Science.gov

Sample records for soil water interactions

  1. Interaction of soil, water and TNT during degradation of TNT on contaminated soil using subcritical water.

    PubMed

    Kalderis, Dimitrios; Hawthorne, Steven B; Clifford, Anthony A; Gidarakos, Evangelos

    2008-11-30

    Subcritical water was used at laboratory scale to reveal information with respect to the degradation mechanism of TNT on contaminated soil. Highly contaminated soil (12% TNT) was heated with water at four different temperatures, 150, 175, 200 and 225 degrees C and samples were obtained at appropriate time intervals. At the same time, similar experiments were performed with TNT spiked on to clean soil, sand and pure water in order to compare and eliminate various factors that may be present in the more complex contaminated soil system. Subcritical water was successful at remediating TNT-contaminated soil. TNT destruction percentages ranged between 98 and 100%. The aim of this work was to study the soil-water-contaminant interaction and determine the main physical parameters that affect TNT degradation. It was shown that the rate-limiting step of the process is the extraction/diffusion of TNT molecules from the soil core to the soil surface, where they degrade. Additionally, it was determined that the soil matrix also catalyses degradation to a lesser extent. Autocatalytic effects were not clearly observed.

  2. Modelling of deformation of underground tunnel lining, interacting with water-saturated soil

    NASA Astrophysics Data System (ADS)

    Berezhnoi, D. V.; Balafendieva, I. S.; Sachenkov, A. A.; Sekaeva, L. R.

    2016-11-01

    Built finite element method of calculating the deformation of underground tunnel lining, interacting with dry and water-saturated soils. To simulate the interaction between the lining and soils environments, including physical and non-linear, a special "contact" finite element, which allows to consider all cases of interaction between the contacting surfaces. It solved a number of problems of deformation with the ground subway tunnel lining rings.

  3. Gravel admix, vegetation, and soil water interactions in protective barriers: Experimental design, construction, and initial conditions

    SciTech Connect

    Waugh, W.J.

    1989-05-01

    The purpose of this study is to measure the interactive effects of gravel admix and greater precipitation on soil water storage and plant abundance. The study is one of many tasks in the Protective Barrier Development Program for the disposal of Hanford defense waste. A factorial field-plot experiment was set up at the site selected as the borrow area for barrier topsoil. Gravel admix, vegetation, and enhanced precipitation treatments were randomly assigned to the plots using a split-split plot design structure. Changes in soil water storage and plant cover were monitored using neutron probe and point intercept methods, respectively. The first-year results suggest that water extraction by plants will offset gravel-caused increases in soil water storage. Near-surface soil water contents were much lower in graveled plots with plants than in nongraveled plots without plants. Large inherent variability in deep soil water storage masked any effects gravel may have had on water content below the root zone. In the future, this source of variation will be removed by differencing monthly data series and testing for changes in soil water storage. Tests of the effects of greater precipitation on soil water storage were inconclusive. A telling test will be possible in the spring of 1988, following the first wet season during which normal precipitation is doubled. 26 refs., 9 figs., 9 tabs.

  4. Interacting vegetative and thermal contributions to water movement in desert soil

    USGS Publications Warehouse

    Garcia, C.A.; Andraski, B.J.; Stonestrom, D.A.; Cooper, C.A.; Simunek, J.; Wheatcraft, S.W.

    2011-01-01

    Thermally driven water-vapor flow can be an important component of total water movement in bare soil and in deep unsaturated zones, but this process is often neglected when considering the effects of soil-plant-atmosphere interactions on shallow water movement. The objectives of this study were to evaluate the coupled and separate effects of vegetative and thermal-gradient contributions to soil water movement in desert environments. The evaluation was done by comparing a series of simulations with and without vegetation and thermal forcing during a 4.7-yr period (May 2001-December 2005). For vegetated soil, evapotranspiration alone reduced root-zone (upper 1 m) moisture to a minimum value (25 mm) each year under both isothermal and nonisothermal conditions. Variations in the leaf area index altered the minimum storage values by up to 10 mm. For unvegetated isothermal and nonisothermal simulations, root-zone water storage nearly doubled during the simulation period and created a persistent driving force for downward liquid fluxes below the root zone (total net flux ~1 mm). Total soil water movement during the study period was dominated by thermally driven vapor fluxes. Thermally driven vapor flow and condensation supplemented moisture supplies to plant roots during the driest times of each year. The results show how nonisothermal flow is coupled with plant water uptake, potentially influencing ecohydrologic relations in desert environments. ?? Soil Science Society of America 5585 Guilford Rd., Madison, WI 53711 USA. All rights reserved.

  5. Chemical and physical interactions of an in situ oil-shale process water with a surface soil

    SciTech Connect

    Leenheer, J.A.; Stuber, H.A.; Noyes, T.I.

    1981-01-01

    Chemical and physical interactions of an in situ oil-shale process (retort) water with a surface soil were investigated by soil and effluent analyses of three soil-column experiments whereby soil was leached with: (1) Distilled water, (2) a synthetic retort water containing only inorganic solutes, and (3) an actual retort water produced by in situ processing of oil shale. Major findings of this study include an ion exchange-precipitation reaction, in which exchangeable calcium in the soil is displaced by ammonium from retort water and precipitated as carbonate by inorganic carbon in retort water. This precipitation process affects soil permeability. Ammonium was strongly adsorbed from retort water by the soil, and was not removed by subsequent distilled-water leaching and drying. 26 refs.

  6. Interacting vegetative and thermal contributions to water movement in desert soil

    USGS Publications Warehouse

    Garcia, C.A.; Andraski, B.J.; Stonestrom, D.A.; Cooper, C.A.; Šimůnek, J.; Wheatcraft, S.W.

    2011-01-01

    Thermally driven water-vapor flow can be an important component of total water movement in bare soil and in deep unsaturated zones, but this process is often neglected when considering the effects of soil–plant–atmosphere interactions on shallow water movement. The objectives of this study were to evaluate the coupled and separate effects of vegetative and thermal-gradient contributions to soil water movement in desert environments. The evaluation was done by comparing a series of simulations with and without vegetation and thermal forcing during a 4.7-yr period (May 2001–December 2005). For vegetated soil, evapotranspiration alone reduced root-zone (upper 1 m) moisture to a minimum value (25 mm) each year under both isothermal and nonisothermal conditions. Variations in the leaf area index altered the minimum storage values by up to 10 mm. For unvegetated isothermal and nonisothermal simulations, root-zone water storage nearly doubled during the simulation period and created a persistent driving force for downward liquid fluxes below the root zone (total net flux ~1 mm). Total soil water movement during the study period was dominated by thermally driven vapor fluxes. Thermally driven vapor flow and condensation supplemented moisture supplies to plant roots during the driest times of each year. The results show how nonisothermal flow is coupled with plant water uptake, potentially influencing ecohydrologic relations in desert environments.

  7. Interactions between biochar and mycorrhizal fungi in a water-stressed agricultural soil.

    PubMed

    Mickan, Bede S; Abbott, Lynette K; Stefanova, Katia; Solaiman, Zakaria M

    2016-08-01

    Biochar may alleviate plant water stress in association with arbuscular mycorrhizal (AM) fungi but research has not been conclusive. Therefore, a glasshouse experiment was conducted to understand how interactions between AM fungi and plants respond to biochar application under water-stressed conditions. A twin chamber pot system was used to determine whether a woody biochar increased root colonisation by a natural AM fungal population in a pasture soil ('field' chamber) and whether this was associated with increased growth of extraradical AM fungal hyphae detected by plants growing in an adjacent ('bait') chamber containing irradiated soil. The two chambers were separated by a mesh that excluded roots. Subterranean clover was grown with and without water stress and harvested after 35, 49 and 63 days from each chamber. When biochar was applied to the field chamber under water-stressed conditions, shoot mass increased in parallel with mycorrhizal colonisation, extraradical hyphal length and shoot phosphorus concentration. AM fungal colonisation of roots in the bait chamber indicated an increase in extraradical mycorrhizal hyphae in the field chamber. Biochar had little effect on AM fungi or plant growth under well-watered conditions. The biochar-induced increase in mycorrhizal colonisation was associated with increased growth of extraradical AM fungal hyphae in the pasture soil under water-stressed conditions.

  8. Barrier erosion control test plan: Gravel mulch, vegetation, and soil water interactions

    SciTech Connect

    Waugh, W.J.; Link, S.O. )

    1988-07-01

    Soil erosion could reduce the water storage capacity of barriers that have been proposed for the disposal of near-surface waste at the US Department of Energy's Hanford Site. Gravel mixed into the top soil surface may create a self-healing veneer that greatly retards soil loss. However, gravel admixtures may also enhance infiltration of rainwater, suppress plant growth and water extraction, and lead to the leaching of underlying waste. This report describes plans for two experiments that were designed to test hypotheses concerning the interactive effects of surface gravel admixtures, revegetation, and enhanced precipitation on soil water balance and plant abundance. The first experiment is a factorial field plot set up on the site selected as a soil borrow area for the eventual construction of barriers. The treatments, arranged in a a split-split-plot design structure, include two densities of gravel admix, a mixture of native and introduced grasses, and irrigation to simulate a wetter climate. Changes in soil water storage and plant cover are monitored with neutron moisture probes and point intercept sampling, respectively. The second experiment consists of an array of 80 lysimeters containing several different barrier prototypes. Surface treatments are similar to the field-plot experiment. Drainage is collected from a valve at the base of each lysimeter tube, and evapotranspiration is estimated by subtraction. The lysimeters are also designed to be coupled to a whole-plant gas exchange system that will be used to conduct controlled experiments on evapotranspiration for modeling purposes. 56 refs., 6 figs., 8 tabs.

  9. Soil-water interactions: implications for the sustainability of urban areas

    NASA Astrophysics Data System (ADS)

    Ferreira, António J. D.; Ferreira, Carla S. S.; Walsh, Rory P. D.

    2015-04-01

    Cities have become recently the home for more than half of the world's population. Cities are often seen as ecological systems just a short step away from collapse [Newman 2006]. Being a human construction, cities disrupt the natural cycles and the patterns of temporal and spatial distribution of environmental and ecological processes. Urbanization produces ruptures in biota, water, energy and nutrients connectivity that can lead to an enhanced exposure to disruptive events that hamper the wellbeing and the resilience of urban communities in a global change context. And yet, mankind can't give up of these structures one step away from collapse. In this paper we visit the ongoing research at the Ribeira dos Covões peri-urban catchment, as the basis to discuss several important processes and relations in the water-soil interface: A] the impact of the build environment and consequently the increase of the impervious area on the generation and magnitude of hydrological processes at different scales, the impact on flash flood risk and the mitigation approaches. B] the pollutant sources transport and fade in urban areas, with particular emphasis in the role of vegetation and soils in the transmission of pollutants from the atmosphere to the soil and to the water processes. C] the use and the environmental services of the urban ecosystems (where the relations of water, soil and vegetation have a dominate role) to promote a better risk and resources governance. D] the special issue of urban agriculture, where all the promises of sustainability and threats to wellbeing interact, and where the soil and water relations in urban areas are more significant and have the widest and deepest implications.

  10. Premelted liquid water in frozen soils and its interaction with bio-molecules

    NASA Astrophysics Data System (ADS)

    Hansen-Goos, H.; Wettlaufer, J. S.

    2011-12-01

    While liquid water in bulk is unstable on the surface of Mars, there is a possibility for the persistence of thin films of liquid water in the Martian regolith as a result of interfacial forces between the interstitial ice and the soil grains even below the bulk melting temperature. This is referred to as premelting. We present a calculation of the liquid fraction of frozen soils which takes into account premelting in combination with the effect of ionic impurities and the curvature induced freezing point depression (Gibbs-Thomson effect). We introduce a revised density functional theory which accurately treats a simple model for confined liquid water. We use the theory to study how biological matter (antifreeze proteins in particular) inside a narrow liquid cavity in ice interacts with the surrounding ice-water interface. Because in this case the interface is concave and hence the Gibbs-Thomson effect is antagonistic to the liquid phase, the protein-ice interaction is responsible for the persistence of liquid water.

  11. Interaction of soil type and carbon dioxide concentration in grassland soil pore water nitrogen concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing CO2 concentrations have been shown to limit soil nitrogen availability in terrestrial ecosystems, thereby limiting plant growth. Because changes in nitrogen availability can affect the composition of available nitrogen forms, we are interested in how changes in CO2 concentrations could af...

  12. Climate and Soil Interactions in the Context of Climate, Water, Ecosystems and Food Systems

    NASA Astrophysics Data System (ADS)

    Hatfield, J.

    2015-12-01

    Soil as source of ecosystem services is a major component of climate resilience. Two of the critical ecosystem services derived from soil are water and nutrient cycling. High quality soils improve the capacity to absorb and retain precipitation leading to enhanced water availability to plants which increases climate resilience. The trend towards increasing variability in precipitation requires that the soil be capable of maintaining infiltration rates under extreme precipitation events. Climate resilience will occur when crop productivity is stabilized under more variable climate regimes and dependent upon having adequate soil water supplies to each crop. There is a direct relationship between soil quality and crop productivity and as the soil resource is degraded there is a greater gap between attainable and actual productivity of crop. As the soil is improved there is enhanced nutrient cycling which in turn increases nutrient availability to the crop and food security. Soil becomes the foundation of sustainable ecosystems and enhancing the quality of soil will have a benefit to food and water resources. Improving the soil will benefit humankind through multiple impacts on water, food, and ecosystems.

  13. Investigation of Interactive Effects on Water Flow and Solute Transport in Sandy Loam Soil Using Time Domain Reflectometry

    PubMed Central

    Merdun, Hasan

    2012-01-01

    Surface-applied chemicals move through the unsaturated zone with complex flow and transport processes due to soil heterogeneity and reach the saturated zone, resulting in groundwater contamination. Such complex processes need to be studied by advanced measurement and modeling techniques to protect soil and water resources from contamination. In this study, the interactive effects of factors like soil structure, initial soil water content (SWC), and application rate on preferential flow and transport were studied in a sandy loam field soil using measurement (by time domain reflectometry (TDR)) and modeling (by MACRO and VS2DTI) techniques. In addition, statistical analyses were performed to compare the means of the measured and modeled SWC and EC, and solute transport parameters (pore water velocity and dispersion coefficient) in 12 treatments. Research results showed that even though the effects of soil structural conditions on water and solute transport were not so clear, the applied solution moved lower depths in the profiles of wet versus dry initial SWC and high application rate versus low application rates. The effects of soil structure and initial SWC on water and solute movement could be differentiated under the interactive conditions, but the effects of the application rates were difficult to differentiate under different soil structural and initial SWC conditions. Modeling results showed that MACRO had somewhat better performance than VS2DTI in the estimation of SWC and EC with space and time, but overall both models had relatively low performances. The means of SWC, EC, and solute transport parameters of the 12 treatments were divided into some groups based on the statistical analyses, indicating different flow and transport characteristics or a certain degree nonuniform or preferential flow and transport in the soil. Conducting field experiments with more interactive factors and applying the models with different approaches may allow better understanding

  14. Impact of interspecific interactions on the soil water uptake depth in a young temperate mixed species plantation

    NASA Astrophysics Data System (ADS)

    Grossiord, Charlotte; Gessler, Arthur; Granier, André; Berger, Sigrid; Bréchet, Claude; Hentschel, Rainer; Hommel, Robert; Scherer-Lorenzen, Michael; Bonal, Damien

    2014-11-01

    Interactions between tree species in forests can be beneficial to ecosystem functions and services related to the carbon and water cycles by improving for example transpiration and productivity. However, little is known on below- and above-ground processes leading to these positive effects. We tested whether stratification in soil water uptake depth occurred between four tree species in a 10-year-old temperate mixed species plantation during a dry summer. We selected dominant and co-dominant trees of European beech, Sessile oak, Douglas fir and Norway spruce in areas with varying species diversity, competition intensity, and where different plant functional types (broadleaf vs. conifer) were present. We applied a deuterium labelling approach that consisted of spraying labelled water to the soil surface to create a strong vertical gradient of the deuterium isotope composition in the soil water. The deuterium isotope composition of both the xylem sap and the soil water was measured before labelling, and then again three days after labelling, to estimate the soil water uptake depth using a simple modelling approach. We also sampled leaves and needles from selected trees to measure their carbon isotope composition (a proxy for water use efficiency) and total nitrogen content. At the end of the summer, we found differences in the soil water uptake depth between plant functional types but not within types: on average, coniferous species extracted water from deeper layers than did broadleaved species. Neither species diversity nor competition intensity had a detectable influence on soil water uptake depth, foliar water use efficiency or foliar nitrogen concentration in the species studied. However, when coexisting with an increasing proportion of conifers, beech extracted water from progressively deeper soil layers. We conclude that complementarity for water uptake could occur in this 10-year-old plantation because of inherent differences among functional groups (conifers

  15. Oxygen isotope fractionation effects in soil water via interaction with cations (Mg, Ca, K, Na) adsorbed to phyllosilicate clay minerals

    NASA Astrophysics Data System (ADS)

    Oerter, Erik; Finstad, Kari; Schaefer, Justin; Goldsmith, Gregory R.; Dawson, Todd; Amundson, Ronald

    2014-07-01

    In isotope-enabled hydrology, soil and vadose zone sediments have been generally considered to be isotopically inert with respect to the water they host. This is inconsistent with knowledge that clay particles possessing an electronegative surface charge and resulting cation exchange capacity (CEC) interact with a wide range of solutes which, in the absence of clays, have been shown to exhibit δ18O isotope effects that vary in relation to the ionic strength of the solutions. To investigate the isotope effects caused by high CEC clays in mineral-water systems, we created a series of monominerallic-water mixtures at gravimetric water contents ranging from 5% to 32%, consisting of pure deionized water of known isotopic composition with homoionic (Mg, Ca, Na, K) montmorillonite. Similar mixtures were also created with quartz to determine the isotope effect of non-, or very minimally-, charged mineral surfaces. The δ18O value of the water in these monominerallic soil analogs was then measured by isotope ratio mass spectrometry (IRMS) after direct headspace CO2 equilibration. Mg- and Ca-exchanged homoionic montmorillonite depleted measured δ18O values up to 1.55‰ relative to pure water at 5% water content, declining to 0.49‰ depletion at 30% water content. K-montmorillonite enriched measured δ18O values up to 0.86‰ at 5% water content, declining to 0.11‰ enrichment at 30% water. Na-montmorillonite produces no measureable isotope effect. The isotope effects observed in these experiments may be present in natural, high-clay soils and sediments. These findings have relevance to the interpretation of results of direct CO2-water equilibration approaches to the measurement of the δ18O value of soil water. The adsorbed cation isotope effect may bear consideration in studies of pedogenic carbonate, plant-soil water use and soil-atmosphere interaction. Finally, the observed isotope effects may prove useful as molecular scale probes of the nature of mineral-water

  16. Plant Interactions with Changes in Coverage of Biological Soil Crusts and Water Regime in Mu Us Sandland, China

    PubMed Central

    Gao, Shuqin; Pan, Xu; Cui, Qingguo; Hu, Yukun; Ye, Xuehua; Dong, Ming

    2014-01-01

    Plant interactions greatly affect plant community structure. Dryland ecosystems are characterized by low amounts of unpredictable precipitation as well as by often having biological soil crusts (BSCs) on the soil surface. In dryland plant communities, plants interact mostly as they compete for water resources, and the direction and intensity of plant interaction varies as a function of the temporal fluctuation in water availability. Since BSCs influence water redistribution to some extent, a greenhouse experiment was conducted to test the hypothesis that the intensity and direction of plant interactions in a dryland plant community can be modified by BSCs. In the experiment, 14 combinations of four plant species (Artemisia ordosica, Artemisia sphaerocephala, Chloris virgata and Setaria viridis) were subjected to three levels of coverage of BSCs and three levels of water supply. The results show that: 1) BSCs affected plant interaction intensity for the four plant species: a 100% coverage of BSCs significantly reduced the intensity of competition between neighboring plants, while it was highest with a 50% coverage of BSCs in combination with the target species of A. sphaerocephala and C. virgata; 2) effects of the coverage of BSCs on plant interactions were modified by water regime when the target species were C. virgata and S. viridis; 3) plant interactions were species-specific. In conclusion, the percent coverage of BSCs affected plant interactions, and the effects were species-specific and could be modified by water regimes. Further studies should focus on effects of the coverage of BSCs on plant-soil hydrological processes. PMID:24498173

  17. CHEMFLO-2000: INTERACTIVE SOFTWARE FOR SIMULATING WATER AND CHEMICAL MOVEMENT IN UNSATURATED SOILS

    EPA Science Inventory

    The movement of water and chemicals into and through soils has a large impact upon our environment and the entire ecosystem. Understanding these processes is of great importance in managing, utilizing, and protecting our natural resources. This software was written to enhance our...

  18. A two-layer soil moisture conceptual framework for exploring land surface-atmosphere interactions in water-limited ecosystem

    NASA Astrophysics Data System (ADS)

    Papuga, S. A.

    2014-12-01

    The exchange of water, energy, and carbon between the land surface and the atmosphere is largely influenced by vegetation. In turn, vegetation is strongly influenced by the partitioning of precipitation into evapotranspiration, soil moisture, and runoff. Ultimately, the hydrologic cycle exerts a strong control on the climate system. In fact, positive feedbacks between vegetation and the hydrologic cycle at small scales may have the ability to elicit non-linear responses with important large scale consequences. Therefore, capturing the synergies between hydrologic processes at different space and time scales is necessary for appropriately modeling the influence of vegetation and the hydrologic cycle on the climate system. Understanding the controls on land-atmosphere interactions and how they influence larger scale feedbacks will become increasingly important as climatic and other global changes continue to alter the water availability of our ecosystems. Water-limited ecosystems are especially sensitive to precipitation changes, and therefore insights concerning how their functioning responds to possible changes in precipitation patterns are important in understanding future climate scenarios. Over a decade of field work from my research group has highlighted the importance of deep soil moisture (from large storms) in the healthy functioning of water-limited ecosystems. This has led to the development of a two-layer soil moisture conceptual framework for exploring land surface-atmosphere interactions in water-limited ecosystems. Here I demonstrate how this framework can been used to link small scale processes investigated in field with large scale processes for water-limited ecosystems.

  19. Environmental interactions of hydrazine fuels in soil/water systems. Final report, March 1985-September 1987

    SciTech Connect

    Street, J.; Johnston, C.; Mansell, R.; Bloom, S.

    1988-10-01

    Because the Air Force is the primary user of the rocket fuels, hydrazine (Hz), monomethylhydrazine (MMH), and 1,1-dimethylhydrazine (UDMH), it is responsible for the environmental implications associated with the transport, storage, and handling of these fuels. During handling, hydrazine fuels could inadvertently be released to the atmosphere and the surrounding aqueous and terrestrial environments. The studies are divided into the following five areas: aqueous and soil suspension studies, surface interaction studies, biological interaction studies, soil column studies, and soil transport modeling. The objective of this work is to determine the fate of hydrazine fuel released into an aqueous or soil environment. Aqueous degradation studies reveal that the extent of hydrazine degradation and the products formed are highly dependent upon several variables. Among these include the type of container used in the studies, the presence of certain metal ions, the ionic strength, the presence and type of pH buffer, the temperature, the presence of bacteria, and the amount of dissolved oxygen. Aqueous hydrazine degradation is particularly rapid in quartz vessels with copper ions ions and oxygen present. Degradation also increases with increasing ionic strength, pH buffer concentration, temperature, and bacteria content.

  20. Vegetation Dynamics and Soil Water Balance Interactions in a Water-limited Mediterranean Ecosystem on Sardinia Under Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Montaldo, N.; Albertson, J. D.

    2009-12-01

    Mediterranean ecosystems are commonly heterogeneous savanna-like ecosystems, with contrasting plant functional types (PFT) competing for the water use. At the same time the structure and function of the vegetation regulates the exchange of mass, energy and momentum across the biosphere-atmosphere interface, influencing strongly the soil water budget. Mediterranean regions suffer water scarcity produced in part by natural (e.g., climate variations) influences. For instance, in the Flumendosa basin water reservoir system, which plays a primary role in the water supply for much of southern Sardinia, the average annual input from stream discharge in the latter part of the 20th century was less than half the historic average rate. The precipitation over the Flumendosa basin has decreased, but not at such a drastic rate as the discharge, suggesting a marked non-linear response of discharge to precipitation changes. Indeed, precipitation decreased in winter months, which are crucial for reservoirs recharge through runoff. The IPCC models predicts a further increase of drought in the Mediterranean region, increasing the uncertainty on the future of the water resources system of these regions. Hence, there is the need to investigate the role of the PFT vegetation dynamics on the soil water budget of these ecosystems in the context of the climate change, and predict hydrologic variables for climate change scenarios. The case study is in the Flumendosa basin. The site landscape is a mixture of Mediterranean patchy vegetation types: trees, including wild olives and cork oaks, different shrubs and herbaceous species. An extensive field campaign started in May 2003. Six years of data are available now. Land-surface fluxes and CO2 fluxes are estimated by an eddy correlation technique based micrometeorological tower. Soil moisture profiles were also continuously estimated using water content reflectometers and gravimetric method, and periodically leaf area index (LAI) PFTs are

  1. The impact of water-rock interaction and vegetation on calcium isotope fractionation in soil- and stream waters of a small, forested catchment (the Strengbach case)

    NASA Astrophysics Data System (ADS)

    Cenki-Tok, B.; Chabaux, F.; Lemarchand, D.; Schmitt, A.-D.; Pierret, M.-C.; Viville, D.; Bagard, M.-L.; Stille, P.

    2009-04-01

    This study aims to constrain the factors controlling the calcium isotopic compositions in surface waters, especially the respective role of vegetation and water-rock interactions on Ca isotope fractionation in a continental forested ecosystem. The approach is to follow changes in space and time of the isotopic composition and concentration of Ca along its pathway through the hydro-geochemical reservoirs from atmospheric deposits to the outlet of the watershed via throughfalls, percolating soil solutions and springs. The study is focused on the Strengbach catchment, a small forested watershed located in the northeast of France in the Vosges mountains. The δ 44/40Ca values of springs, brooks and stream waters from the catchment are comparable to those of continental rivers and fluctuate between 0.17 and 0.87‰. Soil solutions, however, are significantly depleted in lighter isotopes (δ 44/40Ca: 1.00-1.47‰), whereas vegetation is strongly enriched (δ 44/40Ca: -0.48‰ to +0.19‰). These results highlight that vegetation is a major factor controlling the calcium isotopic composition of soil solutions, with depletion in "light" calcium in the soil solutions from deeper parts of the soil compartments due to preferential 40Ca uptake by the plants rootsystem. However, mass balance calculations require the contribution of an additional Ca flux into the soil solutions most probably associated with water-rock interactions. The stream waters are marked by a seasonal variation of their δ 44/40Ca, with low δ 44/40Ca in winter and high δ 44/40Ca in spring, summer and autumn. For some springs, nourishing the streamlet, a decrease of the δ 44/40Ca value is observed when the discharge of the spring increases, with, in addition, a clear covariation between the δ 44/40Ca and corresponding H 4SiO 4 concentrations: high δ 44/40Ca values and low H 4SiO 4 concentrations at high discharge; low δ 44/40Ca values and high H 4SiO 4 concentrations at low discharge. These data imply

  2. Exploring C-water-temperature interactions and non-linearities in soils through developments in process-based models

    NASA Astrophysics Data System (ADS)

    Esteban Moyano, Fernando; Vasilyeva, Nadezda; Menichetti, Lorenzo

    2016-04-01

    Soil carbon models developed over the last couple of decades are limited in their capacity to accurately predict the magnitudes and temporal variations in observed carbon fluxes and stocks. New process-based models are now emerging that attempt to address the shortcomings of their more simple, empirical counterparts. While a spectrum of ideas and hypothetical mechanisms are finding their way into new models, the addition of only a few processes known to significantly affect soil carbon (e.g. enzymatic decomposition, adsorption, Michaelis-Menten kinetics) has shown the potential to resolve a number of previous model-data discrepancies (e.g. priming, Birch effects). Through model-data validation, such models are a means of testing hypothetical mechanisms. In addition, they can lead to new insights into what soil carbon pools are and how they respond to external drivers. In this study we develop a model of soil carbon dynamics based on enzymatic decomposition and other key features of process based models, i.e. simulation of carbon in particulate, soluble and adsorbed states, as well as enzyme and microbial components. Here we focus on understanding how moisture affects C decomposition at different levels, both directly (e.g. by limiting diffusion) or through interactions with other components. As the medium where most reactions and transport take place, water is central en every aspect of soil C dynamics. We compare results from a number of alternative models with experimental data in order to test different processes and parameterizations. Among other observations, we try to understand: 1. typical moisture response curves and associated temporal changes, 2. moisture-temperature interactions, and 3. diffusion effects under changing C concentrations. While the model aims at being a process based approach and at simulating fluxes at short time scales, it remains a simplified representation using the same inputs as classical soil C models, and is thus potentially

  3. Interaction of Actinide Species with Microorganisms & Microbial Chelators: Cellular Uptake, Toxicity, & Implications for Bioremediation of Soil & Ground Water.

    SciTech Connect

    Hakim Boukhalfa Mary, P. Neu Alvin Crumbliss

    2006-03-28

    Microorganisms influence the natural cycle of major elements, including C, N, P, S, and transition metals such as Mn and Fe. Bacterial processes can also influence the behavior of actinides in soil and ground water. While radionuclides have no known biological utility, they have the potential to interact with microorganisms and to interfere with processes involving other elements such as Fe and Mn. These interactions can transform radionuclides and affect their fate and transport. Organic acids, extruded by-products of cell metabolism, can solubilize radionuclides and facilitate their transport. The soluble complexes formed can be taken up by the cells and incorporated into biofilm structures. We have examined the interactions of Pu species with bacterial metabolites, studied Pu uptake by microorganisms and examined the toxicity of Pu and other toxic metals to environmentally relevant bacteria. We have also studied the speciation of Pu(IV) in the presence of natural and synthetic chelators.

  4. Trench water-soil chemistry and interactions at the Maxey Flats Site

    SciTech Connect

    Weiss, A. J.; Czyscinski, K. S.

    1980-01-01

    This report is part of an overall program designed to provide an understanding of and to monitor the behavior of existing low-level sites. This investigation will provide source term data for radionuclides and other solutes in trench waters and will describe the physical, chemical, and biological properties of the geochemical system that controls radionuclide movement. General conclusions can be made from the data in terms of source term information to be used in modeling efforts, as well as processes which may affect radionuclide migration. Trench waters are complex anoxic chemical systems which require more extensive investigation to assess their role in radionuclide retention and mobilization. No overall systematic changes in the disposal site trenches were observed during the brief sampling interval. However, changes in some radionuclide and cation concentrations were observed in several trenches. Numerous organic compounds were identified in trench waters at Maxey Flats, some of which have the potential for chelation with radionuclides. The presence of radionuclides and organic compounds in wells UB1 and UB1-A and in nearby trenches indicates communication between the wells and trench water leachates by subsurface migration. Radionuclides were also measured in the new experimental trench dug parallel to trench 27. Aerobic, anaerobic, sulfate reducing, denitrifying, and methanogenic bacteria are present in the leachate samples, and are able to grow anaerobically in trench leachates. Experimental results indicate that the observed sorption K/sub d/ is a function of both solid and liquid phase compositional variations as well as contact time. The observation that e lowest K/sub d/ results are observed with anoxic trench waters and ultrasonicated soils points to the need to use site specific materials and experimental conditions which simulate in situ conditions as closely as possible.

  5. Competitive interactions between established grasses and woody plant seedlings under elevated CO₂ levels are mediated by soil water availability.

    PubMed

    Manea, A; Leishman, M R

    2015-02-01

    The expansion of woody plants into grasslands has been observed worldwide and is likely to have widespread ecological consequences. One proposal is that woody plant expansion into grasslands is driven in part by the rise in atmospheric CO2 concentrations. We have examined the effect of CO2 concentration on the competitive interactions between established C4 grasses and woody plant seedlings in a model grassland system. Woody plant seedlings were grown in mesocosms together with established C4 grasses in three competition treatments (root competition, shoot competition and root + shoot competition) under ambient and elevated CO2 levels. We found that the growth of the woody plant seedlings was suppressed by competition from grasses, with root and shoot competition having similar competitive effects on growth. In contrast to expectations, woody plant seedling growth was reduced at elevated CO2 levels compared to that at the ambient CO2 level across all competition treatments, with the most plausible explanation being reduced light and soil water availability in the elevated CO2 mesocosms. Reduced light and soil water availability in the elevated CO2 mesocosms was associated with an increased leaf area index of the grasses which offset the reductions in stomatal conductance and increased rainfall interception. The woody plant seedlings also had reduced 'escapability' (stem biomass and stem height) under elevated compared to ambient CO2 levels. Our results suggest that the expansion of woody plants into grasslands in the future will likely be context-dependent, with the establishment success of woody plant seedlings being strongly coupled to the CO2 response of competing grasses and to soil water availability.

  6. Responses of soil water percolation to dynamic interactions among rainfall, antecedent moisture and season in a forest site

    NASA Astrophysics Data System (ADS)

    Lai, Xiaoming; Liao, Kaihua; Feng, Huihui; Zhu, Qing

    2016-09-01

    Knowledge of soil water percolation below the rooting zone and its responses to the dynamic interactions of different factors are important for the control of non-point source pollution. Based on 3600 scenarios in Hydrus-1D simulation, this study revealed the integrated effects of rainfall characteristics (rainfall amount, maximum rainfall intensity or MRI, time distribution characteristics of rainfall or TDC), antecedent moisture and the season on deep percolation (DP) at a forest site in Taihu Lake Basin, China. Results showed that Hydrus-1D model can well simulate the soil water dynamics at this site. Antecedent moisture had the greatest relative contribution to DP (85.7%), followed by rainfall amount (10.9%) and MRI (3.4%). As the antecedent moisture increased, the relative contribution of the season on DP increased from 0.0% to 16.4%. In comparison, that of MRI decreased from 58.7% to 38.5% and that of rainfall amount followed a bell shape pattern (greatest when the antecedent moisture was 0.26 m3 m-3). The relative contribution of antecedent moisture to DP in summer was the greatest (87.8%), while that of the rainfall was the least. The TDC influenced DP by affecting the responses of DP to other factors. When the rainfall amount was ⩾80 mm and the antecedent moisture content was ⩾0.34 m3 m-3, effect of TDC on DP could be observed. The DP of TDC_B (rainfall intensity linearly increased with time) was the lowest, while that of TDC_E (rainfall intensity kept constant with time) was the greatest. Findings of this study have practical significance for investigating the water and pollutant transport in vadose zone.

  7. Groundwater-soil moisture-climate interactions: lessons from idealized model experiments with forced water table depth

    NASA Astrophysics Data System (ADS)

    Ducharne, Agnès; Lo, Min-Hui; Decharme, Bertrand; Wang, Fuxing; Cheruy, Frédérique; Ghattas, Josefine; Chien, Rong-You; lan, Chia-Wei; Colin, Jeanne; Tyteca, Sophie

    2016-04-01

    Groundwater (GW) constitutes by far the largest volume of liquid freshwater on Earth. The most active part is soil moisture (SM), recognized as a key variable of land/atmosphere interactions, especially in so-called transition zones, where/when SM varies between wet and dry values. But GW can also be stored in deeper reservoirs than soils, in particular unconfined aquifer systems, in which the saturated part is called the water table (WT). The latter is characterized by slow and mostly horizontal water flows towards the river network, with well-known buffering effects on streamflow variability. Where/when the WT is shallow enough, it can also sustain SM by means of capillary rise, thus increase evapotranspiration (ET), with potential impact on the climate system (including temperatures and precipitation). The large residence time of GW may also increase the Earth system's memory, with consequences on the persistence of extreme events, hydro-climatic predictability, and anthropogenic climate change, particularly the magnitude of regional warming. Here, our main goal is to explore the potential impacts of the water table depth (WTD) on historical climate through idealized model analyses. To this end, we force three state-of-the art land surface models (LSMs), namely CLM, ORCHIDEE, and SURFEX, with prescribed WTDs ranging from 0.5 to 10 m. The LSMs are run either off-line or coupled to their parent climate model, following LMIP/AMIP-like protocols for intercomparability. Within this framework, we want to assess the sensitivity of ET and the simulated climate to the WTD in a systematic way. In particular, we will identify and compare the patterns of the critical WTD, defined as the deepest one to achieve a significant change in ET. To this end, we estimate derivatives of ET with respect to WTD, which tell how the sensitivity of ET to a unit change in WTD evolves with WTD. In each grid-point, these derivatives can be used to define the critical WTD, given a threshold ET

  8. Soil cultivation in vineyards alters interactions between soil biota and soil physical and hydrological properties

    NASA Astrophysics Data System (ADS)

    Zaller, Johann G.; Buchholz, Jacob; Querner, Pascal; Winter, Silvia; Kratschmer, Sophie; Pachinger, Bärbel; Strauss, Peter; Bauer, Thomas; Stiper, Katrin; Potthoff, Martin; Guernion, Muriel; Scimia, Jennifer; Cluzeau, Daniel

    2016-04-01

    Several ecosystem services provided by viticultural landscapes result from interactions between soil organisms and soil parameters. However, to what extent different soil cultivation intensities in vineyards compromise soil organisms and their interactions between soil physical and hydrological properties is not well understood. In this study we examined (i) to what extent different soil management intensities affect the activity and diversity of soil biota (earthworms, Collembola, litter decomposition), and (ii) how soil physical and hydrological properties influence these interactions, or vice versa. Investigating 16 vineyards in Austria, earthworms were assessed by hand sorting, Collembola via pitfall trapping and soil coring, litter decomposition by using the tea bag method. Additionally, soil physical (water infiltration, aggregate stability, porosity, bulk density, soil texture) and chemical (pH, soil carbon content, cation exchange capacity, potassium, phosphorus) parameters were assessed. Results showed complex ecological interactions between soil biota and various soil characteristics altered by management intensity. These investigations are part of the transdisciplinary BiodivERsA project VineDivers and will ultimately lead into management recommendations for various stakeholders.

  9. Hydraulic Redistribution of Soil Water in a Drained Loblolly Pine Plantation: Quantifying Patterns and Controls over Soil-to-Root and Canopy-to-Atmosphere Interactions

    NASA Astrophysics Data System (ADS)

    Domec, J.; Noormets, A.; King, J. S.; Sun, G.; McNulty, S. G.; Gavazzi, M. J.; Strickland, S.; Boggs, J. L.

    2007-12-01

    The conversion of wetlands to intensively managed forest lands in eastern North Carolina is widespread and the consequences on water and carbon balances are not well studied. Quantification of evapotranspiration (ET), tree transpiration and their biophysical regulation are needed for assessing forest water management options. We characterized vertical variation in the diurnal and seasonal soil volumetric water content at 10 cm intervals to evaluate changes in water availability for root uptake and monitored eddy covariance ET and tree transpiration (sap flux) in a drained Loblolly pine (Pinus taeda L.) plantation. We also quantified the magnitude of hydraulic redistribution (HR), the passive movement of soil water from deep to shallow roots, to identify factors affecting the seasonal dynamics of root water uptake, root and plant water potentials and stomatal conductance. Soil water content varied with soil depth and total water use from the upper 1m peaked between 4 and 6.5 mm/day during the growing season and was strongly correlated and similar to ET (ET represented 90-95% of total water depletion). After periods of more than 10 days without rain, water extraction shifted to the deeper layers, and recharge from HR approached 0.5 mm/day in the upper 60 cm. However, the upper 30cm accounted for 40% of total water depletion from the upper 1m at peak water uptake (>4 mm/day), and increased to 65% during days of low water uptake (<2 mm/day), illustrating the contribution of deeper roots to water uptake during days of high evaporative demand. This result was supported by the fact that deep roots (from 30-50cm) accounted for 65% of the total water redistributed. Because of stomatal regulation to prevent water potentials from reaching critical values that would cause significant loss of tree hydraulic conductivity, maximum tree transpiration during high evaporative demand remained constant at around 3 mm/day. Tree transpiration represented on average 60% of ET. However

  10. Crop Residue and Soil Water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop yield is greatly influenced by the amount of water that moves from the soil, through the plant, and out into the atmosphere. Winter wheat yield responds linearly to available soil water content at planting (bu/a = 5.56 + 5.34*inches). Therefore, storing precipitation in the soil during non-crop...

  11. Field study of gravel admix, vegetation, and soil water interactions: Protective Barrier Program Status Reprt - FY 1989

    SciTech Connect

    Waugh, W.J.; Thiede, M.E.; Kemp, C.J.; Cadwell, L.L. Link, S.O.

    1990-08-01

    Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company (Westinghouse Hanford) are collaborating on a field study of the effects of gravel admixtures on plant growth and soil water storage in protective barriers. Protective barriers are engineered earthern covers designed to prevent water, plants, and animals from contacting buried waste and transporting contaminants to groundwater or the land surface. Some of the proposed designs include gravel admixtures or gravel mulches on the barrier surface to control soil loss by wind and runoff. The purpose of this study is to measure, in a field setting, the influence of surface gravel additions on soil water storage and plant cover. The study plots are located northwest of the Yakima Gate in the McGee Ranch old field. Here we report the status of work completed in FY 1989 on the creation of a data management system, a test of water application uniformity, field calibration of neutron moisture gages, and an analysis of the response of plants to various combinations of gravel admixtures and increased rainfall. 23 refs., 11 figs., 6 tabs.

  12. Sources, interactions, and ecological impacts of organic contaminants in water, soil, and sediment: an introduction to the special series.

    PubMed

    Pignatello, Joseph J; Katz, Brian G; Li, Hui

    2010-01-01

    Agricultural and urban activities result in the release of a large number of organic compounds that are suspected of impacting human health and ecosystems: herbicides, insecticides, human and veterinary pharmaceuticals, natural and synthetic hormones, personal care products, surfactants, plasticizers, fire retardants, and others. Sorbed reservoirs of these compounds in soil represent a potentially chronic source of water contamination. This article is an introduction to a series of technical papers stemming from a symposium at the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America 2008 Annual Meeting, which was held jointly with The Geological Society of America, The Gulf Coast Association of Geological Scientists, and the Houston Geological Society, under one of the Joint Meeting's overarching themes: Emerging Trace Contaminants in Surface and Ground Water Generated from Waste Water and Solid Waste Application. The symposium emphasized the role of soils as sources, sinks, and reaction catalysts for these contaminants and the occurrence and fate of these contaminants in surface and underground water supplies. Topics covered included novel advances in analytical techniques, transport of infectious agents, occurrence and fate of veterinary pharmaceuticals, characterization of sorption mechanism, biotic and abiotic transformation reactions, the role of soil components, occurrence and fate in wastewater treatment systems, transport of engineered nanoparticles, groundwater contamination resulting from urban runoff, and issues in water reuse. Overviews of the reports, trends, gaps in our knowledge, and topics for further research are presented in this special series of papers. The technical papers in this special series reflect current gains in knowledge and simultaneously underscore how poorly we are able to predict the fate and, hence, the associated risk to ecological and human receptors of these contaminants.

  13. Soil and Human Interactions in Maya Wetlands

    NASA Astrophysics Data System (ADS)

    Beach, Timothy; Luzzadder-Beach, Sheryl

    2013-04-01

    Since the early 1990s, we have studied Maya interaction with soils in Mexico, Belize, Guatemala, and elsewhere. We studied upland and lowland soils, but here we focus on seasonal or 'Bajo' wetlands and perennial wetlands for different reasons. Around the bajos, the ancient Maya focused on intensive agriculture and habitation despite the difficulties their Vertisol soils posed. For the perennial wetlands, small populations spread diffusely through Mollisol and Histisol landscapes with large scale, intensive agro-ecosystems. These wetlands also represent important repositories for both environmental change and how humans responded in situ to environmental changes. Work analyzing bajo soils has recorded significant diversity but the soil and sediment record shows two main eras of soil instability: the Pleistocene-Holocene transition as rainfall fluctuated and increased and tropical forest pulsed through the region, and the Maya Preclassic to Classic 3000 to 1000 BP as deforestation, land use intensity, and drying waxed and waned. The ancient Maya adapted their bajo soil ecosystems successfully through agro-engineering but they also withdrew in many important places in the Late Preclassic about 2000 BP and Terminal Classic about 1200 BP. We continue to study and debate the importance of perennial wetland agro-ecosystems, but it is now clear that Maya interaction with these soil landscapes was significant and multifaceted. Based on soil excavation and coring with a broad toolkit of soil stratigraphy, chemistry, and paleoecology from 2001 to 2013, our results show the ancient Maya interacted with their wetland soils to maintain cropland for maize, tree crops, arrow root, and cassava against relative sea level rise, increased flooding, and aggradation by gypsum precipitation and sedimentation. We have studied these interactions across an area of 2000 km2 in Northern Belize to understand how Maya response varied and how these soil environments varied over time and distance

  14. Application of time-lapse ERT to Characterize Soil-Water-Disease Interactions of Citrus Orchard - Case Study

    NASA Astrophysics Data System (ADS)

    Peddinti, S. R.; Kbvn, D. P.; Ranjan, S.; Suradhaniwar, S.; J, P. A.; R M, G.

    2015-12-01

    Vidarbha region in Maharashtra, India (home for mandarin Orange) experience severe climatic uncertainties resulting in crop failure. Phytopthora are the soil-borne fungal species that accumulate in the presence of moisture, and attack the root / trunk system of Orange trees at any stage. A scientific understanding of soil-moisture-disease relations within the active root zone under different climatic, irrigation, and crop cycle conditions can help in practicing management activities for improved crop yield. In this study, we developed a protocol for performing 3-D time-lapse electrical resistivity tomography (ERT) at micro scale resolution to monitor the changes in resistivity distribution within the root zone of Orange trees. A total of 40 electrodes, forming a grid of 3.5 m x 2 m around each Orange tree were used in ERT survey with gradient and Wenner configurations. A laboratory test on un-disturbed soil samples of the region was performed to plot the variation of electrical conductivity with saturation. Curve fitting techniques were applied to get the modified Archie's model parameters. The calibrated model was further applied to generate the 3-D soil moisture profiles of the study area. The point estimates of soil moisture were validated using TDR probe measurements at 3 different depths (10, 20, and 40 cm) near to the root zone. In order to understand the effect of soil-water relations on plant-disease relations, we performed ERT analysis at two locations, one at healthy and other at Phytopthora affected Orange tree during the crop cycle, under dry and irrigated conditions. The degree to which an Orange tree is affected by Phytopthora under each condition is evaluated using 'grading scale' approach following visual inspection of the canopy features. Spatial-temporal distribution of moisture profiles is co-related with grading scales to comment on the effect of climatic and irrigation scenarios on the degree and intensity of crop disease caused by Phytopthora.

  15. Quantitative simulation tools to analyze up- and downstream interactions of soil and water conservation measures: supporting policy making in the Green Water Credits program of Kenya.

    PubMed

    Hunink, J E; Droogers, P; Kauffman, S; Mwaniki, B M; Bouma, J

    2012-11-30

    Upstream soil and water conservation measures in catchments can have positive impact both upstream in terms of less erosion and higher crop yields, but also downstream by less sediment flow into reservoirs and increased groundwater recharge. Green Water Credits (GWC) schemes are being developed to encourage upstream farmers to invest in soil and water conservation practices which will positively effect upstream and downstream water availability. Quantitative information on water and sediment fluxes is crucial as a basis for such financial schemes. A pilot design project in the large and strategically important Upper-Tana Basin in Kenya has the objective to develop a methodological framework for this purpose. The essence of the methodology is the integration and use of a collection of public domain tools and datasets: the so-called Green water and Blue water Assessment Toolkit (GBAT). This toolkit was applied in order to study different options to implement GWC in agricultural rainfed land for the pilot study. Impact of vegetative contour strips, mulching, and tied ridges were determined for: (i) three upstream key indicators: soil loss, crop transpiration and soil evaporation, and (ii) two downstream indicators: sediment inflow in reservoirs and groundwater recharge. All effects were compared with a baseline scenario of average conditions. Thus, not only actual land management was considered but also potential benefits of changed land use practices. Results of the simulations indicate that especially applying contour strips or tied ridges significantly reduces soil losses and increases groundwater recharge in the catchment. The model was used to build spatial expressions of the proposed management practices in order to assess their effectiveness. The developed procedure allows exploring the effects of soil conservation measures in a catchment to support the implementation of GWC.

  16. Container Soil-Water Reactions.

    ERIC Educational Resources Information Center

    Spomer, L. Art; Hershey, David R.

    1990-01-01

    Presented is an activity that illustrates the relationship between the soil found in containers and soil in the ground including the amount of air and water found in each. Sponges are used to represent soil. Materials, procedures, and probable results are described. (KR)

  17. Investigation of soil-atmosphere interaction in pyroclastic soils

    NASA Astrophysics Data System (ADS)

    Rianna, Guido; Pagano, Luca; Urciuoli, Gianfranco

    2014-03-01

    This paper investigates the interaction between soil and atmosphere in pyroclastic soils with a view to understanding whether and to what extent the prediction of the hydraulic (and mechanical) behaviour of geotechnical problems (cuts, slope stabilities, embankments, foundation, retaining structures) regulated by rainfall-induced fluctuations of matric suction is influenced by evaporation phenomena. Evaporation fluxes are quantified and compared with other fluxes (precipitation, run-off, deep drainage) affecting soil water content and matric suction. This work is based on the data collected through a physical model over 2 years of experimental tests. The model consisted of a 1 m3 tank, filled in this case with pyroclastic soil and exposed to natural weather elements. The system was extensively monitored to record atmospheric and soil variables. The results provided by the experiments highlight the importance of the top-soil state in determining the intensities of infiltrating rainfall and actual evaporation. The results also bring to light the significance of evaporation which, during the dry season, largely prevails over infiltration, raising suction to very high values. Also during the wet season, evaporation gives rise to a non-negligible flux with respect to the infiltrated precipitation. The reliability of two pre-existing empirical models to estimate evaporation flux is also investigated and appraised within this paper.

  18. A new model for humic materials and their interactions with hydrophobic organic chemicals in soil-water or sediment-water systems

    USGS Publications Warehouse

    Wershaw, R. L.

    1986-01-01

    A generalized model of humic materials in soils and sediments, which is consistent with their observed properties, is presented. This model provides a means of understanding the interaction of hydrophobic pollutants with humic materials. In this model, it is proposed that the humic materials in soils and sediments consist of a number of different oligomers and simple compounds which result from the partial degradation of plant remains. These degradation products are stabilized by incorporation into humic aggregates bound together by weak bonding mechanisms, such as hydrogen bonding, pi bonding, and hydrophobic interactions. The resulting structures are similar to micelles or membranes, in which the interiors of the structures are hydrophobic and the exteriors are hydrophilic. Hydrophobic compounds will partition into the hydrophobic interiors of the humic micelles or "membrane-like" structures. ?? 1986.

  19. Soil and Water: Some Teaching Suggestions.

    ERIC Educational Resources Information Center

    Fischer, Richard B.

    1987-01-01

    Outlines six soil and water investigations that students can pursue outdoors, in nature centers, or in classrooms: soil characteristics; relationship between soil ph and plant life; what aggregates tell us; differences in soil structure; differences in rate of water absorption by soil; and soil exploration with a Berlesi funnel. (NEC)

  20. Profiling soil water content sensor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A waveguide-on-access-tube (WOAT) sensor system based on time domain reflectometry (TDR) principles was developed to sense soil water content and bulk electrical conductivity in 20-cm (8 inch) deep layers from the soil surface to depths of 3 m (10 ft) (patent No. 13/404,491 pending). A Cooperative R...

  1. Interactive response of photosynthetic characteristics in Haloxylon ammodendron and Hedysarum scoparium exposed to soil water and air vapor pressure deficits.

    PubMed

    Gong, Chunmei; Wang, Jiajia; Hu, Congxia; Wang, Junhui; Ning, Pengbo; Bai, Juan

    2015-08-01

    C4 plants possess better drought tolerance than C3 plants. However, Hedysarum scoparium, a C3 species, is dominant and widely distributed in the desert areas of northwestern China due to its strong drought tolerance. This study compared it with Haloxylon ammodendron, a C4 species, regarding the interactive effects of drought stress and different leaf-air vapor pressure deficits. Variables of interest included gas exchange, the activity levels of key C4 photosynthetic enzymes, and cellular anatomy. In both species, gas exchange parameters were more sensitive to high vapor pressure deficit than to strong water stress, and the net CO2 assimilation rate (An) was enhanced as vapor pressure deficits increased. A close relationship between An and stomatal conductance (gs) suggested that the species shared a similar response mechanism. In H. ammodendron, the activity levels of key C4 enzymes were higher, including those of phosphoenolpyruvate carboxylase (PEPC) and nicotinamide adenine dinucleotide phosphate-malate enzyme (NADP-ME), whereas in H. scoparium, the activity level of nicotinamide adenine dinucleotide-malate enzyme (NAD-ME) was higher. Meanwhile, H. scoparium utilized adaptive structural features, including a larger relative vessel area and a shorter distance from vein to stomata, which facilitated the movement of water. These findings implied that some C4 biochemical pathways were present in H. scoparium to respond to environmental challenges.

  2. Estimating root zone soil water content using limited soils information and surface soil moisture data assimilation

    NASA Astrophysics Data System (ADS)

    Heathman, Gary Claude

    2001-10-01

    The various hydrologic processes of infiltration, redistribution, drainage, evaporation, and water uptake by plants are strongly interdependent, as they occur sequentially or simultaneously. An important state variable that strongly influences the magnitude to which these rate processes occur is the amount of water present within the root zone, and in particular, the top few centimeters near the soil surface. Traditionally, measurements of soil moisture have been limited to point measurements made in the field. In general, averages of point measurements are used to characterize the soil moisture of an area, but these averages seldom yield information that is adequate to characterize large scale hydrologic processes. Recent advancements in remote sensing now make it possible to obtain areal estimates of surface soil moisture. The use of remotely sensed data to estimate surface soil moisture, combined with soil water and hydrologic modeling, provides a unique opportunity to advance our understanding of hydrologic processes at a much larger scale. Standard techniques for measuring soil moisture have been well documented, with commercial instrumentation being widely available. Various computer models have been developed to estimate soil moisture in the root and vadose zone, although their application over large scales is limited due to varying spatial and temporal field conditions. It is the combination of ground-based data (in-situ measurements), near-surface soil moisture data, and modeling that form the basis for this research. The interactive use of field research, remote sensing ground truth data, and integrated systems modeling is used to describe surface and profile soil moisture conditions at several locations within a large watershed. Successful application of this approach should improve our capabilities for estimating soil hydraulic properties and to better estimate water and chemical transport in the root zone, thus enhancing water use efficiency and plant

  3. Remote sensing of soil water content at large scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water content at the near surface is a critical parameter for understanding land surface atmosphere interactions, influencing surface energy balances. Using microwave radiometry, an accurate global map of surface soil water content can be generated on a near daily basis. The accuracy of the p...

  4. INTERACTION OF METHYL-TERT BUTYL ETHER AND WATER STRESS ON SEED GERMINATION AND SEEDLING GROWTH IN SOIL MICROCOSMS

    EPA Science Inventory

    Methyl tert-butyl ether (MTBE) is a widespread contaminant in surface and ground water in the United States. Frequently irrigation is used to water fields to germinate planted seeds and sustain plant growth. A likely possibility exists that water used may have some MTBE. Our s...

  5. Analytical solution for soil water redistribution during evaporation process.

    PubMed

    Teng, Jidong; Yasufuku, Noriyuki; Liu, Qiang; Liu, Shiyu

    2013-01-01

    Simulating the dynamics of soil water content and modeling soil water evaporation are critical for many environmental and agricultural strategies. The present study aims to develop an analytical solution to simulate soil water redistribution during the evaporation process. This analytical solution was derived utilizing an exponential function to describe the relation of hydraulic conductivity and water content on pressure head. The solution was obtained based on the initial condition of saturation and an exponential function to model the change of surface water content. Also, the evaporation experiments were conducted under a climate control apparatus to validate the theoretical development. Comparisons between the proposed analytical solution and experimental result are presented from the aspects of soil water redistribution, evaporative rate and cumulative evaporation. Their good agreement indicates that this analytical solution provides a reliable way to investigate the interaction of evaporation and soil water profile.

  6. Tightly bound soil water introduces isotopic memory effects on mobile and extractable soil water pools.

    PubMed

    Newberry, Sarah L; Prechsl, Ulrich E; Pace, Matthew; Kahmen, Ansgar

    2017-03-23

    Cryogenic vacuum extraction is the well-established method of extracting water from soil for isotopic analyses of waters moving through the soil-plant-atmosphere continuum. We investigate if soils can alter the isotopic composition of water through isotope memory effects, and determined which mechanisms are responsible for it. Soils with differing physicochemical properties were re-wetted with reference water and subsequently extracted by cryogenic water distillation. Results suggest some reference waters bind tightly to the soil and not all of this tightly bound water is removed during cryogenic vacuum extraction. Kinetic isotopic fractionation occurring when reference water binds to the soil is likely responsible for the (18)O-depletion of re-extracted reference water, suggesting an enrichment of the tightly bound soil water pool. Further re-wetting of cryogenically extracted soils indicates an isotopic memory effect of tightly bound soil water on water added to the soil. The data suggest tightly bound soil water can influence the isotopic composition of mobile soil water. Findings show that soils influence the isotope composition of soil water by (i) kinetic fractionation when water is bound to the soil and (ii) equilibrium fractionation between different soil water pools. These findings could be relevant for plant water uptake investigations and complicate ecohydrological and paleohydrological studies.

  7. The moisture response of soil heterotrophic respiration: interaction with soil properties

    NASA Astrophysics Data System (ADS)

    Moyano, F. E.; Vasilyeva, N.; Bouckaert, L.; Cook, F.; Craine, J.; Curiel Yuste, J.; Don, A.; Epron, D.; Formanek, P.; Franzluebbers, A.; Ilstedt, U.; Kätterer, T.; Orchard, V.; Reichstein, M.; Rey, A.; Ruamps, L.; Subke, J.-A.; Thomsen, I. K.; Chenu, C.

    2012-03-01

    Soil moisture is of primary importance for predicting the evolution of soil carbon stocks and fluxes, both because it strongly controls organic matter decomposition and because it is predicted to change at global scales in the following decades. However, the soil functions used to model the heterotrophic respiration response to moisture have limited empirical support and introduce an uncertainty of at least 4% in global soil carbon stock predictions by 2100. The necessity of improving the representation of this relationship in models has been highlighted in recent studies. Here we present a data-driven analysis of soil moisture-respiration relations based on 90 soils. With the use of linear models we show how the relationship between soil heterotrophic respiration and different measures of soil moisture is consistently affected by soil properties. The empirical models derived include main effects and moisture interaction effects of soil texture, organic carbon content and bulk density. When compared to other functions currently used in different soil biogeochemical models, we observe that our results can correct biases and reconcile differences within and between such functions. Ultimately, accurate predictions of the response of soil carbon to future climate scenarios will require the integration of soil-dependent moisture-respiration functions coupled with realistic representations of soil water dynamics.

  8. The moisture response of soil heterotrophic respiration: interaction with soil properties

    NASA Astrophysics Data System (ADS)

    Moyano, F. E.; Vasilyeva, N.; Bouckaert, L.; Cook, F.; Craine, J.; Curiel Yuste, J.; Don, A.; Epron, D.; Formanek, P.; Franzluebbers, A.; Ilstedt, U.; Kätterer, T.; Orchard, V.; Reichstein, M.; Rey, A.; Ruamps, L.; Subke, J.-A.; Thomsen, I. K.; Chenu, C.

    2011-12-01

    Soil moisture is of primary importance for predicting the evolution of soil carbon stocks and fluxes, both because it strongly controls organic matter decomposition and because it is predicted to change at global scales in the following decades. However, the soil functions used to model the heterotrophic respiration response to moisture have limited empirical support and introduce an uncertainty of at least 4 % in global soil carbon stock predictions by 2100. The necessity of improving the representation of this relationship in models has been highlighted in recent studies. Here we present a data-driven analysis of soil moisture-respiration relations based on 90 soils. With the use of linear models we show how the relationship between soil heterotrophic respiration and different measures of soil moisture is consistently affected by soil properties. The empirical models derived include main and moisture interaction effects of soil texture, organic carbon content and bulk density. When compared to other functions currently used in different soil biogeochemical models, we observe that our results can correct biases and reconcile differences within and between such functions. Ultimately, accurate predictions of the response of soil carbon to future climate scenarios will require the integration of soil-dependent moisture-respiration functions coupled with realistic representations of soil water dynamics.

  9. Simulations and field observations of root water uptake in plots with different soil water availability.

    NASA Astrophysics Data System (ADS)

    Cai, Gaochao; Vanderborght, Jan; Couvreur, Valentin; Javaux, Mathieu; Vereecken, Harry

    2015-04-01

    Root water uptake is a main process in the hydrological cycle and vital for water management in agronomy. In most models of root water uptake, the spatial and temporal soil water status and plant root distributions are required for water flow simulations. However, dynamic root growth and root distributions are not easy and time consuming to measure by normal approaches. Furthermore, root water uptake cannot be measured directly in the field. Therefore, it is necessary to incorporate monitoring data of soil water content and potential and root distributions within a modeling framework to explore the interaction between soil water availability and root water uptake. But, most models are lacking a physically based concept to describe water uptake from soil profiles with vertical variations in soil water availability. In this contribution, we present an experimental setup in which root development, soil water content and soil water potential are monitored non-invasively in two field plots with different soil texture and for three treatments with different soil water availability: natural rain, sheltered and irrigated treatment. Root development is monitored using 7-m long horizontally installed minirhizotubes at six depths with three replicates per treatment. The monitoring data are interpreted using a model that is a one-dimensional upscaled version of root water uptake model that describes flow in the coupled soil-root architecture considering water potential gradients in the system and hydraulic conductances of the soil and root system (Couvreur et al., 2012). This model approach links the total root water uptake to an effective soil water potential in the root zone. The local root water uptake is a function of the difference between the local soil water potential and effective root zone water potential so that compensatory uptake in heterogeneous soil water potential profiles is simulated. The root system conductance is derived from inverse modelling using

  10. How soil organic matter composition controls hexachlorobenzene-soil-interactions: adsorption isotherms and quantum chemical modeling.

    PubMed

    Ahmed, Ashour A; Kühn, Oliver; Aziz, Saadullah G; Hilal, Rifaat H; Leinweber, Peter

    2014-04-01

    Hazardous persistent organic pollutants (POPs) interact in soil with the soil organic matter (SOM) but this interaction is insufficiently understood at the molecular level. We investigated the adsorption of hexachlorobenzene (HCB) on soil samples with systematically modified SOM. These samples included the original soil, the soil modified by adding a hot water extract (HWE) fraction (soil+3 HWE and soil+6 HWE), and the pyrolyzed soil. The SOM contents increased in the order pyrolyzed soilsoil+3 HWE<soil+6 HWE. For the latter three samples this order was also valid for the HCB adsorption. The pyrolyzed soil adsorbed more HCB than the other samples at low initial concentrations, but at higher concentrations the HCB adsorption became weaker than in the samples with HWE addition. This adsorption combined with the differences in the chemical composition between the soil samples suggested that alkylated aromatic, phenol, and lignin monomer compounds contributed most to the HCB adsorption. To obtain a molecular level understanding, a test set has been developed on the basis of elemental analysis which comprises 32 representative soil constituents. The calculated binding energy for HCB with each representative system shows that HCB binds to SOM stronger than to soil minerals. For SOM, HCB binds to alkylated aromatic, phenols, lignin monomers, and hydrophobic aliphatic compounds stronger than to polar aliphatic compounds confirming the above adsorption isotherms. Moreover, quantitative structure-activity relationship (QSAR) of the binding energy with independent physical properties of the test set systems for the first time indicated that the polarizability, the partial charge on the carbon atoms, and the molar volume are the most important properties controlling HCB-SOM interactions.

  11. A review on temporal stability of soil water contents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temporal stability of soil water content (TS SWC) has been observed across a wide range of soil types, landscapes, climates and scales. A better understanding of TS SWC controls and their interactions needs to be developed. The objective of this work is to develop a comprehensive inventory of publis...

  12. Microwave remote sensing of soil water content

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Ulaby, F. T.

    1975-01-01

    Microwave remote sensing of soils to determine water content was considered. A layered water balance model was developed for determining soil water content in the upper zone (top 30 cm), while soil moisture at greater depths and near the surface during the diurnal cycle was studied using experimental measurements. Soil temperature was investigated by means of a simulation model. Based on both models, moisture and temperature profiles of a hypothetical soil were generated and used to compute microwave soil parameters for a clear summer day. The results suggest that, (1) soil moisture in the upper zone can be predicted on a daily basis for 1 cm depth increments, (2) soil temperature presents no problem if surface temperature can be measured with infrared radiometers, and (3) the microwave response of a bare soil is determined primarily by the moisture at and near the surface. An algorithm is proposed for monitoring large areas which combines the water balance and microwave methods.

  13. Soil Water and Temperature System (SWATS) Handbook

    SciTech Connect

    Bond, D

    2005-01-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the SGP climate research site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  14. Biophysical interactions between plant and soil: theory and practice

    NASA Astrophysics Data System (ADS)

    van der Ploeg, Martine

    2016-04-01

    Vegetation plays an essential role in the hydrological cycle, as it regulates the water flux to the atmosphere through evapotranspiration, while it is dependent on adequate water supply. Vegetation shapes the land surface by changing infiltration characteristics as a result of root growth, and controls soil moisture storage, which in turn affect runoff characteristics and groundwater recharge. Vegetation and the underlying geology are in constant interaction, wherein water plays a key role. The resilience of the coupled vegetation-soil system critically depends on its sensitivity to environmental changes. Models are a useful tool to explore interaction and feedbacks between vegetation, soil and landscape. Plants respond biochemically to their environment, while the models used for hydrology are often based on physical interactions. Gene-expression and genotype adaptation may complicate our modelling efforts in for example climate change impacts. Combination of new techniques to assess soil and plant properties facilitates assessment of biophysical interactions. This poster will review these techniques and compare the obtained insights of soil-plant relationships with the current modeling approaches.

  15. Interactive computer code for dynamic and soil structure interaction analysis

    SciTech Connect

    Mulliken, J.S.

    1995-12-01

    A new interactive computer code is presented in this paper for dynamic and soil-structure interaction (SSI) analyses. The computer program FETA (Finite Element Transient Analysis) is a self contained interactive graphics environment for IBM-PC`s that is used for the development of structural and soil models as well as post-processing dynamic analysis output. Full 3-D isometric views of the soil-structure system, animation of displacements, frequency and time domain responses at nodes, and response spectra are all graphically available simply by pointing and clicking with a mouse. FETA`s finite element solver performs 2-D and 3-D frequency and time domain soil-structure interaction analyses. The solver can be directly accessed from the graphical interface on a PC, or run on a number of other computer platforms.

  16. Mechanics of wheel-soil interaction

    NASA Technical Reports Server (NTRS)

    Houland, H. J.

    1973-01-01

    An approximate theory for wheel-soil interaction is presented which forms the basis for a practical solution to the problem. It is shown that two fundamental observations render the problem determinate: (1) The line of action of the resultant of radial stresses acting at the wheel soil interface approximately bisects the wheel-soil contact angle for all values of slip. (2) A shear stress surface can be hypothesized. The influence of soil inertia forces is also evaluated. A concept of equivalent cohesion is introduced which allows a convenient experimental comparison for both cohesive and frictional soils. This theory compares favorably with previous analyses and experimental data, and shows that soil inertia forces influencing the motion of a rolling wheel can be significant.

  17. Data assimilation with soil water content sensors and pedotransfer functions in soil water flow modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water flow models are based on a set of simplified assumptions about the mechanisms, processes, and parameters of water retention and flow. That causes errors in soil water flow model predictions. Soil water content monitoring data can be used to reduce the errors in models. Data assimilation (...

  18. Modeling the soil system: Bridging the gap between pedology and soil-water physics

    NASA Astrophysics Data System (ADS)

    Braudeau, Erik; Mohtar, Rabi H.

    2009-05-01

    The biological and geochemical processes in soil such as organic matter mineralization, microbiological activity, and plant alimentation can be accurately assessed and modeled only with the knowledge of the thermodynamic status of the soil medium where these processes take place. However, current soil water models do not define and characterize the soil structure or the thermodynamic state of the soil water interacting with this structure. This article presents a new paradigm in characterizing and modeling the organized soil medium and the physical properties resulting from this organization. It describes a framework of the modeling approach as a contribution to the General Systems theory. The basic concept of Representative Elementary Volume (REV) in soil physics and hydrology was transformed into the concept of Structure Representative Volume (SREV) which takes into account the hierarchical organization of the structured soil medium. The pedostructure is defined as the SREV of the soil medium and this concept is at the basis of the new paradigm including variables, equations, parameters, and units in soil physics, in a similar way that the REV is at the basis of the continuous porous media mechanics applied to soils. The paradigm allows for a thermodynamic characterization of the structured soil medium with respect to soil water content then bridging the gap between pedology and soil physics. We show that the two points of view (REV and SREV) are complementary and must be used in the scaling of information. This approach leads to a new dimension in soil-water properties characterization that ensures a physically based modeling of processes in soil and the transfer of information from the physical scale of processes (pedostructure or laboratory measurements scale) to the application scale of the other disciplines (modeling and mapping scale).

  19. Interaction between BSM-contaminated soils and Italian ryegrass.

    PubMed

    Li, Huashou; Li, Na; Lin, Chuxia; He, Hongzhi; Chen, Guikui

    2012-01-01

    The interaction among the bensulfuron-methyl, growth of Italian ryegrass, and soil chemical/biochemical/microbiological parameters was investigated in a microcosm experiment. The bensulfuron-methyl added to the soil can be rapidly degraded by certain fungi and actinomycetes present in the original paddy rice soil. The growth of Italian ryegrass significantly accelerated the in-soil degradation of bensulfuron-methyl in its rhizosphere. The uptake of bensulfuron-methyl by ryegrass increased with increasing dosage level of bensulfuron-methyl. However, the phytoextraction of bensulfuron-methyl by ryegrass contributed insignificantly to the total removal of the soil bensulfuron-methyl. Within the dosage range set in this study, the root development of ryegrass was not adversely affected by the presence of the soil bensulfuron-methyl although the fresh biomass of shoot was slightly reduced in the higher dosage treatments. This can be attributed to the adsorption of the added bensulfuron-methyl by soil colloids and consequently the reduction of bensulfuron-methyl level in the soil pore water to a concentration sufficiently lower than the toxic level. The growth of ryegrass significantly increased soil pH and the activities of phosphatase and peroxidase but reduced the EC and the activities of urease in the rhizospheric soil.

  20. Dynamic Soil-Structure Interaction Behavior on the Seafloor

    DTIC Science & Technology

    1988-08-01

    34 - .. .-- -- , ,.,m .-- l I ,li m~ii, ; li. ,m,, l l ~ l l l ~i- Forword DyA~mic Soil-Structure Interaction (S-SI) behavior on the sea floor describes the...using Fast Fourier and profile C has all strengths increased by 3-1/3. The Transform methods. The second advantage of the pro- actual water depth at

  1. Comparison of soil water potential sensors

    NASA Astrophysics Data System (ADS)

    Degre, Aurore; van der Ploeg, Martine; Caldwell, Todd; Gooren, Harm

    2015-04-01

    Temporal and spatial monitoring of soil water potential and soil water content are necessary for quantifying water flow in the domains of hydrology, soil science and crop production as knowledge of the soil water retention curve is important for solving Richards' equation. Numerous measurement techniques exist nowadays that use various physical properties of the soil-water complex to record changes in soil water content or soil water potential. Laboratory techniques are very useful to determine static properties of the soil water retention curve, and have been used to show the impacts of hysteresis. Yet, other spatiotemporal dynamics resulting from for example growing root systems, biological activity, periodic tillage and their impact on the soil structure cannot satisfactory be quantified in static setups in the laboratory. ). To be able to quantify the influence of soil heterogeneity, and spatiotemporal dynamics on the soil water retention curve, an in situ approach combining soil moisture and soil water potential measurements could provide useful data. Such an in situ approach would require sensors that can measure a representative part of the soil water retention curve. The volumetric soil water content is often measured using time domain reflectometry, and has gained widespread acceptance as a standard electronic means of volumetric water content measurement. To measure the soil water potential, water filled tensiometers are used in most studies. Unfortunately, their range remains limited due to cavitation. Recently, several new sensors for use under in situ conditions have been proposed to cover a wider range of pressure head: Polymer tensiometers, MPS (Decagon) and pF-meter (ecoTech). In this study, we present the principles behind each measurement technique. Then we present the results of a fully controlled experiment where we compared two MPS sensors, two pF-meter sensors and two POT sensors in the same repacked soil. It allows us to discuss advantages

  2. Least limiting water range of soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The least limiting water range (LLWR) has been developed as an index of the soil structural quality. The LLWR was defined as the region bounded by the upper and lower soil water content over which water, oxygen, and mechanical resistance become major limitations for root growth. Thus, it combines th...

  3. A modified soil water based Richards equation for layered soils

    NASA Astrophysics Data System (ADS)

    Kalinka, F.; Ahrens, B.

    2010-09-01

    Most Soil-Vegetation-Atmosphere-Transfer (SVAT) models like TERRA-ML (implemented e.g. in the CCLM model (www.clm-community.eu)) use the soil moisture based Richards equation to simulate vertical water fluxes in soils, assuming a homogeneous soil type. Recently, high-resolution soil type datasets (e.g. BüK 1000, only for Germany (Federal Institute for Geosciences and Natural Resources, BGR, www.bgr.bund.de) or Harmonized World Soil Database (HWSD, version 1.1, FAO/IIASA/ISRIC/ISSCAS/JRC, March 2009)) have been developed. Deficiencies in the numerical solution of the soil moisture based Richards equation may occur if inhomogeneous soil type data is implemented, because there are possibly discontinuities in soil moisture due to various soil type characteristics. One way to fix this problem is to use the potential based Richards equation, but this may lead to problems in conservation of mass. This presentation will suggest a possible numerical solution of the soil moisture based Richards equation for inhomogeneous soils. The basic idea is to subtract the equilibrium state of it from soil moisture fluxes. This should reduce discontinuities because each soil layer aspires the equilibrium state and therefore differences might be of the same order. First sensitivity studies have been done for the Main river basin, Germany.

  4. Current advancements and challenges in soil-root interactions modelling

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Huber, Katrin; Abesha, Betiglu; Meunier, Felicien; Leitner, Daniel; Roose, Tiina; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry

    2015-04-01

    Roots change their surrounding soil chemically, physically and biologically. This includes changes in soil moisture and solute concentration, the exudation of organic substances into the rhizosphere, increased growth of soil microorganisms, or changes in soil structure. The fate of water and solutes in the root zone is highly determined by these root-soil interactions. Mathematical models of soil-root systems in combination with non-invasive techniques able to characterize root systems are a promising tool to understand and predict the behaviour of water and solutes in the root zone. With respect to different fields of applications, predictive mathematical models can contribute to the solution of optimal control problems in plant recourse efficiency. This may result in significant gains in productivity, efficiency and environmental sustainability in various land use activities. Major challenges include the coupling of model parameters of the relevant processes with the surrounding environment such as temperature, nutrient concentration or soil water content. A further challenge is the mathematical description of the different spatial and temporal scales involved. This includes in particular the branched structures formed by root systems or the external mycelium of mycorrhizal fungi. Here, reducing complexity as well as bridging between spatial scales is required. Furthermore, the combination of experimental and mathematical techniques may advance the field enormously. Here, the use of root system, soil and rhizosphere models is presented through a number of modelling case studies, including image based modelling of phosphate uptake by a root with hairs, model-based optimization of root architecture for phosphate uptake from soil, upscaling of rhizosphere models, modelling root growth in structured soil, and the effect of root hydraulic architecture on plant water uptake efficiency and drought resistance.

  5. Current Advancements and Challenges in Soil-Root Interactions Modelling

    NASA Astrophysics Data System (ADS)

    Schnepf, A.; Huber, K.; Abesha, B.; Meunier, F.; Leitner, D.; Roose, T.; Javaux, M.; Vanderborght, J.; Vereecken, H.

    2014-12-01

    Roots change their surrounding soil chemically, physically and biologically. This includes changes in soil moisture and solute concentration, the exudation of organic substances into the rhizosphere, increased growth of soil microorganisms, or changes in soil structure. The fate of water and solutes in the root zone is highly determined by these root-soil interactions. Mathematical models of soil-root systems in combination with non-invasive techniques able to characterize root systems are a promising tool to understand and predict the behaviour of water and solutes in the root zone. With respect to different fields of applications, predictive mathematical models can contribute to the solution of optimal control problems in plant recourse efficiency. This may result in significant gains in productivity, efficiency and environmental sustainability in various land use activities. Major challenges include the coupling of model parameters of the relevant processes with the surrounding environment such as temperature, nutrient concentration or soil water content. A further challenge is the mathematical description of the different spatial and temporal scales involved. This includes in particular the branched structures formed by root systems or the external mycelium of mycorrhizal fungi. Here, reducing complexity as well as bridging between spatial scales is required. Furthermore, the combination of experimental and mathematical techniques may advance the field enormously. Here, the use of root system, soil and rhizosphere models is presented through a number of modelling case studies, including image based modelling of phosphate uptake by a root with hairs, model-based optimization of root architecture for phosphate uptake from soil, upscaling of rhizosphere models, modelling root growth in structured soil, and the effect of root hydraulic architecture on plant water uptake efficiency and drought resistance.

  6. Uptake and Hydraulic Redistribution of Soil Water in a Natural Forested Wetland and in two Contrasting Drained Loblolly Pine Plantations: Quantifying Patterns over Soil-to-Root and Canopy-to-Atmosphere Interactions

    NASA Astrophysics Data System (ADS)

    Domec, J.; King, J. S.; Noormets, A.; Sun, G.; McNulty, S. G.; Gavazzi, M. G.; Treasure, E.; Boggs, J. L.

    2009-05-01

    The conversion of wetlands to intensively managed forest lands in eastern North Carolina is widespread and the consequences on water and carbon balances are not well studied. Quantification of evapotranspiration (ET), tree transpiration and their biophysical regulation are needed for assessing forest water management options. We characterized vertical variation in the diurnal and seasonal soil volumetric water content at 10 cm intervals to evaluate changes in water availability for root uptake and monitored eddy covariance ET and tree transpiration (sap flux) in three contrasting loblolly pine (Pinus taeda L.) stands. Those stands included a 50- yr-old wetland natural regeneration (NG), a 17-yr-old drained mid-rotation plantation (MP) and a 5-yr-old drained plantation (YP) in eastern North Carolina. We also quantified the magnitude of hydraulic redistribution (HR), the passive movement of soil water from deep to shallow roots, to identify factors affecting the seasonal dynamics of root water uptake, root and plant water potentials and stomatal conductance. In NG, soil water content was always at full saturation and total tree water use peaked between 6-7 mm/day, and this stand was used as reference. In MP, soil water content varied with soil depth and total water use from the upper 1m peaked between 4 and 6.5 mm/day during the growing season and was strongly correlated and similar to ET (ET represented 90-95% of total water depletion). In YP, soil water used was limited to the upper 30 cm and was strongly affected by summer drought by declining progressively from 0.9 mm/day in spring to 0.4 m/day in September. After periods of more than 10 days without rain, water extraction in MP shifted to the deeper layers, and recharge from HR approached 20% of ET. During days of high evaporative demand, water use in MP was comparable to NG thanks to HR and to the contribution of deeper roots to water uptake. In YP, HR never contributed for more than 8% of ET. There was no HR

  7. Seasonal and long-term effects of CO2 and O3 on water loss in ponderosa pine and their interaction with climate and soil moisture.

    PubMed

    Lee, E Henry; Tingey, David T; Waschmann, Ronald S; Phillips, Donald L; Olszyk, David M; Johnson, Mark G; Hogsett, William E

    2009-11-01

    Evapotranspiration (ET) is driven by evaporative demand, available solar energy and soil moisture (SM) as well as by plant physiological activity which may be substantially affected by elevated CO2 and O3. A multi-year study was conducted in outdoor sunlit-controlled environment mesocosm containing ponderosa pine seedlings growing in a reconstructed soil-litter system. The study used a 2 x 2 factorial design with two concentrations of CO2 (ambient and elevated), two levels of O3 (low and high) and three replicates of each treatment. The objective of this study was to assess the effects of chronic exposure to elevated CO2 and O3, alone and in combination, on daily ET. This study evaluated three hypotheses: (i) because elevated CO2 stimulates stomatal closure, O3 effects on ET will be less under elevated CO2 than under ambient CO2; (ii) elevated CO2 will ameliorate the long-term effects of O3 on ET; and (iii) because conductance (g) decreases with decreasing SM, the impacts of elevated CO2 and O3, alone and in combination, on water loss via g will be greater in early summer when SM is not limiting than to other times of the year. A mixed-model covariance analysis was used to adjust the daily ET for seasonality and the effects of SM and photosynthetically active radiation when testing for the effects of CO2 and O3 on ET via the vapor pressure deficit gradient. The empirical results indicated that the interactive stresses of elevated CO2 and O3 resulted in a lesser reduction in ET via reduced canopy conductance than the sum of the individual effects of each gas. CO2-induced reductions in ET were more pronounced when trees were physiologically most active. O3-induced reductions in ET under ambient CO2 were likely transpirational changes via reduced conductance because needle area and root biomass were not affected by exposures to elevated O3 in this study.

  8. Numerical analysis of soil-structure interaction

    NASA Astrophysics Data System (ADS)

    Vanlangen, Harry

    1991-05-01

    A study to improve some existing procedures for the finite element analysis of soil deformation and collapse is presented. Special attention is paid to problems of soil structure interaction. Emphasis is put on the behavior of soil rather than on that of structures. This seems to be justifiable if static interaction of stiff structures and soft soil is considered. In such a case nonlinear response will exclusively stem from soil deformation. In addition, the quality of the results depends to a high extent on the proper modeling of soil flow along structures and not on the modeling of the structure itself. An exception is made when geotextile reinforcement is considered. In that case the structural element, i.e., the geotextile, is highly flexible. The equation of continuum equilibrium, which serves as a starting point for the finite element formulation of large deformation elastoplasticity, is discussed with special attention being paid to the interpretation of some objective stress rate tensors. The solution of nonlinear finite element equations is addressed. Soil deformation in the prefailure range is discussed. Large deformation effect in the analysis of soil deformation is touched on.

  9. Ecohydrological interactions between soil and trees in Alpine apple orchards

    NASA Astrophysics Data System (ADS)

    Penna, Daniele; Scandellari, Francesca; Zanotelli, Damiano; Michael, Engel; Tagliavini, Massimo; Comiti, Francesco

    2016-04-01

    Tracer-based investigations of water exchanges between soil and trees in natural forested catchments are receiving relevant attention in modern ecohydrology. However, the interactions between tree water use and the hydrological cycle in agricultural environments are still poorly understood. In this work, we use stable isotopes of water (2H and 18O) and electric conductivity as tracers to improve our understanding of the functional interrelations between water generating surface runoff and recharging groundwater, and water taken up by apple trees (Malus domestica, cv. 'Pinova') in an Alpine valley in South Tyrol, Northern Italy. From April to October 2015 we monitored two orchards approximately of the same size (roughly 400 m2) and soil texture (silt loam) located in a flat area at different distance from the Adige/Etsch River (50 m vs. 450 m). We have addressed the following questions: i) at which soil depth do apple trees take up water? ii) do apple trees take up water from shallow groundwater? iii) are there differences in the isotopic composition of the water fluxes between the two sites? Samples for isotopic analysis were taken approximately fortnightly from the river, two groundwater wells close to each field, mobile soil water (from suction cups at 25 cm and 50 cm), open area precipitation, throughfall, irrigation and sap (through a portable pressure bomb). Tightly-bound soil water was also cryogenically extracted from samples taken every 10 cm from 60 cm-long soil cores taken at three locations for each field on one occasion in mid-summer. Ancillary measurements were electrical conductivity of all water sources except for sap. In addition to meteorological and discharge data, soil moisture was continuously measured at 10 cm and 50 cm in three locations, and sap flow on three trees, for each field. Preliminary results show that two water pools with distinct isotopic signature exist: i) river water, groundwater and irrigation water show values relatively

  10. Interactive effects of ozone and climate on water use, soil moisture content and streamflow in a southern Appalachian forest in the USA.

    PubMed

    McLaughlin, S B; Wullschleger, S D; Sun, G; Nosal, M

    2007-01-01

    * Documentation of the degree and direction of effects of ozone on transpiration of canopies of mature forest trees is critically needed to model ozone effects on forest water use and growth in a warmer future climate. * Patterns of sap flow in stems and soil moisture in the rooting zones of mature trees, coupled with late-season streamflow in three forested watersheds in east Tennessee, USA, were analyzed to determine relative influences of ozone and other climatic variables on canopy physiology and streamflow patterns. * Statistically significant increases in whole-tree canopy conductance, depletion of soil moisture in the rooting zone, and reduced late-season streamflow in forested watersheds were detected in response to increasing ambient ozone levels. * Short-term changes in canopy water use and empirically modeled streamflow patterns over a 23-yr observation period suggest that current ambient ozone exposures may exacerbate the frequency and level of negative effects of drought on forest growth and stream health.

  11. Interactive effects of ozone and climate on water use, soil moisture content and streamflow in a southern Applachian forest in the USA

    SciTech Connect

    McLaughlin, Samuel B.; Wullschleger, Stan D; Sun, G.; Nosal, M.

    2007-01-01

    Documentation of the degree and direction of effects of ozone on transpiration of canopies of mature forest trees is critically needed to model ozone effects on forest water use and growth in a warmer future climate. Patterns of sap flow in stems and soil moisture in the rooting zones of mature trees, coupled with late-season streamflow in three forested watersheds in east Tennessee, USA, were analyzed to determine relative influences of ozone and other climatic variables on canopy physiology and streamflow patterns. Statistically significant increases in whole-tree canopy conductance, depletion of soil moisture in the rooting zone, and reduced late-season streamflow in forested watersheds were detected in response to increasing ambient ozone levels. Short-term changes in canopy water use and empirically modeled streamflow patterns over a 23-yr observation period suggest that current ambient ozone exposures may exacerbate the frequency and level of negative effects of drought on forest growth and stream health.

  12. Soil/Structure Interactions in Earthquakes

    NASA Technical Reports Server (NTRS)

    Ramey, G. W.; Moore, R. K.; Yoo, C. H.; Bush, Thomas D., Jr.; Stallings, J. M.

    1986-01-01

    In effort to improve design of Earthquake-resistant structures, mathematical study undertaken to simulate interactions among soil, foundation, and superstructure during various kinds of vibrational excitation. System modeled as three lumped masses connected vertically by springs, with lowest mass connected to horizontal vibrator (representing ground) through springs and dashpot. Behavior of springs described by elastic or elastoplastic force/deformation relationships. Relationships used to approximate nonlinear system behavior and soil/foundation-interface behavior.

  13. Plant Water Uptake in Drying Soils1

    PubMed Central

    Lobet, Guillaume; Couvreur, Valentin; Meunier, Félicien; Javaux, Mathieu; Draye, Xavier

    2014-01-01

    Over the last decade, investigations on root water uptake have evolved toward a deeper integration of the soil and roots compartment properties, with the goal of improving our understanding of water acquisition from drying soils. This evolution parallels the increasing attention of agronomists to suboptimal crop production environments. Recent results have led to the description of root system architectures that might contribute to deep-water extraction or to water-saving strategies. In addition, the manipulation of root hydraulic properties would provide further opportunities to improve water uptake. However, modeling studies highlight the role of soil hydraulics in the control of water uptake in drying soil and call for integrative soil-plant system approaches. PMID:24515834

  14. Pesticide interactions with soils affected by olive oil mill wastewater

    NASA Astrophysics Data System (ADS)

    Keren, Yonatan; Bukhanovsky, Nadezhda; Borisover, Mikhail

    2013-04-01

    Soil pesticide sorption is well known to affect the fate of pesticides, their bioavailability and the potential to contaminate air and water. Soil - pesticide interactions may be strongly influenced by soil organic matter (SOM) and organic matter (OM)-rich soil amendments. One special OM source in soils is related to olive oil production residues that may include both solid and liquid wastes. In the Mediterranean area, the olive oil production is considered as an important field in the agricultural sector. Due to the significant rise in olive oil production, the amount of wastes is growing respectively. Olive oil mill waste water (OMWW) is the liquid byproduct in the so-called "three phase" technological process. Features of OMWW include the high content of fatty aliphatic components and polyphenols and their often-considered toxicity. One way of OMWW disposal is the land spreading, e.g., in olive orchards. The land application of OMWW (either controlled or not) is supposed to affect the multiple soil properties, including hydrophobicity and the potential of soils to interact with pesticides. Therefore, there is both basic and applied interest in elucidating the interactions between organic compounds and soils affected by OMWW. However, little is known about the impact of OMWW - soil interactions on sorption of organic compounds, and specifically, on sorption of agrochemicals. This paper reports an experimental study of sorption interactions of a series of organic compounds including widely used herbicides such as diuron and simazine, in a range of soils that were affected by OMWW (i) historically or (ii) in the controlled land disposal experiments. It is demonstrated that there is a distinct increase in apparent sorption of organic chemicals in soils affected by OMWW. In selected systems, this increase may be explained by increase in SOM content. However, the SOM quality places a role: the rise in organic compound - soil interactions may both exceed the SOM

  15. Fractal processes in soil water retention

    SciTech Connect

    Tyler, S.W.; Wheatcraft, S.W. )

    1990-05-01

    The authors propose a physical conceptual model for soil texture and pore structure that is based on the concept of fractal geometry. The motivation for a fractal model of soil texture is that some particle size distributions in granular soils have already been shown to display self-similar scaling that is typical of fractal objects. Hence it is reasonable to expect that pore size distributions may also display fractal scaling properties. The paradigm that they used for the soil pore size distribution is the Sierpinski carpet, which is a fractal that contains self similar holes (or pores) over a wide range of scales. The authors evaluate the water retention properties of regular and random Sierpinski carpets and relate these properties directly to the Brooks and Corey (or Campbell) empirical water retention model. They relate the water retention curves directly to the fractal dimension of the Sierpinski carpet and show that the fractal dimension strongly controls the water retention properties of the Sierpinski carpet soil. Higher fractal dimensions are shown to mimic clay-type soils, with very slow dewatering characteristics and relatively low fractal dimensions are shown to mimic a sandy soil with relatively rapid dewatering characteristics. Their fractal model of soil water retention removes the empirical fitting parameters from the soil water retention models and provides paramters which are intrinsic to the nature of the fractal porous structure. The relative permeability functions of Burdine and Mualem are also shown to be fractal directly from fractal water retention results.

  16. Water as a Reagent for Soil Remediation

    SciTech Connect

    Jayaweera, Indira S.; Marti-Perez, Montserrat; Diaz-Ferrero, Jordi; Sanjurjo, Angel

    2003-03-06

    SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, for remediating petroleum-contaminated soils. The bench-scale demonstration of the process has shown great promise, and the implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and provide a standalone technology for removal of both volatile and heavy components from contaminated soil.

  17. America's Soil and Water: Condition and Trends.

    ERIC Educational Resources Information Center

    1981

    A review of conditions and trends regarding soil and water resources of rural nonfederal lands of the United States is presented in this publication. Maps, charts, and graphs illustrate the data collected on various aspects of soil and water use and practice. Topic areas considered include: (1) land use patterns; (2) classes of land; (3)…

  18. Characteristics of water infiltration in layered water repellent soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrophobic soil can influence soil water infiltration, but information regarding the impacts of different levels of hydrophobicity within a layered soil profile is limited. An infiltration study was conducted to determine the effects of different levels of hydrophobicity and the position of the hyd...

  19. Increasing Efficiency of Water Use in Agriculture through Management of Soil Water Repellency to Optimize Soil and Water Productivity

    NASA Astrophysics Data System (ADS)

    Moore, Demie; Kostka, Stan; McMillan, Mica; Gadd, Nick

    2010-05-01

    Water's ability to infiltrate and disperse in soils, and soil's ability to receive, transport, retain, filter and release water are important factors in the efficient use of water in agriculture. Deteriorating soil conditions, including development of soil water repellency, negatively impact hydrological processes and, consequently, the efficiency of rainfall and irrigation. Soil water repellency is increasingly being identified in diverse soils and cropping systems. Recently research has been conducted on the use of novel soil surfactants (co-formulations of alkyl polyglycoside and block copolymer surfactants) to avoid or overcome soil water repellency and enhance water distribution in soils. Results indicate that this is an effective and affordable approach to maintaining or restoring soil and water productivity in irrigated cropping systems. Results from studies conducted in Australia and the United States to determine how this technology modifies soil hydrological behavior and crop yields will be presented. A range of soils and various crops, including potatoes, corn, apples and grapes, were included. Several rates were compared to controls for effect on soil moisture levels, soil water distribution, and crop yield. An economic analysis was also conducted in some trials. Treatments improved rootzone water status, significantly increased crop yield and quality, and in some cases allowed significant reductions in water requirements. Where assessed, a positive economic return was generated. This technology holds promise as a strategy for increasing efficiency of water use in agriculture.

  20. Acid-base characteristics of the Grass Pond watershed in the Adirondack Mountains of New York State, USA: interactions among soil, vegetation and surface waters

    NASA Astrophysics Data System (ADS)

    McEathron, K. M.; Mitchell, M. J.; Zhang, L.

    2013-07-01

    Grass Pond watershed is located within the southwestern Adirondack Mountain region of New York State, USA. This region receives some of the highest rates of acidic deposition in North America and is particularly sensitive to acidic inputs due to many of its soils having shallow depths and being generally base poor. Differences in soil chemistry and tree species between seven subwatersheds were examined in relation to acid-base characteristics of the seven major streams that drain into Grass Pond. Mineral soil pH, stream water BCS (base-cation surplus) and pH exhibited a positive correlation with sugar maple basal area (p = 0.055; 0.48 and 0.39, respectively). Black cherry basal area was inversely correlated with stream water BCS, ANC (acid neutralizing capacity)c and NO3- (p = 0.23; 0.24 and 0.20, respectively). Sugar maple basal areas were positively associated with watershed characteristics associated with the neutralization of atmospheric acidic inputs while in contrast, black cherry basal areas showed opposite relationships to these same watershed characteristics. Canonical correspondence analysis indicated that black cherry had a distinctive relationship with forest floor chemistry apart from the other tree species, specifically a strong positive association with forest floor NH4, while sugar maple had a distinctive relationship with stream chemistry variables, specifically a strong positive association with stream water ANCc, BCS and pH. Our results provide evidence that sugar maple is acid-intolerant or calciphilic tree species and also demonstrate that black cherry is likely an acid-tolerant tree species.

  1. Hygrometric Measurement of Soil Water Potential

    NASA Astrophysics Data System (ADS)

    Butler, C. D.; Tyner, J. S.

    2004-12-01

    Knowledge of soil water potential as a function of water content is required to make unsaturated flow and transport predictions. Although numerous methods are available to measure soil water potential, they are largely difficult and time consuming procedures. The goal of the research is to develop a hygrometric method that will perform satisfactorily with minimal required hardware or technician time. The volume of a drop of saline water will change due to evaporation or condensation until its salinity, and hence osmotic potential, is equal to the water potential in the adjacent gas phase. This relationship is exploited by our method to measure soil moisture potential. To begin, a drop of KCl solution with known mass and KCL concentration is placed adjacent to a soil sample with known water content inside a hermetically sealed container. The mass of the KCl drop is recorded over time with an electronic balance. As thermodynamic equilibrium is achieved, the mass of water within the KCl drop changes until its osmotic potential is equal to the capillary potential of water within the soil sample. After the mass of the KCl drop reaches equilibrium, the KCl concentration is calculated, which enables direct determination of the water potential within the soil sample. Unlike transient hygrometric measurements of water potential using psychrometers, no calibration is required.

  2. Performance evaluation of TDT soil water content and watermark soil water potential sensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the performance of digitized Time Domain Transmissometry (TDT) soil water content sensors (Acclima, Inc., Meridian, ID) and resistance-based soil water potential sensors (Watermark 200, Irrometer Company, Inc., Riverside, CA) in two soils. The evaluation was performed by compar...

  3. Interaction of fecal coliforms with soil aggregates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land-applied manures may contain various contaminants that cause water pollution and concomitant health problems. Some of these pollutants are bacteria, and fecal coliforms (FC) have been widely used as an indicator of bacterial contamination. Experiments on bacteria attachment to soil are tradition...

  4. Water movement in stony soils: The influence of stoniness on soil water content profiles

    NASA Astrophysics Data System (ADS)

    Novak, Viliam; Knava, Karol

    2010-05-01

    WATER MOVEMENT IN STONY SOILS: THE INFLUENCE OF STONINESS ON SOIL WATER CONTENT PROFILES Viliam Novák, Karol Kňava Institute of Hydrology, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3, Slovakia, e-mail: novak@uh.savba.sk Soils containing rock fragments are widespread over the world, on Europe such soil account for 30%, 60% in Mediterranean region. In comparison to fine earth soils (soil particles are less then 2 mm) stony soils contain rock fragments characterized by the low retention capacity and hydraulic conductivity. So, for stony soils -in comparison to the fine-earth soils - is typical lower hydraulic conductivity and retention capacity, which lead to the decrease decrease of infiltration rate and low water retention. So, water movement and its modeling in stony soil would differ from fine earth (usually agricultural) soil. The aim of this contribution is to demonstrate the differences in water movement in homogeneous soil (fine earth) and stony soil. The influence of different stoniness on soil water content and soil water dynamics was studied too. Windthrow at High Tatra mountains in Slovakia (November 2004) cleared nearly 12 000 ha of 80 year conifers and this event initiated complex research of windthrow impact on the ecosystem. The important part of this study was water movement in impacted area. Specific feature of the soil in this area was moraine soil consisting of fine earth, characterized as silty sand, with the relative stone content up to 0.49, increasing with depth. Associated phenomenon to the forest clearing is the decrease of rain interception and higher undercanopy precipitation. Conifers interception capacity can be three times higher than low canopy interception, and can reach up to 40% of annual precipitation in Central Europe. Stones in the soil are decreasing infiltration rate, but paradoxically increased understorey precipitation and followingly the increased cumulative infiltration led to the increase of the soil

  5. mySoil: Crowd-Sourcing Soil Water Repellency Data to Create a Global Assessment

    NASA Astrophysics Data System (ADS)

    Hallin, Ingrid; Robinson, David A.; Doerr, Stefan H.; Douglas, Peter; Lawley, Russell; Shelley, Wayne; Urbanek, Emilia

    2014-05-01

    Soil water repellency (SWR) alters the way water interacts with soil by impacting hydrological and biogeochemical cycling to an extent which is not yet fully understood. Most studies have focused on SWR in specific environments and habitats, mostly in Mediterranean climates, but SWR has been increasingly observed in a range of habitats from the tropics to the northern latitudes. To better assess the distribution of this phenomenon, we propose using citizen science to create a means of crowd-sourcing SWR data from around the globe using the mySoil app. The water drop penetration time (WDPT) test, in which the length of time a drop of water remains on the soil surface is measured and a corresponding qualitative water repellency class is assigned to the soil, provides useful data and is easy to use. We propose adding a simple, standardised WDPT protocol to the mySoil app and web portal so both academics and non-scientists can contribute to the collection of SWR data from around the world. The protocol would include guidelines on drop size and the number of drops to apply, and would encourage inclusion of details such as vegetation cover, soil moisture conditions, last rainfall, and broad habitat. By initially engaging with researchers to create a back bone of respondents, we believe we can develop a global assessment that will reveal the distribution of the SWR phenomenon.

  6. Black Carbon - Soil Organic Matter abiotic and biotic interactions

    NASA Astrophysics Data System (ADS)

    Cotrufo, Francesca; Boot, Claudia; Denef, Karolien; Foster, Erika; Haddix, Michelle; Jiang, Xinyu; Soong, Jennifer; Stewart, Catherine

    2014-05-01

    Wildfires, prescribed burns and the use of char as a soil amendment all add large quantities of black carbon to soils, with profound, yet poorly understood, effects on soil biology and chemical-physical structure. We will present results emerging from our black carbon program, which addresses questions concerning: 1) black carbon-soil organic matter interactions, 2) char decomposition and 3) impacts on microbial community structure and activities. Our understanding derives from a complementary set of post-fire black carbon field surveys and laboratory and field experiments with grass and wood char amendments, in which we used molecular (i.e., BPCA, PLFA) and isotopic (i.e., 13C and 15N labelled char) tracers. Overall, emerging results demonstrate that char additions to soil are prone to fast erosion, but a fraction remains that increases water retention and creates a better environment for the microbial community, particularly favoring gram negative bacteria. However, microbial decomposition of black carbon only slowly consumes a small fraction of it, thus char still significantly contributes to soil carbon sequestration. This is especially true in soils with little organic matter, where black carbon additions may even induce negative priming.

  7. The interaction between soil erosion and soil organisms in temperate agroecosystems: nematode redistribution in tramlines

    NASA Astrophysics Data System (ADS)

    Baxter, Craig; Rowan, John S.; McKenzie, Blair M.; Neilson, Roy

    2014-05-01

    Arable agriculture presents a unique set of challenges, and one of the most important is soil erosion. Whilst policy and practice look towards sustainable intensification of production to ensure food security, fundamental gaps in our understanding still exist. The physical processes involved in the detachment, transport and deposition of soil are well characterised but further research considering chemical and nutrient transport, fertiliser and pesticide losses, and environmental impacts to downstream environments is still required. Furthermore the interaction between soil erosion and soil organisms have largely been ignored, even though soil organisms serve a myriad of functions essential in the provision of soil ecosystem goods and services. Here we present the findings of a field-scale experiment into soil biotic redistribution undertaken at the James Hutton Institute's Balruddery Farm, Scotland (Link Tramlines Project XDW8001). Farm vehicle-tyre wheelings left in arable fields (tramlines) to enable crop spraying during the crop growth cycle have been identified as key transport pathways for sediment and associated nutrients. We tested the hypothesis that soil organisms were also transported by tramline erosion. During the winter of 2012/13 an experiment was undertaken to measure soil organism export from unbound hillslope plots subject to four different tramline treatments set out in a randomised block design. We used soil nematodes as a model organism as they are ubiquitous and sensitive to disturbance and an established indicator taxa of biological and physico-chemical changes in soil. Tramline treatments included a control tyre (conventional tractor tyre), a control tyre with a sown tramline, a low pressure tyre with sown tramline, and a control tyre with a spiked harrow. Post-event sampling of rainfall events was undertaken, and a range of variables measured in the laboratory. The spiked harrow treatment produced the greatest overall reductions in nematode

  8. Water Drainage from Unsaturated Soils in a Centrifuge Permeameter

    NASA Astrophysics Data System (ADS)

    Ornelas, G.; McCartney, J.; Zhang, M.

    2013-12-01

    This study involves an analysis of water drainage from an initially saturated silt layer in a centrifuge permeameter to evaluate the hydraulic properties of the soil layer in unsaturated conditions up to the point where the water phase becomes discontinuous. These properties include the soil water retention curve (SWRC) and the hydraulic conductivity function (HCF). The hydraulic properties of unsaturated silt are used in soil-atmosphere interaction models that take into account the role of infiltration and evaporation of water from soils due to atmospheric interaction. These models are often applied in slope stability analyses, landfill cover design, aquifer recharge analyses, and agricultural engineering. The hydraulic properties are also relevant to recent research concerning geothermal heating and cooling, as they can be used to assess the insulating effects of soil around underground heat exchangers. This study employs a high-speed geotechnical centrifuge to increase the self-weight of a compacted silt specimen atop a filter plate. Under a centrifuge acceleration of N times earth's gravity, the concept of geometric similitude indicates that the water flow process in a small-scale soil layer will be similar to those in a soil layer in the field that is N times thicker. The centrifuge acceleration also results in an increase in the hydraulic gradient across the silt specimen, which causes water to flow out of the pores following Darcy's law. The drainage test was performed until the rate of liquid water flow out of the soil layer slowed to a negligible level, which corresponds to the transition point at which further water flow can only occur due to water vapor diffusion following Fick's law. The data from the drainage test in the centrifuge were used to determine the SWRC and HCF at different depths in the silt specimen, which compared well with similar properties defined using other laboratory tests. The transition point at which liquid water flow stopped (and

  9. Water-power lifeline interaction

    SciTech Connect

    Lau, B.; Eidinger, J.M.

    1995-12-31

    The interaction of water and power lifelines is described in three modes of operation: normal, fire and earthquake. Case study applications will be taken from large water and electric lifelines serving the greater San Francisco Bay Area operated by East Bay Municipal Utility District (water) and Pacific Gas and Electric (electricity). Two emergency events are examined: the recent 1991 Oakland Hills firestorm and a future Hayward Magnitude 7 earthquake. Both the water and electric lifelines have limitations under these emergencies that will hamper provision of lifeline services to end users of water and electricity. A model is presented to deal with the interactions between these utilities. By using this model, the water utility can plan for a reasonable number of backup power/pumping units to deal with these types of emergency events.

  10. Compost improves urban soil and water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Construction in urban zones compacts the soil, which hinders root growth and infiltration and may increase erosion, which may degrade water quality. The purpose of our study was to determine the whether planting prairie grasses and adding compost to urban soils can mitigate these concerns. We simula...

  11. Intrusion of Soil Water through Pipe Cracks

    EPA Science Inventory

    This report describes a series of experiments conducted at U.S. EPA’s Test and Evaluation Facility in 2013-2014 to study the intrusion of contaminated soil water into a pipe crack during simulated backflow events. A test rig was used consisting of a 3’ x 3’ x 3’ acrylic soil bo...

  12. Soil water evaporation and crop residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  13. New soil water sensors for irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effective irrigation management is key to obtaining the most crop production per unit of water applied and increasing production in the face of competing demands on water resources. Management methods have included calculating crop water needs based on weather station measurements, calculating soil ...

  14. Closing the loop of the soil water retention curve

    USGS Publications Warehouse

    Lu, Ning; Alsherif, N; Wayllace, Alexandra; Godt, Jonathan W.

    2015-01-01

    The authors, to their knowledge for the first time, produced two complete principal soil water retention curves (SWRCs) under both positive and negative matric suction regimes. An innovative testing technique combining the transient water release and imbibition method (TRIM) and constant flow method (CFM) was used to identify the principal paths of SWRC in the positive pore-water pressure regime under unsaturated conditions. A negative matric suction of 9.8 kPa is needed to reach full saturation or close the loop of the SWRC for a silty soil. This work pushes the understanding of the interaction of soil and water into new territory by quantifying the boundaries of the SWRC over the entire suction domain, including both wetting and drying conditions that are relevant to field conditions such as slope wetting under heavy rainfall or rapid groundwater table rise in earthen dams or levees.

  15. WATER AS A REAGENT FOR SOIL REMEDIATION

    SciTech Connect

    Indira S. Jayaweera; Montserrat Marti-Perez; Jordi Diaz-Ferrero; Angel Sanjurjo

    2001-11-12

    SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, to separate petroleum-related contaminants and other hazardous pollutants from soil and sediments. In this process, water with added electrolytes (inexpensive and environmentally friendly) is used as the extracting solvent under subcritical conditions (150-300 C). The use of electrolytes allows us to operate reactors under mild conditions and to obtain high separation efficiencies that were hitherto impossible. Unlike common organic solvents, water under subcritical conditions dissolves both organics and inorganics, thus allowing opportunities for separation of both organic and inorganic material from soil. In developing this technology, our systematic approach was to (1) establish fundamental solubility data, (2) conduct treatability studies with industrial soils, and (3) perform a bench-scale demonstration using a highly contaminated soil. The bench-scale demonstration of the process has shown great promise. The next step of the development process is the successful pilot demonstration of this technology. Once pilot tested, this technology can be implemented quite easily, since most of the basic components are readily available from mature technologies (e.g., steam stripping, soil washing, thermal desorption). The implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and will provide a stand-alone technology for removal of both volatile and heavy components from contaminated soil.

  16. Passive Microwave Observation of Soil Water Infiltration

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas J.; Schmugge, Thomas J.; Rawls, Walter J.; ONeill, Peggy E.; Parlange, Marc B.

    1997-01-01

    Infiltration is a time varying process of water entry into soil. Experiments were conducted here using truck based microwave radiometers to observe small plots during and following sprinkler irrigation. Experiments were conducted on a sandy loam soil in 1994 and a silt loam in 1995. Sandy loam soils typically have higher infiltration capabilities than clays. For the sandy loam the observed brightness temperature (TB) quickly reached a nominally constant value during irrigation. When the irrigation was stopped the TB began to increase as drainage took place. The irrigation rates in 1995 with the silt loam soil exceeded the saturated conductivity of the soil. During irrigation the TB values exhibited a pattern that suggests the occurrence of coherent reflection, a rarely observed phenomena under natural conditions. These results suggested the existence of a sharp dielectric boundary (wet over dry soil) that was increasing in depth with time.

  17. Geophysical Imaging of Root Architecture and Root-soil Interaction

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Dafflon, B.; Hubbard, S. S.

    2015-12-01

    Roots play a critical role in controlling water and nutrient uptake, soil biogeochemical processes, as well as the physical anchorage for plants. While important processes, such as root hydraulic redistribution for optimal growth and survival have been recognized, representation of roots in climate models, e.g. its carbon storage, carbon resilience, root biomass, and role in regulating water and carbon fluxes across the rhizosphere and atmosphere interface is still challenging. Such a challenge is exacerbated because of the large variations of root architecture and function across species and locations due to both genetic and environmental controls and the lack of methods for quantifying root mass, distribution, dynamics and interaction with soils at field scales. The scale, complexity and the dynamic nature of plant roots call for minimally invasive methods capable of providing quantitative estimation of root architecture, dynamics over time and interactions with the soils. We present a study on root architecture and root-soil interactions using geophysical methods. Parameters and processes of interests include (1) moisture dynamics around root zone and its interaction with plant transpiration and environmental controls and (2) estimation of root structure and properties based on geophysical signals. Both pot and field scale studies were conducted. The pot scale experiments were conducted under controlled conditions and were monitored with cross-well electrical resistivity tomography (ERT), TDR moisture sensors and temperature probes. Pots with and without a tree were compared and the moisture conditions were controlled via a self regulated pumping system. Geophysical monitoring revealed interactions between roots and soils under dynamic soil moisture conditions and the role of roots in regulating the response of the soil system to changes of environmental conditions, e.g. drought and precipitation events. Field scale studies were conducted on natural trees using

  18. Soil water balance scenario studies using predicted soil hydraulic parameters

    NASA Astrophysics Data System (ADS)

    Nemes, A.; Wösten, J. H. M.; Bouma, J.; Várallyay, G.

    2006-03-01

    Pedotransfer functions (PTFs) have become a topic drawing increasing interest within the field of soil and environmental research because they can provide important soil physical data at relatively low cost. Few studies, however, explore which contributions PTFs can make to land-use planning, in terms of examining the expected outcome of certain changes in soil and water management practices. This paper describes three scenario studies that show some aspects of how PTFs may help improve decision making about land management practices. We use an exploratory research approach using simulation modelling to explore the potential effect of alternative solutions in land management. We: (i) evaluate benefits and risks when irrigating a field, and the impact of soil heterogeneity; (ii) examine which changes can be expected (in terms of soil water balance and supply) if organic matter content is changed as a result of an alternative management system; (iii) evaluate the risk of leaching to deeper horizons in some soils of Hungary. Using this research approach, quantitative answers are provided to what if? type questions, allowing the distinction of trends and potential problems, which may contribute to the development of sustainable management systems.

  19. Influence of soil pH on properties of the soil-water interface

    NASA Astrophysics Data System (ADS)

    Diehl, Doerte

    2010-05-01

    of SWR. Sessile drop and Wilhelmy plate contact angles (CAsess and CAwpm resp.) were measured on the four samples from Germany and the data correlated with those of WDPT. The titratable surface charge of these four soils was measured at selected pH values using a particle charge detector (PCD). Changes in SWR with soil pH were found to be influenced by the density and type of sites able to interact with protons at the available surfaces of organic and mineral materials in soil. The maximum SWR occurred for soil at natural pH and where the charge density was minimal. As pH increased, negative surface charge increased due to deprotonation of sites and WDPT decreased. Two types of behaviour were observed: Those in which (i) WDPT shortened with decreasing pH and ii) WDPT was sensibly constant with decreasing pH. The data suggest that the availability and relative abundance of proton active sites at mineral surfaces, and those at organic functional groups influence the behaviour. Bayer, J. V. and G. E. Schaumann (2007). Hydrological processes 21(17): 2266 - 2275. Cerdà, A. and S. H. Doerr (2007). Hydrological Processes 21(17): 2325-2336. Dekker, L. W. and P. D. Jungerius (1990). Dunes of the European coasts, Catena-Verlag. 18: 173-183. Holzhey, C. S. (1968). Symposium on water repellent soils, Riverside, California. Karnok, K. A., E. J. Rowland, et al. (1993). Agronomy Journal 85(5): 983-986. Mataix-Solera, J., V. Arcenegui, et al. (2007). Hydrological Processes 21(17): 2300-2309. Mataix-Solera, J. and S. H. Doerr (2004). Geoderma 118(1-2): 77-88. Roper, M. M. (2005). Australian Journal of Soil research 43: 803-810.

  20. Investigation of indigenous water, salt and soil for solar ponds

    NASA Technical Reports Server (NTRS)

    Marsh, H. E.

    1983-01-01

    The existence of salt-gradient solar ponds in nature is a strong indication that the successful exploitation of this phenomenon must account adequately for the influences of the local setting. Sun, weather and other general factors are treated elsewhere. This paper deals with water, salt, and soil. A general methodology for evaluating and, where feasible, adjusting the effects of these elements is under development. Eight essential solar pond characteristics have been identified, along with a variety of their dependencies upon properties of water, salt and soil. The comprehensive methodology, when fully developed, will include laboratory investigation in such diverse areas as brine physical chemistry, light transmission, water treatment, brine-soil interactions, sealants, and others. With the Salton Sea solar pond investigation as an example, some methods under development will be described.

  1. Soil-water dynamics and tree water uptake in the Sacramento Mountains of New Mexico (USA): a stable isotope study

    NASA Astrophysics Data System (ADS)

    Gierke, Casey; Newton, B. Talon; Phillips, Fred M.

    2016-06-01

    In the southwestern United States, precipitation in the high mountains is a primary source of groundwater recharge. Precipitation patterns, soil properties and vegetation largely control the rate and timing of groundwater recharge. The interactions between climate, soil and mountain vegetation thus have important implications for the groundwater supply. This study took place in the Sacramento Mountains, which is the recharge area for multiple regional aquifers in southern New Mexico. The stable isotopes of oxygen and hydrogen were used to determine whether infiltration of precipitation is homogeneously distributed in the soil or whether it is partitioned among soil-water `compartments', from which trees extract water for transpiration as a function of the season. The results indicate that "immobile" or "slow" soil water, which is derived primarily from snowmelt, infiltrates soils in a relatively uniform fashion, filling small pores in the shallow soils. "Mobile" or "fast" soil water, which is mostly associated with summer thunderstorms, infiltrates very quickly through macropores and along preferential flow paths, evading evaporative loss. It was found that throughout the entire year, trees principally use immobile water derived from snowmelt mixed to differing degrees with seasonally available mobile-water sources. The replenishment of these different water pools in soils appears to depend on initial soil-water content, the manner in which the water was introduced to the soil (snowmelt versus intense thunderstorms), and the seasonal variability of the precipitation and evapotranspiration. These results have important implications for the effect of climate change on recharge mechanisms in the Sacramento Mountains.

  2. Measured and simulated soil water evaporation from four Great Plains soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The amount of soil water lost during stage one and stage two soil water evaporation is of interest to crop water use modelers. The ratio of measured soil surface temperature (Ts) to air temperature (Ta) was tested as a signal for the transition in soil water evaporation from stage one to stage two d...

  3. Quantifying the effect of nighttime interactions between roots and canopy physiology and their control of water and carbon cycling on feedbacks between soil moisture and terrestrial climatology under variable environmental conditions

    SciTech Connect

    Domec, Jean-Christophe; Palmroth, Sari; Oren, Ram; Swenson, Jennifer; King, John S.; Noormets, Asko

    2016-04-01

    The primary objective of this project is to characterize and quantify how the temporal variability of hydraulic redistribution (HR) and its physiological regulation in unmanaged and complex forests is affecting current water and carbon exchange and predict how future climate scenarios will affect these relationships and potentially feed back to the climate. Specifically, a detailed study of ecosystem water uptake and carbon exchange in relation to root functioning was proposed in order to quantify the mechanisms controlling temporal variability of soil moisture dynamic and HR in three active AmeriFlux sites, and to use published data of two other inactive AmeriFlux sites. Furthermore, data collected by our research group at the Duke Free Air CO2 enrichment (FACE) site was also being utilized to further improve our ability to forecast future environmental impacts of elevated CO2 concentration on soil moisture dynamic and its effect on carbon sequestration and terrestrial climatology. The overarching objective being to forecast, using a soil:plant:atmosphere model coupled with a biosphere:atmosphere model, the impact of root functioning on land surface climatology. By comparing unmanaged sites to plantations, we also proposed to determine the effect of land use change on terrestrial carbon sequestration and climatology through its effect on soil moisture dynamic and HR. Our simulations of HR by roots indicated that in some systems HR is an important mechanism that buffers soil water deficit, affects energy and carbon cycling; thus having significant implications for seasonal climate. HR maintained roots alive and below 70% loss of conductivity and our simulations also showed that the increased vapor pressure deficit at night under future conditions was sufficient to drive significant nighttime transpiration at all sites, which reduced HR. This predicted reduction in HR under future climate conditions played an important regulatory role in land atmosphere interactions

  4. Temperature dependence of soil water potential

    SciTech Connect

    Mohamed, A.M.O.; Yong, R.N. ); Cheung, S.C.H. )

    1992-12-01

    To understand the process of coupled heat and water transport, the relationship between temperature and soil water potential must be known. Two clays, Avonlea bentonite and Lake Agassiz clay, are being considered as the clay-based sealing materials for the Canadian nuclear fuel waste disposal vault. Avonlea bentonite is distinguished from Lake Agassiz clay by its high sealing potential in water. A series of experiments was performed in which the two clays were mixed with equal amounts of sand and were compacted to a dry density of 1.67 Mg/m[sup 3] under various moisture contents and temperatures. A psychrometer was placed within the compacted clay-sand to measure the soil water potential based on the electromotive force measured by the psychrometer. The results indicate that the soil water potential at a particular temperature is higher for both clay-sand mixtures than predicted by the change in the surface tension of water; this effect is much more prominent in the Avonlea bentonite and at low moisture contents. The paper presents empirical equations relating the soil water potential with the moisture content and temperature of the two clay-sand mixtures. 24 refs., 8 figs., 2 tabs.

  5. Effect of corn or soybean row position on soil water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop plants can funnel water to the soil and increase water content more in the row relative to the interrow. Because the row intercepts more soil water after rains and higher root density, the soil may also dry out more between rains than does soil in the interrow. The purpose of this study was to ...

  6. River regulation and interactions groundwater - surface water

    NASA Astrophysics Data System (ADS)

    Colleuille, H.; Wong, W. K.; Dimakis, P.; Pedersen, T. S.

    2003-04-01

    The determination of a minimum acceptable flow in a river affected by regulation is a major task in management of hydropower development. The Norwegian Water Resources and Energy Directorate (NVE), responsible for administrating the nation's water resources, requires an objective system that takes into account the needs of the developer and the rivers environment such as water quality, river biota, landscape, erosion and groundwater. A research project has been initiated with focus on interactions between groundwater and surface water. The purpose of the project is to provide the licensing authorities with tools for quantitative assessment of the effects of regulation on groundwater resources and at the same time the effect of groundwater abstraction on river flows. A small, urbanised alluvial plain (2 km^2) by the river Glomma in Central Southern Norway is used as a case study. The local aquifer consists of heterogeneous glaciofluvial and fluvial deposit, mainly sand and gravel. Two three-dimensional numerical models (Visual Modflow 3.0 and Feflow 5.0) have been used for this study. The models were calibrated with hydro-geological data collected in the field. Aquifer and river sediment has been examined by use of Ground Penetrating Radar (GPR) and soil samples collection. Preferential flow has been examined by tracer tests. Water level, temperature and electric conductivity have been recorded in both aquifer and river. Hydro-climatic regime has been analysed by statistical tools. The first task of the project is to carry out water balance studies in order to estimate the change in rate of groundwater recharge from and to the river along a normal hydrologic year with snowmelting, flood, and baseflow. The second task is to analyse the potential effect of change in the river water regime (due to regulation and consecutive clogging) on groundwater resources and their interaction with stream water.

  7. Soil water repellency affects production and transport of CO2 and CH4 in soil

    NASA Astrophysics Data System (ADS)

    Urbanek, Emilia; Qassem, Khalid

    2016-04-01

    Soil moisture is known to be vital in controlling both the production and transport of C gases in soil. Water availability regulates the decomposition rates of soil organic matter by the microorganisms, while the proportion of water/air filled pores controls the transport of gases within the soil and at the soil-atmosphere interface. Many experimental studies and process models looking at soil C gas fluxes assume that soil water is uniformly distributed and soil is easily wettable. Most soils, however, exhibit some degree of soil water repellency (i.e. hydrophobicity) and do not wet spontaneously when dry or moderately moist. They have restricted infiltration and conductivity of water, which also results in extremely heterogeneous soil water distribution. This is a world-wide occurring phenomenon which is particularly common under permanent vegetation e.g. forest, grass and shrub vegetation. This study investigates the effect of soil water repellency on microbial respiration, CO2 transport within the soil and C gas fluxes between the soil and the atmosphere. The results from the field monitoring and laboratory experiments show that soil water repellency results in non-uniform water distribution in the soil which affects the CO2 and CH4 gas fluxes. The main conclusion from the study is that water repellency not only affects the water relations in the soil, but has also a great impact on greenhouse gas production and transport and therefore should be included as an important parameter during the sites monitoring and modelling of gas fluxes.

  8. Soil Water: Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the fourth of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil water. Upon completing the three day module, the student will be able to classify water as to its presence in the soil, outline the hydrological cycle, list the ways water is lost from the soil,…

  9. Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance

    USGS Publications Warehouse

    Yi, Shuhua; McGuire, Anthony; Harden, Jennifer; Kasischke, Eric; Manies, Kristen L.; Hinzman, Larry; Liljedahl, Anna K.; Randerson, J.; Liu, Heping; Romanovsky, Vladimir E.; Marchenko, Sergey S.; Kim, Yongwon

    2009-01-01

    Soil temperature and moisture are important factors that control many ecosystem processes. However, interactions between soil thermal and hydrological processes are not adequately understood in cold regions, where the frozen soil, fire disturbance, and soil drainage play important roles in controlling interactions among these processes. These interactions were investigated with a new ecosystem model framework, the dynamic organic soil version of the Terrestrial Ecosystem Model, that incorporates an efficient and stable numerical scheme for simulating soil thermal and hydrological dynamics within soil profiles that contain a live moss horizon, fibrous and amorphous organic horizons, and mineral soil horizons. The performance of the model was evaluated for a tundra burn site that had both preburn and postburn measurements, two black spruce fire chronosequences (representing space-for-time substitutions in well and intermediately drained conditions), and a poorly drained black spruce site. Although space-for-time substitutions present challenges in model-data comparison, the model demonstrates substantial ability in simulating the dynamics of evapotranspiration, soil temperature, active layer depth, soil moisture, and water table depth in response to both climate variability and fire disturbance. Several differences between model simulations and field measurements identified key challenges for evaluating/improving model performance that include (1) proper representation of discrepancies between air temperature and ground surface temperature; (2) minimization of precipitation biases in the driving data sets; (3) improvement of the measurement accuracy of soil moisture in surface organic horizons; and (4) proper specification of organic horizon depth/properties, and soil thermal conductivity.

  10. Soil and Water Conservation Activities for Scouts.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    The purpose of the learning activities outlined in this booklet is to help Scouts understand some conservation principles which hopefully will lead to the development of an attitude of concern for the environment and a commitment to help with the task of using and managing soil, water, and other natural resources for long range needs as well as…

  11. Selenium in Oklahoma ground water and soil

    SciTech Connect

    Atalay, A.; Vir Maggon, D.

    1991-03-30

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  12. A comparative modeling study of soil water dynamics in a desert ecosystem

    NASA Astrophysics Data System (ADS)

    Kemp, Paul R.; Reynolds, James F.; Pachepsky, Yakov; Chen, Jia-Lin

    1997-01-01

    We compared three different soil water models to evaluate the extent to which variation in plant growth form and cover and soil texture along a topographic gradient interact to affect relative rates of evaporation and transpiration under semiarid conditions. The models all incorporated one-dimensional distribution of water in the soil and had separate functions for loss of water through transpiration and soil evaporation but differed in the degree of mechanism and emphasis. PALS-SW (Patch Arid Lands Simulator-Soil Water) is a mechanistic model that includes soil water fluxes and emphasizes the physiological control of water loss by different plant life forms along the gradient. 2DSOIL is a mechanistic model that emphasizes the physical aspects of soil water fluxes. SWB (Soil Water Budget) is a simple water budget model that has no soil water redistribution and includes simplified schemes for soil evaporation and transpiration by different life forms. The model predictions were compared to observed soil water distributions at five positions along the gradient. All models predicted soil water distributions reasonably well and, for the most part, predicted similar trends along the transect in the fractions of water lost as soil evaporation versus transpiration. Transpiration was lowest (about 40% of total evapotranspiration (ET)) for the creosote bush community, which had the lowest plant cover (30% peak cover). The fraction of ET as transpiration increased with increasing plant cover, with 2DSOIL predicting the highest transpiration (60% of total ET) for the mixed vegetation community (60% peak cover) on relatively fine textured soil and PALSr SW predicting highest transpiration (69% of total ET) for the mixed vegetation community (70% peak cover) on relatively coarse textured soil. The community type had an effect on the amount of water lost as transpiration primarily via depth and distribution of roots. In this respect, PALS-SW predicted greatest differences among

  13. Fire induced changes in aggregate stability: the interacting effects of soil heating and ash leachate

    NASA Astrophysics Data System (ADS)

    Balfour, V.; Hatley, D.; Woods, S.

    2011-12-01

    Increases in runoff and erosion after wildfires are typically attributed to the combined effects of the loss of ground cover, water repellency and surface sealing. Surface sealing in burned areas is caused by raindrop compaction of mineral soils (structural seal formation), the clogging of soil pores by fine soil and ash, or the formation of low conductivity ash crusts (depositional seal formation). Structural sealing is more likely to occur if the fire reduces the aggregate stability of the mineral soil. Soil heating tends to reduce aggregate stability by combusting soil organic matter. Effects due to soil heating may be amplified or reduced by interactions between soil clays and ash leachate, but these effects are poorly understood. We are investigating the interacting effects of soil heating and exposure to ash leachate on the stability of soil aggregates in burned areas. During the 2011 fire season in the Rocky Mountains we collected soil samples (~1000g) from unburned areas adjacent to three recent wildfires. Soils were obtained from areas with sharply contrasting parent materials, leading to differences in the soil mineralogy. High severity ash was collected from within the burned areas. Each soil sample was divided into 6 subsamples with the first subsample acting as a control. The remaining five subsamples were heated to 100, 200, 300, 500, and 700C respectively. After heating, each subsample was split in two. Ash leachate was added to one half and DI water was added to the other half. The ash leachate was prepared by mixing 10 g of ash with 1000 mL of water in accordance with previous studies. All samples were then air dried and analyzed for porosity, bulk density, aggregate size distribution, aggregate stability and water repellency. Initial results suggest that there is an interacting effect of soil heating and exposure to ash leachate on the stability of soil aggregates, but the effect varies depending on the mineralogy of soil clays and the type of

  14. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L.) Grain Yield, Yield Components and Water Productivity in Three Water Regimes

    PubMed Central

    Dou, Fugen; Soriano, Junel; Tabien, Rodante E.; Chen, Kun

    2016-01-01

    The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic), cultivar (‘Cocodrie’ and ‘Rondo’), and soil texture (clay and sandy loam) on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice. PMID:26978525

  15. Displacement of soil pore water by trichloroethylene

    USGS Publications Warehouse

    Wershaw, R. L.; Aiken, G.R.; Imbrigiotta, T.E.; Goldberg, M.C.

    1994-01-01

    Dense nonaqueous phase liquids (DNAPLS) are important pollutants because of their widespread use as chemical and industrial solvents. An example of the pollution caused by the discharge of DNAPLs is found at the Picatinny Arsenal, New Jersey, where trichloroethylene (TCE) has been discharged directly into the unsaturated zone. This discharge has resulted in the formation of a plume of TCE-contaminated water in the aquifer downgradient of the discharge. A zone of dark-colored groundwater containing a high dissolved organic C content has been found near the point of discharge of the TCE. The colored-water plume extends from the point of discharge at least 30 m (100 feet) downgradient. Fulvic acids isolated from the colored-waters plume, from water from a background well that has not been affected by the discharge of chlorinated solvents, and from soil pore water collected in a lysimeter installed at an uncontaminated site upgradient of the study area have been compared. Nuclear magnetic resonance spectra of the fulvic acids from the colored waters and from the lysimeter are very similar, but are markedly different from the nuclear magnetic resonance spectrum of the fulvic acid from the background well. The three-dimensional fluorescence spectrum and the DOC fractionation profile of the colored groundwater and the soil pore water are very similar to each other, but quite different from those of the background water. It is proposed from these observations that this colored water is soil pore water that has been displaced by a separate DNAPL liquid phase downward to the saturated zone.

  16. Displacement of soil pore water by trichloroethylene

    SciTech Connect

    Wershaw, R.L.; Aiken, G.R.; Imbrigiotta, T.E.

    1994-07-01

    Dense nonaqueous phase liquids (DNAPLS) are important pollutants because of their widespread use as chemical and industrial solvents. An example of the pollution caused by the discharge of DNAPLs is found at the Picatinny Arsenal, New Jersey, where trichloroethylene (TCE) has been discharged directly into the unsaturated zone. This discharge has resulted in the formation of a plume of TCE-contaminated water in the aquifer downgradient of the discharge. A zone of dark-colored groundwater containing a high dissolved organic C content has been found near the point of discharge of the TCE. The colored-water plume extends from the point of discharge at least 30 m (100 feet) downgradient. Fulvic acids isolated from the colored-waters plume, from water from a background well that has not been affected by the discharge of chlorinated solvents, and from soil pore water collected in a lysimeter installed at an uncontaminated site upgradient of the study area have been compared. Nuclear magnetic resonance spectra of the fulvic acids from the colored waters and from the lysimeter am very similar, but are markedly different from the nuclear magnetic resonance spectrum of the fulvic acid from the background well. The three-dimensional fluorescence spectrum and the DOC fractionation profile of the colored groundwater and the soil pore water are very similar to each other, but quite different from those of the background water. It is proposed from these observations that this colored water is soil pore water that has been displaced by a separate DNAPL liquid phase downward to the saturated zone. 15 refs., 6 figs., 4 tabs.

  17. Capacitive Soil Moisture Sensor for Plant Watering

    NASA Astrophysics Data System (ADS)

    Maier, Thomas; Kamm, Lukas

    2016-04-01

    How can you realize a water saving and demand-driven plant watering device? To achieve this you need a sensor, which precisely detects the soil moisture. Designing such a sensor is the topic of this poster. We approached this subject with comparing several physical properties of water, e.g. the conductivity, permittivity, heat capacity and the soil water potential, which are suitable to detect the soil moisture via an electronic device. For our project we have developed a sensor device, which measures the soil moisture and provides the measured values for a plant watering system via a wireless bluetooth 4.0 network. Different sensor setups have been analyzed and the final sensor is the result of many iterative steps of improvement. In the end we tested the precision of our sensor and compared the results with theoretical values. The sensor is currently being used in the Botanical Garden of the Friedrich-Alexander-University in a long-term test. This will show how good the usability in the real field is. On the basis of these findings a marketable sensor will soon be available. Furthermore a more specific type of this sensor has been designed for the EU:CROPIS Space Project, where tomato plants will grow at different gravitational forces. Due to a very small (15mm x 85mm x 1.5mm) and light (5 gramm) realisation, our sensor has been selected for the space program. Now the scientists can monitor the water content of the substrate of the tomato plants in outer space and water the plants on demand.

  18. Modeling structural influences on soil water retention

    USGS Publications Warehouse

    Nimmo, J.R.

    1997-01-01

    A new model quantities the effect of soil structure, considered as the arrangement of particles in the soil, on soil water retention. The model partitions the pore space into texture-related and structure-related components, the textural component being what can be deduced to exist if the arrangement of the particles were random, and the structural component being the remainder. An existing model, based on particle-size distributions, represents the textural component, and a new model, based on aggregate-size distributions, represents the structural component. This new model makes use of generalized properties that vary little from one medium to another, thereby eliminating any need for empirically tilted parameters. It postulates a particular character of the structural pore space that in same ways resembles texture-related pore space, but with pore shape related to the breadth of the aggregate-size distribution. To predict a soil water retention curve, this model requires the soil's porosity and particle- and aggregate-size distributions. Tested with measurements for 17 samples from two sources, it fits the data much better than does a model based on texture alone. Goodness of fit indicated by correlation coefficients ranged from 0.908 to 0.998 for the new model, compared with a range of 0.686 in 0.955 for the texture-based model.

  19. WATER AS A REAGENT FOR SOIL REMEDIATION

    SciTech Connect

    Indira S. Jayaweera; Jordi Diaz-Ferraro

    2000-02-28

    SRI International is conducting experiments to develop and evaluate hydrothermal extraction technology for remediating petroleum-contaminated soils. Most current remediation practices generally fail (or are cost prohibitive) to remove the polycyclic aromatic hydrocarbons (PAHs) found in petroleum-contaminated sites or they require the use of organic solvents to achieve removal, at the expense of additional contamination and with the added cost of recycling solvents. Hydrothermal extraction offers the promise of efficiently extracting PAHs and other kinds of organics from contaminated soils at moderate temperatures and pressures, using only water and inorganic salts such as carbonate. Initial work is being conducted at SRI to measure the solubility and rate of solubilization of selected PAHs (anthracene, fluoranthene, pyrene, and chrysene) in water, using SRI's hydrothermal optical cell with the addition of varying amounts of sodium carbonate to evaluate the efficiency of the technology for removing PAHs from the soil. Preliminary results with pyrene and fluoranthene in water clearly indicate a significant enhancement of solubility with increase in temperature. During this quarter, we conducted experiments with pyrene in the temperature range 200 to 300 C and observed a great enhancement in solubility with an increase in temperature. We also started experiments with real-world soil samples purchased from the subcontractor.

  20. Behavior of fenhexamid in soil and water.

    PubMed

    Abbate, Cristina; Borzì, Daniela; Caboni, Pierluigi; Baglieri, Andrea; Gennari, Mara

    2007-01-01

    A study was conducted to investigate fenhexamid (FEX) behavior in soil and in water. FEX proved to be rather stable at acid pH but showed slight degradation at neutral and alkaline pH. After 101 days of FEX spiking of a soil sample, 94% at pH 4, 12% at pH 7 and 23% at pH 9 of the active ingredient was still present. In natural water the rate of FEX disappearance appeared to be slow which may be due to abiotic rather than biotic processes. The soil degradation tests showed low persistence of the active ingredient if a good microflora activity is guaranteed (DT(50) about 1 day). Moreover, in absence of microorganisms, FEX proved to be stable. Humidities of 25 and 50% of Water Holding Capacity (WHC) influenced in equal measure the rate of degradation. From the same soil, a bacterium was isolated and identified as Bacillus megaterium, which was able to metabolize FEX with the hydroxylation of the cyclohexane ring. Moreover, FEX showed an elevated affinity for humic acid (73%), smectite (31%), and ferrihydrite(20%) and low affinity for vermiculite (11%) and kaolinite (7%).

  1. Interactions between arbuscular mycorrhizal fungi and soil bacteria.

    PubMed

    Miransari, Mohammad

    2011-02-01

    The soil environment is interesting and complicated. There are so many interactions taking place in the soil, which determine the properties of soil as a medium for the growth and activities of plants and soil microorganisms. The soil fungi, arbuscular mycorrhiza (AM), are in mutual and beneficial symbiosis with most of the terrestrial plants. AM fungi are continuously interactive with a wide range of soil microorganisms including nonbacterial soil microorganisms, plant growth promoting rhizobacteria, mycorrhiza helper bacteria and deleterious bacteria. Their interactions can have important implications in agriculture. There are some interesting interactions between the AM fungi and soil bacteria including the binding of soil bacteria to the fungal spore, the injection of molecules by bacteria into the fungal spore, the production of volatiles by bacteria and the degradation of fungal cellular wall. Such mechanisms can affect the expression of genes in AM fungi and hence their performance and ecosystem productivity. Hence, consideration of such interactive behavior is of significance. In this review, some of the most important findings regarding the interactions between AM fungi and soil bacteria with some new insights for future research are presented.

  2. Simulation of Soil Water Content Variability in a Heavy Clay Soil under Contrasting Soil Managements

    NASA Astrophysics Data System (ADS)

    Pedrera, A.; Vanderlinden, K.; Martínez, G.; Espejo, A. J.; Giráldez, J. V.

    2012-04-01

    Soil water content (SWC) is a key variable for numerous physical, chemical and biological processes that take place at or near the soil surface. Understanding the spatial and temporal variability of SWC at the field scale is of prime importance for implementing efficient measurement strategies in applications. The aim of this study was to characterize the spatial and temporal variation of gravimetric SWC in a heavy clay soil, in a wheat-sunflower-legume rotation under conventional (CT) and no-till (NT) using a simple water balance model. An experimental field in SW Spain, where conventional (CT) and no-till (NT) management of a heavy clay soil are being compared since 1983, was sampled for gravimetric SWC on 38 occasions during 2008 and 2009. Topsoil clay content across the six plots was on average 55%, with a standard deviation of 2.7%. The soil profile was sampled at 54 locations, evenly distributed over the three CT and NT plots, at depths of 0-10, 25-35, and 55-65 cm. Topsoil water retention curves (SWRC) were determined in the laboratory on undisturbed soil samples from each of the 54 locations. A weather station recorded daily precipitation and evapotranspiration, as calculated by the Penman-Monteith FAO equation. The water balance was calculated using the Thornthwaite-Mather model with a daily time step. Three parameters, water holding capacity, and water evaporation corrector coefficients for each of the two years, were inversely estimated at the 54 SWC observation points and probability density functions were identified. Spatial variability of SWC was estimated using a Monte Carlo approach, and simulated and observed variability were compared. This Monte Carlo scheme, using a simple water balance model with only three parameters, was found to be useful for evaluating the influence of soil management on the variability of SWC in heavy clay soils.

  3. Soil erodibility and processes of water erosion on hillslope

    NASA Astrophysics Data System (ADS)

    Bryan, Rorke B.

    2000-03-01

    The importance of the inherent resistance of soil to erosional processes, or soil erodibility, is generally recognized in hillslope and fluvial geomorphology, but the full implications of the dynamic soil properties that affect erodibility are seldom considered. In Canada, a wide spectrum of soils and erosional processes has stimulated much research related to soil erodibility. This paper aims to place this work in an international framework of research on water erosion processes, and to identify critical emerging research questions. It focuses particularly on experimental research on rill and interrill erosion using simulated rainfall and recently developed techniques that provide data at appropriate temporal and spatial scales, essential for event-based soil erosion prediction. Results show that many components of erosional response, such as partitioning between rill and interrill or surface and subsurface processes, threshold hydraulic conditions for rill incision, rill network configuration and hillslope sediment delivery, are strongly affected by spatially variable and temporally dynamic soil properties. This agrees with other recent studies, but contrasts markedly with long-held concepts of soil credibility as an essentially constant property for any soil type. Properties that determine erodibility, such as soil aggregation and shear strength, are strongly affected by climatic factors such as rainfall distribution and frost action, and show systematic seasonal variation. They can also change significantly over much shorter time scales with subtle variations in soil water conditions, organic composition, microbiological activity, age-hardening and the structural effect of applied stresses. Property changes between and during rainstorms can dramatically affect the incidence and intensity of rill and interrill erosion and, therefore, both short and long-term hillslope erosional response. Similar property changes, linked to climatic conditions, may also

  4. [Soil water and its karst effect in epikarst dynamic system].

    PubMed

    Deng, Yan; Qin, Xing-Ming; Jiang, Zhong-Cheng; Luo, Wei-Qun; Qi, Xiao-Fan

    2009-07-01

    This paper studied the soil physical properties, soil CO2, soil water and spring water chemistry in a mature forest and a shrub in Nongla of Guangxi, China, as well as the relationships between the chemistry of soil water and spring water, aimed to understand the karst effect of the soil water in Nongla epikarst dynamic system. Significant differences were observed in the soil bulk density and non-capillary porosity under forest and shrub, which affected soil water content. The fixed CO2 in soil water had a significant negative correlation with soil CO2, and the free CO2 in soil water was 0 mg x m(-3) in the forest and 5.33 x 10(3) mg x m(-3) in the shrub. In soil water and spring water, there was a negative correlation between pH and Ca2+, Mg2+, and Cl- concentrations, and a positive correlation between K+, Na+, and HCO3- concentrations and organic C content. After the eluviation of rain water, the ion concentrations in leached soil water increased greatly, and accordingly, its corrosion ability enhanced greatly. The karst process in forest environment was stable and intensive, while that in shrub environment was active but weak.

  5. Soil Water Sensing-Focus on Variable Rate Irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation scheduling using soil water sensors is an exercise in maintaining the water content of the crop root zone soil above a lower limit defined by the management allowed depletion (MAD) for that soil and crop, but not so wet that too much water is lost to deep percolation. The management allow...

  6. Sensible heat observations reveal soil-water evaporation dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water evaporation is important at scales ranging from microbial ecology to large-scale climate. Yet, routine measurments are unable to capture rapidly shifting near-surface soil heat and water processes involved in soil-water evaporation. The objective of this study was to determine the depth a...

  7. Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater.

    PubMed

    Keren, Yonatan; Borisover, Mikhail; Bukhanovsky, Nadezhda

    2015-11-01

    The organic compound-soil interactions may be strongly influenced by changes in soil organic matter (OM) which affects the environmental fate of multiple organic pollutants. The soil OM changes may be caused by land disposal of various OM-containing wastes. One unique type of OM-rich waste is olive mill-related wastewater (OMW) characterized by high levels of OM, the presence of fatty aliphatics and polyphenolic aromatics. The systematic data on effects of the land-applied OMW on organic compound-soil interactions is lacking. Therefore, aqueous sorption of simazine and diuron, two herbicides, was examined in batch experiments onto three soils, including untreated and OMW-affected samples. Typically, the organic compound-soil interactions increased following the prior land application of OMW. This increase is associated with the changes in sorption mechanisms and cannot be attributed solely to the increase in soil organic carbon content. A novel observation is that the OMW application changes the soil-sorbent matrix in such a way that the solute uptake may become cooperative or the existing ability of a soil sorbent to cooperatively sorb organic molecules from water may become characterized by a larger affinity. The remarkable finding of this study was that in some cases a cooperative uptake of organic molecules by soils makes itself evident in distinct sigmoidal sorption isotherms rarely observed in soil sorption of non-ionized organic compounds; the cooperative herbicide-soil interactions may be characterized by the Hill model coefficients. However, no single trend was found for the effect of applied OMW on the mechanisms of organic compound-soil interactions.

  8. Seasonal and long-term effects of CO2 and O3 and their interaction with climate and soil moisture on water loss in ponderosa pine

    EPA Science Inventory

    Evapotranspiration (ET) is driven by evaporative demand, available solar energy and soil moisture as well as by physiological plant activity which may be substantially affected by elevated CO2 and O3. A multi-year study was conducted in outdoor sun-lit controlled-environment cha...

  9. Seasonal and long-term effects of CO2 and O3 on water loss in ponderosa pine and their interaction with climate and soil moisture

    EPA Science Inventory

    Evapotranspiration (ET) is driven by evaporative demand, available solar energy and soil moisture (SM) as well as by plant physiological activity which may be substantially affected by elevated CO2 and O3. A multi-year study was conducted in outdoor sunlit-controlled environment ...

  10. Soil organic carbon covariance with soil water content; a geostatistical analysis in cropland fields

    NASA Astrophysics Data System (ADS)

    Manns, H. R.; Berg, A. A.; von Bertoldi, P.

    2013-12-01

    Soil texture has traditionally represented the rate of soil water drainage influencing soil water content (WC) in the soil characteristic curves, hydrological models and remote sensing field studies. Although soil organic carbon (OC) has been shown to significantly increase the water holding capacity of soil in individual field studies, evidence is required to consider soil OC as a significant factor in soil WC variability at the scale of a remote sensing footprint (25 km2). The relationship of soil OC to soil WC was evaluated over 50 fields during the Soil Moisture Active Passive (SMAP) soil WC field sampling campaign over southern Manitoba, Canada. On each field, soil WC was measured at 16 sample points, at 100 m spacing to 5 cm depth with Stevens hydra probe sensors on 16 sampling dates from June 7 to July 19, 2012. Soil cores were also taken at sampling sites on each field, each sampling day, to determine gravimetric moisture, bulk density and particle size distribution. On 4 of the sampling dates, soil OC was also determined by loss on ignition on the dried soil samples from all fields. Semivariograms were created from the field mean soil OC and field mean surface soil WC sampled at midrow, over all cropland fields and averaged over all sampling dates. The semivariogram models explained a distinct relationship of both soil OC and WC within the soil over a range of 5 km with a Gaussian curve. The variance in soil that soil OC and WC have in common was a similar Gaussian curve in the cross variogram. Following spatial interpolation with Kriging, the spatial maps of soil OC and WC were also very similar with high covariance over the majority of the sampling area. The close correlation between soil OC and WC suggests they are structurally related in the soil. Soil carbon could thus assist in improving downscaling methods for remotely sensed soil WC and act as a surrogate for interpolation of soil WC.

  11. Surface water and groundwater interactions in coastal wetlands

    NASA Astrophysics Data System (ADS)

    Li, Ling; Xin, Pei; Shen, Chengji

    2014-05-01

    Salt marshes are an important wetland system in the upper intertidal zone, interfacing the land and coastal water. Dominated by salt-tolerant plants, these wetlands provide essential eco-environmental services for maintaining coastal biodiversity. They also act as sediment traps and help stabilize the coastline. While they play an active role in moderating greenhouse gas emissions, these wetlands have become increasingly vulnerable to the impact of global climate change. Salt marshes are a complex hydrological system characterized by strong, dynamic interactions between surface water and groundwater, which underpin the wetland's eco-functionality. Bordered with coastal water, the marsh system undergoes cycles of inundation and exposure driven by the tide. This leads to dynamic, complex pore-water flow and solute transport in the marsh soil. Pore-water circulations occur at different spatial and temporal scales with strong link to the marsh topography. These circulations control solute transport between the marsh soil and the tidal creek, and ultimately affect the overall nutrient exchange between the marsh and coastal water. The pore-water flows also dictate the soil aeration conditions, which in turn affect marsh plant growth. This talk presents results and findings from recent numerical and experimental studies, focusing on the pore-water flow behaviour in the marsh soil under the influence of tides and density-gradients.

  12. A Review on Temporal Stability of Soil Water Contents

    NASA Astrophysics Data System (ADS)

    Vanderlinden, Karl; Vereecken, Harry; Hardelauf, Horst; Herbst, Michael; Martínez, Gonzalo; Cosh, Michael H.; Pachepsky, Yakov A.

    2013-04-01

    Temporal stability of soil water content (TS SWC) has been observed across a wide range of soil types, landscapes, climates and scales. A better understanding of TS SWC controls and their interactions needs to be developed. The objective of this work is to develop a comprehensive inventory of published data on TC SWC and to determine knowledge gaps. Mean relative difference (MRD) values and associated standard deviations (SDRD) were digitized from 157 graphs in 37 publications and analyzed. The MRD followed generally a Gaussian distribution with the determination coefficient R2 > 0.84. The standard deviation of MRD (SDMRD) showed a trend of increase with scale. No relationship between SDMRD and R2 was observed. The smallest R2 values were mostly found for negatively skewed and platykurtic MRD distributions. An analysis of seven measurement-, terrain-, and climate-related TS SWC controls suggested strong interactions and showed that combined effects are typically observed. Many of the existing datasets on TS WCS are mostly byproducts of soil water dynamics studies in agronomic or environmental projects. Future research should include more focused TS SWC studies tailored to understand interactions of controls, underlying mechanisms, and efficiency of applications.

  13. Estimating soil water evaporation using radar measurements

    NASA Technical Reports Server (NTRS)

    Sadeghi, Ali M.; Scott, H. D.; Waite, W. P.; Asrar, G.

    1988-01-01

    Field studies were conducted to evaluate the application of radar reflectivity as compared with the shortwave reflectivity (albedo) used in the Idso-Jackson equation for the estimation of daily evaporation under overcast sky and subhumid climatic conditions. Soil water content, water potential, shortwave and radar reflectivity, and soil and air temperatures were monitored during three soil drying cycles. The data from each cycle were used to calculate daily evaporation from the Idso-Jackson equation and from two other standard methods, the modified Penman and plane of zero-flux. All three methods resulted in similar estimates of evaporation under clear sky conditions; however, under overcast sky conditions, evaporation fluxes computed from the Idso-Jackson equation were consistently lower than the other two methods. The shortwave albedo values in the Idso-Jackson equation were then replaced with radar reflectivities and a new set of total daily evaporation fluxes were calculated. This resulted in a significant improvement in computed soil evaporation fluxes from the Idso-Jackson equation, and a better agreement between the three methods under overcast sky conditions.

  14. Water movement through an experimental soil liner

    USGS Publications Warehouse

    Krapac, I.G.; Cartwright, K.; Panno, S.V.; Hensel, B.R.; Rehfeldt, K.R.; Herzog, B.L.

    1991-01-01

    A field-scale soil liner was constructed to test whether compacted soil barriers in cover and liner systems could be built to meet the U.S. EPA saturated hydraulic conductivity requirement (???1 x 10-7 cm s-1). The 8 x 15 x 0.9m liner was constructed in 15 cm compacted lifts using a 20,037 kg pad-foot compactor and standard engineering practices. Water infiltration into the liner has been monitored for one year. Monitoring will continue until water break through at the base of the liner occurs. Estimated saturated hydraulic conductivities were 2.5 x 10-9, 4.0 x 10-8, and 5.0 x 10-8 cm s-1 based on measurements of water infiltration into the liner by large- and small-ring infiltrometers and a water balance analysis, respectively. Also investigated in this research was the variability of the liner's hydraulic properties and estimates of the transit times for water and tracers. Small variances exhibited by small-ring flux data suggested that the liner was homogeneous with respect to infiltration fluxes. The predictions of water and tracer breakthrough at the base of the liner ranged from 2.4-12.6 y, depending on the method of calculation and assumptions made. The liner appeared to be saturated to a depth between 18 and 33 cm at the end of the first year of monitoring. Transit time calculations cannot be verified yet, since breakthrough has not occurred. The work conducted so far indicates that compacted soil barriers can be constructed to meet the saturated hydraulic conductivity requirement established by the U.S. EPA.A field-scale soil liner was constructed to test whether compacted soil barriers in cover and liner systems could be built to meet the U.S. EPA saturated hydraulic conductivity requirement (??? 1 ?? 10-7 cm s-1). The 8 ?? 15 ?? 0.9 m liner was constructed in 15 cm compacted lifts using a 20.037 kg pad-foot compactor and standard engineering practices. Water infiltration into the liner has been monitored for one year. Monitoring will continue until water

  15. Characterization of soil water content variability and soil texture using GPR groundwave techniques

    SciTech Connect

    Grote, K.; Anger, C.; Kelly, B.; Hubbard, S.; Rubin, Y.

    2010-08-15

    Accurate characterization of near-surface soil water content is vital for guiding agricultural management decisions and for reducing the potential negative environmental impacts of agriculture. Characterizing the near-surface soil water content can be difficult, as this parameter is often both spatially and temporally variable, and obtaining sufficient measurements to describe the heterogeneity can be prohibitively expensive. Understanding the spatial correlation of near-surface soil water content can help optimize data acquisition and improve understanding of the processes controlling soil water content at the field scale. In this study, ground penetrating radar (GPR) methods were used to characterize the spatial correlation of water content in a three acre field as a function of sampling depth, season, vegetation, and soil texture. GPR data were acquired with 450 MHz and 900 MHz antennas, and measurements of the GPR groundwave were used to estimate soil water content at four different times. Additional water content estimates were obtained using time domain reflectometry measurements, and soil texture measurements were also acquired. Variograms were calculated for each set of measurements, and comparison of these variograms showed that the horizontal spatial correlation was greater for deeper water content measurements than for shallower measurements. Precipitation and irrigation were both shown to increase the spatial variability of water content, while shallowly-rooted vegetation decreased the variability. Comparison of the variograms of water content and soil texture showed that soil texture generally had greater small-scale spatial correlation than water content, and that the variability of water content in deeper soil layers was more closely correlated to soil texture than were shallower water content measurements. Lastly, cross-variograms of soil texture and water content were calculated, and co-kriging of water content estimates and soil texture

  16. Soil-Plant Nutrient Interactions on Manure-Enriched Calcareous Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient accumulations on heavily manured soils can trigger soil and plant nutrient interactions. The goal of the study was to determine the current impact of dairy manure applications on nutrient concentrations in soil and tissue for irrigated corn silage crops grown in Southern Idaho. At harvest,...

  17. Interaction of Escherichia coli and Soil Particles in Runoff

    PubMed Central

    Muirhead, Richard William; Collins, Robert Peter; Bremer, Philip James

    2006-01-01

    A laboratory-scale model system was developed to investigate the transport mechanisms involved in the horizontal movement of bacteria in overland flow across saturated soils. A suspension of Escherichia coli and bromide tracer was added to the model system, and the bromide concentration and number of attached and unattached E. coli cells in the overland flow were measured over time. Analysis of the breakthrough curves indicated that the E. coli and bromide were transported together, presumably by the same mechanism. This implied that the E. coli was transported by advection with the flowing water. Overland-flow transport of E. coli could be significantly reduced if the cells were preattached to large soil particles (>45 μm). However, when unattached cells were inoculated into the system, the E. coli appeared to attach predominantly to small particles (<2 μm) and hence remained unattenuated during transport. These results imply that in runoff generated by saturation-excess conditions, bacteria are rapidly transported across the surface and have little opportunity to interact with the soil matrix. PMID:16672484

  18. How can climate, soil, and monitoring schedule affect temporal stability of soil water contents?

    NASA Astrophysics Data System (ADS)

    Martinez, G.; Pachepsky, Y. A.; Vereecken, H.

    2012-12-01

    Temporal stability (TS) of soil water content (SWC) reflects the spatio-temporal organization of soil water. The TS SWC was originally recognized as a phenomenon that can be used to provide temporal average SWC of an area of interest from observations at a representative location(s). Currently application fields of TS SWC are numerous, e.g. up- and downscaling SWC, SWC monitoring and data assimilation, precision farming, and sensor network design and optimization. However, the factors that control the SWC organization and TS SWC are not completely understood. Among these factors are soil hydraulic properties that are considered as local controls, weather patterns, and the monitoring schedule. The objective of this work was to use modeling to assess the effect of these factors on the spatio-temporal patterns of SWC. We ran the HYDRUS6 code to simulate four years of SWC in 4-m long soil columns. The columns were assumed homogeneous, soil hydraulic conductivity was drawn from lognormal distributions. Sets of columns were generated separately for sandy loam and loamy soils, soil water retention was set to typical values for those soil textures. Simulations were carried out for four climates present at the continental US. The climate-specific weather patterns were obtained with the CLIGEN code using climate-specific weather observation locations that were humid subtropical from College Station (TX), humid continental from Indianapolis (IN), cold semiarid from Moscow (ID) and hot semiarid from Tucson (AZ). We evaluated the TS and representative location (RL) selections by comparing i) different climates; ii) for the same climates different years; iii) different time intervals between samplings; iv) one year duration surveys vs. one month summer campaigns; and v) different seasons of the same year. Spatial variability of the mean relative differences (MRD) differed among climates for both soils, as the probability of observing the same variance in the MRD was lower than

  19. In situ soil water extraction: a review.

    PubMed

    Weihermüller, L; Siemens, J; Deurer, M; Knoblauch, S; Rupp, H; Göttlein, A; Pütz, T

    2007-01-01

    The knowledge of the composition and fluxes of vadose zone water is essential for a wide range of scientific and practical fields, including water-use management, pesticide registration, fate of xenobiotics, monitoring of disposal from mining and industries, nutrient management of agricultural and forest ecosystems, ecology, and environmental protection. Nowadays, water and solute flow can be monitored using either in situ methods or minimally invasive geophysical measurements. In situ information, however, is necessary to interpret most geophysical data sets and to determine the chemical composition of seepage water. Therefore, we present a comprehensive review of in situ soil water extraction methods to monitor solute concentration, solute transport, and to calculate mass balances in natural soils. We distinguished six different sampling devices: porous cups, porous plates, capillary wicks, pan lysimeters, resin boxes, and lysimeters. For each of the six sampling devices we discuss the basic principles, the advantages and disadvantages, and limits of data acquisition. We also give decision guidance for the selection of the appropriate sampling system. The choice of material is addressed in terms of potential contamination, filtering, and sorption of the target substances. The information provided in this review will support scientists and professionals in optimizing their experimental set-up for meeting their specific goals.

  20. Understanding Surface water Ground water Interactions in Arkansas-Red River Basin using Coupled Modeling

    NASA Astrophysics Data System (ADS)

    Joshi, C.; Mohanty, B. P.

    2006-12-01

    Subsurface water exists primarily as groundwater and also in small quantity as soil water in the unsaturated zone. This soil water plays a vital role in the hydrologic cycle by supporting plant growth, regulating the amount of water lost to evapo-transpiration and affecting the surface water groundwater interaction to a certain extent. As such, the interaction between surface water and groundwater is complex and little understood. This study aims at investigating the surface water groundwater interaction in the Arkansas-Red river basin, using a coupled modeling platform. For this purpose, an ecohydrological model (SWAP) has been coupled with the groundwater model (MODFLOW). Inputs to this coupled model are collected from NEXRAD precipitation data at a resolution of ~4 km, meteorological forcings from Oklahoma mesonet and NCDC sites, STATSGO soil property data, LAI (Leaf Area Index) data from MODIS at a resolution of ~1 km, and DEM (Digital Elevation Model). For numerical modeling, a spatial resolution of ~1 km and a temporal resolution of one day is used. The modeled base flow and total groundwater storage change would be tested using ground water table observation data. The modeled ground water storage is further improved using GRACE (Gravity Recovery and Climate Experiment) satellite data at a resolution of ~400 km, with the help of appropriate data assimilation technique.

  1. Effects of two abiotic factors and their interaction on Soil Carbon Dioxide flux

    NASA Astrophysics Data System (ADS)

    Novara, Agata; Armstrong, Alona; Gristina, Luciano; Quinton, John

    2010-05-01

    Soils release more carbon per annum than current global anthropogenic emissions (Luo and Zhou, 2006). Soils emit carbon dioxide through mineralization and decomposition of organic matter and respiration of roots and soil organism (Houghton 2007) Evaluation of the effects of abiotic factors on microbial activity is of major importance in the context of mitigation greenhouse gases emissions. One of the key greenhouse gases is carbon dioxide (CO2) and previous studies demonstrate that soil CO2 emission is significantly affected by temperature and soil water content. There are a limited number of studies that examine the impact of bulk density and soil surface characteristics as a result of exposure to rain on CO2 emission, however, none examine their relative importance. Therefore, this study investigated the effects of soil compaction and exposure of the soil surface to rainfall and their interaction on CO2 release. We conducted a factorial soil core experiment with three different bulk densities (1.1 g cm-3, 1.3 g cm-3, 1.5 g cm-3) and three difference exposures to rainfall (no rain, 30 minutes and 90 minutes of rainfall). Water was poured on to the cores not exposed to rain and those exposed for 30 minutes through a gauze to ensure all cores received the same volume of water. Immediately the rainfall treatments the soil cores were incubated and soil CO2 efflux and water content were measured 1, 2, 5, 6, 9, and 10 days after the start of the incubation. The results indicate soil CO2 emissions and rate changes significantly through time and with different bulk densities and rain exposures. The relationship between rain exposure and CO2 is positive: CO2 emission was 53% and 42% greater for the 90 min and 30 min rainfall exposure, respectively, compared to those not exposed to rain. Bulk density exhibited a negative relationship with CO2 emission: soil compacted to a bulk density of 1.1 g cm-3 emitted 32% more CO2 than soil compacted to 1.5 g cm-3. Furthermore we found

  2. Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil

    SciTech Connect

    Schulze, E.D.

    1986-01-01

    This review describes the current hypotheses of how humidity and plant and soil water status may interact and regulate stomatal conductance and photosynthesis. This review will focus on the effects of 1. humidity, 2. leaf water potential and leaf turgor, and of 3. soil water status on leaf conductance, transpiration, and CO/sub 2/ assimilation.

  3. Soil erosion by water - model concepts and application

    NASA Astrophysics Data System (ADS)

    Schmidt, Juergen

    2010-05-01

    Soil erosion is not a continuous process but the result of isolated surface runoff events, whose erosional effects are determined by numerous temporally and spatially varying variables. Thus the monitoring of soil loss by direct observation is extremely limited with respect to space and time. Usually observation plots cover an area of less than 100 m2 and the observation period is less than 10 years. In order to estimate soil losses by water erosion for others than empirically observable conditions, mathematical models are needed, which are able to describe the interaction of the different physical mechanisms involved either statistically or on the basis of physical algorithms. Such models are absolutely essential for risk prognoses on catchment and regional scale. Besides the aspect of soil conservation the delivery of sediments and sediment bound pollutants into surface water bodies are of increasing relevance in this context. Based on an exemplary selection of existing water erosion models this contribution aims to give an overview over different mathematical approaches used for the description of particle detachment, transport and deposition of soil particles. According to the chronology in the development of soil erosion models empirical algorithms will be presented first based on the USLE approach. However, since purely empirical models like USLE are limited to the estimation of annual soil loss further attempts in soil erosion modelling are focussed on event based estimations considering the fact that soil erosion is not a continuous process but the result of isolated runoff events. One of the first models of this type was CREAMS using physically based algorithms in combination with empirical ones in order to describe the basic erosion processes. Today there are diverse soil erosion models available following in principle the CREAMS concept but using different algorithms in detail. Concerning particle detachment, transport and deposition alternative

  4. Non-destructive measurement of carbonic anhydrase activity and the oxygen isotope composition of soil water

    NASA Astrophysics Data System (ADS)

    Jones, Sam; Sauze, Joana; Ogée, Jérôme; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    Carbonic anhydrases are a group of metalloenzymes that catalyse the hydration of aqueous carbon dioxide (CO2). The expression of carbonic anhydrase by bacteria, archaea and eukarya has been linked to a variety of important biological processes including pH regulation, substrate supply and biomineralisation. As oxygen isotopes are exchanged between CO2 and water during hydration, the presence of carbonic anhydrase in plants and soil organisms also influences the oxygen isotope budget of atmospheric CO2. Leaf and soil water pools have distinct oxygen isotope compositions, owing to differences in pool sizes and evaporation rates, which are imparted on CO2during hydration. These differences in the isotopic signature of CO2 interacting with leaves and soil can be used to partition the contribution of photosynthesis and soil respiration to net terrestrial CO2 exchange. However, this relies on our knowledge of soil carbonic anhydrase activity and currently, the prevalence and function of these enzymes in soils is poorly understood. Isotopic approaches used to estimate soil carbonic anhydrase activity typically involve the inversion of models describing the oxygen isotope composition of CO2 fluxes to solve for the apparent, potentially catalysed, rate of oxygen exchange during hydration. This requires information about the composition of CO2 in isotopic equilibrium with soil water obtained from destructive, depth-resolved soil water sampling. This can represent a significant challenge in data collection given the considerable potential for spatial and temporal variability in the isotopic composition of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by constraining carbonic anhydrase activity and the composition of soil water in isotopic equilibrium with CO2 by solving simultaneously the mass balance for two soil CO2 steady states differing only in the

  5. Phosphorus dynamics in soils irrigated with reclaimed waste water or fresh water - A study using oxygen isotopic composition of phosphate

    USGS Publications Warehouse

    Zohar, I.; Shaviv, A.; Young, M.; Kendall, C.; Silva, S.; Paytan, A.

    2010-01-01

    Transformations of phosphate (Pi) in different soil fractions were tracked using the stable isotopic composition of oxygen in phosphate (??18Op) and Pi concentrations. Clay soil from Israel was treated with either reclaimed waste water (secondary, low grade) or with fresh water amended with a chemical fertilizer of a known isotopic signature. Changes of ??18Op and Pi within different soil fractions, during a month of incubation, elucidate biogeochemical processes in the soil, revealing the biological and the chemical transformation impacting the various P pools. P in the soil solution is affected primarily by enzymatic activity that yields isotopic equilibrium with the water molecules in the soil solution. The dissolved P interacts rapidly with the loosely bound P (extracted by bicarbonate). The oxides and mineral P fractions (extracted by NaOH and HCl, respectively), which are considered as relatively stable pools of P, also exhibited isotopic alterations in the first two weeks after P application, likely related to the activity of microbial populations associated with soil surfaces. Specifically, isotopic depletion which could result from organic P mineralization was followed by isotopic enrichment which could result from preferential biological uptake of depleted P from the mineralized pool. Similar transformations were observed in both soils although transformations related to biological activity were more pronounced in the soil treated with reclaimed waste water compared to the fertilizer treated soil. ?? 2010 Elsevier B.V.

  6. Mucilage exudation facilitates root water uptake in dry soils

    NASA Astrophysics Data System (ADS)

    Ahmed, Mutez; Kroener, Eva; Holz, Maire; Zarebanadkouki, Mohsen; Carminati, Andrea

    2014-05-01

    As plant roots take up water and the soil dries, water depletion is expected to occur in the rhizosphere. However, recent experiments showed that the rhizosphere of lupines was wetter than the bulk soil during root water uptake. On the other hand, after irrigation the rhizosphere remained markedly dry and it rewetted only after one-two days. We hypothesize that: 1) drying/wetting rates of the rhizosphere are controlled by mucilage exuded by roots; 2) mucilage alters the soil hydraulic conductivity: in particular, wet mucilage increases the soil hydraulic conductivity and dry mucilage makes the soil water repellent; 3) mucilage exudation favors root water uptake in dry soil; and 4) dry mucilage limits water loss from roots to dry soils. We used a root pressure probe to measure the hydraulic conductance of artificial roots sitting in soils. As an artificial root we employed a suction cup with a diameter of 2 mm and a length of 45 mm. The root pressure probe gave the hydraulic conductance of the soil-root continuum during pulse experiments in which water was injected into or sucked from the soil. First, we performed experiments with roots in a relatively dry soil with a volumetric water content of 0.03. Then, we repeated the experiment with artificial roots covered with mucilage and then placed into the soil. As a model for mucilage, we collected mucilage from Chia seeds. The water contents (including that of mucilage) in the experiments with and without mucilage were equal. The pressure curves were fitted with a model of root water that includes rhizosphere dynamics. We found that the artificial roots covered with wet mucilage took up water more easily. In a second experimental set-up we measured the outflow of water from the artificial roots into dry soils. We compared two soils: 1) a sandy soil and 2) the same soil wetted with mucilage from Chia seeds and then let dry. The latter soil became water repellent. Due to the water repellency, the outflow of water from

  7. Antagonistic interactions of soil pseudomonads are structured in time.

    PubMed

    Kraemer, Susanne A; Soucy, Jean-Paul R; Kassen, Rees

    2017-04-06

    Social interactions have been invoked as potential major selective forces structuring natural microbial communities and thus may help explain the astonishing bacterial diversity of natural ecosystems. Here, we investigate the prevalence and structure of exotoxin-mediated antagonistic interactions among free-living soil Pseudomonas strains collected over the course of two years at distances of up to one kilometer. Unlike some previous studies on antagonistic interactions among natural isolates, we found the prevalence of exotoxin-mediated inhibitions to be relatively low. When present, antagonistic interactions show a weakly negative relationship with genetic relatedness and metabolic similarity. Intriguingly, isolates sampled from the same growing season were significantly more likely to inhibit each other than they were to inhibit isolates from different growing seasons. Exotoxin-mediated antagonistic interactions between soil pseudomonads thus seem to be structured in time but do not appear to be a major selective force structuring free-living soil bacterial communities of soil pseudomonads.

  8. Biodegradability of soil water soluble organic carbon extracted from seven different soils.

    PubMed

    Scaglia, Barbara; Adani, Fabrizio

    2009-01-01

    Water soluble organic carbon (WSOC) is considered the most mobile and reactive soil carbon source and its characterization is an important issue for soil ecology study. A biodegradability test was set up to study WSOC extracted from 7 soils differently managed. WSOC was extracted from soil with water (soil/water ratio of 1:2, W/V) for 30 min, and then tested for biodegradability by a liquid state respirometric test. Result obtained confirmed the finding that WSOC biodegradability depended on the both land use and management practice. These results suggested the biodegradability test as suitable method to characterize WSOC, and provided useful information to soil fertility.

  9. Measuring and modelling water related soil-vegetation feedbacks in a fallow plot

    NASA Astrophysics Data System (ADS)

    Ursino, N.; Cassiani, G.; Deiana, R.; Vignoli, G.; Boaga, J.

    2013-08-01

    Land fallowing is one possible response to shortage of water for irrigation. Leaving the soil unseeded implies a change of the soil functioning that has an impact on the water cycle. The development of a soil crust in the open spaces between the patterns of grass weed affects the soil properties and the field scale water balance. The objectives of this study are to test the potential of integrated non invasive geophysical methods and ground-image analysis and to quantify the effect of the soil vegetation interaction on the water balance of a fallow land at the local and plot scale. We measured repeatedly in space and time local soil saturation and vegetation cover over two small plots located in southern Sardinia, Italy, during a controlled irrigation experiment. One plot was left unseeded and the other was cultivated. The comparative analysis of ERT maps of soil moisture evidenced a considerably different hydrologic response to irrigation of the two plots. Local measurements of soil saturation and vegetation cover were repeated in space to evidence a positive feedback between weed growth and infiltration at the fallow plot. A simple bucket model captured the different soil moisture dynamics at the two plots during the infiltration experiment and was used to estimate the impact of the soil vegetation feedback on the yearly water balance at the fallow site.

  10. Measuring and modeling water-related soil-vegetation feedbacks in a fallow plot

    NASA Astrophysics Data System (ADS)

    Ursino, N.; Cassiani, G.; Deiana, R.; Vignoli, G.; Boaga, J.

    2014-03-01

    Land fallowing is one possible response to shortage of water for irrigation. Leaving the soil unseeded implies a change of the soil functioning that has an impact on the water cycle. The development of a soil crust in the open spaces between the patterns of grass weed affects the soil properties and the field-scale water balance. The objectives of this study are to test the potential of integrated non-invasive geophysical methods and ground-image analysis and to quantify the effect of the soil-vegetation interaction on the water balance of fallow land at the local- and plot scale. We measured repeatedly in space and time local soil saturation and vegetation cover over two small plots located in southern Sardinia, Italy, during a controlled irrigation experiment. One plot was left unseeded and the other was cultivated. The comparative analysis of ERT maps of soil moisture evidenced a considerably different hydrologic response to irrigation of the two plots. Local measurements of soil saturation and vegetation cover were repeated in space to evidence a positive feedback between weed growth and infiltration at the fallow plot. A simple bucket model captured the different soil moisture dynamics at the two plots during the infiltration experiment and was used to estimate the impact of the soil vegetation feedback on the yearly water balance at the fallow site.

  11. The Ecohydrological Interactions Between Mesquite and its Water Sources

    NASA Astrophysics Data System (ADS)

    Scott, R. L.; Hultine, K.; Ferré, P.

    2003-12-01

    Velvet mesquite (Prosopis velutina), a native woody plant to southern Arizona, USA and Sonora, Mexico, has successfully expanded its range and encroached into both upland and riparian grasslands during the 20th century. In this study, we examined the interactions between mesquite and its water sources in order to determine how the trees responded to moisture availability. This study took place in a riparian area and because the trees had access to both deep groundwater and surface water, these interactions resulted in important hydrological and ecological consequences. Surprisingly, we found that the mesquite responded to and even manipulated both surface and deep soil moisture even though they apparently had access to a stable groundwater source throughout the growing season. During dry season nights, observations of root sap flow showed that the trees moved moisture upwards in the taproot and out into the surface soils in lateral roots. As a consequence of this "hydraulic lift", diurnal soil respiration measurements showed that the soil microbes were stimulated following the nocturnal release of moisture into the near-surface regions. During rainy season nights, there was sap flow movement toward the tree in the surface lateral roots and downwards in the taproot indicating "hydraulic descent". Borehole GPR measurements of the deeper, 2 - 10 m, vadose zone moisture content increased apparently as a result of this tree-facilitated water movement. Also, hydraulic descent influenced water table elevations indicating direct groundwater recharge via plant pathways.

  12. Impact of particle nanotopology on water transport through hydrophobic soils.

    PubMed

    Truong, Vi Khanh; Owuor, Elizabeth A; Murugaraj, Pandiyan; Crawford, Russell J; Mainwaring, David E

    2015-12-15

    The impact of non- and poorly wetting soils has become increasingly important, due to its direct influence on the water-limited potential yield of rain-fed grain crops at a time of enhanced global competition for fresh water. This study investigates the physical and compositional mechanisms underlying the influence of soil organic matter (SOM) on the wetting processes of model systems. These model systems are directly related to two sandy wheat-producing soils that have contrasting hydrophobicities. Atomic force microscopy (AFM), contact angle and Raman micro-spectroscopy measurements on model planar and particulate SOM-containing surfaces demonstrated the role of the hierarchical surface structure on the wetting dynamics of packed particulate beds. It was found that a nanoscale surface topology is superimposed over the microscale roughness of the packed particles, and this controls the extent of water ingress into particulate packed beds of these particles. Using two of the dominant component organic species found in the SOM of the two soils used in this study, it was found that the specific interactions taking place between the SOM components, rather than their absolute quantities, dictated the formation of highly hydrophobic surface nanotopologies. This hydrophobicity was demonstrated, using micro-Raman imaging, to arise from the surface being in a composite Cassie-Baxter wetting state. Raman imaging demonstrated that the particle surface nanotopography influenced the degree of air entrapment in the interstices within the particle bed. The influence of a conventional surfactant on the wetting kinetics of both the model planar surfaces and packed particulate beds was quantified in terms of their respective advancing contact angles and the capillary wetting force vector. The information obtained for all of the planar and particulate surfaces, together with that obtained for the two soils, allowed linear relationships to be obtained in plots of the contact angle

  13. Importance of soil-water relation in assessment endpoint in bioremediated soils: Plant growth and soil physical properties

    SciTech Connect

    Li, X.; Sawatsky, N.

    1995-12-31

    Much effort has been focused on defining the end-point of bioremediated soils by chemical analysis (Alberta Tier 1 or CCME Guideline for Contaminated Soils) or toxicity tests. However, these tests do not completely assess the soil quality, or the capability of soil to support plant growth after bioremediation. This study compared barley (Hordeum vulgare) growth on: (i) non-contaminated, agricultural topsoil, (2) oil-contaminated soil (4% total extractable hydrocarbons, or TEH), and (3) oil-contaminated soil treated by bioremediation (< 2% TEH). Soil physical properties including water retention, water uptake, and water repellence were measured. The results indicated that the growth of barley was significantly reduced by oil-contamination of agricultural topsoil. Furthermore, bioremediation did not improve the barley yield. The lack of effects from bioremediation was attributed to development of water repellence in hydrocarbon contaminated soils. There seemed to be a critical water content around 18% to 20% in contaminated soils. Above this value the water uptake by contaminated soil was near that of the agricultural topsoil. For lower water contents, there was a strong divergence in sorptivity between contaminated and agricultural topsoil. For these soils, water availability was likely the single most important parameter controlling plant growth. This parameter should be considered in assessing endpoint of bioremediation for hydrocarbon contaminated soils.

  14. Determination of Martian soil mineralogy and water content using the Thermal Analyzer for Planetary Soils (TAPS)

    NASA Technical Reports Server (NTRS)

    Gooding, James L.; Ming, Douglas W.; Allton, Judith H.; Byers, Terry B.; Dunn, Robert P.; Gibbons, Frank L.; Pate, Daniel B.; Polette, Thomas M.

    1992-01-01

    Physical and chemical interactions between the surface and atmosphere of Mars can be expected to embody a strong cause-and-effect relationship with the minerals comprising the martian regolith. Many of the minerals in soils and sediments are probably products of chemical weathering (involving surface/atmosphere or surface/hydrosphere reactions) that could be expected to subsequently influence the sorption of atmospheric gases and water vapor. Therefore, identification of the minerals in martian surface soils and sediments is essential for understanding both past and present interactions between the Mars surface and atmosphere. Clearly, the most definitive mineral analyses would be achieved with well-preserved samples returned to Earth-based laboratories. In advance of a Mars sample return mission, however, significant progress could be made with in situ experiments that fill current voids in knowledge about the presence or abundance of key soil minerals such as clays (layered-structured silicates), zeolites, and various salts, including carbonates. TAPS is intended to answer that challenge by providing first-order identification of soil and sediment minerals.

  15. Interactive biotic and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments on peatland and boreal soils.

    PubMed

    Briones, María Jesús I; McNamara, Niall P; Poskitt, Jan; Crow, Susan E; Ostle, Nicholas J

    2014-09-01

    Partially decomposed plant and animal remains have been accumulating in organic soils (i.e. >40% C content) for millennia, making them the largest terrestrial carbon store. There is growing concern that, in a warming world, soil biotic processing will accelerate and release greenhouse gases that further exacerbate climate change. However, the magnitude of this response remains uncertain as the constraints are abiotic, biotic and interactive. Here, we examined the influence of resource quality and biological activity on the temperature sensitivity of soil respiration under different soil moisture regimes. Organic soils were sampled from 13 boreal and peatland ecosystems located in the United Kingdom, Ireland, Spain, Finland and Sweden, representing a natural resource quality range of C, N and P. They were incubated at four temperatures (4, 10, 15 and 20 °C) at either 60% or 100% water holding capacity (WHC). Our results showed that chemical and biological properties play an important role in determining soil respiration responses to temperature and moisture changes. High soil C : P and C : N ratios were symptomatic of slow C turnover and long-term C accumulation. In boreal soils, low bacterial to fungal ratios were related to greater temperature sensitivity of respiration, which was amplified in drier conditions. This contrasted with peatland soils which were dominated by bacterial communities and enchytraeid grazing, resulting in a more rapid C turnover under warmer and wetter conditions. The unexpected acceleration of C mineralization under high moisture contents was possibly linked to the primarily role of fermented organic matter, instead of oxygen, in mediating microbial decomposition. We conclude that to improve C model simulations of soil respiration, a better resolution of the interactions occurring between climate, resource quality and the decomposer community will be required.

  16. Subsurface And Surface Water Flow Interactions

    EPA Science Inventory

    In this chapter we present basic concepts and principles underlying the phenomena of groundwater and surface water interactions. Fundamental equations and analytical and numerical solutions describing stream-aquifer interactions are presented in hillslope and riparian aquifer en...

  17. Global distribution of plant-extractable water capacity of soil

    USGS Publications Warehouse

    Dunne, K.A.; Willmott, C.J.

    1996-01-01

    Plant-extractable water capacity of soil is the amount of water that can be extracted from the soil to fulfill evapotranspiration demands. It is often assumed to be spatially invariant in large-scale computations of the soil-water balance. Empirical evidence, however, suggests that this assumption is incorrect. In this paper, we estimate the global distribution of the plant-extractable water capacity of soil. A representative soil profile, characterized by horizon (layer) particle size data and thickness, was created for each soil unit mapped by FAO (Food and Agriculture Organization of the United Nations)/Unesco. Soil organic matter was estimated empirically from climate data. Plant rooting depths and ground coverages were obtained from a vegetation characteristic data set. At each 0.5?? ?? 0.5?? grid cell where vegetation is present, unit available water capacity (cm water per cm soil) was estimated from the sand, clay, and organic content of each profile horizon, and integrated over horizon thickness. Summation of the integrated values over the lesser of profile depth and root depth produced an estimate of the plant-extractable water capacity of soil. The global average of the estimated plant-extractable water capacities of soil is 8??6 cm (Greenland, Antarctica and bare soil areas excluded). Estimates are less than 5, 10 and 15 cm - over approximately 30, 60, and 89 per cent of the area, respectively. Estimates reflect the combined effects of soil texture, soil organic content, and plant root depth or profile depth. The most influential and uncertain parameter is the depth over which the plant-extractable water capacity of soil is computed, which is usually limited by root depth. Soil texture exerts a lesser, but still substantial, influence. Organic content, except where concentrations are very high, has relatively little effect.

  18. WATER AS A REAGENT FOR SOIL REMEDIATION

    SciTech Connect

    Indira S. Jayaweera; Montserrat Marti-Perez; Jordi Diaz-Ferrero; Angel Sanjurjo

    2001-03-29

    SRI International is conducting experiments to develop and evaluate hydrothermal extraction technology or hot water extraction (HWE) technology for remediating petroleum-contaminated soils. Most current remediation practices either fail to remove the polycyclic aromatic hydrocarbons (PAHs) found in petroleum-contaminated sites, are too costly, or require the use of organic solvents at the expense of additional contamination and with the added cost of recycling solvents. Hydrothermal extraction offers the promise of efficiently extracting PAHs and other kinds of organics from contaminated soils at moderate temperatures and pressures, using only water and inorganic salts such as carbonate. SRI has conducted experiments to measure the solubility and rate of solubilization of selected PAHs (fluoranthene, pyrene, chrysene, 9,10-dimethylanthracene) in water using SRI's hydrothermal optical cell with the addition of varying amounts of sodium carbonate to evaluate the efficiency of the technology for removing PAHs from the soil. SRI data shows a very rapid increase in solubility of PAHs with increase in temperature in the range 25-275 C. SRI also measured the rate of solubilization, which is a key factor in determining the reactor parameters. SRI results for fluoranthene, pyrene, chrysene, and 9,10-dimethylanthracene show a linear relationship between rate of solubilization and equilibrium solubility. Also, we have found the rate of solubilization of pyrene at 275 C to be 6.5 ppm/s, indicating that the equilibrium solubilization will be reached in less than 3 min at 275 C; equilibrium solubility of pyrene at 275 C is 1000 ppm. Also, pyrene and fluoranthene appear to have higher solubilities in the presence of sodium carbonate. In addition to this study, SRI studied the rate of removal of selected PAHs from spiked samples under varying conditions (temperature, pore sizes, and pH). We have found a higher removal of PAHs in the presence of sodium carbonate in both sand and

  19. Hydrologic modeling of soil water storage in landfill cover systems

    SciTech Connect

    Barnes, F.J.; Rodgers, J.C.

    1987-01-01

    The accuracy of modeling soil water storage by two hydrologic models, CREAMS and HELP, was tested by comparing simulation results with field measurements of soil moisture in eight experimental landfill cover systems having a range of well-defined soil profiles and vegetative covers. Regression analysis showed that CREAMS generally represented soil moisture more accurately than HELP simulations. Soil profiles that more closely resembled natural agricultural soils were more accurately modeled than highly artificial layered soil profiles. Precautions for determining parameter values for model input and for interpreting simulation results are discussed.

  20. Monitoring soil-vegetation interactions using non-invasive geophysical techniques

    NASA Astrophysics Data System (ADS)

    Perri, M.; Cassiani, G.; Boaga, J.; Rossi, M.; Vignoli, G.; Deiana, R.; Ursino, N.; Putti, M.; Majone, B.; Bellin, A.; Blaschek, M.; Duttmann, R.; Meyer, S.; Ludwig, R.; Soddu, A.; Dietrich, P.; Werban, U.

    2012-12-01

    The understanding of soil-vegetation-atmosphere interactions is of utmost importance in the solution of a number of hydrological questions and practical issues, including flood control, agricultural best practice, slope stability and impacts of climatic changes. Geophysical time-lapse monitoring can greatly contribute to the understanding of these interactions particularly for its capability to map in space and time the effects of vegetation on soil moisture content. In this work we present the results of two case studies showing the potential of hydro-geophysics in this context. The first example refers to the long term monitoring of the soil static and dynamic characteristics in an experimental site located in Sardinia (Italy). The main objective of this study is to understand the effects of soil - water - plants interactions on soil water balance. A combination of time-lapse electromagnetic induction (EMI) monitoring over wide areas and localized irrigation tests monitored by electrical resistivity tomography (ERT) and TDR soil moisture measurements is here used, in order to achieve quantitative field-scale estimates of moisture content from topsoil layer. Natural gamma-ray emission mapping, texture analysis and laboratory calibration of an electrical constitutive relationship on soil samples complete the dataset. We therefore observed that the growth of vegetation, with the associated below ground allocation of biomass, has a significant impact on the soil moisture dynamics. In particular vegetation extracts a large amount of water from the soil in the hot season, but it also reduces evaporation by shadowing the soil surface. In addition, vegetation enhances the soil wetting process as the root system facilitates water infiltration, thus creating a positive feedback system. The second example regards the time-lapse monitoring of soil moisture content in an apple orchard located in the Alpine region of Northern Italy (Trento). A three-dimensional cross-hole ERT

  1. Soil CO2 Dynamics in a Tree Island Soil of the Pantanal: The Role of Soil Water Potential

    PubMed Central

    Johnson, Mark S.; Couto, Eduardo Guimarães; Pinto Jr, Osvaldo B.; Milesi, Juliana; Santos Amorim, Ricardo S.; Messias, Indira A. M.; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO2 research has been conducted in this region. We evaluated soil CO2 dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO2 concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO2 efflux and related environmental parameters. Soil CO2 efflux during the study averaged 3.53 µmol CO2 m−2 s−1, and was equivalent to an annual soil respiration of 1220 g C m−2 y−1. This efflux value, integrated over a year, is comparable to soil C stocks for 0–20 cm. Soil water potential was the measured parameter most strongly associated with soil CO2 concentrations, with high CO2 values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO2 efflux from the tree island soil, with soil CO2 dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO2 efflux from soil. The annual flood arrives later, and saturates soil from below. While CO2 concentrations in soil grew very high under both wetting mechanisms, the change in soil CO2 efflux was only significant when soils were wet from above. PMID:23762259

  2. Soil CO₂ dynamics in a tree island soil of the Pantanal: the role of soil water potential.

    PubMed

    Johnson, Mark S; Couto, Eduardo Guimarães; Pinto, Osvaldo B; Milesi, Juliana; Santos Amorim, Ricardo S; Messias, Indira A M; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO₂ research has been conducted in this region. We evaluated soil CO₂ dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO₂ concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO₂ efflux and related environmental parameters. Soil CO₂ efflux during the study averaged 3.53 µmol CO₂ m⁻² s⁻¹, and was equivalent to an annual soil respiration of 1220 g C m⁻² y⁻¹. This efflux value, integrated over a year, is comparable to soil C stocks for 0-20 cm. Soil water potential was the measured parameter most strongly associated with soil CO₂ concentrations, with high CO₂ values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO₂ efflux from the tree island soil, with soil CO₂ dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO₂ efflux from soil. The annual flood arrives later, and saturates soil from below. While CO₂ concentrations in soil grew very high under both wetting mechanisms, the change in soil CO₂ efflux was only significant when soils were wet from above.

  3. Soil water sensor response to bulk electrical conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water monitoring using electromagnetic (EM) sensors can facilitate observations of water content at high temporal and spatial resolutions. These sensors measure soil dielectric permittivity (Ka) which is largely a function of volumetric water content. However, bulk electrical conductivity BEC c...

  4. STABLE ISOTOPES AS INDICATORS OF SOIL WATER DYNAMICS IN WATERSHEDS

    EPA Science Inventory

    Stream water quality and quantity depend on discharge rates of water and nutrients from soils. However, soil-water storage is very dynamic and strongly influenced by plants. We analyzed stable isotopes of oxygen and hydrogen to quantify spatial and temporal changes in evaporati...

  5. Semiempirical model of soil water hysteresis

    USGS Publications Warehouse

    Nimmo, J.R.

    1992-01-01

    In order to represent hysteretic soil water retention curves accurately using as few measurements as possible, a new semiempirical model has been developed. It has two postulates related to physical characteristics of the medium, and two parameters, each with a definite physical interpretation, whose values are determined empirically for a given porous medium. Tests of the model show that it provides high-quality optimized fits to measured water content vs. matric pressure wetting curves for a wide variety of media. A practical use of this model is to provide a complete simulated main wetting curve for a medium where only a main drying curve and two points on the wetting curve have been measured. -from Author

  6. Water and temperature relations of soil Actinobacteria.

    PubMed

    Stevenson, Andrew; Hallsworth, John E

    2014-12-01

    Actinobacteria perform essential functions within soils, and are dependent on available water to do so. We determined the water-activity (aw ) limits for cell division of Streptomyces albidoflavus, Streptomyces rectiviolaceus, Micromonospora grisea and Micromonospora (JCM 3050) over a range of temperatures, using culture media supplemented with a biologically permissive solute (glycerol). Each species grew optimally at 0.998 aw (control; no added glycerol) and growth rates were near-optimal in the range 0.971-0.974 (1 M glycerol) at permissive temperatures. Each was capable of cell division at 0.916-0.924 aw (2 M glycerol), but only S. albidoflavus grew at 0.895 or 0.897 aw (3 M glycerol, at 30 and 37°C respectively). For S. albidoflavus, however, no growth occurred on media at ≤ 0.870 (4 M glycerol) during the 40-day assessment period, regardless of temperature, and a theoretical limit of 0.877 aw was derived by extrapolation of growth curves. This level of solute tolerance is high for non-halophilic bacteria, but is consistent with reported limits for the growth and metabolic activities of soil microbes. The limit, within the range 0.895-0.870 aw , is very much inferior to those for obligately halophilic bacteria and extremely halophilic or xerophilic fungi, and is inconsistent with earlier reports of cell division at 0.500 aw . These findings are discussed in relation to planetary protection policy for space exploration and the microbiology of arid soils.

  7. Reflectance of vegetation, soil, and water

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The ability to read the 24-channel MSS CCT tapes, select specified agricultural land use areas from the CCT, and perform multivariate statistical and pattern recognition analyses has been demonstrated. The 5 optimum channels chosen for classifying an agricultural scene were, in the order of their selection the far red visible, short reflective IR, visible blue, thermal infrared, and ultraviolet portions of the electromagnetic spectrum, respectively. Although chosen by a training set containing only vegetal categories, the optimum 4 channels discriminated pavement, water, bare soil, and building roofs, as well as the vegetal categories. Among the vegetal categories, sugar cane and cotton had distinctive signatures that distinguished them from grass and citrus. Acreages estimated spectrally by the computer for the test scene were acceptably close to acreages estimated from aerial photographs for cotton, sugar cane, and water. Many nonfarmable land resolution elements representing drainage ditch, field road, and highway right-of-way as well as farm headquarters area fell into the grass, bare soil plus weeds, and citrus categories and lessened the accuracy of the farmable acreage estimates in these categories. The expertise developed using the 24-channel data will be applied to the ERTS-1 data.

  8. Interaction of potassium phosphonate fungicide in laterite soil.

    PubMed

    Kumar, R Anil; Velayudhan, K T; Vasu, K; Ramachandran, V; Bhai, R Susheela; Unnikrishnan, G

    2005-10-01

    Potassium phosphonate is a fungicide widely used to control Phytophthora fungi species in many crops all over the world. In this paper, an attempt has been made to study the interaction of potassium phosphonate with soil under varying pH and calcium level. Several reports available in literature indicate that the phosphonate in organic form adsorb strongly on almost all mineral surfaces and natural materials like soil and sediments. The present study conducted on laterite soil of Kerala using 2 mm sieved sample indicated that phosphonate obeys Freundlich adsorption isotherm. Though at lower concentrations, Langmuir model equally fits well, deviation was observed at higher concentrations. pH and calcium content of the soil had striking influence on the interaction of the chemical with the soil. The calcium source also appeared to influence the adsorption phenomenon. Since potassium phosphonate is extensively used to control Phytophthora fungi species in black pepper (Piper nigrum) plantations in India and liming is a standard practice followed as soil amendment in acid soils to increase the soil pH, this study may help to maintain good soil quality.

  9. Recharge in northern clime calcareous sandy soils: soil water chemical and carbon-14 evolution

    NASA Astrophysics Data System (ADS)

    Reardon, E. J.; Mozeto, A. A.; Fritz, P.

    1980-11-01

    Chemical analyses were performed on soil water extracted from two cores taken from a sandy calcareous soil near Delhi, Ontario. Calcite saturation is attained within the unsaturated zone over short distances and short periods of time, whereas dolomite undersaturation persists to the groundwater table. The progressive dissolution of dolomite by soil water, within the unsaturated zone, after calcite saturation is reached results in calcite supersaturation. Deposition of iron and manganese oxyhydroxide phases occurs at the carbonate leached/unleached zone boundary. This is a result of soil water neutralization due to carbonate dissolution during infiltration but may also reflect the increased rate of oxidation of dissolved ferrous and manganous ions at higher pH's. The role of bacteria in this process has not been investigated. The depth of the carbonate leached/unleached zone boundary in a calcareous soil has important implications for 14C groundwater dating. The depth of this interface at the study site (-2 m) does not appear to limit 14C diffusion from the root zone to the depth at which carbonate dissolution occurs. Thus, soil water achieves open system isotopic equilibrium with the soil CO 2 gas phase. It is calculated that in soils with similar physical properties to the study soil but with depths of leaching of 5 m or more, complete 14C isotopic equilibration of soil water with soil gas would not occur. Soil water, under these conditions would recharge to the groundwater exhibiting some degree of closed system 14C isotopic evolution.

  10. Mucilage exudation facilitates root water uptake in dry soils

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Carminati, A.; Kroener, E.; Holz, M.; Zarebanadkouki, M.

    2014-12-01

    As plant roots take up water and the soil dries, water depletion is expected to occur in the rhizosphere. However, recent experiments showed that the rhizosphere was wetter than the bulk soil during root water uptake. We hypothesise that the increased water content in the rhizosphere was caused by mucilage exuded by roots. It is probably that the higher water content in the rhizosphere results in higher hydraulic conductivity of the root-soil interface. In this case, mucilage exudation would favour the uptake of water in dry soils. To test this hypothesis, we covered a suction cup, referred to as an artificial root, with mucilage. We placed it in soil with a water content of 0.03 cm3 cm-3, and used the root pressure probe technique to measure the hydraulic conductivity of the root-soil continuum. The results were compared with measurements with roots not covered with mucilage. The root pressure relaxation curves were fitted with a model of root water uptake including rhizosphere dynamics. The results demonstrated that when mucilage is added to the root surface, it keeps the soil near the roots wet and hydraulically well conductive, facilitating the water flow from dry soils towards the root surface. Mucilage exudation seems to be an optimal plant trait that favours the capture of water when water is scarce.

  11. Soil-plant-biochar interactions and effects on soil C and N cycling in a wheat greenhouse pot experiment.

    NASA Astrophysics Data System (ADS)

    Michie, E.; Panzacchi, P.; Davies, C. A.; Toet, S.; Ineson, P.

    2012-04-01

    Biochar is carbon rich material, able to modify soil qualities and increase soil carbon sequestration. We investigated the benefits, interactions and mechanisms observed when adding biochar (from Miscanthus feedstock) to soil. In a greenhouse experiment with wheat grown in pots under simulated natural conditions, biochars pyrolysed at 360° C and 450° C were applied at 10, 25, and 50 tha-1, with or without nitrogen (urea). These pots were subjected to different water regimes (400 and 800 mm per year) according to a randomised block design. Growth rate, grain yield and total biomass will be related to the biochar production temperature and application rate. The effect of biochar on water availability and C and N cycling will be tested by direct measurements of CO2, CH4 and N2O fluxes from soil using closed dynamic and static chamber methods. Different natural 13C abundance in biochar (Δ13C≈-13) and soil organic matter (SOM; (Δ13C ≈-27) will be used to calculate the relative contribution of biochar to total soil respiration and the potential priming effect of the biochar on SOM. In addition a labelling experiment with 13CO2 will be used to trace C from the atmosphere through the plant, revealing how biochar affects C allocation in plant biomass, rhizodeposition and root respiration. Preliminary results will be presented.

  12. Uranium interaction with soil minerals in the presence of co-contaminants: Case Study- subsurface sediments at or below the water table

    SciTech Connect

    Gartman, Brandy N.; Qafoku, Nikolla

    2016-03-09

    Uranium (U) contaminated subsurface systems are common on a global scale mainly because of its essential role in the production of plutonium for nuclear weapons and other nuclear energy and research activities. Studying the behavior and fate of U in these systems is challenging because of heterogeneities of different types (i.e., physical, chemical and mineralogical) and a complex network of often time-dependent hydrological, biological and chemical reactions and processes that occur sequentially or simultaneously, affecting and/or controlling U mobility. A U contaminated site, i.e., the Integrated Field Research Challenge site in Rifle, CO, USA (a former U mill site) is the focus of this discussion. The overall objectives of this chapter are to 1) provide an overview of the contamination levels (U and other co-contaminants) at this field site; 2) review and discuss different aspects of mineral-U contaminant interactions in reduced and oxidized environments, and in the presence of co-contaminants; 3) present results from a systematic macroscopic, microscopic, and spectroscopic study as an example of the current research efforts and the state-of-knowledge in this important research area; and 4) offer insightful conclusive remarks and future research needs about reactions and processes that control U and other contaminants’ fate and behavior under hydraulically saturated conditions. The implications and applications presented in this chapter are valid for U contaminated sites across the world.

  13. Ecohydrology of dry regions: storage versus pulse soil water dynamics

    USGS Publications Warehouse

    Lauenroth, William K.; Schlaepfer, Daniel R.; Bradford, John B.

    2014-01-01

    Although arid and semiarid regions are defined by low precipitation, the seasonal timing of temperature and precipitation can influence net primary production and plant functional type composition. The importance of precipitation seasonality is evident in semiarid areas of the western U.S., which comprise the Intermountain (IM) zone, a region that receives important winter precipitation and is dominated by woody plants and the Great Plains (GP), a region that receives primarily summer precipitation and is dominated by perennial grasses. Although these general relationships are well recognized, specific differences in water cycling between these regions have not been well characterized. We used a daily time step soil water simulation model and twenty sites from each region to analyze differences in soil water dynamics and ecosystem water balance. IM soil water patterns are characterized by storage of water during fall, winter, and spring resulting in relatively reliable available water during spring and early summer, particularly in deep soil layers. By contrast, GP soil water patterns are driven by pulse precipitation events during the warm season, resulting in fluctuating water availability in all soil layers. These contrasting patterns of soil water—storage versus pulse dynamics—explain important differences between the two regions. Notably, the storage dynamics of the IN sites increases water availability in deep soil layers, favoring the deeper rooted woody plants in that region, whereas the pulse dynamics of the Great Plains sites provide water primarily in surface layers, favoring the shallow-rooted grasses in that region. In addition, because water received when plants are either not active or only partially so is more vulnerable to evaporation and sublimation than water delivered during the growing season, IM ecosystems use a smaller fraction of precipitation for transpiration (47%) than GP ecosystems (49%). Recognizing the pulse-storage dichotomy in

  14. Responses of amphibian populations to water and soil factors in experimentally-treated aquatic macrocosms

    USGS Publications Warehouse

    Sparling, D.W.; Lowe, T.P.; Day, D.; Dolan, K.

    1995-01-01

    Survival of anuran embryos and tadpoles is reduced in acidic (pH < 5.0) waters under laboratory conditions. However, field data on the presence-absence of amphibian species and acidity are equivocal. This study attempts to reconcile some of this discrepancy by using macrocosms to examine the interaction of soil type and water acidification on free-ranging tadpole populations. Tadpoles were caught with activity traps in 24 aquatic macrocosms experimentally treated with H2SO4 and Al2(SO4)3 and lined with either comparatively high metal, Iow organic matter clay soils or lower metal, higher organic matter loams. Northern cricket frog (Acris crepitans) tadpole abundance was less in acidified macrocosms than in circumneutral ones (p < 0.05) and less in those with loam soils than in macrocosms with clay soils (p < 0.04). Gray treefrog (Hyla versicolor) abundance was affected by an interaction between soil and acidification (p < 0.07) in that treatment effects were only observed in macrocosms with clay soils (p < 0.01). No differences were observed among treatments for green frog (Rana clamitans) or southern leopard frog (R. utricularia) tadpoles. The study shows that soil type may interact with water conditions to affect amphibian populations in acidified waters

  15. Predicting and mapping soil available water capacity in Korea

    PubMed Central

    Hong, Suk Young; Han, Kyung Hwa; Kim, Yihyun; Lee, Kyungdo

    2013-01-01

    The knowledge on the spatial distribution of soil available water capacity at a regional or national extent is essential, as soil water capacity is a component of the water and energy balances in the terrestrial ecosystem. It controls the evapotranspiration rate, and has a major impact on climate. This paper demonstrates a protocol for mapping soil available water capacity in South Korea at a fine scale using data available from surveys. The procedures combined digital soil mapping technology with the available soil map of 1:25,000. We used the modal profile data from the Taxonomical Classification of Korean Soils. The data consist of profile description along with physical and chemical analysis for the modal profiles of the 380 soil series. However not all soil samples have measured bulk density and water content at −10 and −1500 kPa. Thus they need to be predicted using pedotransfer functions. Furthermore, water content at −10 kPa was measured using ground samples. Thus a correction factor is derived to take into account the effect of bulk density. Results showed that Andisols has the highest mean water storage capacity, followed by Entisols and Inceptisols which have loamy texture. The lowest water retention is Entisols which are dominated by sandy materials. Profile available water capacity to a depth of 1 m was calculated and mapped for Korea. The western part of the country shows higher available water capacity than the eastern part which is mountainous and has shallower soils. The highest water storage capacity soils are the Ultisols and Alfisols (mean of 206 and 205 mm, respectively). Validation of the maps showed promising results. The map produced can be used as an indication of soil physical quality of Korean soils. PMID:23646290

  16. A fragrant neighborhood: volatile mediated bacterial interactions in soil

    PubMed Central

    Schulz-Bohm, Kristin; Zweers, Hans; de Boer, Wietse; Garbeva, Paolina

    2015-01-01

    There is increasing evidence that volatile organic compounds (VOCs) play essential roles in communication and competition between soil microorganisms. Here we assessed volatile-mediated interactions of a synthetic microbial community in a model system that mimics the natural conditions in the heterogeneous soil environment along the rhizosphere. Phylogenetic different soil bacterial isolates (Burkholderia sp., Dyella sp., Janthinobacterium sp., Pseudomonas sp., and Paenibacillus sp.) were inoculated as mixtures or monoculture in organic-poor, sandy soil containing artificial root exudates (ARE) and the volatile profile and growth were analyzed. Additionally, a two-compartment system was used to test if volatiles produced by inter-specific interactions in the rhizosphere can stimulate the activity of starving bacteria in the surrounding, nutrient-depleted soil. The obtained results revealed that both microbial interactions and shifts in microbial community composition had a strong effect on the volatile emission. Interestingly, the presence of a slow-growing, low abundant Paenibacillus strain significantly affected the volatile production by the other abundant members of the bacterial community as well as the growth of the interacting strains. Furthermore, volatiles released by mixtures of root-exudates consuming bacteria stimulated the activity and growth of starved bacteria. Besides growth stimulation, also an inhibition in growth was observed for starving bacteria exposed to microbial volatiles. The current work suggests that volatiles produced during microbial interactions in the rhizosphere have a significant long distance effect on microorganisms in the surrounding, nutrient-depleted soil. PMID:26579111

  17. Soil water monitoring using heated distributed temperature sensing

    NASA Astrophysics Data System (ADS)

    Striegl, A. M.; Loheide, S. P.

    2010-12-01

    Traditionally, soil water measurements could only be obtained as point-in-time and point-in-space samples. These methods result in uncertainty in understanding the soil water dynamics of a site because of issues of scale, soil and vegetation spatial heterogeneity, and temporal variability of climatic conditions. Previous researchers have demonstrated the feasibility of obtaining distributed soil water content measurements using the heat pulse method with fiber optic temperature sensing. Numerical simulations of multiple proposed hybrid cable cross-sections guided the design and fabrication of a custom bundle of fiber optics, resistance heating conductors, and protective coatings for soil water monitoring. The conductors introduce a heat pulse to the surrounding soil, while temperature rise versus time is monitored with a Distributed Temperature Sensing (DTS) system using the fiber optics in the bundle. The temperature rise versus time response is related to the matric potential and water content of the soil surrounding the cable. In order to monitor the near-surface hydrology of a recently restored southwestern Wisconsin floodplain, the cable was buried at a depth of 20cm along a transect perpendicular to the Upper East Branch of the Pecatonica River near Barneveld, Wisconsin. Spatial variations of soil water can be readily observed with this technology as the cable spans various vegetation communities, soil types, and moisture conditions at this site. This new technology will help bridge the existing gaps of scale in soil water monitoring networks by providing high resolution, continuous measurements over large spatial scales.

  18. Physical and chemical effects of biochar on natural and artificial water repellent soils

    NASA Astrophysics Data System (ADS)

    Hallin, Ingrid; Douglas, Peter; Doerr, Stefan H.; Bryant, Rob; Matthews, Ian; Charbonneau, Cecile

    2014-05-01

    Water repellency (WR) affects soils worldwide. Hydrophobic compounds accumulate in soil through organic matter decomposition, microbial activity, condensation of organic compounds during vegetation fires, or through anthropogenic impacts such as oil spills. WR hinders vegetation establishment, which can lead to soil erosion and increased runoff. Biochar is currently being evaluated for its potential to increase soil carbon and as a soil amendment. To date, the effect of biochar on water repellent soils has remained largely undetermined. This study considered the potential of biochar as both a physical and chemical amendment for water repellent soils by asking two questions: does adding biochar reduce the observed degree of soil water repellency; and does biochar remove hydrophobic compounds from soil? The potential of biochar as a physical amendment to water repellent soils was evaluated by mixing 5, 10, 25 and 40% (by weight) each of coarse and fine ground biochar with two naturally water repellent soils and measuring the water drop penetration time (WDPT) for each mixture. Biochar particles beyond the range of existing soil particle diameters increased WDPT variability, which could be explained by increased surface roughness and the resulting enhancement of water repellency effects through Cassie-Baxter interactions. Overall, fine biochar was more effective at reducing water repellency: 25% w/w rendered both soils studied wettable. Removal of hydrophobic compounds by biochar was tested by mixing 1, 5, 10, 25 and 40% biochar with acid washed sand (AWS) coated with 1.2x10-5 mol octadecane and octadecanoic acid (per gram AWS, which corresponds to approximately 50 monolayers hydrophobic compound per gram AWS). Each mix stood for 1 to 30 days in a solution of pH 3, 6 or 9 before the AWS was extracted and the quantity of hydrophobic compound remaining determined by infrared spectroscopy and/or gas chromatography. Biochar successfully removed the hydrophobic compounds

  19. Effects of soil management techniques on soil water erosion in apricot orchards.

    PubMed

    Keesstra, Saskia; Pereira, Paulo; Novara, Agata; Brevik, Eric C; Azorin-Molina, Cesar; Parras-Alcántara, Luis; Jordán, Antonio; Cerdà, Artemi

    2016-05-01

    Soil erosion is extreme in Mediterranean orchards due to management impact, high rainfall intensities, steep slopes and erodible parent material. Vall d'Albaida is a traditional fruit production area which, due to the Mediterranean climate and marly soils, produces sweet fruits. However, these highly productive soils are left bare under the prevailing land management and marly soils are vulnerable to soil water erosion when left bare. In this paper we study the impact of different agricultural land management strategies on soil properties (bulk density, soil organic matter, soil moisture), soil water erosion and runoff, by means of simulated rainfall experiments and soil analyses. Three representative land managements (tillage/herbicide/covered with vegetation) were selected, where 20 paired plots (60 plots) were established to determine soil losses and runoff. The simulated rainfall was carried out at 55mmh(-1) in the summer of 2013 (<8% soil moisture) for one hour on 0.25m(2) circular plots. The results showed that vegetation cover, soil moisture and organic matter were significantly higher in covered plots than in tilled and herbicide treated plots. However, runoff coefficient, total runoff, sediment yield and soil erosion were significantly higher in herbicide treated plots compared to the others. Runoff sediment concentration was significantly higher in tilled plots. The lowest values were identified in covered plots. Overall, tillage, but especially herbicide treatment, decreased vegetation cover, soil moisture, soil organic matter, and increased bulk density, runoff coefficient, total runoff, sediment yield and soil erosion. Soil erosion was extremely high in herbicide plots with 0.91Mgha(-1)h(-1) of soil lost; in the tilled fields erosion rates were lower with 0.51Mgha(-1)h(-1). Covered soil showed an erosion rate of 0.02Mgha(-1)h(-1). These results showed that agricultural management influenced water and sediment dynamics and that tillage and herbicide

  20. Quantification of the inevitable: the influence of soil macrofauna on soil water movement in rehabilitated open-cut mined lands

    NASA Astrophysics Data System (ADS)

    Arnold, S.; Williams, E. R.

    2016-01-01

    Recolonisation of soil by macrofauna (especially ants, termites and earthworms) in rehabilitated open-cut mine sites is inevitable and, in terms of habitat restoration and function, typically of great value. In these highly disturbed landscapes, soil invertebrates play a major role in soil development (macropore configuration, nutrient cycling, bioturbation, etc.) and can influence hydrological processes such as infiltration, seepage, runoff generation and soil erosion. Understanding and quantifying these ecosystem processes is important in rehabilitation design, establishment and subsequent management to ensure progress to the desired end goal, especially in waste cover systems designed to prevent water reaching and transporting underlying hazardous waste materials. However, the soil macrofauna is typically overlooked during hydrological modelling, possibly due to uncertainties on the extent of their influence, which can lead to failure of waste cover systems or rehabilitation activities. We propose that scientific experiments under controlled conditions and field trials on post-mining lands are required to quantify (i) macrofauna-soil structure interactions, (ii) functional dynamics of macrofauna taxa, and (iii) their effects on macrofauna and soil development over time. Such knowledge would provide crucial information for soil water models, which would increase confidence in mine waste cover design recommendations and eventually lead to higher likelihood of rehabilitation success of open-cut mining land.

  1. Modeling as a tool for management of saline soils and irrigation waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimal management of saline soils and irrigation waters requires consideration of many interrelated factors including, climate, water applications and timing, water flow, plant water uptake, soil chemical reactions, plant response to salinity and solution composition, soil hydraulic properties and ...

  2. Effect of Thickness of a Water Repellent Soil Layer on Soil Evaporation Rate

    NASA Astrophysics Data System (ADS)

    Ahn, S.; Im, S.; Doerr, S.

    2012-04-01

    A water repellent soil layer overlying wettable soil is known to affect soil evaporation. This effect can be beneficial for water conservation in areas where water is scarce. Little is known, however, about the effect of the thickness of the water repellent layer. The thickness of this layer can vary widely, and particularly after wildfire, with the soil temperature reached and the duration of the fire. This study was conducted to investigate the effect of thickness of a top layer of water repellent soil on soil evaporation rate. In order to isolate the thickness from other possible factors, fully wettable standard sand (300~600 microns) was used. Extreme water repellency (WDPT > 24 hours) was generated by 'baking' the sand mixed with oven-dried pine needles (fresh needles of Pinus densiflora) at the mass ratio of 1:13 (needle:soil) at 185°C for 18 hours. The thicknesses of water repellent layers were 1, 2, 3 and 7 cm on top of wettable soil. Fully wettable soil columns were prepared as a control. Soil columns (8 cm diameter, 10 cm height) were covered with nylon mesh. Tap water (50 ml, saturating 3 cm of a soil column) was injected with hypoderm syringes from three different directions at the bottom level. The injection holes were sealed with hot-melt adhesive immediately after injection. The rate of soil evaporation through the soil surface was measured by weight change under isothermal condition of 40°C. Five replications were made for each. A trend of negative correlation between the thickness of water repellent top layer and soil evaporation rate is discussed in this contribution.

  3. Soil management system for water conservation and mitigation of global change effect

    NASA Astrophysics Data System (ADS)

    Ospina, A.; Florentino, A.; Lorenzo, V.

    2012-04-01

    One of the main constraints in rained agriculture is the water availability for plant growth which depends largely on the ability of the soil to allow water flow, infiltration and its storage. In Venezuela, the interaction between aggressive climatic conditions, highly susceptible soils and inadequate management systems have caused soil degradation which together with global change threatened the food production sustainability. To address this problem, we need to implement conservationist management strategies that improve infiltration rate, permeability and water holding capacity in soil and reduce water loss by protecting the soil surface. In order to study the impact of different management systems on soil water balance in a Fluventic Haplustept, the effects of 11 years of tillage and crops rotation management were evaluated in a long term field experiment located in Turén (Portuguesa state). The evaluated tillage systems were no tillage (NT) and conventional tillage (CT) and crop rotation treatments were maize (Zea mays)-cotton (Gossypium hirsutum) and maize-bean (Vigna unguiculata). Treatments were established in plots arranged in a randomized block design with three replicates. The gravimetric moisture content was determined in the upper 20 cm of soil, at eight different sampling dates. Results showed increased in time of the water availability with the use of tillage and corn-cotton rotation and, better protection of the soil against raindrop impact with crop residues. Water retention capacity also increased and improved structural condition on soil surface such as infiltration, storage and water flow distribution in the rooting zone. We conclude that these strategies of land use and management would contribute to mitigate the climate change effects on food production in this region of Venezuela. Key words: Soil quality; rained agriculture; plant water availability

  4. Teaching Soil and Water Conservation: A Classroom and Field Guide.

    ERIC Educational Resources Information Center

    Foster, Albert B.; Fox, Adrian C.

    Compiled in this booklet are 22 activities designed to develop awareness of the importance of conservation and the wise use of soil and moisture on croplands, grasslands, and woodlands. They have been selected by Soil Conservation Service (SCS) personnel and consultants to show that the way we manage our basic natural resources, soil and water,…

  5. Interaction of water with epoxy.

    SciTech Connect

    Powers, Dana Auburn

    2009-07-01

    The chemistries of reactants, plasticizers, solvents and additives in an epoxy paint are discussed. Polyamide additives may play an important role in the absorption of molecular iodine by epoxy paints. It is recommended that the unsaturation of the polyamide additive in the epoxy cure be determined. Experimental studies of water absorption by epoxy resins are discussed. These studies show that absorption can disrupt hydrogen bonds among segments of the polymers and cause swelling of the polymer. The water absorption increases the diffusion coefficient of water within the polymer. Permanent damage to the polymer can result if water causes hydrolysis of ether linkages. Water desorption studies are recommended to ascertain how water absorption affects epoxy paint.

  6. Lichen-moss interactions within biological soil crusts

    NASA Astrophysics Data System (ADS)

    Ruckteschler, Nina; Williams, Laura; Büdel, Burkhard; Weber, Bettina

    2015-04-01

    Biological soil crusts (biocrusts) create well-known hotspots of microbial activity, being important components of hot and cold arid terrestrial regions. They colonize the uppermost millimeters of the soil, being composed of fungi, (cyano-) bacteria, algae, lichens, bryophytes and archaea in varying proportions. Biocrusts protect the (semi-) arid landscape from wind and water erosion, and also increase water holding capacity and nutrient content. Depending on location and developmental stage, composition and species abundance vary within biocrusts. As species live in close contact, they are expected to influence each other, but only a few interactions between different organisms have so far been explored. In the present study, we investigated the effects of the lichen Fulgensia fulgens whilst growing on the moss Trichostomum crispulum. While 77% of Fulgensia fulgens thalli were found growing associated with mosses in a German biocrust, up to 95% of Fulgensia bracteata thalli were moss-associated in a Swedish biocrust. In 49% (Germany) and in 78% (Sweden) of cases, thalli were observed on the moss T. crispulum and less frequently on four and three different moss species. Beneath F. fulgens and F. bracteata thalli, the mosses were dead and in close vicinity to the lichens the mosses appeared frail, bringing us to the assumption that the lichens may release substances harming the moss. We prepared a water extract from the lichen F. fulgens and used this to water the moss thalli (n = 6) on a daily basis over a time-span of three weeks. In a control setup, artificial rainwater was applied to the moss thalli (n = 6). Once a week, maximum CO2 gas exchange rates of the thalli were measured under constant conditions and at the end of the experiment the chlorophyll content of the moss samples was determined. In the course of the experiment net photosynthesis (NP) of the treatment samples decreased concurrently with an increase in dark respiration (DR). The control samples

  7. Toxic Chemicals in the Soil Environment. Volume 2. Interactions of Some Toxic Chemicals/Chemical Warfare Agents and Soils

    DTIC Science & Technology

    1985-06-01

    16 2 Mean Soil lemperature at Different Depths, in Black Cotton Soil under Cover of 2 =m of Other Soil 41 Relative Persistency in Water and Rate...fraction of soil (physical entrapment?) due to the very largo interfacial ares may occur with the displacement possible by water penetration into the...minute amounts are transported downward after the soil is soaked with water . Sorption isotherms have been employed to describe the sorption proces, Equati

  8. Microbial enhancement of hydrazine degradation in soil and water

    SciTech Connect

    Ou, L.T.; Street, J.J.

    1987-09-01

    In an early study, the authors reported that hydrazine was rapidly degraded in Arredondo fine sand. By comparing the degradation results in sterile and nonsterile soils, it was concluded that biological degradation was responsible for about 20% of hydrazine disappearance from soils. They isolated a heterotrophic bacterium, Achromobacter sp., from the Arredondo soil and found that the organism had a high capacity to degrade hydrazine to the nontoxic product dinitrogen gas. In the present study, the authors attempted to enhance hydrazine degradation in water and soil samples by inoculating with a hydrazine-degrading bacterium, Achromobacter sp. Factors that influence hydrazine degradation in water and soil are discussed.

  9. Nonequilibrium water dynamics in the rhizosphere: How mucilage affects water flow in soils

    NASA Astrophysics Data System (ADS)

    Kroener, Eva; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea

    2014-08-01

    The flow of water from soil to plant roots is controlled by the properties of the narrow region of soil close to the roots, the rhizosphere. In particular, the hydraulic properties of the rhizosphere are altered by mucilage, a polymeric gel exuded by the roots. In this paper we present experimental results and a conceptual model of water flow in unsaturated soils mixed with mucilage. A central hypothesis of the model is that the different drying/wetting rate of mucilage compared to the bulk soil results in nonequilibrium relations between water content and water potential in the rhizosphere. We coupled this nonequilibrium relation with the Richards equation and obtained a constitutive equation for water flow in soil and mucilage. To test the model assumptions, we measured the water retention curve and the saturated hydraulic conductivity of sandy soil mixed with mucilage from chia seeds. Additionally, we used neutron radiography to image water content in a layer of soil mixed with mucilage during drying and wetting cycles. The radiographs demonstrated the occurrence of nonequilibrium water dynamics in the soil-mucilage mixture. The experiments were simulated by numerically solving the nonequilibrium model. Our study provides conceptual and experimental evidences that mucilage has a strong impact on soil water dynamics. During drying, mucilage maintains a greater soil water content for an extended time, while during irrigation it delays the soil rewetting. We postulate that mucilage exudation by roots attenuates plant water stress by modulating water content dynamics in the rhizosphere.

  10. Percolation behavior of tritiated water into a soil packed bed

    SciTech Connect

    Honda, T.; Katayama, K.; Uehara, K.; Fukada, S.; Takeishi, T.

    2015-03-15

    A large amount of cooling water is used in a D-T fusion reactor. The cooling water will contain tritium with high concentration because tritium can permeate metal walls at high temperature easily. A development of tritium handling technology for confining tritiated water in the fusion facility is an important issue. In addition, it is also important to understand tritium behavior in environment assuming severe accidents. In this study, percolation experiments of tritiated water in soil packed bed were carried out and tritium behavior in soil was discussed. Six soil samples were collected in Hakozaki campus of Kyushu University. These particle densities were of the same degree as that of general soils and moisture contents were related to BET surface area. For two soil samples used in the percolation experiment of tritiated water, saturated hydraulic conductivity agreed well with the estimating value by Creager. Tritium retention ratio in the soil packed bed was larger than water retention. This is considered to be due to an effect of tritium sorption on the surface of soil particles. The isotope exchange capacity estimated by assuming that H/T ratio of supplied tritiated water and H/T ratio of surface water of soil particle was equal was comparable to that on cement paste and mortar which were obtained by exposure of tritiated water vapor. (authors)

  11. The interactions of bacteria with fungi in soil: emerging concepts.

    PubMed

    Haq, Irshad Ul; Zhang, Miaozhi; Yang, Pu; van Elsas, Jan Dirk

    2014-01-01

    In this chapter, we review the existing literature on bacterial-fungal interactions in soil, exploring the role fungi may play for soil bacteria as providers of hospitable niches. A focus is placed on the mycosphere, i.e., the narrow zone of influence of fungal hyphae on the external soil milieu, in which hypha-associated bacterial cells dwell. Evidence is brought forward for the contention that the hyphae of both mycorrhizal and saprotrophic fungi serve as providers of ecological opportunities in a grossly carbon-limited soil, as a result of their release of carbonaceous compounds next to the provision of a colonizable surface. Soil bacteria of particular nature are postulated to have adapted to such selection pressures, evolving to the extent that they acquired capabilities that allow them to thrive in the novel habitat created by the emerging fungal hyphae. The mechanisms involved in the interactions and the modes of genetic adaptation of the mycosphere dwellers are discussed, with an emphasis on one key mycosphere-adapted bacterium, Burkholderia terrae BS001. In this discussion, we interrogate the positive interactions between soil fungi and bacteria, and refrain from considering negative interactions.

  12. Root-soil air gap and resistance to water flow at the soil-root interface of Robinia pseudoacacia.

    PubMed

    Liu, X P; Zhang, W J; Wang, X Y; Cai, Y J; Chang, J G

    2015-12-01

    During periods of water deficit, growing roots may shrink, retaining only partial contact with the soil. In this study, known mathematical models were used to calculate the root-soil air gap and water flow resistance at the soil-root interface, respectively, of Robinia pseudoacacia L. under different water conditions. Using a digital camera, the root-soil air gap of R. pseudoacacia was investigated in a root growth chamber; this root-soil air gap and the model-inferred water flow resistance at the soil-root interface were compared with predictions based on a separate outdoor experiment. The results indicated progressively greater root shrinkage and loss of root-soil contact with decreasing soil water potential. The average widths of the root-soil air gap for R. pseudoacacia in open fields and in the root growth chamber were 0.24 and 0.39 mm, respectively. The resistance to water flow at the soil-root interface in both environments increased with decreasing soil water potential. Stepwise regression analysis demonstrated that soil water potential and soil temperature were the best predictors of variation in the root-soil air gap. A combination of soil water potential, soil temperature, root-air water potential difference and soil-root water potential difference best predicted the resistance to water flow at the soil-root interface.

  13. Measuring and Modelling water related soil - vegetation feedbacks in a fallow plot

    NASA Astrophysics Data System (ADS)

    Ursino, Nadia; Cassiani, Giorgio; Deiana, Rita; Vignoli, Giulio; Boaga, Jacopo

    2013-04-01

    Land fallowing is one possible response to shortage of water for irrigation. Leaving the soil unseeded implies a change of the soil functioning that has an impact on the water cycle. The development of a soil crust in the open spaces between the patterns of grass weed affects the soil properties and the field scale water balance. The objective of this study was to test the potential of integrated non invasive geophysics and ground-image analysis and to quantify the effect of the soil vegetation interaction on the water balance of a fallow land at the local and plot scale. We measured repeatedly in space and time local soil saturation and vegetation cover over two small plots located in southern Sardinia, Italy, during an infiltration experiment. One plot was left unseeded and the other was cultivated. The comparative analysis of the experimental data evidenced a positive feedback between weed growth and infiltration at the fallow plot. A simple bucket model captured the different soil moisture dynamics at the two plots during the infiltration experiment and was used to estimate the impact of the soil vegetation feedback on the yearly water balance at the site.

  14. The interactive effects of soil transplant into colder regions and cropping on soil microbiology and biogeochemistry.

    PubMed

    Liu, Shanshan; Wang, Feng; Xue, Kai; Sun, Bo; Zhang, Yuguang; He, Zhili; Van Nostrand, Joy D; Zhou, Jizhong; Yang, Yunfeng

    2015-03-01

    Soil transplant into warmer regions has been shown to alter soil microbiology. In contrast, little is known about the effects of soil transplant into colder regions, albeit that climate cooling has solicited attention in recent years. To address this question, we transplanted bare fallow soil over large transects from southern China (subtropical climate zone) to central (warm temperate climate zone) and northern China (cold temperate climate zone). After an adaptation period of 4 years, soil nitrogen components, microbial biomass and community structures were altered. However, the effects of soil transplant on microbial communities were dampened by maize cropping, unveiling a negative interaction between cropping and transplant. Further statistical analyses with Canonical correspondence analysis and Mantel tests unveiled annual average temperature, relative humidity, aboveground biomass, soil pH and NH4 (+) -N content as environmental attributes closely correlated with microbial functional structures. In addition, average abundances of amoA-AOA (ammonia-oxidizing archaea) and amoA-AOB (ammonia-oxidizing bacteria) genes were significantly (P < 0.05) correlated with soil nitrification capacity, hence both AOA and AOB contributed to the soil functional process of nitrification. These results suggested that the soil nitrogen cycle was intimately linked with microbial community structure, and both were subjected to disturbance by soil transplant to colder regions and plant cropping.

  15. Sorption of nano-C60 clusters in soil: hydrophilic or hydrophobic interactions?

    PubMed

    Forouzangohar, Mohsen; Kookana, Rai S

    2011-05-01

    We studied the sorption behaviour of fullerene nano-C(60) particles (nC(60)) in soil from binary solvent mixtures of ethanol-water in order to critically evaluate the previous reports in the literature that the partitioning mechanism explains the soil sorption of fullerene C(60) as hydrophobic molecules. The sorption of nC(60) particles was studied in a range of solvent mixtures by changing volume fractions of ethanol from 20 to 100 percent. Sorption and particle characteristics were found to be very different in ethanol : water mixtures above and below 60% ethanol. In the range of 20-60% ethanol, sorption increased from 1.2 to 14.6 L kg(-1) accompanied by a change in zeta (ζ) potential from -32.4 to -7.2 mV. This observation can be attributed to hydrophilic interactions that negatively charged nC(60) particles undergo with soil colloids and water molecules. From 60% to 100% ethanol volume fractions, hydrophobic interactions of weakly charged nanoparticles may control the overall extent of soil sorption. The findings of this study indicate the importance of hydrophilic forces in controlling the sorption behaviour of nC(60) particles which are stabilized in water dominated solvent mixtures. The validity of the partitioning mechanism and K(OC) modelling approach in describing and estimating the sorption of nC(60) particles in soil (previously suggested in the literature) are, therefore, questioned.

  16. Soil warming, carbon-nitrogen interactions, and forest carbon budgets.

    PubMed

    Melillo, Jerry M; Butler, Sarah; Johnson, Jennifer; Mohan, Jacqueline; Steudler, Paul; Lux, Heidi; Burrows, Elizabeth; Bowles, Francis; Smith, Rose; Scott, Lindsay; Vario, Chelsea; Hill, Troy; Burton, Andrew; Zhou, Yu-Mei; Tang, Jim

    2011-06-07

    Soil warming has the potential to alter both soil and plant processes that affect carbon storage in forest ecosystems. We have quantified these effects in a large, long-term (7-y) soil-warming study in a deciduous forest in New England. Soil warming has resulted in carbon losses from the soil and stimulated carbon gains in the woody tissue of trees. The warming-enhanced decay of soil organic matter also released enough additional inorganic nitrogen into the soil solution to support the observed increases in plant carbon storage. Although soil warming has resulted in a cumulative net loss of carbon from a New England forest relative to a control area over the 7-y study, the annual net losses generally decreased over time as plant carbon storage increased. In the seventh year, warming-induced soil carbon losses were almost totally compensated for by plant carbon gains in response to warming. We attribute the plant gains primarily to warming-induced increases in nitrogen availability. This study underscores the importance of incorporating carbon-nitrogen interactions in atmosphere-ocean-land earth system models to accurately simulate land feedbacks to the climate system.

  17. Coupling root architecture and pore network modeling - an attempt towards better understanding root-soil interactions

    NASA Astrophysics Data System (ADS)

    Leitner, Daniel; Bodner, Gernot; Raoof, Amir

    2013-04-01

    Understanding root-soil interactions is of high importance for environmental and agricultural management. Root uptake is an essential component in water and solute transport modeling. The amount of groundwater recharge and solute leaching significantly depends on the demand based plant extraction via its root system. Plant uptake however not only responds to the potential demand, but in most situations is limited by supply form the soil. The ability of the plant to access water and solutes in the soil is governed mainly by root distribution. Particularly under conditions of heterogeneous distribution of water and solutes in the soil, it is essential to capture the interaction between soil and roots. Root architecture models allow studying plant uptake from soil by describing growth and branching of root axes in the soil. Currently root architecture models are able to respond dynamically to water and nutrient distribution in the soil by directed growth (tropism), modified branching and enhanced exudation. The porous soil medium as rooting environment in these models is generally described by classical macroscopic water retention and sorption models, average over the pore scale. In our opinion this simplified description of the root growth medium implies several shortcomings for better understanding root-soil interactions: (i) It is well known that roots grow preferentially in preexisting pores, particularly in more rigid/dry soil. Thus the pore network contributes to the architectural form of the root system; (ii) roots themselves can influence the pore network by creating preferential flow paths (biopores) which are an essential element of structural porosity with strong impact on transport processes; (iii) plant uptake depend on both the spatial location of water/solutes in the pore network as well as the spatial distribution of roots. We therefore consider that for advancing our understanding in root-soil interactions, we need not only to extend our root models

  18. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    NASA Astrophysics Data System (ADS)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  19. Soil and Water Challenges for Pacific Northwest Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil and water conservation has been a major concern in the Inland Pacific Northwest since the onset of farming 125 years ago. Some of the highest historic water erosion rates in the USA have occurred on steep slopes in the Palouse region where soil loss averaged 45 Mg ha-1 yr-1 and could reach 450 ...

  20. Automated soil water balance sensing: From layers to control volumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuous sensing of soil water status has been possible in some ways since the advent of chart recorders, but the widespread adoption of soil water sensing systems did not occur until relatively inexpensive dataloggers became available in the late 1970s and early 1980s. Early systems relied on pre...

  1. Comparison of corn transpiration, eddy covariance, and soil water loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stem flow gages are used to estimate plant transpiration, but only a few studies compare transpiration with other measures of soil water loss. The purpose of this study was to compare transpiration from stem flow measurements with soil water changes estimated by daily neutron probe readings. Monitor...

  2. Rhizosphere: a leverage for tolerance to water deficits of soil microflora ?

    NASA Astrophysics Data System (ADS)

    Bérard, Annette; Ruy, Stéphane; Coronel, Anaïs; Toussaint, Bruce; Czarnes, Sonia; Legendre, Laurent; Doussan, Claude

    2015-04-01

    Microbial soil communities play a fundamental role in soil organic matter mineralization, which is a key process for plant nutrition, growth and production in agro-ecosystems. A number of these microbial processes take place in the rhizosphere: the soil zone influenced by plant roots activity, which is a "hotspot " of biological and physico-chemical activity, transfers and biomass production. The knowledge of rhizosphere processes is however still scanty, especially regarding the interactions between physico-chemical processes occurring there and soil microorganisms. The rhizosphere is a place where soil aggregates are more stable, and where bulk density, porosity, water and nutrients transfer are modified with respect to the bulk soil (e.g. because of production of mucilage, of which exo-polysaccharides (EPS) produced by roots and microorganisms. During a maize field experiment, rhizospheric soil (i.e. soil strongly adhering to maize roots) and bulk soil were sampled twice in spring and summer. These soil samples were characterized for physicochemical parameters (water retention curves and analysis of exopolysaccarides) and microflora (microbial biomass, catabolic capacities of the microbial communities assessed with the MicroRespTM technique, stability of soil microbial respiration faced to a heat-drought disturbance). We observed differences between rhizospheric and bulk soils for all parameters studied: Rhizospheric soils showed higher microbial biomasses, higher quantities of exopolysaccarides and a higher water retention capacity compared to bulk soil measurements. Moreover, microbial soil respiration showed a higher stability confronted to heat-drought stress in the rhizospheric soils compared to bulk soils. Results were more pronounced during summer compared to spring. Globally these data obtained from field suggest that in a changing climate conditions, the specific physico-biological conditions in the rhizosphere partially linked to exopolysaccarides

  3. Exploring functional relationships between post-fire soil water repellency, soil structure and physico-chemical properties

    NASA Astrophysics Data System (ADS)

    Quarfeld, Jamie; Brook, Anna; Keestra, Saskia; Wittenberg, Lea

    2016-04-01

    Soil water repellency (WR) and aggregate stability (AS) are two soil properties that are typically modified after burning and impose significant influence on subsequent hydrological and geomorphological dynamics. The response of AS and soil WR to fire depends upon how fire has influenced other key soil properties (e.g. soil OM, mineralogy). Meanwhile, routine thinning of trees and woody vegetation may alter soil properties (e.g. structure and porosity, wettability) by use of heavy machinery and species selection. The study area is situated along a north-facing slope of Mount Carmel national park (Israel). The selected sites are presented as a continuum of management intensity and fire histories. To date, the natural baseline of soil WR has yet to be thoroughly assessed and must be investigated alongside associated soil aggregating parameters in order to understand its overall impact. This study examines (i) the natural baseline of soil WR and physical properties compared to those of disturbed sites in the immediate (controlled burn) and long-term (10-years), and (ii) the interactions of soil properties with different control factors (management, surface cover, seasonal-temporal, burn temperature, soil organic carbon (OC) and mineralogy) in Mediterranean calcareous soils. Analysis of surface soil samples before and after destruction of WR by heating (200-600°C) was implemented using a combination of traditional methods and infrared (IR) spectroscopy. Management and surface cover type conditioned the wettability, soil structure and porosity of soils in the field, although this largely did not affect the heat-induced changes observed in the lab. A positive correlation was observed along an increasing temperature gradient, with relative maxima of MWD and BD reached by most soils at the threshold of 400-500°C. Preliminary analyses of soil OC (MIR) and mineralogical composition (VIS-NIR) support existing research regarding: (i) the importance of soil OC quality and

  4. Iron clad wetlands: Soil iron-sulfur buffering determines coastal wetland response to salt water incursion

    NASA Astrophysics Data System (ADS)

    Schoepfer, Valerie A.; Bernhardt, Emily S.; Burgin, Amy J.

    2014-12-01

    Coastal freshwater wetland chemistry is rapidly changing due to increased frequency of salt water incursion, a consequence of global change. Seasonal salt water incursion introduces sulfate, which microbially reduces to sulfide. Sulfide binds with reduced iron, producing iron sulfide (FeS), recognizable in wetland soils by its characteristic black color. The objective of this study is to document iron and sulfate reduction rates, as well as product formation (acid volatile sulfide (AVS) and chromium reducible sulfide (CRS)) in a coastal freshwater wetland undergoing seasonal salt water incursion. Understanding iron and sulfur cycling, as well as their reduction products, allows us to calculate the degree of sulfidization (DOS), from which we can estimate how long soil iron will buffer against chemical effects of sea level rise. We show that soil chloride, a direct indicator of the degree of incursion, best predicted iron and sulfate reduction rates. Correlations between soil chloride and iron or sulfur reduction rates were strongest in the surface layer (0-3 cm), indicative of surface water incursion, rather than groundwater intrusion at our site. The interaction between soil moisture and extractable chloride was significantly related to increased AVS, whereas increased soil chloride was a stronger predictor of CRS. The current DOS in this coastal plains wetland is very low, resulting from high soil iron content and relatively small degree of salt water incursion. However, with time and continuous salt water exposure, iron will bind with incoming sulfur, creating FeS complexes, and DOS will increase.

  5. Effects of water addition on soil arthropods and soil characteristics in a precipitation-limited environment

    NASA Astrophysics Data System (ADS)

    Chikoski, Jennifer M.; Ferguson, Steven H.; Meyer, Lense

    2006-09-01

    We investigated the effect of water addition and season on soil arthropod abundance and soil characteristics (%C, %N, C:N, moisture, pH). The experimental design consisted of 24 groups of five boxes distributed within a small aspen stand in Saskatchewan, Canada. The boxes depressed the soil to create a habitat with suitable microclimate for soil arthropods, and by overturning boxes we counted soil arthropods during weekly surveys from April to September 1999. Soil samples were collected at two-month intervals and water was added once per week to half of the plots. Of the eleven recognizable taxonomic units identified, only mites (Acari) and springtails (Collembola) responded to water addition by increasing abundance, whereas ants decreased in abundance with water addition. During summer, springtail numbers increased with water addition, whereas pH was a stronger determinant of mite abundance. In autumn, springtails were positively correlated with water and negatively correlated with mites, whereas mite abundance was negatively correlated with increasing C:N ratio, positively correlated to water addition, and negatively correlated with springtail abundance. Although both mite and springtail numbers decreased in autumn with a decrease in soil moisture, mites became more abundant than springtails suggesting a predator-prey (mite-springtail) relationship. Water had a significant effect on both springtails and mites in summer and autumn supporting the assertion that prairie soil communities are water limited.

  6. Effects of Soil and Water Content on Methyl Bromide Oxidation by the Ammonia-Oxidizing Bacterium Nitrosomonas europaea†

    PubMed Central

    Duddleston, Khrystyne N.; Bottomley, Peter J.; Porter, Angela; Arp, Daniel J.

    2000-01-01

    Little information exists on the potential of NH3-oxidizing bacteria to cooxidize halogenated hydrocarbons in soil. A study was conducted to examine the cooxidation of methyl bromide (MeBr) by an NH3-oxidizing bacterium, Nitrosomonas europaea, under soil conditions. Soil and its water content modified the availability of NH4+ and MeBr and influenced the relative rates of substrate (NH3) and cosubstrate (MeBr) oxidations. These observations highlight the complexity associated with characterizing soil cooxidative activities when soil and water interact to differentially affect substrate and cosubstrate availabilities. PMID:10831449

  7. Quantification of the inevitable: the influence of soil macrofauna on soil water movement in rehabilitated open-cut mine land

    NASA Astrophysics Data System (ADS)

    Arnold, S.; Williams, E. R.

    2015-08-01

    Recolonisation of soil by macrofauna (especially ants and termites) in rehabilitated open-cut mine sites is inevitable. In these highly disturbed landscapes, soil invertebrates play a major role in soil development (macropore configuration, nutrient cycling, bioturbation, etc.) and can influence hydrological processes such as infiltration and seepage. Understanding and quantifying these ecosystem processes is important in rehabilitation design, establishment and subsequent management to ensure progress to the desired end-goal, especially in waste cover systems designed to prevent water reaching and transporting underlying hazardous waste materials. However, soil macrofauna are typically overlooked during hydrological modelling, possibly due to uncertainties on the extent of their influence, which can lead to failure of waste cover systems or rehabilitation activities. We propose that scientific experiments under controlled conditions are required to quantify (i) macrofauna - soil structure interactions, (ii) functional dynamics of macrofauna taxa, and (iii) their effects on macrofauna and soil development over time. Such knowledge would provide crucial information for soil water models, which would increase confidence in mine waste cover design recommendations and eventually lead to higher likelihood of rehabilitation success of open-cut mining land.

  8. Soil water availability as controlling factor for actual evapotranspiration in urban soil-vegetation-systems

    NASA Astrophysics Data System (ADS)

    Thomsen, Simon; Reisdorff, Christoph; Gröngröft, Alexander; Jensen, Kai; Eschenbach, Annette

    2015-04-01

    The City of Hamburg is characterized by a large number of greens, parks and roadside trees: 600.000 trees cover about 14% of the city area, and moreover, 245.000 roadside trees can be found here. Urban vegetation is generally known to positively contribute to the urban micro-climate via cooling by evapotranspiration (ET). The water for ET is predominantly stored in the urban soils. Hence, the actual evapotranspiration (ETa) is - beside atmospheric drivers - determined by soil water availability at the soil surface and in the rooting zones of the respective vegetation. The overall aim of this study is to characterize soil water availability as a regulative factor for ETa in urban soil-vegetation systems. The specific questions addressed are: i) What is the spatio-temporal variation in soil water availability at the study sites? ii) Which soil depths are predominantly used for water uptake by the vegetation forms investigated? and iii) Which are the threshold values of soil water tension and soil water content (Θ), respectively, that limit ETa under dry conditions on both grass-dominated and tree-dominated sites? Three study areas were established in the urban region of Hamburg, Germany. We selected areas featuring both single tree stands and grass-dominated sites, both representing typical vegetation forms in Hamburg. The areas are characterized by relatively dry soil conditions. However, they differ in regard to soil water availability. At each area we selected one site dominated by Common Oak (Quercus ruber L.) with ages from 40 to 120 years, and paired each oak tree site with a neighboring grass-dominated site. All field measurements were performed during the years 2013 and 2014. At each site, we continuously measured soil water tension and Θ up to 160 cm depth, and xylem sap flux of each of three oak trees per site in a 15 min-resolution. Furthermore, we measured soil hydraulic properties as pF-curve, saturated and unsaturated conductivity at all sites

  9. The "Teflon basin" myth: Snow-soil interactions in mountain catchments in the western US

    NASA Astrophysics Data System (ADS)

    Williams, M. W.; Cowie, R. M.

    2015-12-01

    In much of western North America, snow and snowmelt provide the primary means for storage of winter precipitation, effectively transferring water from the relatively wet winter season to the typically dry summers. A common assumption is that high-elevation catchments in the western United States behave like "Teflon basins" and that water released from seasonal storage in snow packs flows directly into streams with little or no interaction with underlying soils. Here I present information from a variety of catchments in the Colorado Front Range on snowmelt/soil interactions using isotopic, geochemical, nutrient and hydrometric data in 2- and 3- component hydrograph separations, along with end-member mixing analysis (EMMA). For most catchments we measured these parameters in weekly precipitation, the seasonal snowpack, snowmelt before contact with the ground, discharge, springs, soil solution, and groundwater. We ran EMMA at the catchment scale for catchments that represent the rain-snow transition zone in the montane forest, the seasonally snow covered sub-alpine to alpine transition zone, and a high-elevation alpine zone near the continental divide. In all catchments three end-members were the source waters for about 95% of discharge. Two end-members were the same in all catchments, snow and groundwater. For the alpine catchment talus springs was the third water source, while rain was the third water source in the two lower-elevation catchments. For all three catchments, soil solution plotted with stream waters along or near a line connecting the snow and groundwater end-members. Thus, for seasonally snow-covered catchments from montane to alpine ecosystems, snowmelt infiltrates underlying soils before snowmelt recharges groundwater reservoirs and contributes to surface flows. Seasonally snow-covered catchments are not Teflon basins. Rather, snowmelt infiltrates soils where solute concentrations are changed by biological and geochemical processes.

  10. Soil water characteristics of two soil catenas in Illinois: Implications for irrigation

    SciTech Connect

    Schaetzl, R.J. ); Kirsch, S.W. ); Hendrie, L.K.

    1989-10-01

    Soil water was monitored by neutron scattering in six soils, three each within two drainage catenas in east-central Illinois, over a 15-month time span. The prairie soils have formed in: (1) 76-152 cm of silt loam, eolian sediments (loess) over glacial till (Catlin-Flanagan-Drummer catena), and (2) loess greater than 152 cm in thickness (Tama-Ipava-Sable catena). The authors characterized the water content of these soils over the total time span and for wet and dry climatic subsets, as an aid to potential irrigation decisions. Soils of the thin loess, C-F-D catena dried out to lower water contents and had greater soil water variability than did the thick loess soils. Under wet conditions, soil water contents in the two catenas were quite similar. Alleviation of surface and subsurface drying via irrigation would thus be more advantageous to yields on the C-F-D soils than on the T-I-S soils.

  11. Retrieving soil water contents from soil temperature measurements by using linear regression

    NASA Astrophysics Data System (ADS)

    Xu, Qin; Zhou, Binbin

    2003-11-01

    A simple linear regression method is developed to retrieve daily averaged soil water content from diurnal variations of soil temperature measured at three or more depths. The method is applied to Oklahoma Mesonet soil temperature data collected at the depths of 5, 10, and 30 cm during 11 20 June 1995. The retrieved bulk soil water contents are compared with direct measurements for one pair of nearly collocated Mesonet and ARM stations and also compared with the retrievals of a previous method at 14 enhanced Oklahoma Mesonet stations. The results show that the current method gives more persistent retrievals than the previous method. The method is also applied to Oklahoma Mesonet soil temperature data collected at the depths of 5, 25, 60, and 75 cm from the Norman site during 20 30 July 1998 and 1 31 July 2000. The retrieved soil water contents are verified by collocated soil water content measurements with rms differences smaller than the soil water observation error (0.05 m3 m-3). The retrievals are found to be moderately sensitive to random errors (±0.1 K) in the soil temperature observations and errors in the soil type specifications.

  12. Effect of soil water content on soil thermal conductivity under field conditions

    NASA Astrophysics Data System (ADS)

    Vico, G.; Daly, E.; Manzoni, S.; Porporato, A.

    2008-12-01

    Knowledge of the thermal properties of soils is required in many areas of engineering, meteorology, agronomy, and ecosystem and soil science. Soil thermal conductivity varies in time and space, since it is influenced by soil properties as well as soil temperature and moisture conditions. We use the one dimensional heat conduction equation in conjunction with two-year data measured in a grass-covered field in North Carolina Piedmont to estimate soil thermal conductivity and to investigate how it is impacted by water content. In agreement with laboratory experiments reported in the literature, our results suggest that under dry conditions soil thermal conductivity increases across a relatively narrow range of soil water contents, above which a further increase in water content does not significantly change thermal conductivity. However, when soil approaches saturation, heat transfer is further improved, a fact not previously noted. This nonlinear behavior is consistent with the formation at high water contents of a continuous film of liquid water in soil aggregates of mineral and organic matter.

  13. Volatilization of lindance from water in soil-free and flooded soil systems.

    PubMed

    Siddaramppa, R; Sethunathan, N

    1976-01-01

    Volatilization of 14C-lindane from water in planchets and under flooded soil ecosystem was investigated. Lindane disappeared faster than parathion from planchets. More rapid loss of both insecticides occurred from water than from chloroform. Loss of lindane and parathion was related to measured losses of water by evaporation. During 5-day incubation under flooded soil conditions, disappearance of lindane was faster from open vials than from sealed vials, whereas in nonflooded soil, no volatile loss of the insecticide was evident despite water evaporation. Over 5 day incubation under flooded conditions, greater volatile loss of lindane occurred in sandy soil than in alluvial soil apparanetly due to greater adsorption to the soil colloids decreasing the insecticide concentration in the standing water on the laterite soil. Under identical conditions of water evaporation, lindane loss was directly proportional to its initial concentration in the water. These results suggest that considerable loss of soil applied pesticides can occur by volatilization from the standing water in flooded rice fields, particularly under tropical conditions.

  14. Wood chip mulch thickness effects on soil water, soil temperature, weed growth, and landscape plant growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wood chip mulches are used in landscapes to reduce soil water evaporation and competition from weeds. A study was conducted over a three-year period to determine soil water content at various depths under four wood chip mulch treatments and to evaluate the effects of wood chip thickness on growth of...

  15. Genotypic diversity of Escherichia coli in the water and soil of tropical watersheds in Hawaii.

    PubMed

    Goto, Dustin K; Yan, Tao

    2011-06-01

    High levels of Escherichia coli were frequently detected in tropical soils in Hawaii, which present important environmental sources of E. coli to water bodies. This study systematically examined E. coli isolates from water and soil of several watersheds in Hawaii and observed high overall genotypic diversity (35.5% unique genotypes). In the Manoa watershed, fewer than 9.3% of the observed E. coli genotypes in water and 6.6% in soil were shared between different sampling sites, suggesting the lack of dominant fecal sources in the watershed. High temporal variability of E. coli genotypes in soil was also observed, which suggests a dynamic E. coli population corresponding with the frequently observed high concentrations in tropical soils. When E. coli genotypes detected from the same sampling events were compared, limited sharing between the soil and water samples was observed in the majority of comparisons (73.5%). However, several comparisons reported up to 33.3% overlap of E. coli genotypes between soil and water, illustrating the potential for soil-water interactions under favorable environmental conditions. In addition, genotype accumulation curves for E. coli from water and soil indicated that the sampling efforts in the Manoa watershed could not exhaust the overall genotypic diversity. Comparisons of E. coli genotypes from other watersheds on Oahu, Hawaii, identified no apparent grouping according to sampling locations. The results of the present study demonstrate the complexity of using E. coli as a fecal indicator bacterium in tropical watersheds and highlight the need to differentiate environmental sources of E. coli from fecal sources in water quality monitoring.

  16. Observed soil moisture-atmosphere interactions in the contiguous US from the Soil Climate Analysis Network (SCAN)

    NASA Astrophysics Data System (ADS)

    Xu, R.; Sheffield, J.

    2013-12-01

    The interactions of water and energy between the land and atmosphere are important in many aspects such as understanding the role of the land in weather and climate, improving seasonal forecasts, and evaluating climate models and their projections. Past studies on land-atmosphere interactions over large regions have generally been carried out with reanalysis, satellite remote sensing and model data. This study focuses on observational data from the Soil Climate Analysis Network (SCAN) to investigate the coupling of air temperature, precipitation and soil moisture at different time scales across the contiguous United States. SCAN data from over 80 sites across the U.S. with data between 2002 and 2012 are quality controlled to remove measurement errors and spurious values. Two main hypotheses regarding land-atmosphere interactions are explored: 1) precipitation is the main driver of soil moisture variation with the strength of coupling dependent on location, soil depth and time scale; 2) lack of soil moisture is related to high temperatures through sensible heating with relationships also dependent on location and scale. The statistical correlation between precipitation and soil moisture at daily, sub-monthly, and monthly scales is examined, and a positive relationship is prominent. Daily and monthly air temperature and soil moisture observations suggest that a control of air temperature by soil moisture exists. Further analysis shows significant negative relationships between the number of hot days (NHD) in summer months and soil moisture. The extent of this relationship (quantified by the slope of linear regression) varies across the U.S., with stronger relationships moving from the humid east to the drier central U.S.. In order to differentiate the sources of temperature changes between local coupling and advection, temperature advection is estimated using data from the North American Land Data Assimilation System-2 (NLDAS-2). The results suggest that local

  17. Seasonal variation of water level, water and soil temperature, chemistry, and stable isotopes in hyporheic zone of Korea

    NASA Astrophysics Data System (ADS)

    Jeon, W. H.; Lee, J. Y.

    2015-12-01

    The purpose of study was to evaluate interaction between groundwater and stream water in hyporheic zone using water level, water temperature, soil temperature, chemistry, and stable isotopes. We installed seven piezometers (IYHW1 to 7) in the streambed that across stream in every 10 m and in depth of 0.85 to 1.54 m, a device that measure stage level nearby IYHW1, and devices that measure soil temperature in every 10 cm down to 50 cm nearby each piezometer was installed. We monitored water level and water temperature every hour from automatic transducers at the piezometers and the stage level, and soil temperatures were monitored every two hours. We took samples from the hyporheic water, stream water, and nearby groundwater to analysis chemical and isotopic compositions. The water level difference between stream water and hyporheic waters indicated that groundwater was downwelling in wet season and upwelling in dry season. The groundwater temperature remained steady in different seasons, but the stream water represented a frequent fluctuation with large amplitude. The hyporheic waters and soil temperature represented intermediate variation characteristics. The chemical compositions were not able to indicate in interaction of groundwater and stream water because no distinctive difference in seasonal variation in waters. The quantity of isotopic compositions of oxygen and hydrogen determined from using mixing ratio indicated that downwelling in wet season and upwelling in dry season. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2011-0007232).

  18. Fractal behavior of soil water storage at multiple depths

    NASA Astrophysics Data System (ADS)

    Ji, Wenjun; Lin, Mi; Biswas, Asim; Si, Bing C.; Chau, Henry W.; Cresswell, Hamish P.

    2016-08-01

    Spatiotemporal behavior of soil water is essential to understand the science of hydrodynamics. Data intensive measurement of surface soil water using remote sensing has established that the spatial variability of soil water can be described using the principle of self-similarity (scaling properties) or fractal theory. This information can be used in determining land management practices provided the surface scaling properties are kept at deep layers. The current study examined the scaling properties of sub-surface soil water and their relationship to surface soil water, thereby serving as supporting information for plant root and vadose zone models. Soil water storage (SWS) down to 1.4 m depth at seven equal intervals was measured along a transect of 576 m for 5 years in Saskatchewan. The surface SWS showed multifractal nature only during the wet period (from snowmelt until mid- to late June) indicating the need for multiple scaling indices in transferring soil water variability information over multiple scales. However, with increasing depth, the SWS became monofractal in nature indicating the need for a single scaling index to upscale/downscale soil water variability information. In contrast, all soil layers during the dry period (from late June to the end of the growing season in early November) were monofractal in nature, probably resulting from the high evapotranspirative demand of the growing vegetation that surpassed other effects. This strong similarity between the scaling properties at the surface layer and deep layers provides the possibility of inferring about the whole profile soil water dynamics using the scaling properties of the easy-to-measure surface SWS data.

  19. Interaction between water and defective silica surfaces

    SciTech Connect

    Chen Yunwen; Cheng Haiping

    2011-03-21

    We use the density functional theory method to study dry (1 x 1) {alpha}-quartz (0001) surfaces that have Frenkel-like defects such as oxygen vacancy and oxygen displacement. These defects have distinctively different effects on the water-silica interface depending on whether the adsorbent is a single water molecule, a cluster, or a thin film. The adsorption energies, bonding energies, and charge transfer or redistributions are analyzed, from which we find that the existence of a defect enhances the water molecule and cluster surface interaction by a large amount, but has little or even negative effect on water thin film-silica surface interaction. The origin of the weakening in film-surface systems is the collective hydrogen bonding that compromises the water-surface interaction in the process of optimizing the total energy. For clusters on surfaces, the lowest total energy states lower both the bonding energy and the adsorption energy.

  20. Citrus orchards management and soil water repellency in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Cerdà, A.; González Peñaloza, F. A.; Jordán, A.; Zavala, L. M.

    2012-04-01

    Water repellent soils are found around the world, although originally was found on fire affected soil (DeBano, 1981). However, for decades, water repellency was found to be a rare soil property. One of the pioneer research that shown that water repellency was a common soil property is the Wander (1949) publication in Science. Wander researched the water repellency on citrus groves, and since then, no information is available about the water repellency on citrus plantations. The Mediterranean soils are prone to water repellency due to the summer dry conditions (Cerdà and Doerr, 2007). And Land Use and Land Management are key factors (Harper et al., 2000; Urbanek et al., 2007) to understand the water repellency behaviour of agriculture soils. Valencia region (Eastern Spain) is the largest exporter in the world and citrus plantations located in the alluvial plains and fluvial terraces are moving to alluvial fans and slopes where the surface wash is very active (Cerdà et al., 2009). This research aims to show the water repellency on citrus orchards located on the sloping terrain (< 15 % angle slope). Measurement were conducted in four experimental plots located in the Canyoles River watershed to assess the soil water repellency in citrus orchards under different managements: annual addition of plant residues and manure with no tilling and no fertilizer (MNT), annual addition of plant residues with no tillage (NT), application of conventional herbicides and no tilling (HNT) and conventional tillage in June (CT). The period for each type of management ranged from 2 and 27 (MNT), 1 and 25 (NT), 2 and 27 (HNT) and 3 and 29 years (CT). At each plot, a ten points were selected every 10 cm along inter-rows and water drop penetration time test (WDTP; DeBano, 1981) was performed. The results show that the MNT treatment induced slight water repellency in citrus-cropped soils compared to other treatments. Small but significant soil water repellency was observed under NT and HNT

  1. Coupled Soil-Plant Water Dynamics During Drought-Rewetting Transitions

    NASA Astrophysics Data System (ADS)

    Volkmann, T. H.; Haberer, K.; Gessler, A.; Weiler, M.

    2013-12-01

    The predicted climate and land-use changes could have dramatic effects on the water balance of the soil-vegetation system, particularly under frequent drought and subsequent rewetting conditions. Yet, estimation of these effects and associated consequences for the structure and functioning of ecosystems, groundwater recharge, drinking water availability, and the water cycle is currently impeded by gaps in our understanding of the spatiotemporal dynamics of soil water in the rooted soil horizons, the dynamics and driving physiological processes of plant water acquisition, and the transpiration from plant leaves under changing environmental conditions. Combining approaches from the disciplines of plant ecophysiology and soil and isotope hydrology, this work aims to fill this gap by quantitatively characterizing the interaction between plant water use - as affected by rooting patterns and ecophysiology of different plant functional groups - and the water balance of variably complex ecosystems with emphasis on drought and rewetting phases. Results from artificial drought and subsequent rewetting in field experiments using isotopically and dye (Brilliant Blue FCF) labeled water conducted on plots of various surface cover (bare soil, grass, beech, oak, vine) established on luvisol on loess in southwestern Germany are presented. Detailed spatiotemporal insights into the coupled short-term (hours to days) dynamics of soil and plant water during the experiments is facilitated by the application of newly developed techniques for high-frequency in-situ monitoring of stable isotope signatures in both pore water and transpired water using commercial laser-based spectrometers in conjunction with plant ecophysiological, soil physical state, and dye staining observations. On the one hand, the spatiotemporal patterns of plant water uptake are assessed and related to morphological and physiological traits driving plant water uptake, functional adaptations of plants to changes of

  2. Rock fragments induce patchy distribution of soil water repellency in burned soils

    NASA Astrophysics Data System (ADS)

    Gordillo-Rivero, Ángel; García-Moreno, Jorge; Bárcenas-Moreno, Gema; Jiménez-Morillo, Nicasio T.; Mataix-Solera, Jorge; Jordán, Antonio; Zavala, Lorena M.

    2013-04-01

    Forest fires are recurrent phenomena in the Mediterranean area and are one of the main causes of changes in the Mediterranean ecosystems, increasing the risk of soil erosion and desertification. Fire is an important agent which can induce important changes in the chemical and physical characteristics of soils. During wildfires, only a small part of the heat generated is transmitted to the first centimetres of the soil profile. The intensity of the changes produced in the physical and chemical characteristics of the soil depends on the temperatures reached at different soil depths, the time of residence of temperature peaks, and the stability of the different soil components. One of the soil physical properties strongly affected by fire is soil water repellency (WR). Depending on temperature, time of heating, type of soil and fuel, fire can induce, enhance or destroy soil WR. Soil WR is a key factor in controlling soil hydrology and water availability in burnt soils together with other factors as texture or aggregation. Although the occurrence and consequences of fire-induced soil WR have been deeply studied, some gaps still exist, as the influence of rock fragment cover during burning. During combustion of litter and aerial biomass, the soil surface under rock fragments is heated and reachs temperature peaks after a certain delay respect to exposed areas. In contrast, temperature peaks are longer, increasing the time of residence of high temperature. In consequence, rock fragments may change the expected spatial distribution of soil WR. Up to date, very scarce research concerns the effect of rock fragments at the soil surface on the fire-induced pattern of soil water repellency. METHODS Two experiments were carried out in this research. In the first case, an experiment was conducted in an experimental farm in Sevilla (southern Spain). The effect of a low severity prescribed fire was studied in soil plots under different rock fragment covers (0, 15, 30, 45 and 60

  3. How trifluoroacetone interacts with water.

    PubMed

    Favero, Laura B; Evangelisti, Luca; Maris, Assimo; Vega-Toribio, Alicia; Lesarri, Alberto; Caminati, Walther

    2011-09-01

    The rotational spectra of five isotopologues of the molecular adduct 1,1,1-trifluoroacetone-water have been assigned using pulsed-jet Fourier-transform microwave spectroscopy. All rotational transitions appear as doublets, due to the internal rotation of the methyl group. Analysis of the tunneling splittings allows one to determine accurately the height of the 3-fold barrier to internal rotation of the methyl group and its orientation, leading to V(3) = 3.29 kJ·mol(-1) and ∠(a,i) = 67.5°, respectively. The water molecule is linked to the keton molecule on the side of the methyl group through a O-H···O hydrogen bond and a C-H···O intermolecular contact, lying in the effective plane of symmetry of the complex.

  4. Methodology for the Validation of Collection, Handling and Preservation of Water and Soil Samples.

    DTIC Science & Technology

    1977-05-01

    page III-1. Compound Recoveries from Clay Soil Columns . 23 111-2. Soil Spiking Experimental Results ..... ......... 25 111-3. Summary of Extraction...development of a final north boundary treatment complex . The operating facility will also provide information on the flow of ground water to the system...regeneration process’ý The comments on the Draft fLS for this process stressed the need to know how the adsorbed compbunds - interacted and what their

  5. Spatial and temporal soil water variability in the plowing horizon of agriculturally used soils in two regions of Southwest Germany

    NASA Astrophysics Data System (ADS)

    Poltoradnev, Maxim; Ingwersen, Joachim; Streck, Thilo

    2015-04-01

    Soil water dynamics plays an important role in soil-plant-atmosphere interactions. There is a lack of long-term continuous measurements of topsoil water content at the regional scale. The objective of the present study was to quantify and elucidate the seasonal dynamics of spatial soil water content variability in the plowing horizon (Ap) of agricultural soils at the regional scale. The study was conducted in the central part of the Kraichgau and the Mid Swabian Alb in Southwest Germany. In each region a soil water network embracing 21 stations was set up. All stations were installed on cropped agricultural sites and distributed across three spatial domains: an inner domain 3 km × 3 km (5 stations), a middle 9 km × 9 km (8 stations), and an outer domain 27 km × 27 km (8 stations). Each station consists of a TDT sensor (SI.99 Aquaflex Soil Moisture Sensor, Streat Instruments Ltd, New Zealand), which senses both soil water content and soil temperature, a rain gauge, and a remote transfer unit (RTU, datalogger + GSM modem), which stores and transfers data via GPRS modem to the central data server (Adcon Telemetry GmbH, Austria) located at the University of Hohenheim. The TDT sensors were installed at 0.15 m depth. A sensor consists of a three meter long and three centimeter wide flat transmission line. The relationship between the standard deviation (σθ) of the soil water content (SWC) and mean spatial soil water content (<θ>) formed combinations of concave and convex hyperbolas. However, it strongly depended on SWC state and season. Generally, σθ was found to be changing along a convex trend during dry out and rewetting phases with a maximum in the intermediate SWC range. At the rain event scale, σθ(<θ>) was either ascending or converging with decreasing <θ>. A concave shape was observed when <θ> approached to dry state. The majority of σθ(<θ>) hysteresis loops were observed in intermediate and intermediate/wet state of SWC. All hysteretic loops were

  6. Measuring Low Concentrations of Liquid Water in Soil

    NASA Technical Reports Server (NTRS)

    Buehler, Martin

    2009-01-01

    An apparatus has been developed for measuring the low concentrations of liquid water and ice in relatively dry soil samples. Designed as a prototype of instruments for measuring the liquidwater and ice contents of Lunar and Martian soils, the apparatus could also be applied similarly to terrestrial desert soils and sands. The apparatus is a special-purpose impedance spectrometer: Its design is based on the fact that the electrical behavior of a typical soil sample is well approximated by a network of resistors and capacitors in which resistances decrease and capacitances increase (and, hence, the magnitude of impedance decreases) with increasing water content.

  7. Phosphorus runoff from two water sources on a calcareous soil.

    PubMed

    Aase, J K; Bjorneberg, D L; Westermann, D T

    2001-01-01

    Phosphorus (P) in irrigation runoff may enrich offsite water bodies and streams and be influenced by irrigation water quality and antecedent soil surface conditions. Runoff, soil loss, and P fractions in runoff using reverse osmosis (RO) water or mixed RO and well water (RO/ Tap) were studied in a laboratory sprinkler study to evaluate water source effects on P transport. A top- or subsoil Portneuf silt loam (coarse-silty, mixed, superactive, mesic Durinodic Xeric Haplocalcid), either amended or not amended with manure and/or with cheese whey, with Olsen P from 20 to 141 mg kg(-1) and lime from 108 to 243 g kg(-1), was placed in 1.5 x 1.2 x 0.2-m-deep containers with 2.4% slope and irrigated three times from a 3-m height for 15 min, applying 20 mm of water. The first irrigation was on a dry loose surface, the second on a wet surface, and the third on a dry crusted surface. Surface (ca. 2 cm) soil samples, prior to the first irrigation, were analyzed for Olsen P, water-soluble P (Pws), and iron-oxide impregnated paper-extractable P (FeO-P) analyses. Following each irrigation we determined runoff, sediment, dissolved reactive phosphorus (DRP) in a 0.45-microm filtered sample, and FeO-P and total P in unfiltered samples. Soil surface conditions had no effect on P runoff relationships. Water source had no significant effect on the relationship between DRP or FeO-P runoff and soil test P, except for DRP in RO runoff versus water-soluble soil P (r2 = 0.90). Total P in RO runoff versus soil P were not related; but weakly correlated for RO/Tap (r2 < 0.50). Water source and soil surface conditions had little or no effect on P runoff from this calcareous soil.

  8. Impact of interspecific interactions on antimicrobial activity among soil bacteria.

    PubMed

    Tyc, Olaf; van den Berg, Marlies; Gerards, Saskia; van Veen, Johannes A; Raaijmakers, Jos M; de Boer, Wietse; Garbeva, Paolina

    2014-01-01

    Certain bacterial species produce antimicrobial compounds only in the presence of a competing species. However, little is known on the frequency of interaction-mediated induction of antibiotic compound production in natural communities of soil bacteria. Here we developed a high-throughput method to screen for the production of antimicrobial activity by monocultures and pair-wise combinations of 146 phylogenetically different bacteria isolated from similar soil habitats. Growth responses of two human pathogenic model organisms, Escherichia coli WA321 and Staphylococcus aureus 533R4, were used to monitor antimicrobial activity. From all isolates, 33% showed antimicrobial activity only in monoculture and 42% showed activity only when tested in interactions. More bacterial isolates were active against S. aureus than against E. coli. The frequency of interaction-mediated induction of antimicrobial activity was 6% (154 interactions out of 2798) indicating that only a limited set of species combinations showed such activity. The screening revealed also interaction-mediated suppression of antimicrobial activity for 22% of all combinations tested. Whereas all patterns of antimicrobial activity (non-induced production, induced production and suppression) were seen for various bacterial classes, interaction-mediated induction of antimicrobial activity was more frequent for combinations of Flavobacteria and alpha- Proteobacteria. The results of our study give a first indication on the frequency of interference competitive interactions in natural soil bacterial communities which may forms a basis for selection of bacterial groups that are promising for the discovery of novel, cryptic antibiotics.

  9. Evaluation of different field methods for measuring soil water infiltration

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso; Fonseca, Francisco

    2010-05-01

    Soil infiltrability, together with rainfall characteristics, is the most important hydrological parameter for the evaluation and diagnosis of the soil water balance and soil moisture regime. Those balances and regimes are the main regulating factors of the on site water supply to plants and other soil organisms and of other important processes like runoff, surface and mass erosion, drainage, etc, affecting sedimentation, flooding, soil and water pollution, water supply for different purposes (population, agriculture, industries, hydroelectricity), etc. Therefore the direct measurement of water infiltration rates or its indirect deduction from other soil characteristics or properties has become indispensable for the evaluation and modelling of the previously mentioned processes. Indirect deductions from other soil characteristics measured under laboratory conditions in the same soils, or in other soils, through the so called "pedo-transfer" functions, have demonstrated to be of limited value in most of the cases. Direct "in situ" field evaluations have to be preferred in any case. In this contribution we present the results of past experiences in the measurement of soil water infiltration rates in many different soils and land conditions, and their use for deducing soil water balances under variable climates. There are also presented and discussed recent results obtained in comparing different methods, using double and single ring infiltrometers, rainfall simulators, and disc permeameters, of different sizes, in soils with very contrasting surface and profile characteristics and conditions, including stony soils and very sloping lands. It is concluded that there are not methods universally applicable to any soil and land condition, and that in many cases the results are significantly influenced by the way we use a particular method or instrument, and by the alterations in the soil conditions by the land management, but also due to the manipulation of the surface

  10. Biotic interactions mediate soil microbial feedbacks to climate change.

    PubMed

    Crowther, Thomas W; Thomas, Stephen M; Maynard, Daniel S; Baldrian, Petr; Covey, Kristofer; Frey, Serita D; van Diepen, Linda T A; Bradford, Mark A

    2015-06-02

    Decomposition of organic material by soil microbes generates an annual global release of 50-75 Pg carbon to the atmosphere, ∼7.5-9 times that of anthropogenic emissions worldwide. This process is sensitive to global change factors, which can drive carbon cycle-climate feedbacks with the potential to enhance atmospheric warming. Although the effects of interacting global change factors on soil microbial activity have been a widespread ecological focus, the regulatory effects of interspecific interactions are rarely considered in climate feedback studies. We explore the potential of soil animals to mediate microbial responses to warming and nitrogen enrichment within a long-term, field-based global change study. The combination of global change factors alleviated the bottom-up limitations on fungal growth, stimulating enzyme production and decomposition rates in the absence of soil animals. However, increased fungal biomass also stimulated consumption rates by soil invertebrates, restoring microbial process rates to levels observed under ambient conditions. Our results support the contemporary theory that top-down control in soil food webs is apparent only in the absence of bottom-up limitation. As such, when global change factors alleviate the bottom-up limitations on microbial activity, top-down control becomes an increasingly important regulatory force with the capacity to dampen the strength of positive carbon cycle-climate feedbacks.

  11. Water-module interaction studies

    NASA Technical Reports Server (NTRS)

    Mon, G.; Wen, L.; Ross, R., Jr.

    1988-01-01

    Mechanisms by which moisture enters photovoltaic modules and techniques for reducing such interactions are reported. Results from a study of the effectiveness of various module sealants are given. Techniques for measuring the rate and quantity of moisture ingress are discussed. It is shown that scribe lines and porous frit bridging conductors provide preferential paths for moisture ingress and that moisture diffusion by surface/interfacial paths is considerably more rapid than diffusion by bulk paths, which implies that thin-film substrate and supersubstrate modules are much more vulnerable to moist environments than are bulk-encapsulated crystalline-silicon modules. Design approaches that reduce moisture entry are discussed.

  12. Cosmic Ray Neutron Probe Soil Water Measurements over Complex Terrain in Austria

    NASA Astrophysics Data System (ADS)

    Vreugdenhil, Mariette; Weltin, Georg; Kheng Heng, Lee; Wahbi, Ammar; Oismueller, Markus; Dercon, Gerd

    2014-05-01

    The importance of surface soil water (rooting zone) has become evident with climate change affecting rainfall patterns and crop production. The use of Cosmic Ray Neutron Probe (CRNP) for measuring surface soil water has become increasingly popular. The advantage of CRNP is that it is a non-invasive technique for measuring soil water content at an area-wide scale, in contrast to more conventional, techniques which measure mainly at field scale (point level). The CRNP integrates over a circular area of ca. 600 meters in diameter, to a depth of 70 cm, giving an average value for soil water content. Cosmic radiation interacting with the Earth's atmosphere continuously generates neutrons. At Earth's surface, these neutrons interact with surface water, and are slowed down. At sub-micrometer geometrics, these neutrons affect semiconductor devices, so they can be counted, slow and fast ones separately. From the difference in numbers between fast and slow neutrons, soil water content is calculated. As first in Austria, a CRNP (CRS 1000/B model) consisting of two neutron counters (one tuned for slow, the other one for fast neutrons), data logger and an Iridium modem, has been installed at Petzenkirchen research station of the Doctoral Programme for Water Resource Systems (TU Vienna) at 48.14 latitude and 15.17 longitude, 100 km west of Vienna, in late autumn 2013. The research station is located in an undulating agricultural landscape, characterized by heavy Cambisols and Planosols, and winter wheat and barley as main crops in winter, and maize and sunflower in summer. In addition, an in-situ soil moisture network consisting of 32 stations of Time Domain Transmissivity (TDT) sensors measuring soil water at 4 depths (0.05, 0.10,0.20 and 0.50 m) over an area of 64 ha has been established. This TDT network is currently being used to validate the use of the innovative CRNP technique. First results will be shown at the EGU 2014.

  13. The effect of soil: water ratios on the mineralisation of phenanthrene: LNAPL mixtures in soil.

    PubMed

    Doick, Kieron J; Semple, Kirk T

    2003-03-14

    Contamination of soil by polycyclic aromatic hydrocarbons is frequently associated with non-aqueous-phase liquids. Measurement of the catabolic potential of a soil or determination of the biodegradable fraction of a contaminant can be done using a slurried soil respirometric system. This work assessed the impact of increasing the concentration of transformer oil and soil:water ratio on the microbial catabolism of [(14)C]phenanthrene to (14)CO(2) by a phenanthrene-degrading inoculum. Slurrying (1:1, 1:2, 1:3 and 1:5 soil:water ratios) consistently resulted in statistically higher rates and extents of mineralisation than the non-slurried system (2:1 soil:water ratio; P<0.01). The maximum extents of mineralisation observed occurred in the 1:2-1:5 soil:water ratio microcosms irrespective of transformer oil concentration. Transformer oil concentrations investigated displayed no statistically significant effect on total mineralisation (P>0.05). Soil slurries 1:2 or greater, but less than 1:5 (soil:water), are recommended for bioassay determinations of total contaminant bioavailability due to greater overall mineralisation and improved reproducibility.

  14. Distinct Soil Microbial Communities in habitats of differing soil water balance on the Tibetan Plateau.

    PubMed

    Li, Yuntao; Adams, Jonathan; Shi, Yu; Wang, Hao; He, Jin-Sheng; Chu, Haiyan

    2017-04-12

    Global change may be a severe threat to natural and agricultural systems, partly through its effects in altering soil biota and processes, due to changes in water balance. We studied the potential influence of changing soil water balance on soil biota by comparing existing sites along a natural water balance gradient in the Qinghai-Tibetan Plateau. In this study, the community structure of bacteria, archaea and eukaryotes differed between the different soil water conditions. Soil moisture was the strongest predictor of bacterial and eukaryotic community structure, whereas C/N ratio was the key factor predicting variation in the archaeal community. Bacterial and eukaryotic diversity was quite stable among different soil water availability, but archaeal diversity was dramatically different between the habitats. The auxotype of methanogens also varied significantly among different habitats. The co-varying soil properties among habitats shaped the community structure of soil microbes, with archaea being particularly sensitive in terms of community composition, diversity and functional groups. Bacterial and archaeal phylogenetic community turnover was mainly driven by deterministic processes while stochastic processes had stronger effects on eukaryotic phylogenetic community turnover. Our work provides insight into microbial community, functional group and phylogenetic turnover under different soil conditions in low-latitude alpine ecosystem.

  15. The role of Soil Water Retention Curve in slope stability analysis in unsaturated and heterogeneous soils.

    NASA Astrophysics Data System (ADS)

    Antinoro, Chiara; Arnone, Elisa; Noto, Leonardo V.

    2015-04-01

    The mechanisms of rainwater infiltration causing slope instability had been analyzed and reviewed in many scientific works. Rainwater infiltration into unsaturated soil increases the degree of saturation, hence affecting the shear strength properties and thus the probability of slope failure. It has been widely proved that the shear strength properties change with the soil water suction in unsaturated soils; therefore, the accuracy to predict the relationship between soil water content and soil water suction, parameterized by the soil-water characteristic curve, has significant effects on the slope stability analysis. The aim of this study is to investigate how the characterization of SWRC of differently structured unsaturated soils affects the slope stability on a simple infinite slope. In particular, the unimodal and bimodal distributions of the soil pore size were compared. Samples of 40 soils, highly different in terms of structure and texture, were collected and used to calibrate two bimodal SWRCs, i.e. Ross and Smettem (1993) and Dexter et al., (2008). The traditional unimodal van Genuchten (1980) model was also applied for comparison. Slope stability analysis was conducted in terms of Factor of Safety (FS) by applying the infinite slope model for unsaturated soils. In the used formulation, the contribution of the suction effect is tuned by a parameter 'chi' in a rate proportional to the saturation conditions. Different parameterizations of this term were also compared and analyzed. Results indicated that all three SWRC models showed good overall performance in fitting the sperimental SWRCs. Both the RS and DE models described adequately the water retention data for soils with a bimodal behavior confirmed from the analysis of pore size distribution, but the best performance was obtained by DE model confirmed. In terms of FS, the tree models showed very similar results as soil moisture approached to the saturated condition; however, within the residual zone

  16. [Effects of soil texture and water content on the mineralization of soil organic carbon in paddy soils].

    PubMed

    Sun, Zhong-lin; Wu, Jin-shui; Ge, Ti-da; Tang, Guo-yong; Tong, Cheng-li

    2009-01-01

    To understand how soil texture and water content affect the mineralization of organic C in paddy soil, 3 selected soils (sandy loam, clay loam, and silty clay) were incubated (25 degrees C) with 14 C-labelled rice straw (1.0 g x kg(-1)) at water content varied from 45% to 105% of water holding capacity (WHC). Data indicated that, in the sandy loam and clay loam, the mineralization rate of 14 C-labelled rice straw reached the maximum at 75% WHC, as 53% and 58% of the straw C mineralized in the incubation period of 160 d, whereas in the silty clay, it increased gradually (from 41.8% to 49.0%) as water content increased up to 105% WHC. For all of the three soils, the mineralization rate of soil native organic C reached the maximum at 75% WHC, with 5.8% of the organic C mineralized in the same period for the sandy loam, and 8.0% and 4.8% for the clay loam and silty clay, respectively. As water content increased further, the mineralization rate of native organic C in the three soils significantly declined. The mineralization rate of added rice straw and native organic C in all the three soils, was well fitted with a conic curve. These results suggest that water-logging can decrease the mineralization of organic C in paddy soils.

  17. Water repellent soils as they occur on UK golf greens

    NASA Astrophysics Data System (ADS)

    York, C. A.; Canaway, P. M.

    2000-05-01

    Water repellent soils have been identified as a major problem in the management of golf greens in the UK for over 60 years. The cause of this problem has provoked much speculation, but prior to this work, no research into the possible cause of water repellent soils in the UK had been completed. One of the commonly believed links with water repellent soils on UK golf greens was the activity of basidiomycete fungi. This was proposed as a possible causal factor because the symptoms expressed on the turf above affected soils, were similar in many instances to those symptoms expressed by the activity of superficial fairy rings. Since it was impractical to study superficial fairy rings, it was decided to observe other basidiomycete fairy rings (Type 1 fairy rings) to see if any water-repellence could be identified as being associated with them. Three of these rings, caused by the fungus Marasmius oreades (Bolt ex. Fr) Fr., were studied on each of the two different sites. Soil samples were removed at intervals from the centre of the rings, across the obvious symptoms of the rings (i.e. the zone of dead grass bordered on both sides by a zone of stimulated grass growth) and beyond, into the uncolonised soil. These samples were taken to the laboratory, allowed to air dry and were then tested to determine relative levels of water repellence. It was found that on the 'outside' of the fairy rings where the fungus had not yet colonised, the soils were less water repellent than they were in the other zones of the rings (i.e. the dead zone and the inner zone). In the region of the dead zone of these fairy rings, the soil was very water repellent. This may have been expected because the fungus was present in this area in large quantities and the fungus itself repels water. However, of particular interest, were the results from the inner part of the ring where the fungus had been present in the past, but where it no longer colonised the soil. In these soil samples, the rootzone soil

  18. Evolution of Soil Moisture-Convection Interactions against the Backdrop of Global Oscillations

    NASA Astrophysics Data System (ADS)

    Tawfik, A. B.; Dirmeyer, P.

    2014-12-01

    Interannual changes in how soil moisture can trigger convection are explored within the context of known global-scale oscillations, such as ENSO. Because soil moisture-convection interactions are a local phenomenon that require a sufficiently moist and unstable atmosphere to initiate convection, any systematic changes to water vapor produced by these global circulation changes may manifest in disrupting or promoting the soil moisture-precipitation feedback chain. Using a new framework, the Heated Condensation Framework (HCF; Tawfik and Dirmeyer 2014), local land-atmosphere coupling can be examined by separating the atmospheric background state from the land surface state in terms of convective initiation. The current work explores how the soil moisture-convection relationship changes from year-to-year and during influential El Nino and La Nina events. This is done using several global and regional reanalysis products, as well as observations where available.

  19. Soil Moisture-Ecosystem-Climate Interactions in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Seneviratne, S. I.; Davin, E.; Hirschi, M.; Mueller, B.; Orlowsky, B.; Teuling, A.

    2011-12-01

    Soil moisture is a key variable of the climate system. It constrains plant transpiration and photosynthesis in several regions of the world, with consequent impacts on the water, energy and biogeochemical cycles (e.g. Seneviratne et al. 2010). Moreover it is a storage component for precipitation and radiation anomalies, inducing persistence in the climate system. Finally, it is involved in a number of feedbacks at the local, regional and global scales, and plays a major role in climate-change projections. This presentation will provide an overview on these interactions, based on several recent publications (e.g. Seneviratne et al. 2006, Orlowsky and Seneviratne 2010, Teuling et al. 2010, Hirschi et al. 2011). In particular, it will highlight possible impacts of soil moisture-ecosystem coupling for climate extremes such as heat waves and droughts, and the resulting interconnections between biophysical and biogeochemical feedbacks in the context of climate change. Finally, it will also address recent regional- to global-scale trends in land hydrology and ecosystem functioning, as well as issues and potential avenues for investigating these trends (e.g. Jung et al. 2010, Mueller et al. 2011). References Hirschi, M., S.I. Seneviratne, V. Alexandrov, F. Boberg, C. Boroneant, O.B. Christensen, H. Formayer, B. Orlowsky, and P. Stepanek, 2011: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nature Geoscience, 4, 17-21, doi:10.1038/ngeo1032. Jung, M., et al., 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951-954. doi:10.1038/nature09396 Mueller, B., S.I. Seneviratne, et al.: Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations, Geophys. Res. Lett., 38, L06402, doi:10.1029/2010GL046230 Orlowsky, B., and S.I. Seneviratne, 2010: Statistical analyses of land-atmosphere feedbacks and their possible pitfalls. J. Climate, 23(14), 3918

  20. Simulation of large-scale soil water systems using groundwater data and satellite based soil moisture

    NASA Astrophysics Data System (ADS)

    Kreye, Phillip; Meon, Günter

    2016-04-01

    Complex concepts for the physically correct depiction of dominant processes in the hydrosphere are increasingly at the forefront of hydrological modelling. Many scientific issues in hydrological modelling demand for additional system variables besides a simulation of runoff only, such as groundwater recharge or soil moisture conditions. Models that include soil water simulations are either very simplified or require a high number of parameters. Against this backdrop there is a heightened demand of observations to be used to calibrate the model. A reasonable integration of groundwater data or remote sensing data in calibration procedures as well as the identifiability of physically plausible sets of parameters is subject to research in the field of hydrology. Since this data is often combined with conceptual models, the given interfaces are not suitable for such demands. Furthermore, the application of automated optimisation procedures is generally associated with conceptual models, whose (fast) computing times allow many iterations of the optimisation in an acceptable time frame. One of the main aims of this study is to reduce the discrepancy between scientific and practical applications in the field of hydrological modelling. Therefore, the soil model DYVESOM (DYnamic VEgetation SOil Model) was developed as one of the primary components of the hydrological modelling system PANTA RHEI. DYVESOMs structure provides the required interfaces for the calibrations made at runoff, satellite based soil moisture and groundwater level. The model considers spatial and temporal differentiated feedback of the development of the vegetation on the soil system. In addition, small scale heterogeneities of soil properties (subgrid-variability) are parameterized by variation of van Genuchten parameters depending on distribution functions. Different sets of parameters are operated simultaneously while interacting with each other. The developed soil model is innovative regarding concept

  1. Formation of Soil Water Repellency by Laboratory Burning and Its Effect on Soil Evaporation

    NASA Astrophysics Data System (ADS)

    Ahn, Sujung; Im, Sangjun

    2010-05-01

    Fire-induced soil water repellency can vary with burning conditions, and may lead to significant changes in soil hydraulic properties. However, isolation of the effects of soil water repellency from other factors is difficult, particularly under field conditions. This study was conducted to (i) investigate the effects of burning using different plant leaf materials and (ii) of different burning conditions on the formation of soil water repellency, and (iii) isolate the effects of the resulting soil water repellency on soil evaporation from other factors. Burning treatments were performed on the surface of homogeneous fully wettable sand soil contained in a steel frame (60 x 60 cm; 40 cm depth). As controls a sample without a heat treatment, and a heated sample without fuel, were also used. Ignition and heat treatments were carried out with a gas torch. For comparing the effects of different burning conditions, fuel types included oven-dried pine needles (fresh needles of Pinus densiflora), pine needle litter (litter on a coniferous forest floor, P. densiflora + P. rigida), and broad-leaf litter (Quercus mongolica + Q. aliena + Prunus serrulata var. spontanea + other species); fuel loads were 200 g, 300 g, and 500 g; and heating duration was 40 s, 90 s and 180 s. The heating duration was adjusted to control the temperature, based on previous experiments. The temperature was measured continuously at 3-second intervals and logged with two thermometers. After burning, undisturbed soil columns were sampled for subsequent experiments. Water Drop Penetration Time (WDPT) test was performed at every 1 mm depth of the soil columns to measure the severity of soil water repellency and its vertical extent. Soil water repellency was detected following all treatments. As the duration of heating increased, the thickness of the water repellent layer increased, whilst the severity of soil water repellency decreased. As regards fuel amount, the most severe soil water repellency was

  2. Numerical and Experimental Quantification of coupled water and water vapor fluxes in very dry soils.

    NASA Astrophysics Data System (ADS)

    Madi, Raneem; de Rooij, Gerrit

    2015-04-01

    In arid and semi-arid regions with deep groundwater and very dry soils, vapor movement in the vadose zone may be a major component in the total water flux. Therefore, the coupled movement of liquid water, water vapor and heat transport in the unsaturated zone should be explicitly considered to quantify subsurface water fluxes in such regions. Only few studies focused on the importance of vapor water diffusion in dry soils and in many water flow studies in soil it was neglected. We are interested in the importance of water vapor diffusion and condensation in very dry sand. A version of Hydrus-1D capable of solving the coupled water vapor and heat transport equations will be used to do the numerical modeling. The soil hydraulic properties will be experimentally determined. A soil column experiment was developed with negligible liquid flow in order to isolate vapor flux for testing. We have used different values of initial water contents trying to generate different scenarios to assess the role of the water vapor transport in arid and semi-arid soils and how it changes the soil water content using different soil hydraulic parametrization functions. In the session a preliminary experimental and modelling results of vapor and water fluxes will be presented.

  3. Performance of chromatographic systems to model soil-water sorption.

    PubMed

    Hidalgo-Rodríguez, Marta; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí

    2012-08-24

    A systematic approach for evaluating the goodness of chromatographic systems to model the sorption of neutral organic compounds by soil from water is presented in this work. It is based on the examination of the three sources of error that determine the overall variance obtained when soil-water partition coefficients are correlated against chromatographic retention factors: the variance of the soil-water sorption data, the variance of the chromatographic data, and the variance attributed to the dissimilarity between the two systems. These contributions of variance are easily predicted through the characterization of the systems by the solvation parameter model. According to this method, several chromatographic systems besides the reference octanol-water partition system have been selected to test their performance in the emulation of soil-water sorption. The results from the experimental correlations agree with the predicted variances. The high-performance liquid chromatography system based on an immobilized artificial membrane and the micellar electrokinetic chromatography systems of sodium dodecylsulfate and sodium taurocholate provide the most precise correlation models. They have shown to predict well soil-water sorption coefficients of several tested herbicides. Octanol-water partitions and high-performance liquid chromatography measurements using C18 columns are less suited for the estimation of soil-water partition coefficients.

  4. Field-measured, hourly soil water evaporation stages in relation to reference evapotranspiration rate and soil to air temperature ratio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water evaporation takes critical water supplies away from crops, especially in areas where both rainfall and irrigation water are limited. This study measured bare soil water evaporation from clay loam, silt loam, sandy loam, and fine sand soils. It found that on average almost half of the ir...

  5. Integrating water by plant roots over spatially distributed soil salinity

    NASA Astrophysics Data System (ADS)

    Homaee, Mehdi; Schmidhalter, Urs

    2010-05-01

    In numerical simulation models dealing with water movement and solute transport in vadose zone, the water budget largely depends on uptake patterns by plant roots. In real field conditions, the uptake pattern largely changes in time and space. When dealing with soil and water salinity, most saline soils demonstrate spatially distributed osmotic head over the root zone. In order to quantify such processes, the major difficulty stems from lacking a sink term function that adequately accounts for the extraction term especially under variable soil water osmotic heads. The question of how plants integrate such space variable over its rooting depth remains as interesting issue for investigators. To move one step forward towards countering this concern, a well equipped experiment was conducted under heterogeneously distributed salinity over the root zone with alfalfa. The extraction rates of soil increments were calculated with the one dimensional form of Richards equation. The results indicated that the plant uptake rate under different mean soil salinities preliminary reacts to soil salinity, whereas at given water content and salinity the "evaporative demand" and "root activity" become more important to control the uptake patterns. Further analysis revealed that root activity is inconstant when imposed to variable soil salinity. It can be concluded that under heterogeneously distributed salinity, most water is taken from the less saline increment while the extraction from other root zone increments with higher salinities never stops.

  6. Investigating Unstable Water Infiltration into Alcohol Contaminated Soils

    NASA Astrophysics Data System (ADS)

    McLeod, H. C.; Smith, J. E.; Henry, E. J.; Brodsky, Y.

    2009-05-01

    A new mechanism causing highly focused, unstable flow exists in soils contaminated with alcohols due to their surface-activity. For example, surface-active compounds can significantly decrease the interfacial tension of the air-water interface and change the pressure-head of the soil water; directly affecting water flow and solute transport in the vadose zone. This study evaluated the fundamental effects of surface-active alcohols on water infiltration into contaminated soils under controlled laboratory conditions. A small scale 3-D glass flow cell and a mini disk tension infiltrometer were used to monitor the rates and physical characteristics of water infiltration from a constant head point source into sands of various textures contaminated with a butanol solution. The results confirmed that water infiltration into these soils is fundamentally and substantially different than the current understanding of infiltration patterns, including previously described mechanisms of wetting front instability. In butanol-contaminated soils, the wetting fronts exhibited highly focused flow with smaller wetted soil volumes, deeper penetration and substantially higher infiltration rates. In addition, the extent of fingered focused flow was confirmed to be texturally dependent, decreasing with grain size and dependent on the constant head boundary. This study characterized a new mechanism of focused, unstable flow with significant implications for groundwater management and solute transport in alcohol contaminated soils.

  7. Soil Water Retention as Indicator for Soil Physical Quality - Examples from Two SoilTrEC European Critical Zone Observatories

    NASA Astrophysics Data System (ADS)

    Rousseva, Svetla; Kercheva, Milena; Shishkov, Toma; Dimitrov, Emil; Nenov, Martin; Lair, Georg J.; Moraetis, Daniel

    2014-05-01

    Soil water retention is of primary importance for majority of soil functions. The characteristics derived from Soil Water Retention Curve (SWRC) are directly related to soil structure and soil water regime and can be used as indicators for soil physical quality. The aim of this study is to present some parameters and relationships based on the SWRC data from the soil profiles characterising the European SoilTrEC Critical Zone Observatories Fuchsenbigl and Koiliaris. The studied soils are representative for highly productive soils managed as arable land in the frame of soil formation chronosequence at "Marchfeld" (Fuchsenbigl CZO), Austria and heavily impacted soils during centuries through intensive grazing and farming, under severe risk of desertification in context of climatic and lithological gradient at Koiliaris, Crete, Greece. Soil water retention at pF ≤ 2.52 was determined using the undisturbed soil cores (100 cm3 and 50 cm3) by a suction plate method. Water retention at pF = 4.2 was determined by a membrane press method and at pF ≥ 5.6 - by adsorption of water vapour at controlled relative humidity, both using ground soil samples. The soil physical quality parameter (S-parameter) was defined as the slope of the water retention curve at its inflection point (Dexter, 2006), determined with the obtained parameters of van Genuhten (1980) water retention equation. The S-parameter values were categorised to assess soil physical quality as follows: S < 0.020 very poor, 0.020 ≤ S < 0.035 poor, 0.035 ≤ S < 0.050 good, S ≥ 0.050 very good (Dexter, 2004). The results showed that most of the studied topsoil horizons have good physical quality according to both the S-parameter and the Plant-Available Water content (PAW), with the exception of the soils from croplands at CZO Fuxenbigl (F4, F5) which are with poor soil structure. The link between the S-parameter and the indicator of soil structure stability (water stable soil aggregates with size 1-3 mm) is not

  8. Integrated use of soil physical and water isotope methods for ecohydrological characterization of desertified areas

    NASA Astrophysics Data System (ADS)

    Külls, Christoph; Nunes, Alice; Köbel-Batista, Melanie; Branquinho, Cristina; Bianconi, Nadja; Costantini, Eduardo

    2014-05-01

    Measures for monitoring desertification and soil degradation require a thorough understanding of soil physical properties and of the water balance in order to guide restoration efforts (Costantini et al. 2009). It is hypothesized that long term restoration success on degraded land depends on a series of interacting factors such as exposition, soil type, soil hydrology including lateral flow on hill-slope catenae. Recently, new soil water isotope measurement techniques have been developed (Garvelmann et al. 2012) that provide much faster and reliable stable water isotope profiles in soils. This technique yield information on groundwater recharge, soil water balance and on the origin of water available for plants, which in combination with conservative chemical tracers (chloride) can be validated. A multidisciplinary study including ecologists, soil physicists and hydrologists of the COST Action Desert Restoration Hub was carried out on four semi-arid sites in Portugal. A comparative characterization of soil physical parameters, soil water isotope and chloride profiles was performed in order to estimate pedoclimate, soil aridity, soil water balance and groundwater recharge. In combination with soil physical data a comprehensive and cross-validated characterization of pedoclimate and soil aridity was obtained. These indicators were then integrated and related to plant cover. The long-term rainfall of the four sites ranges from 512 to 638 mm, whereas air temperature is from 15.8 to 17.0°C. The De Martonne index of aridity spans from 19.3 to 24.6, pointing to semiarid to moderately arid climatic conditions. The long-term average number of days when the first 0.50 m of soil is dry ranges from 110 to 134, while the mean annual soil temperature at 0.50 m spans from 15.8 and 19.1°C. The studied profiles show different hydrological characteristics, in particular, the estimated hydraulic conductivity ranges from 0.1-1 to 10-100 µm/s. Three out of four profiles show a

  9. Human interactions with ground-water

    USGS Publications Warehouse

    Zaporozec, A.

    1983-01-01

    Ground-Water could be considered as an immense reservoir, from which only a certain amount of water can be withdrawn without affecting the quantity and quality of water. This amount is determined by the characteristics of the environment in which ground-water occurs and by the interactions of ground-water with precipitation, surface water, and people. It should be recognized that quantity and quality of ground-water are intimately related and should be considered accordingly. Quantity refers to usable water and water is usable for any specific purpose only so long as its quality has not deteriorated beyond acceptable limits. Thus an overall quantitative and qualitative management of ground water is inevitable, and its should also involve the uses of ground-water reservoirs for purposes other than water supply. The main objective of ground-water management is to ensure that ground-water resources will be available in appropriate time and in appropriate quantity and quality to meet the most important demands of our society. Traditional, and obvious uses of ground-water are the extraction of water for water supplies (domestic, municipal, agricultural, and industrial) and the natural discharge feeding lakes and maintaining base flow of streams. Not so obvious are the uses of ground-water reservoirs, the very framework within which ground-water occurs and moves, and in which other fluids or materials can be stored. In the last two decades, ground-water reservoirs have been intensively considered for many other purposes than water supplies. Diversified and very often conflicting uses need to be evaluated and dealt with in the most efficient way in order to determine the importance of each possible use, and to assign priorities of these uses. With rising competition for the use of ground-water reservoirs, we will also need to increase the potential for effective planning of ground-water development and protection. Man's development and use of ground-water necessarily

  10. [Characteristics of water infiltration in urban soils of Nanjing City].

    PubMed

    Yang, Jin-Ling; Zhang, Gan-Lin; Yuan, Da-Gang

    2008-02-01

    By using dual-ring method, this paper measured the water infiltration rate in urban soils under representative land use patterns in Nanjing City, and studied the characteristics of water infiltration in the soils with different compaction degree. The results showed that there was a great difference in the infiltration rate among the soils with different compactness. Soil infiltration rate decreased with increasing bulk density and decreasing porosity, and the water-transport-limiting layer existed in heavily compacted soils resulted in a dramatic decrease of final stabilized infiltration rate. There was a significant linear relationship between the initial and final infiltration rates in the same soil though their absolute values had a great difference. The urban soils in Nanjing City had a wide range of final infiltration rate varied from 1 mm X h(-1) to 679 mm X h(-1), which was highly related to the soil compactness, structural status, and skeleton grain contents. The decrease of urban soil infiltration rate could induce the increase of runoff and of the probability and intensity of flooding.

  11. Short- and Long-term Perspectives of Soil Change: Interactions between Capacity and Intensity (Invited)

    NASA Astrophysics Data System (ADS)

    Johnson, D. W.; Richter, D.

    2009-12-01

    Soil chemical change is usually viewed as a change in one or more of the commonly employed methods for the chemical analysis of the solid phase of the soil (a capacity change). The pools (kg ha-1) of nutrients commonly analyzed in standard soil analyses are often very large and therefore are thought to change very slowly. On the other hand, changes in the solution phase of the soil, although very strongly affected by changes in the solid phase, can take place almost instantaneously (an intensity change). The interactions between capacity and intensity type changes are complex, but chemically consistent with one another (Reuss and Johnson, 1986). This paper reviews laboratory studies, field studies, and modeling exercises which demonstrate the interactions between capacity and intensity-type changes in soil adsorbed cation and anions, both over the short term and long term. Reuss, J.O., and D.W. Johnson. 1986. Acid Deposition and the Acidification of Soil and Water. Ecological Studies No. 59. Springer-Verlag, New York. 118 p.

  12. Volatile-mediated interactions between phylogenetically different soil bacteria

    PubMed Central

    Garbeva, Paolina; Hordijk, Cornelis; Gerards, Saskia; de Boer, Wietse

    2014-01-01

    There is increasing evidence that organic volatiles play an important role in interactions between micro-organisms in the porous soil matrix. Here we report that volatile compounds emitted by different soil bacteria can affect the growth, antibiotic production and gene expression of the soil bacterium Pseudomonas fluorescens Pf0–1. We applied a novel cultivation approach that mimics the natural nutritional heterogeneity in soil in which P. fluorescens grown on nutrient-limited agar was exposed to volatiles produced by 4 phylogenetically different bacterial isolates (Collimonas pratensis, Serratia plymuthica, Paenibacillus sp., and Pedobacter sp.) growing in sand containing artificial root exudates. Contrary to our expectation, the produced volatiles stimulated rather than inhibited the growth of P. fluorescens. A genome-wide, microarray-based analysis revealed that volatiles of all four bacterial strains affected gene expression of P. fluorescens, but with a different pattern of gene expression for each strain. Based on the annotation of the differently expressed genes, bacterial volatiles appear to induce a chemotactic motility response in P. fluorescens, but also an oxidative stress response. A more detailed study revealed that volatiles produced by C. pratensis triggered, antimicrobial secondary metabolite production in P. fluorescens. Our results indicate that bacterial volatiles can have an important role in communication, trophic - and antagonistic interactions within the soil bacterial community. PMID:24966854

  13. The chemistry of salt-affected soils and waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the chemistry of salt affected soils and waters is necessary for management of irrigation in arid and semi-arid regions. In this chapter we review the origin of salts in the landscape, the major chemical reactions necessary for prediction of the soil solution composition, and the use of...

  14. Measurement of soil water content with dielectric dispersion frequency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Frequency domain reflectometry (FDR) is an inexpensive and attractive methodology for repeated measurements of soil water content (SWC). Although there are some known measurement limitations for dry soil and sand, a fixed-frequency method is commonly employed using commercially available FDR probes....

  15. Augmenting soil water storage using uncharred switchgrass and pyrolyzed biochars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar is an amendment that can augment soil water storage; however, its projected cost per ton could be financially limiting at field application scales. It may be more monetarily convenient if an alternate amendment were available that could deliver similar soil enhancements. We compared two swi...

  16. Occurrence of soil water repellency in arid and humid climates

    NASA Astrophysics Data System (ADS)

    Jaramillo, D. F.; Dekker, L. W.; Ritsema, C. J.; Hendrickx, J. M. H.

    2000-05-01

    Soil water repellency generally tends to increase during dry weather while it decreases or completely vanishes after heavy precipitation or during extended periods with high soil water contents. These observations lead to the hypothesis that soil water repellency is common in dry climates and rare in humid climates. The study objective is to test this hypothesis by examining the occurrence of soil water repellency in an arid and humid climate. The main conclusion of this study is that the effect of climate on soil water repellency is very limited. Field observations in the arid Middle Rio Grande Basin in New Mexico (USA) and the humid Piedras Blancas Watershed in Colombia show that the main impact of climate seems to be in which manner it affects the production of organic matter. An extremely dry climate will result in low organic matter production rates and, therefore, less potential for the development of soil water repellency. On the other hand, a very humid climate is favorable for organic matter production and, therefore, for the development of water repellency.

  17. Macrofauna assemblage composition and soil moisture interact to affect soil ecosystem functions

    NASA Astrophysics Data System (ADS)

    Collison, E. J.; Riutta, T.; Slade, E. M.

    2013-02-01

    Changing climatic conditions and habitat fragmentation are predicted to alter the soil moisture conditions of temperate forests. It is not well understood how the soil macrofauna community will respond to changes in soil moisture, and how changes to species diversity and community composition may affect ecosystem functions, such as litter decomposition and soil fluxes. Moreover, few studies have considered the interactions between the abiotic and biotic factors that regulate soil processes. Here we attempt to disentangle the interactive effects of two of the main factors that regulate soil processes at small scales - moisture and macrofauna assemblage composition. The response of assemblages of three common temperate soil invertebrates (Glomeris marginata Villers, Porcellio scaber Latreille and Philoscia muscorum Scopoli) to two contrasting soil moisture levels was examined in a series of laboratory mesocosm experiments. The contribution of the invertebrates to the leaf litter mass loss of two common temperate tree species of contrasting litter quality (easily decomposing Fraxinus excelsior L. and recalcitrant Quercus robur L.) and to soil CO2 fluxes were measured. Both moisture conditions and litter type influenced the functioning of the invertebrate assemblages, which was greater in high moisture conditions compared with low moisture conditions and on good quality vs. recalcitrant litter. In high moisture conditions, all macrofauna assemblages functioned at equal rates, whereas in low moisture conditions there were pronounced differences in litter mass loss among the assemblages. This indicates that species identity and assemblage composition are more important when moisture is limited. We suggest that complementarity between macrofauna species may mitigate the reduced functioning of some species, highlighting the importance of maintaining macrofauna species richness.

  18. The estimation of soil water fluxes using lysimeter data

    NASA Astrophysics Data System (ADS)

    Wegehenkel, M.

    2009-04-01

    The validation of soil water balance models regarding soil water fluxes in the field is still a problem. This requires time series of measured model outputs. In our study, a soil water balance model was validated using lysimeter time series of measured model outputs. The soil water balance model used in our study was the Hydrus-1D-model. This model was tested by a comparison of simulated with measured daily rates of actual evapotranspiration, soil water storage, groundwater recharge and capillary rise. These rates were obtained from twelve weighable lysimeters with three different soils and two different lower boundary conditions for the time period from January 1, 1996 to December 31, 1998. In that period, grass vegetation was grown on all lysimeters. These lysimeters are located in Berlin, Germany. One potential source of error in lysimeter experiments is preferential flow caused by an artificial channeling of water due to the occurrence of air space between the soil monolith and the inside wall of the lysimeters. To analyse such sources of errors, Hydrus-1D was applied with different modelling procedures. The first procedure consists of a general uncalibrated appli-cation of Hydrus-1D. The second one includes a calibration of soil hydraulic parameters via inverse modelling of different percolation events with Hydrus-1D. In the third procedure, the model DUALP_1D was applied with the optimized hydraulic parameter set to test the hy-pothesis of the existence of preferential flow paths in the lysimeters. The results of the different modelling procedures indicated that, in addition to a precise determination of the soil water retention functions, vegetation parameters such as rooting depth should also be taken into account. Without such information, the rooting depth is a calibration parameter. However, in some cases, the uncalibrated application of both models also led to an acceptable fit between measured and simulated model outputs.

  19. Reductive Dehalogenation of Organic Contaminants in Soils and Ground Water

    EPA Pesticide Factsheets

    Reductive dehalogenation is a process which may prove to be of paramount importance in dealing with a particularly persistent class of contaminants often found in soil and ground water at superfund sites.

  20. Studies of soil-water transport by MRI.

    PubMed

    Amin, M H; Richards, K S; Chorley, R J; Gibbs, S J; Carpenter, T A; Hall, L D

    1996-01-01

    Sequential spin-echo spin-warp MRI pulse sequences have been used to study soil-water transport processes including infiltration, redistribution, and drainage of water in soil columns. Those images provide a means for monitoring and quantifying spatial and temporal changes of soil-water distributions and the movement of wetting fronts. In addition, temporal-geometric changes of unstable wetting fronts during water redistribution were estimated from 2D images and the temporal development of the longest length of finger was described by a fractal relation t approximately L1.38. Bulk dispersion-time-dependent displacement and velocity spectra, as well as 2D maps of flow velocities and dispersion coefficients in soil macropores during saturated steady-state flow, were reconstructed from data obtained using the alternating-pulsed-field-gradient (APFG) pulse sequences.

  1. Coupling approaches for groundwater-soil-atmosphere interaction in a pre-Alpine environment

    NASA Astrophysics Data System (ADS)

    Fersch, B.; Wagner, S.; Rummler, T.; Gochis, D. J.; Kunstmann, H.

    2012-12-01

    The interaction between groundwater and soil-moisture and its implications for the exchange of water and energy with the atmosphere has recently gained increasing attention, especially when groundwater levels are shallow. Most of the current land-surface-models (LSMs) like the Noah-LSM of the WRF-ARW model neglect processes of interaction among groundwater, soil-moisture and atmosphere. Therefore, the complex, nonlinear exchange processes and the feedback between these compartments cannot be sufficiently captured. Historically, hydrological and atmospheric (including LSM) models were developed by separate research communities. Their unification should enable the analysis of complex cross-compartment interaction among groundwater, soil-moisture, and atmosphere, capturing also the lateral water transport within the saturated zone. However, it is of crucial importance how the interface between saturated zone (groundwater model) and the soil layers of the LSM is specified. We present a comparison of different approaches for a two-way coupled representation of the water transport between saturated zone and soil moisture in a groundwater/Noah-LSM type modeling system that enhances the NCAR Distributed Hydrological Modeling System (NDHMS). The applied approaches range from straightforward methods (e.g. assuming a linear gradient in the deep unsaturated zone) to more sophisticated ones assuming quasi-equilibrium conditions (modified Zeng and Decker, 2008) or the Darcy equation-based flux parameterization of Bogaart et al. (2008). The sensitivity and impact of the different coupling approaches is tested and evaluated in a single-column study using extensive observations from the TERENO pre-Alpine observatory (http://tereno.net). Furthermore, the sensitivity of the coupling is examined in a 2D application of the NDHMS model for the Ammer/Rott catchment in Southern Germany. Bogaart P., Teuling A., Troch P. (2008): A state-dependent parametrization of saturated

  2. Soil water samplers in ion balance studies on acidic forest soils

    SciTech Connect

    Rasmussen, L.; Joergensen, P.; Kruse, S.

    1986-04-01

    During the last years an increasing consciousness has appeared of the injurious effects of acid rain on the forest ecosystems both in Europe and North America. At several localities ion balance studies have been implemented in order to evaluate the impact of the atmospheric deposition of acidic substances and heavy metals on the forest ecosystem. In many localities the leaching of material to the ground water or output from the ecosystem has to be determined by means of tensiometer measurements and soil water sampling. Many different soil water samplers are available on the market and they show useful applicability under the given circumstances. But in many cases soil water samples taken with different equipment give incommensurable results leading to differing explanations of the effects of acid precipitation on elements and their cycling in the ecosystem. The purpose of the present study is twofold. Firstly, the sorption characteristics of different types of soil water samplers are examined under acidic soil conditions both by installation in the field and by laboratory experiments. Secondly, a new method is introduced for current and constant soil water sampling under varying soil suctions in the unsaturated zone.

  3. Interactions among temperature, moisture, and oxygen concentrations in controlling decomposition rates in a boreal forest soil

    NASA Astrophysics Data System (ADS)

    Sierra, Carlos A.; Malghani, Saadatullah; Loescher, Henry W.

    2017-02-01

    Determining environmental controls on soil organic matter decomposition is of importance for developing models that predict the effects of environmental change on global soil carbon stocks. There is uncertainty about the environmental controls on decomposition rates at temperature and moisture extremes, particularly at high water content levels and high temperatures. It is uncertain whether observed declines in decomposition rates at high temperatures are due to declines in the heat capacity of extracellular enzymes as predicted by thermodynamic theory, or due to simultaneous declines in soil moisture. It is also uncertain whether oxygen limits decomposition rates at high water contents. Here we present the results of a full factorial experiment using organic soils from a boreal forest incubated at high temperatures (25 and 35 °C), a wide range of water-filled pore space (WFPS; 15, 30, 60, 90 %), and contrasting oxygen concentrations (1 and 20 %). We found support for the hypothesis that decomposition rates are high at high temperatures, provided that enough moisture and oxygen are available for decomposition. Furthermore, we found that decomposition rates are mostly limited by oxygen concentrations at high moisture levels; even at 90 % WFPS, decomposition proceeded at high rates in the presence of oxygen. Our results suggest an important degree of interaction among temperature, moisture, and oxygen in determining decomposition rates at the soil core scale.

  4. Soil Surface Structure: A key factor for the degree of soil water repellency

    NASA Astrophysics Data System (ADS)

    Ahn, S.; Doerr, S. H.; Douglas, P.; Bryant, R.; Hamlett, C.; McHale, G.; Newton, M.; Shirtcliffe, N.

    2012-04-01

    Despite of considerable efforts, the degree of water repellency has not always been fully explained by chemical property of soil (termed hydrophobicity). That might be because the structure of a soil surface was not considered properly, which is another main factor determining the severity of soil water repellency. Surface structure has only recently been considered in soil science, whilst it has been paid attention for several decades in materials science due to its relevance to industrial applications. In this contribution, comparison of critical contact angles measured on different surface structures (made with glass beads, glass shards and beach sands) is presented and the effect of surface structure on manifestation of soil water repellency is discussed in terms of several different variables such as the individual particles shape, and areal and structural factors of the actual surface.

  5. Soil Management Plan For The Potable Water System Upgrades Project

    SciTech Connect

    Field, S. M.

    2007-04-01

    This plan describes and applies to the handling and management of soils excavated in support of the Y-12 Potable Water Systems Upgrades (PWSU) Project. The plan is specific to the PWSU Project and is intended as a working document that provides guidance consistent with the 'Soil Management Plan for the Oak Ridge Y-12 National Security Complex' (Y/SUB/92-28B99923C-Y05) and the 'Record of Decision for Phase II Interim Remedial Actions for Contaminated Soils and Scrapyard in Upper East Fork Popular Creek, Oak Ridge, Tennessee' (DOE/OR/01-2229&D2). The purpose of this plan is to prevent and/or limit the spread of contamination when moving soil within the Y-12 complex. The major feature of the soil management plan is the decision tree. The intent of the decision tree is to provide step-by-step guidance for the handling and management of soil from excavation of soil through final disposition. The decision tree provides a framework of decisions and actions to facilitate Y-12 or subcontractor decisions on the reuse of excavated soil on site and whether excavated soil can be reused on site or managed as waste. Soil characterization results from soil sampling in support of the project are also presented.

  6. Dryland ecosystems: the coupled stochastic dynamics of soil water and vegetation and the role of rainfall seasonality.

    PubMed

    Vezzoli, R; De Michele, C; Pavlopoulos, H; Scholes, R J

    2008-05-01

    In drylands the soil water availability is a key factor ruling the architecture of the ecosystem. The soil water reflects the exchanges of water among soil, vegetation, and atmosphere. Here, a dryland ecosystem is investigated through the analysis of the local interactions between soil water and vegetation forced by rainfall having seasonal and stochastic occurrence. The evolution of dryland ecosystems is represented by a system of two differential equations, having two steady states, one vegetated and the other unvegetated. The rainfall forcing is described by a diffusion process with monthly parameters. In each of the two possible steady states, the probability density functions of soil water and vegetation are derived analytically in terms of the rainfall distribution. The results show how the seasonality of rainfall influences the oscillation of the ecosystem between its vegetated steady state during the wet season and its unvegetated steady state during the dry season.

  7. Soil water repellency characteristic curves for soil profiles with natural organic carbon gradients

    NASA Astrophysics Data System (ADS)

    Kawamoto, Ken; Müller, Karin; Moldrup, Per; de Jonge, Lis; Clothier, Brent; Hiradate, Syuntaro; Komatsu, Toshiko

    2014-05-01

    Soil water repellency (SWR) is a phenomenon that influences many soil hydrologic processes such as reduction of infiltration, increase in overland flow, and enhanced preferential flow. SWR has been observed in various soil types and textures, and the degree of SWR is greatly controlled by soil moisture content and levels of organic matter and clay. One of the key topics in SWR research is how to describe accurately the seasonal and temporal variation of SWR with the controlling factors such as soil moisture, organic matter, and clay contents for soil profiles with natural organic carbon gradients. In the present study, we summarize measured SWR data for soil profiles under different land uses and vegetation in Japan and New Zealand, and compared these with literature data. We introduce the contact angle-based evaluation of SWR and predictive models for soil water repellency characteristic curves, in which the contact angle is a function of the moisture content. We also discuss a number of novel concepts, including i) the reduction in the contact angle with soil-water contact time to describe the time dependence of SWR, ii) the relationship between the contact angles from the measured scanning curves under controlled wetting and drying cycles, and iii) the initial contact angles measured by the sessile drop method.

  8. Difficulties in the evaluation and measuring of soil water infiltration

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso

    2013-04-01

    Soil water infiltration is the most important hydrological parameter for the evaluation and diagnosis of the soil water balance and soil moisture regime. Those balances and regimes are the main regulating factors of the on site water supply to plants and other soil organisms and of other important processes like runoff, surface and mass erosion, drainage, etc, affecting sedimentation, flooding, soil and water pollution, water supply for different purposes (population, agriculture, industries, hydroelectricity), etc. Therefore the evaluation and measurement of water infiltration rates has become indispensable for the evaluation and modeling of the previously mentioned processes. Infiltration is one of the most difficult hydrological parameters to evaluate or measure accurately. Although the theoretical aspects of the process of soil water infiltration are well known since the middle of the past century, when several methods and models were already proposed for the evaluation of infiltration, still nowadays such evaluation is not frequently enough accurate for the purposes being used. This is partially due to deficiencies in the methodology being used for measuring infiltration, including some newly proposed methods and equipments, and in the use of non appropriate empirical models and approaches. In this contribution we present an analysis and discussion about the main difficulties found in the evaluation and measurement of soil water infiltration rates, and the more commonly committed errors, based on the past experiences of the author in the evaluation of soil water infiltration in many different soils and land conditions, and in their use for deducing soil water balances under variable and changing climates. It is concluded that there are not models or methods universally applicable to any soil and land condition, and that in many cases the results are significantly influenced by the way we use a particular method or instrument, and by the alterations in the soil

  9. A multimedia and interactive approach to teach soil science

    NASA Astrophysics Data System (ADS)

    Badía-Villas, D.; Martí-Dalmau, C.; Iñiguez-Remón, E.

    2012-04-01

    Soil Science is a discipline concerned with a material that has unique features and behaviours (Churchman, 2010). Thus, teachers of Soil Science need to be experienced with Soil Science practices and must appreciate the complexities and relationships inherent within the discipline (Field et al, 2011). But when soil science had to be taught not by specialists, for instance in the introductory courses of earth and environmental sciences Degrees or in Secondary School, adequate material cannot be found. For this reason, multimedia and interactive programmes have been developed and showed here. EDAFOS is an e-learning resource that provides a comprehensive review of the fundamental concepts on soil science and reveals it as the living skin of planet Earth (European Commission, 2006). This programme is available via website (www.cienciadelsuelo.es) both in Spanish and, more recently, also in English. Edafos is a programme with different modules, which after outlining the study of soil components goes on to examine the main factors and processes of soil genesis explaining the mechanisms of soil processes. By the use of animations, the vital functions of soil are explained. The program ends with a section of multiple-choice exercises with self-assessment. To complement this program, virtual visits to the field are showed in the program iARASOL (www.suelosdearagon.es), in a time when field trips are gradually diminishing due to insufficiency in time and budget, as well as safety concerns (Çaliskan, 2011). In this case, the objective of iARASOL is to set out that soil vary from place to place not randomly, but in a systematic way, according to landscape units; therefore, graduates can classify the soils using the WRB system (IUSS, 2007). It presents diverse types of data and images instantly, from a variety of viewpoints, at many different scales and display non-visual information in the field. Both programs provide an additional source of information to supplement

  10. Causes and consequences of fire-induced soil water repellency

    NASA Astrophysics Data System (ADS)

    Letey, J.

    2001-10-01

    A wettable surface layer overlying a water-repellent layer is commonly observed following a fire on a watershed. High surface temperatures burn off organic materials and create vapours that move downward in response to a temperature gradient and then condense on soil particles causing them to become water repellent. Water-repellent soils have a positive water entry pressure hp that must be exceeded or all the water will runoff. Water ponding depths ho that exceeds hp will cause infiltration, but the profile is not completely wetted. Infiltration rate and soil wetting increase as the value of ho/hp increases. The consequence is very high runoff, which also contributes to high erosion on fire-induced water-repellent soils during rain storms. Grass establishment is impaired by seeds being eroded and lack of soil water for seeds that do remain and germinate. Extrapolation of these general findings to catchment or watershed scales is difficult because of the very high temporal and spatial variabilities that occur in the field.

  11. Measurement and modeling of soil-water dynamics and evapotranspiration of drained peatland soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural peat soils serve as important sinks for nutrients, organic components, and water. Peat soils can pose major environmental problems when they are drained for agricultural production, which may change their role in the landscape from a sink to a source. To successfully restore and conserve pea...

  12. Soil permittivity response to bulk electrical conductivity for selected soil water sensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bulk electrical conductivity can dominate the low frequency dielectric loss spectrum in soils, masking changes in the real permittivity and causing errors in estimated water content. We examined the dependence of measured apparent permittivity (Ka) on bulk electrical conductivity in contrasting soil...

  13. Modeling the soil water retention properties of same-textured soils with different initial void ratios

    NASA Astrophysics Data System (ADS)

    Tan, Fang; Zhou, Wan-Huan; Yuen, Ka-Veng

    2016-11-01

    This study presents a method of predicting the soil water retention curve (SWRC) of a soil using a set of measured SWRC data from a soil with the same texture but different initial void ratio. The relationships of the volumetric water contents and the matric suctions between two samples with different initial void ratios are established. An adjustment parameter (β) is introduced to express the relationships between the matric suctions of two soil samples. The parameter β is a function of the initial void ratio, matric suction or volumetric water content. The function can take different forms, resulting in different predictive models. The optimal predictive models of β are determined for coarse-grained and fine-grained soils using the Bayesian method. The optimal models of β are validated by comparing the estimated matric suction and measured data. The comparisons show that the proposed method produces more accurate SWRCs than do other models for both coarse-grained and fine-grained soils. Furthermore, the influence of the model parameters of β on the predicted matric suction and SWRC is evaluated using Latin Hypercube sampling. An uncertainty analysis shows that the reliability of the predicted SWRC decreases with decreasing water content in fine-grained soils, and the initial void ratio has no apparent influence on the reliability of the predicted SWRCs in coarse-grained and fine-grained soils.

  14. Soil water content plays an important role in soil-atmosphere exchange of carbonyl sulfide (OCS)

    NASA Astrophysics Data System (ADS)

    Yi, Zhigang; Behrendt, Thomas; Bunk, Rüdiger; Wu, Dianming; Kesselmeier, Jürgen

    2016-04-01

    Carbonyl sulfide (OCS) is a quite stable gas in the troposphere and is transported up to the stratosphere, where it contributes to the sulfate aerosol layer (Crutzen 1976). The tropospheric concentration seems to be quite constant, indicating a balance between sinks and sources. Recent work by Sandoval-Soto et al. (2005) demonstrated the enormous strength of the vegetation sink and the urgent needs to understand the sinks and sources. The role of soils is a matter of discussion (Kesselmeier et al., 1999; Van Diest and Kesselmeier, 2008; Maseyk et al., 2014; Whelan et al., 2015). To better understand the influence of soil water content and OCS mixing ratio on OCS fluxes, we used an OCS analyzer (LGR COS/CO Analyzer 907-0028, Los Gatos, CA, USA) coupled with automated soil chamber system (Behrendt et al., 2014) to measure the OCS fluxes with a slow drying of four different types of soil (arable wheat soil in Mainz, blueberry soil in Waldstein, spruce soil in Waldstein and needle forest soil in Finland). Results showed that OCS fluxes as well as the optimum soil water content for OCS uptake varied significantly for different soils. The net production rates changed significantly with the soil drying out from 100% to about 5% water holding capacity (WHC), implying that soil water content play an important role in the uptake processes. The production and uptake processes were distinguished by the regression of OCS fluxes under different OCS mixing ratios. OCS compensation points (CP) were found to differ significantly for different soil types and water content, with the lowest CP at about 20% WHC, implying that when estimating the global budgets of OCS, especially for soils fluxes, soil water content should be taken into serious consideration. References Crutzen, P. J. 1976, Geophys. Res. Lett., 3, 73-76. Sandoval-Soto, L. et al., 2005, Biogeosciences, 2, 125-132. Kesselmeier, J. et al., 1999, J. Geophys. Res., 104, 11577-11584. Van Diest, H. and Kesselmeier, J. 2008

  15. Simulation of the soil water balance of an undeveloped prairie in west-central Florida

    USGS Publications Warehouse

    Bidlake, W.R.; Boetcher, P.F.

    1996-01-01

    A one-dimensional numerical model was developed to simulate the soil water balance of a densely vegetated prairie site in west-central Florida. Transient simulations of the soil water balance were performed using field-measured soil and vegetation properties. Simulated and measured soil water content generally agreed to within 0.04; however, simulated water storage and recharge were sensitive to air-entry soil-water pressure potential and depth to the water table.

  16. Presence and distribution of wastewater-derived pharmaceuticals in soil irrigated with reclaimed water

    USGS Publications Warehouse

    Kinney, C.A.; Furlong, E.T.; Werner, S.L.; Cahill, J.D.

    2006-01-01

    Three sites in the Front Range of Colorado, USA, were monitored from May through September 2003 to assess the presence and distribution of pharmaceuticals in soil irrigated with reclaimed water derived from urban wastewater. Soil cores were collected monthly, and 19 pharmaceuticals, all of which were detected during the present study, were measured in 5-cm increments of the 30-cm cores. Samples of reclaimed water were analyzed three times during the study to assess the input of pharmaceuticals. Samples collected before the onset of irrigation in 2003 contained numerous pharmaceuticals, likely resulting from the previous year's irrigation. Several of the selected pharmaceuticals increased in total soil concentration at one or more of the sites. The four most commonly detected pharmaceuticals were erythromycin, carbamazepine, fluoxetine, and diphenhydramine. Typical concentrations of the individual pharmaceuticals observed were low (0.02-15 ??g/kg dry soil). The existence of subsurface maximum concentrations and detectable concentrations at the lowest sampled soil depth might indicate interactions of soil components with pharmaceuticals during leaching through the vadose zone. Nevertheless, the present study demonstrates that reclaimed-water irrigation results in soil pharmaceutical concentrations that vary through the irrigation season and that some compounds persist for months after irrigation. ?? 2006 SETAC.

  17. Molecular Indicators of Soil Humification and Interaction with Heavy Metals

    SciTech Connect

    Fan, Teresa W.-M.; Higashi, Richard M.; Cassel, Teresa; Green, Peter; Lane, Andrew N.

    2003-03-26

    For stabilization of heavy metals at contaminated sites, interaction of soil organic matter (SOM) with heavy metal ions is critically important for long-term sustainability, a factor that is poorly understood at the molecular level. Using 13C- and 15N-labeled soil humates (HS), we investigated the turnover of five organic amendments (celluose, wheat straw, pine shavings, chitin and bone meal) in relation to heavy metal ion leaching in soil column experiments. The labeled molecular substructures in HS were examined by multinuclear 2-D NMR and pyrolysis GC-MS while the element profile in the leachates was analyzed by ICP-MS. Preliminary analysis revealed that peptidic and polysaccharidic structures were highly enriched, which suggests their microbial origin. Cd(II) leaching was significantly attenuated with humification of lignocellulosic materials. Correlation of 13C and 15N turnovers of HS substructures to metal leaching is underway.

  18. A process-based evapotranspiration model incorporating coupled soil water-atmospheric controls

    NASA Astrophysics Data System (ADS)

    Haghighi, Erfan; Kirchner, James

    2016-04-01

    Despite many efforts to develop evapotranspiration models (in the framework of the Penman-Monteith equation) with improved parametrizations of various resistance terms to water vapor transfer into the atmosphere, evidence suggests that estimates of evapotranspiration and its partitioning are prone to bias. Much of this bias could arise from the exclusion of surface hydro-thermal properties and of physical interactions close to the surface where heat and water vapor fluxes originate. Recent progress has been made in mechanistic modeling of surface-turbulence interactions, accounting for localized heat and mass exchange rates from bare soil surfaces covered by protruding obstacles. We seek to extend these results partially vegetated surfaces, to improve predictive capabilities and accuracy of remote sensing techniques quantifying evapotranspiration fluxes. The governing equations of liquid water, water vapor, and energy transport dynamics in the soil-plant-atmosphere system are coupled to resolve diffusive vapor fluxes from isolated pores (plant stomata and soil pores) across a near-surface viscous sublayer, explicitly accounting for pore-scale transport mechanisms and environmental forcing. Preliminary results suggest that this approach offers unique opportunities for directly linking transport properties in plants and adjacent bare soil with resulting plant transpiration and localized bare soil evaporation rates. It thus provides an essential building block for interpreting and upscaling results to field and landscape scales for a range of vegetation cover and atmospheric conditions.

  19. Water table fluctuations and soil biogeochemistry: An experimental approach using an automated soil column system

    NASA Astrophysics Data System (ADS)

    Rezanezhad, F.; Couture, R.-M.; Kovac, R.; O'Connell, D.; Van Cappellen, P.

    2014-02-01

    Water table fluctuations significantly affect the biological and geochemical functioning of soils. Here, we introduce an automated soil column system in which the water table regime is imposed using a computer-controlled, multi-channel pump connected to a hydrostatic equilibrium reservoir and a water storage reservoir. The potential of this new system is illustrated by comparing results from two columns filled with 45 cm of the same homogenized riparian soil. In one soil column the water table remained constant at -20 cm below the soil surface, while in the other the water table oscillated between the soil surface and the bottom of the column, at a rate of 4.8 cm d-1. The experiment ran for 75 days at room temperature (25 ± 2 °C). Micro-sensors installed at -10 and -30 cm below the soil surface in the stable water table column recorded constant redox potentials on the order of 600 and -200 mV, respectively. In the fluctuating water table column, redox potentials at the same depths oscillated between oxidizing (∼700 mV) and reducing (∼-100 mV) conditions. Pore waters collected periodically and solid-phase analyses on core material obtained at the end of the experiment highlighted striking geochemical differences between the two columns, especially in the time series and depth distributions of Fe, Mn, K, P and S. Soil CO2 emissions derived from headspace gas analysis exhibited periodic variations in the fluctuating water table column, with peak values during water table drawdown. Transient redox conditions caused by the water table fluctuations enhanced microbial oxidation of soil organic matter, resulting in a pronounced depletion of particulate organic carbon in the midsection of the fluctuating water table column. Denaturing Gradient Gel Electrophoresis (DGGE) revealed the onset of differentiation of the bacterial communities in the upper (oxidizing) and lower (reducing) soil sections, although no systematic differences in microbial community structure

  20. Modeling interactions of Hg(II) and bauxitic soils.

    PubMed

    Weerasooriya, Rohan; Tobschall, Heinz J; Bandara, Atula

    2007-11-01

    The adsorptive interactions of Hg(II) with gibbsite-rich soils (hereafter SOIL-g) were modeled by 1-pK surface complexation theory using charge distribution multi-site ion competition model (CD MUSIC) incorporating basic Stern layer model (BSM) to account for electrostatic effects. The model calibrations were performed for the experimental data of synthetic gibbsite-Hg(II) adsorption. When [NaNO(3)] > or = 0.01M, the Hg(II) adsorption density values, of gibbsite, Gamma(Hg(II)), showed a negligible variation with ionic strength. However, Gamma(Hg(II)) values show a marked variation with the [Cl(-)]. When [Cl(-)] > or = 0.01M, the Gamma(Hg(II)) values showed a significant reduction with the pH. The Hg(II) adsorption behavior in NaNO(3) was modeled assuming homogeneous solid surface. The introduction of high affinity sites, i.e., >Al(s)OH at a low concentration (typically about 0.045 sites nm(-2)) is required to model Hg(II) adsorption in NaCl. According to IR spectroscopic data, the bauxitic soil (SOIL-g) is characterized by gibbsite and bayerite. These mineral phases were not treated discretely in modeling of Hg(II) and soil interactions. The CD MUSIC/BSM model combination can be used to model Hg(II) adsorption on bauxitic soil. The role of organic matter seems to play a role on Hg(II) binding when pH>8. The Hg(II) adsorption in the presence of excess Cl(-) ions required the selection of high affinity sites in modeling.

  1. Antagonistic interaction networks among bacteria from a cold soil environment.

    PubMed

    Prasad, Sathish; Manasa, Poorna; Buddhi, Sailaja; Singh, Shiv Mohan; Shivaji, Sisinthy

    2011-11-01

    Microbial antagonism in an Arctic soil habitat was demonstrated by assessing the inhibitory interactions between bacterial isolates from the same location. Of 139 isolates obtained from five soil samples, 20 antagonists belonging to the genera, Arthrobacter, Pseudomonas and Flavobacterium were identified. Inter-genus, inter-species and inter-strain antagonism was observed between the interacting members. The extent of antagonism was temperature dependent. In some cases, antagonism was enhanced at 4 °C but suppressed at 18 °C while in some the reverse phenomenon was observed. To interpret antagonism from an ecological perspective, the interacting members were delineated according to their positional roles in a theoretical antagonistic network. When only one antimicrobial producer (P) was present, all the other members permitted grouping into either sensitive (S) or resistant (R). Composite interactive types such as PSR, PS, PR or SR could be designated only when at least two producers were present. Mapping of all possible antagonistic interaction networks based on the individual positional roles of the interactive types illustrates the existence of complex and interconnected networks among microbial communities.

  2. Soil water balance changes in engineered soil surfaces

    SciTech Connect

    Saskschewsky, M.R.; Kemp, C.J.; Link, S.O.; Waugh, W.J.

    1995-03-01

    Permanent disposal of radioactive waste requires the construction of isolation barriers that minimize both recharge and erosion. Recharge can be prevented by storing precipitation near the surface so that it will be returned to the atmosphere via evapotranspiration. Erosion can be reduced with gravel mulch, but thick gravel layers may increase recharge. Gravel mixed into the surface soil may provide erosion protection without increasing recharge. To comprae the effects that erosion control has on infiltration, two lysimeter experiments were conducted to examine the effects of sand and gravel mulches and gravel admixitures, using two precipitation regimens and with or without vegetation.

  3. Fire and grazing effects on wind erosion, soil water content, and soil temperature.

    PubMed

    Vermeire, Lance T; Wester, David B; Mitchell, Robert B; Fuhlendorf, Samuel D

    2005-01-01

    Selective grazing of burned patches can be intense if animal distribution is not controlled and may compound the independent effects of fire and grazing on soil characteristics. Our objectives were to quantify the effects of patch burning and grazing on wind erosion, soil water content, and soil temperature in sand sagebrush (Artemisia filifolia Torr.) mixed prairie. We selected 24, 4-ha plots near Woodward, OK. Four plots were burned during autumn (mid-November) and four during spring (mid-April), and four served as nonburned controls for each of two years. Cattle were given unrestricted access (April-September) to burned patches (<2% of pastures) and utilization was about 78%. Wind erosion, soil water content, and soil temperature were measured monthly. Wind erosion varied by burn, year, and sampling height. Wind erosion was about 2 to 48 times greater on autumn-burned plots than nonburned plots during the dormant period (December-April). Growing-season (April-August) erosion was greatest during spring. Erosion of spring-burned sites was double that of nonburned sites both years. Growing-season erosion from autumn-burned sites was similar to nonburned sites except for one year with a dry April-May. Soil water content was unaffected by patch burn treatments. Soils of burned plots were 1 to 3 degrees C warmer than those of nonburned plots, based on mid-day measurements. Lower water holding and deep percolation capacity of sandy soils probably moderated effects on soil water content and soil temperature. Despite poor growing conditions following fire and heavy selective grazing of burned patches, no blowouts or drifts were observed.

  4. Water, solute and heat transport in the soil: the Australian connection

    NASA Astrophysics Data System (ADS)

    Knight, John

    2016-04-01

    The interest of Peter Raats in water, solute and heat transport in the soil has led to scientific and/or personal interactions with several Australian scientists such as John Philip, David Smiles, Greg Davis and John Knight. Along with John Philip and Robin Wooding, Peter was an early user of the Gardner (1958) linearised model of soil water flow, which brought him into competition with John Philip. I will discuss some of Peter's solutions relevant to infiltration from line and point sources, cavities and basins. A visit to Canberra, Australia in the early 1980s led to joint work on soil water flow, and on combined water and solute movement with David Smiles and others. In 1983 Peter was on the PhD committee for Greg Davis at the University of Wollongong, and some of the methods in his thesis 'Mathematical modelling of rate-limiting mechanisms of pyritic oxidation in overburden dumps' were later used by Peter's student Sjoerd van der Zee. David Smiles and Peter wrote a survey article 'Hydrology of swelling clay soils' in 2005. In the last decade Peter has been investigating the history of groundwater and vadose zone hydrology, and recently he and I have been bringing to light the largely forgotten work of Lewis Fry Richardson on finite difference solution of the heat equation, drainage theory, soil physics, and the soil-plant-atmosphere continuum.

  5. [Characteristics of soil water movement using stable isotopes in red soil hilly region of northwest Hunan].

    PubMed

    Tian, Ri-Chang; Chen, Hong-Song; Song, Xian-Fang; Wang, Ke-Lin; Yang, Qing-Qing; Meng, Wei

    2009-09-15

    Stable isotope techniques provide a new approach to study soil water movement. The process of water movement in soils under two kinds of plant types (oil tea and corn) were studied based on the observed values of hydrogen and oxygen isotopes of precipitation and soil water at different depths in red-soil sloping land. The results showed that stable isotopes of precipitation in this area had obvious seasonal effect and rainfall effect. The stable isotopes at 0-50 cm depth in oil tea forestland and at 0-40 cm depth in corn cropland increased with the increase in depth, respectively, but they had the opposite tendency after rainfall in arid time. The stable isotopes decreased with the increase in depth below 50 cm depth in oil tea forestland and below 40 cm depth in corn cropland where evaporation influence was weak. The infiltrate rate of soil in oil tea land was affected by precipitation obviously, and it was about 50-100 mm/d after 2-3 days in heavy rain, slowed sharply later, and soil water at 50 cm depth often became a barrier layer. The permeability of soil in corn land was poor and the infiltration rate was lower. The change of stable isotopes in soil water in red soil hilly region was mainly affected by the mixing water which was formed by the antecedent precipitation, and evaporation effect took the second place. The evaporation intensity in oil tea land was lower than that in corn land, but the evaporation depth was higher.

  6. Water and heat transport in boreal soils: implications for soil response to climate change.

    PubMed

    Fan, Zhaosheng; Neff, Jason C; Harden, Jennifer W; Zhang, Tingjun; Veldhuis, Hugo; Czimczik, Claudia I; Winston, Gregory C; O'Donnell, Jonathan A

    2011-04-15

    Soil water content strongly affects permafrost dynamics by changing the soil thermal properties. However, the movement of liquid water, which plays an important role in the heat transport of temperate soils, has been under-represented in boreal studies. Two different heat transport models with and without convective heat transport were compared to measurements of soil temperatures in four boreal sites with different stand ages and drainage classes. Overall, soil temperatures during the growing season tended to be over-estimated by 2-4°C when movement of liquid water and water vapor was not represented in the model. The role of heat transport in water has broad implications for site responses to warming and suggests reduced vulnerability of permafrost to thaw at drier sites. This result is consistent with field observations of faster thaw in response to warming in wet sites compared to drier sites over the past 30 years in Canadian boreal forests. These results highlight that representation of water flow in heat transport models is important to simulate future soil thermal or permafrost dynamics under a changing climate.

  7. Water and heat transport in boreal soils: Implications for soil response to climate change

    USGS Publications Warehouse

    Fan, Z.; Neff, J.C.; Harden, J.W.; Zhang, T.; Veldhuis, H.; Czimczik, C.I.; Winston, G.C.; O'Donnell, J. A.

    2011-01-01

    Soil water content strongly affects permafrost dynamics by changing the soil thermal properties. However, the movement of liquid water, which plays an important role in the heat transport of temperate soils, has been under-represented in boreal studies. Two different heat transport models with and without convective heat transport were compared to measurements of soil temperatures in four boreal sites with different stand ages and drainage classes. Overall, soil temperatures during the growing season tended to be over-estimated by 2-4??C when movement of liquid water and water vapor was not represented in the model. The role of heat transport in water has broad implications for site responses to warming and suggests reduced vulnerability of permafrost to thaw at drier sites. This result is consistent with field observations of faster thaw in response to warming in wet sites compared to drier sites over the past 30. years in Canadian boreal forests. These results highlight that representation of water flow in heat transport models is important to simulate future soil thermal or permafrost dynamics under a changing climate. ?? 2011 Elsevier B.V.

  8. COSMOS soil water sensing affected by crop biomass and water status

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water sensing methods are widely used to characterize water content in the root zone and below, but only a few are capable of sensing soil volumes larger than a few hundred liters. Scientists with the USDA-ARS Conservation & Production Research Laboratory, Bushland, Texas, evaluated: a) the Cos...

  9. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in an old-field grassland

    SciTech Connect

    Wan, Shiqiang; Norby, Richard J; Childs, Joanne; Weltzin, Jake

    2007-01-01

    Responses of soil respiration to atmospheric and climatic change will have profound impacts on ecosystem and global C cycling in the future. This study was conducted to examine effects on soil respiration of the concurrent driving factors of elevated atmospheric CO2 concentration, rising temperature, and changing precipitation in a constructed old-field grassland in eastern Tennessee, USA. Model ecosystems of seven old-field species in 12 open-top chambers (4 m in diameter) were treated with two CO2 (ambient and ambient plus 300 ppm) and two temperature (ambient and ambient plus 3 C) levels. Two split plots with each chamber were assigned with high and low soil moisture levels. During the 19-month experimental period from June 2003 to December 2004, higher CO2 concentration and soil water availability significantly increased mean soil respiration by 35.8% and 15.7%, respectively. The effects of air warming on soil respiration varied seasonally from small reductions to significant increases to no response, and there was no significant main effect. In the wet side of elevated CO2 chambers, air warming consistently caused increases in soil respiration, whereas in other three combinations of CO2 and water treatments, warming tended to decrease soil respiration over the growing season but increase it over the winter. There were no interactive effects on soil respiration among any two or three treatment factors irrespective of testing time period. Temperature sensitivity of soil respiration was reduced by air warming, lower in the wet than the dry side, and not affected by CO2 treatment. Variations of soil respiration responses with soil temperature and soil moisture ranges could be primarily attributable to the seasonal dynamics of plant growth and its responses to the three treatments. Using a conceptual model to interpret the significant relationships of treatment-induced changes in soil respiration with changes in soil temperature and moisture observed in this study

  10. Hexagonal boron nitride and water interaction parameters

    NASA Astrophysics Data System (ADS)

    Wu, Yanbin; Wagner, Lucas K.; Aluru, Narayana R.

    2016-04-01

    The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics and ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.

  11. Hexagonal boron nitride and water interaction parameters.

    PubMed

    Wu, Yanbin; Wagner, Lucas K; Aluru, Narayana R

    2016-04-28

    The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics and ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.

  12. Chemical Mechanisms of Toxic Solute Interactions with Soil Constituents

    DTIC Science & Technology

    1993-04-01

    been widely reported (References 125-127). However, in days such as montmorillonite and kaolinite , whose cations have been (partially) exchanged with...matrix-isolation methods were used to characterize the sorption of water and fuel compounds on a model soil consisting of montmorillonite clay. The...only under very dry conditions. 14. SUBJECT TERMS Montmorillonite clay, fuels, infrared 15 NUMBER Of PAGES spectroscopy, ultraviolet-visible

  13. Mechanical impedance of soil crusts and water content in loamy soils

    NASA Astrophysics Data System (ADS)

    Josa March, Ramon; Verdú, Antoni M. C.; Mas, Maria Teresa

    2013-04-01

    Soil crust development affects soil water dynamics and soil aeration. Soil crusts act as mechanical barriers to fluid flow and, as their mechanical impedance increases with drying, they also become obstacles to seedling emergence. As a consequence, the emergence of seedling cohorts (sensitive seeds) might be reduced. However, this may be of interest to be used as an effective system of weed control. Soil crusting is determined by several factors: soil texture, rain intensity, sedimentation processes, etc. There are different ways to characterize the crusts. One of them is to measure their mechanical impedance (MI), which is linked to their moisture level. In this study, we measured the evolution of the mechanical impedance of crusts formed by three loamy soil types (clay loam, loam and sandy clay loam, USDA) with different soil water contents. The aim of this communication was to establish a mathematical relationship between the crust water content and its MI. A saturated soil paste was prepared and placed in PVC cylinders (50 mm diameter and 10 mm height) arranged on a plastic tray. Previously the plastic tray was sprayed with a hydrophobic liquid to prevent the adherence of samples. The samples on the plastic tray were left to air-dry under laboratory conditions until their IM was measured. To measure IM, a food texture analyzer was used. The equipment incorporates a mobile arm, a load cell to apply force and a probe. The arm moves down vertically at a constant rate and the cylindrical steel probe (4 mm diameter) penetrates the soil sample vertically at a constant rate. The equipment is provided with software to store data (time, vertical distance and force values) at a rate of up to 500 points per second. Water content in crust soil samples was determined as the loss of weight after oven-drying (105°C). From the results, an exponential regression between MI and the water content was obtained (determination coefficient very close to 1). This methodology allows

  14. Belowground volatiles facilitate interactions between plant roots and soil organisms.

    PubMed

    Wenke, Katrin; Kai, Marco; Piechulla, Birgit

    2010-02-01

    Many interactions between organisms are based on the emission and perception of volatiles. The principle of using volatile metabolites as communication signals for chemo-attractant or repellent for species-specific interactions or mediators for cell-to-cell recognition does not stop at an apparently unsuitable or inappropriate environment. These infochemicals do not only diffuse through the atmosphere to process their actions aboveground, but belowground volatile interactions are similarly complex. This review summarizes various eucaryotes (e.g., plant (roots), invertebrates, fungi) and procaryotes (e.g., rhizobacteria) which are involved in these volatile-mediated interactions. The soil volatiles cannot be neglected anymore, but have to be considered in the future as valuable infochemicals to understand the entire integrity of the ecosystems.

  15. Soil water content and green water estimations in a small farmed semiarid catchment

    NASA Astrophysics Data System (ADS)

    Mekki, I.; Voltz, M.; Ben Mechlia, N.; Albergel, J.

    2012-04-01

    The main objective of this work is to analyze the spatial and temporal variation of soil water content and green water production over a farmed water harvesting catchment, located in north-eastern Tunisia. The area has a typical Mediterranean climate with a hot dry summer and a cool season, extending from October to April, where rainfall normally meets the water requirements of the usually grown cereals and legumes (500mm). The catchment has an area of 2.6 km2 and comprises at its outlet a dam, which retains the runoff water in a reservoir. Soil water balance measurements were carried out, about weekly, over two successive cropping cycles (2000-2002) on a network of eleven plots of 2 m2 each, representing the main land use and soil types. Soil water store investigations targeted the different individual plots as well as the entire catchment. We used a simple water balance model, where the root zone is considered as a single reservoir, to simulate soil water content variations. Results show a fairly good agreement between the calculated and measured water store for all experimental sites. The model reproduces accurately the soil water content during the beginning of the rainy season but underestimates it during the season when heavy rains occur. On heavy soils, simulated soil moisture was lower than measured values, giving differences as high as 25% between simulated water store amounts and the neutron probe measurement values. For the cereals/legume/pasture based cropping systems, most of rainfall water is stored in the soil and returns to the atmosphere by evapotranspiration. The 0-0.3 m soil layer is most active for water uptake by crops and intermittent replenishment by rainfall during the growing period; whereas drying involves the entire soil profile over the summer season (May-Seeptmber). The available water holding capacity of the soil turned out to be about seven times the storage capacity of the reservoir, showing the order of magnitude of rainfall

  16. Improving Estimates of Root-zone Soil Water Content Using Soil Hydrologic Properties and Remotely Sensed Soil Moisture

    NASA Astrophysics Data System (ADS)

    Baldwin, D. C.; Miller, D. A.; Singha, K.; Davis, K. J.; Smithwick, E. A.

    2013-12-01

    Newly defined relationships between remotely sensed soil moisture and soil hydraulic parameters were used to develop fine-scale (100 m) maps of root-zone soil moisture (RZSM) content at the regional scale on a daily time-step. There are several key outcomes from our research: (1) the first multi-layer regional dataset of soil hydraulic parameters developed from gSSURGO data for hydrologic modeling efforts in the Chequemegon Ecosystem Atmospheric Study (ChEAS) region, (2) the operation and calibration of a new model for estimating soil moisture flow through the root-zone at eddy covariance towers across the U.S. using remotely sensed active and passive soil moisture products, and (3) region-wide maps of estimated root-zone soil moisture content. The project links soil geophysical analytical approaches (pedotransfer functions) to new applications in remote sensing of soil moisture that detect surface moisture (~5 cm depth). We answer two key questions in soil moisture observation and prediction: (1) How do soil hydrologic properties of U.S. soil types quantitatively relate to surface-to-subsurface water loss? And (2) Does incorporation of fine-scale soil hydrologic parameters with remotely sensed soil moisture data provide improved hindcasts of in situ RZSM content? The project meets several critical research needs in estimation of soil moisture from remote sensing. First, soil moisture is known to vary spatially with soil texture and soil hydraulic properties that do not align well with the spatial resolution of current remote sensing products of soil moisture (~ 50 km2). To address this, we leveraged new advances in gridded soil parameter information (gSSURGO) together with existing remotely sensed estimates of surface soil moisture into a newly emerging semi-empirical modeling approach called SMAR (Soil Moisture Analytical Relationship). The SMAR model was calibrated and cross-validated using existing soil moisture data from a portion of AMERIFLUX tower sites and

  17. Water Intake by Soil, Experiments for High School Students.

    ERIC Educational Resources Information Center

    1969

    Presented are a variety of surface run-off experiments for high school students. The experiments are analogies to basic concepts about water intake, as related to water delivery, soil properties and management, floods, and conservation measures. The materials needed to perform the experiments are easily obtainable. The experiments are followed by…

  18. Earthworm effects on movement of water and solutes in soil

    SciTech Connect

    Trojan, M.D.

    1993-01-01

    The objectives of this study were to determine and model the effects of earthworms on water and solute movement in soil. Microrelief and rainfall effects on water and solute movement were determined in packed buckets inoculated with earthworms (Aporrectodea tuberculata). A solution of Br[sup [minus

  19. Gas Transport Parameters for Landfill Cover Soils: Effects of Soil Compaction and Water Blockages

    NASA Astrophysics Data System (ADS)

    Wickramarachchi, P. N.; Hamamoto, S.; Kawamoto, K.; Nawagamuwa, U.; Komatsu, T.; Moldrup, P.

    2009-12-01

    Recently, landfill sites have been emerging in greenhouse warming scenarios as a significant source of atmospheric CH4. landfill management strategies have mainly addressed the problem of preventing groundwater contamination and reduction of leachate generation. Being one of the largest source of anthropogenic CH4 emission , the final cover system should also be designed for minimizing the biogas migration into the atmosphere or the areas surrounding the landfill. Compared to the intensive research efforts on hydraulic performances of landfill final cover soil , there are few studies about gas transport characteristics of landfill cover soils. Therefore, the effects of soil physical properties such as bulk density (i.e., compaction level), soil particle size and water blockage effects on the gas exchange in t highly compacted final cover soil are largely unknown. The gas exchange through the final cover soils is controlled by advective and diffusive gas transport. Air permeability (ka) governs the advective gas transport while the soil-gas diffusion coefficient (Dp) governs diffusive gas transport . In this study, the effects of compaction level and water blockage effects on ka and Dp for two landfill final cover soils were investigated. The disturbed soil samples were taken from landfill final covers in Japan and Sri Lanka. A compaction tests were performed for the soil samples with two different size fractions (< 35 mm and < 2.0 mm). In the compaction tests at field water content , the soil samples were repacked into soil cores (i.d. 15-cm, length 12-cm) at two different compaction levels (2700 kN/m2 and 600 kN/m2). After the compaction tests, ka and Dp were measured and then samples were saturated and subsequently drained at different soil-water matric potential (pF; pF equals to log(-ɛ) where ɛ is soil-water matric potential in cm H2O) of 1.5, 2.0, 3.0, 4.1, and with air-dried (pF 6.0) and oven-dried (pF 6.9) conditions. Results showed that measured Dp values

  20. Water Retention and Structure Stability in Smectitic or Kaolinitic Loam and Clay Soils Affected by Polyacrylamide Addition

    NASA Astrophysics Data System (ADS)

    Mamedov, Amirakh; Levy, Guy

    2015-04-01

    results suggest that determining the efficacy of different PAM applications in the field in improving water retention and soil structure is complex. Therefore soil properties (clay mineralogy, soil texture) and field conditions (moisture content) should be considered when determining the optimal rate of PAM application. The mechanisms responsible for PAM-soil interaction impacts on soil structure, stability indices and model parameters are discussed in the paper.

  1. Classical interaction model for the water molecule.

    PubMed

    Baranyai, András; Bartók, Albert

    2007-05-14

    The authors propose a new classical model for the water molecule. The geometry of the molecule is built on the rigid TIP5P model and has the experimental gas phase dipole moment of water created by four equal point charges. The model preserves its rigidity but the size of the charges increases or decreases following the electric field created by the rest of the molecules. The polarization is expressed by an electric field dependent nonlinear polarization function. The increasing dipole of the molecule slightly increases the size of the water molecule expressed by the oxygen-centered sigma parameter of the Lennard-Jones interaction. After refining the adjustable parameters, the authors performed Monte Carlo simulations to check the ability of the new model in the ice, liquid, and gas phases. They determined the density and internal energy of several ice polymorphs, liquid water, and gaseous water and calculated the heat capacity, the isothermal compressibility, the isobar heat expansion coefficients, and the dielectric constant of ambient water. They also determined the pair-correlation functions of ambient water and calculated the energy of the water dimer. The accuracy of theirs results was satisfactory.

  2. Relating soil pore geometry to soil water content dynamics decomposed at multiple frequencies

    NASA Astrophysics Data System (ADS)

    Qin, Mingming; Gimenez, Daniel; Cooper, Miguel

    2016-04-01

    Soil structure is a critical factor determining the response of soil water content to meteorological inputs such as precipitation. Wavelet analysis can be used to filter a signal into several wavelet components, each characterizing a given frequency. The purpose of this research was to investigate relationships between the geometry of soil pore systems and the various wavelet components derived from soil water content dynamics. The two study sites investigated were located in the state of São Paulo, Brazil. Each site was comprised of five soil profiles, the first site was situated along a 300-meter transect with about 10% slope in a tropical semi-deciduous forest, while the second one spanned 230-meter over a Brazilian savanna with a slope of about 6%. For each profile, between two to four Water Content Reflectometer CS615 (Campbell Scientific, Inc.) probes were installed according to horizonation at depths varying between 0.1 m and 2.3 m. Bulk soil, three soil cores, and one undisturbed soil block were sampled from selected horizons for determining particle size distributions, water retention curves, and pore geometry, respectively. Pore shape and size were determined from binary images obtained from resin-impregnated blocks and used to characterize pore geometry. Soil water contents were recorded at a 20-minute interval over a 4-month period. The Mexican hat wavelet was used to decompose soil water content measurements into wavelet components. The responses of wavelet components to wetting and drying cycles were characterized by the median height of the peaks in each wavelet component and were correlated with particular pore shapes and sizes. For instance, large elongated and irregular pores, largely responsible for the transmission of water, were significantly correlated with wavelet components at high frequencies (40 minutes to 48 hours) while rounded pores, typically associated to water retention, were only significantly correlated to lower frequency ranges

  3. Surfactant-enhanced remediation of organic contaminated soil and water.

    PubMed

    Paria, Santanu

    2008-04-21

    Surfactant based remediation technologies for organic contaminated soil and water (groundwater or surface water) is of increasing importance recently. Surfactants are used to dramatically expedite the process, which in turn, may reduce the treatment time of a site compared to use of water alone. In fact, among the various available remediation technologies for organic contaminated sites, surfactant based process is one of the most innovative technologies. To enhance the application of surfactant based technologies for remediation of organic contaminated sites, it is very important to have a better understanding of the mechanisms involved in this process. This paper will provide an overview of the recent developments in the area of surfactant enhanced soil and groundwater remediation processes, focusing on (i) surfactant adsorption on soil, (ii) micellar solubilization of organic hydrocarbons, (iii) supersolubilization, (iv) density modified displacement, (v) degradation of organic hydrocarbon in presence surfactants, (vi) partitioning of surfactants onto soil and liquid organic phase, (vii) partitioning of contaminants onto soil, and (viii) removal of organics from soil in presence of surfactants. Surfactant adsorption on soil and/or sediment is an important step in this process as it results in surfactant loss reduced the availability of the surfactants for solubilization. At the same time, adsorbed surfactants will retained in the soil matrix, and may create other environmental problem. The biosurfactants are become promising in this application due to their environmentally friendly nature, nontoxic, low adsorption on to soil, and good solubilization efficiency. Effects of different parameters like the effect of electrolyte, pH, soil mineral and organic content, soil composition etc. on surfactant adsorption are discussed here. Micellar solubilization is also an important step for removal of organic contaminants from the soil matrix, especially for low aqueous

  4. Evaluation of the Interactions between Water Extractable Soil Organic Matter and Metal Cations (Cu(II), Eu(III)) Using Excitation-Emission Matrix Combined with Parallel Factor Analysis

    PubMed Central

    Wei, Jing; Han, Lu; Song, Jing; Chen, Mengfang

    2015-01-01

    The objectives of this study were to evaluate the binding behavior of Cu(II) and Eu(III) with water extractable organic matter (WEOM) in soil, and assess the competitive effect of the cations. Excitation-emission matrix (EEM) fluorescence spectrometry was used in combination with parallel factor analysis (PARAFAC) to obtain four WEOM components: fulvic-like, humic-like, microbial degraded humic-like, and protein-like substances. Fluorescence titration experiments were performed to obtain the binding parameters of PARAFAC-derived components with Cu(II) and Eu(III). The conditional complexation stability constants (logKM) of Cu(II) with the four components ranged from 5.49 to 5.94, and the Eu(III) logKM values were between 5.26 to 5.81. The component-specific binding parameters obtained from competitive binding experiments revealed that Cu(II) and Eu(III) competed for the same binding sites on the WEOM components. These results would help understand the molecular binding mechanisms of Cu(II) and Eu(III) with WEOM in soil environment. PMID:26121300

  5. Mulch tillage for conserving soil water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mulching is the practice of maintaining organic or inorganic materials on or applying them to the soil surface. It is an ancient practice, but through the years clean tillage that incorporated crop residues and also controlled weeds became the norm. Frequent and deep tillage often was promoted to co...

  6. Water use, productivity and interactions among desert plants

    SciTech Connect

    Ehleringer, J.R.

    1992-11-17

    Water plays a central role affecting all aspects of the dynamics in aridland ecosystems. Productivity, stability, and competitive interactions among ecosystem components within aridlands are key processes related directly to water in deserts. The ecological studies in this project revolve around one fundamental premise: that integrated aspects of plant metabolism provide insight into the structure and function of plant communities and ecosystems. While it is difficult to extrapolate from instantaneous physiological observations to higher scales, such as whole plant performance or to interactions between plants as components of ecosystems, several key aspects of plant metabolism are scalable. Analyses of stable isotopic composition in plant tissues at natural abundance levels provide a useful tool that can provide insight into the consequences of physiological processes over temporal and spatial scales. Some plant processes continuously fractionate among light and heavy stable isotopic forms of an element; over time this results in integrated measures of plant metabolism. For example, carbon isotope fractionation during photosynthesis results in leaf carbon isotopic composition that is a measure of the set-point for photosynthetic metabolism and of water-use efficiency. Thus it provides information on the temporal scaling of a key physiological process. In contrast, hydrogen is not fractionated during water uptake through the root. Soil water availability in shallow, deep, and/or groundwater layers vary spatially; therefore hydrogen isotope ratios of xylem sap provide a direct measure of the water source currently used by a plant. The longer-term record of carbon and hydrogen isotope ratios is recorded annually in xylem tissues (tree rings). The research in this project addresses variation in stable isotopic composition of aridland plants and its consequences for plant performance and community-level interactions.

  7. Measurements of soil temperature for monitoring of the soil water behavior in an embankment slope during periodic rainfall

    NASA Astrophysics Data System (ADS)

    Yoshioka, M.; Takakura, S.; Ishizawa, T.; Sakai, N.

    2013-12-01

    One of the most common causes of slope disaster (e.g. landslide, slope failure and debris flow) is heavy rainfall. Distributions of soil moisture and soil suction stress are changed by rain water infiltration. Monitoring of soil water behavior is crucial for prediction of the slope disaster. This study focuses on soil temperatures of a slope as a detector for monitoring soil water behavior. Soil temperature is varied by soil water condition, this is, infiltrating water transports thermal energy downward and thermal property of soil is shifted by containing of soil water. The purpose of this study is to detect the changes in soil water behavior caused by infiltration of rainfalls using measurement of soil temperature. For this purpose, we had carried out the measurements of soil temperature during various rainfalls (Yoshioka et al., 2013). In addition, we measured soil temperature and soil water content at several depths in a slope of an experimental embankment during various intensities of periodic and/or continuous rainfalls. In this presentation, we represent the details of the experiments and the results. Experiments were performed using the experimental embankment at NIED in Japan, which is about 7.3 meters tall and 27 meters wide. The embankment is located in a large-scale rainfall simulator. This facility is about 73 meters long, 48 meters wide and 20 meters tall. We measured soil temperature and volumetric water contents in the slope of the embankment, meteorological condition and rain water temperature. The rainfall intensities were 30, 60, 90 and 120 mm/h. The artificial rainfalls were carried out 10th, 17th, 24th, 31st, May and 10th, 11th, 12th June, 2013. As the results, soil temperature at many points in all experimental days rose caused by rainfalls, but the temperature at some points didn't change. We had two forms of soil temperature changes; one was a steep rise and the other was a gradual rise. In the case of periodic rainfall, soil temperature at

  8. Evaluation of Two Soil Water Redistribution Models (Finite Difference and Hourly Cascade Approach) Through The Comparison of Continuous field Sensor-Based Measurements

    NASA Astrophysics Data System (ADS)

    Ferreyra, R.; Stockle, C. O.; Huggins, D. R.

    2014-12-01

    Soil water storage and dynamics are of critical importance for a variety of processes in terrestrial ecosystems, including agriculture. Many of those systems are under significant pressure in terms of water availability and use. Therefore, assessing alternative scenarios through hydrological models is an increasingly valuable exercise. Soil water holding capacity is defined by the concepts of soil field capacity and plant available water, which are directly related to soil physical properties. Both concepts define the energy status of water in the root system and closely interact with plant physiological processes. Furthermore, these concepts play a key role in the environmental transport of nutrients and pollutants. Soil physical parameters (e.g. saturated hydraulic conductivity, total porosity and water release curve) are required as input for field-scale soil water redistribution models. These parameters are normally not easy to measure or monitor, and estimation through pedotransfer functions is often inadequate. Our objectives are to improve field-scale hydrological modeling by: (1) assessing new undisturbed methodologies for determining important soil physical parameters necessary for model inputs; and (2) evaluating model outputs, making a detailed specification of soil parameters and the particular boundary condition that are driving water movement under two contrasting environments. Soil physical properties (saturated hydraulic conductivity and determination of water release curves) were quantified using undisturbed laboratory methodologies for two different soil textural classes (silt loam and sandy loam) and used to evaluate two soil water redistribution models (finite difference solution and hourly cascade approach). We will report on model corroboration results performed using in situ, continuous, field measurements with soil water content capacitance probes and digital tensiometers. Here, natural drainage and water redistribution were monitored

  9. Determining evaporation in the model of water transfer in soil

    NASA Astrophysics Data System (ADS)

    Zasukhin, Sergey

    2016-10-01

    In considered model a process of vertical water transfer in soil is described by one-dimensional nonlinear parabolic equation. Evaporation is one of most hard-determined component of the model. Determination of evaporation is formulated as an optimal control problem. In this problem, the objective function is mean-square deviation of soil moisture obtained by the model at various depths from some prescribed values. The sensitivity of soil moisture to changes of evaporation is estimated. These estimates allowed to determine an effective subsurface soil layer where it is advisable to compare calculated values of soil moisture with prescribed ones and to compute the objective function. This region definition has accelerated the convergence of numeric optimization process and has reduced the time of its execution.

  10. Wetting properties of fungi mycelium alter soil infiltration and soil water repellency in a γ-sterilized wettable and repellent soil.

    PubMed

    Chau, Henry Wai; Goh, Yit Kheng; Vujanovic, Vladimir; Si, Bing Cheng

    2012-12-01

    Soil water repellency (SWR) has a drastic impact on soil quality resulting in reduced infiltration, increased runoff, increased leaching, reduced plant growth, and increased soil erosion. One of the causes of SWR is hydrophobic fungal structures and exudates that change the soil-water relationship. The objective of this study was to determine whether SWR and infiltration could be manipulated through inoculation with fungi. The effect of fungi on SWR was investigated through inoculation of three fungal strains (hydrophilic -Fusarium proliferatum, chrono-amphiphilic -Trichoderma harzianum, and hydrophobic -Alternaria sp.) on a water repellent soil (WR-soil) and a wettable soil (W-soil). The change in SWR and infiltration was assessed by the water repellency index and cumulative infiltration respectively. F. proliferatum decreased the SWR on WR-soil and slightly increased SWR in W-soil, while Alternaria sp. increased SWR in both the W-soil and the WR-soil. Conversely T. harzianum increased the SWR in the W-soil and decreased the SWR in the WR-soil. All strains showed a decrease in infiltration in W-soil, while only the F. proliferatum and T. harzianum strain showed improvement in infiltration in the WR-soil. The ability of fungi to alter the SWR and enmesh soil particles results in changes to the infiltration dynamics in soil.

  11. Observations of flow path interactions with surface structures during initial soil development stage using irrigation experiments

    NASA Astrophysics Data System (ADS)

    Bartl, Steffen; Biemelt, Detlef; Badorreck, Annika; Gerke, Horst H.

    2010-05-01

    Structures and processes are dynamically linked especially during initial stages of soil and ecosystem development. Here we assume that soil pore structures and micro topography determine the flow paths and water fluxes as well as further structure changes. Reports about flow path developments at the soil surface are still limited because of an insufficient knowledge of the changing micro topography at the surface. The objective of this presentation is to evaluate methods for parameterisation of surface micro topography for analysing interactions between infiltration and surface runoff. Complex irrigation experiments were carried out at an experimental site in the neighbourhood of the artificially created water catchment "Chicken Creek". The irrigation rates between 160 mm/h and 250 mm/h were held constant over a time period of 20 minutes. The incoming intensities were measured as well as the raindrop-velocity and -size distributions. The surface runoff was continuously registered, soil samples were taken, and soil water potential heads were monitored using tensiometers. Surface and subsurface flow paths were identified using different tracers. The soil surface structures were recorded using a high resolution digital camera before, during, and after irrigation. Micro topography was surveyed using close-range photogrammetry. With this experimental design both, flow paths on the surface and in the soil as well as structure and texture changes could be observed simultaneously. In 2D vertical cross-sections, the effect of initial sediment deposition structure on infiltration and runoff was observed. Image analysis of surface pictures allowed identifying structural and soil textural changes during the runoff process. Similar structural changes related to surface flow paths were found with the photogrammetric surface analysis. We found evidence for the importance of the initial structures on the flow paths as well as a significant influence of the system development

  12. Upscaled soil-water retention using van Genuchten's function

    USGS Publications Warehouse

    Green, T.R.; Constantz, J.E.; Freyberg, D.L.

    1996-01-01

    Soils are often layered at scales smaller than the block size used in numerical and conceptual models of variably saturated flow. Consequently, the small-scale variability in water content within each block must be homogenized (upscaled). Laboratory results have shown that a linear volume average (LVA) of water content at a uniform suction is a good approximation to measured water contents in heterogeneous cores. Here, we upscale water contents using van Genuchten's function for both the local and upscaled soil-water-retention characteristics. The van Genuchten (vG) function compares favorably with LVA results, laboratory experiments under hydrostatic conditions in 3-cm cores, and numerical simulations of large-scale gravity drainage. Our method yields upscaled vG parameter values by fitting the vG curve to the LVA of water contents at various suction values. In practice, it is more efficient to compute direct averages of the local vG parameter values. Nonlinear power averages quantify a feasible range of values for each upscaled vG shape parameter; upscaled values of N are consistently less than the harmonic means, reflecting broad pore-size distributions of the upscaled soils. The vG function is useful for modeling soil-water retention at large scales, and these results provide guidance for its application.

  13. Solute Export Through Transpiration: A Possible Control of Soil Water Chemistry?

    NASA Astrophysics Data System (ADS)

    Alexander, S. C.; Boyle, D. B.; Alexander, E. C.

    2005-12-01

    Recent studies of soil and ground water interactions in western Minnesota have produced seemingly anomalous results. The soil waters beneath highly transpirative plants (Typha sp., Salix sp. and Populus sp.) in a ground water discharge area developed high calcium sulfate concentrations with only minor enrichment of sodium and chloride. It was expected that concentration of solutes by evapo-transpiration would enrich all ions in the originating ground water more equally. Transpired water is generally assumed to be essentially distilled water although there is little analytical data to support this hypothesis. Given the very high evapotranspiration rates of Western Minnesota, greater than 95% of total water movement, even relatively dilute ion concentrations in the transpired water may be significant in the total chemical budget. To investigate the chemistry of transpired water we adapted techniques that have been used to study total transpiration rates as well as isotopic composition of transpired waters. Our initial results from typha sp. have produced waters that while relatively dilute are distinctly not distilled water. Control samples using de-ionized water over dead vegetation produced minor ion enrichment. All results are in ppm. Ion - Ca, Mg, Na, K, P, Mn, Cl , SO4, NO3-N soil water - 18.5, 2.9, 4.8, 3.8, 0.2, 0.2, 5.6, 2.4, 0.5 transpiration - 1.9, 0.6, 1.5, 8.5, 0.3, 0.4, 9.0, 1.6, <0.1 DI control - 0.1, <0.1, 0.1, <0.1, <0.1, <0.1, <0.1, 1.6, <0.1 The observed transpiration chemistries are in rough agreement with reported literature values for plant stem water. While many plants are known to excrete large molecules the expulsion of ions in transpired water would represent a novel chemical plant pathway.

  14. Water and heat fluxes in desert soils: 2. Numerical simulations

    NASA Astrophysics Data System (ADS)

    Scanlon, Bridget R.; Milly, P. C. D.

    1994-03-01

    Transient one-dimensional fluxes of soil water (liquid and vapor) and heat in response to 1 year of atmospheric forcing were simulated numerically for a site in the Chihuahuan Desert of Texas. The model was initialized and evaluated using the monitoring data presented in a companion paper (Scanlon, this issue). Soil hydraulic and thermal properties were estimated a priori from a combination of laboratory measurements, models, and other published information. In the first simulation, the main drying curves were used to describe soil water retention, and hysteresis was ignored. Remarkable consistency was found between computed and measured water potentials and temperatures. Attenuation and phase shift of the seasonal cycle of water potentials below the shallow subsurface active zone (0.0- to 0.3-m depth) were similar to those of temperatures, suggesting that water potential fluctuations were driven primarily by temperature changes. Water fluxes in the upper 0.3 m of soil were dominated by downward and upward liquid fluxes that resulted from infiltration of rain and subsequent evaporation from the surface. Upward flux was vapor dominated only in the top several millimeters of the soil during periods of evaporation. Below a depth of 0.3 m, water fluxes varied slowly and were dominated by downward thermal vapor flux that decreased with depth, causing a net accumulation of water. In a second simulation, nonhysteretic water retention was instead described by the estimated main wetting curves; the resulting differences in fluxes were attributed to lower initial water contents (given fixed initial water potential) and unsaturated hydraulic conductivities that were lower than they were in the first simulation. Below a depth of 0.3 m, the thermal vapor fluxes dominated and were similar to those in the first simulation. Two other simulations were performed, differing from the first only in the prescription of different (wetter) initial water potentials. These three simulations

  15. Plant species, atmospheric CO2 and soil N interactively or additively control C allocation within plant-soil systems.

    PubMed

    F U, Shenglei; Ferris, Howard

    2006-12-01

    Two plant species, Medicago truncatula (legume) and Avena sativa (non-legume), were grown in low- or high-N soils under two CO2 concentrations to test the hypothesis whether C allocation within plant-soil system is interactively or additively controlled by soil N and atmospheric CO2 is dependent upon plant species. The results showed the interaction between plant species and soil N had a significant impact on microbial activity and plant growth. The interaction between CO2 and soil N had a significant impact on soil soluble C and soil microbial biomass C under Madicago but not under Avena. Although both CO2 and soil N affected plant growth significantly, there was no interaction between CO2 and soil N on plant growth. In other words, the effects of CO2 and soil N on plant growth were additive. We considered that the interaction between N2 fixation trait of legume plant and elevated CO2 might have obscured the interaction between soil N and elevated CO2 on the growth of legume plant. In low-N soil, the shoot-to-root ratio of Avena dropped from 2.63 +/- 0.20 in the early growth stage to 1.47 +/- 0.03 in the late growth stage, indicating that Avena plant allocated more energy to roots to optimize nutrient uptake (i.e. N) when soil N was limiting. In high-N soil, the shoot-to-root ratio of Medicago increased significantly over time (from 2.45 +/- 0.30 to 5.43 +/- 0.10), suggesting that Medicago plants allocated more energy to shoots to optimize photosynthesis when N was not limiting. The shoot-to-root ratios were not significantly different between two CO2 levels.

  16. High Resolution Soil Water from Regional Databases and Satellite Images

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.; Smelyanskly, Vadim N.; Coughlin, Joseph; Dungan, Jennifer; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the ways in which plant growth can be inferred from satellite data and can then be used to infer soil water. There are several steps in this process, the first of which is the acquisition of data from satellite observations and relevant information databases such as the State Soil Geographic Database (STATSGO). Then probabilistic analysis and inversion with the Bayes' theorem reveals sources of uncertainty. The Markov chain Monte Carlo method is also used.

  17. Zinc movement in sewage-sludge-treated soils as influenced by soil properties, irrigation water quality, and soil moisture level

    USGS Publications Warehouse

    Welch, J.E.; Lund, L.J.

    1989-01-01

    A soil column study was conducted to assess the movement of Zn in sewage-sludge-amended soils. Varables investigated were soil properties, irrigation water quality, and soil moisture level. Bulk samples of the surface layer of six soil series were packed into columns, 10.2 cm in diameter and 110 cm in length. An anaerobically digested municipal sewage sludge was incorporated into the top 20 cm of each column at a rate of 300 mg ha-1. The columns were maintained at moisture levels of saturation and unsaturation and were leached with two waters of different quality. At the termination of leaching, the columns were cut open and the soil was sectioned and analyzed. Zinc movement was evaluated by mass balance accounting and correlation and regression analysis. Zinc movement in the unsaturated columns ranged from 3 to 30 cm, with a mean of 10 cm. The difference in irrigation water quality did not have an effect on Zn movement. Most of the Zn applied to the unsaturated columns remained in the sludge-amended soil layer (96.1 to 99.6%, with a mean of 98.1%). The major portion of Zn leached from the sludge-amended soil layer accumulated in the 0- to 3-cm depth (35.7 to 100%, with a mean of 73.6%). The mean final soil pH values decreased in the order: saturated columns = sludge-amended soil layer > untreated soils > unsaturated columns. Total Zn leached from the sludge-amended soil layer was correlated negatively at P = 0.001 with final pH (r = -0.85). Depth of Zn movement was correlated negatively at P = 0.001 with final pH (r = -0.91). Multiple linear regression analysis showed that the final pH accounted for 72% of the variation in the total amounts of Zn leached from the sludge-amended soil layer of the unsaturated columns and accounted for 82% of the variation in the depth of Zn movement among the unsaturated columns. A significant correlation was not found between Zn and organic carbon in soil solutions, but a negative correlation significant at P = 0.001 was found

  18. Observing plants dealing with soil water stress: Daily soil moisture fluctuations derived from polymer tensiometers

    NASA Astrophysics Data System (ADS)

    van der Ploeg, Martine; de Rooij, Gerrit

    2014-05-01

    Periods of soil water deficit often occur within a plant's life cycle, even in temperate deciduous and rain forests (Wilson et al. 2001, Grace 1999). Various experiments have shown that roots are able to sense the distribution of water in the soil, and produce signals that trigger changes in leaf expansion rate and stomatal conductance (Blackman and Davies 1985, Gollan et al. 1986, Gowing et al. 1990 Davies and Zhang 1991, Mansfield and De Silva 1994, Sadras and Milroy 1996). Partitioning of water and air in the soil, solute distribution in soil water, water flow through the soil, and water availability for plants can be determined according to the distribution of the soil water potential (e.g. Schröder et al. 2013, Kool et al. 2014). Understanding plant water uptake under dry conditions has been compromised by hydrological instrumentation with low accuracy in dry soils due to signal attenuation, or a compromised measurement range (Whalley et al. 2013). Development of polymer tensiometers makes it possible to study the soil water potential over a range meaningful for studying plant responses to water stress (Bakker et al. 2007, Van der Ploeg et al. 2008, 2010). Polymer tensiometer data obtained from a lysimeter experiment (Van der Ploeg et al. 2008) were used to analyse day-night fluctuations of soil moisture in the vicinity of maize roots. To do so, three polymer tensiometers placed in the middle of the lysimeter from a control, dry and very dry treatment (one lysimeter per treatment) were used to calculate water content changes over 12 hours. These 12 hours corresponded with the operation of the growing light. Soil water potential measurements in the hour before the growing light was turned on or off were averaged. The averaged value was used as input for the van Genuchten (1980) model. Parameters for the model were obtained from laboratory determination of water retention, with a separate model parameterization for each lysimeter setup. Results show daily

  19. Interactions in Natural Colloid Systems "Biosolids" - Soil and Plant

    NASA Astrophysics Data System (ADS)

    Kalinichenko, Kira V.; Nikovskaya, Galina N.; Ulberg, Zoya R.

    2016-04-01

    The "biosolids" are complex biocolloid system arising in huge amounts (mln tons per year) from biological municipal wastewater treatment. These contain clusters of nanoparticles of heavy metal compounds (in slightly soluble or unsoluble forms, such as phosphates, sulphates, carbonates, hydroxides, and etc.), cells, humic substances and so on, involved in exopolysaccharides (EPS) net matrix. One may consider that biosolids are the natural nanocomposite. Due to the presence of nitrogen, phosphorus, potassium and other macro- and microelements (heavy metals), vitamins, aminoacids, etc., the biosolids are a depot of bioelements for plant nutrition. Thus, it is generally recognized that most rationally to utilize them for land application. For this purpose the biocolloid process was developed in biosolids system by initiation of microbial vital ability followed by the synthesis of EPS, propagation of ecologically important microorganisms, loosening of the structure and weakening of the coagulation contacts between biosolids colloids, but the structure integrity maintaining [1,2]. It was demonstrated that the applying of biosolids with metabolizing microorganisms to soil provided the improving soil structure, namely the increasing of waterstable aggregates content (70% vs. 20%). It occurs due to flocculation ability of biosolids EPS. The experimental modelling of mutual interactions in systems of soils - biosolids (with metabolizing microorganisms) were realized and their colloid and chemical mechanisms were formulated [3]. As it is known, the most harmonious plant growth comes at a prolonged entering of nutrients under the action of plant roots exudates which include pool of organic acids and polysaccharides [4]. Special investigations showed that under the influence of exudates excreted by growing plants, the biosolids microelements can release gradually from immobilized state into environment and are able to absorb by plants. Thus, the biosolids can serve as an active

  20. Soil Moisture: The Hydrologic Interface Between Surface and Ground Waters

    NASA Technical Reports Server (NTRS)

    Engman, Edwin T.

    1997-01-01

    A hypothesis is presented that many hydrologic processes display a unique signature that is detectable with microwave remote sensing. These signatures are in the form of the spatial and temporal distributions of surface soil moisture. The specific hydrologic processes that may be detected include groundwater recharge and discharge zones, storm runoff contributing areas, regions of potential and less than potential evapotranspiration (ET), and information about the hydrologic properties of soils. In basin and hillslope hydrology, soil moisture is the interface between surface and ground waters.

  1. Solubilization and biodegradation of polycyclic aromatic hydrocarbon compounds in soil-water suspensions with surfactants

    SciTech Connect

    Laha, S.

    1992-01-01

    Hydrophobic organic compounds (HOCs) sorb strongly onto soil and sediment material, and the effectiveness of microbial treatment can be diminished by HOC phase partitioning and decreased substrate accessibility to microorganisms. Surfactant addition has been suggested as a technique for decreasing the interfacial tension and partitioning of the HOC with soil, and thereby increasing HOC mobility and bioavailability. However, this study indicates that nonionic surfactant solubilization of HOCs from soil may not be beneficial for the enhancement of soil bioremediation. The solubilization and microbial degradation of phenanthrene, a three-ring polycyclic aromatic hydrocarbon (PAH) compound, was examined in various soil-water systems with commercially-available surface-active agents. This was accomplished by a series of batch tests using radiolabeled techniques. The purpose of surfactant addition was to assess the effect of surfactant solubilization of PAHs on their biodegradation. For soil-water suspensions without surfactant approximately 50-60% of the phenanthrene was mineralized over the course of ten weeks. The addition of nonionic surface-active agents was observed not to be beneficial for microbial mineralization of phenanthrene in the soil-water systems, and for supra-CMC surfactant doses phenanthrene mineralization was completely inhibited for all the surfactants tested. Sub-CMC levels of surfactant in the soil-water systems generally did not have an inhibitory effect on phenanthrene mineralization, but neither did such doses serve to enhance the rate of degradation, which proceeded most rapidly in the absence of any surfactant. Companion tests suggest that the supra-CMC inhibitory effect is not a toxicity phenomenon, per se, of the surfactant or micellized PAH. An assessment of the results from the various experiments suggest that the inhibitory effect is probably related to a reversible physiological surfactant micelle-bacteria interaction.

  2. Association of water spectral indices with plant and soil water relations in contrasting wheat genotypes

    PubMed Central

    Gutierrez, Mario; Reynolds, Matthew P.; Klatt, Arthur R.

    2010-01-01

    Spectral reflectance indices can be used to estimate the water status of plants in a rapid, non-destructive manner. Water spectral indices were measured on wheat under a range of water-deficit conditions in field-based yield trials to establish their relationship with water relations parameters as well as available volumetric soil water (AVSW) to indicate soil water extraction patterns. Three types of wheat germplasm were studied which showed a range of drought adaptation; near-isomorphic sister lines from an elite/elite cross, advanced breeding lines, and lines derived from interspecific hybridization with wild relatives (synthetic derivative lines). Five water spectral indices (one water index and four normalized water indices) based on near infrared wavelengths were determined under field conditions between the booting and grain-filling stages of crop development. Among all water spectral indices, one in particular, which was denominated as NWI-3, showed the most consistent associations with water relations parameters and demonstrated the strongest associations in all three germplasm sets. NWI-3 showed a strong linear relationship (r2 >0.6–0.8) with leaf water potential (ψleaf) across a broad range of values (–2.0 to –4.0 MPa) that were determined by natural variation in the environment associated with intra- and inter-seasonal affects. Association observed between NWI-3 and canopy temperature (CT) was consistent with the idea that genotypes with a better hydration status have a larger water flux (increased stomatal conductance) during the day. NWI-3 was also related to soil water potential (ψsoil) and AVSW, indicating that drought-adapted lines could extract more water from deeper soil profiles to maintain favourable water relations. NWI-3 was sufficiently sensitive to detect genotypic differences (indicated by phenotypic and genetic correlations) in water status at the canopy and soil levels indicating its potential application in precision phenotyping

  3. Water dynamics in hyperarid soils of Antarctica including water adsorption and salt hydration

    NASA Astrophysics Data System (ADS)

    Hagedorn, B.; Sletten, R. S.

    2009-12-01

    Soils in the McMurdo Dry Valleys, Antarctica contain ice and considerable amounts of salt. Ice often occurs at shallow depth throughout the dry valleys and other areas of hyperarid permafrost, notably on Mars. This common occurrence of shallow ice is enigmatic; however, since according to published sublimation models it should disappear relatively quickly (at rates of order 0.1 mm a-1) due to vapor loss to the atmosphere. The disagreement between the occurrence of ice on one hand and process-based vapor transport models on other hand suggests that processes in addition to vapor transport have influence on ice stability. From a number of possible processes, infiltration of snowmelt during summer month and vapor trapping due to overlaying snow cover in winter have been discussed in more detail and both processes are likely to slow down ice sublimation. At this point, however, there are only limited field-observations to confirm the presence of such processes. The present study aims to investigate the effect of water adsorption, salt hydration, and freezing point depression on water transport and ice stability. We hypothesize that hydration of salts and water adsorption on grain surfaces play an important role in the survival of ground ice and as water reservoir in these areas and should be taken into account when modeling vapor transport. Furthermore, there is evidence that salt content in ground ice is high enough to cause formation of brines at subfreezing temperatures that can lead to a growth of ground ice. To support our hypothesis we set up a field experiment by monitoring soil temperature, soil humidity, and soil moisture along with climate data and snow cover. In addition we collected soil samples to measure water potential, salt composition, ice content, and soil texture. Soil samples were extracted with water to measure soluble salt content along dry and ice rich soil profiles. In addition we measured soil moisture retention curves at different vapor

  4. Analysis of water application efficiency and emission uniformity of drip irrigation systems based on space-time analysis of soil moisture patterns in soils

    NASA Astrophysics Data System (ADS)

    Shabeeb, Ahmeed; Taha, Uday; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    In order to evaluate how efficiently and uniformly drip irrigation systems can deliver water to emitters distributed around a field, we need some methods for measuring/calculating water application efficiency (WAE) and emission uniformity (EU). In general, the calculation of the WAE and of other efficiency indices requires the measurement of the water stored in the root zone. Measuring water storage in soils allows directly saying how much water a given location of the field retains having received a given amount of irrigation water. And yet, due to the difficulties of measuring water content variability under an irrigation system at field scale, it is quite common using EU as a proxy indicator of the irrigation performance. This implicitly means assuming that the uniformity of water application is immediately reflected in an uniformity of water stored in the root zone. In other words, that if a site receive more water it will store more water. Nevertheless, due to the heterogeneity of soil hydrological properties the same EU may correspond to very different distributions of water stored in the soil root zone. 1) In the case of isolated drippers, the storages measured in the soil root zone layer shortly after an irrigation event may be or not different from the water height applied at the surface depending on the vertical/horizontal development of the wetted bulbs. Specifically, in the case of dominant horizontal spreading the water storage is expected to reflect the distribution of water applied at the surface. To the contrary, in the case of relatively significant vertical spreading, deep percolation fluxes (fluxes leaving the root zone) may well induce water storages in the root zone significantly different from the water applied at the surface. 2) The drippers and laterals are close enough that the wetted bulbs below adjacent drippers may interact. In this case, lateral fluxes in the soil may well induce water storages in the root zone which may be

  5. Effects of white grubs on soil water infiltration.

    PubMed

    Romero-López, A A; Rodríguez-Palacios, E; Alarcón-Gutiérrez, E; Geissert, D; Barois, I

    2015-04-01

    Water infiltration rates k were measured in mesocosms with soil and "white grubs" of Ancognatha falsa (Arrow) (Coleoptera: Melolonthidae). Three third instars of A. falsa and three adult earthworms Pontoscolex corethrurus were selected, weighted, and introduced into the mesocosms setting three treatments: soil + A. falsa, soil + P. corethrurus, and control (soil without any macroorganism). The experiment had a completely random design with four replicates per treatment (n = 4). The infiltration rates of soil matrix were assessed in each mesocosms with a minidisk tension infiltrometer. Six measurements were made along the experiment. Results showed that larvae of A. falsa promoted a higher water infiltration in the soil, compared to the control. On day 7, k values were similar among treatments, but k values after 28 days and up to 100 days were much higher in the A. falsa treatment (k = 0.00025 cm s(-1)) if compared to control (k = 0.00011 cm s(-1)) and P. corethrurus (k = 0.00008 cm s(-1)) treatments. The k values were significantly higher in the presence of larvae of A. falsa compared to the control and P. corethrurus treatments. The larvae of A. falsa are potential candidates for new assays on soil water infiltration with different tensions to evaluate the role of pores and holes created by the larvae on soils.

  6. Temporal and soil management effects on soil infiltration and water content in a hillslope vineyard

    NASA Astrophysics Data System (ADS)

    Biddoccu, Marcella; Ferraris, Stefano; Cavallo, Eugenio

    2015-04-01

    The maintenance of bare soil in the vineyard's inter-rows with tillage, as well as other mechanized operations which increase the vehicle traffic, expose the soil to degradation, favoring overland flow and further threats as compaction, reduction of soil water holding capacity and water infiltration. Water infiltration is strongly controlled by field-saturated hydraulic conductivity, which depends primarily on soil texture and structure, and it is characterized by high spatial and temporal variability. Beyond the currently adopted soil management, some major causes in variability of infiltration rates are the history of cultivation and the structure of the first centimeters of the vineyard's soil. A study was carried out in two experimental vineyard plots included in the 'Tenuta Cannona Experimental Vine and Wine Centre of Regione Piemonte', located in NW Italy. The study was addressed to evaluate the temporal variations of the field-saturated hydraulic conductivity, in relation to the soil management adopted in the inter-rows of a hillslope vineyard. The investigation was carried out in a vineyard comparing the adoption of two different soil managements in the inter-rows: 1) conventional tillage and 2) controlled grass cover. Several series of double-ring of infiltration tests were carried out during a 2-years period of observation, using the simplified falling head technique (SFH). In order to take into account the effect of tractor traffic, the tests were done both inside the the track, the portion of soil affected by the transit of tractor wheels or tracks, and outside the track. Before the execution of each test, bulk density and initial soil water content close to the investigated area were determined. Relations among infiltration behavior and these parameters were analyzed. Field-saturated hydraulic conductivity (Kfs) at different sampling dates showed high variability, especially in the vineyard with cultivated soil. Indeed, highest infiltration rates were

  7. Effects of pentachlorophenol and biotic interactions on soil fauna and decomposition in humus soil.

    PubMed

    Salminen, J; Haimi, J; Sironen, A; Ahtiainen, J

    1995-08-01

    In a laboratory experiment, effects of chemical stress (pentachlorophenol, PCP, at concentrations of 0, 50, and 500 mg/kg) and biotic interactions (nematodes in the presence or absence of collembolas and enchytraeids) on the community structure of soil animals and decomposition processes were studied. PCP was strongly adsorbed to humus that contained 65% organic matter. Numbers of fungal-feeding nematodes decreased significantly at the highest PCP concentration, while no effects were found in bacterial feeders. There were differences in the numbers of nematodes between different animal combinations, but at the highest PCP concentration, collembolas and enchytraeids had no effect on them. Numbers of collembola Willemia anophtalma were lowered at the highest PCP concentration, although PCP was not acutely toxic at this concentration. The highest PCP concentration was acutely toxic to enchytraeids, and for an unknown reason all of them died in the main experiment. Both ATP content of the soil and soil respiration were reduced at the highest PCP concentration, while no differences were found between animal treatments. Amounts of NH4-N and PO4-P in the soil increased with increasing PCP concentration. It was concluded that in the presence of simple animal communities, harmful chemicals like PCP regulate the community structure of soil animals as well as decomposition and nutrient mobilization.

  8. Reflectance of vegetation, soil, and water

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator); Gausman, H. W.; Leamer, R. W.; Richardson, A. J.; Gerbermann, A. H.; Torline, R. J.; Gautreaux, M. R.; Everitt, J. H.; Guellar, J. A.; Rodriguez, R. R.

    1974-01-01

    The author has identified the following significant results. Bands 4, 5, and 7 and 5, 6, and 7 were best for distinguishing among crop and soil categories in ERTS-1 SCENES 1182-16322 (1-21-73) and 1308-16323 (5-21-73) respectively. Chlorotic sorghum areas 2.8 acres or larger in size were identified on a computer printout of band 5 data. Reflectance of crop residues was more often different from bare soil in band 4 than in bands 5, 6, and 7. Simultaneously acquired aircraft and spacecraft MSS data indicated that spacecraft surveys are as reliable as aircraft surveys. ERTS-1 data were successfully used to estimate acreage of citrus, cotton, and sorghum as well as idle crop land.

  9. Pore-Scale Effects of Soil Structure And Microbial EPS Production On Soil Water Retention

    NASA Astrophysics Data System (ADS)

    Orner, E.; Anderson, E.; Rubinstein, R. L.; Chau, J. F.; Shor, L. M.; Gage, D. J.

    2013-12-01

    Climate-induced changes to the hydrological cycle will increase the frequency of extreme weather events including powerful storms and prolonged droughts. Moving forward, one of the major factors limiting primary productivity in terrestrial ecosystems will be sub-optimal soil moisture. We focus here on the ability of soils to retain moisture under drying conditions. A soil's ability to retain moisture is influenced by many factors including its texture, its structure, and the activities of soil microbes. In soil microcosms, the addition of small amounts of microbially-produced extracellular polymeric substances (EPS) can dramatically shift moisture retention curves. The objective of this research is to better understand how soil structure and EPS may act together to retain moisture in unsaturated soils. Replicate micromodels with exactly-conserved 2-D physical geometry were initially filled with aqueous suspensions of one of two types of bacteria: one mutant was ultra- muccoid and the other was non-muccoid. Replicate micromodels were held at a fixed, external, relative humidity, and the position of the air-water interface was imaged over time as water evaporates. There was no forced convection of air or water inside the micromodels: drying was achieved by water evaporation and diffusion alone. We used a fully automated, inverted microscope to image replicate drying lanes each with dimensions of 1 mm x 10 mm. A complete set of images was collected every 30 minutes for 30 hours. The results show devices loaded with the highly muccoid strain remained >40% hydrated for 13 h, while devices loaded with the non-muccoid remained >40% hydrated for only 6 h, and were completely dry by 13 h. Current work is comparing interfacial water fluxes in structured and unstructured settings, and is attempting to model the synergistic effects of soil structure and EPS content on moisture retention in real soils. This research may allow more accurate description of naturally

  10. Stemflow-induced processes of soil water storage

    NASA Astrophysics Data System (ADS)

    Germer, Sonja

    2013-04-01

    Compared to stemflow production studies only few studies deal with the fate of stemflow at the near-stem soil. To investigate stemflow contribution to the root zone soil moisture by young and adult babassu palms (Attalea speciosa Mart.), I studied stemflow generation, subsequent soil water percolation and root distributions. Rainfall, stemflow and perched water tables were monitored on an event basis. Perched water tables were monitored next to adult palms at two depths and three stem distances. Dye tracer experiments monitored stemflow-induced preferential flow paths. Root distributions of fine and coarse roots were related to soil water redistribution. Average rainfall-collecting area per adult palm was 6.4 m², but variability between them was high. Funneling ratios ranged between 16-71 and 4-55 for adult and young palms, respectively. Nonetheless, even very small rainfall events of 1 mm can generate stemflow. On average, 9 liters of adult palm stemflow were intercepted and stemflow tended to decrease for-high intensity rainfall events. Young babassu palms funneled rainfall via their fronds, directly to their subterranean stems. The funneling of rainfall towards adult palm stems, in contrast, led to great stemflow fluxes down to the soil and induced initial horizontal water flows through the soil, leading to perched water tables next to palms, even after small rainfall events. The perched water tables extended, however, only a few decimeters from palm stems. After perched water tables became established, vertical percolation through the soil dominated. To my knowledge, this process has not been described before, and it can be seen as an addition to the two previously described stemflow-induced processes of Horton overland flow and fast, deep percolation along roots. This study has demonstrated that Babassu palms funnel water to their stems and subsequently store it in the soil next to their stems in areas where coarse root length density is very high. This might

  11. Interactive Effects of Soil Drainage and Time Since Burn on Transpiration of Boreal Black Spruce Forests

    NASA Astrophysics Data System (ADS)

    Angstmann, J. L.; Ewers, B. E.; Kwon, H.; Bond-Lamberty, B.; Amiro, B.; Gower, S. T.

    2006-12-01

    Boreal forests and their changing fire frequencies are of interest in global climate change because they comprise one-third of the world's forest coverage and store large amounts of carbon. Much of this carbon storage is due to peat formation in cold, poorly-drained boreal soils. Here, evapotranspiration plays a crucial role in the interaction between carbon and water cycles. The main objective of this study is to quantify the amount of water being released through transpiration as boreal forest stands recover from wildfires across well- to poorly-drained soil conditions. Species composition of this region of boreal forest changes during succession in well-drained soils from a mix of Picea mariana (black spruce), Pinus banksiana (jack pine), and Populus tremuloides (trembling aspen) in younger stands to being dominated solely by Picea mariana in older stands. Poorly-drained soils are dominated by Picea mariana throughout the chronosequence. Previous work in well-drained stands recovering from wildfires showed that in all but the oldest black spruce stands 1) tree transpiration changed dramatically with stand age due to sapwood-to-leaf area ratio dynamics and 2) minimum leaf water potential was kept constant to prevent excessive cavitation. Thus, we hypothesized that 1) minimum leaf water potential would be constant and 2) transpiration would be proportional to the sapwood-to- leaf area ratio across both stand age and soil drainage except for the two oldest black spruce stands. We tested these hypotheses by measuring leaf water potential (Psi) of 95 trees and sap flux from 111 trees. Mixed results were found in Picea mariana Psi between well- and poorly-drained areas of each stand age, with only the 17-year-old burn in July (average midday Psi of -0.77 and -1.08 MPa for well- and poorly drained respectively) and the 76-year-old burn in June (average predawn Psi of -0.52 and -0.42 MPa for well- and poorly drained respectively) differing significantly. Growing season

  12. Soil water retention dynamics in Luvisols at contrasting slope positions in lysimeter monoliths from an eroded soil landscape

    NASA Astrophysics Data System (ADS)

    Herbrich, Marcus; Gerke, Horst H.; Sommer, Michael

    2015-04-01

    Modeling water flow and solute transport in variably saturated soils requires the proper description of the soil water retention curve. The problem is that under field conditions, water retention may be hysteretic or otherwise changing in time due to changing soil properties. In arable soil landscapes, these changes may depend on the erosion history which created spatial patterns of soil properties such as texture and organic matter content and differences in crop development. The objective of this study was to analyze the dynamics in field-measured water retention data for Luvisols in 10 cm, 30 cm and 50 cm soil depth (Ap, E, and Bt horizons) at two contrasting at slope positions characterized by different degrees of soil erosion under intensive agricultural cultivation. Drying and wetting water retention was obtained from tensiometer/MPS and TDR data in depths representing same soil horizons. For comparison, we used drying retention data obtained from soil cores using the evaporation method (Hyprop). Drying data were fitted to the unconstrained water retention function proposed by van Genuchten (1980) and the bimodal model of Durner (1994). For wetting data, hydraulic model parameters were determined by using the Pedroso-Williams model (2010). The water contents of wetting and drying branches were dynamically changing. These changes in water retention were different for several horizons of the more eroded Luvisol as compared to the less eroded one. Differences in water retention dynamics could be related to soil tillage and the erosion history at the different slope positions. The water differences in retention could be explained by hysteresis and temporal changes in soil water repellency. Field and lab retention data differed as reported earlier. The results suggest that estimation of soil water retention curves without resorting to time-consuming field measurements remains challenging. The results suggest that for erosion-affected arable soils of the hummocky

  13. Water vapor interactions with polycrystalline titanium surfaces

    NASA Astrophysics Data System (ADS)

    Azoulay, A.; Shamir, N.; Volterra, V.; Mintz, M. H.

    1999-02-01

    The initial interactions of water vapor with polycrystalline titanium surfaces were studied at room temperature. Measurements of water vapor surface accumulation were performed in a combined surface analysis system incorporating direct recoils spectrometry (DRS), Auger electron spectroscopy and X-ray photoelectron spectroscopy. The kinetics of accommodation of the water dissociation fragments (H, O and OH) displayed a complex behavior depending not only on the exposure dose but also on the exposure pressure. For a given exposure dose the efficiency of chemisorption increased with increasing exposure pressure. DRS measurements indicated the occurrence of clustered hydroxyl moieties with tilted O-H bonds formed even at very low surface coverage. A model which assumes two parallel routes of chemisorption, by direct collisions (Langmuir type) and by a precursor state is proposed to account for the observed behavior. The oxidation efficiency of water seemed to be much lower than that of oxygen. No Ti 4+ states were detected even at high water exposure values. It is likely that hydroxyl species play an important role in the reduced oxidation efficiency of water.

  14. Modelling Soil Water Characteristic Curves for the Investigation of Hydrophobicity

    NASA Astrophysics Data System (ADS)

    Hallin, Ingrid; Matthews, Peter; Laudone, Maurizio; Van Keulen, Geertje; Doerr, Stefan; Francis, Lewis; Dudley, Ed; Gazze, Andrea; Quinn, Gerry; Whalley, Richard; Ashton, Rhys

    2016-04-01

    Soil hydrophobicity presents a major challenge for the future, as it reduces both plant-available water and irrigation efficiency, and can increase flooding hazards and erosion. A collaborative research project has been set up in the UK to study hydrophobicity over a wide range of length scales. At core scale, we are investigating the wetting behaviour of water repellent soils in order to model percolation through hydrophobic pore spaces. To that end, water retention measurements were carried out on both wettable and forcibly-wetted water-repellent soils collected from three locations in England and Wales. The data were then fitted with both the commonly used Van Genuchten model and an alternative model from PoreXpert, a software program that analyses and models porous materials. The Van Genuchten model fits a curve to the data using parameters related to air entry suction, irreducible water content and pore size distribution. By contrast, PoreXpert uses a Boltzmann-annealed simplex to find a best-fit curve based on parameters directly related to the void structure of the soil: the size of the voids, the shape of the void size distribution, and how the voids are connected to each other. Both Van Genuchten and PoreXpert fit the experimental data well, but where Van Genuchten forces an S-shaped curve that can mask small variations, PoreXpert gives a closer fit of no pre-defined shape that captures subtle differences between data points. This allows us to calculate differences in the effective pore and throat size distributions, and provides a mechanistic framework from which to model additional hydrologic behaviour in water repellent soil. Simulations of capillary induced wetting based on these mechanistic postulates are then compared to wicking experiments at the core scale, which can then be upscaled and applied to other soils.

  15. Mediterranean shrub vegetation: soil protection vs. water availability

    NASA Astrophysics Data System (ADS)

    García Estringana, Pablo; Nieves Alonso-Blázquez, M.; Alegre, Alegre; Cerdà, Artemi

    2014-05-01

    Soil Erosion and Land Degradation are closely related to the changes in the vegetation cover (Zhao et al., 2013). Although other factors such as rainfall intensiy or slope (Ziadat and Taimeh, 2013) the plant covers is the main factor that controls the soil erosion (Haregeweyn, 2013). Plant cover is the main factor of soil erosion processes as the vegetation control the infiltration and runoff generation (Cerdà, 1998a; Kargar Chigani et al., 2012). Vegetation cover acts in a complex way in influencing on the one hand on runoff and soil loss and on the other hand on the amount and the way that rainfall reaches the soil surface. In arid and semiarid regions, where erosion is one of the main degradation processes and water is a scant resource, a minimum percentage of vegetation coverage is necessary to protect the soil from erosion, but without compromising the availability of water (Belmonte Serrato and Romero Diaz, 1998). This is mainly controlled by the vegetation distribution (Cerdà, 1997a; Cammeraat et al., 2010; Kakembo et al., 2012). Land abandonment is common in Mediterranean region under extensive land use (Cerdà, 1997b; García-Ruiz, 2010). Abandoned lands typically have a rolling landscape with steep slopes, and are dominated by herbaceous communities that grow on pasture land interspersed by shrubs. Land abandonment use to trigger an increase in soil erosion, but the vegetation recovery reduces the impact of the vegetation. The goal of this work is to assess the effects of different Mediterranean shrub species (Dorycnium pentaphyllum Scop., Medicago strasseri, Colutea arborescens L., Retama sphaerocarpa, L., Pistacia Lentiscus L. and Quercus coccifera L.) on soil protection (runoff and soil losses) and on rainfall reaching soil surface (rainfall partitioning fluxes). To characterize the effects of shrub vegetation and to evaluate their effects on soil protection, two field experiments were carried out. The presence of shrub vegetation reduced runoff by

  16. Impact of regression methods on improved effects of soil structure on soil water retention estimates

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuong Minh; De Pue, Jan; Le, Khoa Van; Cornelis, Wim

    2015-06-01

    Increasing the accuracy of pedotransfer functions (PTFs), an indirect method for predicting non-readily available soil features such as soil water retention characteristics (SWRC), is of crucial importance for large scale agro-hydrological modeling. Adding significant predictors (i.e., soil structure), and implementing more flexible regression algorithms are among the main strategies of PTFs improvement. The aim of this study was to investigate whether the improved effect of categorical soil structure information on estimating soil-water content at various matric potentials, which has been reported in literature, could be enduringly captured by regression techniques other than the usually applied linear regression. Two data mining techniques, i.e., Support Vector Machines (SVM), and k-Nearest Neighbors (kNN), which have been recently introduced as promising tools for PTF development, were utilized to test if the incorporation of soil structure will improve PTF's accuracy under a context of rather limited training data. The results show that incorporating descriptive soil structure information, i.e., massive, structured and structureless, as grouping criterion can improve the accuracy of PTFs derived by SVM approach in the range of matric potential of -6 to -33 kPa (average RMSE decreased up to 0.005 m3 m-3 after grouping, depending on matric potentials). The improvement was primarily attributed to the outperformance of SVM-PTFs calibrated on structureless soils. No improvement was obtained with kNN technique, at least not in our study in which the data set became limited in size after grouping. Since there is an impact of regression techniques on the improved effect of incorporating qualitative soil structure information, selecting a proper technique will help to maximize the combined influence of flexible regression algorithms and soil structure information on PTF accuracy.

  17. Multiscale Bayesian neural networks for soil water content estimation

    NASA Astrophysics Data System (ADS)

    Jana, Raghavendra B.; Mohanty, Binayak P.; Springer, Everett P.

    2008-08-01

    Artificial neural networks (ANN) have been used for some time now to estimate soil hydraulic parameters from other available or more easily measurable soil properties. However, most such uses of ANNs as pedotransfer functions (PTFs) have been at matching spatial scales (1:1) of inputs and outputs. This approach assumes that the outputs are only required at the same scale as the input data. Unfortunately, this is rarely true. Different hydrologic, hydroclimatic, and contaminant transport models require soil hydraulic parameter data at different spatial scales, depending upon their grid sizes. While conventional (deterministic) ANNs have been traditionally used in these studies, the use of Bayesian training of ANNs is a more recent development. In this paper, we develop a Bayesian framework to derive soil water retention function including its uncertainty at the point or local scale using PTFs trained with coarser-scale Soil Survey Geographic (SSURGO)-based soil data. The approach includes an ANN trained with Bayesian techniques as a PTF tool with training and validation data collected across spatial extents (scales) in two different regions in the United States. The two study areas include the Las Cruces Trench site in the Rio Grande basin of New Mexico, and the Southern Great Plains 1997 (SGP97) hydrology experimental region in Oklahoma. Each region-specific Bayesian ANN is trained using soil texture and bulk density data from the SSURGO database (scale 1:24,000), and predictions of the soil water contents at different pressure heads with point scale data (1:1) inputs are made. The resulting outputs are corrected for bias using both linear and nonlinear correction techniques. The results show good agreement between the soil water content values measured at the point scale and those predicted by the Bayesian ANN-based PTFs for both the study sites. Overall, Bayesian ANNs coupled with nonlinear bias correction are found to be very suitable tools for deriving soil

  18. Transport of PCBs with leachate water from the contaminated soil.

    PubMed

    Kobasić, Vedranka Hodak; Picer, Mladen; Picer, Nena; Calić, Violeta

    2008-08-01

    Contaminated soil was taken from the area around the damaged capacitor of an electrical transformer station in Zadar (Croatia) and a phytoremediation experimental field was constructed with lysimeters. The levels of PCBs in the leachate water samples were measured nearly 3 years. The experiment was conducted under natural climatic conditions, through hot summers and mild winters. Although the amounts of leachated PCBs from the polluted soil were relatively small, their concentrations in leachate water samples from 1,500 to 29,000 ng L(-1) substantially exceeded the maximum allowed concentration of the total PCBs in the fishponds of Croatia (1 ng L(-1)).

  19. Organic compounds in hot-water-soluble fractions from water repellent soils

    NASA Astrophysics Data System (ADS)

    Atanassova, Irena; Doerr, Stefan

    2014-05-01

    Water repellency (WR) is a soil property providing hydrophobic protection and preventing rapid microbial decomposition of organic matter entering the soil with litter or plant residues. Global warming can cause changes in WR, thus influencing water storage and plant productivity. Here we assess two different approaches for analysis of organic compounds composition in hot water extracts from accelerated solvent extraction (ASE) of water repellent soils. Extracts were lyophilized, fractionated on SiO2 (sand) and SPE cartridge, and measured by GC/MS. Dominant compounds were aromatic acids, short chain dicarboxylic acids (C4-C9), sugars, short chain fatty acids (C8-C18), and esters of stearic and palmitic acids. Polar compounds (mainly sugars) were adsorbed on applying SPE clean-up procedure, while esters were highly abundant. In addition to the removal of polar compounds, hydrophobic esters and hydrocarbons (alkanes and alkenes < C20) were extracted through desorption of complex colloids stabilized as micelles in dissolved organic carbon (DOC). Water repellency was completely eliminated by hot water under high pressure. The molecular composition of HWSC can play a critical role in stabilization and destabilization of soil organic matter (SOM), particle wettability and C dynamics in soils. Key words: soil water repellency, hot water soluble carbon (HWSC), GC/MS, hydrophobic compounds

  20. Improved Instrument for Detecting Water and Ice in Soil

    NASA Technical Reports Server (NTRS)

    Buehler, Martin; Chin, Keith; Keymeulen, Didler; McCann, Timothy; Seshadri, Suesh; Anderson, Robert

    2009-01-01

    An instrument measures electrical properties of relatively dry soils to determine their liquid water and/or ice contents. Designed as a prototype of instruments for measuring the liquid-water and ice contents of lunar and planetary soils, the apparatus could also be utilized for similar purposes in research and agriculture involving terrestrial desert soils and sands, and perhaps for measuring ice buildup on aircraft surfaces. This instrument is an improved version of the apparatus described in Measuring Low Concentrations of Liquid Water and Ice in Soil (NPO-41822), NASA Tech Briefs, Vol. 33, No. 2 (February 2009), page 22. The designs of both versions are based on the fact that the electrical behavior of a typical soil sample is well approximated by a network of resistors and capacitors in which resistances decrease and capacitances increase (and the magnitude and phase angle of impedance changes accordingly) with increasing water content. The previous version included an impedance spectrometer and a jar into which a sample of soil was placed. Four stainless-steel screws at the bottom of the jar were used as electrodes of a fourpoint impedance probe connected to the spectrometer. The present instrument does not include a sample jar and can be operated without acquiring or handling samples. Its impedance probe consists of a compact assembly of electrodes housed near the tip of a cylinder. The electrodes protrude slightly from the cylinder (see Figure 1). In preparation for measurements, the cylinder is simply pushed into the ground to bring the soil into contact with the electrodes.

  1. Monitoring of soil water content and quality inside and outside the water curtain cultivation facility

    NASA Astrophysics Data System (ADS)

    Ha, K.; Kim, Y.

    2014-12-01

    Water curtain cultivation system is an energy saving technique for winter season by splashing groundwater on the inner roof of green house. Artificial groundwater recharge application to the water curtain cultivation facilities was adopted and tested to use groundwater sustainably in a rural region of Korea. The groundwater level in the test site shows natural trend corresponding rainfall pattern except during mid-November to early April when groundwater levels decline sharply due to groundwater abstraction for water curtain cultivation. Groundwater levels are also affected by surface water such as stream, small dams in the stream and agricultural ditches. Infiltration data were collected from lysimeter installation and monitoring inside and outside water cultivation facility and compared with each other. The infiltration data were well correlated with rainfall outside the facility, but the data in the facility showed very different from the other. The missing infiltration data were attributed to groundwater level rise and level sensor location below water table. Soil water contents in the unsaturated zone indicated rainfall infiltration propagation at depth and with time outside the facility. According to rainfall amount and water condition at the initial stage of a rainfall event, the variation of soil water content was shown differently. Soil water contents and electrical conductivities were closely correlated with each other, and they reflected rainfall infiltration through the soil and water quality changes. The monitoring results are useful to reveal the hydrological processes from the infiltration to groundwater recharge, and water management planning in the water cultivation areas.

  2. Reflectance of vegetation, soil, and water

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator)

    1973-01-01

    There are no author-identified significant results in this report. This report deals with the selection of the best channels from the 24-channel aircraft data to represent crop and soil conditions. A three-step procedure has been developed that involves using univariate statistics and an F-ratio test to indicate the best 14 channels. From the 14, the 10 best channels are selected by a multivariate stochastic process. The third step involves the pattern recognition procedures developed in the data analysis plan. Indications are that the procedures in use are satsifactory and will extract the desired information from the data.

  3. Interactions between soil moisture and Atmospheric Boundary Layer at the Brazilian savana-type vegetation Cerrado

    NASA Astrophysics Data System (ADS)

    Pinheiro, L. R.; Siqueira, M. B.

    2013-05-01

    Before the large people influx and development of the central part of Brazil in the sixties, due to new capital Brasília, Cerrado, a typical Brazilian savanna-type vegetation, used to occupy about 2 million km2, going all the way from the Amazon tropical forest, in the north of the country, to the edges of what used to be of the Atlantic forest in the southeast. Today, somewhat 50% of this area has given place to agriculture, pasture and managed forests. It is forecasted that, at the current rate of this vegetation displacement, Cerrado will be gone by 2030. Understanding how Cerrado interacts with the atmosphere and how this interaction will be modified with this land-use change is a crucial step towards improving predictions of future climate-change scenarios. Cerrado is a vegetation adapted to a climate characterized by two very distinct seasons, a wet season (Nov-Mar) and dry season (May-Ago), with April and October being transitions between seasons. Typically, based on measurements in a weather station located in Brasilia, 75% of precipitation happens in the wet-season months and only 5% during dry-season. Under these circumstances, it is clear that the vegetation will have to cope with long periods of water stress. In this work we studied using numerical simulations, the interactions between soil-moisture, responsible for the water stress, with the Atmospheric Boundary Layer (ABL). The numerical model comprises of a Soil-Vegetation-Atmosphere model where the biophysical processes are represented with a big-leaf approach. Soil water is estimated with a simple logistic model and with water-stress effects on stomatal conductance are parameterized from local measurements of simultaneous latent-heat fluxes and soil moisture. ABL evolution is calculate with a slab model that considers independently surface and entrainment fluxes of sensible- and latent- heat. Temperature tropospheric lapse-rate is taken from soundings at local airport. Simulations of 30-day dry

  4. Transport of PCBs with leachate water from contaminated soil.

    PubMed

    Kobasić, Vedranka Hodak; Picer, Mladen; Picer, Nena; Calić, Violeta

    2008-08-01

    Natural soil contaminated with PCBs was used in this study. The soil was excavated from the area around the damaged capacitor of an electrical transformer station in Zadar (ETS 110/35 kV). A lysimeter experiment was conducted for 17 months under natural climatic conditions and designed to measure the concentration of PCB in the soil and leachates. Our research field was composed of four plots and there were three lysimeters on each plot. After 12 months, a negligible quantity of Aroclor 1248 (an average of 0.24%) and the Sigma 7 key PCB congeners (SigmaPCB(7); IUPAC No.: PCB 28, PCB 52, PCB 101, PCB 118, PCB 138, PCB 153 and PCB 180) were leached from the soils into the water collected under the lysimeters (an average of 0.32%). During two soil samplings, the soil was taken at three depths from each lysimeter. The distribution of Aroclor 1248 and 7 individual PCB congeners in the soil layers was determined before and after planting. Plot No. 1 had the highest percentage of contaminant removal after 12 months. The data indicate that the Sigma 7 key PCBs in the surface soil layers of all the plots decreased and the removal percentages ranged between 19.0% (Plot No. 2) and 47.6% (Plot No. 1). Volatilization from the soil surface may be the most important mechanism for the loss of these "more volatile" PCB congeners. The results showed an accumulation of PCBs in the deepest level of the soil plots, probably due to the vertical transfer of the PCBs and the lack of volatilization.

  5. The importance of plant-soil interactions for N mineralisation in different soil types

    NASA Astrophysics Data System (ADS)

    Murphy, Conor; Paterson, Eric; Baggs, Elizabeth; Morley, Nicholas; Wall, David; Schulte, Rogier

    2013-04-01

    The last hundred years has seen major advancements in our knowledge of nitrogen mineralisation in soil, but key drivers and controls remain poorly understood. Due to an increase in the global population there is a higher demand on food production. To accommodate this demand agriculture has increased its use of N based fertilizers, but these pose risks for water quality and GHG emissions as N can be lost through nitrate leaching, ammonia volatilization, and denitrification processes (Velthof, et al., 2009). Therefore, understanding the underlying processes that determine the soils ability to supply N to the plant is vital for effective optimisation of N-fertilisation with crop demand. Carbon rich compounds exuded from plant roots to the rhizosphere, which are utilized by the microbial biomass and support activities including nutrient transformations, may be a key unaccounted for driver of N mineralisation. The main aim of this study was to study the impact of root exudates on turnover of C and N in soil, as mediated by the microbial community. Two soil types, known to contrast in N-mineralisation capacity, were used to determine relationships between C inputs, organic matter mineralisation (priming effects) and N fluxes. 15N and 13C stable isotope approaches were used to quantify the importance of rhizosphere processes on C and N mineralisation. Gross nitrogen mineralisation was measured using 15N pool dilution. Total soil CO2 efflux was measured and 13C isotope partitioning was applied to quantify SOM turnover and microbial biomass respiration. Also, 13C was traced through the microbial biomass (chloroform fumigation) to separate pool-substitution effects (apparent priming) from altered microbial utilisation of soil organic matter (real priming effects). Addition of labile carbon resulted in an increase in N-mineralisation from soil organic matter in both soils. Concurrent with this there was an increase in microbial biomass size, indicating that labile C elicited

  6. Impact of alfalfa on soil and water quality

    SciTech Connect

    Sharma, P.; Moncrief, J.; Gupta, S.

    1997-10-30

    Dominance of row crop agriculture in rolling landscapes of western and Southwestern Minnesota is identified as a primary, non-point source of sediments and associated pollutants reaching the Minnesota River. Currently as a biomass energy project, alfalfa is being promoted in western Minnesota to harvest the leaves for animal feed and stems to generate electricity. As a perennial, leguminous crop grown with minimum inputs, introduction of alfalfa in row cropped lands has potential to improve both in-situ soil productivity and downstream water quality. A field study was initiated in 1996 to compare the volume of runoff and pollutants coming from alfalfa an com-soybean fields in western Minnesota. Two pair of alfalfa and corn-soybean watersheds were instrumented at Morris in the Fall of 1996 to measure rainfall, runoff, and sample water for sediment load, phosphorus, nitrogen, biochemical oxygen demand, and chemical oxygen demand. Simulated rainfall-runoff experiments were conducted on an existing crop rotation - input management study plots at Lamberton to evaluate soil quality effects of the inclusion of alfalfa in a corn-soybean rotation under manure and fertilization management schemes. Alfalfa soil water use as a function of frequency of harvest was also monitored at Morris to evaluate the effect of cutting schedule on soil water use. During the growing season of 1997, alfalfa under a two-cut management scheme used about 25-mm (an inch) more soil water than under a three-cut schedule. The mean differences between the treatments were not significant. The conclusions drawn in this report come from analysis of data collected during one winter-summer hydrologic and crop management cycle. Continued observations through a period of at least 3-5 years is recommended to improve the instrumentation robustness and discern the variability due to climate, soil, and crop management factors.

  7. Water percolation through the root-soil interface

    NASA Astrophysics Data System (ADS)

    Benard, Pascal; Kroener, Eva; Vontobel, Peter; Kaestner, Anders; Carminati, Andrea

    2016-09-01

    Plant roots exude a significant fraction of the carbon assimilated via photosynthesis into the soil. The mucilaginous fraction of root exudates affects the hydraulic properties of the soil near the roots, the so called rhizosphere, in a remarkable and dynamic way. After drying, mucilage becomes hydrophobic and limits the rewetting of the rhizosphere. Here, we aim to find a quantitative relation between rhizosphere rewetting, particle size, soil matric potential and mucilage concentration. We used a pore-network model in which mucilage was randomly distributed in a cubic lattice. The general idea was that the mucilage concentration per solid soil surface increases the contact angle between the liquid and solid phases consequently limiting the rewetting of pores covered with dry mucilage. We used the Young-Laplace equation to calculate the mucilage concentration at which pores are not wettable for varying particle sizes and matric potentials. Then, we simulated the percolation of water across a cubic lattice. Our simulations predicted that above a critical mucilage concentration water could not flow through the porous medium. The critical mucilage concentration decreased with increasing particle size and decreasing matric potential. The model was compared with experiments of capillary rise in soils of different particle size and mucilage concentration. The experiments confirmed the percolation behaviour of the rhizosphere rewetting. Mucilage turned hydrophobic at concentrations above 0.1 mg/cm2. The critical mucilage concentration at matric potential of -2.5 hPa was ca. 1% [g/g] for fine sand and 0.1 % [g/g] for coarse sand. Our conceptual model is a first step towards a better understanding of the water dynamics in the rhizosphere during rewetting and it can be used to predict in what soil textures rhizosphere water repellency becomes a critical issue for root water uptake.

  8. [Ecological effect of hygroscopic and condensate water on biological soil crusts in Shapotou region of China].

    PubMed

    Pan, Yan-Xia; Wang, Xin-Ping; Zhang, Ya-Feng; Hu, Rui

    2013-03-01

    By the method of field experiment combined with laboratory analysis, this paper studied the ecological significance of hygroscopic and condensate water on the biological soil crusts in the vegetation sand-fixing area in Shapotou region of China. In the study area, 90% of hygroscopic and condensate water was within the 3 cm soil depth, which didn' t affect the surface soil water content. The hygroscopic and condensate water generated at night involved in the exchange process of soil surface water and atmosphere water vapor, made up the loss of soil water due to the evaporation during the day, and made the surface soil water not reduced rapidly. The amount of the generated hygroscopic and condensate water had a positive correlation with the chlorophyll content of biological soil crusts, indicating that the hygroscopic and condensate water could improve the growth activity of the biological soil crusts, and thus, benefit the biomass accumulation of the crusts.

  9. Water transfer between rock fragments and fine earth in remoulded soils

    NASA Astrophysics Data System (ADS)

    Tetegan, Marion; Korboulewsky, Nathalie; Bouthier, Alain; Cousin, Isabelle

    2010-05-01

    Stony soils cover about 30% of the surface soils of Western Europe, and 60% in Mediterranean areas. Rock fragments may alter the physical, chemical and agricultural properties of soils. They are also a potential reservoir of water and nutrients for plants, suggesting that the stony phase of soil can participate in water supply to crops and affect the storage capacity of soil water. This implies the existence of water transfer between rock fragments and fine earth. To better understand the interaction between the fine earth and rock fragments, we studied the water transfer between pebbles and fine earth on remoulded soils in presence and absence of plants. Experiments were conducted on remoulded soils in containers (3 L), under controlled conditions. Pebbles and fine earth were collected separately from the Ap horizon of a calcareous lacustrine limestone silty soil located in the central region of France. Pebbles were mixed with fine earth to reach a bulk density of the fine earth of 1.1 g/cm3. Four modalities with different percentage in volume of pebbles were created: 0%p: 0 % pebbles + 100 % fine earth + plant 20%p: 20 % pebbles + 80% fine earth + plant 40%p: 40 % pebbles + 60% fine earth + plant 40%: 40 % pebbles + 60% fine earth Fifteen containers were created for each modality and cuttings of Populus robusta were planted in the three first modalities. All containers were saturated, then irrigated by capillarity and controlled to maintain a moderate water stress continuously. After three months, the containers were saturated again and then allowed to dry. At that time, plants were from 27 to 43 cm height depending on the modality. Soil samples were collected at 5 dates following this second saturation: D0 = soil water content equal to the Available Water Content, Day 2 = D0 + 2 days, Day 4 = D0 + 4 days, Day 7 = D0 + 7 days, Day 11= D0 + 11 days. At each sampling date, three containers for each modality were used to measure the gravimetric water content

  10. Response of rice genotype to straighthead disease as influenced by arsenic level and water management practices in soil.

    PubMed

    Hua, Bin; Yan, Wengui; Yang, John

    2013-01-01

    Arsenic (As) uptake by rice plants and the straighthead disease induced by As-based herbicide are of environmental concerns. Bioavailability or mobility of inorganic As in soil has been reported to be significantly influenced by soil minerals such as iron (hydr) oxide; however, the interactions of organic As such as monosodium methanearsonate (MSMA) with soil minerals are little studied, thus largely unknown. In an effort to minimize the As uptake by rice and determine rice cultivar response to soil MSMA level, a field experiment was conducted on three rice cultivars grown in both MSMA-treated and -untreated soils under continuous or intermittent flood water management practices. Results indicated that the grain yield and the occurrence of straighthead disease were cultivar-dependent and influenced by soil As level and water management practices. Straighthead-resistant cultivars yielded more and had lower grain As than the susceptible ones. Elevated soil As with continuous flood management significantly reduced the grain yield of susceptible cultivars by >89% due to substantially increased straighthead, which were induced by increased As content in grains. Yield reduction by MSMA treatment could be partially mitigated with intermittent flood water practice. The As accumulation was found to be associated with soil iron redox transformation influenced by the water management. This study demonstrates that the selection of less As-susceptible cultivars and intermittent flood water practice could be effective means to lower the As accumulation in grains and minimize the occurrence of the As-induced straighthead symptom and yield reduction.

  11. Subsurface drip irrigation emitter spacing effects on soil water redistribution, corn yield, and water productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emitter spacings of 0.3 to 0.6 m are commonly used for subsurface drip irrigation (SDI) of corn on the deep, silt loam soils of the United States Great Plains. Subsurface drip irrigation emitter spacings of 0.3, 0.6, 0.9 and 1.2 m were examined for the resulting differences in soil water redistribut...

  12. Microbial dynamics and arsenic speciation in rice paddy soil under two water management practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arsenic (As) undergoes several microbial transformations, including oxidation/reduction, methylation/demethylation, and volatilization in soil, which impact As bioavailability. Different water management systems for rice cultivation alter soil-redox conditions and As biogeochemistry. Soil microbial ...

  13. Mobility of organic solvents in water-saturated soil materials

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.

    1985-01-01

    This investigation presents an analysis of the mobility of 37 organic solvents in saturated soil-water systems, focusing on adsorption phenomena at the solid-liquid interface This analysis was made, in part, by applying predictive expressions that estimate the potential magnitude of adsorption by soil materials Of the 37 solvents considered, 19 were classified as either "very highly mobile" or "highly mobile" and, thus, would have little tendency to be retained by soils to a significant extent, 12 were considered to have medium mobility and 6 low mobility None of these solvents were in the immobile class The limited information available indicates that these predictive expressions yield satisfactory first approximations of the magnitude of adsorption of these solvents by soil materials ?? 1985 Springer-Verlag New York Inc.

  14. Bacteria-mineral interactions in soil and their effect on particle surface properties

    NASA Astrophysics Data System (ADS)

    Miltner, Anja; Achtenhagen, Jan; Goebel, Marc-Oliver; Bachmann, Jörg; Kästner, Matthias

    2015-04-01

    Interactions between bacteria or their residues and mineral surfaces play an important role for soil processes and properties. It is well known that bacteria tend to grow attached to surfaces and that they get more hydrophobic when grown under stress conditions. In addition, bacterial and fungal biomass residues have recently been shown to contribute to soil organic matter formation. The attachment of bacteria or their residues to soil minerals can be expected to modify the surface properties of these particles, in particular the wettability. We hypothesize that the extent of the effect depends on the surface properties of the bacteria, which change depending on environmental conditions. As the wettability of soil particles is crucial for the distribution and the availability of water, we investigated the effect of both living cells and bacterial residues (cell envelope fragments and cytosol) on the wettability of model mineral particles in a simplified laboratory system. We grew Pseudomonas putida cells in mineral medium either without (unstressed) or with additional 1.5 M NaCl (osmotically stressed). After 2 h of incubation, the cells were disintegrated by ultrasonic treatment. Different amounts of either intact cells, cell envelope fragments or cytosol (each corresponding to 108, 109, or 1010 cells per gram of mineral) were mixed with quartz sand, quartz silt or kaolinite. The bacteria-mineral associations were air-dried for 2 hours and analyzed for their contact angle. We found that the surfaces of osmotically stressed cells were more hydrophobic than the surfaces of unstressed cells and that the bacteria-mineral associations had higher contact angles than the pure minerals. A rather low surface coverage (~10%) of the mineral surfaces by bacteria was sufficient to increase the contact angle significantly, and the different wettabilities of stressed and unstressed cells were reflected in the contact angles of the bacteria-mineral associations. The increases in

  15. The utility of surface temperature measurements for the remote sensing of surface soil water status

    NASA Technical Reports Server (NTRS)

    Idso, S. B.; Jackson, R. D.; Reginato, R. J.; Schmugge, T. J.

    1975-01-01

    Experiments carried out on an Avondale loam soil indicated that the thermal inertia concept of soil water content detection is reasonably sound. The volumetric water contents of surface soil layers between 2 and 4 cm thick were found to be linear functions of the amplitude of the diurnal surface soil temperature wave for clear day-night periods. They were also found to be linear functions of the daily maximum value of the surface soil-air-temperature differential. Tests on three additional soils ranging from sandy loam to clay indicated that the relations determined for Avondale loam could not be accurately applied to these other soil types. When the moisture characteristic curves of each soil were used to transform water contents into pressure potentials, however, it was found that soil water pressure potential could be determined without prior knowledge of soil type, and thus its value as a potential soil water status survey tool was significantly enhanced.

  16. Sensible heat balance measurements of soil water evaporation beneath a maize canopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water evaporation is an important component of the water budget in a cropped field. Few methods are available for continuous and independent measurement of soil water evaporation. A sensible heat balance (SHB) approach has recently been demonstrated for continuously determining soil water evapo...

  17. Morphology of Rain Water Channeling in Systematically Varied Model Sandy Soils

    NASA Astrophysics Data System (ADS)

    Wei, Yuli; Cejas, Cesare M.; Barrois, Rémi; Dreyfus, Rémi; Durian, Douglas J.

    2014-10-01

    We visualize the formation of fingered flow in dry model sandy soils under different rain conditions using a quasi-2D experimental setup and systematically determine the impact of the soil grain diameter and surface wetting properties on the water channeling phenomenon. The model sandy soils we use are random closely packed glass beads with varied diameters and surface treatments. For hydrophilic sandy soils, our experiments show that rain water infiltrates a shallow top layer of soil and creates a horizontal water wetting front that grows downward homogeneously until instabilities occur to form fingered flows. For hydrophobic sandy soils, in contrast, we observe that rain water ponds on the top of the soil surface until the hydraulic pressure is strong enough to overcome the capillary repellency of soil and create narrow water channels that penetrate the soil packing. Varying the raindrop impinging speed has little influence on water channel formation. However, varying the rain rate causes significant changes in the water infiltration depth, water channel width, and water channel separation. At a fixed rain condition, we combine the effects of the grain diameter and surface hydrophobicity into a single parameter and determine its influence on the water infiltration depth, water channel width, and water channel separation. We also demonstrate the efficiency of several soil water improvement methods that relate to the rain water channeling phenomenon, including prewetting sandy soils at different levels before rainfall, modifying soil surface flatness, and applying superabsorbent hydrogel particles as soil modifiers.

  18. Groundwater surface water interactions and the role of phreatophytes in identifying recharge zones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Groundwater and surface water interactions within riparian corridors impact the distribution of phreatophytes that tap into groundwater stores. The changes in canopy area of phreatophytes over time is related to changes in depth to groundwater, distance from a stream or river, and hydrologic soil gr...

  19. Soil erosion-vegetation interactions in Mediterranean-dry reclaimed mining slopes

    NASA Astrophysics Data System (ADS)

    Moreno de las Heras, Mariano; Merino-Martín, Luis; Espigares, Tíscar; Nicolau, José M.

    2014-05-01

    Mining reclamation in Mediterranean-dry environments represents a complex task. Reclaimed mining slopes are particularly vulnerable to the effects of accelerated soil erosion processes, especially when these processes lead to the formation of rill networks. On the other hand, encouraging early vegetation establishment is perceived as indispensable to reduce the risk of degradation in these man-made ecosystems. This study shows a synthesis of soil erosion-vegetation research conducted in reclaimed mining slopes at El Moral field site (Teruel coalfield, central-east Spain). Our results highlight the role of rill erosion processes in the development of reclaimed ecosystems. Runoff routing is conditioned by the development of rill networks, maximizing the loss of water resources at the slope scale by surface runoff and altering the spatial distribution of soil moisture. As a result, the availability of water resources for plant growth is drastically reduced, affecting vegetation development. Conversely, vegetation exerts a strong effect on soil erosion: erosion rates rapidly decrease with vegetation cover and no significant rill erosion is usually observed after a particular cover threshold is reached. These interactive two-way vegetation-soil erosion relationships are further studied using a novel modeling approach that focuses on stability analysis of water-limited reclaimed slopes. Our framework reproduces two main groups of trends along the temporal evolution of reclaimed slopes: successful trends, characterized by widespread vegetation development and the effective control of rill erosion processes; and gullying trends, characterized by the progressive loss of vegetation and a sharp logistic increase in erosion rates. This stability-analysis also facilitates the determination of threshold values for both vegetation cover and rill erosion that drive the long-term reclamation results, assisting the identification of critical situations that require specific human

  20. A method to extract soil water for stable isotope analysis

    USGS Publications Warehouse

    Revesz, K.; Woods, P.H.

    1990-01-01

    A method has been developed to extract soil water for determination of deuterium (D) and 18O content. The principle of this method is based on the observation that water and toluene form an azeotropic mixture at 84.1??C, but are completely immiscible at ambient temperature. In a specially designed distillation apparatus, the soil water is distilled at 84.1??C with toluene and is separated quantitatively in the collecting funnel at ambient temperature. Traces of toluene are removed and the sample can be analyzed by mass spectrometry. Kerosene may be substituted for toluene. The accuracy of this technique is ?? 2 and ?? 0.2???, respectively, for ??D and ??18O. Reduced accuracy is obtained at low water contents. ?? 1990.

  1. Effect of Clay Content and Soil-water Potential On Mobilization and Leaching of Colloids In Unsaturated Macroporous Soil

    NASA Astrophysics Data System (ADS)

    Kjaergaard, C.; de Jonge, L. W.; Moldrup, P.

    The transport of strongly sorbed environmental contaminants may be enhanced due to sorption to mobile soil colloids. The most common source of mobile colloids in soil is the in-situ release of water-dispersible colloids (WDC), however experimental investigations of colloid mobilization in unsaturated macroporous soil are scarce. An understanding of the arrangement of colloids in aggregates, and the influence of clay on the development of the soil fabric and pore-size distributions is essential for the in- terpretation of colloid mobilization in soils. This emphasizes the important role of clay content, when evaluating the susceptibility of soils to release colloids and associated contaminants. This study was conducted to determine the effect of clay content and initial soil- water potential on colloid mobilization and leaching. Intact soil cores were sampled from an arable field at six locations along a naturally occurring texture gradient. Soil dispersibility was investigated using capillary saturation and drainage of field-moist packed aggregates. The amount of WDC in the soil was measured for each com- bination of clay content and initial soil-water potential (-2.5, -98 and -15530 hPa). Mobilization and leaching of colloids was investigated from unsaturated intact soil cores. The soils were irrigated at low intensity (1 mm/h), and effluent sampling was conducted at 5 cm tension. The results showed that colloid dispersion was significantly affected by both clay con- tent and initial soil-water potential. With a soil-water potential of -15530 hPa the col- loid release was generally low and no variation occurred between the soils. With in- creasing soil-water potential there was an increase in the amount of WDC for all soils. The increase in WDC was negatively correlated with clay content. The leaching of colloids from intact soil cores also decreased with increasing clay content at an ini- tial soil-water potential of -98 and -2.5 hPa, and no difference between

  2. Influence of soil moisture-carbon cycle interactions on the terrestrial carbon cycle over Europe

    NASA Astrophysics Data System (ADS)

    Mystakidis, Stefanos; Davin, Edouard L.; Gruber, Nicolas; Seneviratne, Sonia I.

    2016-04-01

    Water availability is a crucial limiting factor for terrestrial ecosystems, but relatively few studies have quantitatively assessed the influence of soil moisture variability on the terrestrial carbon cycle. Here, we investigate the role of soil moisture variability and state in the contemporary terrestrial carbon cycle over Europe. For this we use a Regional Earth System Model (RESM) based on the COSMO-CLM Regional Climate Model, coupled to the Community Land Model version 4.0 (CLM4.0) and its carbon-nitrogen module. The simulation setup consists of a control simulation over the period 1979-2010 in which soil moisture is interactive and three sensitivity simulations in which soil moisture is prescribed to a mean, a very dry or a very wet seasonal cycle without inter-annual variability. The cumulative net biome productivity varies markedly between the different experiments ranging from a strong sink of up to 6PgC in the wet experiment to a source of up to 1.2PgC in the dry experiment. Changes in the land carbon uptake are driven by a combination of two factors: the direct impact of soil moisture on plant's carbon uptake (essentially in southern Europe) and an indirect effect through changes in temperature affecting ecosystem respiration (mainly in central and northern Europe). We find that removing temporal variations in soil moisture dampens interannual variations in terrestrial carbon fluxes (Gross Primary Productivity, respiration, Net Biome Productivity) by more than 50% over most of Europe. Moreover, the analysis reveals that on annual scale about two-thirds of central Europe and about 70% of southern Europe display statistically significant effect of drying and/or wetting on the terrestrial carbon budget and its components. Our findings confirm the crucial role of soil moisture in determining the magnitude and the inter-annual variability in land CO2 uptake which is a key contributor to the year-to-year variations in atmospheric CO2 concentration.

  3. Soil properties evolution after irrigation with reclaimed water

    NASA Astrophysics Data System (ADS)

    Leal, M.; González-Naranjo, V.; de Miguel, A.; Martínez-Hernández, V.; Lillo, J.

    2012-04-01

    Many arid and semi-arid countries are forced to look for new and alternative water sources. The availability of suitable quality water for agriculture in these regions often is threatened. In this context of water scarcity, the reuse of treated wastewater for crop irrigation could represent a feasible solution. Through rigorous planning and management, irrigation with reclaimed water presents some advantages such as saving freshwater, reducing wastewater discharges into freshwater bodies and decreasing the amount of added fertilizers due to the extra supply of nutrients by reclaimed water. The current study, which involves wastewater reuse in agriculture, has been carried out in the Experimental Plant of Carrión de los Céspedes (Sevile, Spain). Here, two survey parcels equally designed have been cultivated with Jatropha curcas L, a bioenergetic plant and a non-interfering food security crop. The only difference between the two parcels lies on the irrigation water quality: one is irrigated with groundwater and another one with reclaimed water. The main aim of this study focuses on analysing the outstanding differences in soil properties derived from irrigation with two water qualities, due to their implications for plant growth. To control and monitor the soil variables, soil samples were collected before and after irrigation in the two parcels. pH, electrical conductivity, cation exchange capacity, exchangeable cations (Ca2+, Mg2+, Na+ and K+), kjeldahl nitrogen, organic matter content and nutrients (boron, phosphorus, nitrogen, potassium) were measured. Data were statistically analyzed using the R package. To evaluate the variance ANOVA test was used and to obtain the relations between water quality and soil parameters, Pearson correlation coefficient was computed. According to other authors, a decrease in the organic matter content and an increase of parameters such as pH, electrical conductivity and some exchangeable cations were expected. To date and after

  4. Hysteresis and uncertainty in soil water-retention curve parameters

    USGS Publications Warehouse

    Likos, William J.; Lu, Ning; Godt, Jonathan W.

    2014-01-01

    Accurate estimates of soil hydraulic parameters representing wetting and drying paths are required for predicting hydraulic and mechanical responses in a large number of applications. A comprehensive suite of laboratory experiments was conducted to measure hysteretic soil-water characteristic curves (SWCCs) representing a wide range of soil types. Results were used to quantitatively assess differences and uncertainty in three simplifications frequently adopted to estimate wetting-path SWCC parameters from more easily measured drying curves. They are the following: (1) αw=2αd, (2) nw=nd, and (3) θws=θds, where α, n, and θs are fitting parameters entering van Genuchten’s commonly adopted SWCC model, and the superscripts w and d indicate wetting and drying paths, respectively. The average ratio αw/αd for the data set was 2.24±1.25. Nominally cohesive soils had a lower αw/αd ratio (1.73±0.94) than nominally cohesionless soils (3.14±1.27). The average nw/nd ratio was 1.01±0.11 with no significant dependency on soil type, thus confirming the nw=nd simplification for a wider range of soil types than previously available. Water content at zero suction during wetting (θws) was consistently less than during drying (θds) owing to air entrapment. The θws/θds ratio averaged 0.85±0.10 and was comparable for nominally cohesive (0.87±0.11) and cohesionless (0.81±0.08) soils. Regression statistics are provided to quantitatively account for uncertainty in estimating hysteretic retention curves. Practical consequences are demonstrated for two case studies.

  5. Application of minidisk infiltrometer to estimate soil water repellency

    NASA Astrophysics Data System (ADS)

    Alagna, Vincenzo; Iovino, Massimo; Bagarello, Vincenzo; Mataix-Solera, Jorge; Lichner, Ľubomír

    2016-04-01

    Soil water repellency (SWR) reduces affinity of soils to water resulting in detrimental implication for plants growth as well as for hydrological processes. During the last decades, it has become clear that SWR is much more widespread than formerly thought, having been reported for a wide variety of soils, land uses and climatic conditions. The repellency index (RI), based on soil-water to soil-ethanol sorptivity ratio, was proposed to characterize subcritical SWR that is the situation where a low degree of repellency impedes infiltration but does not prevent it. The minidisk infiltrometer allows adequate field assessment of RI inherently scaled to account for soil physical properties other than hydrophobicity (e.g., the volume, connectivity and the geometry of pores) that directly influence the hydrological processes. There are however some issues that still need consideration. For example, use of a fixed time for both water and ethanol sorptivity estimation may lead to inaccurate RI values given that water infiltration could be negligible whereas ethanol sorptivity could be overestimated due to influence of gravity and lateral diffusion that rapidly come into play when the infiltration process is very fast. Moreover, water and ethanol sorptivity values need to be determined at different infiltration sites thus implying that a large number of replicated runs should be carried out to obtain a reliable estimate of RI for a given area. Minidisk infiltrometer tests, conducted under different initial soil moisture and management conditions in the experimental sites of Ciavolo, Trapani (Italy) and Javea, Alicante (East Spain), were used to investigate the best applicative procedure to estimate RI. In particular, different techniques to estimate the water, Sw, and ethanol, Se, sorptivities were compared including i) a fixed 1-min time interval, ii) the slope of early-time 1D infiltration equation and iii) the two-term transient 3D infiltration equation that explicitly

  6. Plant Response to Differential Soil Water Content and Salinity

    NASA Astrophysics Data System (ADS)

    Moradi, A. B.; Dara, A.; Kamai, T.; Ngo, A.; Walker, R.; Hopmans, J. W.

    2011-12-01

    Root-zone soil water content is extremely dynamic, governed by complex and coupled processes such as root uptake, irrigation, evaporation, and leaching. Root uptake of water and nutrients is influenced by these conditions and the processes involved. Plant roots are living and functioning in a dynamic environment that is subjected to extreme changes over relatively short time and small distances. In order to better manage our agricultural resources and cope with increasing constraints of water limitation, environmental concerns and climate change, it is vital to understand plants responses to these changes in their environment. We grew chick pea (Cicer arietinum) plants, in boxes of 30 x 25 x 1 cm dimensions filled with fine sand. Layers of coarse sand (1.5 cm thick) were embedded in the fine-sand media to divide the root growth environment into sections that were hydraulically disconnected from each other. This way, each section could be independently treated with differential levels of water and salinity. The root growth and distribution in the soil was monitored on daily bases using neutron radiography. Daily water uptake was measured by weighing the containers. Changes of soil water content in each section of the containers were calculated from the neutron radiographs. Plants that part of their root system was stressed with drought or salinity showed no change in their daily water uptake rate. The roots in the stressed sections stayed turgid during the stress period and looked healthy in the neutron images. However the uptake rate was severely affected when the soil in the non-stressed section started to dry. The plants were then fully irrigated with water and the water uptake rate recovered to its initial rate shortly after irrigation. The neutron radiographs clearly illustrated the shrinkage and recovery of the roots under stress and the subsequent relief. This cycle was repeated a few times and the same trend could be reproduced. Our results show that plants

  7. Atrazine and Diuron partitioning within a soil-water-surfactant system

    NASA Astrophysics Data System (ADS)

    Wang, P.; Keller, A.

    2006-12-01

    The interaction between pesticide and soil and water is even more complex in the presence of surfactants. In this study, batch equilibrium was employed to study the sorption of surfactants and the partitioning behaviors of Atrazine and Diuron within a soil-water-surfactant system. Five soils and four surfactants (nonionic Triton- 100, cationic Benzalkonium Chloride (BC), anionic Linear Alkylbenzenesulfonate (LAS), and anionic Sodium Dodecyl Sulfate (SDS)) were used. All surfactant sorption isotherms exhibited an initial linear increase at low surfactant concentrations but reached an asymptotic value as the surfactant concentrations increased. Among the surfactants, BC had the highest sorption onto all soils, followed by Triton-100 and then by LAS and SDS, implying that the nature of the charge significantly influences surfactant sorption. Sorption of either Triton-100 or BC was highly correlated with soil Cation Exchange Capacity (CEC) while that of LAS and SDS was complicated by the presence of Ca2+ and Mg2+ in the aqueous phase and the CEC sites. Both LAS and SDS formed complexes with Ca2+ and Mg2+, resulting in a significant decrease in the detergency of the surfactants. At high surfactant concentrations and with micelles present in the aqueous phase, the micelles formed a more competitive partitioning site for the pesticides, resulting in less pesticide sorbed to the soil. At low Triton-100 and BC concentration, the sorption of the surfactants first resulted in less Atrazine sorption but more Diuron sorption, implying competition between the surfactants and Atrazine, which serves as an indirect evidence that there is a different sorption mechanism for Atrazine. Atrazine is a weak base and it protonates and becomes positively charged near particle surfaces where the pH is much lower than in the bulk solution. The protonated Atrazine may then be held on the CEC sites via electrostatic attraction. Triton-100, LAS and SDS sorbed on the soil showed similar

  8. External exposure to radionuclides in air, water, and soil

    SciTech Connect

    Eckerman, K.F.; Ryman, J.C.

    1996-05-01

    Federal Guidance Report No. 12 tabulates dose coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, water, and soil. The dose coefficients are intended for use by Federal Agencies in calculating the dose equivalent to organs and tissues of the body.

  9. 30 year soil water trends along an elevation gradient

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many of the issues associated with ongoing global climate change hinge on the impacts of the documented physical changes (e.g., rising temperature) on the ecological systems that sustain life. A primary interface between these two is the soil, where water and nutrients are stored for plant consumpti...

  10. Effect of soil pollution on water for mixing of concrete

    NASA Astrophysics Data System (ADS)

    Muñoz, M. Cecilia Soto; Tapia Alvarez, Carolina; Decinti Weiss, Alejandra; Zamorano Vargas, Macarena; Corail Sanchez, Camila; Hurtado Nuñez, Camilo; Guzman Hermosilla, Matías; Pardo Fabregat, Francisco; Vidal, Manuel Miguel Jordan; Borras, Jaume Bech; Roca, Nuria

    2016-04-01

    ISO 12439, in addition to chemical and physical requirements, establishes maximum levels for harmful substances that may be present in the mixing water of concrete, when they come from natural sources from contaminated soils. These harmful substances considered in the ISO are sugars, phosphates (P2O5), nitrate (NO3-), lead (P2+) and zinc (Zn2+). As an alternative to the maximum values, ISO verifies the effect of these substances in water from contaminated soils. This measurement is made on the effect on the mechanical strength of the concrete (compression at 7 and 28 days) and the setting times (start and end setting). This paper presents the results obtained on samples of concrete made with smaller, similar and more content to the maximum levels set by ISO 12439 are presented. The results establish that in the case of nitrate, a substance present in many contaminated soils margins resistance variation or setting times allowed by ISO 12439 are not met. Finally, it is concluded that in case of presence of these pollutants should be performed strength tests and setting times before authorizing the use of water. Keywords: Harmful substances, contaminated soils, water pollution.

  11. Using Gypsum to Affect Soil Erosion Processes and Water Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A driving force in soil erosion is the low electrolyte content of rain water. Various electrolyte sources have proven useful in serving as electrolyte sources such as phosphogypsum, lime and various salts, however, each has other potential problems. We performed a number of studies on low cost gypsu...

  12. Effective Calibration of Low-Cost Soil Water Content Sensors

    PubMed Central

    Bogena, Heye Reemt; Huisman, Johan Alexander; Schilling, Bernd; Weuthen, Ansgar; Vereecken, Harry

    2017-01-01

    Soil water content is a key variable for understanding and modelling ecohydrological processes. Low-cost electromagnetic sensors are increasingly being used to characterize the spatio-temporal dynamics of soil water content, despite the reduced accuracy of such sensors as compared to reference electromagnetic soil water content sensing methods such as time domain reflectometry. Here, we present an effective calibration method to improve the measurement accuracy of low-cost soil water content sensors taking the recently developed SMT100 sensor (Truebner GmbH, Neustadt, Germany) as an example. We calibrated the sensor output of more than 700 SMT100 sensors to permittivity using a standard procedure based on five reference media with a known apparent dielectric permittivity (1 < Ka < 34.8). Our results showed that a sensor-specific calibration improved the accuracy of the calibration compared to single “universal” calibration. The associated additional effort in calibrating each sensor individually is relaxed by a dedicated calibration setup that enables the calibration of large numbers of sensors in limited time while minimizing errors in the calibration process. PMID:28117731

  13. Quantification of soil water evaporation using TDR-microlysimetry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water evaporation is conventionally measured using microlysimeters by evaluating the daily change in mass. Daily removal is laborious and replacement immediately after irrigation events is impractical because of field wetness which leads to delays and an underestimation of evaporation. Irrigati...

  14. Fractional Wetting and Contact Angle Dynamics in Water Repellent Soils

    NASA Astrophysics Data System (ADS)

    Beatty, S. M.; Smith, J. E.

    2009-12-01

    Soil water repellency is a vadose zone phenomenon most often associated with reduced or impeded infiltration for some time. Even if only short-lived, problems caused by soil water repellency are numerous and significant. In recent years, a substantial interdisciplinary research effort has advanced our knowledge of soil water behavior in these highly complex and non-linear hydrologic systems. However, fundamental understanding of the interdependent relationship between static conditions and dynamic processes is still largely undeveloped. In this study we used Axisymmetric Drop Shape Analysis (ADSA) and instrumented infiltration experiments to systematically measure and quantify static controls and dynamic processes in hydrophobic media. Using natural materials collected from a wildfire site approximately 1.5 years post-fire, we show that infiltration processes within these materials are largely governed by the spatial and temporal variation of wettable and non-wettable fractions. The approach taken 1) facilitated the development of our understanding of the interdependent nature of static and dynamic variables on soil water behavior in these materials and 2) indicates that the dynamic nature of these hydrophobic materials is well expressed empirically over centimeter spatial scales and temporal scales on the order of 10’s of minutes to hours.

  15. Assessment of trace heavy metals dynamics during the interaction of aqueous solutions with the artificial OECD soil: Evaluation of the effect of soil organic matter content and colloidal mobilization.

    PubMed

    Pontoni, Ludovico; van Hullebusch, Eric D; Fabbricino, Massimiliano; Esposito, Giovanni; Pirozzi, Francesco

    2016-11-01

    A micro-contamination phenomenon was reproduced and studied at lab-scale, mimicking the irrigation of a standard artificial soil with a water solution containing three Heavy Metals (HMs) at trace concentration level. To assess the dynamics of micro-pollutants accumulation and migration trough the soil, the organic matter in the soil was varied, together with sodicity of the irrigation water. Accumulation of the investigated contaminants was observed mainly in the top layer (≤1 cm) of the irrigated soil. This was attributed to the high interaction capacity of the soil compared to the low HM concentrations in the water phase. HMs transport pattern was described assuming a multi-component mechanism including: i) the interaction of HMs with the colloidal phase of the soil; ii) the slow and constant release of small molecular weight ligands detaching from the soil immobile matrix; iii) the transportation of HMs through the soil by these low molecular weight chaperon molecules. The mobility was directly related to the soil organic matter (SOM), since higher amount of SOM correspond to a higher number of chaperon molecules. In the first centimetre of the soil the metals were mostly bound to the acid labile fraction. Very low mobilization was observed with increasing sodicity in the leaching water, since such conditions were unfavourable to the colloidal mobilization of SOM. This indicated that water/soil transfer of pollutant is not only related to the contaminant concentration in the irrigation water but also to the characteristics of the aqueous solution and to the physical-chemical properties of the soil.

  16. Understanding the Hydrology of Soil-Crop Interactions via a Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Dunne, K. M.

    2009-12-01

    For centuries humans have relied upon our observations and perceptions of water content to make agricultural decisions in any given type of agriculture or geographic region. As agriculture has progressed, the area of land managed by each individual has increased exponentially, greatly decreasing a farmer’s ability to adequately address the nuances of any given portion of their property. This study focuses on the research possibilities provided with a wireless sensor network which gives detailed, hour by hour, data on water content, electrical conductivity (EC) and temperature at several depths. The research site is a very well characterized 37 hectare (ha) research farm containing several crop varieties under regular maintenance by Washington State University. A series of sites containing installments of five sensors at regular depths, between 30 and 150 cm, were deployed according to their unique locations. Current technology allows for research to be done which has the potential to revolutionize the way agriculture is managed. By providing a baseline of data, we can better understand water distribution within any given topography, water usage dynamics, water availability and a frame of reference to better understand how to optimally utilize soil based on a variety of weather patterns and interactions of soil type.

  17. Organic carbon, water repellency and soil stability to slaking at aggregate and intra-aggregate scales

    NASA Astrophysics Data System (ADS)

    Jordán López, Antonio; García-Moreno, Jorge; Gordillo-Rivero, Ángel J.; Zavala, Lorena M.; Cerdà, Artemi; Alanís, Nancy; Jiménez-Compán, Elizabeth

    2015-04-01

    Water repellency (WR) is a property of some soils that inhibits or delays water infiltration between a few seconds and days or weeks. Inhibited or delayed infiltration contributes to ponding and increases runoff flow generation, often increasing soil erosion risk. In water-repellent soils, water infiltrates preferentially through cracks or macropores, causing irregular soil wetting patterns, the development of preferential flow paths and accelerated leaching of nutrients. Although low inputs of hydrophobic organic substances and high mineralization rates lead to low degrees of WR in cropped soils, it has been reported that conservative agricultural practices may induce soil WR. Although there are many studies at catchment, slope or plot scales very few studies have been carried out at particle or aggregate scale. Intra-aggregate heterogeneity of physical, biological and chemical properties conditions the transport of substances, microbial activity and biochemical processes, including changes in the amount, distribution and chemical properties of organic matter. Some authors have reported positive relationships between soil WR and aggregate stability, since it may delay the entry of water into aggregates, increase structural stability and contribute to reduce soil erosion risk. Organic C (OC) content, aggregate stability and WR are therefore strongly related parameters. In the case of agricultural soils, where both the type of management as crops can influence all these parameters, it is important to evaluate the interactions among them and their consequences. Studies focused on the intra-aggregate distribution of OC and WR are necessary to shed light on the soil processes at a detailed scale. It is extremely important to understand how the spatial distribution of OC in soil aggregates can protect against rapid water entry and help stabilize larger structural units or lead to preferential flow. The objectives of this research are to study [i] the OC content and the

  18. A new soil water and bulk eletrical conductivity sensor technology for irrigation and salinity management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many soil water sensors, especially those based on electromagnetic (EM) properties of soils, have been shown to be unsuitable in salt-affected or clayey soils. Most available soil water content sensors are of this EM type, particularly the so-called capacitance sensors. They often over estimate and ...

  19. Sensible Heat Measurements Indicating Depth and Magnitude of Subsurface Soil Water Evaporation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water evaporation is typically determined by techniques that assume the latent heat flux originates from the soil surface. Here, we describe a new technique for determining in situ soil water evaporation dynamics from fine-scale measurements of soil temperature and thermal properties with heat ...

  20. A Manual on Conservation of Soil and Water. Appropriate Technologies for Development. R-38.

    ERIC Educational Resources Information Center

    Peace Corps, Washington, DC. Information Collection and Exchange Div.

    In order to keep the land productive, a good conservation program is imperative. The primary purpose of soil and water conservation is to prevent soil erosion and heal its scars. This handbook explains the causes, processes, and consequences of soil erosion and depletion, and describes major soil- and water-conservation measures. This book was…

  1. The Role of Vegetation Dynamics on the Soil Water Balance in Water-Limited Ecosystems

    NASA Astrophysics Data System (ADS)

    Montaldo, N.; Rondena, R.; Albertson, J. D.; Mancini, M.

    2003-12-01

    The structure and function of the vegetation regulates the exchange of mass, energy and momentum across the biosphere-atmosphere interface. Vegetation dynamics are usually neglected, other than seasonal phenology, in land surface models (LSMs). However, changes in vegetation densities, influencing the partitioning of incoming solar energy into sensible and latent heat fluxes, can result in long-term changes in both local and global climates (e.g., precipitation and temperature), which in turn will feedback to affect the vegetation growth. In semi-arid regions, this may result in persistent drought and desertification, with substantial impacts on the human populations of these regions through reduction in agricultural productivity and reduction in quantity and quality of water supply. With an objective of finding a simple vegetation model able to accurately simulate the leaf area index (LAI) dynamics, vegetation models of different level of complexity (e.g., including or not the modeling of the root biomass or the modeling of the dead biomass) are developed and compared. The vegetation dynamics models are coupled to a LSM, with the vegetation models providing the green biomass and the LAI evolution through time, and the LSM using this information in the computation of the land surface fluxes and updating the soil water content in the root-zone. We explore the models on a case study of a water limited grass field in California. Results show that a simple vegetation model that simulates the living aboveground green biomass (i.e., with low parameterization and computational efforts) is able to accurately simulate the LAI. Results also highlight the importance of including the plant growth model in the LSM when studying the climate-soil-vegetation interactions and the impact of watershed management practices on the scarce water resources over moderate to long time scales. The inclusion of the vegetation model in the LSM is demonstrated to be essential for assessing the

  2. Effects of corn stalk orientation and water content on passive microwave sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Oneill, P. E.; Blanchard, B. J.; Wang, J. R.; Gould, W. I.; Jackson, T. J.

    1984-01-01

    A field experiment was conducted utilizing artificial arrangements of plant components during the summer of 1982 to examine the effects of corn canopy structure and plant water content on microwave emission. Truck-mounted microwave radiometers at C (5 GHz) and L (1.4 GHz) band sensed vertically and horizontally polarized radiation concurrent with ground observations of soil moisture and vegetation parameters. Results indicate that the orientation of cut stalks and the distribution of their dielectric properties through the canopy layer can influence the microwave emission measured from a vegetation/soil scene. The magnitude of this effect varies with polarization and frequency and with the amount of water in the plant, disappearing at low levels of vegetation water content. Although many of the canopy structures and orientations studied in this experiment are somewhat artificial, they serve to improve understanding of microwave energy interactions within a vegetation canopy and to aid in the development of appropriate physically based vegetation models.

  3. Surface water and groundwater interaction on a hill island

    NASA Astrophysics Data System (ADS)

    Rumph Frederiksen, Rasmus; Rømer Rasmussen, Keld; Christensen, Steen

    2014-05-01

    A number of recent studies have indicated that the hydrological system in stream valleys is often complex and exchange of water takes place through semi-permeable contacts and flow paths may be quite diverse. Yet, surface water and groundwater interaction in one of the major Danish landscapes - the hill islands - is relatively unknown. This study aims at providing new information about the rainfall-runoff processes in hill island landscapes where surface water and groundwater interaction is expected to have a dominant role and hill-slope processes not. Through stream flow measurements, field observations, and existing geological and geophysical data, we have investigated the surface water and groundwater interaction in the Abild Stream catchment (<70 km2) on Skovbjerg hill island in the western part of Denmark. Existing discharge data are limited but the hydrographs downstream Abild Stream appear to be strongly influenced by event flow indicating that shallow control by low permeable sediments is important. Nevertheless irrigation is intensive which indicates that the soil and shallow sediments are permeable. Since July 2014 we have measured stream flow during quarterly campaigns at 11 stations along the stream representing different spatial scales and using Acoustic Doppler techniques (ADCP) as well as current-meters. Furthermore we have mapped topography, soil types, geomorphology, ditches, drains and land use through field observations and digital maps. The shallow subsurface geology has been mapped using abundant well described geological data (boreholes) and geophysical data (airborne TEM). Our stream flow measurements show that the tributaries from west and north dry out during the summer period. Significant drained areas in the NW- and SW-part of the catchment have been observed from old topographical maps as well as in the field. The geological data indicate shallow low permeable sediments primarily on the western side of Abild stream, and the geophysical

  4. Aerobic degradation and photolysis of tylosin in water and soil.

    PubMed

    Hu, Dingfei; Coats, Joel R

    2007-05-01

    Veterinary antibiotics enter the environment through the application of organic fertilizers to cropland. In this study, the aerobic degradation of tylosin, a widely used antibiotic in the production of livestock and poultry, was conducted in water and in soil in an effort to further investigate its environmental fate. Tylosin is a macrolide antibiotic, which consists of four factors (A, B, C, D). Water and soil were sampled at selected times and analyzed for tylosin and its degradation products by high-performance liquid chromatography (HPLC), with product identification confirmed by HPLC-mass spectrometry. Tylosin A is degraded with a half-life of 200 d in the light in water, and the total loss of tylosin A in the dark is 6% of the initial spiked amount during the experimental period. Tylosin C and D are relatively stable except in ultrapure water in the light. Slight increases of tylosin B after two months and formation of two photoreaction isomers of tylosin A were observed under exposure to light. However, tylosin probably would degrade faster if the experimental containers did not prevent ultraviolet transmission. In soil, tylosin A has a dissipation half-life of 7 d, and tylosin D is slightly more stable, with a dissipation half-life of 8 d in unsterilized and sterilized soil. Sorption and abiotic degradation are the major factors influencing the loss of tylosin in the environment, and no biotic degradation was observed at the test concentration either in pond water or in an agronomic soil, as determined by comparing dissipation profiles in sterilized and unsterilized conditions.

  5. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils

    NASA Technical Reports Server (NTRS)

    Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.

    2007-01-01

    Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.

  6. Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits.

    PubMed

    Hongbo, Shao; Zongsuo, Liang; Mingan, Shao

    2006-02-01

    Drought is a worldwide problem, seriously influencing plant (crop) productivity. Wheat is a stable food for 35% of the world population, moreover about 60% of land area on the globe belongs to arid and semi-arid zone. Wheat drought resistance is a multi-gene-controlling quantitative character and wheat final production in field is realized mainly by physiological regulation under the condition of multi-environmental factor interaction. Exploring drought resistance physiological mechanisms for different wheat genotypes is of importance to finding new drought resistance gene resources and conventional breeding and the basis for wheat drought resistance biotechnological breeding and platform. Osmotic adjustment regulation is the main component for physiological machinery of wheat drought resistance. By pot-cultivating experiments, investigation of osmotic adjustment comparison for 10 wheat genotypes at soil water deficits (75% FC, 55% FC, 45% FC, respectively), was conducted. The main results were as followed: (1) K(+) content in 10 wheat genotypes at three levels of soil water stress and at the same soil water deficit was very different. Five of these 10 wheat genotypes had higher K K(+) content under the condition of 75% FC. (2) Five of these 10 wheat genotypes possessed greater soluble sugar content at 55% FC soil water level. (3) Proline (Pro) content in five wheat genotypes was higher at 75% FC. (4) Five of these 10 wheat genotypes had lower malondialdehyde (MDA) content at 45% FC at seedling stage. Osmotic adjustment of wheat different genotypes was discussed in terms of different content of osmotic solutes.

  7. Soil quality assessment of urban green space under long-term reclaimed water irrigation.

    PubMed

    Lyu, Sidan; Chen, Weiping

    2016-03-01

    Reclaimed water is widely used for landscape irrigation with the benefits of saving fresh water and ameliorating soil quality. Field samples were collected from seven parks in Beijing irrigated reclaimed water with different irrigation history in 2011 and 2014 to evaluate the long-term impacts of reclaimed water irrigation on soil quality. Soil quality index method was used to assess the comprehensive effects of reclaimed water irrigation on soil. Results showed that the effects of reclaimed water irrigation on the soil nutrient conditions were limited. Compared with tap water irrigation, soil salinity was significantly higher in 2011, while the difference was insignificant in 2014; soil heavy metals were slightly higher by 0.5-10.6 % in 2011 and 2014, while the differences were insignificant. Under reclaimed water irrigation, soil biological activities were significantly improved in both years. Total nitrogen in reclaimed water had a largest effect on soil quality irrigated reclaimed water. Soil quality irrigated with reclaimed water increased by 2.6 and 6.8 % respectively in 2011 and 2014, while the increases were insignificant. Soil quality of almost half samples was more than or closed to soil quality of natural forest in Beijing. Soil quality was ameliorated at some extent with long-term reclaimed water irrigation.

  8. Experimental nitrogen, phosphorus, and potassium deposition decreases summer soil temperatures, water contents, and soil CO2 concentrations in a northern bog

    NASA Astrophysics Data System (ADS)

    Wendel, S.; Moore, T.; Bubier, J.; Blodau, C.

    2010-08-01

    Ombrotrophic peatlands depend on airborne nitrogen (N), whose deposition has increased in the past and lead to disappearance of mosses and increased shrub biomass in fertilization experiments. The response of soil water content, temperature, and carbon gas concentrations to increased nutrient loading is poorly known and we thus determined these data at the long-term N fertilization site Mer Bleue bog, Ontario, during a two month period in summer. Soil temperatures decreased with NPK addition in shallow peat soil primarily during the daytime (t-test, p<0.05) owing to increased shading, whereas they increased in deeper peat soil (t-test, p<0.05), probably by enhanced thermal conductivity. RMANOVA suggested interactions between N and PK addition in particular soil layers and strong interactions between soil temperatures and volumetric water contents (p<0.05). Averaged over all fertilized treatments, the mean soil temperatures at 5 cm depth decreased by 1.3 °C and by 4.7 °C (standard deviation 0.9 °C) at noon. Water content was most strongly affected by within-plot spatial heterogeneity but also responded to both N and PK load according to RMANOVA (p<0.05). Overall, water content and CO2 concentrations in the near-surface peat (t-test, p<0.05) were lower with increasing N load, suggesting more rapid soil gas exchange. The results thus suggest that changes in bog ecosystem structure with N deposition have significant ramifications for physical parameters that in turn control biogeochemical processes.

  9. Interactions between plant nutrients, water and carbon dioxide as factors limiting crop yields

    PubMed Central

    Gregory, P. J.; Simmonds, L. P.; Warren, G. P.

    1997-01-01

    Biomass production of annual crops is often directly proportional to the amounts of radiation intercepted, water transpired and nutrients taken up. In many places the amount of rainfall during the period of rapid crop growth is less than the potential rate of evaporation, so that depletion of stored soil water is commonplace. The rate of mineralization of nitrogen (N) from organic matter and the processes of nutrient loss are closely related to the availability of soil water. Results from Kenya indicate the rapid changes in nitrate availability following rain.
    Nutrient supply has a large effect on the quantity of radiation intercepted and hence, biomass production. There is considerable scope for encouraging canopy expansion to conserve water by reducing evaporation from the soil surface in environments where it is frequently rewetted, and where the unsaturated hydraulic conductivity of the soil is sufficient to supply water at the energy limited rate (e.g. northern Syria). In regions with high evaporative demand and coarse-textured soils (e.g. Niger), transpiration may be increased by management techniques that reduce drainage.
    Increases in atmospheric [CO2] are likely to have only a small impact on crop yields when allowance is made for the interacting effects of temperature, and water and nutrient supply.

  10. Infiltration into cropped soils: effect of rain and sodium adsorption ratio-impacted irrigation water.

    PubMed

    Suarez, Donald L; Wood, James D; Lesch, Scott M

    2008-01-01

    The sodium adsorption ratio (SAR) and salinity criteria for water suitability for irrigation have been developed for conditions where irrigation water is the only water source. It is not clear that these criteria are applicable to environments where there is a combination of rain and irrigation during the growing season. The interaction of rainfall with irrigation water is expected to result in increased sodicity hazard because of the low electrical conductivity of rain. In this study we examined the effects of irrigation waters of SAR 2, 4, 6, 8, and 10 mmol(1/2) L(-1/2) and electrical conductivities of 1 and 2 dS m(-1) on the infiltration rate of two soils with alternating cycles of rain (simulated with a rainfall sprinkler) and irrigation water, separated by drying cycles. The infiltration rate of surface samples from two soils, Kobase silty clay (fine, smectitic, frigid, Torrertic Haplustept) and Glendive very fine sandy loam (coarse-loamy, mixed superactive, calcareous, frigid Aridic Ustifluvent) were evaluated under alfalfa (Medicago sativa) cropped conditions for over 140 d and under full canopy cover. Reductions in infiltration were observed for both soils for SAR above 2, and the reductions became more severe with increasing SAR. Saturated hydraulic conductivity measurements taken from undisturbed cores at the end of the experiment were highly variable, suggesting that in situ infiltration measurements may be preferred when evaluating SAR effects.

  11. Bayesian Inversion of Soil-Plant-Atmosphere Interactions for an Oak-Savanna Ecosystem Using Markov Chain Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Chen, X.; Rubin, Y.; Baldocchi, D. D.

    2005-12-01

    Understanding the interactions between soil, plant, and the atmosphere under water-stressed conditions is important for ecosystems where water availability is limited. In such ecosystems, the amount of water transferred from the soil to the atmosphere is controlled not only by weather conditions and vegetation type but also by soil water availability. Although researchers have proposed different approaches to model the impact of soil moisture on plant activities, the parameters involved are difficult to measure. However, using measurements of observed latent heat and carbon fluxes, as well as soil moisture data, Bayesian inversion methods can be employed to estimate the various model parameters. In our study, actual Evapotranspiration (ET) of an ecosystem is approximated by the Priestley-Taylor relationship, with the Priestley-Taylor coefficient modeled as a function of soil moisture content. Soil moisture limitation on root uptake is characterized in a similar manner as the Feddes' model. The inference of Bayesian inversion is processed within the framework of graphical theories. Due to the difficulty of obtaining exact inference, the Markov chain Monte Carlo (MCMC) method is implemented using a free software package, BUGS (Bayesian inference Using Gibbs Sampling). The proposed methodology is applied to a Mediterranean Oak-Savanna FLUXNET site in California, where continuous measurements of actual ET are obtained from eddy-covariance technique and soil moisture contents are monitored by several time domain reflectometry probes located within the footprint of the flux tower. After the implementation of Bayesian inversion, the posterior distributions of all the parameters exhibit enhancement in information compared to the prior distributions. The generated samples based on data in year 2003 are used to predict the actual ET in year 2004 and the prediction uncertainties are assessed in terms of confidence intervals. Our tests also reveal the usefulness of various

  12. Governing equations of transient soil water flow and soil water flux in multi-dimensional fractional anisotropic media and fractional time

    NASA Astrophysics Data System (ADS)

    Kavvas, M. Levent; Ercan, Ali; Polsinelli, James

    2017-03-01

    In this study dimensionally consistent governing equations of continuity and motion for transient soil water flow and soil water flux in fractional time and in fractional multiple space dimensions in anisotropic media are developed. Due to the anisotropy in the hydraulic conductivities of natural soils, the soil medium within which the soil water flow occurs is essentially anisotropic. Accordingly, in this study the fractional dimensions in two horizontal and one vertical directions are considered to be different, resulting in multi-fractional multi-dimensional soil space within which the flow takes place. Toward the development of the fractional governing equations, first a dimensionally consistent continuity equation for soil water flow in multi-dimensional fractional soil space and fractional time is developed. It is shown that the fractional soil water flow continuity equation approaches the conventional integer form of the continuity equation as the fractional derivative powers approach integer values. For the motion equation of soil water flow, or the equation of water flux within the soil matrix in multi-dimensional fractional soil space and fractional time, a dimensionally consistent equation is also developed. Again, it is shown that this fractional water flux equation approaches the conventional Darcy equation as the fractional derivative powers approach integer values. From the combination of the fractional continuity and motion equations, the governing equation of transient soil water flow in multi-dimensional fractional soil space and fractional time is obtained. It is shown that this equation approaches the conventional Richards equation as the fractional derivative powers approach integer values. Then by the introduction of the Brooks-Corey constitutive relationships for soil water into the fractional transient soil water flow equation, an explicit form of the equation is obtained in multi-dimensional fractional soil space and fractional time. The

  13. Soil water and transpirable soil water fraction variability within vineyards of the Penedès DO (NE Spain) affected by management practices

    NASA Astrophysics Data System (ADS)

    Concepción Ramos, Maria

    2015-04-01

    This work investigated the variability in soil water recorded within the vineyard plots related to soil properties and management practices and its influence on the transpirable sol water fraction. The study was carried out in vineyards in the Penedès Designation of Origin, planted with Chardonnay, with different disturbance degree and with compost treated and untreated areas within the plots. The response in years with different rainfall distributions, included years with extreme situations were evaluated. The main soil types are Typic Xerorthent and Calcixerollic Xerorthent and soil is bare most of the time. Soil water content was measured at different depths using TDR probes. The transpirable soil water fraction was estimated as the ratio between available soil water (ASW) at a given date and the total transpirable soil water (TTSW). TTSW was estimated as the soil water reserve held between an upper and lower limit (respectively, the soil water content near field capacity and soil water content at the end of a dry summer) and integrated over the estimated effective rooting depth. Both minimum and maximum soil water values varied within the plot at all depths. On the surface the minimum values ranged between 4.45 to about 10%, while on deeper layers it ranged between 7.8 and 17.8%. Regarding the maximum value varied between 17.45 and 24.8%. The transpirable soil water fraction for a given year varied significantly within the plot, with differences greater than 20% between the treated and untreated areas. The results were more exacerbated in the driest years an in those with more irregular distribution. Water available has a significant effect on yield. The results indicate the need of using different strategies for water management within the plots.

  14. Reflectance of vegetation, soil, and water

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A ratio of MSS channels 5 and 7 (5/7) and 5 to 6 (5/6) signals resulted in a correct recognition of 86.9% of the members of representative crop and soil conditions, compared with recognitions of 60.0, 64.1, 74.1, and 81.4% for channels 4, 5, 6, and 7 taken individually. Based on this result a satellite channel ratio procedure has been developed that enhances line printer gray maps for more efficient experimental test site location in the CCT data. Because independent estimates are not available to judge acreage estmates derived from ERTS-1 data against, except for a few crops, an interpenetrating sample constituting 3.5% of the county is ground truthed periodically. The crop of land uses and their acreages, respectively, as estimated from the interpenetrating samples, are: cotton, 129, 714; sorghum, 182,783; mixed citrus, 53,954; oranges, 16,929; grapefruit, 13,863; rangeland, 137,845; and, improved pastures, 57.169.

  15. Reflectance of vegetation, soil, and water

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. The Kubelka-Munk model, a regression model, and a combination of these models were used to extract plant, soil, and shadow reflectance components of vegetated surfaces. The combination model was superior to the others; it explained 86% of the variation in band 5 reflectance of corn and sorghum, and 90% of the variation in band 6 reflectance of cotton. A fractional shadow term substantially increased the proportion of the digital count sum of squares explained when plant parameters alone explained 85% or less of the variation. Overall recognition of 94 agricultural fields using simultaneously acquired aircraft and spacecraft MSS data was 61.8 and 62.8%, respectively; recognition of vegetable fields larger than 10 acres and taller than 25 cm, rose to 88.9 and 100% for aircraft and spacecraft, respectively. Agriculture and rangeland, were well discriminated for the entire county but level 2 categories of vegetables, citrus, and idle cropland, except for citrus, were not.

  16. Reflectance of vegetation, soil, and water

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Gausman, H. W.; Leamer, R. W.; Richardson, A. J.; Gerbermann, A. H. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Iron deficient and normal grain sorghum plants were sufficiently different spectrally in ERTS-1 band 5 CCT data to detect chlorotic sorghum areas 2.8 acres (1.1 hectares) or larger in size in computer printouts of the MSS data. The ratio of band 5 to band 7 or band 7 minus band 5 relates to vegetation ground cover conditions and helps to select training samples representative of differing vegetation maturity or vigor classes and to estimate ground cover or green vegetation density in the absence of ground information. The four plant parameters; leaf area index, plant population, plant cover, and plant height explained 87 to 93% of the variability in band 6 digital counts and from 59 to 90% of the variation in bands 4 and 5. A ground area 2244 acres in size was classified on a pixel by pixel basis using simultaneously acquired aircraft support and ERTS-1 data. Overall recognition for vegetables, immature crops and mixed shrubs, and bare soil categories was 64.5% for aircraft and 59.6% for spacecraft data, respectively. Overall recognition results on a per field basis were 61.8% for aircraft and 62.8% for ERTS-1 data.

  17. Archaeol: an indicator of methanogenesis in water-saturated soils.

    PubMed

    Lim, Katie L H; Pancost, Richard D; Hornibrook, Edward R C; Maxfield, Peter J; Evershed, Richard P

    2012-01-01

    Oxic soils typically are a sink for methane due to the presence of high-affinity methanotrophic Bacteria capable of oxidising methane. However, soils experiencing water saturation are able to host significant methanogenic archaeal communities, potentially affecting the capacity of the soil to act as a methane sink. In order to provide insight into methanogenic populations in such soils, the distribution of archaeol in free and conjugated forms was investigated as an indicator of fossilised and living methanogenic biomass using gas chromatography-mass spectrometry with selected ion monitoring. Of three soils studied, only one organic matter-rich site contained archaeol in quantifiable amounts. Assessment of the subsurface profile revealed a dominance of archaeol bound by glycosidic headgroups over phospholipids implying derivation from fossilised biomass. Moisture content, through control of organic carbon and anoxia, seemed to govern trends in methanogen biomass. Archaeol and crenarchaeol profiles differed, implying the former was not of thaumarcheotal origin. Based on these results, we propose the use of intact archaeol as a useful biomarker for methanogen biomass in soil and to track changes in moisture status and aeration related to climate change.

  18. Effect of temperature and water on gaseous emissions from soils treated with animal slurry

    SciTech Connect

    Maag, M.; Vinther, F.P.

    1999-08-01

    Microbial respiration and denitrification are greatly affected by abiotic factors, but they are difficult to assess in natural environments. Under controlled conditions the interactions between temperature and soil water content on microbial respiration, N{sub 2}O production, and denitrification in soil amended with animal slurries were studied. The effects of the abiotic factors on the biological processes were monitored for 8 wk in repacked soil cores amended with pig or cattle slurry. The soil cores were incubated at 43, 57, and 72% water-filled pore space (WFPS) and at 10, 15, and 20 C with or without addition of 10% acetylene. The amount of N{sub 2}O lost at 72% WFPS corresponded to 8 to 22% of the slurry's NH{sub 4}{sup +} content, but for only 0.01 to 1.2% at 43 to 57% WFPS. The amount of available C accounted for by denitrification was 8 to 16% of total respiration at 72% WFPS, but only 0.03 to 0.4% at 43 to 57% WFPS. Both N{sub 2}O production and denitrification peaked earlier in the cattle-slurry treated soil than in the pig-slurry treated soil, whereas the total N loss was greatest from the latter. Neither amendments nor soil water contents seemed to affect the Q{sub 10}-values for the CO{sub 2} production, resulting in values between 1.6 and 2.6. At 72% WFPS, N{sub 2}O production and denitrification had Q{sub 10}-values ranging between 3.3 and 5.4. High temperatures enhanced both aerobic respiration and denitrification, and aerobic respiration further enhanced denitrification by consuming oxygen, resulting in strong sensitivity of denitrification to temperature.

  19. Soil water repellency and infiltration in coarse-textured soils of burned and unburned sagebrush ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Millions of dollars are spent each year in the United States to mitigate the effects of wildfires and reduce the risk of flash floods and debris flows. Research from forested, chaparral, and rangeland communities indicate severe wildfires can cause significant increases in soil water repellency res...

  20. Role of soil adsorption and microbial degradation on dissipation of mesotrione in plant available soil water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mesotrione is a carotenoid biosynthesis-inhibiting herbicide labeled for pre-emergence and post emergent weed control in corn production. Understanding the factors that influence the dissipation of mesotrione in soil and in the plant available water (PAW) is important for both the environmental fat...

  1. Factors controlling soil water and stream water aluminum concentrations after a clearcut in a forested watershed with calcium-poor soils

    USGS Publications Warehouse

    McHale, M.R.; Burns, Douglas A.; Lawrence, G.B.; Murdoch, Peter S.

    2007-01-01

    The 24 ha Dry Creek watershed in the Catskill Mountains of southeastern New York State USA was clearcut during the winter of 1996-1997. The interactions among acidity, nitrate (NO3- ), aluminum (Al), and calcium (Ca2+) in streamwater, soil water, and groundwater were evaluated to determine how they affected the speciation, solubility, and concentrations of Al after the harvest. Watershed soils were characterized by low base saturation, high exchangeable Al concentrations, and low exchangeable base cation concentrations prior to the harvest. Mean streamwater NO3- concentration was about 20 ??mol l-1 for the 3 years before the harvest, increased sharply after the harvest, and peaked at 1,309 ??mol l -1 about 5 months after the harvest. Nitrate and inorganic monomeric aluminum (Alim) export increased by 4-fold during the first year after the harvest. Alim mobilization is of concern because it is toxic to some fish species and can inhibit the uptake of Ca2+ by tree roots. Organic complexation appeared to control Al solubility in the O horizon while ion exchange and possibly equilibrium with imogolite appeared to control Al solubility in the B horizon. Alim and NO3- concentrations were strongly correlated in B-horizon soil water after the clearcut (r2 = 0.96), especially at NO3- concentrations greater than 100 ??mol l-1. Groundwater entering the stream from perennial springs contained high concentrations of base cations and low concentrations of NO3- which mixed with acidic, high Alim soil water and decreased the concentration of Alim in streamwater after the harvest. Five years after the harvest soil water NO 3- concentrations had dropped below preharvest levels as the demand for nitrogen by regenerating vegetation increased, but groundwater NO3- concentrations remained elevated because groundwater has a longer residence time. As a result streamwater NO3- concentrations had not fallen below preharvest levels, even during the growing season, 5 years after the harvest

  2. Linking Water Table Dynamics to Carbon Cycling in Artificial Soil Column Incubations

    NASA Astrophysics Data System (ADS)

    Geertje, Pronk; Adrian, Mellage; Tatjana, Milojevic; Fereidoun, Rezanezhad; Cappellen Philippe, Van

    2016-04-01

    The biogeochemistry of wetlands soils is closely tied to their hydrology. Water table fluctuations that cause flooding and drying of these systems may lead to enhanced degradation of organic matter and release of greenhouse gasses (e.g. CO2, CH4) to the atmosphere. However, predicting the influence of water table fluctuations on the biogeochemical functioning of soils requires an understanding of the interactions of soil hydrology with biogeochemical and microbial processes. To determine the effects of water table dynamics on carbon cycling, we are carrying out state-of-the-art automated soil column experiments with fully integrated monitoring of hydro-bio-geophysical process variables under both constant and oscillating water table conditions. An artificial, homogeneous mixture consisting of minerals and organic matter is used to provide a well-defined starting material. The artificial soils are composed of quartz sand, montmorillonite, goethite and humus from a forested riparian zone, from which we also extracted the microbial inoculum added to the soil mixture. The artificial soils are packed into 60 cm high, 7.5 cm wide columns. In the currently ongoing experiment, three replicate columns are incubated while keeping the water table constant water at mid-depth, while another three columns alternate between drained and saturated conditions. Micro-sensors installed at different depths below the soil surface record time-series redox potentials (Eh) varying between oxidizing (~+700 mV) and reducing (~-200 mV) conditions. Continuous O2 levels throughout the soil columns are monitored using high-resolution, luminescence-based, Multi Fiber Optode (MuFO) microsensors. Pore waters are collected periodically with MicroRhizon samplers from different depths, and analyzed for pH, EC, dissolved inorganic and organic carbon and ion/cation compositions. These measurements allow us to track the changes in pore water geochemistry and relate them to differences in carbon cycling

  3. Influence of the initial soil water content on Beerkan water infiltration experiments

    NASA Astrophysics Data System (ADS)

    Lassabatere, L.; Loizeau, S.; Angulo-Jaramillo, R.; Winiarski, T.; Rossier, Y.; Delolme, C.; Gaudet, J. P.

    2012-04-01

    Understanding and modeling of water flow in the vadose zone are important with regards water management and infiltration devices design. Water infiltration process clearly depends on initial soil water content, in particular for sandy soils with high organic matter content. This study investigates the influence of initial water content on water infiltration in a hydrophobic sandy soil and on the related derivation of hydraulic parameters using the BEST algorithm (Lassabatere et al., 2006). The studied sandy soil has a high total organic content decreasing from 3.5% (w/w) at the surface to 0.5% (w/w) below 1cm depth. The highest TOC at surface was due to the presence of a dense biofilm and resulted in a high surface hydrophobicity under dry conditions (low initial water contents). The water infiltration experiments consisted in infiltrating known volumes of water through a simple ring at null pressure head (Beerkan method). The infiltrations were performed during three successive days after a dry period with a storm event between the first and the second day (5 mm) and another between the second and the third day (35 mm). These events resulted in an increase in initial water contents, from less than 5% for the first day to around 10% for the last day. Experiments were performed for appropriate conditions for Beerkan experiments: initial water contents below 1/4 of the saturated water content and uniform water profile resulting from water redistribution after each rainfall event. The analysis of the infiltration data clearly highlights the strong effect of hydrophobicity. For the driest initial conditions (first day), infiltration rates increased with time, whereas they decreased with time for wetter conditions. Such a decrease agreed with the principles of water infiltration without hydrophobicity. In addition, total cumulative infiltrations were far higher for the wettest conditions. Regarding hydraulic characterization, only the data obtained during the last

  4. Effects of a layer of vegetative ash layer on wettable and water repellent soil hydrology

    NASA Astrophysics Data System (ADS)

    Bodí, Merche B.; Doerr, Stefan H.; Cerdà, Artemi; Mataix-Solera, Jorge

    2010-05-01

    Following a wildfire, a layer of vegetative ash often covers the ground until it is dissolved or redistributed by wind and water erosion. Much of the existing literature suggests that the ash layer temporally reduces infiltration by clogging soil pores or by forming a surface crust (Mallik et al., 1984; Onda et al., 2008). However, an increasing number of field-based studies have found that, at least in the short term, ash increases infiltration by storing rainfall and protecting the underlying soil from sealing (Cerdà and Doerr, 2008; Woods and Balfour, 2008). On the other hand, after a fire the soil may have produced, enhanced or reduced its water repellency (Doerr et al., 2000). Very few studies have been taken into account the interaction of the ash and the repellent soil. The layer of ash may have similar role as a litter layer in delaying runoff and reducing erosion by storing water. In order to examine this interaction, it was been made a series of experiments using a laboratory rainfall simulation. It has been assessed the effects of an ash layer i) on a wettable and water repellent soil (WDPT > 7200s), ii) with different ash thicknesses (bare soil and 5 mm, 15 mm and 30 mm of ash), iii) preceding and following the first rain after a fire when the ground is still wetted and after being partially dried. Three replicates were done, being a total of 40 simulations. The ash used was collected from a Wildfire in Teruel (Spain) during summer of 2009. The simulations were conducted in metal boxes of 30x30 cm and filled with 3 cm of soil. The slope of the box was set at 10° (17%) and the intensity applied was 78-84 mm h-1during 40 minutes. The splash detachment was determined also using four splash cups. Overland flow and subsurface drainage was collected at 1-minute intervals and the former stored every 5 min to allow determination of sediment concentrations, yield and erosion rates. Each sample was examined at the end in terms of water repellency, infiltration

  5. Soil and water characteristics of a young surface mine wetland

    NASA Astrophysics Data System (ADS)

    Andrew Cole, C.; Lefebvre, Eugene A.

    1991-05-01

    Coal companies are reluctant to include wetland development in reclamation plans partly due to a lack of information on the resulting characteristics of such sites. It is easier for coal companies to recreate terrestrial habitats than to attempt experimental methods and possibly face significant regulatory disapproval. Therefore, we studied a young (10 years) wetland on a reclaimed surface coal mine in southern Illinois so as to ascertain soil and water characteristics such that the site might serve as a model for wetland development on surface mines. Water pH was not measured because of equipment problems, but evidence (plant life, fish, herpetofauna) suggests suitable pH levels. Other water parameters (conductivity, salinity, alkalinity, chloride, copper, total hardness, iron, manganese, nitrate, nitrite, phosphate, and sulfate) were measured, and only copper was seen in potentially high concentrations (but with no obvious toxic effects). Soil variables measured included pH, nitrate, nitrite, ammonia, potassium, calcium, magnesium, manganese, aluminum, iron, sulfate, chloride, and percent organic matter. Soils were slightly alkaline and most parameters fell within levels reported for other studies on both natural and manmade wetlands. Aluminum was high, but this might be indicative more of large amounts complexed with soils and therefore unavailable, than amounts actually accessible to plants. Organic matter was moderate, somewhat surprising given the age of the system.

  6. Hugoniot Measurements on Dry and Water-Saturated Soils

    NASA Astrophysics Data System (ADS)

    Newman, Matthew; Stewart, Sarah; Kraus, Richard

    2015-06-01

    To better understand the shock properties of granular materials, we present a series of shock Hugoniot experiments on three types of soil in both dry and water-saturated states. We measured the shock states induced via planar impact experiments on the Harvard 40-mm gas gun. Shock wave velocities in the soils were measured using both VISAR and piezo-pins. The soils were composed primarily of quartz with different mass fractions of phyllosilicates and amorphous material. Using initial particle sizes ranging from 150 to 300 microns, the samples were pressed to densities ranging from 1.89 to 1.93 g cm-3 (about 25% porous). Water-sat samples had densities ranging from 2.2 to 2.6 g cm-3. We find that the dry soils have a linear Us -up relation that is similar to dry quartz sand with the same initial density. The water-sat samples are less compressible and have much greater scatter in shock velocities. The VISAR measurement records the dispersion around the mean shock state that arises from reflections between grains, and we compare the VISAR data to meso-scale hydrocode simulations. These data will be used to generate more accurate rheological models for hydrocode simulations of the shock response of heterogeneous granular materials in the low-pressure regime (< 10 GPa). We acknowledge support from Army Research Office Grant #W911NF-10-1-037.

  7. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments

    NASA Astrophysics Data System (ADS)

    Yin, Wen; Feng, Fuxue; Zhao, Cai; Yu, Aizhong; Hu, Falong; Chai, Qiang; Gan, Yantai; Guo, Yao

    2016-09-01

    Water shortage threatens agricultural sustainability in many arid and semiarid areas of the world. It is unknown whether improved water conservation practices can be developed to alleviate this issue while increasing crop productivity. In this study, we developed a "double mulching" system, i.e., plastic film coupled with straw mulch, integrated together with intensified strip intercropping. We determined (i) the responses of soil evaporation and moisture conservation to the integrated double mulching system and (ii) the change of soil temperature during key plant growth stages under the integrated systems. Experiments were carried out in northwest China in 2009 to 2011. Results show that wheat-maize strip intercropping in combination with plastic film and straw covering on the soil surface increased soil moisture (mm) by an average of 3.8 % before sowing, 5.3 % during the wheat and maize co-growth period, 4.4 % after wheat harvest, and 4.9 % after maize harvest, compared to conventional practice (control). The double mulching decreased total evapotranspiration of the two intercrops by an average of 4.6 % ( P < 0.05), compared to control. An added feature was that the double mulching system decreased soil temperature in the top 10-cm depth by 1.26 to 1.31 °C in the strips of the cool-season wheat, and by 1.31 to 1.51 °C in the strips of the warm-season maize through the 2 years. Soil temperature of maize strips higher as 1.25 to 1.94 °C than that of wheat strips in the top 10-cm soil depth under intercropping with the double mulching system; especially higher as 1.58 to 2.11 °C under intercropping with the conventional tillage; this allows the two intercrops to grow in a well "collaborative" status under the double mulching system during their co-growth period. The improvement of soil moisture and the optimization of soil temperature for the two intercrops allow us to conclude that wheat-maize intensification with the double mulching system can be used as an

  8. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments.

    PubMed

    Yin, Wen; Feng, Fuxue; Zhao, Cai; Yu, Aizhong; Hu, Falong; Chai, Qiang; Gan, Yantai; Guo, Yao

    2016-09-01

    Water shortage threatens agricultural sustainability in many arid and semiarid areas of the world. It is unknown whether improved water conservation practices can be developed to alleviate this issue while increasing crop productivity. In this study, we developed a "double mulching" system, i.e., plastic film coupled with straw mulch, integrated together with intensified strip intercropping. We determined (i) the responses of soil evaporation and moisture conservation to the integrated double mulching system and (ii) the change of soil temperature during key plant growth stages under the integrated systems. Experiments were carried out in northwest China in 2009 to 2011. Results show that wheat-maize strip intercropping in combination with plastic film and straw covering on the soil surface increased soil moisture (mm) by an average of 3.8 % before sowing, 5.3 % during the wheat and maize co-growth period, 4.4 % after wheat harvest, and 4.9 % after maize harvest, compared to conventional practice (control). The double mulching decreased total evapotranspiration of the two intercrops by an average of 4.6 % (P < 0.05), compared to control. An added feature was that the double mulching system decreased soil temperature in the top 10-cm depth by 1.26 to 1.31 °C in the strips of the cool-season wheat, and by 1.31 to 1.51 °C in the strips of the warm-season maize through the 2 years. Soil temperature of maize strips higher as 1.25 to 1.94 °C than that of wheat strips in the top 10-cm soil depth under intercropping with the double mulching system; especially higher as 1.58 to 2.11 °C under intercropping with the conventional tillage; this allows the two intercrops to grow in a well "collaborative" status under the double mulching system during their co-growth period. The improvement of soil moisture and the optimization of soil temperature for the two intercrops allow us to conclude that wheat-maize intensification with the double mulching system can be

  9. Dynamic soil-tunnel interaction in layered half-space for incident plane SH waves

    NASA Astrophysics Data System (ADS)

    Fu, Jia; Liang, Jianwen; Qin, Lin

    2016-12-01

    The dynamic soil-tunnel interaction is studied by indirect boundary element method (IBEM), using the model of a rigid tunnel in layered half-space, which is simplified to a single soil layer on elastic bedrock, subjected to incident plane SH waves. The accuracy of the results is verified through comparison with the analytical solution. It is shown that soil-tunnel interaction in layered half-space is larger than that in homogeneous half-space and this interaction mechanism is essentially different from that of soil-foundation-superstructure interaction.

  10. Interaction between soil mineralogy and the application of crop residues on aggregate stability and hydraulic conductivity of the soil

    NASA Astrophysics Data System (ADS)

    Lado, M.; Kiptoon, R.; Bar-Tal, A.; Wakindiki, I. I. C.; Ben-Hur, M.

    2012-04-01

    One of the main goals of modern agriculture is to achieve sustainability by maintaining crop productivity while avoiding soil degradation. Intensive cultivation could lead to a reduction in soil organic matter that could affect the structure stability and hydraulic conductivity of the soil. Moreover, crops extract nutrients from the soil that are taken away from the field when harvested, and as a consequence, the addition of fertilizers to the soil is necessary to maintain crop productivity. One way to deal with these problems is to incorporate crop residues into the soil after harvest. Crop residues are a source of organic matter that could improve soil physical properties, such as aggregate stability and soil hydraulic conductivity. However, this effect could vary according to other soil properties, such as clay content, clay mineralogy, and the presence of other cementing materials in the soil (mainly carbonates and aluminum and iron oxides). In the present work, the interaction between the addition of chickpea crop residues to the soil and clay mineralogy on aggregate stability and saturated hydraulic conductivity were studied. Chickpea plant residues were added at a rate of 0.5% (w/w) to smectitic, kaolinitic, illitic and non-phyllosilicate soils from different regions. The soils without (control) and with chickpea residues were incubated for 0, 3, 7 and 30 days, and the saturated hydraulic conductivity of the soils was measured in columns after each incubation time. The response of hydraulic conductivity to the addition of residues and incubation time was different in the soils with various mineralogies, although in general, the addition of chickpea residues increased the saturated hydraulic conductivity as compared with the control soils. This positive effect of crop residues on hydraulic conductivity was mainly a result of improved aggregate stability and resistance to slaking during wetting.

  11. Wildfire impacts on soil-water retention in the Colorado Front Range, United States

    USGS Publications Warehouse

    Ebel, Brian A.

    2012-01-01

    This work examined the plot-scale differences in soil-water retention caused by wildfire in the area of the 2010 Fourmile Canyon Fire in the Colorado Front Range, United States. We measured soil-water retention curves on intact cores and repacked samples, soil particle-size distributions, and organic matter content. Estimates were also made of plant-available water based on the soil-water retention curves. Parameters for use in soil-hydraulic property models were estimated; these parameters can be used in unsaturated flow modeling for comparing burned and unburned watersheds. The primary driver for measured differences in soil-water retention in burned and unburned soils was organic matter content and not soil-particle size distribution. The tendency for unburned south-facing soils to have greater organic matter content than unburned north-facing soils in this field area may explain why unburned south-facing soils had greater soil-water retention than unburned north-facing soils. Our results suggest that high-severity wildfire can “homogenize” soil-water retention across the landscape by erasing soil-water retention differences resulting from organic matter content, which for this site may be affected by slope aspect. This homogenization could have important implications for ecohydrology and plant succession/recovery in burned areas, which could be a factor in dictating the window of vulnerability of the landscape to flash floods and erosion that are a common consequence of wildfire.

  12. Wildfire impacts on soil-water retention in the Colorado Front Range, United States

    NASA Astrophysics Data System (ADS)

    Ebel, Brian A.

    2012-12-01

    This work examined the plot-scale differences in soil-water retention caused by wildfire in the area of the 2010 Fourmile Canyon Fire in the Colorado Front Range, United States. We measured soil-water retention curves on intact cores and repacked samples, soil particle-size distributions, and organic matter content. Estimates were also made of plant-available water based on the soil-water retention curves. Parameters for use in soil-hydraulic property models were estimated; these parameters can be used in unsaturated flow modeling for comparing burned and unburned watersheds. The primary driver for measured differences in soil-water retention in burned and unburned soils was organic matter content and not soil-particle size distribution. The tendency for unburned south-facing soils to have greater organic matter content than unburned north-facing soils in this field area may explain why unburned south-facing soils had greater soil-water retention than unburned north-facing soils. Our results suggest that high-severity wildfire can "homogenize" soil-water retention across the landscape by erasing soil-water retention differences resulting from organic matter content, which for this site may be affected by slope aspect. This homogenization could have important implications for ecohydrology and plant succession/recovery in burned areas, which could be a factor in dictating the window of vulnerability of the landscape to flash floods and erosion that are a common consequence of wildfire.

  13. Hydraulic and purification behaviors and their interactions during wastewater treatment in soil infiltration systems.

    PubMed

    Van Cuyk, S; Siegrist, R; Logan, A; Masson, S; Fischer, E; Figueroa, L

    2001-03-01

    Four three-dimensional lysimeters were established in a pilot laboratory with the same medium sand and either an aggregate-laden (AL) or aggregate-free (AF) infiltration surface and a 60- or 90-cm soil vadose zone depth to ground water. During 48 weeks of operation, each lysimeter was dosed 4 times daily with septic tank effluent (STE) at 5 cm/d (AL) or 8.4 cm/d (AF). Weekly monitoring was done to characterize the STE, percolate flow and composition, and water content distributions within the lysimeters. Bromide tracer tests were completed at weeks 0, 8, and 45 and during the latter two times, ice nucleating active (INA) bacteria and MS-2 and PRD-1 bacteriophages were used as bacterial and viral surrogates. After 48 weeks, soil cores were collected and analyzed for chemical and microbial properties. The observations made during this study revealed a dynamic, interactive behavior for hydraulic and purification processes that were similar for all four lysimeters. Media utilization and bromide retention times increased during the first two months of operation with the median bromide breakthrough exceeding one day at start-up and increasing to two days or more. Purification processes were gradually established over four months or longer, after which there were high removal efficiencies (>90%) for organic constituents, microorganisms, and virus, but only limited removal of nutrients. Soil core analyses revealed high biogeochemical activity within the infiltrative zone from 0 to 15 cm depth. All four lysimeters exhibited comparable behavior and there were no significant differences in performance attributable to infiltrative surface character or soil depth. It is speculated that the comparable performance is due to a similar and sufficient degree of soil clogging genesis coupled with bioprocesses that effectively purified the wastewater effluent given the adequate retention times and high volumetric utilization's of the sand media.

  14. Microcosm experiments to study the interaction of solid and solute phases during initial soil development

    NASA Astrophysics Data System (ADS)

    Zimmermann, C.; Chabbi, S.; Schaaf, W.

    2009-04-01

    During the initial phase of soil formation mineral weathering, interactions between the solid and liquid phases as well as accumulation of organic matter play an important role for the development of soil properties and for the establishment of vegetation and the colonization of soil biota. Our study is part of the Transregional Collaborative Research Centre (SFB/TRR 38) ‘Patterns and processes of initial ecosystem development in an artificial catchment' funded by the Deutsche Forschungsgemeinschaft (DFG). The catchment ´Chicken Creeḱ close to Cottbus (Germany) has a size of 6 ha and is composed of a 3-4 m layer of Quaternary loamy to sandy sediments overlying a 1-2 m clay layer. To connect interactions between the soil solid phase and soil solution at the micro-scale with observed processes at the catchment scale we perform microcosm experiments with soil samples from the catchment under controlled laboratory conditions. The microcosm experiments are carried out in a climate chamber at constant 10 °C corresponding to the mean annual temperature of the region. In total 48 soil columns with a diameter of 14.4 cm and height of 30 cm were filled with substrates of two textural compositions reflecting the gradients observed at the catchment and a bulk density of 1.4-1.5 g*cm3. Within the microcosms it is possible to control the gaseous phase and the water fluxes by artificial irrigation. The irrigation runs automated and quasi-continuously four times a day with 6.6 ml each (in total 600 mm*yr-1). Irrigation amount and chemical composition of the artificial rainwater are based on the annual mean at the field site. Litter of two different plant species occurring at the catchment site (Lotus corniculatus, Calamagrostis epigejos) labelled with stable isotopes (δ13C; δ15N) is used for the experiments. All treatments including a control run with four replicates. The gaseous phase in the headspace of the microcosms is analysed continuously for CO2 and N2O contents

  15. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    USGS Publications Warehouse

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Recharge and discharge are hydrological processes that cause Everglades surface water to be exchanged for subsurface water in the peat soil and the underlying sand and limestone aquifer. These interactions are thought to be important to water budgets, water quality, and ecology in the Everglades. Nonetheless, relatively few studies of surface water and ground water interactions have been conducted in the Everglades, especially in its vast interior areas. This report is a product of a cooperative investigation conducted by the USGS and the South Florida Water Management District (SFWMD) aimed at developing and testing techniques that would provide reliable estimates of recharge and discharge in interior areas of WCA-2A (Water Conservation Area 2A) and several other sites in the central Everglades. The new techniques quantified flow from surface water to the subsurface (recharge) and the opposite (discharge) using (1) Darcy-flux calculations based on measured vertical gradients in hydraulic head and hydraulic conductivity of peat; (2) modeling transport through peat and decay of the naturally occurring isotopes 224Ra and 223Ra (with half-lives of 4 and 11 days, respectively); and (3) modeling transport and decay of naturally occurring and 'bomb-pulse' tritium (half-life of 12.4 years) in ground water. Advantages and disadvantages of each method for quantifying recharge and discharge were compared. In addition, spatial and temporal variability of recharge and discharge were evaluated and controlling factors identified. A final goal was to develop appropriately simplified (that is, time averaged) expressions of the results that will be useful in addressing a broad range of hydrological and ecological problems in the Everglades. Results were compared with existing information about water budgets from the South Florida Water Management Model (SFWMM), a principal tool used by the South Florida Water Management District to plan many of the hydrological aspects of the

  16. Monitoring Changes in Soil Water Content Using Subsurface Displacement

    NASA Astrophysics Data System (ADS)

    Thrash, C. J.; Miller, S.; Murdoch, L. C.; Germanovich, L. N.; Gates, J. B.; Volkmer, A.; Weinburg, A.

    2013-12-01

    Closing the water balance is important in many research and water resource applications, but it can be difficult to accomplish due to a variety of factors. A new technique that measures vertical displacement of soil in order to estimate the change in mass of water stored in overlying material is being developed. The measurement technique uses an extensometer that functions as a lysimeter, and we refer to the technique as Displacement Extensometry for Lysimetric Terrain Analysis (DELTA). DELTA extensometers are 2-m-long devices deployed by creating a friction fit with intact soil below a cased borehole. The instrument measures small displacements (better than 10 nm resolution) in response to changes of mass in the overlying soil, or other factors. The instrument averages over a region that scales with the depth of installation (the radius of influence is approximately 2x the depth). The spatial averaging of this instrument extends over regions representative of agricultural fields, hydrologic model grid blocks, and small watersheds. Five DELTA extensometers have been deployed at a field site near Clemson, SC at depths of 3, 6, and 9 m within saprolite derived from biotite gneiss. Barometric pressure, precipitation, and soil moisture are being measured along with displacement. Signals from the co-located extensometers are remarkably similar, demonstrating reproducibility of the technique. Rainfall causes soil compression, and at 6 m depth there is approximately 200 nm of compression per 1 mm of rainfall. There is gradual expansion, which ranges from 0.15 to 1.75 μm/day, following rainfall. The gradual unloading of the soil is interpreted as water loss due to evapotranspiration. Superimposed on the signal are diurnal fluctuations of 0.5 to 1 μm, which correlate to changes in barometric pressure. Four DELTA extensometers were recently deployed in hard, clayey sediments at two field locations south of Amarillo, TX. The instruments will compliment current research on

  17. Links between soil water availability and soil respiration in semi-arid ecosystems along the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Powell, K.; Anderson, D. E.; Blanken, P.

    2013-12-01

    Drylands cover approximately 40% of the world's terrestrial ecosystems, and this includes mostly arid and semi-arid regions. As water-limited environments, they are sensitive to changes in soil water content which may result in large carbon efflux from soils in response to precipitation events. Previous research has demonstrated that soil temperature and soil water content (e.g. volumetric or gravimetric) are the primary controls on soil respiration (Rs), however, few studies relate soil water potential to Rs, although it may be a better metric for representing how water is available to soil microbes and vegetation. Therefore, resolving how episodic changes in soil water potential cause arid/semi-arid ecosystems to shift from a carbon sink to a source is important for improving future estimates of terrestrial ecosystem fluxes in these areas. Our study focuses on above and belowground fluxes of CO2 and water at two grassland sites and one montane forest site in Colorado. Continuous (hourly) soil CO2 concentration profile measurements, at 5 cm, 10 cm and 20 cm (15 cm in the grasslands) are coupled with continuous (30 minute), collocated soil water content and soil temperature (Ts) measurements. Soil water availability is determined by using tensiometers at each site to relate volumetric water content to matric potential values. All of the sites have ongoing eddy covariance-based surface measurements of water, carbon and energy fluxes, including net ecosystem exchange (NEE). To estimate Rs at the surface, discrete fluxes of CO2 are measured with a portable photosynthesis system (chamber) and soil surface CO2 concentration measurements. To characterize changes in aboveground biomass, vegetation samples are routinely collected from each of the sites and leaf area index (LAI) and dry biomass are determined. Time-series plots of Rs are compared with aboveground fluxes of CO2 as well as soil water, Ts, precipitation, air temperature (Ta), photosynthetically active

  18. HPx - a tool for simulating interactive biohydrogeochemical processes in soil systems

    NASA Astrophysics Data System (ADS)

    Jacques, Diederik; Simunek, Jirka

    2014-05-01

    During the last two decades, different numerical codes have been developed capable of simulating interactive physical, hydrological, biological, and geochemical processes in porous media. The simulator HPx, which couples the HYDRUS codes with PHREEQC, is one of the state-of-the-art models, which specializes in variably-saturated soil systems and explicitly accounts for atmospheric boundary conditions (precipitation and potential evapotranspiration) and root water uptake. It combines most of the advanced features of the two individual codes (Jacques et al., 2008). The versatility of the HPx code is illustrated in this presentation using several examples. An overview of different physical and geochemical conceptual models is also provided. The first example shows the results of a benchmark test, in which combined effects of mineral dissolution and precipitation on changes in physical properties during both porosity increase and clogging were simulated. The second example illustrates the flexibility of the model to include a soil organic matter submodel when simultaneously simulating organic matter degradation and CO2 diffusion in a variably-saturated soil. Since the HPx codes also simulate heat transport in the soil, they can account for fluctuations of kinetic parameters throughout the year due to their temperature dependency. Global seasonal variations in soil pCO2 and soil organic pools followed expected behavior, whereas daily values of soil pCO2 clearly exhibited the effects of daily and spatially variable temperatures and water contents on the biologically-controlled kinetic parameters. The last example illustrates the inclusion of various conceptual models for root solute uptake into the HPx modeling framework. Due to close link with the chemistry of pore water, parameters needed in the uptake equations may depend, in addition to their dependency on root system and ion uptake characteristics, also on the geochemistry of the system, resulting in time

  19. Sorption of nonionic organic compounds in soil-water systems containing a micelle-forming surfactant

    SciTech Connect

    Sun, S.; Inskeep, W.P.; Boyd, S.A. |

    1994-12-31

    The solubility enhancement of nonionic organic compounds (NOCs) by surfactants may represent an important tool in chemical and biological remediation of contaminated soils. In aqueous systems, the presence of dissolved surfactant emulsions or micelles may enhance the solubility of NOCs by acting as a hydrophobic partitioning phase for the NOCs. However, most environmental remediation efforts involve soil-water or sediment-water systems, where surfactant molecules may also interact with the solid phase. An understanding of the effect of surfactants on the sorption and distribution of NOCs in soil or sediment environments will provide an essential basis for utilizing surfactants in environmental remediation. In this study, the authors examined the effect of a micelle-forming surfactant (Triton X-100) on the sorption of 2,2{prime},4,4{prime},5,5{prime}-PCB, 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (p,p{prime}-DDT) and 1,2,4-trichlorobenzene (1,2,4-TCB). A conceptual model, which accurately describes the functional dependence of K* on Triton X-100 concentration, was developed based on the partition coefficients of these NOCs by soil, soil-surfactant, surfactant monomer and surfactant micelle phases. This model can be further modified to provide quantitative prediction of K* of a given NOC at different surfactant concentrations.

  20. Sensor-based soil water monitoring to more effectively manage agricultural water resources in coastal plain soils

    NASA Astrophysics Data System (ADS)

    Bellamy, Christopher A.

    Cotton (Gossypium hirsutum L.) is widely grown in the United States with 5.7 million ha grown nationally and 1.2 million ha grown in the humid southeastern states in 2005. From 1969 to 2003, agricultural irrigated farmland acreage and total water applied increased by over 40% and 11% respectively to include a total of 55.3 million acres in 2002. Combined with recent and more frequent drought periods and legal water conflicts between states, there has been an increased interest in more effective southeastern water management, thus making the need to develop improved irrigation scheduling methods and enhanced water use efficiency of cotton cultivars. Several irrigation scheduling methods (soil moisture monitoring, pan evaporation, and climate based) tested at Clemson and elsewhere have shown that sensor-based irrigation significantly increased cotton yields and provided a monetary savings compared to other methods. There is however limited information on capacitance based soil moisture analysis techniques in the southeastern coastal plain soils and also limited locally developed crop coefficients used in scheduling the ET based treatments. The first objective of this study was to determine and improve the feasibility of utilizing sensor-based soil water monitoring techniques in Southeastern Coastal Plain soils to more effectively manage irrigation and increase water use efficiency of several cotton cultivars. The second objective was to develop two weighing lysimeters equipped with wireless data acquisition system to determine a crop coefficient for cotton under southeastern humid conditions. Two multi-sensor capacitance probes, AquaSpy(TM) and Sentek EnviroSCAN RTM, were calibrated in this study. It was found that positive linear calibrations can be used to describe the relationship between the soil volumetric moisture content (VMC) and sensor readings found for both probes and that multi-sensor capacitance probes can be used to accurately measure volumetric soil

  1. Contact angles of wetting and water stability of soil structure

    NASA Astrophysics Data System (ADS)

    Kholodov, V. A.; Yaroslavtseva, N. V.; Yashin, M. A.; Frid, A. S.; Lazarev, V. I.; Tyugai, Z. N.; Milanovskiy, E. Yu.

    2015-06-01

    From the soddy-podzolic soils and typical chernozems of different texture and land use, dry 3-1 mm aggregates were isolated and sieved in water. As a result, water-stable aggregates and water-unstable particles composing dry 3-1 mm aggregates were obtained. These preparations were ground, and contact angles of wetting were determined by the static sessile drop method. The angles varied from 11° to 85°. In most cases, the values of the angles for the water-stable aggregates significantly exceeded those for the water-unstable components. In terms of carbon content in structural units, there was no correlation between these parameters. When analyzing the soil varieties separately, the significant positive correlation between the carbon content and contact angle of aggregates was revealed only for the loamy-clayey typical chernozem. Based on the multivariate analysis of variance, the value of contact wetting angle was shown to be determined by the structural units belonging to water-stable or water-unstable components of macroaggregates and by the land use type. In addition, along with these parameters, the texture has an indirect effect.

  2. Tide-induced surface water and groundwater interactions in coastal wetlands

    NASA Astrophysics Data System (ADS)

    Xin, P.; Kong, J.; Li, L.; Barry, D. A.

    2011-12-01

    Intertidal wetlands such as salt marshes are complex hydrological systems characterized by strong, dynamic interactions between coastal surface water and groundwater, driven particularly by tides. We simulated such interactions with a focus on 3D, variably saturated pore water flow in a salt marsh with a two-layer soil configuration (with a low-permeability mud layer overlying a high-permeability sandy-loam layer), which is commonly found in natural marshes. Simulated intra-tidal groundwater dynamics exhibited significant flow asymmetry with non-zero mean flow velocities over the tidal period. The tidally averaged flow led to 3D pore water circulation linked strongly to the marsh topography, over a range of spatial scales: near the creek bank, around the creek meander and over long marsh sections inclined towards the main channel. Time scales associated with these circulations differed by orders of magnitude. Under the simulated conditions, the creek served as the main outlet of the pore water circulation paths, especially those with infiltration taking place in the upper marsh surface areas away from the main channel. Water infiltrating the soil in the lower marsh surface areas away from the creek tended to discharge to the main channel directly. These flow characteristics have important implications for mass and nutrient transport and transformations in the marsh soil. Since the origin of pore water in the marsh soil is largely the coastal surface water, the travel paths and times revealed by the particle tracking are key factors that determine the (modified) chemical composition of the recycling water at the circulation outlet, which in turn affects the net exchange between the marsh and coastal surface water. Our study highlights the hydrological complexity of intertidal marshes and the need for further research on interactions among marsh morphology, hydrology and ecology, which underpin the functionalities of these wetland systems.