amount of litter-derived C actively cycling in the microbial pool after 10 years and use of the C by different microbial groups, we measured the 13C in phospholipid fatty acids (PLFAs). After 10 years, more root litter C (about 40%) was retained in the soil than needle litter C (about 25%). Less than 0.15% of the remaining litter C (0.06% of originally applied) was found actively cycling in microbial PLFA's. Needle and root C did not differ in the amount remaining still in the active microbial pool. Preliminary data indicate that unlike after one year, there were no microbial groups with strong preferences for the added root or needle C relative to other microbial groups. The amount of root and needle C and N associated with the different mineral groups will also be presented.
NASA Astrophysics Data System (ADS)
Tsehaye, Habte; Ceglie, Francesco; Mimiola, Giancarlo; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio
2015-04-01
Many farming practices can result in contamination of groundwater, due to the downward migration of fertilizers and pesticides through the soil profile. The detrimental effects of this contamination are not limited to deterioration of chemical and physical properties of soils and waters, but also constitute a real risk to human and ecosystem health. Groundwater contamination may come from a very large array of chemicals. Nevertheless, on a global scale the main cause of pollution is a high nitrate concentration in the aquifer water. Nitrate concentrations of groundwater have constantly increased during the last decades, and the widespread use of commercial N fertilizers has been implicated as the main causative factor. It is often claimed that nutrient management in organic farming is more environmentally sustainable than its conventional counterpart. It is commonly presumed that organic agriculture causes only minimal environmental pollution. There is scientific evidence that organic management may enhance some soil physical and biological properties. In particular, soil fertility management strategies can affect soil properties and the related hydrological processes. It is thus crucial to quantify and predict management effects on soil properties in order to evaluate the effects of soil type, natural processes such as decomposition of organic matter, irrigation applications and preferential flow on the deep percolation fluxes of water and nitrates to the groundwater. In this study, we measured the water fluxes and the quality of water percolating below the root zone, underlying organic agriculture systems in greenhouse. Specifically, the aim was to examine the effects of application time and type of organic matter in the soil on the nitrate-N deep percolation fluxes under the following three organic soil fertility strategies in greenhouse tomato experiment: i. Organic input Substitution (which will be hereafter denoted SUBST) is represented as typical conventional agriculture and is a widely adopted organic production system, especially in greenhouse. So called because substituting the conventional agrochemicals with the organic allowed products; ii. AGROMAN was characterized by a cover crop mixture and green manure, which are flattened on the ground; iii. AGROCOM made of the mixed cover crop species and are incorporated into soil together with on-farm composting. The SUBST was characterized by significantly lower water losses than the other two systems. In the first stage, very high nitrate fluxes were observed in all the three management systems. After, nitrate fluxes were practically null for the SUBST system, but in the second stage where some nitrate losses comes from the combination of low water fluxes and higher concentrations. Similar losses were observed for the AGROMAN system, but coming from a combination of higher fluxes and lower concentrations. Significant losses were observed in the AGROCOM system in the middle stage, coming from the combination of high fluxes and high concentrations.
Allophane on Mars: Significance for Chemical Weathering and Soil Development
NASA Technical Reports Server (NTRS)
Kraft, M. D.; Rampe, E. B.; Sharp, T. G.; Ming, D. W.; Golden, D. C.; Christensen, P. R.
2010-01-01
It has been suggested that allophane or related poorly crystalline aluminosilicates are present on Mars, and that they comprise the high-silica phase detected by the Thermal Emission Spectrometer (TES) in Surface Type 2 materials (Michalski et al., 2005). Using new laboratory spectra of allophanic materials, we (Rampe et al., this meeting) have detected allophane on the Martian surface via spectral modeling of TES data. We find that ST2 materials in the Northern Plains are consistent with a significant amount of high-silica allophane-like materials. In addition, we find that allophane may be present in some areas of ancient highlands (TES surface type 1), but spectra of those regions are more consistent with aluminous allophane. The presence of allophane and its chemical variability have important implications for chemical weathering and soil development on Mars. Allophane-like materials are amorphous or poorly crystalline hydrous aluminosilicates formed from chemical weathering of glasses, feldspars, and other silicates (cf. Parfitt, 2009). True allophane is a combination of SiO2, Al2O3 and H2O where Al:Si ranges from 0.5-2. Aluminosilicate gels are amorphous and chemically similar to allophane but can have higher SiO2 contents. The presence of allophane indicates low-temperature chemical weathering and provides constraints on alteration conditions, limiting pH to circum-neutral (4.5-8). Our model results indicate that weathering occurred in the relatively young northern plains of Mars. The high-silica allophane-like material present there implies little silica mobility through the soil column, which suggests that weathering involved small amounts of liquid water, consistent with our previous models of weathering in ice-rich soils (Kraft et al., 2007). The aluminous allophane indicated by our spectral models to be present in the highlands suggest that those regions experienced greater amounts of SiO2 leaching and weathering in those soils may have involved much larger amounts of water. The presence of allophane-like materials suggests that these weathering regimes were not influenced by the acidic weathering that appears to have affected other areas of Mars and has been proposed as a planetwide alteration process (Hurowitz and McLennan, 2007). Soil development in basaltic material (typically tephra) on Earth usually leads to formation of andosols. Although we do not suggest a one-to-one analogy between dark basaltic Martian soils and andosols, there may be important similarities, as andosols are typified by significant production of allophane as well as poorly crystalline Fe-hydroxides. The detection of allophane on Mars suggests a positive utility of an andosol model for Martian soils, particularly when coupled with the ubiquitous presence of Feoxide materials on Mars. An andosol model of soil formation is mineralogically consistent with palagonite models for the formation of Martian dust (cf. Banin et al., 1992; Morris et al., 2001), which suggests a possible genetic relationship of dust and bright soils to the broader soil layer of Mars.
Exchangeable lead from prediction models relates to vetiver lead uptake in different soil types.
Andra, Syam S; Sarkar, Dibyendu; Saminathan, Sumathi K M; Datta, Rupali
2011-12-01
Prediction models for exchangeable soil lead, published earlier in this journal (Andra et al. 2010a), were developed using a suite of native lead (Pb) paint-contaminated residential soils from two US cities heavily populated with homes constructed prior to Pb ban in paints. In this study, we tested the feasibility and practical applications of these prediction models for developing a phytoremediation design using vetiver grass (Vetiveria zizanioides), a Pb-tolerant plant. The models were used to estimate the exchangeable fraction of Pb available for vetiver uptake in four lead-spiked soil types, both acidic and alkaline, with varying physico-chemical properties and that are different from those used to build the prediction models. Results indicate a strong correlation for predictable exchangeable Pb with the observed fraction and as well with total Pb accumulated by vetiver grass grown in these soils. The correlation coefficient for the predicted vs. observed exchangeable Pb with p < 0.001 was 0.999, 0.996, 0.949, and 0.998 in the Immokalee, Millhopper, Pahokee Muck, and Tobosa soil type, respectively. Similarly, the correlation coefficient for the predicted exchangeable Pb vs. accumulated Pb in vetiver grass with p < 0.001 was 0.948, 0.983, 0.929, and 0.969 for each soil type, respectively. This study suggests that the success of a phytoremediation design could be assessed upfront by predicting the exchangeable Pb fraction in a given soil type based on its properties. This helps in modifying the soil conditions to enhance phytoextraction of Pb from contaminated soils.
Chen, L; Zhou, L
2000-08-01
Pot experiment studies on the fertility regulation and improvement of fertile and infertile brown earth type vegetable garden soils and their functionary essence show that under conditions of taking different soil fertility improvement measures, the nutrient contents in fertile and infertile soils were not always higher than the controls, but the aggregation densities of soil microaggregates were increased, and the proportion of different microaggregates was more rational. There was no significant relationship between soil productivity and soil microaggregates proportion. It is proved that the essence of soil fertility improvement consists in the ultimate change of the preservation and supply capacities of soil nutrients, and the proportion of soil microaggregates could be an integrative index to evaluate the level of soil fertility and the efficiency of soil improvement.
Niu, Xiang; Gao, Peng; Wang, Bing; Liu, Yu
2015-12-03
Based on fractal theory, the fractal characteristics of soil particle size distribution (PSD) and soil water retention curve (WRC) under the five vegetation types were studied in the mountainous land of Northern China. Results showed that: (1) the fractal parameters of soil PSD and soil WRC varied greatly under each different vegetation type, with Quercus acutissima Carr. and Robina pseudoacacia Linn. mixed plantation (QRM) > Pinus thunbergii Parl. and Pistacia chinensis Bunge mixed plantation (PPM) > Pinus thunbergii Parl. (PTP) > Juglans rigia Linn. (JRL) > abandoned grassland (ABG); (2) the soil fractal dimensions of woodlands (QRM, PPM, PTP and JRL) were significantly higher than that in ABG, and mixed forests (QRM and PPM) were higher than that in pure forests (PTP and JRL); (3) the fractal dimension of soil was positively correlated with the silt and clay content but negatively correlated with the sand content; and (4) the fractal dimension of soil PSD was positively correlated with the soil WRC. These indicated that the fractal parameters of soil PSD and soil WRC could act as quantitative indices to reflect the physical properties of the soil, and could be used to describe the influences of the Return Farmland to Forests Projects on soil structure.
Niu, Xiang; Gao, Peng; Wang, Bing; Liu, Yu
2015-01-01
Based on fractal theory, the fractal characteristics of soil particle size distribution (PSD) and soil water retention curve (WRC) under the five vegetation types were studied in the mountainous land of Northern China. Results showed that: (1) the fractal parameters of soil PSD and soil WRC varied greatly under each different vegetation type, with Quercus acutissima Carr. and Robina pseudoacacia Linn. mixed plantation (QRM) > Pinus thunbergii Parl. and Pistacia chinensis Bunge mixed plantation (PPM) > Pinus thunbergii Parl. (PTP) > Juglans rigia Linn. (JRL) > abandoned grassland (ABG); (2) the soil fractal dimensions of woodlands (QRM, PPM, PTP and JRL) were significantly higher than that in ABG, and mixed forests (QRM and PPM) were higher than that in pure forests (PTP and JRL); (3) the fractal dimension of soil was positively correlated with the silt and clay content but negatively correlated with the sand content; and (4) the fractal dimension of soil PSD was positively correlated with the soil WRC. These indicated that the fractal parameters of soil PSD and soil WRC could act as quantitative indices to reflect the physical properties of the soil, and could be used to describe the influences of the Return Farmland to Forests Projects on soil structure. PMID:26633458
He, Ruoyang; Yang, Kaijun; Li, Zhijie; Schädler, Martin; Yang, Wanqin; Wu, Fuzhong; Tan, Bo; Zhang, Li; Xu, Zhenfeng
2017-01-01
Forest land-use changes have long been suggested to profoundly affect soil microbial communities. However, how forest type conversion influences soil microbial properties remains unclear in Tibetan boreal forests. The aim of this study was to explore variations of soil microbial profiles in the surface organic layer and subsurface mineral soil among three contrasting forests (natural coniferous forest, NF; secondary birch forest, SF and spruce plantation, PT). Soil microbial biomass, activity and community structure of the two layers were investigated by chloroform fumigation, substrate respiration and phospholipid fatty acid analysis (PLFA), respectively. In the organic layer, both NF and SF exhibited higher soil nutrient levels (carbon, nitrogen and phosphorus), microbial biomass carbon and nitrogen, microbial respiration, PLFA contents as compared to PT. However, the measured parameters in the mineral soils often did not differ following forest type conversion. Irrespective of forest types, the microbial indexes generally were greater in the organic layer than in the mineral soil. PLFAs biomarkers were significantly correlated with soil substrate pools. Taken together, forest land-use change remarkably altered microbial community in the organic layer but often did not affect them in the mineral soil. The microbial responses to forest land-use change depend on soil layer, with organic horizons being more sensitive to forest conversion.
Soil transference patterns on bras: Image processing and laboratory dragging experiments.
Murray, Kathleen R; Fitzpatrick, Robert W; Bottrill, Ralph S; Berry, Ron; Kobus, Hilton
2016-01-01
In a recent Australian homicide, trace soil on the victim's clothing suggested she was initially attacked in her front yard and not the park where her body was buried. However the important issue that emerged during the trial was how soil was transferred to her clothing. This became the catalyst for designing a range of soil transference experiments (STEs) to study, recognise and classify soil patterns transferred onto fabric when a body is dragged across a soil surface. Soil deposits of interest in this murder were on the victim's bra and this paper reports the results of anthropogenic soil transfer to bra-cups and straps caused by dragging. Transfer patterns were recorded by digital photography and photomicroscopy. Eight soil transfer patterns on fabric, specific to dragging as the transfer method, appeared consistently throughout the STEs. The distinctive soil patterns were largely dependent on a wide range of soil features that were measured and identified for each soil tested using X-ray Diffraction and Non-Dispersive Infra-Red analysis. Digital photographs of soil transfer patterns on fabric were analysed using image processing software to provide a soil object-oriented classification of all soil objects with a diameter of 2 pixels and above transferred. Although soil transfer patterns were easily identifiable by naked-eye alone, image processing software provided objective numerical data to support this traditional (but subjective) interpretation. Image software soil colour analysis assigned a range of Munsell colours to identify and compare trace soil on fabric to other trace soil evidence from the same location; without requiring a spectrophotometer. Trace soil from the same location was identified by linking soils with similar dominant and sub-dominant Munsell colour peaks. Image processing numerical data on the quantity of soil transferred to fabric, enabled a relationship to be discovered between soil type, clay mineralogy (smectite), particle size and soil moisture content that would not have been possible otherwise. Soil type (e.g. Anthropogenic, gravelly sandy loam soil or Natural, organic-rich soil), clay mineralogy (smectite) and soil moisture content were the greatest influencing factors in all the dragging soil transference tests (both naked eye and measured properties) to explain the eight categories of soil transference patterns recorded. This study was intended to develop a method for dragging soil transference laboratory experiments and create a baseline of preliminary soil type/property knowledge. Results confirm the need to better understand soil behaviour and properties of clothing fabrics by further testing of a wider range of soil types and clay mineral properties. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rasyid, B.; Oda, M.; Omae, H.
2018-05-01
Soil-water and plant growth interaction is a primary key to develop environmental plant production system. The objective of this research is to evaluate change in soil water retention characteristics and plant response as the effect of continuous organic matter and plastic mulch application. The experiment was conducted in the plastic house field with plot size of 5 m (length) x 1 m (width). The field had treatments of plastic mulch type (mesh and poly) and no mulch, nitrogen (0, 10 and 40 kg N ha-1), and 2 ton ha-1 organic matter (incorporated into all plots). Water retention measurement using sand box method for low suction and pressure plate apparatus was applied for high suction. Completely randomized block experimental design and Duncan-MRT were used to analysis the effect of treatment on the parameters. Soil organic carbon and nitrogen increased slightly in both mulch types, but C:N ratio decreased in poly mulch which had the lowest value during two planting season. Various change in soil water retention was shown in different mulch type with mesh mulch had the highest result on lower suction, and control was the lowest water retention on the high suction. Soil water availability was highest in mesh mulch type followed by control and poly mulch type. This study could conclude that continuous incorporation of organic matter and mesh-plastic mulch was useful in achieving environments to improve soil C:N ratio and soil water retention.
Siyan Ma; Jiquan Chen; John R. Butnor; Malcolm North; Eugénie S. Euskirchen; Brian Oakley
2005-01-01
Little is known about biophysical controls on soil respiration in California's Sierra Nevada old-growth, mixed-conifer forests. Using portable and automated soil respiration sampling units, we measured soil respiration rate (SRR) in three dominant patch types: closed canopy (CC), ceanothus-dominated patches (CECO), and open canopy (OC). SRR varied significantly...
Using biochar for remediation of soils contaminated with heavy metals and organic pollutants.
Zhang, Xiaokai; Wang, Hailong; He, Lizhi; Lu, Kouping; Sarmah, Ajit; Li, Jianwu; Bolan, Nanthi S; Pei, Jianchuan; Huang, Huagang
2013-12-01
Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.
Katseanes, Chelsea K; Chappell, Mark A; Hopkins, Bryan G; Durham, Brian D; Price, Cynthia L; Porter, Beth E; Miller, Lesley F
2016-11-01
After nearly a century of use in numerous munition platforms, TNT and RDX contamination has turned up largely in the environment due to ammunition manufacturing or as part of releases from low-order detonations during training activities. Although the basic knowledge governing the environmental fate of TNT and RDX are known, accurate predictions of TNT and RDX persistence in soil remain elusive, particularly given the universal heterogeneity of pedomorphic soil types. In this work, we proposed a new solution for modeling the sorption and persistence of these munition constituents as multivariate mathematical functions correlating soil attribute data over a variety of taxonomically distinct soil types to contaminant behavior, instead of a single constant or parameter of a specific absolute value. To test this idea, we conducted experiments measuring the sorption of TNT and RDX on taxonomically different soil types that were extensively physical and chemically characterized. Statistical decomposition of the log-transformed, and auto-scaled soil characterization data using the dimension-reduction technique PCA (principal component analysis) revealed a strong latent structure based in the multiple pairwise correlations among the soil properties. TNT and RDX sorption partitioning coefficients (KD-TNT and KD-RDX) were regressed against this latent structure using partial least squares regression (PLSR), generating a 3-factor, multivariate linear functions. Here, PLSR models predicted KD-TNT and KD-RDX values based on attributes contributing to endogenous alkaline/calcareous and soil fertility criteria, respectively, exhibited among the different soil types: We hypothesized that the latent structure arising from the strong covariance of full multivariate geochemical matrix describing taxonomically distinguished soil types may provide the means for potentially predicting complex phenomena in soils. The development of predictive multivariate models tuned to a local soil's taxonomic designation would have direct benefit to military range managers seeking to anticipate the environmental risks of training activities on impact sites. Published by Elsevier Ltd.
Du, Xue-lian; Wang, Shi-jie; Luo, Xu-qiang
2014-09-01
By measuring the foliar δ13C values of common local plant species grown in different soil types in Wangjiazhai catchments, a typical karst desertification area in Qingzhen City, Central Guizhou, we studied the impact of soil type and rocky desertification grade on the foliar δ13C values. The results showed that the foliar δ13C values were more negative in yellow soil area than those in black calcareous area and there was no obvious difference in foliar δ13C values between these two soil types. The distribution interval of foliar δ13C values in yellow soil area was narrower than those in black calcareous area and the variation coefficient of foliar δ13C values in yellow soil area were smaller than those in black calcareous area. With increasing degree of karst rocky desertification, the foliar δ13C values of plant community in black calcareous area increased, whereas those in yellow soil area first increased and then decreased. The result of multiple comparison showed that the difference in foliar δ13C values of plant community among rocky desertification grade was not obvious in yellow soil area, but it was obvious in black calcareous area. Correlation analysis between the foliar δ13C values of plant species and the main environmental factors indicated that slope and soil thickness were the main factors which affected the foliar δ13C values of plants in yellow soil area and soil water contant was the main factor in black calcareous area. The impact of soil on the foliar δ13C values was realized by adjusting the soil moisture in study area.
Disturbance of Soil Organic Matter and Nitrogen Dynamics: Implications for Soil and Water Quality
2004-06-30
Although we were unable to provide a precise chemical analysis of refractory soil carbon, it does appear to have the same chemical properties as... chemical analysis of this refractory carbon, but it has chemical properties similar to charcoal (Garten et al., 2003) and probably originates from...vegetation and forests at Fort Benning includes ≈10% refractory C that is chemically similar to charcoal (Garten and Ashwood, 2004) and probably has
Soil stabilization by a prokaryotic desert crust - Implications for Precambrian land biota
NASA Technical Reports Server (NTRS)
Campbell, S. E.
1979-01-01
The ecology of the cyanophyte-dominated stromatolitic mat forming the ground cover over desert areas of Utah and Colorado is investigated and implications for the formation of mature Precambrian soils are discussed. The activation of the growth of the two species of filamentous cyanophyte identified and the mobility of their multiple trichromes upon wetting are observed, accompanied by the production and deposition of a sheath capable of accreting and stabilizing sand and clay particles. The formation of calcium carbonate precipitates upon the repeated wetting and drying of desert crust is noted, and it is suggested that the desert crust community may appear in fossil calcrete deposits as lithified microscopic tubes and cellular remains of algal trichromes. The invasion of dry land by both marine and freshwater algae on the model of the desert crust is proposed to be responsible for the accumulation, stabilization and biogenic modification of mature Precambrian soils.
EFFECTS OF TREATMENTS ON SOIL-LEAD BIOAVAILABILITY: IMPLICATIONS OF IN-VITRO EXTRACTION TESTING
A field-scale study on the use of phosphate amendments to reduce lead bioavailabity from soil is being conducted at the Joplin site. One of the tools used to evaluate whether lead bioavailability is being reduced is an in vitro extraction test. The in vitro test simulates the gas...
We take a historic approach to explore how concepts of the chemical and physical nature of soil organic matter have evolved over time. We emphasize conceptual and analytical achievements in organic matter research over the last two decades and demonstrate how these developments h...
Increased residential demolitions have made vacant lots a ubiquitous feature of the contemporary urban landscape. Vacant lots may provide ecosystem services such as stormwater runoff capture, but the extent of these functions will be regulated by soil hydrology. We evaluated soil...
Rebecca E. Hewitt; Teresa N. Hollingsworth; F. Stuart Chapin III; D. Lee Taylor
2016-01-01
Background: Vegetation change in high latitude tundra ecosystems is expected to accelerate due to increased wildfire activity. High-severity fires increase the availability of mineral soil seedbeds, which facilitates recruitment, yet fire also alters soil microbial composition, which could significantly impact seedling establishment.
History of Piedmont Forests: Implications For Current Pine Management
D.H. Van Lear; R.A. Harper; P.R. Kapeluck; W.D. Carroll
2004-01-01
Piedmont forests were maintained for millennia in an open condition by anthropogenic- and lightning-ignited fires. After European settlement, row-crop agriculture caused serious soil erosion, making Piedmont soils less capable of supplying moisture and nutrients during drought periods. Dense stands of pine, both naturally and artificially regenerated over the past 70...
Hydraulic redistribution by two semi-arid shrub species: implications for Sahelian agro-ecosystems
F. Kizito; M.I. Dragila; M. Sene; J.R. Brooks; F.C. Meinzer; I. Diedhiou; M. Diouf; A. Lufafa; R.P. Dick; J. Selker; R. Cuenca
2012-01-01
Hydraulic redistribution is the process of passive water movement from deeper moist soil to shallower dry soil layers using plant roots as conduits. Results from this study indicate that this phenomenon exists among two shrub species (Guiera senegalensis and Piliostigma reticulatum) that co-exist with annual food crops in...
NASA Astrophysics Data System (ADS)
Pueyo, Yolanda; Arroyo, Antonio I.; Saiz, Hugo; Alados, Concepción L.
2014-05-01
Degradation in arid and semiarid lands can be irreversible without human intervention, due to a positive plant-soil feedback where the loss of vegetation cover leads to soil degradation, which in turn hampers plant establishment. Human intervention in restoration actions usually involves the amendment of the degraded abiotic conditions, revegetation of bare areas, or both. However, abiotic amelioration is often expensive and too intrusive, and revegetation is not successful in many cases. Biotic interactions between plants, and more specifically facilitation by a "nurse" plant, have been proposed as a new via to take profit of improved abiotic conditions without intervention, and to increase the success rate of revegetation actions. But "nurse" plants can also interfere with others (i.e. by competition for resources or the release of allelopathic compounds), and the net balance between facilitation and interference could depend on plant types involved. We present recent observational and experimental studies performed in the semiarid ecosystems of the Middle Ebro Valley (NE Spain) about the role of abiotic conditions and biotic interactions in the productivity, dynamics and diversity of plant communities under different stress conditions (aridity and grazing). We found that all plant types studied (shrubs and perennial grasses) improved abiotic conditions (soil temperature and water availability for plants) with respect to open areas. However, only some shrubs (mainly Salsola vermiculata) had a positive net balance in the biotic interactions between plants, while other shrubs (Artemisia herba-alba) and perennial grasses (Lygeum spartum) showed interference with other plants. Moreover, the net balance between facilitation and interference among plants in the community shifted from competitive to neutral or from neutral to facilitative with increasing aridity. Grazing status did not strongly change the net biotic interactions between plants. Our results suggest that the success of the restoration actions with "nurse" plants will be highly dependent on the plant type involved and the abiotic site conditions, fact that needs to be considered in restoration plans.
Soil conservation applications with C-band SAR
NASA Technical Reports Server (NTRS)
Brisco, B.; Brown, R. J.; Naunheimer, J.; Bedard, D.
1992-01-01
Soil conservation programs are becoming more important as the growing human population exerts greater pressure on this non-renewable resource. Indeed, soil degradation affects approximately 10 percent of Canada's agricultural land with an estimated loss of 6,000 hectares of topsoil annually from Ontario farmland alone. Soil loss not only affects agricultural productivity but also decreases water quality and can lead to siltation problems. Thus, there is a growing demand for soil conservation programs and a need to develop an effective monitoring system. Topography and soil type information can easily be handled within a geographic information system (GIS). Information about vegetative cover type and surface roughness, which both experience considerable temporal change, can be obtained from remote sensing techniques. For further development of the technology to produce an operational soil conservation monitoring system, an experiment was conducted in Oxford County, Ontario which investigated the separability of fall surface cover type using C-band Synthetic Aperture Radar (SAR) data.
Zhang, Junya; Sui, Qianwen; Tong, Juan; Zhong, Hui; Wang, Yawei; Chen, Meixue; Wei, Yuansong
2018-05-21
Sewage sludge was generally considered a significant reservoir of antibiotic resistance genes (ARGs) and could enter agricultural systems as fertilizer after composting. Soil types and the discrepancy of sludge composts could have influenced the fate of antibiotic-resistant bacteria (ARB) following the land application of sludge composts, which deserved to be clarified. Thus, the fate of ARB and ARGs following the land application of three types of sludge composts (A, B, and C) to three different soils (red soil, loess, and black soil) was investigated. The results showed that tetX, which was enriched the most during composting, did not affect the soil resistome, whereas tetG did. Soil types influenced the dynamics of ARB and ARGs significantly, whereas no significant difference was observed among compost types. The advantage of reducing ARGs during the composting process in compost B did not extend to land application. Land application of composts influenced the microbial community significantly at the early stage, but the microbial community returned to the control pattern gradually. Changes in the microbial community contributed more to the dynamics of ARGs in red and black soil compared with other factors, including co-selection from heavy metals, horizontal gene transfer, biomass and environmental factors, whereas horizontal gene transfer, reflected by intI1 levels, contributed the most in loess. Copyright © 2018 Elsevier Ltd. All rights reserved.
Links between Soil Fungal Diversity and Plant and Soil Properties on the Loess Plateau
Yang, Yang; Dou, Yanxing; Huang, Yimei; An, Shaoshan
2017-01-01
Previous studies have revealed inconsistent correlations between fungal diversity and plant/soil properties from local to global scales. Here, we investigated the internal relationships between soil fungal diversity and plant/soil properties on the Loess Plateau following vegetation restoration, using Illumina sequencing of the internal transcribed spacer 2 (ITS2) region for fungal identification. We found significant effects of land use types (Af, Artificial forest; Ns, Natural shrub; Ag, Artificial grassland; Ng, Natural grassland; Sc, slope cropland) on soil fungal communities composition, and the dominant phyla were Ascomycota, Basidiomycota, and Zygomycota, which transitioned from Basidiomycota-dominant to Ascomycota-dominant community due to vegetation restoration. The Chao1 richness, Shannon’s diversity and ACE indices were significantly influenced by land use types with the order of Ns > Af > Ng > Ag > Sc, and the total number of OTUs varied widely. In contrast, Good’s coverage and Simpson’s diversity indicated no significant difference among land use types (p > 0.05). Correlation analysis showed that plant and soil properties were closely related to fungal diversity regardless of land use types. In addition, soil organic carbon (SOC) and Hplant (plant richness, Shannon-Wiener index) were strong driving factors that explained fungal diversity. As revealed by the structural equation model (SEM) and generalized additive models (GAMs), fungal diversity was directly and indirectly affected by soil and plant properties, respectively, providing evidence for strong links between soil fungal diversity and plant and soil properties on the Loess Plateau. PMID:29163460
Links between Soil Fungal Diversity and Plant and Soil Properties on the Loess Plateau.
Yang, Yang; Dou, Yanxing; Huang, Yimei; An, Shaoshan
2017-01-01
Previous studies have revealed inconsistent correlations between fungal diversity and plant/soil properties from local to global scales. Here, we investigated the internal relationships between soil fungal diversity and plant/soil properties on the Loess Plateau following vegetation restoration, using Illumina sequencing of the internal transcribed spacer 2 (ITS2) region for fungal identification. We found significant effects of land use types (Af, Artificial forest; Ns, Natural shrub; Ag, Artificial grassland; Ng, Natural grassland; Sc, slope cropland) on soil fungal communities composition, and the dominant phyla were Ascomycota, Basidiomycota , and Zygomycota , which transitioned from Basidiomycota -dominant to Ascomycota -dominant community due to vegetation restoration. The Chao1 richness, Shannon's diversity and ACE indices were significantly influenced by land use types with the order of Ns > Af > Ng > Ag > Sc, and the total number of OTUs varied widely. In contrast, Good's coverage and Simpson's diversity indicated no significant difference among land use types ( p > 0.05). Correlation analysis showed that plant and soil properties were closely related to fungal diversity regardless of land use types. In addition, soil organic carbon (SOC) and H plant (plant richness, Shannon-Wiener index) were strong driving factors that explained fungal diversity. As revealed by the structural equation model (SEM) and generalized additive models (GAMs), fungal diversity was directly and indirectly affected by soil and plant properties, respectively, providing evidence for strong links between soil fungal diversity and plant and soil properties on the Loess Plateau.
Land susceptibility to soil erosion in Orashi Catchment, Nnewi South, Anambra State, Nigeria
NASA Astrophysics Data System (ADS)
Odunuga, Shakirudeen; Ajijola, Abiodun; Igwetu, Nkechi; Adegun, Olubunmi
2018-02-01
Soil erosion is one of the most critical environmental hazards that causes land degradation and water quality challenges. Specifically, this phenomenon has been linked, among other problems, to river sedimentation, groundwater pollution and flooding. This paper assesses the susceptibility of Orashi River Basin (ORB) to soil erosion for the purpose of erosion control measures. Located in the South Eastern part of Nigeria, the ORB which covers approximately 413.61 km2 is currently experiencing one of the fastest population growth rate in the region. Analysis of the soil erosion susceptibility of the basin was based on four factors including; rainfall, Land use/Land cover change (LULC), slope and soil erodibility factor (k). The rainfall was assumed to be a constant and independent variable, slope and soil types were categorised into ten (10) classes each while the landuse was categorised into five classes. Weight was assigned to the classes based on the degree of susceptibility to erosion. An overlay of the four variables in a GIS environment was used to produce the basin susceptibility to soil erosion. This was based on the weight index of each factors. The LULC analysis revealed that built-up land use increased from 26.49 km2 (6.4 %) in year 1980 to 79.24 km2 (19.16 %) in 2015 at an average growth rate of 1.51 km2 per annum while the light forest decreased from 336.41 km2 (81.33 %) in 1980 to 280.82 km2 (67.89 %) in 2015 at an average rate 1.59 km2 per annum. The light forest was adjudged to have the highest land cover soil erosion susceptibility. The steepest slope ranges between 70 and 82° (14.34 % of the total land area) and was adjudged to have the highest soil susceptibility to erosion. The total area covered of the loamy soil is 112.37 km2 (27.07 %) with erodibility of 0.7. In all, the overlay of all the variables revealed that 106.66 km2 (25.70 %) and 164.80 km2 (39.7 %) of the basin has a high and very high susceptibility to soil erosion. The over 50 % high susceptibility of catchment has serious negative implications on the surface water in terms of water quality and downstream siltation with great consequences on biodiversity and ecosystem services including domestic and industrial usage.
Zaranyika, M F; Nyati, W
2017-10-01
The aim of the present work was to demonstrate the existence of metal-metal interactions in plants and their implications for the absorption of toxic elements like Cr. Typha capensis , a good accumulator of heavy metals, was chosen for the study. Levels of Fe, Cr, Ni, Cd, Pb, Cu and Zn were determined in the soil and roots, rhizomes, stems and leaves of T. capensis from three Sites A, B and C polluted by effluent from a chrome ore processing plant, a gold ore processing plant, and a nickel ore processing plant, respectively. The levels of Cr were extremely high at Site A at 5415 and 786-16,047 μg g -1 dry weight in the soil and the plant, respectively, while the levels of Ni were high at Site C at 176 and 24-891 μg g -1 in the soil and the plant, respectively. The levels of Fe were high at all three sites at 2502-7500 and 906-13,833 μg g -1 in the soil and plant, respectively. For the rest of the metals, levels were modest at 8.5-148 and 2-264 μg g -1 in the soil and plant, respectively. Pearson's correlation analysis confirmed mutual synergistic metal-metal interactions in the uptake of Zn, Cu, Co, Ni, Fe, and Cr, which are attributed to the similarity in the radii and coordination geometry of the cations of these elements. The implications of such metal-metal interactions (or effects of one metal on the behaviour of another) on the uptake of Cr, a toxic element, and possible Cr detoxification mechanism within the plant, are discussed.
Soil Types Effect on Grape and Wine Composition in Helan Mountain Area of Ningxia
Wang, Rui; Sun, Quan; Chang, Qingrui
2015-01-01
Different soil types can significantly affect the composition of wine grapes and the final wine product. In this study, the effects of soil types on the composition of Cabernet Sauvignon grapes and wine produced in the Helan Mountains were evaluated. Three different representative soil types—aeolian, sierozem and irrigation silting soil were studied. The compositions of grapes and wines were measured, and in addition, the weights of 100-berry samples were determined. The grapes that grown on the aeolian and sierozem soils matured sooner than those grown on the irrigation silting soil. The highest sugar content, total soluble solids content, sugar to acid ratio and anthocyanin content were found in the grapes that grown on the aeolian soil. The wine produced from this soil had improved chroma and tone and higher-quality phenols. The grapes grown on the sierozem soil had the highest total phenol and tannin contents, which affected the wine composition. The grapes grown on the irrigation silting soil had higher acidities, but the remaining indices were lower. In addition, the grapes grown on the aeolian soil resulted in wines with better chroma and aroma. The sierozem soil was beneficial for the formation of wine tannins and phenols and significantly affected the wine composition. The quality of the grapes from the irrigation silting soil was relatively low, resulting in lower-quality wine. PMID:25706126
Use of soil moisture sensors for irrigation scheduling
USDA-ARS?s Scientific Manuscript database
Various types of soil moisture sensing devices have been developed and are commercially available for water management applications. Each type of soil moisture sensors has its advantages and shortcomings in terms of accuracy, reliability, and cost. Resistive and capacitive based sensors, and time-d...
NASA Astrophysics Data System (ADS)
Verhoef, Anne; Egea, Gregorio; Garrigues, Sebastien; Vidale, Pier Luigi; Balan Sarojini, Beena
2017-04-01
Current land surface schemes in many crop, weather and climate models make use of the coupled photosynthesis-stomatal conductance (A-gs) models of plant function to determine the transpiration flux and gross primary productivity. Vegetation exchange is controlled by many environmental factors, and soil moisture control on root water uptake and stomatal function is a primary pathway for feedbacks in sub-tropical to temperate ecosystems. Representations of the above process of soil moisture control on plant function (often referred to as a 'beta' factor) vary among models. This matters because the simulated energy, water and carbon balances are very sensitive to the representation of water stress in these models. Building on Egea et al. (2011) and Verhoef and Egea (2014), we tested a range of 'beta' approaches in a leaf-level A-gs model (compatible with models such as JULES, CHTESSEL, ISBA, CLM), as well as some beta-approaches borrowed from the agronomic, and plant physiological communities (a combined soil-plant hydraulic approach, see Verhoef and Egea, 2014). Root zone soil moisture was allowed to limit plant function via individual routes (via CO2 assimilation, stomatal conductance, or mesophyll conductance) as well as combinations of that. The simulations were conducted for a typical Mediterranean field site (Avignon, France; Garrigues et al., 2015) which provides 14 years of near-continuous measurements of soil moisture and atmospheric driving data. Daytime (8-16 hrs local time) data between April-September were used. This allowed a broad range of atmospheric and soil moisture/vegetation states to be explored. A number of crops and tree types were investigated in this way. We evaluated the effect of choice of beta-function for Mediterranean climates in relation to stomatal conductance, transpiration, photosynthesis, and leaf surface temperature. We also studied the implications for a range of widely used agro-/micro-meteorological indicators such as Bowen ratio and the omega decoupling coefficient (which quantifies the degree of the aerodynamic coupling between a vegetated surface and the atmospheric boundary layer; Jacobs and de Bruin, 1992); and applications (e.g. the use of surface temperature based water stress indices). Results showed that choice of 'beta' function has far-reaching consequences. For certain widely used 'beta'-models the predicted key fluxes and state variables, predominantly compared using kernel density functions, showed considerable 'clumping' around narrow data ranges. This will have implications for the strength of land-surface feedback predicted by these models, and for any agrometeorological applications they are used for. Recommendations as to the most suitable 'beta'-functions, and related parameter sets, for Mediterranean climates were made. References Garrigues, S. et al. (2015) Evaluation of land surface model simulations of evapotranspiration over a 12-year crop succession: impact of soil hydraulic and vegetation properties, Hydrol. Earth Syst. Sci., 19, 3109-3131; Jacobs, C. M. J. and de Bruin, H. A. R. (1992) The sensitivity of regional transpiration to land-surface characteristics: Significance of feedback, J. Climate, 5(7), 683-698; Verhoef, A. and Egea, G. (2014) Agriculture and Forest Meteorology, 191, 22-32; Egea, G., Verhoef, A., and Vidale, P. L. (2011) Agricultural and Forest Meteorology, 151, 1370-1384
NASA Astrophysics Data System (ADS)
Valdivia-Silva, Julio E.; Navarro-González, Rafael; McKay, Christopher
2009-07-01
TEGA, one of several instruments on board of the Phoenix Lander, performed differential scanning calorimetry and evolved gas analysis of soil samples and ice, collected from the surface and subsurface at a northern landing site on Mars. TEGA is a combination of a high temperature furnace and a mass spectrometer (MS) that was used to analyze samples delivered to the instrument via a robotic arm. The samples were heated at a programmed ramp rate up to 1000 °C. The power required for heating can be carefully and continuously monitored (scanning calorimetry). The evolved gases generated during the process can be analyzed with the evolved gas analyzer (a magnetic sector mass spectrometer) in order to determine the composition of gases released as a function of temperature. Our laboratory has developed a sample characterization method using a pyrolyzer integrated to a quadrupole mass spectrometer to support the interpretations of TEGA data. Here we examine the evolved gas properties of six types of hyperarid soils from the Pampas de La Joya in southern Peru (a possible analog to Mars), to which we have added with microorganisms ( Salmonella typhimurium, Micrococcus luteus, and Candida albicans) in order to investigate the effect of the soil matrix on the TEGA response. Between 20 and 40 mg of soil, with or without ˜5 mg of lyophilized microorganism biomass (dry weight), were placed in the pyrolyzer and heated from room temperature to 1200 °C in 1 h at a heating rate of 20 °C/min. The volatiles released were transferred to a MS using helium as a carrier gas. The quadrupole MS was ran in scan mode from 10 to 200 m/z. In addition, ˜20 mg of each microorganism without a soil matrix were analyzed. As expected, there were significant differences in the gases released from microorganism samples with or without a soil matrix, under similar heating conditions. Furthermore, samples from the most arid environments had significant differences compared with less arid soils. Organic carbon released in the form of CO 2 (ion 44 m/z) from microorganisms evolved at temperatures of ˜326.0 ± 19.5 °C, showing characteristic patterns for each one. Others ions such as 41, 78 and 91 m/z were also found. Interestingly, during the thermal process, the release of CO 2 increased and ions previously found disappeared, demonstrating a high-oxidant activity in the soil matrix when it was subjected to high temperature. Finally, samples of soil show CO 2 evolved up to 650 °C consistent with thermal decomposition of carbonates. These results indicate that organics mixed with these hyperarid soils are oxidized to CO 2. Our results suggest the existence of at least two types of oxidants in these soils, a thermolabile oxidant which is highly oxidative and other thermostable oxidant which has a minor oxidative activity and that survives the heat-treatment. Furthermore, we find that the interaction of biomass added to soil samples gives a different set of breakdown gases than organics resident in the soil. The nature of oxidant(s) present in the soils from Pampas de La Joya is still unknown.
Surfactant-Induced Changes of Water Flow and Solute Transport in Soils
NASA Astrophysics Data System (ADS)
Kinsey, E. N.; Korte, C.; Peng, Z.; Yu, C.; Powelson, D.; Jacobson, A. R.; Baveye, P. C.; Darnault, C. J. G.
2016-12-01
Surfactants are present in the environment due to agricultural practices such as irrigation with wastewater, biosolid soil amendments, and/or environmental engineering remediation. Furthermore, surfactants occur widely in soils due to the application of pesticides in surfactant solution sprays, or the application of surfactants as soil wetting agents. Surfactants, because they are amphiphilic and impact the surface tension of aqueous solutions and the contact angle between aqueous and solid phases have the potential to influence water flow in porous media and the physicochemical properties of soils. The objective of this study was to assess the impact of surfactant on the soil infiltration process. Four different soils were used in this study: two sandy loam soils (Lewiston and Greenson series) and two loamy sand soils (Sparta and Gilford series). Rainfall was simulated to flow through different columns filled with the four different types of soil and effluent samples were collected at the end of each column. Each type of soil had two columns, one with a non-ionic surfactant Aerosol®22 at twice the critical micelle concentration, in the rainfall solution and one without. A conservative tracer, potassium bromide, was added to all rainfalls to monitor the infiltration process in soil. Tracer breakthrough curves were used to characterize flow in soils. Flow rates were also recorded for each soil. The presence of surfactant decreased the flow rate by a significant amount in most soil types. The decrease in flow rate can be attributed to the effects on the soil properties of hydraulic conductivity and soil aggregates. A decrease in pore space from the swelling of the soil particles can decrease the hydraulic conductivity. The properties in surfactants also decrease the surface tension and therefore soil particles are able to be dislodged from soil aggregates and cause potential soil clogging.
Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying.
Holbrook, N Michele; Shashidhar, V R; James, Richard A; Munns, Rana
2002-06-01
The hypothesis that ABA produced by roots in drying soil is responsible for stomatal closure was tested with grafted plants constructed from the ABA-deficient tomato mutants, sitiens and flacca and their near-isogenic wild-type parent. Three types of experiments were conducted. In the first type, reciprocal grafts were made between the wild type and sitiens or flacca. Stomatal conductance accorded with the genotype of the shoot, not the root. Stomates closed in all of the grafted plants in response to soil drying, regardless of the root genotype, i.e. regardless of the ability of the roots to produce ABA. In the second type of experiment, wild-type shoots were grafted onto a split-root system consisting of one wild-type root grafted to one mutant (flacca or sitiens) root. Water was withheld from one root system, while the other was watered well so that the shoots did not experience any decline in water potential or loss of turgor. Stomates closed to a similar extent when water was withheld from the mutant roots or the wild-type roots. In the third type of experiment, grafted plants with wild-type shoots and either wild-type or sitiens roots were established in pots that could be placed inside a pressure chamber, and the pressure increased as the soil dried so that the shoots remained fully turgid throughout. Stomates closed as the soil dried, regardless of whether the roots were wild type or sitiens. These experiments demonstrate that stomatal closure in response to soil drying can occur in the absence of leaf water deficit, and does not require ABA production by roots. A chemical signal from roots leading to a change in apoplastic ABA levels in leaves may be responsible for the stomatal closure.
NASA Astrophysics Data System (ADS)
Cardenas, Laura; Loick, Nadine; Dixon, Liz; Matthews, Peter; Gilsanz, Claudia; Bol, Roland; Lewicka-Szczebak, Dominika; Well, Reinhard
2016-04-01
N2O is considered to be an important GHG with soils representing its major source and accounting for approximately 6% of the current global warming and is also implicated in the depletion of stratospheric ozone. The atmospheric N2O concentration has been increasing since the Industrial Revolution making the understanding of its sources and removal processes very important for development of mitigation strategies. Bergstermann et al. (2011) found evidence of the existence of more than one pool of nitrate undergoing denitrification in a silty clay loam arable soil amended with glucose/nitrate solution. The Rayleigh type model was used to simulate d15N of N2O using process rates and associated fractionation factors, but assumptions for some of the model parameters had to be made due to lack of available data. In this study we carried out 2 incubation experiments in order to parameterise the model. To restrict the volume of soil reached by the amendment, we used blocks containing 3 soil cores that were incubated in one vessel to measure emissions of NO, N2O, N2 and CO2 from a clay grassland soil amended with KNO3 (N) and glucose (C) in three treatments: '1C' only 1 core received N and C (the other 2 received water), '3C' 3 cores received N and C, and 'Control' (received water only). The results showed changes in the d15Nbulk trends after day 6 post amendment application, coinciding with the decrease of N2O fluxes. We also report the results in the 15N site preference (SP) and d18O. We will show the results from the model validation based on this data.
Ecohydrological implications of aeolian sediment trapping by sparse vegetation in drylands
Gonzales, Howell B.; Ravi, Sujith; Li, Junran; Sankey, Joel B.
2018-01-01
Aeolian processes are important drivers of ecosystem dynamics in drylands, and important feedbacks exist among aeolian – hydrological processes and vegetation. The trapping of wind-borne sediments by vegetation may result in changes in soil properties beneath the vegetation, which, in turn, can alter hydrological and biogeochemical processes. Despite the relevance of aeolian transport to ecosystem dynamics, the interactions between aeolian transport and vegetation in shaping dryland landscapes where sediment distribution is altered by relatively rapid changes in vegetation composition such as shrub encroachment, is not well understood. Here, we used a computational fluid dynamics (CFD) modeling framework to investigate the sediment trapping efficiencies of vegetation canopies commonly found in a shrub-grass ecotone in the Chihuahuan Desert (New Mexico, USA) and related the results to spatial heterogeneity in soil texture and infiltration measured in the field. A CFD open-source software package was used to simulate aeolian sediment movement through three-dimensional architectural depictions of Creosote shrub (Larrea tridentata) and Black Grama grass (Bouteloua eriopoda) vegetation types. The vegetation structures were created using a computer-aided design software (Blender), with inherent canopy porosities, which were derived using LIDAR (Light Detection and Ranging) measurements of plant canopies. Results show that considerable heterogeneity in infiltration and soil grain size distribution exist between the microsites, with higher infiltration and coarser soil texture under shrubs. Numerical simulations also indicate that the differential trapping of canopies might contribute to the observed heterogeneity in soil texture. In the early stages of encroachment, the shrub canopies, by trapping coarser particles more efficiently, might maintain higher infiltration rates leading to faster development of the microsites (among other factors) with enhanced ecological productivity, which might provide positive feedbacks to shrub encroachment.
Soil networks become more connected and take up more carbon as nature restoration progresses.
Morriën, Elly; Hannula, S Emilia; Snoek, L Basten; Helmsing, Nico R; Zweers, Hans; de Hollander, Mattias; Soto, Raquel Luján; Bouffaud, Marie-Lara; Buée, Marc; Dimmers, Wim; Duyts, Henk; Geisen, Stefan; Girlanda, Mariangela; Griffiths, Rob I; Jørgensen, Helene-Bracht; Jensen, John; Plassart, Pierre; Redecker, Dirk; Schmelz, Rűdiger M; Schmidt, Olaf; Thomson, Bruce C; Tisserant, Emilie; Uroz, Stephane; Winding, Anne; Bailey, Mark J; Bonkowski, Michael; Faber, Jack H; Martin, Francis; Lemanceau, Philippe; de Boer, Wietse; van Veen, Johannes A; van der Putten, Wim H
2017-02-08
Soil organisms have an important role in aboveground community dynamics and ecosystem functioning in terrestrial ecosystems. However, most studies have considered soil biota as a black box or focussed on specific groups, whereas little is known about entire soil networks. Here we show that during the course of nature restoration on abandoned arable land a compositional shift in soil biota, preceded by tightening of the belowground networks, corresponds with enhanced efficiency of carbon uptake. In mid- and long-term abandoned field soil, carbon uptake by fungi increases without an increase in fungal biomass or shift in bacterial-to-fungal ratio. The implication of our findings is that during nature restoration the efficiency of nutrient cycling and carbon uptake can increase by a shift in fungal composition and/or fungal activity. Therefore, we propose that relationships between soil food web structure and carbon cycling in soils need to be reconsidered.
Vegetation and climate controls on potential CO2, DOC and DON production in northern latitude soils
Neff, J.C.; Hooper, D.U.
2002-01-01
Climatic change may influence decomposition dynamics in arctic and boreal ecosystems, affecting both atmospheric CO2 levels, and the flux of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) to aquatic systems. In this study, we investigated landscape-scale controls on potential production of these compounds using a one-year laboratory incubation at two temperatures (10?? and 30??C). We measured the release of CO2, DOC and DON from tundra soils collected from a variety of vegetation types and climatic regimes: tussock tundra at four sites along a latitudinal gradient from the interior to the north slope of Alaska, and soils from additional vegetation types at two of those sites (upland spruce at Fairbanks, and wet sedge and shrub tundra at Toolik Lake in northern Alaska). Vegetation type strongly influenced carbon fluxes. The highest CO2 and DOC release at the high incubation temperature occurred in the soils of shrub tundra communities. Tussock tundra soils exhibited the next highest DOC fluxes followed by spruce and wet sedge tundra soils, respectively. Of the fluxes, CO2 showed the greatest sensitivity to incubation temperatures and vegetation type, followed by DOC. DON fluxes were less variable. Total CO2 and total DOC release were positively correlated, with DOC fluxes approximately 10% of total CO2 fluxes. The ratio of CO2 production to DOC release varied significantly across vegetation types with Tussock soils producing an average of four times as much CO2 per unit DOC released compared to Spruce soils from the Fairbanks site. Sites in this study released 80-370 mg CO2-C g soil C-1 and 5-46 mg DOC g soil C-1 at high temperatures. The magnitude of these fluxes indicates that arctic carbon pools contain a large proportion of labile carbon that could be easily decomposed given optimal conditions. The size of this labile pool ranged between 9 and 41% of soil carbon on a g soil C basis, with most variation related to vegetation type rather than climate.
Swanepoel, Andrew J; Kromhout, Hans; Jinnah, Zubair A; Portengen, Lützen; Renton, Kevin; Gardiner, Kerry; Rees, David
2011-07-01
To quantify personal time-weighted average respirable dust and quartz exposure on a sandy, a sandy loam, and a clay soil farm in the Free State and North West provinces of South Africa and to ascertain whether soil type is a determinant of exposure to respirable quartz. Three farms, located in the Free State and North West provinces of South Africa, had their soil type confirmed as sandy, sandy loam, and clay; and, from these, a total of 298 respirable dust and respirable quartz measurements were collected between July 2006-November 2009 during periods of major farming operations. Values below the limit of detection (LOD) (22 μg · m(-3)) were estimated using multiple 'imputation'. Non-parametric tests were used to compare quartz exposure from the three different soil types. Exposure to respirable quartz occurred on all three farms with the highest individual concentration measured on the sandy soil farm (626 μg · m(-3)). Fifty-seven, 59, and 81% of the measurements on the sandy soil, sandy loam soil, and clay soil farm, respectively, exceeded the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) of 25 μg · m(-3). Twelve and 13% of respirable quartz concentrations exceeded 100 μg · m(-3) on the sandy soil and sandy loam soil farms, respectively, but none exceeded this level on the clay soil farm. The proportions of measurements >100 μg · m(-3) were not significantly different between the sandy and sandy loam soil farms ('prop.test'; P = 0.65), but both were significantly larger than for the clay soil farm ('prop.test'; P = 0.0001). The percentage of quartz in respirable dust was determined for all three farms using measurements > the limit of detection. Percentages ranged from 0.5 to 94.4% with no significant difference in the median quartz percentages across the three farms (Kruskal-Wallis test; P = 0.91). This study demonstrates that there is significant potential for over-exposure to respirable quartz in farming and even clay soil farming may pose a risk. Soil type may determine whether exposure is >100 μg · m(3), but the job type and the manner in which the task is performed (e.g. mechanical or manual) may be important determinants of exposure. Identifying quartz exposure determinants (e.g. type of job) and modifiers will be of value to focus implementation of controls of particular importance in developing countries.
Nitrous oxide production from soils amended with biogas residues and cattle slurry.
Abubaker, J; Odlare, M; Pell, M
2013-07-01
The amount of residues generated from biogas production has increased dramatically due to the worldwide interest in renewable energy. A common way to handle the residues is to use them as fertilizers in crop production. Application of biogas residues to agricultural soils may be accompanied with environmental risks, such as increased NO emission. In 24-d laboratory experiments, NO dynamics and total production were studied in arable soils (sandy, clay, and organic) amended with one of two types of anaerobically digested biogas residues (BR-A and BR-B) generated from urban and agricultural waste and nondigested cattle slurry (CS) applied at rates corresponding to 70 kg NH-N ha. Total NO-N losses from the sandy soil were higher after amendment with BR-B (0.32 g NO-N m) than BR-A or CS (0.02 and 0.18 g NO-N m, respectively). In the clay soil, NO-N losses were very low for CS (0.02 g NO-N m) but higher for BR-A and BR-B (0.25 and 0.15 g NO-N m, respectively). In the organic soil, CS gave higher total NO-N losses (0.31 g NO-N m) than BR-A or BR-B (0.09 and 0.08 g NO-N m, respectively). Emission peaks differed considerably between soils, occurring on Day 1 in the organic soil and on Days 11 to 15 in the sand, whereas in the clay the peak varied markedly (Days 1, 6, and 13) depending on residue type. In all treatments, NH concentration decreased with time, and NO concentration increased. Potential ammonium oxidation and potential denitrification activity increased significantly in the amended sandy soil but not in the organic soil and only in the clay amended with CS. The results showed that fertilization with BR can increase NO emissions and that the size is dependent on the total N and organic C content of the slurry and on soil type. In conclusion, the two types of BR and the CS are not interchangeable regarding their effects on NO production in different soils, and, hence, matching fertilizer type to soil type could reduce NO emissions. For instance, it could be advisable to avoid fertilization of organic soils with CS containing high amounts or organic C and instead use BR. In clay soil, however, the risk of NO emissions could be lowered by choosing a CS. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Andersen, A.; Govind, N.; Laskin, A.
2017-12-01
Mineral surfaces have been implicated as potential protectors of soil organic matter (SOM) against decomposition and ultimate mineralization to small molecules which can provide nutrients for plants and soil microbes and can also contribute to the Earth's elemental cycles. SOM is a complex mixture of organic molecules of biological origin at varying degrees of decomposition and can, itself, self-assemble in such a way as to expose some biomolecule types to biotic and abiotic attack while protecting other biomolecule types. The organization of SOM and SOM with mineral surfaces and solvated metal ions is driven by an interplay of van der Waals and electrostatic interactions leading to partitioning of hydrophilic (e.g. sugars) and hydrophobic (e.g., lipids) SOM components that can be bridged with amphiphilic molecules (e.g., proteins). Classical molecular dynamics simulations can shed light on assemblies of organic molecules alone or complexation with mineral surfaces. The role of chemical reactions is also an important consideration in potential chemical changes of the organic species such as oxidation/reduction, degradation, chemisorption to mineral surfaces, and complexation with solvated metal ions to form organometallic systems. For the study of chemical reactivity, quantum chemistry methods can be employed and combined with structural insight provided by classical MD simulations. Moreover, quantum chemistry can also simulate spectroscopic signatures based on chemical structure and is a valuable tool in interpreting spectra from, notably, x-ray absorption spectroscopy (XAS). In this presentation, we will discuss our classical MD and quantum chemistry findings on a model SOM system interacting with mineral surfaces and solvated metal ions.
[Soil meso- and micro-fauna community structures in different urban forest types in Shanghai, China.
Jin, Shi Ke; Wang, Juan Juan; Zhu, Sha; Zhang, Qi; Li, Xiang; Zheng, Wen Jing; You, Wen Hui
2016-07-01
Soil meso- and micro-fauna of four urban forest types in Shanghai were investigated in four months which include April 2014, July 2014, October 2014 and January 2015. A total of 2190 soil fauna individuals which belong to 6 phyla, 15 classes and 22 groups were collected. The dominant groups were Nematoda and Arcari, accounting for 56.0% and 21.8% of the total in terms of individual numbers respectively. The common groups were Enchytraeidae, Rotatoria, Collembola and Hymenoptera and they accounted for 18.7% of the total in terms of individual numbers. There was a significant difference (P<0.05) among soil meso- and micro-fauna density in the four urban forest types and the largest density was found in Metasequoia glyptostroboides forest, the smallest in Cinnamomum camphora forest. The largest groupe number was found in near-nature forest, the smallest was found in M. glyptostroboides forest. There was obvious seasonal dynamics in each urban forest type and green space which had larger density in autumn and larger groupe number in summer and autumn. In soil profiles, the degree of surface accumulation of soil meso- and micro-fauna in C. camphora forest was higher than in other forests and the vertical distribution of soil meso- and micro-fauna in near-nature forest was relatively homogeneous in four layers. Density-group index was ranked as: near-nature forest (6.953)> C. camphora forest (6.351)> Platanus forest (6.313)>M. glyptostroboides forest (5.910). The community diversity of soil fauna in each vegetation type could be displayed preferably by this index. It could be inferred through redundancy analysis (RDA) that the soil bulk density, organic matter and total nitrogen were the main environmental factors influencing soil meso- and micro-fauna community structure in urban forest. The positive correlations occurred between the individual number of Arcari, Enchytraeidae and soil organic matter and total nitrogen, as well as between the individual number of Diptera larvae, Rotatoria and soil water content.
Cell size and type may affect availability of bacteria for consumption by bacterivorous nematodes in the soil and in culture. This study explored the bacterial preferences of the bacterivorous soil nematode Cephalobus brevicauda (Cephalobidae) by comparing bactgeria isolated dir...
Linking soil type and rainfall characteristics towards estimation of surface evaporative capacitance
NASA Astrophysics Data System (ADS)
Or, D.; Bickel, S.; Lehmann, P.
2017-12-01
Separation of evapotranspiration (ET) to evaporation (E) and transpiration (T) components for attribution of surface fluxes or for assessment of isotope fractionation in groundwater remains a challenge. Regional estimates of soil evaporation often rely on plant-based (Penman-Monteith) ET estimates where is E is obtained as a residual or a fraction of potential evaporation. We propose a novel method for estimating E from soil-specific properties, regional rainfall characteristics and considering concurrent internal drainage that shelters soil water from evaporation. A soil-dependent evaporative characteristic length defines a depth below which soil water cannot be pulled to the surface by capillarity; this depth determines the maximal soil evaporative capacitance (SEC). The SEC is recharged by rainfall and subsequently emptied by competition between drainage and surface evaporation (considering canopy interception evaporation). We show that E is strongly dependent on rainfall characteristics (mean annual, number of storms) and soil textural type, with up to 50% of rainfall lost to evaporation in loamy soil. The SEC concept applied to different soil types and climatic regions offers direct bounds on regional surface evaporation independent of plant-based parameterization or energy balance calculations.
NASA Astrophysics Data System (ADS)
Galieva, G. Sh; Gilmutdinova, I. M.; Fomin, V. P.; Selivanovskaya, S. Yu; Galitskaya, P. Yu
2018-01-01
Conservation of soil fertility is one of the most important tasks of the present time. As microorganisms are among the key factors in forming soil fertility, monitoring their state in natural and anthropogenically changed soils is an important component of compulsory environmental monitoring. Modern methods make it possible to evaluate the diversity and the functions of soil microorganisms, however, unfortunately, not all the soils are analyzed with their help up to the present moment. The present investigation is aimed to evaluate the functional diversity of five natural soil samples in the Republic of Tatarstan (belonging to sod-podzol, sod-carbonate, alluvial, and gray types) using the method of Biolog EcoPlate according to the index of average well color development, alpha-biodiversiry Shannon index (H), amount of substrates consumed ®, and strategy of consumption of various carbon substrate groups. It was shown that the highest AWCD index was found in sample No 3 - alluvial soil type (3.159±0.460), the lowest one - in sample No 5 - gray soil type (0.572±0.230). Correlation of biological activity of microorganisms with organic matter content in soil was shown.
Soil Temperature and Moisture Profile (STAMP) System Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, David R.
The soil temperature and moisture profile system (STAMP) provides vertical profiles of soil temperature, soil water content (soil-type specific and loam type), plant water availability, soil conductivity, and real dielectric permittivity as a function of depth below the ground surface at half-hourly intervals, and precipitation at one-minute intervals. The profiles are measured directly by in situ probes at all extended facilities of the SGP climate research site. The profiles are derived from measurements of soil energy conductivity. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are alsomore » useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil. The STAMP system replaced the SWATS system in early 2016.« less
Spatial probability of soil water repellency in an abandoned agricultural field in Lithuania
NASA Astrophysics Data System (ADS)
Pereira, Paulo; Misiūnė, Ieva
2015-04-01
Water repellency is a natural soil property with implications on infiltration, erosion and plant growth. It depends on soil texture, type and amount of organic matter, fungi, microorganisms, and vegetation cover (Doerr et al., 2000). Human activities as agriculture can have implications on soil water repellency (SWR) due tillage and addition of organic compounds and fertilizers (Blanco-Canqui and Lal, 2009; Gonzalez-Penaloza et al., 2012). It is also assumed that SWR has a high small-scale variability (Doerr et al., 2000). The aim of this work is to study the spatial probability of SWR in an abandoned field testing several geostatistical methods, Organic Kriging (OK), Simple Kriging (SK), Indicator Kriging (IK), Probability Kriging (PK) and Disjunctive Kriging (DK). The study area it is located near Vilnius urban area at (54 49' N, 25 22', 104 masl) in Lithuania (Pereira and Oliva, 2013). It was designed a experimental plot with 21 m2 (07x03 m). Inside this area it was measured SWR was measured every 50 cm using the water drop penetration time (WDPT) (Wessel, 1998). A total of 105 points were measured. The probability of SWR was classified in 0 (No probability) to 1 (High probability). The methods accuracy was assessed with the cross validation method. The best interpolation method was the one with the lowest Root Mean Square Error (RMSE). The results showed that the most accurate probability method was SK (RMSE=0.436), followed by DK (RMSE=0.437), IK (RMSE=0.448), PK (RMSE=0.452) and OK (RMSE=0.537). Significant differences were identified among probability tests (Kruskal-Wallis test =199.7597 p<0.001). On average the probability of SWR was high with the OK (0.58±0.08) followed by PK (0.49±0.18), SK (0.32±0.16), DK (0.32±0.15) and IK (0.31±0.16). The most accurate probability methods predicted a lower probability of SWR in the studied plot. The spatial distribution of SWR was different according to the tested technique. Simple Kriging, DK, IK and PK methods identified the high SWR probabilities in the northeast and central part of the plot, while OK observed mainly in the south-western part of the plot. In conclusion, before predict the spatial probability of SWR it is important to test several methods in order to identify the most accurate. Acknowledgments COST action ES1306 (Connecting European connectivity research). References Blanco-Canqui, H., Lal, R. (2009) Extend of water repellency under long-term no-till soils. Geoderma, 149, 171-180. Doerr, S.H., Shakesby, R.A., Walsh, R.P.D. (2000) Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews, 51, 33-65. Gonzalez-Penaloza, F.A., Cerda, A., Zavala, L.M., Jordan, A., Gimenez-Morera, A., Arcenegui, V. (2012) Do conservative agriculture practices increase soil water repellency? A case study in citrus-croped soils. Soil and Tillage Research, 124, 233-239. Pereira, P., Oliva, M. (2013) Modelling soil water repellency in an abandoned agricultural field, Visnyk Geology, Visnyk Geology 4, 77-80. Wessel, A.T. (1988) On using the effective contact angle and the water drop penetration time for classification of water repellency in dune soils. Earth Surface Process and Landforms, 13, 555-265.
Effect of rainfall infiltration into unsaturated soil using soil column
NASA Astrophysics Data System (ADS)
Ibrahim, A.; Mukhlisin, M.; Jaafar, O.
2018-02-01
Rainfall especially in tropical region caused infiltration to the soil slope. The infiltration may change pore water pressure or matric suction of the soil. The event of rainfall infiltration into soil is a complex mechanism. Therefore, the main objectives of this research paper is to study the influence of rainfall intensity and duration that changed pore water pressure to soil. There are two types of soils used in this study; forest soil and kaolin. Soil column apparatus is used for experiments. Rainfall were applied to the soil and result for 3, 6, 12, 24, 72, 120 and 168 hours were retrieved. Result shows that for the both types of soil, the negative pore water pressures were increased during wetting process and gradually decreased towards drying process. The results also show that pore water pressure at top part was increased greatly as the wetting process started compared to the middle and bottom part of the column.
He, Ruoyang; Yang, Kaijun; Li, Zhijie; Schädler, Martin; Yang, Wanqin; Wu, Fuzhong; Tan, Bo; Zhang, Li
2017-01-01
Forest land-use changes have long been suggested to profoundly affect soil microbial communities. However, how forest type conversion influences soil microbial properties remains unclear in Tibetan boreal forests. The aim of this study was to explore variations of soil microbial profiles in the surface organic layer and subsurface mineral soil among three contrasting forests (natural coniferous forest, NF; secondary birch forest, SF and spruce plantation, PT). Soil microbial biomass, activity and community structure of the two layers were investigated by chloroform fumigation, substrate respiration and phospholipid fatty acid analysis (PLFA), respectively. In the organic layer, both NF and SF exhibited higher soil nutrient levels (carbon, nitrogen and phosphorus), microbial biomass carbon and nitrogen, microbial respiration, PLFA contents as compared to PT. However, the measured parameters in the mineral soils often did not differ following forest type conversion. Irrespective of forest types, the microbial indexes generally were greater in the organic layer than in the mineral soil. PLFAs biomarkers were significantly correlated with soil substrate pools. Taken together, forest land-use change remarkably altered microbial community in the organic layer but often did not affect them in the mineral soil. The microbial responses to forest land-use change depend on soil layer, with organic horizons being more sensitive to forest conversion. PMID:28982191
NASA Astrophysics Data System (ADS)
Kaestner, Matthias; Nowak, Karolina; Miltner, Anja; Trapp, Stefan; Schaeffer, Andreas
2014-05-01
This presentation provides a comprehensive overview about the formation of non-extractable residues (NER) from organic pesticides and contaminants in soil and tries classifying the different types. Anthropogenic organic chemicals are deliberately (e.g. pesticides) or unintentionally (e.g. polyaromatic hydrocarbons [PAH], chlorinated solvents, pharmaceuticals) released in major amounts to nearly all compartments of the environment. Soils and sediments as complex matrices provide a wide variety of binding sites and are the major sinks for these compounds. Many of the xenobiotics entering soil undergo turnover processes and can be volatilised, leached to the groundwater, degraded by microorganisms or taken up and enriched by living organisms. Xenobiotic NER may be derived from parent compounds and primary metabolites that are sequestered (sorbed or entrapped) within the soil organic matter (type I NER) or can be covalently bound (type II NER). Especially type I NER may pose a considerably environmental risk of potential release. However, NER resulting from productive biodegradation, which means the conversion of carbon (or nitrogen) from the compounds into microbial biomass molecules during microbial degradation (type III, bioNER), do not pose any risk. Experimental and analytical approaches to clearly distinguish between the types are provided and a model to prospectively estimate their fate in soil is proposed.
El-Temsah, Yehia S; Sevcu, Alena; Bobcikova, Katerina; Cernik, Miroslav; Joner, Erik J
2016-02-01
Nano-scale zero-valent iron (nZVI) has been conceived for cost-efficient degradation of chlorinated pollutants in soil as an alternative to e.g permeable reactive barriers or excavation. Little is however known about its efficiency in degradation of the ubiquitous environmental pollutant DDT and its secondary effects on organisms. Here, two types of nZVI (type B made using precipitation with borohydride, and type T produced by gas phase reduction of iron oxides under H2) were compared for efficiency in degradation of DDT in water and in a historically (>45 years) contaminated soil (24 mg kg(-1) DDT). Further, the ecotoxicity of soil and water was tested on plants (barley and flax), earthworms (Eisenia fetida), ostracods (Heterocypris incongruens), and bacteria (Escherichia coli). Both types of nZVI effectively degraded DDT in water, but showed lower degradation of aged DDT in soil. Both types of nZVI had negative impact on the tested organisms, with nZVI-T giving least adverse effects. Negative effects were mostly due to oxidation of nZVI, resulting in O2 consumption and excess Fe(II) in water and soil. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Variations of measured and simulated soil-loss amounts in a semiarid area in Turkey.
Hacisalihoğlu, Sezgin
2010-06-01
The main goal of this research was soil-loss determination and comparison of the plot measurement results with simulation model (universal soil loss equation (USLE)) results in different land use and slope classes. The research took place in three different land-use types (Scotch pine forest, pasture land, and agricultural land) and in two different slope classes (15-20%, 35-40%). Within six measurement stations (for each land-use type and slope class-one station), totally 18 measurement plots have been constituted, and soil-loss amount measurements have been investigated during the research period (3 years along). USLE simulation model is used in these measurement plots for calculation the soil-loss amounts. The results pointed out that measured (in plots) and simulated (with USLE) soil-loss amounts differ significantly in each land-use type and slope class.
Soil diversity and hydration as observed by ChemCam at Gale crater, Mars
Meslin, P.-Y.; Gasnault, O.; Forni, O.; Schroder, S.; Cousin, A.; Berger, G.; Clegg, S.M.; Lasue, J.; Maurice, S.; Sautter, V.; Le Mouélic, S.; Wiens, R.C.; Fabre, C.; Goetz, W.; Bish, D.L.; Mangold, N.; Ehlmann, B.; Lanza, N.; Harri, A.-M.; Anderson, Ryan Bradley; Rampe, E.; McConnochie, T.H.; Pinet, P.; Blaney, D.; ,; Archer, D.; Barraclough, B.; Bender, S.; Blake, D.; Blank, J.G.; Bridges, N.; Clark, B. C.; DeFlores, L.; Delapp, D.; Dromart, G.; Dyar, M.D.; Fisk, M. R.; Gondet, B.; Grotzinger, J.; Herkenhoff, K.; Johnson, J.; Lacour, J.-L.; Langevin, Y.; Leshin, L.; Lewin, E.; Madsen, M.B.; Melikechi, N.; Mezzacappa, Alissa; Mischna, M.A.; Moores, J.E.; Newsom, H.; Ollila, A.; ,; Renno, N.; Sirven, J.B.; Tokar, R.; de la Torre, M.; d'Uston, L.; Vaniman, D.; Yingst, A.
2013-01-01
The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the hydration of the amorphous phases found in the soil by the CheMin instrument. This hydration likely accounts for an important fraction of the global hydration of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous phases and their hydration.
Soil diversity and hydration as observed by ChemCam at Gale crater, Mars.
Meslin, P-Y; Gasnault, O; Forni, O; Schröder, S; Cousin, A; Berger, G; Clegg, S M; Lasue, J; Maurice, S; Sautter, V; Le Mouélic, S; Wiens, R C; Fabre, C; Goetz, W; Bish, D; Mangold, N; Ehlmann, B; Lanza, N; Harri, A-M; Anderson, R; Rampe, E; McConnochie, T H; Pinet, P; Blaney, D; Léveillé, R; Archer, D; Barraclough, B; Bender, S; Blake, D; Blank, J G; Bridges, N; Clark, B C; DeFlores, L; Delapp, D; Dromart, G; Dyar, M D; Fisk, M; Gondet, B; Grotzinger, J; Herkenhoff, K; Johnson, J; Lacour, J-L; Langevin, Y; Leshin, L; Lewin, E; Madsen, M B; Melikechi, N; Mezzacappa, A; Mischna, M A; Moores, J E; Newsom, H; Ollila, A; Perez, R; Renno, N; Sirven, J-B; Tokar, R; de la Torre, M; d'Uston, L; Vaniman, D; Yingst, A
2013-09-27
The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the hydration of the amorphous phases found in the soil by the CheMin instrument. This hydration likely accounts for an important fraction of the global hydration of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous phases and their hydration.