A new in-situ method to determine the apparent gas diffusion coefficient of soils
NASA Astrophysics Data System (ADS)
Laemmel, Thomas; Paulus, Sinikka; Schack-Kirchner, Helmer; Maier, Martin
2015-04-01
Soil aeration is an important factor for the biological activity in the soil and soil respiration. Generally, gas exchange between soil and atmosphere is assumed to be governed by diffusion and Fick's Law is used to describe the fluxes in the soil. The "apparent soil gas diffusion coefficient" represents the proportional factor between the flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gases through the soil. One common way to determine this coefficient is to take core samples in the field and determine it in the lab. Unfortunately this method is destructive and needs laborious field work and can only reflect a small fraction of the whole soil. As a consequence insecurity about the resulting effective diffusivity on the profile scale must remain. We developed a new in-situ method using new gas sampling device, tracer gas and inverse soil gas modelling. The gas sampling device contains several sampling depths and can be easily installed into vertical holes of an auger, which allows for fast installation of the system. At the lower end of the device inert tracer gas is injected continuously. The tracer gas diffuses into the surrounding soil. The resulting distribution of the tracer gas concentrations is used to deduce the diffusivity profile of the soil. For Finite Element Modeling of the gas sampling device/soil system the program COMSOL is used. We will present the results of a field campaign comparing the new in-situ method with lab measurements on soil cores. The new sampling pole has several interesting advantages: it can be used in-situ and over a long time; so it allows following modifications of diffusion coefficients in interaction with rain but also vegetation cycle and wind.
NASA Astrophysics Data System (ADS)
Mohr, Manuel; Laemmel, Thomas; Maier, Martin; Schindler, Dirk
2017-04-01
Commonly it is assumed that soil gas transport is dominated by molecular diffusion. Few recent studies indicate that the atmosphere above the soil triggers non-diffusive gas transport processes in the soil, which can enhance soil gas transport and therefore soil gas efflux significantly. During high wind speed conditions, the so called pressure pumping effect has been observed: the enhancement of soil gas transport through dynamic changes in the air pressure field above the soil. However, the amplitudes and frequencies of the air pressure fluctuations responsible for pressure pumping are still uncertain. Moreover, an in situ observation of the pressure pumping effect is still missing. To investigate the pressure pumping effect, airflow measurements above and below the canopy of a Scots pine forest and high-precision relative air pressure measurements were conducted in the below-canopy space and in the soil over a measurement period of 16 weeks. To monitor the soil gas transport, a newly developed gas measurement system was used. The gas measurement system continuously injects helium as a tracer gas into the soil until a diffusive steady state is reached. With the steady state concentration profile of the tracer gas, it is possible to inversely model the gas diffusion coefficient profile of the soil. If the gas diffusion coefficient profile differed from steady state, we deduced that the soil gas transport is not only diffusive, but also influenced by non-diffusive processes. Results show that the occurrence of small air pressure fluctuations is strongly dependent on the mean above-canopy wind speed. The wind-induced air pressure fluctuations have mean amplitudes up to 10 Pa and lie in the frequency range 0.01-0.1 Hz. To describe the pumping motion of the air pressure field, the pressure pumping coefficient (PPC) was defined as the mean change in pressure per second. The PPC shows a clear quadratic dependence on mean above-canopy wind speed. Empirical modelling of the measured topsoil helium concentration demonstrated that the PPC is the most important predictor for changes in the topsoil helium concentration. Comparison of time periods with high PPC and periods of low PPC showed that the soil gas diffusion coefficient in depths between 5-10 cm increased up to 30% during periods of high PPC compared to steady state. Thus, the air pressure fluctuations observed in the atmosphere and described by the PPC penetrate into the soil and influence the topsoil gas transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moldrup, P.; Olesen, T.; Yamaguchi, T.
1999-08-01
Accurate description of gas diffusivity (ratio of gas diffusion coefficients in soil and free air, D{sub s}/D{sub 0}) in undisturbed soils is a prerequisite for predicting in situ transport and fate of volatile organic chemicals and greenhouse gases. Reference point gas diffusivities (R{sub p}) in completely dry soil were estimated for 20 undisturbed soils by assuming a power function relation between gas diffusivity and air-filled porosity ({epsilon}). Among the classical gas diffusivity models, the Buckingham (1904) expression, equal to the soil total porosity squared, best described R{sub p}. Inasmuch, as their previous works implied a soil-type dependency of D{sub s}/D{submore » 0}({epsilon}) in undisturbed soils, the Buckingham R{sub p} expression was inserted in two soil-type-dependent D{sub s}/D{sub 0}({epsilon}) models. One D{sub s}/D{sub 0}({epsilon}) model is a function of pore-size distribution (the Campbell water retention parameter used in a modified Burdine capillary tube model), and the other is a calibrated, empirical function of soil texture (silt + sand fraction). Both the Buckingham-Burdine-Campbell (BBC) and the Buckingham/soil texture-based D{sub s}/D{sub 0}({epsilon}) models described well the observed soil type effects on gas diffusivity and gave improved predictions compared with soil type independent models when tested against an independent data set for six undisturbed surface soils. This study emphasizes that simple but soil-type-dependent power function D{sub s}/D{sub 0}({epsilon}) models can adequately describe and predict gas diffusivity in undisturbed soil. The authors recommend the new BBC model as basis for modeling gas transport and reactions in undisturbed soil systems.« less
An in situ method for real-time monitoring of soil gas diffusivity
NASA Astrophysics Data System (ADS)
Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike
2016-04-01
Soil aeration is an important factor for the biogeochemistry of soils. Generally, gas exchange between soil and atmosphere is assumed to be governed by molecular diffusion and by this way fluxes can be calculated using by Fick's Law. The soil gas diffusion coefficient DS represents the proportional factor between the gas flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gas through the soil. One common way to determine DS is taking core samples in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious and it can only reflect a small fraction of the whole soil. As a consequence, uncertainty about the resulting effective diffusivity on the profile scale, i.e. the real aeration status remains. We developed a method to measure and monitor DS in situ. The set-up consists of a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has seven sampling depths (from 0 to -43 cm of depth) and can be easily installed into vertical holes drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the DS depth distribution of the soil. For Finite Element Modeling of the gas-sampling-device/soil system the program COMSOL was used. We tested our new method both in the lab and in a field study and compared the results with a reference lab method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. Soil gas profiles could be measured with a temporal resolution of 30 minutes. During the field study, there was an important rain event and we could monitor the decrease in soil gas diffusivity in the top soil due to water infiltration. The effect of soil water infiltration deeper into the soil on soil gas diffusivity could be observed during the following hours. Our new DS determination device can be quickly and easily installed and allows for monitoring continuously soil gas transport over a long time. It allows following modifications of soil gas diffusivity due to rain events. In addition it enables the analysis of non-diffusive soil gas transport processes.
A novel in-situ method for real-time monitoring of gas transport in soil
NASA Astrophysics Data System (ADS)
Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike
2017-04-01
Gas exchange between soil and atmosphere is important for the biogeochemistry of soils. Gas transport in soil is commonly assumed to be governed by molecular diffusion and is usually described by the soil gas diffusion coefficient DS characterizing the ability of the soil to "transport passively" gas through the soil. One way to determine DS is sampling soil cores in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious. Moreover, a few previous field studies identified other gas transport processes in soil to significantly enhance the diffusive gas transport. However, until now, no method is available to measure gas transport in situ in the soil. We developed a novel method to monitor gas transport in soil in situ. The method includes a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has several sampling depths and can be easily installed into a vertical hole drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the depth profile of DS. Gas transport in the soil surrounding the gas-sampling-device/soil system was modeled using the Finite Element Modeling program COMSOL . We tested our new method both in the lab and during two short field studies and compared the results with a reference method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. During a longer monitoring field campaign, typical soil-moisture effects upon gas diffusivity such as an increase during a drying period or a decrease after rain could be observed consistently. Under windy conditions we additionally measured for the first time the direct enhancement of gas transport in soil due to wind-induced pressure-pumping which could increase the effective DS up to 30% in the topsoil. Our novel monitoring method can be quickly and easily installed and allows for monitoring continuously soil gas transport over a long time. It allows monitoring physical modifications of soil gas diffusivity due to rain events or evaporation but it also allows studying non-diffusive gas transport processes in the soil.
Vertical profile of tritium concentration in air during a chronic atmospheric HT release.
Noguchi, Hiroshi; Yokoyama, Sumi
2003-03-01
The vertical profiles of tritium gas and tritiated water concentrations in air, which would have an influence on the assessment of tritium doses as well as on the environmental monitoring of tritium, were measured in a chronic tritium gas release experiment performed in Canada in 1994. While both of the profiles were rather uniform during the day because of atmospheric mixing, large gradients of the profiles were observed at night. The gradient coefficients of the profiles were derived from the measurements. Correlations were analyzed between the gradient coefficients and meteorological conditions: solar radiation, wind speed, and turbulent diffusivity. It was found that the solar radiation was highly correlated with the gradient coefficients of tritium gas and tritiated water profiles and that the wind speed and turbulent diffusivity showed weaker correlations with those of tritiated water profiles. A one-dimensional tritium transport model was developed to analyze the vertical diffusion of tritiated water re-emitted from the ground into the atmosphere. The model consists of processes of tritium gas deposition to soil including oxidation into tritiated water, reemission of tritiated water, dilution of tritiated water in soil by rain, and vertical diffusion of tritiated water in the atmosphere. The model accurately represents the accumulation of tritiated water in soil water and the time variations and vertical profiles of tritiated water concentrations in air.
Anaerobic soil volume as a major controlling factor for soil denitrification and respiration
NASA Astrophysics Data System (ADS)
Reent Köster, Jan; Tong, Bingxin; Grosz, Balázs; Burkart, Stefan; Ruoss, Nicolas; Well, Reinhard
2017-04-01
Gas diffusion in soil is a key variable to control denitrification and its N2O to N2 product ratio since it affects two major proximal denitrification factors, i.e. the concentrations of O2 and of N2O. Gas diffusivity is governed by the structure and the state of water saturation of the pore system. At a given O2 consumption rate decreasing diffusivity causes an enhanced anaerobic soil volume where denitrification can occur. Gas diffusivity is generally quantified as bulk diffusion coefficients that represent the lineal diffusive gas flux through the soil matrix. However, the spatial distribution of respiratory O2 consumption and denitrification - and hence the local concentration of O2 and N2O - is highly non-homogeneous. Knowledge of the anaerobic soil volume fraction (ansvf) has been proposed as a key control on denitrification, and has subsequently been used in many denitrification models. The ansvf has previously been quantified by direct measurement of O2 distribution in individual soil aggregates using microsensors. The measured ansvf corresponded to modelled values based on measured aggregate diffusivity and respiration, but was not yet correlated with measured denitrification rates. In the present ongoing study, we are incubating soil cores amended with nitrate and organic litter in an automated mesocosm system under aerobic as well as anaerobic conditions. An N2 depleted incubation atmosphere and the 15N labeled soil nitrate pool facilitate quantification of the N2 production in the soil by IRMS, and fluxes of N2O and CO2 are monitored via gas chromatography. The ansvf and the measured denitrification and respiration rates will then be used for model validation. During the session we will present first results of this study.
Vapor-phase interactions and diffusion of organic solvents in the unsaturated zone
Roy, W.R.; Griffin, R.A.
1990-01-01
This article presents an analysis of the interactions and static movement of 37 organic solvents as vapors through the unsaturated soil zone. The physicochemical interactions of the organic vapors with unsaturated soil materials were emphasized with focus on diffusive, and adsorptive interactions. Fick's Law and porous media diffusion coefficients for most of the solvent vapors were either compiled or estimated; coefficients were not available for some of the fluorinated solvents. The adsorption of some of the solvent vapors by silica was concluded to be due to hydrogen bond formation with surface silanol groups. Heats of adsorption data for different adsorbents were also compiled. There were very few data on the adsorption of these solvent vapors by soils, but it appears that the magnitude of adsorption of nonpolar solvents is reduced as the relative humidity of the vapor-solid system is increased. Consequently, the interaction of the vapors may then separated into two processes; (1) gas-water partitioning described by Henry's Law constants, and (2) solid-water adsorption coefficients which may be estimated from liquid-solid partition coefficients (Kd values). ?? 1990 Springer-Verlag New York Inc.
Effect of air turbulence on gas transport in soil; comparison of approaches
NASA Astrophysics Data System (ADS)
Pourbakhtiar, Alireza; Papadikis, Konstantinos; Poulsen, Tjalfe; Bridge, Jonathan; Wilkinson, Stephen
2017-04-01
Greenhouse gases are playing the key role in global warming. Soil is a source of greenhouse gases such as methane (CH4). Radon (Rn) which is a radioactive gas can emit form subsurface into the atmosphere and leads to health concerns in urban areas. Temperature, humidity, air pressure and vegetation of soil can affect gas emissions inside soil (Oertel et al., 2016). It's shown in many cases that wind induced fluctuations is an important factor in transport of gas through soil and other porous media. An example is: landfill gas emissions (Poulsen et al., 2001). We applied an experimental equipment for measuring controlled air turbulence on gas transport in soil in relation to the depth of sample. Two approaches for measurement of effect of wind turbulence on gas transport were applied and compared. Experiments were carried out with diffusion of CO2 and air as tracer gases with average vertical wind speeds of 0 to 0.83 m s-1. In approach A, Six different sample thicknesses from 5 to 30 cm were selected and total of 4 different wind conditions with different speed and fluctuations were applied. In approach B, a sample with constant depth was used. Five oxygen sensors were places inside sample at different depths. Total of 111 experiments were carried out. Gas transport is described by advection-dispersion equation. Gas transport is quantified as a dispersion coefficient. Oxygen breakthrough curves as a function of distance to the surface of the sample exposed to wind were derived numerically with an explicit forward time, central space finite-difference based model to evaluate gas transport. We showed that wind turbulence-induced fluctuations is an important factor in gas transport that can increase gas transport with average of 45 times more than molecular diffusion under zero wind condition. Comparison of two strategies for experiments, indicated that, constant deep samples (Approach B) are more reliable for measurement of gas transport under influence of wind turbulence. They are more similar to natural conditions and also the lower layers of soil are affecting the diffusion and dispersion coefficients of soil in the upper layers. Power spectrum density is calculated for all the all wind conditions to determine strength vibration of all the wind speeds and its relation to gas transport. Differential pressure for different wind conditions are measured at two sides of samples. References Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F. & Erasmi, S. 2016. Greenhouse gas emissions from soils—A review. Chemie der Erde - Geochemistry, 76, 327-352. Poulsen, T.G., Christophersen, M., Moldrup, P. & Kjeldsen, P. 2001. Modeling lateral gas transport in soil adjacent to old landfill. Journal of Environmental Engineering (ASCE), 127, 145-153.
Unsaturated soil moisture drying and wetting diffusion coefficient measurements in the laboratory.
DOT National Transportation Integrated Search
2009-09-01
ABSTRACTTransient moisture flow in an unsaturated soil in response to suction changes is controlled by the unsaturated moisture diffusion coefficient. The moisture diffusion coefficient can be determined by measuring suction profiles over time. The l...
NASA Astrophysics Data System (ADS)
Dore, J. E.; Kaiser, K.; Seybold, E. C.; McGlynn, B. L.
2012-12-01
Forest soils are sources of carbon dioxide (CO2) to the atmosphere and can act as either sources or sinks of methane (CH4) and nitrous oxide (N2O), depending on redox conditions and other factors. Soil moisture is an important control on microbial activity, redox conditions and gas diffusivity. Direct chamber measurements of soil-air CO2 fluxes are facilitated by the availability of sensitive, portable infrared sensors; however, corresponding CH4 and N2O fluxes typically require the collection of time-course physical samples from the chamber with subsequent analyses by gas chromatography (GC). Vertical profiles of soil gas concentrations may also be used to derive CH4 and N2O fluxes by the gradient method; this method requires much less time and many fewer GC samples than the direct chamber method, but requires that effective soil gas diffusivities are known. In practice, soil gas diffusivity is often difficult to accurately estimate using a modeling approach. In our study, we apply both the chamber and gradient methods to estimate soil trace gas fluxes across a complex Rocky Mountain forested watershed in central Montana. We combine chamber flux measurements of CO2 (by infrared sensor) and CH4 and N2O (by GC) with co-located soil gas profiles to determine effective diffusivity in soil for each gas simultaneously, over-determining the diffusion equations and providing constraints on both the chamber and gradient methodologies. We then relate these soil gas diffusivities to soil type and volumetric water content in an effort to arrive at empirical parameterizations that may be used to estimate gas diffusivities across the watershed, thereby facilitating more accurate, frequent and widespread gradient-based measurements of trace gas fluxes across our study system. Our empirical approach to constraining soil gas diffusivity is well suited for trace gas flux studies over complex landscapes in general.
Measurement of effective air diffusion coefficients for trichloroethene in undisturbed soil cores.
Bartelt-Hunt, Shannon L; Smith, James A
2002-06-01
In this study, we measure effective diffusion coefficients for trichloroethene in undisturbed soil samples taken from Picatinny Arsenal, New Jersey. The measured effective diffusion coefficients ranged from 0.0053 to 0.0609 cm2/s over a range of air-filled porosity of 0.23-0.49. The experimental data were compared to several previously published relations that predict diffusion coefficients as a function of air-filled porosity and porosity. A multiple linear regression analysis was developed to determine if a modification of the exponents in Millington's [Science 130 (1959) 100] relation would better fit the experimental data. The literature relations appeared to generally underpredict the effective diffusion coefficient for the soil cores studied in this work. Inclusion of a particle-size distribution parameter, d10, did not significantly improve the fit of the linear regression equation. The effective diffusion coefficient and porosity data were used to recalculate estimates of diffusive flux through the subsurface made in a previous study performed at the field site. It was determined that the method of calculation used in the previous study resulted in an underprediction of diffusive flux from the subsurface. We conclude that although Millington's [Science 130 (1959) 100] relation works well to predict effective diffusion coefficients in homogeneous soils with relatively uniform particle-size distributions, it may be inaccurate for many natural soils with heterogeneous structure and/or non-uniform particle-size distributions.
NASA Astrophysics Data System (ADS)
Barber, C.; Davis, G. B.; Briegel, D.; Ward, J. K.
1990-01-01
The concentration of methane in groundwater and soil-gas in the vicinity of a waste landfill on an unconfined sand aquifer has been investigated in detail. These data have been used to evaluate techniques which use volatile organic compounds in soil-gas as indicators of groundwater contamination. Simple one-dimensional models of gas advection and diffusion have been adapted for use in the study. Lateral advection of gas in the unsaturated sand was found to be seasonal and was most noticeable in winter when the profile was wet; a mean velocity of 1 m d - was measured from breakthrough of a helium tracer in an injection test. The effects of advection on trace concentrations of methane in soil-gas were limited to within 150-200m from the waste site and resulted from pressure gradients brought about by positive gas pressures in the landfill, and also as a result of ebullition (gas bubbling) from contaminated groundwater. The distribution of methane in soil-gas at shallow (2m) depth gave a general indication of the direction of movement of contaminants with groundwater in close proximity to the landfill. Outside this zone, diffusional transport of methane from groundwater to soil-gas occurred and methane in soil-gas sampled close to the water table was found to be a useful indicator of contaminated groundwater. Modelling the exchange of volatiles between aqueous and gas phases indicates that a wide range of organic compounds, particularly those with Henry's Law constants greater than 2.5 × 10 t-2 kPam 3mol -1, would have potential for use as indicators of pollution, if these were present in groundwater and they behaved relatively conservatively. In general, the principal factors controlling the concentration of these volatiles in soil-gas were the concentration gradient at the water table and capillary fringe and the ratio of diffusion coefficients in the saturated and unsaturated zones.
Mutual influence of molecular diffusion in gas and surface phases
NASA Astrophysics Data System (ADS)
Hori, Takuma; Kamino, Takafumi; Yoshimoto, Yuta; Takagi, Shu; Kinefuchi, Ikuya
2018-01-01
We develop molecular transport simulation methods that simultaneously deal with gas- and surface-phase diffusions to determine the effect of surface diffusion on the overall diffusion coefficients. The phenomenon of surface diffusion is incorporated into the test particle method and the mean square displacement method, which are typically employed only for gas-phase transport. It is found that for a simple cylindrical pore, the diffusion coefficients in the presence of surface diffusion calculated by these two methods show good agreement. We also confirm that both methods reproduce the analytical solution. Then, the diffusion coefficients for ink-bottle-shaped pores are calculated using the developed method. Our results show that surface diffusion assists molecular transport in the gas phase. Moreover, the surface tortuosity factor, which is known to be uniquely determined by physical structure, is influenced by the presence of gas-phase diffusion. This mutual influence of gas-phase diffusion and surface diffusion indicates that their simultaneous calculation is necessary for an accurate evaluation of the diffusion coefficients.
Relevance of anisotropy and spatial variability of gas diffusivity for soil-gas transport
NASA Astrophysics Data System (ADS)
Schack-Kirchner, Helmer; Kühne, Anke; Lang, Friederike
2017-04-01
Models of soil gas transport generally do not consider neither direction dependence of gas diffusivity, nor its small-scale variability. However, in a recent study, we could provide evidence for anisotropy favouring vertical gas diffusion in natural soils. We hypothesize that gas transport models based on gas diffusion data measured with soil rings are strongly influenced by both, anisotropy and spatial variability and the use of averaged diffusivities could be misleading. To test this we used a 2-dimensional model of soil gas transport to under compacted wheel tracks to model the soil-air oxygen distribution in the soil. The model was parametrized with data obtained from soil-ring measurements with its central tendency and variability. The model includes vertical parameter variability as well as variation perpendicular to the elongated wheel track. Different parametrization types have been tested: [i)]Averaged values for wheel track and undisturbed. em [ii)]Random distribution of soil cells with normally distributed variability within the strata. em [iii)]Random distributed soil cells with uniformly distributed variability within the strata. All three types of small-scale variability has been tested for [j)] isotropic gas diffusivity and em [jj)]reduced horizontal gas diffusivity (constant factor), yielding in total six models. As expected the different parametrizations had an important influence to the aeration state under wheel tracks with the strongest oxygen depletion in case of uniformly distributed variability and anisotropy towards higher vertical diffusivity. The simple simulation approach clearly showed the relevance of anisotropy and spatial variability in case of identical central tendency measures of gas diffusivity. However, until now it did not consider spatial dependency of variability, that could even aggravate effects. To consider anisotropy and spatial variability in gas transport models we recommend a) to measure soil-gas transport parameters spatially explicit including different directions and b) to use random-field stochastic models to assess the possible effects for gas-exchange models.
NASA Astrophysics Data System (ADS)
Chang, Ailian; Sun, HongGuang; Zheng, Chunmiao; Lu, Bingqing; Lu, Chengpeng; Ma, Rui; Zhang, Yong
2018-07-01
Fractional-derivative models have been developed recently to interpret various hydrologic dynamics, such as dissolved contaminant transport in groundwater. However, they have not been applied to quantify other fluid dynamics, such as gas transport through complex geological media. This study reviewed previous gas transport experiments conducted in laboratory columns and real-world oil-gas reservoirs and found that gas dynamics exhibit typical sub-diffusive behavior characterized by heavy late-time tailing in the gas breakthrough curves (BTCs), which cannot be effectively captured by classical transport models. Numerical tests and field applications of the time fractional convection-diffusion equation (fCDE) have shown that the fCDE model can capture the observed gas BTCs including their apparent positive skewness. Sensitivity analysis further revealed that the three parameters used in the fCDE model, including the time index, the convection velocity, and the diffusion coefficient, play different roles in interpreting the delayed gas transport dynamics. In addition, the model comparison and analysis showed that the time fCDE model is efficient in application. Therefore, the time fractional-derivative models can be conveniently extended to quantify gas transport through natural geological media such as complex oil-gas reservoirs.
Direct monitoring of wind-induced pressure-pumping on gas transport in soil
NASA Astrophysics Data System (ADS)
Laemmel, Thomas; Mohr, Manuel; Schindler, Dirk; Schack-Kirchner, Helmer; Maier, Martin
2017-04-01
Gas exchange between soil and atmosphere is important for the biogeochemistry of soils and is commonly assumed to be governed by molecular diffusion. Yet a few previous field studies identified other gas transport processes such as wind-induced pressure-pumping to enhance soil-atmosphere fluxes significantly. However, since these wind-induced non-diffusive gas transport processes in soil often occur intermittently, the quantification of their contribution to soil gas emissions is challenging. To quantify the effects of wind-induced pressure-pumping on soil gas transport, we developed a method for in situ monitoring of soil gas transport. The method includes the use of Helium (He) as a tracer gas which was continuously injected into the soil. The resulting He steady-state concentration profile was monitored. Gas transport parameters of the soil were inversely modelled. We used our method during a field campaign in a well-aerated forest soil over three months. During periods of low wind speed, soil gas transport was modelled assuming diffusion as transport process. During periods of high wind speed, the previously steady diffusive He concentration profile showed temporary concentration decreases in the topsoil, indicating an increase of the effective gas transport rate in the topsoil up to 30%. The enhancement of effective topsoil soil gas diffusivity resulted from wind-induced air pressure fluctuations which are referred to as pressure-pumping. These air pressure fluctuations had frequencies between 0.1 and 0.01 Hz and amplitudes up to 10 Pa and occurred at above-canopy wind speeds greater than 5 m s-1. We could show the importance of the enhancement of the gas transport rate in relation with the wind intensity and corresponding air pressure fluctuations characteristics. We directly detected and quantified the pressure-pumping effect on gas transport in soil in a field study for the first time, and could thus validate and underpin the importance of this non-diffusive gas transport process. Our method can also be used to study other non-diffusive gas transport processes occurring in soil and snow, and their possible feedbacks or interactions with biogeochemical processes.
In this study, we measure effective diffusion coefficients for trichloroethene in undisturbed soil samples taken from Picatinny Arsenal, New Jersey. The measured effective diffusion coefficients ranged from 0.0053 to 0.0609 cm2/s over a range of air...
Effect of freeze-thaw cycles on greenhouse gas fluxes from peat soils
NASA Astrophysics Data System (ADS)
Oh, H. D.; Rezanezhad, F.; Markelov, I.; McCarter, C. P. R.; Van Cappellen, P.
2017-12-01
The ongoing displacement of climate zones by global warming is increasing the frequency and intensity of freeze-thaw cycles in middle and high latitude regions, many of which are dominated by organic soils such as peat. Repeated freezing and thawing of soils changes their physical properties, geochemistry, and microbial community structure, which together govern the biogeochemical cycling of carbon and nutrients. In this presentation, we focus on how freeze-thaw cycles influence greenhouse gas fluxes from peat using a newly developed experimental soil column system that simulates realistic soil temperature profiles during freeze-thaw cycles. We measured the surface and subsurface changes to gas and aqueous phase chemistry to delineate the diffusion pathways and quantify soil greenhouse gas fluxes during freeze-thaw cycles using sulfur hexafluoride (SF6) as a conservative tracer. Three peat columns were assembled inside a temperature controlled chamber with different soil structures. All three columns were packed with 40 cm of undisturbed, slightly decomposed peat, where the soil of two columns had an additional 10 cm layer on top (one with loose Sphagnum moss and one with an impermeable plug). The results indicate that the release of SF6 and CO2 gas from the soil surface was influenced by the recurrent development of a physical ice barrier, which prevented gas exchange between the soil and atmosphere during freezing conditions. With the onset of thawing a pulse of SF6 and CO2 occurred, resulting in a flux of 3.24 and 2095.52 µmol/m2h, respectively, due to the build-up of gases in the liquid-phase pore space during freezing. Additionally, we developed a model to determine the specific diffusion coefficients for each peat column. These data allow us to better predict how increased frequency and intensity of freeze-thaw cycles will affect greenhouse gas emissions in northern peat soils.
Experimental studies and model analysis of noble gas fractionation in low-permeability porous media
NASA Astrophysics Data System (ADS)
Ding, Xin; Mack Kennedy, B.; Molins, Sergi; Kneafsey, Timothy; Evans, William C.
2017-05-01
Gas flow through the vadose zone from sources at depth involves fractionation effects that can obscure the nature of transport and even the identity of the source. Transport processes are particularly complex in low permeability media but as shown in this study, can be elucidated by measuring the atmospheric noble gases. A series of laboratory column experiments was conducted to evaluate the movement of noble gas from the atmosphere into soil in the presence of a net efflux of CO2, a process that leads to fractionation of the noble gases from their atmospheric abundance ratios. The column packings were designed to simulate natural sedimentary deposition by interlayering low permeability ceramic plates and high permeability beach sand. Gas samples were collected at different depths at CO2 fluxes high enough to cause extreme fractionation of the noble gases (4He/36Ar > 20 times the air ratio). The experimental noble gas fractionation-depth profiles were in good agreement with those predicted by the dusty gas (DG) model, demonstrating the applicability of the DG model across a broad spectrum of environmental conditions. A governing equation based on the dusty gas model was developed to specifically describe noble gas fractionation at each depth that is controlled by the binary diffusion coefficient, Knudsen diffusion coefficient and the ratio of total advection flux to total flux. Finally, the governing equation was used to derive the noble gas fractionation pattern and illustrate how it is influenced by soil CO2 flux, sedimentary sequence, thickness of each sedimentary layer and each layer's physical parameters. Three potential applications of noble gas fractionation are provided: evaluating soil attributes in the path of gas flow from a source at depth to the atmosphere, testing leakage through low permeability barriers used to isolate buried waste, and tracking biological methanogenesis and methane oxidation associated with hydrocarbon degradation.
Bulk diffusion in a kinetically constrained lattice gas
NASA Astrophysics Data System (ADS)
Arita, Chikashi; Krapivsky, P. L.; Mallick, Kirone
2018-03-01
In the hydrodynamic regime, the evolution of a stochastic lattice gas with symmetric hopping rules is described by a diffusion equation with density-dependent diffusion coefficient encapsulating all microscopic details of the dynamics. This diffusion coefficient is, in principle, determined by a Green-Kubo formula. In practice, even when the equilibrium properties of a lattice gas are analytically known, the diffusion coefficient cannot be computed except when a lattice gas additionally satisfies the gradient condition. We develop a procedure to systematically obtain analytical approximations for the diffusion coefficient for non-gradient lattice gases with known equilibrium. The method relies on a variational formula found by Varadhan and Spohn which is a version of the Green-Kubo formula particularly suitable for diffusive lattice gases. Restricting the variational formula to finite-dimensional sub-spaces allows one to perform the minimization and gives upper bounds for the diffusion coefficient. We apply this approach to a kinetically constrained non-gradient lattice gas in two dimensions, viz. to the Kob-Andersen model on the square lattice.
Hibi, Yoshihiko; Kashihara, Ayumi
2018-03-01
A previous study has reported that Knudsen diffusion coefficients obtained by tracer experiments conducted with a binary gas system and a porous medium are consistently smaller than those obtained by permeability experiments conducted with a single-gas system and a porous medium. To date, however, that study is the only one in which tracer experiments have been conducted with a binary gas system. Therefore, to confirm this difference in Knudsen diffusion coefficients, we used a method we had developed previously to conduct tracer experiments with a binary carbon dioxide-nitrogen gas system and five porous media with permeability coefficients ranging from 10 -13 to 10 -11 m 2 . The results showed that the Knudsen diffusion coefficient of N 2 (D N2 ) (cm 2 /s) was related to the effective permeability coefficient k e (m 2 ) as D N2 = 7.39 × 10 7 k e 0.767 . Thus, the Knudsen diffusion coefficients of N 2 obtained by our tracer experiments were consistently 1/27 of those obtained by permeability experiments conducted with many porous media and air by other researchers. By using an inversion simulation to fit the advection-diffusion equation to the distribution of concentrations at observation points calculated by mathematically solving the equation, we confirmed that the method used to obtain the Knudsen diffusion coefficient in this study yielded accurate values. Moreover, because the Knudsen diffusion coefficient did not differ when columns with two different lengths, 900 and 1500 mm, were used, this column property did not influence the flow of gas in the column. The equation of the dusty gas model already includes obstruction factors for Knudsen diffusion and molecular diffusion, which relate to medium heterogeneity and tortuosity and depend only on the structure of the porous medium. Furthermore, there is no need to take account of any additional correction factor for molecular diffusion except the obstruction factor because molecular diffusion is only treated in a multicomponent gas system. Thus, molecular diffusion considers only the obstruction factor related to tortuosity. Therefore, we introduced a correction factor for a multicomponent gas system into the DGM equation, multiplying the Knudsen diffusion coefficient, which includes the obstruction factor related to tortuosity, by this correction factor. From the present experimental results, the value of this correction factor was 1/27, and it depended only on the structure of the gas system in the porous medium. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hibi, Yoshihiko; Kashihara, Ayumi
2018-03-01
A previous study has reported that Knudsen diffusion coefficients obtained by tracer experiments conducted with a binary gas system and a porous medium are consistently smaller than those obtained by permeability experiments conducted with a single-gas system and a porous medium. To date, however, that study is the only one in which tracer experiments have been conducted with a binary gas system. Therefore, to confirm this difference in Knudsen diffusion coefficients, we used a method we had developed previously to conduct tracer experiments with a binary carbon dioxide-nitrogen gas system and five porous media with permeability coefficients ranging from 10-13 to 10-11 m2. The results showed that the Knudsen diffusion coefficient of N2 (DN2) (cm2/s) was related to the effective permeability coefficient ke (m2) as DN2 = 7.39 × 107ke0.767. Thus, the Knudsen diffusion coefficients of N2 obtained by our tracer experiments were consistently 1/27 of those obtained by permeability experiments conducted with many porous media and air by other researchers. By using an inversion simulation to fit the advection-diffusion equation to the distribution of concentrations at observation points calculated by mathematically solving the equation, we confirmed that the method used to obtain the Knudsen diffusion coefficient in this study yielded accurate values. Moreover, because the Knudsen diffusion coefficient did not differ when columns with two different lengths, 900 and 1500 mm, were used, this column property did not influence the flow of gas in the column. The equation of the dusty gas model already includes obstruction factors for Knudsen diffusion and molecular diffusion, which relate to medium heterogeneity and tortuosity and depend only on the structure of the porous medium. Furthermore, there is no need to take account of any additional correction factor for molecular diffusion except the obstruction factor because molecular diffusion is only treated in a multicomponent gas system. Thus, molecular diffusion considers only the obstruction factor related to tortuosity. Therefore, we introduced a correction factor for a multicomponent gas system into the DGM equation, multiplying the Knudsen diffusion coefficient, which includes the obstruction factor related to tortuosity, by this correction factor. From the present experimental results, the value of this correction factor was 1/27, and it depended only on the structure of the gas system in the porous medium.
NASA Astrophysics Data System (ADS)
Song, Yongchen; Hao, Min; Zhao, Yuechao; Zhang, Liang
2014-12-01
In this study, the dual-chamber pressure decay method and magnetic resonance imaging (MRI) were used to dynamically visualize the gas diffusion process in liquid-saturated porous media, and the relationship of concentration-distance for gas diffusing into liquid-saturated porous media at different times were obtained by MR images quantitative analysis. A non-iterative finite volume method was successfully applied to calculate the local gas diffusion coefficient in liquid-saturated porous media. The results agreed very well with the conventional pressure decay method, thus it demonstrates that the method was feasible of determining the local diffusion coefficient of gas in liquid-saturated porous media at different times during diffusion process.
Soil Aeration deficiencies in urban sites
NASA Astrophysics Data System (ADS)
Weltecke, Katharina; Gaertig, Thorsten
2010-05-01
Soil aeration deficiencies in urban sites Katharina Weltecke and Thorsten Gaertig On urban tree sites reduction of soil aeration by compaction or sealing is an important but frequently underestimated factor for tree growth. Up to 50% of the CO2 assimilated during the vegetation period is respired in the root space (Qi et al. 1994). An adequate supply of the soil with oxygen and a proper disposal of the exhaled carbon dioxide are essential for an undisturbed root respiration. If the soil surface is smeared, compacted or sealed, soil aeration is interrupted. Several references show that root activity and fine root growth are controlled by the carbon dioxide concentration in soil air (Qi et al.1994, Burton et al. 1997). Gaertig (2001) found that decreasing topsoil gas permeability leads to reduced fine root density and hence to injury in crown structure of oaks. In forest soils a critical CO2 concentration of more than 0.6 % indicates a bad aeration status (Gaertig 2001). The majority of urban tree sites are compacted or sealed. The reduction of soil aeration may lead to dysfunctions in the root space and consequently to stress during periods of drought, which has its visible affects in crown structure. It is reasonable to assume that disturbances in soil aeration lead to reduced tree vigour and roadworthiness, resulting in high maintenance costs. The assessment of soil aeration in urban sites is difficult. In natural ecosystems the measurement of gas diffusivity and the gas-chromatical analysis of CO2 in soil air are accepted procedures in analyzing the state of aeration (Schack-Kirchner et al. 2001, Gaertig 2001). It has been found that these methods can also be applied for analyzing urban sites. In particular CO2 concentration in the soil atmosphere can be considered as a rapidly assessable, relevant and integrating indicator of the aeration situation of urban soils. This study tested the working hypothesis that soil aeration deficiencies lead to a decrease of fine root density and tree vigour on urban soils. For that purpose gas diffusivity, soil CO2 concentrations and fine root density were measured on typical urban sites in the German cities of Göttingen, Mannheim, and Kassel. The known characteristics of soil aeration on forest sites could be affirmed for urban soils. A negative correlation was found between gas diffusion coefficients and CO2 concentration as well as between fine root extension and CO2 concentration. Changes in crown structure of beech indicating a loss of vigour were found at sites with disturbed aeration. Diffusivity patterns and CO2 concentrations of different specific urban soil sealing types were found. On more natural sites (mulch, grass) increased gas diffusion and low CO2 concentration were present. In contrast, on more compacted or sealed areas (asphalt, paving stone, macadamised road surface) the exchange between soil air and atmosphere was nearly disconnected and soil CO2 concentrations partly exceeded the known critical value of 0.6 % up to tenfold. Literature Burton, A. J.; Pregitzer, K. S.; Zogg, G. P. und Zak D. R. (1997): Effect of measurement CO2 concentrations on sugar maple root respiration. In: Canadian journal of Forest Research, H. 17, S. 421-427. Gaertig, T. (2001): Bodengashaushalt, Feinwurzeln und Vitalität von Eichen. In: Freiburger Bodenkundliche Abhandlungen, H. 40, S. 157. Qi, J.; Marshall, J. D.; Mattson, K. G. (1994): High soil carbon dioxide concentrations inhibit root respiration of Douglas fir. In: New Phytol., Jg. 128, H. 3, S. 435-442. Schack-Kirchner, H.; Gaertig, T.; Wilpert, K. v.; Hildebrand, E. E. (2001): A modified McIntyre and Phillip approach to measure top-soil gas diffusivity in-situ. In: J. Plant Nutr. Soil Sci., Jg. 164, S. 253-258.
Estimation of CO2 diffusion coefficient at 0-10 cm depth in undisturbed and tilled soils
USDA-ARS?s Scientific Manuscript database
Diffusion coefficients (D) of CO2 at 0 – 10 cm layers in undisturbed and tilled soil conditions were estimated using Penman, Millington-Quirk, Ridgwell et al. (1999), Troeh et al., and Moldrup et al. models. Soil bulk density and volumetric soil water content ('v) at 0 – 10 cm were measured on April...
Unifying diffusion and seepage for nonlinear gas transport in multiscale porous media
NASA Astrophysics Data System (ADS)
Song, Hongqing; Wang, Yuhe; Wang, Jiulong; Li, Zhengyi
2016-09-01
We unify the diffusion and seepage process for nonlinear gas transport in multiscale porous media via a proposed new general transport equation. A coherent theoretical derivation indicates the wall-molecule and molecule-molecule collisions drive the Knudsen and collective diffusive fluxes, and constitute the system pressure across the porous media. A new terminology, nominal diffusion coefficient can summarize Knudsen and collective diffusion coefficients. Physical and numerical experiments show the support of the new formulation and provide approaches to obtain the diffusion coefficient and permeability simultaneously. This work has important implication for natural gas extraction and greenhouse gases sequestration in geological formations.
Gas-film coefficients for streams
Rathbun, R.E.; Tai, D.Y.
1983-01-01
Equations for predicting the gas-film coefficient for the volatilization of organic solutes from streams are developed. The film coefficient is a function of windspeed and water temperature. The dependence of the coefficient on windspeed is determined from published information on the evaporation of water from a canal. The dependence of the coefficient on temperature is determined from laboratory studies on the evaporation of water. Procedures for adjusting the coefficients for different organic solutes are based on the molecular diffusion coefficient and the molecular weight. The molecular weight procedure is easiest to use because of the availability of molecular weights. However, the theoretical basis of the procedure is questionable. The diffusion coefficient procedure is supported by considerable data. Questions, however, remain regarding the exact dependence of the film coefficint on the diffusion coefficient. It is suggested that the diffusion coefficient procedure with a 0.68-power dependence be used when precise estimate of the gas-film coefficient are needed and that the molecular weight procedure be used when only approximate estimates are needed.
NASA Astrophysics Data System (ADS)
Maier, Martin; Lang, Friederike; Schack-Kirchner, Helmer
2017-04-01
Most studies implicitly use a 1 dimensional simplification of soil processes with a dominating vertical profile, e.g in soil physical and chemical properties. In many cases, this is a useful and sufficient representation of the realty which helps to answer research questions in an efficient way. Yet, in some cases, a 2 D or 3 D analysis of the processes is necessary to avoid misinterpretation of experimental results, e.g. modeling the impact of chamber deployment time during the measurement of gas fluxes (von Fischer et al. 2009) or trenching experiments (Jassal et al. 2006). We developed a new method to determine the 2 D patterns of the soil gas diffusion coefficient DS/D0 in situ, using simultaneously several inert tracer gases. Soil gas transport was modelled inversely using the Finite Element Modeling program COMSOL. In combination with measurements of target gases such as CO2, CH4 and N2O, this allowed us for modelling the 2-D patterns of transport and production of CO2, CH4 and N2O in the soil. We observed how methane oxidation and soil respiration zones shifted within the soil profile while the gas fluxes at the surface remain rather stable during a 3 week campaign. The soil was a net sink for N2O, yet, in the subsoil local (weak) source of N2O lead to horizontal fluxes of N2O. We are testing the 3 D approach in the lab on defined substrates and objects to quantify the spatial resolution and reliability of the method. In a next step, we want to test the method in the field and study the ventilation and soil gas fluxes of an ant nest in 3D. References: von Fischer, J. C., G. Butters, P. C. Duchateau, R. J. Thelwell, and R. Siller (2009), In situ measures of methanotroph activity in upland soils: A reaction-diffusion model and field observation of water stress, J. Geophys. Res., 114, G01015, Jassal RS, Black TA (2006) Estimating heterotrophic and autotrophic soil respiration using small-area trenched plot technique: theory and practice. Agric. For. Meteorol. 140:193-202
NASA Astrophysics Data System (ADS)
Naveed, M.; Kawamoto, K.; Hamamoto, S.; Sakaki, T.; Moldrup, P.; Komatsu, T.
2010-12-01
The transport and fate of gases in the soil are governed by gas advection, diffusion and dispersion phenomena. Among three gas transport phenomena, gas dispersion is least understood. Main objective of this study is to investigate the gas dispersion phenomena, emphasising on the effect of moisture content, sand particle shape, particle size, particle size distribution, and scale dependency on gas dispersion. One dimensional laboratory column experiments, in an apparatus consisting of an acrylic column attached to inlet and outlet chambers (Hamamoto et al., SSAJ, 2009), were conducted for the measurements of gas dispersion coefficient (DH). Various types of sands (Narita and Toyoura sands from Japan, and Granusils and Accusands from United States) and glass beads with variable moisture contents were used as porous media. Shape of the sand particles were characterized in terms of sphericity and roundness. The changes in the oxygen concentration within the soil column and in the inlet and outlet chambers were monitored. In addition the air pressure at inlet and middle of the soil column was also monitored to ensure the uniform density of porous media along the column. The measured breakthrough curves were fitted with the analytical solution of the advection dispersion equation to determine dispersion coefficients. The measured dispersion coefficient (DH) showed linear increase with pore velocity (u0). Measured dispersivity (λ= DH/u0) increases with decrease in air filled porosity induced by adding moisture contents in sands. Its values varies from 0 to 3 cm on decreasing air filled porosity from 0.50 (air dry) to 0.25 (field capacity). Shape of the sand particles has no significant effect on gas dispersion. When gas dispersion phenomena was studied on different shape of the sand particles at various air filled porosities, it was found that for angular sand particles initially gas dispersivity increases more rapidly as compared to rounded sand particles and finally both attains nearly same values at field capacity. Particle size has no significant effect on gas dispersion but particle size distribution has considerable effect on it. For the same sand when a coefficient of uniformity (Uc) increases from 1 to 4, gas dispersivity increases by 1.5 times. Gas dispersion coefficient was measured with two different sized columns and it was found that there is no effect of diameter and length of the column on gas dispersion for sandy soils. Therefore it can be concluded that only air filled porosity and particle size distribution should be considered for modeling the gas dispersivity in porous media.
Solute diffusion in liquid metals
NASA Technical Reports Server (NTRS)
Bhat, B. N.
1973-01-01
A gas model of diffusion in liquid metals is presented. In this model, ions of liquid metals are assumed to behave like the molecules in a dense gas. Diffusion coefficient of solute is discussed with reference to its mass, ionic size, and pair potential. The model is applied to the case of solute diffusion in liquid silver. An attempt was made to predict diffusion coefficients of solutes with reasonable accuracy.
The Effect of Thermal Convection on Earth-Atmosphere CO2 Gas Exchange in Aggregated Soil
NASA Astrophysics Data System (ADS)
Ganot, Y.; Weisbrod, N.; Dragila, M. I.
2011-12-01
Gas transport in soils and surface-atmosphere gas exchange are important processes that affect different aspects of soil science such as soil aeration, nutrient bio-availability, sorption kinetics, soil and groundwater pollution and soil remediation. Diffusion and convection are the two main mechanisms that affect gas transport, fate and emissions in the soils and in the upper vadose zone. In this work we studied CO2 soil-atmosphere gas exchange under both day-time and night-time conditions, focusing on the impact of thermal convection (TCV) during the night. Experiments were performed in a climate-controlled laboratory. One meter long columns were packed with matrix of different grain size (sand, gravel and soil aggregates). Air with 2000 ppm CO2 was injected into the bottom of the columns and CO2 concentration within the columns was continuously monitored by an Infra Red Gas Analyzer. Two scenarios were compared for each soil: (1) isothermal conditions, representing day time conditions; and (2) thermal gradient conditions, i.e., atmosphere colder than the soil, representing night time conditions. Our results show that under isothermal conditions, diffusion is the major mechanism for surface-atmosphere gas exchange for all grain sizes; while under night time conditions the prevailing mechanism is dependent on the air permeability of the matrix: for sand and gravel it is diffusion, and for soil aggregates it is TCV. Calculated CO2 flux for the soil aggregates column shows that the TCV flux was three orders of magnitude higher than the diffusive flux.
Kane, Joshua J.; Matthews, Austin C.; Orme, Christopher J.; ...
2018-05-05
Understanding “Where?” and “How much?” oxidation has occurred in a nuclear graphite component is critical to predicting any deleterious effects to physical, mechanical, and thermal properties. A key factor in answering these questions is characterizing the effective mass transport rates of gas species in nuclear graphites. Effective gas diffusion coefficients were determined for twenty-six graphite specimens spanning six modern grades of nuclear graphite. A correlation was established for the majority of grades examined allowing a reasonable estimate of the effective diffusion coefficient to be determined purely from an estimate of total porosity. The importance of Knudsen diffusion to the measuredmore » diffusion coefficients is also shown for modern grades. Furthermore, Knudsen diffusion has not historically been considered to contribute to measured diffusion coefficients of nuclear graphite.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, Joshua J.; Matthews, Austin C.; Orme, Christopher J.
Understanding “Where?” and “How much?” oxidation has occurred in a nuclear graphite component is critical to predicting any deleterious effects to physical, mechanical, and thermal properties. A key factor in answering these questions is characterizing the effective mass transport rates of gas species in nuclear graphites. Effective gas diffusion coefficients were determined for twenty-six graphite specimens spanning six modern grades of nuclear graphite. A correlation was established for the majority of grades examined allowing a reasonable estimate of the effective diffusion coefficient to be determined purely from an estimate of total porosity. The importance of Knudsen diffusion to the measuredmore » diffusion coefficients is also shown for modern grades. Furthermore, Knudsen diffusion has not historically been considered to contribute to measured diffusion coefficients of nuclear graphite.« less
Chromatographic determination of the diffusion coefficients of light hydrocarbons in polymers
NASA Astrophysics Data System (ADS)
Yakubenko, E. E.; Korolev, A. A.; Chapala, P. P.; Bermeshev, M. V.; Kanat'eva, A. Yu.; Kurganov, A. A.
2017-01-01
Gas-chromatographic determination of the diffusion coefficients that allows for the compressibility of the mobile phase has been suggested. The diffusion coefficients were determined for light hydrocarbons C1-C4 in four polymers with a high free volume, which are candidates for use as gas-separating membranes. The diffusion coefficients calculated from chromatographic data were shown to be one or two orders of magnitude smaller than the values obtained by the membrane method. This may be due to the presence of an additional flow through the membrane caused by the pressure gradient across the membrane in membrane methods.
Reactive Gas transport in soil: Kinetics versus Local Equilibrium Approach
NASA Astrophysics Data System (ADS)
Geistlinger, Helmut; Jia, Ruijan
2010-05-01
Gas transport through the unsaturated soil zone was studied using an analytical solution of the gas transport model that is mathematically equivalent to the Two-Region model. The gas transport model includes diffusive and convective gas fluxes, interphase mass transfer between the gas and water phase, and biodegradation. The influence of non-equilibrium phenomena, spatially variable initial conditions, and transient boundary conditions are studied. The objective of this paper is to compare the kinetic approach for interphase mass transfer with the standard local equilibrium approach and to find conditions and time-scales under which the local equilibrium approach is justified. The time-scale of investigation was limited to the day-scale, because this is the relevant scale for understanding gas emission from the soil zone with transient water saturation. For the first time a generalized mass transfer coefficient is proposed that justifies the often used steady-state Thin-Film mass transfer coefficient for small and medium water-saturated aggregates of about 10 mm. The main conclusion from this study is that non-equilibrium mass transfer depends strongly on the temporal and small-scale spatial distribution of water within the unsaturated soil zone. For regions with low water saturation and small water-saturated aggregates (radius about 1 mm) the local equilibrium approach can be used as a first approximation for diffusive gas transport. For higher water saturation and medium radii of water-saturated aggregates (radius about 10 mm) and for convective gas transport, the non-equilibrium effect becomes more and more important if the hydraulic residence time and the Damköhler number decrease. Relative errors can range up to 100% and more. While for medium radii the local equilibrium approach describes the main features both of the spatial concentration profile and the time-dependence of the emission rate, it fails completely for larger aggregates (radius about 100 mm). From the comparative study of relevant scenarios with and without biodegradation it can be concluded that, under realistic field conditions, biodegradation within the immobile water phase is often mass-transfer limited and the local equilibrium approach assuming instantaneous mass transfer becomes rather questionable. References Geistlinger, H., Ruiyan Jia, D. Eisermann, and C.-F. Stange (2008): Spatial and temporal variability of dissolved nitrous oxide in near-surface groundwater and bubble-mediated mass transfer to the unsaturated zone, J. Plant Nutrition and Soil Science, in press. Geistlinger, H. (2009) Vapor transport in soil: concepts and mathematical description. In: Eds.: S. Saponari, E. Sezenna, and L. Bonoma, Vapor emission to outdoor air and enclosed spaces for human health risk assessment: Site characterization, monitoring, and modeling. Nova Science Publisher. Milano. Accepted for publication.
Remediation of soil-bound polynuclear aromatic hydrocarbons using nonionic surfactants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeom, IckTae; Ghosh, Mriganka; Cox, C.
1996-12-31
The solubilization and biodegradation of soil-bound PAHs from a manufactured gas plant (MGP) site soil was investigated using surfactants. Three nonionic polyoxyethylene (POE) surfactants, Triton X-100, Tween 80, and Brij 35, were used. The fate of four PAHs, phenanthrene, anthracene, pyrene, and benzo(a)pyrene were monitored during the remediation process. The measured concentrations of solubilized PAHs agreed well with those estimated using micelle-water partitioning coefficient, K{sub m}, and Raoult`s law. The solubilization of soil-bound PAHs by surfactants is a slow, nonequilibrium process. Diffusion of PAH molecules within the weathered soil-tar matrix is proposed as the rate-limiting step in solubilizing PAHs frommore » such soils. A radial diffusion model is used to describe solubilization of PAHs by surfactant washing. The model predicts experimental results fairly well at low surfactant dosages while at high dosages it somewhat overestimates the extent of solubilization. Biodegradation studies were performed using a natural consortium of microorganisms enriched from PAH-contaminated soils. Surfactants enhanced biodegradation of PAHs except for Tween 80. However, biodegradation of surfactants themselves appear to attenuate the beneficial effects of surfactant-mediated bioremediation.« less
Quantification of atmospheric methane oxidation in glacier forefields: Initial survey results
NASA Astrophysics Data System (ADS)
Nauer, Philipp A.; Schroth, Martin H.; Pinto, Eric A.; Zeyer, Josef
2010-05-01
The oxidation of CH4 by methanotrophic bacteria is the only known terrestrial sink for atmospheric CH4. Aerobic methanotrophs are active in soils and sediments under various environmental conditions. However, little is known about the activity and abundance of methanotrophs in pioneering ecosystems and their role in succession. In alpine environments, receding glaciers pose a unique opportunity to investigate soil development and ecosystem succession. In an initial survey during summer and autumn 2009 we probed several locations in the forefields of four glaciers in the Swiss Alps to quantify the turnover of atmospheric methane in recently exposed soils. Three glacier forefields (the Stein, Steinlimi and Tiefen) are situated on siliceous bedrock, while one (the Griessen) is situated on calcareous bedrock. We sampled soil air from different depths to generate CH4 concentration profiles for qualitative analysis. At selected locations we applied surface Gas Push-Pull Tests (GPPT) to estimate first-order rate coefficients of CH4 oxidation. The test consists of a controlled injection of the reactants CH4 and O2 and the tracer Ar into and out of the soil at the same location. A top-closed steel cylinder previously emplaced in the soil encloses the injected gas mixture to ensure sufficient reaction times. Rate coefficients can be derived from differences of reactant and tracer breakthrough curves. In one GPPT we employed 13C-CH4 and measured the evolution of δ13C of extracted CO2. To confirm rate coefficients obtained by GPPTs we estimated effective soil diffusivity from soil core samples and fitted a diffusion-consumption model to our profile data. A qualitative analysis of the concentration profiles showed little activity in the forefields on siliceous bedrock, with only one out of fifteen locations exhibiting substantially lower CH4 concentrations in the soil compared to the atmosphere. The surface GPPTs with conventional CH4 at the active location were not sensitive enough to derive meaningful first-order rate coefficients of CH4 oxidation. The more sensitive GPPT with 13C-CH4 resulted in a coefficient of 0.025 h-1, close to the value of 0.011 h-1 estimated from the corresponding concentration profile. Activities in the forefield on calcareous bedrock were substantially higher, with decreased CH4 concentrations in the soil at three out of five locations. Estimated first-order rate coefficients from GPPT and profile at one selected location were 0.6 h-1 and 1.3 h-1, respectively, one to two orders of magnitude higher than values from the siliceous forefield. Additional analysis by quantitative PCR revealed substantially lower numbers of pmoA gene copies per g soil at the active location in the siliceous forefield compared to the selected location in the calcareous forefield. Reasons for these differences in activity and abundance are still unknown and will be subject of further investigations in an upcoming field campaign. The GPPT in combination with δ13C analysis of extracted CO2 appeared to be a functioning approach to sensitively quantify low CH4 turnover.
METAL DIFFUSION IN SMOOTHED PARTICLE HYDRODYNAMICS SIMULATIONS OF DWARF GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, David; Martel, Hugo; Kawata, Daisuke, E-mail: david-john.williamson.1@ulaval.ca
2016-05-10
We perform a series of smoothed particle hydrodynamics simulations of isolated dwarf galaxies to compare different metal mixing models. In particular, we examine the role of diffusion in the production of enriched outflows and in determining the metallicity distributions of gas and stars. We investigate different diffusion strengths by changing the pre-factor of the diffusion coefficient, by varying how the diffusion coefficient is calculated from the local velocity distribution, and by varying whether the speed of sound is included as a velocity term. Stronger diffusion produces a tighter [O/Fe]–[Fe/H] distribution in the gas and cuts off the gas metallicity distributionmore » function at lower metallicities. Diffusion suppresses the formation of low-metallicity stars, even with weak diffusion, and also strips metals from enriched outflows. This produces a remarkably tight correlation between “metal mass-loading” (mean metal outflow rate divided by mean metal production rate) and the strength of diffusion, even when the diffusion coefficient is calculated in different ways. The effectiveness of outflows at removing metals from dwarf galaxies and the metal distribution of the gas is thus dependent on the strength of diffusion. By contrast, we show that the metallicities of stars are not strongly dependent on the strength of diffusion, provided that some diffusion is present.« less
NASA Astrophysics Data System (ADS)
Bartholomeus, Ruud P.; Witte, Jan-Philip M.; van Bodegom, Peter M.; van Dam, Jos C.; Aerts, Rien
2008-10-01
SummaryEffects of insufficient soil aeration on the functioning of plants form an important field of research. A well-known and frequently used utility to express oxygen stress experienced by plants is the Feddes-function. This function reduces root water uptake linearly between two constant pressure heads, representing threshold values for minimum and maximum oxygen deficiency. However, the correctness of this expression has never been evaluated and constant critical values for oxygen stress are likely to be inappropriate. On theoretical grounds it is expected that oxygen stress depends on various abiotic and biotic factors. In this paper, we propose a fundamentally different approach to assess oxygen stress: we built a plant physiological and soil physical process-based model to calculate the minimum gas filled porosity of the soil ( ϕgas_min) at which oxygen stress occurs. First, we calculated the minimum oxygen concentration in the gas phase of the soil needed to sustain the roots through (micro-scale) diffusion with just enough oxygen to respire. Subsequently, ϕgas_min that corresponds to this minimum oxygen concentration was calculated from diffusion from the atmosphere through the soil (macro-scale). We analyzed the validity of constant critical values to represent oxygen stress in terms of ϕgas_min, based on model simulations in which we distinguished different soil types and in which we varied temperature, organic matter content, soil depth and plant characteristics. Furthermore, in order to compare our model results with the Feddes-function, we linked root oxygen stress to root water uptake (through the sink term variable F, which is the ratio of actual and potential uptake). The simulations showed that ϕgas_min is especially sensitive to soil temperature, plant characteristics (root dry weight and maintenance respiration coefficient) and soil depth but hardly to soil organic matter content. Moreover, ϕgas_min varied considerably between soil types and was larger in sandy soils than in clayey soils. We demonstrated that F of the Feddes-function indeed decreases approximately linearly, but that actual oxygen stress already starts at drier conditions than according to the Feddes-function. How much drier is depended on the factors indicated above. Thus, the Feddes-function might cause large errors in the prediction of transpiration reduction and growth reduction through oxygen stress. We made our method easily accessible to others by implementing it in SWAP, a user-friendly soil water model that is coupled to plant growth. Since constant values for ϕgas_min in plant and hydrological modeling appeared to be inappropriate, an integrated approach, including both physiological and physical processes, should be used instead. Therefore, we advocate using our method in all situations where oxygen stress could occur.
Effective diffusion coefficients of gas mixture in heavy oil under constant-pressure conditions
NASA Astrophysics Data System (ADS)
Li, Huazhou Andy; Sun, Huijuan; Yang, Daoyong
2017-05-01
We develop a method to determine the effective diffusion coefficient for each individual component of a gas mixture in a non-volatile liquid (e.g., heavy oil) at high pressures with compositional analysis. Theoretically, a multi-component one-way diffusion model is coupled with the volume-translated Peng-Robinson equation of state to quantify the mass transfer between gas and liquid (e.g., heavy oil). Experimentally, the diffusion tests have been conducted with a PVT setup for one pure CO2-heavy oil system and one C3H8-CO2-heavy oil system under constant temperature and pressure, respectively. Both the gas-phase volume and liquid-phase swelling effect are simultaneously recorded during the measurement. As for the C3H8-CO2-heavy oil system, the gas chromatography method is employed to measure compositions of the gas phase at the beginning and end of the diffusion measurement, respectively. The effective diffusion coefficients are then determined by minimizing the discrepancy between the measured and calculated gas-phase composition at the end of diffusion measurement. The newly developed technique can quantify the contributions of each component of mixture to the bulk mass transfer from gas into liquid. The effective diffusion coefficient of C3H8 in the C3H8-CO2 mixture at 3945 ± 20 kPa and 293.85 K, i.e., 18.19 × 10^{ - 10} {{m}}^{ 2} / {{s}}, is found to be much higher than CO2 at 3950 ± 18 kPa and 293.85 K, i.e., 8.68 × 10^{ - 10} {{m}}^{ 2} / {{s}}. In comparison with pure CO2, the presence of C3H8 in the C3H8-CO2 mixture contributes to a faster diffusion of CO2 from the gas phase into heavy oil and consequently a larger swelling factor of heavy oil.
NASA Astrophysics Data System (ADS)
Yoshikawa, M.; Zhang, M.; Takeuchi, M.; Komai, T.
2010-12-01
In Japan, the demand for in-situ remediation of contaminated sediments is expected to increase in the future due to the recent amendment of Soil Contamination Countermeasures Act. The Japanese law requires remediating not only contaminated groundwater but also contaminated sediments including those in aquitards. In-situ remediation of contaminated aquitards has been a challenging issue and bioremediation is considered to be one of the effective techniques. In microbial degradation of chrolinated ethenes such as tetrachloroethene and trichloroethene under anaerobic environments, dissolved hydrogen plays an important role. The dechlorinating microbes utilize hydrogen and chlorinated ethenes as an electron donor and an electron accepter, respectively. The size of hydrogen molecule is extremely small and the diffusion rate of dissolved hydrogen in an aquitard would be the key factor that controls the process of microbial dechlorination. However, the diffusion behavior of dissolved hydrogen in subsurface sediments remains unclear. The purposes of this study are to develop a practically utilizable test apparatus, carry out a series of dissolved hydrogen diffusion tests on representative samples, and illustrate the applicability of bioremediation in aquitards. A completely leak-free apparatus was developed by using aluminum alloy and gas tight rubber. This apparatus is capable of testing specimens with a diameter as large as 100 mm by a length from 5 mm to 10 mm, depending on the maximum grain size within a test specimen. Preliminary tests have been performed with glass beads as an ideal material, commercially available kaolin clay, and core samples taken from a polluted site containing clay minerals. The effective diffusion coefficients of these samples were all on the order of 10E-10 m2/s, though their coefficients of permeability varied between the orders of 10E-2 and 10E-7 cm/s. These results showed that there was no obvious relationship between the effective diffusion coefficient of hydrogen and coefficient of permeability. This observation indicates that dissolved hydrogen also diffuses through hydraulically-tight soil particles and bioremediation of chlorinated ethenes in aquitards would be possible from the aspect of electron donor supply.
Novel diffusive gradients in thin films technique to assess labile sulfate in soil.
Hanousek, Ondrej; Mason, Sean; Santner, Jakob; Chowdhury, Md Mobaroqul Ahsan; Berger, Torsten W; Prohaska, Thomas
2016-09-01
A novel diffusive gradients in thin films (DGT) technique for sampling labile soil sulfate was developed, based on a strong basic anion exchange resin (Amberlite IRA-400) for sulfate immobilization on the binding gel. For reducing the sulfate background on the resin gels, photopolymerization was applied instead of ammonium persulfate-induced polymerization. Agarose cross-linked polyacrylamide (APA) hydrogels were used as diffusive layer. The sulfate diffusion coefficient in APA gel was determined as 9.83 × 10(-6) ± 0.35 × 10(-6) cm(2) s(-1) at 25 °C. The accumulated sulfate was eluted in 1 mol L(-1) HNO3 with a recovery of 90.9 ± 1.6 %. The developed method was tested against two standard extraction methods for soil sulfate measurement. The obtained low correlation coefficients indicate that DGT and conventional soil test methods assess differential soil sulfate pools, rendering DGT a potentially important tool for measuring labile soil sulfate.
NASA Astrophysics Data System (ADS)
Resurreccion, A. C.; Kawamoto, K.; Komatsu, T.; Moldrup, P.
2006-12-01
Volcanic ash soils (Andisols) have a unique dual porosity structure that results in good drainage and high soil- water retention. Despite of the complicated and highly developed soil structure, recent studies have reported a simple, highly linear relation between the soil-gas diffusion coefficient, Dp, and the soil-air content, ɛ, for several Japanese Andisols. In this study, we explain the linear Dp(ɛ) behavior from the effects of the inter- and intra-aggregate pore-size distributions. We couple the bimodal van Genuchten soil-water retention model with a general Dp(ɛ) model, ɛ^{X}, allowing the tortuosity- connectivity factor X to vary with pF (= log(-ψ; the soil-water matric potential in cm H2O)). Measured data suggest that the tortuosity-connectivity parameter X is at the minimum at pF 3 (where X ~ 2, following Buckingham, 1904), equal to the water retention point where a separation of inter- and intra-aggregate effects on Dp is observed. At pF < 3, the X values increased as pF decreased because of inactive/remote air-filled pore space entrapped by the inter-connected water films between inter-aggregate pore spaces. At pF > 3, X increased to a high value at very dry conditions due to remote air-filled space inside the intra-aggregate pores. By combining the complex dual porosity soil-water retention model with the power- law gas diffusivity model using a parabolic X(pF) function, the surprisingly simple linear behavior of Dp with ɛ was captured while the variation of Dp with pF followed a dual s-shaped curve similar to the water retention curve. A simple linear model to predict Dp(ɛ) is suggested, with slope C and threshold soil-air content, ɛth, calculated from the power-law model ɛ^{X} at pF 2 (near field capacity) and at pF 4.1 (near wilting point) using the same X value (= 2.3) at both pF in agreement with measured data. This linear Dp(ɛ) model performed better, especially at dry conditions, compared to the traditionally-used predictive models when tested against several independent Andisol datasets from literature.
Does long term exposure to radon gas influence the properties of polymeric waterproof materials?
NASA Astrophysics Data System (ADS)
Navratilova Rovenska, Katerina; Jiranek, Martin; Kokes, Pavel; Wasserbauer, Richard; Kacmarikova, Veronika
2014-01-01
The technical state of buildings and the quality of the indoor environment depend on the quality of the waterproofing course and on the properties of the insulating materials that are applied, in particular on their durability, long-term functional reliability and resistance to corrosive effects of the subsoil. Underground water chemistry and soil bacteria are well-known corrosive agents. Our investigations indicate that the ageing process of waterproof materials can be significantly accelerated by alpha particles emitted by radon and radon progenies which are present in soil gas. Materials commonly available on the building market, e.g. LDPE and HDPE of various densities, PVC, TPO (thermoplastic polyolefin), PP (polypropylene) and EPDM were selected for our experimental study. The preliminary results for 3-year exposure to radon gas show a decrease in tensile strength to 60%, elongation to 80% and hardness to 95% for samples based on PE. The diffusion coefficient of radon for samples based on PVC decreased to 20% of the initial value after 1-year exposure to radon and soil bacteria.
NASA Astrophysics Data System (ADS)
Nikitin, Sergei Yu
2009-07-01
Formulas are derived for evaluating the diffusion coefficient and size of gas molecules from transient coherent anti-Stokes Raman scattering measurements. Numerical estimates are presented for hydrogen.
Transport diffusion in deformed carbon nanotubes
NASA Astrophysics Data System (ADS)
Feng, Jiamei; Chen, Peirong; Zheng, Dongqin; Zhong, Weirong
2018-03-01
Using non-equilibrium molecular dynamics and Monte Carlo methods, we have studied the transport diffusion of gas in deformed carbon nanotubes. Perfect carbon nanotube and various deformed carbon nanotubes are modeled as transport channels. It is found that the transport diffusion coefficient of gas does not change in twisted carbon nanotubes, but changes in XY-distortion, Z-distortion and local defect carbon nanotubes comparing with that of the perfect carbon nanotube. Furthermore, the change of transport diffusion coefficient is found to be associated with the deformation factor. The relationship between transport diffusion coefficient and temperature is also discussed in this paper. Our results may contribute to understanding the mechanism of molecular transport in nano-channel.
Density-driven transport of gas phase chemicals in unsaturated soils
NASA Astrophysics Data System (ADS)
Fen, Chiu-Shia; Sun, Yong-tai; Cheng, Yuen; Chen, Yuanchin; Yang, Whaiwan; Pan, Changtai
2018-01-01
Variations of gas phase density are responsible for advective and diffusive transports of organic vapors in unsaturated soils. Laboratory experiments were conducted to explore dense gas transport (sulfur hexafluoride, SF6) from different source densities through a nitrogen gas-dry soil column. Gas pressures and SF6 densities at transient state were measured along the soil column for three transport configurations (horizontal, vertically upward and vertically downward transport). These measurements and others reported in the literature were compared with simulation results obtained from two models based on different diffusion approaches: the dusty gas model (DGM) equations and a Fickian-type molar fraction-based diffusion expression. The results show that the DGM and Fickian-based models predicted similar dense gas density profiles which matched the measured data well for horizontal transport of dense gas at low to high source densities, despite the pressure variations predicted in the soil column were opposite to the measurements. The pressure evolutions predicted by both models were in trend similar to the measured ones for vertical transport of dense gas. However, differences between the dense gas densities predicted by the DGM and Fickian-based models were discernible for vertically upward transport of dense gas even at low source densities, as the DGM-based predictions matched the measured data better than the Fickian results did. For vertically downward transport, the dense gas densities predicted by both models were not greatly different from our experimental measurements, but substantially greater than the observations obtained from the literature, especially at high source densities. Further research will be necessary for exploring factors affecting downward transport of dense gas in soil columns. Use of the measured data to compute flux components of SF6 showed that the magnitudes of diffusive flux component based on the Fickian-type diffusion expressions in terms of molar concentration, molar fraction and mass density fraction gradient were almost the same. However, they were greater than the result computed with the mass fraction gradient for > 24% and the DGM-based result for more than one time. As a consequence, the DGM-based total flux of SF6 was in magnitude greatly less than the Fickian result not only for horizontal transport (diffusion-dominating) but also for vertical transport (advection and diffusion) of dense gas. Particularly, the Fickian-based total flux was more than two times in magnitude as much as the DGM result for vertically upward transport of dense gas.
Tan, Wanyu; Li, Yongmei; Tan, Kaixuan; Duan, Xianzhe; Liu, Dong; Liu, Zehua
2016-12-01
Radon diffusion and transport through different media is a complex process affected by many factors. In this study, the fractal theories and field covering experiments were used to study the fractal characteristics of particle size distribution (PSD) of six kinds of geotechnical materials (e.g., waste rock, sand, laterite, kaolin, mixture of sand and laterite, and mixture of waste rock and laterite) and their effects on radon diffusion. In addition, the radon diffusion coefficient and diffusion length were calculated. Moreover, new formulas for estimating diffusion coefficient and diffusion length functional of fractal dimension d of PSD were proposed. These results demonstrate the following points: (1) the fractal dimension d of the PSD can be used to characterize the property of soils and rocks in the studies of radon diffusion behavior; (2) the diffusion coefficient and diffusion length decrease with increasing fractal dimension of PSD; and (3) the effectiveness of final covers in reducing radon exhalation of uranium tailings impoundments can be evaluated on the basis of the fractal dimension of PSD of materials.
Diffusional limits to the consumption of atmospheric methane by soils
Striegl, Robert G.
1993-01-01
Net transport of atmospheric gases into and out of soil systems is primarily controlled by diffusion along gas partial pressure gradients. Gas fluxes between soil and the atmosphere can therefore be estimated by a generalization of the equation for ordinary gaseous diffusion in porous unsaturated media. Consumption of CH4 by methylotrophic bacteria in the top several centimeters of soil causes the uptake of atmospheric CH4 by aerated soils. The capacity of the methylotrophs to consume CH4 commonly exceeds the potential of CH4 to diffuse from the atmosphere to the consumers. The maximum rate of uptake of atmospheric CH4 by soil is, therefore, limited by diffusion and can be calculated from soil physical properties and the CH4 concentration gradient. The CH4 concentration versus depth profile is theoretically described by the equation for gaseous diffusion with homogeneous chemical reaction in porous unsaturated media. This allows for calculation of the in situ rate of CH4 consumption within specified depth intervals.
The influence of vertical sorbed phase transport on the fate of organic chemicals in surface soils.
McLachlan, Michael S; Czub, Gertje; Wania, Frank
2002-11-15
Gaseous exchange between surface soil and the atmosphere is an important process in the environmental fate of many chemicals. It was hypothesized that this process is influenced by vertical transport of chemicals sorbed to soil particles. Vertical sorbed phase transport in surface soils occurs by many processes such as bioturbation, cryoturbation, and erosion into cracks formed by soil drying. The solution of the advection/diffusion equation proposed by Jury et al. to describe organic chemical fate in a uniformly contaminated surface soil was modified to include vertical sorbed phase transport This process was modeled using a sorbed phase diffusion coefficient, the value of which was derived from soil carbon mass balances in the literature. The effective diffusivity of the chemical in a typical soil was greater in the modified model than in the model without sorbed phase transport for compounds with log K(OW) > 2 and log K(OA) > 6. Within this chemical partitioning space, the rate of volatilization from the surface soil was larger in the modified model than in the original model by up to a factor of 65. The volatilization rate was insensitive to the value of the sorbed phase diffusion coefficient throughout much of this chemical partitioning space, indicating that the surface soil layer was essentially well-mixed and that the mass transfer coefficient was determined by diffusion through the atmospheric boundary layer only. When this process was included in a non-steady-state regional multimedia chemical fate model running with a generic emissions scenario to air, the predicted soil concentrations increased by upto a factor of 25,whilethe air concentrations decreased by as much as a factor of approximately 3. Vertical sorbed phase transport in the soil thus has a major impact on predicted air and soil concentrations, the state of equilibrium, and the direction and magnitude of the chemical flux between air and soil. It is a key process influencing the environmental fate of persistent organic pollutants (POPs).
NASA Astrophysics Data System (ADS)
Ayral-Cinar, Derya; Demond, Avery H.
2017-12-01
Diffusion is regarded as the dominant transport mechanism into and out of low permeable subsurface lenses and layers in the subsurface. But, some reports of mass storage in such zones are higher than what might be attributable to diffusion, based on estimated diffusion coefficients. Despite the importance of diffusion to efforts to estimate the quantity of residual contamination in the subsurface, relatively few studies present measured diffusion coefficients of organic solutes in saturated low permeability soils. This study reports the diffusion coefficients of a trichloroethylene (TCE), and an anionic surfactant, Aerosol OT (AOT), in water-saturated silt and a silt-montmorillonite (25:75) mixture, obtained using steady-state experiments. The relative diffusivity ranged from 0.11 to 0.17 for all three compounds for the silt and the silt-clay mixture that was allowed to expand. In the case in which the swelling was constrained, the relative diffusivity was about 0.07. In addition, the relative diffusivity of 13C-labeled TCE through a water saturated silt-clay mixture that had contacted a field dense non-aqueous phase liquid (DNAPL) for 18 months was measured and equaled 0.001. These experimental results were compared with the estimates generated using common correlations, and it was found that, in all cases, the measured diffusion coefficients were significantly lower than the estimated. Thus, the discrepancy between mass accumulations observed in the field and the mass storage that can attributable to diffusion may be greater than previously believed.
NASA Astrophysics Data System (ADS)
Hutchinson, G. L.; Livingston, G. P.; Healy, R. W.; Striegl, R. G.
2000-04-01
We employed a three-dimensional finite difference gas diffusion model to simulate the performance of chambers used to measure surface-atmosphere trace gas exchange. We found that systematic errors often result from conventional chamber design and deployment protocols, as well as key assumptions behind the estimation of trace gas exchange rates from observed concentration data. Specifically, our simulations showed that (1) when a chamber significantly alters atmospheric mixing processes operating near the soil surface, it also nearly instantaneously enhances or suppresses the postdeployment gas exchange rate, (2) any change resulting in greater soil gas diffusivity, or greater partitioning of the diffusing gas to solid or liquid soil fractions, increases the potential for chamber-induced measurement error, and (3) all such errors are independent of the magnitude, kinetics, and/or distribution of trace gas sources, but greater for trace gas sinks with the same initial absolute flux. Finally, and most importantly, we found that our results apply to steady state as well as non-steady-state chambers, because the slow rate of gas diffusion in soil inhibits recovery of the former from their initial non-steady-state condition. Over a range of representative conditions, the error in steady state chamber estimates of the trace gas flux varied from -30 to +32%, while estimates computed by linear regression from non-steady-state chamber concentrations were 2 to 31% too small. Although such errors are relatively small in comparison to the temporal and spatial variability characteristic of trace gas exchange, they bias the summary statistics for each experiment as well as larger scale trace gas flux estimates based on them.
Hutchinson, G.L.; Livingston, G.P.; Healy, R.W.; Striegl, Robert G.
2000-01-01
We employed a three-dimensional finite difference gas diffusion model to simulate the performance of chambers used to measure surface-atmosphere tace gas exchange. We found that systematic errors often result from conventional chamber design and deployment protocols, as well as key assumptions behind the estimation of trace gas exchange rates from observed concentration data. Specifically, our simulationshowed that (1) when a chamber significantly alters atmospheric mixing processes operating near the soil surface, it also nearly instantaneously enhances or suppresses the postdeployment gas exchange rate, (2) any change resulting in greater soil gas diffusivity, or greater partitioning of the diffusing gas to solid or liquid soil fractions, increases the potential for chamber-induced measurement error, and (3) all such errors are independent of the magnitude, kinetics, and/or distribution of trace gas sources, but greater for trace gas sinks with the same initial absolute flux. Finally, and most importantly, we found that our results apply to steady state as well as non-steady-state chambers, because the slow rate of gas diffusion in soil inhibits recovery of the former from their initial non-steady-state condition. Over a range of representative conditions, the error in steady state chamber estimates of the trace gas flux varied from -30 to +32%, while estimates computed by linear regression from non-steadystate chamber concentrations were 2 to 31% too small. Although such errors are relatively small in comparison to the temporal and spatial variability characteristic of trace gas exchange, they bias the summary statistics for each experiment as well as larger scale trace gas flux estimates based on them.
1979-02-01
coefficient (at equilibrium) when hysteresis is apparent. 6. Coefficient n in Freundlich equation for 1/n soil or sediment adsorption isotherms ýX - KC . 7...Biodegradation Chemical structures cal clasaes (e.g., Diffusion Correlations phenols). General Diffusion coefficients Equations terms for organic...OF THE FATE AND TRANSPORT OF ORGANIC CHEMICALS Adsorption coefficients: K, n* from Freundlich equation + Desorption coefficients: K’*, n’* from
Zhang, Chun-Yun; Chai, Xin-Sheng
2015-03-13
A novel method for the determination of the diffusion coefficient (D) of methanol in water and olive oil has been developed. Based on multiple headspace extraction gas chromatography (MHE-GC), the methanol released from the liquid sample of interest in a closed sample vial was determined in a stepwise fashion. A theoretical model was derived to establish the relationship between the diffusion coefficient and the GC signals from MHE-GC measurements. The results showed that the present method has an excellent precision (RSD<1%) in the linear fitting procedure and good accuracy for the diffusion coefficients of methanol in both water and olive oil, when compared with data reported in the literature. The present method is simple and practical and can be a valuable tool for the determination of the diffusion coefficient of volatile analyte(s) into food simulants from food and beverage packaging material, both in research studies and in actual applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Prediction of stream volatilization coefficients
Rathbun, Ronald E.
1990-01-01
Equations are developed for predicting the liquid-film and gas-film reference-substance parameters for quantifying volatilization of organic solutes from streams. Molecular weight and molecular-diffusion coefficients of the solute are used as correlating parameters. Equations for predicting molecular-diffusion coefficients of organic solutes in water and air are developed, with molecular weight and molal volume as parameters. Mean absolute errors of prediction for diffusion coefficients in water are 9.97% for the molecular-weight equation, 6.45% for the molal-volume equation. The mean absolute error for the diffusion coefficient in air is 5.79% for the molal-volume equation. Molecular weight is not a satisfactory correlating parameter for diffusion in air because two equations are necessary to describe the values in the data set. The best predictive equation for the liquid-film reference-substance parameter has a mean absolute error of 5.74%, with molal volume as the correlating parameter. The best equation for the gas-film parameter has a mean absolute error of 7.80%, with molecular weight as the correlating parameter.
Diffusion and mobility of atomic particles in a liquid
NASA Astrophysics Data System (ADS)
Smirnov, B. M.; Son, E. E.; Tereshonok, D. V.
2017-11-01
The diffusion coefficient of a test atom or molecule in a liquid is determined for the mechanism where the displacement of the test molecule results from the vibrations and motion of liquid molecules surrounding the test molecule and of the test particle itself. This leads to a random change in the coordinate of the test molecule, which eventually results in the diffusion motion of the test particle in space. Two models parameters of interaction of a particle and a liquid are used to find the activation energy of the diffusion process under consideration: the gas-kinetic cross section for scattering of test molecules in the parent gas and the Wigner-Seitz radius for test molecules. In the context of this approach, we have calculated the diffusion coefficient of atoms and molecules in water, where based on experimental data, we have constructed the dependence of the activation energy for the diffusion of test molecules in water on the interaction parameter and the temperature dependence for diffusion coefficient of atoms or molecules in water within the models considered. The statistically averaged difference of the activation energies for the diffusion coefficients of different test molecules in water that we have calculated based on each of the presented models does not exceed 10% of the diffusion coefficient itself. We have considered the diffusion of clusters in water and present the dependence of the diffusion coefficient on the cluster size. The accuracy of the presented formulas for the diffusion coefficient of atomic particles in water is estimated to be 50%.
Modeling studies of gas movement and moisture migration at Yucca Mountain, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsang, Y.W.; Pruess, K.
1991-06-01
Modeling studies on moisture redistribution processes that are mediated by gas phase flow and diffusion have been carried out. The problem addressed is the effect of a lowered humidity of the soil gas at the land surface on moisture removal from Yucca Mountain, the potential site for a high-level nuclear waste repository. At the land surface, humid formation gas contacts much drier atmospheric air. Near this contact, the humidity of the soil gas may be considerably lower than at greater depth, where the authors expect equilibrium with the liquid phase and close to 100% humidity. The lower relative humidity ofmore » the soil gas may be modeled by imposing, at the land surface, an additional negative capillary suction corresponding to vapor pressure lowering according to Kelvin`s Equation, thus providing a driving force for the upward movement of moisture in both the vapor and liquid phases. Sensitivity studies show that moisture removal from Yucca Mountain arising from the lowered-relative-humidity boundary condition is controlled by vapor diffusion. There is much experimental evidence in the soil literature that diffusion of vapor is enhanced due to pore-level phase change effects by a few orders of magnitude. Modeling results presented here will account for this enhancement in vapor diffusion.« less
Ayral-Cinar, Derya; Demond, Avery H
2017-12-01
Diffusion is regarded as the dominant transport mechanism into and out of low permeable subsurface lenses and layers in the subsurface. But, some reports of mass storage in such zones are higher than what might be attributable to diffusion, based on estimated diffusion coefficients. Despite the importance of diffusion to efforts to estimate the quantity of residual contamination in the subsurface, relatively few studies present measured diffusion coefficients of organic solutes in saturated low permeability soils. This study reports the diffusion coefficients of a trichloroethylene (TCE), and an anionic surfactant, Aerosol OT (AOT), in water-saturated silt and a silt-montmorillonite (25:75) mixture, obtained using steady-state experiments. The relative diffusivity ranged from 0.11 to 0.17 for all three compounds for the silt and the silt-clay mixture that was allowed to expand. In the case in which the swelling was constrained, the relative diffusivity was about 0.07. In addition, the relative diffusivity of 13 C-labeled TCE through a water saturated silt-clay mixture that had contacted a field dense non-aqueous phase liquid (DNAPL) for 18months was measured and equaled 0.001. These experimental results were compared with the estimates generated using common correlations, and it was found that, in all cases, the measured diffusion coefficients were significantly lower than the estimated. Thus, the discrepancy between mass accumulations observed in the field and the mass storage that can attributable to diffusion may be greater than previously believed. Copyright © 2017. Published by Elsevier B.V.
Sefa, Makfir; Ahmed, Zeeshan; Fedchak, James A.; Scherschligt, Julia; Klimov, Nikolai
2017-01-01
We describe a vacuum apparatus for determining the outgassing rate into vacuum, the diffusion coefficient, and the amount of gas absorbed for various materials. The diffusion coefficient is determined from a model applied to time-dependent desorption data taken using a throughput method. We used this method to determine the diffusion coefficient, D, for H2O in 3-D printed acrylonitrile butadiene styrene (ABS). We found DH2O = 8.3 × 10−8 cm2/s ± 1.3 × 10−8 cm2/s (k = 1; 67% confidence interval) at 23.2 °C. This result was compared to the diffusion coefficient determined another by a gravimetric method, in which the sample weight was monitored as it absorbed gas from the atmosphere. The two methods agreed to within 3%, which is well within the uncertainty of the measurement. We also found that at least 80% of the atmospheric gas (air) absorbed by the ABS is water. The total amount of all atmospheric gas absorbed by ABS was about 0.35% by weight when exposed to ambient air in the laboratory, which was at a pressure of 101 kPa with a relative humidity of 57% at 22.2 °C. PMID:28736481
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowley, R.L.; Adams, M.E.; Marshall, T.L.
1997-03-01
Natural gas processors use amine treating processes to remove the acid gases H{sub 2}S and CO{sub 2} from gas streams. Absorption rates of gaseous CO{sub 2} into aqueous N-methyldiethanolamine (MDEA) solutions were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. The absorption rate was found to be insensitive to the diffusion coefficient of CO{sub 2} in solution but very sensitive to the diffusion rate of bicarbonate and protonated MDEA ions. Evidence also suggested that chemical reaction equilibrium is rapid relative to diffusion. A numerical model was developed on the basis of these observations. The modelmore » was used to regress diffusion coefficients of bicarbonate and protonated amine, which must be equivalent by electroneutrality arguments, from measured absorption rates. Complete modeling of the absorption process also required data for the diffusion coefficient of MDEA in water. These were measured using a Taylor dispersion apparatus. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate and protonated MDEA were obtained at 298.2 K and 318.2 K in solutions containing 20, 35, and 50 mass % MDEA in water.« less
Sorption of water by biochar: Closer look at micropores
NASA Astrophysics Data System (ADS)
Spokas, Kurt; Hall, Kathleen; Joseph, Stephan; Kammann, Claudia; Novak, Jeffrey; Gámiz, Beatriz; Cox, Lucia
2017-04-01
Typically, biochar has been assumed to increase total water content of the soil system and thereby positively influence plant-soil moisture hydraulics. In this work, we focused on water's interaction with micro-pores (<2 nm) and its influence on water availability. In other words, the main question was if the driving force of water's behavior was the physics or chemistry of biochar pores. The temporal scale of liquid water entry into biochar's pore network is very complex, with observed bubbling occurring days, weeks, and even months after a piece of biochar is immersed under water at ambient conditions. Elevated temperature biochar typically has a positive heat of immersion measured calorimetrically, whereas the calculated BET energy of sorption from a water sorption isotherm typically decrease with production temperatures. To further complicate matters, different pieces of biochar interact differently with water even though the entire batch was created in the same reactor at the same time and after liquid water exposure the physical structure of biochar is irreversibly altered, sometimes negligible other times catastrophically. Nevertheless, based on the estimations of diffusion coefficients in biochar from drying curve analyses, pore surface moieties do reduce the effective diffusivity of water vapor in biochar. Contrary to the rule of thumb in soil physics, where higher gas filled porosity correlates with higher soil moisture holding capacities, our results indicate that biochar's water sorption rate and capacity is actually reduced at ambient conditions by an increase in microporous volume. Thereby, biochar's hydrophobic behavior is partly due to the entrapment of gas within the air-filled porosity which prevents liquid water's entry, even though these biochars possess elevated gas phase sorption capacities (e.g., BET N2/CO2 surface areas).
Relationship between gaseous N dynamics and the hydraulic state of hierarchically structured soils
NASA Astrophysics Data System (ADS)
Schlüter, Steffen; Dörsch, Peter; Vogel, Hans-Jörg
2017-04-01
The inherent spatial heterogeneity of soil generates spatially distributed micro-sites with different local N gas (NO, N2O, N2) production and release rates. Moreover, local micro-site conditions and the pathways between them depend on soil moisture which itself is highly dynamic close to the soil surface. These relationships need to be taken into account for a quantitative understanding of soil denitrification and associated N gas dynamics. Soil structure has been recognized as a key factor to understand the high spatial variability of N gas emissions. In particular gaseous N release from soils depends on: i) the total denitrification rate, which is related to the spatial extent and distribution of anaerobic sites and ii) the probability of N2O to escape from the soil without being further reduced to N2. This impact of soil structure is typically ignored in studies with soil slurries or repacked soil. In this project we run well-defined mesocosm experiments on N gas dynamics with hierarchically structured, artificial soils in which the spatial distribution of substrate and denitrifiers is known exactly. Sintered, porous glass pellets are inoculated with strains of Paracoccus denitrificans and/or Agrobacterium tumefaciens and amended with nutrient solution. These pellets are embedded in coarse-grained sand within gas-tight columns under O2/He atmosphere. The pellets are either places in layers or randomly to create different patterns of N gas production sites and diffusion pathways. Denitrification occurs in the anaerobic centers of the porous pellets, while the partially saturated sand matrix controls the diffusive transport of N gases towards the headspace, where all relevant gas concentrations are monitored with gas chromatography. Water saturations are adjusted such that the diffusive pathways are either fully continuous or partially discontinuous. Preliminary results indicate that the water content exert a major control on the magnitude of denitrification, whereas the onset and dynamics are mainly controlled by the position of the substrate and the denitrifiers.
Ouyang, Wei; Zhao, Xuchen; Tysklind, Mats; Hao, Fanghua
2016-04-01
Biochar application has been identified as the effective soil amendment and the materials to control the diffuse herbicide pollution. The atrazine was selected as the typical diffuse herbicide pollutant as the dominant proportion in applications. The biochar treated from four types of crops biomass were added to soil with high organic matter content. The basic sorption characteristics of biocahrs from corn cob (CC), corn stalk (CS), soybean straw (SS), rice straw (RS) and corn stalk paralyzed with 5% of ammonium dihydrogen phosphate (ACS) were analyzed, along with the comparison of the sorption difference of the raw soil and soil amended with biochars at four levels of ratio (0.5%, 1.0%, 3.0% and 5.0%). It was found that the linear distribution isotherm of raw soil was much effective due to the high organic matter background concentration. The addition of five types of biochars under two kinds of initial atrazine concentration (1 mg/L and 20 mg/L) demonstrated the sorption variances. Results showed the soil amended with RS and CS biochar had the biggest removal rate in four regular biochars and the removal rate of the ACS was the biggest. The sorption coefficient and the normalized sorption coefficient from Freundlich modeling presented the isothermal sorption characteristics of atrazine with soil of high organic matter content. The normalized sorption coefficient increased with the equilibrium concentration decreased in the biochar amended soil, which indicated the sorption performance will be better due to the low atrazine concentration in practice. Results showed that biochar amendment is the effective way to prevent leakage of diffuse herbicide loss. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reduced xenon diffusion for quantitative lung study--the role of SF(6)
NASA Technical Reports Server (NTRS)
Mair, R. W.; Hoffmann, D.; Sheth, S. A.; Wong, G. P.; Butler, J. P.; Patz, S.; Topulos, G. P.; Walsworth, R. L.
2000-01-01
The large diffusion coefficients of gases result in significant spin motion during the application of gradient pulses that typically last a few milliseconds in most NMR experiments. In restricted environments, such as the lung, this rapid gas diffusion can lead to violations of the narrow pulse approximation, a basic assumption of the standard Stejskal-Tanner NMR method of diffusion measurement. We therefore investigated the effect of a common, biologically inert buffer gas, sulfur hexafluoride (SF(6)), on (129)Xe NMR and diffusion. We found that the contribution of SF(6) to (129)Xe T(1) relaxation in a 1:1 xenon/oxygen mixture is negligible up to 2 bar of SF(6) at standard temperature. We also measured the contribution of SF(6) gas to (129)Xe T(2) relaxation, and found it to scale inversely with pressure, with this contribution approximately equal to 1 s for 1 bar SF(6) pressure and standard temperature. Finally, we found the coefficient of (129)Xe diffusion through SF(6) to be approximately 4.6 x 10(-6) m(2)s(-1) for 1 bar pressure of SF(6) and standard temperature, which is only 1.2 times smaller than the (129)Xe self diffusion coefficient for 1 bar (129)Xe pressure and standard temperature. From these measurements we conclude that SF(6) will not sufficiently reduce (129)Xe diffusion to allow accurate surface-area/volume ratio measurements in human alveoli using time-dependent gas diffusion NMR.
Molins, S.; Mayer, K.U.
2007-01-01
The two‐way coupling that exists between biogeochemical reactions and vadose zone transport processes, in particular gas phase transport, determines the composition of soil gas. To explore these feedback processes quantitatively, multicomponent gas diffusion and advection are implemented into an existing reactive transport model that includes a full suite of geochemical reactions. Multicomponent gas diffusion is described on the basis of the dusty gas model, which accounts for all relevant gas diffusion mechanisms. The simulation of gas attenuation in partially saturated landfill soil covers, methane production, and oxidation in aquifers contaminated by organic compounds (e.g., an oil spill site) and pyrite oxidation in mine tailings demonstrate that both diffusive and advective gas transport can be affected by geochemical reactions. Methane oxidation in landfill covers reduces the existing upward pressure gradient, thereby decreasing the contribution of advective methane emissions to the atmosphere and enhancing the net flux of atmospheric oxygen into the soil column. At an oil spill site, methane oxidation causes a reversal in the direction of gas advection, which results in advective transport toward the zone of oxidation both from the ground surface and the deeper zone of methane production. Both diffusion and advection contribute to supply atmospheric oxygen into the subsurface, and methane emissions to the atmosphere are averted. During pyrite oxidation in mine tailings, pressure reduction in the reaction zone drives advective gas flow into the sediment column, enhancing the oxidation process. In carbonate‐rich mine tailings, calcite dissolution releases carbon dioxide, which partly offsets the pressure reduction caused by O2 consumption.
Stochastic modeling of the migration of Cs-137 in the soil considering a power law tailing in space
NASA Astrophysics Data System (ADS)
Oka, Hiroki; Hatano, Yuko
2016-04-01
We develop a theoretical model to reproduce the measured data of Cs-137 in the soil due to the Fukushima Daiichi NPP accident. In our past study, we derived the analytic solution under the generalized Robin boundary condition (Oka-Yamamoto solution). This is a generalization of the He-Walling solution (1996). We compared our solution with the Fukushima soil data of for 3 years after the accident and found that the concentration of Cs-137 has a discrepancy from our solution, specifically in a deep part because the depth profiles have a power law tailing. Therefore, we improved our model in the following aspect. When Cs particle (or Cs solution) migrate in the soil, the diffusion coefficient should be the results of many processes in the soil. These processes include the effect of various materials which constitute the soil (clay, litter, sand), or the variations of pore size in the soil. Hence we regard the diffusion coefficient as the stochastic variable, we derive the model. Specifically, we consider the solution of ADE to be the conditional probability C(x,t|D) in terms of the diffusion coefficient D and calculate C(x,t)=∫_(0~∞) C(x,t|D)*f(D)*dD, where f(D) is the probability density function of D. This model has a power law tailing in space like the space-fractional ADE.
MUTUAL DIFFUSION OF PAIRS OF RARE GASES AT DIFFERENT TEMPERATURES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, B.N.; Srivastava, K.P.
1959-04-01
The eoefficient of mutual diffusion of the binary gas mixtures Ne--Ar, Ar--Krs and Ne--Kr has been determined at 0, 15, 30s and 45 C. Diffusion is allowed to take place between two diffusion bulbs through a precision capillary tube and samples of gas are withdrawn from one bulb at different times and analyzed by a differential conductivity analyzer. From the experimentally determined values of the diffusion coefficient at different temperatures the unlike interaction parameters for the above gas pairs have been calculated by two different methods on the Lennard-Jones I2:6 model. These values of the force parameters are found tomore » be in good agreement with those obtained from the usual combination rules and also from the thermal diffusion data following the method of Srivastava and Madan. These values are found to reproduce the experimental data on mutual diffusion quite satisfactorily. With Kelvin's method, these data have also been utilized to calculate the self-diffusion coefficient of neon, argons and krypton. (auth)« less
Biodegradation of sorbed chemicals in soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scow, K.M.; Fan, S.; Johnson, C.
Rates of biodegradation of sorbed chemicals are usually lower in soil than in aqueous systems, in part because sorption reduces the availability of the chemical to microorganisms. Biodegradation, sorption, and diffusion occur simultaneously and are tightly coupled. In soil, the rate of biodegradation is a function of a chemical`s diffusion coefficient, sorption partition coefficient, the distance it must diffuse from the site of sorption to microbial populations that can degrade it, and its biodegradation rate constant. A model (DSB model) was developed that describes biodegradation of chemicals limited in the availability by sorption and diffusion. Different kinetics expressions describe biodegradationmore » depending on whether the reaction is controlled by mass transfer (diffusion and sorption) or the intrinsic biodegradation rate, and whether biodegradation begins during or after the majority of sorption has occurred. We tested the hypothesis that there is a direct relationship between how strongly a chemical is sorbed and the chemical`s biodegradation rate. In six soils with different organic carbon contents, there was no relationship between the extent or rate of biodegradation and the sorption partition coefficient for phenanthrene. Aging of phenanthrene residues in soil led to a substantial reduction in the rate of biodegradation compared to biodegradation rates of recently added phenanthrene. Considerable research has focused on identification and development of techniques for enhancing in situ biodegradation of sorbed chemicals. Development of such techniques, especially those involving inoculation with microbial strains, should consider physical mass transfer limitations and potential decreases in bioavailability over time. 4 refs., 3 figs., 1 tab.« less
Paloma-radon: Atmospheric radon-222 as a geochemical probe for water in the Martian subsoil.
NASA Astrophysics Data System (ADS)
Sabroux, J.-C.; Michielsen, N.; Voisin, V.; Ferry, C.; Richon, P.; Pineau, J.-F.; Le Roulley, J.-C.; Chassefière, E.
2003-04-01
Radon exhalation from a porous soil is known to depend strongly on the soil moisture content: a minute amount of water, or water ice, in the pore space increases dramatically the possibility for radon to migrate far from its parent mineral. We propose to take advantage of this characteristic by using atmospheric radon-222 as a geochemical probe for water in the Martian soil, at least one order of magnitude deeper than the current Mars Odyssey neutron data. Strong thermal inversions during the Martian night will accumulate radon in the lowest atmospheric boundary layer, up to measurable levels despite the comparatively high environmental (cosmic and solar) background radiation and the assumed low uranium content of the upper crust of the planet. Preliminary studies and development of an instrument for the measurement of the Martian atmospheric alpha radioactivity is part of the CNES-supported PALOMA experiment. Two test benches have been implemented, one of them allowing differential measurements of the diffusion of radon in the Martian soil simulant NASA JSC Mars-1, under relevant temperatures and pressures. The other, a 1 m^3 radon-dedicated test bench, aims to characterize the instrument that will measure radon in the Mars environment (7 mb CO_2). Tests on several nuclear radiation detectors show that semiconductor alpha-particle detectors (PIPS) are the best option (already on board the Mars Pathfinder Rover and other platforms). In addition, the detection volume is left open in order to capitalize upon the long (ca. 4 m) alpha track at this low pressure. A stationary diffusion model was developed in order to assess the radon flux at the Mars soil surface. Diffusion of gas in Martian soil is governed by Knudsen diffusion. The radon Knudsen diffusion coefficient was estimated, depending on the soil moisture and relevant structural properties, leading to a radon diffusion length of the order of 20 m. The landed platform PALOMA-Radon instrument will consist of a set of alpha detectors connected to an electronic spectrometer, a system of collimators and an alpha source used for test and calibration purposes.
Experimental study of mass diffusion coefficients of hydrogen in dimethyl phosphate and n-heptane
NASA Astrophysics Data System (ADS)
Guo, Y.; Zhu, L. K.; Zhang, Y. P.; Liu, J.; Guo, J. S.
2017-11-01
In this study, a laser holographic interferometer experimental system was developed for studying the gas-liquid mass diffusion coefficient. Then the experimental system’s uncertainty was analyzed to be at most ±0.2% therefore, this system was reliable. The mass diffusion coefficient of hydrogen in dimethyl phosphate and n-heptane was measured at atmospheric pressure in the temperature range of 273.15-338.15 K. Then, the experimental data were used to fit the correlations of the mass diffusion coefficient of hydrogen in dimethyl phosphate and n-heptane with temperature.
NASA Astrophysics Data System (ADS)
Cheng-Wu, Li; Hong-Lai, Xue; Cheng, Guan; Wen-biao, Liu
2018-04-01
Statistical analysis shows that in the coal matrix, the diffusion coefficient for methane is time-varying, and its integral satisfies the formula μt κ /(1 + β κ ). Therefore, a so-called dynamic diffusion coefficient model (DDC model) is developed. To verify the suitability and accuracy of the DDC model, a series of gas diffusion experiments were conducted using coal particles of different sizes. The results show that the experimental data can be accurately described by the DDC and bidisperse models, but the fit to the DDC model is slightly better. For all coal samples, as time increases, the effective diffusion coefficient first shows a sudden drop, followed by a gradual decrease before stabilizing at longer times. The effective diffusion coefficient has a negative relationship with the size of the coal particle. Finally, the relationship between the constants of the DDC model and the effective diffusion coefficient is discussed. The constant α (μ/R 2 ) denotes the effective coefficient at the initial time, and the constants κ and β control the attenuation characteristic of the effective diffusion coefficient.
Tsapalov, Andrey; Gulabyants, Loren; Livshits, Mihail; Kovler, Konstantin
2014-04-01
The mathematical apparatus and the experimental installation for the rapid determination of radon diffusion coefficient in various materials are developed. The single test lasts not longer than 18 h and allows testing numerous materials, such as gaseous and liquid media, as well as soil, concrete and radon-proof membranes, in which diffusion coefficient of radon may vary in an extremely wide range, from 1·10(-12) to 5·10(-5) m(2)/s. The uncertainty of radon diffusion coefficient estimation depends on the permeability of the sample and varies from about 5% (for the most permeable materials) to 40% (for less permeable materials, such as radon-proof membranes). Copyright © 2014. Published by Elsevier Ltd.
Liquid- and Gas-Phase Diffusion of Ferrocene in Thin Films of Metal-Organic Frameworks
Zhou, Wencai; Wöll, Christof; Heinke, Lars
2015-01-01
The mass transfer of the guest molecules in nanoporous host materials, in particular in metal-organic frameworks (MOFs), is among the crucial features of their applications. By using thin surface-mounted MOF films in combination with a quartz crystal microbalance (QCM), the diffusion of ferrocene vapor and of ethanolic and hexanic ferrocene solution in HKUST-1 was investigated. For the first time, liquid- and gas-phase diffusion in MOFs was compared directly in the identical sample. The diffusion coefficients are in the same order of magnitude (~10−16 m2·s−1), whereas the diffusion coefficient of ferrocene in the empty framework is roughly 3-times smaller than in the MOF which is filled with ethanol or n-hexane.
NASA Astrophysics Data System (ADS)
Esrael, D.; Kacem, M.; Benadda, B.
2017-07-01
We investigate how the simulation of the venting/soil vapour extraction (SVE) process is affected by the mass transfer coefficient, using a model comprising five partial differential equations describing gas flow and mass conservation of phases and including an expression accounting for soil saturation conditions. In doing so, we test five previously reported quations for estimating the non-aqueous phase liquid (NAPL)/gas initial mass transfer coefficient and evaluate an expression that uses a reference NAPL saturation. Four venting/SVE experiments utilizing a sand column are performed with dry and non-saturated sand at low and high flow rates, and the obtained experimental results are subsequently simulated, revealing that hydrodynamic dispersion cannot be neglected in the estimation of the mass transfer coefficient, particularly in the case of low velocities. Among the tested models, only the analytical solution of a convection-dispersion equation and the equation proposed herein are suitable for correctly modelling the experimental results, with the developed model representing the best choice for correctly simulating the experimental results and the tailing part of the extracted gas concentration curve.
Modeling soil gas dynamics in the context of noble gas tracer applications
NASA Astrophysics Data System (ADS)
Jenner, Florian; Mayer, Simon; Aeschbach, Werner; Peregovich, Bernhard; Machado, Carlos
2017-04-01
Noble gas tracer applications show a particular relevance for the investigation of gas dynamics in the unsaturated zone, but also for a treatment of soil contamination as well as concerning exchange processes between soil and atmosphere. In this context, reliable conclusions require a profound understanding of underlying biogeochemical processes. With regard to noble gas tracer applications, the dynamics of reactive and inert gases in the unsaturated zone is investigated. Based on long-term trends and varying climatic conditions, this is the first study providing general insights concerning the role of unsaturated zone processes. Modeling approaches are applied, in combination with an extensive set of measured soil air composition data from appropriate sampling sites. On the one hand, a simple modeling approach allows to identify processes which predominantly determine inert gas mixing ratios in soil air. On the other hand, the well-proven and sophisticated modeling routine Min3P is applied to describe the measured data by accounting for the complex nature of subsurface gas dynamics. Both measured data and model outcomes indicate a significant deviation of noble gas mixing ratios in soil air from the respective atmospheric values, occurring on seasonal scale. Observed enhancements of noble gas mixing ratios are mainly caused by an advective balancing of depleted sum values of O2+CO2, resulting from microbial oxygen depletion in combination with a preferential dissolution of CO2. A contrary effect, meaning an enhanced sum value of O2+CO2, is shown to be induced at very dry conditions due to the different diffusivities of O2 and CO2. Soil air composition data show a yearlong mass-dependent fractionation, occurring as a relative enhancement of heavier gas species with respect to lighter ones. The diffusive balancing of concentration gradients between soil air and atmosphere is faster for lighter gas species compared to heavier ones. The rather uniform fractionation is a consequence of the time scale of diffusive transport which is decoupled from the typically stronger fluctuating advective impact.
Carrero-González, L; Kaulisch, T; Ruiz-Cabello, J; Pérez-Sánchez, J M; Peces-Barba, G; Stiller, D; Rodríguez, I
2012-09-01
The apparent diffusion coefficient (ADC) of hyperpolarized (HP) gases is a parameter that reflects changes in lung microstructure. However, ADC is dependent on many physiological and experimental variables that need to be controlled or specified in order to ensure the reliability and reproducibility of this parameter. A single breath-hold experiment is desirable in order to reduce the amount of consumed HP gas. The application of a positive end-expiratory pressure (PEEP) causes an increase in the residual gas volume. Depending on the applied PEEP, the ratio between the incoming and residual gas volumes will change and the ADC will vary, as long as both gases do not have the same diffusion coefficient. The most standard method for human applications uses air for breathing and a bolus of pure HP (3)He for MRI data acquisition. By applying this method in rats, we have demonstrated that ADC values are strongly dependent on the applied PEEP, and therefore on the residual gas volume in the lung. This outcome will play an important role in studies concerning certain diseases, such as emphysema, which is characterized by an increase in the residual volume. Ventilation with an oxygen-helium mixture (VOHeM) is a proposed single breath-hold method that uses two different gas mixtures (O(2)-(4)He for ventilation and HP (3)He-N(2) for imaging). The concentration of each gas in its respective mixture was calculated in order to obtain the same diffusion coefficient in both mixtures. ADCs obtained from VOHeM are independent of PEEP, thus minimizing the effect of the different residual volumes. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Geiss, J.; Burgi, A.
1987-01-01
Previous calculations of thermal diffusion coefficients in partially ionized gases are extended to the case of unequal neutral and ion temperatures and/or temperature gradients. Formulas are derived for the general case of a major gas as well as for minor atoms and ions. Strong enhancements of minor-ion thermal diffusion coefficients over their values in the fully ionized gas are found when the degree of ionization in the main gas is relatively low. However, compared to the case of equal temperatures, the enhancements are less strong when the neutrals are cooler than the ions. The specific case of the H-H(+) mixture, which is important in the study of solar and stellar atmospheres, is discussed as an application.
Gas-film coefficients for the volatilization of ketones from water
Rathbun, R.E.; Tai, D.Y.
1986-01-01
Volatilization is a significant process in determining the fate of many organic compounds in streams and rivers. Quantifying this process requires knowledge of the mass-transfer coefficient from water, which is a function of the gas-film and liquid-film coefficients. The gas-film coefficient can be determined by measuring the flux for the volatilization of pure organic liquids. Volatilization fluxes for acetone, 2-butanone, 2-pentanone, 3-pentanone, 4-methyl-2-pentanone, 2-heptanone, and 2-octanone were measured in the laboratory over a range of temperatures. Gas-film coefficients were then calculated from these fluxes and from vapor pressure data from the literature. An equation was developed for predicting the volatilization flux of pure liquid ketones as a function of vapor pressure and molecular weight. Large deviations were found for acetone, and these were attributed to the possibility that acetone may be hydrogen bonded. A second equation for predicting the flux as a function of molecular weight and temperature resulted in large deviations for 4methyl-2-pentanone. These deviations were attributed to the branched structure of this ketone. Four factors based on the theory of volatilization and relating the volatilization flux or rate to the vapor pressure, molecular weight, temperature, and molecular diffusion coefficient were not constant as suggested by the literature. The factors generally increased with molecular weight and with temperature. Values for acetone corresponded to ketones with a larger molecular weight, and the acetone factors showed the greatest dependence on temperature. Both of these results are characteristic of compounds that are hydrogen bonded. Relations from the literature commonly used for describing the dependence of the gas-film coefficient on molecular weight and molecular diffusion coefficient were not applicable to the ketone gas-film coefficients. The dependence on molecular weight and molecular diffusion coefficient was in general U-shaped with the largest coefficients observed for acetone, the next largest for 2octanone, and the smallest for 2-pentanone and 3-pentanone. The gas-film coefficient for acetone was much more dependent on temperature than were the coefficients for the other ketones. Such behavior is characteristic of hydrogen-bonded substances. Temperature dependencies of the other ketones were about twice the theoretical value, but were comparable to a literature value for water. Ratios of the ketone gas-film coefficients to the gasfilm coefficients for the evaporation of water were approximately constant for all the ketones except for acetone, whose values were considerably larger. The ratios increased with temperature; however, the increases were small except for acetone. These ratios can be combined with an equation from the literaure for predicting the gasfilm coefficient for evaporation of water from a canal to predict the gas-film coefficients for the volatilization of ketones from streams and rivers.
Effect of aggregate structure on VOC gas adsorption onto volcanic ash soil.
Hamamoto, Shoichiro; Seki, Katsutoshi; Miyazaki, Tsuyoshi
2009-07-15
The understanding of the gaseous adsorption process and the parameters of volatile organic compounds such as organic solvents or fuels onto soils is very important in the analysis of the transport or fate of these chemicals in soils. Batch adsorption experiments with six different treatments were conducted to determine the adsorption of isohexane, a gaseous aliphatic, onto volcanic ash soil (Tachikawa loam). The measured gas adsorption coefficient for samples of Tachikawa loam used in the first three treatments, Control, AD (aggregate destroyed), and AD-OMR (aggregate destroyed and organic matter removed), implied that the aggregate structure of volcanic ash soil as well as organic matter strongly enhanced gas adsorption under the dry condition, whereas under the wet condition, the aggregate structure played an important role in gas adsorption regardless of the insolubility of isohexane. In the gas adsorption experiments for the last three treatments, soils were sieved in different sizes of mesh and were separated into three different aggregate or particle size fractions (2.0-1.0mm, 1.0-0.5mm, and less than 0.5mm). Tachikawa loam with a larger size fraction showed higher gas adsorption coefficient, suggesting the higher contributions of macroaggregates to isohexane gas adsorption under dry and wet conditions.
Sakurai, Gen; Yonemura, Seiichiro; Kishimoto-Mo, Ayaka W.; Murayama, Shohei; Ohtsuka, Toshiyuki; Yokozawa, Masayuki
2015-01-01
Carbon dioxide (CO2) efflux from the soil surface, which is a major source of CO2 from terrestrial ecosystems, represents the total CO2 production at all soil depths. Although many studies have estimated the vertical profile of the CO2 production rate, one of the difficulties in estimating the vertical profile is measuring diffusion coefficients of CO2 at all soil depths in a nondestructive manner. In this study, we estimated the temporal variation in the vertical profile of the CO2 production rate using a data assimilation method, the particle filtering method, in which the diffusion coefficients of CO2 were simultaneously estimated. The CO2 concentrations at several soil depths and CO2 efflux from the soil surface (only during the snow-free period) were measured at two points in a broadleaf forest in Japan, and the data were assimilated into a simple model including a diffusion equation. We found that there were large variations in the pattern of the vertical profile of the CO2 production rate between experiment sites: the peak CO2 production rate was at soil depths around 10 cm during the snow-free period at one site, but the peak was at the soil surface at the other site. Using this method to estimate the CO2 production rate during snow-cover periods allowed us to estimate CO2 efflux during that period as well. We estimated that the CO2 efflux during the snow-cover period (about half the year) accounted for around 13% of the annual CO2 efflux at this site. Although the method proposed in this study does not ensure the validity of the estimated diffusion coefficients and CO2 production rates, the method enables us to more closely approach the “actual” values by decreasing the variance of the posterior distribution of the values. PMID:25793387
NASA Astrophysics Data System (ADS)
Inoue, Gen; Kawase, Motoaki
2016-09-01
It is important to reduce the oxygen diffusion resistance through PEFC porous electrode, because it is the key to reduce the PEFC cost. However, the gas diffusion coefficient of CL is lower than MPL in spite of framework consisted of same carbon blacks. In this study, in order to understand the reasons of the lower gas diffusion performance of CL, the relationship between a carbon black agglomerate structure and ionomer adhesion condition is evaluated by a numerical analysis with an actual reconstructed structure and a simulated structure. As a result, the gas diffusion property of CL strongly depends on the ionomer adhesion shape. In the case of adhesion shape with the same curvature of ionomer interface, each pore can not be connected enough. So the pore tortuosity increases. Moreover, in the case of existence of inefficient large pores formed by carbon black agglomerate and ununiformly coated ionomer, the gas diffusion performance decrease rapidly. As the measurement values in actual CL are almost equal to that with model structure with inefficient large pores. These characteristics can be confirmed by actual cross-section image obtained by FIB-SEM.
Slip and barodiffusion phenomena in slow flows of a gas mixture
NASA Astrophysics Data System (ADS)
Zhdanov, V. M.
2017-03-01
The slip and barodiffusion problems for the slow flows of a gas mixture are investigated on the basis of the linearized moment equations following from the Boltzmann equation. We restrict ourselves to the set of the third-order moment equations and state two general relations (resembling conservation equations) for the moments of the distribution function similar to the conditions used by Loyalka [S. K. Loyalka, Phys. Fluids 14, 2291 (1971), 10.1063/1.1693331] in his approximation method (the modified Maxwell method). The expressions for the macroscopic velocities of the gas mixture species, the partial viscous stress tensors, and the reduced heat fluxes for the stationary slow flow of a gas mixture in the semi-infinite space over a plane wall are obtained as a result of the exact solution of the linearized moment equations in the 10- and 13-moment approximations. The general expression for the slip velocity and the simple and accurate expressions for the viscous, thermal, diffusion slip, and baroslip coefficients, which are given in terms of the basic transport coefficients, are derived by using the modified Maxwell method. The solutions of moment equations are also used for investigation of the flow and diffusion of a gas mixture in a channel formed by two infinite parallel plates. A fundamental result is that the barodiffusion factor in the cross-section-averaged expression for the diffusion flux contains contributions associated with the viscous transfer of momentum in the gas mixture and the effect of the Knudsen layer. Our study revealed that the barodiffusion factor is equal to the diffusion slip coefficient (correct to the opposite sign). This result is consistent with the Onsager's reciprocity relations for kinetic coefficients following from nonequilibrium thermodynamics of the discontinuous systems.
Theory and Experiment of Binary Diffusion Coefficient of n-Alkanes in Dilute Gases.
Liu, Changran; McGivern, W Sean; Manion, Jeffrey A; Wang, Hai
2016-10-10
Binary diffusion coefficients were measured for n-pentane, n-hexane, and n-octane in helium and of n-pentane in nitrogen over the temperature range of 300 to 600 K, using reversed-flow gas chromatography. A generalized, analytical theory is proposed for the binary diffusion coefficients of long-chain molecules in simple diluent gases, taking advantage of a recently developed gas-kinetic theory of the transport properties of nanoslender bodies in dilute free-molecular flows. The theory addresses the long-standing question about the applicability of the Chapman-Enskog theory in describing the transport properties of nonspherical molecular structures, or equivalently, the use of isotropic potentials of interaction for a roughly cylindrical molecular structure such as large normal alkanes. An approximate potential energy function is proposed for the intermolecular interaction of long-chain n-alkane with typical bath gases. Using this potential and the analytical theory for nanoslender bodies, we show that the diffusion coefficients of n-alkanes in typical bath gases can be treated by the resulting analytical model accurately, especially for compounds larger than n-butane.
Portable vapor diffusion coefficient meter
Ho, Clifford K [Albuquerque, NM
2007-06-12
An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.
Healy, Richard W.; Striegl, Robert G.; Russell, Thomas F.; Hutchinson, Gordon L.; Livingston, Gerald P.
1996-01-01
The exchange of gases between soil and atmosphere is an important process that affects atmospheric chemistry and therefore climate. The static-chamber method is the most commonly used technique for estimating the rate of that exchange. We examined the method under hypothetical field conditions where diffusion was the only mechanism for gas transport and the atmosphere outside the chamber was maintained at a fixed concentration. Analytical and numerical solutions to the soil gas diffusion equation in one and three dimensions demonstrated that gas flux density to a static chamber deployed on the soil surface was less in magnitude than the ambient exchange rate in the absence of the chamber. This discrepancy, which increased with chamber deployment time and air-filled porosity of soil, is attributed to two physical factors: distortion of the soil gas concentration gradient (the magnitude was decreased in the vertical component and increased in the radial component) and the slow transport rate of diffusion relative to mixing within the chamber. Instantaneous flux density to a chamber decreased continuously with time; steepest decreases occurred so quickly following deployment and in response to such slight changes in mean chamber headspace concentration that they would likely go undetected by most field procedures. Adverse influences of these factors were reduced by mixing the chamber headspace, minimizing deployment time, maximizing the height and radius of the chamber, and pushing the rim of the chamber into the soil. Nonlinear models were superior to a linear regression model for estimating flux densities from mean headspace concentrations, suggesting that linearity of headspace concentration with time was not necessarily a good indicator of measurement accuracy.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Navrátilová Rovenská, Katerina
2014-07-01
Waterproofing, usually made of bitumen or polymers with various additives, is used to protect buildings mainly against dampness, but also against radon transported from the soil beneath the building. The radon diffusion coefficient is a material property which is considered to be strongly influenced by the inner structure (chemical composition, crystallinity) of a measured sample. We have used this parameter together with measurements of mechanical properties (hardness, tensile strength, elongation at break, etc.) and FTIR spectroscopy has been used in order to describe the changes in material properties induced by long-term degradation. This paper summarizes the results of radon diffusion coefficient measurements of waterproof materials exposed to radon, soil bacteria, high temperature and combinations of these factors. We have discovered changes as high as 83 % have been discovered compared to virgin samples. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Geologic and climatic controls on the radon emanation coefficient
Schumann, R.R.; Gundersen, L.C.S.; ,
1997-01-01
Geologic, pedologic, and climatic factors, including radium content, grain size, siting of radon parents within soil grains or on grain coatings, and soil moisture conditions, determine a soil's emanating power and radon transport characteristics. Data from field studies indicate that soils derived from similar parent rocks in different regions have significantly different emanation coefficients due to the effects of climate on these soil characteristics. An important tool for measuring radon source strength (i.e., radium content) is ground-based and aerial gamma radioactivity measurements. Regional correlations between soil radium content, determined by gamma spectrometry, and soil-gas or indoor radon concentrations can be traced to the influence of climatic and geologic factors on intrinsic permeability and radon emanation coefficients. Data on soil radium content, permeability, and moisture content, when combined with data on emanation coefficients, can form a framework for development of quantitative predictive models for radon generation in rocks and soils.
Modeling of inhomogeneous mixing of plasma species in argon-steam arc discharge
NASA Astrophysics Data System (ADS)
Jeništa, J.; Takana, H.; Uehara, S.; Nishiyama, H.; Bartlová, M.; Aubrecht, V.; Murphy, A. B.
2018-01-01
This paper presents numerical simulation of mixing of argon- and water-plasma species in an argon-steam arc discharge generated in a thermal plasma generator with the combined stabilization of arc by axial gas flow (argon) and water vortex. The diffusion of plasma species itself is described by the combined diffusion coefficients method in which the coefficients describe the diffusion of argon ‘gas,’ with respect to water vapor ‘gas.’ Diffusion processes due to the gradients of mass density, temperature, pressure, and an electric field have been considered in the model. Calculations for currents 150-400 A with 15-22.5 standard liters per minute (slm) of argon reveal inhomogeneous mixing of argon and oxygen-hydrogen species with the argon species prevailing near the arc axis. All the combined diffusion coefficients exhibit highly nonlinear distribution of their values within the discharge, depending on the temperature, pressure, and argon mass fraction of the plasma. The argon diffusion mass flux is driven mainly by the concentration and temperature space gradients. Diffusions due to pressure gradients and due to the electric field are of about 1 order lower. Comparison with our former calculations based on the homogeneous mixing assumption shows differences in temperature, enthalpy, radiation losses, arc efficiency, and velocity at 400 A. Comparison with available experiments exhibits very good qualitative and quantitative agreement for the radial temperature and velocity profiles 2 mm downstream of the exit nozzle.
Rounds, S.A.; Tiffany, B.A.; Pankow, J.F.
1993-01-01
Aerosol particles from a highway tunnel were collected on a Teflon membrane filter (TMF) using standard techniques. Sorbed organic compounds were then desorbed for 28 days by passing clean nitrogen through the filter. Volatile n-alkanes and polycyclic aromatic hydrocarbons (PAHs) were liberated from the filter quickly; only a small fraction of the less volatile ra-alkanes and PAHs were desorbed. A nonlinear least-squares method was used to fit an intraparticle diffusion model to the experimental data. Two fitting parameters were used: the gas/particle partition coefficient (Kp and an effective intraparticle diffusion coefficient (Oeff). Optimized values of Kp are in agreement with previously reported values. The slope of a correlation between the fitted values of Deff and Kp agrees well with theory, but the absolute values of Deff are a factor of ???106 smaller than predicted for sorption-retarded, gaseous diffusion. Slow transport through an organic or solid phase within the particles or preferential flow through the bed of particulate matter on the filter might be the cause of these very small effective diffusion coefficients. ?? 1993 American Chemical Society.
NASA Astrophysics Data System (ADS)
Su, Yong-Yang; Marsh, Aleksandra; Haddrell, Allen E.; Li, Zhi-Ming; Reid, Jonathan P.
2017-11-01
In order to quantify the kinetics of mass transfer between the gas and condensed phases in aerosol, physicochemical properties of the gas and condensed phases and kinetic parameters (mass/thermal accommodation coefficients) are crucial for estimating mass fluxes over a wide size range from the free molecule to continuum regimes. In this study, we report measurements of the evaporation kinetics of droplets of 1-butanol, ethylene glycol (EG), diethylene glycol (DEG), and glycerol under well-controlled conditions (gas flow rates and temperature) using the previously developed cylindrical electrode electrodynamic balance technique. Measurements are compared with a model that captures the heat and mass transfer occurring at the evaporating droplet surface. The aim of these measurements is to clarify the discrepancy in the reported values of mass accommodation coefficient (αM, equals to evaporation coefficient based on microscopic reversibility) for 1-butanol, EG, and DEG and improve the accuracy of the value of the diffusion coefficient for glycerol in gaseous nitrogen. The uncertainties in the thermophysical and experimental parameters are carefully assessed, the literature values of the vapor pressures of these components are evaluated, and the plausible ranges of the evaporation coefficients for 1-butanol, EG, and DEG as well as uncertainty in diffusion coefficient for glycerol are reported. Results show that αM should be greater than 0.4, 0.2, and 0.4 for EG, DEG, and 1-butanol, respectively. The refined values are helpful for accurate prediction of the evaporation/condensation rates.
Understanding transport of volatile contaminants in soil gas and ground water, particularly those associated with underground storage tanks, requires a detailed knowledge about the depth-dependent distribution of chemical species in the subsurface. A risk assessment of the moveme...
NASA Astrophysics Data System (ADS)
Kolesnichenko, A. V.; Marov, M. Ya.
2018-01-01
The defining relations for the thermodynamic diffusion and heat fluxes in a multicomponent, partially ionized gas mixture in an external electromagnetic field have been obtained by the methods of the kinetic theory. Generalized Stefan-Maxwell relations and algebraic equations for anisotropic transport coefficients (the multicomponent diffusion, thermal diffusion, electric and thermoelectric conductivity coefficients as well as the thermal diffusion ratios) associated with diffusion-thermal processes have been derived. The defining second-order equations are derived by the Chapman-Enskog procedure using Sonine polynomial expansions. The modified Stefan-Maxwell relations are used for the description of ambipolar diffusion in the Earth's ionospheric plasma (in the F region) composed of electrons, ions of many species, and neutral particles in a strong electromagnetic field.
Insights into Interactions of Water Ice with Regolith under Simulated Martian Conditions.
NASA Astrophysics Data System (ADS)
Chittenden, Julie; Chevrier, V.; Sears, D. W.; Roe, L. A.; Bryson, K.; Billingsly, L.; Hanley, J.
2006-09-01
In order to understand the diffusion process of water vapor through regolith, we have investigated the sublimation process of subsurface ice under varying depths of JSC Mars-1 soil simulant under martian conditions. Measurements were made at 0oC and 5.25 Torr in a CO2 atmosphere. We corrected for variations in temperature of the ice and the difference in gravity of Mars in relation to the Earth. Our results show that for depths up to 40 mm the process is mainly diffusion controlled and that for thicker regolith layers, desorption becomes the main process. After correction for the effect of desorption, we observed a decrease in sublimation rate from 0.625 ± 0.073 mm.h-1 at 5 mm of soil to 0.187 ± 0.093 mm.h-1 for 200 mm of soil. To characterize the diffusion process, we use the Farmer model (1976), which hypothesizes that the sublimation rate is equal to the diffusion coefficient divided by the soil depth. The derived diffusion coefficient from this data is 2.52 ± 0.55 mm2.h-1, or 7.0 ± 1.5 x 10-10 m2.s-1. Knowing the diffusion coefficient in the regolith, we can calculate the survival time, κ, of a layer of ice under a regolith layer which is given by τ = liceL/D, where lice is the thickness of the ice layer. Using this equation, we find that a 10 cm-thick layer of ice buried under 1 m of regolith would last for more than 4 years at 0oC. Therefore, our study indicates that the transport of water through a regolith layer is a complex multi-faceted process that is readily quantified by laboratory investigations. This is especially important in interpreting previous theoretical models and in understanding in situ observations to be performed by martian landers such as Phoenix. The W.M. Keck Foundation funded this research.
A tentative protocol for measurement of radon availability from the ground
Tanner, A.B.
1988-01-01
A procedure is being tested in order to determine its suitability for assessing the intrinsic ability of the ground as a particular site to supply 222Rn to a basement structure to be built on the site. Soil gas is sucked from a borehold probe through an alpha scintillation chamber and flow meter by a pump. The permeability of the soil is calculated from the flow rate and the pressure difference between the atmosphere and the borehold at the intake point. The diffusion coefficient is estimated from the water fraction in the soil pores. The upward migration distance for radon in such soil during one mean life is computed for an arbitrary steady pressure difference. This mean migration distance, multiplied by the measured radon concentration, gives the 'radon availability number'. Measurements at sites of known indoor radon concentration suggest that numbers below 2 kBq ?? m-2 indicate little chance of elevated indoor radon and above 20 kBq ?? m-2 indicate that elevated indoor radon is likely. The range of uncertainty and the point-to-point and seasonal variations to be expected are under investigation.
NASA Astrophysics Data System (ADS)
Mohr, Manuel; Laemmel, Thomas; Maier, Martin; Zeeman, Matthias; Longdoz, Bernard; Schindler, Dirk
2017-04-01
The exchange of greenhouse gases between the soil and the atmosphere is highly relevant for the climate of the Earth. Recent research suggests that wind-induced air pressure fluctuations can alter the soil gas transport and therefore soil gas efflux significantly. Using a newly developed method, we measured soil gas transport in situ in a well aerated forest soil. Results from these measurements showed that the commonly used soil gas diffusion coefficient is enhanced up to 30% during periods of strong wind-induced air pressure fluctuations. The air pressure fluctuations above the forest floor are only induced at high above-canopy wind speeds (> 5 m s-1) and lie in the frequency range 0.01-0.1 Hz. Moreover, the amplitudes of air pressure fluctuations in this frequency range show a clear quadratic dependence on mean above-canopy wind speed. However, the origin of these wind-induced pressure fluctuations is still unclear. Airflow measurements and high-precision air pressure measurements were conducted at three different vegetation-covered sites (conifer forest, deciduous forest, grassland) to investigate the spatial variability of dominant air pressure fluctuations, their origin and vegetation-dependent characteristics. At the conifer forest site, a vertical profile of air pressure fluctuations was measured and an array consisting of five pressure sensors were installed at the forest floor. At the grassland site, the air pressure measurements were compared with wind observations made by ground-based LIDAR and spatial temperature observations from a fibre-optic sensing network (ScaleX Campaign 2016). Preliminary results show that at all sites the amplitudes of relevant air pressure fluctuations increase with increasing wind speed. Data from the array measurements reveal that there are no time lags between the air pressure signals of different heights, but a time lag existed between the air pressure signals of the sensors distributed laterally on the forest floor, suggesting a horizontal propagation of the air pressure waves.
Error in measuring radon in soil gas by means of passive detectors
Tanner, A.B.
1991-01-01
Passive detection of radon isotopes depends on diffusion of radon atoms from the sites of their generation to the location of the detecting or collecting device. Because some radon decays en route to a passive detector in soil, the radon concentration measured by the detector must be less than the concentration in those soil pores where it is undiminished by diffusion to the detector cavity. The true radon concentration may be significantly underestimated in moist soils. -Author
Fielitz, Peter; Borchardt, Günter
2016-08-10
In the dedicated literature the oxygen surface exchange coefficient KO and the equilibrium oxygen exchange rate [Fraktur R] are considered to be directly proportional to each other regardless of the experimental circumstances. Recent experimental observations, however, contradict the consequences of this assumption. Most surprising is the finding that the apparent activation energy of KO depends dramatically on the kinetic regime in which it has been determined, i.e. surface exchange controlled vs. mixed or diffusion controlled. This work demonstrates how the diffusion boundary condition at the gas/solid interface inevitably entails a correlation between the oxygen surface exchange coefficient KO and the oxygen self-diffusion coefficient DO in the bulk ("on top" of the correlation between KO and [Fraktur R] for the pure surface exchange regime). The model can thus quantitatively explain the range of apparent activation energies measured in the different regimes: in the surface exchange regime the apparent activation energy only contains the contribution of the equilibrium exchange rate, whereas in the mixed or in the diffusion controlled regime the contribution of the oxygen self-diffusivity has also to be taken into account, which may yield significantly higher apparent activation energies and simultaneously quantifies the correlation KO ∝ DO(1/2) observed for a large number of oxides in the mixed or diffusion controlled regime, respectively.
Single-shot diffusion measurement in laser-polarized Gas
NASA Technical Reports Server (NTRS)
Peled, S.; Tseng, C. H.; Sodickson, A. A.; Mair, R. W.; Walsworth, R. L.; Cory, D. G.
1999-01-01
A single-shot pulsed gradient stimulated echo sequence is introduced to address the challenges of diffusion measurements of laser polarized 3He and 129Xe gas. Laser polarization enhances the NMR sensitivity of these noble gases by >10(3), but creates an unstable, nonthermal polarization that is not readily renewable. A new method is presented which permits parallel acquisition of the several measurements required to determine a diffusive attenuation curve. The NMR characterization of a sample's diffusion behavior can be accomplished in a single measurement, using only a single polarization step. As a demonstration, the diffusion coefficient of a sample of laser-polarized 129Xe gas is measured via this method. Copyright 1999 Academic Press.
NASA Astrophysics Data System (ADS)
Yang, Linlin; Sun, Hai; Fu, Xudong; Wang, Suli; Jiang, Luhua; Sun, Gongquan
2014-07-01
A novel method for measuring effective diffusion coefficient of porous materials is developed. The oxygen concentration gradient is established by an air-breathing proton exchange membrane fuel cell (PEMFC). The porous sample is set in a sample holder located in the cathode plate of the PEMFC. At a given oxygen flux, the effective diffusion coefficients are related to the difference of oxygen concentration across the samples, which can be correlated with the differences of the output voltage of the PEMFC with and without inserting the sample in the cathode plate. Compared to the conventional electrical conductivity method, this method is more reliable for measuring non-wetting samples.
Atmospheric dispersion of natural carbon dioxide emissions on Vulcano Island, Italy
NASA Astrophysics Data System (ADS)
Granieri, D.; Carapezza, M. L.; Barberi, F.; Ranaldi, M.; Ricci, T.; Tarchini, L.
2014-07-01
La Fossa quiescent volcano and its surrounding area on the Island of Vulcano (Italy) are characterized by intensive, persistent degassing through both fumaroles and diffuse soil emissions. Periodic degassing crises occur, with marked increase in temperature and steam and gas output (mostly CO2) from crater fumaroles and in CO2 soil diffuse emission from the crater area as well as from the volcano flanks and base. The gas hazard of the most inhabited part of the island, Vulcano Porto, was investigated by simulating the CO2 dispersion in the atmosphere under different wind conditions. The DISGAS (DISpersion of GAS) code, an Eulerian model based on advection-diffusion equations, was used together with the mass-consistent Diagnostic Wind Model. Numerical simulations were validated by measurements of air CO2 concentration inside the village and along the crater's rim by means of a Soil CO2 Automatic Station and a Tunable Diode Laser device. The results show that in the village of Vulcano Porto, the CO2 air concentration is mostly due to local soil degassing, while the contribution from the crater gas emission is negligible at the breathing height for humans and always remains well below the lowest indoor CO2 concentration threshold recommended by the health authorities (1000 ppm). Outdoor excess CO2 maxima up to 200 ppm above local background CO2 air concentration are estimated in the center of the village and up to 100 ppm in other zones. However, in some ground excavations or in basements the health code threshold can be exceeded. In the crater area, because of the combined effect of fumaroles and diffuse soil emissions, CO2 air concentrations can reach 5000-7000 ppm in low-wind conditions and pose a health hazard for visitors.
Gas engineering studies for high pressure self-sustained diffuse discharge closing switches
NASA Astrophysics Data System (ADS)
Hunter, S. R.; Christophorou, L. G.; Carter, J. G.
The operating voltage and discharge stability of diffuse discharges for fast-closing switch applications are critically dependent on the variation of the ionization (alpha/N) and attachment (eta/N) coefficients with E/N (gas density normalized electric field strength). Gases and gas mixtures which possess low (E/N)/sub lim/ values (i.e., the E/N value when anti alpha/N = alpha/N - eta/N = 0) and effective ionization coefficients, anti alpha/N, which vary slowly with E/N near (E/N)(sub lim) lead to lower voltage (i.e., more efficient) operation with increased discharge stability. Several gas mixtures with these characteristics are discussed. It is argued that further improvements in switch efficiency and discharge stability can be obtained by adding a low ionization onset gas additive to these binary mixtures, such that at low E/N, alpha/N is greater than eta/N, while at higher E/N, eta/N is greater than alpha/N over a restricted E/N range. Several low ionization onset gas additives are suggested and the electron attachment and ionization coefficients in selected gas mixtures which possess these desirable characteristics are given.
Heat Diffusion in Gases, Including Effects of Chemical Reaction
NASA Technical Reports Server (NTRS)
Hansen, C. Frederick
1960-01-01
The diffusion of heat through gases is treated where the coefficients of thermal conductivity and diffusivity are functions of temperature. The diffusivity is taken proportional to the integral of thermal conductivity, where the gas is ideal, and is considered constant over the temperature interval in which a chemical reaction occurs. The heat diffusion equation is then solved numerically for a semi-infinite gas medium with constant initial and boundary conditions. These solutions are in a dimensionless form applicable to gases in general, and they are used, along with measured shock velocity and heat flux through a shock reflecting surface, to evaluate the integral of thermal conductivity for air up to 5000 degrees Kelvin. This integral has the properties of a heat flux potential and replaces temperature as the dependent variable for problems of heat diffusion in media with variable coefficients. Examples are given in which the heat flux at the stagnation region of blunt hypersonic bodies is expressed in terms of this potential.
Pore size distribution effect on rarefied gas transport in porous media
NASA Astrophysics Data System (ADS)
Hori, Takuma; Yoshimoto, Yuta; Takagi, Shu; Kinefuchi, Ikuya
2017-11-01
Gas transport phenomena in porous media are known to strongly influence the performance of devices such as gas separation membranes and fuel cells. Knudsen diffusion is a dominant flow regime in these devices since they have nanoscale pores. Many experiments have shown that these porous media have complex structures and pore size distributions; thus, the diffusion coefficient in these media cannot be easily assessed. Previous studies have reported that the characteristic pore diameter of porous media can be defined in light of the pore size distribution; however, tortuosity factor, which is necessary for the evaluation of diffusion coefficient, is still unknown without gas transport measurements or simulations. Thus, the relation between pore size distributions and tortuosity factors is required to obtain the gas transport properties. We perform numerical simulations to prove the relation between them. Porous media are numerically constructed while satisfying given pore size distributions. Then, the mean-square displacement simulation is performed to obtain the tortuosity factors of the constructed porous media.. This paper is based on results obtained from a project commissioned by the New Energy and Industrial Development Organization (NEDO).
NASA Astrophysics Data System (ADS)
Huang, Junqi; Goltz, Mark N.
2017-06-01
To greatly simplify their solution, the equations describing radial advective/dispersive transport to an extraction well in a porous medium typically neglect molecular diffusion. While this simplification is appropriate to simulate transport in the saturated zone, it can result in significant errors when modeling gas phase transport in the vadose zone, as might be applied when simulating a soil vapor extraction (SVE) system to remediate vadose zone contamination. A new analytical solution for the equations describing radial gas phase transport of a sorbing contaminant to an extraction well is presented. The equations model advection, dispersion (including both mechanical dispersion and molecular diffusion), and rate-limited mass transfer of dissolved, separate phase, and sorbed contaminants into the gas phase. The model equations are analytically solved by using the Laplace transform with respect to time. The solutions are represented by confluent hypergeometric functions in the Laplace domain. The Laplace domain solutions are then evaluated using a numerical Laplace inversion algorithm. The solutions can be used to simulate the spatial distribution and the temporal evolution of contaminant concentrations during operation of a soil vapor extraction well. Results of model simulations show that the effect of gas phase molecular diffusion upon concentrations at the extraction well is relatively small, although the effect upon the distribution of concentrations in space is significant. This study provides a tool that can be useful in designing SVE remediation strategies, as well as verifying numerical models used to simulate SVE system performance.
Experimental studies and model analysis of noble gas fractionation in porous media
Ding, Xin; Kennedy, B. Mack.; Evans, William C.; Stonestrom, David A.
2016-01-01
The noble gases, which are chemically inert under normal terrestrial conditions but vary systematically across a wide range of atomic mass and diffusivity, offer a multicomponent approach to investigating gas dynamics in unsaturated soil horizons, including transfer of gas between saturated zones, unsaturated zones, and the atmosphere. To evaluate the degree to which fractionation of noble gases in the presence of an advective–diffusive flux agrees with existing theory, a simple laboratory sand column experiment was conducted. Pure CO2 was injected at the base of the column, providing a series of constant CO2 fluxes through the column. At five fixed sampling depths within the system, samples were collected for CO2 and noble gas analyses, and ambient pressures were measured. Both the advection–diffusion and dusty gas models were used to simulate the behavior of CO2 and noble gases under the experimental conditions, and the simulations were compared with the measured depth-dependent concentration profiles of the gases. Given the relatively high permeability of the sand column (5 ´ 10−11 m2), Knudsen diffusion terms were small, and both the dusty gas model and the advection–diffusion model accurately predicted the concentration profiles of the CO2 and atmospheric noble gases across a range of CO2 flux from ?700 to 10,000 g m−2 d−1. The agreement between predicted and measured gas concentrations demonstrated that, when applied to natural systems, the multi-component capability provided by the noble gases can be exploited to constrain component and total gas fluxes of non-conserved (CO2) and conserved (noble gas) species or attributes of the soil column relevant to gas transport, such as porosity, tortuosity, and gas saturation.
NASA Astrophysics Data System (ADS)
Rybalkin, Andrey
Numerical assessments of radon diffusion together with analytical estimates for short-time and long-time exposure were the first objective of this thesis with the goal to demonstrate how radon propagates in various media. Theoretical predictions were compared to numerical simulations, and obtained values of total radon activities inside each material match quite well with the analytical estimates. These estimates, for activated and nonactivated charcoal, were then used to evaluate the possibility of designing a charcoal system to be used as a radon detector. Another objective was to use nonactivated charcoal samples and measure the level of radon accumulation, and use these data to estimate radon diffusion and adsorption coefficients. The analytical approach was developed to estimate these values. Radon adsorption coefficient in nonactivated charcoal was found to be from 0.2 to 0.4 m3/kg. Radon diffusion coefficient for nonactivated charcoal is in the range of 1.2×10-11 to 5.1×10-10 m2/s in comparison to activated charcoal with adsorption coefficient of 4 m3/kg and diffusion coefficient of 1.43×10-9 m2/s. The third objective was to use GEANT4 numerical code to simulate decay of 238U series and 222Rn in an arbitrary soil sample. Based on that model, the goal was to provide a guideline for merging GEANT4 radioactive decay modeling with the diffusion of radon in a soil sample. It is known that radon can be used as an earthquake predictor by measuring its concentration in groundwater, or if possible, along the faults. Numerical simulations of radon migration by diffusion only were made to estimate how fast and how far radon can move along the fault strands. Among the known cases of successful correlations between radon concentration anomalies and earthquake are the 1966 Tashkent and 1976 Songpan-Pingwu earthquakes. Thus, an idea of radon monitoring along the Wasatch Fault, using system of activated/nonactivated charcoals together with solid state radon detectors is suggested in the thesis. Also, the use of neutron activation analysis for soil samples, collected along and away from Wasatch Fault, and looking for the trace elements can result in correlation with earthquakes, occurred in the past. This approach can be used for earthquake prediction in future.
Structural Measurements from Images of Noble Gas Diffusion
NASA Astrophysics Data System (ADS)
Cadman, Robert V.; Kadlecek, Stephen J.; Emami, Kiarash; MacDuffie Woodburn, John; Vahdat, Vahid; Ishii, Masaru; Rizi, Rahim R.
2009-03-01
Magnetic resonance imaging of externally polarized noble gases such as ^3He has been used for pulmonary imaging for more than a decade. Because gas diffusion is impeded by the alveoli, the diffusion coefficient of gas in the lung, measured on a time scale of milliseconds, is reduced compared to that of the same gas mixture in the absence of restrictions. When the alveolar walls decay, as in emphysema, diffusivity in the lung increases. In this paper, the relationship between diffusion measurements and the size of the restricting structures will be discussed. The simple case of diffusion in an impermeable cylinder, a structure similar to the upper respiratory airways in mammals, has been studied. A procedure will be presented by which airways of order 2 mm in diameter may be accurately measured; demonstration experiments with plastic tubes will also be presented. The additional developments needed before this technique becomes practical will be briefly discussed.
Tansel, Berrin; Lee, Mengshan; Tansel, Derya Z
2013-08-15
First order removal rates for 15 polyaromatic hydrocarbons (PAHs) in soil, sediments and mangrove leaves were compared in relation to the parameters used in fate transport analyses (i.e., octanol-water partition coefficient, organic carbon-water partition coefficient, solubility, diffusivity in water, HOMO-LUMO gap, molecular size, molecular aspect ratio). The quantitative structure activity relationships (QSAR) and quantitative structure property relationships (QSPR) showed that the rate of disappearance of PAHs is correlated with their diffusivities in water as well as molecular volumes in different media. Strong correlations for the rate of disappearance of PAHs in sediments could not be obtained in relation to most of the parameters evaluated. The analyses showed that the QSAR and QSPR correlations developed for removal rates of PAHs in soils would not be adequate for sediments and plant tissues. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rathbun, R.E.
1979-01-01
Measuring the reaeration coefficient of a stream with a modified tracer technique has been accomplished by injecting either ethylene or ethylene and propane together and a rhodamine-WT dye solution into the stream. The movement of the tracers through the stream reach after injection is described by a one-dimensional diffusion equation. The peak concentrations of the tracers at the downstream end of the reach depend on the concentrations of the tracers in the stream at the injection site, the longitudinal dispersion coefficient, the mean water velocity, the length of the reach, and the duration of the injection period. The downstream gas concentrations also depend on the gas desorption coefficients of the reach. The concentrations of the tracer gases in the stream at the injection site depend on the flow rates of the gases through the injection diffusers, the efficiency of the gas absorption process, and the stream discharge. The concentration of dye in the stream at the injection site depends on the flow rate of the dye solution, the concentration of the dye solution, and the stream discharge. Equations for estimating the gas flow rates, the quantities of the gases, the dye concentration, and the quantity of dye together with procedures for determining the variables in these equations are presented. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Goffin, S.; Parent, F.; Plain, C.; Maier, M.; Schack-Kirchner, H.; Aubinet, M.; Longdoz, B.
2012-12-01
The overall aim of this study is to contribute to a better understanding of mechanisms behind soil CO2 efflux using carbon stable isotopes. The approach combines a soil multilayer analysis and the isotopic tool in an in situ study. The specific goal of this work is to quantify the origin and the determinism of 13CO2 and 12CO2 production processes in the different soil layers using the gradient-efflux approach. To meet this, the work includes an experimental setup and a modeling approach. The experimental set up (see also communication of Parent et al., session B008) comprised a combination of different systems, which were installed in a Scot Pine temperate forest at the Hartheim site (Southwestern Germany). Measurements include (i) half hourly vertical profiles of soil CO2 concentration (using soil CO2 probes), soil water content and temperature; (ii) half hourly soil surface CO2 effluxes (automatic chambers); (iii) half hourly isotopic composition of surface CO2 efflux and soil CO2 concentration profile and (iv) estimation of soil diffusivity through laboratory measurements conducted on soil samples taken at several depths. Using the data collected in the experimental part, we developed and used a diffusive transport model to simulate CO2 (13CO2 and 12CO2) flows inside and out of the soil based on Fick's first law. Given the horizontal homogeneity of soil physical parameters in Hartheim, we treated the soil as a structure consisting of distinctive layers of 5 cm thick and expressed the Fick's first law in a discrete formalism. The diffusion coefficient used in each layer was derived from (i) horizon specific relationships, obtained from laboratory measurements, between soil relative diffusivity and its water content and (ii) the soil water content values measured in situ. The concentration profile was obtained from in situ measurements. So, the main model inputs are the profiles of (i) CO2 (13CO2 and 12CO2) concentration, (ii) soil diffusion coefficient and (iii) soil water content. Once the diffusive fluxes deduced at each layer interface, the CO2 (13CO2 and 12CO2) production profile was calculated using the (discretized) mass balance equation in each layer. The results of the Hartheim measurement campaign will be presented. The CO2 source vertical profile and its link with the root and the Carbon organic content distribution will be showed. The dynamic of CO2 sources and their isotopic signature will be linked to climatic variables such soil temperature and soil water content. For example, we will show that the dynamics of CO2 sources was mainly related to temperature while changing of isotopic signature was more correlated to soil moisture.
Persistent wind-induced enhancement of diffusive CO2 transport in a mountain forest snowpack
D. R. Bowling; W. J. Massman
2011-01-01
Diffusion dominates the transport of trace gases between soil and the atmosphere. Pressure gradients induced by atmospheric flow and wind interacting with topographical features cause a small but persistent bulk flow of air within soil or snow. This forcing, called pressure pumping or wind pumping, leads to a poorly quantified enhancement of gas transport beyond the...
Garcia-Ratés, Miquel; de Hemptinne, Jean-Charles; Bonet Avalos, Josep; Nieto-Draghi, Carlos
2012-03-08
Mass diffusion coefficients of CO(2)/brine mixtures under thermodynamic conditions of deep saline aquifers have been investigated by molecular simulation. The objective of this work is to provide estimates of the diffusion coefficient of CO(2) in salty water to compensate the lack of experimental data on this property. We analyzed the influence of temperature, CO(2) concentration,and salinity on the diffusion coefficient, the rotational diffusion, as well as the electrical conductivity. We observe an increase of the mass diffusion coefficient with the temperature, but no clear dependence is identified with the salinity or with the CO(2) mole fraction, if the system is overall dilute. In this case, we notice an important dispersion on the values of the diffusion coefficient which impairs any conclusive statement about the effect of the gas concentration on the mobility of CO(2) molecules. Rotational relaxation times for water and CO(2) increase by decreasing temperature or increasing the salt concentration. We propose a correlation for the self-diffusion coefficient of CO(2) in terms of the rotational relaxation time which can ultimately be used to estimate the mutual diffusion coefficient of CO(2) in brine. The electrical conductivity of the CO(2)-brine mixtures was also calculated under different thermodynamic conditions. Electrical conductivity tends to increase with the temperature and salt concentration. However, we do not observe any influence of this property with the CO(2) concentration at the studied regimes. Our results give a first evaluation of the variation of the CO(2)-brine mass diffusion coefficient, rotational relaxation times, and electrical conductivity under the thermodynamic conditions typically encountered in deep saline aquifers.
Monte Carlo simulation of the back-diffusion of electrons in nitrogen
NASA Astrophysics Data System (ADS)
Radmilović-Radjenović, M.; Nina, A.; Nikitović, Ž.
2009-01-01
In this paper, the process of back-diffusion in nitrogen is studied by means of Monte Carlo simulations. In particular we analyze the influence of different aspects of back-diffusion in order to simplify the models of plasma displays, low pressure gas breakdown and detectors of high energy particles. The obtained simulation results show that the escape coefficient depends strongly on the reflection coefficient and the initial energy of electrons. It was also found that the back-diffusion range and number of collisions before returning to the cathode in nitrogen are smaller than those in argon for similar conditions.
Thermodynamic evaluation of mass diffusion in ionic mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kagan, Grigory; Tang, Xian-Zhu
2014-02-15
The thermodynamic technique of Landau and Lifshitz originally developed for inter-species diffusion in a binary neutral gas mixture is extended to a quasi-neutral plasma with two ion species. It is shown that, while baro- and electro-diffusion coefficients depend on the choice of the thermodynamic system, prediction for the total diffusive mass flux is invariant.
Shen, Yinghao; Pang, Yu; Shen, Ziqi; Tian, Yuanyuan; Ge, Hongkui
2018-02-08
The large amount of nanoscale pores in shale results in the inability to apply Darcy's law. Moreover, the gas adsorption of shale increases the complexity of pore size characterization and thus decreases the accuracy of flow regime estimation. In this study, an apparent permeability model, which describes the adsorptive gas flow behavior in shale by considering the effects of gas adsorption, stress dependence, and non-Darcy flow, is proposed. The pore size distribution, methane adsorption capacity, pore compressibility, and matrix permeability of the Barnett and Eagle Ford shales are measured in the laboratory to determine the critical parameters of gas transport phenomena. The slip coefficients, tortuosity, and surface diffusivity are predicted via the regression analysis of the permeability data. The results indicate that the apparent permeability model, which considers second-order gas slippage, Knudsen diffusion, and surface diffusion, could describe the gas flow behavior in the transition flow regime for nanoporous shale. Second-order gas slippage and surface diffusion play key roles in the gas flow in nanopores for Knudsen numbers ranging from 0.18 to 0.5. Therefore, the gas adsorption and non-Darcy flow effects, which involve gas slippage, Knudsen diffusion, and surface diffusion, are indispensable parameters of the permeability model for shale.
NASA Astrophysics Data System (ADS)
Maier, Martin; Paulus, Sinikka; Nicolai, Clara; Nauer, Philipp
2017-04-01
Soil-atmosphere fluxes of trace gases vary on different spatial scales, between landscapes and ecosystems down to the plot scale within apparently homogenous sites. The production and consumption of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) underlie different spatial and temporal changes, und thus, their interrelation is difficult to unravel. Small-scale variability in soil properties is well-known from soil surveys, affecting theoretically water availability for plants, soil aeration, vegetation, the local photosynthesis rate, and, eventually, greenhouse gas fluxes. We investigated the small scale variability of greenhouse gas fluxes in a homogenous Scots Pine stand in a former riparian flood plain. Soil-atmosphere fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) were carried out at 60 points on a 250 m2 plot with strata of diverse soil substrates and understory vegetation. Gas flux measurements were combined with soil physical lab measurements, and a soil vegetation survey. The soil was a source of CO2 and a sink for CH4 and N2O. No correlations between the fluxes and only weak correlations between the fluxes and soil physical factors were observed. CH4 and CO2 fluxes were significantly different for the soil-vegetation strata. Separating the dataset into the different soil-vegetation strata showed that CH4 consumption increased significantly with soil gas diffusivity and soil respiration. Methane consumption in the silt stratum was higher at a given soil gas diffusivity than in the sand stratum, indicating a higher methanotrophic microbe population and thus better habitats in silt. CH4 consumption increased with soil respiration in all strata, so that we speculate that the rhizosphere and decomposing organic litter (as origin of most of the soil respiration) facilitate a preferred habitat of methanotrophic microbes. The patterns of N2O consumption were more complex, but consumption seemed to be limited at locations with higher soil respiration. Thus, we conclude that soil texture has a significant effect on greenhouse gas fluxes on the plot scale and that the fluxes of CO2, CH4 and N2O are linked. Acknowledgement This research was financially supported by the project DFG (MA 5826/2-1).
Pulsed-field-gradient measurements of time-dependent gas diffusion
NASA Technical Reports Server (NTRS)
Mair, R. W.; Cory, D. G.; Peled, S.; Tseng, C. H.; Patz, S.; Walsworth, R. L.
1998-01-01
Pulsed-field-gradient NMR techniques are demonstrated for measurements of time-dependent gas diffusion. The standard PGSE technique and variants, applied to a free gas mixture of thermally polarized xenon and O2, are found to provide a reproducible measure of the xenon diffusion coefficient (5.71 x 10(-6) m2 s-1 for 1 atm of pure xenon), in excellent agreement with previous, non-NMR measurements. The utility of pulsed-field-gradient NMR techniques is demonstrated by the first measurement of time-dependent (i.e., restricted) gas diffusion inside a porous medium (a random pack of glass beads), with results that agree well with theory. Two modified NMR pulse sequences derived from the PGSE technique (named the Pulsed Gradient Echo, or PGE, and the Pulsed Gradient Multiple Spin Echo, or PGMSE) are also applied to measurements of time dependent diffusion of laser polarized xenon gas, with results in good agreement with previous measurements on thermally polarized gas. The PGMSE technique is found to be superior to the PGE method, and to standard PGSE techniques and variants, for efficiently measuring laser polarized noble gas diffusion over a wide range of diffusion times. Copyright 1998 Academic Press.
NASA Astrophysics Data System (ADS)
Preuss, I.; Knoblauch, C.; Gebert, J.; Pfeiffer, E.-M.
2013-04-01
Permafrost-affected tundra soils are significant sources of the climate-relevant trace gas methane (CH4). The observed accelerated warming of the arctic will cause deeper permafrost thawing, followed by increased carbon mineralization and CH4 formation in water-saturated tundra soils, thus creating a positive feedback to climate change. Aerobic CH4 oxidation is regarded as the key process reducing CH4 emissions from wetlands, but quantification of turnover rates has remained difficult so far. The application of carbon stable isotope fractionation enables the in situ quantification of CH4 oxidation efficiency in arctic wetland soils. The aim of the current study is to quantify CH4 oxidation efficiency in permafrost-affected tundra soils in Russia's Lena River delta based on stable isotope signatures of CH4. Therefore, depth profiles of CH4 concentrations and δ13CH4 signatures were measured and the fractionation factors for the processes of oxidation (αox) and diffusion (αdiff) were determined. Most previous studies employing stable isotope fractionation for the quantification of CH4 oxidation in soils of other habitats (such as landfill cover soils) have assumed a gas transport dominated by advection (αtrans = 1). In tundra soils, however, diffusion is the main gas transport mechanism and diffusive stable isotope fractionation should be considered alongside oxidative fractionation. For the first time, the stable isotope fractionation of CH4 diffusion through water-saturated soils was determined with an αdiff = 1.001 ± 0.000 (n = 3). CH4 stable isotope fractionation during diffusion through air-filled pores of the investigated polygonal tundra soils was αdiff = 1.013 ± 0.003 (n = 18). Furthermore, it was found that αox differs widely between sites and horizons (mean αox = 1.017 ± 0.009) and needs to be determined on a case by case basis. The impact of both fractionation factors on the quantification of CH4 oxidation was analyzed by considering both the potential diffusion rate under saturated and unsaturated conditions and potential oxidation rates. For a submerged, organic-rich soil, the data indicate a CH4 oxidation efficiency of 50% at the anaerobic-aerobic interface in the upper horizon. The improved in situ quantification of CH4 oxidation in wetlands enables a better assessment of current and potential CH4 sources and sinks in permafrost-affected ecosystems and their potential strengths in response to global warming.
NASA Astrophysics Data System (ADS)
Preuss, I.; Knoblauch, C.; Gebert, J.; Pfeiffer, E.-M.
2012-12-01
Permafrost-affected tundra soils are significant sources of the climate-relevant trace gas methane (CH4). The observed accelerated warming of the Arctic will cause a deeper permafrost thawing followed by increased carbon mineralization and CH4 formation in water saturated tundra soils which might cause a positive feedback to climate change. Aerobic CH4 oxidation is regarded as the key process reducing CH4 emissions from wetlands, but quantification of turnover rates has remained difficult so far. The application of carbon stable isotope fractionation enables the in situ quantification of CH4 oxidation efficiency in arctic wetland soils. The aim of the current study is to quantify CH4 oxidation efficiency in permafrost-affected tundra soils in Russia's Lena River Delta based on stable isotope signatures of CH4. Therefore, depth profiles of CH4 concentrations and δ13CH4-signatures were measured and the fractionation factors for the processes of oxidation (αox) and diffusion (αdiff) were determined. Most previous studies employing stable isotope fractionation for the quantification of CH4 oxidation in soils of other habitats (e.g. landfill cover soils) have assumed a gas transport dominated by advection (αtrans = 1). In tundra soils, however, diffusion is the main gas transport mechanism, aside from ebullition. Hence, diffusive stable isotope fractionation has to be considered. For the first time, the stable isotope fractionation of CH4 diffusion through water-saturated soils was determined with an αdiff = 1.001 ± 0.000 (n = 3). CH4 stable isotope fractionation during diffusion through air-filled pores of the investigated polygonal tundra soils was αdiff = 1.013 ± 0.003 (n = 18). Furthermore, it was found that αox differs widely between sites and horizons (mean αox, = 1.017 ± 0.009) and needs to be determined individually. The impact of both fractionation factors on the quantification of CH4 oxidation was analyzed by considering both the potential diffusion rate under saturated and unsaturated conditions and potential oxidation rates. For a submerged organic rich soil, the data indicate a CH4 oxidation efficiency of 50% at the anaerobic-aerobic interface in the upper horizon. The improved in situ quantification of CH4 oxidation in wetlands enables a better assessment of current and potential CH4 sources and sinks in permafrost affected ecosystems and their potential strengths in response to global warming.
Linear growth of the Kelvin-Helmholtz instability with an adiabatic cosmic-ray gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Akihiro; Takahashi, Hiroyuki R.; Kudoh, Takahiro
2014-06-01
We investigate effects of cosmic rays on the linear growth of the Kelvin-Helmholtz instability. Cosmic rays are treated as an adiabatic gas and allowed to diffuse along magnetic field lines. We calculated the dispersion relation of the instability for various sets of two free parameters, the ratio of the cosmic-ray pressure to the thermal gas pressure, and the diffusion coefficient. Including cosmic-ray effects, a shear layer is more destabilized and the growth rates can be enhanced in comparison with the ideal magnetohydrodynamical case. Whether the growth rate is effectively enhanced or not depends on the diffusion coefficient of cosmic rays.more » We obtain the criterion for effective enhancement by comparing the growing timescale of the instability with the diffusion timescale of cosmic rays. These results can be applied to various astrophysical phenomena where a velocity shear is present, such as outflows from star-forming galaxies, active galactic nucleus jet, channel flows resulting from the nonlinear development of the magnetorotational instability, and galactic disks.« less
Kuss, Joachim; Holzmann, Jörg; Ludwig, Ralf
2009-05-01
Mercury is a priority pollutant as its mobility between the hydrosphere and the atmosphere threatens the biosphere globally. The air-water gas transfer of elemental mercury (Hg0) is controlled by its diffusion through the water-side boundary layer and thus by its diffusion coefficient, D(Hg), the value of which, however, has not been established. Here, the diffusion of Hg0 in water was modeled by molecular dynamics (MD) simulation and the diffusion coefficient subsequently determined. Therefore the movement of either Hg(0) or xenon and 1000 model water molecules (TIP4P-Ew) were traced for time spans of 50 ns. The modeled D(Xe) of the monatomic noble gas agreed well with measured data; thus, MD simulation was assumed to be a reliable approach to determine D(Hg) for monatomic Hg(0) as well. Accordingly, Hg(0) diffusion was then simulated for freshwater and seawater, and the data were well-described by the equation of Eyring. The activation energies for the diffusion of Hg0 in freshwater was 17.0 kJ mol(-1) and in seawater 17.8 kJ mol(-1). The newly determined D(Hg) is clearly lower than the one previously used for an oceanic mercury budget. Thus, its incorporation into the model should lead to lower estimates of global ocean mercury emissions.
A fission gas release correlation for uranium nitride fuel pins
NASA Technical Reports Server (NTRS)
Weinstein, M. B.; Davison, H. W.
1973-01-01
A model was developed to predict fission gas releases from UN fuel pins clad with various materials. The model was correlated with total release data obtained by different experimentors, over a range of fuel temperatures primarily between 1250 and 1660 K, and fuel burnups up to 4.6 percent. In the model, fission gas is transported by diffusion mechanisms to the grain boundaries where the volume grows and eventually interconnects with the outside surface of the fuel. The within grain diffusion coefficients are found from fission gas release rate data obtained using a sweep gas facility.
NASA Astrophysics Data System (ADS)
Belyaev, V. P.; Mishchenko, S. V.; Belyaev, P. S.
2018-01-01
Ensuring non-destructive testing of products in industry is an urgent task. Most of the modern methods for determining the diffusion coefficient in porous materials have been developed for bodies of a given configuration and size. This leads to the need for finished products destruction to make experimental samples from them. The purpose of this study is the development of a dynamic method that allows operatively determine the diffusion coefficient in finished products from porous materials without destroying them. The method is designed to investigate the solvents diffusion coefficient in building constructions from materials having a porous structure: brick, concrete and aerated concrete, gypsum, cement, gypsum or silicate solutions, gas silicate blocks, heat insulators, etc. A mathematical model of the method is constructed. The influence of the design and measuring device operating parameters on the method accuracy is studied. The application results of the developed method for structural porous products are presented.
NASA Astrophysics Data System (ADS)
Li, Guo; Su, Hang; Li, Xin; Kuhn, Uwe; Meusel, Hannah; Hoffmann, Thorsten; Ammann, Markus; Pöschl, Ulrich; Shao, Min; Cheng, Yafang
2016-08-01
Gaseous formaldehyde (HCHO) is an important precursor of OH radicals and a key intermediate molecule in the oxidation of atmospheric volatile organic compounds (VOCs). Budget analyses reveal large discrepancies between modeled and observed HCHO concentrations in the atmosphere. Here, we investigate the interactions of gaseous HCHO with soil surfaces through coated-wall flow tube experiments applying atmospherically relevant HCHO concentrations of ˜ 10 to 40 ppbv. For the determination of uptake coefficients (γ), we provide a Matlab code to account for the diffusion correction under laminar flow conditions. Under dry conditions (relative humidity = 0 %), an initial γ of (1.1 ± 0.05) × 10-4 is determined, which gradually drops to (5.5 ± 0.4) × 10-5 after 8 h experiments. Experiments under wet conditions show a smaller γ that drops faster over time until reaching a plateau. The drop of γ with increasing relative humidity as well as the drop over time can be explained by the adsorption theory in which high surface coverage leads to a reduced uptake rate. The fact that γ stabilizes at a non-zero plateau suggests the involvement of irreversible chemical reactions. Further back-flushing experiments show that two-thirds of the adsorbed HCHO can be re-emitted into the gas phase while the residual is retained by the soil. This partial reversibility confirms that HCHO uptake by soil is a complex process involving both adsorption/desorption and chemical reactions which must be considered in trace gas exchange (emission or deposition) at the atmosphere-soil interface. Our results suggest that soil and soil-derived airborne particles can either act as a source or a sink for HCHO, depending on ambient conditions and HCHO concentrations.
Wind driven vertical transport in a vegetated, wetland water column with air-water gas exchange
NASA Astrophysics Data System (ADS)
Poindexter, C.; Variano, E. A.
2010-12-01
Flow around arrays of cylinders at low and intermediate Reynolds numbers has been studied numerically, analytically and experimentally. Early results demonstrated that at flow around randomly oriented cylinders exhibits reduced turbulent length scales and reduced diffusivity when compared to similarly forced, unimpeded flows (Nepf 1999). While horizontal dispersion in flows through cylinder arrays has received considerable research attention, the case of vertical dispersion of reactive constituents has not. This case is relevant to the vertical transfer of dissolved gases in wetlands with emergent vegetation. We present results showing that the presence of vegetation can significantly enhance vertical transport, including gas transfer across the air-water interface. Specifically, we study a wind-sheared air-water interface in which randomly arrayed cylinders represent emergent vegetation. Wind is one of several processes that may govern physical dispersion of dissolved gases in wetlands. Wind represents the dominant force for gas transfer across the air-water interface in the ocean. Empirical relationships between wind and the gas transfer coefficient, k, have been used to estimate spatial variability of CO2 exchange across the worlds’ oceans. Because wetlands with emergent vegetation are different from oceans, different model of wind effects is needed. We investigated the vertical transport of dissolved oxygen in a scaled wetland model built inside a laboratory tank equipped with an open-ended wind tunnel. Plastic tubing immersed in water to a depth of approximately 40 cm represented emergent vegetation of cylindrical form such as hard-stem bulrush (Schoenoplectus acutus). After partially removing the oxygen from the tank water via reaction with sodium sulfite, we used an optical probe to measure dissolved oxygen at mid-depth as the tank water re-equilibrated with the air above. We used dissolved oxygen time-series for a range of mean wind speeds to estimate the gas transfer coefficient, k, for both a vegetated condition and a control condition (no cylinders). The presence of cylinders in the tank substantially increased the rate of the gas transfer. For the highest wind speed, the gas transfer coefficient was several times higher when cylinders were present compared to when they were not. The gas transfer coefficient for the vegetated condition also proved sensitive to wind speed, increasing markedly with increasing mean wind speeds. Profiles of dissolved oxygen revealed well-mixed conditions in the bulk water column following prolonged air-flow above the water surface, suggesting application of the thin-film model is appropriate. The enhanced gas exchange observed might be explained by increased turbulent kinetic energy within the water column and the anisotropy of the cylinder array, which constrains horizontal motions more than vertical motions. Improved understanding of gas exchange in vegetated water columns may be of particularly use to investigations of carbon fluxes and soil accretion in wetlands. Reference: Nepf, H. (1999), Drag, turbulence, and diffusion in flow through emergent vegetation, Water Resour. Res., 35(2), 479-489.
Vermorel, Romain; Oulebsir, Fouad; Galliero, Guillaume
2017-09-14
The computation of diffusion coefficients in molecular systems ranks among the most useful applications of equilibrium molecular dynamics simulations. However, when dealing with the problem of fluid diffusion through vanishingly thin interfaces, classical techniques are not applicable. This is because the volume of space in which molecules diffuse is ill-defined. In such conditions, non-equilibrium techniques allow for the computation of transport coefficients per unit interface width, but their weak point lies in their inability to isolate the contribution of the different physical mechanisms prone to impact the flux of permeating molecules. In this work, we propose a simple and accurate method to compute the diffusional transport coefficient of a pure fluid through a planar interface from equilibrium molecular dynamics simulations, in the form of a diffusion coefficient per unit interface width. In order to demonstrate its validity and accuracy, we apply our method to the case study of a dilute gas diffusing through a smoothly repulsive single-layer porous solid. We believe this complementary technique can benefit to the interpretation of the results obtained on single-layer membranes by means of complex non-equilibrium methods.
NASA Astrophysics Data System (ADS)
Zohravi, Elnaz; Shirani, Ebrahim; Pishevar, Ahmadreza; Karimpour, Hossein
2018-07-01
This research focuses on numerically investigating the self-diffusion coefficient and velocity autocorrelation function (VACF) of a dissipative particle dynamics (DPD) fluid as a function of the conservative interaction strength. Analytic solutions to VACF and self-diffusion coefficients in DPD were obtained by many researchers in some restricted cases including ideal gases, without the account of conservative force. As departure from the ideal gas conditions are accentuated with increasing the relative proportion of conservative force, it is anticipated that the VACF should gradually deviate from its normally expected exponentially decay. This trend is confirmed through numerical simulations and an expression in terms of the conservative force parameter, density and temperature is proposed for the self-diffusion coefficient. As it concerned the VACF, the equivalent Langevin equation describing Brownian motion of particles with a harmonic potential is adapted to the problem and reveals an exponentially decaying oscillatory pattern influenced by the conservative force parameter, dissipative parameter and temperature. Although the proposed model for obtaining the self-diffusion coefficient with consideration of the conservative force could not be verified due to computational complexities, nonetheless the Arrhenius dependency of the self-diffusion coefficient to temperature and pressure permits to certify our model over a definite range of DPD parameters.
Diffusion NMR methods applied to xenon gas for materials study
NASA Technical Reports Server (NTRS)
Mair, R. W.; Rosen, M. S.; Wang, R.; Cory, D. G.; Walsworth, R. L.
2002-01-01
We report initial NMR studies of (i) xenon gas diffusion in model heterogeneous porous media and (ii) continuous flow laser-polarized xenon gas. Both areas utilize the pulsed gradient spin-echo (PGSE) techniques in the gas phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients--a brief overview of this area is provided in the Introduction. The heterogeneous or multiple-length scale model porous media consisted of random packs of mixed glass beads of two different sizes. We focus on observing the approach of the time-dependent gas diffusion coefficient, D(t) (an indicator of mean squared displacement), to the long-time asymptote, with the aim of understanding the long-length scale structural information that may be derived from a heterogeneous porous system. We find that D(t) of imbibed xenon gas at short diffusion times is similar for the mixed bead pack and a pack of the smaller sized beads alone, hence reflecting the pore surface area to volume ratio of the smaller bead sample. The approach of D(t) to the long-time limit follows that of a pack of the larger sized beads alone, although the limiting D(t) for the mixed bead pack is lower, reflecting the lower porosity of the sample compared to that of a pack of mono-sized glass beads. The Pade approximation is used to interpolate D(t) data between the short- and long-time limits. Initial studies of continuous flow laser-polarized xenon gas demonstrate velocity-sensitive imaging of much higher flows than can generally be obtained with liquids (20-200 mm s-1). Gas velocity imaging is, however, found to be limited to a resolution of about 1 mm s-1 owing to the high diffusivity of gases compared with liquids. We also present the first gas-phase NMR scattering, or diffusive-diffraction, data, namely flow-enhanced structural features in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack. c2002 John Wiley & Sons, Ltd.
Bao, Zhongwen; Haberer, Christina M; Maier, Uli; Beckingham, Barbara; Amos, Richard T; Grathwohl, Peter
2016-11-01
Temperature changes can drive cycling of semi-volatile pollutants between different environmental compartments (e.g. atmosphere, soil, plants). To evaluate the impact of daily temperature changes on atmospheric concentration fluctuations we employed a physically based model coupling soil, plants and the atmosphere, which accounts for heat transport, effective gas diffusion, sorption and biodegradation in the soil as well as eddy diffusion and photochemical oxidation in the atmospheric boundary layer of varying heights. The model results suggest that temperature-driven re-volatilization and uptake in soils cannot fully explain significant diurnal concentration fluctuations of atmospheric pollutants as for example observed for polychlorinated biphenyls (PCBs). This holds even for relatively low water contents (high gas diffusivity) and high sorption capacity of the topsoil (high organic carbon content and high pollutant concentration in the topsoil). Observed concentration fluctuations, however, can be easily matched if a rapidly-exchanging environmental compartment, such as a plant layer, is introduced. At elevated temperatures, plants release organic pollutants, which are rapidly distributed in the atmosphere by eddy diffusion. For photosensitive compounds, e.g. some polycyclic aromatic hydrocarbons (PAHs), decreasing atmospheric concentrations would be expected during daytime for the bare soil scenario. This decline is buffered by a plant layer, which acts as a ground-level reservoir. The modeling results emphasize the importance of a rapidly-exchanging compartment above ground to explain short-term atmospheric concentration fluctuations. Copyright © 2016 Elsevier B.V. All rights reserved.
Cho, H. Jean; Jaffe, Peter R.; Smith, James A.
1993-01-01
This paper describes laboratory and field experiments which were conducted to study the dynamics of trichloroethylene (TCE) as it volatilized from contaminated groundwater and diffused in the presence of infiltrating water through the unsaturated soil zone to the land surface. The field experiments were conducted at the Picatinny Arsenal, which is part of the United States Geological Survey Toxic Substances Hydrology Program. In both laboratory and field settings the gas and water phase concentrations of TCE were not in equilibrium during infiltration. Gas-water mass transfer rate constants were calibrated to the experimental data using a model in which the water phase was treated as two phases: a mobile water phase and an immobile water phase. The mass transfer limitations of a volatile organic compound between the gas and liquid phases were described explicitly in the model. In the laboratory experiment the porous medium was nonsorbing, and water infiltration rates ranged from 0.076 to 0.28 cm h−1. In the field experiment the water infiltration rate was 0.34 cm h−1, and sorption onto the soil matrix was significant. The laboratory-calibrated gas-water mass transfer rate constant is 3.3×10−4 h−1 for an infiltration rate of 0.076 cm h−1 and 1.4×10−3 h−1 for an infiltration rate of 0.28 cm h−1. The overall mass transfer rate coefficients, incorporating the contribution of mass transfer between mobile and immobile water phases and the variation of interfacial area with moisture content, range from 3×10−4 h−1 to 1×10−2 h−1. A power law model relates the gas-water mass transfer rate constant to the infiltration rate and the fraction of the water phase which is mobile. It was found that the results from the laboratory experiments could not be extrapolated to the field. In order to simulate the field experiment the very slow desorption of TCE from the soil matrix was incorporated into the mathematical model. When desorption from the soil matrix was added to the model, the calibrated gas-water mass transfer rate constant is 2 orders of magnitude lower than that predicted using the power law model developed for the nonsorbing laboratory soil.
NASA Astrophysics Data System (ADS)
Inoue, Gen; Yokoyama, Kouji; Ooyama, Junpei; Terao, Takeshi; Tokunaga, Tomomi; Kubo, Norio; Kawase, Motoaki
2016-09-01
The reduction of oxygen transfer resistance through porous components consisting of a gas diffusion layer (GDL), microporous layer (MPL), and catalyst layer (CL) is very important to reduce the cost and improve the performance of a PEFC system. This study involves a systematic examination of the relationship between the oxygen transfer resistance of the actual porous components and their three-dimensional structure by direct measurement with FIB-SEM and X-ray CT. Numerical simulations were carried out to model the properties of oxygen transport. Moreover, based on the model structure and theoretical equations, an approach to the design of new structures is proposed. In the case of the GDL, the binder was found to obstruct gas diffusion with a negative effect on performance. The relative diffusion coefficient of the MPL is almost equal to that of the model structure of particle packing. However, that of CL is an order of magnitude less than those of the other two components. Furthermore, an equation expressing the relative diffusion coefficient of each component can be obtained with the function of porosity. The electrical conductivity of MPL, which is lower than that of the carbon black packing, is considered to depend on the contact resistance.
Paseiro-Cerrato, Rafael; Rodríguez-Bernaldo de Quirós, Ana; Otero-Pazos, Pablo; Sendón, Raquel; Paseiro-Losada, Perfecto
2018-03-01
The aim of the present study was to determine the migration kinetics of one photoinitiator, benzophenone, and two optical brighteners, Uvitex OB and 1,4-diphenyl-1,3-butadiene (DPBD), from low-density polyethylene (LDPE) films into cake. Transfer was assessed by both direct contact and also the vapour phase. To perform the migration tests by direct contact, plastic films enriched with the additives were placed between two cake slices. To evaluate the migration through the gas phase, cake and the fortified LDPE film were placed with no direct contact in a glass container that was hermetically closed. Samples were stored at different time-temperature conditions. Target compounds were extracted from the films with ethanol (70°C, 24 h) and analysed by HPLC-DAD. Relevant parameters such as partition and diffusion coefficients between food and plastic film were calculated. The Arrhenius equation was applied to estimate the diffusion coefficient at any temperature. The data indicate that migration of benzophenone occurs in a significant extent into cake by both direct contact and through the gas phase (no direct contact). Conversely, very little migration occurred for Uvitex OB by direct contact and none through the gas phase. Results for benzophenone suggest that migration through the gas phase should be considered when evaluating migration from food packaging materials into food.
Diffusion of CO2 in Large Crystals of Cu-BTC MOF.
Tovar, Trenton M; Zhao, Junjie; Nunn, William T; Barton, Heather F; Peterson, Gregory W; Parsons, Gregory N; LeVan, M Douglas
2016-09-14
Carbon dioxide adsorption in metal-organic frameworks has been widely studied for applications in carbon capture and sequestration. A critical component that has been largely overlooked is the measurement of diffusion rates. This paper describes a new reproducible procedure to synthesize millimeter-scale Cu-BTC single crystals using concentrated reactants and an acetic acid modulator. Microscopic images, X-ray diffraction patterns, Brunauer-Emmett-Teller surface areas, and thermogravimetric analysis results all confirm the high quality of these Cu-BTC single crystals. The large crystal size aids in the accurate measurement of micropore diffusion coefficients. Concentration-swing frequency response performed at varying gas-phase concentrations gives diffusion coefficients that show very little dependence on the loading up to pressures of 0.1 bar. The measured micropore diffusion coefficient for CO2 in Cu-BTC is 1.7 × 10(-9) m(2)/s.
Bush, M L; Zhang, W; Ben-Jebria, A; Ultman, J S
2001-06-15
In the single-path model of the respiratory system, gas transport occurs within a conduit of progressively increasing cross-sectional and surface areas by a combination of flow, longitudinal dispersion, and lateral absorption. The purpose of this study was to use bolus inhalation data previously obtained for chlorine (Cl(2)) and for ozone (O(3)) to test the predictive capability of the single-path model and to adjust input parameters for applying the model to other exposure conditions. The data, consisting of uptake fraction as a function of bolus penetration volume, were recorded on 10 healthy nonsmokers breathing orally as well as nasally at alternative air flows of 150, 250, and 1000 ml/s. By employing published data for airway anatomy, gas-phase dispersion coefficients, and gas-phase mass transfer coefficients while neglecting diffusion limitations in the mucus phase, the single-path model was capable of predicting the uptake distribution for O(3) but not the steeper distribution that was observed for Cl(2). To simultaneously explain the data for these two gases, it was necessary to increase gas-phase mass transfer coefficients and to include a finite diffusion resistance of O(3) within the mucous layer. The O(3) reaction rate constants that accounted for this diffusion resistance, 2 x 10(6) s(-1) in the mouth and 8 x 10(6) s(-1) in the nose and lower airways, were much greater than previously reported reactivities of individual substrates found in mucus. Copyright 2001 Academic Press.
Air sparging: Air-water mass transfer coefficients
NASA Astrophysics Data System (ADS)
Braida, Washington J.; Ong, Say Kee
1998-12-01
Experiments investigating the mass transfer of several dissolved volatile organic compounds (VOCs) across the air-water interface were conducted using a single-air- channel air-sparging system. Three different porous media were used in the study. Air velocities ranged from 0.2 cm s-1 to 2.5 cm s-1. The tortuosity factor for each porous medium and the air-water mass transfer coefficients were estimated by fitting experimental data to a one-dimensional diffusion model. The estimated mass transfer coefficients KG ranged from 1.79 × 10-3 cm min-1 to 3.85 × 10-2 cm min-1. The estimated lumped gas phase mass transfer coefficients KGa were found to be directly related to the air diffusivity of the VOC, air velocity, and particle size, and inversely related to the Henry's law constant of the VOCs. Of the four parameters investigated, the parameter that controlled or had a dominant effect on the lumped gas phase mass transfer coefficient was the air diffusivity of the VOC. Two empirical models were developed by correlating the Damkohler and the modified air phase Sherwood numbers with the air phase Peclet number, Henry's law constant, and the reduced mean particle size of porous media. The correlation developed in this study may be used to obtain better predictions of mass transfer fluxes for field conditions.
NASA Astrophysics Data System (ADS)
Zhang, Tongwei; Krooss, Bernhard M.
2001-08-01
Molecular transport (diffusion) of methane in water-saturated sedimentary rocks results in carbon isotope fractionation. In order to quantify the diffusive isotope fractionation effect and its dependence on total organic carbon (TOC) content, experimental measurements have been performed on three natural shale samples with TOC values ranging from 0.3 to 5.74%. The experiments were conducted at 90°C and fluid pressures of 9 MPa (90 bar). Based on the instantaneous and cumulative composition of the diffused methane, effective diffusion coefficients of the 12CH4 and 13CH4 species, respectively, have been calculated. Compared with the carbon isotopic composition of the source methane (δ13C1 = -39.1‰), a significant depletion of the heavier carbon isotope (13C) in the diffused methane was observed for all three shales. The degree of depletion is highest during the initial non-steady state of the diffusion process. It then gradually decreases and reaches a constant difference (Δ δ = δ13Cdiff -δ13Csource) when approaching the steady-state. The degree of the isotopic fractionation of methane due to molecular diffusion increases with the TOC content of the shales. The carbon isotope fractionation of methane during molecular migration results practically exclusively from differences in molecular mobility (effective diffusion coefficients) of the 12CH4 and 13CH4 entities. No measurable solubility fractionation was observed. The experimental isotope-specific diffusion data were used in two hypothetical scenarios to illustrate the extent of isotopic fractionation to be expected as a result of molecular transport in geological systems with shales of different TOC contents. The first scenario considers the progression of a diffusion front from a constant source (gas reservoir) into a homogeneous ;semi-infinite; shale caprock over a period of 10 Ma. In the second example, gas diffusion across a 100 m caprock sequence is analyzed in terms of absolute quantities and isotope fractionation effects. The examples demonstrate that methane losses by molecular diffusion are small in comparison with the contents of commercial size gas accumulations. The degree of isotopic fractionation is related inversely to the quantity of diffused gas so that strong fractionation effects are only observed for relatively small portions of gas. The experimental data can be readily used in numerical basin analysis to examine the effects of diffusion-related isotopic fractionation on the composition of natural gas reservoirs.
Improving the accuracy of the gradient method for determining soil carbon dioxide efflux
USDA-ARS?s Scientific Manuscript database
Continuous soil CO2 efflux (Fsoil) estimates can be obtained by the gradient method (GM), but the utility of the method is hindered by uncertainties in the application of published models for the diffusion coefficient (Ds). We compared two in-situ methods for determining Ds, one based calibrating th...
NASA Astrophysics Data System (ADS)
Wright, William; Comas, Xavier
2016-04-01
The spatial and temporal variability in production and release of greenhouse gases (such as methane) in peat soils remains uncertain, particularly for low-latitude peatlands like the Everglades. Ground penetrating radar (GPR) is a hydrogeophysical tool that has been successfully used in the last decade to noninvasively investigate carbon dynamics in peat soils; however, application in subtropical systems is almost non-existent. This study is based on four field sites in the Florida Everglades, where changes in gas content within the soil are monitored using time-lapse GPR measurements and gas releases are monitored using gas traps. A weekly methane gas production rate is estimated using a mass balance approach, considering gas content estimated from GPR, gas release from gas traps and incorporating rates of diffusion, and methanotrophic consumption from previous studies. Resulting production rates range between 0.02 and 0.47 g CH4 m-2 d-1, falling within the range reported in literature. This study shows the potential of combining GPR with gas traps to monitor gas dynamics in peat soils of the Everglades and estimate methane gas production. We also show the enhanced ability of certain peat soils to store gas when compared to others, suggesting that physical properties control biogenic gas storage in the Everglades peat soils. Better understanding biogenic methane gas dynamics in peat soils has implications regarding the role of wetlands in the global carbon cycle, particularly under a climate change scenario.
Report on simulation of fission gas and fission product diffusion in UO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Anders David; Perriot, Romain Thibault; Pastore, Giovanni
2016-07-22
In UO 2 nuclear fuel, the retention and release of fission gas atoms such as xenon (Xe) are important for nuclear fuel performance by, for example, reducing the fuel thermal conductivity, causing fuel swelling that leads to mechanical interaction with the clad, increasing the plenum pressure and reducing the fuel–clad gap thermal conductivity. We use multi-scale simulations to determine fission gas diffusion mechanisms as well as the corresponding rates in UO 2 under both intrinsic and irradiation conditions. In addition to Xe and Kr, the fission products Zr, Ru, Ce, Y, La, Sr and Ba have been investigated. Density functionalmore » theory (DFT) calculations are used to study formation, binding and migration energies of small clusters of Xe atoms and vacancies. Empirical potential calculations enable us to determine the corresponding entropies and attempt frequencies for migration as well as investigate the properties of large clusters or small fission gas bubbles. A continuum reaction-diffusion model is developed for Xe and point defects based on the mechanisms and rates obtained from atomistic simulations. Effective fission gas diffusivities are then obtained by solving this set of equations for different chemical and irradiation conditions using the MARMOT phase field code. The predictions are compared to available experimental data. The importance of the large Xe U3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and high binding energy. We find that the Xe U3O cluster gives Xe diffusion coefficients that are higher for intrinsic conditions than under irradiation over a wide range of temperatures. Under irradiation the fast-moving Xe U3O cluster recombines quickly with irradiation-induced interstitial U ions, while this mechanism is less important for intrinsic conditions. The net result is higher concentration of the Xe U3O cluster for intrinsic conditions than under irradiation. We speculate that differences in the irradiation conditions and their impact on the Xe U3O cluster can explain the wide range of diffusivities reported in experimental studies. However, all vacancy-mediated mechanisms underestimate the Xe diffusivity compared to the empirical radiation-enhanced rate used in most fission gas release models. We investigate the possibility that diffusion of small fission gas bubbles or extended Xe-vacancy clusters may give rise to the observed radiation-enhanced diffusion coefficient. These studies highlight the importance of U divacancies and an octahedron coordination of uranium vacancies encompassing a Xe fission gas atom. The latter cluster can migrate via a multistep mechanism with a rather low effective barrier, which together with irradiation-induced clusters of uranium vacancies, gives rise to the irradiation-enhanced diffusion coefficient observed in experiments.« less
NASA Astrophysics Data System (ADS)
Wang, S.; Zhan, H.; Chen, X.; Hu, Y.
2017-12-01
There were a great many projects of reconstruction soil profile filled with gangue to restore ecological environment and land resources in coal mining areas. A simulation experimental system in laboratory was designed for studying water transport and gas-heat diffusion of the reconstruction soil as to help the process of engineering and soil-ripening technology application. The system could be used for constantly measuring soil content, temperature and soil CO2 concentration by laid sensors and detectors in different depth of soil column. The results showed that soil water infiltration process was slowed down and the water-holding capacity of the upper soil was increased because of good water resistance from coal gangue layer. However, the water content of coal gangue layer, 10% approximately, was significantly lower than that of topsoil for the poor water-holding capacity of gangue. The temperature of coal gangue layer was also greater than that of soil layer and became easily sustainable temperature gradient under the condition with heating in reconstruction soil due to the higher thermal diffusivity from gangue, especially being plenty of temperature difference between gangue and soil layers. The effects of heated from below on topsoil was small, which it was mainly influenced from indoor temperature in the short run. In addition, the temperature changing curve of topsoil is similar with the temperature of laboratory and its biggest fluctuation range was for 2.89°. The effects of aerating CO2 from column bottom on CO2 concentration of topsoil soil was also very small, because gas transport from coal gangue layers to soil ones would easily be cut off as so to gas accumulated below the soil layer. The coal gangue could have a negative impact on microbial living environment to adjacent topsoil layers and declined microorganism activities. The effects of coal gangue on topsoil layer were brought down when the cove soil thickness was at 60 cm. And the influences gradually would be weakened with the thickness increasing.
Lab and Pore-Scale Study of Low Permeable Soils Diffusional Tortuosity
NASA Astrophysics Data System (ADS)
Lekhov, V.; Pozdniakov, S. P.; Denisova, L.
2016-12-01
Diffusion plays important role in contaminant spreading in low permeable units. The effective diffusion coefficient of saturated porous medium depends on this coefficient in water, porosity and structural parameter of porous space - tortuosity. Theoretical models of relationship between porosity and diffusional tortuosity are usually derived for conceptual granular models of medium filled by solid particles of simple geometry. These models usually do not represent soils with complex microstructure. The empirical models, like as Archie's law, based on the experimental electrical conductivity data are mostly useful for practical applications. Such models contain empirical parameters that should be defined experimentally for given soil type. In this work, we compared tortuosity values obtained in lab-scale diffusional experiments and pore scale diffusion simulation for the studied soil microstructure and exanimated relationship between tortuosity and porosity. Samples for the study were taken from borehole cores of low-permeable silt-clay formation. Using the samples of 50 cm3 we performed lab scale diffusional experiments and estimated the lab-scale tortuosity. Next using these samples we studied the microstructure with X-ray microtomograph. Shooting performed on undisturbed microsamples of size 1,53 mm with a resolution ×300 (10243 vox). After binarization of each obtained 3-D structure, its spatial correlation analysis was performed. This analysis showed that the spatial correlation scale of the indicator variogram is considerably smaller than microsample length. Then there was the numerical simulation of the Laplace equation with binary coefficients for each microsamples. The total number of simulations at the finite-difference grid of 1753 cells was 3500. As a result the effective diffusion coefficient, tortuosity and porosity values were obtained for all studied microsamples. The results were analyzed in the form of graph of tortuosity versus porosity. The 6 experimental tortuosity values well agree with pore-scale simulations falling in the general pattern that shows nonlinear decreasing of tortuosity with decreasing of porosity. Fitting this graph by Archie model we found exponent value in the range between 1,8 and 2,4. This work was supported by RFBR via grant 14-05-00409.
Simulation of radiation driven fission gas diffusion in UO 2, ThO 2 and PuO 2
Cooper, Michael William D.; Stanek, Christopher Richard; Turnbull, James Anthony; ...
2016-12-01
Below 1000 K it is thought that fission gas diffusion in nuclear fuel during irradiation occurs through atomic mixing due to radiation damage. Here we present a molecular dynamics (MD) study of Xe, Kr, Th, U, Pu and O diffusion due to irradiation. It is concluded that the ballistic phase does not sufficiently account for the experimentally observed diffusion. Thermal spike simulations are used to confirm that electronic stopping remedies the discrepancy with experiment and the predicted diffusivities lie within the scatter of the experimental data. Here, our results predict that the diffusion coefficients are ordered such that D* 0more » > D* Kr > D* Xe > D* U. For all species >98.5% of diffusivity is accounted for by electronic stopping. Fission gas diffusivity was not predicted to vary significantly between ThO 2, UO 2 and PuO 2, indicating that this process would not change greatly for mixed oxide fuels.« less
Assessment of Mitigation Systems on Vapor Intrusion ...
Vapor intrusion is the migration of subsurface vapors, including radon and volatile organic compounds (VOCs), in soil gas from the subsurface to indoor air. Vapor intrusion happens because there are pressure and concentration differentials between indoor air and soil gas. Indoor environments are often negatively pressurized with respect to outdoor air and soil gas (for example, from exhaust fans or the stack effect), and this pressure difference allows soil gas containing subsurface vapors to flow into indoor air through advection. In addition, concentration differentials cause VOCs and radon to migrate from areas of higher to lower concentrations through diffusion, which is another cause of vapor intrusion. Current practice for evaluating the vapor intrusion pathway involves a multiple line of evidence approach based on direct measurements in groundwater, external soil gas, subslab soil gas, and/or indoor air. No single line of evidence is considered definitive, and direct measurements of vapor intrusion can be costly, especially where significant spatial and temporal variability require repeated measurements at multiple locations to accurately assess the chronic risks of long-term exposure to volatile organic compounds (VOCs) like chloroform, perchloroethylene (PCE), and trichloroethylene (TCE).
D'Angelo, E; Starnes, D
2016-12-01
Ciprofloxacin (CIP) is a commonly-prescribed antibiotic that is largely excreted by the body, and is often found at elevated concentrations in treated sewage sludge (biosolids) at municipal wastewater treatment plants. When biosolids are applied to soils, they could release CIP to surface runoff, which could adversely affect growth of aquatic organisms that inhabit receiving water bodies. The hazard risk largely depends on the amount of antibiotic in the solid phase that can be released to solution (labile CIP), its diffusion coefficient, and sorption/desorption exchange rates in biosolids particles. In this study, these processes were evaluated in a Class A Exceptional Quality Biosolids using a diffusion gradient in thin films (DGT) sampler that continuously removed CIP from solution, which induced desorption and diffusion in biosolids. Mass accumulation of antibiotic in the sampler over time was fit by a diffusion transport and exchange model available in the software tool 2D-DIFS to derive the distribution coefficient of labile CIP (K dl ) and sorption/desorption rate constants in the biosolids. The K dl was 13 mL g -1 , which equated to 16% of total CIP in the labile pool. Although the proportion of labile CIP was considerable, release rates to solution were constrained by slow desorption kinetics (desorption rate constant = 4 × 10 -6 s -1 ) and diffusion rate (effective diffusion coefficient = 6 × 10 -9 cm 2 s -1 . Studies are needed to investigate how changes in temperature, water content, pH and other physical and chemical characteristics can influence antibiotic release kinetics and availability and mobility in biosolid-amended soils. Copyright © 2016 Elsevier Ltd. All rights reserved.
Measurement of cesium diffusion coefficients in graphite IG-110
NASA Astrophysics Data System (ADS)
Carter, L. M.; Brockman, J. D.; Loyalka, S. K.; Robertson, J. D.
2015-05-01
An understanding of the transport of fission products in High Temperature Gas-Cooled Reactors (HTGRs) is needed for operational safety as well as source term estimations. We have measured diffusion coefficients of Cs in IG-110 by using the release method, wherein we infused small graphite spheres with Cs and measured the release rates using ICP-MS. Diffusion behavior was investigated in the temperature range of 1100-1300 K. We have obtained: DCs = (1.0 ×10-7m2 /s) exp(-1.1/×105J /mol RT) and, compared our results with those available in the literature.
Modeling High-Pressure Gas-Polymer Sorpion Behavior Using the Sanchez-Lacombe Equation of State.
1987-06-01
The solubility of a gas in an amorphous or molten polymer is an important consideration in membrane and polymer processes . For instance, the efficacy...to a supercritical fluid during the impregnation process . Swelling the polymer effectively increases the diffusion coefficient of the heavy dopant by...dissolve the impurity, and then diffuse out of the swollen matrix thus removing the impurity. This supercritical fluid extraction process is somewhat
Drivers of small scale variability in soil-atmosphere fluxes of CH4, N2O and CO2 in a forest soil
NASA Astrophysics Data System (ADS)
Maier, Martin; Nicolai, Clara; Wheeler, Denis; Lang, Friedeike; Paulus, Sinikka
2016-04-01
Soil-atmosphere fluxes of CH4, N2O and CO2 can vary on different spatial scales, on large scales between ecosystems but also within apparently homogenous sites. While CO2 and CH4 consumption is rather evenly distibuted in well aerated soils, the production of N2O and CH4 seems to occur at hot spots that can be associated with anoxic or suboxic conditions. Small-scale variability in soil properties is well-known from field soil assesment, affecting also soil aeration and thus theoretically, greenhouse gas fluxes. In many cases different plant species are associated with different soil conditions and vegetation mapping should therefor combined with soil mapping. Our research objective was explaining the small scale variability of greenhouse gas fluxes in an apparently homogeneous 50 years old Scots Pine stand in a former riparian flood plain.We combined greenhouse gas measurements and soil physical lab measurments with field soil assessment and vegetation mapping. Measurements were conducted with at 60 points at a plot of 30 X 30 m at the Hartheim monitoring site (SW Germany). For greenhouse gas measurements a non-steady state chamber system and laser analyser, and a photoacoustic analyser were used. Our study shows that the well aerated site was a substantial sink for atmospheric CH4 (-2.4 nmol/m² s) and also a for N2O (-0.4 nmol/m² s), but less pronounced, whereas CO2 production was a magnitude larger (2.6 μmol/m² s). The spatial variability of the CH4 consumption of the soils could be explained by the variability of the soil gas diffusivity (measured in situ + using soil cores). Deviations of this clear trend were only observed at points where decomposing woody debris was directly under the litter layer. Soil texture ranged from gravel, coarse sand, fine sand to pure silt, with coarser texture having higher soil gas diffusivity. Changes in texture were rather abrupt at some positions or gradual at other positions, and were well reflected in the vegetation structure. On patches of gravel and coarse sand there was hardly any ground vegatation, and a shrublayer was found only at silty patches Our results indicate that a stratification and regionalisation approach based on vegetation structure and soil texture represents a promising tool for the adjustment of sampling designs for soil gas flux measurement. Acknowledgement This research was financially supported by the project DFG (MA 5826/2-1).
Self-diffusion in a stochastically heated two-dimensional dusty plasma
NASA Astrophysics Data System (ADS)
Sheridan, T. E.
2016-09-01
Diffusion in a two-dimensional dusty plasma liquid (i.e., a Yukawa liquid) is studied experimentally. The dusty plasma liquid is heated stochastically by a surrounding three-dimensional toroidal dusty plasma gas which acts as a thermal reservoir. The measured dust velocity distribution functions are isotropic Maxwellians, giving a well-defined kinetic temperature. The mean-square displacement for dust particles is found to increase linearly with time, indicating normal diffusion. The measured diffusion coefficients increase approximately linearly with temperature. The effective collision rate is dominated by collective dust-dust interactions rather than neutral gas drag, and is comparable to the dusty-plasma frequency.
NASA Astrophysics Data System (ADS)
Bartels-Rausch, T.; Wren, S. N.; Schreiber, S.; Riche, F.; Schneebeli, M.; Ammann, M.
2013-07-01
Release of trace gases from surface snow on earth drives atmospheric chemistry, especially in the polar regions. The gas-phase diffusion of methanol and of acetone through the interstitial air of snow was investigated in a well-controlled laboratory study in the temperature range of 223 to 263 K. The aim of this study was to evaluate how the structure of the snowpack, the interaction of the trace gases with the snow surface, and the grain boundaries influence the diffusion on timescales up to 1 h. The diffusive loss of these two volatile organics into packed snow samples was measured using a chemical ionization mass spectrometer. The structure of the snow was analysed by means of X-ray-computed micro-tomography. The observed diffusion profiles could be well described based on gas-phase diffusion and the known structure of the snow sample at temperatures ≥ 253 K. At colder temperatures, surface interactions start to dominate the diffusive transport. Parameterizing these interactions in terms of adsorption to the solid ice surface, i.e. using temperature-dependent air-ice partitioning coefficients, better described the observed diffusion profiles than the use of air-liquid partitioning coefficients. No changes in the diffusive fluxes were observed by increasing the number of grain boundaries in the snow sample by a factor of 7, indicating that for these volatile organic trace gases, uptake into grain boundaries does not play a role on the timescale of diffusion through porous surface snow. For this, a snow sample with an artificially high amount of ice grains was produced and the grain boundary surface measured using thin sections. In conclusion, we have shown that the diffusivity can be predicted when the structure of the snowpack and the partitioning of the trace gas to solid ice is known.
NASA Astrophysics Data System (ADS)
Bartels-Rausch, T.; Wren, S. N.; Schreiber, S.; Riche, F.; Schneebeli, M.; Ammann, M.
2013-03-01
Release of trace gases from surface snow on Earth drives atmospheric chemistry, especially in the polar regions. The gas-phase diffusion of methanol and of acetone through the interstitial air of snow was investigated in a well-controlled laboratory study in the temperature range of 223 to 263 K. The aim of this study was to evaluate how the structure of the snowpack, the interaction of the trace gases with the snow surface, and the grain boundaries influence the diffusion on timescales up to 1 h. The diffusive loss of these two volatile organics into packed snow samples was measured using a chemical ionization mass spectrometer. The structure of the snow was analyzed by means of X-ray computed micro-tomography. The observed diffusion profiles could be well described based on gas-phase diffusion and the known structure of the snow sample at temperatures ≥ 253 K. At colder temperatures surface interactions start to dominate the diffusive transport. Parameterizing these interactions in terms of adsorption to the solid ice surface, i.e. using temperature dependent air-ice partitioning coefficients, better described the observed diffusion profiles than the use of air-liquid partitioning coefficients. No changes in the diffusive fluxes were observed by increasing the number of grain boundaries in the snow sample by a factor of 7, indicating that for these volatile organic trace gases, uptake into grain boundaries does not play a role on the timescale of diffusion through porous surface snow. In conclusion, we have shown that the diffusivity can be predicted when the structure of the snowpack and the partitioning of the trace gas to solid ice is known.
Uptake of PAHs into polyoxymethylene and application to oil-soot (lampblack)-impacted soil samples.
Hong, Lei; Luthy, Richard G
2008-05-01
Polyoxymethylene (POM) is a polymeric material used increasingly in passive sampling of hydrophobic organic contaminants such as PAHs and PCBs in soils and sediments. In this study, we examined the sorption behavior of 12 PAH compounds to POM and observed linear isotherms spanning two orders of magnitude of aqueous concentrations. Uptake kinetic studies performed in batch systems for up to 54 d with two different volume ratios of POM-to-aqueous phase were evaluated with coupled diffusion and mass transfer models to simulate the movement of PAHs during the uptake process and to assess the physicochemical properties and experimental conditions that control uptake rates. Diffusion coefficients of PAHs in POM were estimated to be well correlated with diffusants' molecular weights as D(POM) proportional, variant(MW)(-3), descending from 2.3 x 10(-10) cm(2) s(-1) for naphthalene to 7.0 x 10(-11) cm(2) s(-1) for pyrene. The uptake rates for PAHs with log K(ow)<5.8 were controlled by the POM phase and the hydrophobicity of PAH compounds. For more hydrophobic PAH compounds, the aqueous boundary layer played an increasingly important role in determining the overall mass transfer rate. The POM partitioning technique was demonstrated to agree well with two other procedures for measuring PAH soil-water distribution coefficients in oil-soot (lampblack) containing soil samples.
Dai, Wenting; Dong, Jihong; Yan, Wanglin; Xu, Jiren
2017-01-01
The paper divided the whole coal life cycle, explained each phase characteristics, and took coal mine in China as a study case to assess the ecological risk in coal utilization phase. The main conclusions are as follows: (1) the whole coal life cycle is divided into coal mining, processing, transportation, utilization, and waste disposal. (2) The key points of production organization and characteristics in the five phases have great differences. The coal mining phase is characterized by the damage of the key ecological factors (water, soil, atmosphere, vegetation, etc.) damaged while the coal processing phase by discharging waste. The characteristics in coal transportation phase mainly performance as escaping and migration of atmospheric pollutants. In coal utilization phase, the main characteristics are aggravation of greenhouse effect. The main characteristics of waste disposal phase are accumulation of negative ecological effects on the land. (3) The ecological risk of soil heavy metals is serious in coal utilization phase. The potential ecological hazard coefficients of Pb and As in coal, residue and ash are all lower than 40, presenting low environmental impact on soil; the potential ecological risk coefficients of Cd are higher than 60, nearly half of their potential ecological risk coefficients are higher than 160, which presents high environmental pollution impact on soil; Hg's potential ecological risk coefficients are higher than 320, presenting the highest environmental pollution impact on soil; the comprehensive pollution indexes in coal, residue, and ash are relatively high, which means the pollution hazard potential to soil environment is high. (4) The ecological risk of the atmospheric solid suspended matter is relatively strong in coal utilization phase. The ecological risk of Cd and As in primary flue gas is both lower than net flue gas. The geoaccumulation indexes of Cd and Hg in primary flue gas and net flue gas are both higher than 5, presenting the very strong ecological risk; 50 % of the geoaccumulation index values of As are between 3 and 4, which has also presenting a strong ecological risk while Pb does not present the ecological risk characterization.
Mai, Huajun; Shiraiwa, Manabu; Flagan, Richard C; Seinfeld, John H
2015-10-06
The prevailing treatment of secondary organic aerosol formation in atmospheric models is based on the assumption of instantaneous gas-particle equilibrium for the condensing species, yet compelling experimental evidence indicates that organic aerosols can exhibit the properties of highly viscous, semisolid particles, for which gas-particle equilibrium may be achieved slowly. The approach to gas-particle equilibrium partitioning is controlled by gas-phase diffusion, interfacial transport, and particle-phase diffusion. Here we evaluate the controlling processes and the time scale to achieve gas-particle equilibrium as a function of the volatility of the condensing species, its surface accommodation coefficient, and its particle-phase diffusivity. For particles in the size range of typical atmospheric organic aerosols (∼50-500 nm), the time scale to establish gas-particle equilibrium is generally governed either by interfacial accommodation or particle-phase diffusion. The rate of approach to equilibrium varies, depending on whether the bulk vapor concentration is constant, typical of an open system, or decreasing as a result of condensation into the particles, typical of a closed system.
Total (fumarolic + diffuse soil) CO2 output from Furnas volcano.
Pedone, M; Viveiros, F; Aiuppa, A; Giudice, G; Grassa, F; Gagliano, A L; Francofonte, V; Ferreira, T
Furnas volcano, in São Miguel island (Azores), being the surface expression of rising hydrothermal steam, is the site of intense carbon dioxide (CO 2 ) release by diffuse degassing and fumaroles. While the diffusive CO 2 output has long (since the early 1990s) been characterized by soil CO 2 surveys, no information is presently available on the fumarolic CO 2 output. Here, we performed (in August 2014) a study in which soil CO 2 degassing survey was combined for the first time with the measurement of the fumarolic CO 2 flux. The results were achieved by using a GasFinder 2.0 tunable diode laser. Our measurements were performed in two degassing sites at Furnas volcano (Furnas Lake and Furnas Village), with the aim of quantifying the total (fumarolic + soil diffuse) CO 2 output. We show that, within the main degassing (fumarolic) areas, the soil CO 2 flux contribution (9.2 t day -1 ) represents a minor (~15 %) fraction of the total CO 2 output (59 t day -1 ), which is dominated by the fumaroles (~50 t day -1 ). The same fumaroles contribute to ~0.25 t day -1 of H 2 S, based on a fumarole CO 2 /H 2 S ratio of 150 to 353 (measured with a portable Multi-GAS). However, we also find that the soil CO 2 contribution from a more distal wider degassing structure dominates the total Furnas volcano CO 2 budget, which we evaluate (summing up the CO 2 flux contributions for degassing soils, fumarolic emissions and springs) at ~1030 t day -1 .
Experimental determination of the turbulence in a liquid rocket combustion chamber
NASA Technical Reports Server (NTRS)
Hara, J.; Smith, L. O.; Partus, F. P.
1972-01-01
The intensity of turbulence and the Lagrangian correlation coefficient for a liquid rocket combustion chamber were determined experimentally using the tracer gas diffusion method. The results indicate that the turbulent diffusion process can be adequately modeled by the one-dimensional Taylor theory; however, the numerical values show significant disagreement with previously accepted values. The intensity of turbulence is higher by a factor of about two, while the Lagrangian correlation coefficient which was assumed to be unity in the past is much less than unity.
Compost addition reduces porosity and chlordecone transfer in soil microstructure.
Woignier, Thierry; Clostre, Florence; Fernandes, Paula; Rangon, Luc; Soler, Alain; Lesueur-Jannoyer, Magalie
2016-01-01
Chlordecone, an organochlorine insecticide, pollutes soils and contaminates crops and water resources and is biomagnified by food chains. As chlordecone is partly trapped in the soil, one possible alternative to decontamination may be to increase its containment in the soil, thereby reducing its diffusion into the environment. Containing the pesticide in the soil could be achieved by adding compost because the pollutant has an affinity for organic matter. We hypothesized that adding compost would also change soil porosity, as well as transport and containment of the pesticide. We measured the pore features and studied the nanoscale structure to assess the effect of adding compost on soil microstructure. We simulated changes in the transport properties (hydraulic conductivity and diffusion) associated with changes in porosity. During compost incubation, the clay microstructure collapsed due to capillary stresses. Simulated data showed that the hydraulic conductivity and diffusion coefficient were reduced by 95 and 70% in the clay microstructure, respectively. Reduced transport properties affected pesticide mobility and thus helped reduce its transfer from the soil to water and to the crop. We propose that the containment effect is due not only to the high affinity of chlordecone for soil organic matter but also to a trapping mechanism in the soil porosity.
Film Permeability Determination Using Static Permeability Cells
The permeability of tarps to soil fumigant pesticides varies depending on the active ingredient chemical: dimethyl disulfide (DMDS), methyl bromide, chloropicrin, or other. The diffusion rate can be represented by the mass transfer coefficient (MTC).
Welch, Kyle J; Hastings-Hauss, Isaac; Parthasarathy, Raghuveer; Corwin, Eric I
2014-04-01
We have constructed a macroscopic driven system of chaotic Faraday waves whose statistical mechanics, we find, are surprisingly simple, mimicking those of a thermal gas. We use real-time tracking of a single floating probe, energy equipartition, and the Stokes-Einstein relation to define and measure a pseudotemperature and diffusion constant and then self-consistently determine a coefficient of viscous friction for a test particle in this pseudothermal gas. Because of its simplicity, this system can serve as a model for direct experimental investigation of nonequilibrium statistical mechanics, much as the ideal gas epitomizes equilibrium statistical mechanics.
LNAPL source zone delineation using soil gases in a heterogeneous silty-sand aquifer.
Cohen, Grégory J V; Jousse, Florie; Luze, Nicolas; Höhener, Patrick; Atteia, Olivier
2016-09-01
Source delineation of hydrocarbon contaminated sites is of high importance for remediation work. However, traditional methods like soil core extraction and analysis or recent Membrane Interface Probe methods are time consuming and costly. Therefore, the development of an in situ method based on soil gas analysis can be interesting. This includes the direct measurement of volatile organic compounds (VOCs) in soil gas taken from gas probes using a PID (Photo Ionization Detector) and the analysis of other soil gases related to VOC degradation distribution (CH4, O2, CO2) or related to presence of Light Non-Aqueous Phase Liquid (LNAPL) as (222)Rn. However, in widespread heterogeneous formations, delineation by gas measurements becomes more challenging. The objective of this study is twofold: (i) to analyse the potential of several in situ gas measurement techniques in comparison to soil coring for LNAPL source delineation at a heterogeneous contaminated site where the techniques might be limited by a low diffusion potential linked to the presence of fine sands and silts, and (ii) to analyse the effect of vertical sediment heterogeneities on the performance of these gas measurement methods. Thus, five types of gases were analysed: VOCs, their three related degradation products O2, CO2 and CH4 and (222)Rn. Gas measurements were compared to independent LNAPL analysis by coring. This work was conducted at an old industrial site frequently contaminated by a Diesel-Fuel mixture located in a heterogeneous fine-grained aquifer. Results show that in such heterogeneous media migration of reactive gases like VOCs occurs only across small distances and the VOC concentrations sampled with gas probes are mainly related to local conditions rather than the presence of LNAPL below the gas probe. (222)Rn is not well correlated with LNAPL because of sediment heterogeneity. Oxygen, CO2, and especially CH4, have larger lengths of diffusion and give the clearest picture for LNAPL presence at this site even when the gas probe is somewhat distant. Copyright © 2016 Elsevier B.V. All rights reserved.
Vertical Profiling of Soil Vapor Concentrations Using a New Passive Diffusion Sampler at a UST Site
Understanding the transport of volatile contaminants in soil gas, particularly those associated with underground storage tanks (USTs), requires a detailed knowledge about the depth-dependent distribution of chemical species in the subsurface. Traditional monitoring wells generall...
NASA Astrophysics Data System (ADS)
Hernandez Perez, P. A.; Mori, T.; Notsu, K.; Morita, M.; Padron, E.; Onizawa, S.; Melián, G.; Sumino, H.; Asensio-Ramos, M.; Nogami, K.; Yamane, K.; Perez, N. M.
2016-12-01
Izu-Oshima is an active volcanic island located around 100 km SSW of Tokyo. The centre of the island is occupied by a caldera complex with a diameter of 3 km. A large post-caldera cone known as Mt. Mihara is located at the south-western quadrant of the caldera. Izu-Oshima has erupted 74 times, consisting mainly in fissure eruptions, both inside and outside of the caldera. The last eruption of Izu-Oshima occurred in 1986. Since 2007, eight soil gas surveys have been carried out to investigate the spatial and temporal evolution of diffuse CO2 emission from this volcanic system and to identify those structures controlling the degassing process. Diffuse CO2 emission surveys were always carried out following the accumulation chamber method. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. The location of the CO2 anomalies has always shown a close relationship with the structural characteristics of Miharayama, with most of the gas discharged from the rim of the summit crater. Temporal evolution of diffuse CO2 emission rate from Mt. Miharayama has shown a good temporal correlation with the main two peaks of seismic activity occur when highest CO diffuse emissions were computed, March 2007, August 2010 and July 2011, may be associated with fluid pressure fluctuations in the volcanic system due stress changes at depth. In order to strength the contribution of deep seated gases, we performed carbon isotopic analysis of soil gas samples at selected sites during 2010, 2013, 2015 and 2016 surveys. At isotopic compositions lighter than - 6‰, the soil CO2 effluxes were always low, while at heavier isotopic compositions an increasing number of points are characterized by relatively high soil CO efflux. Soil CO2 efflux peak values (xB) showed also a good correlation with the observed seismicity, with the largest value computed on June 2013. This parameter is a geochemical expression of the magnitude of the anomalous degassing, and the observed change in the trend may indicate an increase of the seismic-volcanic activity in the next future. Therefore, performing regularly soil CO2 efflux surveys seems to be an effective geochemical surveillance tool Izu-Oshima volcano in order to detect a change in the tendency of the CO2 emission rate in case of future episodes of volcanic unrest.
NMR investigation of water diffusion in different biofilm structures.
Herrling, Maria P; Weisbrodt, Jessica; Kirkland, Catherine M; Williamson, Nathan H; Lackner, Susanne; Codd, Sarah L; Seymour, Joseph D; Guthausen, Gisela; Horn, Harald
2017-12-01
Mass transfer in biofilms is determined by diffusion. Different mostly invasive approaches have been used to measure diffusion coefficients in biofilms, however, data on heterogeneous biomass under realistic conditions is still missing. To non-invasively elucidate fluid-structure interactions in complex multispecies biofilms pulsed field gradient-nuclear magnetic resonance (PFG-NMR) was applied to measure the water diffusion in five different types of biomass aggregates: one type of sludge flocs, two types of biofilm, and two types of granules. Data analysis is an important issue when measuring heterogeneous systems and is shown to significantly influence the interpretation and understanding of water diffusion. With respect to numerical reproducibility and physico-chemical interpretation, different data processing methods were explored: (bi)-exponential data analysis and the Γ distribution model. Furthermore, the diffusion coefficient distribution in relation to relaxation was studied by D-T 2 maps obtained by 2D inverse Laplace transform (2D ILT). The results show that the effective diffusion coefficients for all biofilm samples ranged from 0.36 to 0.96 relative to that of water. NMR diffusion was linked to biofilm structure (e.g., biomass density, organic and inorganic matter) as observed by magnetic resonance imaging and to traditional biofilm parameters: diffusion was most restricted in granules with compact structures, and fast diffusion was found in heterotrophic biofilms with fluffy structures. The effective diffusion coefficients in the biomass were found to be broadly distributed because of internal biomass heterogeneities, such as gas bubbles, precipitates, and locally changing biofilm densities. Thus, estimations based on biofilm bulk properties in multispecies systems can be overestimated and mean diffusion coefficients might not be sufficiently informative to describe mass transport in biofilms and the near bulk. © 2017 Wiley Periodicals, Inc.
The effect of laterite density on radon diffusion behavior.
Li, Yongmei; Tan, Wanyu; Tan, Kaixuan; Liu, Zehua; Fang, Qi; Lv, Junwen; Duan, Xianzhe; Liu, Zhenzhong; Guo, Yueyue
2018-02-01
Radon generated in porous media such as soils and rocks migrates into indoor and outdoor air mainly by diffusion, possessing significant hazards to human health. In order to reduce these hazards of radon, it is of great importance to study the diffusion behavior of radon. In this study, we systematically measured the radon diffusion coefficient of laterite with the density ranging from 0.917gcm -3 to 2.238gcm -3 , and studied the effect of laterite density on the radon diffusion. The results show that the radon diffusion coefficient of the laterite generally decreases with the increasing laterite density. In addition, three possible relationships between the radon diffusion coefficient and the laterite density are found out as follows: (1) the linear correlation with a slope of -4.48 × 10 -6 for laterite with density ranging from 0.917 to 1.095gcm -3 , (2) the exponential correlation for laterite with density from 1.095 to 1.63gcm -3 , (3) linear correlation with a slope of -3.1 × 10 -7 for laterite with density from 1.63 to 2.238gcm -3 . The complex relationship between the radon diffusion coefficient and density is caused by the change of porosity and tortuosity of the laterite. Therefore, we suggest that a suitable density should be adopted while using the laterite to effectively cover uranium tailings or economically produce building materials that can curb the radon exhalation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Measurement of diffusion coefficients from solution rates of bubbles
NASA Technical Reports Server (NTRS)
Krieger, I. M.
1979-01-01
The rate of solution of a stationary bubble is limited by the diffusion of dissolved gas molecules away from the bubble surface. Diffusion coefficients computed from measured rates of solution give mean values higher than accepted literature values, with standard errors as high as 10% for a single observation. Better accuracy is achieved with sparingly soluble gases, small bubbles, and highly viscous liquids. Accuracy correlates with the Grashof number, indicating that free convection is the major source of error. Accuracy should, therefore, be greatly increased in a gravity-free environment. The fact that the bubble will need no support is an additional important advantage of Spacelab for this measurement.
Diffusivity of nitrous oxide in N-methyldiethanolamine + diethanolamine + water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinker, E.B.; Russell, J.W.; Tamimi, A.
1995-05-01
The tertiary amine N-methyldiethanolamine and the secondary amine diethanolamine are commonly used in the gas-treating industry as chemical solvents for the removal of acid gases such as CO{sub 2} and H{sub 2}S. The diffusion coefficients for nitrous oxide in aqueous solutions consisting of N-methyldiethanolamine (MDEA) and diethanolamine (DEA) were measured over the temperature range 293--353 K for a total amine concentration of 50 mass % and for the mass ratio of DEA to MDEA varying from 0.0441 to 0.588. The experimental diffusion coefficients were found to be relatively insensitive to the mass ratio of amines.
Generation and mobility of radon in soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, A.W.; Jester, W.A.; Ciolkosz, E.J.
This study has confirmed large seasonal and daily variations of Rn in soil gas, developed models for the effects of temperature and moisture on air-water Rn partition, inhibited Rn diffusion from wet soil into sparse large air-filled pores and effects of diffusion into bedrock, demonstrated that organic matter is a major host for 226Ra in soils and that organic-bound Ra largely determines the proportion of 222Rn emanated to pore space, shown that in contrast 220Rn is emanated mainly from 224Ra in Fe-oxides, detected significant disequilibrium between 226Ra and 238U in organic matter and in some recent glacial soils, demonstrated bymore » computer models that air convection driven by temperature differences is expected in moderately permeable soils on hillsides.« less
Generation and mobility of radon in soil. Technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, A.W.; Jester, W.A.; Ciolkosz, E.J.
This study has confirmed large seasonal and daily variations of Rn in soil gas, developed models for the effects of temperature and moisture on air-water Rn partition, inhibited Rn diffusion from wet soil into sparse large air-filled pores and effects of diffusion into bedrock, demonstrated that organic matter is a major host for 226Ra in soils and that organic-bound Ra largely determines the proportion of 222Rn emanated to pore space, shown that in contrast 220Rn is emanated mainly from 224Ra in Fe-oxides, detected significant disequilibrium between 226Ra and 238U in organic matter and in some recent glacial soils, demonstrated bymore » computer models that air convection driven by temperature differences is expected in moderately permeable soils on hillsides.« less
Can the Lyman Continuum Leaked Out of H II Regions Explain Diffuse Ionized Gas?
NASA Astrophysics Data System (ADS)
Seon, Kwang-Il
2009-09-01
We present an attempt to explain the diffuse Hα emission of a face-on galaxy M 51 with the "standard" photoionization model, in which the Lyman continuum (Lyc) escaping from H II regions propagates large distances into the diffuse interstellar medium (ISM). The diffuse Hα emission of M 51 is analyzed using thin slab models and exponential disk models in the context of the "on-the-spot" approximation. The scale height of the ionized gas needed to explain the diffuse Hα emission with the scenario is found to be of the order of ~1-2 kpc, consistent with those of our Galaxy and edge-on galaxies. The model also provides a vertical profile, when the galaxy is viewed edge-on, consisting of two-exponential components. However, it is found that an incredibly low absorption coefficient of κ0 ≈ 0.4-0.8 kpc-1 at the galactic plane, or, equivalently, an effective cross section as low as σeff ~ 10-5 of the photoionization cross section at 912 Å is required to allow the stellar Lyc photons to travel through the H I disk. Such a low absorption coefficient is out of accord with the properties of the ISM. Furthermore, we found that even the model that has the diffuse ionized gas (DIG) phase only and no H I gas phase shows highly concentrated Hα emissions around H II regions, and can account for only lsim26% of the Hα luminosity of the DIG. This result places a strong constraint on the ionizing source of the DIG. We also report that the Hα intensity distribution functions not only of the DIG, but also of H II regions in M 51, appear to be lognormal.
Selectivity and self-diffusion of CO2 and H2 in a mixture on a graphite surface
Trinh, Thuat T.; Vlugt, Thijs J. H.; Hägg, May-Britt; Bedeaux, Dick; Kjelstrup, Signe
2013-01-01
We performed classical molecular dynamics (MD) simulations to understand the mechanism of adsorption from a gas mixture of CO2 and H2 (mole fraction of CO2 = 0.30) and diffusion along a graphite surface, with the aim to help enrich industrial off-gases in CO2, separating out H2. The temperature of the system in the simulation covered typical industrial conditions for off-gas treatment (250–550 K). The interaction energy of single molecules CO2 or H2 on graphite surface was calculated with classical force fields (FFs) and with Density Functional Theory (DFT). The results were in good agreement. The binding energy of CO2 on graphite surface is three times larger than that of H2. At lower temperatures, the selectivity of CO2 over H2 is five times larger than at higher temperatures. The position of the dividing surface was used to explain how the adsorption varies with pore size. In the temperature range studied, the self-diffusion coefficient of CO2 is always smaller than of H2. The temperature variation of the selectivities and the self-diffusion coefficient imply that the carbon molecular sieve membrane can be used for gas enrichment of CO2. PMID:24790965
Variation in diffusion of gases through PDMS due to plasma surface treatment and storage conditions.
Markov, Dmitry A; Lillie, Elizabeth M; Garbett, Shawn P; McCawley, Lisa J
2014-02-01
Polydimethylsiloxane (PDMS) is a commonly used polymer in the fabrication of microfluidic devices due to such features as transparency, gas permeability, and ease of patterning with soft lithography. The surface characteristics of PDMS can also be easily changed with oxygen or low pressure air plasma converting it from a hydrophobic to a hydrophilic state. As part of such a transformation, surface methyl groups are removed and replaced with hydroxyl groups making the exposed surface to resemble silica, a gas impermeable substance. We have utilized Platinum(II)-tetrakis(pentaflourophenyl)porphyrin immobilized within a thin (~1.5 um thick) polystyrene matrix as an oxygen sensor, Stern-Volmer relationship, and Fick's Law of simple diffusion to measure the effects of PDMS composition, treatment, and storage on oxygen diffusion through PDMS. Results indicate that freshly oxidized PDMS showed a significantly smaller diffusion coefficient, indicating that the SiO2 layer formed on the PDMS surface created an impeding barrier. This barrier disappeared after a 3-day storage in air, but remained significant for up to 3 weeks if PDMS was maintained in contact with water. Additionally, higher density PDMS formulation (5:1 ratio) showed similar diffusion characteristics as normal (10:1 ratio) formulation, but showed 60 % smaller diffusion coefficient after plasma treatment that never recovered to pre-treatment levels even after a 3-week storage in air. Understanding how plasma surface treatments contribute to oxygen diffusion will be useful in exploiting the gas permeability of PDMS to establish defined normoxic and hypoxic oxygen conditions within microfluidic bioreactor systems.
Variation in diffusion of gases through PDMS due to plasma surface treatment and storage conditions
Markov, Dmitry A.; Lillie, Elizabeth M.; Garbett, Shawn P.; McCawley, Lisa J.
2013-01-01
Polydimethylsiloxane (PDMS) is a commonly used polymer in the fabrication of microfluidic devices due to such features as transparency, gas permeability, and ease of patterning with soft lithography. The surface characteristics of PDMS can also be easily changed with oxygen or low pressure air converting it from a hydrophobic to a hydrophilic state. As part of such a transformation, surface methyl groups are removed and replaced with hydroxyl groups making the exposed surface to resemble silica, a gas impermeable substance. We have utilized Platinum(II)-tetrakis(pentaflourophenyl)porphyrin immobilized within a thin (~1.5 um thick) polystyrene matrix as an oxygen sensor, Stern-Volmer relationship, and Fick's Law of simple diffusion to measure the effects of PDMS composition, treatment, and storage on oxygen diffusion through PDMS. Results show that freshly oxidized PDMS showed a significantly smaller diffusion coefficient, indicating that the SiO2 layer formed on the PDMS surface created an impeding barrier. This barrier disappeared after a three-day storage in air, but remained significant for up to three weeks if PDMS was maintained in contact with water. Additionally, higher density PDMS formulation (5:1 ratio) showed similar diffusion characteristics as normal (10:1 ratio) formulation, but showed 60% smaller diffusion coefficient after plasma treatment that never recovered to pre-treatment levels even after a three-week storage in air. Understanding how plasma surface treatments contribute to oxygen diffusion will be useful in exploiting the gas permeability of PDMS to establish defined normoxic and hypoxic oxygen conditions within microfluidic bioreactor systems. PMID:24065585
NASA Astrophysics Data System (ADS)
Carapezza, M. L.; Barberi, F.; Ranaldi, M.; Ricci, T.; Tarchini, L.; Barrancos, J.; Fischer, C.; Perez, N.; Weber, K.; Di Piazza, A.; Gattuso, A.
2011-10-01
La Fossa crater on Vulcano Island is quiescent since 1890. Periodically it undergoes "crises" characterized by marked increase of temperature (T), gas output and concentration of magmatic components in the crater fumaroles (T may exceed 600 °C). During these crises, which so far did not lead to any eruptive reactivation, the diffuse CO 2 soil degassing also increases and in December 2005 an anomalous CO 2 flux of 1350 tons/day was estimated by 1588 measurements over a surface of 1.66 km 2 extending from La Fossa crater to the inhabited zone of Vulcano Porto. The crater area and two other anomalously degassing sites (Levante Beach and Palizzi) have been periodically investigated from December 2004 to August 2010 for diffuse CO 2 soil flux. They show a marked variation with time of the degassing rate, with synchronous maxima in December 2005. Carbon dioxide soil flux and environmental parameters have been also continuously monitored for over one year by an automatic station at Vulcano Porto. In order to assess the hazard of the endogenous gas emissions, CO 2 and H 2S air concentrations have been measured by Tunable Diode Laser profiles near the fumaroles of the crater rim and of the Levante Beach area, where also the viscous gas flux has been estimated. In addition, CO 2 air concentration has been measured both indoor and outdoor in an inhabited sector of Vulcano Porto. Results show that in some sites usually frequented by tourists there is a dangerous H 2S air concentration and CO 2 exceeds the hazardous thresholds in some Vulcano houses. These zones should be immediately monitored for gas hazard should a new crisis arise.
Zachary E. Kayler; Elizabeth W. Sulzman; William D. Rugh; Alan C. Mix; Barbara J. Bond
2010-01-01
By measuring the isotopic signature of soil respiration, we seek to learn the isotopic composition of the carbon respired in the soil (δ13CR-S) so that we may draw inferences about ecosystem processes. Requisite to this goal is the need to understand how (δ13CR-S) is affected by...
NASA Astrophysics Data System (ADS)
Keller, Thomas; Colombi, Tino; Ruiz, Siul; Grahm, Lina; Reiser, René; Rek, Jan; Oberholzer, Hans-Rudolf; Schymanski, Stanislaus; Walter, Achim; Or, Dani
2016-04-01
Soil compaction due to agricultural vehicular traffic alters the geometrical arrangement of soil constituents, thereby modifying mechanical properties and pore spaces that affect a range of soil hydro-ecological functions. The ecological and economic costs of soil compaction are dependent on the immediate impact on soil functions during the compaction event, and a function of the recovery time. In contrast to a wealth of soil compaction information, mechanisms and rates of soil structure recovery remain largely unknown. A long-term (>10-yr) soil structure observatory (SSO) was established in 2014 on a loamy soil in Zurich, Switzerland, to quantify rates and mechanisms of structure recovery of compacted arable soil under different post-compaction management treatments. We implemented three initial compaction treatments (using a two-axle agricultural vehicle with 8 Mg wheel load): compaction of the entire plot area (i.e. track-by-track), compaction in wheel tracks, and no compaction. After compaction, we implemented four post-compaction soil management systems: bare soil (BS), permanent grass (PG), crop rotation without mechanical loosening (NT), and crop rotation under conventional tillage (CT). BS and PG provide insights into uninterrupted natural processes of soil structure regeneration under reduced (BS) and normal biological activity (PG). The two cropping systems (NT and CT) enable insights into soil structure recovery under common agricultural practices with minimal (NT) and conventional mechanical soil disturbance (CT). Observations include periodic sampling and measurements of soil physical properties, earthworm abundance, crop measures, electrical resistivity and ground penetrating radar imaging, and continuous monitoring of state variables - soil moisture, temperature, CO2 and O2 concentrations, redox potential and oxygen diffusion rates - for which a network of sensors was installed at various depths (0-1 m). Initial compaction increased soil bulk density to about half a metre, decreased gas and water transport functions (air permeability, gas diffusivity, saturated hydraulic conductivity), and increased mechanical impedance. Water infiltration at the soil surface was initially reduced by three orders of magnitude, but significantly recovered within a year. However, within the soil profile, recovery of transport properties is much smaller. Air permeability tended to recover more than gas diffusivity, suggesting that initial post-compaction recovery is initiated by new macropores (e.g. biopores). Tillage recovered topsoil bulk density but not topsoil transport functions. Compaction changed grass species composition in PG, and significantly reduced grass biomass in PG and crop yields in NT and CT.
Calculating Mass Diffusion in High-Pressure Binary Fluids
NASA Technical Reports Server (NTRS)
Bellan, Josette; Harstad, Kenneth
2004-01-01
A comprehensive mathematical model of mass diffusion has been developed for binary fluids at high pressures, including critical and supercritical pressures. Heretofore, diverse expressions, valid for limited parameter ranges, have been used to correlate high-pressure binary mass-diffusion-coefficient data. This model will likely be especially useful in the computational simulation and analysis of combustion phenomena in diesel engines, gas turbines, and liquid rocket engines, wherein mass diffusion at high pressure plays a major role.
NMR spin-rotation relaxation and diffusion of methane
NASA Astrophysics Data System (ADS)
Singer, P. M.; Asthagiri, D.; Chapman, W. G.; Hirasaki, G. J.
2018-05-01
The translational diffusion-coefficient and the spin-rotation contribution to the 1H NMR relaxation rate for methane (CH4) are investigated using MD (molecular dynamics) simulations, over a wide range of densities and temperatures, spanning the liquid, supercritical, and gas phases. The simulated diffusion-coefficients agree well with measurements, without any adjustable parameters in the interpretation of the simulations. A minimization technique is developed to compute the angular velocity for non-rigid spherical molecules, which is used to simulate the autocorrelation function for spin-rotation interactions. With increasing diffusivity, the autocorrelation function shows increasing deviations from the single-exponential decay predicted by the Langevin theory for rigid spheres, and the deviations are quantified using inverse Laplace transforms. The 1H spin-rotation relaxation rate derived from the autocorrelation function using the "kinetic model" agrees well with measurements in the supercritical/gas phase, while the relaxation rate derived using the "diffusion model" agrees well with measurements in the liquid phase. 1H spin-rotation relaxation is shown to dominate over the MD-simulated 1H-1H dipole-dipole relaxation at high diffusivity, while the opposite is found at low diffusivity. At high diffusivity, the simulated spin-rotation correlation time agrees with the kinetic collision time for gases, which is used to derive a new expression for 1H spin-rotation relaxation, without any adjustable parameters.
Wilson, Jordan L; Samaranayake, V A; Limmer, Matthew A; Schumacher, John G; Burken, Joel G
2017-12-19
Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman's coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.
Wilson, Jordan L.; Samaranayake, V.A.; Limmer, Matthew A.; Schumacher, John G.; Burken, Joel G.
2017-01-01
Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman’s coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in-planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.
Lacerda, Cláudia Virgínia; Ritter, Elisabeth; Pires, João Antônio da Costa; de Castro, José Adilson
2014-11-01
Batch tests and diffusion tests were performed to analyze the efficiency of a protective barrier in a landfill consisting of compacted soil with 10% bentonite compared to the results obtained for only compacted soil and for compacted soil covered with a 1-mm-thick HDPE geomembrane; the soil and leachate were collected from the Rio das Ostras Landfill in Rio de Janeiro, Brazil. The diffusion tests were performed for periods of 3, 10 and 60 days. After the test period, the soil pore water was analyzed and the profiles for chloride, potassium and ammonium were determined along a 6-cm soil depth. The results of the batch tests performed to define sorption parameters were used to adjust the profiles obtained in the diffusion cell experiment by applying an ion transfer model between the interstitial solution and the soil particles. The MPHMTP model (Multi Phase Heat and Mass Transfer Program), which is based upon the solution of the transport equations of the ionic contaminants, was used to solve the inverse problem of simultaneously determining the effective diffusion coefficients. The results of the experimental tests and of the model simulation confirmed that the compacted soil with 10% bentonite was moderately efficient in the retention of chloride, potassium and ammonium ions compared to the configurations of compacted soil with a geomembrane and compacted soil alone, representing a solution that is technically feasible and requires potentially lower costs for implementation in landfills. Copyright © 2014 Elsevier Ltd. All rights reserved.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Reactive Radial Diffusion Model for the Aging/Sequestration Process
NASA Astrophysics Data System (ADS)
Ginn, T. R.; Basagaoglu, H.; McCoy, B. J.; Scow, K. M.
2001-12-01
A radial diffusion model has been formulated to simulate age-dependent bioavailability of chemical compounds to micro-organisms residing outside (and/or inside) the porous soil particles. Experimental findings in the literature indicate that the sequestration and reduction in bioavailability of contaminants are controlled presumably by the diffusion-limited sorption kinetics and the time-variant desorption process. Here we combine radial-diffusion mass transfer modeling with the exposure-time concept to generate mass-balance equations for the intra- and extra-particle concentrations. The model accomodates reversible sorption kinetics involving sorption time-dependence of the rate coefficients, distinct intra- and extra-particle biodegradation rates; and a dynamic mass interaction between the intra- and extra-particle concentrations arising from the radial diffusion concept. The model explicitly treats multiple particle classes distributed in size and chemical properties in a bulk aquifer or soil volume, which allows the simulation of the sequestration and bioavailability of contaminants in different particle size classes that have distinct diffusion, reaction, and aging properties.
Flood effects on efflux and net production of nitrous oxide in river floodplain soils
NASA Astrophysics Data System (ADS)
Riaz, Muhammad; Bruderer, Christian; Niklaus, Pascal A.; Luster, Jörg
2016-04-01
Floodplain soils are often rich in nutrients and exhibit high spatial heterogeneity in terms of geomorphology, soil environmental conditions and substrate availability for processes involved in carbon and nutrient cycling. In addition, fluctuating water tables lead to temporally changing redox conditions. In such systems, there are ideal conditions for the occurrence of hot spots and moments of nitrous oxide emissions, a potent greenhouse gas. The factors that govern the spatial heterogeneity and dynamics of N2O formation in floodplain soils and the surface efflux of this gas are not fully understood. A particular issue is the contribution of N2O formation in the subsoil to surface efflux. We studied this question in the floodplain of a restored section of the Thur river (NE Switzerland) which is characterized by a flashy flow regime. As a consequence, the floodplain soils are unsaturated most of the time. We showed earlier that saturation during flood pulses leads to short phases of generally anoxic conditions followed by a drying phase with anoxic conditions within aggregates and oxic conditions in larger soil pores. The latter conditions are conducive for spatially closely-coupled nitrification-denitrification and related hot moments of nitrous oxide formation. In a floodplain zone characterized by about one meter of young, sandy sediments, that are mostly covered by the tall grass Phalaris arundinacea, we measured at several time points before and after a small flood event N2O surface efflux with the closed-chamber method, and assessed N2O concentrations in the soil air at four different depths using gas-permeable tubings. In addition, we calculated the N2O diffusivity in the soil from Radon diffusivity. The latter was estimated in-situ from the recovery of Radon concentration in the gas-permeable tubings after purging with ambient air. All these data were then used to calculate net N2O production rates at different soil depths with the gradient method. In addition, temperature, volumetric water content, as well as ammonium, nitrate and dissolved organic carbon in the soil solution were monitored at different depths in the observation plots. During not flood-affected conditions we observed weak diffusive gradients between subsoil and top soil, and net N2O production was maximum in the top soil. During the drying phase after a flood, diffusive gradients between subsoil and topsoil were more pronounced, and net N2O production in the subsoil increased. At all conditions, N2O efflux was more strongly correlated with N2O concentrations in the subsoil than those in the top soil. The complex interactions between soil moisture on one hand, and C and N substrate limitation on the other hand in determining N2O production at different soil depths will be discussed. Finally, the results will be put into the context of our earlier and ongoing studies that aim at elucidating the governing factors of spatial heterogeneity and dynamics of N2O emissions in floodplain soils.
Burri, Susanne; Sturm, Patrick; Baur, Thomas; Barthel, Matti; Knohl, Alexander; Buchmann, Nina
2014-01-01
Pulse labelling experiments provide a common tool to study short-term processes in the plant-soil system and investigate below-ground carbon allocation as well as the coupling of soil CO(2) efflux to photosynthesis. During the first hours after pulse labelling, the measured isotopic signal of soil CO(2) efflux is a combination of both physical tracer diffusion into and out of the soil as well as biological tracer release via root and microbial respiration. Neglecting physical back-diffusion can lead to misinterpretation regarding time lags between photosynthesis and soil CO(2) efflux in grassland or any ecosystem type where the above-ground plant parts cannot be labelled in gas-tight chambers separated from the soil. We studied the effects of physical (13)CO(2) tracer back-diffusion in pulse labelling experiments in grassland, focusing on the isotopic signature of soil CO(2) efflux. Having accounted for back-diffusion, the estimated time lag for first tracer appearance in soil CO(2) efflux changed from 0 to 1.81±0.56 h (mean±SD) and the time lag for maximum tracer appearance from 2.67±0.39 to 9.63±3.32 h (mean±SD). Thus, time lags were considerably longer when physical tracer diffusion was considered. Using these time lags after accounting for physical back-diffusion, high nocturnal soil CO(2) efflux rates could be related to daytime rates of gross primary productivity (R(2)=0.84). Moreover, pronounced diurnal patterns in the δ(13)C of soil CO(2) efflux were found during the decline of the tracer over 3 weeks. Possible mechanisms include diurnal changes in the relative contributions of autotrophic and heterotrophic soil respiration as well as their respective δ(13)C values. Thus, after accounting for physical back-diffusion, we were able to quantify biological time lags in the coupling of photosynthesis and soil CO(2) efflux in grassland at the diurnal time scale.
Potential efficiencies of open- and closed-cycle CO, supersonic, electric-discharge lasers
NASA Technical Reports Server (NTRS)
Monson, D. J.
1976-01-01
Computed open- and closed-cycle system efficiencies (laser power output divided by electrical power input) are presented for a CW carbon monoxide, supersonic, electric-discharge laser. Closed-system results include the compressor power required to overcome stagnation pressure losses due to supersonic heat addition and a supersonic diffuser. The paper shows the effect on the system efficiencies of varying several important parameters. These parameters include: gas mixture, gas temperature, gas total temperature, gas density, total discharge energy loading, discharge efficiency, saturated gain coefficient, optical cavity size and location with respect to the discharge, and supersonic diffuser efficiency. Maximum open-cycle efficiency of 80-90% is predicted; the best closed-cycle result is 60-70%.
Volatile Emissions from Hot Spring Basin, Yellowstone National Park, USA
NASA Astrophysics Data System (ADS)
Werner, C.; Hurwitz, S.; Bergfeld, D.; Evans, W. C.; Lowenstern, J. B.; Jaworowski, C.; Heasler, H.
2007-12-01
The flux and composition of magmatic volatiles were characterized for Hot Spring Basin (HSB), Yellowstone National Park, in August 2006. Diffuse fluxes of CO2 (228 sites) from thermal soil were elevated, with a population distribution similar to that of other acid-sulfate areas in Yellowstone. Thus the estimated diffuse emission rate at HSB is proportionately larger than other areas due to its large area, and could be as high as 1000 td-1 CO2. The diffuse flux of H2S was only above detection limits at 20 of the 31 sites measured. The estimated diffuse H2S emission rate was ~ 4 td-1. Good correlation exists between the log of CO2 flux and shallow soil temperatures, indicating linked steam and gas upflow in the subsurface. The correlation between CO2 and H2S fluxes is weak, and the CO2 / H2S diffuse flux ratio was higher than in fumarolic ratios of CO2 to H2S. This suggests that various reactions, e.g., native sulfur deposition, act to remove H2S from the original gas stream in the diffuse low- temperature environment. Dissolved sulfate flux through Shallow Creek, which drains part of HSB, was ~ 4 td-1. Comparing dissolved sulfate flux to estimates of primary emission of H2S based on fumarolic gas geochemistry gives first order estimates of the sulfur consumed in surficial or subsurface mineral deposition. Total C and S outputs from HSB are comparable to other active volcanic systems.
NASA Technical Reports Server (NTRS)
Jameson, Antony
1994-01-01
The effect of artificial diffusion on discrete shock structures is examined for a family of schemes which includes scalar diffusion, convective upwind and split pressure (CUSP) schemes, and upwind schemes with characteristics splitting. The analysis leads to conditions on the diffusive flux such that stationary discrete shocks can contain a single interior point. The simplest formulation which meets these conditions is a CUSP scheme in which the coefficients of the pressure differences is fully determined by the coefficient of convective diffusion. It is also shown how both the characteristic and CUSP schemes can be modified to preserve constant stagnation enthalpy in steady flow, leading to four variants, the E and H-characteristic schemes, and the E and H-CUSP schemes. Numerical results are presented which confirm the properties of these schemes.
Lung Morphometry with Hyperpolarized 129Xe: Theoretical Background
Sukstanskii, A.L.; Yablonskiy, D.A.
2011-01-01
The 3He lung morphometry technique, based on MRI measurements of hyperpolarized 3He gas diffusion in lung airspaces, provides unique information on the lung microstructure at the alveolar level. In vivo 3D tomographic images of standard morphological parameters (airspace chord length, lung parenchyma surface-to-volume ratio, number of alveoli per unit volume) can be generated from a rather short (several seconds) MRI scan. The technique is based on a theory of gas diffusion in lung acinar airways and experimental measurements of diffusion attenuated MRI signal. The present work aims at developing the theoretical background of a similar technique based on hyperpolarized 129Xe gas. As the diffusion coefficient and gyromagnetic ratio of 129Xe gas are substantially different from those of 3He gas, the specific details of the theory and experimental measurements with 129Xe should be amended. We establish phenomenological relationships between acinar airway geometrical parameters and the diffusion attenuated MR signal for human and small animal lungs, both normal lungs and lungs with mild emphysema. Optimal diffusion times are shown to be about 5 ms for human and 1.3 ms for small animals. The expected uncertainties in measuring main morphometrical parameters of the lungs are estimated in the framework of Bayesian probability theory. PMID:21713985
ICP-MS measurement of silver diffusion coefficient in graphite IG-110 between 1048K and 1284K
NASA Astrophysics Data System (ADS)
Carter, L. M.; Seelig, J. D.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.
2018-01-01
Silver-110m has been shown to permeate intact silicon carbide and pyrolytic carbon coating layers of the TRISO fuel particles during normal High Temperature Gas-Cooled Reactor (HTGR) operational conditions. The diffusion coefficients for silver in graphite IG-110 measured using a release method designed to simulate HTGR conditions of high temperature and flowing helium in the temperature range 1048-1253 K are reported. The measurements were made using spheres milled from IG-110 graphite that were infused with silver using a pressure vessel technique. The Ag diffusion was measured using a time release technique with an ICP-MS instrument for detection. The results of this work are:
Measurement of longitudinal electron diffusion in liquid argon
Li, Yichen; Tsang, Thomas; Thorn, Craig; ...
2016-02-07
In this paper, we report the measurement of longitudinal electron diffusion coefficients in liquid argon for electric fields between 100 and 2000 V/cm with a gold photocathode as a bright electron source. The measurement principle, apparatus, and data analysis are described. In the region between 100 and 350 V/cm, our results show a discrepancy with the previous measurement. In the region between 350 and 2000 V/cm, our results represent the world's best measurement. Over the entire measured electric field range, our results are systematically higher than the calculation of Atrazhev-Timoshkin. The quantum efficiency of the gold photocathode, the drift velocitymore » and longitudinal diffusion coefficients in gas argon are also presented.« less
Experimental determination of turbulence in a GH2-GOX rocket combustion chamber
NASA Technical Reports Server (NTRS)
Tou, P.; Russell, R.; Ohara, J.
1974-01-01
The intensity of turbulence and the Lagrangian correlation coefficient for a gaseous rocket combustion chamber have been determined from the experimental measurements of the tracer gas diffusion. A combination of Taylor's turbulent diffusion theory and Spalding's numerical method for solving the conservation equations of fluid mechanics was used to calculate these quantities. Taylor's theory was extended to consider the inhomogeneity of the turbulence field in the axial direction of the combustion chamber. An exponential function was used to represent the Lagrangian correlation coefficient. The results indicate that the maximum value of the intensity of turbulence is about 15% and the Lagrangian correlation coefficient drops to about 0.12 in one inch of the chamber length.
Study of Parameters And Methods of LL-Ⅳ Distributed Hydrological Model in DMIP2
NASA Astrophysics Data System (ADS)
Li, L.; Wu, J.; Wang, X.; Yang, C.; Zhao, Y.; Zhou, H.
2008-05-01
: The Physics-based distributed hydrological model is considered as an important developing period from the traditional experience-hydrology to the physical hydrology. The Hydrology Laboratory of the NOAA National Weather Service proposes the first and second phase of the Distributed Model Intercomparison Project (DMIP),that it is a great epoch-making work. LL distributed hydrological model has been developed to the fourth generation since it was established in 1997 on the Fengman-I district reservoir area (11000 km2).The LL-I distributed hydrological model was born with the applications of flood control system in the Fengman-I in China. LL-II was developed under the DMIP-I support, it is combined with GIS, RS, GPS, radar rainfall measurement.LL-III was established along with Applications of LL Distributed Model on Water Resources which was supported by the 973-projects of The Ministry of Science and Technology of the People's Republic of China. LL-Ⅳ was developed to face China's water problem. Combined with Blue River and the Baron Fork River basin of DMIP-II, the convection-diffusion equation of non-saturated and saturated seepage was derived from the soil water dynamics and continuous equation. In view of the technical characteristics of the model, the advantage of using convection-diffusion equation to compute confluence overall is longer period of predictable, saving memory space, fast budgeting, clear physical concepts, etc. The determination of parameters of hydrological model is the key, including experience coefficients and parameters of physical parameters. There are methods of experience, inversion, and the optimization to determine the model parameters, and each has advantages and disadvantages. This paper briefly introduces the LL-Ⅳ distribution hydrological model equations, and particularly introduces methods of parameters determination and simulation results on Blue River and Baron Fork River basin for DMIP-II. The soil moisture diffusion coefficient and coefficient of hydraulic conductivity are involved all through the LL-Ⅳ distribution of runoff and slope convergence model, used mainly empirical formula to determine. It's used optimization methods to calculate the two parameters of evaporation capacity (coefficient of bare land and vegetation land), two parameters of interception and wave velocity of Overland Flow, interflow and groundwater. The approach of determining wave velocity of River Network confluence and diffusion coefficient is: 1. Estimate roughness based mainly on digital information such as land use, soil texture, etc. 2.Establish the empirical formula. Another method is called convection-diffusion numerical inversion.
Heat of transport of air in clay.
Minkin, Leonid; Shapovalov, Alexander S
2007-01-01
By measuring the thermomolecular pressure difference and using principles of irreversible thermodynamics, heat of transport of air in clay and its coefficient of diffusion are found. A comparison of thermotranspiration and pressure driven gas fluxes through concrete slab in homes is examined. It is shown that thermotranspiration air/radon flow may greatly exceed diffusion (pressure driven) flow in homes.
Evaluation of multidimensional transport through a field-scale compacted soil liner
Willingham, T.W.; Werth, C.J.; Valocchi, A.J.; Krapac, I.G.; Toupiol, C.; Stark, T.D.; Daniel, D.E.
2004-01-01
A field-scale compacted soil liner was constructed at the University of Illinois at Urbana-Champaign by the U.S. Environmental Protection Agency (USEPA) and Illinois State Geological Survey in 1988 to investigate chemical transport rates through low permeability compacted clay liners (CCLs). Four tracers (bromide and three benzoic acid tracers) were each added to one of four large ring infiltrometers (LRIs) while tritium was added to the pond water (excluding the infiltrometers). Results from the long-term transport of Br- from the localized source zone of LRI are presented in this paper. Core samples were taken radially outward from the center of the Br- LRI and concentration depth profiles were obtained. Transport properties were evaluated using an axially symmetric transport model. Results indicate that (1) transport was diffusion controlled; (2) transport due to advection was negligible and well within the regulatory limits of ksat???1 ?? 10-7 cm/s; (3) diffusion rates in the horizontal and vertical directions were the same; and (4) small positioning errors due to compression during soil sampling did not affect the best fit advection and diffusion values. The best-fit diffusion coefficient for bromide was equal to the molecular diffusion coefficient multiplied by a tortuosity factor of 0.27, which is within 8% of the tortuosity factor (0.25) found in a related study where tritium transport through the same liner was evaluated. This suggests that the governing mechanisms for the transport of tritium and bromide through the CCL were similar. These results are significant because they address transport through a composite liner from a localized source zone which occurs when defects or punctures in the geomembrane of a composite system are present. ?? ASCE.
The improvement of the method of equivalent cross section in HTR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, J.; Li, F.
The Method of Equivalence Cross-Sections (MECS) is a combined transport-diffusion method. By appropriately adjusting the diffusion coefficient of homogenized absorber region, the diffusion theory could yield satisfactory results for the full core model with strong neutron absorber material, for example the control rod in High temperature gas cooled reactor (HTR). Original implementation of MECS based on 1-D cell transport model has some limitation on accuracy and applicability, a new implementation of MECS based on 2-D transport model are proposed and tested in this paper. This improvement can extend the MECS to the calculation of twin small absorber ball system whichmore » have a non-circular boring in graphite reflector and different radial position. A least-square algorithm for the calculation of equivalent diffusion coefficient is adopted, and special treatment for diffusion coefficient for higher energy group is proposed in the case that absorber is absent. Numerical results to adopt MECS into control rod calculation in HTR are encouraging. However, there are some problems left. (authors)« less
Historically, conventional practice to estimate intrusion of fuel vapors from soil and ground water to buildings measures the concentration of BTEX beneath the building using vapor probes or monitoring wells screened across the water table. Standard practice assumes that the co...
Heat transfer, diffusion, and evaporation
NASA Technical Reports Server (NTRS)
Nusselt, Wilhelm
1954-01-01
Although it has long been known that the differential equations of the heat-transfer and diffusion processes are identical, application to technical problems has only recently been made. In 1916 it was shown that the speed of oxidation of the carbon in iron ore depends upon the speed with which the oxygen of the combustion air diffuses through the core of gas surrounding the carbon surface. The identity previously referred to was then used to calculate the amount of oxygen diffusing to the carbon surface on the basis of the heat transfer between the gas stream and the carbon surface. Then in 1921, H. Thoma reversed that procedure; he used diffusion experiments to determine heat-transfer coefficients. Recently Lohrisch has extended this work by experiment. A technically very important application of the identity of heat transfer and diffusion is that of the cooling tower, since in this case both processes occur simultaneously.
NASA Astrophysics Data System (ADS)
Koike, Katsuaki; Yoshinaga, Tohru; Asaue, Hisafumi
2014-04-01
The purpose of this study is to characterize in detail the temporal changes in Rn (radon-222) concentration in soil gases near fumaroles and clarify its correlation with volcanic earthquakes and temperatures in two geothermal reservoirs. Mt. Aso crater in southwest Japan, which has two reservoirs on its western side estimated by magnetotelluric survey to be at about 2 km in depth, was selected for this study. For the long-term survey, the α scintillation counter method was used weekly for 12.5 years at the three hot springs within a 2-km range. Rn concentrations were calculated using the CRAS method, a calculation method that considers radioactive equilibrium or nonequilibrium state of the soil gas. Rn concentrations generally showed similar fluctuation patterns among the sites. CRAS was used as a new indicator for evaluating the age of the soil gas. This age corresponds to the elapsed time determined from the generation of Rn based on the measurement of the numbers of atoms of Rn and its daughter 218Po at the start of measurement. In comparing the Rn data with the history of earthquakes in the Aso caldera, volcanic seismicity was identified as a major controlling factor in the sudden increase and decrease in Rn concentration as a function of age. For more precise detections of change, Rn concentrations were measured continuously at one site by pumping soil gas from a borehole and using an ionization chamber over 2.5 years. Five chemical components (He, H2, N2, CH4, and CO2) were then measured by gas chromatography at 1-week intervals. Because Rn concentrations are affected strongly by atmospheric temperatures, the residual components were obtained by subtracting the trend of the components from the original data. Chemical component data were used to estimate the temperature and pressure in the reservoir at the site; temperatures ranged from 229 to 280 °C, (average 265 °C, average pressure 80 MPa). Residual Rn concentrations showed a clear correlation with temporal changes in estimated temperature and, to a degree, with pressure. Considering the migration mechanism of Rn by molecular diffusion and advection under rapid gas upflow conditions, change in the diffusion coefficient is regarded as a possible factor to have induced temporal changes in Rn concentrations in conjunction with the temperature changes in the reservoirs. In addition, the increase of the amount of degassed Rn from the advective-convective hydrothermal fluids, which is associated with wall-rock fracturing, is another important factor. Earthquakes likely enhance the permeability of a reservoir by generating fractures, which in turn can cause an increase in the reservoir temperature, upflow fluid velocity, and gas flux. This provides one possible interpretation for the significant correlation of Rn concentrations with earthquakes.
NASA Technical Reports Server (NTRS)
Pallix, Joan B.; Copeland, Richard A.; Arnold, James O. (Technical Monitor)
1995-01-01
Advanced laser-based diagnostics have been developed to examine catalytic effects and atom/surface interactions on thermal protection materials. This study establishes the feasibility of using laser-induced fluorescence for detection of O and N atom loss in a diffusion tube to measure surface catalytic activity. The experimental apparatus is versatile in that it allows fluorescence detection to be used for measuring species selective recombination coefficients as well as diffusion tube and microwave discharge diagnostics. Many of the potential sources of error in measuring atom recombination coefficients by this method have been identified and taken into account. These include scattered light, detector saturation, sample surface cleanliness, reactor design, gas pressure and composition, and selectivity of the laser probe. Recombination coefficients and their associated errors are reported for N and O atoms on a quartz surface at room temperature.
NASA Technical Reports Server (NTRS)
Khoo, Boo-Cheong; Sonin, Ain A.
1992-01-01
An experimental correlation is derived for gas absorption at a turbulent, shear-free liquid interface. The correlation is expressed in terms of the liquid-side turbulence intensity, liquid-side macroscale, and the properties of the diffusing gas and solvent. The transfer coefficient increases linearly with rms velocity up to a point where the eddy Reynolds number reaches a critical (Schmidt number dependent) value. At higher velocities, there is a more rapid linear rise. The slope of the lower Reynolds number region is proportional to the square root of the diffusivity; at Reynolds numbers much higher than that of the break point, the slope becomes independent of diffusivity.
Visualization of gas flow and diffusion in porous media
Kaiser, Lana G.; Meersmann, Thomas; Logan, John W.; Pines, Alexander
2000-01-01
The transport of gases in porous materials is a crucial component of many important processes in science and technology. In the present work, we demonstrate how magnetic resonance microscopy with continuous flow laser-polarized noble gases makes it possible to “light up” and thereby visualize, with unprecedented sensitivity and resolution, the dynamics of gases in samples of silica aerogels and zeolite molecular sieve particles. The “polarization-weighted” images of gas transport in aerogel fragments are correlated to the diffusion coefficient of xenon obtained from NMR pulsed-field gradient experiments. The technique provides a unique means of studying the combined effects of flow and diffusion in systems with macroscopic dimensions and microscopic internal pore structure. PMID:10706617
Role of plant-mediated gas transport in CH4 emissions from Phragmites-dominated peatlands
NASA Astrophysics Data System (ADS)
van den Berg, Merit; Ingwersen, Joachim; van den Elzen, Eva; Lamers, Leon P. M.; Streck, Thilo
2016-04-01
A large part of the methane (CH4) produced in peatlands is directly oxidized and the extent of its oxidation depends on the gas transport pathway. In wetland ecosystems, CH4 can be transported from the soil to the atmosphere via diffusion, ebullition and via aerenchyma of roots and stems of vascular plants. Compared to other wetland plants, the very common species Phragmites australis (Common reed) appears to have a high ability to transport gases between the soil and atmosphere. The gas exchange within Phragmites plants takes place via convective flow through the culm, which is believed to be achieved by a humidity-induced pressure gradient and is more than 5-times as efficient as diffusion. By this mechanism, CH4 surpasses the upper (oxic) soil layers and therefore oxidation of CH4 may well be reduced. On the other hand, transport of oxygen in Phragmites plants tends to enhance O2concentration in the rhizosphere, which will foster CH4oxidation in deeper soil layers. It is therefore unknown whether humidity-induced convection leads to higher or lower overall CH4 emission in Phragmites, which is essential to understand their role in the emissions from these very common peatland types. To investigate whether this internal gas transport mechanism of reed promotes or reduces CH4 fluxes to the atmosphere, we conducted manipulative field experiments in a large Phragmites peatland in South-West Germany in October 2014 and July 2015. Using large chambers, we compared CH4 fluxes from intact plots, plots with cut reed, and plots with cut + sealed reed to exclude gas transport through the plants. Additionally, pore water samples from the plots were analyzed for possible changes in soil chemistry due to the change of oxygen transport into the soil by the treatments. Based on our results, we will explain the potential role of rhizosphere oxygenation and convective flow on CH4 emissions from Phragmites-dominated peatlands in relation to other environmental condition.
NASA Astrophysics Data System (ADS)
Maier, Martin; Machacova, Katerina; Halaburt, Ellen; Haddad, Sally; Urban, Otmar; Lang, Friederike
2016-04-01
Soil and plant surfaces are known to exchange greenhouse gases with the atmosphere. Some gases like nitrous oxide (N2O) and methane (CH4) can be produced and re-consumed in different soil depths and soil compartments, so that elevated concentrations of CH4 or N2O in the soil do not necessarily mean a net efflux from the soil into the atmosphere. Soil aeration, and thus the oxygen status can underlay a large spatial variability within the soil on the plot and profile scale, but also within soil aggregates. Thus, conditions suitable for production and consumption of CH4 and N2O can vary on different scales in the soil. Plant surfaces can also emit or take up CH4 and N2O, and these fluxes can significantly contribute to the net ecosystem exchange. Since roots usually have large intercellular spaces or aerenchyma they may represent preferential transport ways for soil gases, linking possibly elevated soil gas concentrations in the subsoil in a "shortcut" to the atmosphere. We tested the hypothesis that the spatial variability of the soil-atmosphere fluxes of CO2, CH4 and N2O is caused by the heterogeneity in soil properties. Therefore, we measured soil-atmosphere gas fluxes, soil gas concentrations and soil diffusivity profiles and did a small scale field assessment of soil profiles on the measurments plots. We further tried to link vertical profiles of soil gas concentrations and diffusivity to derive the production and consumption profiles, and to link these profiles to the stem-atmosphere flux rates of individual trees. Measurements were conducted in two mountain beech forests with different geographical and climatic conditions (White Carpathians, Czech Republic; Black Forest, Germany). Gas fluxes at stem and soil levels were measured simultaneously using static chamber systems and chromatographic and continuous laser analyses. Monitoring simultaneously vertical soil gas profiles allowed to assess the within-soil gas fluxes, and thus to localize the production and consumption sites of soil gases in the adjacent soil. Soils at both sites took up CH4 and N2O and emitted CO2. Soil gas profiles at the Black Forest showed only CH4 and N2O consumption. CH4 uptake was much larger by the well aerated Black Forest soil than by the loamy-clay soil in the White Carpathians. Here, it was possible to stratify the apparently homogenous site into two plots, one having redoximorphic features in the soil profiles, the other plot without. It seemed that CH4 and N2O were mainly produced in the deeper soil at the plot with temporarily reducing conditions. Beech stems mostly took up N2O from the atmosphere at both sites, whereas CH4 was emitted. The stem CH4 flux was higher for the White Carpathians than for the Black Forest site. Thus, the tree and soil flux of CH4 seems to be affected by soil structure, soil water content and the redox potential in the rooting space. We conclude from our results that trees might provide preferential pathways for greenhouse gases produced in the subsoil thereby enhancing the release of greenhouse gases. Acknowledgement This research was financially supported by the Czech Academy of Sciences and the German Academic Exchange Service within the project "Methane (CH4) and nitrous oxide (N2O) emissions from Fagus sylvatica trees" (DAAD-15-03), National Programme for Sustainability I (LO1415) and project DFG (MA 5826/2-1). We would like to thank Marek Jakubik for technical support and Sinikka Paulus for help by field measurements.
NASA Astrophysics Data System (ADS)
Ho, Tuan Anh; Criscenti, Louise J.; Wang, Yifeng
2016-06-01
Despite massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix-a limiting step in shale gas extraction. Using molecular simulations, we here show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30-47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3-35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release.
Bouwer, S T; Hoofd, L; Kreuzer, F
1997-03-07
Diffusion coefficients of oxygen (DO2) and hemoglobin (DHb) were obtained from measuring the oxygen flux through thin layers of hemoglobin solutions at 20 degrees C. The liquid layers were supported by a membrane and not soaked in any filter material. Oxygen fluxes were measured from the changes in oxygen partial pressure in the gas phases at both sides of the layer. A mathematical treatment is presented for correct evaluation of the measurements. Measurements were done for bovine and for human hemoglobin. Hemoglobin concentrations (CHb) were between 11 and 42 g/dl, which covers the concentrations in the erythrocyte. Both DO2 and DHb could be fitted to the empirical equation D = D0(1-CHb/C1)10-CHb/C2. The following parameters were obtained: DO = 1.80 x 10(-9) m2/s, C1 = 100 g/dl, C2 = 119 g/dl, for oxygen and D0 = 7.00 x 10(-11) m2/s, C1 = 46 g/dl, C2 = 128 g/dl, for hemoglobin. No difference between the diffusion coefficients of bovine or human hemoglobin was found. The diffusion coefficients of hemoglobin were higher than most values reported in the literature, probably because in this study the mobility of hemoglobin was not hindered by surrounding filter material.
Evaporation from soils subjected to natural boundary conditions at the land-atmospheric interface
NASA Astrophysics Data System (ADS)
Smits, K.; Illngasekare, T.; Ngo, V.; Cihan, A.
2012-04-01
Bare soil evaporation is a key process for water exchange between the land and the atmosphere and an important component of the water balance in semiarid and arid regions. However, there is no agreement on the best methodology to determine evaporation under different boundary conditions at the land surface. This becomes critical in developing models that couples land to the atmosphere. Because it is difficult to measure evaporation from soil, with the exception of using lysimeters, numerous formulations have been proposed to establish a relationship between the rate of evaporation and soil moisture and/or soil temperature and thermal properties. Different formulations vary in how they partition available energy. A need exists to systematically compare existing methods to experimental data under highly controlled conditions not achievable in the field. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmospheric interface to test different conceptual and mathematical formulations for the soil surface boundary conditions to develop appropriate numerical models to be used in simulations. In this study, to better understand the coupled water-vapor-heat flow processes in the shallow subsurface near the land surface, we modified a previously developed theory by Smits et al. [2011] that allows non-equilibrium liquid/gas phase change with gas phase vapor diffusion to better account for dry soil conditions. The model did not implement fitting parameters such as a vapor enhancement factor that is commonly introduced into the vapor diffusion coefficient as an arbitrary multiplication factor. In order to experimentally test the numerical formulations/code, we performed a two-dimensional physical model experiment under varying boundary conditions using test sand for which the hydraulic and thermal properties were well characterized. Precision data under well-controlled transient heat and wind boundary conditions was generated and results from numerical simulations were compared with experimental data. Results demonstrate that the boundary condition approaches varied in their ability to capture stage 1- and stage 2- evaporation. Results also demonstrated the importance of properly characterizing soil thermal properties and accounting for dry soil conditions. The contribution of film flow to hydraulic conductivity for the layer above the drying front is dominant compared to that of capillary flow, demonstrating the importance of including film flow in modeling efforts for dry soils, especially for fine grained soils. Comparisons of different formulations of the surface boundary condition validate the need for joint evaluation of heat and mass transfer for better modeling accuracy. This knowledge is applicable to many current hydrologic and environmental problems to include climate modeling and the simulation of contaminant transport and volatilization in the shallow subsurface. Smits, K. M., A. Cihan, T. Sakaki, and T. H. Illangasekare (2011). Evaporation from soils under thermal boundary conditions: Experimental and modeling investigation to compare equilibrium- and nonequilibrium-based approaches, Water Resour. Res., 47, W05540, doi:10.1029/2010WR009533.
Free Volume of the Hard Spheres Gas
ERIC Educational Resources Information Center
Shutler, P. M. E.; Martinez, J. C.; Springham, S. V.
2007-01-01
The Enskog factor [chi] plays a central role in the theory of dense gases, quantifying how the finite size of molecules causes many physical quantities, such as the equation of state, the mean free path, and the diffusion coefficient, to deviate from those of an ideal gas. We suggest an intuitive but rigorous derivation of this fact by showing how…
Volatilization of ketones from water
Rathbun, R.E.; Tai, D.Y.
1982-01-01
The overall mass-transfer coefficients for the volatilization from water of acetone, 2-butanone, 2-pentanone, 3-pentanone, 4-methyl-2-pentanone, 2-heptanone, and 2-octanone were measured simultaneously with the oxygen-absorption coefficient in a laboratory stirred water bath. The liquid-film and gas-film coefficients of the two-film model were determined for the ketones from the overall coefficients, and both film resistances were important for volatilization of the ketones.The liquid-film coefficients for the ketones varied with the 0.719 power of the molecular-diffusion coefficient, in agreement with the literature. The liquid-film coefficients showed a variable dependence on molecular weight, with the dependence ranging from the −0.263 power for acetone to the −0.378 power for 2-octanone. This is in contrast with the literature where a constant −0.500 power dependence on the molecular weight is assumed.The gas-film coefficients for the ketones showed no dependence on molecular weight, in contrast with the literature where a −0.500 power is assumed.
Injection of dust into the Martian atmosphere - Evidence from the Viking Gas Exchange experiment
NASA Technical Reports Server (NTRS)
Huguenin, R. L.; Harris, S. L.; Carter, R.
1986-01-01
The hypothesis that predawn midlatitude storms are triggered by a soil humidification process is examined. A freeze/thaw model of the process is evaluated in the Viking Gas Exchange experiments conducted on Mars. The humidification-driven desorption and desiccation state of Martian soil samples are analyzed. The periodic humidification of equatorial regolith soil is studied in terms of pore space pressure during desorption events and soil diffusivity; the thermal properties of the regolith surface layer are modeled using the program of Clifford (1984). Consideration is given to the diurnal and seasonal cycles of the humidification process, the permanent, low-albedo features in the midlatitudes, and the production of H2SO4 and HCl aerosols.
Measurement of hyperpolarized gas diffusion at very short time scales
Carl, Michael; Wilson Miller, G.; Mugler, John P.; Rohrbaugh, Scott; Tobias, William A.; Cates, Gordon D.
2007-01-01
We present a new pulse sequence for measuring very-short-time-scale restricted diffusion of hyperpolarized noble gases. The pulse sequence is based on concatenating a large number of bipolar diffusion-sensitizing gradients to increase the diffusion attenuation of the MR signal while maintaining a fundamentally short diffusion time. However, it differs in several respects from existing methods that use oscillating diffusion gradients for this purpose. First, a wait time is inserted between neighboring pairs of gradient pulses; second, consecutive pulse pairs may be applied along orthogonal axes; and finally, the diffusion-attenuated signal is not simply read out at the end of the gradient train but is periodically sampled during the wait times between neighboring pulse pairs. The first two features minimize systematic differences between the measured (apparent) diffusion coefficient and the actual time-dependent diffusivity, while the third feature optimizes the use of the available MR signal to improve the precision of the diffusivity measurement in the face of noise. The benefits of this technique are demonstrated using theoretical calculations, Monte-Carlo simulations of gas diffusion in simple geometries, and experimental phantom measurements in a glass sphere containing hyperpolarized 3He gas. The advantages over the conventional single-bipolar approach were found to increase with decreasing diffusion time, and thus represent a significant step toward making accurate surface-to-volume measurements in the lung airspaces. PMID:17936048
Transport of Organic Compounds Through Porous Systems Containing Humic Acids.
Smilek, Jiri; Sedlacek, Petr; Lastuvkova, Marcela; Kalina, Michal; Klucakova, Martina
2017-03-01
Soil pollution by the presence of different contaminants (e.g. heavy metal ions or pesticides) is one of the biggest problems worldwide. The positive affinity of natural humic acids towards these contaminants might contribute to the soil and ground water protection; therefore it is necessary to study the reactivity and barrier properties of humic acids. An original reactivity-mapping tool based on diffusion techniques designed to study the reactivity and barrier properties of polyelectrolytes was developed and tested on humic acids. The results of diffusion experiments demonstrate that the electrostatic interactions between humic acids functioning as a polyelectrolyte interpenetrated in a supporting hydrogel matrix (agarose) and cationic dye (methylene blue) as a model solute have a crucial impact on the rate of diffusion processes and on the barrier properties of hydrogels. The intensity of interactions was evaluated by fundamental diffusion parameters (effective diffusion coefficients and breakthrough time). The impact of modification of humic acids was also studied by means of diffusion experiments conducted on two types of standard humic acids (Leonardite 1S104H) and humic acids with selectively methylated carboxylic groups.
Effect of Sediment Gas Voids and Ebullition on Benthic Solute Exchange.
Flury, Sabine; Glud, Ronnie N; Premke, Katrin; McGinnis, Daniel F
2015-09-01
The presence of free gas in sediments and ebullition events can enhance the pore water transport and solute exchange across the sediment-water interface. However, we experimentally and theoretically document that the presence of free gas in sediments can counteract this enhancement effect. The apparent diffusivities (Da) of Rhodamine WT and bromide in sediments containing 8-18% gas (Da,YE) were suppressed by 7-39% compared to the control (no gas) sediments (Da,C). The measured ratios of Da,YE:Da,C were well within the range of ratios predicted by a theoretical soil model for gas-bearing soils. Whereas gas voids in sediments reduce the Da for soluble species, they represent a shortcut for low-soluble species such as methane and oxygen. Therefore, the presence of even minor amounts of gas can increase the fluxes of low-soluble species (i.e., gases) by several factors, while simultaneously suppressing fluxes of dissolved species.
Capillary and Gas Trapping Controls on Pumice Buoyancy in Water
NASA Astrophysics Data System (ADS)
Fauria, K. E.; Manga, M.; Wei, Z.
2016-12-01
Pumice can float on water for months to years. The longevity of pumice floatation is unexpected, however, because pumice pores are highly connected and water wets volcanic glass. As a result, observations of long floating times have not been reconciled with predictions of rapid sinking. We propose a mechanism to resolve this paradox - the trapping of gas bubbles by water within the pumice. Gas trapping refers to the isolation of gas by water within pore throats such that the gas becomes disconnected from the atmosphere and unable to escape. We use X-ray microtomography images of partially saturated pumice to demonstrate that gas trapping occurs in both ambient-temperature and hot (500°C) pumice. Furthermore, we show that the distribution of trapped gas clusters matches percolation theory predictions. Finally, we propose that diffusion out of trapped gaseous bubbles determines pumice floatation time. Experimental measurements of pumice floatation support a diffusion control on pumice buoyancy and we find that floatation time scales like τ L2/(Dθ2) where is the floatation time, L is the characteristic length of the pumice, D is the gas-water diffusion coefficient, and θ is pumice water saturation.
Dame, Brittany E; Solomon, D Kip; Evans, William C.; Ingebritsen, Steven E.
2015-01-01
Helium (He) concentration and 3 He/ 4 He anomalies in soil gas and spring water are potentially powerful tools for investigating hydrothermal circulation associated with volca- nism and could perhaps serve as part of a hazards warning system. However, in operational practice, He and other gases are often sampled only after volcanic unrest is detected by other means. A new passive diffusion sampler suite, intended to be collected after the onset of unrest, has been developed and tested as a relatively low-cost method of determining He- isotope composition pre- and post-unrest. The samplers, each with a distinct equilibration time, passively record He concen- tration and isotope ratio in springs and soil gas. Once collected and analyzed, the He concentrations in the samplers are used to deconvolve the time history of the He concentration and the 3 He/ 4 He ratio at the collection site. The current suite consisting of three samplers is sufficient to deconvolve both the magnitude and the timing of a step change in in situ con- centration if the suite is collected within 100 h of the change. The effects of temperature and prolonged deployment on the suite ’ s capability of recording He anomalies have also been evaluated. The suite has captured a significant 3 He/ 4 He soil gas anomaly at Horseshoe Lake near Mammoth Lakes, California. The passive diffusion sampler suite appears to be an accurate and affordable alternative for determining He anomalies associated with volcanic unrest.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Tillman, Fred D; Smith, James A
2004-11-01
To determine if an aquifer contaminated with volatile organic compounds (VOCs) has potential for natural remediation, all natural processes affecting the fate and transport of VOCs in the subsurface must be identified and quantified. This research addresses the quantification of air-phase volatile organic compounds (VOCs) leaving the unsaturated zone soil gas and entering the atmosphere-including the additional flux provided by advective soil-gas movement induced by barometric pumping. A simple and easy-to-use device for measuring VOC flux under natural conditions is presented. The vertical flux chamber (VFC) was designed using numerical simulations and evaluated in the laboratory. Mass-balance numerical simulations based on continuously stirred tank reactor equations (CSTR) provided information on flux measurement performance of several sampling configurations with the final chamber configuration measuring greater than 96% of model-simulated fluxes. A laboratory device was constructed to evaluate the flux chamber under both diffusion-only and advection-plus-diffusion transport conditions. The flux chamber measured an average of 82% of 15 diffusion-only fluxes and an average of 95% of 15 additional advection-plus-diffusion flux experiments. The vertical flux chamber has the capability of providing reliable measurement of VOC flux from the unsaturated zone under both diffusion and advection transport conditions.
Lequin, Sonia; Chassagne, David; Karbowiak, Thomas; Simon, Jean-Marc; Paulin, Christian; Bellat, Jean-Pierre
2012-04-04
This work reports measurements of effective oxygen diffusion coefficient in raw cork. Kinetics of oxygen transfer through cork is studied at 298 K thanks to a homemade manometric device composed of two gas compartments separated by a cork wafer sample. The first compartment contains oxygen, whereas the second one is kept under dynamic vacuum. The pressure decrease in the first compartment is recorded as a function of time. The effective diffusion coefficient D(eff) is obtained by applying Fick's law to transient state using a numerical method based on finite differences. An analytical model derived from Fick's law applied to steady state is also proposed. Results given by these two methods are in close agreement with each other. The harmonic average of the effective diffusion coefficients obtained from the distribution of 15 cork wafers of 3 mm thickness is 1.1 × 10(-9) m(2) s(-1) with a large distribution over four decades. The statistical analysis of the Gaussian distribution obtained on a 3 mm cork wafer is extrapolated to a 48 mm cork wafer, which length corresponds to a full cork stopper. In this case, the probability density distribution gives a mean value of D(eff) equal to 1.6 × 10(-9) m(2) s(-1). This result shows that it is possible to obtain the effective diffusion coefficient of oxygen through cork from short time (few days) measurements performed on a thin cork wafer, whereas months are required to obtain the diffusion coefficient for a full cork stopper. Permeability and oxygen transfer rate are also calculated for comparison with data from other studies.
Gautam, Siddharth; Le, Thu; Striolo, Alberto; Cole, David
2017-12-13
Molecular motion under confinement has important implications for a variety of applications including gas recovery and catalysis. Propane confined in mesoporous silica aerogel as studied using quasielastic neutron scattering (QENS) showed anomalous pressure dependence in its diffusion coefficient (J. Phys. Chem. C, 2015, 119, 18188). Molecular dynamics (MD) simulations are often employed to complement the information obtained from QENS experiments. Here, we report an MD simulation study to probe the anomalous pressure dependence of propane diffusion in silica aerogel. Comparison is attempted based on the self-diffusion coefficients and on the time scales of the decay of the simulated intermediate scattering functions. While the self-diffusion coefficients obtained from the simulated mean squared displacement profiles do not exhibit the anomalous pressure dependence observed in the experiments, the time scales of the decay of the intermediate scattering functions calculated from the simulation data match the corresponding quantities obtained in the QENS experiment and thus confirm the anomalous pressure dependence of the diffusion coefficient. The origin of the anomaly in pressure dependence lies in the presence of an adsorbed layer of propane molecules that seems to dominate the confined propane dynamics at low pressure, thereby lowering the diffusion coefficient. Further, time scales for rotational motion obtained from the simulations explain the absence of rotational contribution to the QENS spectra in the experiments. In particular, the rotational motion of the simulated propane molecules is found to exhibit large angular jumps at lower pressure. The present MD simulation work thus reveals important new insights into the origin of anomalous pressure dependence of propane diffusivity in silica mesopores and supplements the information obtained experimentally by QENS data.
NASA Astrophysics Data System (ADS)
Chiodini, Giovanni; Cardellini, Carlo; Lamberti, María Clara; Agusto, Mariano; Caselli, Alberto; Liccioli, Caterina; Tamburello, Giancarlo; Tassi, Franco; Vaselli, Orlando; Caliro, Stefano
2015-10-01
The north-western sector of Caviahue caldera (Argentina), close to the active volcanic system of Copahue, is characterized by the presence of several hydrothermal sites that host numerous fumarolic emissions, anomalous soil diffuse degassing of CO2 and hot soils. In March 2014, measurements of soil CO2 fluxes in 5 of these sites (namely, Las Máquinas, Las Maquinitas I, Las Maquinitas II, Anfiteatro, and Termas de Copahue) allowed an estimation that 165 t of deeply derived CO2 is daily released. The gas source is likely related to a relatively shallow geothermal reservoir containing a single vapor phase as also suggested by both the geochemical data from the 3 deep wells drilled in the 1980s and gas geoindicators applied to the fumarolic discharges. Gas equilibria within the H-C-O gas system indicate the presence of a large, probably unique, single phase vapor zone at 200-210 °C feeding the hydrothermal manifestations of Las Máquinas, Las Maquinitas I and II and Termas de Copahue. A natural thermal release of 107 MW was computed by using CO2 as a tracer of the original vapor phase. The magmatic signature of the incondensable fumarolic gases, the wide expanse of the hydrothermal areas and the remarkable high amount of gas and heat released by fluid expulsion seem to be compatible with an active magmatic intrusion beneath this portion of the Caviahue caldera.
Quantum angular momentum diffusion of rigid bodies
NASA Astrophysics Data System (ADS)
Papendell, Birthe; Stickler, Benjamin A.; Hornberger, Klaus
2017-12-01
We show how to describe the diffusion of the quantized angular momentum vector of an arbitrarily shaped rigid rotor as induced by its collisional interaction with an environment. We present the general form of the Lindblad-type master equation and relate it to the orientational decoherence of an asymmetric nanoparticle in the limit of small anisotropies. The corresponding diffusion coefficients are derived for gas particles scattering off large molecules and for ambient photons scattering off dielectric particles, using the elastic scattering amplitudes.
An Experimental Study of Diffusivity of Technetium-99 in Hanford Vadose Zone Sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.
2012-11-01
One of the methods being considered at the Hanford site in Washington for safely disposing of low-level radioactive wastes (LLW) is to encase the waste in concrete and entomb the packages in the Hanford vadose zone sediments. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages with concrete. Any failure of the concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion andmore » move into the surrounding subsurface sediments. It is therefore necessary to conduct an assessment of the performance of the concrete encasement structure and the surrounding soil’s ability to retard radionuclide migration. The retardation factors for radionuclides contained in the waste packages can be determined from measurements of diffusion coefficients for these contaminants through concrete and fill material. Because of their anionic nature in aqueous solutions, the radionuclides, 99Tc and 129I were identified as long-term dose contributors in LLW. The leachability and/or diffusion of these radionuclide species must be measured in order to assess the long-term performance of waste grouts when contacted with vadose-zone porewater or groundwater. To measure the diffusivity, a set of experiments were conducted using 99Tc-spiked concrete (with 0 and 4% metallic iron additions) in contact with unsaturated soil half-cells that reflected the typical moisture contents of Hanford vadose zone sediments. The 99Tc diffusion profiles in the soil half cells were measured after a time lapse of ~1.9 yr. Using the concentration profiles, the 99Tc diffusivity coefficients were calculated based on Fick’s Second Law.« less
Neeper, D A
2001-04-01
A simple algebraic model is proposed to estimate the transport of a volatile or soluble chemical caused by oscillatory flow of fluid in a porous medium. The model is applied to the barometric pumping of vapors in the vadose zone, and to the transport of dissolved species by earth tides in an aquifer. In the model, the fluid moves sinusoidally with time in the porosity of the soil. The chemical concentration in the mobile fluid is considered to equilibrate with the concentration in the surrounding matrix according to a characteristic time governed by diffusion, sorption, or other rate processes. The model provides a closed form solution, to which barometric pressure data are applied in an example of pore gas motion in the vadose zone. The model predicts that the additional diffusivity due barometric pumping in an unfractured vadose zone would be comparable to the diffusivity in stagnant pore gas if the equilibration time is 1 day or longer. Water motion due to the M2 lunar tide is examined as an example of oscillatory transport in an aquifer. It is shown that the tidal motion of the water in an aquifer might significantly increase the vertical diffusivity of dissolved species when compared to diffusion in an absolutely stagnant aquifer, but the hydrodynamic dispersivity due to tidal motion or gravitational flow would probably exceed the diffusivity due to oscillatory advection.
40Ar/39Ar systematics and argon diffusion in amber: implications for ancient earth atmospheres
Landis, G.P.; Snee, L.W.
1991-01-01
Argon isotope data indicate retained argon in bulk amber (matrix gas) is radiogenic [40Ar/39Ar ???32o] than the much more abundant surface absorbed argon [40Ar/39Ar ???295.5]. Neutron-induced 39Ar is retained in amber during heating experiments to 150?? -250??C, with no evidence of recoiled 39Ar found after irradiation. A maximum permissible volume diffusion coefficient of argon in amber (at ambient temperature) D???1.5 x 10-17 cm2S-1 is calculated from 39Ar retention. 40Ar/39Ar age calculations indicate Dominican Republic amber is ??? 45 Ma and North Dakota amber is ??? 89 Ma, both at least reasonable ages for the amber based upon stratigraphic and paleontological constraints and upon the small amount of radiogenic 40Ar. To date, over 300 gas analyses of ambers and resins of Cretaceous to Recent age that are geographically distributed among fifteen noted world locations identify mixtures of gases in different sites within amber (Berner and Landis, 1988). The presence of multiple mixing trends between compositionally distinct end-members gases within the same sample and evidence for retained radiogenic argon within the amber argue persuasivley against rapid exchange by diffusion of amber-contained gases with moder air. Only gas in primary bubbles entrapped between successive flows of tree resin has been interpreted as original "ancient air", which is an O2-rich end-member gas with air-like N2/Ar ratios. Gas analyses of these primary bubbles indicate atmospheric O2 levels in the Late Cretaceous of ??? 35%, and that atmospheric O2 dropped by early Tertiary time to near a present atmospheric level of 21% O2. A very low argon diffusion coefficient in amber persuasively argues for a gas in primary bubbles trapped in amber being ancient air (possibly modified only by O2 reaction with amber). ?? 1991.
NASA Technical Reports Server (NTRS)
Mair, R. W.; Sen, P. N.; Hurlimann, M. D.; Patz, S.; Cory, D. G.; Walsworth, R. L.
2002-01-01
We report a systematic study of xenon gas diffusion NMR in simple model porous media, random packs of mono-sized glass beads, and focus on three specific areas peculiar to gas-phase diffusion. These topics are: (i) diffusion of spins on the order of the pore dimensions during the application of the diffusion encoding gradient pulses in a PGSE experiment (breakdown of the narrow pulse approximation and imperfect background gradient cancellation), (ii) the ability to derive long length scale structural information, and (iii) effects of finite sample size. We find that the time-dependent diffusion coefficient, D(t), of the imbibed xenon gas at short diffusion times in small beads is significantly affected by the gas pressure. In particular, as expected, we find smaller deviations between measured D(t) and theoretical predictions as the gas pressure is increased, resulting from reduced diffusion during the application of the gradient pulse. The deviations are then completely removed when water D(t) is observed in the same samples. The use of gas also allows us to probe D(t) over a wide range of length scales and observe the long time asymptotic limit which is proportional to the inverse tortuosity of the sample, as well as the diffusion distance where this limit takes effect (approximately 1-1.5 bead diameters). The Pade approximation can be used as a reference for expected xenon D(t) data between the short and the long time limits, allowing us to explore deviations from the expected behavior at intermediate times as a result of finite sample size effects. Finally, the application of the Pade interpolation between the long and the short time asymptotic limits yields a fitted length scale (the Pade length), which is found to be approximately 0.13b for all bead packs, where b is the bead diameter. c. 2002 Elsevier Sciences (USA).
Mair, R W; Sen, P N; Hürlimann, M D; Patz, S; Cory, D G; Walsworth, R L
2002-06-01
We report a systematic study of xenon gas diffusion NMR in simple model porous media, random packs of mono-sized glass beads, and focus on three specific areas peculiar to gas-phase diffusion. These topics are: (i) diffusion of spins on the order of the pore dimensions during the application of the diffusion encoding gradient pulses in a PGSE experiment (breakdown of the narrow pulse approximation and imperfect background gradient cancellation), (ii) the ability to derive long length scale structural information, and (iii) effects of finite sample size. We find that the time-dependent diffusion coefficient, D(t), of the imbibed xenon gas at short diffusion times in small beads is significantly affected by the gas pressure. In particular, as expected, we find smaller deviations between measured D(t) and theoretical predictions as the gas pressure is increased, resulting from reduced diffusion during the application of the gradient pulse. The deviations are then completely removed when water D(t) is observed in the same samples. The use of gas also allows us to probe D(t) over a wide range of length scales and observe the long time asymptotic limit which is proportional to the inverse tortuosity of the sample, as well as the diffusion distance where this limit takes effect (approximately 1-1.5 bead diameters). The Padé approximation can be used as a reference for expected xenon D(t) data between the short and the long time limits, allowing us to explore deviations from the expected behavior at intermediate times as a result of finite sample size effects. Finally, the application of the Padé interpolation between the long and the short time asymptotic limits yields a fitted length scale (the Padé length), which is found to be approximately 0.13b for all bead packs, where b is the bead diameter. c. 2002 Elsevier Sciences (USA).
NASA Astrophysics Data System (ADS)
Martín-Doménech, R.; Dartois, E.; Muñoz Caro, G. M.
2016-06-01
Context. Hydrogenated amorphous carbon (a-C:H) has been proposed as one of the carbonaceous solids detected in the interstellar medium. Energetic processing of the a-C:H particles leads to the dissociation of the C-H bonds and the formation of hydrogen molecules and small hydrocarbons. Photo-produced H2 molecules in the bulk of the dust particles can diffuse out to the gas phase and contribute to the total H2 abundance. Aims: We have simulated this process in the laboratory with plasma-produced a-C:H and a-C:D analogs under astrophysically relevant conditions to investigate the dependence of the diffusion as a function of temperature. Methods: Experimental simulations were performed in a high-vacuum chamber, with complementary experiments carried out in an ultra-high-vacuum chamber. Plasma-produced a-C:H and a-C:D analogs were UV-irradiated using a microwave-discharged hydrogen flow lamp. Molecules diffusing to the gas-phase were detected by a quadrupole mass spectrometer, providing a measurement of the outgoing H2 or D2 flux. By comparing the experimental measurements with the expected flux from a one-dimensional diffusion model, a diffusion coefficient D could be derived for experiments carried out at different temperatures. Results: Dependence on the diffusion coefficient D with the temperature followed an Arrhenius-type equation. The activation energy for the diffusion process was estimated (ED(H2) = 1660 ± 110 K, ED(D2) = 2090 ± 90 K), as well as the pre-exponential factor (D0(H2) = 0.0007 cm2 s-1, D0(D2) = 0.0045 cm2 s-1). Conclusions: The strong decrease of the diffusion coefficient at low dust particle temperatures exponentially increases the diffusion times in astrophysical environments. Therefore, transient dust heating by cosmic rays needs to be invoked for the release of the photo-produced H2 molecules in cold photon-dominated regions, where destruction of the aliphatic component in hydrogenated amorphous carbons most probably takes place.
Zhang, Yulin; Mason, Sean; McNeill, Ann; McLaughlin, Michael J
2013-09-15
Potassium (K) and phosphorus (P) are two important macronutrients for crops, and are usually applied to soils as granular fertilizer before seeding. Therefore, accurate soil tests prior to planting to predict crop response to fertilizers are important in optimizing crop yields. Traditional methods used for testing both available K and P in soils, which are based on chemical extraction procedures, are to be soil-type dependent, and the predictive relationships across a broad range of soils are generally poor. The diffusive gradients in thin films (DGT) technique, based on diffusion theory, is extensively used to measure the diffusive supply of trace elements, metals and some nutrients in soils and water. When DGT is used to assess plant-available P in soils, a good relationship is found between crop response to P fertilizer and concentrations of P in soil measured by DGT, and therefore the DGT method provides a more precise recommendation of P fertilizer requirements. Adaptation of the DGT method to measure plant-available K in soils has already been attempted [1], but limitations were reported due to the non-uniform size of the resin gel, decreased K binding rate of the gel at long deployment times and a limited ability to measure a wide range of K concentrations. To eliminate these problems, a new resin gel has been developed by combining Amberlite and ferrihydrite. This mixed Amberlite and ferrihydrite (MAF) gel has improved properties in terms of handling and even distribution of Amberlite in the gel. The elution efficiencies of the MAF gel for K and P were 90% and 96%, respectively. The diffusion coefficient of K through the diffusive gel was 1.30 × 10(-5)cm(2)s(-1) at 22 ± 1°C and was stable through time. Since ferrihydrite is already used in DGT P testing, the ability of the MAF gel to assess available P simultaneously was also assessed. The MAF gel performed the same as the traditional ferrihydrite gel for available P assessment in a wide variety of agricultural soils. This means that the newly developed gel has the potential to measure K and plant-available P in soils simultaneously. Copyright © 2013 Elsevier B.V. All rights reserved.
Gal, Frédérick; Joublin, Franck; Haas, Hubert; Jean-Prost, Véronique; Ruffier, Véronique
2011-02-01
The south east basin of France shelters deep CO₂ reservoirs often studied with the aim of better constraining geological CO₂ storage operations. Here we present new soil gas data, completing an existing dataset (CO₂, ²²²Rn, ⁴He), together with mineralogical and physical characterisations of soil columns, in an attempt to better understand the spatial distribution of gas concentrations in the soils and to rule on the sealed character of the CO₂ reservoir at present time. Anomalous gas concentrations were found but did not appear to be clearly related to geological structures that may drain deep gases up to the surface, implying a dominant influence of near surface processes as indicated by carbon isotope ratios. Coarse grained, quartz-rich soils favoured the existence of high CO₂ concentrations. Fine grained clayey soils preferentially favoured the existence of ²²²Rn but not CO₂. Soil formations did not act as barriers preventing gas migrations in soils, either due to water content or due to mineralogical composition. No abundant leakage from the Montmiral reservoir can be highlighted by the measurements, even near the exploitation well. As good correlation between CO₂ and ²²²Rn concentrations still exist, it is suggested that ²²²Rn migration is also CO₂ dependent in non-leaking areas--diffusion dominated systems. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bellan, Josette; Harstad, Kenneth; Ohsaka, Kenichi
2003-01-01
Although the high pressure multicomponent fluid conservation equations have already been derived and approximately validated for binary mixtures by this PI, the validation of the multicomponent theory is hampered by the lack of existing mixing rules for property calculations. Classical gas dynamics theory can provide property mixing-rules at low pressures exclusively. While thermal conductivity and viscosity high-pressure mixing rules have been documented in the literature, there is no such equivalent for the diffusion coefficients and the thermal diffusion factors. The primary goal of this investigation is to extend the low pressure mixing rule theory to high pressures and validate the new theory with experimental data from levitated single drops. The two properties that will be addressed are the diffusion coefficients and the thermal diffusion factors. To validate/determine the property calculations, ground-based experiments from levitated drops are being conducted.
NASA Technical Reports Server (NTRS)
Chau, Jessica Furrer; Or, Dani; Sukop, Michael C.; Steinberg, S. L. (Principal Investigator)
2005-01-01
Liquid distributions in unsaturated porous media under different gravitational accelerations and corresponding macroscopic gaseous diffusion coefficients were investigated to enhance understanding of plant growth conditions in microgravity. We used a single-component, multiphase lattice Boltzmann code to simulate liquid configurations in two-dimensional porous media at varying water contents for different gravity conditions and measured gas diffusion through the media using a multicomponent lattice Boltzmann code. The relative diffusion coefficients (D rel) for simulations with and without gravity as functions of air-filled porosity were in good agreement with measured data and established models. We found significant differences in liquid configuration in porous media, leading to reductions in D rel of up to 25% under zero gravity. The study highlights potential applications of the lattice Boltzmann method for rapid and cost-effective evaluation of alternative plant growth media designs under variable gravity.
Methods for characterizing subsurface volatile contaminants using in-situ sensors
Ho, Clifford K [Albuquerque, NM
2006-02-21
An inverse analysis method for characterizing diffusion of vapor from an underground source of volatile contaminant using data taken by an in-situ sensor. The method uses one-dimensional solutions to the diffusion equation in Cartesian, cylindrical, or spherical coordinates for isotropic and homogenous media. If the effective vapor diffusion coefficient is known, then the distance from the source to the in-situ sensor can be estimated by comparing the shape of the predicted time-dependent vapor concentration response curve to the measured response curve. Alternatively, if the source distance is known, then the effective vapor diffusion coefficient can be estimated using the same inverse analysis method. A triangulation technique can be used with multiple sensors to locate the source in two or three dimensions. The in-situ sensor can contain one or more chemiresistor elements housed in a waterproof enclosure with a gas permeable membrane.
NASA Astrophysics Data System (ADS)
Liegler, A.; Bakkar Hindeleh, H.; Deering, C. D.; Fentress, S. E.
2015-12-01
Volcanic gas emissions are a key component for monitoring volcanic activity, magmatic input of volatiles to the atmosphere and the assessment of geothermal potential in volcanic regions. Diffuse soil degassing has been shown to represent a major part of volcanic gas emissions. However, this type of gas emission has not yet been quantified in the Guanacaste province of Costa Rica; a region of the country with several large, active or dormant volcanoes. We conducted the first study of diffuse CO2 degassing at Rincón de la Vieja and Miravalles volcanoes, both located in Guanacaste. Diffuse degassing was measured using the accumulation chamber method to quantify CO2 flux in regions where hydrothermal surface features indicate anomalous activity. The total diffuse carbon dioxide flux estimated at Miravalles in two areas, together roughly 2 km2 in size, was 135 t/day and in several areas at Rincón de la Vieja a minimum of 4 t/day. Comparatively low flux values and a very local concentration (few m2) of CO2 flux were observed at the active Rincón de la Vieja volcano, compared to the dormant Miravalles volcano, where significant soil flux was found over extended areas, not only around vents. Our assessment of the origin of these differences leads to two possibilities depending on if the surface features on the two volcanoes are fed by a common hydrothermal system or two separate ones. In the former case, the different intensity of diffuse CO2 flux could indicate a different degassing behavior and stronger concentration of gas emissions at the active vent areas at Rincon de la Vieja. In the latter case, where the hydrothermal systems are not linked, the amount of CO2 degassed through the flanks of the volcanoes could indicate that different physical and chemical conditions are governing the degassing of the two systems.
NASA Astrophysics Data System (ADS)
Sims, D. J.
Soil samples have been taken in 2001 from the area of a 1951 release from an underground storage tank of 6.7 L of an aqueous solution of irradiated uranium (360 GBq). A simulation of the dispersion of the actinides and fission products was conducted in the laboratory using irradiated natural uranium, non-irradiated natural uranium and metal standards dissolved in acidic aqueous solutions and added to soil columns containing uncontaminated prairie soil. The lab soil columns were allowed 12 to 14 months for contaminant transport. Soil samples were analyzed using gamma-ray spectroscopy, neutron activation analysis (NAA) and liquid scintillation counting (LSC) to determine the elemental concentrations of U, Cs and Sr. Diffusion coefficients from the 50 year soil samples and the lab soil samples were determined. The measured diffusion coefficients from the field samples were 3.0 x 10-4 cm2 s-1 (Cs-137), 1.8 x 10-5 cm2 s-1 (U-238) and 2.6 x 10-3 cm2 s-1 (Sr-90) and the values determined from lab simulation were 5 x 10-6 cm 2 s-1 (Cs-137), 3 x 10-5 cm2 s-1 (U-238) and 1.9 x 10-5 cm 2 s-1 (Sr-90). The differences between the sets of diffusion coefficients can be attributed to differences in retardation effects, weather effects and changes in the soil characteristics when transporting, such as porosity. The analytical work showed that Cs-137 content of soil can be determined effectively using gamma-ray spectroscopy; U-238 content can be measured using NAA; and Sr-90 content can be measured using LSC. For non- and low-radioactive species, it was shown that both flame atomic absorption spectrometry (FAAS) and inductively-coupled plasma-mass spectrometry (ICP-MS) gave comparable results for Sr, Cs and Sm, with the average values ranging from 0.5 to 4.5 ppm of each other. The U-238 content results from NAA and from ICP-MS showed general agreement with an average difference of 81.3 ppm on samples having concentrations up to 988.2 ppm. The difference may have been due to matrix interference. It was determined through finite element modeling that 250 years after the 1951 release, the soil concentration of the three contaminant of U-238, Sr-90 and Cs-137 will be less than their respective soil clearance level values and therefore will not pose a long term environmental hazard. The fastest nuclide to reach the water table, at a depth of 45 m below the surface, at Suffield Site 27 was calculated to be Sr-90 after a period of 15,000 years. Therefore, it is not necessary to remove the subsurface soil at Site 27 for site decontamination but it is recommended that a "no-digging" policy, except for scientific research, be enforced at this site.
Enhanced Diffusion of Chlorinated Organic Compounds into Aquitards due to Cracking
NASA Astrophysics Data System (ADS)
Ayral, D.; Otero, M.; Chung, S.; Goltz, M. N.; Huang, J.; Demond, A. H.
2012-12-01
Despite great efforts, remediation of sites contaminated with dense non-aqueous phase liquids (DNAPLs) is very challenging because, even at residual saturations, DNAPLs can act as a long-term source for a dissolved phase contaminant plume. Current models consider the possibility of diffusion and storage of these compounds in unfractured low permeability layers. However, there is a need to consider the impact of cracks, whether naturally occurring or induced by the interaction between low permeable layers and DNAPLs. To evaluate the impact on diffusive fluxes, diffusion coefficients were measured in low permeability materials representative of aquitards at steady-state using the time-lag method. The experimental setup comprised silty soil, packed into a retaining ring, sandwiched in between two reservoirs. The analytical solution for the time-lag method requires constant conditions in the upper and lower reservoirs. The lower reservoir contained pure trichloroethylene (TCE), while the upper reservoir was maintained at a concentration of zero by bubbling air through it, sweeping TCE into toluene trap. In order to predict the flux, the experimental effective diffusion coefficients were used to calculate the flux through uncracked matrix whereas bulk diffusion coefficient was used to calculate flux through the cracks. By using the experimentally-obtained diffusion coefficients and experimentally-measured crack intensity factors (the ratio of the area of cracks to the uncracked area), the total flux was estimated over extended time periods. These calculations, based on experimental data, were used to evaluate if diffusive-based fluxes in the presence of cracks were significantly greater than in the case of diffusion into an uncracked matrix. The enhanced diffusive fluxes were evaluated to determine whether there is the potential for significantly greater storage in the low permeable layers in the case of cracks, or whether the possibility of advective fluxes into the cracks needs to be considered as well.
Brenner, Howard
2005-12-01
A quiescent single-component gravity-free gas subject to a small steady uniform temperature gradient T, despite being at rest, is shown to experience a drift velocity UD=-D* gradient ln T, where D* is the gas's nonisothermal self-diffusion coefficient. D* is identified as being the gas's thermometric diffusivity alpha. The latter differs from the gas's isothermal isotopic self-diffusion coefficient D, albeit only slightly. Two independent derivations are given of this drift velocity formula, one kinematical and the other dynamical, both derivations being strictly macroscopic in nature. Within modest experimental and theoretical uncertainties, this virtual drift velocity UD=-alpha gradient ln T is shown to be constitutively and phenomenologically indistinguishable from the well-known experimental and theoretical formulas for the thermophoretic velocity U of a macroscopic (i.e., non-Brownian) non-heat-conducting particle moving under the influence of a uniform temperature gradient through an otherwise quiescent single-component rarefied gas continuum at small Knudsen numbers. Coupled with the size independence of the particle's thermophoretic velocity, the empirically observed equality, U=UD, leads naturally to the hypothesis that these two velocities, the former real and the latter virtual, are, in fact, simply manifestations of the same underlying molecular phenomenon, namely the gas's Brownian movement, albeit biased by the temperature gradient. This purely hydrodynamic continuum-mechanical equality is confirmed by theoretical calculations effected at the kinetic-molecular level on the basis of an existing solution of the Boltzmann equation for a quasi-Lorentzian gas, modulo small uncertainties pertaining to the choice of collision model. Explicitly, this asymptotically valid molecular model allows the virtual drift velocity UD of the light gas and the thermophoretic velocity U of the massive, effectively non-Brownian, particle, now regarded as the tracer particle of the light gas's drift velocity, to each be identified with the Chapman-Enskog "thermal diffusion velocity" of the quasi-Lorentzian gas, here designated by the symbol UM/M, as calculated by de la Mora and Mercer. It is further pointed out that, modulo the collective uncertainties cited above, the common velocities UD,U, and UM/M are identical to the single-component gas's diffuse volume current jv, the latter representing yet another, independent, strictly continuum-mechanical concept. Finally, comments are offered on the extension of the single-component drift velocity notion to liquids, and its application towards rationalizing Soret thermal-diffusion separation phenomena in quasi-Lorentzian liquid-phase binary mixtures composed of disparately sized solute and solvent molecules, with the massive Brownian solute molecules (e.g., colloidal particles) present in disproportionately small amounts relative to that of the solvent.
Diffuse degassing survey at the Higashi Izu monogenetic volcano field, Japan
NASA Astrophysics Data System (ADS)
Notsu, Kenji; Pérez, Nemesio M.; Fujii, Naoyuki; Hernández, Pedro A.; Mori, Toshiya; Padrón, Eleazar; Melián, Gladys
2016-04-01
The Higashi-Izu monogenetic volcanic group, which consists of more than 60 volcanoes, overlies the polygenetic volcanoes in the eastern part of the Izu peninsula, Japan, which are distributed over the area of 350 km2. Some of the monogenetic volcanoes are located on northwest-southeast alignments, suggesting that they developed along fissures. Recent volcanic activity occurred offshore, e.g., at the Izu-Oshima volcano, which erupted in 1986 and a submarine eruption of the small new Teishi knoll off eastern Izu Peninsula in 1989 (Hasebe et al., 2001). This study was carried out to investigate the possible relationship of diffuse CO2 emission and the recent seismic activity recorded NE of Higashi Izu monogenetic volcanic field, to quantify the rate at which CO2 is diffusely degassed from the studied area including Omuroyama volcano and to identify the structures controlling the degassing process. Measurements were carried out over a three day period from 8-10 July 2013. Diffuse CO2 emission surveys were always carried out following the accumulation chamber method and spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. Soil gas samples were collected at 30-40 cm depth by withdrawal into 60 cc hypodermic syringes to characterize the chemical and isotopic composition of the soil gas. At Omurayama volcano, soil CO2 efflux values ranged from non-detectable to 97.5 g m-2 d-1, while at the seismic swarm zone ranged from 1.5 to 233.2 g m-2 d-1 and at the fault zone ranged from 5.7 to 101.2 g m-2 d-1. Probability-plot technique of all CO2 efflux data showed two different populations, background with a mean of 8.7 g m-2 d-1 and peak with a mean of 92.7 g m-2 d-1. In order to strength the deep seated contribution to the soil gases at the studied are, carbon isotopic analysis were performed in the CO2 gas. Soil gases (He, CO2 and N2) showed a clear mixing trend between air composition and a rich CO2 end member, suggesting the influence of a deep magmatic reservoir on the soil degassing at the studied area. To estimate the total diffuse CO2 output released from Omurayama, the average of 100 simulations was considered, giving an average of 22 ± 2 t d-1 of diffuse CO2 released by Miharayama. Regarding to the geochemical transects along the Amagi Road and perpendicular to the fault, CO2 efflux values >9xBackground were observed close to the location of the fault. These results show possible linear positive anomalies may be caused by the presence of the active fault which has a higher porosity than surrounding soils, allowing an increased flux of CO2 to reach the surface from depth. References: Hasebe et al., 2001. Bull. Volcanol., 63, 377.
NASA Astrophysics Data System (ADS)
Jawad, Enas A.
2018-05-01
In this paper, The Monte Carlo simulation program has been used to calculation the electron energy distribution function (EEDF) and electric transport parameters for the gas mixtures of The trif leoroiodo methane (CF3I) ‘environment friendly’ with a noble gases (Argon, Helium, kryptos, Neon and Xenon). The electron transport parameters are assessed in the range of E/N (E is the electric field and N is the gas number density of background gas molecules) between 100 to 2000Td (1 Townsend = 10-17 V cm2) at room temperature. These parameters, namely are electron mean energy (ε), the density –normalized longitudinal diffusion coefficient (NDL) and the density –normalized mobility (μN). In contrast, the impact of CF3I in the noble gases mixture is strongly apparent in the values for the electron mean energy, the density –normalized longitudinal diffusion coefficient and the density –normalized mobility. Note in the results of the calculation agreed well with the experimental results.
Chamber and Diffusive Based Carbon Flux Measurements in an Alaskan Arctic Ecosystem
NASA Astrophysics Data System (ADS)
Wilkman, E.; Oechel, W. C.; Zona, D.
2013-12-01
Eric Wilkman, Walter Oechel, Donatella Zona Comprising an area of more than 7 x 106 km2 and containing over 11% of the world's organic matter pool, Arctic terrestrial ecosystems are vitally important components of the global carbon cycle, yet their structure and functioning are sensitive to subtle changes in climate and many of these functional changes can have large effects on the atmosphere and future climate regimes (Callaghan & Maxwell 1995, Chapin et al. 2002). Historically these northern ecosystems have acted as strong C sinks, sequestering large stores of atmospheric C due to photosynthetic dominance in the short summer season and low rates of decomposition throughout the rest of the year as a consequence of cold, nutrient poor, and generally water-logged conditions. Currently, much of this previously stored carbon is at risk of loss to the atmosphere due to accelerated soil organic matter decomposition in warmer future climates (Grogan & Chapin 2000). Although there have been numerous studies on Arctic carbon dynamics, much of the previous soil flux work has been done at limited time intervals, due to both the harshness of the environment and labor and time constraints. Therefore, in June of 2013 an Ultraportable Greenhouse Gas Analyzer (UGGA - Los Gatos Research Inc.) was deployed in concert with the LI-8100A Automated Soil Flux System (LI-COR Biosciences) in Barrow, AK to gather high temporal frequency soil CO2 and CH4 fluxes from a wet sedge tundra ecosystem. An additional UGGA in combination with diffusive probes, installed in the same location, provides year-round soil and snow CO2 and CH4 concentrations. When used in combination with the recently purchased AlphaGUARD portable radon monitor (Saphymo GmbH), continuous soil and snow diffusivities and fluxes of CO2 and CH4 can be calculated (Lehmann & Lehmann 2000). Of particular note, measuring soil gas concentration over a diffusive gradient in this way allows one to separate both net production and consumption, whereas chamber and eddy covariance methodologies only document net production from the surface. Also, the capability to measure spring, summer and fall chamber fluxes, and to continuously determine year-round CO2 and CH4 fluxes under even the most extreme weather conditions, allows an unprecedented level of data continuity and local spatial coverage. Comparison to a nearby eddy covariance tower measuring CO2 and CH4 fluxes with an LGR Fast Greenhouse Gas Analyzer add additional power to this set of measurements. Thus, inter-comparison between diffusive, chamber, and tower-based carbon fluxes should lend much insight into the spatial and temporal controls on carbon cycling in this ecosystem.
Turbulence in a gaseous hydrogen-liquid oxygen rocket combustion chamber
NASA Technical Reports Server (NTRS)
Lebas, J.; Tou, P.; Ohara, J.
1975-01-01
The intensity of turbulence and the Lagrangian correlation coefficient for a LOX-GH2 rocket combustion chamber was determined from experimental measurements of tracer gas diffusion. A combination of Taylor's turbulent diffusion theory and a numerical method for solving the conservation equations of fluid mechanics was used to calculate these quantities. Taylor's theory was extended to consider the inhomogeneity of the turbulence field in the axial direction of the combustion chamber, and an exponential function was used to represent the Lagrangian correlation coefficient. The results indicate that the value of the intensity of turbulence reaches a maximum of 14% at a location about 7" downstream from the injector. The Lagrangian correlation coefficient associated with this value is given by the above exponential expression where alpha = 10,000/sec.
[Determination of lambda-cyhalothrin residue tea and soil using gas chromatography].
Chen, Linglong; Chen, Jiuxing; Ma, Ming; Chen, Lihua; Yang, Hui; Zhang, Guiqun
2010-08-01
A gas chromatographic (GC) method was established for the determination of lambda-cyhalothrin residue in tea and soil. Tea and soil samples were extracted with hexane, separated by capillary column and determined by gas chromatography-electron capture detector (GC-ECD). The average recoveries of lambda-cyhalothrin in tea and soil were 89.0% - 94.1% and 89.8% - 94.7%, respectively at the spiking levels of 0.02 to 2.00 mg/kg. The corresponding relative standard deviations (RSDs, n = 5) were 3.0% -4.9% and 2.5% -4.2%, respectively. The limit of detection (S/N = 3) was 0.002 mg/kg for lambda-cyhalothrin. The degradations of 2.5% lambda-cyhalothrin microemulsion in tea and soil in Changsha, Hunan were investigated and the degradation equations were Y = 3.199 6e(-0.339 4x) and Y = 0.122 4e(-0.103 6x) with the correlation coefficients of 0.995 6 and 0.924 7, respectively. The half-lives of lambda-cyhalothrin in tea and soil were 2.04 days and 6.69 days, respectively.
Trapped bubbles keep pumice afloat and gas diffusion makes pumice sink
NASA Astrophysics Data System (ADS)
Fauria, Kristen E.; Manga, Michael; Wei, Zihan
2017-02-01
Pumice can float on water for months to years - long enough for pumice to travel across oceans and facilitate the spread of species. Long-lived pumice floatation is unexpected, however, because pumice pores are highly connected and water wets volcanic glass. As a result, observations of long floating times have not been reconciled with predictions of rapid sinking. We propose a mechanism to resolve this paradox - the trapping of gas bubbles by water within the pumice. Gas trapping refers to the isolation of gas by water within pore throats such that the gas becomes disconnected from the atmosphere and unable to escape. We use X-ray microtomography to image partially saturated pumice and demonstrate that non-condensable gas trapping occurs in both ambient temperature and hot (500 °C) pumice. Furthermore, we show that the size distribution of trapped gas clusters matches predictions of percolation theory. Finally, we propose that diffusion of trapped gas determines pumice floatation time. Experimental measurements of pumice floatation support a diffusion control on pumice buoyancy and we find that floatation time τ scales as τ ∝ L2/Dθ2 where L is the characteristic length of pumice, D is the gas-water diffusion coefficient, and θ is pumice water saturation. A mechanistic understanding of pumice floatation is a step towards understanding how pumice is partitioned into floating and sinking components and provides an estimate for the lifetime of pumice rafts in the ocean.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Tuan Anh; Criscenti, Louise J.; Wang, Yifeng
In spite of the massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix–a limiting step in shale gas extraction. Here we show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30–47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases, and we usemore » molecular simulations to demonstrate it. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3–35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Finally, our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release.« less
Ho, Tuan Anh; Criscenti, Louise J.; Wang, Yifeng
2016-01-01
Despite massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix–a limiting step in shale gas extraction. Using molecular simulations, we here show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30–47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3–35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release. PMID:27306967
Ho, Tuan Anh; Criscenti, Louise J.; Wang, Yifeng
2016-06-16
In spite of the massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix–a limiting step in shale gas extraction. Here we show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30–47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases, and we usemore » molecular simulations to demonstrate it. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3–35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Finally, our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release.« less
CO2 diffuse emission from maar lake: An example in Changbai volcanic field, NE China
NASA Astrophysics Data System (ADS)
Sun, Yutao; Guo, Zhengfu; Liu, Jiaqi; Du, Jianguo
2018-01-01
Numerous maars and monogenetic volcanic cones are distributed in northeast China, which are related to westward deep subduction of the Pacific Ocean lithosphere, comprising a significant part of the "Pacific Ring of Fire". It is well known that diffuse CO2 emissions from monogenetic volcanoes, including wet (e.g., maar lake) and dry degassing systems (e.g., soil diffuse emission, fault degassing, etc.), may contribute to budget of globally nature-derived greenhouse gases. However, their relationship between wet (e.g., maar lake) and concomitant dry degassing systems (e.g., soil diffuse emission, fault degassing, etc.) related to monogenetic volcanic field is poorly understood. Yuanchi maar, one of the typical monogenetic volcanic systems, is located on the eastern flank of Tianchi caldera in Changbai volcanic field of northeast China, which displays all of three forms of CO2 degassing including the maar lake, soil micro-seepage and fault degassing. Measurements of efflux of CO2 diffusion from the Yuanchi maar system (YMS) indicate that the average values of CO2 emissions from soil micro-seepage, fault degassing and water-air interface diffusion are 24.3 ± 23.3 g m- 2 d- 1, 39.2 ± 22.4 g m- 2 d- 1 and 2.4 ± 1.1 g m- 2 d- 1, respectively. The minimum output of CO2 diffuse emission from the YMS to the atmosphere is about 176.1 ± 88.3 ton/yr, of which 80.4% results from the dry degassing system. Degassing from the fault contributes to the most of CO2 emissions in all of the three forms of degassing in the YMS. Contributions of mantle, crust, air and organic CO2 to the soil gas are 0.01-0.10%, 10-20%, 32-36% and 48-54%, respectively, which are quantitatively constrained by a He-C isotope coupling calculation model. We propose that CO2 exsolves from the upper mantle melting beneath the Tianchi caldera, which migrates to the crustal magma chamber and further transports to the surface of YMS along the deep fault system. During the transportation processes, the emission of gas experiences crustal contamination, influence of magma chamber beneath the YMS, sub-surface processes and air dilution.
Oxygen diffusion in alpha-Al2O3. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Cawley, J. D.; Halloran, J. W.; Cooper, A. R.
1984-01-01
Oxygen self diffusion coefficients were determined in single crystal alpha-Al2O3 using the gas exchange technique. The samples were semi-infinite slabs cut from five different boules with varying background impurities. The diffusion direction was parallel to the c-axis. The tracer profiles were determined by two techniques, single spectrum proton activation and secondary ion mass spectrometry. The SIMS proved to be a more useful tool. The determined diffusion coefficients, which were insensitive to impurity levels and oxygen partial pressure, could be described by D = .00151 exp (-572kJ/RT) sq m/s. The insensitivities are discussed in terms of point defect clustering. Two independent models are consistent with the findings, the first considers the clusters as immobile point defect traps which buffer changes in the defect chemistry. The second considers clusters to be mobile and oxygen diffusion to be intrinsic behavior, the mechanism for oxygen transport involving neutral clusters of Schottky quintuplets.
Douglas, R K; Nawar, S; Alamar, M C; Mouazen, A M; Coulon, F
2018-03-01
Visible and near infrared spectrometry (vis-NIRS) coupled with data mining techniques can offer fast and cost-effective quantitative measurement of total petroleum hydrocarbons (TPH) in contaminated soils. Literature showed however significant differences in the performance on the vis-NIRS between linear and non-linear calibration methods. This study compared the performance of linear partial least squares regression (PLSR) with a nonlinear random forest (RF) regression for the calibration of vis-NIRS when analysing TPH in soils. 88 soil samples (3 uncontaminated and 85 contaminated) collected from three sites located in the Niger Delta were scanned using an analytical spectral device (ASD) spectrophotometer (350-2500nm) in diffuse reflectance mode. Sequential ultrasonic solvent extraction-gas chromatography (SUSE-GC) was used as reference quantification method for TPH which equal to the sum of aliphatic and aromatic fractions ranging between C 10 and C 35 . Prior to model development, spectra were subjected to pre-processing including noise cut, maximum normalization, first derivative and smoothing. Then 65 samples were selected as calibration set and the remaining 20 samples as validation set. Both vis-NIR spectrometry and gas chromatography profiles of the 85 soil samples were subjected to RF and PLSR with leave-one-out cross-validation (LOOCV) for the calibration models. Results showed that RF calibration model with a coefficient of determination (R 2 ) of 0.85, a root means square error of prediction (RMSEP) 68.43mgkg -1 , and a residual prediction deviation (RPD) of 2.61 outperformed PLSR (R 2 =0.63, RMSEP=107.54mgkg -1 and RDP=2.55) in cross-validation. These results indicate that RF modelling approach is accounting for the nonlinearity of the soil spectral responses hence, providing significantly higher prediction accuracy compared to the linear PLSR. It is recommended to adopt the vis-NIRS coupled with RF modelling approach as a portable and cost effective method for the rapid quantification of TPH in soils. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Weitao; Li, Yuxiang; Ying, Sanjiu
2015-04-01
A fabrication process to produce graded porous and skin-core structure propellants via supercritical CO2 concentration profile is reported in this article. It utilizes a partial gas saturation technique to obtain nonequilibrium gas concentration profiles in propellants. Once foamed, the propellant obtains a graded porous or skin-pore structure. This fabrication method was studied with RDX(Hexogen)-based propellant under an SC-CO2 saturation condition. The principle was analyzed and the one-dimensional diffusion model was employed to estimate the gas diffusion coefficient and to predict the gas concentration profiles inside the propellant. Scanning electron microscopy images were used to analyze the effects of partial saturation on the inner structure. The results also suggested that the sorption time and desorption time played an important role in gas profile generation and controlled the inner structure of propellants.
Inventory and vertical migration of ¹³⁷Cs in Spanish mainland soils.
Legarda, F; Romero, L M; Herranz, M; Barrera, M; Idoeta, R; Valiño, F; Olondo, C; Caro, A
2011-06-01
In this study the total activity of (137)Cs deposited per unit area over the Spanish peninsular territory was analysed using a 150 × 150 km(2) mesh grid, with samples taken from 29 points. The deposited activities ranged between 251 and 6074 Bq/m(2). A linear relationship was obtained between these values and the mean annual rainfall at each sampling point which allowed a map to be drawn, using GIS software, which shows the distribution of total deposited (137)Cs activity across the Spanish mainland. At twelve of these sampling points the vertical migration profile of (137)Cs was obtained. These profiles are separated into two groups with different behaviour, one of which includes clay and loam soils and the other containing sandy soils. For both groups of profiles the parameters of the convective-diffusive model, which describes the vertical migration of (137)Cs in the soil, v (apparent convection velocity) and D (apparent diffusion coefficient) were calculated. Copyright © 2011 Elsevier Ltd. All rights reserved.
Diffusion of oxygen through cork stopper: is it a Knudsen or a Fickian mechanism?
Lagorce-Tachon, Aurélie; Karbowiak, Thomas; Simon, Jean-Marc; Gougeon, Régis; Bellat, Jean-Pierre
2014-09-17
The aim of this work is to identify which law governs oxygen transfer through cork: Knudsen or Fickian mechanism. This is important to better understand wine oxidation during post-bottling aging. Oxygen transfer through cork wafers is measured at 298 K using a manometric permeation technique. Depending on the mechanism, we can extract the transport coefficients. Increasing the initial pressure of oxygen from 50 to 800 hPa leads to a change in the values of the transport coefficients. This implies that oxygen transport through cork does not obey the Knudsen law. From these results, we conclude that the limiting step of oxygen transport through cork occurs in the cell wall following Fickian law. From the diffusion dependence's coefficients with pressure, we also extract by applying transition state theory an apparent activation volume of 45 ± 4 nm(3). This high value indicates that oxygen molecules also diffuse from one site to another by passing through a gas phase.
Bowling, D. R.; Egan, J. E.; Hall, S. J.; ...
2015-08-31
Recent studies have examined temporal fluctuations in the amount and carbon isotope content (δ 13C) of CO 2 produced by the respiration of roots and soil organisms. These changes have been correlated with diel cycles of environmental forcing (e.g., sunlight and soil temperature) and with synoptic-scale atmospheric motion (e.g., rain events and pressure-induced ventilation). We used an extensive suite of measurements to examine soil respiration over 2 months in a subalpine forest in Colorado, USA (the Niwot Ridge AmeriFlux forest). Observations included automated measurements of CO 2 and δ 13C of CO 2 in the soil efflux, the soil gasmore » profile, and forest air. There was strong diel variability in soil efflux but no diel change in the δ 13C of the soil efflux (δ R) or the CO 2 produced by biological activity in the soil (δ J). Following rain, soil efflux increased significantly, but δ R and δ J did not change. Temporal variation in the δ 13C of the soil efflux was unrelated to measured environmental variables, and we failed to find an explanation for this unexpected result. Measurements of the δ 13C of the soil efflux with chambers agreed closely with independent observations of the isotopic composition of soil CO 2 production derived from soil gas well measurements. Deeper in the soil profile and at the soil surface, results confirmed established theory regarding diffusive soil gas transport and isotopic fractionation. Deviation from best-fit diffusion model results at the shallower depths illuminated a pump-induced ventilation artifact that should be anticipated and avoided in future studies. There was no evidence of natural pressure-induced ventilation of the deep soil. However, higher variability in δ 13C of the soil efflux relative to δ 13C of production derived from soil profile measurements was likely caused by transient pressure-induced transport with small horizontal length scales.« less
Mayhew, Terry M
2014-01-01
For many organisms, respiratory gas exchange is a vital activity and different types of gas-exchange apparatus have evolved to meet individual needs. They include not only skin, gills, tracheal systems and lungs but also transient structures such as the chorioallantois of avian eggs and the placenta of eutherian mammals. The ability of these structures to allow passage of oxygen by passive diffusion can be expressed as a diffusive conductance (units: cm(3) O2 min(-1) kPa(-1)). Occasionally, the ability to estimate diffusive conductance by physiological techniques is compromised by the difficulty of obtaining O2 partial pressures on opposite sides of the tissue interface between the delivery medium (air, water, blood) and uptake medium (usually blood). An alternative strategy is to estimate a morphometric diffusive conductance by combining stereological estimates of key structural quantities (volumes, surface areas, membrane thicknesses) with complementary physicochemical data (O2-haemoglobin chemical reaction rates and Krogh's permeability coefficients). This approach has proved valuable in a variety of comparative studies on respiratory organs from diverse species. The underlying principles were formulated in pioneering studies on the pulmonary lung but are illustrated here by taking the human placenta as the gas exchanger. Copyright © 2012 Elsevier GmbH. All rights reserved.
Goode, Daniel J.
1998-01-01
The use of environmental tracers in characterization of ground-water systems is investigated through mathematical modeling of ground-water age and atmospheric tracer transport, and by a field study at the Mirror Lake site, New Hampshire. Theory is presented for modeling ground-water age using the advective-dispersive transport equation. The transport equation includes a zero-order source of unit strength, corresponding to the rate of aging, and can accommodate matrix diffusion and other exchange processes. The effect of temperature fluctuations and layered soils on transport of atmospheric gases to the water table is investigated using a one-dimensional numerical model of chlorofluorocarbon (CFC-11) transport. The nonlinear relation between temperature and Henry's Law coefficient (reflecting air/water phase partitioning) can cause the apparent recharge temperature to be elevated above the annual mean temperature where the water table is shallow. In addition, fine-grained soils can isolate the air phase in the unsaturated zone from the atmosphere. At the USGS' Mirror Lake, New Hampshire fractured-rock research site CFC concentrations near the water table are depleted where dissolved oxygen is low. CFC-11 and CFC-113 are completely absent under anaerobic conditions, while CFC-12 is as low as one-third of modern concentrations. Anaerobic biodegradation apparently consumes CFC's near the water table at this site. One area of active degradation appears to be associated with streamflow loss to ground water. Soil gas concentrations are generally close to atmospheric levels, although some spatial correlation is observed between depleted concentrations of CFC-11 and CFC-113 in soil gas and water-table samples. Results of unsaturated-zone monitoring indicate that recharge occurs throughout the year in the watershed, even during summer evapotranspiration periods, and that seasonal temperature fluctuations occur as much as 5 meters below land surface. Application of ground-water age and CFC-11 transport models to the large-scale ground-water system at Mirror Lake illustrates the similarities between age and chemical transport. Generally, bedrock porosities required to match observed apparent ages from CFC concentrations are high relative to porosities measured on cores. Although matrix diffusion has no effect on steady-state age, it can significantly reduce CFC concentrations in fractured rock in which the effective porosity is low.
Adsorption of Phthalates on Impervious Indoor Surfaces.
Wu, Yaoxing; Eichler, Clara M A; Leng, Weinan; Cox, Steven S; Marr, Linsey C; Little, John C
2017-03-07
Sorption of semivolatile organic compounds (SVOCs) onto interior surfaces, often referred to as the "sink effect", and their subsequent re-emission significantly affect the fate and transport of indoor SVOCs and the resulting human exposure. Unfortunately, experimental challenges and the large number of SVOC/surface combinations have impeded progress in understanding sorption of SVOCs on indoor surfaces. An experimental approach based on a diffusion model was thus developed to determine the surface/air partition coefficient K of di-2-ethylhexyl phthalate (DEHP) on typical impervious surfaces including aluminum, steel, glass, and acrylic. The results indicate that surface roughness plays an important role in the adsorption process. Although larger data sets are needed, the ability to predict K could be greatly improved by establishing the nature of the relationship between surface roughness and K for clean indoor surfaces. Furthermore, different surfaces exhibit nearly identical K values after being exposed to kitchen grime with values that are close to those reported for the octanol/air partition coefficient. This strongly supports the idea that interactions between gas-phase DEHP and soiled surfaces have been reduced to interactions with an organic film. Collectively, the results provide an improved understanding of equilibrium partitioning of SVOCs on impervious surfaces.
Quantitative passive soil vapor sampling for VOCs--part 1: theory.
McAlary, Todd; Wang, Xiaomin; Unger, Andre; Groenevelt, Hester; Górecki, Tadeusz
2014-03-01
Volatile organic compounds are the primary chemicals of concern at many contaminated sites and soil vapor sampling and analysis is a valuable tool for assessing the nature and extent of contamination. Soil gas samples are typically collected by applying vacuum to a probe in order to collect a whole-gas sample, or by drawing gas through a tube filled with an adsorbent (active sampling). There are challenges associated with flow and vacuum levels in low permeability materials, and leak prevention and detection during active sample collection can be cumbersome. Passive sampling has been available as an alternative to conventional gas sample collection for decades, but quantitative relationships between the mass of chemicals sorbed, the soil vapor concentrations, and the sampling time have not been established. This paper presents transient and steady-state mathematical models of radial vapor diffusion to a drilled hole and considerations for passive sampler sensitivity and practical sampling durations. The results indicate that uptake rates in the range of 0.1 to 1 mL min(-1) will minimize the starvation effect for most soil moisture conditions and provide adequate sensitivity for human health risk assessment with a practical sampling duration. This new knowledge provides a basis for improved passive soil vapour sampler design.
Sorey, M.L.; Evans, William C.; Kennedy, B.M.; Farrar, C.D.; Hainsworth, L.J.; Hausback, B.
1998-01-01
Carbon dioxide and helium with isotopic compositions indicative of a magmatic source (??13C = -4.5 to -5???, 3He/4He = 4.5 to 6.7 RA) are discharging at anomalous rates from Mammoth Mountain, on the southwestern rim of the Long Valley caldera in eastern California. The gas is released mainly as diffuse emissions from normal-temperature soils, but some gas issues from steam vents or leaves the mountain dissolved in cold groundwater. The rate of gas discharge increased significantly in 1989 following a 6-month period of persistent earthquake swarms and associated strain and ground deformation that has been attributed to dike emplacement beneath the mountain. An increase in the magmatic component of helium discharging in a steam vent on the north side of Mammoth Mountain, which also began in 1989, has persisted until the present time. Anomalous CO2 discharge from soils first occurred during the winter of 1990 and was followed by observations of several areas of tree kill and/or heavier than normal needlecast the following summer. Subsequent measurements have confirmed that the tree kills are associated with CO2 concentrations of 30-90% in soil gas and gas flow rates of up to 31,000 g m-2 d-1 at the soil surface. Each of the tree-kill areas and one area of CO2 discharge above tree line occurs in close proximity to one or more normal faults, which may provide conduits for gas flow from depth. We estimate that the total diffuse CO2 flux from the mountain is approximately 520 t/d, and that 30-50 t/d of CO2 are dissolved in cold groundwater flowing off the flanks of the mountain. Isotopic and chemical analyses of soil and fumarolic gas demonstrate a remarkable homogeneity in composition, suggesting that the CO2 and associated helium and excess nitrogen may be derived from a common gas reservoir whose source is associated with some combination of magmatic degassing and thermal metamorphism of metasedimentary rocks. Furthermore, N2/Ar ratios and nitrogen isotopic values indicate that the Mammoth Mountain gases are derived from sources separate from those that supply gas to the hydrothermal system within the Long Valley caldera. Various data suggest that the Mammoth Mountain gas reservoir is a large, low-temperature cap over an isolated hydrothermal system, that it predates the 1989 intrusion, and that it could remain a source of gas discharge for some time.
On the factors affecting porosity dissolution in selective laser sintering process
NASA Astrophysics Data System (ADS)
Ly, H.-B.; Monteiro, E.; Dal, M.; Regnier, G.
2018-05-01
Selective Laser Sintering process is one of the additive manufacturing techniques in which parts are manufactured layer by layer. During such process, gas bubbles are formed in the melted polymer due to faster polymer grains coalescence at surface than deeper in the powder bed. Although gas diffusion is possible through the polymer melt, it's usual that some porosities remain in the final part if their initial sizes are too big and solidification time too short. In this contribution, a bubble dissolution model involving fluid dynamics and mass transport has been developed to study factors affecting porosity resorption kinetic. In this model, gas diffusion follows Fick's laws and the melted polymer is supposed Newtonian. At the polymer/gas interface, surface tension is considered and Henry's law is used to relate the partial pressure of gas with its concentration in the fluid. This problem is solved numerically by means of the finite element method in 1D. After validation of the numerical tool, the influence on dissolution time of several parameters (e.g. the initial size and form of gas porosities, the viscosity, the diffusion coefficient, the surface tension constant or the ambient pressure) has been examined.
Li, Jiangshan; Poon, Chi Sun
2017-04-01
The proper treatment of lead (Pb) contaminated soils and incinerated sewage sludge ash (ISSA) has become an environmental concern. In this study, ordinary Portland cement (OPC) and blended OPC containing incinerated sewage sludge ash (ISSA) were used to solidify/stabilize (S/S) soils contaminated with different concentrations of Pb. After curing for 7 and 28 d, the S/S soils were subjected to a series of strength, leaching and microscopic tests. The results showed that replacement of OPC by ISSA significantly reduced the unconfined compressive strength (UCS) of S/S soils and leached Pb. In addition, the leaching of Pb from the monolithic samples was diffusion controlled, and increasing the ISSA addition in the samples led to a lower diffusion coefficient and thus an increase in the feasibility for "controlled utilization" of S/S soils. Furthermore, the proposed S/S method significantly decreased the amount of Pb associated with carbonates and increased the amount of organic and residual Pb in S/S soils, reflecting that the risk of Pb contaminated soils can be effectively mitigated by the incorporating of ISSA. Overall, the leachability of Pb was controlled by the combined effect of adsorption, encapsulation or precipitation in the S/S soils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Resonant acoustic measurement of vapor phase transport phenomenon in porous media
NASA Astrophysics Data System (ADS)
Schuhmann, Richard; Garrett, Steven
2002-05-01
Diffusion of gases through porous media is commonly described using Fick's law and is characterized by a gas diffusion coefficient modified by a media-specific tortuosity parameter. A phase-locked-loop resonance frequency tracker [J. Acoust. Soc. Am. 108, 2520 (2000)] has been upgraded with an insulated copper resonator and a bellows-sealed piston instrumented with an accelerometer. Average system stability (temperature divided by frequency squared) is about 180 ppm. Glass-bead-filled cores of different lengths are fitted into an o-ring sealed opening at the top of the resonator. The rate at which the tracer gas is replaced by air within the resonator is controlled by the core's diffusion constant. Mean molecular weight of the gas mixture in the resonator is determined in real time from the ratio of the absolute temperature to the square of the fundamental acoustic resonance frequency. Molecular weight of the gas mixture is determined approximately six times per minute. Changes in the gas mixture concentration are exponential in time (within 0.1%) over nearly two decades in concentration. We will report diffusion constants for two different sizes of glass beads, in samples of five different lengths, using two different tracer gases, to establish the validity of this approach. [Work supported by ONR.
Regitano, Jussara B; Rocha, Wadson S D; Bonfleur, Eloana J; Milori, Debora; Alleoni, Luís R F
2016-05-25
We evaluated the effects of soil water content on the retention of diuron and its residual distribution into organomineral aggregates in four Brazilian oxisols. (14)C-Diuron was incubated for days at 25, 50, and 75% of maximum water-holding capacity for each soil. After 42 days, the physical fractionation method was used to obtain >150, 53-150, 20-53, 2-20, and <2 μm aggregate sizes. Diuron retention increased with increasing soil water content for all soils. At lower soil water content, diuron's retention was higher in the sandier soil. It was mostly retained in the fine (<20 μm) aggregates of sandier soil, and for clayed soils, retention was higher in the coarse aggregates (>53 μm). The sorption coefficients (Kd and Koc) generated by batch studies should be carefully used because they do not provide information about aggregation and diffusion effects on pesticides soil sorption.
Muñoz, E; Frutos, B; Olaya, M; Sánchez, J
2017-10-01
The focus of this study is broadly to define the physics involved in radon generation and transport through the soil and other materials using different parameter-estimation tools from the literature. The effect of moisture in the soil and radon transport via water in the pore space was accounted for with the application of a porosity correction coefficient. A 2D finite element model is created, which reproduces the diffusion and advection mechanisms resulting from specified boundary conditions. A comparison between the model and several analytical and numerical solutions obtained from the literature and field studies validates the model. Finally, the results demonstrate that the model can predict radon entry through different building boundary conditions, such as concrete slabs with or without joints, variable slab thicknesses and diffusion coefficients, and the use of several radon barrier membranes. Cracks in the concrete or the radon barrier membrane have been studied to understand how indoor concentration is affected by these issues. Copyright © 2017 Elsevier Ltd. All rights reserved.
Resonant Acoustic Measurement of Vapor Phase Transport Phenomenon
NASA Astrophysics Data System (ADS)
Schuhmann, R. J.; Garrett, S. L.; Matson, J. V.
2002-12-01
A major impediment to accurate non steady-state diffusion measurements is the ability to accurately measure and track a rapidly changing gas concentration without disturbing the system. Non-destructive methods that do not interfere with system dynamics have been developed in the past. These methods, however, have tended to be cumbersome or inaccurate at low concentrations. A new experimental approach has been developed to measure gaseous diffusion in free air and through porous materials. The method combines the traditional non steady-state laboratory methodology with resonant acoustic gas analysis. A phase-locked-loop (PLL) resonance frequency tracker is combined with a thermally insulated copper resonator. A piston sealed with a metal bellows excites the fundamental standing wave resonance of the resonator. The PLL maintains a constant phase difference (typically 90§) between the accelerometer mounted on the piston and a microphone near the piston to track the resonance frequency in real time. A capillary or glass bead filled core is fitted into an o-ring sealed opening at the end of the resonator opposite the bellows. The rate at which the tracer gas is replaced by air within the resonator is controlled by the diffusion coefficient of the gas in free air through the capillary (DA) or by the effective diffusion coefficient of the gas through the core (De). The mean molecular weight of the gas mixture in the resonator is directly determined six times each minute from the ratio of the absolute temperature to the square of the fundamental acoustic resonance frequency. Average system stability (temperature divided by frequency squared) is better than 350 ppm. DA values for a 0.3-inch diameter capillary were in excellent agreement with published values. De values for porous media samples (0.5 mm glass beads) of four different lengths (1 through 4 inches) using three different tracer gases (He, CH4, Kr) will be reported. Comments will be offered regarding tracer gas selection and device orientation and their effect on experimental results. [Work supported by the Office of Naval Research.
Campbell, J Elliott; Moen, Jeremie C; Ney, Richard A; Schnoor, Jerald L
2008-03-01
Estimates of forest soil organic carbon (SOC) have applications in carbon science, soil quality studies, carbon sequestration technologies, and carbon trading. Forest SOC has been modeled using a regression coefficient methodology that applies mean SOC densities (mass/area) to broad forest regions. A higher resolution model is based on an approach that employs a geographic information system (GIS) with soil databases and satellite-derived landcover images. Despite this advancement, the regression approach remains the basis of current state and federal level greenhouse gas inventories. Both approaches are analyzed in detail for Wisconsin forest soils from 1983 to 2001, applying rigorous error-fixing algorithms to soil databases. Resulting SOC stock estimates are 20% larger when determined using the GIS method rather than the regression approach. Average annual rates of increase in SOC stocks are 3.6 and 1.0 million metric tons of carbon per year for the GIS and regression approaches respectively.
NASA Astrophysics Data System (ADS)
Inclan, Rosa Maria
2016-04-01
Knowledge on three dimensional soil pore architecture is important to improve our understanding of the factors that control a number of critical soil processes as it controls biological, chemical and physical processes at various scales. Computed Tomography (CT) images provide increasingly reliable information about the geometry of pores and solids in soils at very small scale with the benefit that is a non-invasive technique. Fractal formalism has revealed as a useful tool in these cases where highly complex and heterogeneous meda are studied. One of these quantifications is mass dimension (Dm) and spectral dimension (d) applied to describe the water and gas diffusion coefficients in soils (Tarquis et al., 2012). In this work, intact soil samples were collected from the first three horizons of La Herreria soil. This station is located in the lowland mountain area of Sierra de Guadarrama (Santolaria et al., 2015) and it represents a highly degraded type of site as a result of the livestock keeping. The 3D images, of 45.1 micro-m resolution (256x256x256 voxels), were obtained and then binarized following the singularity-CA method (Martín-Sotoca et al. 2016). Based on these images Dm and d were estimated. The results showed an statistical difference in porosity, Dm and d for each horizon. This fact has a direct implication in diffusion parameters for a pore network modeling based on both fractal dimensions. These soil parameters will constitute a basis for site characterization for further studies regarding soil degradation; determining the interaction between soil, plant and atmosphere with respect to human induced activities as well as the basis for several nitrogen and carbon cycles modeling. References Martin Sotoca; J.J. Ana M. Tarquis, Antonio Saa Requejo, and Juan B. Grau (2016). Pore detection in Computed Tomography (CT) soil 3D images using singularity map analysis. Geophysical Research Abstracts, 18, EGU2016-829. Santolaria-Canales, Edmundo and the GuMNet Consortium Team (2015). GuMNet - Guadarrama Monitoring Network. Installation and set up of a high altitude monitoring network, north of Madrid. Spain. Geophysical Research Abstracts, 17, EGU2015-13989-2. Tarquis, A. M., Sanchez, M. E., Antón, J. M., Jimenez, J., Saa-Requejo, A., Andina, D., & Crawford, J. W. (2012). Variation in spectral and mass dimension on three-dimensional soil image processing. Soil Science, 177(2), 88-97. Web: http://www.ucm.es/gumnet/
Transport coefficients in nonequilibrium gas-mixture flows with electronic excitation.
Kustova, E V; Puzyreva, L A
2009-10-01
In the present paper, a one-temperature model of transport properties in chemically nonequilibrium neutral gas-mixture flows with electronic excitation is developed. The closed set of governing equations for the macroscopic parameters taking into account electronic degrees of freedom of both molecules and atoms is derived using the generalized Chapman-Enskog method. The transport algorithms for the calculation of the thermal-conductivity, diffusion, and viscosity coefficients are proposed. The developed theoretical model is applied for the calculation of the transport coefficients in the electronically excited N/N(2) mixture. The specific heats and transport coefficients are calculated in the temperature range 50-50,000 K. Two sets of data for the collision integrals are applied for the calculations. An important contribution of the excited electronic states to the heat transfer is shown. The Prandtl number of atomic species is found to be substantially nonconstant.
Tortuosity Computations of Porous Materials using the Direct Simulation Monte Carlo
NASA Technical Reports Server (NTRS)
Borner, A.; Ferguson, C.; Panerai, F.; Mansour, Nagi N.
2017-01-01
Low-density carbon fiber preforms, used as thermal protection systems (TPS) materials for planetary entry systems, have permeable, highly porous microstructures consisting of interlaced fibers. Internal gas transport in TPS is important in modeling the penetration of hot boundary-layer gases and the in-depth transport of pyrolysis and ablation products. The gas effective diffusion coefficient of a porous material must be known before the gas transport can be modeled in material response solvers; however, there are very little available data for rigid fibrous insulators used in heritage TPS.The tortuosity factor, which reflects the efficiency of the percolation paths, can be computed from the effective diffusion coefficient of a gas inside a porous material and is based on the micro-structure of the material. It is well known, that the tortuosity factor is a strong function of the Knudsen number. Due to the small characteristic scales of porous media used in TPS applications (typical pore size of the order of 50 micron), the transport of gases can occur in the rarefied and transitional regimes, at Knudsen numbers above 1. A proper way to model the gas dynamics at these conditions consists in solving the Boltzmann equation using particle-based methods that account for movement and collisions of atoms and molecules.In this work we adopt, for the first time, the Direct Simulation Monte Carlo (DSMC) method to compute the tortuosity factor of fibrous media in the rarefied regime. To enable realistic simulations of the actual transport of gases in the porous medium, digitized computational grids are obtained from X-ray micro-tomography imaging of real TPS materials. The SPARTA DSMC solver is used for simulations. Effective diffusion coefficients and tortuosity factors are obtained by computing the mean-square displacement of diffusing particles.We first apply the method to compute the tortuosity factors as a function of the Knudsen number for computationally designed materials such as random cylindrical fibers and packed bed of spheres with prescribed porosity. Results are compared to literature values obtained using random walk methods in the rarefied and transitional regime and a finite-volume method for the continuum regime. We then compute tortuosity factors for a real carbon fiber material with a transverse isotropic structure (FiberForm), quantifying differences between through-thickness and in-plain tortuosities at various Knudsen regimes.
Estimating Sources and Sinks of Methane from Soils in the Contiguous United States (CONUS)
NASA Astrophysics Data System (ADS)
Shu, S.; Jain, A. K.; Kheshgi, H. S.
2017-12-01
The global methane (CH4) budget estimated based on state-of-the-art models remains highly uncertain. Sources and sinks of CH4 from soils, including wetlands, are the most important source of uncertainty. Soils are estimated to account for about 45% of global CH4 emissions. At the same time oxidation of CH4 by soils is a significant sink, representing about 10% of the total sink. However, most regional and global scale modeling studies of soil CH4 fluxes have ignored the sink through soil oxidation and the source of CH4 emissions from the wet soils with shallow water tables. In this study, we link a bottom-up soil gas diffusion and CH4 biogeochemistry model to a land surface model, ISAM, to calculate the sources, emissions from both wetlands and non-wetlands, and sinks, soil oxidation, of CH4 from soils for the CONUS over the period 1900-2100. The newly developed soil CH4 model framework consists of a gas diffusion module with the vertically resolved soil hydrology (depth up to 3.5 m soil) and soil organic carbon (SOC) and CH4 biogeochemistry module. SOC profile is estimated by modeling vertical soil mixing and thus can represent the deep SOC content and estimate CH4 production from the deep non-wetland soil. For the diffusion calculations, we separately consider both the dissolved and gaseous O2 and CH4 at each soil layer. For CH4 biogeochemistry, we parameterize the production, soil oxidation, ebullition and aerenchyma transportation of CH4 for both seasonal/permanent wetland and wet soil. The SWAMP inundated fraction dataset with 8-day temporal resolution is incorporated to prescribe the extent of permanent and seasonal wetland extent for the recent decade. The model is first evaluated using a compilation of published CH4 site measurement data for CONUS. We then perform two different model experiments: 1) forced by the CRUNCEP climate data from 1900 to 2010 to estimate the contemporary CH4 emission and 2) forced by a climate projection of IPCC's highest representative concentration pathway (RCP8.5) from 2011 to 2100. Our study shows that soil oxidation has an important role attenuating the estimated natural CH4 source. We also find a wetter and warmer climate affects the dry soil CH4 sink and wet soil CH4 emissions and increases the estimated CH4 source over the CONUS.
Time-resolved production and detection of reactive atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grossman, L. W.; Hurst, G. S.
1977-09-01
Cesium iodide in the presence of a buffer gas was dissociated with a pulsed ultraviolet laser, which will be referred to as the source laser. This created a population of atoms at a well defined time and in a compact, well defined volume. A second pulsed laser, with a beam that completely surrounded that of the first, photoionized the cesium after a known time delay. This laser will be referred to as the detector laser. It was determined that for short time delays, all of the cesium atoms were easily ionized. When focused, the source laser generated an extremely intensemore » fluence. By accounting for the beam intensity profile it was shown that all of the molecules in the central portion of the beam can be dissociated and detected. Besides proving the feasibility of single-molecule detection, this enabled a determination of the absolute photodissociation cross section as a function of wavelength. Initial studies of the time decay of the cesium signal at low argon pressures indicated a non-exponential decay. This was consistent with a diffusion mechanism transporting cesium atoms out of the laser beam. Therefore, it was desired to conduct further experiments using a tightly focused source beam, passing along the axis of the detector beam. The theoretical behavior of this simple geometry accounting for diffusion and reaction is easily calculated. A diffusion coefficient can then be extracted by data fitting. If reactive decay is due to impurities constituting a fixed percentage of the buffer gas, then two-body reaction rates will scale linearly with pressure and three-body reaction rates will scale quadratically. Also, the diffusion coefficient will scale inversely with pressure. At low pressures it is conceivable that decay due to diffusion would be sufficiently rapid that all other processes can be neglected. Extraction of a diffusion coefficient would then be quite direct. Finally, study of the reaction of cesium and oxygen was undertaken.« less
How do Colluvial Hollows Fill?
NASA Astrophysics Data System (ADS)
Hales, T. C.; Parker, R.; Mudd, S. M.; Grieve, S. W. D.
2016-12-01
In humid, soil-mantled mountains shallow landslides commonly initiate in colluvial hollows, areas where convergent topography can lead to high pore pressures during storms. Immediately post-landslide initiation, a thin veneer of colluvial material accumulates by small-scale slumping from landslide headscarps. Thereafter colluvium accumulates in hollows primarily through creep-dominated processes like tree throw and animal burrowing, recording the hillslope sediment flux since the last landslide event. We measured the post-landslide hillslope sediment flux in 30 colluvial hollows in the southern Appalachians using radiocarbon measurements collected from soil pits excavated at the centre of steep, landslide-prone hollows. We collected material from the soil-saprolite/bedrock boundary at each location for radiocarbon dating and dated different chemical fractions of the soil (humic acid, humin, charcoal) in an attempt to bracket the "true" age of the soil. We calculated infilling rates of each hollow by measuring soil depths in cross-hollow transects and dividing this by the age of the hollow. The interquartile range of hollow basal ages is 2278-8184 cal. yrs B.P., demonstrating the long return period of landslides in most colluvial hollows. Hillslope erosion rates calculated assuming a linear diffusion transport law show that the transport coefficient (diffusivity) of the hollows varied by 4 orders of magnitude 10-5 to 10-1 m2 yr-1, despite the hollows being formed in regionally consistent geology and vegetation. Uncertainty in the dating and hollow geometry measurements can, at most, account for an order of magnitude of that variability. Our results show that hollows have a phase of rapid infilling that slows through time, consistent with previous observations. Despite this, the oldest hollows show several orders of magnitude variation in the transport coefficient, suggesting local, hollow scale variations in process significantly affect hillslope erosion rates.
Cellular automaton formulation of passive scalar dynamics
NASA Technical Reports Server (NTRS)
Chen, Hudong; Matthaeus, William H.
1987-01-01
Cellular automata modeling of the advection of a passive scalar in a two-dimensional flow is examined in the context of discrete lattice kinetic theory. It is shown that if the passive scalar is represented by tagging or 'coloring' automation particles a passive advection-diffusion equation emerges without use of perturbation expansions. For the specific case of the hydrodynamic lattice gas model of Frisch et al. (1986), the diffusion coefficient is calculated by perturbation.
NASA Astrophysics Data System (ADS)
Rice, A. K.; Smits, K. M.; Cihan, A.; Howington, S. E.; Illangasekare, T. H.
2013-12-01
Understanding the movement of chemical vapors and gas through variably saturated soil subjected to atmospheric thermal and mass flux boundary conditions at the land/atmospheric interface is important to many applications, including landmine detection, methane leakage during natural gas production from shale and CO2 leakage from deep geologic storage. New, advanced technologies exist to sense chemical signatures and gas leakage at the land/atmosphere interface, but interpretation of sensor signals remains a challenge. Chemical vapors are subject to numerous interactions while migrating through the soil environment, masking source conditions. The process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal quantification of other processes, such as convective gas flow and temporal or spatial variation in soil moisture. Vapor migration is affected by atmospheric conditions (e.g. humidity, temperature, wind velocity), soil thermal and hydraulic properties and contaminant properties, all of which are physically and thermodynamically coupled. The complex coupling of two drastically different flow regimes in the subsurface and atmosphere is commonly ignored in modeling efforts, or simplifying assumptions are made to treat the systems as de-coupled. Experimental data under controlled laboratory settings are lacking to refine the theory for proper coupling and complex treatment of vapor migration through porous media in conversation with atmospheric flow and climate variations. Improving fundamental understanding and accurate quantification of these processes is not feasible in field settings due to lack of controlled initial and boundary conditions and inability to fully characterize the subsurface at all relevant scales. The goal of this work is to understand the influence of changes in atmospheric conditions to transport of vapors through variably saturated soil. We have developed a tank apparatus with a network of soil and atmospheric sensors and a head space for air flow to simulate the atmospheric boundary layer. Experiments were performed under varying temperature values at the soil surface bounded by the atmospheric boundary layer. The model of Smits et al. [2011], accounting for non-equilibrium phase change and coupled heat, water vapor and liquid water flux through soil, was amended to include organic vapor in the gas phase and migration mechanisms often overlooked in models (thermal and Knudsen diffusion, density driven advection). Experimental results show increased vapor mass flux across the soil/atmospheric interface due to heat applied from the atmosphere and coupling of heat and mass transfer in the shallow subsurface for both steady and diurnal temperature patterns. Comparison of model results to experimental data shows dynamic interactions between transport in porous media and boundary conditions. Results demonstrate the value of considering interactions of the atmosphere and subsurface to better understand chemical gas transport through unsaturated soils and the land/atmospheric interface.
NASA Astrophysics Data System (ADS)
Bekele, Dawit N.; Naidu, Ravi; Chadalavada, Sreenivasulu
2014-05-01
A comprehensive field study was conducted at a site contaminated with chlorinated solvents, mainly trichloroethylene (TCE), to investigate the influence of subsurface soil moisture and temperature on vapour intrusion (VI) into built structures. Existing approaches to predict the risk of VI intrusion into buildings assume homogeneous or discrete layers in the vadose zone through which TCE migrates from an underlying source zone. In reality, the subsurface of the majority of contaminated sites will be subject to significant variations in moisture and temperature. Detailed site-specific data were measured contemporaneously to evaluate the impact of spatial and temporal variability of subsurface soil properties on VI exposure assessment. The results revealed that indoor air vapour concentrations would be affected by spatial and temporal variability of subsurface soil moisture and temperature. The monthly monitoring of soil-gas concentrations over a period of one year at a depth of 3 m across the study site demonstrated significant variation in TCE vapour concentrations, which ranged from 480 to 629,308 μg/m3. Soil-gas wells at 1 m depth exhibited high seasonal variability in TCE vapour concentrations with a coefficient of variation 1.02 in comparison with values of 0.88 and 0.74 in 2 m and 3 m wells, respectively. Contour plots of the soil-gas TCE plume during wet and dry seasons showed that the plume moved across the site, hence locations of soil-gas monitoring wells for human risk assessment is a site specific decision. Subsurface soil-gas vapour plume characterisation at the study site demonstrates that assessment for VI is greatly influenced by subsurface soil properties such as temperature and moisture that fluctuate with the seasons of the year.
Chen, Jiajia; Pitchai, Krishnamoorthy; Birla, Sohan; Negahban, Mehrdad; Jones, David; Subbiah, Jeyamkondan
2014-10-01
A 3-dimensional finite-element model coupling electromagnetics and heat and mass transfer was developed to understand the interactions between the microwaves and fresh mashed potato in a 500 mL tray. The model was validated by performing heating of mashed potato from 25 °C on a rotating turntable in a microwave oven, rated at 1200 W, for 3 min. The simulated spatial temperature profiles on the top and bottom layer of the mashed potato showed similar hot and cold spots when compared to the thermal images acquired by an infrared camera. Transient temperature profiles at 6 locations collected by fiber-optic sensors showed good agreement with predicted results, with the root mean square error ranging from 1.6 to 11.7 °C. The predicted total moisture loss matched well with the observed result. Several input parameters, such as the evaporation rate constant, the intrinsic permeability of water and gas, and the diffusion coefficient of water and gas, are not readily available for mashed potato, and they cannot be easily measured experimentally. Reported values for raw potato were used as baseline values. A sensitivity analysis of these input parameters on the temperature profiles and the total moisture loss was evaluated by changing the baseline values to their 10% and 1000%. The sensitivity analysis showed that the gas diffusion coefficient, intrinsic water permeability, and the evaporation rate constant greatly influenced the predicted temperature and total moisture loss, while the intrinsic gas permeability and the water diffusion coefficient had little influence. This model can be used by the food product developers to understand microwave heating of food products spatially and temporally. This tool will allow food product developers to design food package systems that would heat more uniformly in various microwave ovens. The sensitivity analysis of this study will help us determine the most significant parameters that need to be measured accurately for reliable model prediction. © 2014 Institute of Food Technologists®
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Canhai
The standard two-film theory (STFT) is a diffusion-based mechanism that can be used to describe gas mass transfer across liquid film. Fundamental assumptions of the STFT impose serious limitations on its ability to predict mass transfer coefficients. To better understand gas absorption across liquid film in practical situations, a multiphase computational fluid dynamics (CFD) model fully equipped with mass transport and chemistry capabilities has been developed for solvent-based carbon dioxide (CO 2) capture to predict the CO 2 mass transfer coefficient in a wetted wall column. The hydrodynamics is modeled using a volume of fluid method, and the diffusive andmore » reactive mass transfer between the two phases is modeled by adopting a one-fluid formulation. We demonstrate that the proposed CFD model can naturally account for the influence of many important factors on the overall mass transfer that cannot be quantitatively explained by the STFT, such as the local variation in fluid velocities and properties, flow instabilities, and complex geometries. The CFD model also can predict the local mass transfer coefficient variation along the column height, which the STFT typically does not consider.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Canhai
The standard two-film theory (STFT) is a diffusion-based mechanism that can be used to describe gas mass transfer across liquid film. Fundamental assumptions of the STFT impose serious limitations on its ability to predict mass transfer coefficients. To better understand gas absorption across liquid film in practical situations, a multiphase computational fluid dynamics (CFD) model fully equipped with mass transport and chemistry capabilities has been developed for solvent-based carbon dioxide (CO2) capture to predict the CO2 mass transfer coefficient in a wetted wall column. The hydrodynamics is modeled using a volume of fluid method, and the diffusive and reactive massmore » transfer between the two phases is modeled by adopting a one-fluid formulation. We demonstrate that the proposed CFD model can naturally account for the influence of many important factors on the overall mass transfer that cannot be quantitatively explained by the STFT, such as the local variation in fluid velocities and properties, flow instabilities, and complex geometries. The CFD model also can predict the local mass transfer coefficient variation along the column height, which the STFT typically does not consider.« less
Wang, Chao; Xu, Zhijie; Lai, Canhai; ...
2018-03-27
The standard two-film theory (STFT) is a diffusion-based mechanism that can be used to describe gas mass transfer across liquid film. Fundamental assumptions of the STFT impose serious limitations on its ability to predict mass transfer coefficients. To better understand gas absorption across liquid film in practical situations, a multiphase computational fluid dynamics (CFD) model fully equipped with mass transport and chemistry capabilities has been developed for solvent-based carbon dioxide (CO 2) capture to predict the CO 2 mass transfer coefficient in a wetted wall column. The hydrodynamics is modeled using a volume of fluid method, and the diffusive andmore » reactive mass transfer between the two phases is modeled by adopting a one-fluid formulation. We demonstrate that the proposed CFD model can naturally account for the influence of many important factors on the overall mass transfer that cannot be quantitatively explained by the STFT, such as the local variation in fluid velocities and properties, flow instabilities, and complex geometries. The CFD model also can predict the local mass transfer coefficient variation along the column height, which the STFT typically does not consider.« less
Wang, Peifang; Wang, Teng; Yao, Yu; Wang, Chao; Liu, Cui; Yuan, Ye
2016-01-01
Management of heavy metal contamination requires accurate information about the distribution of bioavailable fractions, and about exchange between the solid and solution phases. In this study, we employed diffusive gradients in thin-films (DGT) and traditional chemical extraction methods (soil solution, HOAc, EDTA, CaCl2, and NaOAc) to determine the Cd bioavailability in Cd-contaminated soil with the addition of Pb. Two typical terrestrial species (wheat, Bainong AK58; maize, Zhengdan 958) were selected as the accumulation plants. The results showed that the added Pb may enhance the efficiency of Cd phytoextraction which is indicated by the increasing concentration of Cd accumulating in the plant tissues. The DGT-measured Cd concentrations and all the selected traditional extractants measured Cd concentrations all increased with increasing concentration of the addition Pb which were similar to the change trends of the accumulated Cd concentrations in plant tissues. Moreover, the Pearson regression coefficients between the different indicators obtained Cd concentrations and plants uptake Cd concentrations were further indicated significant correlations (p < 0.01). However, the values of Pearson regression coefficients showed the merits of DGT, CaCl2, and Csol over the other three methods. Consequently, the in situ measurement of DGT and the ex situ traditional methods could all reflect the inhibition effects between Cd and Pb. Due to the feature of dynamic measurements of DGT, it could be a robust tool to predict Cd bioavaiability in complex contaminated soil. PMID:27271644
Thermophysical properties of gas phase uranium tetrafluoride
NASA Technical Reports Server (NTRS)
Watanabe, Yoichi; Anghaie, Samim
1993-01-01
Thermophysical data of gaseous uranium tetrafluoride (UF4) are theoretically obtained by taking into account dissociation of molecules at high temperatures (2000-6000 K). Determined quantities include specific heat, optical opacity, diffusion coefficient, viscosity, and thermal conductivity. A computer program is developed for the calculation.
Wellbore stability in oil and gas drilling with chemical-mechanical coupling.
Yan, Chuanliang; Deng, Jingen; Yu, Baohua
2013-01-01
Wellbore instability in oil and gas drilling is resulted from both mechanical and chemical factors. Hydration is produced in shale formation owing to the influence of the chemical property of drilling fluid. A new experimental method to measure diffusion coefficient of shale hydration is given, and the calculation method of experimental results is introduced. The diffusion coefficient of shale hydration is measured with the downhole temperature and pressure condition, then the penetration migrate law of drilling fluid filtrate around the wellbore is calculated. Furthermore, the changing rules of shale mechanical properties affected by hydration and water absorption are studied through experiments. The relationships between shale mechanical parameters and the water content are established. The wellbore stability model chemical-mechanical coupling is obtained based on the experimental results. Under the action of drilling fluid, hydration makes the shale formation softened and produced the swelling strain after drilling. This will lead to the collapse pressure increases after drilling. The study results provide a reference for studying hydration collapse period of shale.
Wellbore Stability in Oil and Gas Drilling with Chemical-Mechanical Coupling
Deng, Jingen
2013-01-01
Wellbore instability in oil and gas drilling is resulted from both mechanical and chemical factors. Hydration is produced in shale formation owing to the influence of the chemical property of drilling fluid. A new experimental method to measure diffusion coefficient of shale hydration is given, and the calculation method of experimental results is introduced. The diffusion coefficient of shale hydration is measured with the downhole temperature and pressure condition, then the penetration migrate law of drilling fluid filtrate around the wellbore is calculated. Furthermore, the changing rules of shale mechanical properties affected by hydration and water absorption are studied through experiments. The relationships between shale mechanical parameters and the water content are established. The wellbore stability model chemical-mechanical coupling is obtained based on the experimental results. Under the action of drilling fluid, hydration makes the shale formation softened and produced the swelling strain after drilling. This will lead to the collapse pressure increases after drilling. The study results provide a reference for studying hydration collapse period of shale. PMID:23935430
CO2 fluxes from diffuse degassing in Italy
NASA Astrophysics Data System (ADS)
Cardellini, C.; Chiodini, G.; Frondini, F.; Caliro, S.
2016-12-01
Central and southern Italy are affected by an intense process of CO2 Earth degassing from both active volcanoes, and tectonically active areas. Regional scale studies, based on C mass balance of groundwater of regional aquifers in not volcanically active areas, highlighted the presence of two large CO2 degassing structures that, for magnitude and the geochemical-isotopic features, were related to a regional process of mantle degassing. Quantitative estimates provided a CO2 flux of 9 Mt/y for the region (62000 km2). Besides the magnitude of the process, a strong link between the deep CO2 degassing and the seismicity of the region and a strict correlation between migration of deep CO2-rich fluids and the heat flux have been highlighted. In addition, the region is also characterised by the presence of many cold gas emissions where deeply derived CO2 is released by vents and soil diffuse degassing areas. Both direct CO2 expulsion at the surface and C-rich groundwater are different manifestations of the same process, in fact, the deeply produced gas can be dissolved by groundwater or emitted directly to the atmosphere depending on the gas flux rate, and the geological-structural and hydrogeological settings. Quantitative estimations of the CO2 fluxes are available only for a limited number ( 30) of the about 270 catalogued gas manifestations allowing an estimations of a CO2 flux of 1.4 Mt/y. Summing the two estimates the non-volcanic CO2 flux from the region results globally relevant, being from 2 to 10% of the estimated present-day global CO2 discharge from subaerial volcanoes. Large amounts of CO2 is also discharged by soil diffuse degassing in volcanic-hydrothermal systems. Specific surveys at Solfatara of Pozzuoli (Campi Flegrei Caldera) pointed out the relevance of this process. CO2 diffuse degassing at Solfatara, measured since 1998 shows a persistent CO2 flux of 1300 t/d (± 390 t/d), a flux comparable to an erupting volcano. The quantification of diffuse CO2 degassing in Italy points out the relevance of non-volcanic CO2 degassing and of soil degassing from volcanoes, suggesting that the actual underestimation of the global CO2 degassing, may arise also from the lack of specific and systematic studies of the numerous "degassing areas" of the world, that would contribute to better constrain the global CO2 budget.
NASA Technical Reports Server (NTRS)
Mair, R. W.; Hurlimann, M. D.; Sen, P. N.; Schwartz, L. M.; Patz, S.; Walsworth, R. L.
2001-01-01
We have extended the utility of NMR as a technique to probe porous media structure over length scales of approximately 100-2000 microm by using the spin 1/2 noble gas 129Xe imbibed into the system's pore space. Such length scales are much greater than can be probed with NMR diffusion studies of water-saturated porous media. We utilized Pulsed Gradient Spin Echo NMR measurements of the time-dependent diffusion coefficient, D(t), of the xenon gas filling the pore space to study further the measurements of both the pore surface-area-to-volume ratio, S/V(p), and the tortuosity (pore connectivity) of the medium. In uniform-size glass bead packs, we observed D(t) decreasing with increasing t, reaching an observed asymptote of approximately 0.62-0.65D(0), that could be measured over diffusion distances extending over multiple bead diameters. Measurements of D(t)/D(0) at differing gas pressures showed this tortuosity limit was not affected by changing the characteristic diffusion length of the spins during the diffusion encoding gradient pulse. This was not the case at the short time limit, where D(t)/D(0) was noticeably affected by the gas pressure in the sample. Increasing the gas pressure, and hence reducing D(0) and the diffusion during the gradient pulse served to reduce the previously observed deviation of D(t)/D(0) from the S/V(p) relation. The Pade approximation is used to interpolate between the long and short time limits in D(t). While the short time D(t) points lay above the interpolation line in the case of small beads, due to diffusion during the gradient pulse on the order of the pore size, it was also noted that the experimental D(t) data fell below the Pade line in the case of large beads, most likely due to finite size effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKone, T.E.; Bennett, D.H.
2002-08-01
In multimedia mass-balance models, the soil compartment is an important sink as well as a conduit for transfers to vegetation and shallow groundwater. Here a novel approach for constructing soil transport algorithms for multimedia fate models is developed and evaluated. The resulting algorithms account for diffusion in gas and liquid components; advection in gas, liquid, or solid phases; and multiple transformation processes. They also provide an explicit quantification of the characteristic soil penetration depth. We construct a compartment model using three and four soil layers to replicate with high reliability the flux and mass distribution obtained from the exact analyticalmore » solution describing the transient dispersion, advection, and transformation of chemicals in soil with fixed properties and boundary conditions. Unlike the analytical solution, which requires fixed boundary conditions, the soil compartment algorithms can be dynamically linked to other compartments (air, vegetation, ground water, surface water) in multimedia fate models. We demonstrate and evaluate the performance of the algorithms in a model with applications to benzene, benzo(a)pyrene, MTBE, TCDD, and tritium.« less
On the X-ray temperature of hot gas in diffuse nebulae
NASA Astrophysics Data System (ADS)
Toalá, J. A.; Arthur, S. J.
2018-05-01
X-ray emitting diffuse nebulae around hot stars are observed to have soft-band temperatures in the narrow range [1-3]× 106 K, independent of the stellar wind parameters and the evolutionary stage of the central star. We discuss the origin of this X-ray temperature for planetary nebulae (PNe), Wolf-Rayet nebulae (WR) and interstellar wind bubbles around hot young stars in our Galaxy and the Magellanic Clouds. We calculate the differential emission measure (DEM) distributions as a function of temperature from previously published simulations and combine these with the X-ray emission coefficient for the 0.3-2.0 keV band to estimate the X-ray temperatures. We find that all simulated nebulae have DEM distributions with steep negative slopes, which is due to turbulent mixing at the interface between the hot shocked stellar wind and the warm photoionized gas. Sharply peaked emission coefficients act as temperature filters and emphasize the contribution of gas with temperatures close to the peak position, which coincides with the observed X-ray temperatures for the chemical abundance sets we consider. Higher metallicity nebulae have lower temperature and higher luminosity X-ray emission. We show that the second temperature component found from spectral fitting to X-ray observations of WR nebulae is due to a significant contribution from the hot shocked stellar wind, while the lower temperature principal component is dominated by nebular gas. We suggest that turbulent mixing layers are the origin of the soft X-ray emission in the majority of diffuse nebulae.
On the X-ray temperature of hot gas in diffuse nebulae
NASA Astrophysics Data System (ADS)
Toalá, J. A.; Arthur, S. J.
2018-07-01
X-ray-emitting diffuse nebulae around hot stars are observed to have soft-band temperatures in the narrow range [1-3] × 106K, independent of the stellar wind parameters and the evolutionary stage of the central star. We discuss the origin of this X-ray temperature for planetary nebulae, Wolf-Rayet (WR) nebulae, and interstellar wind bubbles around hot young stars in our Galaxy and the Magellanic Clouds. We calculate the differential emission measure (DEM) distributions as a function of temperature from previously published simulations and combine these with the X-ray emission coefficient for the 0.3-2.0 keV band to estimate the X-ray temperatures. We find that all simulated nebulae have DEM distributions with steep negative slopes, which is due to turbulent mixing at the interface between the hot shocked stellar wind and the warm photoionized gas. Sharply peaked emission coefficients act as temperature filters and emphasize the contribution of gas with temperatures close to the peak position, which coincides with the observed X-ray temperatures for the chemical abundance sets we consider. Higher metallicity nebulae have lower temperature and higher luminosity X-ray emission. We show that the second temperature component found from spectral fitting to X-ray observations of WR nebulae is due to a significant contribution from the hot shocked stellar wind, while the lower temperature principal component is dominated by nebular gas. We suggest that turbulent mixing layers are the origin of the soft X-ray emission in the majority of diffuse nebulae.
Li, Li; Yang, Deshuai; Fisher, Trevor R; Qiao, Qi; Yang, Zhen; Hu, Na; Chen, Xiangshu; Huang, Liangliang
2017-10-24
The loading-dependent diffusion behavior of CH 4 , CO 2 , SO 2 , and their binary mixtures in ZIF-10 has been investigated in detail by using classical molecular dynamics simulations. Our simulation results demonstrate that the self-diffusion coefficient D i of CH 4 molecules decreases sharply and monotonically with the loading while those of both CO 2 and SO 2 molecules initially display a slight increase at low uptakes and follow a slow decrease at high uptakes. Accordingly, the interaction energies between CH 4 molecules and ZIF-10 remain nearly constant regardless of the loading due to the absence of hydrogen bonds (HBs), while the interaction energies between CO 2 (or SO 2 ) and ZIF-10 decease rapidly with the loading, especially at small amounts of gas molecules. Such different loading-dependent diffusion and interaction mechanisms can be attributed to the relevant HB behavior between gas molecules and ZIF-10. At low loadings, both the number and strength of HBs between CO 2 (or SO 2 ) molecules and ZIF-10 decrease obviously as the loading increases, which is responsible for the slight increase of their diffusion coefficients. However, at high loadings, their HB strength increases with the loading. Similar loading-dependent phenomena of diffusion, interaction, and HB behavior can be observed for CH 4, CO 2 , and SO 2 binary mixtures in ZIF-10, only associated with some HB competition between CO 2 and SO 2 molecules in the case of the CO 2 /SO 2 mixture.
[On the effect of partial flooding on 137Cs and 90Sr in forest biogeocenosis].
Perevolotskaia, T V; Bulavik, I M; Perevolotskiĭ, A N
2009-01-01
The analysis was made on 137Cs and 90Sr distribution oak, pine and hornbeam plantations depending on different under soil water levels. Intensity of 137Cs and of 90Sr migration along the vertical layers of soils is determined by under soil water level at a specific sampling site. The closer under soil water to the surface of the soil, the lowest radionuclide contamination is in the upper soil levels and the highest radionuclide contamination is in the deeper layers. The "fast" and "slow" quasi diffusion coefficients for 137Cs and for 90Sr and their contribution to the total migration of radionuclide through vertical soil levels were determined. A decrease in 137Cs and increase in 90Sr transfer factors to the elements of overground phytomass as a result of under soil water level lowering was established.
Diffuse CO2 degassing at Vesuvio, Italy
NASA Astrophysics Data System (ADS)
Frondini, Francesco; Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Granieri, Domenico; Ventura, Guido
2004-10-01
At Vesuvio, a significant fraction of the rising hydrothermal-volcanic fluids is subjected to a condensation and separation process producing a CO2-rich gas phase, mainly expulsed through soil diffuse degassing from well defined areas called diffuse degassing structures (DDS), and a liquid phase that flows towards the outer part of the volcanic cone. A large amount of thermal energy is associated with the steam condensation process and subsequent cooling of the liquid phase. The total amount of volcanic-hydrothermal CO2 discharged through diffuse degassing has been computed through a sequential Gaussian simulation (sGs) approach based on several hundred accumulation chamber measurements and, at the time of the survey, amounted to 151 t d-1. The steam associated with the CO2 output, computed assuming that the original H2O/CO2 ratio of hydrothermal fluids is preserved in fumarolic effluents, is 553 t d-1, and the energy produced by the steam condensation and cooling of the liquid phase is 1.47×1012 J d-1 (17 MW). The location of the CO2 and temperature anomalies show that most of the gas is discharged from the inner part of the crater and suggests that crater morphology and local stratigraphy exert strong control on CO2 degassing and subsurface steam condensation. The amounts of gas and energy released by Vesuvio are comparable to those released by other volcanic degassing areas of the world and their estimates, through periodic surveys of soil CO2 flux, can constitute a useful tool to monitor volcanic activity.
Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay
Hartman, Blayne; Hammond, Douglas E.
1984-01-01
Radon 222 concentrations in the water and sedimentary columns and radon exchange rates across the sediment-water and air-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water exchange rates, and the annual averages of these methods agree within the uncertainty of the determinations, about 20%. The annual average of benthic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon exchange across the air-water interface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas exchange is linearly dependent upon wind speed over a wind speed range of 3.2–6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas exchange rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas exchange models.
Verginelli, Iason; Yao, Yijun; Suuberg, Eric M.
2017-01-01
In this study we present a petroleum vapor intrusion tool implemented in Microsoft® Excel® using Visual Basic for Applications (VBA) and integrated within a graphical interface. The latter helps users easily visualize two-dimensional soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, biodegradation reaction rate constant, soil characteristics and building features. This tool is based on a two-dimensional explicit analytical model that combines steady-state diffusion-dominated vapor transport in a homogeneous soil with a piecewise first-order aerobic biodegradation model, in which rate is limited by oxygen availability. As recommended in the recently released United States Environmental Protection Agency's final Petroleum Vapor Intrusion guidance, a sensitivity analysis and a simplified Monte Carlo uncertainty analysis are also included in the spreadsheet. PMID:28163564
Verginelli, Iason; Yao, Yijun; Suuberg, Eric M
2016-01-01
In this study we present a petroleum vapor intrusion tool implemented in Microsoft ® Excel ® using Visual Basic for Applications (VBA) and integrated within a graphical interface. The latter helps users easily visualize two-dimensional soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, biodegradation reaction rate constant, soil characteristics and building features. This tool is based on a two-dimensional explicit analytical model that combines steady-state diffusion-dominated vapor transport in a homogeneous soil with a piecewise first-order aerobic biodegradation model, in which rate is limited by oxygen availability. As recommended in the recently released United States Environmental Protection Agency's final Petroleum Vapor Intrusion guidance, a sensitivity analysis and a simplified Monte Carlo uncertainty analysis are also included in the spreadsheet.
Transient Numerical Modeling of Catalytic Channels
NASA Technical Reports Server (NTRS)
Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.
2007-01-01
This paper presents a transient model of catalytic combustion suitable for isolated channels and monolith reactors. The model is a lumped two-phase (gas and solid) model where the gas phase is quasi-steady relative to the transient solid. Axial diffusion is neglected in the gas phase; lateral diffusion, however, is accounted for using transfer coefficients. The solid phase includes axial heat conduction and external heat loss due to convection and radiation. The combustion process utilizes detailed gas and surface reaction models. The gas-phase model becomes a system of stiff ordinary differential equations while the solid phase reduces, after discretization, into a system of stiff ordinary differential-algebraic equations. The time evolution of the system came from alternating integrations of the quasi-steady gas and transient solid. This work outlines the numerical model and presents some sensitivity studies on important parameters including internal transfer coefficients, catalytic surface site density, and external heat-loss (if applicable). The model is compared to two experiments using CO fuel: (1) steady-state conversion through an isothermal platinum (Pt) tube and (2) transient propagation of a catalytic reaction inside a small Pt tube. The model requires internal mass-transfer resistance to match the experiments at lower residence times. Under mass-transport limited conditions, the model reasonably predicted exit conversion using global mass-transfer coefficients. Near light-off, the model results did not match the experiment precisely even after adjustment of mass-transfer coefficients. Agreement improved for the first case after adjusting the surface kinetics such that the net rate of CO adsorption increased compared to O2. The CO / O2 surface mechanism came from a sub-set of reactions in a popular CH4 / O2 mechanism. For the second case, predictions improved for lean conditions with increased external heat loss or adjustment of the kinetics as in the first case. Finally, the results show that different initial surface-species distribution leads to different steady-states under certain conditions. These results demonstrate the utility of a lumped two-phase model of a transient catalytic combustor with detailed chemistry.
A generalized expression for lag-time in the gas-phase permeation of hollow tubes
NASA Technical Reports Server (NTRS)
Shah, K. K.; Nelson, H. G.; Johnson, D. L.; Hamaker, F. M.
1975-01-01
A generalized expression for the nonsteady-state parameter, lag-time, has been obtained from Fick's second law for gas-phase transport through hollow, cylindrical membranes. This generalized expression is simplified for three limiting cases of practical interest: (1) diffusion controlled transport, (2) phase boundary reaction control at the inlet surface, and (3) phase boundary reaction control at the outlet surface. In all three cases the lag-time expressions were found to be inversely proportional only to the diffusion coefficient and functionally dependent on the membrane radii. Finally, the lag-time expressions were applied to experimentally obtained lag-time data for alpha-phase titanium and alpha-phase iron.
Ye, Yong-Jun; Zhang, Yun-Feng; Dai, Xin-Tao; Ding, De-Xin
2017-10-01
The particle size and heaped methods of exhalation media have important effects on physical parameters, such as the free radon production rate, porosity, permeability, and radon diffusion coefficient. However, existing methods for determining those parameters are too complex, and time-consuming. In this study, a novel, systematic determining method was proposed based on nuclide decay, radon diffusion migration theory, and the mass conservation law, and an associated experimental device was designed and manufactured. The parameters of uranium ore heap and sandy soil of radon diffusion coefficient (D), free radon production rate (α), media permeability (k), and porosity (ε) were obtained. At the same time, the practicality of the novel determining method was improved over other methods, with the results showing that accuracy was within the acceptable range of experimental error. This novel method will be of significance for the study of radon migration and exhalation in granulated porous media. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rathbun, R.E.; Tai, D.Y.
1988-01-01
The two-film model is often used to describe the volatilization of organic substances from water. This model assumes uniformly mixed water and air phases separated by thin films of water and air in which mass transfer is by molecular diffusion. Mass-transfer coefficients for the films, commonly called film coefficients, are related through the Henry's law constant and the model equation to the overall mass-transfer coefficient for volatilization. The films are modeled as two resistances in series, resulting in additive resistances. The two-film model and the concept of additivity of resistances were applied to experimental data for acetone and t-butyl alcohol. Overall mass-transfer coefficients for the volatilization of acetone and t-butyl alcohol from water were measured in the laboratory in a stirred constant-temperature bath. Measurements were completed for six water temperatures, each at three water mixing conditions. Wind-speed was constant at about 0.1 meter per second for all experiments. Oxygen absorption coefficients were measured simultaneously with the measurement of the acetone and t-butyl alcohol mass-transfer coefficients. Gas-film coefficients for acetone, t-butyl alcohol, and water were determined by measuring the volatilization fluxes of the pure substances over a range of temperatures. Henry's law constants were estimated from data from the literature. The combination of high resistance in the gas film for solutes with low values of the Henry's law constants has not been studied previously. Calculation of the liquid-film coefficients for acetone and t-butyl alcohol from measured overall mass-transfer and gas-film coefficients, estimated Henry's law constants, and the two-film model equation resulted in physically unrealistic, negative liquid-film coefficients for most of the experiments at the medium and high water mixing conditions. An analysis of the two-film model equation showed that when the percentage resistance in the gas film is large and the gas-film resistance approaches the overall resistance in value, the calculated liquid-film coefficient becomes extremely sensitive to errors in the Henry's law constant. The negative coefficients were attributed to this sensitivity and to errors in the estimated Henry's law constants. Liquid-film coefficients for the absorption of oxygen were correlated with the stirrer Reynolds number and the Schmidt number. Application of this correlation with the experimental conditions and a molecular-diffusion coefficient adjustment resulted in values of the liquid-film coefficients for both acetone and t-butyl alcohol within the range expected for all three mixing conditions. Comparison of Henry's law constants calculated from these film coefficients and the experimental data with the constants calculated from literature data showed that the differences were small relative to the errors reported in the literature as typical for the measurement or estimation of Henry's law constants for hydrophilic compounds such as ketones and alcohols. Temperature dependence of the mass-transfer coefficients was expressed in two forms. The first, based on thermodynamics, assumed the coefficients varied as the exponential of the reciprocal absolute temperature. The second empirical approach assumed the coefficients varied as the exponential of the absolute temperature. Both of these forms predicted the temperature dependence of the experimental mass-transfer coefficients with little error for most of the water temperature range likely to be found in streams and rivers. Liquid-film and gas-film coefficients for acetone and t-butyl alcohol were similar in value. However, depending on water mixing conditions, overall mass-transfer coefficients for acetone were from two to four times larger than the coefficients for t-butyl alcohol. This difference in behavior of the coefficients resulted because the Henry's law constant for acetone was about three times larger than that of
Janik, Leslie J; Forrester, Sean T; Soriano-Disla, José M; Kirby, Jason K; McLaughlin, Michael J; Reimann, Clemens
2015-02-01
The authors' aim was to develop rapid and inexpensive regression models for the prediction of partitioning coefficients (Kd), defined as the ratio of the total or surface-bound metal/metalloid concentration of the solid phase to the total concentration in the solution phase. Values of Kd were measured for boric acid (B[OH]3(0)) and selected added soluble oxoanions: molybdate (MoO4(2-)), antimonate (Sb[OH](6-)), selenate (SeO4(2-)), tellurate (TeO4(2-)) and vanadate (VO4(3-)). Models were developed using approximately 500 spectrally representative soils of the Geochemical Mapping of Agricultural Soils of Europe (GEMAS) program. These calibration soils represented the major properties of the entire 4813 soils of the GEMAS project. Multiple linear regression (MLR) from soil properties, partial least-squares regression (PLSR) using mid-infrared diffuse reflectance Fourier-transformed (DRIFT) spectra, and models using DRIFT spectra plus analytical pH values (DRIFT + pH), were compared with predicted log K(d + 1) values. Apart from selenate (R(2) = 0.43), the DRIFT + pH calibrations resulted in marginally better models to predict log K(d + 1) values (R(2) = 0.62-0.79), compared with those from PSLR-DRIFT (R(2) = 0.61-0.72) and MLR (R(2) = 0.54-0.79). The DRIFT + pH calibrations were applied to the prediction of log K(d + 1) values in the remaining 4313 soils. An example map of predicted log K(d + 1) values for added soluble MoO4(2-) in soils across Europe is presented. The DRIFT + pH PLSR models provided a rapid and inexpensive tool to assess the risk of mobility and potential availability of boric acid and selected oxoanions in European soils. For these models to be used in the prediction of log K(d + 1) values in soils globally, additional research will be needed to determine if soil variability is accounted on the calibration. © 2014 SETAC.
Observations of Ag diffusion in ion implanted SiC
Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; ...
2015-03-17
The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500–1625°C, were investigated in this study by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated,more » including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Lastly, estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.« less
Modeling benzene permeation through drinking water high density polyethylene (HDPE) pipes.
Mao, Feng; Ong, Say Kee; Gaunt, James A
2015-09-01
Organic compounds such as benzene, toluene, ethyl benzene and o-, m-, and p-xylene from contaminated soil and groundwater may permeate through thermoplastic pipes which are used for the conveyance of drinking water in water distribution systems. In this study, permeation parameters of benzene in 25 mm (1 inch) standard inside dimension ratio (SIDR) 9 high density polyethylene (HDPE) pipes were estimated by fitting the measured data to a permeation model based on a combination of equilibrium partitioning and Fick's diffusion. For bulk concentrations between 6.0 and 67.5 mg/L in soil pore water, the concentration-dependent diffusion coefficients of benzene were found to range from 2.0×10(-9) to 2.8×10(-9) cm2/s while the solubility coefficient was determined to be 23.7. The simulated permeation curves of benzene for SIDR 9 and SIDR 7 series of HDPE pipes indicated that small diameter pipes were more vulnerable to permeation of benzene than large diameter pipes, and the breakthrough of benzene into the HDPE pipe was retarded and the corresponding permeation flux decreased with an increase of the pipe thickness. HDPE pipes exposed to an instantaneous plume exhibited distinguishable permeation characteristics from those exposed to a continuous source with a constant input. The properties of aquifer such as dispersion coefficients (DL) also influenced the permeation behavior of benzene through HDPE pipes.
Superdiffusive gas recovery from nanopores
NASA Astrophysics Data System (ADS)
Wu, Haiyi; He, Yadong; Qiao, Rui
2016-11-01
Understanding the recovery of gas from reservoirs featuring pervasive nanopores is essential for effective shale gas extraction. Classical theories cannot accurately predict such gas recovery and many experimental observations are not well understood. Here we report molecular simulations of the recovery of gas from single nanopores, explicitly taking into account molecular gas-wall interactions. We show that, in very narrow pores, the strong gas-wall interactions are essential in determining the gas recovery behavior both quantitatively and qualitatively. These interactions cause the total diffusion coefficients of the gas molecules in nanopores to be smaller than those predicted by kinetic theories, hence slowing down the rate of gas recovery. These interactions also lead to significant adsorption of gas molecules on the pore walls. Because of the desorption of these gas molecules during gas recovery, the gas recovery from the nanopore does not exhibit the usual diffusive scaling law (i.e., the accumulative recovery scales as R ˜t1 /2 ) but follows a superdiffusive scaling law R ˜tn (n >0.5 ), which is similar to that observed in some field experiments. For the system studied here, the superdiffusive gas recovery scaling law can be captured well by continuum models in which the gas adsorption and desorption from pore walls are taken into account using the Langmuir model.
Abiotic uptake of gases by organic soils
NASA Astrophysics Data System (ADS)
Smagin, A. V.
2007-12-01
Methodological and experimental studies of the abiotic uptake of gaseous substances by organic soils were performed. The static adsorption method of closed vessels for assessing the interaction of gases with the solid and liquid soil phases and the dynamic method of determining the sorption isotherms of gases by soils were analyzed. The theoretical substantiation of the methods and their practical implementations on the basis of a PGA-7 portable gas analyzer (Russia) were considered. Good agreement between the equilibrium sorption isotherms of the gases and the Langmuir model was revealed; for the real ranges of natural gas concentrations, this model can be reduced to the linear Henry equation. The limit values of the gas sorption (Langmuir monolayer capacity) are typical for dry samples; they vary from 670 4000 g/m3 for methane and oxygen to 20 000 25 000 g/m3 for carbon dioxide. The linear distribution coefficients of gases between the solid and gas phases of organic soils (Henry constants) are 8 18 units for poorly sorbed gases (O2, CH4) and 40 60 units for CO2. The kinetics of the chemicophysical uptake of gases by the soil studied is linear in character and obeys the relaxation kinetic model of the first order with the corresponding relaxation constants, which vary from 1 h -1 in wet samples to 10 h -1 in dry samples.
Automated software to determine thermal diffusivity of oilgas mixture
NASA Astrophysics Data System (ADS)
Khismatullin, A. S.
2018-05-01
The paper presents automated software to determine thermal diffusivity of oil-gas mixture. A series of laboratory testscovering transformer oil cooling in a power transformer tank was conducted. The paper also describes diagrams of temperature-timedependence of bubbling. Thermal diffusivity coefficients are experimentally defined. The paper considers a mathematical task of heat flowdistribution in a rectangular parallelepiped, alongside with the solution of heat a conduction equation in a power transformer tank, which represents a rectangular parallelepiped. A device for temperature monitoring in the tank is described in detail. The relay control diagram, which ensures temperature monitoring againsttransformer overheating is described.
Characterization of Biogenic Gas and Mineral Formation Process by Denitrification in Porous Media
NASA Astrophysics Data System (ADS)
Hall, C. A.; Kim, D.; Mahabadi, N.; van Paassen, L. A.
2017-12-01
Biologically mediated processes have been regarded and developed as an alternative approach to traditional ground improvement techniques. Denitrification has been investigated as a potential ground improvement process towards liquefaction hazard mitigation. During denitrification, microorganisms reduce nitrate to dinitrogen gas and facilitate calcium carbonate precipitation as a by-product under adequate environmental conditions. The formation of dinitrogen gas desaturates soils and allows for potential pore pressure dampening during earthquake events. While, precipitation of calcium carbonate can improve the mechanical properties by filling the voids and cementing soil particles. As a result of small changes in gas and mineral phases, the mechanical properties of soils can be significantly affected. Prior research has primarily focused on quantitative analysis of overall residual calcium carbonate mineral and biogenic gas products in lab-scale porous media. However, the distribution of these products at the pore-scale has not been well-investigated. In this research, denitrification is activated in a microfluidic chip simulating a homogenous pore structure. The denitrification process is monitored by sequential image capture, where gas and mineral phase changes are evaluated by image processing. Analysis of these images correspond with previous findings, which demonstrate that biogenic gas behaviour at the pore scale is affected by the balance between reaction, diffusion, and convection rates.
USDA-ARS?s Scientific Manuscript database
In the first part of our study we determined permeability, diffusion, and solubility coefficients of gaseous chlorine dioxide (ClO2) through the following packaging material: biaxial-oriented polypropylene (BOPP); polyethylene terephthalate (PET); poly lactic acid (PLA); multilayer structure of ethy...
Physicochemical application of capillary chromatography
NASA Astrophysics Data System (ADS)
Vasil'ev, A. V.; Aleksandrov, E. N.
1992-04-01
The application of capillary gas chromatography in the determination of the free energy, enthalpy, and entropy of sorption, the saturated vapour pressure and activity coefficients, the assessment of the lipophilicity of volatile compounds, and the study of the properties of polymers and liquid crystals is described. The use of reaction cappillary chromatography in kinetic studies of conformational conversions, thermal degradation, and photochemical reactions is examined. Studies on the use of capillary columns for determination of the second virial coefficients and viscosity of gases and the diffusion coefficients in gases, liquids, supercritical fluids, and polymers are analysed. The bibliography includes 114 references.
The effect of tissue structure and soil chemistry on trace element uptake in fossils
NASA Astrophysics Data System (ADS)
Hinz, Emily A.; Kohn, Matthew J.
2010-06-01
Trace element profiles for common divalent cations (Sr, Zn, Ba), rare-earth elements (REE), Y, U, and Th were measured in fossil bones and teeth from the c. 25 ka Merrell locality, Montana, USA, by using laser-ablation ICP-MS. Multiple traverses in teeth were transformed into 2-D trace element maps for visualizing structural influences on trace element uptake. Trace element compositions of different soils from the fossil site were also analyzed by solution ICP-MS, employing progressive leaches that included distilled H 2O, 0.1 M acetic acid, and microwave digestion in concentrated HCl-HNO 3. In teeth, trace element uptake in enamel is 2-4 orders of magnitude slower than in dentine, forming an effective trace element barrier. Uptake in dentine parallel to the dentine-enamel interface is enhanced by at least 2 orders of magnitude compared to transverse, causing trace element "plumes" down the tooth core. In bone, U, Ba and Sr are nearly homogeneous, implying diffusivities ˜5 orders of magnitude faster than in enamel and virtually complete equilibration with host soils. In contrast all REE show strong depletions inward, with stepwise linear segments in log-normal or inverse complementary error function plots; these data require a multi-medium diffusion model, with about 2 orders of magnitude difference in slowest vs. fastest diffusivities. Differences in REE diffusivities in bone (slow) vs. dentine (fast) reflect different partition coefficients ( Kd's). Although acid leaches and bulk digestion of soils yield comparable fossil-soil Kd's among different elements, natural solutions are expected to be neutral to slightly basic. Distilled H 2O leachates instead reveal radically different Kd's in bone for REE than for U-Sr-Ba, suggest orders of magnitude lower effective diffusivities for REE, and readily explain steep vs. flat profiles for REE vs. U-Sr-Ba, respectively. Differences among REE Kd's and diffusivities may explain inward changes in Ce anomalies. Acid washes and bulk soil compositions yield misleading Kd's for many trace elements, especially the REE, and H 2O-leaches are preferred. Patterns of trace element distributions indicate diagenetic alteration at all scales, including enamel, and challenge the use of trace elements in paleodietary studies.
Reaction diffusion in the nickel-chromium-aluminum and cobalt-chromium-aluminum systems
NASA Technical Reports Server (NTRS)
Levine, S. R.
1977-01-01
The effects of MCrAl coating-substrate interdiffusion on oxidation life and the general mutliphase, multicomponent diffusion problem were examined. Semi-infinite diffusion couples that had sources representing coatings and sinks representing gas turbine alloys were annealed at 1,000, 1,095, 1,150, or 1,205 C for as long as 500 hours. The source and sink aluminum and chromium contents and the base metal (cobalt or nickel) determined the parabolic diffusion rate constants of the couples and predicted finite coating lives. The beta source strength concept provided a method (1) for correlating beta recession rate constants with composition; (2) for determining reliable average total, diffusion, and constitutional activation energies; and (3) for calculating interdiffusion coefficients.
Paudel, Indira; Shaviv, Avi; Bernstein, Nirit; Heuer, Bruria; Shapira, Or; Lukyanov, Victor; Bar-Tal, Asher; Rotbart, Nativ; Ephrath, Jhonathan; Cohen, Shabtai
2016-04-01
Water quality, soil and climate can interact to limit photosynthesis and to increase photooxidative damage in sensitive plants. This research compared diffusive and non-diffusive limitations to photosynthesis as well as photorespiration of leaves of grapefruit trees in heavy clay and sandy soils having a previous history of treated wastewater (TWW) irrigation for >10 years, with different water qualities [fresh water (FW) vs TWW and sodium amended treated wastewater (TWW + Na)] in two arid climates (summer vs winter) and in orchard and lysimeter experiments. TWW irrigation increased salts (Na(+) and Cl(-) ), membrane leakage, proline and soluble sugar content, and decreased osmotic potentials in leaves of all experiments. Reduced leaf growth and higher stomatal and non-stomatal (i.e. mesophyll) limitations were found in summer and on clay soil for TWW and TWW + Na treatments in comparison to winter, sandy soil and FW irrigation, respectively. Stomatal closure, lower chlorophyll content and altered Rubisco activity are probable causes of higher limitations. On the other hand, non-photochemical quenching, an alternative energy dissipation pathway, was only influenced by water quality, independent of soil type and season. Furthermore, light and CO2 response curves were investigated for other possible causes of higher non-stomatal limitation. A higher proportion of non-cyclic electrons were directed to the O2 dependent pathway, and a higher proportion of electrons were diverted to photorespiration in summer than in winter. In conclusion, both diffusive and non-diffusive limitations contribute to the lower photosynthetic performance of leaves following TWW irrigation, and the response depends on soil type and environmental factors. © 2015 Scandinavian Plant Physiology Society.
1996-09-01
more accurate than the ideal gas law to derive a modified Gibbs-Thomson relation . Simulations of island and pit decay will be presented in which we...for Ag on Ag( 111) is studied as a function of lattice mismatch. The step formation energies for Pt( 111) are computed and the equilibrium shape of Pt... linear response expressions for thermalized system. The relation between the dynamic mobility and the frequency-dependent diffusion coefficient is still
Membrane-Based Characterization of a Gas Component — A Transient Sensor Theory
Lazik, Detlef
2014-01-01
Based on a multi-gas solution-diffusion problem for a dense symmetrical membrane this paper presents a transient theory of a planar, membrane-based sensor cell for measuring gas from both initial conditions: dynamic and thermodynamic equilibrium. Using this theory, the ranges for which previously developed, simpler approaches are valid will be discussed; these approaches are of vital interest for membrane-based gas sensor applications. Finally, a new theoretical approach is introduced to identify varying gas components by arranging sensor cell pairs resulting in a concentration independent gas-specific critical time. Literature data for the N2, O2, Ar, CH4, CO2, H2 and C4H10 diffusion coefficients and solubilities for a polydimethylsiloxane membrane were used to simulate gas specific sensor responses. The results demonstrate the influence of (i) the operational mode; (ii) sensor geometry and (iii) gas matrices (air, Ar) on that critical time. Based on the developed theory the case-specific suitable membrane materials can be determined and both operation and design options for these sensors can be optimized for individual applications. The results of mixing experiments for different gases (O2, CO2) in a gas matrix of air confirmed the theoretical predictions. PMID:24608004
Natural ³⁷Ar concentrations in soil air: implications for monitoring underground nuclear explosions.
Riedmann, Robin A; Purtschert, Roland
2011-10-15
For on-site inspections (OSI) under the Comprehensive Nuclear-Test-Ban Treaty (CTBT) measurement of the noble gas ³⁷Ar is considered an important technique. ³⁷Ar is produced underground by neutron activation of Calcium by the reaction ⁴⁰Ca(n,α)³⁷Ar. The naturally occurring equilibrium ³⁷Ar concentration balance in soil air is a function of an exponentially decreasing production rate from cosmic ray neutrons with increasing soil depth, diffusive transport in the soil air, and radioactive decay (T(1/2): 35 days). In this paper for the first time, measurements of natural ³⁷Ar activities in soil air are presented. The highest activities of ~100 mBq m⁻³ air are 2 orders of magnitude larger than in the atmosphere and are found in 1.5-2.5 m depth. At depths > 8 m ³⁷Ar activities are < 20 mBq m⁻³ air. After identifying the main ³⁷Ar production and gas transport factors the expected global activity range distribution of ³⁷Ar in shallow subsoil (0.7 m below the surface) was estimated. In high altitude soils, with large amounts of Calcium and with low gas permeability, ³⁷Ar activities may reach values up to 1 Bq m⁻³.
A Hydrodynamic Theory for Spatially Inhomogeneous Semiconductor Lasers. 2; Numerical Results
NASA Technical Reports Server (NTRS)
Li, Jianzhong; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)
2001-01-01
We present numerical results of the diffusion coefficients (DCs) in the coupled diffusion model derived in the preceding paper for a semiconductor quantum well. These include self and mutual DCs in the general two-component case, as well as density- and temperature-related DCs under the single-component approximation. The results are analyzed from the viewpoint of free Fermi gas theory with many-body effects incorporated. We discuss in detail the dependence of these DCs on densities and temperatures in order to identify different roles played by the free carrier contributions including carrier statistics and carrier-LO phonon scattering, and many-body corrections including bandgap renormalization and electron-hole (e-h) scattering. In the general two-component case, it is found that the self- and mutual- diffusion coefficients are determined mainly by the free carrier contributions, but with significant many-body corrections near the critical density. Carrier-LO phonon scattering is dominant at low density, but e-h scattering becomes important in determining their density dependence above the critical electron density. In the single-component case, it is found that many-body effects suppress the density coefficients but enhance the temperature coefficients. The modification is of the order of 10% and reaches a maximum of over 20% for the density coefficients. Overall, temperature elevation enhances the diffusive capability or DCs of carriers linearly, and such an enhancement grows with density. Finally, the complete dataset of various DCs as functions of carrier densities and temperatures provides necessary ingredients for future applications of the model to various spatially inhomogeneous optoelectronic devices.
PERFORMANCE OF A NEW PASSIVE DIFFUSION SAMPLER FOR SOIL GAS AND GROUND WATER SAMPLING
Conventional practice to estimate intrusion of fuel vapors from ground water to buildings measures the concentration of BTEX in ground water beneath the building using a conventional well screened across the water table. Conventional practice assumes that the concentration of co...
Development and Application of a Three-Dimensional Finite Element Vapor Intrusion Model
Pennell, Kelly G.; Bozkurt, Ozgur; Suuberg, Eric M.
2010-01-01
Details of a three-dimensional finite element model of soil vapor intrusion, including the overall modeling process and the stepwise approach, are provided. The model is a quantitative modeling tool that can help guide vapor intrusion characterization efforts. It solves the soil gas continuity equation coupled with the chemical transport equation, allowing for both advective and diffusive transport. Three-dimensional pressure, velocity, and chemical concentration fields are produced from the model. Results from simulations involving common site features, such as impervious surfaces, porous foundation sub-base material, and adjacent structures are summarized herein. The results suggest that site-specific features are important to consider when characterizing vapor intrusion risks. More importantly, the results suggest that soil gas or subslab gas samples taken without proper regard for particular site features may not be suitable for evaluating vapor intrusion risks; rather, careful attention needs to be given to the many factors that affect chemical transport into and around buildings. PMID:19418819
Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits.
Sperry, John S; Wang, Yujie; Wolfe, Brett T; Mackay, D Scott; Anderegg, William R L; McDowell, Nate G; Pockman, William T
2016-11-01
Ecosystem models have difficulty predicting plant drought responses, partially from uncertainty in the stomatal response to water deficits in soil and atmosphere. We evaluate a 'supply-demand' theory for water-limited stomatal behavior that avoids the typical scaffold of empirical response functions. The premise is that canopy water demand is regulated in proportion to threat to supply posed by xylem cavitation and soil drying. The theory was implemented in a trait-based soil-plant-atmosphere model. The model predicted canopy transpiration (E), canopy diffusive conductance (G), and canopy xylem pressure (P canopy ) from soil water potential (P soil ) and vapor pressure deficit (D). Modeled responses to D and P soil were consistent with empirical response functions, but controlling parameters were hydraulic traits rather than coefficients. Maximum hydraulic and diffusive conductances and vulnerability to loss in hydraulic conductance dictated stomatal sensitivity and hence the iso- to anisohydric spectrum of regulation. The model matched wide fluctuations in G and P canopy across nine data sets from seasonally dry tropical forest and piñon-juniper woodland with < 26% mean error. Promising initial performance suggests the theory could be useful in improving ecosystem models. Better understanding of the variation in hydraulic properties along the root-stem-leaf continuum will simplify parameterization. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Radon-222 concentrations in ground water and soil gas on Indian reservations in Wisconsin
DeWild, John F.; Krohelski, James T.
1995-01-01
For sites with wells finished in the sand and gravel aquifer, the coefficient of determination (R2) of the regression of concentration of radon-222 in ground water as a function of well depth is 0.003 and the significance level is 0.32, which indicates that there is not a statistically significant relation between radon-222 concentrations in ground water and well depth. The coefficient of determination of the regression of radon-222 in ground water and soil gas is 0.19 and the root mean square error of the regression line is 271 picocuries per liter. Even though the significance level (0.036) indicates a statistical relation, the root mean square error of the regression is so large that the regression equation would not give reliable predictions. Because of an inadequate number of samples, similar statistical analyses could not be performed for sites with wells finished in the crystalline and sedimentary bedrock aquifers.
Transport Mechanism of Guest Methane in Water-Filled Nanopores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bui, Tai; Phan, Anh; Cole, David R.
We computed the transport of methane through 1 nm wide slit-shaped pores carved out of selected solid substrates using classical molecular dynamics simulations. The transport mechanism was elucidated via the implementation of the well-tempered metadynamics algorithm, which allowed for the quantification and visualization of the free energy landscape sampled by the guest molecule. Models for silica, magnesium oxide, alumina, muscovite, and calcite were used as solid substrates. Slit-shaped pores of width 1 nm were carved out of these materials and filled with liquid water. Methane was then inserted at low concentration. The results show that the diffusion of methane throughmore » the hydrated pores is strongly dependent on the solid substrate. While methane molecules diffuse isotropically along the directions parallel to the pore surfaces in most of the pores considered, anisotropic diffusion was observed in the hydrated calcite pore. The differences observed in the various pores are due to local molecular properties of confined water, including molecular structure and solvation free energy. The transport mechanism and the diffusion coefficients are dependent on the free energy barriers encountered by one methane molecule as it migrates from one preferential adsorption site to a neighboring one. It was found that the heterogeneous water distribution in different hydration layers and the low free energy pathways in the plane parallel to the pore surfaces yield the anisotropic diffusion of methane molecules in the hydrated calcite pore. Our observations contribute to an ongoing debate on the relation between local free energy profiles and diffusion coefficients and could have important practical consequences in various applications, ranging from the design of selective membranes for gas separations to the sustainable deployment of shale gas.« less
Arangio, Andrea M; Slade, Jonathan H; Berkemeier, Thomas; Pöschl, Ulrich; Knopf, Daniel A; Shiraiwa, Manabu
2015-05-14
Multiphase reactions of OH radicals are among the most important pathways of chemical aging of organic aerosols in the atmosphere. Reactive uptake of OH by organic compounds has been observed in a number of studies, but the kinetics of mass transport and chemical reaction are still not fully understood. Here we apply the kinetic multilayer model of gas-particle interactions (KM-GAP) to experimental data from OH exposure studies of levoglucosan and abietic acid, which serve as surrogates and molecular markers of biomass burning aerosol (BBA). The model accounts for gas-phase diffusion within a cylindrical coated-wall flow tube, reversible adsorption of OH, surface-bulk exchange, bulk diffusion, and chemical reactions at the surface and in the bulk of the condensed phase. The nonlinear dependence of OH uptake coefficients on reactant concentrations and time can be reproduced by KM-GAP. We find that the bulk diffusion coefficient of the organic molecules is approximately 10(-16) cm(2) s(-1), reflecting an amorphous semisolid state of the organic substrates. The OH uptake is governed by reaction at or near the surface and can be kinetically limited by surface-bulk exchange or bulk diffusion of the organic reactants. Estimates of the chemical half-life of levoglucosan in 200 nm particles in a biomass burning plume increase from 1 day at high relative humidity to 1 week under dry conditions. In BBA particles transported to the free troposphere, the chemical half-life of levoglucosan can exceed 1 month due to slow bulk diffusion in a glassy matrix at low temperature.
Transport Mechanism of Guest Methane in Water-Filled Nanopores
Bui, Tai; Phan, Anh; Cole, David R.; ...
2017-05-11
We computed the transport of methane through 1 nm wide slit-shaped pores carved out of selected solid substrates using classical molecular dynamics simulations. The transport mechanism was elucidated via the implementation of the well-tempered metadynamics algorithm, which allowed for the quantification and visualization of the free energy landscape sampled by the guest molecule. Models for silica, magnesium oxide, alumina, muscovite, and calcite were used as solid substrates. Slit-shaped pores of width 1 nm were carved out of these materials and filled with liquid water. Methane was then inserted at low concentration. The results show that the diffusion of methane throughmore » the hydrated pores is strongly dependent on the solid substrate. While methane molecules diffuse isotropically along the directions parallel to the pore surfaces in most of the pores considered, anisotropic diffusion was observed in the hydrated calcite pore. The differences observed in the various pores are due to local molecular properties of confined water, including molecular structure and solvation free energy. The transport mechanism and the diffusion coefficients are dependent on the free energy barriers encountered by one methane molecule as it migrates from one preferential adsorption site to a neighboring one. It was found that the heterogeneous water distribution in different hydration layers and the low free energy pathways in the plane parallel to the pore surfaces yield the anisotropic diffusion of methane molecules in the hydrated calcite pore. Our observations contribute to an ongoing debate on the relation between local free energy profiles and diffusion coefficients and could have important practical consequences in various applications, ranging from the design of selective membranes for gas separations to the sustainable deployment of shale gas.« less
Galdámez, J Román; Danner, Ronald P; Duda, J Larry
2007-07-20
The application of a mass spectrometer detector in capillary column inverse gas chromatography is shown to be a valuable tool in the measurement of diffusion and solubility in polymer-solvent systems. The component specific detector provides excellent results for binary polymer-solvent systems, but it is particularly valuable because it can be readily applied to multicomponent systems. Results for a number of infinitely dilute solvents in poly(vinyl acetate) (PVAc) are reported over a range of temperature from 60 to 150 degrees C. Results are also reported for finite concentrations of toluene and methanol in PVAc from 60 to 110 degrees C. Finally, the technique was applied to study the effect of finite concentrations of toluene on the diffusion coefficients of THF and cyclohexane in PVAc. The experimental data compare well with literature values for both infinite and finite concentrations, indicating that the experimental protocol described in this work is sound.
van Roon, André; Parsons, John R; Krap, Lenny; Govers, Harrie A J
2005-09-01
This theoretical study was performed to investigate the influence of soil temperature, soil water content and soil organic carbon fraction on the mobility of monoterpenes (C10HnOn') applied as pesticides to a top soil layer. This mobility was expressed as the amount volatilized and leached from the contaminated soil layer after a certain amount of time. For this, (slightly modified) published analytical solutions to a one dimensional, homogeneous medium, diffusion/advection/biodegradation mass balance equation were used. The required input-parameters were determined in a preceding study. Because the monoterpenes studied differ widely in the values for their physico-chemical properties, the relative importance of the various determinants also differed widely. Increasing soil water saturation reduced monoterpene vaporization and leaching losses although a modest increase was usually observed at high soil water contents. Organic matter served as the major retention domain, reducing volatilization and leaching losses. Increasing temperature resulted in higher volatilization and leaching losses. Monoterpene mobility was influenced by vertical water flow. Volatilization losses could be reduced by adding a clean soil layer on top of the contaminated soil. Detailed insight into the specific behaviour of different monoterpenes was obtained by discussing intermediate calculation results; the transport retardation factors and effective soil diffusion coefficients. One insight was that the air-water interface compartment is probably not an important partitioning domain for monoterpenes in most circumstances. The results further indicated that biodegradation is an important process for monoterpenes in soil.
NASA Astrophysics Data System (ADS)
Wang, Yangyang; Chen, Jianfa; Pang, Xiongqi; Zhang, Baoshou; Wang, Yifan; He, Liwen; Chen, Zeya; Zhang, Guoqiang
2018-05-01
Natural gases in the Carboniferous Donghe Sandstone reservoir within the Block HD4 of the Hadexun Oilfield, Tarim Basin are characterized by abnormally low total hydrocarbon gas contents (<65%), low methane contents (<10%) and low dryness coefficients (<0.5), and a reversal of the normal trend of carbon isotope ratios, showing δ13C methane (C1) > δ13C ethane (C2) < δ13C propane (C3) < δ13C butane (C4). Specifically, methane is enriched in 13C with the variations in δ13C1 values between gases from Block HD4 and gases from its neighboring blocks reaching 10‰. This type of abnormal gas has never been reported previously in the Tarim Basin and such large variations in δ13C have rarely been observed in other basins globally. Based on a comprehensive analysis of gas geochemical data and the geological setting of the Carboniferous reservoirs in the Hadexun Oilfield, we reveal that the anomalies of the gas compositions and carbon isotope ratios in the Donghe Sandstone reservoir are caused by gas diffusion through the poorly-sealed caprock rather than by pathways such as gas mixing, microorganism degradation, different kerogen types or thermal maturity degrees of source rocks. The documentation of an in-reservoir gas diffusion during the post entrapment process as a major cause for gas geochemical anomalies may offer important insight into exploring natural gas resources in deeply buried sedimentary basins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, M.; Reiners, W.A.
We investigated changes in soil-atmosphere flux of CH{sub 4}, N{sub 2}O, and NO resulting from the succession of pasture to forest in the Atlantic lowlands of Costa Rica. We studied a dozen sites intensively for over one year in order to measure rates and to understand controlling mechanisms for gas exchange. CH{sub 4} flux was controlled primarily by soil moisture content. Soil consumption of atmospheric CH{sub 4} was greatest when soils were relatively dry. Forest soils consumed CH{sub 4} while pasture soils which had poor drainage generally produced CH{sub 4}. The seasonal pattern of N{sub 2}O emissions from forest soilsmore » was related exponentially to soil water-filled pore space. Annual average N{sub 2}O emissions correlated with soil exchangeable NO{sub 3}{sup -} concentrations. Soil-atmosphere NO flux was greatest when soils were relatively dry. We found the largest NO emissions from abandoned pasture sites. Combining these data with those from another study in the Atlantic lowlands of Costa Rica that focused on deforestation, we present a 50-year chronosequence of trace gas emissions that extends from natural conditions, through disturbance and natural recovery. The soil-atmosphere fluxes of CH{sub 4} and N{sub 2}O and NO may be restored to predisturbance rates during secondary succession. The changes in trace gas emissions following deforestation, through pasture use and secondary succession, may be explained conceptually through reference to two major controlling factors, nitrogen availability and soil-atmosphere diffusive exchange of gases as it is influenced by soil moisture content and soil compaction. 59 refs., 6 figs., 3 tabs.« less
The three-zone composite productivity model for a multi-fractured horizontal shale gas well
NASA Astrophysics Data System (ADS)
Qi, Qian; Zhu, Weiyao
2018-02-01
Due to the nano-micro pore structures and the massive multi-stage multi-cluster hydraulic fracturing in shale gas reservoirs, the multi-scale seepage flows are much more complicated than in most other conventional reservoirs, and are crucial for the economic development of shale gas. In this study, a new multi-scale non-linear flow model was established and simplified, based on different diffusion and slip correction coefficients. Due to the fact that different flow laws existed between the fracture network and matrix zone, a three-zone composite model was proposed. Then, according to the conformal transformation combined with the law of equivalent percolation resistance, the productivity equation of a horizontal fractured well, with consideration given to diffusion, slip, desorption, and absorption, was built. Also, an analytic solution was derived, and the interference of the multi-cluster fractures was analyzed. The results indicated that the diffusion of the shale gas was mainly in the transition and Fick diffusion regions. The matrix permeability was found to be influenced by slippage and diffusion, which was determined by the pore pressure and diameter according to the Knudsen number. It was determined that, with the increased half-lengths of the fracture clusters, flow conductivity of the fractures, and permeability of the fracture network, the productivity of the fractured well also increased. Meanwhile, with the increased number of fractures, the distance between the fractures decreased, and the productivity slowly increased due to the mutual interfere of the fractures.
NASA Astrophysics Data System (ADS)
Zhang, Yongyong; Zhou, Yujian; Shao, Quanxi; Liu, Hongbin; Lei, Qiuliang; Zhai, Xiaoyan; Wang, Xuelei
2016-12-01
Diffuse nutrient loss mechanism is complicated and shows remarkably regional differences due to spatial heterogeneities of underlying surface conditions, climate and agricultural practices. Moreover, current available observations are still hard to support the identification of impact factors due to different time or space steps. In this study, an integrated water system model (HEQM) was adopted to obtain the simulated loads of diffuse components (carriers: runoff and sediment; nutrient: total nitrogen (TN) and total phosphorous (TP)) with synchronous scales. Multivariable statistical analysis approaches (Analysis of Similarity and redundancy analysis) were used to assess the regional differences, and to identify impact factors as well as their contributions. Four catchments were selected as our study areas, i.e., Xiahui and Zhangjiafen Catchments of Miyun Basin in North China, Yuliang and Tunxi Catchments of Xin'anjiang Basin in South China. Results showed that the model performances of monthly processes were very good for runoff and good for sediment, TN and TP. The annual average coefficients of all the diffuse components in Xin'anjiang Basin were much greater than those in Miyun Basin, and showed significantly regional differences. All the selected impact factors interpreted 72.87-82.16% of the regional differences of carriers, and 62.72-71.62% of those of nutrient coefficients, respectively. For individual impact factor categories, the critical category was geography, followed by land-use/cover, carriers, climate, as well as soil and agricultural practices in Miyun Basin, or agricultural practices and soil in Xin'anjiang Basin. For individual factors, the critical factors were locations for the carrier regional differences, and carriers or chemical fertilizer for the nutrient regional differences. This study is expected to promote further applications of integrated water system model and multivariable statistical analysis in the diffuse nutrient studies, and provide a scientific support for the diffuse pollution control and management in China.
Understanding transport of volatile contaminants in soil gas and ground water, particularly those associated with underground storage tanks (USTs), requires a detailed knowledge about the depth-dependent distribution of chemical species in the subsurface. A risk assessment of th...
Understanding transport of volatile contaminants in soil gas and ground water, particularly those associated with underground storage tanks (USTs), requires a detailed knowledge about the depthdependent distribution of chemical species in the subsurface. A risk assessment of the...
Intra-aggregate CO2 enrichment: a modelling approach for aerobic soils
NASA Astrophysics Data System (ADS)
Schlotter, D.; Schack-Kirchner, H.
2013-02-01
CO2 concentration gradients inside soil aggregates, caused by the respiration of soil microorganisms and fungal hyphae, might lead to variations in the soil solution chemistry on a mm-scale, and to an underestimation of the CO2 storage. But, up to now, there seems to be no feasible method for measuring CO2 inside natural aggregates with sufficient spatial resolution. We combined a one-dimensional model for gas diffusion in the inter-aggregate pore space with a cylinder diffusion model, simulating the consumption/production and diffusion of O2 and CO2 inside soil aggregates with air- and water-filled pores. Our model predicts that for aerobic respiration (respiratory quotient = 1) the intra-aggregate increase in the CO2 partial pressure can never be higher than 0.9 kPa for siliceous, and 0.1 kPa for calcaric aggregates, independent of the level of water-saturation. This suggests that only for siliceous aggregates CO2 produced by aerobic respiration might cause a high small-scale spatial variability in the soil solution chemistry. In calcaric aggregates, however, the contribution of carbonate species to the CO2 transport should lead to secondary carbonates on the aggregate surfaces. As regards the total CO2 storage in aerobic soils, both siliceous and calcaric, the effect of intra-aggregate CO2 gradients seems to be negligible. To assess the effect of anaerobic respiration on the intra-aggregate CO2 gradients, the development of a device for measuring CO2 on a mm-scale in soils is indispensable.
Degryse, Fien; Smolders, Erik; Oliver, Ian; Zhang, Hao
2003-09-01
The technique of diffusive gradients in thin films (DGT) has been suggested to sample an available fraction of metals in soil. The objectives of this study were to compare DGT measurements with commonly measured fractions of Zn in soil, viz, the soil solution concentration and the total Zn concentration. The DGT technique was used to measure fluxes and interfacial concentrations of Zn in three series of field-contaminated soils collected in transects toward galvanized electricity pylons and in 15 soils amended with ZnCl2 at six rates. The ratio of DGT-measured concentration to pore water concentration of Zn, R, varied between 0.02 and 1.52 (mean 0.29). This ratio decreased with decreasing distribution coefficient, Kd, of Zn in the soil, which is in agreement with the predictions of the DGT-induced fluxes in soils (DIFS) model. The R values predicted with the DIFS model were generally larger than the observed values in the ZnCl2-amended soils at the higher Zn rates. A modification of the DIFS model indicated that saturation of the resin gel was approached in these soils, despite the short deployment times used (2 h). The saturation of the resin with Zn did not occur in the control soils (no Zn salt added) or the field-contaminated soils. Pore water concentration of Zn in these soils was predicted from the DGT-measured concentration and the total Zn content. Predicted values and observations were generally in good agreement. The pore water concentration was more than 5 times underpredicted for the most acid soil (pH = 3) and for six other soils, for which the underprediction was attributed to the presence of colloidal Zn in the soil solution.
Ion Diffusion Within Water Films in Unsaturated Porous Media.
Tokunaga, Tetsu K; Finsterle, Stefan; Kim, Yongman; Wan, Jiamin; Lanzirotti, Antonio; Newville, Matthew
2017-04-18
Diffusion is important in controlling local solute transport and reactions in unsaturated soils and geologic formations. Although it is commonly assumed that thinning of water films controls solute diffusion at low water contents, transport under these conditions is not well understood. We conducted experiments in quartz sands at low volumetric water contents (θ) to quantify ion diffusion within adsorbed films. At the lowest water contents, we employed fixed relative humidities to control water films at nm thicknesses. Diffusion profiles for Rb + and Br - in unsaturated sand packs were measured with a synchrotron X-ray microprobe, and inverse modeling was used to determine effective diffusion coefficients, D e, as low as ∼9 × 10 -15 m 2 s -1 at θ = 1.0 × 10 -4 m 3 m -3 , where the film thickness = 0.9 nm. Given that the diffusion coefficients (D o ) of Rb + and Br - in bulk water (30 °C) are both ∼2.4 × 10 -9 m 2 s -1 , we found the impedance factor f = D e /(θD o ) is equal to 0.03 ± 0.02 at this very low saturation, in agreement with the predicted influence of interface tortuosity (τ a ) for diffusion along grain surfaces. Thus, reduced cross-sectional area (θ) and tortuosity largely accounted for the more than 5 orders of magnitude decrease in D e relative to D o as desaturation progressed down to nanoscale films.
Untangle soil-water-mucilage interactions: 1H NMR Relaxometry is lifting the veil
NASA Astrophysics Data System (ADS)
Brax, Mathilde; Buchmann, Christian; Schaumann, Gabriele Ellen
2017-04-01
Mucilage is mainly produced at the root tips and has a high water holding capacity derived from highly hydrophilic gel-forming substances. The objective of the MUCILAGE project is to understand the mechanistic role of mucilage for the regulation of water supply for plants. Our subproject investigates the chemical and physical properties of mucilage as pure gel and mixed with soil. 1H-NMR Relaxometry and PFG NMR represent non-intrusive powerful methods for soil scientific research by allowing quantification of the water distribution as well as monitoring of the water mobility in soil pores and gel phases.Relaxation of gel water differs from the one of pure water due to additional interactions with the gel matrix. Mucilage in soil leads to a hierarchical pore structure, consisting of the polymeric biohydrogel network surrounded by the surface of soil particles. The two types of relaxation rates 1/T1 and 1/T2 measured with 1H-NMR relaxometry refer to different relaxation mechanisms of water, while PFG-NMR measures the water self-diffusion coefficient. The objective of our study is to distinguish in situ water in gel from pore water in a simplified soil system, and to determine how the "gel effect" affects both relaxation rates and the water self-diffusion coefficient in porous systems. We demonstrate how the mucilage concentration and the soil solution alter the properties of water in the respective gel phases and pore systems in model soils. To distinguish gel-inherent processes from classical processes, we investigated the variations of the water mobility in pure chia mucilage under different conditions by using 1H-NMR relaxometry and PFG NMR. Using model soils, the signals coming from pore water and gel water were differentiated. We combined the equations describing 1H-NMR relaxation in porous systems and our experimental results, to explain how the presence of gel in soil affects 1H-NMR relaxation. Out of this knowledge we propose a method, which determines in situ the presence of mucilage in soil and characterizes several gel-specific parameters of the mucilage. Based on these findings, we discussed the potential and limitations of 1H-NMR relaxometry for following natural swelling and shrinking processes of a natural biopolymer in soil.
NASA Technical Reports Server (NTRS)
Tenney, D. R.; Unnam, J.
1978-01-01
Diffusion calculations were performed to establish the conditions under which concentration dependence of the diffusion coefficient was important in single, two, and three phase binary alloy systems. Finite-difference solutions were obtained for each type of system using diffusion coefficient variations typical of those observed in real alloy systems. Solutions were also obtained using average diffusion coefficients determined by taking a logarithmic average of each diffusion coefficient variation considered. The constant diffusion coefficient solutions were used as reference in assessing diffusion coefficient variation effects. Calculations were performed for planar, cylindrical, and spherical geometries in order to compare the effect of diffusion coefficient variations with the effect of interface geometries. In most of the cases considered, the diffusion coefficient of the major-alloy phase was the key parameter that controlled the kinetics of interdiffusion.
Gas-partitioning tracer test to qualify trapped gas during recharge
Heilweil, Victor M.; Kip, Solomon D.; Perkins, Kim S.; Ellett, Kevin M.
2004-01-01
Dissolved helium and bromide tracers were used to evaluate trapped gas during an infiltration pond experiment. Dissolved helium preferentially partitioned into trapped gas bubbles, or other pore air, because of its low solubility in water. This produced observed helium retardation factors of as much as 12 relative to bromide. Numerical simulations of helium breakthrough with both equilibrium and kinetically limited advection/dispersion/retardation did not match observed helium concentrations. However, better fits were obtained by including a decay term representing the diffusive loss of helium through interconnected, gas-filled pores. Calculations indicate that 7% to more than 26% of the porosity beneath the pond was filled with gas. Measurements of laboratory hydraulic properties indicate that a 10% decrease in saturation would reduce the hydraulic conductivity by at least one order of magnitude in the well-sorted sandstone, but less in the overlying soils. This is consistent with in situ measurements during the experiment, which show steeper hydraulic gradients in sandstone than in soil. Intrinsic permeability of the soil doubled during the first six months of the experiment, likely caused by a combination of dissolution and thermal contraction of trapped gas. Managers of artificial recharge basins may consider minimizing the amount of trapped gas by using wet, rather than dry, tilling to optimize infiltration rates, particularly in well-sorted porous media in which reintroduced trapped gas may cause substantial reductions in permeability. Trapped gas may also inhibit the amount of focused infiltration that occurs naturally during ephemeral flood events along washes and playas.
Gas-partitioning tracer test to quantify trapped gas during recharge
Heilweil, V.M.; Solomon, D.K.; Perkins, K.S.; Ellett, K.M.
2004-01-01
Dissolved helium and bromide tracers were used to evaluate trapped gas during an infiltration pond experiment. Dissolved helium preferentially partitioned into trapped gas bubbles, or other pore air, because of its low solubility in water. This produced observed helium retardation factors of as much as 12 relative to bromide. Numerical simulations of helium breakthrough with both equilibrium and kinetically limited advection/dispersion/retardation did not match observed helium concentrations. However, better fits were obtained by including a decay term representing the diffusive loss of helium through interconnected, gas-filled pores. Calculations indicate that 7% to more than 26% of the porosity beneath the pond was filled with gas. Measurements of laboratory hydraulic properties indicate that a 10% decrease in saturation would reduce the hydraulic conductivity by at least one order of magnitude in the well-sorted sandstone, but less in the overlying soils. This is consistent with in situ measurements during the experiment, which show steeper hydraulic gradients in sandstone than in soil. Intrinsic permeability of the soil doubled during the first six months of the experiment, likely caused by a combination of dissolution and thermal contraction of trapped gas. Managers of artificial recharge basins may consider minimizing the amount of trapped gas by using wet, rather than dry, tilling to optimize infiltration rates, particularly in well-sorted porous media in which reintroduced trapped gas may cause substantial reductions in permeability. Trapped gas may also inhibit the amount of focused infiltration that occurs naturally during ephemeral flood events along washes and playas.
NASA Astrophysics Data System (ADS)
Hernández, P. A.; Padilla, G.; Calvo, D.; Padrón, E.; Melian, G.; Dionis, S.; Nolasco, D.; Barrancos, J.; Rodríguez, F.; Pérez, N.
2012-04-01
Lanzarote Island is an emergent part of the East Canary Ridge and it is situated approximately 100 km from the NW coast of Morocco, covering an area of about 795km2. The largest historical eruption of the Canary Islands, Timanfaya, took place during 1730-36 in this island when long-term eruptions from a NE-SW-trending fissure formed the Montañas del Fuego. The last eruption at Lanzarote Island occurred during 1824, Tinguaton volcano, and produced a much smaller lava flow that reached the SW coast. At present, one of the most prominent phenomena at Timanfaya volcanic field is the high maintained superficial temperatures occurring in the area since the 1730 volcanic eruption. The maximum temperatures recorded in this zone are 605°C, taken in a slightly inclined well 13 m deep. Since fumarolic activity is absent at the surface environment of Lanzarote, to study the diffuse CO2 emission becomes an ideal geochemical tool for monitoring its volcanic activity. Soil CO2 efflux surveys were conducted throughout Timanfaya volcanic field and surrounding areas during the summer periods of 2006, 2007, 2008, 2009, fall period of 2010 and winter, spring and summer periods of 2011 to investigate long and short-term temporal variations of the diffuse CO2 emission from Timanfaya volcano. Soil CO2 efflux surveys were undertaken at Timanfaya volcanic field always under stable weather conditions to minimize effects of meteorological conditions on the CO2 at the soil atmosphere. Approximately 370-430 sampling sites were selected at the surface environment of Timanfaya to obtain an even distribution of the sampling points over the study area. The accumulation chamber method (Parkinson et al., 1981) was used to perform soil CO2 efflux measurements in-situ by means of a portable non dispersive infrared (NDIR) CO2 analyzer, which was interfaced to a hand size computer that runs data acquisition software. At each sampling site, soil temperature at 15 and 40cm depth was also measured by means of a thermocouple together with soil gas samples collected during the campaign of 2010 to evaluate the chemical and isotopic composition of soil gases. Diffuse CO2 emission values have ranged between non detectable values to 34 g m-2 d-1, and most of the study area have shown relatively low values, around the detection limit of the instrument (~0,5 g m-2 d-1). Higher soil CO2 diffuse emission values were observed where thermal anomalies occur, indicating a convective mechanism transport of gas from depth at these areas. Total CO2 outputs of the study area have been estimated in the range 41-518 t d-1 during the study period. Long-term temporal variation on total CO2 diffuse emission shows a peak recorded on winter 2011, suggesting a seasonal control on the CO2 emission. As part of the volcanic surveillance program and to understand the dynamics of CO2 diffuse emission at Timanfaya volcanic zone, an automatic geochemical station was installed in July 2010 to monitor the CO2 emission and investigate the short-term temporal variation. Time series of soil CO2 efflux shows also a close relationship with seasonal changes mainly due to rainfall.
NASA Astrophysics Data System (ADS)
Istomin, V. A.
2018-05-01
The software package Planet Atmosphere Investigator of Non-equilibrium Thermodynamics (PAINeT) has been devel-oped for studying the non-equilibrium effects associated with electronic excitation, chemical reactions and ionization. These studies are necessary for modeling process in shock tubes, in high enthalpy flows, in nozzles or jet engines, in combustion and explosion processes, in modern plasma-chemical and laser technologies. The advantages and possibilities of the package implementation are stated. Within the framework of the package implementation, based on kinetic theory approximations (one-temperature and state-to-state approaches), calculations are carried out, and the limits of applicability of a simplified description of shock-heated air flows and any other mixtures chosen by the user are given. Using kinetic theory algorithms, a numerical calculation of the heat fluxes and relaxation terms can be performed, which is necessary for further comparison of engineering simulation with experi-mental data. The influence of state-to-state distributions over electronic energy levels on the coefficients of thermal conductivity, diffusion, heat fluxes and diffusion velocities of the components of various gas mixtures behind shock waves is studied. Using the software package the accuracy of different approximations of the kinetic theory of gases is estimated. As an example state-resolved atomic ionized mixture of N/N+/O/O+/e- is considered. It is shown that state-resolved diffusion coefficients of neutral and ionized species vary from level to level. Comparing results of engineering applications with those given by PAINeT, recommendations for adequate models selection are proposed.
Diffusion of radon through concrete block walls: A significant source of indoor radon
Lively, R.S.; Goldberg, L.F.
1999-01-01
Basement modules located in southern Minnesota have been the site of continuous radon and environmental measurements during heating seasons since 1993. Concentrations of radon within the basement modules ranged from 70 Bq.m-3 to over 4000 Bq.m-3 between November to April during the three measurement periods. In the soil gas for the same times, concentrations of radon ranged between 25,000 and 70,000 Bq.m-3. Levels of radon within the basement modules changed by factors of five or more within 24 h, in concert with pressure gradients of 4 to 20 Pa that developed between the basement modules and their surroundings. Diffusion is identified as the principal method by which radon is transferred into and out of the basement modules, and appears to be relatively independent of insulating materials and vapour retarders. The variability of radon and correlations with differential pressure gradients may be related to air currents in the block walls and soil that interrupt radon diffusing inward. This yields a net decrease of radon in the basement modules by decay and outward diffusion. Levels of radon within the basement modules increase when the pressure differential is zero and air flow ceases, allowing diffusion gradients to be re-established. Radon levels in both the soil and the basement modules then increase until an equilibrium is achieved.
Template-directed fabrication of porous gas diffusion layer for magnesium air batteries
NASA Astrophysics Data System (ADS)
Xue, Yejian; Miao, He; Sun, Shanshan; Wang, Qin; Li, Shihua; Liu, Zhaoping
2015-11-01
The uniform micropore distribution in the gas diffusion layers (GDLs) of the air-breathing cathode is very important for the metal air batteries. In this work, the super-hydrophobic GDL with the interconnected regular pores is prepared by a facile silica template method, and then the electrochemical properties of the Mg air batteries containing these GDLs are investigated. The results indicate that the interconnected and uniform pore structure, the available water-breakout pressure and the high gas permeability coefficient of the GDL can be obtained by the application of 30% silica template. The maximum power density of the Mg air battery containing the GDL with 30% regular pores reaches 88.9 mW cm-2 which is about 1.2 times that containing the pristine GDL. Furthermore, the GDL with 30% regular pores exhibits the improved the long term hydrophobic stability.
Portable Automation of Static Chamber Sample Collection for Quantifying Soil Gas Flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Morgan P.; Groh, Tyler A.; Parkin, Timothy B.
Quantification of soil gas flux using the static chamber method is labor intensive. The number of chambers that can be sampled is limited by the spacing between chambers and the availability of trained research technicians. An automated system for collecting gas samples from chambers in the field would eliminate the need for personnel to return to the chamber during a flux measurement period and would allow a single technician to sample multiple chambers simultaneously. This study describes Chamber Automated Sampling Equipment (FluxCASE) to collect and store chamber headspace gas samples at assigned time points for the measurement of soil gasmore » flux. The FluxCASE design and operation is described, and the accuracy and precision of the FluxCASE system is evaluated. In laboratory measurements of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) concentrations of a standardized gas mixture, coefficients of variation associated with automated and manual sample collection were comparable, indicating no loss of precision. In the field, soil gas fluxes measured from FluxCASEs were in agreement with manual sampling for both N2O and CO2. Slopes of regression equations were 1.01 for CO2 and 0.97 for N2O. The 95% confidence limits of the slopes of the regression lines included the value of one, indicating no bias. Additionally, an expense analysis found a cost recovery ranging from 0.6 to 2.2 yr. Implementing the FluxCASE system is an alternative to improve the efficiency of the static chamber method for measuring soil gas flux while maintaining the accuracy and precision of manual sampling.« less
X-ray CT imaging and image-based modelling study of gas exchange in the rice rhizosphere
NASA Astrophysics Data System (ADS)
Affholder, Marie-Cecile; Keyes, Samuel David; Roose, Tiina; Heppell, James; Kirk, Guy
2016-04-01
We used X-ray computer tomography and image-based modelling to investigate CO2 uptake by rice roots growing in submerged soil, and its consequences for the chemistry and biology of the rhizosphere. From previous work, three processes are known to greatly modify the rhizophere of rice and other wetland plants: (1) oxygenation of the submerged, anoxic soil by O2 transported through the root gas channels (aerenchyma); (2) oxidation of ferrous iron and resulting accumulation of ferric oxide; and (3) pH changes due to protons formed in iron oxidation and released from the roots to balance excess intake of cations over anions. A further process, so far not much investigated, is the possibility of CO2 uptake by the roots. Large amounts of CO2 accumulate in submerged soils because CO2 formed in soil respiration escapes only slowly by diffusion through the water-saturated soil pores. There is therefore a large CO2 gradient between the soil and the aerenchyma inside the root, and CO2 may be taken up by the roots and vented to the atmosphere. The extent of this and its consequences for rhizosphere chemistry and biology are poorly understood. We grew rice plants in a submerged, strongly-reduced, Philippine rice soil contained in 10-cm diameter, 20-cm deep Perspex pots. Four-week old rice seedlings, grown in nutrient culture, were transplanted into the pots at either 1 or 4 plants per pot, planted closely together. After 3 and 4 weeks, the pots were analysed with an X-ray CT scanner (Custom Nikon/Xtek Hutch; 80 mm by 56 mm field of view and 40 μm voxel size). Gas bubbles were extracted from the data by 3D median filtering and roots using a region-growth method. The images showed prominent and abundant gas bubbles in the soil bulk, but no or very few bubbles in the soil close to roots. There was a clear relation between the absence of gas bubbles and the presence of roots, as well as an increasing concentration of bubbles with depth through the soil. Analysis of the bubbles showed they were approximately 50% CO2 by volume and 50% CH4. The corresponding concentrations of dissolved CO2 + HCO3- (NB CO2 is 20-times more soluble than CH4) in the soil bulk were of the order of 100 mM. We developed a mathematical model of CO2 generation and transport in submerged soil with uptake by and transport through rice roots, and used it to analyse the images. This showed that the observed depletion of CO2 around the roots was consistent with realistic values of parameters for the root gas permeability and rates of CO2 production and diffusion in submerged soil. Depletion of CO2 around the roots will have consequences for the chemistry of the rice rhizosphere and the extent of the root-induced pH changes and other changes listed above. In continuing work we are investigating the implications for the solubility and root uptake of soil Zn, deficiency of which is a widespread constraint to rice growth.
NASA Astrophysics Data System (ADS)
Cai, Chunpei
2013-10-01
In this paper, we investigate highly rarefied gaseous jet flows out of a planar exit and impinging at a normally set flat plate. Especially, we concentrate on the plate center stagnation point pressure and heat flux coefficients. For a specular reflective plate, the stagnation point pressure coefficient can be represented using two non-dimensional factors: the characteristic gas exit speed ratio S0 and the geometry ratio of H/L, where H is the planar exit semi-height and L is the center-to-center distance from the exit to the plate. For a diffuse reflective plate, the stagnation point pressure and heat flux coefficients involve an extra factor of T0/Tw, i.e., the ratio of exit gas temperature to the plate wall temperature. These results allow us to develop four diagrams, from which we can conveniently obtain the pressure and heat flux coefficients for the stagnation impingement point, at the collisionless flow limit. After normalization with these maximum coefficients, the pressure and heat flux coefficient distributions along the surface essentially degenerate to almost identical curves. As a result, with known plate surface pressure coefficient distributions and these diagrams, we can conveniently construct the heat flux coefficient distributions along the plate surface, and vice versa.
Ionization Chemistry and Role of Grains on Non-ideal MHD Effects in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Xu, Rui; Bai, Xue-Ning; Oberg, Karin I.
2015-01-01
Ionization in protoplanetary disks (PPDs) is one of the key elements for understanding disk chemistry. It also determines the coupling between gas and magnetic fields hence strongly affect PPD gas dynamics. We study the ionization chemistry in the presence of grains in the midplane region of PPDs and its impact on gas conductivity reflected in non-ideal MHD effects including Ohmic resistivity, Hall effect and ambipolar diffusion. We first develop a reduced chemical reaction network from the UMIST database. The reduced network contains much smaller number of species and reactions while yields reliable estimates of the disk ionization level compared with the full network. We further show that grains are likely the dominant charge carrier in the midplane regions of the inner disk, which significantly affects the gas conductivity. In particular, ambipolar diffusion is strongly reduced and the Hall coefficient changes sign in the presence of strong magnetic field. The latter provides a natural mechanism to the saturation of the Hall-shear instability.
Deterministic diffusion in flower-shaped billiards.
Harayama, Takahisa; Klages, Rainer; Gaspard, Pierre
2002-08-01
We propose a flower-shaped billiard in order to study the irregular parameter dependence of chaotic normal diffusion. Our model is an open system consisting of periodically distributed obstacles in the shape of a flower, and it is strongly chaotic for almost all parameter values. We compute the parameter dependent diffusion coefficient of this model from computer simulations and analyze its functional form using different schemes, all generalizing the simple random walk approximation of Machta and Zwanzig. The improved methods we use are based either on heuristic higher-order corrections to the simple random walk model, on lattice gas simulation methods, or they start from a suitable Green-Kubo formula for diffusion. We show that dynamical correlations, or memory effects, are of crucial importance in reproducing the precise parameter dependence of the diffusion coefficent.
Stochastic algorithm for simulating gas transport coefficients
NASA Astrophysics Data System (ADS)
Rudyak, V. Ya.; Lezhnev, E. V.
2018-02-01
The aim of this paper is to create a molecular algorithm for modeling the transport processes in gases that will be more efficient than molecular dynamics method. To this end, the dynamics of molecules are modeled stochastically. In a rarefied gas, it is sufficient to consider the evolution of molecules only in the velocity space, whereas for a dense gas it is necessary to model the dynamics of molecules also in the physical space. Adequate integral characteristics of the studied system are obtained by averaging over a sufficiently large number of independent phase trajectories. The efficiency of the proposed algorithm was demonstrated by modeling the coefficients of self-diffusion and the viscosity of several gases. It was shown that the accuracy comparable to the experimental one can be obtained on a relatively small number of molecules. The modeling accuracy increases with the growth of used number of molecules and phase trajectories.
Some Sensitivity Studies of Chemical Transport Simulated in Models of the Soil-Plant-Litter System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begovich, C.L.
2002-10-28
Fifteen parameters in a set of five coupled models describing carbon, water, and chemical dynamics in the soil-plant-litter system were varied in a sensitivity analysis of model response. Results are presented for chemical distribution in the components of soil, plants, and litter along with selected responses of biomass, internal chemical transport (xylem and phloem pathways), and chemical uptake. Response and sensitivity coefficients are presented for up to 102 model outputs in an appendix. Two soil properties (chemical distribution coefficient and chemical solubility) and three plant properties (leaf chemical permeability, cuticle thickness, and root chemical conductivity) had the greatest influence onmore » chemical transport in the soil-plant-litter system under the conditions examined. Pollutant gas uptake (SO{sub 2}) increased with change in plant properties that increased plant growth. Heavy metal dynamics in litter responded to plant properties (phloem resistance, respiration characteristics) which induced changes in the chemical cycling to the litter system. Some of the SO{sub 2} and heavy metal responses were not expected but became apparent through the modeling analysis.« less
Winter fluxes of CO2 and CH4 from subalpine soils in Rocky Mountain National Park, Colorado
Mast, M. Alisa; Wickland, Kimberly P.; Striegl, Robert G.; Clow, David W.
1998-01-01
Fluxes of CO2 and CH4 through a seasonal snowpack were measured in and adjacent to a subalpine wetland in Rocky Mountain National Park, Colorado. Gas diffusion through the snow was controlled by gas production or consumption in the soil and by physical snowpack properties. The snowpack insulated soils from cold midwinter air temperatures allowing microbial activity to continue through the winter. All soil types studied were net sources of CO2 to the atmosphere through the winter, whereas saturated soils in the wetland center were net emitters of CH4 and soils adjacent to the wetland were net CH4 consumers. Most sites showed similar temporal patterns in winter gas fluxes; the lowest fluxes occurred in early winter, and maximum fluxes occurred at the onset of snowmelt. Temporal changes in fluxes probably were related to changes in soil-moisture conditions and hydrology because soil temperatures were relatively constant under the snowpack. Average winter CO2 fluxes were 42.3, 31.2, and 14.6 mmol m−2 d−1 over dry, moist, and saturated soils, respectively, which accounted for 8 to 23% of the gross annual CO2emissions from these soils. Average winter CH4 fluxes were −0.016, 0.274, and 2.87 mmol m−2 d−1over dry, moist, and saturated soils, respectively. Microbial activity under snow cover accounted for 12% of the annual CH4 consumption in dry soils and 58 and 12% of the annual CH4 emitted from moist and saturated soils, respectively. The observed ranges in CO2 and CH4 flux through snow indicated that winter fluxes are an important part of the annual carbon budget in seasonally snow-covered terrains.
NASA Astrophysics Data System (ADS)
Jochum, Tobias; Popp, Juergen; Frosch, Torsten
2016-04-01
Soil and groundwater contamination with benzene can cause serious environmental damages. However, many soil microorganisms are capable to adapt and known to strongly control the fate of organic contamination. Cavity enhanced Raman gas spectroscopy (CERS) was applied to investigate the short-term response of indigenous soil bacteria to a sudden surface contamination with benzene regarding the temporal variations of gas products and their exchange rates with the adjacent atmosphere. 13C-labeled benzene was spiked on a silty-loamy soil column (sampled from Hainich National Park, Germany) in order to track and separate the changes in heterotrophic soil respiration - involving 12CO2 and O2 - from the microbial process of benzene degradation, which ultimately forms 13CO2.1 The respiratory quotient (RQ) of 0.98 decreased significantly after the spiking and increased again within 33 hours to a value of 0.72. This coincided with maximum 13CO2 concentration rates (0.63 μ mol m-2 s-1), indicating highest benzene degradation at 33 hours after the spiking event. The diffusion of benzene in the headspace and the biodegradation into 13CO2 were simultaneously monitored and 12 days after the benzene spiking no measurable degradation was detected anymore.1 The RQ finally returned to a value of 0.96 demonstrating the reestablished aerobic respiration. In summary, this study shows the potential of combining Raman gas spectroscopy and stable isotopes to follow soil microbial biodegradation dynamics while simultaneously monitoring the underlying respiration behavior. Support by the Collaborative Research Center 1076 Aqua Diva is kindly acknowledged. We thank Beate Michalzik for soil analysis and discussion. 1. T. Jochum, B. Michalzik, A. Bachmann, J. Popp and T. Frosch, Analyst, 2015, 140, 3143-3149.
NASA Astrophysics Data System (ADS)
Moghadasi, Jalil; Yousefi, Fakhri; Papari, Mohammad Mehdi; Faghihi, Mohammad Ali; Mohsenipour, Ali Asghar
2009-09-01
It is the purpose of this paper to extract unlike intermolecular potential energies of five carbon dioxide-based binary gas mixtures including CO2-He, CO2-Ne, CO2-Ar, CO2-Kr, and CO2-Xe from viscosity data and compare the calculated potentials with other models potential energy reported in literature. Then, dilute transport properties consisting of viscosity, diffusion coefficient, thermal diffusion factor, and thermal conductivity of aforementioned mixtures are calculated from the calculated potential energies and compared with literature data. Rather accurate correlations for the viscosity coefficient of afore-cited mixtures embracing the temperature range 200 K < T < 3273.15 K is reproduced from the present unlike intermolecular potentials energy. Our estimated accuracies for the viscosity are to within ±2%. In addition, the calculated potential energies are used to present smooth correlations for other transport properties. The accuracies of the binary diffusion coefficients are of the order of ±3%. Finally, the unlike interaction energy and the calculated low density viscosity have been employed to calculate high density viscosities using Vesovic-Wakeham method.
Transport processes in partially saturate concrete: Testing and liquid properties
NASA Astrophysics Data System (ADS)
Villani, Chiara
The measurement of transport properties of concrete is considered by many to have the potential to serve as a performance criterion that can be related to concrete durability. However, the sensitivity of transport tests to several parameters combined with the low permeability of concrete complicates the testing. Gas permeability and diffusivity test methods are attractive due to the ease of testing, their non-destructive nature and their potential to correlate to in-field carbonation of reinforced concrete structures. This work was aimed at investigating the potential of existing gas transport tests as a way to reliably quantify transport properties in concrete. In this study gas permeability and diffusivity test methods were analyzed comparing their performance in terms of repeatability and variability. The influence of several parameters was investigated such as moisture content, mixture proportions and gas flow. A closer look to the influence of pressure revealed an anomalous trend of permeability with respect to pressure. An alternative calculation is proposed in an effort to move towards the determination of intrinsic material properties that can serve as an input for service life prediction models. The impact of deicing salts exposure was also analyzed with respect to their alteration of the degree of saturation as this may affect gas transport in cementitious materials. Limited information were previously available on liquid properties over a wide range of concentrations. To overcome this limitation, this study quantified surface tension, viscosity in presence of deicing salts in a broad concentration range and at different temperatures. Existing models were applied to predict the change of fluid properties during drying. Vapor desorption isotherms were obtained to investigate the influence of deicing salts presence on the non-linear moisture diffusion coefficient. Semi-empirical models were used to quantify the initiation and the rate of drying using liquid properties and pore structure information as inputs. Concrete exposed to deicing salts resulted to have a reduced gas transport due to the higher degree of saturation (DOS). The higher DOS is believed to contribute to the premature deterioration observed in concrete pavements exposed to deicing salts. Moisture diffusion and moisture profiles in concrete are known to directly relate with the stresses generated during shrinkage and creep mechanisms. The alteration due to the presence of shrinkage reducing admixtures on drying was also investigated in this work. Liquid properties were used to predict the diffusion coefficient in presence of SRA. Moisture profiles obtained using Fick's second law for diffusion were compared to relative humidity profiles measured on concrete slabs. Results confirm that a qualitative prediction of drying in concrete elements is realistic when using this type of approach.
Xie, Haijian; Yan, Huaxiang; Feng, Shijin; Wang, Qiao; Chen, Peixiong
2016-10-01
One-dimensional mathematical model is developed to investigate the behavior of contaminant transport in landfill composite liner system considering coupled effect of consolidation, diffusion, and degradation. The first- and second-type bottom boundary conditions are used to derive the steady-state and quasi-steady-state analytical solutions. The concentration profiles obtained by the proposed analytical solution are in good agreement with those obtained by the laboratory tests. The bottom concentration and flux of the soil liners can be greatly reduced when the degradation effect and porosity changing are considered. For the case under steady-state, the bottom flux and concentration for the case with t 1/2 =10 years can be 2.8 and 5.5 times lower than those of the case with t 1/2 =100 years, respectively. The bottom concentration and flux of the soil liners can be greatly reduced when the coefficient of volume compressibility decreases. For quasi-steady-state and with t 1/2 = 10 years, the bottom flux and concentration for the case with m v = 0.02/MPa can be 17.4 and 21 times lower than the case with m v = 0.5/MPa. This may be due to the fact that the true fluid velocity induced by consolidation is greater for the case with high coefficient of volume compressibility. The bottom flux for the case with single compacted clay liner (CCL) can be 1.5 times larger than that for the case with GMB/CCL considering diffusion and consolidation for DCM. The proposed analytical model can be used for verification of more complicated numerical models and assessment of the coupled effect of diffusion, consolidation, and degradation on contaminant transport in landfill liner systems.
Zhang, Liang; Loáiciga, Hugo A.; Xu, Meng; Du, Chao; Du, Yun
2015-01-01
On-site soils are increasingly used in the treatment and restoration of ecosystems to harmonize with the local landscape and minimize costs. Eight natural soils from diverse ecological zones in the source area of a drinking-water reservoir in central China are used as adsorbents for the uptake of phosphorus from aqueous solutions. The X-ray fluorescence (XRF) spectrometric and BET (Brunauer-Emmett-Teller) tests and the Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectral analyses are carried out to investigate the soils’ chemical properties and their potential changes with adsorbed phosphorous from aqueous solutions. The intra-particle diffusion, pseudo-first-order, and pseudo-second-order kinetic models describe the adsorption kinetic processes. Our results indicate that the adsorption processes of phosphorus in soils occurred in three stages and that the rate-controlling steps are not solely dependent on intra-particle diffusion. A quantitative comparison of two kinetics models based on their linear and non-linear representations, and using the chi-square (χ2) test and the coefficient of determination (r2), indicates that the adsorptive properties of the soils are best described by the non-linear pseudo-second-order kinetic model. The adsorption characteristics of aqueous phosphorous are determined along with the essential kinetic parameters. PMID:26569278
Gas uptake and chemical aging of semisolid organic aerosol particles
Shiraiwa, Manabu; Ammann, Markus; Koop, Thomas; Pöschl, Ulrich
2011-01-01
Organic substances can adopt an amorphous solid or semisolid state, influencing the rate of heterogeneous reactions and multiphase processes in atmospheric aerosols. Here we demonstrate how molecular diffusion in the condensed phase affects the gas uptake and chemical transformation of semisolid organic particles. Flow tube experiments show that the ozone uptake and oxidative aging of amorphous protein is kinetically limited by bulk diffusion. The reactive gas uptake exhibits a pronounced increase with relative humidity, which can be explained by a decrease of viscosity and increase of diffusivity due to hygroscopic water uptake transforming the amorphous organic matrix from a glassy to a semisolid state (moisture-induced phase transition). The reaction rate depends on the condensed phase diffusion coefficients of both the oxidant and the organic reactant molecules, which can be described by a kinetic multilayer flux model but not by the traditional resistor model approach of multiphase chemistry. The chemical lifetime of reactive compounds in atmospheric particles can increase from seconds to days as the rate of diffusion in semisolid phases can decrease by multiple orders of magnitude in response to low temperature or low relative humidity. The findings demonstrate that the occurrence and properties of amorphous semisolid phases challenge traditional views and require advanced formalisms for the description of organic particle formation and transformation in atmospheric models of aerosol effects on air quality, public health, and climate. PMID:21690350
Single-layer model to predict the source/sink behavior of diffusion-controlled building materials.
Kumar, Deept; Little, John C
2003-09-01
Building materials may act as both sources of and sinks forvolatile organic compounds (VOCs) in indoor air. A strategy to characterize the rate of absorption and desorption of VOCs by diffusion-controlled building materials is validated. A previously developed model that predicts mass transfer between a flat slab of material and the well-mixed air within a chamber or room is extended. The generalized model allows a nonuniform initial material-phase concentration and a transient influent gas-phase concentration to be simultaneously considered. An analytical solution to the more general model is developed. Experimental data are obtained by placing samples of vinyl flooring inside a small stainless steel chamber and exposing them to absorption/desorption cycles of n-dodecane and phenol. Measured values for the material-air partition coefficient and the material-phase diffusion coefficient were obtained previously in a series of completely independent experiments. The a priori model predictions are in close agreement with the observed experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagewiesche, D.P.; Ashour, S.S.; Sandall, O.C.
1995-05-01
Recently, several researchers have suggested using aqueous mixtures of small amounts of monoethanolamine and much larger amounts of N-methyldiethanolamine for the absorption of CO{sub 2} and for the selective removal of H{sub 2}S from gas streams of mixtures of CO{sub 2} and H{sub 2}S. The densities and viscosities of aqueous N-methyldiethanolamine/monoethanolamine (MDEA/MEA) blends containing 30 and 40 mass % total amine with MEA concentrations of 5, 10, and 15 mass % of the total amine concentration were measured at temperatures of 303, 313, and 323 K. The diffusion coefficients and Henry`s law constants of N{sub 2}O in these solutions weremore » also measured and were used to estimate the diffusion coefficients and Henry`s law constants of CO{sub 2} in these solutions according to the N{sub 2}O/CO{sub 2} analogy technique.« less
Jochum, Tobias; Michalzik, Beate; Bachmann, Anne; Popp, Jürgen; Frosch, Torsten
2015-05-07
Soil and groundwater contamination with benzene can cause serious environmental damage. However, many soil microorganisms are capable to adapt and are known to strongly control the fate of organic contamination. Innovative cavity enhanced Raman multi-gas spectroscopy (CERS) was applied to investigate the short-term response of the soil micro-flora to sudden surface contamination with benzene regarding the temporal variations of gas products and their exchange rates with the adjacent atmosphere. (13)C-labeled benzene was spiked on a silty-loamy soil column in order to track and separate the changes in heterotrophic soil respiration - involving (12)CO2 and O2- from the natural attenuation process of benzene degradation to ultimately form (13)CO2. The respiratory quotient (RQ) decreased from a value 0.98 to 0.46 directly after the spiking and increased again within 33 hours to a value of 0.72. This coincided with the maximum (13)CO2 concentration rate (0.63 μmol m(-2) s(-1)), indicating the highest benzene degradation at 33 hours after the spiking event. The diffusion of benzene in the headspace and the biodegradation into (13)CO2 were simultaneously monitored and 12 days after the benzene spiking no measurable degradation was detected anymore. The RQ finally returned to a value of 0.96 demonstrating the reestablished aerobic respiration.
NASA Astrophysics Data System (ADS)
Doi, Toshiyuki
2018-04-01
Slow flows of a rarefied gas between two plane parallel walls with nonuniform surface properties are studied based on kinetic theory. It is assumed that one wall is a diffuse reflection boundary and the other wall is a Maxwell-type boundary whose accommodation coefficient varies periodically in the direction perpendicular to the flow. The time-independent Poiseuille, thermal transpiration and Couette flows are considered. The flow behavior is numerically studied based on the linearized Bhatnagar-Gross-Krook-Welander model of the Boltzmann equation. The flow field, the mass and heat flow rates in the gas, and the tangential force acting on the wall surface are studied over a wide range of the gas rarefaction degree and the parameters characterizing the distribution of the accommodation coefficient. The locally convex velocity distribution is observed in Couette flow of a highly rarefied gas, similarly to Poiseuille flow and thermal transpiration. The reciprocity relations are numerically confirmed over a wide range of the flow parameters.
Smith, James A.; Tisdale, Amy K.; Cho, H. Jean
1996-01-01
The upward flux of trichloroethene (TCE) vapor through the unsaturated zone above a contaminated, water-table aquifer at Picatinny Arsenal, New Jersey, has been studied under natural conditions over a 12-month period. Vertical gas-phase diffusion fluxes were estimated indirectly by measuring the TCE vapor concentration gradient in the unsaturated zone and using Fick's law to calculate the flux. The total gas-phase flux (e.g., the sum of diffusion and advection fluxes) was measured directly with a vertical flux chamber (VFC). In many cases, the upward TCE vapor flux was several orders of magnitude greater than the upward TCE diffusion flux, suggesting that mechanisms other than steady-state vapor diffusion are contributing to the vertical transport of TCE vapors through the unsaturated zone. The measured total flux of TCE vapor from the subsurface to the atmosphere is approximately 50 kg/yr and is comparable in magnitude to the removal rate of TCE from the aquifer by an existing pump-and-treat system and by discharge into a nearby stream. The net upward flux of TCE is reduced significantly during a storm event, presumably due to the mass transfer of TCE from the soil gas to the infiltrating rainwater and its subsequent downward advection. Several potential problems associated with the measurement of total gas-phase fluxes are discussed.
Conventional practice to estimate intrusion of fuel vapors from ground water to buildings measures the concentration of BTEX in ground water beneath the building using a conventional well screened across the water table. This practice assumes that the concentration of contaminant...
This material will be interesting to regulators and contractors who collect samples of soil gas to estimate the potential for vapor intrusion of buildings. In the absence of biodegradation, transport of vapors through the unsaturated zone is expected to be by diffusion, and t...
The Evaluation on the Cadmium Net Concentration for Soil Ecosystems.
Yao, Yu; Wang, Pei-Fang; Wang, Chao; Hou, Jun; Miao, Ling-Zhan
2017-03-12
Yixing, known as the "City of Ceramics", is facing a new dilemma: a raw material crisis. Cadmium (Cd) exists in extremely high concentrations in soil due to the considerable input of industrial wastewater into the soil ecosystem. The in situ technique of diffusive gradients in thin film (DGT), the ex situ static equilibrium approach (HAc, EDTA and CaCl2), and the dissolved concentration in soil solution, as well as microwave digestion, were applied to predict the Cd bioavailability of soil, aiming to provide a robust and accurate method for Cd bioavailability evaluation in Yixing. Moreover, the typical local cash crops-paddy and zizania aquatica-were selected for Cd accumulation, aiming to select the ideal plants with tolerance to the soil Cd contamination. The results indicated that the biomasses of the two applied plants were sufficiently sensitive to reflect the stark regional differences of different sampling sites. The zizania aquatica could effectively reduce the total Cd concentration, as indicated by the high accumulation coefficients. However, the fact that the zizania aquatica has extremely high transfer coefficients, and its stem, as the edible part, might accumulate large amounts of Cd, led to the conclusion that zizania aquatica was not an ideal cash crop in Yixing. Furthermore, the labile Cd concentrations which were obtained by the DGT technique and dissolved in the soil solution showed a significant correlation with the Cd concentrations of the biota accumulation. However, the ex situ methods and the microwave digestion-obtained Cd concentrations showed a poor correlation with the accumulated Cd concentration in plant tissue. Correspondingly, the multiple linear regression models were built for fundamental analysis of the performance of different methods available for Cd bioavailability evaluation. The correlation coefficients of DGT obtained by the improved multiple linear regression model have not significantly improved compared to the coefficients obtained by the simple linear regression model. The results revealed that DGT was a robust measurement, which could obtain the labile Cd concentrations independent of the physicochemical features' variation in the soil ecosystem. Consequently, these findings provide stronger evidence that DGT is an effective and ideal tool for labile Cd evaluation in Yixing.
The Evaluation on the Cadmium Net Concentration for Soil Ecosystems
Yao, Yu; Wang, Pei-Fang; Wang, Chao; Hou, Jun; Miao, Ling-Zhan
2017-01-01
Yixing, known as the “City of Ceramics”, is facing a new dilemma: a raw material crisis. Cadmium (Cd) exists in extremely high concentrations in soil due to the considerable input of industrial wastewater into the soil ecosystem. The in situ technique of diffusive gradients in thin film (DGT), the ex situ static equilibrium approach (HAc, EDTA and CaCl2), and the dissolved concentration in soil solution, as well as microwave digestion, were applied to predict the Cd bioavailability of soil, aiming to provide a robust and accurate method for Cd bioavailability evaluation in Yixing. Moreover, the typical local cash crops—paddy and zizania aquatica—were selected for Cd accumulation, aiming to select the ideal plants with tolerance to the soil Cd contamination. The results indicated that the biomasses of the two applied plants were sufficiently sensitive to reflect the stark regional differences of different sampling sites. The zizania aquatica could effectively reduce the total Cd concentration, as indicated by the high accumulation coefficients. However, the fact that the zizania aquatica has extremely high transfer coefficients, and its stem, as the edible part, might accumulate large amounts of Cd, led to the conclusion that zizania aquatica was not an ideal cash crop in Yixing. Furthermore, the labile Cd concentrations which were obtained by the DGT technique and dissolved in the soil solution showed a significant correlation with the Cd concentrations of the biota accumulation. However, the ex situ methods and the microwave digestion-obtained Cd concentrations showed a poor correlation with the accumulated Cd concentration in plant tissue. Correspondingly, the multiple linear regression models were built for fundamental analysis of the performance of different methods available for Cd bioavailability evaluation. The correlation coefficients of DGT obtained by the improved multiple linear regression model have not significantly improved compared to the coefficients obtained by the simple linear regression model. The results revealed that DGT was a robust measurement, which could obtain the labile Cd concentrations independent of the physicochemical features’ variation in the soil ecosystem. Consequently, these findings provide stronger evidence that DGT is an effective and ideal tool for labile Cd evaluation in Yixing. PMID:28287500
Method for measurement of radon diffusion and solubility in solid materials
NASA Astrophysics Data System (ADS)
Maier, Andreas; Weber, Uli; Dickmann, Jannis; Breckow, Joachim; van Beek, Patrick; Schardt, Dieter; Kraft, Gerhard; Fournier, Claudia
2018-02-01
In order to study the permeation i.e. the diffusion and solubility of radon gas in biological material, a new setup was constructed and a novel analysis was applied to obtain diffusion and solubility coefficients. Thin slabs of solid materials were installed between detector housing and the surrounding radon exposure chamber of 50 Ls volume. In this setup radon can diffuse through thin test samples into a cylindrical volume of 5 mm height and 20 mm diameter and reach an α-particle detector. There the 5.49 MeV α-decay of the penetrating radon atoms is measured by a silicon surface barrier detector. The time dependent activities inside the small detector volume are recorded after injection of a known radon activity concentration into the outer chamber. Analyzing the time behavior of the integral α-activity from radon in the small vessel, both, the diffusion coefficient and solubility of the test material can be determined, based on a new mathematical model of the diffusion process concerning the special boundary conditions given by the experimental setup. These first measurements were intended as proof of concept for the detection system and the data analysis. Thin polyethylene foils (LDPE) were selected as material for the diffusion measurements and the results were in agreement with data from literature. In further measurements, we will concentrate on biological material like bone, fat and other tissues.
NASA Astrophysics Data System (ADS)
Avci, Recep; Maccagnano, Sara; Bohannan, Gary; Gresham, Gary; Groenewold, Gary
2001-03-01
Imaging time-of-flight secondary ion mass spectroscopy ( ToFSIMS) is a practical tool for studying the movement of molecules on material surfaces as a function of time. The high detection sensitivity, rapid data acquisition and reasonable spatial resolution present ideal conditions for such studies. An application of ToFSIMS is presented characterizing the diffusion of large molecules on gold-coated Si wafers. Polydimethylsiloxane (PDMS) was selected for study because it contaminates material surfaces and can be detected easily. Also, the temperature dependent diffusion properties of hydrochlorinated heroin and cocaine are presented as part of a forensic application. While the PDMS diffusion could be explained by a two-dimensional ( 2-D) Brownian motion with a Gaussian probability distribution function (pdf) with a diffusion coefficient of 1.6 μ m^2/sec, the cocaine and to a lesser extent heroin were observed to move nearly freely on the surfaces as though they were part of a 2-D gas evaporating in 2-D from a condensed phase. The results could be described reasonably well using an extreme Lévi pdf with an index of stability α<= 0.01.
Applicability of a diffusion model to lateral transport in the terrestrial and lunar exospheres.
NASA Technical Reports Server (NTRS)
Hodges, R. R., Jr.
1972-01-01
Kinetic theory is used to determine a series expansion of the vertical flux of particles in an exosphere in terms of time and space derivatives of particle concentration, exobase velocity, and temperature. For sufficiently large scale variations of these parameters in time and space, the series can be truncated to a form that is similar to a diffusion equation. Owing to this analogy, it is possible to unite the mathematical description of molecular diffusion, which governs thermospheric flow, and the corresponding exospheric equation by using effective transport coefficients which change smoothly with altitude through the transition from thermosphere to exosphere. A new definition of the exobase for lateral flow emerges from the analogy of exospheric and thermospheric diffusion, as the altitude where the horizontal mean free path length equals the mean horizontal extent of ballistic trajectories of the transported gas, as opposed to the scale height of the dominant gas which determines the exobase for escape. It is shown that the approximation of exospheric lateral flow as a diffusion process is applicable to global scale problems concerning terrestrial helium and heavier gases, and lunar gases heavier than helium.
Nie, Zhiqiang; Die, Qingqi; Yang, Yufei; Tang, Zhenwu; Wang, Qi; Huang, Qifei
2014-01-01
Polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/PCDF) were overall measured and compared in ambient air, water, soils, and sediments along the upper reaches of the Haihe River of North China, so as to evaluate their concentrations, profiles, and to understand the processes of gas-particle partitioning and air-water/soil exchange. The following results were obtained: (1) The average concentrations (toxic equivalents, TEQs) of 2,3,7,8-PCDD/PCDF in air, water, sediment, and soil samples were 4,855 fg/m(3), 9.5 pg/L, 99.2 pg/g dry weight (dw), and 56.4 pg/g (203 fg TEQ/m(3), 0.46 pg TEQ/L, 2.2 pg TEQ/g dw, and 1.3 pg TEQ/g, respectively), respectively. (2) Although OCDF, 1,2,3,4,6,7,8-HpCDF, OCDD, and 1,2,3,4,6,7,8-HpCDD were the dominant congeners among four environmental sinks, obvious discrepancies of these congener and homologue patterns of PCDD/PCDF were observed still. (3) Significant linear correlations for PCDD/PCDF were observed between the gas-particle partition coefficient (K p) and the subcooled liquid vapor pressure (P L (0)) and octanol-air partition coefficient (K oa). (4) Fugacity fraction values of air-water exchange indicated that most of PCDD/PCDF homologues were dominated by net volatilization from water into air. The low-chlorinated PCDD/PCDF (tetra- to hexa-) presented a strong net volatilization from the soil into air, while high-chlorinated PCDD/PCDF (hepta- to octa-) were mainly close to equilibrium for air-soil exchange.
Investigation of bubbles in arterial heat pipes
NASA Technical Reports Server (NTRS)
Saaski, E. W.
1972-01-01
The behavior of gas occlusions in arterial heat pipes has been studied experimentally and theoretically. Specifically, the gas-liquid system properties, solubility and diffusivity, have been measured from -50 to 100 C for helium and argon in ammonia, Freon-21 (CHC12F), and methanol. Properties values obtained were then used to experimentally test models for gas venting from a heat pipe artery under isothermal conditions (i.e., no-heat flow), although the models, as developed, are also applicable to heat pipes operated at power, with some minor modifications. Preliminary calculations indicated arterial bubbles in a stagnant pipe require from minutes to days to collapse and vent. It has been found experimentally that a gas bubble entrapped within an artery structure has a very long lifetime in many credible situations. This lifetime has an approximately inverse exponential dependence on temperature, and is generally considerably longer for helium than for argon. The models postulated for venting under static conditions were in general quantitative agreement with experimental data. Factors of primary importance in governing bubble stability are artery diameter, artery wall thickness, noncondensible gas partial pressure, and the property group (the Ostwald solubility coefficient multiplied by the gas/liquid diffusivity).
Zhao, Ai-qing; Tian, Xiao-hong; Cao, Yu-xian; Lu, Xin-chun; Liu, Ting
2014-08-01
The concentration of Zn and phytic acid in wheat grain has important implications for human health. We conducted field and greenhouse experiments to compare the efficacy of soil and foliar Zn fertilisation in improving grain Zn concentration and bioavailability in wheat (Triticum aestivum L.) grain grown on potentially Zn-deficient calcareous soil. Results from the 2-year field experiment indicated that soil Zn application increased soil DTPA-Zn by an average of 174%, but had no significant effect on grain Zn concentration. In contrast, foliar Zn application increased grain Zn concentration by an average of 61%, and Zn bioavailability by an average of 36%. Soil DTPA-Zn concentrations varied depending on wheat cultivars. There were also significant differences in grain phytic acid concentration among the cultivars. A laboratory experiment indicated that Zn (from ZnSO4 ) had a low diffusion coefficient in this calcareous soil. Compared to soil Zn application, foliar Zn application is more effective in improving grain Zn content of wheat grown in potentially Zn-deficient calcareous soils. © 2013 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Kenmochi, Naoki; Nishiura, Masaki; Yoshida, Zensho; Sugata, Tetsuya; Nakamura, Kaori; Katsura, Shotaro
2017-10-01
The Ring Trap 1 (RT-1) device creates a laboratory magnetosphere that is realized by a levitated superconducting ring magnet in vacuum. The RT-1 experiment has demonstrated the self-organization of a plasma clump with a steep density gradient; a peaked density distribution is spontaneously created through `inward diffusion'. In order to evaluate particle transport characteristics in the RT-1 magnetospheric plasmas which cause these inward diffusion, density modulation experiments were performed in the RT-1. Density modulation is a powerful method for estimating a diffusion coefficient D and a convection velocity V by puffing a periodic neutral gas. The gas puff modulation causes the change in the electron density measured by two chords of microwave interferometer (the radial positions r = 60 and 70 cm, vertical chord). In the case of 2 Hz gas puff modulation, the phase delay and the modulation-amplitude decay at the chord r = 60 cm are obtained with 15 degree and 0.8, respectively, with respect to the phase and the amplitude at r = 70 cm. The particle balance equations are solved on the assumption of profile shapes for D to evaluate D, V and particle source rate. The result suggests the inward convection in high beta magnetospheric plasmas.
Parkes, Marie V.; Demir, Hakan; Teich-McGoldrick, Stephanie L.; ...
2014-03-28
Molecular dynamics simulations were used to investigate trends in noble gas (Ar, Kr, Xe) diffusion in the metal-organic frameworks HKUST-1 and ZIF-8. Diffusion occurs primarily through inter-cage jump events, with much greater diffusion of guest atoms in HKUST-1 compared to ZIF-8 due to the larger cage and window sizes in the former. We compare diffusion coefficients calculated for both rigid and flexible frameworks. For rigid framework simulations, in which the framework atoms were held at their crystallographic or geometry optimized coordinates, sometimes dramatic differences in guest diffusion were seen depending on the initial framework structure or the choice of frameworkmore » force field parameters. When framework flexibility effects were included, argon and krypton diffusion increased significantly compared to rigid-framework simulations using general force field parameters. Additionally, for argon and krypton in ZIF-8, guest diffusion increased with loading, demonstrating that guest-guest interactions between cages enhance inter-cage diffusion. No inter-cage jump events were seen for xenon atoms in ZIF-8 regardless of force field or initial structure, and the loading dependence of xenon diffusion in HKUST-1 is different for rigid and flexible frameworks. Diffusion of krypton and xenon in HKUST-1 depends on two competing effects: the steric effect that decreases diffusion as loading increases, and the “small cage effect” that increases diffusion as loading increases. Finally, a detailed analysis of the window size in ZIF-8 reveals that the window increases beyond its normal size to permit passage of a (nominally) larger krypton atom.« less
Reprocessing of LiH in Molten Chlorides
NASA Astrophysics Data System (ADS)
Masset, Patrick J.; Gabriel, Armand; Poignet, Jean-Claude
2008-06-01
LiH was used as inactive material to stimulate the reprocessing of lithium tritiate in molten chlorides. The electrochemical properties (diffusion coefficients, apparent standard potentials) were measured by means of transient electrochemical techniques (cyclic voltammetry and chronopotentiometry). At 425 ºC the diffusion coefficient and the apparent standard potential were 2.5 · 10-5 cm2 s-1 and -1.8 V vs. Ag/AgCl, respectively. For the process design the LiH solubility was measured by means of DTA to optimize the LiH concentration in the molten phase. In addition electrolysis tests were carried out at 460 ºC with current densities up to 1 A cm-2 over 24 h. These results show that LiH may be reprocessed in molten chlorides consisting in the production of hydrogen gas at the anode and molten metallic lithium at the cathode.
Empirical constraints on closure temperatures from a single diffusion coefficient
NASA Astrophysics Data System (ADS)
Lee, J. K. W.
The elucidation of thermal histories by geochronological and isotopic means is based fundamentally on solid-state diffusion and the concept of closure temperatures. Because diffusion is thermally activated, an analytical solution of the closure temperature (Tc*) can only be obtained if the diffusion coefficient D of the diffusion process is measured at two or more different temperatures. If the diffusion coefficient is known at only one temperature, however, the true closure temperature (Tc*) cannot be calculated analytically because there exist an infinite number of possible (apparent) closure temperatures (Tc) which can be generated by this single datum. By introducing further empirical constraints to limit the range of possible closure temperatures, however, mathematical analysis of a modified form of the closure temperature equation shows that it is possible to make both qualitative and quantitative estimates of Tc* given knowledge of only one diffusion coefficient DM measured at one temperature TM. Qualitative constraints of the true closure temperature Tc* are obtained from the shapes of curves on a graph of the apparent Tc (Tc) vs. activation energy E, in which each curve is based on a single diffusion coefficient measurement DM at temperature TM. Using a realistic range of E, the concavity of the curve shows whether TM is less than, approximately equal to, or greater than Tc*. Quantitative estimates are obtained by considering two dimensionless parameters [
Otton, James K.; Zielinski, Robert A.
2001-01-01
Simple, cost-effective techniques are needed for land managers to assess the environmental impacts of oil and gas production activities on public lands, so that sites may be prioritized for remediation or for further, more formal assessment. Field-portable instruments provide real-time data and allow the field investigator to extend an assessment beyond simply locating and mapping obvious disturbances. Field investigators can examine sites for the presence of hydrocarbons in the subsurface using a soil auger and a photoionization detector (PID). The PID measures volatile organic compounds (VOC) in soil gases. This allows detection of hydrocarbons in the shallow subsurface near areas of obvious oil-stained soils, oil in pits, or dead vegetation. Remnants of a condensate release occur in sandy soils at a production site on the Padre Island National Seashore in south Texas. Dead vegetation had been observed by National Park Service personnel in the release area several years prior to our visit. The site is located several miles south of the Malaquite Beach Campground. In early 2001, we sampled soil gases for VOCs in the area believed to have received the condensate. Our purpose in this investigation was: 1) to establish what sampling techniques might be effective in sandy soils with a shallow water and contrast them with techniques used in an earlier study; and 2) delineate the probable area of condensate release. Our field results show that sealing the auger hole with a clear, rigid plastic tube capped at the top end and sampling the soil gas through a small hole in the cap increases the soil VOC gas signature, compared to sampling soil gases in the bottom of an open hole. This sealed-tube sampling method increases the contrast between the VOC levels within a contaminated area and adjacent background areas. The tube allows the PID air pump to draw soil gas from the volume of soil surrounding the open hole below the tube in a zone less influenced by atmospheric air. In an open hole, the VOC readings seem to be strongly dependent on the degree of diffusion and advection of soil gas VOCs into the open hole from the surrounding soil, a process that may vary with soil and wind conditions. Making measurements with the sealed hole does take some additional time (4-7 minutes after the hole is augered) compared to the open-hole technique (1-2 minutes). We used the rigid-plastic tube technique to survey for soil gas VOCs across the entire site, less than ? acre. Condensate has impacted at least 0.28 acres. The impacted area may extend northwest of the surveyed area.
Optimizing Noble Gas-Water Interactions via Monte Carlo Simulations.
Warr, Oliver; Ballentine, Chris J; Mu, Junju; Masters, Andrew
2015-11-12
In this work we present optimized noble gas-water Lennard-Jones 6-12 pair potentials for each noble gas. Given the significantly different atomic nature of water and the noble gases, the standard Lorentz-Berthelot mixing rules produce inaccurate unlike molecular interactions between these two species. Consequently, we find simulated Henry's coefficients deviate significantly from their experimental counterparts for the investigated thermodynamic range (293-353 K at 1 and 10 atm), due to a poor unlike potential well term (εij). Where εij is too high or low, so too is the strength of the resultant noble gas-water interaction. This observed inadequacy in using the Lorentz-Berthelot mixing rules is countered in this work by scaling εij for helium, neon, argon, and krypton by factors of 0.91, 0.8, 1.1, and 1.05, respectively, to reach a much improved agreement with experimental Henry's coefficients. Due to the highly sensitive nature of the xenon εij term, coupled with the reasonable agreement of the initial values, no scaling factor is applied for this noble gas. These resulting optimized pair potentials also accurately predict partitioning within a CO2-H2O binary phase system as well as diffusion coefficients in ambient water. This further supports the quality of these interaction potentials. Consequently, they can now form a well-grounded basis for the future molecular modeling of multiphase geological systems.
Driessen, Juliette P; van Bemmel, Alexander J M; van Kempen, Pauline M W; Janssen, Luuk M; Terhaard, Chris H J; Pameijer, Frank A; Willems, Stefan M; Stegeman, Inge; Grolman, Wilko; Philippens, Marielle E P
2016-04-01
Identification of prognostic patient characteristics in head and neck squamous cell carcinoma (HNSCC) is of great importance. Human papillomavirus (HPV)-positive HNSCCs have favorable response to (chemo)radiotherapy. Apparent diffusion coefficient, derived from diffusion-weighted MRI, has also shown to predict treatment response. The purpose of this study was to evaluate the correlation between HPV status and apparent diffusion coefficient. Seventy-three patients with histologically proven HNSCC were retrospectively analyzed. Mean pretreatment apparent diffusion coefficient was calculated by delineation of total tumor volume on diffusion-weighted MRI. HPV status was analyzed and correlated to apparent diffusion coefficient. Six HNSCCs were HPV-positive. HPV-positive HNSCC showed significantly lower apparent diffusion coefficient compared to HPV-negative. This correlation was independent of other patient characteristics. In HNSCC, positive HPV status correlates with low mean apparent diffusion coefficient. The favorable prognostic value of low pretreatment apparent diffusion coefficient might be partially attributed to patients with a positive HPV status. © 2015 Wiley Periodicals, Inc. Head Neck 38: E613-E618, 2016. © 2015 Wiley Periodicals, Inc.
Calibration of mass spectrometric measurements of gas phase reactions on steel surfaces
NASA Astrophysics Data System (ADS)
Falk, H.; Falk, M.; Wuttke, T.
2015-03-01
The sampling of the surface-near gas composition using a mass spectrometer (MS-Probe) is a valuable tool within a hot dip process simulator. Since reference samples with well characterized surface coverage are usually not available, steel samples can deliver quantifiable amounts of the process relevant species H2O, CO and H2 using the decarburization reaction with water vapor. Such "artificial calibration samples" (ACS) can be used for the calibration of the MS-Probe measurements. The carbon release rate, which is governed by the diffusion law, was determined by GDOES, since the diffusion coefficients of carbon in steel samples are usually not known. The measured carbon concentration profiles in the ACS after the thermal treatment confirmed the validity of the diffusion model described in this paper. The carbon bulk concentration > 100 ppm is sufficient for the use of a steel material as ACS. The experimental results reported in this paper reveal, that with the MS-Probe the LOQ of less than one monolayer of iron oxide can be achieved.
NASA Astrophysics Data System (ADS)
Shi, Bingren
2010-10-01
The tokamak pedestal density structure is generally studied using a diffusion-dominant model. Recent investigations (Stacey and Groebner 2009 Phys. Plasmas 16 102504) from first principle based physics have shown a plausible existence of large inward convection in the pedestal region. The diffusion-convection equation with rapidly varying convection and diffusion coefficients in the near edge region and model puffing-recycling neutral particles is studied in this paper. A peculiar property of its solution for the existence of the large convection case is that the pedestal width of the density profile, qualitatively different from the diffusion-dominant case, depends mainly on the width of the inward convection and only weakly on the neutral penetration length and its injection position.
Temperature and current coefficients of lasing wavelength in tunable diode laser spectroscopy.
Fukuda, M; Mishima, T; Nakayama, N; Masuda, T
2010-08-01
The factors determining temperature and current coefficients of lasing wavelength are investigated and discussed under monitoring CO(2)-gas absorption spectra. The diffusion rate of Joule heating at the active layer to the surrounding region is observed by monitoring the change in the junction voltage, which is a function of temperature and the wavelength (frequency) deviation under sinusoidal current modulation. Based on the experimental results, the time interval of monitoring the wavelength after changing the ambient temperature or injected current (scanning rate) has to be constant at least to eliminate the monitoring error induced by the deviation of lasing wavelength, though the temperature and current coefficients of lasing wavelength differ with the rate.
Environmental and Hydroclimatic Sensitivities of Greenhouse Gas (GHG) Fluxes from Coastal Wetlands
NASA Astrophysics Data System (ADS)
Abdul-Aziz, O. I.; Ishtiaq, K. S.
2016-12-01
We computed the reference environmental and hydroclimatic sensitivities of the greenhouse gas (GHG) fluxes (CO2 and CH4) from coastal salt marshes. Non-linear partial least squares regression models of CO2 (net uptake) and CH4 (net emissions) fluxes were developed with a bootstrap resampling approach using the photosynthetically active radiation (PAR), air and soil temperatures, water height, soil moisture, porewater salinity, and pH as predictors. Analytical sensitivity coefficients of different predictors were then analytically derived from the estimated models. The numerical sensitivities of the dominant drivers were determined by perturbing the variables individually and simultaneously to compute their individual and combined (respectively) effects on the GHG fluxes. Four tidal wetlands of Waquoit Bay, MA — incorporating a gradient in land-use, salinity and hydrology — were considered as the case study sites. The wetlands were dominated by native Spartina Alterniflora, and characterized by high salinity and frequent flooding. Results indicated a high sensitivity of CO2 fluxes to temperature and PAR, a moderate sensitivity to soil salinity and water height, and a weak sensitivity to pH and soil moisture. In contrast, the CH4 fluxes were more sensitive to temperature and salinity, compared to that of PAR, pH, and hydrologic variables. The estimated sensitivities and mechanistic insights can aid the management of coastal carbon under a changing climate and environment. The sensitivity coefficients also indicated the most dominant drivers of GHG fluxes for the development of a parsimonious predictive model.
A new estimation of global soil greenhouse gas fluxes using a simple data-oriented model.
Hashimoto, Shoji
2012-01-01
Soil greenhouse gas fluxes (particularly CO(2), CH(4), and N(2)O) play important roles in climate change. However, despite the importance of these soil greenhouse gases, the number of reports on global soil greenhouse gas fluxes is limited. Here, new estimates are presented for global soil CO(2) emission (total soil respiration), CH(4) uptake, and N(2)O emission fluxes, using a simple data-oriented model. The estimated global fluxes for CO(2) emission, CH(4) uptake, and N(2)O emission were 78 Pg C yr(-1) (Monte Carlo 95% confidence interval, 64-95 Pg C yr(-1)), 18 Tg C yr(-1) (11-23 Tg C yr(-1)), and 4.4 Tg N yr(-1) (1.4-11.1 Tg N yr(-1)), respectively. Tropical regions were the largest contributor of all of the gases, particularly the CO(2) and N(2)O fluxes. The soil CO(2) and N(2)O fluxes had more pronounced seasonal patterns than the soil CH(4) flux. The collected estimates, including both the previous and the present estimates, demonstrate that the means of the best estimates from each study were 79 Pg C yr(-1) (291 Pg CO(2) yr(-1); coefficient of variation, CV = 13%, N = 6) for CO(2), 21 Tg C yr(-1) (29 Tg CH(4) yr(-1); CV = 24%, N = 24) for CH(4), and 7.8 Tg N yr(-1) (12.2 Tg N(2)O yr(-1); CV = 38%, N = 11) for N(2)O. For N(2)O, the mean of the estimates that was calculated by excluding the earliest two estimates was 6.6 Tg N yr(-1) (10.4 Tg N(2)O yr(-1); CV = 22%, N = 9). The reported estimates vary and have large degrees of uncertainty but their overall magnitudes are in general agreement. To further minimize the uncertainty of soil greenhouse gas flux estimates, it is necessary to build global databases and identify key processes in describing global soil greenhouse gas fluxes.
A New Estimation of Global Soil Greenhouse Gas Fluxes Using a Simple Data-Oriented Model
Hashimoto, Shoji
2012-01-01
Soil greenhouse gas fluxes (particularly CO2, CH4, and N2O) play important roles in climate change. However, despite the importance of these soil greenhouse gases, the number of reports on global soil greenhouse gas fluxes is limited. Here, new estimates are presented for global soil CO2 emission (total soil respiration), CH4 uptake, and N2O emission fluxes, using a simple data-oriented model. The estimated global fluxes for CO2 emission, CH4 uptake, and N2O emission were 78 Pg C yr−1 (Monte Carlo 95% confidence interval, 64–95 Pg C yr−1), 18 Tg C yr−1 (11–23 Tg C yr−1), and 4.4 Tg N yr−1 (1.4–11.1 Tg N yr−1), respectively. Tropical regions were the largest contributor of all of the gases, particularly the CO2 and N2O fluxes. The soil CO2 and N2O fluxes had more pronounced seasonal patterns than the soil CH4 flux. The collected estimates, including both the previous and the present estimates, demonstrate that the means of the best estimates from each study were 79 Pg C yr−1 (291 Pg CO2 yr−1; coefficient of variation, CV = 13%, N = 6) for CO2, 21 Tg C yr−1 (29 Tg CH4 yr−1; CV = 24%, N = 24) for CH4, and 7.8 Tg N yr−1 (12.2 Tg N2O yr−1; CV = 38%, N = 11) for N2O. For N2O, the mean of the estimates that was calculated by excluding the earliest two estimates was 6.6 Tg N yr−1 (10.4 Tg N2O yr−1; CV = 22%, N = 9). The reported estimates vary and have large degrees of uncertainty but their overall magnitudes are in general agreement. To further minimize the uncertainty of soil greenhouse gas flux estimates, it is necessary to build global databases and identify key processes in describing global soil greenhouse gas fluxes. PMID:22876295
NASA Astrophysics Data System (ADS)
Padrón, Eleazar; Hernández, Pedro A.; Melián, Gladys V.; Barrancos, José; Padilla, Germán; Pérez, Nemesio M.; Dionis, Samara; Rodríguez, Fátima; Asensio-Ramos, María; Calvo, David
2015-04-01
El Hierro Island (278 km2) is the youngest and the SW-most of the Canary Islands. On July 16, 2011, a seismic-volcanic crisis started with the occurrence of more than 11,900 seismic events and significant deformation along the island, culminating with the eruption onset in October 12. Since at El Hierro Islands there are not any surface geothermal manifestation (fumaroles, etc), we have focused our studies on soil degassing surveys. Between July 2011 to March 2012, seventeen diffuse CO2 and He emissions soil gas surveys were undertaken at El Hierro volcanic system (600 observation sites) with the aim to investigate the relationship between their temporal variations and the volcanic activity (Padrón et al., 2013; Melián et al., 2014). Based on the diffuse He/CO2 emission ratio, a sharp increase before the eruption onset was observed, reaching the maximum value on September 26 (6.8×10-5), sixteen days before the occurrence of the eruption. This increase coincided with an increase in seismic energy release during the volcanic unrest and occurred together with an increase on the 3He/4He isotopic ratio in groundwaters from a well in El Hierro Island (Padrón et al., 2013; from 2-3 RA to 7.2 RA where RA = 3He/4He ratio in air), one month prior to the eruption onset. Early degassing of new gas-rich magma batch at depth could explain the observed increase on the He/CO2 ratio, causing a preferential partitioning of CO2 in the gas phase with respect to the He, due to the lower solubility of CO2 than that of He in basaltic magmas. During the eruptive period (October 2011-March 2012) the prevalence of a magmatic CO2-dominated component is evident, as indicated by the generally lower He/CO2 ratios and high 3He/4He values (Padrón et al., 2013). The onset of the submarine eruption might have produced a sudden release of volcanic gases, and consequently, a decrease in the volcanic gas pressure of the magma bodies moving beneath the island, reflected by a drastic decrease in the diffuse helium emissions measured after the eruption onset. Therefore, this study shows that higher diffuse He/CO2 emission ratios preceded the 2011-2012 El Hierro submarine eruption, clearly show the critical role that both gas species can play in the prediction of major volcanic events and demonstrates the importance of performing soil He and CO2 surveys as a useful geochemical monitoring tool in active volcanic regions. Padrón et al. (2013) Geology 41(5), 539-542; Melián et al. (2014) JGR, 119: 6976-6991, doi:10.1002/2014JB011013
Deriving properties of low-volatile substances from isothermal evaporation curves
NASA Astrophysics Data System (ADS)
Ralys, Ricardas V.; Uspenskiy, Alexander A.; Slobodov, Alexander A.
2016-01-01
Mass flux occurring when a substance evaporates from an open surface is proportional to its saturated vapor pressure at a given temperature. The proportionality coefficient that relates this flux to the vapor pressure shows how far a system is from equilibrium and is called the accommodation coefficient. Under vacuum, when a system deviates from equilibrium to the greatest extent possible, the accommodation coefficient equals unity. Under finite pressure, however, the accommodation coefficient is no longer equal to unity, and in fact, it is much less than unity. In this article, we consider the isothermal evaporation or sublimation of low-volatile individual substances under conditions of thermogravimetric analysis, when the external pressure of the purging gas is equal to the atmospheric pressure and the purging gas rate varies. When properly treated, the dependence of sample mass over time provides us with various information on the properties of the examined compound, such as saturated vapor pressure, diffusion coefficient, and density of the condensed (liquid or solid) phase at the temperature of experiment. We propose here the model describing the accommodation coefficient as a function of both substance properties and experimental conditions. This model gives the final expression for evaporation rate, and thus for mass dependence over time, with approximation parameters resulting in the properties being sought.
The hysteresis response of soil CO 2 concentration and soil respiration to soil temperature
Zhang, Quan; Katul, Gabriel G.; Oren, Ram; ...
2015-07-20
Diurnal hysteresis between soil temperature (T s) and both CO 2 concentration ([CO 2]) and soil respiration rate (R s) were reported across different field experiments. However, the causes of these hysteresis patterns remain a subject of debate, with biotic and abiotic factors both invoked as explanations. Here, to address these issues, a CO 2 gas transport model is developed by combining a layer-wise mass conservation equation for subsurface gas phase CO 2, Fickian diffusion for gas transfer, and a CO 2 source term that depends on soil temperature, moisture, and photosynthetic rate. Using this model, a hierarchy of numericalmore » experiments were employed to disentangle the causes of the hysteretic [CO 2]-T s and CO 2 flux T s (i.e., F-T s) relations. Model results show that gas transport alone can introduce both [CO 2]-T s and F-T s hystereses and also confirm prior findings that heat flow in soils lead to [CO 2] and F being out of phase with T s, thereby providing another reason for the occurrence of both hystereses. The area (A hys) of the [CO 2]-T s hysteresis near the surface increases, while the A hys of the Rs-Ts hysteresis decreases as soils become wetter. Moreover, a time-lagged carbon input from photosynthesis deformed the [CO 2]-T s and R s-T s patterns, causing a change in the loop direction from counterclockwise to clockwise with decreasing time lag. An asymmetric 8-shaped pattern emerged as the transition state between the two loop directions. Lastly, tracing the pattern and direction of the hysteretic [CO 2]-T s and R s-T s relations can provide new ways to fingerprint the effects of photosynthesis stimulation on soil microbial activity and detect time lags between rhizospheric respiration and photosynthesis.« less
Gas phase hydrogen permeation in alpha titanium and carbon steels
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Shah, K. K.; Reeves, B. H.; Gadgeel, V. L.
1980-01-01
Commercially pure titanium and heats of Armco ingot iron and steels containing from 0.008-1.23 w/oC were annealed or normalized and machined into hollow cylinders. Coefficients of diffusion for alpha-Ti and alpha-Fe were determined by the lag-time technique. Steady state permeation experiments yield first power pressure dependence for alpha-Ti and Sievert's law square root dependence for Armco iron and carbon steels. As in the case of diffusion, permeation data confirm that alpha-titanium is subject to at least partial phase boundary reaction control while the steels are purely diffusion controlled. The permeation rate in steels also decreases as the carbon content increases. As a consequence of Sievert's law, the computed hydrogen solubility decreases as the carbon content increases. This decreases in explained in terms of hydrogen trapping at carbide interfaces. Oxidizing and nitriding the surfaces of alpha-titanium membranes result in a decrease in the permeation rate for such treatment on the gas inlet surfaces but resulted in a slight increase in the rate for such treatment on the gas outlet surfaces. This is explained in terms of a discontinuous TiH2 layer.
Diffusion coefficients in organic-water solutions and comparison with Stokes-Einstein predictions
NASA Astrophysics Data System (ADS)
Evoy, E.; Kamal, S.; Bertram, A. K.
2017-12-01
Diffusion coefficients of organic species in particles containing secondary organic material (SOM) are necessary for predicting the growth and reactivity of these particles in the atmosphere. Previously, the Stokes-Einstein equation combined with viscosity measurements have been used to predict these diffusion coefficients. However, the accuracy of the Stokes-Einstein equation for predicting diffusion coefficients in SOM-water particles has not been quantified. To test the Stokes-Einstein equation, diffusion coefficients of fluorescent organic probe molecules were measured in citric acid-water and sorbitol-water solutions. These solutions were used as proxies for SOM-water particles found in the atmosphere. Measurements were performed as a function of water activity, ranging from 0.26-0.86, and as a function of viscosity ranging from 10-3 to 103 Pa s. Diffusion coefficients were measured using fluorescence recovery after photobleaching. The measured diffusion coefficients were compared with predictions made using the Stokes-Einstein equation combined with literature viscosity data. Within the uncertainties of the measurements, the measured diffusion coefficients agreed with the predicted diffusion coefficients, in all cases.
Ab Initio Values of the Thermophysical Properties of Helium as Standards
Hurly, John J.; Moldover, Michael R.
2000-01-01
Recent quantum mechanical calculations of the interaction energy of pairs of helium atoms are accurate and some include reliable estimates of their uncertainty. We combined these ab initio results with earlier published results to obtain a helium-helium interatomic potential that includes relativistic retardation effects over all ranges of interaction. From this potential, we calculated the thermophysical properties of helium, i.e., the second virial coefficients, the dilute-gas viscosities, and the dilute-gas thermal conductivities of 3He, 4He, and their equimolar mixture from 1 K to 104 K. We also calculated the diffusion and thermal diffusion coefficients of mixtures of 3He and 4He. For the pure fluids, the uncertainties of the calculated values are dominated by the uncertainties of the potential; for the mixtures, the uncertainties of the transport properties also include contributions from approximations in the transport theory. In all cases, the uncertainties are smaller than the corresponding experimental uncertainties; therefore, we recommend the ab initio results be used as standards for calibrating instruments relying on these thermophysical properties. We present the calculated thermophysical properties in easy-to-use tabular form. PMID:27551630
NASA Astrophysics Data System (ADS)
Baricci, Andrea; Casalegno, Andrea
2016-09-01
Limiting current density of oxygen reduction reaction in polymer electrolyte fuel cells is determined by several mass transport resistances that lower the concentration of oxygen on the catalyst active site. Among them, diffusion across porous media plays a significant role. Despite the extensive experimental activity documented in PEMFC literature, only few efforts have been dedicated to the measurement of the effective transport properties in porous layers. In the present work, a methodology for ex situ measurement of the effective diffusion coefficient and Knudsen radius of porous layers for polymer electrolyte fuel cells (gas diffusion layer, micro porous layer and catalyst layer) is described and applied to high temperature polymer fuel cells State of Art materials. Regression of the measured quantities by means of a quasi 2D physical model is performed to quantify the Knudsen effect, which is reported to account, respectively, for 30% and 50% of the mass transport resistance in micro porous layer and catalyst layer. On the other side, the model reveals that pressure gradient consequent to permeation in porous layers of high temperature polymer fuel cells has a negligible effect on oxygen concentration in relevant operating conditions.
Subsoil denitrification experiments at KBS MSU
NASA Astrophysics Data System (ADS)
Shcherbak, I.; Robertson, G. P.
2011-12-01
Denitrification is a major soil process that produces nitrous oxide (N2O), a potent greenhouse gas. Most research on denitrification has, for various reasons, concentrated on the top soil layer, ignoring depths below 10-20 cm. Although denitrification is considered to be the most active in top soil, this layer usually accounts for only 10% of the total volume of the soil profile. Our research addresses the questions: How significant is denitrification at depth in the soil profile and how does it vary with land-use? We have two field experiments at the W. K. Kellogg Biological Station (KBS) in southwest Michigan: 1) tilled versus no-tillage rainfed fertilized corn and 2) rainfed versus irrigated corn at six fertilizer levels, with N2O concentrations measured at 10 depths (3, 7, 15, 20, 25, 50, 55, 70, 75, 125 cm) and 5 depths (10, 20, 30, 50, 75 cm), respectively , along with N2O fluxes to the atmosphere in both. Soil environment data (texture, water content, temperature and nitrate content) represent a combination of measured values and simulated values using the SALUS (System Approach to Land Use Sustainability) model. We used diffusion and water balance equations that incorporated carbon dioxide concentrations and flux data collected simultaneously with N2O to determine diffusivity as a function of water content and soil temperature. We used the same diffusivity to obtain N2O production as function of moisture, temperature, and nitrate availability. Further validation of the production function was performed with data collected from the KBS Long-Term Ecological Research (LTER) site , where we also measured belowground concentrations during the 2011 growing season.
Methane fluxes during the cold season: distribution and mass transfer in the snow cover of bogs
NASA Astrophysics Data System (ADS)
Smagin, A. V.; Shnyrev, N. A.
2015-08-01
Fluxes and profile distribution of methane in the snow cover and different landscape elements of an oligotrophic West-Siberian bog (Mukhrino Research Station, Khanty-Mansiisk autonomous district) have been studied during a cold season. Simple models have been proposed for the description of methane distribution in the inert snow layer, which combine the transport of the gas and a source of constant intensity on the soil surface. The formation rates of stationary methane profiles in the snow cover have been estimated (characteristic time of 24 h). Theoretical equations have been derived for the calculation of small emission fluxes from bogs to the atmosphere on the basis of the stationary profile distribution parameters, the snow porosity, and the effective methane diffusion coefficient in the snow layer. The calculated values of methane emission significantly (by 2-3 to several tens of times) have exceeded the values measured under field conditions by the closed chamber method (0.008-0.25 mg C/(m2 h)), which indicates the possibility of underestimating the contribution of the cold period to the annual emission cycle of bog methane.
ANALYTIC FORMS OF THE PERPENDICULAR DIFFUSION COEFFICIENT IN NRMHD TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shalchi, A., E-mail: andreasm4@yahoo.com
2015-02-01
In the past different analytic limits for the perpendicular diffusion coefficient of energetic particles interacting with magnetic turbulence were discussed. These different limits or cases correspond to different transport modes describing how the particles are diffusing across the large-scale magnetic field. In the current paper we describe a new transport regime by considering the model of noisy reduced magnetohydrodynamic turbulence. We derive different analytic forms of the perpendicular diffusion coefficient, and while we do this, we focus on the aforementioned new transport mode. We show that for this turbulence model a small perpendicular diffusion coefficient can be obtained so thatmore » the latter diffusion coefficient is more than hundred times smaller than the parallel diffusion coefficient. This result is relevant to explain observations in the solar system where such small perpendicular diffusion coefficients have been reported.« less
Simplified conditions holding at the gas-liquid interface during evaporation
NASA Astrophysics Data System (ADS)
Morris, S. J. S.
2017-11-01
We show that on the gas side of the interface between a pure liquid and a binary mixture of its vapour with an insoluble gas, the normal derivative of vapour partial pressure pv satisfies ∂pv/∂n +αc/2 πpD (P -pv) (p -pv) = 0 . Constants α, c, D denote the dimensionless accommodation coefficient, a molecular speed and the diffusivity. Provided the continuum approximation holds within the gas, and α = O(1) , this boundary condition implies that evaporation can take one of two forms. (a) If the coexistence pressure P evaluated at the interface is less than the constant total gas pressure p, liquid at the interface is in local thermodynamic equilibrium with its vapour, and the evaporation rate is determined by diffusion through the gas. (b) Conversely, if P > p , gas at the interface consists of pure vapour, and the evaporation rate is determined by processes within the liquid. In the Wayner theory of the heated evaporating meniscus, such as that in a heat pipe, case (b) is assumed. As an application of our result, we show that some of the published experiments intended to test the Wayner theory instead operate under conditions in which case (a) holds. As a result, they do not perform the test intended.
Alpers, Charles N.; Dettman, D.L.; Lohmann, K.C.; Brabec, D.
1990-01-01
Stable isotope ratios of oxygen and carbon were determined for CO2 in soil gas in the vicinity of the massive sulfide deposit at Crandon, Wisconsin with the objective of determining the source of anomalously high CO2 concentrations detected previously by McCarthy et al. (1986). Values of ??13C in soil gas CO2 from depths between 0.5 and 1.0 m were found to range from -12.68??? to -20.03??? (PDB). Organic carbon from the uppermost meter of soil has ??13C between -24.1 and -25.8??? (PDB), indicating derivation from plant species with the C3 (Calvin) type of photosynthetic pathway. Microbial decomposition of the organic carbon and root respiration from C3 and C4 (Hatch-Slack) plants, together with atmospheric CO2 are the likely sources of carbon in soil gas CO2. Values of ??18O in soil-gas CO2 range from 32 to 38??? (SMOW). These ??18O values are intermediate between that calculated for CO2 gas in isotopic equilibrium with local groundwaters and that for atmospheric CO2. The ??18O data indicate that atmospheric CO2 has been incorporated by mixing or diffusion. Any CO2 generated by microbial oxidation of organic matter has equilibrated its oxygen isotopes with the local groundwaters. The isotopic composition of soil-gas CO2 taken from directly above the massive sulfide deposit was not distinguishable from that of background samples taken 1 to 2 km away. No enrichment of the ??13C value of soil-gas CO2 was observed, contrary to what would be expected if the anomalous CO2 were derived from the dissolution of Proterozoic marine limestone country rock or of Paleozoic limestone clasts in glacial till. Therefore, it is inferred that root respiration and decay of C3 plant material were responsible for most CO2 generation both in the vicinity of the massive sulfide and in the "background" area, on the occasion of our sampling. Interpretation of our data is complicated by the effects of rainfall, which significantly reduced the magnitude of the CO2 anomaly. Therefore, we cannot rule out the possible mechanism of carbonate dissolution driven by pyrite oxidation, as proposed by Lovell et al. (1983) and McCarthy et al. (1986). Further work is needed on seasonal and daily variations of CO2 concentrations and stable isotope ratios in various hydrogeologic and ecologic settings so that more effective sampling strategies can be developed for mineral exploration using soil gases. ?? 1990.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, T.L.; Gustin, M.S.; Fernandez, G.C.J.
The objective of this study was to evaluate the role of physiological and environmental factors in governing the flux of elemental mercury from plants to the atmosphere. Five species (Lepidium latifolium, Artemisia douglasiana, Caulanthus sp., Fragaria vesca, and Eucalyptus globulus) with different ecological and physiological attributes and growing in soils with high levels of mercury contamination were examined. Studies were conducted in a whole-plant, gas-exchange chamber providing precise control of environmental conditions, and mercury flux was estimated using the mass balance approach. Mercury flux increased linearly as a function of temperature within the range of 20 to 40 C, andmore » the mean temperature coefficient (Q{sub 10}) was 2.04. The temperature dependence of mercury flux was attributed to changes in the contaminant`s vapor pressure in the leaf interior. Mercury flux from foliage increased linearly as a function of irradiance within the range of 500 to 1,500 {micro}mol m/s, and the light enhancement of mercury flux was within a factor of 2.0 to 2.5 for all species. Even though the leaf-to-atmosphere diffusive path for mercury vapor from foliage is similar to that of water vapor, stomatal conductance played a secondary role in governing mercury flux. In a quantitative comparison with other studies in both laboratory and field settings, a strong linear relationship is evident between mercury vapor flux and the natural logarithm of soil mercury concentration, and this relationship may have predictive value in developing regional- and continental-scale mercury budgets. The most critical factors governing mercury flux from plants are mercury concentration in the soil, leaf area index, temperature, and irradiance.« less
NASA Astrophysics Data System (ADS)
Garcia-Anton, Elena; Cuezva, Soledad; Fernandez-Cortes, Angel; Alvarez-Gallego, Miriam; Pla, Concepcion; Benavente, David; Cañaveras, Juan Carlos; Sanchez-Moral, Sergio
2017-09-01
This study characterizes the processes involved in seasonal CO2 exchange between soils and shallow underground systems and explores the contribution of the different biotic and abiotic sources as a function of changing weather conditions. We spatially and temporally investigated five karstic caves across the Iberian Peninsula, which presented different microclimatic, geologic and geomorphologic features. The locations present Mediterranean and Oceanic climates. Spot air sampling of CO2 (g) and δ13CO2 in the caves, soils and outside atmospheric air was periodically conducted. The isotopic ratio of the source contribution enhancing the CO2 concentration was calculated using the Keeling model. We compared the isotopic ratio of the source in the soil (δ13Cs-soil) with that in the soil-underground system (δ13Cs-system). Although the studied field sites have different features, we found common seasonal trends in their values, which suggests a climatic control over the soil air CO2 and the δ13CO2 of the sources of CO2 in the soil (δ13Cs-soil) and the system (δ13Cs-system). The roots respiration and soil organic matter degradation are the main source of CO2 in underground environments, and the inlet of the gas is mainly driven by diffusion and advection. Drier and warmer conditions enhance soil-exterior CO2 interchange, reducing the CO2 concentration and increasing the δ13CO2 of the soil air. Moreover, the isotopic ratio of the source of CO2 in both the soil and the system tends to heavier values throughout the dry and warm season. We conclude that seasonal variations of soil CO2 concentration and its 13C/12C isotopic ratio are mainly regulated by thermo-hygrometric conditions. In cold and wet seasons, the increase of soil moisture reduces soil diffusivity and allows the storage of CO2 in the subsoil. During dry and warm seasons, the evaporation of soil water favours diffusive and advective transport of soil-derived CO2 to the atmosphere. The soil CO2 diffusion is enough important during this season to modify the isotopic ratio of soil produced CO2 (3-6‰ heavier). Drought induces release of CO2 with an isotopic ratio heavier than produced by organic sources. Consequently, climatic conditions drive abiotic processes that turn regulate a seasonal storage of soil-produced CO2 within soil and underground systems. The results here obtained imply that abiotic emissions of soil-produced CO2 must be an inherent consequence of droughts, which intensification has been forecasted at global scale in the next 100 years.
Modeling Microbial Processes in EPIC to Estimate Greenhouse Gas Emissions from soils
NASA Astrophysics Data System (ADS)
Schwab, D. E.; Izaurralde, R. C.; McGill, W. B.; Williams, J. R.; Schmid, E.
2009-12-01
Emissions of trace gases (CO2, N2O and CH4) to the atmosphere from managed terrestrial ecosystems have been contributing significantly to the warming of Earth. Trace gas production is dominated by biospheric processes. An improved knowledge of the soil-plant-atmosphere interface is of key importance for understanding trace gas dynamics. In soils, microbial metabolism plays a key role in the release or uptake of trace gases. Here we present work on the biophysical and biogeochemical model EPIC (Environmental Policy/Integrated Climate) to extend its capabilities to simulate CO2 and N2O fluxes in managed and unmanaged ecosystems. Emphasis will be given to recently developed, microbially-based, denitrification and nitrification modules. The soil-atmosphere exchange of trace gases can be measured by using various equipments, but often these measurements exhibit extreme space-time variability. We use hourly time steps to account for the variability induced by small changes in environmental conditions. Soils are often studied as macroscopic systems, although their functions are predominantly controlled at a microscopic level; i.e. the level of the microorganisms. We include these processes to the extent that these are known and can be quantitatively described. We represent soil dynamics mathematically with routines for gas diffusion, Michael Menten processes, electron budgeting and other processes such as uptake and transformations. We hypothesize that maximization of energy capture form scarce substrates using energetic favorable reactions drives evolution and that competitive advantage can result by depriving a competitor from a substrate. This Microbe Model changes concepts of production of N-containing trace gases; it unifies understanding of N oxidation and reduction, predicts production and evolution of trace gases and is consistent with observations of anaerobic ammonium oxidation.
Transport of dissolved gases through unsaturated porous media
NASA Astrophysics Data System (ADS)
Maryshev, B. S.
2017-06-01
The natural porous media (e.g. soil, sand, peat etc.) usually are partially saturated by groundwater. The saturation of soil depends on hydrostatic pressure which is linearly increased with depth. Often some gases (e.g. nitrogen, oxygen, carbon dioxide, methane etc.) are dissolved into the groundwater. The solubility of gases is very small because of that two assumptions is applied: I. The concentration of gas is equal to solubility, II. Solubility depends only on pressure (for isothermal systems). In this way some part of dissolved gas transfers from the solution to the bubble phase. The gas bubbles are immovably trapped in a porous matrix by surface-tension forces and the dominant mechanism of transport of gas mass becomes the diffusion of gas molecules through the liquid. If the value of water content is small then the transport of gas becomes slow and gas accumulates into bubble phase. The presence of bubble phase additionally decreases the water content and slows down the transport. As result the significant mass of gas should be accumulated into the massif of porous media. We derive the transport equations and find the solution which is demonstrated the accumulation of gases. The influence of saturation, porosity and filtration velocity to accumulation process is investigated and discussed.
Measurement of the oxygen mass transfer through the air-water interface.
Mölder, Erik; Mashirin, Alelxei; Tenno, Toomas
2005-01-01
Gas mass transfer through the liquid-gas interface has enormous importance in various natural and industrial processes. Surfactants or insoluble compounds adsorbed onto an interface will inhibit the gas mass transfer through the liquid-gas surface. This study presents a technique for measuring the oxygen mass transfer through the air-water interface. Experimental data obtained with the measuring device were incorporated into a novel mathematical model, which allowed one to calculate diffusion conduction of liquid surface layer and oxygen mass transfer coefficient in the liquid surface layer. A special measurement cell was constructed. The most important part of the measurement cell is a chamber containing the electrochemical oxygen sensor inside it. Gas exchange between the volume of the chamber and the external environment takes place only through the investigated surface layer. Investigated liquid was deoxygenated, which triggers the oxygen mass transfer from the chamber through the liquid-air interface into the liquid phase. The decrease of oxygen concentration in the cell during time was measured. By using this data it is possible to calculate diffusional parameters of the water surface layer. Diffusion conduction of oxygen through the air-water surface layer of selected wastewaters was measured. The diffusion conduction of different wastewaters was about 3 to 6 times less than in the unpolluted water surface. It was observed that the dilution of wastewater does not have a significant impact on the oxygen diffusion conduction through the wastewater surface layer. This fact can be explained with the presence of the compounds with high surface activity in the wastewater. Surfactants achieved a maximum adsorption and, accordingly, the maximum decrease of oxygen permeability already at a very low concentration of surfactants in the solution. Oxygen mass transfer coefficient of the surface layer of the water is found to be Ds/ls = 0.13 x 10(-3) x cm/s. A simple technique for measuring oxygen diffusion parameters through the air-water solution surface has been developed. Derived equations enable the calculation of diffusion parameters of the surface layer at current conditions. These values of the parameters permit one to compare the resistances of the gas-liquid interface to oxygen mass transfer in the case of adsorption of different substances on the surface layer. This simple technique may be used for a determination of oxygen permeability of different water-solution surface layers. It enables one to measure the resistance to the oxygen permeability of all inflowing wastewater surface layers in the wastewater treatment plant, and to initiate a preliminary cleaning of this wastewater if required. Similarly, we can measure oxygen permeability of natural waterbodies. Especially in the case of pollution, it is important to know to what extent the oxygen permeability of the water surface layer has been decreased. Based on the tehnique presented in this research, fieldwork equipment will be developed.
Dynamic leaching behavior of geogenic As in soils after cement-based stabilization/solidification.
Li, Jiang-Shan; Wang, Lei; Tsang, Daniel C W; Beiyuan, Jingzi; Poon, Chi Sun
2017-12-01
Cement-based stabilization/solidification (S/S) is a practical treatment approach for hazardous waste with anthropogenic As sources; however, its applicability for geogenic As-containing soil and the long-term leaching potential remain uncertain. In this study, semi-dynamic leaching test was performed to investigate the influence of S/S binders (cement blended with fuel ash (FA), furnace bottom ash (FBA), or ground granulated blast furnace slag (GGBS)) on the long-term leaching characteristics of geogenic As. The results showed that mineral admixtures with higher Ca content and pozzolanic activity were more effective in reducing the leached As concentrations. Thus, cement blended with FBA was inferior to other binders in suppressing the As leaching, while 20% replacement of ordinary Portland cement by GGBS was considered most feasible for the S/S treatment of As-containing soils. The leachability of geogenic As was suppressed by the encapsulation effect of solidified matrix and interlocking network of hydration products that were supported by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) results. The long-term leaching of geogenic As from the monolithic samples was diffusion-controlled. Increasing the Ca content in the samples led to a decrease in diffusion coefficient and an increase in feasibility for "controlled utilization" of the S/S-treated soils.
Stellwagen, Earle; Stellwagen, Nancy C
2015-09-01
Free solution capillary electrophoresis (CE) is a useful technique for measuring the translational diffusion coefficients of charged analytes. The measurements are relatively fast if the polarity of the electric field is reversed to drive the analyte back and forth past the detection window during each run. We have tested the validity of the resulting diffusion coefficients using double-stranded DNA molecules ranging in size from 20 to 960 base pairs as the model system. The diffusion coefficients of small DNAs are equal to values in the literature measured by other techniques. However, the diffusion coefficients of DNA molecules larger than ∼30 base pairs are anomalously high and deviate increasingly from the literature values with increasing DNA molar mass. The anomalously high diffusion coefficients are due to electrostatic coupling between the DNA and its counterions. As a result, the measured diffusion coefficients vary with the diffusion coefficient of the counterion, as well as with cation concentration and electric field strength. These effects can be reduced or eliminated by measuring apparent diffusion coefficients of the DNA at several different electric field strengths and extrapolating the results to zero electric field.
NASA Astrophysics Data System (ADS)
Amonte, Cecilia; García-Merino, Marta; Asensio-Ramos, María; Melián, Gladys; García-Hernández, Rubén; Pérez, Aaron; Hernández, Pedro A.; Pérez, Nemesio M.
2017-04-01
Tenerife (2304 km2) is the largest of the Canary Islands and has developed a central volcanic complex (Cañadas edifice), that started to grow about 3.5 My ago. Coeval with the construction of the Cañadas edifice, shield basaltic volcanism continued until the present along three rift zones oriented NW-SE, NE-SW and NS (hereinafter referred as NW, NE and NS respectively). Main volcanic historical activity has occurred along de NW and NE rift-zones, although summit cone of Teide volcano, in central volcanic complex, is the only area of the island where surface geothermal manifestations are visible. Uprising of deep-seated gases occurs along the aforementioned volcanic structures causing diffuse emissions at the surface environment of the rift-zones. In the last 20 years, there has been considerable interest in the study of diffuse degassing as a powerful tool in volcano monitoring programs. Diffuse degassing studies are even more important volcanic surveillance tool at those volcanic areas where visible manifestations of volcanic gases are absent. Historically, soil gas and diffuse degassing surveys in volcanic environments have focused mainly on CO2 because it is, after water vapor, the most abundant gas dissolved in magma. One of the most popular methods used to determine CO2 fluxes in soil sciences is based on the absorption of CO2 through an alkaline medium, in its solid or liquid form, followed by gravimetric, conductivity, or titration analyses. In the summer of 2016, a network of 31 closed static chambers was installed, covering the three main structural zones of Tenerife (NE, NW and NS) as well as Cañadas Caldera with volcanic surveillance porpoises. 50 cc of 0.1N KOH solution is placed inside the chamber to absorb the CO2 released from the soil. The solution is replaced weekly and the trapped CO2 is then analyzed at the laboratory by titration. The are expressed as weekly integrated CO2 efflux values. The CO2 efflux values ranged from 3.2 to 12.9 gṡm-2ṡd-1, with average values of 7.0 gṡm-2ṡd-1 for the NE rift-zone and 6.4 gṡm-2ṡd-1 for NW and NS rift-zones. The most significant CO2 efflux values were observed in the NE rift-zone, with maximum values of 12.5 gṡm-2ṡd-1. To investigate the origin of the soil CO2 at the three volcanic rifts, soil gas samples were weekly taken on the head space of the closed chambers to study the chemical composition and the isotopic composition of the CO2. Collected gas samples can be considered as CO2-enriched air, showing concentrations of CO2 in the range 370-22,448 ppmV, with average values of 2,859 ppmV, 1,396 ppmV and 1,216 ppmV for the NE, NW and NS rift-zones, respectively. The CO2isotopic composition, expressed as dxzC-CO2, indicates that most of the sampling sites exhibited CO2 composed by different mixing degrees between atmospheric and biogenic CO2 with slight inputs of deep-seated CO2, with mean values of -17.5‰ -13.6‰ and -16.4‰ for the NE, NW and NS rift-zones, respectively. The methodology presented here represents an inexpensive method that might help to detect early warning signals of future unrest episodes in Tenerife.
NASA Astrophysics Data System (ADS)
Ebrahimi, Ali; Or, Dani
2017-05-01
The sensitivity of polar regions to raising global temperatures is reflected in rapidly changing hydrological processes associated with pronounced seasonal thawing of permafrost soil and increased biological activity. Of particular concern is the potential release of large amounts of soil carbon and stimulation of other soil-borne greenhouse gas emissions such as methane. Soil methanotrophic and methanogenic microbial communities rapidly adjust their activity and spatial organization in response to permafrost thawing and other environmental factors. Soil structural elements such as aggregates and layering affect oxygen and nutrient diffusion processes thereby contributing to methanogenic activity within temporal anoxic niches (hot spots). We developed a mechanistic individual-based model to quantify microbial activity dynamics in soil pore networks considering transport processes and enzymatic activity associated with methane production in soil. The model was upscaled from single aggregates to the soil profile where freezing/thawing provides macroscopic boundary conditions for microbial activity at different soil depths. The model distinguishes microbial activity in aerate bulk soil from aggregates (or submerged profile) for resolving methane production and oxidation rates. Methane transport pathways by diffusion and ebullition of bubbles vary with hydration dynamics. The model links seasonal thermal and hydrologic dynamics with evolution of microbial community composition and function affecting net methane emissions in good agreement with experimental data. The mechanistic model enables systematic evaluation of key controlling factors in thawing permafrost and microbial response (e.g., nutrient availability and enzyme activity) on long-term methane emissions and carbon decomposition rates in the rapidly changing polar regions.
An efficient approach for treating composition-dependent diffusion within organic particles
O'Meara, Simon; Topping, David O.; Zaveri, Rahul A.; ...
2017-09-07
Mounting evidence demonstrates that under certain conditions the rate of component partitioning between the gas and particle phase in atmospheric organic aerosol is limited by particle-phase diffusion. To date, however, particle-phase diffusion has not been incorporated into regional atmospheric models. An analytical rather than numerical solution to diffusion through organic particulate matter is desirable because of its comparatively small computational expense in regional models. Current analytical models assume diffusion to be independent of composition and therefore use a constant diffusion coefficient. To realistically model diffusion, however, it should be composition-dependent (e.g. due to the partitioning of components that plasticise, vitrifymore » or solidify). This study assesses the modelling capability of an analytical solution to diffusion corrected to account for composition dependence against a numerical solution. Results show reasonable agreement when the gas-phase saturation ratio of a partitioning component is constant and particle-phase diffusion limits partitioning rate (<10% discrepancy in estimated radius change). However, when the saturation ratio of the partitioning component varies, a generally applicable correction cannot be found, indicating that existing methodologies are incapable of deriving a general solution. Until such time as a general solution is found, caution should be given to sensitivity studies that assume constant diffusivity. Furthermore, the correction was implemented in the polydisperse, multi-process Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) and is used to illustrate how the evolution of number size distribution may be accelerated by condensation of a plasticising component onto viscous organic particles.« less
An efficient approach for treating composition-dependent diffusion within organic particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Meara, Simon; Topping, David O.; Zaveri, Rahul A.
Mounting evidence demonstrates that under certain conditions the rate of component partitioning between the gas and particle phase in atmospheric organic aerosol is limited by particle-phase diffusion. To date, however, particle-phase diffusion has not been incorporated into regional atmospheric models. An analytical rather than numerical solution to diffusion through organic particulate matter is desirable because of its comparatively small computational expense in regional models. Current analytical models assume diffusion to be independent of composition and therefore use a constant diffusion coefficient. To realistically model diffusion, however, it should be composition-dependent (e.g. due to the partitioning of components that plasticise, vitrifymore » or solidify). This study assesses the modelling capability of an analytical solution to diffusion corrected to account for composition dependence against a numerical solution. Results show reasonable agreement when the gas-phase saturation ratio of a partitioning component is constant and particle-phase diffusion limits partitioning rate (<10% discrepancy in estimated radius change). However, when the saturation ratio of the partitioning component varies, a generally applicable correction cannot be found, indicating that existing methodologies are incapable of deriving a general solution. Until such time as a general solution is found, caution should be given to sensitivity studies that assume constant diffusivity. Furthermore, the correction was implemented in the polydisperse, multi-process Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) and is used to illustrate how the evolution of number size distribution may be accelerated by condensation of a plasticising component onto viscous organic particles.« less
The role of intra-NAPL diffusion on mass transfer from MGP residuals
NASA Astrophysics Data System (ADS)
Shafieiyoun, Saeid; Thomson, Neil R.
2018-06-01
An experimental and computational study was performed to investigate the role of multi-component intra-NAPL diffusion on NAPL-water mass transfer. Molecular weight and the NAPL component concentrations were determined to be the most important parameters affecting intra-NAPL diffusion coefficients. Four NAPLs with different viscosities but the same quantified mass were simulated. For a spherical NAPL body, a combination of NAPL properties and interphase mass transfer rate can result in internal diffusion limitations. When the main intra-NAPL diffusion coefficients are in the range of self-diffusion coefficients (10-5 to 10-6 cm2/s), dissolution is not limited by internal diffusion except for high mass transfer rate coefficients (>180 cm/day). For a complex and relatively high viscous NAPL (>50 g/(cm s)), smaller intra-NAPL diffusion coefficients (<10-8) are expected and even low mass transfer rate coefficients ( 6 cm/day) can result in diffusion-limited dissolution.
Molecular Dynamics Simulation of the Cage Effect in a Wide Packing Fraction Range
NASA Astrophysics Data System (ADS)
Pestryaev, E. M.
2018-07-01
The self-diffusion coefficient and particle residence time in the first coordination shell of its neighbours were investigated by molecular dynamics simulation with the packing fraction of the model system ranging from 0.1 to 0.8. The residence time distribution spans several orders of magnitude and broadens with the system packing fraction. The distribution exhibits a maximum localized in the short residence time region. The average residence time correlates with the conventionally-used intermolecular correlation time governed by the mutual particle translational diffusion. It was shown that the use of the coordination number as an argument for all searched parameters is the obvious representation of the cage effect onset. The agreement of the self-diffusion coefficient with one of the recent theories is excellent in most of the density range, including the start of the glass transition, with the largest divergence only observed for the rare gas state. The same conclusion is true for the simulated and theoretical values of the caging number, which is nearly five, defining the start of the system liquefaction.
Water imbibition by mica pores: what happens when capillary flow is suppressed?
NASA Astrophysics Data System (ADS)
Fang, Chao; Qiao, Rui
2017-11-01
The imbibition of liquids into porous media plays a critical role in numerous applications. Most prior studies focused on imbibition driven by capillary flows. In this work, we study the imbibition of water into slit-shaped mica pores filled with pressurized methane using molecular simulations. Despite that capillary flow is suppressed by the high gas pressure, water is imbibed into the pore as monolayer liquid films. Since the classical hydrodynamic flow is not readily applicable for the monolayer water film propagating on the mica wall and the imbibition is driven by the strong affinity of water molecules to the mica walls, the observed imbibition is best taken as surface hydration. We show that the dynamics of water's imbibition front follows a simple diffusive scaling law. The effective diffusion coefficient of the imbibition front, however, is more than ten times larger than the diffusion coefficient of the water molecules in the water film adsorbed on the mica walls. Using a molecular theory originally developed for the spreading of monolayer films on solid substrates, we clarify the mechanism underlying the rapid water imbibition observed here.
Transport properties of gases and binary liquids near the critical point
NASA Technical Reports Server (NTRS)
Sengers, J. V.
1972-01-01
A status report is presented on the anomalies observed in the behavior of transport properties near the critical point of gases and binary liquids. The shear viscosity exhibits a weak singularity near the critical point. An analysis is made of the experimental data for those transport properties, thermal conductivity and thermal diffusivity near the gas-liquid critical point and binary diffusion coefficient near the critical mixing point, that determine the critical slowing down of the thermodynamic fluctuations in the order parameter. The asymptotic behavior of the thermal conductivity appears to be closely related to the asymptotic behavior of the correlation length. The experimental data for the thermal conductivity and diffusivity are shown to be in substantial agreement with current theoretical predictions.
A Numerical Assessment of Cosmic-Ray Energy Diffusion through Turbulent Media
NASA Astrophysics Data System (ADS)
Fatuzzo, M.; Melia, F.
2014-04-01
How and where cosmic rays are produced, and how they diffuse through various turbulent media, represent fundamental problems in astrophysics with far-reaching implications, both in terms of our theoretical understanding of high-energy processes in the Milky Way and beyond, and the successful interpretation of space-based and ground based GeV and TeV observations. For example, recent and ongoing detections, e.g., by Fermi (in space) and HESS (in Namibia), of γ-rays produced in regions of dense molecular gas hold important clues for both processes. In this paper, we carry out a comprehensive numerical investigation of relativistic particle acceleration and transport through turbulent magnetized environments in order to derive broadly useful scaling laws for the energy diffusion coefficients.
Subsychronous vibration of multistage centrifugal compressors forced by rotating stall
NASA Technical Reports Server (NTRS)
Fulton, J. W.
1987-01-01
A multistage centrifugal compressor, in natural gas re-injection service on an offshore petroleum production platform, experienced subsynchronous vibrations which caused excessive bearing wear. Field performance testing correlated the subsynchronous amplitude with the discharge flow coefficient, demonstrating the excitation to be aerodynamic. Adding two impellers allowed an increase in the diffuser flow angle (with respect to tangential) to meet the diffuser stability criteria based on factory and field tests correlated using the theory of Senoo (for rotating stall in a vaneless diffuser). This modification eliminated all significant subsynchronous vibrations in field service, thus confirming the correctness of the solution. Other possible sources of aerodynamically induced vibrations were considered, but the judgment that those are unlikely has been confirmed by subsequent experience with other similar compressors.
NASA Technical Reports Server (NTRS)
Morgan, G. J.; Campion, R. P.
1997-01-01
The life of fluid-carrying flexible or umbilical pipes during service at elevated temperatures and pressures depends inter alia on their resistance to attack by the fluids present and the rate at which these fluids are absorbed by the pipe lining materials. The consequences of fluid ingress into the thermoplastic lining could mean a) a reduction in its mechanical strength, to increase chances of crack formation and growth and thus a loss of integrity, b) the occurrence of permeation right through the lining material, with pressure build- up in the outer pipe wall construction (of flexible pipes) or chemical attack (from a hostile permeant) on outer layers of reinforcements. Therefore it is important within this project to have relevant permeation data for Coflon and Tefzel thermoplastics: the former is plasticised, the latter is not. A previous report (CAPP/M.2) described experimental equipment and techniques used by MERL when measuring high pressure (up to 5000 psi) gas permeation and liquid diffusion through thermoplastic samples cut from extruded bar or pipe, and provided the basic theory involved. Norsk Hydro are also performing gas permeation tests on pipe sections, at up to 100 bars (1450 psi) pressure or so, and reporting separately. Some comparisons between data from Norsk Hydro and MERL have been made herein. The tests should be considered as complementary, as the Norsk Hydro test has the obvious benefit of using complete pipe sections, whilst MERL can test at much higher pressures, up to 1000 bar if necessary. The sophisticated analytical measuring equipment of Norsk Hydro can distinguish the individual components of mixed gases and hence the various permeation-linked coefficients whereas MERL, in using pressure increase at constant volume to determine permeation rate, is limited to obtaining single gas data, or apparent (or representative) coefficients for a mixed gas as a whole. Except for the initial fluid diffusion data for Tefzel described in CAPP/M.2, the present report covers all aspects of fluid permeation and diffusion for Coflon and Tefzel, including all the pen-neation data accumulated in the project to date. Test gases have mainly been methane (CH4) and carbon dioxide (CO2). More high pressure (HP) gas permeation tests have been performed since the last issue of this report, most being concerned with changes in permeation characteristics brought about by ageing in various relevant fluids. This revision supersedes previous issues.
Effect of carbon ion irradiation on Ag diffusion in SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, Bin; Ko, Hyunseok; Gerczak, Tyler J.
Transport of Ag fission product through the silicon-carbide (SiC) diffusion barrier layer in TRISO fuel particles is of considerable interest given the application of this fuel type in high temperature gas-cooled reactor (HTGR) and other future reactor concepts. The reactor experiments indicate that radiation may play an important role in release of Ag; however so far the isolated effect of radiation on Ag diffusion has not been investigated in controlled laboratory experiments. In this study, we investigate the diffusion couples of Ag and polycrystalline 3C–SiC, as well as Ag and single crystalline 4H–SiC samples before and after irradiation with Cmore » 2+ ions. The diffusion couple samples were exposed to temperatures of 1500 °C, 1535 °C, and 1569 °C, and the ensuing diffusion profiles were analyzed by secondary ion mass spectrometry (SIMS). We found that diffusion coefficients calculated from these measurements indicate that Ag diffusion was greatly enhanced by carbon irradiation due to a combined effect of radiation damage on diffusion and the presence of grain boundaries in polycrystalline SiC samples.« less
Effect of carbon ion irradiation on Ag diffusion in SiC
Leng, Bin; Ko, Hyunseok; Gerczak, Tyler J.; ...
2015-11-14
Transport of Ag fission product through the silicon-carbide (SiC) diffusion barrier layer in TRISO fuel particles is of considerable interest given the application of this fuel type in high temperature gas-cooled reactor (HTGR) and other future reactor concepts. The reactor experiments indicate that radiation may play an important role in release of Ag; however so far the isolated effect of radiation on Ag diffusion has not been investigated in controlled laboratory experiments. In this study, we investigate the diffusion couples of Ag and polycrystalline 3C–SiC, as well as Ag and single crystalline 4H–SiC samples before and after irradiation with Cmore » 2+ ions. The diffusion couple samples were exposed to temperatures of 1500 °C, 1535 °C, and 1569 °C, and the ensuing diffusion profiles were analyzed by secondary ion mass spectrometry (SIMS). We found that diffusion coefficients calculated from these measurements indicate that Ag diffusion was greatly enhanced by carbon irradiation due to a combined effect of radiation damage on diffusion and the presence of grain boundaries in polycrystalline SiC samples.« less
Rudd, Robert E; Cabot, William H; Caspersen, Kyle J; Greenough, Jeffrey A; Richards, David F; Streitz, Frederick H; Miller, Paul L
2012-03-01
We use molecular dynamics (MD) to simulate diffusion in molten aluminum-copper (AlCu) alloys. The self-diffusivities and Maxwell-Stefan diffusivities are calculated for AlCu mixtures using the Green-Kubo formulas at temperatures from 1000 to 4000 K and pressures from 0 to 25 GPa, along with additional points at higher temperatures and pressures. The diffusivities are corrected for finite-size effects. The Maxwell-Stefan diffusivity is compared to the diffusivity calculated from the self-diffusivities using a generalization of the Darken equation. We find that the effects of cross-correlation are small. Using the calculated self-diffusivities, we have assessed whether dilute hard-sphere and dilute Lennard-Jones models apply to the molten mixture. Neither of the two dilute gas diffusivities describes the diffusivity in molten Al and Cu. We report generalized analytic models for the self-diffusivities and interdiffusivity (mutual diffusivity) that fit the MD results well. The MD-derived transport coefficients are in good agreement with the available experimental data. We also report MD calculations of the viscosity and an analytic fit to those results. The ionic thermal conductivity is discussed briefly.
NASA Astrophysics Data System (ADS)
Rudd, Robert E.; Cabot, William H.; Caspersen, Kyle J.; Greenough, Jeffrey A.; Richards, David F.; Streitz, Frederick H.; Miller, Paul L.
2012-03-01
We use molecular dynamics (MD) to simulate diffusion in molten aluminum-copper (AlCu) alloys. The self-diffusivities and Maxwell-Stefan diffusivities are calculated for AlCu mixtures using the Green-Kubo formulas at temperatures from 1000 to 4000 K and pressures from 0 to 25 GPa, along with additional points at higher temperatures and pressures. The diffusivities are corrected for finite-size effects. The Maxwell-Stefan diffusivity is compared to the diffusivity calculated from the self-diffusivities using a generalization of the Darken equation. We find that the effects of cross-correlation are small. Using the calculated self-diffusivities, we have assessed whether dilute hard-sphere and dilute Lennard-Jones models apply to the molten mixture. Neither of the two dilute gas diffusivities describes the diffusivity in molten Al and Cu. We report generalized analytic models for the self-diffusivities and interdiffusivity (mutual diffusivity) that fit the MD results well. The MD-derived transport coefficients are in good agreement with the available experimental data. We also report MD calculations of the viscosity and an analytic fit to those results. The ionic thermal conductivity is discussed briefly.
NASA Astrophysics Data System (ADS)
Issa; Ohba, T.; Chako Tchamabé, B.; Padrón, E.; Hernández, P.; Eneke Takem, E. G.; Barrancos, J.; Sighomnoun, D.; Ooki, S.; Nkamdjou, Sigha; Kusakabe, M.; Yoshida, Y.; Dionis, S.
2014-08-01
In the mid-1980s, lakes Nyos and Monoun violently released massive gas, mainly magmatic CO2 killing about 1800 people. Subsequent geochemical surveys and social studies indicate that lakes Nyos and Monoun event is cyclic in nature and may occur anywhere in the about 37 other volcanic lakes located in the corridor of the Cameroon volcanic line (CVL). This potential threat motivated us to check if, alike Nyos and Monoun, the internal dynamic of the other lakes is also controlled by inputs of deep-seated-derived CO2 and attempt to measure and provide comprehensive insights on the passive gas emission along the CVL. This knowledge shall contribute to the prevention of volcanic lake-related hazards in Cameroon and the refinement of the Global Carbon Cycle. We used in situ fixation and dry gas phase sampling methods to determine CO2 origin and the concentration, and the accumulation chamber technique to measure diffuse CO2 emission from nine lakes and on soil at Nyos Valley and Mount Manenguba Caldera. The results suggest that, although in minor concentrations (compared to Nyos and Monoun), ranging from 0.56 mmol kg- 1 to 8.75 mmol kg- 1, the bottom waters of some lakes also contain measurable magmatic CO2 with δ13C varies from - 4.42‰ to - 9.16‰ vs. PDB. That finding implies that, under certain circumstances, e.g. increase to volcanic and/or tectonic activities along the CVL, the concerned lakes could develop a Nyos-type behavioural scheme. The diffuse gas emission results indicate that the nine surveyed lakes release approximately 3.69 ± 0.37 kt km- 2 yr- 1 of CO2 to the atmosphere; extrapolation to the approximately 39 volcanic lakes located on the CVL yields an approximate CO2 output of 27.37 ± 0.5 kt km- 2 yr- 1, representing 0.023% of the global CO2 output from volcanic lakes. In addition to the precedent value, the gas removal operation in lakes Nyos and Monoun released approximately 2.52 ± 0.46 × 108 mol km- 2 yr- 1 CO2 to the atmosphere from January 2001 to March 2013, more than double the per-area CO2 released by the Yellowstone volcanic system. The CO2 emission from soil was estimated to be 4.57 ± 1.30 kt km- 2 yr- 1; the soil gas geochemistry of the Mount Manenguba Caldera also indicates a dominant magma-derived CO2 (mean δ13C = - 8.6‰ vs. VPDB).
NASA Astrophysics Data System (ADS)
Bomela, Christian Loangola
The overall industrial gas turbine efficiency is known to be influenced by the pressure recovery in the exhaust system. The design and, subsequently, the performance of an industrial gas turbine exhaust diffuser largely depend on its inflow conditions dictated by the turbine last stage exit flow state and the restraints of the diffuser internal geometry. Recent advances in Computational Fluid Dynamics (CFD) tools and the availability of computer hardware at an affordable cost made the virtual tool a very attractive one for the analysis of fluid flow through devices like a diffuser. In this backdrop, CFD analyses of a typical industrial gas turbine hybrid exhaust diffuser, consisting of an annular diffuser followed by a conical portion, have been carried out with the purpose of improving the performance of these thermal devices using an open-source CFD code "OpenFOAM". The first phase in the research involved the validation of the CFD approach using OpenFOAM by comparing CFD results against published benchmark experimental data. The numerical results closely captured the flow reversal and the separated boundary layer at the shroud wall where a steep velocity gradient has been observed. The standard k --epsilon turbulence model slightly over-predicted the mean velocity profile in the casing boundary layer while slightly under-predicted it in the reversed flow region. A reliable prediction of flow characteristics in this region is very important as the presence of the annular diffuser inclined wall has the most dominant effect on the downstream flow development. The core flow region and the presence of the hub wall have only a minor influence as reported by earlier experimental studies. Additional simulations were carried out in the second phase to test the veracity of other turbulence models; these include RNG k--epsilon, the SST k--o, and the Spalart-Allmaras turbulence models. It was found that a high resolution case with 47.5 million cells using the SST k--o turbulence model produced a mean flow velocity profile at the middle of the annular diffuser portion that had the best overall match with the experiment. The RNG k --epsilon, however, better predicted the diffuser performance along the exhaust diffuser length by means of the pressure recovery coefficient. These results were obtained using uniform inflow conditions and steady-state simulations. As such, the last phase of our investigations involved varying the inflow parameters like the turbulence intensity, the inlet flow temperature, and the flow angularity, which constitute important characteristics of the turbine blade wake, to investigate their impact on the diffuser design and performance. These isothermal CFD simulations revealed that by changing the flow temperature from 15 to 427°C, the pressure recovery coefficient significantly increased. However, it has been shown that the increase of temperature had no effects on the size of the reversed flow region and the thickness of the separated casing boundary layer, although the flow appears to be more turbulent. Furthermore, it has been established that an optimum turbulence intensity of about 4% produced comparable diffuser performance as the experiment. We also found that a velocity angle of about 2.5° at the last turbine stage will ensure a better exhaust diffuser performance.
Doig, Steven D; Ortiz-Ochoa, Kenny; Ward, John M; Baganz, Frank
2005-01-01
This work describes the engineering characterization of miniature (2 mL) and laboratory-scale (100 mL) bubble column bioreactors useful for the cultivation of microbial cells. These bioreactors were constructed of glass and used a range of sintered glass gas diffusers with differently sized pores to disperse humidified air within the liquid biomedium. The effect of the pressure of this supplied air on the breakthrough point for gas diffusers with different pore sizes was examined and could be predicted using the Laplace-Young equation. The influence of the superficial gas velocity (u(g)) on the volumetric mass transfer coefficient (k(L)a) was determined, and values of up to 0.09 s(-1) were observed in this work. Two modeling approaches were considered in order to predict and provide comparison criteria. The first related the volumetric power consumption (P/V) to the k(L)a and a good correlation was obtained for differently sized reactors with a given pore size, but this correlation was not satisfactory for bubble columns with different gas diffusers. Values for P/V ranged from about 10 to 400 W.m(-3). Second, a model was developed predicting bubble size (d(b)), bubble rising velocity (u(b)), gas hold-up (phi), liquid side mass transfer coefficient (k(L)), and thus the k(L)a using established theory and empirical correlations. Good agreement was found with our experimental data at different scales and pore sizes. Values for d(b) varied from 0.1 to 0.6 mm, and k(L) values between 1.7 and 9.8 x 10(-4) m.s(-1) were determined. Several E. coli cultivations were performed in the miniature bubble column at low and high k(L)a values, and the results were compared to those from a conventional stirred tank operated under identical k(L)a values. Results from the two systems were similar in terms of biomass growth rate and carbon source utilization.
Effective diffusion coefficient including the Marangoni effect
NASA Astrophysics Data System (ADS)
Kitahata, Hiroyuki; Yoshinaga, Natsuhiko
2018-04-01
Surface-active molecules supplied from a particle fixed at the water surface create a spatial gradient of the molecule concentration, resulting in Marangoni convection. Convective flow transports the molecules far from the particle, enhancing diffusion. We analytically derive the effective diffusion coefficient associated with the Marangoni convection rolls. The resulting estimated effective diffusion coefficient is consistent with our numerical results and the apparent diffusion coefficient measured in experiments.
Dai, Yunchao; Nasir, Mubasher; Zhang, Yulin; Gao, Jiakai; Lv, Yamin; Lv, Jialong
2018-01-01
Several predictive models and methods have been used for heavy metals bioavailability, but there is no universally accepted approach in evaluating the bioavailability of arsenic (As) in soil. The technique of diffusive gradients in thin-films (DGT) is a promising tool, but there is a considerable debate with respect to its suitability. The DGT method was compared with other traditional chemical extractions techniques (soil solution, NaHCO 3 , NH 4 Cl, HCl, and total As method) for estimating As bioavailability in soil based on a greenhouse experiment using Brassica chinensis grown in various soils from 15 provinces in China. In addition, we assessed whether these methods are independent of soil properties. The correlations between plant and soil As concentration measured with traditional extraction techniques were pH and iron oxide (Fe ox ) dependent, indicating that these methods are influenced by soil properties. In contrast, DGT measurements were independent of soil properties and also showed a better correlation coefficient than other traditional techniques. Thus, DGT technique is superior to traditional techniques and should be preferable for evaluating As bioavailability in different type of soils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recent Experimental Advances to Determine (noble) Gases in Waters
NASA Astrophysics Data System (ADS)
Kipfer, R.; Brennwald, M. S.; Huxol, S.; Mächler, L.; Maden, C.; Vogel, N.; Tomonaga, Y.
2013-12-01
In aquatic systems noble gases, radon, and bio-geochemically conservative transient trace gases (SF6, CFCs) are frequently applied to determine water residence times and to reconstruct past environmental and climatic conditions. Recent experimental breakthroughs now enable ● to apply the well-established concepts of terrestrial noble gas geochemistry in waters to the minute water amounts stored in sediment pore space and in fluid inclusions (A), ● to determine gas exchange processes on the bio-geochemical relevant time scales of minutes - hours (B), and ● to separate diffusive and advective gas transport in soil air (C). A. Noble-gas analysis in water samples (< 1 g) facilitates determining the solute transport in the pore space and identifying the origin of bio- and geogenic fluids in (un) consolidated sediments [1]. Advanced techniques that combine crushing and sieving speleothem samples in ultra-high-vacuum to a specific grain size allow to separate air and water-bearing fluid inclusions and thus enables noble-gas-based reconstruction of environmental conditions from water masses as small as 1mg [2]. B. The coupling of noble gas analysis with approaches of gas chromatography permits combined analysis of noble gases and other gases species (e.g., SF6, CFCs, O2, N2) from a single water sample. The new method substantially improves ground water dating by SF6 and CFCs as excess air is quantified from the same sample and hence can adequately be corrected for [3]. Portable membrane-inlet mass spectrometers enable the quasi-continuous and real-time analysis of noble gases and other dissolved gases directly in the field, allowing, for instance, quantification of O2 turnover rates on small time scales [4]. C. New technical developments perfect 222Rn analysis in water by the synchronous the determination of the short-lived 220Rn. The combined 220,222Rn analysis sheds light on the emanation behaviour of radon by identifying soil water content to be the crucial control of 220Rn occurrence in the environment, e.g., making an argument why 220Rn is not detectable in water, but in soil air. As 220Rn occurrence is of 'very local origin' the combined analysis of 220,222Rn in soil air allows differentiating between advective and diffusive soil gas transport [5]. By discussing these recent achievements, we intend to stimulate a broader discussion to identify future applications of noble and other gases in (un) conventional aquatic systems, such as blood. [1] Tomonaga et al. (2011) Limnol. Oceanogr. Methods, 9, 42-49, doi:10:4319/lom.2011.9.42. [2] Vogel et al. (2013) Geochem. Geophys. Geosyst., 14, doi:10.1002/ggge.20164. [3] Brennwald et al. (2013) Environ. Sci. Technol., Article ASAP, DOI: 10.1021/es401698p. [4] Mächler et al. (2012) Environ. Sci. Technol., 47, 7060-7066. [5] Huxol et al. Environ. Sci. Technol., in revision.
Diffuse volcanic emissions of carbon dioxide from Vulcano Island, Italy.
Baubron, J C; Allard, P; Toutain, J P
1990-03-01
RECENT investigations on Mount Etna (Sicily)(1-3) have revealed that volcanoes may release abundant carbon dioxide not only from their active craters, but also from their flanks, as diffuse soil emanations. Here we present analyses of soil gases and air in water wells on Vulcano Island which provide further evidence of such lateral degassing. Nearly pure carbon dioxide, enriched in helium and radon, escapes from the slopes of the Fossa active cone, adding a total output of 30 tonnes per day to the fumarolic crater discharge ( 180 tonnes CO(2) per day). This emanation has similar He/CO(2) and (13)C/(12)C ratios to those of the crater fumaroles (300%ndash;500 degrees C) and therefore a similar volcanic origin. Gases rich in carbon dioxide also escape at sea level along the isthmus between the Fossa and Vulcanello volcanic cones, but their depletion in both He and (13)C suggests a distinct source. Diffuse volcanic gas emanations, once their genetic link with central fumarole degassing has been demonstrated, can be used for continuous volcano monitoring, at safe distances from active craters. Such monitoring has been initiated at Vulcano, where soil and well emanations of nearly pure CO(2) themselves represent a threat to the local population.
Inventory and vertical migration of 90Sr fallout and 137Cs/90Sr ratio in Spanish mainland soils.
Herranz, M; Romero, L M; Idoeta, R; Olondo, C; Valiño, F; Legarda, F
2011-11-01
In this paper the inventory of (90)Sr in 34 points distributed along the Spanish peninsular territory is presented. Obtained values range between 173 Bq/m(2) and 2047 Bq/m(2). From these data set and those (137)Cs data obtained in a previous work the (137)Cs/(90)Sr activity ratio has been established, laying this value between 0.9 and 3.6. Also the migration depth of both radionuclides has been analysed obtaining for (137)Cs an average value 57% lower than that obtained for (90)Sr. Additionally, this paper presents the results obtained in 11 sampling points in which the activity vertical profile has been measured. These profiles have been analysed to state the behaviour of strontium in soils and after, by using a convective-diffusive model, the parameters of the model which governs the vertical migration of (90)Sr in the soil, v (apparent convection velocity) and D (apparent diffusion coefficient) have been evaluated. Mean values obtained are 0.20 cm/year and 3.67 cm(2)/year, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.
Merunka, Dalibor; Peric, Miroslav
2017-05-25
Electron paramagnetic resonance (EPR) spectra of radicals in solution depend on their relative motion, which modulates the Heisenberg spin exchange and dipole-dipole interactions between them. To gain information on radical diffusion from EPR spectra demands both reliable spectral fitting to find the concentration coefficients of EPR parameters and valid expressions between the concentration and diffusion coefficients. Here, we measured EPR spectra of the 14 N- and 15 N-labeled perdeuterated TEMPONE radicals in normal and supercooled water at various concentrations. By fitting the EPR spectra to the functions based on the modified Bloch equations, we obtained the concentration coefficients for the spin dephasing, coherence transfer, and hyperfine splitting parameters. Assuming the continuous diffusion model for radical motion, the diffusion coefficients of radicals were calculated from the concentration coefficients using the standard relations and the relations derived from the kinetic equations for the spin evolution of a radical pair. The latter relations give better agreement between the diffusion coefficients calculated from different concentration coefficients. The diffusion coefficients are similar for both radicals, which supports the presented method. They decrease with lowering temperature slower than is predicted by the Stokes-Einstein relation and slower than the rotational diffusion coefficients, which is similar to the diffusion of water molecules in supercooled water.
Vendelin, Marko; Birkedal, Rikke
2008-01-01
A series of experimental data points to the existence of profound diffusion restrictions of ADP/ATP in rat cardiomyocytes. This assumption is required to explain the measurements of kinetics of respiration, sarcoplasmic reticulum loading with calcium, and kinetics of ATP-sensitive potassium channels. To be able to analyze and estimate the role of intracellular diffusion restrictions on bioenergetics, the intracellular diffusion coefficients of metabolites have to be determined. The aim of this work was to develop a practical method for determining diffusion coefficients in anisotropic medium and to estimate the overall diffusion coefficients of fluorescently labeled ATP in rat cardiomyocytes. For that, we have extended raster image correlation spectroscopy (RICS) protocols to be able to discriminate the anisotropy in the diffusion coefficient tensor. Using this extended protocol, we estimated diffusion coefficients of ATP labeled with the fluorescent conjugate Alexa Fluor 647 (Alexa-ATP). In the analysis, we assumed that the diffusion tensor can be described by two values: diffusion coefficient along the myofibril and that across it. The average diffusion coefficients found for Alexa-ATP were as follows: 83 ± 14 μm2/s in the longitudinal and 52 ± 16 μm2/s in the transverse directions (n = 8, mean ± SD). Those values are ∼2 (longitudinal) and ∼3.5 (transverse) times smaller than the diffusion coefficient value estimated for the surrounding solution. Such uneven reduction of average diffusion coefficient leads to anisotropic diffusion in rat cardiomyocytes. Although the source for such anisotropy is uncertain, we speculate that it may be induced by the ordered pattern of intracellular structures in rat cardiomyocytes. PMID:18815224
Fluid self-diffusion in Scots pine sapwood tracheid cells.
Johannessen, Espen H; Hansen, Eddy W; Rosenholm, Jarl B
2006-02-09
The self-diffusion coefficients of water and toluene in Scots pine sapwood was measured using low field pulsed field gradient nuclear magnetic resonance (PFG-NMR). Wood chips of 8 mm diameter were saturated with the respective liquids, and liquid self-diffusion was then traced in one dimension orthogonal to the tracheid cell walls in the wood's radial direction. The experimental echo attenuation curves were exponential, and characteristic self-diffusion coefficients were produced for diffusion times spanning from very short times to times on the order of magnitude of seconds. Observed self-diffusion coefficients were decaying asymptotically as a function of diffusion time, an effect which was ascribed to the cell walls' restriction on confined liquid diffusion. The observed self-diffusion behavior in Scots pine sapwood was compared to self-diffusion coefficients obtained from simulations of diffusion in a square. Principles of molecular displacements in confined geometries were used for elucidating the wood's cellular structure from the observed diffusion coefficients. The results were compared with a mathematical model for diffusion between parallel planes.
Physical and Biological Carbon Isotope Fractionation in Methane During Gas-Push-Pull-Tests
NASA Astrophysics Data System (ADS)
Gonzalez-Gil, G.; Schroth, M. H.; Gomez, K.; Zeyer, J.
2005-12-01
Stable isotope analyses have become a common tool to assess microbially-mediated processes in subsurface environments. We investigated if stable carbon isotope analysis can be used as a tool to complement gas push-pull tests (GPPTs), a novel technique that was recently developed and tested for the in-situ quantification of CH4 oxidation in soils. During a GPPT a gas mixture containing CH4, O2 and nonreactive tracer gases is injected into the soil, where CH4 is oxidized by indigenous microorganisms. Thereafter, a blend of injected gas mixture and soil air is extracted from the same location, and CH4 oxidation is quantified from an analysis of extracted CH4 and tracer gases. To assess the magnitude of physical isotope fractionation due to molecular diffusion during GPPTs, we conducted laboratory experiments in the absence of microbial activity in a 1m-high, 1m-diameter tank filled with dry sand. During the GPPTs' extraction phase, the isotopic composition of methane was analyzed. Results indicated strong carbon isotope fractionation (>20 per mil) during GPPTs. To assess the combined effect of physical and biological isotope fractionation, numerical simulations of GPPTs were conducted in which microbial CH4 isotope fractionation was simulated using first-order rate constants and microbial kinetic isotope fractionation factors previously reported for methane oxidation in landfill environments. Results of these simulations indicated that for small CH4 oxidation rates, overall isotope fractionation in CH4 is dominated by physical fractionation. Conversely, for high CH4 oxidation rates, overall fractionation is dominated by biological fractionation. Thus, CH4 isotope fractionation data alone from a single GPPT cannot be used to assess microbial CH4 oxidation. However, biological fractionation may be quantified if physical fractionation due to diffusion is known. This can be achieved by conducting two sequential GPPTs, with microbial activity being inhibited in the second test.
A Coupled Soil-Atmosphere Model of H2O2 on Mars
NASA Technical Reports Server (NTRS)
Bullock, Mark A.; Stoker, Carol R.; Mckay, Christopher P.; Zent, Aaron P.
1994-01-01
The Viking Gas Chromatograph Mass Spectrometer failed to detect organic compounds on Mars, and both the Viking Labeled Release and the Viking Gas Exchange experiments indicated a reactive soil surface. These results have led to the widespread belief that there are oxidants in the martian soil. Since H2O2 is produced by photochemical processes in the atmosphere of Mars, and has been shown in the laboratory to reproduce closely the Viking LR results, it is a likely candidate for a martian soil oxidant. Here, we report on the results of a coupled soil/atmosphere transport model for H202 on Mars. Upon diffusing into the soil, its concentration is determined by the extent to which it is adsorbed and by the rate at which it is catalytically destroyed. An analytical model for calculating the distribution of H202 in the martian atmosphere and soil is developed. The concentration of H202 in the soil is shown to go to zero at a finite depth, a consequence of the nonlinear soil diffusion equation. The model is parameterized in terms of an unknown quantity, the lifetime of H202 against heterogeneous catalytic destruction in the soil. Calculated concentrations are compared with a H202 concentration of 30 nmoles/cu cm, inferred from the Viking Labeled Release experiment. A significant result of this model is that for a wide range of H202 lifetimes (up to 105 years), the extinction depth was found to be less than 3 m. The maximum possible concentration in the top 4 cm is calculated to be approx. 240 nmoles/cu cm, achieved with lifetimes of greater than 1000 years. Concentrations higher than 30 nmoles/cu cm require lifetimes of greater than 4.3 terrestrial years. For a wide range of H202 lifetimes, it was found that the atmospheric concentration is only weakly coupled with soil loss processes. Losses to the soil become significant only when lifetimes are less than a few hours. If there are depths below which H202 is not transported, it is plausible that organic compounds, protected from an oxidizing environment, may still exist. They would have been deposited by meteors, or be the organic remains of past life.
N2 and CO2 capillary breakthrough experiments on Opalinus Clay
NASA Astrophysics Data System (ADS)
Amann, Alexandra; Busch, Andreas; Krooss, Bernhard M.
2013-04-01
The aim of this project was to identify the critical capillary pressures on the drainage and the imbibition path for clay-rich rocks, at a burial depth of 1500 m (30 MPa confining pressure, 45°C). The experiments were performed on fully water-saturated sample plugs of 38 mm diameter and 5 to 20 mm length. The capillary breakthrough pressure was determined by step-wise increase of the differential pressure (drainage), the capillary snap-off pressure was determined from the final pressure difference at the end of a spontaneous imbibition phase. The confining pressure was kept constant throughout the experiment, which resulted in a continuous change of effective stress. The measurements were performed in a closed system and the pressure response was interpreted in terms of different flow mechanisms (diffusion-controlled vs. viscous flow). In total, four breakthrough experiments with N2 and five experiments with CO2 were conducted. Because of very low flow rates and high critical capillary pressures the experiments took rather long. In some cases the experiments were allowed to run for half a year (drainage experiments). Substantial differences were observed between gas breakthrough (drainage) and snap-off (imbibition) pressures. As expected, breakthrough pressures were always higher than the snap-off pressures. For three samples a pbreakthrough/psnap-off ratio of 1.6 to 1.9 was observed, for one sample a ratio of 4. A clear permeability-capillary pressure relationship could not be identified. Based on (omnidirectional) Hg-injection porosimetry results, and assuming perfectly water wet mineral surfaces, gas breakthrough pressures were predicted to occur at approximately 16 MPa for N2 and 5.7 MPa for CO2. The gas breakthrough experiments, however, produced different results. Even though a relatively homogeneous sample set was chosen, with permeability coefficients ranging between 1E-21 and 6E-21 m², the critical capillary breakthrough pressures for nitrogen ranged between 3.4 and 12.3 MPa and snap-off pressures from 0.5 to 6.4 MPa. The CO2 experiments yielded breakthrough pressures of 14.0 to 17.5 MPa and snap-off pressures of 3.5 to 10 MPa. No significant changes in single-phase water permeability coefficients before and after the gas breakthrough experiments were observed. In our contribution we will discuss the following points: 1. Gas fluxes occurring during gas breakthrough experiments may be extremely low. Therefore an unambigous identification of gas breakthrough is not always possible. Besides viscous or diffusive transport, dissolution of CO2 in the pore water may affect the observed pressure changes in the upstream and downstream compartments. All of these processes occur simultaneously and can only be partly discriminated. Gas fluxes detected during the diffusion-controlled flow regimes result in nominal effective gas permeability coefficients as low as 6E-25 m² to 7E-24m². 2. The application of purely capillary-controlled flow models may not be justified. o Gas breakthrough is controlled by effective stress, i.e. the opening of pores or small fissures. o Assumptions about wettability (completely water-wet mineral surfaces) may be incorrect.
On time-dependent diffusion coefficients arising from stochastic processes with memory
NASA Astrophysics Data System (ADS)
Carpio-Bernido, M. Victoria; Barredo, Wilson I.; Bernido, Christopher C.
2017-08-01
Time-dependent diffusion coefficients arise from anomalous diffusion encountered in many physical systems such as protein transport in cells. We compare these coefficients with those arising from analysis of stochastic processes with memory that go beyond fractional Brownian motion. Facilitated by the Hida white noise functional integral approach, diffusion propagators or probability density functions (pdf) are obtained and shown to be solutions of modified diffusion equations with time-dependent diffusion coefficients. This should be useful in the study of complex transport processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renslow, Ryan S.; Majors, Paul D.; McLean, Jeffrey S.
2010-08-15
Diffusive mass transfer in biofilms is characterized by the effective diffusion coefficient. It is well-documented that the effective diffusion coefficient can vary by location in a biofilm. The current literature is dominated by effective diffusion coefficient measurements for distinct cell clusters and stratified biofilms showing this spatial variation. Regardless of whether distinct cell clusters or surface-averaging methods are used, position-dependent measurements of the effective diffusion coefficient are currently: 1) invasive to the biofilm, 2) performed under unnatural conditions, 3) lethal to cells, and/or 4) spatially restricted to only certain regions of the biofilm. Invasive measurements can lead to inaccurate resultsmore » and prohibit further (time dependent) measurements which are important for the mathematical modeling of biofilms. In this study our goals were to: 1) measure the effective diffusion coefficient for water in live biofilms, 2) monitor how the effective diffusion coefficient changes over time under growth conditions, and 3) correlate the effective diffusion coefficient with depth in the biofilm. We measured in situ two-dimensional effective diffusion coefficient maps within Shewanella oneidensis MR-1biofilms using pulsed-field gradient nuclear magnetic resonance methods, and used them to calculate surface-averaged relative effective diffusion coefficient (Drs) profiles. We found that 1) Drs decreased from the top of the biofilm to the bottom, 2) Drs profiles differed for biofilms of different ages, 3) Drs profiles changed over time and generally decreased with time, 4) all the biofilms showed very similar Drs profiles near the top of the biofilm, and 5) the Drs profile near the bottom of the biofilm was different for each biofilm. Practically, our results demonstrate that advanced biofilm models should use a variable effective diffusivity which changes with time and location in the biofilm.« less
Miyamoto, Shuichi; Atsuyama, Kenji; Ekino, Keisuke; Shin, Takashi
2018-01-01
The isolation of useful microbes is one of the traditional approaches for the lead generation in drug discovery. As an effective technique for microbe isolation, we recently developed a multidimensional diffusion-based gradient culture system of microbes. In order to enhance the utility of the system, it is favorable to have diffusion coefficients of nutrients such as sugars in the culture medium beforehand. We have, therefore, built a simple and convenient experimental system that uses agar-gel to observe diffusion. Next, we performed computer simulations-based on random-walk concepts-of the experimental diffusion system and derived correlation formulas that relate observable diffusion data to diffusion coefficients. Finally, we applied these correlation formulas to our experimentally-determined diffusion data to estimate the diffusion coefficients of sugars. Our values for these coefficients agree reasonably well with values published in the literature. The effectiveness of our simple technique, which has elucidated the diffusion coefficients of some molecules which are rarely reported (e.g., galactose, trehalose, and glycerol) is demonstrated by the strong correspondence between the literature values and those obtained in our experiments.
NASA Technical Reports Server (NTRS)
Smith, G. L.; Green, R. N.; Young, G. R.
1974-01-01
The NIMBUS-G environmental monitoring satellite has an instrument (a gas correlation spectrometer) onboard for measuring the mass of a given pollutant within a gas volume. The present paper treats the problem: How can this type measurement be used to estimate the distribution of pollutant levels in a metropolitan area. Estimation methods are used to develop this distribution. The pollution concentration caused by a point source is modeled as a Gaussian plume. The uncertainty in the measurements is used to determine the accuracy of estimating the source strength, the wind velocity, diffusion coefficients and source location.
NASA Astrophysics Data System (ADS)
Matthews, G. Peter; Maurizio Laudone, G.; Whalle, W. Richard; Bird, Nigel; Gregory, Andrew; Cardenas, Laura; Misselbrook, Tom
2010-05-01
Nitrous oxide is the fourth most important greenhouse gas. It is 300 times more potent than carbon dioxide, and two-thirds of anthropogenic nitrous oxide is emitted by agricultural land. This presentation will begin with a brief overview of the laboratory measurements of nitrous oxide emission from carefully characterised soils, presented in more detail by Cardenas et al.. The measurements were made in a twelve-chamber, gas chromatographic apparatus at North Wyke Research (formerly IGER). The presentation will then continue with a description of a void network model of sufficient accuracy and authenticity that it can be used to explain and predict the nitrous oxide production, and the modelling of the biological, chemical and physical processes for the production of nitrous oxide within the constructed network. Finally, conclusions will be drawn from a comparison of the model results with experiment. The void network model Nitrous oxide is produced by microbial activity located in ‘hotspots' within the microstructure of soil, and nutrients and gases flow or diffuse to and from these hotspots through the water or gas-filled macro-porosity. It is clear, therefore, that a network model to describe and explain nitrous oxide production must encompass the full size range of pore space active within the process, which covers 6 orders of magnitude, and must make realistic suppositions about the positional relationship of the hotspots relative to the soil macro-porosity. Previous experimental (Tsakiroglou, C. D. et al, European J.Soil Sci., 2008) and theoretical approaches to the modelling of soil void structure cannot generally meet these two requirements. We have therefore built on the success of the previous uni-porous model of soil (Matthews, G. P. et al, Wat.Resour.Res, 2010), and the concept of a critical percolation path, to develop a dual porous model (Laudone, G. M. et al, European J.Soil Sci., 2010) with the following features: • A porous unit cell, with periodic boundary conditions, and with a critical percolation path with the correct percolation characteristics and void volume of the macro-porosity of the soil. • A solid phase between the pores of the large unit cell, with the correct volume of the fraction of larger soil aggregates (larger 1 mm). • All the remaining pores of the large unit cell, which are not part of the critical percolation path, filled with smaller unit cells, which account for the micro-porosity of the soil sample. We describe the construction of a model that closely matches the following characteristics of a specific example of typical arable soil, taken from the Warren field of the Rothamsted experimental farm at Woburn, although the model can be used for a wide range of soils: (i) macroporosity and microporosity as measured by the water retention curve, (ii) the shape of the water retention characteristic under a wide range of tensions, (iii) the soil texture, and (iv) the extent of irreducible water content. Process model We will describe the insertion of Michaelis-Menten kinetics and Crank-Nicholson diffusion equations into the precisely scaled model, building on previous diffusion modelling (Laudone, G. M. et al, Chem.Eng.Sci., 2008). Comparison with experiment A comparison with experimental results sheds light on (i) the positional relationships of aerobic and anaerobic bacteria relative to the critical percolation path, (ii) the relationship between the critical percolation path and the preferential / critical flow path (Figure 4), (iii) the extent of ignorance about the reaction kinetics of some of the fundamental processes occurring, (iv) the soil conditions that cause nitrous oxide emission, and (v) the effect of soil compaction on the emission. Acknowledgement This presentation is a summary of the some of the work of the BBSRC funded U.K. soil research consortium "Soil Programme for Quality and Resilience" (BB/E001793/1 and others), of which Matthews is principal investigator.
Arocena, J M; Rutherford, P M
2005-07-01
Many contaminated sites in Canada are associated with flare pits generated during past petroleum extraction operations. Flare pits are located adjacent to well sites, compressor stations and batteries and are often subjected to the disposal of wastes from the flaring of gas, liquid hydrocarbons and brine water. This study was conducted to evaluate the physical, chemical, electrical and mineral properties of three flare pit soils as compared to adjacent control soils. Results showed that particle size distribution, pH, total N, cation exchange capacity, exchangeable Mg(2+), and sodium adsorption ratio were similar in soils from flare pits and control sites. Total C, exchangeable Ca(2+), K(+) and Na(+), soluble Ca(2+), Mg(2+), K(+) and Na(+) and electrical conductivity were higher in flare pit soils compared to control soils. X-ray diffraction and scanning electron microscopic analyses showed the presence of gypsum [CaSO(4).2H(2)O], dolomite [CaMg(CO(3))(2)], pyrite [FeS(2)], jarosite [KFe(3)(OH)(6)(SO(4))(2)], magnesium sulphate, oxides of copper and iron+copper in salt efflorescence observed in flare pit soils. Soils from both flare pits and control sites contained mica, kaolonite and 2:1 expanding clays. The salt-rich materials altered the ionic equilibria in the flare pit soils; K(Mg-Ca) selectivity coefficients in control soils were higher compared to contaminated soils. The properties of soils (e.g., high electrical conductivity) affected by inputs associated with oil and gas operations might render flare pit soils less conducive to the establishment and growth of common agricultural crops and forest trees.
Study of diffusion coefficient of anhydrous trehalose glasses by using PFG-NMR spectroscopy
NASA Astrophysics Data System (ADS)
Kwon, Hyun-Joung; Takekawa, Reiji; Kawamura, Junichi; Tokuyama, Michio
2013-02-01
We investigated the temperature dependent long time self-diffusion coefficient of the anhydrous trehalose supercooled liquids by using pulsed field gradient nuclear magnetic resonance (PFG-NMR) spectroscopy. At the same temperature ranges, the diffusion coefficient convoluted from the α-relaxation time as Einstein-Smoluchowski relaxation, measured by using the dielectric loss spectroscopy are well overlapped with diffusion coefficients within experimental error. The temperature dependent diffusion coefficients obtained from different methods are normalized by fictive temperature and well satisfied the single master curve, proposed by Tokuyama.
Double-diffusive boundary layers along vertical free surfaces
NASA Astrophysics Data System (ADS)
Napolitano, L. G.; Viviani, A.; Savino, R.
1992-05-01
This paper deals with double-diffusive (or thermosolutal) combined free convection, i.e., free convection due to buoyant forces (natural convection) and surface tension gradients (Marangoni convection), which are generated by volume differences and surface gradients of temperature and solute concentration. Attention is focused on boundary layers that form along a vertical liquid-gas interface, when the appropriately defined nondimensional characteristic transport numbers are large enough, in problems of thermosolutal natural and Marangoni convection, such as buoyancy and surface tension driven flows in differentially heated open cavities and liquid bridges. Classes of similar solutions are derived for each class of convection on the basis of a rigorous order of magnitude analysis. Velocity, temperature and concentration profiles are reported in the similarity plane; flow and transport properties at the liquid-gas interface (interfacial velocity, heat and mass transfer bulk coefficients) are obtained for a wide range of Prandtl and Schmidt numbers and different values of the similarity parameter.
Model-derived dose rates per unit concentration of radon in air in a generic plant geometry.
Vives i Batlle, J; Smith, A; Vives-Lynch, S; Copplestone, D; Pröhl, G; Strand, T
2011-11-01
A model for the derivation of dose rates per unit radon concentration in plants was developed in line with the activities of a Task Group of the International Commission on Radiological Protection (ICRP), aimed at developing more realistic dosimetry for non-human biota. The model considers interception of the unattached and attached fractions of the airborne radon daughters by plant stomata, diffusion of radon gas through stomata, permeation through the plant's epidermis and translocation of deposited activity to plant interior. The endpoint of the model is the derivation of dose conversion coefficients relative to radon gas concentration at ground level. The model predicts that the main contributor to dose is deposition of (214)Po α-activity on the plant surface and that diffusion of radon daughters through the stomata is of relatively minor importance; hence, daily variations have a small effect on total dose.
[Comparative study of respiratory exchanging surfaces in birds and mammals].
Jammes, Y
1975-01-01
Anatomical studies of the respiratory apparatus of birds show evidences for a gas exchanging tubular system (parabronchi and air capillaries); these exchanging structures are entirely dissociated from the ventilatory drive acting on the air sacs. A "cross-current" gas exchanging system (perpendicular disposition of air and blood capillaries) allow a good wash-out of carbon dioxide (PaCO2 lower than PECO2). The great efficiency of this lung is allowed by its very large diffusive surface (ASa) and by the high values of lung specific oxygen diffusing capacity (DO2/ASa) and of O2 extraction coefficient in inspired air. The ventilatory pattern of birds is characterized by a greater tidal volume and a smaller respiratory frequency than in mammals of same weight. Respiratory centers of birds receive afferences from lung stretch receptors, CO2-sensitive lung receptors and arterial chemoreceptors.
Transport of volatile organic compounds across the capillary fringe
McCarthy, Kathleen A.; Johnson, Richard L.
1993-01-01
Physical experiments were conducted to investigate the transport of a dissolved volatile organic compound (trichloroethylene, TCE) from shallow groundwater to the unsaturated zone under a variety of conditions including changes in the soil moisture profile and water table position. Experimental data indicated that at moderate groundwater velocities (0.1 m/d), vertical mechanical dispersion was negligible and molecular diffusion was the dominant vertical transport mechanism. Under these conditions, TCE concentrations decreased nearly 3 orders of magnitude across the capillary fringe and soil gas concentrations remained low relative to those of underlying groundwater. Data collected during a water table drop showed a short-term increase in concentrations throughout most of the unsaturated zone, but these concentrations quickly declined and approached initial values after the water table was returned to its original level. In the deep part of the unsaturated zone, the water table drop resulted in a long-term decrease in concentrations, illustrating the effects of hysteresis in the soil moisture profile. A two-dimensional random walk advection-diffusion model was developed to simulate the experimental conditions, and numerical simulations agreed well with experimental data. A simpler, one-dimensional finite-difference diffusion-dispersion model was also developed. One-dimensional simulations based on molecular diffusion also agreed well with experimental data. Simulations which incorporated mechanical dispersion tended to overestimate flux across the capillary fringe. Good agreement between the one- and two-dimensional models suggested that a simple, one-dimensional approximation of vertical transport across the capillary fringe can be useful when conditions are appropriate.
Stochastic particle acceleration at shocks in the presence of braided magnetic fields.
NASA Astrophysics Data System (ADS)
Kirk, J. G.; Duffy, P.; Gallant, Y. A.
1996-10-01
The theory of diffusive acceleration of energetic particles at shock fronts assumes charged particles undergo spatial diffusion in a uniform magnetic field. If, however, the magnetic field is not uniform, but has a stochastic or braided structure, the transport of charged particles across the average direction of the field is more complicated. Assuming quasi-linear behaviour of the field lines, the particles undergo sub-diffusion on short time scales. We derive the propagator for such motion, which differs from the Gaussian form relevant for diffusion, and apply it to a configuration with a plane shock front whose normal is perpendicular to the average field direction. Expressions are given for the acceleration time as a function of the diffusion coefficient of the wandering magnetic field lines and the spatial diffusion coefficient of the charged particles parallel to the local field. In addition we calculate the spatial dependence of the particle density in both the upstream and downstream plasmas. In contrast to the diffusive case, the density of particles at the shock front is lower than it is far downstream. This is a consequence of the partial trapping of particles by structures in the magnetic field. As a result, the spectrum of accelerated particles is a power-law in momentum which is steeper than in the diffusive case. For a phase-space density f{prop.to}p^-s^, we find s=s_diff_[1+1/(2ρ_c_)], where ρ_c_ is the compression ratio of the shock front and s_diff_ is the standard result of diffusive acceleration: s_diff_=3ρ_c_/(ρ_c_-1). A strong shock in a monatomic ideal gas yields a spectrum of s=4.5. In the case of electrons, this corresponds to a radio synchrotron spectral index of α=0.75.
Tchouar, N; Ould-Kaddour, F; Levesque, D
2004-10-15
The properties of liquid methane, liquid neon, and gas helium are calculated at low temperatures over a large range of pressure from the classical molecular-dynamics simulations. The molecular interactions are represented by the Lennard-Jones pair potentials supplemented by quantum corrections following the Feynman-Hibbs approach. The equations of state, diffusion, and shear viscosity coefficients are determined for neon at 45 K, helium at 80 K, and methane at 110 K. A comparison is made with the existing experimental data and for thermodynamical quantities, with results computed from quantum numerical simulations when they are available. The theoretical variation of the viscosity coefficient with pressure is in good agreement with the experimental data when the quantum corrections are taken into account, thus reducing considerably the 60% discrepancy between the simulations and experiments in the absence of these corrections.
Nolasco, Dácil; Lima, R Noemí; Hernández, Pedro A; Pérez, Nemesio M
2008-01-01
[corrected] Historically, landfills have been the simplest form of eliminating urban solid waste with the minimum cost. They have been the most usual method for discarding solid waste. However, landfills are considered authentic biochemical reactors that introduce large amounts of contaminants into the environment in the form of gas and leachates. The dynamics of generation and the movement of gas in landfills depend on the input and output parameters, as well as on the structure of the landfill and the kind of waste. The input parameters include water introduced through natural or artificial processes, the characteristics of the urban solid waste, and the input of atmospheric air. The main output parameters for these biochemical reactors include the gases and the leachates that are potentially pollutants for the environment. Control systems are designed and installed to minimize the impact on the environment. However, these systems are not perfect and a significant amount of landfill gas could be released to the atmosphere through the surface in a diffuse form, also known as Non-controlled emission. In this paper, the results of the Non-controlled biogenic gas emissions from the Lazareto landfill in Tenerife, Canary Islands, are presented. The purpose of this study was to evaluate the concentration of CH4 and CO2 in the soil gas of the landfill cover, the CH4 and CO2 efflux from the surface of the landfill and, finally, to compare these parameters with other similar landfills. In this way, a better understanding of the process that controls biogenic gas emissions in landfills is expected. A Non-controlled biogenic gas emission survey of 281 sampling sites was carried out during February and March, 2002. The sampling sites were selected in order to obtain a well-distributed sampling grid. Surface landfill CO2 efflux measurements were carried out at each sampling site on the surface landfill together with soil gas collection and ground temperatures at a depth of 30-40 cm. The CH4 efflux was computed from CO2 efflux and from the ratio CH4/CO2 in the soil gas. Soil gas samples were collected at a depth of 30-40 cm using a metallic probe and 20 cc hypodermic syringes, and later stored in evacuated 10 cc vacutainers for laboratory analysis of bulk composition. The gas sample was introduced in a vacutainer filled with deionized water and displacing the water until the vacutainer was filled with the gas sample in order to avoid air contamination from entering. The surface landfill temperature of the landfill was measured at a depth of 40 cm using a digital thermometer type OMEGA 871A. Landfill gases, CO2 and CH4, were analyzed within 24 hours using a double channel VARIAN micro-GC QUAD CP-2002P, with a 10 meter PORAPLOT-Q column, a TCD detector, and He as a carrier gas. The analysis temperature was 40 degrees C and the injection time was 10 msec. Surface landfill CO2 efflux measurements were performed using a portable NDIR spectrophotometer Licor-800 according to the accumulation chamber method (Chiodini et al. 1996). The data treatment, aimed at drawing the flux map and computing the total gas output, was based on the application of stochastic simulation algorithms provided by the GSLIB program (Deutsch and Journel 1998). Diffuse CH4 and CO2 efflux values range from negligible values up to 7,148 and 30,573 g m(-2) d(-1), respectively. The spatial distribution of the concentration and efflux of CO2, CH4 and soil temperature, show three areas of maximum activity in the landfill, suggesting a non-uniform pattern of diffuse degassing. This correlation between high emissions and concentration of CO2, CH4 and soil temperatures suggests that the areas of higher microbial activity and exothermic reactions are releasing CO2 and CH4 to the atmosphere from the landfill. Taking into consideration the spatial distribution of the CO2 and CH4 efflux values as well as the extension of the landfill, the Non-controlled emission of CO2 and CH4 to the atmosphere by the Lazareto's landfill are of 167 +/- 13.3 and 16 +/- 2.5 t d(-1), respectively. The patterns of gas flow within the landfill seem to be affected by boundary materials at the sides. The basalt layers have a low permeability and the gas flow in these areas is extensive. In this area, where a basalt layer does not exist, the flow gas diffuses toward the sea and the flux emissions at the landfill surface are lower. This behavior reflects the possible dissolution of gases into water and the deflection of gases towards the surface at the basalt boundary. The proximity to the sea, the installation of a palm tree garden and, as a result, the contribution of water coming from the watering of this garden has reactivated the system. The introduction of sea water into the landfill and the type of boundary could be defining the superficial gas discharges. Results from this study indicate that the spatial distribution of Non-controlled emission of CO2 and CH4 at the Lazareto's landfill shows a non-uniform pattern of diffuse degassing. The northeast, central and northwest areas of the Lazareto's landfill are the three areas of high emissions and concentration of CO2 and CH4, and high temperatures. The correlation between high emissions and the concentration of CO2, CH4, and the high temperatures suggest that the areas of higher microbial activity and exothermic reactions are releasing more CO2 and CH4 to the atmosphere from the landfill. A high concentration of CO2 is probably due to the presence of methanotrophic bacteria in the soil atmosphere of the landfill. Patterns of gas flow within the landfill seem to be affected by boundary materials (basalt layers) of low permeability, and side boundaries of the flux emissions at the surface are higher. At the sides of seawater and sediment boundaries, flux emissions at the landfill surface are lower. This behavior reflects a possible dissolution of gases into the water and the deflection of gases towards the surface at the basalt boundary. With this study, we can compare the data obtained in this landfill with other landfills and observe the different levels of emission. The proximity to the sea and the installation of the palm tree garden palms and, as a result, the contribution of water coming from the watering of this garden has reactivated the system. Many landfills worldwide located in similar settings could experience similar gas production processes. The need for investigating and monitoring sea water and sediment quality in these landfills is advisable. Concentrations and fluxes of contaminants and their impact in the area should be assessed. With this study we can compare the data obtained in these landfills with other landfills and observe the different levels of emission.
NASA Technical Reports Server (NTRS)
Cho, S. Y.; Yetter, R. A.; Dryer, F. L.
1992-01-01
Various chemically reacting flow problems highlighting chemical and physical fundamentals rather than flow geometry are presently investigated by means of a comprehensive mathematical model that incorporates multicomponent molecular diffusion, complex chemistry, and heterogeneous processes, in the interest of obtaining sensitivity-related information. The sensitivity equations were decoupled from those of the model, and then integrated one time-step behind the integration of the model equations, and analytical Jacobian matrices were applied to improve the accuracy of sensitivity coefficients that are calculated together with model solutions.
Ozone Sensitivity in Sweet Corn (Zea mays L.) Plants: A Possible Relationship to Water Balance
Harris, Michael J.; Heath, Robert L.
1981-01-01
Stomatal characteristics affecting gas exchange were compared in two sweet corn hybrids (var. Bonanza and Monarch Advance) which differ in foliar ozone sensitivity. No significant differences were observed in stomatal frequencies, guard cell lengths, or conductances to water vapor diffusion. When plant water status was compared, leaf-water potentials for the ozone-resistant cultivar, Bonanza, were lower. A comparison of the relationship between soil- and leaf-water potential indicated that the leaf-water potential of Bonanza was more sensitive to declines in soil-water potential. Additionally, a comparison of stomatal conductance to water vapor diffusion as soil moisture declined and following root detachment indicated that stomata of Bonanza were, likewise, more sensitive to increasing water stress. Data suggest that these differences are attributable to a greater shoot-to-root fresh weight ratio and higher resistance to water movement in the water-conducting tissues for Bonanza. Our observations suggest that root and water delivery system characteristics play a major contributory role in the determination of foliar ozone sensitivity in this species. PMID:16662019
Nucleation and growth constraints and outcome in the natural gas hydrate system
NASA Astrophysics Data System (ADS)
Osegovic, J. P.; Max, M. D.
2016-12-01
Hydrate formation processes are functions of energy distribution constrained by physical and kinetic parameters. The generation of energy and energy derivative plots of a constrained growth crucible are used to demonstrate nucleation probability zones (phase origin(s)). Nucleation sets the stage for growth by further constraining the pathways through changes in heat capacity, heat flow coefficient, and enthalpy which in turn modify the mass and energy flow into the hydrate formation region. Nucleation events result from the accumulation of materials and energy relative to pressure, temperature, and composition. Nucleation induction is predictive (a frequency parameter) rather than directly dependent on time. Growth, as mass tranfer into a new phase, adds time as a direct parameter. Growth has direct feedback on phase transfer, energy dynamics, and mass export/import rates. Many studies have shown that hydrate growth is largely an equilibrium process controlled by either mass or energy flows. Subtle changes in the overall energy distribution shift the equilibrium in a predictable fashion. We will demonstrate the localization of hydrate nucleation in a reservoir followed by likely evolution of growth in a capped, sand filled environment. The gas hydrate stability zone (GHSZ) can be characterized as a semi-batch crystallizer in which nucleation and growth of natural gas hydrate (NGH) is a continuous process that may result in very large concentrations of NGH. Gas flux, or the relative concentration of hydrate-forming gas is the critical factor in a GHSZ. In an open groundwater system in which flow rate exceeds diffusion transport rate, dissolved natural gas is transported into and through the GHSZ. In a closed system, such as a geological trap, diffusion of hydrate-forming gas from a free gas zone below the GHSZ is the primary mechanism for movement of gas reactants. Because of the lower molecular weight of methane, where diffusion is the principal transport mechanism, the natural system can be a purification process for formation of increasingly pure NGH from a mixed gas solution over time.
NASA Astrophysics Data System (ADS)
Pérez, Nemesio M.; Melián, Gladys; González-Santana, Judit; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Padrón, Eleazar; Hernández, Pedro A.
2016-04-01
The occurrence of interfering processes affecting reactive gases as CO2 during its ascent from magmatic bodies or hydrothermal systems toward the surface environment hinders the interpretation of their enrichments in the soil atmosphere and fluxes for volcano monitoring purposes (Marini and Gambardella, 2005). These processes include gas scrubbing by ground-waters and interaction with rocks, decarbonatation processes, biogenic production, etc. Within the rest of the soil gases, particularly interest has been addressed to light and highly mobile gases. They offer important advantages for the detection of vertical permeability structures, because their interaction with the surrounding rocks or fluids during the ascent toward the surface is minimum. H2 is one of the most abundant trace species in volcano-hydrothermal systems and is a key participant in many redox reactions occurring in the hydrothermal reservoir gas (Giggenbach, 1987). Although H2 can be produced in soils by N2-fixing and fertilizing bacteria, soils are considered nowadays as sinks of molecular hydrogen (Smith-Downey et al., 2006). Because of its chemical and physical characteristics, H2 generated within the crust moves rapidly and escapes to the atmosphere. These characteristics make H2 one of the best geochemical indicators of magmatic and geothermal activity at depth. El Hierro is the youngest and the SW-most of the Canary Islands and the scenario of the last volcanic eruption of the archipelago, a submarine eruption that took place 2 km off the southern coast of the island from October 2011 to March 2012. Since at El Hierro Island there are not any surface geothermal manifestations (fumaroles, etc), we have focused our studies on soil degassing surveys. Here we show the results of soil H2 emission surveys that have been carried out regularly since mid-2012. Soil gas samples were collected in ˜600 sites selected based on their accessibility and geological criteria. Soil gases were sampled at ˜40 cm depth using a metallic probe with a 60 cc hypodermic syringes and stored in 10 cc glass vials for later laboratory analysis by a VARIAN CP4900 micro-gas chromatograph. Soil H2 concentration data were used to estimate the H2 emission assuming a pure diffusive mechanism. The emission ranged between 12 and 25 kg d-1, showing a good relationship with the seismic energy release during the period of study. However, spatial distribution of H2 emission values did not show a clear relationship with main volcano-structures of El Hierro Island. H2 emission studies are a promising volcano monitoring technique that might help to detect early warning signals of volcanic unrest in oceanic volcanic islands. References Marini and Gambardella, 2005. Ann Geophys 48, 739-753. Giggenbach, 1987. Appl Geochem 2, 143-161. Smith-Downey et al., 2006. Geophys Res Lett 33, L14813.
Analytic expressions for ULF wave radiation belt radial diffusion coefficients
Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K
2014-01-01
We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440
Diffuse CO_{2} and ^{222}Rn degassing monitoring of Ontake volcano, Japan
NASA Astrophysics Data System (ADS)
Alonso, Mar; Sagiya, Takeshi; Meneses-Gutiérrez, Ángela; Padrón, Eleazar; Hernández, Pedro A.; Pérez, Nemesio M.; Melián, Gladys; Padilla, Germán D.
2017-04-01
Mt. Ontake (3067 m.a.s.l.) is a stratovolcano located in central Honsu and around 100 Km northeast of Nagoya, Japan, with the last eruption occurring on September 27, 2014, killing 57 people, and creating a 7-10 km high ash plume (Kagoshima et. al., 2016). There were no significant earthquakes that might have warned authorities in the lead up to the phreatic eruption, caused by ground water flashing to steam in a hydrothermal explosion. At the time of the eruption there was no operational geochemical surveillance program. In order to contribute to the strengthening of this program, the Disaster Mitigation Research Center of Nagoya University and the Volcanological Institute of Canary Islands started a collaborative program. To do so, an automatic geochemical station was installed at Ontake volcano and a survey of diffuse CO2efflux and other volatiles was carried out at the surface environment of selected areas of the volcano. The station was installed 10.9 km east away from the eruptive vent, where some earthquakes occurred, and consists of a soil radon (Rn) monitor (SARAD RTM-2010-2) able to measure 222Rn and 220Rn activities. Monitoring of radon is an important geochemical tool to forecast earthquakes and volcanic eruptions due to its geochemical properties. Rn ascends from the lower to the upper part of earth's crust mainly through cracks or faults and its transport needs the existence of a naturally occurring flux of a carrier gas. Regarding to the soil gas survey, it was carried out in August 2016 with 183 measurement points performed in an area of 136 km2. Measurements of soil CO2 efflux were carried out following the accumulation chamber method by means of a portable soil CO2 efflux instrument. To estimate the total CO2 output, sequential Gaussian simulation (sGs) was used allowing the interpolation of the measured variable at not-sampled sites and assess the uncertainly of the total diffuse emission of carbon dioxide estimated for the entire studied area. The total emission rate of diffuse CO2 efflux was expressed as the mean value of 100 equiprobable sGs realizations, and its uncertainly was considered as one standard deviation of the 100 emission rates obtained after the sGs procedure. Soil CO2 efflux values ranged from 0.266 gm-2d-1 up to 66.238 gm-2d-1 with an average value of 23.350 gm-2d-1. The estimated average value for the total diffuse CO2 released for the Mt. Ontake volcanic complex during this study was 3,149 ± 98 td-1, with the main contributions arising from the NE zone of the complex. It is expected for future surveys to increase the density of sampling points and to sample the areas near the crater in order to obtain a better approximation of the diffuse CO2 efflux emission as well as obtain a long-term evolution to understand the dynamics of diffuse CO2 emission and its relationship with the volcanic activity of Mt. Ontake.
Vapor-phase exchange of perchloroethene between soil and plants
Struckhoff, G.C.; Burken, J.G.; Schumacher, J.G.
2005-01-01
Tree core concentrations of tetrachloroethylene (perchloroethene, PCE) at the Riverfront Superfund Site in New Haven, MO, were found to mimic the profile of soil phase concentrations. The observed soil-tree core relationship was stronger than that of groundwater PCE to tree core concentrations at the same site. Earlier research has shown a direct, linear relationship between tree core and groundwater concentrations of chlorinated solvents and other organics. Laboratory-scale experiments were performed to elucidate this phenomenon, including determining partitioning coefficients of PCE between plant tissues and air and between plant tissues and water, measured to be 8.1 and 49 L/kg, respectively. The direct relationship of soil to tree core PCE concentrations was hypothesized to be caused by diffusion between tree roots and the soil vapor phase in the subsurface. The central findings of this research are discovering the importance of subsurface vapor-phase transfer for VOCs and uncovering a direct relationship between soil vapor-phase chlorinated solvents and uptake rates that impact contaminant translocation from the subsurface and transfer into the atmosphere. ?? 2005 American Chemical Society.
Van Doren, Jane M; Miller, Thomas M; Williams, Skip; Viggiano, A A
2003-11-28
Attachment of thermal electrons to O3 was studied in 133 Pa He between 300-550 K; the process is extremely inefficient. The rate coefficient increases sharply with temperature from 0.9 to 5 x 10(-11) cm(3) s(-1) (+/-30%) and comparison to kinetic energy measurements suggests internal energy can drive the reaction. These determinations account for competing processes of diffusion, recombination, and electron detachment reactions, and imply that no significant zero-energy resonance cross section exists, contradicting recent electron-beam results that call for substantial revision of ionospheric models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lienhard, D. M.; Huisman, A. J.; Krieger, U. K.
New measurements of water diffusion in secondary organic aerosol (SOA) material produced by oxidation of α-pinene and in a number of organic/inorganic model mixtures (3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA), levoglucosan, levoglucosan/NH 4HSO 4, raffinose) are presented. These indicate that water diffusion coefficients are determined by several properties of the aerosol substance and cannot be inferred from the glass transition temperature or bouncing properties. Our results suggest that water diffusion in SOA particles is faster than often assumed and imposes no significant kinetic limitation on water uptake and release at temperatures above 220 K. The fast diffusion of water suggests that heterogeneous icemore » nucleation on a glassy core is very unlikely in these systems. At temperatures below 220 K, model simulations of SOA particles suggest that heterogeneous ice nucleation may occur in the immersion mode on glassy cores which remain embedded in a liquid shell when experiencing fast updraft velocities. The particles absorb significant quantities of water during these updrafts which plasticize their outer layers such that these layers equilibrate readily with the gas phase humidity before the homogeneous ice nucleation threshold is reached. Glass formation is thus unlikely to restrict homogeneous ice nucleation. Only under most extreme conditions near the very high tropical tropopause may the homogeneous ice nucleation rate coefficient be reduced as a consequence of slow condensed-phase water diffusion. Since the differences between the behavior limited or non limited by diffusion are small even at the very high tropical tropopause, condensed-phase water diffusivity is unlikely to have significant consequences on the direct climatic effects of SOA particles under tropospheric conditions.« less
NASA Astrophysics Data System (ADS)
Ylilammi, Markku; Ylivaara, Oili M. E.; Puurunen, Riikka L.
2018-05-01
The conformality of thin films grown by atomic layer deposition (ALD) is studied using all-silicon test structures with long narrow lateral channels. A diffusion model, developed in this work, is used for studying the propagation of ALD growth in narrow channels. The diffusion model takes into account the gas transportation at low pressures, the dynamic Langmuir adsorption model for the film growth and the effect of channel narrowing due to film growth. The film growth is calculated by solving the diffusion equation with surface reactions. An efficient analytic approximate solution of the diffusion equation is developed for fitting the model to the measured thickness profile. The fitting gives the equilibrium constant of adsorption and the sticking coefficient. This model and Gordon's plug flow model are compared. The simulations predict the experimental measurement results quite well for Al2O3 and TiO2 ALD processes.
NASA Astrophysics Data System (ADS)
Rukhovich, D. I.; Rukhovich, A. D.; Rukhovich, D. D.; Simakova, M. S.; Kulyanitsa, A. L.; Bryzzhev, A. V.; Koroleva, P. V.
2016-08-01
The coefficients of the soil line are often taken into account in calculations of vegetation indices. These coefficients are usually calculated for the entire satellite image, or are taken as constants without any calculations. In both cases, the informativeness of these coefficients is low and insufficient for the needs of soil mapping. In our study, we calculated soil line coefficients at 8000 lattice points for the territory of Plavsk, Arsen'evsk, and Chern districts of Tula oblast on the basis of 34 Landsat 5, 7, and 8 images obtained in 1985-2014. In order to distinguish between the soil line calculated for a given image and the soil line calculated for lattice points on the basis of dozens of multitemporal images, we suggest that the latter can be referred to as the temporal soil line. The temporal soil line is described by a classical equation: NIR = RED a + b, where a is its slope relative to the horizontal axis (RED), and b is the Y-axis (NIR) intercept. Both coefficients were used to create soil maps. The verification of the maps was performed with the use of data on 1985 soil pits. The informativeness of these coefficients appeared to be sufficient for delineation of eight groups of soils of different taxonomic levels: soddy moderately podzolic soils, soddy slightly podzolic soils, soddy-podzolic soils, light gray forest soils, gray forest soils, dark gray forest soils, podzolized chernozems, and leached chernozems. The b coefficient proved to be more informative, as it allowed us to create the soil map precisely on its basis. In order to create the soil map on the basis of the a coefficient, we had to apply some threshold values of the b coefficient. The bare soil on each of Landsat scenes was separated with the help of the mask of agricultural fields and the notion of the spectral neighborhood of soil line (SNSL).
Rantakari, Miitta; Heiskanen, Jouni; Mammarella, Ivan; Tulonen, Tiina; Linnaluoma, Jessica; Kankaala, Paula; Ojala, Anne
2015-10-06
The air-water exchange of carbon dioxide (CO2) and methane (CH4) is a central process during attempts to establish carbon budgets for lakes and landscapes containing lakes. Lake-atmosphere diffusive gas exchange is dependent on the concentration gradient between air and surface water and also on the gas transfer velocity, often described with the gas transfer coefficient k. We used the floating-chamber method in connection with surface water gas concentration measurements to estimate the gas transfer velocity of CO2 (kCO2) and CH4 (kCH4) weekly throughout the entire growing season in two contrasting boreal lakes, a humic oligotrophic lake and a clear-water productive lake, in order to investigate the earlier observed differences between kCO2 and kCH4. We found that the seasonally averaged gas transfer velocity of CH4 was the same for both lakes. When the lakes were sources of CO2, the gas transfer velocity of CO2 was also similar between the two study lakes. The gas transfer velocity of CH4 was constantly higher than that of CO2 in both lakes, a result also found in other studies but for reasons not yet fully understood. We found no differences between the lakes, demonstrating that the difference between kCO2 and kCH4 is not dependent on season or the characteristics of the lake.
NASA Astrophysics Data System (ADS)
Tanaka, Hiroaki; Takahashi, Sachiko; Yamanaka, Mari; Yoshizaki, Izumi; Sato, Masaru; Sano, Satoshi; Motohara, Moritoshi; Kobayashi, Tomoyuki; Yoshitomi, Susumu; Tanaka, Tetsuo; Fukuyama, Seijiro
2006-09-01
The diffusion coefficients of lysozyme and alpha-amylase were measured in the various polyethylene glycol (PEG) solutions. Obtained diffusion coefficients were studied with the viscosity coefficient of the solution. It was found that the diffusion process of the protein was suppressed with a factor of vγ, where ν is a relative viscosity coefficient of the PEG solution. The value of γ is -0.64 at PEG1500 for both proteins. The value increased to -0.48 at PEG8000 for lysozyme, while decreased to -0.72 for alpha-amylase. The equation of an approximate diffusion coefficient at certain PEG molecular weight and concentration was roughly obtained.
Thomas, John E; Allen, L Hartwell; McCormack, Leslie A; Vu, Joseph C; Dickson, Donald W; Ou, Li-Tse
2004-04-01
The main objective of this study was to determine the influence of soil moisture, organic matter amendment and plastic cover (a virtually impermeable film, VIF) on diffusion and emissions of (Z)- and (E)-1,3-dichloropropene (1,3-D) in microplots of Florida sandy soil (Arredondo fine sand). Upward diffusion of the two isomers in the Arredondo soil without a plastic cover was greatly influenced by soil-water content and (Z)-1,3-D diffused faster than (E)-1,3-D. In less than 5 h after 1,3-D injection to 30 cm depth, (Z)- and (E)-1,3-D in air dry soil had diffused to a 10 cm depth, whereas diffusion for the two isomers was negligible in near-water-saturated soil, even 101 h after injection. The diffusion rate of (Z)- and (E)-1,3-D in near-field-capacity soil was between the rates in the two water regimes. Yard waste compost (YWC) amendment greatly reduced diffusion of (Z)- and (E)-1,3-D, even in air-dry soil. Although upward diffusion of (Z)- and (E)-1,3-D in soil with VIF cover was slightly less than in the corresponding bare soil; the cover promoted retention of vapors of the two isomers in soil pore air in the shallow subsurface. More (Z)-1,3-D vapor was found initially in soil pore air than (E)-1,3-D although the difference declined thereafter. As a result of rapid upward movement in air-dry bare soil, (Z)- and (E)-1,3-D were rapidly volatilized into the atmosphere, but emissions from the near-water-saturated soil were minimal. Virtually impermeable film and YWC amendment retarded emissions. This study indicated that adequate soil water in this sandy soil is needed to prevent rapid emissions, but excess soil water slows diffusion of (Z)- and (E)-1,3-D. Thus, management for optimum water in soil is critical for pesticidal efficacy and the environment.
Yasin, Muhammad; Park, Shinyoung; Jeong, Yeseul; Lee, Eun Yeol; Lee, Jinwon; Chang, In Seop
2014-10-01
This study proposed a submerged hollow fibre membrane bioreactor (HFMBR) system capable of achieving high carbon monoxide (CO) mass transfer for applications in microbial synthesis gas conversion systems. Hydrophobic polyvinylidene fluoride (PVDF) membrane fibres were used to fabricate a membrane module, which was used for pressurising CO in water phase. Pressure through the hollow fibre lumen (P) and membrane surface area per unit working volume of the liquid (A(S)/V(L)) were used as controllable parameters to determine gas-liquid volumetric mass transfer coefficient (k(L)a) values. We found a k(L)a of 135.72 h(-1) when P was 93.76 kPa and AS/VL was fixed at 27.5m(-1). A higher k(L)a of 155.16 h(-1) was achieved by increasing AS/VL to 62.5m(-1) at a lower P of 37.23 kPa. Practicality of HFMBR to support microbial growth and organic product formation was assessed by CO/CO2 fermentation using Eubacterium limosum KIST612. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Portnova, N. M.; Smirnov, Yu B.
2017-11-01
A theoretical model for calculation of heat transfer during condensation of multicomponent vapor-gas mixtures on vertical surfaces, based on film theory and heat and mass transfer analogy is proposed. Calculations were performed for the conditions implemented in experimental studies of heat transfer during condensation of steam-gas mixtures in the passive safety systems of PWR-type reactors of different designs. Calculated values of heat transfer coefficients for condensation of steam-air, steam-air-helium and steam-air-hydrogen mixtures at pressures of 0.2 to 0.6 MPa and of steam-nitrogen mixture at the pressures of 0.4 to 2.6 MPa were obtained. The composition of mixtures and vapor-to-surface temperature difference were varied within wide limits. Tube length ranged from 0.65 to 9.79m. The condensation of all steam-gas mixtures took place in a laminar-wave flow mode of condensate film and turbulent free convection in the diffusion boundary layer. The heat transfer coefficients obtained by calculation using the proposed model are in good agreement with the considered experimental data for both the binary and ternary mixtures.
Efficiency and temperature dependence of water removal by membrane dryers
NASA Technical Reports Server (NTRS)
Leckrone, K. J.; Hayes, J. M.
1997-01-01
The vapor pressure of water in equilibrium with sorption sites within a Nafion membrane is given by log P(WN) = -3580/T + 10.01, where P(WN) is expressed in Torr and T is the membrane temperature, in kelvin. The efficiency of dryers based on selective permeation of water through Nafion can thus be enhanced by cooling the membrane. Residual water in effluents exceeds equilibrium levels if insufficient time is allowed for water to diffuse to the membrane surface as gas passes through the dryer. For tubular configurations, this limitation can be avoided if L > or = Fc(10(3.8)/120 pi D), where L is the length of the tubular membrane, in centimeters, Fc is the gas flow rate, in mL/ min, and D is the diffusion coefficient for water in the carrier gas at the operating temperature of the dryer, in cm2/s. An efficient dryer that at room temperature dries gas to a dew point of -61 degrees C is described; the same dryer maintained at 0 degrees C yields a dew point of -80 degrees C and removes water as effectively as Mg(ClO4)2 or a dry ice/acetone slush. The use of Nafion membranes to construct devices capable of delivering gas streams with low but precisely controlled humidities is discussed.
Chu, Khim Hoong
2017-11-09
Surface diffusion coefficients may be estimated by fitting solutions of a diffusion model to batch kinetic data. For non-linear systems, a numerical solution of the diffusion model's governing equations is generally required. We report here the application of the classic Langmuir kinetics model to extract surface diffusion coefficients from batch kinetic data. The use of the Langmuir kinetics model in lieu of the conventional surface diffusion model allows derivation of an analytical expression. The parameter estimation procedure requires determining the Langmuir rate coefficient from which the pertinent surface diffusion coefficient is calculated. Surface diffusion coefficients within the 10 -9 to 10 -6 cm 2 /s range obtained by fitting the Langmuir kinetics model to experimental kinetic data taken from the literature are found to be consistent with the corresponding values obtained from the traditional surface diffusion model. The virtue of this simplified parameter estimation method is that it reduces the computational complexity as the analytical expression involves only an algebraic equation in closed form which is easily evaluated by spreadsheet computation.
D'Angelo, E
2017-12-01
Tetracycline (TET) is commonly used to treat bacterial diseases in humans and chickens (Gallus gallus domesticus), is largely excreted, and is found at elevated concentrations in treated sewage sludge (biosolids) and poultry litter (excrement plus bedding materials). Routine application of these nutrient-and carbon-enriched materials to soils improves fertility and other characteristics, but the presence of antibiotics (and other pharmaceuticals) in amendments raises questions about potential adverse effects on biota and development of antibiotic resistance in the environment. Hazard risks are largely dictated by sorption-desorption and diffusion behavior in amendments, so these processes were evaluated from sorption-desorption equilibrium isotherm and diffusion cell experiments with four types amendments (biosolids, poultry manure, wood chip litter, and rice hull litter) at three temperatures (8 °C, 20 °C and 32 °C). Linear sorption-desorption equilibrium distribution constants (Kd) in native amendments ranged between 124-2418 L kg -1 . TET sorption was significantly increased after treatment with alum, and there was a strong exponential relationship between Kd and the concentration of bound Al 3+ in amendments (R 2 = 0.94), which indicated that amendments contained functional groups capable of chelating Al 3+ and forming metal bridges with TET. Effective diffusion coefficients of TET in amendments ranged between 0.1 and 5.2 × 10 -6 cm 2 s -1 , which were positively related to temperature and inversely related to Kd by a multiple regression model (R 2 = 0.86). Treatment of organic amendments with alum greatly increased Kd, would decrease D s , and so would greatly reduce hazard risks of applying these organic amendments with this antibiotic to soils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mineralogical Controls over Carbon Storage and Residence Times in Grassland Soils
NASA Astrophysics Data System (ADS)
Dwivedi, D.; Riley, W. J.; Torn, M. S.; Spycher, N.
2014-12-01
Globally, soil organic matter (SOM) contains approximately three times more carbon than the atmosphere and terrestrial vegetation contain combined. However, it is not well understood why some SOM persists for a long time while other SOM decomposes quickly. For future climate predictions, representing soil organic matter (SOM) dynamics accurately in Earth system models is essential. Soil minerals stabilize organic carbon in soil; however, there are gaps in our understanding of how soil mineralogy controls the quantity and turnover of long-residence-time organic carbon. To investigate the impact of soil mineralogy on SOM dynamics, we used a new model (Biotic and Abiotic Model of SOM—BAMS1 [Riley et al., 2014]) integrated with a three-dimensional, multiphase reactive transport solver (TOUGHREACT). The model represents bacterial and fungal activity, archetypal polymer and monomer carbon substrate groups, aqueous chemistry, gaseous diffusion, aqueous advection and diffusion, and adsorption and desorption processes. BAMS1 can predict bulk SOM and radiocarbon signatures without resorting to an arbitrary depth-dependent decline in SOM turnover rates. Results show a reasonable match between observed and simulated depth-resolved SOM and Δ14C in grassland ecosystems (soils formed on terraces south of Eureka, California, and the Central Chernozem Region of Russia) and were consistent with expectations of depth-resolved profiles of lignin content and fungi:aerobic bacteria ratios. Results also suggest that clay-mineral surface area and soil sorption coefficients constitute dominant controls over organic carbon stocks and residence times, respectively. Bibliography: Riley, W.J., F.M. Maggi, M. Kleber, M.S. Torn, J.Y. Tang, D. Dwivedi, and N. Guerry (2014), Long residence times of rapidly decomposable soil organic matter: application of a multi-phase, multi-component, and vertically resolved model (BAMS1) to soil carbon dynamics, Geoscientific Model Development, vol. 7, 1335-2014, doi:10.5194/gmd-7-1335-2014.
Marchiol, L; Assolari, S; Sacco, P; Zerbi, G
2004-11-01
Phytoextraction can provide an effective in situ technique for removing heavy metals from polluted soils. The experiment reported in this paper was undertaken to study the basic potential of phytoextraction of Brassica napus (canola) and Raphanus sativus (radish) grown on a multi-metal contaminated soil in the framework of a pot-experiment. Chlorophyll contents and gas exchanges were measured during the experiment; the heavy metal phytoextraction efficiency of canola and radish were also determined and the phytoextraction coefficient for each metal calculated. Data indicated that both species are moderately tolerant to heavy metals and that radish is more so than canola. These species showed relatively low phytoremediation potential of multicontaminated soils. They could possibly be used with success in marginally polluted soils where their growth would not be impaired and the extraction of heavy metals could be maintained at satisfying levels.
In situ soil COS exchange of a temperate mountain grassland under simulated drought.
Kitz, Florian; Gerdel, Katharina; Hammerle, Albin; Laterza, Tamara; Spielmann, Felix M; Wohlfahrt, Georg
2017-03-01
During recent years, carbonyl sulfide (COS), a trace gas with a similar diffusion pathway into leaves as carbon dioxide (CO 2 ), but with no known "respiration-like" leaf source, has been discussed as a promising new approach for partitioning net ecosystem-scale CO 2 fluxes into photosynthesis and respiration. The utility of COS for flux partitioning at the ecosystem scale critically depends on the understanding of non-leaf sources and sinks of COS. This study assessed the contribution of the soil to ecosystem-scale COS fluxes under simulated drought conditions at temperate grassland in the Central Alps. We used transparent steady-state flow-through chambers connected to a quantum cascade laser spectrometer to measure the COS and CO 2 gas exchange between the soil surface and the atmosphere. Soils were a source of COS during the day, emissions being mainly driven by incoming solar radiation and to a lesser degree soil temperature. Soil water content had a negligible influence on soil COS exchange and thus the drought and control treatment were statistically not significantly different. Overall, daytime fluxes were large (12.5 ± 13.8 pmol m -2 s -1 ) in their magnitude and consistently positive compared to the previous studies, which predominantly used dark chambers. Nighttime measurements revealed soil COS fluxes around zero, as did measurements with darkened soil chambers during daytime reinforcing the importance of incoming solar radiation. Our results suggest that abiotic drivers play a key role in controlling in situ soil COS fluxes of the investigated grassland.
Modelling of intermittent microwave convective drying: parameter sensitivity
NASA Astrophysics Data System (ADS)
Zhang, Zhijun; Qin, Wenchao; Shi, Bin; Gao, Jingxin; Zhang, Shiwei
2017-06-01
The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.
Experimental assessment of indoor radon and soil gas variability: the RADON project
NASA Astrophysics Data System (ADS)
Barbosa, S. M.; Pereira, A. J. S. C.; Neves, L. J. P. F.; Steinitz, G.; Zafrir, H.; Donner, R.; Woith, H.
2012-04-01
Radon is a radioactive noble gas naturally present in the environment, particularly in soils derived from rocks with high uranium content. Radon is formed by alpha decay from radium within solid mineral grains, but can migrate via diffusion and/or advection into the air space of soils, as well as into groundwater and the atmosphere. The exhalation of radon from the pore space of porous materials into the atmosphere of indoor environments is well known to cause adverse health effects due to the inhalation of radon's short-lived decay products. The danger to human health is particularly acute in the case of poorly ventilated dwellings located in geographical areas of high radon potential. The RADON project, funded by the Portuguese Science Foundation (FCT), aims to evaluate the temporal variability of radon in the soil and atmosphere and to examine the influence of meteorological effects in radon concentration. For that purpose an experimental monitoring station is being installed in an undisturbed dwelling located in a region of high radon potential near the old uranium mine of Urgeiriça (central Portugal). The rationale of the project, the set-up of the experimental radon monitoring station, and preliminary monitoring results will be presented.
Alfonso, Lorenzo-Flores; Germán, Giácoman Vallejos; María Del Carmen, Ponce Caballero; Hossein, Ghoveisi
2017-01-01
This article discusses the adsorption of four organophosphorus pesticides-diazinon, dimethoate, methyl parathion, and sulfotep-in soil samples from four sites-Komchén, Xcanatún, Chablekal and Mocochá- in the northwest of Yucatan, Mexico. These pesticides have been detected in groundwater at concentrations greater than 5 (μg/L) during recent monitoring campaigns in the study area. In this region, groundwater contamination is exacerbated by its karst aquifer, which is susceptible to contamination and is considered very vulnerable. The experimental work was carried out using the batch equilibrium technique. Pesticide analyses by solid-phase extraction and gas chromatography were performed. The equilibrium adsorption data were analyzed by Henry, Langmuir and Freundlich models. The results indicate that the Freundlich model provides the best correlation of the experimental data. Freundlich adsorption coefficients K f were in the range of 1.62-2.35 for sulfotep, 2.43 to 3.25 for dimethoate, from 5.54 to 9.27 for methyl parathion, and 3.22 to 5.17 for diazinon. Freundlich adsorption coefficients were normalized to the content of organic carbon in the soil to estimate the sorption coefficient of organic carbon (K OC ). K OC values were in the range of 9.45-71.80, indicated that four pesticides have low adsorption on the four studied soils, which represents a high risk of contamination to the aquifer. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lienhard, D. M.; Huisman, A. J.; Krieger, U. K.; ...
2015-01-01
New measurements of water diffusion in secondary organic aerosol (SOA) material produced by oxidation of α-pinene and in a number of organic/inorganic model mixtures (3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA), levoglucosan, levoglucosan/NH 4HSO 4, raffinose) are presented. These indicate that water diffusion coefficients are determined by several properties of the aerosol substance and cannot be inferred from the glass transition temperature or bouncing properties. Our results suggest that water diffusion in SOA particles is faster than often assumed and imposes no significant kinetic limitation on water uptake and release at temperatures above 220 K. The fast diffusion of water suggests that heterogeneous icemore » nucleation on a glassy core is very unlikely in these systems. At temperatures below 220 K, model simulations of SOA particles suggest that heterogeneous ice nucleation may occur in the immersion mode on glassy cores which remain embedded in a liquid shell when experiencing fast updraft velocities. The particles absorb significant quantities of water during these updrafts which plasticize their outer layers such that these layers equilibrate readily with the gas phase humidity before the homogeneous ice nucleation threshold is reached. Glass formation is thus unlikely to restrict homogeneous ice nucleation. Only under most extreme conditions near the very high tropical tropopause may the homogeneous ice nucleation rate coefficient be reduced as a consequence of slow condensed-phase water diffusion. Since the differences between the behavior limited or non limited by diffusion are small even at the very high tropical tropopause, condensed-phase water diffusivity is unlikely to have significant consequences on the direct climatic effects of SOA particles under tropospheric conditions.« less
NASA Astrophysics Data System (ADS)
Gray, H. J.; Tucker, G. E.; Mahan, S.
2017-12-01
Luminescence is a property of matter that can be used to obtain depositional ages from fine sand. Luminescence generates due to exposure to background ionizing radiation and is removed by sunlight exposure in a process known as bleaching. There is evidence to suggest that luminescence can also serve as a sediment tracer in fluvial and hillslope environments. For hillslope environments, it has been suggested that the magnitude of luminescence as a function of soil depth is related to the strength of soil mixing. Hillslope soils with a greater extent of mixing will have previously surficial sand grains moved to greater depths in a soil column. These previously surface-exposed grains will contain a lower luminescence than those which have never seen the surface. To attempt to connect luminescence profiles with soil mixing rate, here defined as the soil vertical diffusivity, I conduct numerical modelling of particles in hillslope soils coupled with equations describing the physics of luminescence. I use recently published equations describing the trajectories of particles under both exponential and uniform soil velocity soils profiles and modify them to include soil diffusivity. Results from the model demonstrates a strong connection between soil diffusivity and luminescence. Both the depth profiles of luminescence and the total percent of surface exposed grains will change drastically based on the magnitude of the diffusivity. This suggests that luminescence could potentially be used to infer the magnitude of soil diffusivity. However, I test other variables such as the soil production rate, e-folding length of soil velocity, background dose rate, and soil thickness, and I find these other variables can also affect the relationship between luminescence and diffusivity. This suggests that these other variables may need to be constrained prior to any inferences of soil diffusivity from luminescence measurements. Further field testing of the model in areas where the soil vertical diffusivity and other parameters are independently known will provide a test of this potential new method.
NASA Astrophysics Data System (ADS)
Ilia Anisa, Nor; Azian, Noor; Sharizan, Mohd; Iwai, Yoshio
2014-04-01
6-gingerol and 6-shogaol are the main constituents as anti-inflammatory or bioactive compounds from zingiber officinale Roscoe. These bioactive compounds have been proven for inflammatory disease, antioxidatives and anticancer. The effect of temperature on diffusion coefficient for 6-gingerol and 6-shogaol were studied in subcritical water extraction. The diffusion coefficient was determined by Fick's second law. By neglecting external mass transfer and solid particle in spherical form, a linear portion of Ln (1-(Ct/Co)) versus time was plotted in determining the diffusion coefficient. 6-gingerol obtained the higher yield at 130°C with diffusion coefficient of 8.582x10-11 m2/s whilst for 6-shogaol, the higher yield and diffusion coefficient at 170°C and 19.417 × 10-11 m2/s.
Life's Impact on the Soil Production Function
NASA Astrophysics Data System (ADS)
Harrison, Emma; Willenbring, Jane; Brocard, Gilles
2016-04-01
Soil melds life and lithology, but the top-down production of soil by the incorporation of organic matter has typically been viewed through a lens of soil biogeochemistry and the bottom-up weathering of bedrock viewed from a geomorphologic perspective. We merge these perspectives by developing a variation on the classic geomorphological soil production function [1] that accounts for the influence of top-down soil production by additions of organic material. In the classic view [1], production rate of soil from bedrock weathering is a function of the thickness of the soil horizon. Under steady state conditions, this thickness is controlled by a constant coefficient of diffusion and by the hillslope curvature. Across the globe, equilibrium landscapes can be hard to find. We explore the many ways that biota influence the upper soil horizons and move the soil-hillslope system out of steady state using measurements of in situ 10Be at depth in soil profiles. Our empirical case study is in the Luquillo Critical Zone Observatory of northeastern Puerto Rico, where long term ecological monitoring suggests an average of 375 m My-1 of litter fall [2] and as much as 17.5 m My-1 of dust [3] is contributed to the forest floor. This substantial volume of material forms an active surficial layer, functionally increasing the residence time of grains deeper in the soil profile. Litter recycling influences the cosmogenic dose rate to be higher by increasing the residence time of grains and to be lower by increasing environmental shielding. In unconstrained systems, probabilistic modeling can determine a range of solutions for the ages of grains determined with 10Be depth profiles[4]. We compare the probabilistic outcomes to actual measurements of the in situ 10Be at depth in soil profiles from the Luquillo Mountains. Life living in the soil, rather than on it, is of equal importance in the Luquillo Mountains. On average, the soil is occupied by 200 individual earthworms per m2 [5]. The depth of soil mixing in the soil profiles we collect is shown by the homogenization of 10Be concentrations in grains. Mixing changes the residence time of grains in soil. The length of this residence time is a critical component in the rate of weathering reactions, the mechanism by which material is lost to chemical dissolution and leaching. Additionally, mixing may drive the value of the diffusion coefficient, which determines the flux of sediment out of the soil mantle in the geomorphic soil production function. Life actively impacts the soil-hillslope system, and quantifying these effects is an essential modification of a fundamental paradigm in the geomorphology of soil-mantled landscapes. [1] Heimsath et al. 1997. Nature 388:358-361 [2] Zou et al., 1995. Forest Ecol. and Management 78:147-157 [3] Pett-Ridge et al., 2009. Geochim. Cosmochim. Acta 73:25-43 [4] Hidy et al. 2010. Geochem. Geophys., Geosys. 11 [5] González et al. 2007. Eur. J. Soil Biol. 43:S24-S32
Modeling Secondary Organic Aerosols over Europe: Impact of Activity Coefficients and Viscosity
NASA Astrophysics Data System (ADS)
Kim, Y.; Sartelet, K.; Couvidat, F.
2014-12-01
Semi-volatile organic species (SVOC) can condense on suspended particulate materials (PM) in the atmosphere. The modeling of condensation/evaporation of SVOC often assumes that gas-phase and particle-phase concentrations are at equilibrium. However, recent studies show that secondary organic aerosols (SOA) may not be accurately represented by an equilibrium approach between the gas and particle phases, because organic aerosols in the particle phase may be very viscous. The condensation in the viscous liquid phase is limited by the diffusion from the surface of PM to its core. Using a surrogate approach to represent SVOC, depending on the user's choice, the secondary organic aerosol processor (SOAP) may assume equilibrium or model dynamically the condensation/evaporation between the gas and particle phases to take into account the viscosity of organic aerosols. The model is implemented in the three-dimensional chemistry-transport model of POLYPHEMUS. In SOAP, activity coefficients for organic mixtures can be computed using UNIFAC for short-range interactions between molecules and AIOMFAC to also take into account the effect of inorganic species on activity coefficients. Simulations over Europe are performed and POLYPHEMUS/SOAP is compared to POLYPHEMUS/H2O, which was previously used to model SOA using the equilibrium approach with activity coefficients from UNIFAC. Impacts of the dynamic approach on modeling SOA over Europe are evaluated. The concentrations of SOA using the dynamic approach are compared with those using the equilibrium approach. The increase of computational cost is also evaluated.
Diffusional Transport of Organic Solutes in Subsurface Clay Lenses and Layers
NASA Astrophysics Data System (ADS)
Demond, A. H.; Ayral, D.; Goltz, M. N.
2009-12-01
The storage of organic solvents in clay lenses and layers in the subsurface creates long-term contaminant sources. Because of the low hydraulic conductivities of clay, it is thought that organic movement into clay lenses occurs through the process of diffusion. The ratio of the effective diffusion coefficient in the porous medium and the diffusion coefficient in bulk water is usually given by the tortuosity factor which accounts for the reduced area and the increased path length in the porous medium. However, there is field evidence which suggests that the concentrations in these lenses exceed that which can be accounted for by simple diffusion. There are reports, for example, of tortuosity factors greater than 1.0, which theoretically is not possible. Clays such as montmorillonite or bentonite shrink and swell depending on water content, and similar behavior can occur in the presence of organic solvents. In fact, research has shown that the basal spacing of bentonite can decrease by 50% when permeated with heptane. Such contraction of the clay structure can lead to the formation of cracks and macropores, with a concomitant alteration of the diffusional pathways that solutes follow. Models formulated for diffusional transport in soil are available to calculate the tortuosity factor as a function of water content. In addition, models are available to simulate phenomena in which the diffusion coefficient is concentration dependent. However, calculations of diffusional transport using such models show that they may not adequately reflect the impact of the alteration of the clay structure. However, modeling the transport of organic solutes in clay as a dual-domain system with some minimal advective transport in macropores can yield tortuosity factors greater than 1.0. Thus, it appears the cracking of clay in contact with organic solvents and a resultant advective component to transport of the solute may be an explanation of field observations.
Air-sea fluxes of momentum and mass in the presence of wind waves
NASA Astrophysics Data System (ADS)
Zülicke, Christoph
2010-05-01
An air-sea interaction model (ASIM) is developed including the effect of wind waves on momentum and mass transfer. This includes the derivation of profiles of dissipation rate, flow speed and concentration from a certain height to a certain depth. Simplified assumptions on the turbulent closure, skin - bulk matching and the spectral wave model allow for an analytic treatment. Particular emphasis was put on the inclusion of primary (gravity) waves and secondary (capillary-gravity) waves. The model was tuned to match wall-flow theory and data on wave height and slope. Growing waves reduce the air-side turbulent stress and lead to an increasing drag coefficient. In the sea, breaking waves inject turbulent kinetic energy and accelerate the transfer. Cross-reference with data on wave-related momentum and energy flux, dissipation rate and transfer velocity was sufficient. The evaluation of ASIM allowed for the analytical calculation of bulk formulae for the wind-dependent gas transfer velocity including information on the air-side momentum transfer (drag coefficient) and the sea-side gas transfer (Dalton number). The following regimes have been identified: the smooth waveless regime with a transfer velocity proportional to (wind) × (diffusion)2-3, the primary wave regime with a wind speed dependence proportional to (wind)1-4 × (diffusion)1-2-(waveage)1-4 and the secondary wave regime including a more-than-linear wind speed dependence like (wind)15-8 × (diffusion)1-2 × (waveage)5-8. These findings complete the current understanding of air-sea interaction for medium winds between 2 and 20 m s^-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loyalka, Sudarshan
High and Very High Temperatures Gas Reactors (HTGRs/VHTRs) have five barriers to fission product (FP) release: the TRISO fuel coating, the fuel elements, the core graphite, the primary coolant system, and the reactor building. This project focused on measurements and computations of FP diffusion in graphite, FP adsorption on graphite and FP interactions with dust particles of arbitrary shape. Diffusion Coefficients of Cs and Iodine in two nuclear graphite were obtained by the release method and use of Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) and Instrumented Neutron Activation Analysis (INAA). A new mathematical model for fission gas release from nuclear fuelmore » was also developed. Several techniques were explored to measure adsorption isotherms, notably a Knudsen Effusion Mass Spectrometer (KEMS) and Instrumented Neutron Activation Analysis (INAA). Some of these measurements are still in progress. The results will be reported in a supplemental report later. Studies of FP interactions with dust and shape factors for both chain-like particles and agglomerates over a wide size range were obtained through solutions of the diffusion and transport equations. The Green's Function Method for diffusion and Monte Carlo technique for transport were used, and it was found that the shape factors are sensitive to the particle arrangements, and that diffusion and transport of FPs can be hindered. Several journal articles relating to the above work have been published, and more are in submission and preparation.« less
NASA Astrophysics Data System (ADS)
Zhang, Yunxin
2009-07-01
In this research, diffusion of an overdamped Brownian particle in the tilted periodic potential is investigated. Using the one-dimensional hopping model, the formulations of the mean velocity V and effective diffusion coefficient D of the Brownian particle have been obtained [B. Derrida, J. Stat. Phys. 31 (1983) 433]. Based on the relation between the effective diffusion coefficient and the moments of the mean first passage time, the formulation of effective diffusion coefficient D of the Brownian particle also has been obtained [P. Reimann, et al., Phys. Rev. E 65 (2002) 031104]. In this research, we'll give another analytical expression of the effective diffusion coefficient D from the moments of the particle's coordinate.
Gaseous templates in ant nests.
Cox, M D; Blanchard, G B
2000-05-21
We apply a diffusion model to the atmosphere of ant nests. With particular reference to carbon dioxide (CO2), we explore analytically and numerically the spatial and temporal patterns of brood- or worker-produced gases in nests. The maximum concentration within a typical one-chamber ant nest with approximately 200 ants can reach 12.5 times atmospheric concentration, reaching 95% of equilibrium concentrations within 15 min. Maximum concentration increases with increasing number of ants in the nest (or production rate of the gas), distance between the centre of the nest ants and the nest entrance, entrance length, wall thickness, and with decreasing entrance width, wall permeability and diffusion coefficient. The nest can be divided into three qualitatively distinct regions according to the shape of the gradient: a plateau of high concentration in the back half of the nest; an intermediate region of increasingly steep gradient towards the entrance; and a steep linear gradient in the entrance tunnel. These regions are robust to changes in gas concentrations, but vary with changes in nest architecture. The pattern of diffusing gases contains information about position and orientation relative to gas sources and sinks, and about colony state, including colony size, activity state and aspects of nest architecture. We discuss how this diffusion pattern may act as a "dynamic template", providing local cues which trigger behavioural acts appropriate to colony needs, which in turn may feed back to changes in the gas template. In particular, wall building occurs along lines of similar concentration for a variety of nest geometries; there is surprising convergence between the period of cycles of synchronously active ants and the time taken for CO2 levels to equilibrate; and the qualitatively distinct regions of the "dynamic template" correspond to regions occupied by different groups of ants.
Low cost fuel cell diffusion layer configured for optimized anode water management
Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E
2013-08-27
A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.
Rissmann, C.; Christenson, B.; Werner, C.; Leybourne, M.; Cole, J.; Gravley, D.
2012-01-01
Carbon dioxide emissions and heat flow have been determined from the Ohaaki hydrothermal field, Taupo Volcanic Zone (TVZ), New Zealand following 20a of production (116MW e). Soil CO2 degassing was quantified with 2663 CO2 flux measurements using the accumulation chamber method, and 2563 soil temperatures were measured and converted to equivalent heat flow (Wm -2) using published soil temperature heat flow functions. Both CO2 flux and heat flow were analysed statistically and then modelled using 500 sequential Gaussian simulations. Forty subsoil CO 2 gas samples were also analysed for stable C isotopes. Following 20a of production, current CO2 emissions equated to 111??6.7T/d. Observed heat flow was 70??6.4MW, compared with a pre-production value of 122MW. This 52MW reduction in surface heat flow is due to production-induced drying up of all alkali-Cl outflows (61.5MW) and steam-heated pools (8.6MW) within the Ohaaki West thermal area (OHW). The drying up of all alkali-Cl outflows at Ohaaki means that the soil zone is now the major natural pathway of heat release from the high-temperature reservoir. On the other hand, a net gain in thermal ground heat flow of 18MW (from 25MW to 43.3??5MW) at OHW is associated with permeability increases resulting from surface unit fracturing by production-induced ground subsidence. The Ohaaki East (OHE) thermal area showed no change in distribution of shallow and deep soil temperature contours despite 20a of production, with an observed heat flow of 26.7??3MW and a CO 2 emission rate of 39??3T/d. The negligible change in the thermal status of the OHE thermal area is attributed to the low permeability of the reservoir beneath this area, which has limited production (mass extraction) and sheltered the area from the pressure decline within the main reservoir. Chemistry suggests that although alkali-Cl outflows once contributed significantly to the natural surface heat flow (~50%) they contributed little (<1%) to pre-production CO 2 emissions due to the loss of >99% of the original CO 2 content due to depressurisation and boiling as the fluids ascended to the surface. Consequently, the soil has persisted as the major (99%) pathway of CO 2 release to the atmosphere from the high temperature reservoir at Ohaaki. The CO 2 flux and heat flow surveys indicate that despite 20a of production the variability in location, spatial extent and magnitude of CO 2 flux remains consistent with established geochemical and geophysical models of the Ohaaki Field. At both OHW and OHE carbon isotopic analyses of soil gas indicate a two-stage fractionation process for moderate-flux (>60gm -2d -1) sites; boiling during fluid ascent within the underlying reservoir and isotopic enrichment as CO 2 diffuses through porous media of the soil zone. For high-flux sites (>300gm -2d -1), the ?? 13CO 2 signature (-7.4??0.3??? OHW and -6.5??0.6??? OHE) is unaffected by near-surface (soil zone) fractionation processes and reflects the composition of the boiled magmatic CO 2 source for each respective upflow. Flux thresholds of <30gm -2d -1 for purely diffusive gas transport, between 30 and 300gm -2d -1 for combined diffusive-advective transport, and ???300gm -2d -1 for purely advective gas transport at Ohaaki were assigned. ?? 13CO 2 values and cumulative probability plots of CO 2 flux data both identified a threshold of ~15gm -2d -1 by which background (atmospheric and soil respired) CO 2 may be differentiated from hydrothermal CO 2. ?? 2011 Elsevier Ltd.
Analysis of Three-dimension Viscous Flow in the Model Axial Compressor Stage K1002L
NASA Astrophysics Data System (ADS)
Tribunskaia, K.; Kozhukhov, Y. V.
2017-08-01
The main investigation subject considered in this paper is axial compressor model stage K1002L. Three simulation models were designed: Scheme 1 - inlet stage model consisting of IGV (Inlet Guide Vane), rotor and diffuser; Scheme 2 - two-stage model: IGV, first-stage rotor, first-stage diffuser, second-stage rotor, EGV (Exit Guide Vane); Scheme 3 - full-round model: IGV, rotor, diffuser. Numerical investigation of the model stage was held for four circumferential velocities at the outer diameter (Uout=125,160,180,210 m/s) within the range of flow coefficient: ϕ = 0.4 - 0.6. The computational domain was created with ANSYS CFX Workbench. According to simulation results, there were constructed aerodynamic characteristic curves of adiabatic efficiency and the adiabatic head coefficient calculated for total parameters were compared with data from the full-scale test received at the Central Boiler and Turbine Institution (CBTI), thus, verification of the calculated data was carried out. Moreover, there were conducted the following studies: comparison of aerodynamic characteristics of the schemes 1, 2; comparison of the sector and full-round models. The analysis and conclusions are supplemented by gas-dynamic method calculation for axial compressor stages.
Guo, Rongbo; Chen, Jiping; Zhang, Qing; Wu, Wenzhong; Liang, Xinmiao
2004-01-01
Using the methanol-water mixtures as mobile phases of soil column liquid chromatography (SCLC), prediction of soil adsorption coefficients (K(d)) by SCLC was validated in a wide range of soil types. The correlations between the retention factors measured by SCLC and soil adsorption coefficients measured by batch experiments were studied for five soils with different properties, i.e., Eurosoil 1#, 2#, 3#, 4# and 5#. The results show that good correlations existed between the retention factors and soil adsorption coefficients for Eurosoil 1#, 2#, 3# and 4#. For Eurosoil 5# which has a pH value of near 3, the correlation between retention factors and soil adsorption coefficients was unsatisfactory using methanol-water as mobile phase of SCLC. However, a good correlation was obtained using a methanol-buffer mixture with pH 3 as the mobile phase. This study proved that the SCLC is suitable for the prediction of soil adsorption coefficients.
NASA Astrophysics Data System (ADS)
Padilla, G.; Hernández, P. A.; Padrón, E.; Barrancos, J.; Melián, G.; Dionis, S.; Rodríguez, F.; Nolasco, D.; Calvo, D.; Hernández, I.; Pereza, M. D.; Pérez, N. M.
2012-04-01
El Hierro (278 km2) is the southwesternmost island of the Canarian archipelago. From June 19, 2011 to January 2012, more than 11,950 seismic events have been detected by the seismic network of IGN. On 10 October 2011 the earthquake swarm changed its behaviour and produced a harmonic tremor due to magma movement, indicating that a submarine eruption located at 2 km south of La Restinga had started which is still in progress. Since 2003, the ITER Environmental Research Division now integrated in the Instituto Volcanológico de Canarias, INVOLCAN, has regularly performed soil gas surveys at El Hierro as a geochemical tool for volcanic surveillance. Among the investigated gases, soil gas radon (222Rn) and thoron (220Rn) have played a special attention. Both gases are characterized to ascend towards the surface mainly through cracks or faults via diffusion or advection, mechanisms dependent of both soil porosity and permeability, which in turn vary as a function of the stress/strain changes at depth. Years before the starts of the volcanic-seismic crisis on July 17, 2011, a volcanic multidisciplinary surveillance program was implemented at El Hierro including discrete and continuous measurements of 222Rn and 220Rn. Two soil gas 222Rn surveys had been carried out at El Hierro in 2003 and 2011, and four continuous geochemical monitoring stations for 222Rn and 220Rn measurements had been installed (HIE02, HIE03, HIE04 and HIE08). Soil gas 222Rn surveys were carried out at the surface environment of El Hierro after selecting 600 sampling observation sites (about 40 cm depth). Geochemical stations measure 222Rn and 220Rn activities by pumping the gas from a PVC pipe inserted 1m in the ground and thermally isolated. The results of the 2003 and 2011 soil gas 222Rn surveys show clearly a relatively higher observed 222Rn activities in the surface environment on 2011 than those observed on 2003 when no anomalous seismicity were taking place beneath El Hierro. The observed anomalous soil gas 222Rn activities were mainly detected along the major volcano-structural features of the island. The time series recorded at HIE02 and HIE03 showed clear 222Rn precursory signatures of the volcanic eruption. Observed 222Rn activity ranged from negligible values to 16.5 and 1.6 kBqm-3 at HIE02 and HIE03 stations, respectively. Individual 222Rn peaks registered in both stations had been also very useful to forecast later pulses on the volcanic activity. In addition, 222Rn/220Rn ratios in both stations showed a strong increase prior the eruption.
Styszko, Katarzyna; Kupiec, Krzysztof
2016-10-01
In this study the diffusion coefficients of isoproturon, diuron and cybutryn in acrylate and silicone resin-based renders were determined. The diffusion coefficients were determined using measuring concentrations of biocides in the liquid phase after being in contact with renders for specific time intervals. The mathematical solution of the transient diffusion equation for an infinite plate contacted on one side with a limited volume of water was used to calculate the diffusion coefficient. The diffusion coefficients through the acrylate render were 8.10·10(-9) m(2) s(-1) for isoproturon, 1.96·10(-9) m(2) s(-1) for diuron and 1.53·10(-9) m(2) s(-1) for cybutryn. The results for the silicone render were lower by one order of magnitude. The compounds with a high diffusion coefficient for one polymer had likewise high values for the other polymer. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lu, Yan; Li, Mingzhong
2016-01-01
The solubility and diffusion coefficient are two of the most important physicochemical properties of a drug compound. In practice, both have been measured separately, which is time consuming. This work utilizes a novel technique of UV imaging to determine the solubility and diffusion coefficients of poorly water-soluble drugs simultaneously. A 2-step optimal method is proposed to determine the solubility and diffusion coefficients of a poorly water-soluble pharmaceutical substance based on the Fick's second law of diffusion and UV imaging measurements. Experimental results demonstrate that the proposed method can be used to determine the solubility and diffusion coefficients of a drug with reasonable accuracy, indicating that UV imaging may provide a new opportunity to accurately measure the solubility and diffusion coefficients of a poorly water-soluble drug simultaneously and rapidly. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
ICP-MS analysis of fission product diffusion in graphite for High-Temperature Gas-Cooled Reactors
NASA Astrophysics Data System (ADS)
Carter, Lukas M.
Release of radioactive fission products from nuclear fuel during normal reactor operation or in accident scenarios is a fundamental safety concern. Of paramount importance are the understanding and elucidation of mechanisms of chemical interaction, nuclear interaction, and transport phenomena involving fission products. Worldwide efforts to reduce fossil fuel dependence coupled with an increasing overall energy demand have generated renewed enthusiasm toward nuclear power technologies, and as such, these mechanisms continue to be the subjects of vigorous research. High-Temperature Gas-Cooled Reactors (HTGRs or VHTRs) remain one of the most promising candidates for the next generation of nuclear power reactors. An extant knowledge gap specific to HTGR technology derives from an incomplete understanding of fission product transport in major core materials under HTGR operational conditions. Our specific interest in the current work is diffusion in reactor graphite. Development of methods for analysis of diffusion of multiple fission products is key to providing accurate models for fission product release from HTGR core components and the reactor as a whole. In the present work, a specialized diffusion cell has been developed and constructed to facilitate real-time diffusion measurements via ICP-MS. The cell utilizes a helium gas-jet system which transports diffusing fission products to the mass spectrometer using carbon nanoparticles. The setup was designed to replicate conditions present in a functioning HTGR, and can be configured for real-time release or permeation measurements of single or multiple fission products from graphite or other core materials. In the present work, we have analyzed release rates of cesium in graphite grades IG-110, NBG-18, and a commercial grade of graphite, as well as release of iodine in IG-110. Additionally we have investigated infusion of graphite samples with Cs, I, Sr, Ag, and other surrogate fission products for use in release or profile measurements of diffusion coefficients.
NASA Astrophysics Data System (ADS)
Chenyakin, Yuri; Ullmann, Dagny A.; Evoy, Erin; Renbaum-Wolff, Lindsay; Kamal, Saeid; Bertram, Allan K.
2017-02-01
The diffusion coefficients of organic species in secondary organic aerosol (SOA) particles are needed to predict the growth and reactivity of these particles in the atmosphere. Previously, viscosity measurements, along with the Stokes-Einstein relation, have been used to estimate the diffusion rates of organics within SOA particles or proxies of SOA particles. To test the Stokes-Einstein relation, we have measured the diffusion coefficients of three fluorescent organic dyes (fluorescein, rhodamine 6G and calcein) within sucrose-water solutions with varying water activity. Sucrose-water solutions were used as a proxy for SOA material found in the atmosphere. Diffusion coefficients were measured using fluorescence recovery after photobleaching. For the three dyes studied, the diffusion coefficients vary by 4-5 orders of magnitude as the water activity varied from 0.38 to 0.80, illustrating the sensitivity of the diffusion coefficients to the water content in the matrix. At the lowest water activity studied (0.38), the average diffusion coefficients were 1.9 × 10-13, 1.5 × 10-14 and 7.7 × 10-14 cm2 s-1 for fluorescein, rhodamine 6G and calcein, respectively. The measured diffusion coefficients were compared with predictions made using literature viscosities and the Stokes-Einstein relation. We found that at water activity ≥ 0.6 (which corresponds to a viscosity of ≤ 360 Pa s and Tg/T ≤ 0.81), predicted diffusion rates agreed with measured diffusion rates within the experimental uncertainty (Tg represents the glass transition temperature and T is the temperature of the measurements). When the water activity was 0.38 (which corresponds to a viscosity of 3.3 × 106 Pa s and a Tg/T of 0.94), the Stokes-Einstein relation underpredicted the diffusion coefficients of fluorescein, rhodamine 6G and calcein by a factor of 118 (minimum of 10 and maximum of 977), a factor of 17 (minimum of 3 and maximum of 104) and a factor of 70 (minimum of 8 and maximum of 494), respectively. This disagreement is significantly smaller than the disagreement observed when comparing measured and predicted diffusion coefficients of water in sucrose-water mixtures.
NASA Astrophysics Data System (ADS)
Harp, D. R.; Ortiz, J. P.; Pandey, S.; Karra, S.; Viswanathan, H. S.; Stauffer, P. H.; Anderson, D. N.; Bradley, C. R.
2017-12-01
In unsaturated fractured media, the rate of gas transport is much greater than liquid transport in many applications (e.g., soil vapor extraction operations, methane leaks from hydraulic fracking, shallow CO2 transport from geologic sequestration operations, and later-time radionuclide gas transport from underground nuclear explosions). However, the relatively immobile pore water can inhibit or promote gas transport for soluble constituents by providing storage. In scenarios with constant pressure gradients, the gas transport will be retarded. In scenarios with reversing pressure gradients (i.e. barometric pressure variations) pore water storage can enhance gas transport by providing a ratcheting mechanism. Recognizing the computational efficiency that can be gained using a single-phase model and the necessity of considering pore water storage, we develop a Richard's solution approach that includes kinetic dissolution/volatilization of constituents. Henry's Law governs the equilibrium gaseous/aqueous phase partitioning in the approach. The approach is implemented in a development branch of the PFLOTRAN simulator. We verify the approach with analytical solutions of: (1) 1D gas diffusion, (2) 1D gas advection, (3) sinusoidal barometric pumping of a fracture, and (4) gas transport along a fracture with uniform flow and diffusive walls. We demonstrate the retardation of gas transport in cases with constant pressure gradients and the enhancement of gas transport with reversing pressure gradients. The figure presents the verification of our approach to the analytical solution of barometric pumping of a fracture from Nilson et al (1991) where the x-axis "Horizontal axis" is the distance into the matrix block from the fracture.
NASA Astrophysics Data System (ADS)
Harp, D. R.; Ortiz, J. P.; Pandey, S.; Karra, S.; Viswanathan, H. S.; Stauffer, P. H.; Anderson, D. N.; Bradley, C. R.
2016-12-01
In unsaturated fractured media, the rate of gas transport is much greater than liquid transport in many applications (e.g., soil vapor extraction operations, methane leaks from hydraulic fracking, shallow CO2 transport from geologic sequestration operations, and later-time radionuclide gas transport from underground nuclear explosions). However, the relatively immobile pore water can inhibit or promote gas transport for soluble constituents by providing storage. In scenarios with constant pressure gradients, the gas transport will be retarded. In scenarios with reversing pressure gradients (i.e. barometric pressure variations) pore water storage can enhance gas transport by providing a ratcheting mechanism. Recognizing the computational efficiency that can be gained using a single-phase model and the necessity of considering pore water storage, we develop a Richard's solution approach that includes kinetic dissolution/volatilization of constituents. Henry's Law governs the equilibrium gaseous/aqueous phase partitioning in the approach. The approach is implemented in a development branch of the PFLOTRAN simulator. We verify the approach with analytical solutions of: (1) 1D gas diffusion, (2) 1D gas advection, (3) sinusoidal barometric pumping of a fracture, and (4) gas transport along a fracture with uniform flow and diffusive walls. We demonstrate the retardation of gas transport in cases with constant pressure gradients and the enhancement of gas transport with reversing pressure gradients. The figure presents the verification of our approach to the analytical solution of barometric pumping of a fracture from Nilson et al (1991) where the x-axis "Horizontal axis" is the distance into the matrix block from the fracture.
NASA Technical Reports Server (NTRS)
Parthasarathy, Arvind; Srinivasan, Supramaniam; Appleby, A. J.; Martin, Charles R.
1992-01-01
The investigation of oxygen reduction kinetics at the platinum/Nafion interface is of great importance in the advancement of proton-exchange-membrane (PEM) fuel-cell technology. This study focuses on the dependence of the oxygen reduction kinetics on oxygen pressure. Conventional Tafel analysis of the data shows that the reaction order with respect to oxygen is unity at both high and low current densities. Chronoamperometric measurements of the transport parameters for oxygen in Nafion show that oxygen dissolution follows Henry's isotherm. The diffusion coefficient of oxygen is invariant with pressure; however, the diffusion coefficient for oxygen is lower when air is used as the equilibrating gas as compared to when oxygen is used for equilibration. These results are of value in understanding the influence of O2 partial pressure on the performance of PEM fuel cells and also in elucidating the mechanism of oxygen reduction at the platinum/Nafion interface.
Diffusion coefficient of hydrogen in a cast gamma titanium aluminide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundaram, P.A.; Wessel, E.; Ennis, P.J.
1999-06-04
Gamma titanium aluminides have the potential for high temperature applications because of their high specific strength and specific modulus. Their oxidation resistance is good, especially at intermediate temperatures and with suitable alloying additions, good oxidation resistance can be obtained up to 800 C. One critical area of application is in combustion engines in aero-space vehicles such as hypersonic airplanes and high speed civil transport airplanes. This entails the use of hydrogen as a fuel component and hence the effect of hydrogen on the mechanical properties of gamma titanium aluminides is of significant scientific and technological utility. The purpose of thismore » short investigation is to use an electrochemical method under galvanostatic conditions to determine the diffusion coefficient of hydrogen in a cast gamma titanium aluminide, a typical technical alloy with potential application in gas turbines under creep conditions. This result will be then compared with that obtained by microhardness profiling of electrolytically hydrogen precharged material.« less
NASA Astrophysics Data System (ADS)
Dupuy, John L.; Lewis, Steven P.; Stancil, P. C.
2016-11-01
Gas-grain and gas-phase reactions dominate the formation of molecules in the interstellar medium (ISM). Gas-grain reactions require a substrate (e.g., a dust or ice grain) on which the reaction is able to occur. The formation of molecular hydrogen (H2) in the ISM is the prototypical example of a gas-grain reaction. In these reactions, an atom of hydrogen will strike a surface, stick to it, and diffuse across it. When it encounters another adsorbed hydrogen atom, the two can react to form molecular hydrogen and then be ejected from the surface by the energy released in the reaction. We perform in-depth classical molecular dynamics simulations of hydrogen atoms interacting with an amorphous water-ice surface. This study focuses on the first step in the formation process; the sticking of the hydrogen atom to the substrate. We find that careful attention must be paid in dealing with the ambiguities in defining a sticking event. The technical definition of a sticking event will affect the computed sticking probabilities and coefficients. Here, using our new definition of a sticking event, we report sticking probabilities and sticking coefficients for nine different incident kinetic energies of hydrogen atoms [5-400 K] across seven different temperatures of dust grains [10-70 K]. We find that probabilities and coefficients vary both as a function of grain temperature and incident kinetic energy over the range of 0.99-0.22.
Spin Diffusion Coefficient of A1-PHASE of Superfluid 3He at Low Temperatures
NASA Astrophysics Data System (ADS)
Afzali, R.; Pashaee, F.
The spin diffusion coefficient tensor of the A1-phase of superfluid 3He at low temperatures and melting pressure is calculated using the Boltzmann equation approach and Pfitzner procedure. Then considering Bogoliubov-normal interaction, we show that the total spin diffusion is proportional to 1/T2, the spin diffusion coefficient of superfluid component D\\uparrowxzxz is proportional to T-2, and the spin diffusion coefficient of super-fluid component D\\uparrowxxxx (=D\\uarrowxyxy) is independent of temperature. Furthermore, it is seen that superfluid components play an important role in spin diffusion of the A1-phase.
MAGA, a new database of gas natural emissions: a collaborative web environment for collecting data.
NASA Astrophysics Data System (ADS)
Cardellini, Carlo; Chiodini, Giovanni; Frigeri, Alessandro; Bagnato, Emanuela; Frondini, Francesco; Aiuppa, Alessandro
2014-05-01
The data on volcanic and non-volcanic gas emissions available online are, as today, are incomplete and most importantly, fragmentary. Hence, there is need for common frameworks to aggregate available data, in order to characterize and quantify the phenomena at various scales. A new and detailed web database (MAGA: MApping GAs emissions) has been developed, and recently improved, to collect data on carbon degassing form volcanic and non-volcanic environments. MAGA database allows researchers to insert data interactively and dynamically into a spatially referred relational database management system, as well as to extract data. MAGA kicked-off with the database set up and with the ingestion in to the database of the data from: i) a literature survey on publications on volcanic gas fluxes including data on active craters degassing, diffuse soil degassing and fumaroles both from dormant closed-conduit volcanoes (e.g., Vulcano, Phlegrean Fields, Santorini, Nysiros, Teide, etc.) and open-vent volcanoes (e.g., Etna, Stromboli, etc.) in the Mediterranean area and Azores, and ii) the revision and update of Googas database on non-volcanic emission of the Italian territory (Chiodini et al., 2008), in the framework of the Deep Earth Carbon Degassing (DECADE) research initiative of the Deep Carbon Observatory (DCO). For each geo-located gas emission site, the database holds images and description of the site and of the emission type (e.g., diffuse emission, plume, fumarole, etc.), gas chemical-isotopic composition (when available), gas temperature and gases fluxes magnitude. Gas sampling, analysis and flux measurement methods are also reported together with references and contacts to researchers expert of each site. In this phase data can be accessed on the network from a web interface, and data-driven web service, where software clients can request data directly from the database, are planned to be implemented shortly. This way Geographical Information Systems (GIS) and Virtual Globes (e.g., Google Earth) could easily access the database, and data could be exchanged with other database. At the moment the database includes: i) more than 1000 flux data about volcanic plume degassing from Etna and Stromboli volcanoes, ii) data from ~ 30 sites of diffuse soil degassing from Napoletan volcanoes, Azores, Canary, Etna, Stromboli, and Vulcano Island, several data on fumarolic emissions (~ 7 sites) with CO2 fluxes; iii) data from ~ 270 non volcanic gas emission site in Italy. We believe MAGA data-base is an important starting point to develop a large scale, expandable data-base aimed to excite, inspire, and encourage participation among researchers. In addition, the possibility to archive location and qualitative information for gas emission/sites not yet investigated, could stimulate the scientific community for future researches and will provide an indication on the current uncertainty on deep carbon fluxes global estimates
Static and Dynamic Effects of Lateral Carrier Diffusion in Semiconductor Lasers
NASA Technical Reports Server (NTRS)
Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Electron and hole diffusions in the plane of semiconductor quantum wells play an important part in the static and dynamic operations of semiconductor lasers. It is well known that the value of diffusion coefficients affects the threshold pumping current of a semiconductor laser. At the same time, the strength of carrier diffusion process is expected to affect the modulation bandwidth of an AC-modulated laser. It is important not only to investigate the combined DC and AC effects due to carrier diffusion, but also to separate the AC effects from that of the combined effects in order to provide design insights for high speed modulation. In this presentation, we apply a hydrodynamic model developed by the present authors recently from the semiconductor Bloch equations. The model allows microscopic calculation of the lateral carrier diffusion coefficient, which is a nonlinear function of the carrier density and plasma temperature. We first studied combined AC and DC effects of lateral carrier diffusion by studying the bandwidth dependence on diffusion coefficient at a given DC current under small signal modulation. The results show an increase of modulation bandwidth with decrease in the diffusion coefficient. We simultaneously studied the effects of nonlinearity in the diffusion coefficient. To clearly identify how much of the bandwidth increase is a result of decrease in the threshold pumping current for smaller diffusion coefficient, thus an effective increase of DC pumping, we study the bandwidth dependence on diffusion coefficient at a given relative pumping. A detailed comparison of the two cases will be presented.
In situ Measurements of Dissolved Gas Dynamics and Root Uptake in the Wetland Rhizosphere
NASA Astrophysics Data System (ADS)
Reid, Matthew; Jaffe, Peter
2013-04-01
Anaerobic wetland soils are important natural sources of various atmospheric trace gases that are detrimental to the environment, including methane (CH4), nitrous oxide, elemental mercury (Hg°), and halomethanes. The balance between production and uptake in soils depends, in part, on mass transfer within the soil and between soil and the atmosphere. Observed volatilization rates of trace gases are highly variable and poorly described by models, however, so there is a clear need for new process measurements to clarify the rates of these transport mechanisms. Here we present results from mesocosm push-pull tests intended to quantify transport processes of dissolved gases in wetland sediments, with a focus on uptake by wetland plant roots and partitioning into trapped gas bubbles. This technique uses a suite of nonreactive volatile tracers to pinpoint transport mechanisms without the confounding influence of biochemical transformations. Mass balance approaches are used to determine transport kinetics, and a new analytical method to interpret dissolved gas push-pull test data is presented and compared to traditional analytical techniques. Results confirm the key role of vegetation in dramatically enhancing removal rates of dissolved gases from wetland soils. Root uptake is shown to be diffusion-limited and relative root uptake rates are modeled as an empirical function of molecular size. We use the porewater removal rates measured here to estimate potential volatilization fluxes of CH4, methyl chloride, and Hg° from wetlands vegetated with Typha latifolia and Scirpus acutus. The implementation of this new push-pull test methodology to field settings will be discussed.
Loskutov, V V; Sevriugin, V A
2013-05-01
This article presents a new approximation describing fluid diffusion in porous media. Time dependence of the self-diffusion coefficient D(t) in the permeable porous medium is studied based on the assumption that diffusant molecules move randomly. An analytical expression for time dependence of the self-diffusion coefficient was obtained in the following form: D(t)=(D0-D∞)exp(-D0t/λ)+D∞, where D0 is the self-diffusion coefficient of bulk fluid, D∞ is the asymptotic value of the self-diffusion coefficient in the limit of long time values (t→∞), λ is the characteristic parameter of this porous medium with dimensionality of length. Applicability of the solution obtained to the analysis of experimental data is shown. The possibility of passing to short-time and long-time regimes is discussed. Copyright © 2013 Elsevier Inc. All rights reserved.
Single-image diffusion coefficient measurements of proteins in free solution.
Zareh, Shannon Kian; DeSantis, Michael C; Kessler, Jonathan M; Li, Je-Luen; Wang, Y M
2012-04-04
Diffusion coefficient measurements are important for many biological and material investigations, such as studies of particle dynamics and kinetics, and size determinations. Among current measurement methods, single particle tracking (SPT) offers the unique ability to simultaneously obtain location and diffusion information about a molecule while using only femtomoles of sample. However, the temporal resolution of SPT is limited to seconds for single-color-labeled samples. By directly imaging three-dimensional diffusing fluorescent proteins and studying the widths of their intensity profiles, we were able to determine the proteins' diffusion coefficients using single protein images of submillisecond exposure times. This simple method improves the temporal resolution of diffusion coefficient measurements to submilliseconds, and can be readily applied to a range of particle sizes in SPT investigations and applications in which diffusion coefficient measurements are needed, such as reaction kinetics and particle size determinations. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Du, Ping; Wang, Shi-Jie; Zhao, Huan-Huan; Wu, Bin; Han, Chun-Mei; Fang, Ji-Dun; Li, Hui-Ying; Hosomi, Masaaki; Li, Fa-Sheng
2013-12-01
The influencing factors of benzene diffusion fluxes from sand and black soil to atmosphere were investigated using a flux chamber (30.0 cm x 17.5 cm x 29.0 cm). In this study, the benzene diffusion fluxes were estimated by measuring the benzene concentrations both in the headspace of the chamber and in the soils of different layers. The results indicated that the soil water content played an important role in benzene diffusion fluxes. The diffusion flux showed positive correlation with the initial benzene concentration and the benzene dissolution concentration for both soil types. The changes of air flow rate from 300 to 900 mL x min(-1) and temperature from 20 degrees C to 40 degrees C resulted in increases of the benzene diffusion flux. Our study of benzene diffusion fluxes from contaminated soils will be beneficial for the predicting model, and emergency management and precautions.