Sample records for soils nutrient inputs

  1. Soil properties and not inputs control carbon, nitrogen, phosphorus ratios in cropped soils in the long-term

    NASA Astrophysics Data System (ADS)

    Frossard, E.; Buchmann, N.; Bünemann, E. K.; Kiba, D. I.; Lompo, F.; Oberson, A.; Tamburini, F.; Traoré, O. Y. A.

    2015-09-01

    Stoichiometric approaches have been applied to understand the relationship between soil organic matter dynamics and biological nutrient transformations. However, very few studies explicitly considered the effects of agricultural management practices on soil C : N : P ratio. The aim of this study was to assess how different input types and rates would affect the C : N : P molar ratios of bulk soil, organic matter and microbial biomass in cropped soils in the long-term. Thus, we analysed the C, N and P inputs and budgets as well as soil properties in three long-term experiments established on different soil types: the Saria soil fertility trial (Burkina Faso), the Wagga Wagga rotation/stubble management/soil preparation trial (Australia), and the DOK cropping system trial (Switzerland). In each of these trials, there was a large range of C, N and P inputs which had a strong impact on element concentrations in soils. However, although C : N : P ratios of the inputs were highly variable, they had only weak effects on soil C : N : P ratios. At Saria, a positive correlation was found between the N : P ratio of inputs and microbial biomass, while no relation was observed between the nutrient ratios of inputs and soil organic matter. At Wagga Wagga, the C : P ratio of inputs was significantly correlated to total soil C : P, N : P and C : N ratios, but had no impact on the elemental composition of microbial biomass. In the DOK trial, a positive correlation was found between the C budget and the C to organic P ratio in soils, while the nutrient ratios of inputs were not related to those in the microbial biomass. We argue that these responses are due to differences in soil properties among sites. At Saria, the soil is dominated by quartz and some kaolinite, has a coarse texture, a fragile structure and a low nutrient content. Thus, microorganisms feed on inputs (plant residues, manure). In contrast, the soil at Wagga Wagga contains illite and haematite, is richer in clay and nutrients and has a stable structure. Thus, organic matter is protected from mineralization and can therefore accumulate, allowing microorganisms to feed on soil nutrients and to keep a constant C : N : P ratio. The DOK soil represents an intermediate situation, with high nutrient concentrations, but a rather fragile soil structure, where organic matter does not accumulate. We conclude that the study of C, N, and P ratios is important to understand the functioning of cropped soils in the long-term, but that it must be coupled with a precise assessment of element inputs and budgets in the system and a good understanding of the ability of soils to stabilize C, N and P compounds.

  2. Soil C dynamics under intensive oil palm plantations in poor tropical soils

    NASA Astrophysics Data System (ADS)

    Guillaume, Thomas; Ruegg, Johanna; Quezada, Juan Carlos; Buttler, Alexandre

    2017-04-01

    Oil palm cultivation mainly takes place on heavily-weathered tropical soils where nutrients are limiting factors for plant growth and microbial activity. Intensive fertilization and changes of C input by oil palms strongly affects soil C and nutrient dynamics, challenging long-term soil fertility. Oil palm plantations management offers unique opportunities to study soil C and nutrients interactions in field conditions because 1) they can be considered as long-term litter manipulation experiments since all aboveground C inputs are concentrated in frond pile areas and 2) mineral fertilizers are only applied in specific areas, i.e. weeded circle around the tree and interrows, but not in harvest paths. Here, we determined impacts of mineral fertilizer and organic matter input on soil organic carbon dynamics and microbial activity in mature oil palm plantation established on savanna grasslands. Rates of savanna-derived soil organic carbon (SOC) decomposition and oil palm-derived SOC net stabilization were determined using changes in isotopic signature of in C input following a shift from C4 (savanna) to C3 (oil palm) vegetation. Application of mineral fertilizer alone did not affect savanna-derived SOC decomposition or oil palm-derived SOC stabilization rates, but fertilization associated with higher C input lead to an increase of oil palm-derived SOC stabilization rates, with about 50% of topsoil SOC derived from oil palm after 9 years. High carbon and nutrients inputs did not increase microbial biomass but microorganisms were more active per unit of biomass and SOC. In conclusion, soil organic matter decomposition was limited by C rather than nutrients in the studied heavily-weathered soils. Fresh C and nutrient inputs did not lead to priming of old savanna-derived SOC but increased turnover and stabilization of new oil palm-derived SOC.

  3. Long- and short-term changes in nutrient availability following commercial sawlog harvest via cable logging

    Treesearch

    Jennifer Knoepp; Wayne Swank; Bruce L. Haines

    2014-01-01

    Soil nutrient availability often limits forest productivity and soils have considerable variation in their ability to supply nutrients. Most southern Appalachian forests are minimally managed with no fertilizer inputs or routine thinning regime. Nutrient availability is regulated by atmospheric inputs and the internal cycling of nutrients through such processes as...

  4. Soil properties and not inputs control carbon : nitrogen : phosphorus ratios in cropped soils in the long term

    NASA Astrophysics Data System (ADS)

    Frossard, Emmanuel; Buchmann, Nina; Bünemann, Else K.; Kiba, Delwende I.; Lompo, François; Oberson, Astrid; Tamburini, Federica; Traoré, Ouakoltio Y. A.

    2016-02-01

    Stoichiometric approaches have been applied to understand the relationship between soil organic matter dynamics and biological nutrient transformations. However, very few studies have explicitly considered the effects of agricultural management practices on the soil C : N : P ratio. The aim of this study was to assess how different input types and rates would affect the C : N : P molar ratios of bulk soil, organic matter and microbial biomass in cropped soils in the long term. Thus, we analysed the C, N, and P inputs and budgets as well as soil properties in three long-term experiments established on different soil types: the Saria soil fertility trial (Burkina Faso), the Wagga Wagga rotation/stubble management/soil preparation trial (Australia), and the DOK (bio-Dynamic, bio-Organic, and "Konventionell") cropping system trial (Switzerland). In each of these trials, there was a large range of C, N, and P inputs which had a strong impact on element concentrations in soils. However, although C : N : P ratios of the inputs were highly variable, they had only weak effects on soil C : N : P ratios. At Saria, a positive correlation was found between the N : P ratio of inputs and microbial biomass, while no relation was observed between the nutrient ratios of inputs and soil organic matter. At Wagga Wagga, the C : P ratio of inputs was significantly correlated to total soil C : P, N : P, and C : N ratios, but had no impact on the elemental composition of microbial biomass. In the DOK trial, a positive correlation was found between the C budget and the C to organic P ratio in soils, while the nutrient ratios of inputs were not related to those in the microbial biomass. We argue that these responses are due to differences in soil properties among sites. At Saria, the soil is dominated by quartz and some kaolinite, has a coarse texture, a fragile structure, and a low nutrient content. Thus, microorganisms feed on inputs (plant residues, manure). In contrast, the soil at Wagga Wagga contains illite and haematite, is richer in clay and nutrients, and has a stable structure. Thus, organic matter is protected from mineralization and can therefore accumulate, allowing microorganisms to feed on soil nutrients and to keep a constant C : N : P ratio. The DOK soil represents an intermediate situation, with high nutrient concentrations, but a rather fragile soil structure, where organic matter does not accumulate. We conclude that the study of C, N, and P ratios is important to understand the functioning of cropped soils in the long term, but that it must be coupled with a precise assessment of element inputs and budgets in the system and a good understanding of the ability of soils to stabilize C, N, and P compounds.

  5. Soil fertility in deserts: a review on the influence of biological soil crusts and the effect of soil surface disturbance on nutrient inputs and losses

    USGS Publications Warehouse

    Reynolds, R.; Phillips, S.; Duniway, M.; Belnap, J.

    2003-01-01

    Sources of desert soil fertility include parent material weathering, aeolian deposition, and on-site C and N biotic fixation. While parent materials provide many soil nutrients, aeolian deposition can provide up to 75% of plant-essential nutrients including N, P, K, Mg, Na, Mn, Cu, and Fe. Soil surface biota are often sticky, and help retain wind-deposited nutrients, as well as providing much of the N inputs. Carbon inputs are from both plants and soil surface biota. Most desert soils are protected by cyanobacterial-lichen-moss soil crusts, chemical crusts and/or desert pavement. Experimental disturbances applied in US deserts show disruption of soil surfaces result in decreased N and C inputs from soil biota by up to 100%. The ability to glue aeolian deposits in place is compromised, and underlying soils are exposed to erosion. The ability to withstand wind increases with biological and physical soil crust development. While most undisturbed sites show little sediment production, disturbance by vehicles or livestock produce up to 36 times more sediment production, with soil movement initiated at wind velocities well below commonly-occurring wind speeds. Soil fines and flora are often concentrated in the top 3 mm of the soil surface. Winds across disturbed areas can quickly remove this material from the soil surface, thereby potentially removing much of current and future soil fertility. Thus, disturbances of desert soil surfaces can both reduce fertility inputs and accelerate fertility losses.

  6. Including spatial data in nutrient balance modelling on dairy farms

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Maricke; van Middelaar, Corina; Stoof, Cathelijne; Oenema, Jouke; Stoorvogel, Jetse; de Boer, Imke

    2017-04-01

    The Annual Nutrient Cycle Assessment (ANCA) calculates the nitrogen (N) and phosphorus (P) balance at a dairy farm, while taking into account the subsequent nutrient cycles of the herd, manure, soil and crop components. Since January 2016, Dutch dairy farmers are required to use ANCA in order to increase understanding of nutrient flows and to minimize nutrient losses to the environment. A nutrient balance calculates the difference between nutrient inputs and outputs. Nutrients enter the farm via purchased feed, fertilizers, deposition and fixation by legumes (nitrogen), and leave the farm via milk, livestock, manure, and roughages. A positive balance indicates to which extent N and/or P are lost to the environment via gaseous emissions (N), leaching, run-off and accumulation in soil. A negative balance indicates that N and/or P are depleted from soil. ANCA was designed to calculate average nutrient flows on farm level (for the herd, manure, soil and crop components). ANCA was not designed to perform calculations of nutrient flows at the field level, as it uses averaged nutrient inputs and outputs across all fields, and it does not include field specific soil characteristics. Land management decisions, however, such as the level of N and P application, are typically taken at the field level given the specific crop and soil characteristics. Therefore the information that ANCA provides is likely not sufficient to support farmers' decisions on land management to minimize nutrient losses to the environment. This is particularly a problem when land management and soils vary between fields. For an accurate estimate of nutrient flows in a given farming system that can be used to optimize land management, the spatial scale of nutrient inputs and outputs (and thus the effect of land management and soil variation) could be essential. Our aim was to determine the effect of the spatial scale of nutrient inputs and outputs on modelled nutrient flows and nutrient use efficiencies at Dutch dairy farms. We selected two dairy farms located on cover sands in the Netherlands. One farm was located on relatively homogeneous soil type, and one on many different soil types within the sandy soils. A full year of data of N and P inputs and outputs on farm and field level were provided by the farmers, including field level yields, yield composition, manure composition, degree of grazing and degree of mowing. Soil heterogeneity was defined as the number of soil units within the farm corrected for surface area, and quantified from the Dutch 1:50.000 soil map. N and P balances at farm and field level were determined, as well as differences in nutrient use efficiency, leaching, and N emission. We will present the effect of the spatial scale on nutrient balance analysis and discuss to which degree any differences are caused by within-farm land management and soil variation. This study highlights to which extent within-farm land management and soil variation should be taken into account when modelling nutrient flows and nutrient use efficiencies at farm level, to contribute to field-based decision making for improved land management.

  7. Barrier island forest ecosystem: role of meteorologic nutrient inputs.

    PubMed

    Art, H W; Bormann, F H; Voigt, G K; Woodwell, G M

    1974-04-05

    The Sunken Forest, located on Fire Island, a barrier island in the Atlantic Ocean off Long Island, New York, is an ecosystem in which most of the basic cation input is in the form of salt spray. This meteorologic input is sufficient to compensate for the lack of certain nutrients in the highly weathered sandy soils. In other ecosystems these nutrients are generally supplied by weathering of soil particles. The compensatory effect of meteorologic input allows for primary production rates in the Sunken Forest similar to those of inland temperate forests.

  8. Phosphate addition enhanced soil inorganic nutrients to a large extent in three tropical forests.

    PubMed

    Zhu, Feifei; Lu, Xiankai; Liu, Lei; Mo, Jiangming

    2015-01-21

    Elevated nitrogen (N) deposition may constrain soil phosphorus (P) and base cation availability in tropical forests, for which limited evidence have yet been available. In this study, we reported responses of soil inorganic nutrients to full factorial N and P treatments in three tropical forests different in initial soil N status (N-saturated old-growth forest and two less-N-rich younger forests). Responses of microbial biomass, annual litterfall production and nutrient input were also monitored. Results showed that N treatments decreased soil inorganic nutrients (except N) in all three forests, but the underlying mechanisms varied depending on forests: through inhibition on litter decomposition in the old-growth forest and through Al(3+) replacement of Ca(2+) in the two younger forests. In contrast, besides great elevation in soil available P, P treatments induced 60%, 50%, 26% increases in sum of exchangeable (K(+)+Ca(2+)+Mg(2+)) in the old-growth and the two younger forests, respectively. These positive effects of P were closely related to P-stimulated microbial biomass and litter nutrient input, implying possible stimulation of nutrient return. Our results suggest that N deposition may result in decreases in soil inorganic nutrients (except N) and that P addition can enhance soil inorganic nutrients to support ecosystem processes in these tropical forests.

  9. Phosphate addition enhanced soil inorganic nutrients to a large extent in three tropical forests

    PubMed Central

    Zhu, Feifei; Lu, Xiankai; Liu, Lei; Mo, Jiangming

    2015-01-01

    Elevated nitrogen (N) deposition may constrain soil phosphorus (P) and base cation availability in tropical forests, for which limited evidence have yet been available. In this study, we reported responses of soil inorganic nutrients to full factorial N and P treatments in three tropical forests different in initial soil N status (N-saturated old-growth forest and two less-N-rich younger forests). Responses of microbial biomass, annual litterfall production and nutrient input were also monitored. Results showed that N treatments decreased soil inorganic nutrients (except N) in all three forests, but the underlying mechanisms varied depending on forests: through inhibition on litter decomposition in the old-growth forest and through Al3+ replacement of Ca2+ in the two younger forests. In contrast, besides great elevation in soil available P, P treatments induced 60%, 50%, 26% increases in sum of exchangeable (K++Ca2++Mg2+) in the old-growth and the two younger forests, respectively. These positive effects of P were closely related to P-stimulated microbial biomass and litter nutrient input, implying possible stimulation of nutrient return. Our results suggest that N deposition may result in decreases in soil inorganic nutrients (except N) and that P addition can enhance soil inorganic nutrients to support ecosystem processes in these tropical forests. PMID:25605567

  10. Element interactions limit soil carbon storage

    PubMed Central

    van Groenigen, Kees-Jan; Six, Johan; Hungate, Bruce A.; de Graaff, Marie-Anne; van Breemen, Nico; van Kessel, Chris

    2006-01-01

    Rising levels of atmospheric CO2 are thought to increase C sinks in terrestrial ecosystems. The potential of these sinks to mitigate CO2 emissions, however, may be constrained by nutrients. By using metaanalysis, we found that elevated CO2 only causes accumulation of soil C when N is added at rates well above typical atmospheric N inputs. Similarly, elevated CO2 only enhances N2 fixation, the major natural process providing soil N input, when other nutrients (e.g., phosphorus, molybdenum, and potassium) are added. Hence, soil C sequestration under elevated CO2 is constrained both directly by N availability and indirectly by nutrients needed to support N2 fixation. PMID:16614072

  11. Organic Fertilization and Sufficient Nutrient Status in Prehistoric Agriculture? – Indications from Multi-Proxy Analyses of Archaeological Topsoil Relicts

    PubMed Central

    Lauer, Franziska; Prost, Katharina; Gerlach, Renate; Pätzold, Stefan; Wolf, Mareike; Urmersbach, Sarah; Lehndorff, Eva; Eckmeier, Eileen; Amelung, Wulf

    2014-01-01

    Neolithic and Bronze Age topsoil relicts revealed enhanced extractable phosphorus (P) and plant available inorganic P fractions, thus raising the question whether there was targeted soil amelioration in prehistoric times. This study aimed (i) at assessing the overall nutrient status and the soil organic matter content of these arable topsoil relicts, and (ii) at tracing ancient soil fertilizing practices by respective stable isotope and biomarker analyses. Prehistoric arable topsoils were preserved in archaeological pit fillings, whereas adjacent subsoils served as controls. One Early Weichselian humic zone represented the soil status before the introduction of agriculture. Recent topsoils served as an additional reference. The applied multi-proxy approach comprised total P and micronutrient contents, stable N isotope ratios, amino acid, steroid, and black carbon analyses as well as soil color measurements. Total contents of P and selected micronutrients (I, Cu, Mn, Mo, Se, Zn) of the arable soil relicts were above the limits for which nutrient deficiencies could be assumed. All pit fillings exhibited elevated δ15N values close to those of recent topsoils (δ15N>6 to 7‰), giving first hints for prehistoric organic N-input. Ancient legume cultivation as a potential source for N input could not be verified by means of amino acid analysis. In contrast, bile acids as markers for faecal input exhibited larger concentrations in the pit fillings compared with the reference and control soils indicating faeces (i.e. manure) input to Neolithic arable topsoils. Also black carbon contents were elevated, amounting up to 38% of soil organic carbon, therewith explaining the dark soil color in the pit fillings and pointing to inputs of burned biomass. The combination of different geochemical analyses revealed a sufficient nutrient status of prehistoric arable soils, as well as signs of amelioration (inputs of organic material like charcoal and faeces-containing manure). PMID:25180911

  12. Atmospheric CO2 enrichment and reactive nitrogen inputs interactively stimulate soil cation losses and acidification.

    PubMed

    Zhang, Li; Qiu, Yunpeng; Cheng, Lei; Wang, Yi; Liu, Lingli; Tu, Cong; Bowman, Dan C; Burkey, Kent O; Bian, Xinmin; Zhang, Weijian; Hu, Shuijin

    2018-05-17

    Reactive N inputs (Nr) may alleviate N-limitation of plant growth and are assumed to help sustain plant responses to the rising atmospheric CO2 (eCO2). However, Nr and eCO2 may elicit a cascade reaction that alters soil chemistry and nutrient availability, shifting the limiting factors of plant growth, particularly in acidic tropical and subtropical croplands with low organic matter and low nutrient cations. Yet, few have so far examined the interactive effects of Nr and eCO2 on the dynamics of soil cation nutrients and soil acidity. We investigated the cation dynamics in the plant-soil system with exposure to eCO2 and different N sources in a subtropical, acidic agricultural soil. eCO2 and Nr, alone and interactively, increased Ca2+ and Mg2+ in soil solutions or leachates in aerobic agroecosystems. eCO2 significantly reduced soil pH, and NH4+-N inputs amplified this effect, suggesting that eCO2-induced plant preference of NH4+-N and plant growth may facilitate soil acidification. This is, to our knowledge, the first direct demonstration of eCO2 enhancement of soil acidity, although other studies have previously shown that eCO2 can increase cation release into soil solutions. Together, these findings provide new insights into the dynamics of cation nutrients and soil acidity under future climatic scenarios, highlighting the urgency for more studies on plant-soil responses to climate change in acidic tropical and subtropical ecosystems.

  13. Integrated Systems Mitigate Land Degradation and Improve Agricultural System Sustainability

    NASA Astrophysics Data System (ADS)

    Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Brevik, Eric

    2017-04-01

    Rain-fed agricultural production supported by exogenous inputs is not sustainable because a continuous influx of expensive inputs (fertilizer, chemicals, fossil fuel, labor, tillage, and other) is required. Alternatives to traditional management allow natural occurring dynamic soil processes to provide the necessary microbial activity that supports nutrient cycling in balance with nature. Research designed to investigate the potential for integrated systems to replace expensive inputs has shown that healthy soils rich in soil organic matter (SOM) are the foundation upon which microbial nutrient cycling can reduce and eventually replace expensive fertilizer. No-till seed placement technology effectively replaces multiple-pass cultivation conserving stored soil water in semi-arid farming systems. In multi-crop rotations, cool- and warm-season crops are grown in sequence to meet goals of the integrated farming and ranching system, and each crop in the rotation complements the subsequent crop by supplying a continuous flow of essential SOM for soil nutrient cycling. Grazing animals serve an essential role in the system's sustainability as non-mechanized animal harvesters that reduce fossil fuel consumption and labor, and animal waste contributes soil nutrients to the system. Integrated systems' complementarity has contributed to greater soil nutrient cycling and crop yields, fertilizer reduction or elimination, greater yearling steer grazing net return, reduced cow wintering costs grazing crop residues, increased wildlife sightings, and reduced environmental footprint. Therefore, integrating crop and animal systems can reverse soil quality decline and adopting non-traditional procedures has resulted in a wider array of opportunities for sustainable agriculture and profitability.

  14. [Change in soil enzymes activities after adding biochar or straw by fluorescent microplate method].

    PubMed

    Zhang, Yu-Lan; Chen, Li-Jun; Duan, Zheng-Hu; Wu, Zhi-Jie; Sun, Cai-Xia; Wang, Jun-Yu

    2014-02-01

    The present work was aimed to study soil a-glucosidase and beta-glucosidase activities of and red soils based on fluorescence detection method combined with 96 microplates with TECAN Infinite 200 Multi-Mode Microplate Reader. We added biochar or straw (2.5 g air dry sample/50g air dry soil sample) into and red soils and the test was carried under fixed temperature and humidity condition (25 degrees C, 20% soil moisture content). The results showed that straw addition enhances soil alpha-glucosidase and beta-glucosidase activities, beta-glucosidase activity stimulated by rice straw treatment was higher than that of corn straw treatment, and activity still maintains strong after 40 days, accounting for increasing soil carbon transformation with straw inputting. Straw inputting increased soil nutrients contents and may promote microbial activity, which also lead to the increase oin enzyme Straw inputting increased soil nutrients contents and may promote microbial activity, which also lead to the increase oin enzyme activities. Different effects of straw kinds may be related to material source that needs further research. However, biochar inputting has little effect on soil alpha-glucosidase and beta-glucosidase activity. Biochar contains less available nutrients than straw and have degradation-resistant characteristics. Compared with the conventional spectrophotometric method, fluorescence microplate method is more sensitive to soil enzyme activities in suspension liquid, which can be used in a large number of samples. In brief, fluorescence microplate method is fast, accurate, and simple to determine soil enzymes activities.

  15. Hydrogeomorphology influences soil nitrogen and phosphorus mineralization in floodplain wetlands

    USGS Publications Warehouse

    Noe, Gregory B.; Hupp, Cliff R.; Rybicki, Nancy B.

    2013-01-01

    Conceptual models of river–floodplain systems and biogeochemical theory predict that floodplain soil nitrogen (N) and phosphorus (P) mineralization should increase with hydrologic connectivity to the river and thus increase with distance downstream (longitudinal dimension) and in lower geomorphic units within the floodplain (lateral dimension). We measured rates of in situ soil net ammonification, nitrification, N, and P mineralization using monthly incubations of modified resin cores for a year in the forested floodplain wetlands of Difficult Run, a fifth order urban Piedmont river in Virginia, USA. Mineralization rates were then related to potentially controlling ecosystem attributes associated with hydrologic connectivity, soil characteristics, and vegetative inputs. Ammonification and P mineralization were greatest in the wet backswamps, nitrification was greatest in the dry levees, and net N mineralization was greatest in the intermediately wet toe-slopes. Nitrification also was greater in the headwater sites than downstream sites, whereas ammonification was greater in downstream sites. Annual net N mineralization increased with spatial gradients of greater ammonium loading to the soil surface associated with flooding, soil organic and nutrient content, and herbaceous nutrient inputs. Annual net P mineralization was associated negatively with soil pH and coarser soil texture, and positively with ammonium and phosphate loading to the soil surface associated with flooding. Within an intensively sampled low elevation flowpath at one site, sediment deposition during individual incubations stimulated mineralization of N and P. However, the amount of N and P mineralized in soil was substantially less than the amount deposited with sedimentation. In summary, greater inputs of nutrients and water and storage of soil nutrients along gradients of river–floodplain hydrologic connectivity increased floodplain soil nutrient mineralization rates.

  16. A Loblolly Pine Management Guide: Foresters' Primer in Nutrient Cycling

    Treesearch

    Jacques R. Jorgensen; Carol G. Wells

    1986-01-01

    The nutrient cycle, which includes the input of nutrients to the site, their losses, and their movement from one soil or vegetation component to another, can be modified by site preparation, rotation length, harvest system, fertilization, and fire, and by using soil-improving plants. Included is a report on how alternative procedures affect site nutrients, and provides...

  17. Irrigation and weed control alter soil microbiology and nutrient availability in North Carolina Sandhill peach orchards.

    PubMed

    Zhang, Yi; Wang, Liangju; Yuan, Yongge; Xu, Jing; Tu, Cong; Fisk, Connie; Zhang, Weijian; Chen, Xin; Ritchie, David; Hu, Shuijin

    2018-02-15

    Orchard management practices such as weed control and irrigation are primarily aimed at maximizing fruit yields and economic profits. However, the impact of these practices on soil fertility and soil microbiology is often overlooked. We conducted a two-factor experimental manipulation of weed control by herbicide and trickle irrigation in a nutrient-poor peach (Prunus persica L. cv. Contender) orchard near Jackson Springs, North Carolina. After three and eight years of treatments, an array of soil fertility parameters were examined, including soil pH, soil N, P and cation nutrients, microbial biomass and respiration, N mineralization, and presence of arbuscular mycorrhizal fungi (AMF). Three general trends emerged: 1) irrigation significantly increased soil microbial biomass and activity, 2) infection rate of mycorrhizal fungi within roots were significantly higher under irrigation than non-irrigation treatments, but no significant difference in the AMF community composition was detected among treatments, 3) weed control through herbicides reduced soil organic matter, microbial biomass and activity, and mineral nutrients, but had no significant impacts on root mycorrhizal infection and AMF communities. Weed-control treatments directly decreased availability of soil nutrients in year 8, especially soil extractable inorganic N. Weed control also appears to have altered the soil nutrients via changes in soil microbes and altered net N mineralization via changes in soil microbial biomass and activity. These results indicate that long-term weed control using herbicides reduces soil fertility through reducing organic C inputs, nutrient retention and soil microbes. Together, these findings highlight the need for alternative practices such as winter legume cover cropping that maintain and/or enhance organic inputs to sustain the soil fertility. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Response of the soil microbial community and soil nutrient bioavailability to biomass harvesting and reserve tree retention in northern Minnesota aspen-dominated forests

    Treesearch

    Tera E. Lewandowski; Jodi A. Forrester; David J. Mladenoff; Anthony W. D' Amato; Brian J. Palik

    2016-01-01

    Intensive forest biomass harvesting, or the removal of harvesting slash (woody debris from tree branches and tops) for use as biofuel, has the potential to negatively affect the soil microbial community (SMC) due to loss of carbon and nutrient inputs from the slash, alteration of the soil microclimate, and increased nutrient leaching. These effects could result in...

  19. Long-term fertilization of a boreal Norway spruce forest increases the temperature sensitivity of soil organic carbon mineralization

    PubMed Central

    Coucheney, Elsa; Strömgren, Monika; Lerch, Thomas Z; Herrmann, Anke M

    2013-01-01

    Boreal ecosystems store one-third of global soil organic carbon (SOC) and are particularly sensitive to climate warming and higher nutrient inputs. Thus, a better description of how forest managements such as nutrient fertilization impact soil carbon (C) and its temperature sensitivity is needed to better predict feedbacks between C cycling and climate. The temperature sensitivity of in situ soil C respiration was investigated in a boreal forest, which has received long-term nutrient fertilization (22 years), and compared with the temperature sensitivity of C mineralization measured in the laboratory. We found that the fertilization treatment increased both the response of soil in situ CO2 effluxes to a warming treatment and the temperature sensitivity of C mineralization measured in the laboratory (Q10). These results suggested that soil C may be more sensitive to an increase in temperature in long-term fertilized in comparison with nutrient poor boreal ecosystems. Furthermore, the fertilization treatment modified the SOC content and the microbial community composition, but we found no direct relationship between either SOC or microbial changes and the temperature sensitivity of C mineralization. However, the relation between the soil C:N ratio and the fungal/bacterial ratio was changed in the combined warmed and fertilized treatment compared with the other treatments, which suggest that strong interaction mechanisms may occur between nutrient input and warming in boreal soils. Further research is needed to unravel into more details in how far soil organic matter and microbial community composition changes are responsible for the change in the temperature sensitivity of soil C under increasing mineral N inputs. Such research would help to take into account the effect of fertilization managements on soil C storage in C cycling numerical models. PMID:24455147

  20. Organic amendments and nutrient leaching in soil columns

    USDA-ARS?s Scientific Manuscript database

    The lack of nutrient build up in reclaimed coal mine soils would therefore require additional inputs to maintain plant productivity and establishment of a healthy ecosystem. In a greenhouse experiment, reclaimed coal mine soil were amended with fresh and composted poultry manure at the rates based ...

  1. Biochar boosts tropical but not temperate crop yields

    NASA Astrophysics Data System (ADS)

    Jeffery, Simon; Abalos, Diego; Prodana, Marija; Catarina Bastos, Ana; van Groenigen, Jan Willem; Hungate, Bruce A.; Verheijen, Frank

    2017-05-01

    Applying biochar to soil is thought to have multiple benefits, from helping mitigate climate change [1, 2], to managing waste [3] to conserving soil [4]. Biochar is also widely assumed to boost crop yield [5, 6], but there is controversy regarding the extent and cause of any yield benefit [7]. Here we use a global-scale meta-analysis to show that biochar has, on average, no effect on crop yield in temperate latitudes, yet elicits a 25% average increase in yield in the tropics. In the tropics, biochar increased yield through liming and fertilization, consistent with the low soil pH, low fertility, and low fertilizer inputs typical of arable tropical soils. We also found that, in tropical soils, high-nutrient biochar inputs stimulated yield substantially more than low-nutrient biochar, further supporting the role of nutrient fertilization in the observed yield stimulation. In contrast, arable soils in temperate regions are moderate in pH, higher in fertility, and generally receive higher fertilizer inputs, leaving little room for additional benefits from biochar. Our findings demonstrate that the yield-stimulating effects of biochar are not universal, but may especially benefit agriculture in low-nutrient, acidic soils in the tropics. Biochar management in temperate zones should focus on potential non-yield benefits such as lime and fertilizer cost savings, greenhouse gas emissions control, and other ecosystem services.

  2. Carbon storage in seagrass soils: long-term nutrient history exceeds the effects of near-term nutrient enrichment

    NASA Astrophysics Data System (ADS)

    Armitage, A. R.; Fourqurean, J. W.

    2016-01-01

    The carbon sequestration potential in coastal soils is linked to aboveground and belowground plant productivity and biomass, which in turn, is directly and indirectly influenced by nutrient input. We evaluated the influence of long-term and near-term nutrient input on aboveground and belowground carbon accumulation in seagrass beds, using a nutrient enrichment (nitrogen and phosphorus) experiment embedded within a naturally occurring, long-term gradient of phosphorus availability within Florida Bay (USA). We measured organic carbon stocks in soils and above- and belowground seagrass biomass after 17 months of experimental nutrient addition. At the nutrient-limited sites, phosphorus addition increased the carbon stock in aboveground seagrass biomass by more than 300 %; belowground seagrass carbon stock increased by 50-100 %. Soil carbon content slightly decreased ( ˜ 10 %) in response to phosphorus addition. There was a strong but non-linear relationship between soil carbon and Thalassia testudinum leaf nitrogen : phosphorus (N : P) or belowground seagrass carbon stock. When seagrass leaf N : P exceeded an approximate threshold of 75 : 1, or when belowground seagrass carbon stock was less than 100 g m-2, there was less than 3 % organic carbon in the sediment. Despite the marked difference in soil carbon between phosphorus-limited and phosphorus-replete areas of Florida Bay, all areas of the bay had relatively high soil carbon stocks near or above the global median of 1.8 % organic carbon. The relatively high carbon content in the soils indicates that seagrass beds have extremely high carbon storage potential, even in nutrient-limited areas with low biomass or productivity.

  3. Carbon storage in seagrass soils: long-term nutrient history exceeds the effects of near-term nutrient enrichment

    NASA Astrophysics Data System (ADS)

    Armitage, A. R.; Fourqurean, J. W.

    2015-10-01

    The carbon sequestration potential in coastal soils is linked to aboveground and belowground plant productivity and biomass, which in turn, is directly and indirectly influenced by nutrient input. We evaluated the influence of long-term and near-term nutrient input on aboveground and belowground carbon accumulation in seagrass beds, using a nutrient enrichment (nitrogen and phosphorus) experiment embedded within a naturally occurring, long-term gradient of phosphorus availability within Florida Bay (USA). We measured organic carbon stocks in soils and above- and belowground seagrass biomass after 17 months of experimental nutrient addition. At the nutrient-limited sites, phosphorus addition increased the carbon stock in aboveground seagrass biomass by more than 300 %; belowground seagrass carbon stock increased by 50-100 %. Soil carbon content slightly decreased (~ 10 %) in response to phosphorus addition. There was a strong but non-linear relationship between soil carbon and Thalassia testudinum leaf nitrogen: phosphorus (N : P) or belowground seagrass carbon stock. When seagrass leaf N : P exceeded a threshold of 75 : 1, or when belowground seagrass carbon stock was less than 100 g m-2, there was less than 3 % organic carbon in the sediment. Despite the marked difference in soil carbon between phosphorus-limited and phosphorus-replete areas of Florida Bay, all areas of the bay had relatively high soil carbon stocks near or above the global median of 1.8 % organic carbon. The relatively high carbon content in the soils indicates that seagrass beds have extremely high carbon storage potential, even in nutrient-limited areas with low biomass or productivity.

  4. Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands

    USGS Publications Warehouse

    Wolf, Kristin L.; Noe, Gregory B.; Ahn, Changwoo

    2013-01-01

    Greater connectivity to stream surface water may result in greater inputs of allochthonous nutrients that could stimulate internal nitrogen (N) and phosphorus (P) cycling in natural, restored, and created riparian wetlands. This study investigated the effects of hydrologic connectivity to stream water on soil nutrient fluxes in plots (n = 20) located among four created and two natural freshwater wetlands of varying hydrology in the Piedmont physiographic province of Virginia. Surface water was slightly deeper; hydrologic inputs of sediment, sediment-N, and ammonium were greater; and soil net ammonification, N mineralization, and N turnover were greater in plots with stream water classified as their primary water source compared with plots with precipitation or groundwater as their primary water source. Soil water-filled pore space, inputs of nitrate, and soil net nitrification, P mineralization, and denitrification enzyme activity (DEA) were similar among plots. Soil ammonification, N mineralization, and N turnover rates increased with the loading rate of ammonium to the soil surface. Phosphorus mineralization and ammonification also increased with sedimentation and sediment-N loading rate. Nitrification flux and DEA were positively associated in these wetlands. In conclusion, hydrologic connectivity to stream water increased allochthonous inputs that stimulated soil N and P cycling and that likely led to greater retention of sediment and nutrients in created and natural wetlands. Our findings suggest that wetland creation and restoration projects should be designed to allow connectivity with stream water if the goal is to optimize the function of water quality improvement in a watershed.

  5. Evaluating topsoil depth effects on phosphorus and potassium nutrient dynamics of grain and switchgrass production systems

    USDA-ARS?s Scientific Manuscript database

    Understanding the effects of fertilizer addition and crop removal on long-term change in soil test phosphorus (STP) and soil test potassium (STK) is crucial for maximizing the use of grower inputs on claypan soils. Due to variable nutrient supply from subsoils and variable crop removal across fields...

  6. Nutrient fluxes in litterfall of a secondary successional alluvial rain forest in Southern Brazil.

    PubMed

    Scheer, Maurício Bergamini; Gatti, Gustavo; Wisniewski, Celina

    2011-12-01

    During forest succession, litterfall nutrient fluxes increase significantly. The higher inputs of organic matter and nutrients through litterfall affects positively soil fertility and the species composition, which are essential components in forest restoration and management programs. In the present study, the input of nutrients to the forest soil via litterfall components was estimated for two sites of different development stages, in an early successional alluvial rain forest in Brazil. Litterfall returned to the soil, in kg/ha, ca. 93 N, 79 Ca, 24 K, 15 Mg, 6 P, 1.7 Mn, 0.94 Fe, 0.18 Zn, 0.09 Cu and 11.2 Al, in the site where trees were more abundant and had higher values of basal area. In the other area, where trees where less abundant and values of basal area were comparatively low, litterfall returned < 50% of those amounts to the forest soil, except for Al. The amount of Al that returned to the soil was similar in both areas due to the high contribution of Tibouchina pulchra (82% of Al returned). Comparatively, high proportion of three dominant native tree species (Myrsine coriacea, T. pulchra and Cecropia pachystachya) explained better litter nutrient use efficiency (mainly N and P) in the site with the least advanced successional stage. Although litterfall of these species show lower nutrient concentrations than the other tree species, their nutrient fluxes were high in both sites, indicating a certain independence from soil essential nutrients. Such feature of the native species is very advantageous and should be considered in forest restoration programs.

  7. Soil Microbial Properties and Plant Growth Responses to Carbon and Water Addition in a Temperate Steppe: The Importance of Nutrient Availability

    PubMed Central

    Guo, Chengyuan; Wang, Renzhong; Xiao, Chunwang

    2012-01-01

    Background Global climatic change is generally expected to stimulate net primary production, and consequently increase soil carbon (C) input. The enhanced C input together with potentially increased precipitation may affect soil microbial processes and plant growth. Methodology/Principal Findings To examine the effects of C and water additions on soil microbial properties and plant growth, we conducted an experiment lasting two years in a temperate steppe of northeastern China. We found that soil C and water additions significantly affected microbial properties and stimulated plant growth. Carbon addition significantly increased soil microbial biomass and activity but had a limited effect on microbial community structure. Water addition significantly increased soil microbial activity in the first year but the response to water decreased in the second year. The water-induced changes of microbial activity could be ascribed to decreased soil nitrogen (N) availability and to the shift in soil microbial community structure. However, no water effect on soil microbial activity was visible under C addition during the two years, likely because C addition alleviated nutrient limitation of soil microbes. In addition, C and water additions interacted to affect plant functional group composition. Water addition significantly increased the ratio of grass to forb biomass in C addition plots but showed only minor effects under ambient C levels. Our results suggest that soil microbial activity and plant growth are limited by nutrient (C and N) and water availability, and highlight the importance of nutrient availability in modulating the responses of soil microbes and plants to potentially increased precipitation in the temperate steppe. Conclusions/Significance Increased soil C input and precipitation would show significant effects on soil microbial properties and plant growth in the temperate steppe. These findings will improve our understanding of the responses of soil microbes and plants to the indirect and direct climate change effects. PMID:22496905

  8. Impact of selection on maize root traits and rhizosphere interactions

    NASA Astrophysics Data System (ADS)

    Schmidt, J. E.; Gaudin, A. C. M.

    2017-12-01

    Effects of domestication and breeding on maize have been well-characterized aboveground, but impacts on root traits and rhizosphere processes remain unclear. Breeding in high-inorganic-input environments may have negatively affected the ability of modern maize to acquire nutrients through foraging and microbial interactions in marginal and/or organically managed soils. Twelve maize genotypes representing a selection gradient (teosintes, landraces, open-pollinated parents of modern elite germplasm, and modern hybrids released 1934-2015) were grown in three soils varying in intensity of long-term management (unfertilized, organic, conventional) in the greenhouse. Recruitment of rhizosphere microbial communities, nutrient acquisition, and plant productivity were affected by genotype-by-soil interactions. Maize genotypes exhibit significant variation in their ability to obtain nutrients from soils of different management history, indicating the potential for re-integration of beneficial root and rhizosphere traits to increase adaptation to low-input agroecosystems.

  9. Root biomass, root/shoot ratio, and soil water content under perennial grasses with different nitrogen rates

    USDA-ARS?s Scientific Manuscript database

    Roots help in soil water and nutrient uptake and provide C input for soil C sequestration, but information on root biomass of bioenergy perennial grasses is lacking. Root/shoot ratios are used to estimate crop root biomass and C inputs, but the values for perennial grasses are also scanty. We examin...

  10. Tropical Andean Forests Are Highly Susceptible to Nutrient Inputs—Rapid Effects of Experimental N and P Addition to an Ecuadorian Montane Forest

    PubMed Central

    Homeier, Jürgen; Hertel, Dietrich; Camenzind, Tessa; Cumbicus, Nixon L.; Maraun, Mark; Martinson, Guntars O.; Poma, L. Nohemy; Rillig, Matthias C.; Sandmann, Dorothee; Scheu, Stefan; Veldkamp, Edzo; Wilcke, Wolfgang; Wullaert, Hans; Leuschner, Christoph

    2012-01-01

    Tropical regions are facing increasing atmospheric inputs of nutrients, which will have unknown consequences for the structure and functioning of these systems. Here, we show that Neotropical montane rainforests respond rapidly to moderate additions of N (50 kg ha−1 yr−1) and P (10 kg ha−1 yr−1). Monitoring of nutrient fluxes demonstrated that the majority of added nutrients remained in the system, in either soil or vegetation. N and P additions led to not only an increase in foliar N and P concentrations, but also altered soil microbial biomass, standing fine root biomass, stem growth, and litterfall. The different effects suggest that trees are primarily limited by P, whereas some processes—notably aboveground productivity—are limited by both N and P. Highly variable and partly contrasting responses of different tree species suggest marked changes in species composition and diversity of these forests by nutrient inputs in the long term. The unexpectedly fast response of the ecosystem to moderate nutrient additions suggests high vulnerability of tropical montane forests to the expected increase in nutrient inputs. PMID:23071734

  11. Aeolian dust nutrient contributions increase with substrate age in semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    Coble, A. A.; Hart, S. C.; Ketterer, M. E.; Newman, G. S.

    2013-12-01

    Rock-derived nutrients supplied by mineral weathering become depleted over time, and without an additional nutrient source the ecosystem may eventually regress or reach a terminal steady state. Previous studies have demonstrated that aeolian dust act as parent materials of soils and important nutrients to plants in arid regions, but the relative importance of these exogenous nutrients to the function of dry ecosystems during soil development is uncertain. Here, using strontium isotopes as a tracer and a well-constrained, three million year old substrate age gradient, we show that aeolian-derived nutrients become increasingly important to plant-available soil pools and tree (Pinus edulis) growth during the latter stages of soil development in a semi-arid climate. Furthermore, the depth of nutrient uptake increased on older substrates, suggesting that trees in arid regions acquire nutrients from greater depths as ecosystem development progresses presumably in response to nutrient depletion in the more weathered surface soils. Our results contribute to the unification of biogeochemical theory by demonstrating the similarity in roles of atmospheric nutrient inputs during ecosystem development across contrasting climates.

  12. Managing soils for long-term productivity

    PubMed Central

    Syers, J. K.

    1997-01-01

    Meeting the goal of long-term agricultural productivity requires that soil degradation be halted and reversed. Soil fertility decline is a key factor in soil degradation and is probably the major cause of declining crop yields. There is evidence that the contribution of declining soil fertility to soil degradation has been underestimated.
    Sensitivity to soil degradation is implicit in the assessment of the sustainability of land management practices, with wide recognition of the fact that soils vary in their ability to resist change and recover subsequent to stress. The concept of resilience in relation to sustainability requires further elaboration and evaluation.
    In the context of soil degradation, a decline in soil fertility is primarily interpreted as the depletion of organic matter and plant nutrients. Despite a higher turnover rate of organic matter in the tropics there is no intrinsic difference between the organic matter content of soils from tropical and temperate regions. The level of organic matter in a soil is closely related to the above and below ground inputs. In the absence of adequate organic material inputs and where cultivation is continuous, soil organic matter declines progressively. Maintaining the quantity and quality of soil organic matter should be a guiding principle in developing management practices.
    Soil microbial biomass serves as an important reservoir of nitrogen (N), phosphorus (P) and sulphur (S), and regulates the cycling of organic matter and nutrients. Because of its high turnover rate, microbial biomass reacts quickly to changes in management and is a sensitive indicator for monitoring and predicting changes in soil organic matter. Modelling techniques have been reasonably successful in predicting changes in soil organic matter with different organic material inputs, but there is little information from the tropics.
    Nutrient depletion through harvested crop components and residue removal, and by leaching and soil erosion accentuates the often very low inherent fertility of many soils in the tropics. An integrated approach involving inorganic and organic inputs is required where animal and plant residues are returned, as far as practicable. Chemical fertilizers alone cannot achieve long-term productivity on many soils and organic material inputs are required to maintain soil organic matter levels and crop productivity. A major research effort is required to develop improved strategies for halting and reversing soil degradation if long-term productivity is to be secured.

  13. Unexpected dominance of parent-material strontium in a tropical forest on highly weathered soils

    USGS Publications Warehouse

    Bern, C.R.; Townsend, A.R.; Farmer, G.L.

    2005-01-01

    Controls over nutrient supply are key to understanding the structure and functioning of terrestrial ecosystems. Conceptual models once held that in situ mineral weathering was the primary long-term control over the availability of many plant nutrients, including the base cations calcium (Ca), magnesium (Mg), and potassium (K). Recent evidence has shown that atmospheric sources of these "rock-derived" nutrients can dominate actively cycling ecosystem pools, especially in systems on highly weathered soils. Such studies have relied heavily on the use of strontium isotopes as a proxy for base-cation cycling. Here we show that vegetation and soil-exchangeable pools of strontium in a tropical rainforest on highly weathered soils are still dominated by local rock sources. This pattern exists despite substantial atmospheric inputs of Sr, Ca, K, and Mg, and despite nearly 100% depletion of these elements from the top 1 m of soil. We present a model demonstrating that modest weathering inputs, resulting from tectonically driven erosion, could maintain parent-material dominance of actively cycling Sr. The majority of tropical forests are on highly weathered soils, but our results suggest that these forests may still show considerable variation in their primary sources of essential nutrients. ?? 2005 by the Ecological Society of America.

  14. Long-term soil nutrient dynamics comparison under smallholding land and farmland policy in northeast of China.

    PubMed

    Ouyang, Wei; Wei, Xinfeng; Hao, Fanghua

    2013-04-15

    There are two kinds of land policies, the smallholding land policy (SLP) and the farmland policy (FLP) in China. The farmland nutrient dynamics under the two land policies were analysed with the soil system budget method. The averaged nitrogen (N) input of the SLP and the FLP over sixteen years increased about 23.9% and 33.3%, respectively and the phosphorus (P) input climbed about 39.1% and 42.3%, respectively. The statistical analysis showed that the land policies had significant impacts on N and P input from fertilizer and manure, but did not obviously affect the N input from seeds and biological N fixation. The efficiency percentage of N of the SLP and the FLP climbed about 54.5% and 59.4%, respectively, and the P efficiency improved by 52.7% and 82.6%, respectively. About the nutrient output, the F-test analysis indicated that the land polices had remarkable impacts on N output by crop uptake, ammonia volatilisation, denitrification, leaching and runoff, and P output by uptake, runoff, and leach. The balance showed that the absolute loss of N from land deceased about 43.6% and 46.0%, respectively, in the SLP and the FLP, and P discharge reduced about 34.2% and 75.2%, respectively. The F-test analysis of N and P efficiency and balance of between two polices both indicated that the FLP had significant impact on nutrient dynamic. With the Mitscherlich model, the correlations between nutrient input and crop uptake, usage efficiency and loss were analysed and showed that was a threshold value for the optimal nutrient input with the highest efficiency rate. For the optimal nutrient efficiency, the space for extra P addition was bigger than the N input. The FLP have more advantage than the SLP on the crop yield, nutrient efficiency and environmental discharge. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Mathematical modelling of the influenced of diffusion rate on macro nutrient availability in paddy field

    NASA Astrophysics Data System (ADS)

    Renny; Supriyanto

    2018-04-01

    Nutrition is the chemical compounds that needed by the organism for the growth process. In plants, nutrients are organic or inorganic compounds that are absorbed from the roots of the soil. It consist of macro and micro nutrient. Macro nutrients are nutrition that needed by plants in large quantities, such as, nitrogen, calcium, pottacium, magnesium, and sulfur. The total soil nutrient is the difference between the input nutrient and the output nutrients. Input nutrients are nutrient that derived from the decomposition of organic substances. Meanwhile, the output nutrient consists of the nutrients that absorbed by plant roots (uptake), the evaporated nutrients (volatilized) and leached nutrients. The nutrient transport can be done through diffusion process. The diffusion process is essential in removing the nutrient from one place to the root surface. It will cause the rate of absorption of nutrient by the roots will be greater. Nutrient concept in paddy filed can be represented into a mathematical modelling, by making compartment models. The rate of concentration change in the compartment model forms a system of homogeneous linear differential equations. In this research, we will use Laplaces transformation to solve the compartment model and determined the dynamics of macro nutrition due to diffusion process.

  16. The impact of biotic/abiotic interfaces in mineral nutrient cycling: A study of soils of the Santa Cruz chronosequence, California

    USGS Publications Warehouse

    White, A.F.; Schulz, M.S.; Vivit, D.V.; Bullen, T.D.; Fitzpatrick, J.

    2012-01-01

    Biotic/abiotic interactions between soil mineral nutrients and annual grassland vegetation are characterized for five soils in a marine terrace chronosequence near Santa Cruz, California. A Mediterranean climate, with wet winters and dry summers, controls the annual cycle of plant growth and litter decomposition, resulting in net above-ground productivities of 280-600gm -2yr -1. The biotic/abiotic (A/B) interface separates seasonally reversible nutrient gradients, reflecting biological cycling in the shallower soils, from downward chemical weathering gradients in the deeper soils. The A/B interface is pedologically defined by argillic clay horizons centered at soil depths of about one meter which intensify with soil age. Below these horizons, elevated solute Na/Ca, Mg/Ca and Sr/Ca ratios reflect plagioclase and smectite weathering along pore water flow paths. Above the A/B interface, lower cation ratios denote temporal variability due to seasonal plant nutrient uptake and litter leaching. Potassium and Ca exhibit no seasonal variability beneath the A/B interface, indicating closed nutrient cycling within the root zone, whereas Mg variability below the A/B interface denotes downward leakage resulting from higher inputs of marine aerosols and lower plant nutrient requirements.The fraction of a mineral nutrient annually cycled through the plants, compared to that lost from pore water discharge, is defined their respective fluxes F j,plants=q j,plants/(q j,plants+q j,discharge) with average values for K and Ca (F K,plants=0.99; F Ca,plants=0.93) much higher than for Mg and Na (F Mg,plants 0.64; F Na,plants=0.28). The discrimination against Rb and Sr by plants is described by fractionation factors (K Sr/Ca=0.86; K Rb/K=0.83) which are used in Rayleigh fractionation-mixing calculations to fit seasonal patterns in solute K and Ca cycling. K Rb/K and K24Mg/22Mg values (derived from isotope data in the literature) fall within fractionation envelopes bounded by inputs from rainfall and mineral weathering. K Sr/Ca and K44Ca/40Ca fractionation factors fall outside these envelopes indicating that Ca nutrient cycling is closed to these external inputs. Small net positive K and Ca fluxes (6-14molm -2yr -1), based on annual mass balances, indicate that the soils are accumulating mineral nutrients, probably as a result of long-term environmental disequilibrium. ?? 2011.

  17. Fall cover crops boost soil arbuscular mycorrhizal fungi which can lead to reduced inputs

    USDA-ARS?s Scientific Manuscript database

    Fall cover crops provide multiple benefits to producers. These benefits include pathogen and pest protection, drought protection, weed control, reduced soil erosion, nutrient acquisition and retention, increased soil organic matter, and conservation of soil water by improvement of soil structure th...

  18. Nutrient and growth responses of Leersia oryzoides, rice cutgrass, to varying degrees of soil saturation and water nitrogen concentration

    USDA-ARS?s Scientific Manuscript database

    Leersia oryzoides (rice cutgrass) is an obligate wetland plant common to agricultural ditches. The objective of this greenhouse study was to quantify the allocation of nutrients and biomass to different plant components exposed to various soil moisture and aqueous N input regimes. Plants in the con...

  19. Nitrogen and phosphorus fluxes from watersheds of the northeast U.S. from 1930 to 2000: Role of anthropogenic nutrient inputs, infrastructure, and runoff

    NASA Astrophysics Data System (ADS)

    Hale, Rebecca L.; Grimm, Nancy B.; Vörösmarty, Charles J.; Fekete, Balazs

    2015-03-01

    An ongoing challenge for society is to harness the benefits of nutrients, nitrogen (N) and phosphorus (P), while minimizing their negative effects on ecosystems. While there is a good understanding of the mechanisms of nutrient delivery at small scales, it is unknown how nutrient transport and processing scale up to larger watersheds and whole regions over long time periods. We used a model that incorporates nutrient inputs to watersheds, hydrology, and infrastructure (sewers, wastewater treatment plants, and reservoirs) to reconstruct historic nutrient yields for the northeastern U.S. from 1930 to 2002. Over the study period, yields of nutrients increased significantly from some watersheds and decreased in others. As a result, at the regional scale, the total yield of N and P from the region did not change significantly. Temporal variation in regional N and P yields was correlated with runoff coefficient, but not with nutrient inputs. Spatial patterns of N and P yields were best predicted by nutrient inputs, but the correlation between inputs and yields across watersheds decreased over the study period. The effect of infrastructure on yields was minimal relative to the importance of soils and rivers. However, infrastructure appeared to alter the relationships between inputs and yields. The role of infrastructure changed over time and was important in creating spatial and temporal heterogeneity in nutrient input-yield relationships.

  20. Nutrient resources for crop production in the tropics

    PubMed Central

    Vlek, P. L. G.; Kühne, R. F.; Denich, M.

    1997-01-01

    For the foreseeable future a majority of the population, and almost all the mal- and under-nourished, will continue to be found in the tropics and subtropics. Food security in these parts of the world will have to be met largely from local resources. The productivity of the land is to a large extent determined by the fertlity of the soil, which in turn is mostly determined by its organic matter content and stored nutrients. Soil organic matter is readily lost when organic matter inputs are reduced upon cultivation and more so upon intensification. The concomitant loss of topsoil and possible exposure of subsoil acidity may cause further soil degradation.
    Plant nutrients to replenish what is yearly taken from the soil to meet the demands for food and fibre amount to 230 million tonnes (Mt). Current fertilizer consumption stands at about 130 Mt of N, P2O5,and K2O, supplemented by an estimated 90 Mt of N from biological nitrogen fixation worldwide. Although 80 per cent of the population lives in the developing world, only half the world's fertilizer is consumed there. Yet, as much as 50% of the increase in agricultural productivity in the developing world is due to the adoption of fertilizers. World population growth will cause a doubling in these nutrients requirements for the developing world by 2020, which, in the likely case of inadequate production, will need to be met from soil reserves. Because expansion of the cultivable land area is reaching its limits, the reliance on nutrient inputs and their efficient use is bound to grow.
    With current urban expansion, nutrients in harvested products are increasingly lost from the rural environment as a whole. Estimates of soil nutrient depletion rates for sub-Saharan Africa (SSA) are alarmingly high. The situation may be more favourable in Latin America and Asia where fertilizer inputs are tenfold those of SSA. Closing the nutrient cycle at a community level in rural areas may be tedious; on an inter-regional level it is associated with considerable costs of collection, detoxification and transportation to the farms. Yet, at the rate at which some of the non-renewable resources such as phosphorus and potassium are being exploited, recycling of these nutrients will soon be required.

  1. Using Nd and Sr isotopes to trace dust and volcanic inputs to soils on French Guadeloupe Island

    NASA Astrophysics Data System (ADS)

    Guo, J.; Pereyra, Y.; Ma, L.; Gaillardet, J.; Sak, P. B.; Bouchez, J.

    2017-12-01

    Soil is at the central part of the Critical Zone for its important roles in sustaining ecosystems and agriculture. At French Guadeloupe, a tropical humid volcanic island, previous studies have shown that the mineral nutrient elements such as K, Na, Ca, and Mg are highly depleted in the surface soil. And mineral nutrients introduced by dusts are an important mineral nutrient source for vegetation growth in this area. It is important to understand and quantify the sources of the mineral dust added to surface soils. Nd isotope ratios, due to their distinct signatures between two unique end-members in soils for this area: the young volcanic areas like Guadeloupe and the dust source region from the old continental shields like Sahara Desert, can be a robust tracer to understand this critical process. Nevertheless, Sr isotope ratios can trace the inputs of marine aerosols. Here we present a new Nd isotope study on Guadeloupe soil depth profiles, combined with previous Sr isotope data, to fingerprint the sources of dust and volcanic inputs into soils. Soil samples from three surface profiles (0 - 1000cm deep) at different locations of the Guadeloupe Island were systematically analyzed. The results show distinct depth variations for Nd isotope signature along profiles. For all profiles, deep soils are relatively consisted with bedrock value (ɛNd: 5.05). But in surface soils (0-600cm), unlike Sr isotope ratios that are significantly modified by marine aerosol input, Nd isotope ratios show similar decrease (to ɛNd:-10) and frequent fluctuations toward the surface, suggesting dust is the dominant source of Nd in these soils. This conclusion is further supported by REE and other trace element data. Thus, with a simplified two end-member model, Sahara dust contributes the Nd percentages in soils varying from 10.7% at the deepest profiles to 69.5% on surface, showing a significant amount of Nd on the surface soil came from dust source. The deep soil profiles are also characterized by the presence of Nd isotope spikes with negative values, suggesting dust signatures at depth. Such a feature could be related to the presence of a paleo-soil surface at the spike depth that was buried by later volcanic eruption. Both Nd and Sr isotopes hence show dust and volcanic inputs are important factors for soil developments on French Guadeloupe Island.

  2. Nonlinear responses of coastal salt marshes to nutrient additions and sea level rise

    EPA Science Inventory

    Increasing nutrients and accelerated sea level rise (SLR) can cause marsh loss in some coastal systems. Responses to nutrients and SLR are complex and vary with soil matrix, marsh elevation, sediment inputs, and hydroperiod. We describe field and greenhouse studies examining sing...

  3. Priming effect in topsoil and subsoil induced by earthworm burrows

    NASA Astrophysics Data System (ADS)

    Thu, Duyen Hoang Thi

    2017-04-01

    Earthworms (Lumbricus terrestris L.) not only affect soil physics, but they also boost microbial activities and consequently important hotspots of microbial mediated carbon and C turnover through their burrowing activity. However, it is still unknown to which extend earthworms affect priming effect in top- and subsoil horizons. More labile C inputs in earthworm burrows were hypothesized to trigger higher priming of soil organic matter (SOM) decomposition compared to rhizosphere and bulk soil. Moreover, this effect was expected to be more pronounced in subsoil due to its greater C and nutrient limitation. To test these hypotheses, biopores and bulk soil were sampled from topsoil (0-30 cm) and two subsoil depths (45-75 and 75-105 cm). Additionally, rhizosphere samples were taken from the topsoil. Total organic C (Corg), total N (TN), total P (TP) and enzyme activities involved in C-, N-, and P-cycling (cellobiohydrolase, β-glucosidase, xylanase, chitinase, leucine aminopeptidase and phosphatase) were measured. Priming effects were calculated as the difference in SOM-derived CO2 from soil with or without 14C-labelled glucose addition. Enzyme activities in biopores were positively correlated with Corg, TN and TP, but in bulk soil this correlation was negative. The more frequent fresh and labile C inputs to biopores caused 4 to 20 time higher absolute priming of SOM turnover due to enzyme activities that were one order of magnitude higher than in bulk soil. In subsoil biopores, reduced labile C inputs and lower N availability stimulated priming twofold greater than in topsoil. In contrast, a positive priming effect in bulk soil was only detected at 75-105 cm depth. We conclude that earthworm burrows provide not only the linkage between top- and subsoil for C and nutrients, but strongly increase microbial activities and accelerate SOM turnover in subsoil, contributing to nutrient mobilization for roots and CO2 emission increase as a greenhouse gas. Additionally, the mechanisms of native SOM decomposition are distinct between topsoil and subsoil, which relies on the fresh C input and nutrient availability. Keywords: Priming effect; Earthworms; Organic matter decomposition; Biopores; Subsoil; Microbial hotspots.

  4. Nitrogen cycling in canopy soils of tropical montane forests responds rapidly to indirect N and P fertilization.

    PubMed

    Matson, Amanda L; Corre, Marife D; Veldkamp, Edzo

    2014-12-01

    Although the canopy can play an important role in forest nutrient cycles, canopy-based processes are often overlooked in studies on nutrient deposition. In areas of nitrogen (N) and phosphorus (P) deposition, canopy soils may retain a significant proportion of atmospheric inputs, and also receive indirect enrichment through root uptake followed by throughfall or recycling of plant litter in the canopy. We measured net and gross rates of N cycling in canopy soils of tropical montane forests along an elevation gradient and assessed indirect effects of elevated nutrient inputs to the forest floor. Net N cycling rates were measured using the buried bag method. Gross N cycling rates were measured using (15) N pool dilution techniques. Measurements took place in the field, in the wet and dry season, using intact cores of canopy soil from three elevations (1000, 2000 and 3000 m). The forest floor had been fertilized biannually with moderate amounts of N and P for 4 years; treatments included control, N, P, and N + P. In control plots, gross rates of NH4 (+) transformations decreased with increasing elevation; gross rates of NO3 (-) transformations did not exhibit a clear elevation trend, but were significantly affected by season. Nutrient-addition effects were different at each elevation, but combined N + P generally increased N cycling rates at all elevations. Results showed that canopy soils could be a significant N source for epiphytes as well as contributing up to 23% of total (canopy + forest floor) mineral N production in our forests. In contrast to theories that canopy soils are decoupled from nutrient cycling in forest floor soil, N cycling in our canopy soils was sensitive to slight changes in forest floor nutrient availability. Long-term atmospheric N and P deposition may lead to increased N cycling, but also increased mineral N losses from the canopy soil system. © 2014 John Wiley & Sons Ltd.

  5. Soil and tree ring chemistry changes in an oak forest.

    Treesearch

    Quentin D. Read

    2009-01-01

    Changes in soil chemistry due to historic large-scale disturbances, e.g. pollution inputs, storm damage, and logging, have previously been shown to cause similar changes in the nutrient concentrations...

  6. Global patterns of dust and bedrock nutrient supply to montane ecosystems

    PubMed Central

    Arvin, Lindsay J.; Riebe, Clifford S.; Aciego, Sarah M.; Blakowski, Molly A.

    2017-01-01

    A global compilation of erosion rates and modeled dust fluxes shows that dust inputs can be a large fraction of total soil inputs, particularly when erosion is slow and soil residence time is therefore long. These observations suggest that dust-derived nutrients can be vital to montane ecosystems, even when nutrient supply from bedrock is substantial. We tested this hypothesis using neodymium isotopes as a tracer of mineral phosphorus contributions to vegetation in the Sierra Nevada, California, where rates of erosion and dust deposition are both intermediate within the global compilation. Neodymium isotopes in pine needles, dust, and bedrock show that dust contributes most of the neodymium in vegetation at the site. Together, the global data sets and isotopic tracers confirm the ecological significance of dust in eroding mountain landscapes. This challenges conventional assumptions about dust-derived nutrients, expanding the plausible range of dust-reliant ecosystems to include many temperate montane regions, despite their relatively high rates of erosion and bedrock nutrient supply. PMID:29226246

  7. Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland

    USGS Publications Warehouse

    Lü, Xiao-Tao; Reed, Sasha; Yu, Qiang; He, Nian-Peng; Wang, Zheng-Wen; Han, Xing-Guo

    2013-01-01

    Human activities have significantly altered nitrogen (N) availability in most terrestrial ecosystems, with consequences for community composition and ecosystem functioning. Although studies of how changes in N availability affect biodiversity and community composition are relatively common, much less remains known about the effects of N inputs on the coupled biogeochemical cycling of N and phosphorus (P), and still fewer data exist regarding how increased N inputs affect the internal cycling of these two elements in plants. Nutrient resorption is an important driver of plant nutrient economies and of the quality of litter plants produce. Accordingly, resorption patterns have marked ecological implications for plant population and community fitness, as well as for ecosystem nutrient cycling. In a semiarid grassland in northern China, we studied the effects of a wide range of N inputs on foliar nutrient resorption of two dominant grasses, Leymus chinensis and Stipa grandis. After 4 years of treatments, N and P availability in soil and N and P concentrations in green and senesced grass leaves increased with increasing rates of N addition. Foliar N and P resorption significantly decreased along the N addition gradient, implying a resorption-mediated, positive plant–soil feedback induced by N inputs. Furthermore, N : P resorption ratios were negatively correlated with the rates of N addition, indicating the sensitivity of plant N and P stoichiometry to N inputs. Taken together, the results demonstrate that N additions accelerate ecosystem uptake and turnover of both N and P in the temperate steppe and that N and P cycles are coupled in dynamic ways. The convergence of N and P resorption in response to N inputs emphasizes the importance of nutrient resorption as a pathway by which plants and ecosystems adjust in the face of increasing N availability.

  8. Organic nitrogen rearranges both structure and activity of the soil-borne microbial seedbank

    PubMed Central

    Leite, Márcio F. A.; Pan, Yao; Bloem, Jaap; Berge, Hein ten; Kuramae, Eiko E.

    2017-01-01

    Use of organic amendments is a valuable strategy for crop production. However, it remains unclear how organic amendments shape both soil microbial community structure and activity, and how these changes impact nutrient mineralization rates. We evaluated the effect of various organic amendments, which range in Carbon/Nitrogen (C/N) ratio and degradability, on the soil microbiome in a mesocosm study at 32, 69 and 132 days. Soil samples were collected to determine community structure (assessed by 16S and 18S rRNA gene sequences), microbial biomass (fungi and bacteria), microbial activity (leucine incorporation and active hyphal length), and carbon and nitrogen mineralization rates. We considered the microbial soil DNA as the microbial seedbank. High C/N ratio favored fungal presence, while low C/N favored dominance of bacterial populations. Our results suggest that organic amendments shape the soil microbial community structure through a feedback mechanism by which microbial activity responds to changing organic inputs and rearranges composition of the microbial seedbank. We hypothesize that the microbial seedbank composition responds to changing organic inputs according to the resistance and resilience of individual species, while changes in microbial activity may result in increases or decreases in availability of various soil nutrients that affect plant nutrient uptake. PMID:28198425

  9. Organic nitrogen rearranges both structure and activity of the soil-borne microbial seedbank.

    PubMed

    Leite, Márcio F A; Pan, Yao; Bloem, Jaap; Berge, Hein Ten; Kuramae, Eiko E

    2017-02-15

    Use of organic amendments is a valuable strategy for crop production. However, it remains unclear how organic amendments shape both soil microbial community structure and activity, and how these changes impact nutrient mineralization rates. We evaluated the effect of various organic amendments, which range in Carbon/Nitrogen (C/N) ratio and degradability, on the soil microbiome in a mesocosm study at 32, 69 and 132 days. Soil samples were collected to determine community structure (assessed by 16S and 18S rRNA gene sequences), microbial biomass (fungi and bacteria), microbial activity (leucine incorporation and active hyphal length), and carbon and nitrogen mineralization rates. We considered the microbial soil DNA as the microbial seedbank. High C/N ratio favored fungal presence, while low C/N favored dominance of bacterial populations. Our results suggest that organic amendments shape the soil microbial community structure through a feedback mechanism by which microbial activity responds to changing organic inputs and rearranges composition of the microbial seedbank. We hypothesize that the microbial seedbank composition responds to changing organic inputs according to the resistance and resilience of individual species, while changes in microbial activity may result in increases or decreases in availability of various soil nutrients that affect plant nutrient uptake.

  10. Surface Soil Changes Following Selective Logging in an Eastern Amazon Forest

    NASA Technical Reports Server (NTRS)

    Olander, Lydia P.; Bustamante, Mercedes M.; Asner, Gregory P.; Telles, Everaldo; Prado, Zayra; Camargo, Plinio B.

    2005-01-01

    In the Brazilian Amazon, selective logging is second only to forest conversion in its extent. Conversion to pasture or agriculture tends to reduce soil nutrients and site productivity over time unless fertilizers are added. Logging removes nutrients in bole wood, enough that repeated logging could deplete essential nutrients over time. After a single logging event, nutrient losses are likely to be too small to observe in the large soil nutrient pools, but disturbances associated with logging also alter soil properties. Selective logging, particularly reduced-impact logging, results in consistent patterns of disturbance that may be associated with particular changes in soil properties. Soil bulk density, pH, carbon (C), nitrogen (N), phosphorus (P), calcium (Ca), magnesium (Mg), potassium (K), iron (Fe), aluminum (Al), delta(sup 3)C, delta(sup 15)N, and P fractionations were measured on the soils of four different types of loggingrelated disturbances: roads, decks, skids, and treefall gaps. Litter biomass and percent bare ground were also determined in these areas. To evaluate the importance of fresh foliage inputs from downed tree crowns in treefall gaps, foliar nutrients for mature forest trees were also determined and compared to that of fresh litterfall. The immediate impacts of logging on soil properties and how these might link to the longer-term estimated nutrient losses and the observed changes in soils were studied.

  11. Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China.

    PubMed

    Shen, Jianbo; Li, Chunjian; Mi, Guohua; Li, Long; Yuan, Lixing; Jiang, Rongfeng; Zhang, Fusuo

    2013-03-01

    Root and rhizosphere research has been conducted for many decades, but the underlying strategy of root/rhizosphere processes and management in intensive cropping systems remain largely to be determined. Improved grain production to meet the food demand of an increasing population has been highly dependent on chemical fertilizer input based on the traditionally assumed notion of 'high input, high output', which results in overuse of fertilizers but ignores the biological potential of roots or rhizosphere for efficient mobilization and acquisition of soil nutrients. Root exploration in soil nutrient resources and root-induced rhizosphere processes plays an important role in controlling nutrient transformation, efficient nutrient acquisition and use, and thus crop productivity. The efficiency of root/rhizosphere in terms of improved nutrient mobilization, acquisition, and use can be fully exploited by: (1) manipulating root growth (i.e. root development and size, root system architecture, and distribution); (2) regulating rhizosphere processes (i.e. rhizosphere acidification, organic anion and acid phosphatase exudation, localized application of nutrients, rhizosphere interactions, and use of efficient crop genotypes); and (3) optimizing root zone management to synchronize root growth and soil nutrient supply with demand of nutrients in cropping systems. Experiments have shown that root/rhizosphere management is an effective approach to increase both nutrient use efficiency and crop productivity for sustainable crop production. The objectives of this paper are to summarize the principles of root/rhizosphere management and provide an overview of some successful case studies on how to exploit the biological potential of root system and rhizosphere processes to improve crop productivity and nutrient use efficiency.

  12. Effects of cropping systems on soil biology

    USDA-ARS?s Scientific Manuscript database

    The need for fertilizer use to enhance soil nutrient pools to achieve good crop yield is essential to modern agriculture. Specific management practices, including cover cropping, that increase the activities of soil microorganisms to fix N and mobilize P and micronutrients may reduce annual inputs ...

  13. Biological soil crusts in deserts: A short review of their role in soil fertility, stabilization, and water relations

    USGS Publications Warehouse

    Belnap, Jayne

    2003-01-01

    Cyanobacteria and cyanolichens dominate most desert soil surfaces as the major component of biological soil crusts (BSC). BSCs contribute to soil fertility in many ways. BSC can increase weathering of parent materials by up to 100 times. Soil surface biota are often sticky, and help retain dust falling on the soil surface; this dust provides many plant-essential nutrients including N, P, K, Mg, Na, Mn, Cu, and Fe. BSCs also provide roughened soil surfaces that slow water runoff and aid in retaining seeds and organic matter. They provide inputs of newly-fixed carbon and nitrogen to soils. They are essential in stabilizing soil surfaces by linking soil particles together with filamentous sheaths, enabling soils to resist both water and wind erosion. These same sheaths are important in keeping soil nutrients from becoming bound into plant-unavailable forms. Experimental disturbances applied in US deserts show soil surface impacts decrease N and C inputs from soil biota by up to 100%. The ability to hold aeolian deposits in place is compromised, and underlying soils are exposed to erosion. While most undisturbed sites show little sediment production, disturbance by vehicles or livestock produces up to 36 times more sediment production, with soil movement initiated at wind velocities well below commonly-occurring wind speeds. Winds across disturbed areas can quickly remove this material from the soil surface, thereby potentially removing much of current and future soil fertility. Thus, reduction in the cover of cyanophytes in desert soils can both reduce fertility inputs and accelerate fertility losses.

  14. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis

    PubMed Central

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-01-01

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge. PMID:26586114

  15. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis.

    PubMed

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-11-20

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge.

  16. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-11-01

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge.

  17. Do Variations in Detrital Inputs Influence Stable Soil Organic Matter? - An Experimental Approach

    NASA Astrophysics Data System (ADS)

    Lajtha, K.; Townsend, K.; Brewer, E.; Caldwell, B.; Kalbitz, K.; Plante, A.

    2007-12-01

    Recognition of the importance of feedbacks from plants in determining soil nutrient dynamics and C storage led to a large number of litter decomposition studies. Despite growing knowledge of short-term litter dynamics, we know relatively little about the fate of plant litter and its role in determining SOM content and nutrient cycling over time scales ranging from decades and centuries. To address this gap, we established long-term studies of controls on soil organic matter formation in an old-growth forest at the H.J. Andrews Experimental Forest, OR. This study complements a network of recently established similar experiments that pan climatic and soil gradients, as well as the original DIRT experiment established in the Wisconsin Arboretum in 1956 in both grassland and forested sites. The central goal of the DIRT project is to assess how rates and sources of plant litter inputs control the accumulation and dynamics of organic matter and nutrients in forest soils over decadal time scales. Treatment plots include doubled litter (needle) inputs , doubled wood, no above ground litter (screened) inputs, no root inputs (trenched), and no inputs (screened and trenched). For the 50th anniversary of the Wisconsin sites and the 10th anniversary of the H.J. Andrews site, we used sequential density fractionation of soils from all treatments to determine if adding or removing either below- or above-ground litter inputs influenced carbon stabilization as soil organic matter. After 50 years, double litter plots in both prairie and forested soils had higher %C in the 0-10 cm horizon. In the forested site, plots showed increased C content of the lightest fraction, which represents relatively young SOM with a short turnover time. However, the first two heavy fractions also showed increases in C with added aboveground litter, suggesting the importance of aboveground litter inputs to SOM in the forest. No such pattern existed for the prairie soil, and we hypothesize that this is because aboveground, labile litter adds very little to stabilized SOM in grasslands, and that root-derived C is the dominant control on SOM stabilization in grasslands. These results were confirmed with analysis of labile C (short -term respiration measurements) and acid hydrolysis resistant C across treatments. The relative contribution of aboveground vs. belowground litter was analyzed through the analysis of cutin and suberin acids, and we found that the detrital source of litter was retained in soils and could be fingerprinted through this analysis. Thermal analysis, including thermogravimetry (TG) and differential scanning calorimetry (DSC) performed simultaneously is currently being applied to explore both SOM quality and stability.

  18. Efect of organic barley-based crop rotations on soil nutrient balance in a semiarid environment for a 16-year experiment

    NASA Astrophysics Data System (ADS)

    Meco, Ramón; María Moreno, Marta; Lacasta, Carlos; Moreno, Carmen

    2013-04-01

    In natural ecosystems with no percolating moisture regime, the biogeochemical cycle can be considered a closed system because the nutrients extracted by the roots will be returned to the soil after a certain time. In organic farming, a cycle model as close as possible is taken as a guideline, but we have to consider that unlike natural ecosystems, where most of the nutrients remain in the cycle, the agrosystems are open cycles. To achieve a sustainable fertility of the soil, the soil nutrient levels, the extractions according to the expected crop yields and the export refunds in the form of crop residues, biological nitrogen fixation, green manure or compost will have to be determined. Nutrient balance should be closed with external inputs, always avoiding to be a source of negative impacts on the environment. In organic farming without exogenous inputs, the effect of the crop rotations is much more noticeable in the nutrient balance than in the conventional farming fields which every year receive inputs of nutrients (nitrogen, phosphorus and potassium) in the form of chemical fertilizers. The most extractive crop rotations are those that produce a greater decrease in soil reserves, and in these cases exogenous inputs to maintain sustainability should be considered; however, in less extractive crop rotations, extractions can be restored by the edaphogenesis processes. In this work, soil organic matter, phosphorus and potassium balances were analyzed in different organic barley-based crop rotations (barley monoculture [b-b] and in rotation with vetch for hay production [B-Vh], vetch as green manure [B-Vm], sunflower [B-S], chickpea [B-C] and fallow [B-F]) in clay soils under a semiarid environment ("La Higueruela" Experimental Farm, Santa Olalla, Toledo, central Spain) over a 16 year period. Additionally, barley monoculture in conventional farming [B-B] was included. In the organic system, the fertilization involved the barley straw in all rotations, the sunflower straw in B-S, the symbiotic nitrogen from the vetch crops and the green manure in B-Vm. In the conventional system, fertilization consisted on barley straw and chemical fertilizers at a rate of 80-60-30 kg N-P-K ha-1. Before the organic management, the whole plot was subjected to conventional practices. The highest total yields (and therefore the nutrients extractions) were obtained in B-Vh, followed in this order by B-B, B-S, B-F, B-Vm, B-C and b-b. The crop rotations with the highest yields favoured the microbial activity and the organic residues mineralization, although this caused, eventually, a small decrease in the soil organic matter content. Since the eighth year, this parameter remained more stable until the end of the study period. The highest decrease of soil organic matter took place in B-F and B-S, while the lowest ones happened in B-B, where the great amounts of barley straw incorporated into the soil compensated the organic matter losses. The conversion from conventional to organic management with the incorporation of the straw to the soil implies a re-adaptation process with a decrease of the soil phosphorus level by the increasing soil microbial biomass. A decrease of phosphorus during the first six years of the experiment and a posterior recovery and stabilization of this ratio by the solubilisation of the fixed phosphorus was observed. B-F and B-S presented the lowest soluble phosphorus losses, while B-C the highest ones. In the same way, the potassium level decreased during the first eight years and after that remained constant. The highest decreases took place in the rotations with the biggest amounts of barley straw; this decrease could be explained by the nutrient immobilization caused by the microbial biomass.

  19. Soil characteristics of semidesert soils along a precipitation gradient in the Negev (Israel)

    NASA Astrophysics Data System (ADS)

    Steckenmesser, Daniel; Drahorad, Sylvie; Felix-Henningsen, Peter

    2010-05-01

    The sand dunes of the north-western Negev desert (Israel) show a unique precipitation gradient on a short distance. This area is build up by the same parent material and suited to investigate the influence of changes in rainfall on soil characteristics in semi-desert ecosystems. The study site is the western extension of the Sinai sand field, the sand dunes are stabilised by biological soil crusts and perennial vegetation like Retama raetam. Along this precipitation gradient the three investigation areas Nizzana South (90mm ^a-), Nizzana 84 (130mm ^a-1) and Nizzana 69 (170mm ^a-1) are situated. At every study site two soil profiles were investigated, each under the legume Retama raetam and in the bare interspace covered by biological soil crusts. The soil samples were taken at the interdune positions at every study site. The soil sampling included the biological soil crust, the topsoil and the subsoil up to 1,5 m. The narrow sampling of 20cm wide steps allow a mapping of the distribution of nutrients, carbonates and soluble salts of in order to show the impact of perennial plants and rainfall on soil properties. Soluble salts and nutrients were measured in a 1:5 water extraction, calcium carbonate was determined according to Scheibler. The data shows a strong influence of perennial shrubs on the deposition of dust and the redistribution of nutrients compared to the bare interspace. The distribution of highly and less soluble salts below the perennial shrub proofs a shallower water infiltration than in the comparable interspace area. The interspace between the plants is covered by a biological soil crust, which also strongly influences the matter fluxes by nutrient-fixation, creation of runoff and stabilization of the soil surface. These biological soil crusts show higher amounts of elements than the subsoils. The comparison of the three areas along the rainfall gradient shows higher inputs of soluble salts with increasing precipitation due to wet deposition, while carbonate contents are negatively correlated with decreasing precipitation. This is related to a higher dust input in the southern study site, which was generated in the lime stone Negev. Higher amounts of rainfall introduce higher element leaching. Perennial plants cover the surface and reduce infiltration. Inputs into the soils through dust have to be evaluated for every location to separate between effects of deposition and rainfall.

  20. Strontium source and depth of uptake shifts with substrate age in semiarid ecosystems

    NASA Astrophysics Data System (ADS)

    Coble, Ashley A.; Hart, Stephen C.; Ketterer, Michael E.; Newman, Gregory S.; Kowler, Andrew L.

    2015-06-01

    Without exogenous rock-derived nutrient sources, terrestrial ecosystems may eventually regress or reach a terminal steady state, but the degree to which exogenous nutrient sources buffer or slow to a theoretical terminal steady state remains unclear. We used strontium isotope ratios (87Sr/86Sr) as a tracer and measured 87Sr/86Sr values in aeolian dust, soils, and vegetation across a well-constrained 3 Myr semiarid substrate age gradient to determine (1) whether the contribution of atmospheric sources of rock-derived nutrients to soil and vegetation pools varied with substrate age and (2) to determine if the depth of uptake varied with substrate age. We found that aeolian-derived nutrients became increasingly important, contributing as much as 71% to plant-available soil pools and tree (Pinus edulis) growth during the latter stages of ecosystem development in a semiarid climate. The depth of nutrient uptake increased on older substrates, demonstrating that trees in arid regions can acquire nutrients from greater depths as ecosystem development progresses presumably in response to nutrient depletion in the more weathered surface soils. Our results demonstrate that global and regional aeolian transport of nutrients to local ecosystems is a vital process for ecosystem development in arid regions. Furthermore, these aeolian nutrient inputs contribute to deep soil nutrient pools, which become increasingly important for maintaining plant productivity over long time scales.

  1. [Inventory of regional surface nutrient balance and policy recommendations in China].

    PubMed

    Chen, Min-Peng; Chen, Ji-Ning

    2007-06-01

    By applying OECD surface soil nitrogen balance methodology, the framework, methodology and database for nutrient balance budget in China are established to evaluate the impact of nutrient balance on agricultural production and water environment. Results show that nitrogen and phosphorus surplus in China are 640 x 10(4) t and 98 x 10(4) t respectively, and nitrogen and phosphorus surplus intensity in China are 16.56 kg/hm2 and 2.53 kg/hm2 respectively. Because of striking spatial difference of nutrient balance across the country, China is seeing a dual-challenge of nutrient surplus management as well as nutrient deficit management. Chemical fertilizer and livestock manure are best targets to perform nutrient surplus management due to their marked contributions to nutrient input. However, it is not cost-effective to implement a uniform management for all regions since nutrient input structures of them vary considerably.

  2. Nutrient dynamics and decomposition of riparian Arundinaria gigantea (Walt.)Muhl. leaves in southern Illinois

    USDA-ARS?s Scientific Manuscript database

    Leaf litter quality and quantity can influence soil nutrient dynamics and stream productivity through decomposition and serving as allochthonous stream inputs. Leaf deposition, nitrogen (N)-resorption efficiency and proficiency, and decomposition rates were analyzed in riparian stands of Arundinaria...

  3. Coupled nitrogen and calcium cycles in forests of the Oregon Coast Range

    USGS Publications Warehouse

    Perakis, S.S.; Maguire, D.A.; Bullen, T.D.; Cromack, K.; Waring, R.H.; Boyle, J.R.

    2006-01-01

    Nitrogen (N) is a critical limiting nutrient that regulates plant productivity and the cycling of other essential elements in forests. We measured foliar and soil nutrients in 22 young Douglas-fir stands in the Oregon Coast Range to examine patterns of nutrient availability across a gradient of N-poor to N-rich soils. N in surface mineral soil ranged from 0.15 to 1.05% N, and was positively related to a doubling of foliar N across sites. Foliar N in half of the sites exceeded 1.4% N, which is considered above the threshold of N-limitation in coastal Oregon Douglas-fir. Available nitrate increased five-fold across this gradient, whereas exchangeable magnesium (Mg) and calcium (Ca) in soils declined, suggesting that nitrate leaching influences base cation availability more than soil parent material across our sites. Natural abundance strontium isotopes (87Sr/86Sr) of a single site indicated that 97% of available base cations can originate from atmospheric inputs of marine aerosols, with negligible contributions from weathering. Low annual inputs of Ca relative to Douglas-fir growth requirements may explain why foliar Ca concentrations are highly sensitive to variations in soil Ca across our sites. Natural abundance calcium isotopes (??44Ca) in exchangeable and acid leachable pools of surface soil measured at a single site showed 1 per mil depletion relative to deep soil, suggesting strong Ca recycling to meet tree demands. Overall, the biogeochemical response of these Douglas-fir forests to gradients in soil N is similar to changes associated with chronic N deposition in more polluted temperate regions, and raises the possibility that Ca may be deficient on excessively N-rich sites. We conclude that wide gradients in soil N can drive non-linear changes in base-cation biogeochemistry, particularly as forests cross a threshold from N-limitation to N-saturation. The most acute changes may occur in forests where base cations are derived principally from atmospheric inputs. ?? 2006 Springer Science+Business Media, Inc.

  4. Mechanisms of nutrient attenuation in a subsurface flow riparian wetland.

    PubMed

    Casey, R E; Taylor, M D; Klaine, S J

    2001-01-01

    Riparian wetlands are transition zones between terrestrial and aquatic environments that have the potential to serve as nutrient filters for surface and ground water due to their topographic location. We investigated a riparian wetland that had been receiving intermittent inputs of NO3- and PO4(3-) during storm runoff events to determine the mechanisms of nutrient attenuation in the wetland soils. Few studies have shown whether infrequent pulses of NO3- are sufficient to maintain substantial denitrifying communities. Denitrification rates were highest at the upstream side of the wetland where nutrient-rich runoff first enters the wetland (17-58 microg N2O-N kg soil(-1) h(-1)) and decreased further into the wetland. Carbon limitation for denitrification was minor in the wetland soils. Samples not amended with dextrose had 75% of the denitrification rate of samples with excess dextrose C. Phosphate sorption isotherms suggested that the wetland soils had a high capacity for P retention. The calculated soil PO4(3-) concentration that would yield an equilibrium aqueous P04(3-) concentration of 0.05 mg P L(-1) was found to be 100 times greater than the soil PO4(3-) concentration at the time of sampling. This indicated that the wetland could retain a large additional mass of PO4(3-) without increasing the dissolved P04(3-) concentrations above USEPA recommended levels for lentic waters. These results demonstrated that denitrification can be substantial in systems receiving pulsed NO3- inputs and that sorption could account for extensive PO4(3-) attenuation observed at this site.

  5. Land use and nutrient inputs affect priming in Andosols of Mt. Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Mganga, Kevin; Kuzyakov, Yakov

    2015-04-01

    Organic C and nutrients additions in soil can accelerate mineralisation of soil organic matter i.e. priming effects. However, only very few studies have been conducted to investigate the priming effects phenomenon in tropical Andosols. Nutrients (N, P, N+P) and 14C labelled glucose were added to Andosols from six natural and intensively used ecosystems at Mt. Kilimanjaro i.e. (1) savannah, (2) maize fields, (3) lower montane forest, (4) coffee plantation, (5) grasslands and (6) Chagga homegardens. Carbon-dioxide emissions were monitored over a 60 days incubation period. Mineralisation of glucose to 14CO2 was highest in coffee plantation and lowest in Chagga homegarden soils. Maximal and minimal mineralisation rates immediately after glucose additions were observed in lower montane forest with N+P fertilisation (9.1% ± 0.83 d -1) and in savannah with N fertilisation (0.9% ± 0.17 d -1), respectively. Glucose and nutrient additions accelerated native soil organic matter mineralisation i.e. positive priming. Chagga homegarden soils had the lowest 14CO2 emissions and incorporated the highest percent of glucose into microbial biomass. 50-60% of the 14C input was retained in soil. We attribute this mainly to the high surface area of non-crystalline constituents i.e. allophanes, present in Andosols and having very high sorption capacity for organic C. The allophanic nature of Andosols of Mt. Kilimanjaro especially under traditional Chagga homegarden agroforestry system shows great potential for providing essential environmental services, notably C sequestration. Key words: Priming Effects, Andosols, Land Use Changes, Mt. Kilimanjaro, Allophanes, Tropical Agroforestry

  6. Reducing Nutrient Losses with Directed Fertilization of Degraded Soils

    NASA Astrophysics Data System (ADS)

    Menzies, E.; Walter, M. T.; Schneider, R.

    2016-12-01

    Degraded soils around the world are stunting agricultural productivity in places where people need it the most. In China, hundreds of years of agriculture and human activity have turned large swaths of productive grasslands into expanses of sandy soils where nothing can grow. Returning soils such as these to healthy productive landscapes is crucial to the livelihoods of rural families and to feeding the expanding population of China and the world at large. Buried wood chips can be used to improve the soils' water holding capacity but additional nutrient inputs are crucial to support plant growth and completely restore degraded soils in China and elsewhere. Improperly applied fertilizer can cause large fluxes of soluble nutrients such as nitrogen (N) and phosphorus (P) to pollute groundwater, and reach surface water bodies causing harmful algal blooms or eutrophication. Similarly, fertilization can create increases in nutrient losses in the form of greenhouse gases (GHGs). It is imperative that nutrient additions to this system be done in a way that fosters restoration and a return to productivity, but minimizes nutrient losses to adjacent surface water bodies and the atmosphere. The primary objective of this study is to characterize soluble and gaseous N and P losses from degraded sandy soils with wood chip and fertilizer amendments in order to identify optimal fertilization methods, frequencies, and quantities for soil restoration. A laboratory soil column study is currently underway to begin examining these questions results of this study will be presented at the Fall Meeting.

  7. Are patterns in nutrient limitation belowground consistent with those aboveground: Results from a 4 million year chronosequence

    USGS Publications Warehouse

    Reed, S.C.; Vitousek, P.M.; Cleveland, C.C.

    2011-01-01

    Accurately predicting the effects of global change on net carbon (C) exchange between terrestrial ecosystems and the atmosphere requires a more complete understanding of how nutrient availability regulates both plant growth and heterotrophic soil respiration. Models of soil development suggest that the nature of nutrient limitation changes over the course of ecosystem development, transitioning from nitrogen (N) limitation in 'young' sites to phosphorus (P) limitation in 'old' sites. However, previous research has focused primarily on plant responses to added nutrients, and the applicability of nutrient limitation-soil development models to belowground processes has not been thoroughly investigated. Here, we assessed the effects of nutrients on soil C cycling in three different forests that occupy a 4 million year substrate age chronosequence where tree growth is N limited at the youngest site, co-limited by N and P at the intermediate-aged site, and P limited at the oldest site. Our goal was to use short-term laboratory soil C manipulations (using 14C-labeled substrates) and longer-term intact soil core incubations to compare belowground responses to fertilization with aboveground patterns. When nutrients were applied with labile C (sucrose), patterns of microbial nutrient limitation were similar to plant patterns: microbial activity was limited more by N than by P in the young site, and P was more limiting than N in the old site. However, in the absence of C additions, increased respiration of native soil organic matter only occurred with simultaneous additions of N and P. Taken together, these data suggest that altered nutrient inputs into ecosystems could have dissimilar effects on C cycling above- and belowground, that nutrients may differentially affect of the fate of different soil C pools, and that future changes to the net C balance of terrestrial ecosystems will be partially regulated by soil nutrient status. ?? 2010 US Government.

  8. SDMProjectBuilder: SWAT Setup for Nutrient Fate and Transport

    EPA Science Inventory

    This tutorial reviews some of the screens, icons, and basic functions of the SDMProjectBuilder (SDMPB) and explains how one uses SDMPB output to populate the Soil and Water Assessment Tool (SWAT) input files for nutrient fate and transport modeling in the Salt River Basin. It dem...

  9. Rain forest nutrient cycling and productivity in response to large-scale litter manipulation.

    PubMed

    Wood, Tana E; Lawrence, Deborah; Clark, Deborah A; Chazdon, Robin L

    2009-01-01

    Litter-induced pulses of nutrient availability could play an important role in the productivity and nutrient cycling of forested ecosystems, especially tropical forests. Tropical forests experience such pulses as a result of wet-dry seasonality and during major climatic events, such as strong El Niños. We hypothesized that (1) an increase in the quantity and quality of litter inputs would stimulate leaf litter production, woody growth, and leaf litter nutrient cycling, and (2) the timing and magnitude of this response would be influenced by soil fertility and forest age. To test these hypotheses in a Costa Rican wet tropical forest, we established a large-scale litter manipulation experiment in two secondary forest sites and four old-growth forest sites of differing soil fertility. In replicated plots at each site, leaves and twigs (< 2 cm diameter) were removed from a 400-m2 area and added to an adjacent 100-m2 area. This transfer was the equivalent of adding 5-25 kg/ha of organic P to the forest floor. We analyzed leaf litter mass, [N] and [P], and N and P inputs for addition, removal, and control plots over a two-year period. We also evaluated basal area increment of trees in removal and addition plots. There was no response of forest productivity or nutrient cycling to litter removal; however, litter addition significantly increased leaf litter production and N and P inputs 4-5 months following litter application. Litter production increased as much as 92%, and P and N inputs as much as 85% and 156%, respectively. In contrast, litter manipulation had no significant effect on woody growth. The increase in leaf litter production and N and P inputs were significantly positively related to the total P that was applied in litter form. Neither litter treatment nor forest type influenced the temporal pattern of any of the variables measured. Thus, environmental factors such as rainfall drive temporal variability in litter and nutrient inputs, while nutrient release from decomposing litter influences the magnitude. Seasonal or annual variation in leaf litter mass, such as occurs in strong El Niño events, could positively affect leaf litter nutrient cycling and forest productivity, indicating an ability of tropical trees to rapidly respond to increased nutrient availability.

  10. Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions.

    PubMed

    Gebremikael, Mesfin T; Steel, Hanne; Buchan, David; Bert, Wim; De Neve, Stefaan

    2016-09-08

    The role of soil fauna in crucial ecosystem services such as nutrient cycling remains poorly quantified, mainly because of the overly reductionistic approach adopted in most experimental studies. Given that increasing nitrogen inputs in various ecosystems influence the structure and functioning of soil microbes and the activity of fauna, we aimed to quantify the role of the entire soil nematode community in nutrient mineralization in an experimental set-up emulating nutrient-rich field conditions and accounting for crucial interactions amongst the soil microbial communities and plants. To this end, we reconstructed a complex soil foodweb in mesocosms that comprised largely undisturbed native microflora and the entire nematode community added into defaunated soil, planted with Lolium perenne as a model plant, and amended with fresh grass-clover residues. We determined N and P availability and plant uptake, plant biomass and abundance and structure of the microbial and nematode communities during a three-month incubation. The presence of nematodes significantly increased plant biomass production (+9%), net N (+25%) and net P (+23%) availability compared to their absence, demonstrating that nematodes link below- and above-ground processes, primarily through increasing nutrient availability. The experimental set-up presented allows to realistically quantify the crucial ecosystem services provided by the soil biota.

  11. Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions

    NASA Astrophysics Data System (ADS)

    Gebremikael, Mesfin T.; Steel, Hanne; Buchan, David; Bert, Wim; de Neve, Stefaan

    2016-09-01

    The role of soil fauna in crucial ecosystem services such as nutrient cycling remains poorly quantified, mainly because of the overly reductionistic approach adopted in most experimental studies. Given that increasing nitrogen inputs in various ecosystems influence the structure and functioning of soil microbes and the activity of fauna, we aimed to quantify the role of the entire soil nematode community in nutrient mineralization in an experimental set-up emulating nutrient-rich field conditions and accounting for crucial interactions amongst the soil microbial communities and plants. To this end, we reconstructed a complex soil foodweb in mesocosms that comprised largely undisturbed native microflora and the entire nematode community added into defaunated soil, planted with Lolium perenne as a model plant, and amended with fresh grass-clover residues. We determined N and P availability and plant uptake, plant biomass and abundance and structure of the microbial and nematode communities during a three-month incubation. The presence of nematodes significantly increased plant biomass production (+9%), net N (+25%) and net P (+23%) availability compared to their absence, demonstrating that nematodes link below- and above-ground processes, primarily through increasing nutrient availability. The experimental set-up presented allows to realistically quantify the crucial ecosystem services provided by the soil biota.

  12. Legacy Phosphorus Effect and Need to Re-calibrate Soil Test P Methods for Organic Crop Production.

    NASA Astrophysics Data System (ADS)

    Dao, Thanh H.; Schomberg, Harry H.; Cavigelli, Michel A.

    2015-04-01

    Phosphorus (P) is a required nutrient for the normal development and growth of plants and supplemental P is needed in most cultivated soils. Large inputs of cover crop residues and nutrient-rich animal manure are added to supply needed nutrients to promote the optimal production of organic grain crops and forages. The effects of crop rotations and tillage management of the near-surface zone on labile phosphorus (P) forms were studied in soil under conventional and organic crop management systems in the mid-Atlantic region of the U.S. after 18 years due to the increased interest in these alternative systems. Soil nutrient surpluses likely caused by low grain yields resulted in large pools of exchangeable phosphate-P and equally large pools of enzyme-labile organic P (Po) in soils under organic management. In addition, the difference in the P loading rates between the conventional and organic treatments as guided by routine soil test recommendations suggested that overestimating plant P requirements contributed to soil P surpluses because routine soil testing procedures did not account for the presence and size of the soil enzyme-labile Po pool. The effect of large P additions is long-lasting as they continued to contribute to elevated soil total bioactive P concentrations 12 or more years later. Consequently, accurate estimates of crop P requirements, P turnover in soil, and real-time plant and soil sensing systems are critical considerations to optimally manage manure-derived nutrients in organic crop production.

  13. The impact of peasant and industrialized agricultural systems on high productive loess soils in Central Europe

    NASA Astrophysics Data System (ADS)

    Schneider, Christian; Heinrich, Jürgen

    2017-04-01

    The study analyzes the impact of a peasant and an industrialized agricultural land use system on soil degradation in two loess landscapes. The comparative method aims to test the hypothesis that different agricultural systems cause distinct differences in soil properties that can be documented by geo-chemical soil analysis. The two loess landscapes under investigation show great similarities in natural geo-ecological properties. Nevertheless, the land use system makes a significant difference in both research areas. The Polish Proszowice Plateau is characterized by traditional small-scale peasant agriculture. Small plots and fragmented ownership make it difficult to conjointly manage soil erosion. However, the Middle Saxonian Loess Region in Germany represents loess landscapes whose ecological functions were shaped by land consolidation measures resulting in the large-scale, high-input farming system. To identify representative small catchments for soil sampling relief heterogeneity analyses and a cluster analysis were performed to bridge scales between the landscape and the sub-catchment level. Geo-physical and geo-chemical laboratory techniques were used to analyze major soil properties. A total number of 346 sites were sampled and analyzed for geo-ecological, geomorphological, and pedological features. The results show distinct differences in soil properties between the two loess landscapes strongly influenced by agricultural use. However, despite big differences in agricultural management great similarities can also be found especially for mean soil organic carbon contents and plant nutrient values. At the same time, the greater variability of the soil mosaic is depicted by a higher variance of almost all soil properties common to traditional land use systems. Topsoils on arable land at the Proszowice Plateau also show a wider C/N ratio. Therefore, the soils there are less prone to degradation through mineralization of humic substances. The wider ratio is mainly caused by lower inputs of N-fertilizers, at least since 1990. At the same time, soil cultivation techniques and atmospheric deposits are not likely to make a significant difference. The topsoil horizons on arable lands at the Proszowice Plateau do not show significant differences in plant available nutrients like phosphorus, despite much lower P-inputs through mineral fertilizers since 1990. This is because of the high P-sorption capacity of the loess soils. Therefore, a long legacy effect of previous comparatively high mineral P-inputs between the 1960s and 80s can be observed. A similar effect occurs in the Middle Saxonian Loess Region. In contrast to the assumption of many scholars small-scale farming at the Proszowice Plateau has not lead to an under-supply of plant nutrients. The study has shown that significant differences in major soil properties can be observed because of different fertilizer inputs and partly because of different cultivation techniques. Also the traditional system increases soil heterogeneity. Contrary to expectations the study has shown that the small-scale peasant farming system resulted in similar mean soil organic carbon and phosphorus contents like the industrialized high-input farming system. A further study could include investigations of the effects of soil amendments like herbicides and pesticide on soil degradation.

  14. Basal area growth of sugar maple in relation to acid deposition, stand health, and soil nutrients.

    PubMed

    Duchesne, Louis; Ouimet, Rock; Houle, Daniel

    2002-01-01

    Previous studies have shown in noncalcareous soils that acid deposition may have increased soil leaching of basic cations above the input rate from soil weathering and atmospheric depositions. This phenomenon may have increased soil acidity levels, and, as a consequence, may have reduced the availability of these essential nutrients for forest growth. Fourteen plots of the Forest Ecosystem Research and Monitoring Network in Québec were used to examine the relation between post-industrial growth trends of sugar maple (Acer saccharum Marsh.) and acid deposition (N and S), stand decline rate, and soil exchangeable nutrient concentrations. Atmospheric N and S deposition and soil exchangeable acidity were positively associated with stand decline rate, and negatively with the average tree basal area increment trend. The growth rate reduction reached on average 17% in declining stands compared with healthy ones. The results showed a significant sugar maple growth rate reduction since 1960 on acid soils. The appearance of the forest decline phenomenon in Québec can be attributed, at least partially, to soil acidification and acid deposition levels.

  15. Nitrogen and phosphorus limitation over long-term ecosystem development in terrestrial ecosystems.

    PubMed

    Menge, Duncan N L; Hedin, Lars O; Pacala, Stephen W

    2012-01-01

    Nutrient limitation to net primary production (NPP) displays a diversity of patterns as ecosystems develop over a range of timescales. For example, some ecosystems transition from N limitation on young soils to P limitation on geologically old soils, whereas others appear to remain N limited. Under what conditions should N limitation and P limitation prevail? When do transitions between N and P limitation occur? We analyzed transient dynamics of multiple timescales in an ecosystem model to investigate these questions. Post-disturbance dynamics in our model are controlled by a cascade of rates, from plant uptake (very fast) to litter turnover (fast) to plant mortality (intermediate) to plant-unavailable nutrient loss (slow) to weathering (very slow). Young ecosystems are N limited when symbiotic N fixation (SNF) is constrained and P weathering inputs are high relative to atmospheric N deposition and plant N:P demand, but P limited under opposite conditions. In the absence of SNF, N limitation is likely to worsen through succession (decades to centuries) because P is mineralized faster than N. Over long timescales (centuries and longer) this preferential P mineralization increases the N:P ratio of soil organic matter, leading to greater losses of plant-unavailable N versus P relative to plant N:P demand. These loss dynamics favor N limitation on older soils despite the rising organic matter N:P ratio. However, weathering depletion favors P limitation on older soils when continual P inputs (e.g., dust deposition) are low, so nutrient limitation at the terminal equilibrium depends on the balance of these input and loss effects. If NPP switches from N to P limitation over long time periods, the transition time depends most strongly on the P weathering rate. At all timescales SNF has the capacity to overcome N limitation, so nutrient limitation depends critically on limits to SNF.

  16. Soil, water and nutrient conservation in mountain farming systems: case-study from the Sikkim Himalaya.

    PubMed

    Sharma, E; Rai, S C; Sharma, R

    2001-02-01

    The Khanikhola watershed in Sikkim is agrarian with about 50% area under rain-fed agriculture representing the conditions of the middle mountains all over the Himalaya. The study was conducted to assess overland flow, soil loss and subsequent nutrient losses from different land uses in the watershed, and identify biotechnological inputs for management of mountain farming systems. Overland flow, soil and nutrient losses were very high from open agricultural (cropped) fields compared to other land uses, and more than 72% of nutrient losses were attributable to agriculture land use. Forests and large cardamom agroforestry conserved more soil compared to other land uses. Interventions, like cultivation of broom grass upon terrace risers, N2-fixing Albizia trees for maintenance of soil fertility and plantation of horticulture trees, have reduced the soil loss (by 22%). Soil and water conservation values (> 80%) of both large cardamom and broom grass were higher compared to other crops. Use of N2-fixing Albizia tree in large cardamom agroforestry and croplands contributed to soil fertility, and increased productivity and yield. Bio-composting of farm resources ensured increase in nutrient availability specially phosphorus in cropped areas. Agricultural practices in mountain areas should be strengthened with more agroforestry components, and cash crops like large cardamom and broom grass in agroforestry provide high economic return and are hydroecologically sustainable.

  17. Soil biota and agriculture production in conventional and organic farming

    NASA Astrophysics Data System (ADS)

    Schrama, Maarten; de Haan, Joj; Carvalho, Sabrina; Kroonen, Mark; Verstegen, Harry; Van der Putten, Wim

    2015-04-01

    Sustainable food production for a growing world population requires a healthy soil that can buffer environmental extremes and minimize its losses. There are currently two views on how to achieve this: by intensifying conventional agriculture or by developing organically based agriculture. It has been established that yields of conventional agriculture can be 20% higher than of organic agriculture. However, high yields of intensified conventional agriculture trade off with loss of soil biodiversity, leaching of nutrients, and other unwanted ecosystem dis-services. One of the key explanations for the loss of nutrients and GHG from intensive agriculture is that it results in high dynamics of nutrient losses, and policy has aimed at reducing temporal variation. However, little is known about how different agricultural practices affect spatial variation, and it is unknown how soil fauna acts this. In this study we compare the spatial and temporal variation of physical, chemical and biological parameters in a long term (13-year) field experiment with two conventional farming systems (low and medium organic matter input) and one organic farming system (high organic matter input) and we evaluate the impact on ecosystem services that these farming systems provide. Soil chemical (N availability, N mineralization, pH) and soil biological parameters (nematode abundance, bacterial and fungal biomass) show considerably higher spatial variation under conventional farming than under organic farming. Higher variation in soil chemical and biological parameters coincides with the presence of 'leaky' spots (high nitrate leaching) in conventional farming systems, which shift unpredictably over the course of one season. Although variation in soil physical factors (soil organic matter, soil aggregation, soil moisture) was similar between treatments, but averages were higher under organic farming, indicating more buffered conditions for nutrient cycling. All these changes coincide with pronounced shifts in soil fauna composition (nematodes, earthworms) and an increase in earthworm activity. Hence, more buffered conditions and shifts in soil fauna composition under organic farming may underlie the observed reduction in spatial variation of soil chemical and biological parameters, which in turn correlates positively with a long-term increase in yield. Our study highlights the need for both policymakers and farmers alike to support spatial stability-increasing farming.

  18. Biological soil crusts as an organizing principle in drylands: Chapter 1

    USGS Publications Warehouse

    Belnap, Jayne; Weber, Bettina; Büdel, Burkhard; Weber, Bettina; Buedel, Burkhard; Belnap, Jayne

    2016-01-01

    Biological soil crusts (biocrusts) have been present on Earth’s terrestrial surfaces for billions of years. They are a critical part of ecosystem processes in dryland regions, as they cover most of the soil surface and thus mediate almost all inputs and outputs from soils in these areas. There are many intriguing, but understudied, roles these communities may play in drylands. These include their function in nutrient capture and transformation, influence on the movement and distribution of nutrients and water within dryland soils, ability to structure vascular plant communities, role in creating biodiversity hotspots, and the possibility that they can be used as indicators of soil health. There are still many fascinating aspects of these communities that need study, and we hope that this chapter will facilitate such efforts.

  19. Microbial respiration, but not biomass, responded linearly to increasing light fraction organic matter input: Consequences for carbon sequestration.

    PubMed

    Rui, Yichao; Murphy, Daniel V; Wang, Xiaoli; Hoyle, Frances C

    2016-10-18

    Rebuilding 'lost' soil carbon (C) is a priority in mitigating climate change and underpinning key soil functions that support ecosystem services. Microorganisms determine if fresh C input is converted into stable soil organic matter (SOM) or lost as CO 2 . Here we quantified if microbial biomass and respiration responded positively to addition of light fraction organic matter (LFOM, representing recent inputs of plant residue) in an infertile semi-arid agricultural soil. Field trial soil with different historical plant residue inputs [soil C content: control (tilled) = 9.6 t C ha -1 versus tilled + plant residue treatment (tilled + OM) = 18.0 t C ha -1 ] were incubated in the laboratory with a gradient of LFOM equivalent to 0 to 3.8 t C ha -1 (0 to 500% LFOM). Microbial biomass C significantly declined under increased rates of LFOM addition while microbial respiration increased linearly, leading to a decrease in the microbial C use efficiency. We hypothesise this was due to insufficient nutrients to form new microbial biomass as LFOM input increased the ratio of C to nitrogen, phosphorus and sulphur of soil. Increased CO 2 efflux but constrained microbial growth in response to LFOM input demonstrated the difficulty for C storage in this environment.

  20. Floodplain trapping and cycling compared to streambank erosion of sediment and nutrients in an agricultural watershed

    USGS Publications Warehouse

    Gillespie, Jaimie; Noe, Gregory; Hupp, Cliff R.; Gellis, Allen; Schenk, Edward R.

    2018-01-01

    Floodplains and streambanks can positively and negatively influence downstream water quality through interacting geomorphic and biogeochemical processes. Few studies have measured those processes in agricultural watersheds. We measured inputs (floodplain sedimentation and dissolved inorganic loading), cycling (floodplain soil nitrogen [N] and phosphorus [P] mineralization), and losses (bank erosion) of sediment, N, and P longitudinally in stream reaches of Smith Creek, an agricultural watershed in the Valley and Ridge physiographic province. All study reaches were net depositional (floodplain deposition > bank erosion), had high N and P sedimentation and loading rates to the floodplain, high soil concentrations of N and P, and high rates of floodplain soil N and P mineralization. High sediment, N, and P inputs to floodplains are attributed to agricultural activity in the region. Rates of P mineralization were much greater than those measured in other studies of nontidal floodplains that used the same method. Floodplain connectivity and sediment deposition decreased longitudinally, contrary to patterns in most watersheds. The net trapping function of Smith Creek floodplains indicates a benefit to water quality. Further research is needed to determine if future decreases in floodplain deposition, continued bank erosion, and the potential for nitrate leaching from nutrient-enriched floodplain soils could pose a long-term source of sediment and nutrients to downstream rivers.

  1. DayCent model simulations for estimating soil carbon dynamics and greenhouse gas fluxes from agricultural production systems

    USDA-ARS?s Scientific Manuscript database

    DayCent is a biogeochemical model of intermediate complexity used to simulate carbon, nutrient, and greenhouse gas fluxes for crop, grassland, forest, and savanna ecosystems. Model inputs include: soil texture and hydraulic properties, current and historical land use, vegetation cover, daily maximum...

  2. Budgeting of major nutrients and the mitigation options for nutrient mining in semi-arid tropical agro-ecosystem of Tamil Nadu, India using NUTMON model.

    PubMed

    Surendran, U; Rama Subramoniam, S; Raja, P; Kumar, V; Murugappan, V

    2016-04-01

    Mining of nutrients from soil is a major problem in developing countries causing soil degradation and threaten long-term food production. The present study attempts to apply NUTrient MONitoring (NUTMON) model for carrying out nutrient budgeting to assess the stocks and flows of nitrogen (N), phosphorus (P), and potassium (K) in defined geographical unit based on the inputs, viz., mineral fertilizers, manures, atmospheric deposition, and sedimentation, and outputs, viz., harvested crop produces, residues, leaching, denitrification, and erosion losses. The study area covers Coimbatore and Erode Districts, which are potential agricultural areas in western agro-ecological zone of Tamil Nadu, India. The calculated nutrient balances for both the districts at district scale, using NUTMON methodology, were negative for nitrogen (N -3.3 and -10.1 kg ha(-1)) and potassium (K -58.6 and -9.8 kg ha(-1)) and positive for phosphorus (P +14.5 and 20.5 kg ha(-1)). Soil nutrient pool has to adjust the negative balance of N and K; there will be an expected mining of nutrient from the soil reserve. A strategy was attempted for deriving the fertilizer recommendation using Decision Support System for Integrated Fertilizer Recommendation (DSSIFER) to offset the mining in selected farms. The results showed that when DSSIFER recommended fertilizers are applied to crops, the nutrient balance was positive. NUTMON-Toolbox with DSSIFER would serve the purpose on enhancing soil fertility, productivity, and sustainability. The management options to mitigate nutrient mining with an integrated system approach are also discussed.

  3. Engineering crop nutrient efficiency for sustainable agriculture.

    PubMed

    Chen, Liyu; Liao, Hong

    2017-10-01

    Increasing crop yields can provide food, animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency (primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency. © 2017 Institute of Botany, Chinese Academy of Sciences.

  4. Geochemical evidence for African dust inputs to soils of western Atlantic islands: Barbados, the Bahamas, and Florida

    USGS Publications Warehouse

    Muhs, D.R.; Budahn, J.R.; Prospero, J.M.; Carey, S.N.

    2007-01-01

    We studied soils on high-purity limestones of Quaternary age on the western Atlantic Ocean islands of Barbados, the Florida Keys, and the Bahamas. Potential soil parent materials in this region, external to the carbonate substrate, include volcanic ash from the island of St. Vincent (near Barbados), volcanic ash from the islands of Dominica and St. Lucia (somewhat farther from Barbados), the fine-grained component of distal loess from the lower Mississippi River Valley, and wind-transported dust from Africa. These four parent materials can be differentiated using trace elements (Sc, Cr, Th, and Zr) and rare earth elements that have minimal mobility in the soil-forming environment. Barbados soils have compositions that indicate a complex derivation. Volcanic ash from the island of St. Vincent appears to have been the most important influence, but African dust is a significant contributor, and even Mississippi River valley loess may be a very minor contributor to Barbados soils. Soils on the Florida Keys and islands in the Bahamas appear to have developed mostly from African dust, but Mississippi River valley loess may be a significant contributor. Our results indicate that inputs of African dust are more important to the genesis of soils on islands in the western Atlantic Ocean than previously supposed. We hypothesize that African dust may also be a major contributor to soils on other islands of the Caribbean and to soils in northern South America, central America, Mexico, and the southeastern United States. Dust inputs to subtropical and tropical soils in this region increase both nutrient-holding capacity and nutrient status and thus may be critical in sustaining vegetation. Copyright 2007 by the American Geophysical Union.

  5. Soil microbe active community composition and capability of responding to litter addition after 12 years of no inputs

    Treesearch

    S.A. Yarwood; E.A. Brewer; R.R. Yarwood; K. Lajtha; D.D. Myrold

    2013-01-01

    One explanation given for the high microbial diversity found in soils is that they contain a large inactive biomass that is able to persist in soils for long periods of time. This persistent microbial fraction may help to buffer the functionality of the soil community during times of low nutrients by providing a reservoir of specialized functions that can be...

  6. Denitrification rates in marsh soils and hydrologic and water quality data for Northeast Creek and Bass Harbor Marsh watersheds, Mount Desert Island, Maine

    USGS Publications Warehouse

    Huntington, Thomas G.; Culbertson, Charles W.; Duff, John H.

    2011-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park because of the potential problem of water-quality degradation and eutrophication in estuaries. Water-quality degradation has been observed at the park's Bass Harbor Marsh estuary but minimal degradation is observed in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, and have identified shallow groundwater as an additional potential nutrient source. Previous studies at Acadia National Park have assumed that a certain fraction of the nitrogen input was removed through microbial denitrification, but rates of denitrification (natural or maximum potential) in marsh soils have not been determined. The U.S. Geological Survey, in cooperation with Acadia National Park, measured in situ denitrification rates in marsh soils in Northeast Creek and Bass Harbor Marsh watersheds during the summer seasons of 2008 and 2009. Denitrification was measured under ambient conditions and following inorganic nitrogen and glucose additions. Laboratory incubations of marsh soils with and without acetylene were conducted to determine average ratios of nitrous oxide (N2O) to nitrogen (N2) produced during denitrification. Surface water and groundwater samples were analyzed for nutrients, specific conductance, temperature, and dissolved oxygen. Water level was recorded continuously during the growing season in Fresh Meadow Marsh in the Northeast Creek Watershed.

  7. Impacts of Dust on Tropical Volcanic Soil Formation: Insights from Strontium and Uranium-Series Isotopes in Soils from Basse-Terre Island, French Guadeloupe

    NASA Astrophysics Data System (ADS)

    Pereyra, Y.; Ma, L.; Sak, P. B.; Gaillardet, J.; Buss, H. L.; Brantley, S. L.

    2015-12-01

    Dust inputs play an important role in soil formation, especially for thick soils developed on tropical volcanic islands. In these regions, soils are highly depleted due to intensive chemical weathering, and mineral nutrients from dusts have been known to be important in sustaining soil fertility and productivity. Tropical volcanic soils are an ideal system to study the impacts of dust inputs on the ecosystem. Sr and U-series isotopes are excellent tracers to identify sources of materials in an open system if the end-members have distinctive isotope signatures. These two isotope systems are particularly useful to trace the origin of atmospheric inputs into soils and to determine rates and timescales of soil formation. This study analyzes major elemental concentrations, Sr and U-series isotope ratios in highly depleted soils in the tropical volcanic island of Basse-Terre in French Guadeloupe to determine atmospheric input sources and identify key soil formation processes. We focus on three soil profiles (8 to 12 m thick) from the Bras-David, Moustique Petit-Bourg, and Deshaies watersheds; and on the adjacent rivers to these sites. Results have shown a significant depletion of U, Sr, and major elements in the deep profile (12 to 4 m) attributed to rapid chemical weathering. The top soil profiles (4 m to the surface) all show addition of elements such as Ca, Mg, U, and Sr due to atmospheric dust. More importantly, the topsoil profiles have distinct Sr and U-series isotope compositions from the deep soils. Sr and U-series isotope ratios of the top soils and sequential extraction fractions confirm that the sources of the dust are from the Saharan dessert, through long distance transport from Africa to the Caribbean region across the Atlantic Ocean. During the transport, some dust isotope signatures may also have been modified by local volcanic ashes and marine aerosols. Our study highlights that dusts and marine aerosols play important roles in element cycles and nutrient sources in the highly depleted surface soils of tropical oceanic islands.

  8. Transition of fertilizer application and agricultural pollution loads: a case study in the Nhue-Day River basin.

    PubMed

    Giang, P H; Harada, H; Fujii, S; Lien, N P H; Hai, H T; Anh, P N; Tanaka, S

    2015-01-01

    Rapid socio-economic development in suburban areas of developing countries has induced changes in agricultural waste and nutrient management, resulting in water pollution. The study aimed at estimating agricultural nutrient cycles and their contribution to the water environment. A material flow model of nitrogen (N) and phosphorus (P) was developed focusing on agricultural activities from 1980 to 2010 in Trai hamlet, an agricultural watershed in Nhue-Day River basin, Vietnam. The model focused on the change in household management of human excreta and livestock excreta, and chemical fertilizer consumption. The results showed that the proportion of nutrients from compost/manure applied to paddy fields decreased from 85 to 41% for both N and P between 1980 and 2010. The nutrient inputs derived from chemical fertilizer decreased 6% between 1980 and 2000 for both N and P. Then, these nutrients increased 1.4 times for N and 1.2 times for P from 2000 to 2010. As of 2010, the total inputs to paddy fields have amounted to 435 kg-N/ha/year and 90 kg-P/ha/year. Of these nutrient inputs, 40% of N and 65% of P were derived from chemical fertilizer. Thirty per cent (30%) of total N input was discharged to the water bodies through agricultural runoff and 47% of total P input accumulated in soil.

  9. Potential dual use of biochar for wastewater treatment and soil amelioration

    NASA Astrophysics Data System (ADS)

    Marschner, Bernd; Werner, Steffen; Alfes, Karsten; Lübken, Manfred

    2013-04-01

    Irrigating crops with wastewater from open drainage channels is a common practice in urban agricultural production in many dry regions of Africa, Asia and Latin America. While the wastewater-borne nutrients reduce the need for inputs of mineral fertilizers or manures and thus reduce production costs, wastewater-borne pathogens and contaminants pose a health risk for the producers and consumers of the crops. Furthermore, the input of nutrients with the irrigation water may greatly exceed crop requirements and thus lead to unproductive leaching losses of nutrients. It is generally acknowledged that biochar additions can increase the soil's sorption and retention capacity for nutrients and water. However, positive effects on crop production are generally only observed, if this is combined with mineral fertilizers or manures due to the low nutrient content of biochars. Biochar possibly also has a high potential for use in water purification, replacing the coal-based activated carbon as a sorbent for contaminants and pathogens. It was therefore hypothesized that biochar can be used for pathogen removal from wastewater while at the same time being loaded with nutrients and contaminants. If contaminants are of minor concern the "loaded" biochar can be used as a soil amendment, providing not only long-term sorption capacity but also nutrients. Experiments were conducted with pyrochar from Miscanthus, rice husks and wood chips, which strongly differed in elemental composition, MIR-DRIFT spectra, surface charge properties and sorption potential for DOC and phosphate. When used as top filter layer in a sand column system, the biochars effectively reduced E. coli concentrations from raw wastewater by up to 2 log units. While biochars from rice husks and Miscanthus accumulated N substantially, wood chip biochar showed no N retention. On the other hand, P accumulation was most pronounced for wood chip biochar. Ongoing incubation experiments with the "loaded" and fresh biochar in soils indicate that the pretreatment with wastewater alters biochar's stability and their effects on N-mineralization.

  10. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland

    DOE PAGES

    Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.

    2015-09-04

    Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing ofmore » ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0–0.5 or 0–10 cm) across the N-amendment gradient (0, 7, and 15 kg ha –1 yr –1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. As a result, given the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.« less

  11. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland

    USGS Publications Warehouse

    Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.

    2015-01-01

    Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing of ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0–0.5 or 0–10 cm) across the N-amendment gradient (0, 7, and 15 kg ha−1 yr−1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. Given the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.

  12. Long-term variation in above and belowground plant inputs alters soil organic matter biogeochemistry at the molecular-level

    NASA Astrophysics Data System (ADS)

    Simpson, M. J.; Pisani, O.; Lin, L.; Lun, O.; Simpson, A.; Lajtha, K.; Nadelhoffer, K. J.

    2015-12-01

    The long-term fate of soil carbon reserves with global environmental change remains uncertain. Shifts in moisture, altered nutrient cycles, species composition, or rising temperatures may alter the proportions of above and belowground biomass entering soil. However, it is unclear how long-term changes in plant inputs may alter the composition of soil organic matter (SOM) and soil carbon storage. Advanced molecular techniques were used to assess SOM composition in mineral soil horizons (0-10 cm) after 20 years of Detrital Input and Removal Treatment (DIRT) at the Harvard Forest. SOM biomarkers (solvent extraction, base hydrolysis and cupric (II) oxide oxidation) and both solid-state and solution-state nuclear magnetic resonance (NMR) spectroscopy were used to identify changes in SOM composition and stage of degradation. Microbial activity and community composition were assessed using phospholipid fatty acid (PLFA) analysis. Doubling aboveground litter inputs decreased soil carbon content, increased the degradation of labile SOM and enhanced the sequestration of aliphatic compounds in soil. The exclusion of belowground inputs (No roots and No inputs) resulted in a decrease in root-derived components and enhanced the degradation of leaf-derived aliphatic structures (cutin). Cutin-derived SOM has been hypothesized to be recalcitrant but our results show that even this complex biopolymer is susceptible to degradation when inputs entering soil are altered. The PLFA data indicate that changes in soil microbial community structure favored the accelerated processing of specific SOM components with littler manipulation. These results collectively reveal that the quantity and quality of plant litter inputs alters the molecular-level composition of SOM and in some cases, enhances the degradation of recalcitrant SOM. Our study also suggests that increased litterfall is unlikely to enhance soil carbon storage over the long-term in temperate forests.

  13. Reciprocal Effects of Litter from Exotic and Congeneric Native Plant Species via Soil Nutrients

    PubMed Central

    Meisner, Annelein; de Boer, Wietse; Cornelissen, Johannes H. C.; van der Putten, Wim H.

    2012-01-01

    Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to congeneric native plant species. Here, we test how the legacy of litter from three exotic plant species affects their own performance in comparison to their congeneric natives that co-occur in the invaded habitat. We also analyzed litter effects on soil processes. In all three comparisons, soil with litter from exotic plant species had the highest respiration rates. In two out of the three exotic-native species comparisons, soil with litter from exotic plant species had higher inorganic nitrogen concentrations than their native congener, which was likely due to higher initial litter quality of the exotics. When litter from an exotic plant species had a positive effect on itself, it also had a positive effect on its native congener. We conclude that exotic plant species develop a legacy effect in soil from the invaded range through their litter inputs. This litter legacy effect results in altered soil processes that can promote both the exotic plant species and their native congener. PMID:22359604

  14. Status of soil acidification in North America

    Treesearch

    M. E. Fenn; T. G. Huntington; S. B. McLaughlin; C. Eagar; A. Gomez; R. B. Cook

    2006-01-01

    Forest soil acidification and depletion of nutrient cations have been reported for several forested regions in North America, predominantly in the eastern United States, including the northeast and in the central Appalachians, but also in parts of southeastern Canada and the southern U.S. Continuing regional inputs of nitrogen and sulfur are of concern because of...

  15. Changes in soil amino composition and microbial N acquisition strategies in response to woody plant invasion of grasslands

    USDA-ARS?s Scientific Manuscript database

    Changes in land cover have the potential to alter nutrient cycling through changes in carbon input chemistry, microbial community structure, and even soil structure. In the Rio Grande plains region of southern Texas, overgrazing and fire suppression have resulted in progressive encroachment of N-fix...

  16. Surface disturbances: their role in accelerating desertification

    USGS Publications Warehouse

    Belnap, Jayne

    1995-01-01

    Maintaining soil stability and normal water and nutrient cycles in desert systems is critical to avoiding desertification. These particular ecosystem processes are threatened by trampling of livestock and people, and by off-road vehicle use. Soil compaction and disruption of cryptobiotic soil surfaces (composed of cyanobacteria, lichens, and mosses) can result in decreased water availability to vascular plants through decreased water infiltration and increased albedo with possible decreased precipitation. Surface disturbance may also cause accelerated soil loss through wind and water erosion and decreased diversity and abundance of soil biota. In addition, nutrient cycles can be altered through lowered nitrogen and carbon inputs and slowed decomposition of soil organic matter, resulting in lower nutrient levels in associated vascular plants. Some cold desert systems may be especially susceptible to these disruptions due to the paucity of surface-rooting vascular plants for soil stabilization, fewer nitrogen-fixing higher plants, and lower soil temperatures, which slow nutrient cycles. Desert soils may recover slowly from surface disturbances, resulting in increased vulnerability to desertification. Recovery from compaction and decreased soil stability is estimated to take several hundred years. Re-establishment rates for soil bacterial and fungal populations are not known. The nitrogen fixation capability of soil requires at least 50 years to recover. Recovery of crusts can be hampered by large amounts of moving sediment, and re-establishment can be extremely difficult in some areas. Given the sensitivity of these resources and slow recovery times, desertification threatens million of hectares of semiarid lands in the United States.

  17. Effects of increased biomass removal on the biogeochemistry of two Norwegian forest ecosystems

    NASA Astrophysics Data System (ADS)

    Lange, H.; Clarke, N.; Kjønaas, O. J.; Aas, W.; Andreassen, K.; Børja, I.; Bratli, H.; Eich-Greatorex, S.; Eldhuset, T.; Holt-Hanssen, K.

    2009-04-01

    Increased removal of biomass from forested ecosystems for use as an alternative source of energy is an option in several countries. E.g., it is planned to double the use of bioenergy from all sources until 2020 in Norway. A large fraction of this increase is coming from forest resources, e.g. by removing harvest residues like branches and tops. This removal will reduce the supply of nutrients and organic matter to the forest soil, and may in the longer term increase the risk for future nutrient imbalance, soil erosion on steep slopes, reduced forest production, and changes in biodiversity and ground vegetation species composition. However, field experiments so far have found contrasting results in this respect. Soil effects of increased biomass removal will be closely related to soil organic matter (SOM) dynamics, litter quality, and turnover rates. Harvest intensity may affect the decomposition of existing SOM as well as the build-up of new SOM from litter and forest residues, by changing factors like soil temperature and moisture as well as amount and type of litter input. Changes in input of litter with different nutrient concentrations and decomposition patterns along with changes in SOM decomposition will affect the total storage of carbon, nitrogen and other vital nutrients in the soil. In the context of a Norwegian research project started in 2009, we will quantify how different harvesting regimes lead to different C addition to soil, and determine which factors have the greatest effect on decomposition of SOM under different environmental conditions. Two Norway spruce forest ecosystems will be investigated, one in eastern and one in western Norway, representing different climatic conditions and landscape types. At each location, two treatment regimes will be tested: (1) conventional harvesting (CH), with residues left on-site, and (2) aboveground whole-tree harvest (WTH), with branches, needles, and tops removed. Input of different forest residues will be quantified post harvest. Soil water at 30 cm soil depth will be analysed for nutrients, and element fluxes will be estimated to provide information about nutrient leaching. Soil respiration will be measured, along with lab decomposition studies under different temperature and moisture regimes. Long term in situ decomposition studies will be carried out in the WTH plots using three different tree compartments (needles, coarse twigs, fine roots) decomposing in litter bags, in order to determine their limit value. The structure of the fungal community will be determined by soil core sampling and molecular techniques. Understory vegetation will be sampled to determine its biomass, and the frequency of all vascular plants, bryophytes and lichens will be estimated. After harvesting, replanting will be carried out. Seedling survival, causes of mortality and potential damage, growth, and needle nutrients will be monitored. Results from these studies will be used to identify key processes explaining trends observed in two series of ongoing long-term whole-tree thinning trials. We shall combine knowledge obtained using field experiments with results of modelling and data from the Norwegian Monitoring Programme for Forest Damage and the National Forest Inventory. The overall project aim is to predict and map the ecologically most suitable areas for increased harvesting of branches and tops on a regional scale, and to identify uncertainties and additional knowledge needed to improve current predictions.

  18. Microbial respiration, but not biomass, responded linearly to increasing light fraction organic matter input: Consequences for carbon sequestration

    PubMed Central

    Rui, Yichao; Murphy, Daniel V.; Wang, Xiaoli; Hoyle, Frances C.

    2016-01-01

    Rebuilding ‘lost’ soil carbon (C) is a priority in mitigating climate change and underpinning key soil functions that support ecosystem services. Microorganisms determine if fresh C input is converted into stable soil organic matter (SOM) or lost as CO2. Here we quantified if microbial biomass and respiration responded positively to addition of light fraction organic matter (LFOM, representing recent inputs of plant residue) in an infertile semi-arid agricultural soil. Field trial soil with different historical plant residue inputs [soil C content: control (tilled) = 9.6 t C ha−1 versus tilled + plant residue treatment (tilled + OM) = 18.0 t C ha−1] were incubated in the laboratory with a gradient of LFOM equivalent to 0 to 3.8 t C ha−1 (0 to 500% LFOM). Microbial biomass C significantly declined under increased rates of LFOM addition while microbial respiration increased linearly, leading to a decrease in the microbial C use efficiency. We hypothesise this was due to insufficient nutrients to form new microbial biomass as LFOM input increased the ratio of C to nitrogen, phosphorus and sulphur of soil. Increased CO2 efflux but constrained microbial growth in response to LFOM input demonstrated the difficulty for C storage in this environment. PMID:27752083

  19. The microbial perspective of organic matter turnover and nutrient cycling in tropical soils

    NASA Astrophysics Data System (ADS)

    Rasche, Frank

    2017-04-01

    A primary goal of low-input small-holder farming systems in the tropics is the appropriate management of organic matter (OM) turnover and nutrient cycling via adapted agricultural practices. These emphasize the promotion of soil organic matter (SOM) turnover and carbon (C) sequestration, nutrient use efficiency and soil microbial activity. Since soil microbial communities are acknowledged as key players in the terrestrial C and nutrient (e.g., nitrogen (N), phosphorus (P)) cycles, they may respond sensitively to agricultural management with shifts in their community structure as well as functional traits (i.e., decomposition, mineralization). This may be in particular evident for tropical, agricultural soils which show an accelerated microbial decomposition activity induced by favourable climatic and unique physico-chemical soil conditions. While modern molecular techniques advanced primarily the understanding about the microbiome and their functional traits interacting closely with SOM dynamics in temperate soils, tropical soils under agricultural use have been still neglected to a great extent. The majority of available studies revealed mainly descriptive data on the structural composition of microbial communities rather than questioning if detected structural alterations of the soil microbiome influenced key processes in N and P cycling which actually maintain ecosystem functioning and soil productivity. This talk highlights latest efforts in deploying molecular techniques to study the compositional status of soil microbial decomposer communities and their functional attributes in response to land use change and OM management in tropical agro-ecosystems.

  20. Shrubs stimulate heterotrophic respiration in arctic soils

    NASA Astrophysics Data System (ADS)

    Phillips, C. A.; Wurzburger, N.

    2016-12-01

    The response of arctic ecosystems to global change will have critical effects on future climate. Climate warming has already triggered the expansion of shrubs across tundra, raising questions about how shrubs will affect ecosystem carbon balance. Shrub litter quality and mycorrhizal symbionts may accelerate the activity of soil microorganisms that facilitate the release of large stores of soil carbon. We investigated how shrubs affect the activity of soil microorganisms by creating soil mesocosms from areas with and without shrub species as dominants of the plant community in arctic Alaska. We hypothesized that relative to their non-shrub counterparts, heterotrophic respiration of shrub soils would: (1) be greater, (2) demonstrate greater response to additions of shrub litter, and (3) be less nutrient limited. We created mesocosms with root-free soils at constant moisture and temperature, and quantified basal heterotrophic soil respiration rates, and the response of respiration to litter and nutrient inputs in a series of laboratory experiments inputs. (1) We found that the presence of shrubs generally produced higher rates of basal soil respiration in both horizons, suggesting that shrubs stimulate microbial activity. (2) Litter addition increased respiration across both horizons with no differences in response between shrub and non-shrub soils. (3) N additions did not increase heterotrophic respiration, but P and N+P additions induced a short respiratory pulse in all soils, suggesting mild P limitation. Collectively, these findings provide evidence that shrubs stimulate heterotrophic microbial activity to enhance carbon loss, but generate new questions about the mechanisms driving these patterns.

  1. The impact of biotic/abiotic interfaces in mineral nutrient cycling: A study of soils of the Santa Cruz chronosequence, California

    USGS Publications Warehouse

    White, Art F.; Schulz, Marjorie S.; Vivit, Davison V.; Bullen, Tomas D.; Fitzpatrick, John A.

    2012-01-01

    The fraction of a mineral nutrient annually cycled through the plants, compared to that lost from pore water discharge, is defined their respective fluxes Fj,plants = qj,plants/(qj,plants + qj,discharge) with average values for K and Ca (FK,plants = 0.99; FCa,plants = 0.93) much higher than for Mg and Na (FMg,plants 0.64; FNa,plants = 0.28). The discrimination against Rb and Sr by plants is described by fractionation factors (KSr/Ca = 0.86; KRb/K = 0.83) which are used in Rayleigh fractionation-mixing calculations to fit seasonal patterns in solute K and Ca cycling. KRb/K and K24Mg/22Mg values (derived from isotope data in the literature) fall within fractionation envelopes bounded by inputs from rainfall and mineral weathering. KSr/Ca and K44Ca/40Ca fractionation factors fall outside these envelopes indicating that Ca nutrient cycling is closed to these external inputs. Small net positive K and Ca fluxes (6–14 mol m-2 yr-1), based on annual mass balances, indicate that the soils are accumulating mineral nutrients, probably as a result of long-term environmental disequilibrium.

  2. Bird Perches Increase Forest Seeds on Puerto Rican Landslides.

    Treesearch

    Aaron B. Shiels; Lawrence R. Walker

    2003-01-01

    Landslides result in the loss of vertical vegetative structure, soil nutrients, and the soil seed bank. These losses impede timely recovery of tropical forest communities. In this study we added bird perches to six Puerto Rican landslides with three types of surfaces (bare, climbing fern, grass) in an effort to facilitate inputs of forest seeds through bird dispersal...

  3. Fire effects on water quality: a synthesis of response regulating factors among contrasting ecosystems

    Treesearch

    Katherine J. Elliott; James M. Vose

    2006-01-01

    The key components of watershed processes are inputs in precipitation, interactions of vegetation, soil and water including evapotranspiration (water yield), overland flow (erosion), and storage and filtering (nutrients), and outputs in streamflow. Fire effects occur at the vegetation-soil interface and can result in altering overland flow and infiltration rate of...

  4. Dust outpaces bedrock in nutrient supply to montane forest ecosystems

    PubMed Central

    Aciego, S. M.; Riebe, C. S.; Hart, S. C.; Blakowski, M. A.; Carey, C. J.; Aarons, S. M.; Dove, N. C.; Botthoff, J. K.; Sims, K. W. W.; Aronson, E. L.

    2017-01-01

    Dust provides ecosystem-sustaining nutrients to landscapes underlain by intensively weathered soils. Here we show that dust may also be crucial in montane forest ecosystems, dominating nutrient budgets despite continuous replacement of depleted soils with fresh bedrock via erosion. Strontium and neodymium isotopes in modern dust show that Asian sources contribute 18–45% of dust deposition across our Sierra Nevada, California study sites. The remaining dust originates regionally from the nearby Central Valley. Measured dust fluxes are greater than or equal to modern erosional outputs from hillslopes to channels, and account for 10–20% of estimated millennial-average inputs of bedrock P. Our results demonstrate that exogenic dust can drive the evolution of nutrient budgets in montane ecosystems, with implications for predicting forest response to changes in climate and land use. PMID:28348371

  5. Persistence of rock-derived nutrients in the wet tropical forests of La Selva, Costa Rica.

    PubMed

    Porder, Stephen; Clark, Deborah A; Vitousek, Peter M

    2006-03-01

    We used strontium isotopes and analysis of foliar and soil nutrients to test whether erosion can rejuvenate the supply of rock-derived nutrients in the lowland tropical rain forest of La Selva, Costa Rica. We expected that these nutrients would be depleted from soils on stable surfaces, a result of over one million years of weathering in situ. In fact, trees and palms in all landscape positions derive a relatively high percentage (> or =40%) of their strontium from bedrock, rather than atmospheric, sources. The fraction that is rock-derived increases on slopes, but with no detectable effect on plant macronutrient concentrations. These results differ from those in a similar ecosystem on Kauai, Hawaii, where plants on uneroded surfaces derive almost all of their foliar Sr from atmospheric, rather than bedrock, sources. The results from La Selva challenge the assumption that tropical Oxisols in general have low nutrient inputs from bedrock, and support the hypothesis that erosion can increase the supply of these nutrients in lower landscape positions.

  6. Digital data used to relate nutrient inputs to water quality in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Brakebill, John W.; Preston, Stephen D.

    1999-01-01

    Digital data sets were compiled by the U. S. Geological Survey (USGS) and used as input for a collection of Spatially Referenced Regressions On Watershed attributes for the Chesapeake Bay region. These regressions relate streamwater loads to nutrient sources and the factors that affect the transport of these nutrients throughout the watershed. A digital segmented network based on watershed boundaries serves as the primary foundation for spatially referencing total nitrogen and total phosphorus source and land-surface characteristic data sets within a Geographic Information System. Digital data sets of atmospheric wet deposition of nitrate, point-source discharge locations, land cover, and agricultural sources such as fertilizer and manure were created and compiled from numerous sources and represent nitrogen and phosphorus inputs. Some land-surface characteristics representing factors that affect the transport of nutrients include land use, land cover, average annual precipitation and temperature, slope, and soil permeability. Nutrient input and land-surface characteristic data sets merged with the segmented watershed network provide the spatial detail by watershed segment required by the models. Nutrient stream loads were estimated for total nitrogen, total phosphorus, nitrate/nitrite, amonium, phosphate, and total suspended soilds at as many as 109 sites within the Chesapeake Bay watershed. The total nitrogen and total phosphorus load estimates are the dependent variables for the regressions and were used for model calibration. Other nutrient-load estimates may be used for calibration in future applications of the models.

  7. Sr isotope characterization of atmospheric inputs to soils along a climate gradient of the Chilean Coastal Range

    NASA Astrophysics Data System (ADS)

    Oeser, Ralf; Schuessler, Jan A.; Floor, Geerke H.; von Blanckenburg, Friedhelm

    2017-04-01

    The rate and degree of rock weathering controls the release, distribution, and cycling of mineral nutrients at the Earth's surface, being essential for developing and sustaining of ecosystems. Climate plays an important role as water flow and temperature determine both the biological community and activity, and also set the speed of weathering. Because of this double control by climate, the impact of biological activity on rock weathering and the feedbacks between the geosphere and the biosphere under different climatic conditions are not well understood. We explore the impact of biota on rock weathering in the four EarthShape primary study areas which are situated along the Chilean Coastal Range, featuring an outstanding vegetation gradient controlled by climate, ranging over 2000 km from hyper-arid, to temperate, to humid conditions. The study sites are within 80 km of the Pacific coast and are located in granitic lithology. Moreover, the sites were unglaciated during the last glacial maximum. However, as substrates get depleted in mineral nutrients, ecosystems are increasingly nourished by atmospheric inputs, sources, such as solutes contained in rain, dust, and volcanic ash. We aim to quantify the primary nutrient inputs to the ecosystem from these different potential sources. Radiogenic strontium (Sr) isotope ratios are a powerful tool to trace chemical weathering, soil formation, as well as cation provenance and mobility [1]. We determined 87Sr/86Sr ratios on bulk bedrock, saprolite, and soil and performed sequential extractions of the the easily bioavailable soil phases up to 2 m depth on two soil depth profiles in each of the four study sites. Our first results from the La Campana study site indicate that the radiogenic Sr isotope ratios of saprolite samples decrease from 0.70571 (n = 4) at the base of the profile to lower values of 0.70520 (n = 4) at the top of the immobile saprolite, indicating increasing biotite weathering. 87Sr/86Sr increases in the mobile soil layer to 0.70571 (n = 25). We find that atmospheric sources (87Sr/86Srseawater = 0.709234; [2]) contribute about 13 % of Sr to the soil and are a minor but not negligible fraction in comparison to weathering supply from saprolite. Furthermore, the 87Sr/86Sr ratios determined for saprolite samples are in good agreement with the values reported for the local Illapel Plutonic Complex [3]. Hence, the top-soil atmospheric inputs are potentially influencing the plant's strategies of nutrient uplift, ultimately controlled by the plants' nutrient demand as a function of climate. [1] Capo, R. C., Stewart, B. W., and Chadwick, O. A., 1998, Strontium isotopes as tracers of ecosystem processes: theory and methods: Geoderma, v. 82, no. 1-3, p. 197-225. [2] DePaolo, D. J., and Ingram, B. L., 1985, High-resolution stratigraphy with strontium isotopes: Science, v. 227, no. 4689, p. 938-941. [3] Parada, M. A., Nyström, J. O., and Levi, B., 1999, Multiple sources for the Coastal Batholith of central Chile (31-34˚ S): geochemical and Sr-Nd isotopic evidence and tectonic implications: Lithos, v. 46, no. 3, p. 505-521.

  8. A critical evaluation of phosphate retardation and leaching in Hapludults

    NASA Astrophysics Data System (ADS)

    Dao, Thanh

    2016-04-01

    Nutrients used in production agriculture, in particular bioactive phosphorus (P), continue to present challenges in trying to reverse the degradation of fragile aquatic ecosystems. Soils treated with large amounts of nutrient-enriched animal manure have elevated P levels in regions of intensive animal agriculture and the residual effects of past large P additions were found to be long-lived. Mathematical models are increasingly used in the evaluation and development of mitigation strategies and sustainable management practices. A large number of predictive tools are currently used in the U.S. for simulating phosphorus environmental fate, including models such AGNPS (Agricultural Non-Point Source), FHANTM Field Hydrologic And Nutrient Transport Model (Field Hydrologic And Nutrient Transport Model), SWAT (Soil & Water Assessment Tool), or APEX (Agric. Policy/Environmental EXtender). The P routines in these models have had limited changes in spite of the advances in our understanding of speciation and transport of various P forms in soil and water systems that have occurred over the last three decades. We conducted soil sorption isotherm experiments that yielded basic information for estimating the Phosphorus Sorption coefficient (PSP) a key parameter used to allocate mineral P into soil labile, active, and stable pools. We compare these coefficients to parameters derived from breakthrough curves (BTC) for determining the extent of retardation and transport of phosphate supplied as KH2PO4 under a constant hydraulic head. Sigmoidal and multi-reaction rate models were observed in the BTCs of the anion, which undermine the rationale for using an overall simple partition coefficient to describe the transport and dispersal of phosphate in soil. Minimizing such generalities used in estimating nutrient availability and transport gives a more accurate picture of status of P in soil to conserve nutrients and minimize loss of excess P inputs to the environment.

  9. Soil environmental quality in greenhouse vegetable production systems in eastern China: Current status and management strategies.

    PubMed

    Hu, Wenyou; Zhang, Yanxia; Huang, Biao; Teng, Ying

    2017-03-01

    Greenhouse vegetable production (GVP) has become an important source of public vegetable consumption and farmers' income in China. However, various pollutants can be accumulated in GVP soils due to the high cropping index, large agricultural input, and closed environment. Ecological toxicity caused by excessive pollutants' accumulation can then lead to serious health risks. This paper was aimed to systematically review the current status of soil environmental quality, analyze their impact factors, and consequently to propose integrated management strategies for GVP systems. Results indicated a decrease in soil pH, soil salinization, and nutrients imbalance in GVP soils. Fungicides, remaining nutrients, antibiotics, heavy metals, and phthalate esters were main pollutants accumulating in GVP soils comparing to surrounding open field soils. Degradation of soil ecological function, accumulation of major pollutants in vegetables, deterioration of neighboring water bodies, and potential human health risks has occurred due to the changes of soil properties and accumulation of pollutants such as heavy metals and fungicides in soils. Four dominant factors were identified leading to the above-mentioned issues including heavy application of agricultural inputs, outmoded planting styles with poor environmental protection awareness, old-fashion regulations, unreasonable standards, and ineffective supervisory management. To guarantee a sustainable GVP development, several strategies were suggested to protect and improve soil environmental quality. Implementation of various strategies not only requires the concerted efforts among different stakeholders, but also the whole lifecycle assessment throughout the GVP processes as well as effective enforcement of policies, laws, and regulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Microbial dynamics and enzyme activities in tropical Andosols depending on land use and nutrient inputs

    NASA Astrophysics Data System (ADS)

    Mganga, Kevin; Razavi, Bahar; Kuzyakov, Yakov

    2015-04-01

    Microbial decomposition of soil organic matter is mediated by enzymes and is a key source of terrestrial CO2 emissions. Microbial and enzyme activities are necessary to understand soil biochemical functioning and identify changes in soil quality. However, little is known about land use and nutrients availability effects on enzyme activities and microbial processes, especially in tropical soils of Africa. This study was conducted to examine how microbial and enzyme activities differ between different land uses and nutrient availability. As Andosols of Mt. Kilimanjaro are limited by nutrient concentrations, we hypothesize that N and P additions will stimulate enzyme activity. N and P were added to soil samples (0-20 cm) representing common land use types in East Africa: (1) savannah, (2) maize fields, (3) lower montane forest, (4) coffee plantation, (5) grasslands and (6) traditional Chagga homegardens. Total CO2 efflux from soil, microbial biomass and activities of β-glucosidase, cellobiohydrolase, chitinase and phosphatase involved in C, N and P cycling, respectively was monitored for 60 days. Total CO2 production, microbial biomass and enzyme activities varied in the order forest soils > grassland soils > arable soils. Increased β-glucosidase and cellobiohydrolase activities after N addition of grassland soils suggest that microorganisms increased N uptake and utilization to produce C-acquiring enzymes. Low N concentration in all soils inhibited chitinase activity. Depending on land use, N and P addition had an inhibitory or neutral effect on phosphatase activity. We attribute this to the high P retention of Andosols and low impact of N and P on the labile P fractions. Enhanced CO2 production after P addition suggests that increased P availability could stimulate soil organic matter biodegradation in Andosols. In conclusion, land use and nutrients influenced soil enzyme activities and microbial dynamics and demonstrated the decline in soil quality after landuse change. Key words: Andosols, β-glucosidase, Cellobiohydrolase, Chitinase, Phosphatase, Mt. Kilimanjaro

  11. Nutrient removal using biosorption activated media: preliminary biogeochemical assessment of an innovative stormwater infiltration basin

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Xuan, Zhemin; Harris, Willie G.

    2012-01-01

    Soil beneath a stormwater infiltration basin receiving runoff from a 22.7 ha predominantly residential watershed in central Florida, USA, was amended using biosorption activated media (BAM) to study the effectiveness of this technology in reducing inputs of nitrogen and phosphorus to groundwater. The functionalized soil amendment BAM consists of a 1.0:1.9:4.1 mixture (by volume) of tire crumb (to increase sorption capacity), silt and clay (to increase soil moisture retention), and sand (to promote sufficient infiltration), which was applied to develop a prototype stormwater infiltration basin utilizing nutrient reduction and flood control sub-basins. Comparison of nitrate/chloride (NO3-/Cl-) ratios for the shallow groundwater indicate that prior to using BAM, NO3- concentrations were substantially influenced by nitrification or variations in NO3- input. In contrast, for the prototype basin utilizing BAM, NO3-/Cl- ratios indicate minor nitrification and NO3- losses with the exception of one summer sample that indicated a 45% loss. Biogeochemical indicators (denitrifier activity derived from real-time polymerase chain reaction and variations in major ions, nutrients, dissolved and soil gases, and stable isotopes) suggest NO3- losses are primarily attributable to denitrification, whereas dissimilatory nitrate reduction to ammonium is a minor process. Denitrification was likely occurring intermittently in anoxic microsites in the unsaturated zone, which was enhanced by increased soil moisture within the BAM layer and resultant reductions in surface/subsurface oxygen exchange that produced conditions conducive to increased denitrifier activity. Concentrations of total dissolved phosphorus and orthophosphate (PO43-) were reduced by more than 70% in unsaturated zone soil water, with the largest decreases in the BAM layer where sorption was the most likely mechanism for removal. Post-BAM PO43-/Cl- ratios for shallow groundwater indicate predominantly minor increases and decreases in PO43- with the exception of one summer sample that indicated a 50% loss. Differences in nutrient variations between the unsaturated zone and shallow groundwater may be the result of the intensity and duration of nutrient removal processes and mixing ratios with water that had not undergone significant chemical changes. Observed nitrogen and phosphorus losses demonstrate the potential, as well as future research needs to improve performance, of the prototype stormwater infiltration basin using BAM for providing passive, economical, stormwater nutrient-treatment technology to support green infrastructure.

  12. Recovery of Nitrogen Pools and Processes in Degraded Riparian Zones in the Southern Appalachians

    Treesearch

    John T. Walker; James M. Vose; Jennifer Knoepp; Christopher D. Geron

    2009-01-01

    Establishment of riparian buffers is an effective method for reducing nutrient input to streams. However, the underlying biogeochemical processes are not fully understood. The objective of this 4-yr study was to examine the effects of riparian zone restoration on soil N cycling mechanisms in a mountain pasture previously degraded by cattle. Soil inorganic N pools,...

  13. Ecological and evolutionary consequences of niche construction for its agent.

    PubMed

    Kylafis, Grigoris; Loreau, Michel

    2008-10-01

    Niche construction can generate ecological and evolutionary feedbacks that have been underinvestigated so far. We present an eco-evolutionary model that incorporates the process of niche construction to reveal its effects on the ecology and evolution of the niche-constructing agent. We consider a simple plant-soil nutrient ecosystem in which plants have the ability to increase the input of inorganic nutrient as an example of positive niche construction. On an ecological time scale, the model shows that niche construction allows the persistence of plants under infertile soil conditions that would otherwise lead to their extinction. This expansion of plants' niche, however, requires a high enough rate of niche construction and a high enough initial plant biomass to fuel the positive ecological feedback between plants and their soil environment. On an evolutionary time scale, we consider that the rates of niche construction and nutrient uptake coevolve in plants while a trade-off constrains their values. Different evolutionary outcomes are possible depending on the shape of the trade-off. We show that niche construction results in an evolutionary feedback between plants and their soil environment such that plants partially regulate soil nutrient content. The direct benefit accruing to plants, however, plays a crucial role in the evolutionary advantage of niche construction.

  14. Artificial recharge of groundwater through sprinkling infiltration: impacts on forest soil and the nutrient status and growth of Scots pine.

    PubMed

    Nöjd, Pekka; Lindroos, Antti-Jussi; Smolander, Aino; Derome, John; Lumme, Ilari; Helmisaari, Heljä-Sisko

    2009-05-01

    We studied the chemical changes in forest soil and the effects on Scots pine trees caused by continuous sprinkling infiltration over a period of two years, followed by a recovery period of two years. Infiltration increased the water input onto the forest soil by a factor of approximately 1000. After one year of infiltration, the pH of the organic layer had risen from about 4.0 to 6.7. The NH(4)-N concentration in the organic layer increased, most probably due to the NH(4) ions in the infiltration water, as the net N mineralization rate did not increase. Sprinkling infiltration initiated nitrification in the mineral soil. Macronutrient concentrations generally increased in the organic layer and mineral soil. An exception, however, was the concentration of extractable phosphorus, which decreased strongly during the infiltration period and did not show a recovery within two years. The NO(3)-N and K concentrations had reverted back to their initial level during the two-year recovery period, while the concentrations of Ca, Mg and NH(4)-N were still elevated. Nutrient concentrations in the pine needles increased on the infiltrated plots. However, the needle P concentration increased, despite the decrease in plant-available P in the soil. Despite the increase in the nutrient status, there were some visible signs of chlorosis in the current-year needles after two years of infiltration. The radial growth of the pines more than doubled on the infiltrated plots, which suggests that the very large increase in the water input onto the forest floor had no adverse effect on the functioning of the trees. However, a monitoring period of four years is not sufficient for detecting potential long term detrimental effects on forest trees.

  15. Influence of Acacia trees on soil nutrient levels in arid lands

    NASA Astrophysics Data System (ADS)

    De Boever, Maarten; Gabriels, Donald; Ouessar, Mohamed; Cornelis, Wim

    2014-05-01

    The potential of scattered trees as keystone structures in restoring degraded environments is gaining importance. Scattered trees have strong influence on their abiotic environment, mainly causing changes in microclimate, water budget and soil properties. They often function as 'nursing trees', facilitating the recruitment of other plants. Acacia raddiana is such a keystone species which persists on the edge of the Sahara desert. The study was conducted in a forest-steppe ecosystem in central Tunisia where several reforestation campaigns with Acacia took place. To indentify the impact of those trees on soil nutrients, changes in nutrient levels under scattered trees of three age stages were examined for the upper soil layer (0-10 cm) at five microsites with increasing distance from the trunk. In addition, changes in soil nutrient levels with depth underneath and outside the canopy were determined for the 0-30 cm soil layer. Higher concentrations of organic matter (OM) were found along the gradient from underneath to outside the canopy for large trees compared to medium and small trees, especially at microsites close to the trunk. Levels of soluble K, electrical conductivity (EC), available P, OM, total C and N decreased whereas pH and levels of soluble Mg increased with increasing distance from tree. Levels of soluble Ca and Na remained unchanged along the gradient. At the microsite closest to the trunk a significant decrease in levels of soluble K, EC, OM, available P, total C and N, while a significant increase in pH was found with increasing depth. The concentration of other nutrients remained unchanged or declined not differently underneath compared to outside the canopy with increasing depth. Differences in nutrient levels were largely driven by greater inputs of organic matter under trees. Hence, Acacia trees can affect the productivity and reproduction of understory species with the latter in term an important source of organic matter. This positive feedback mechanism is of crucial importance for soil nutrient conservation and the restoration of degraded arid environments.

  16. Fog and soil weathering as sources of nutrients in a California redwood forest

    Treesearch

    Holly A. Ewing; Kathleen C. Weathers; Amanda M. Lindsey; Pamela H. Templer; Todd E. Dawson; Damon C. Bradbury; Mary K. Firestone; Vanessa K.S. Boukili

    2012-01-01

    Fog water deposition is thought to influence the ecological function of many coastal ecosystems, including coast redwood forests. We examined cation and anion inputs from fog and rain, as well as the fate of these inputs, within a Sonoma County, California, coast redwood forest to elucidate the availability of these ions and some of the biotic and abiotic processes...

  17. Recent land cover history and nutrient retention in riparian wetlands

    USGS Publications Warehouse

    Hogan, D.M.; Walbridge, M.R.

    2009-01-01

    Wetland ecosystems are profoundly affected by altered nutrient and sediment loads received from anthropogenic activity in their surrounding watersheds. Our objective was to compare a gradient of agricultural and urban land cover history during the period from 1949 to 1997, with plant and soil nutrient concentrations in, and sediment deposition to, riparian wetlands in a rapidly urbanizing landscape. We observed that recent agricultural land cover was associated with increases in Nitrogen (N) and Phosphorus (P) concentrations in a native wetland plant species. Conversely, recent urban land cover appeared to alter receiving wetland environmental conditions by increasing the relative availability of P versus N, as reflected in an invasive, but not a native, plant species. In addition, increases in surface soil Fe content suggests recent inputs of terrestrial sediments associated specifically with increasing urban land cover. The observed correlation between urban land cover and riparian wetland plant tissue and surface soil nutrient concentrations and sediment deposition, suggest that urbanization specifically enhances the suitability of riparian wetland habitats for the invasive species Japanese stiltgrass [Microstegium vimenium (Trinius) A. Camus]. ?? 2009 Springer Science+Business Media, LLC.

  18. Late Quaternary eolian dust in surficial deposits of a Colorado Plateau grassland: Controls on distribution and ecologic effects

    USGS Publications Warehouse

    Reynolds, R.L.; Reheis, M.C.; Neff, J.C.; Goldstein, H.; Yount, J.

    2006-01-01

    In a semi-arid, upland setting on the Colorado Plateau that is underlain by nutrient-poor Paleozoic eolian sandstone, alternating episodes of dune activity and soil formation during the late Pleistocene and Holocene have produced dominantly sandy deposits that support grass and shrub communities. These deposits also contain eolian dust, especially in paleosols. Eolian dust in these deposits is indicated by several mineralogic and chemical disparities with local bedrock, but it is most readily shown by the abundance of titaniferous magnetite in the sandy deposits that is absent in local bedrock. Magnetite and some potential plant nutrients (especially, P, K, Na, Mn, and Zn) covary positively with depth (3-4 m) in dune-crest and dune-swale settings. Magnetite abundance also correlates strongly and positively with abundances of other elements (e.g., Ti, Li, As, Th, La, and Sc) that are geochemically stable in these environments. Soil-property variations with depth can be ascribed to three primary factors: (1) shifts in local geomorphic setting; (2) accumulation of relatively high amounts of atmospheric mineral dust inputs during periods of land-surface stability; and (3) variations in dust flux and composition that are likely related to changes in dust-source regions. Shifts in geomorphic setting are revealed by large variations in soil texture and are also expressed by changes in soil chemical and magnetic properties. Variable dust inputs are indicated by both changes in dust flux and changes in relations among magnetic, chemical, and textural properties. The largest of these changes is found in sediment that spans late Pleistocene to early Holocene time. Increased dust inputs to the central Colorado Plateau during this period may have been related to desiccation and shrinkage of large lakes from about 12 to 8 ka in western North America that exposed vast surfaces capable of emitting dust. Soil properties that result from variable dust accumulation and redistribution in these surficial deposits during the late Quaternary are important to modern ecosystem dynamics because some plants today utilize nutrients deposited as long ago as about 12-15 ky and because variations in fine-grained (silt) sediment, including eolian dust, influence soil-moisture capacity.

  19. Dissolved oxygen and its response to eutrophication in a tropical black water river.

    PubMed

    Rixen, Tim; Baum, Antje; Sepryani, Harni; Pohlmann, Thomas; Jose, Christine; Samiaji, Joko

    2010-08-01

    The Siak is a typical, nutrient-poor, well-mixed, black water river in central Sumatra, Indonesia, which owes its brown color to dissolved organic matter (DOM) leached from surrounding, heavily disturbed peat soils. We measured dissolved organic carbon (DOC) and oxygen concentrations along the river, carried out a 36-h experiment in the province capital Pekanbaru and quantified organic matter and nutrient inputs from urban wastewater channels into the Siak. In order to consider the complex dynamic of oxygen in rivers, a box-diffusion model was used to interpret the measured data. The results suggest that the decomposition of soil derived DOM was the main factor influencing the oxygen concentration in the Siak which varied between approximately 100 and 140 micromol l(-1). Additional DOM input caused by wastewater discharges appeared to reduce the oxygen concentrations by approximately 20 micromol l(-1) during the peak-time in household water use in the early morning and in the early evening. Associated enhanced nutrient inputs appear to reduce the impact of the anthropogenic DOM by favoring the photosynthetic production of oxygen in the morning. A reduction of 20 micromol l(-1), which although perhaps not of great significance in Pekanbaru, has strong implications for wastewater management in the fast developing areas downstream Pekanbaru where oxygen concentrations rarely exceed 20 micromol l(-1). Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Soil Microbe Active Community Composition and Capability of Responding to Litter Addition after 12 Years of No Inputs

    PubMed Central

    Brewer, Elizabeth; Yarwood, Rockie; Lajtha, Kate; Myrold, David

    2013-01-01

    One explanation given for the high microbial diversity found in soils is that they contain a large inactive biomass that is able to persist in soils for long periods of time. This persistent microbial fraction may help to buffer the functionality of the soil community during times of low nutrients by providing a reservoir of specialized functions that can be reactivated when conditions improve. A study was designed to test the hypothesis: in soils lacking fresh root or detrital inputs, microbial community composition may persist relatively unchanged. Upon addition of new inputs, this community will be stimulated to grow and break down litter similarly to control soils. Soils from two of the Detrital Input and Removal Treatments (DIRT) at the H. J. Andrews Experimental Forest, the no-input and control treatment plots, were used in a microcosm experiment where Douglas-fir needles were added to soils. After 3 and 151 days of incubation, soil microbial DNA and RNA was extracted and characterized using quantitative PCR (qPCR) and 454 pyrosequencing. The abundance of 16S and 28S gene copies and RNA copies did not vary with soil type or amendment; however, treatment differences were observed in the abundance of archaeal ammonia-oxidizing amoA gene abundance. Analysis of ∼110,000 bacterial sequences showed a significant change in the active (RNA-based) community between day 3 and day 151, but microbial composition was similar between soil types. These results show that even after 12 years of plant litter exclusion, the legacy of community composition was well buffered against a dramatic disturbance. PMID:23263952

  1. Relating management practices and nutrient export in agricultural watersheds of the United States

    USGS Publications Warehouse

    Sprague, Lori A.; Gronberg, Jo Ann M.

    2012-01-01

    Relations between riverine export (load) of total nitrogen (N) and total phosphorus (P) from 133 large agricultural watersheds in the United States and factors affecting nutrient transport were evaluated using empirical regression models. After controlling for anthropogenic inputs and other landscape factors affecting nutrient transport-such as runoff, precipitation, slope, number of reservoirs, irrigated area, and area with subsurface tile drains-the relations between export and the area in the Conservation Reserve Program (CRP) (N) and conservation tillage (P) were positive. Additional interaction terms indicated that the relations between export and the area in conservation tillage (N) and the CRP (P) progressed from being clearly positive when soil erodibility was low or moderate, to being close to zero when soil erodibility was higher, to possibly being slightly negative only at the 90th to 95th percentile of soil erodibility values. Possible explanations for the increase in nutrient export with increased area in management practices include greater transport of soluble nutrients from areas in conservation tillage; lagged response of stream quality to implementation of management practices because of nitrogen transport in groundwater, time for vegetative cover to mature, and/or prior accumulation of P in soils; or limitations in the management practice and stream monitoring data sets. If lags are occurring, current nutrient export from agricultural watersheds may still be reflecting the influence of agricultural land-use practices that were in place before the implementation of these management practices.

  2. Loss of nutrients from terrestrial ecosystems to streams and the atmosphere following land use change in Amazonia

    NASA Astrophysics Data System (ADS)

    Davidson, Eric A.; Neill, Christopher; Krusche, Alex V.; Ballester, Victoria V. R.; Markewitz, Daniel; Figueiredo, Ricardo de O.

    Rates of deforestation in the Amazon region have been accelerating, but the quantity and timing of nutrient losses from forested and deforested ecosystems are poorly understood. This paper investigates the broad variation in soil properties of the Amazon Basin as they influence transfers of plant nutrients from the terrestrial biosphere to the atmosphere and the aquatic biosphere. The dominant lowland soils are highly weathered Oxisols and Ultisols, but significant areas of Alfisols also exist, resulting in a wide range of weatherable primary minerals. Despite this considerable variation among Amazonian soils, a common feature in most mature lowland Amazonian forests is a conservative P cycle and excess N availability. In cattle pastures and secondary forests, however, low rates of internal terrestrial N cycling, low N export to streams, and low gaseous N emissions from soils are common, due to significant previous losses of N through repeated fire. Export of P to streams may increase or remain nearly undetectable after forest-to-pasture conversion, depending on soil type. Oxisols exhibit very low P export, whereas increased P export to pasture streams has been observed in Ultisols of western Amazonia. Calcium is mostly retained in terrestrial ecosystems following deforestation, although increased inputs to streams can be detected when background fluxes are naturally low. Because soil mineralogy and soil texture are both variable and important, the effects of land-use change on nutrient export to aquatic ecosystems and to the atmosphere must be understood within the context of varying soil properties across the Amazon Basin.

  3. Trees, soils, and food security

    PubMed Central

    Sanchez, P. A.; Buresh, R. J.; Leakey, R. R. B.

    1997-01-01

    Trees have a different impact on soil properties than annual crops, because of their longer residence time, larger biomass accumulation, and longer-lasting, more extensive root systems. In natural forests nutrients are efficiently cycled with very small inputs and outputs from the system. In most agricultural systems the opposite happens. Agroforestry encompasses the continuum between these extremes, and emerging hard data is showing that successful agroforestry systems increase nutrient inputs, enhance internal flows, decrease nutrient losses and provide environmental benefits: when the competition for growth resources between the tree and the crop component is well managed. The three main determinants for overcoming rural poverty in Africa are (i) reversing soil fertility depletion, (ii) intensifying and diversifying land use with high-value products, and (iii) providing an enabling policy environment for the smallholder farming sector. Agroforestry practices can improve food production in a sustainable way through their contribution to soil fertility replenishment. The use of organic inputs as a source of biologically-fixed nitrogen, together with deep nitrate that is captured by trees, plays a major role in nitrogen replenishment. The combination of commercial phosphorus fertilizers with available organic resources may be the key to increasing and sustaining phosphorus capital. High-value trees, 'Cinderella' species, can fit in specific niches on farms, thereby making the system ecologically stable and more rewarding economically, in addition to diversifying and increasing rural incomes and improving food security. In the most heavily populated areas of East Africa, where farm size is extremely small, the number of trees on farms is increasing as farmers seek to reduce labour demands, compatible with the drift of some members of the family into the towns to earn off-farm income. Contrary to the concept that population pressure promotes deforestation, there is evidence that demonstrates that there are conditions under which increasing tree planting is occurring on farms in the tropics through successful agroforestry as human population density increases.

  4. Aeolian dust in Colorado Plateau soils: Nutrient inputs and recent change in source

    PubMed Central

    Reynolds, Richard; Belnap, Jayne; Reheis, Marith; Lamothe, Paul; Luiszer, Fred

    2001-01-01

    Aeolian dust (windblown silt and clay) is an important component in arid-land ecosystems because it may contribute to soil formation and furnish essential nutrients. Few geologic surfaces, however, have been characterized with respect to dust-accumulation history and resultant nutrient enrichment. We have developed a combination of methods to identify the presence of aeolian dust in arid regions and to evaluate the roles of this dust in ecosystem processes. Unconsolidated sandy sediment on isolated surfaces in the Canyonlands region of the Colorado Plateau differs greatly in mineralogical and chemical composition from associated bedrock, mainly aeolian sandstone. Detrital magnetite in the surficial deposits produces moderately high values of magnetic susceptibility, but magnetite is absent in nearby bedrock. A component of the surficial deposits must be aeolian to account for the abundance of magnetite, which formed originally in far-distant igneous rocks. Particle-size analysis suggests that the aeolian dust component is typically as much as 20–30%. Dust inputs have enriched the sediments in many elements, including P, Mg, Na, K, and Mo, as well as Ca, at sites where bedrock lacks calcite cement. Soil-surface biologic crusts are effective dust traps that apparently record a change in dust sources over the past several decades. Some of the recently fallen dust may result from human disturbance of land surfaces that are far from the Canyonlands, such as the Mojave Desert. Some land-use practices in the study area have the potential to deplete soil fertility by means of wind-erosion removal of aeolian silt. PMID:11390965

  5. Aeolian dust in Colorado Plateau soils: Nutrient inputs and recent change in source

    USGS Publications Warehouse

    Reynolds, R.; Belnap, Jayne; Lamothe, Paul; Luiszer, Fred

    2001-01-01

    Aeolian dust (windblown silt and clay) is an important component in arid-land ecosystems because it may contribute to soil formation and furnish essential nutrients. Few geologic surfaces, however, have been characterized with respect to dust-accumulation history and resultant nutrient enrichment. We have developed a combination of methods to identify the presence of aeolian dust in arid regions and to evaluate the roles of this dust in ecosystem processes. Unconsolidated sandy sediment on isolated surfaces in the Canyonlands region of the Colorado Plateau differs greatly in mineralogical and chemical composition from associated bedrock, mainly aeolian sandstone. Detrital magnetite in the surficial deposits produces moderately high values of magnetic susceptibility, but magnetite is absent in nearby bedrock. A component of the surficial deposits must be aeolian to account for the abundance of magnetite, which formed originally in far-distant igneous rocks. Particle-size analysis suggests that the aeolian dust component is typically as much as 20a??30%. Dust inputs have enriched the sediments in many elements, including P, Mg, Na, K, and Mo, as well as Ca, at sites where bedrock lacks calcite cement. Soil-surface biologic crusts are effective dust traps that apparently record a change in dust sources over the past several decades. Some of the recently fallen dust may result from human disturbance of land surfaces that are far from the Canyonlands, such as the Mojave Desert. Some land-use practices in the study area have the potential to deplete soil fertility by means of wind-erosion removal of aeolian silt.

  6. Climate Variability Impacts on Watershed Nutrient Delivery and Reservoir Production

    NASA Astrophysics Data System (ADS)

    White, J. D.; Prochnow, S. J.; Zygo, L. M.; Byars, B. W.

    2005-05-01

    Reservoirs in agricultural dominated watersheds tend to exhibit pulse-system behavior especially if located in climates dominated by summer convective precipitation inputs. Concentration and bulk mass of nutrient and sediment inputs into reservoir systems vary in terms of timing and magnitude of delivery from watershed sources to reservoirs under these climate conditions. Reservoir management often focuses on long-term average inputs without considering short and long-term impacts of variation in loading. In this study we modeled a watershed-reservoir system to assess how climate variability affects reservoir primary production through shifts in external loading and internal recycling of limiting nutrients. The Bosque watershed encompasses 423,824 ha in central Texas which delivers water to Lake Waco, a 2900 ha reservoir that is the primary water source for the city of Waco and surrounding areas. Utilizing the Soil Water Assessment Tool for the watershed and river simulations and the CE-Qual-2e model for the reservoir, hydrologic and nutrient dynamics were simulated for a 10 year period encompassing two ENSO cycles. The models were calibrated based on point measurement of water quality attributes for a two year time period. Results indicated that watershed delivery of nutrients was affected by the presence and density of small flood-control structure in the watershed. However, considerable nitrogen and phosphorus loadings were derived from soils in the upper watershed which have had long-term waste-application from concentrated animal feeding operations. During El Niño years, nutrient and sediment loads increased by 3 times above non-El Niño years. The simulated response within the reservoir to these nutrient and sediment loads had both direct and indirect. Productivity evaluated from chlorophyll a and algal biomass increased under El Niño conditions, however species composition shifts were found with an increase in cyanobacteria dominance. In non-El Niño years, species composition was more evenly distributed. At the longer time scale, El Niño events with accompanying increase in nutrient loads were followed by years in which productivity declined below levels predicted solely by nutrient ratios. This was due to subtle shifts in organic matter decomposition where productive years are followed by increases in refractory material which sequesters nutrients and reduces internal loading.

  7. Modelling of plant-soil carbon, nitrogen and phosphorus cycling in semi-natural terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Davies, Jessica; Quinton, John; Rowe, Ed; Tipping, Ed

    2013-04-01

    In recent centuries pools and fluxes of C, N and P in natural and semi-natural UK ecosystems have been transformed by atmospheric pollution leading to: acidification; eutrophication of surface waters; loss of biodiversity; and increased greenhouse gas emissions. In addition, climate change now threatens to perturb these systems further. Understanding in this field is vital in determining the consequences of artificial nutrient enrichment and land use and climate change, and mitigating against their effects. The N14CP model has been recently developed to assess the temporal responses of soil C, N and P pools to nutrient enrichment in semi-natural ecosystems, and explore the connections between these nutrients. It is a dynamic, mechanistic model, driven by: climate; CO2, N (fixation and pollutant deposition), and P (weathering and atmospheric deposition) inputs; and plant cover type. It explicitly links C, N, and P in both plants and soils, using plant element stoichiometry as the primary constraint. Net primary production, and plant/soil element pools, are calculated over time, and output fluxes of dissolved organic and inorganic, and gaseous, forms of C, N, and P produced. Radiocarbon data are used to constrain Soil Organic Matter (SOM) turnover. The SOM is represented as three pools, undergoing first-order decomposition reactions with turn-over rates ranging from 2 to 1000 years. The N14CP modelling methodology is discussed and its calibration and verification using observations from 200 northern European sites presented. Whilst the primary period of interest with respect to nutrient enrichment is from the industrial revolution onwards, plant-soil C, N and P are simulated at these sites for a period spanning from the start of the Holocene (to provide a spin-up period) to the present day. Clearly, during this time span land cover and usage will have changed at these sites, and histories of these changes are used as an input to the model. The influence of these land cover and management histories in determining current C N and P pools is also explored.

  8. Nutrient removal using biosorption activated media: preliminary biogeochemical assessment of an innovative stormwater infiltration basin.

    PubMed

    O'Reilly, Andrew M; Wanielista, Martin P; Chang, Ni-Bin; Xuan, Zhemin; Harris, Willie G

    2012-08-15

    Soil beneath a stormwater infiltration basin receiving runoff from a 23 ha predominantly residential watershed in north-central Florida, USA, was amended using biosorption activated media (BAM) to study the effectiveness of this technology in reducing inputs of nitrogen and phosphorus to groundwater. The functionalized soil amendment BAM consists of a 1.0:1.9:4.1 mixture (by volume) of tire crumb (to increase sorption capacity), silt and clay (to increase soil moisture retention), and sand (to promote sufficient infiltration), which was applied to develop an innovative stormwater infiltration basin utilizing nutrient reduction and flood control sub-basins. Comparison of nitrate/chloride (NO(3)(-)/Cl(-)) ratios for the shallow groundwater indicates that prior to using BAM, NO(3)(-) concentrations were substantially influenced by nitrification or variations in NO(3)(-) input. In contrast, for the new basin utilizing BAM, NO(3)(-)/Cl(-) ratios indicate minor nitrification and NO(3)(-) losses with the exception of one summer sample that indicated a 45% loss. Biogeochemical indicators (denitrifier activity derived from real-time polymerase chain reaction and variations in major ions, nutrients, dissolved and soil gases, and stable isotopes) suggest that NO(3)(-) losses are primarily attributable to denitrification, whereas dissimilatory nitrate reduction to ammonium is a minor process. Denitrification was likely occurring intermittently in anoxic microsites in the unsaturated zone, which was enhanced by the increased soil moisture within the BAM layer and resultant reductions in surface/subsurface oxygen exchange that produced conditions conducive to increased denitrifier activity. Concentrations of total dissolved phosphorus and orthophosphate (PO(4)(3-)) were reduced by more than 70% in unsaturated zone soil water, with the largest decreases in the BAM layer where sorption was the most likely mechanism for removal. Post-BAM PO(4)(3-)/Cl(-) ratios for shallow groundwater indicate predominantly minor increases and decreases in PO(4)(3-) with the exception of one summer sample that indicated a 50% loss. Differences in nutrient variations between the unsaturated zone and shallow groundwater may be the result of the intensity and duration of nutrient removal processes and mixing ratios with water that had undergone little biogeochemical transformation. Observed nitrogen and phosphorus losses demonstrate the potential, as well as the future research needs to improve performance, of the innovative stormwater infiltration basin using BAM for providing passive, economical, stormwater nutrient-treatment technology to support green infrastructure. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Urbanization and nutrient retention in freshwater riparian wetlands

    USGS Publications Warehouse

    Hogan, D.M.; Walbridge, M.R.

    2007-01-01

    Urbanization can degrade water quality and alter watershed hydrology, with profound effects on the structure and function of both riparian wetlands (RWs) and aquatic ecosystems downstream. We used freshwater RWs in Fairfax County, Virginia, USA, as a model system to examine: (1) the effects of increasing urbanization (indexed by the percentage of impervious surface cover [%ISC] in the surrounding watershed) on nitrogen (N) and phosphorus (P) concentrations in surface soils and plant tissues, soil P saturation, and soil iron (Fe) chemistry; and (2) relationships between RW soil and plant nutrient chemistries vs. the physical and biotic integrity of adjacent streams. Soil total P and NaOH-extractable P (representing P bound to aluminum [Al] and Fe hydrous oxides) varied significantly but nonlinearly with %ISC (r2 = 0.69 and 0.57, respectively); a similar pattern was found for soil P saturation but not for soil total N. Relationships were best described by second-order polynomial equations. Riparian wetlands appear to receive greater P loads in moderately (8.6-13.3% ISC) than in highly (25.1-29.1% ISC) urbanized watersheds. These observations are consistent with alterations in watershed hydrology that occur with increasing urbanization, directing water and nutrient flows away from natural RWs. Significant increases in total and crystalline soil Fe (r 2 = 0.57 and 0.53, respectively) and decreases in relative soil Fe crystallinity with increasing %ISC suggest the mobilization and deposition of terrestrial sediments in RWs, likely due to construction activities in the surrounding watershed. Increases in RW plant tissue nutrient concentrations and %ISC in the surrounding watershed were negatively correlated with standard indices of the physical and biotic integrity of adjacent streams. In combination, these data suggest that nutrient and sediment inputs associated with urbanization and storm-water management are important variables that affect wetland ecosystem services, such as water quality improvement, in urbanizing landscapes. ?? 2007 by the Ecological Society of America.

  10. Changes in sub-soil river water quality upon its open storage-a case study.

    PubMed

    Mohanty, A K; Satpathy, K K; Prasad, M V R

    2017-08-01

    A study was carried out to investigate the changes in the physicochemical and biological properties of sub-soil river water upon its storage in a man-made reservoir. Palar sub-soil and reservoir water samples were collated fortnightly for a period of 5 years (2010-2014). The open reservoir is used as a reliable raw water source for condenser cooling systems and for the demineralizing (DM) plant input of Fast Breeder Test Reactor (FBTR), Madras Atomic Power Station (MAPS), and other laboratories at Kalpakkam, southeast coast of India. Relatively high nutrient concentration was observed in the Palar sub-soil water, and a significant reduction in average concentration (μmol l -1 ) of phosphate (Palar 1.92; open reservoir 1.54) and nitrate (Palar 9.78; open reservoir 5.67) was observed from Palar to open reservoir. Substantial increase in pH (Palar 8.05; open reservoir 8.45), dissolved oxygen (mg l -1 ) (Palar 6.07; open reservoir 8.47), and chlorophyll-a (mg m -3 ) (Palar 1.66; open reservoir 8.43) values were noticed from the Palar sub-soil water to open reservoir water. It is concluded that sub-soil water with higher nutrient concentrations when stored openly, exposing to the sun, resulted in growth of plants, planktonic, and macrophytes, which led to substantial deterioration in water quality from its utility point of view as a condenser cooling medium and raw water input for DM plant.

  11. Last-Century Increases in Intrinsic Water-Use Efficiency of Grassland Communities Have Occurred over a Wide Range of Vegetation Composition, Nutrient Inputs, and Soil pH.

    PubMed

    Köhler, Iris H; Macdonald, Andy J; Schnyder, Hans

    2016-02-01

    Last-century climate change has led to variable increases of the intrinsic water-use efficiency (Wi; the ratio of net CO2 assimilation to stomatal conductance for water vapor) of trees and C3 grassland ecosystems, but the causes of the variability are not well understood. Here, we address putative drivers underlying variable Wi responses in a wide range of grassland communities. Wi was estimated from carbon isotope discrimination in archived herbage samples from 16 contrasting fertilizer treatments in the Park Grass Experiment, Rothamsted, England, for the 1915 to 1929 and 1995 to 2009 periods. Changes in Wi were analyzed in relation to nitrogen input, soil pH, species richness, and functional group composition. Treatments included liming as well as phosphorus and potassium additions with or without ammonium or nitrate fertilizer applications at three levels. Wi increased between 11% and 25% (P < 0.001) in the different treatments between the two periods. None of the fertilizers had a direct effect on the change of Wi (ΔWi). However, soil pH (P < 0.05), species richness (P < 0.01), and percentage grass content (P < 0.01) were significantly related to ΔWi. Grass-dominated, species-poor plots on acidic soils showed the largest ΔWi (+14.7 μmol mol(-1)). The ΔWi response of these acidic plots was probably related to drought effects resulting from aluminum toxicity on root growth. Our results from the Park Grass Experiment show that Wi in grassland communities consistently increased over a wide range of nutrient inputs, soil pH, and plant community compositions during the last century. © 2016 American Society of Plant Biologists. All Rights Reserved.

  12. Last-Century Increases in Intrinsic Water-Use Efficiency of Grassland Communities Have Occurred over a Wide Range of Vegetation Composition, Nutrient Inputs, and Soil pH1[OPEN

    PubMed Central

    Köhler, Iris H.; Macdonald, Andy J.; Schnyder, Hans

    2016-01-01

    Last-century climate change has led to variable increases of the intrinsic water-use efficiency (Wi; the ratio of net CO2 assimilation to stomatal conductance for water vapor) of trees and C3 grassland ecosystems, but the causes of the variability are not well understood. Here, we address putative drivers underlying variable Wi responses in a wide range of grassland communities. Wi was estimated from carbon isotope discrimination in archived herbage samples from 16 contrasting fertilizer treatments in the Park Grass Experiment, Rothamsted, England, for the 1915 to 1929 and 1995 to 2009 periods. Changes in Wi were analyzed in relation to nitrogen input, soil pH, species richness, and functional group composition. Treatments included liming as well as phosphorus and potassium additions with or without ammonium or nitrate fertilizer applications at three levels. Wi increased between 11% and 25% (P < 0.001) in the different treatments between the two periods. None of the fertilizers had a direct effect on the change of Wi (ΔWi). However, soil pH (P < 0.05), species richness (P < 0.01), and percentage grass content (P < 0.01) were significantly related to ΔWi. Grass-dominated, species-poor plots on acidic soils showed the largest ΔWi (+14.7 μmol mol−1). The ΔWi response of these acidic plots was probably related to drought effects resulting from aluminum toxicity on root growth. Our results from the Park Grass Experiment show that Wi in grassland communities consistently increased over a wide range of nutrient inputs, soil pH, and plant community compositions during the last century. PMID:26620525

  13. Spatial and Temporal Variations of Crop Fertilization and Soil Fertility in the Loess Plateau in China from the 1970s to the 2000s

    PubMed Central

    Wang, Xiaoying; Tong, Yanan; Gao, Yimin; Gao, Pengcheng; Liu, Fen; Zhao, Zuoping; Pang, Yan

    2014-01-01

    Increased fertilizer input in agricultural systems during the last few decades has resulted in large yield increases, but also in environmental problems. We used data from published papers and a soil testing and fertilization project in Shaanxi province during the years 2005 to 2009 to analyze chemical fertilizer inputs and yields of wheat (Triticum aestivum L.) and maize (Zea mays L.) on the farmers' level, and soil fertility change from the 1970s to the 2000s in the Loess Plateau in China. The results showed that in different regions of the province, chemical fertilizer NPK inputs and yields of wheat and maize increased. With regard to soil nutrient balance, N and P gradually changed from deficit to surplus levels, while K deficiency became more severe. In addition, soil organic matter, total nitrogen, alkali-hydrolysis nitrogen, available phosphorus and available potassium increased during the same period. The PFP of N, NP and NPK on wheat and maize all decreased from the 1970s to the 2000s as a whole. With the increase in N fertilizer inputs, both soil total nitrogen and alkali-hydrolysis nitrogen increased; P fertilizer increased soil available phosphorus and K fertilizer increased soil available potassium. At the same time, soil organic matter, total nitrogen, alkali-hydrolysis nitrogen, available phosphorus and available potassium all had positive impacts on crop yields. In order to promote food safety and environmental protection, fertilizer requirements should be assessed at the farmers' level. In many cases, farmers should be encouraged to reduce nitrogen and phosphate fertilizer inputs significantly, but increase potassium fertilizer and organic manure on cereal crops as a whole. PMID:25380401

  14. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives

    PubMed Central

    Prasad, Ram; Bhattacharyya, Atanu; Nguyen, Quang D.

    2017-01-01

    Nanotechnology monitors a leading agricultural controlling process, especially by its miniature dimension. Additionally, many potential benefits such as enhancement of food quality and safety, reduction of agricultural inputs, enrichment of absorbing nanoscale nutrients from the soil, etc. allow the application of nanotechnology to be resonant encumbrance. Agriculture, food, and natural resources are a part of those challenges like sustainability, susceptibility, human health, and healthy life. The ambition of nanomaterials in agriculture is to reduce the amount of spread chemicals, minimize nutrient losses in fertilization and increased yield through pest and nutrient management. Nanotechnology has the prospective to improve the agriculture and food industry with novel nanotools for the controlling of rapid disease diagnostic, enhancing the capacity of plants to absorb nutrients among others. The significant interests of using nanotechnology in agriculture includes specific applications like nanofertilizers and nanopesticides to trail products and nutrients levels to increase the productivity without decontamination of soils, waters, and protection against several insect pest and microbial diseases. Nanotechnology may act as sensors for monitoring soil quality of agricultural field and thus it maintain the health of agricultural plants. This review covers the current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture. PMID:28676790

  15. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives.

    PubMed

    Prasad, Ram; Bhattacharyya, Atanu; Nguyen, Quang D

    2017-01-01

    Nanotechnology monitors a leading agricultural controlling process, especially by its miniature dimension. Additionally, many potential benefits such as enhancement of food quality and safety, reduction of agricultural inputs, enrichment of absorbing nanoscale nutrients from the soil, etc. allow the application of nanotechnology to be resonant encumbrance. Agriculture, food, and natural resources are a part of those challenges like sustainability, susceptibility, human health, and healthy life. The ambition of nanomaterials in agriculture is to reduce the amount of spread chemicals, minimize nutrient losses in fertilization and increased yield through pest and nutrient management. Nanotechnology has the prospective to improve the agriculture and food industry with novel nanotools for the controlling of rapid disease diagnostic, enhancing the capacity of plants to absorb nutrients among others. The significant interests of using nanotechnology in agriculture includes specific applications like nanofertilizers and nanopesticides to trail products and nutrients levels to increase the productivity without decontamination of soils, waters, and protection against several insect pest and microbial diseases. Nanotechnology may act as sensors for monitoring soil quality of agricultural field and thus it maintain the health of agricultural plants. This review covers the current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture.

  16. Fatal attraction: vegetation responses to nutrient inputs attract herbivores to infectious anthrax carcass sites

    PubMed Central

    Turner, Wendy C.; Kausrud, Kyrre L.; Krishnappa, Yathin S.; Cromsigt, Joris P. G. M.; Ganz, Holly H.; Mapaure, Isaac; Cloete, Claudine C.; Havarua, Zepee; Küsters, Martina; Getz, Wayne M.; Stenseth, Nils Chr.

    2014-01-01

    Parasites can shape the foraging behaviour of their hosts through cues indicating risk of infection. When cues for risk co-occur with desired traits such as forage quality, individuals face a trade-off between nutrient acquisition and parasite exposure. We evaluated how this trade-off may influence disease transmission in a 3-year experimental study of anthrax in a guild of mammalian herbivores in Etosha National Park, Namibia. At plains zebra (Equus quagga) carcass sites we assessed (i) carcass nutrient effects on soils and grasses, (ii) concentrations of Bacillus anthracis (BA) on grasses and in soils, and (iii) herbivore grazing behaviour, compared with control sites, using motion-sensing camera traps. We found that carcass-mediated nutrient pulses improved soil and vegetation, and that BA is found on grasses up to 2 years after death. Host foraging responses to carcass sites shifted from avoidance to attraction, and ultimately to no preference, with the strength and duration of these behavioural responses varying among herbivore species. Our results demonstrate that animal carcasses alter the environment and attract grazing hosts to parasite aggregations. This attraction may enhance transmission rates, suggesting that hosts are limited in their ability to trade off nutrient intake with parasite avoidance when relying on indirect cues. PMID:25274365

  17. Ambient and potential denitrification rates in marsh soils of Northeast Creek and Bass Harbor Marsh watersheds, Mount Desert Island, Maine

    USGS Publications Warehouse

    Huntington, Thomas G.; Culbertson, Charles W.; Duff, John H.

    2012-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park on Mount Desert Island, Maine, because of the potential problems of degradation of water quality and eutrophication in estuaries. Degradation of water quality has been observed at Bass Harbor Marsh estuary in the park but only minimally in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, and have identified shallow groundwater as an additional potential source of nutrients. Previous studies at Acadia National Park have assumed that a certain fraction of the nitrogen input was removed through microbial denitrification, but rates of denitrification (natural or maximum potential) in marsh soils have not been determined. The U.S. Geological Survey, in cooperation with Acadia National Park, measured in-place denitrification rates in marsh soils in Northeast Creek and in Bass Harbor Marsh watersheds during summer 2008 and summer 2009. Denitrification was measured under ambient conditions as well as after additions of inorganic nitrogen and glucose. In-place denitrification rates under ambient conditions were similar to those reported for other coastal wetlands, although they were generally lower than those reported for salt marshes having high ambient concentrations of nitrate (NO3). Denitrification rates generally increased by at least an order of magnitude following NO3 additions, with or without glucose (as the carbohydrate) additions, compared with the ambient treatments that received no nutrient additions. The treatment that added both glucose and NO3 resulted in a variety of denitrification responses when compared with the addition of NO3 alone. In most cases, the addition of glucose to a given rate of NO3 addition resulted in higher rates of denitrification. These variable responses indicate that the amount of labile carbohydrates can limit denitrification even if NO3 is present. For most sites in both watersheds, the maximum denitrification rates ranged from of 150 to 900 micromoles of nitrous oxide per square meter per hour. These rates were equivalent to the release of 37 to 221 grams of nitrogen per square meter per year. Weak positive correlations were observed for soil temperature and for measured ammonium concentration in groundwater. Weak negative correlations were observed between denitrification rate and water level and specific conductance. The rates of denitrification in Bass Harbor Marsh and Northeast Creek under ambient conditions, both of which were relatively low, indicate that NO3 availability is low in both systems. It is evident from the addition of combined treatments of NO3 and glucose that these marsh soils are capable of comparatively high rates of denitrification, therefore, estuarine eutrophication is not a result of nitrogen inputs to marsh soils that are in excess of the denitrification capacity in these systems. If terrestrial inputs to the estuary are the cause of the observed eutrophic condition in Bass Harbor Marsh, then these inputs to the estuary must bypass the marsh in channelized surface flow, or perhaps they circumvent the marsh in shallow groundwater seepage along subsurface pathways that enter the estuary directly.

  18. A mechanistic soil biogeochemistry model with explicit representation of microbial and macrofaunal activities and nutrient cycles

    NASA Astrophysics Data System (ADS)

    Fatichi, Simone; Manzoni, Stefano; Or, Dani; Paschalis, Athanasios

    2016-04-01

    The potential of a given ecosystem to store and release carbon is inherently linked to soil biogeochemical processes. These processes are deeply connected to the water, energy, and vegetation dynamics above and belowground. Recently, it has been advocated that a mechanistic representation of soil biogeochemistry require: (i) partitioning of soil organic carbon (SOC) pools according to their functional role; (ii) an explicit representation of microbial dynamics; (iii) coupling of carbon and nutrient cycles. While some of these components have been introduced in specialized models, they have been rarely implemented in terrestrial biosphere models and tested in real cases. In this study, we combine a new soil biogeochemistry model with an existing model of land-surface hydrology and vegetation dynamics (T&C). Specifically the soil biogeochemistry component explicitly separates different litter pools and distinguishes SOC in particulate, dissolved and mineral associated fractions. Extracellular enzymes and microbial pools are explicitly represented differentiating the functional roles of bacteria, saprotrophic and mycorrhizal fungi. Microbial activity depends on temperature, soil moisture and litter or SOC stoichiometry. The activity of macrofauna is also modeled. Nutrient dynamics include the cycles of nitrogen, phosphorous and potassium. The model accounts for feedbacks between nutrient limitations and plant growth as well as for plant stoichiometric flexibility. In turn, litter input is a function of the simulated vegetation dynamics. Root exudation and export to mycorrhiza are computed based on a nutrient uptake cost function. The combined model is tested to reproduce respiration dynamics and nitrogen cycle in few sites where data were available to test plausibility of results across a range of different metrics. For instance in a Swiss grassland ecosystem, fine root, bacteria, fungal and macrofaunal respiration account for 40%, 23%, 33% and 4% of total belowground respiration, respectively. Root exudation and carbon export to mycorrhizal represent about 7% of plant Net Primary Production. The model allows exploring the temporal dynamics of respiration fluxes from the different ecosystem components and designing virtual experiments on the controls exerted by environmental variables and/or soil microbes and mycorrhizal associations on soil carbon storage, plant growth, and nutrient leaching.

  19. Development of natural treatment system consisting of black soil and Kentucky bluegrass for the post-treatment of anaerobically digested strong wastewater.

    PubMed

    Chen, Xiaochen; Fukushi, Kensuke

    2016-03-01

    To develop a sound post-treatment process for anaerobically-digested strong wastewater, a novel natural treatment system comprising two units is put forward. The first unit, a trickling filter, provides for further reduction of biochemical oxygen demand and adjustable nitrification. The subsequent soil-plant unit aims at removing and recovering the nutrients nitrogen (N), phosphorus (P) and potassium (K). As a lab-scale feasibility study, a soil column test was conducted, in which black soil and valuable Kentucky bluegrass were integrated to treat artificial nutrient-enriched wastewater. After a long-term operation, the nitrification function was well established in the top layers, despite the need for an improved denitrification process prior to discharge. P and K were retained by the soil through distinct mechanisms. Since they either partially or totally remained in plant-available forms in the soil, indirect nutrient reuse could be achieved. As for Kentucky bluegrass, it displayed better growth status when receiving wastewater, with direct recovery of 8%, 6% and 14% of input N, P and K, respectively. Furthermore, the indispensable role of Kentucky bluegrass for better treatment performance was proved, as it enhanced the cell-specific nitrification potential of the soil nitrifying microorganisms inhabiting the rhizosphere. After further upgrade, the proposed system is expected to become a new solution for strong wastewater pollution. Copyright © 2015. Published by Elsevier B.V.

  20. [Effects of different fertilization patterns on soil enzyme activities in greenhouse vegetable field.

    PubMed

    Wang, Wen Feng; Li, Chun Hua; Huang, Shao Wen; Gao, Wei; Tang, Ji Wei

    2016-03-01

    A fixed-site greenhouse vegetable fertilization experiment was carried out to study effects of 6 fertilization patterns on soil enzyme activities in Tianjin City, Northern China. The results showed that during the growing stages of tomato, activities of soil α-glucosidase, β-xylosidase, β-glucosidase, β-cellobiosidase, chitinase and phosphatase in different treatments all increased first and then decreased, while soil urease activities increased first and then became flat. Compared with the chemical nitrogen fertilizer treatment, soil enzyme activities were much higher in treatments of combined application of organic materials with chemical fertilizers, and rose with the increasing input of pig manure and especially the application of straw. A significant positive correlation was found between soil enzyme activities, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) contents at different growing stages of tomato. Under the condition of same nutrient input, the combined application of inorganic fertilizers with organic materials, especially a certain amount of corn straw, was capable of increasing soil enzyme activities and keeping soil fertility and sustainability in greenhouse vegetable production.

  1. Assessing the radar rainfall estimates in watershed-scale water quality model

    USDA-ARS?s Scientific Manuscript database

    Watershed-scale water quality models are effective science-based tools for interpreting change in complex environmental systems that affect hydrology cycle, soil erosion and nutrient fate and transport in watershed. Precipitation is one of the primary input data to achieve a precise rainfall-runoff ...

  2. Methods for estimating litter decomposition. Chapter 8

    Treesearch

    Noah J. Karberg; Neal A. Scott; Christian P. Giardina

    2008-01-01

    Litterfall in terrestrial ecosystems represents the primary pathway for nutrient return to soil. Heterotrophic metabolism, facilitated through comminution by small insects and leaching during precipitation events, results in the release of plant litter carbon as CO2 into the atmosphere. The balance between litter inputs and heterotrophic litter...

  3. Legacy effects overwhelm the short-term effects of exotic plant invasion and restoration on soil microbial community structure, enzyme activities, and nitrogen cycling.

    PubMed

    Elgersma, Kenneth J; Ehrenfeld, Joan G; Yu, Shen; Vor, Torsten

    2011-11-01

    Plant invasions can have substantial consequences for the soil ecosystem, altering microbial community structure and nutrient cycling. However, relatively little is known about what drives these changes, making it difficult to predict the effects of future invasions. In addition, because most studies compare soils from uninvaded areas to long-established dense invasions, little is known about the temporal dependence of invasion impacts. We experimentally manipulated forest understory vegetation in replicated sites dominated either by exotic Japanese barberry (Berberis thunbergii), native Viburnums, or native Vacciniums, so that each vegetation type was present in each site-type. We compared the short-term effect of vegetation changes to the lingering legacy effects of the previous vegetation type by measuring soil microbial community structure (phospholipid fatty acids) and function (extracellular enzymes and nitrogen mineralization). We also replaced the aboveground litter in half of each plot with an inert substitute to determine if changes in the soil microbial community were driven by aboveground or belowground plant inputs. We found that after 2 years, the microbial community structure and function was largely determined by the legacy effect of the previous vegetation type, and was not affected by the current vegetation. Aboveground litter removal had only weak effects, suggesting that changes in the soil microbial community and nutrient cycling were driven largely by belowground processes. These results suggest that changes in the soil following either invasion or restoration do not occur quickly, but rather exhibit long-lasting legacy effects from previous belowground plant inputs.

  4. Use of urban composts for the regeneration of a burnt Mediterranean soil: a laboratory approach.

    PubMed

    Cellier, Antoine; Francou, Cédric; Houot, Sabine; Ballini, Christine; Gauquelin, Thierry; Baldy, Virginie

    2012-03-01

    In Mediterranean region, forest fires are a major problem leading to the desertification of the environment. Use of composts is considered as a solution for soil and vegetation rehabilitation. In this study, we determined under laboratory conditions the effects of three urban composts and their mode of application (laid on the soil surface or mixed into the soil) on soil restoration after fire: a municipal waste compost (MWC), a compost of sewage sludge mixed with green waste (SSC) and a green waste compost (GWC). Carbon (C) and nitrogen (N) mineralisation, total microbial biomass, fungal biomass and soil characteristics were measured during 77-day incubations in microcosms. The impact of composts input on hydrological behaviour related to erodibility was estimated by measuring runoff, retention and percolation (i.e. infiltration) of water using a rainfall simulator under laboratory conditions. Input of composts increased organic matter and soil nutrient content, and enhanced C and N mineralisation and total microbial biomass throughout the incubations, whereas it increased sporadically fungal biomass. For all these parameters, the MWC induced the highest improvement while GWC input had no significant effect compared to the control. Composts mixed with soil weakly limited runoff and infiltration whereas composts laid at the soil surface significantly reduced runoff and increased percolation and retention, particularly with the MWC. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Carbon dynamics of contrasting agricultural practices

    NASA Astrophysics Data System (ADS)

    Ghee, Claire; Hallett, Paul; Neilson, Roy; Robinson, David; Paterson, Eric

    2013-04-01

    Application of organic amendments can improve soil quality and provide crop nutrients. To optimise these agricultural benefits from organic applications, the capacity of microbe-driven nutrient and carbon cycling must be understood and exploited. Consideration is therefore required of the complex interactions between the rhizosphere, microbial biomass and organic amendment. We hypothesise that the labile C present in root exudates of plants increases the mineralisation of organic matter in soil, constituting a mechanism to promote nutrient acquisition. This mechanism is known as the 'priming effect', but is poorly understood in the context of agricultural carbon and nutrient management. Field data from the Centre of Sustainable Cropping (CSC) research platform (Dundee, Scotland, UK) are utilised to build an understanding of soil C and N fluxes between contrasting agricultural practices. The field site uses a split-plot design to compare (i) compost amended soils with reduced tillage and chemical inputs and (ii) conventionally managed soils, reflective of current UK commercial arable practice. Significant differences (p= <0.001) were identified between compost amended and conventionally managed soils at field-scale with respect to soil microbial biomass (SMB), total organic carbon (TOC) and mineral nitrogen. Investigation into the priming effect within compost amended soils was subsequently undertaken under laboratory conditions. Stable isotope analysis and measurements of soil biotic parameters were used to quantify priming resulting from Spring Barley (Hordeum vulgare cv. Optic) cultivation for (i) unamended and (ii) municipal compost incorporated soils. Compost treatments comprised amendments of 25, 50 and 150 t/Ha and planted soils were compared with unplanted controls. Soil mesocosms were maintained under controlled environmental conditions within labelling chambers supplied continuously with 13C-depleted CO2. Throughout a 41-day incubation period, soil CO2 efflux and dissolved organic carbon (DOC) was collected for quantification and 13C analysis. Following the incubation period, soils and plant material were harvested for nitrogen, carbon and δ13C analyses. Isotopic analyses allowed partitioning of the contributions of plant- and soil-derived organic matter sources to SMB, DOC and soil respiration. The results demonstrate a strong influence of plant-microbe interactions in mediating the mobilisation and mineralisation of stabilised organic fractions in soil, constituting a significant feedback to crop productivity through increased nutrient cycling.

  6. Underestimation of soil carbon stocks by Yasso07, Q, and CENTURY models in boreal forest linked to overlooking site fertility

    NASA Astrophysics Data System (ADS)

    Ťupek, Boris; Ortiz, Carina; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-04-01

    The soil organic carbon stock (SOC) changes estimated by the most process based soil carbon models (e.g. Yasso07, Q and CENTURY), needed for reporting of changes in soil carbon amounts for the United Nations Framework Convention on Climate Change (UNFCCC) and for mitigation of anthropogenic CO2 emissions by soil carbon management, can be biased if in a large mosaic of environments the models are missing a key factor driving SOC sequestration. To our knowledge soil nutrient status as a missing driver of these models was not tested in previous studies. Although, it's known that models fail to reconstruct the spatial variation and that soil nutrient status drives the ecosystem carbon use efficiency and soil carbon sequestration. We evaluated SOC stock estimates of Yasso07, Q and CENTURY process based models against the field data from Swedish Forest Soil National Inventories (3230 samples) organized by recursive partitioning method (RPART) into distinct soil groups with underlying SOC stock development linked to physicochemical conditions. These models worked for most soils with approximately average SOC stocks, but could not reproduce higher measured SOC stocks in our application. The Yasso07 and Q models that used only climate and litterfall input data and ignored soil properties generally agreed with two third of measurements. However, in comparison with measurements grouped according to the gradient of soil nutrient status we found that the models underestimated for the Swedish boreal forest soils with higher site fertility. Accounting for soil texture (clay, silt, and sand content) and structure (bulk density) in CENTURY model showed no improvement on carbon stock estimates, as CENTURY deviated in similar manner. We highlighted the mechanisms why models deviate from the measurements and the ways of considering soil nutrient status in further model development. Our analysis suggested that the models indeed lack other predominat drivers of SOC stabilization presumably the different role of microbes in carbon mineralization in relation to nitrogen availability and the organo - mineral carbon associations. Our results imply that the role of soil nutrient status as a regulator of carbon mineralization has to be re-evaluated, because we should have models that have their steady state SOC stocks at right level in order to predict future SOC change.

  7. Dissolved rainfall inputs and streamwater outputs in an undisturbed watershed on highly weathered soils in the Brazilian cerrado

    NASA Astrophysics Data System (ADS)

    Markewitz, Daniel; Resende, Julio C. F.; Parron, Lucilia; Bustamante, Mercedes; Klink, Carlos A.; Figueiredo, Ricardo De O.; Davidson, Eric A.

    2006-08-01

    The cerrados of Brazil cover 2 million km2. Despite the extent of these seasonally dry ecosystems, little watershed research has been focused in this region, particularly relative to the watersheds of the Amazon Basin. The cerrado shares pedogenic characteristics with the Amazon Basin in draining portions of the Brazilian shield and in possessing Oxisols over much of the landscape. The objective of this research was to quantify the stream water geochemical relationships of an undisturbed 1200 ha cerrado watershed for comparison to river geochemistry in the Amazon. Furthermore, this undisturbed watershed was used to evaluate stream discharge versus dissolved ion concentration relationships. This research was conducted in the Córrego Roncador watershed of the Reserva Ecológica do Roncador (RECOR) of the Instituto Brasileiro Geografia e Estatística (IBGE) near Brasilia, Brazil. Bulk precipitation and stream water chemistry were analysed between May 1998 and May 2000. The upland soils of this watershed are nutrient poor possessing total stocks of exchangeable elements in the upper 1 m of 81 +/- 13, 77 +/- 4, 25 +/- 3, and 1 +/- 1 kg ha-1 of K, Ca, Mg, and P, respectively. Bulk precipitation inputs of dissolved nutrients for this watershed are low and consistent with previous estimates. The nutrient-poor soils of this watershed, however, increase the relative importance of precipitation for nutrient replenishment to vegetation during episodes of ecosystem disturbance. Stream water dissolved loads were extremely dilute with conductivities ranging from 4 to 10 μS cm-1 during periods of high- and low-flow, respectively. Despite the low concentrations in this stream, geochemical relationships were similar to other Amazonian streams draining shield geologies. Discharge-concentration relationships for Ca and Mg in these highly weathered soils developed from igneous rocks of the Brazilian shield demonstrated a significant negative relationship indicating a continued predominance of groundwater baseflow contributions these cationic elements.

  8. Molecular and Microscopic Insights into the Formation of Soil Organic Matter in a Red Pine Rhizosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dohnalkova, Alice C.; Tfaily, Malak M.; Smith, A. Peyton

    Microbially-derived carbon inputs to soils play an important role in forming soil organic matter (SOM), but detailed knowledge of basic mechanisms of carbon (C) cycling, such as stabilization of organic C compounds originating from rhizodeposition, is scarce. This study aimed to investigate the stability of rhizosphere-produced carbon components in a model laboratory mesocosm of Pinus resinosa grown in a designed mineral soil mix with limited nutrients. We utilized a suite of advanced imaging and molecular techniques to obtain a molecular-level identification of newly-formed SOM compounds, and considered implications regarding their degree of long-term persistence. The microbes in this controlled, nutrient-limitedmore » system, without pre-existing organic matter, produced extracellular polymeric substances that formed associations with nutrient-bearing minerals and contributed to the microbial mineral weathering process. Electron microscopy revealed unique ultrastructural residual signatures of biogenic C compounds, and the increased presence of an amorphous organic phase associated with the mineral phase was evidenced by X-ray diffraction. Here, these findings provide insight into the formation of SOM products in ecosystems, and show that the plant- and microbially-derived material associated with mineral matrices may be important components in current soil carbon models.« less

  9. Molecular and Microscopic Insights into the Formation of Soil Organic Matter in a Red Pine Rhizosphere

    DOE PAGES

    Dohnalkova, Alice C.; Tfaily, Malak M.; Smith, A. Peyton; ...

    2017-08-26

    Microbially-derived carbon inputs to soils play an important role in forming soil organic matter (SOM), but detailed knowledge of basic mechanisms of carbon (C) cycling, such as stabilization of organic C compounds originating from rhizodeposition, is scarce. This study aimed to investigate the stability of rhizosphere-produced carbon components in a model laboratory mesocosm of Pinus resinosa grown in a designed mineral soil mix with limited nutrients. We utilized a suite of advanced imaging and molecular techniques to obtain a molecular-level identification of newly-formed SOM compounds, and considered implications regarding their degree of long-term persistence. The microbes in this controlled, nutrient-limitedmore » system, without pre-existing organic matter, produced extracellular polymeric substances that formed associations with nutrient-bearing minerals and contributed to the microbial mineral weathering process. Electron microscopy revealed unique ultrastructural residual signatures of biogenic C compounds, and the increased presence of an amorphous organic phase associated with the mineral phase was evidenced by X-ray diffraction. Here, these findings provide insight into the formation of SOM products in ecosystems, and show that the plant- and microbially-derived material associated with mineral matrices may be important components in current soil carbon models.« less

  10. Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation

    NASA Astrophysics Data System (ADS)

    Vanlauwe, B.; Descheemaeker, K.; Giller, K. E.; Huising, J.; Merckx, R.; Nziguheba, G.; Wendt, J.; Zingore, S.

    2014-12-01

    Intensification of smallholder agriculture in sub-Saharan Africa is necessary to address rural poverty and natural resource degradation. Integrated Soil Fertility Management (ISFM) is a means to enhance crop productivity while maximizing the agronomic efficiency (AE) of applied inputs, and can thus contribute to sustainable intensification. ISFM consists of a set of best practices, preferably used in combination, including the use of appropriate germplasm, the appropriate use of fertilizer and of organic resources, and good agronomic practices. The large variability in soil fertility conditions within smallholder farms is also recognised within ISFM, including soils with constraints beyond those addressed by fertilizer and organic inputs. The variable biophysical environments that characterize smallholder farming systems have profound effects on crop productivity and AE and targeted application of limited agro-inputs and management practices is necessary to enhance AE. Further, management decisions depend on the farmer's resource endowments and production objectives. In this paper we discuss the "local adaptation" component of ISFM and how this can be conceptualized within an ISFM framework, backstopped by analysis of AE at plot and farm level. At plot level, a set of four constraints to maximum AE is discussed in relation to "local adaptation": soil acidity, secondary nutrient and micro-nutrient (SMN) deficiencies, physical constraints, and drought stress. In each of these cases, examples are presented whereby amendments and/or practices addressing these have a significantly positive impact on fertilizer AE, including mechanistic principles underlying these effects. While the impact of such amendments and/or practices is easily understood for some practices (e.g., the application of SMNs where these are limiting), for others, more complex interactions with fertilizer AE can be identified (e.g., water harvesting under varying rainfall conditions). At farm scale, adjusting fertilizer applications within-farm soil fertility gradients has the potential to increase AE compared with blanket recommendations, in particular where fertility gradients are strong. In the final section, "local adaption" is discussed in relation to scale issues and decision support tools are evaluated as a means to create a better understanding of complexity at farm level and to communicate best scenarios for allocating agro-inputs and management practices within heterogeneous farming environments.

  11. Disentangling the long-term effects of disturbance on soil biogeochemistry in a wet tropical forest ecosystem.

    PubMed

    Gutiérrez Del Arroyo, Omar; Silver, Whendee L

    2018-04-01

    Climate change is increasing the intensity of severe tropical storms and cyclones (also referred to as hurricanes or typhoons), with major implications for tropical forest structure and function. These changes in disturbance regime are likely to play an important role in regulating ecosystem carbon (C) and nutrient dynamics in tropical and subtropical forests. Canopy opening and debris deposition resulting from severe storms have complex and interacting effects on ecosystem biogeochemistry. Disentangling these complex effects will be critical to better understand the long-term implications of climate change on ecosystem C and nutrient dynamics. In this study, we used a well-replicated, long-term (10 years) canopy and debris manipulation experiment in a wet tropical forest to determine the separate and combined effects of canopy opening and debris deposition on soil C and nutrients throughout the soil profile (1 m). Debris deposition alone resulted in higher soil C and N concentrations, both at the surface (0-10 cm) and at depth (50-80 cm). Concentrations of NaOH-organic P also increased significantly in the debris deposition only treatment (20-90 cm depth), as did NaOH-total P (20-50 cm depth). Canopy opening, both with and without debris deposition, significantly increased NaOH-inorganic P concentrations from 70 to 90 cm depth. Soil iron concentrations were a strong predictor of both C and P patterns throughout the soil profile. Our results demonstrate that both surface- and subsoils have the potential to significantly increase C and nutrient storage a decade after the sudden deposition of disturbance-related organic debris. Our results also show that these effects may be partially offset by rapid decomposition and decreases in litterfall associated with canopy opening. The significant effects of debris deposition on soil C and nutrient concentrations at depth (>50 cm), suggest that deep soils are more dynamic than previously believed, and can serve as sinks of C and nutrients derived from disturbance-induced pulses of organic matter inputs. © 2017 John Wiley & Sons Ltd.

  12. The response of soil microbial communities to variation in annual precipitation depends on soil nutritional status in an oligotrophic desert

    PubMed Central

    Montiel-González, Cristina; Tapia-Torres, Yunuen; Souza, Valeria

    2017-01-01

    Background Soil microbial communities (SMC) play a central role in the structure and function of desert ecosystems. However, the high variability of annual precipitation could results in the alteration of SMC and related biological processes depending on soil water potential. The nature of the physiological adjustments made by SMC in order to obtain energy and nutrients remains unclear under different soil resource availabilities in desert ecosystems. In order to examine this dynamic, the present study examined the effects of variation in annual precipitation on physiological adjustments by the SMC across two vegetation-soil systems of different soil organic matter input in an oligotrophic desert ecosystem. Methods We collected soil samples in the Cuatro Ciénegas Basin (Mexico) under two vegetation covers: rosetophylous scrub (RS) and grassland (G), that differ in terms of quantity and quality of organic matter. Collections were conducted during the years 2011, 2012, 2013 and 2014, over which a noticeable variation in the annual precipitation occurred. The ecoenzymatic activity involved in the decomposition of organic matter, and the concentration of dissolved, available and microbial biomass nutrients, were determined and compared between sites and years. Results In 2011, we observed differences in bacterial taxonomic composition between the two vegetation covers. The lowest values of dissolved, available and microbial nutrients in both cover types were found in 2012. The G soil showed higher values of dissolved and available nutrients in the wet years. Significant positive correlations were detected between precipitation and the ratios Cmic:Nmic and Cmic:Pmic in the RS soil and Cmic:Pmic and Nmic:Pmic in the G soil. The slopes of the regression with Cmic and Nmic were higher in the G soil and lower in the RS soil. Moreover, the SMC under each vegetation cover were co-limited by different nutrients and responded to the sum of water stress and nutrient limitation. Discussion Soil community within both sites (RS and G) may be vulnerable to drought. However, the community of the site with lower resources (RS) is well adapted to acquire P resources by ecoenzyme upregulation during years with adequate precipitation, suggesting that this community is resilient after drought occurs. Under the Global Climate Change scenarios for desert ecosystems that predict reduced annual precipitation and an increased intensity and frequency of torrential rains and drought events, the soil microbial communities of both sites could be vulnerable to drought through C and P co-limitation and reallocation of resources to physiological acclimatization strategies in order to survive. PMID:29134149

  13. The response of soil microbial communities to variation in annual precipitation depends on soil nutritional status in an oligotrophic desert.

    PubMed

    Montiel-González, Cristina; Tapia-Torres, Yunuen; Souza, Valeria; García-Oliva, Felipe

    2017-01-01

    Soil microbial communities (SMC) play a central role in the structure and function of desert ecosystems. However, the high variability of annual precipitation could results in the alteration of SMC and related biological processes depending on soil water potential. The nature of the physiological adjustments made by SMC in order to obtain energy and nutrients remains unclear under different soil resource availabilities in desert ecosystems. In order to examine this dynamic, the present study examined the effects of variation in annual precipitation on physiological adjustments by the SMC across two vegetation-soil systems of different soil organic matter input in an oligotrophic desert ecosystem. We collected soil samples in the Cuatro Ciénegas Basin (Mexico) under two vegetation covers: rosetophylous scrub (RS) and grassland (G), that differ in terms of quantity and quality of organic matter. Collections were conducted during the years 2011, 2012, 2013 and 2014, over which a noticeable variation in the annual precipitation occurred. The ecoenzymatic activity involved in the decomposition of organic matter, and the concentration of dissolved, available and microbial biomass nutrients, were determined and compared between sites and years. In 2011, we observed differences in bacterial taxonomic composition between the two vegetation covers. The lowest values of dissolved, available and microbial nutrients in both cover types were found in 2012. The G soil showed higher values of dissolved and available nutrients in the wet years. Significant positive correlations were detected between precipitation and the ratios Cmic:Nmic and Cmic:Pmic in the RS soil and Cmic:Pmic and Nmic:Pmic in the G soil. The slopes of the regression with Cmic and Nmic were higher in the G soil and lower in the RS soil. Moreover, the SMC under each vegetation cover were co-limited by different nutrients and responded to the sum of water stress and nutrient limitation. Soil community within both sites (RS and G) may be vulnerable to drought. However, the community of the site with lower resources (RS) is well adapted to acquire P resources by ecoenzyme upregulation during years with adequate precipitation, suggesting that this community is resilient after drought occurs. Under the Global Climate Change scenarios for desert ecosystems that predict reduced annual precipitation and an increased intensity and frequency of torrential rains and drought events, the soil microbial communities of both sites could be vulnerable to drought through C and P co-limitation and reallocation of resources to physiological acclimatization strategies in order to survive.

  14. Nutrient sources and transport in the Missouri River Basin, with emphasis on the effects of irrigation and reservoirs

    USGS Publications Warehouse

    Brown, J.B.; Sprague, L.A.; Dupree, J.A.

    2011-01-01

    SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River.

  15. Nutrient Sources and Transport in the Missouri River Basin, with Emphasis on the Effects of Irrigation and Reservoirs1

    PubMed Central

    Brown, Juliane B; Sprague, Lori A; Dupree, Jean A

    2011-01-01

    Abstract SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River. PMID:22457581

  16. Climate and root proximity as dominant drivers of enzyme activity and C and N isotopic signature in soil

    NASA Astrophysics Data System (ADS)

    Stock, Svenja; Köster, Moritz; Dippold, Michaela; Boy, Jens; Matus, Francisco; Merino, Carolina; Nájera, Francisco; Spielvogel, Sandra; Gorbushina, Anna; Kuzyakov, Yakov

    2017-04-01

    The Chilean ecosystems provide a unique study area to investigate biotic controls on soil organic matter (SOM) decomposition and mineral weathering depending on climate (from hyper arid to temperate humid). Microorganisms play a crucial role in the SOM decomposition, nutrient release and cycling. By means of extracellular enzymes microorganisms break down organic compounds and provide nutrients for plants. Soil moisture (abiotic factor) and root carbon (biotic factor providing easily available energy source for microorganisms), are important factors for microbial decomposition of SOM and show strong gradients along the investigated climatic gradient. A high input of root carbon increases microbial activity and enzyme production, and facilitates SOM breakdown and nutrient release The aim of this study was to determine the potential enzymatic SOM decomposition and nutrient release depending on root proximity and precipitation. C and N contents, δ13C and δ15N values, and kinetics (Vmax, Km) of six extracellular enzymes, responsible for C, N, and P cycles, were quantified in vertical (soil depth) and horizontal (from roots to bulk soil) gradients in two climatic regions: within a humid temperate forest and a semiarid open forest. The greater productivity of the temperate forest was reflected by higher C and N contents compared to the semiarid forest. Regression lines between δ13C and -[ln(%C)] showed a stronger isotopic fractionation from top- to subsoil at the semiarid open forest, indicating a faster SOM turnover compared to the humid temperate forest. This is the result of more favorable soil conditions (esp. temperature and smaller C/N ratios) in the semiarid forest. Depth trends of δ15N values indicated N limitation in both soils, though the limitation at the temperate site was stronger. The activity of enzymes degrading cellulose and hemicellulose increased with C content. Activity of enzymes involved in C, N and P cycles decreased from top- to subsoil and with distance to roots. Chitinase and acid phosphatase activities increased with increasing C contents and indicated a faster substrate turnover in soil under the temperate forest compared to the semiarid forest. In contrast, Tyrosin-aminopeptidase activities indicated a faster substrate turnover under semiarid forest than the temperate forest, and strongly increased with increasing N content. We conclude that the N availability and SOM turnover under semiarid open forest is higher than under humid temperate forest. The enzyme activities are depending on depth only indirectly and are driven mainly by soil C content, which is directly affected by root carbon input.

  17. Below the Disappearing Marshes of an Urban Estuary ...

    EPA Pesticide Factsheets

    Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wastewater nutrients are suspected to be an important contributing cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen isotopes, and soil surveys to examine the temporal relationships between human population growth and soil nitrogen; and we evaluated soil structure with computer-aided tomography, surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear strength to examine differences among disappearing (Black Bank and Big Egg) and stable marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the 1930s when wastewater treatment plants (WWTPs) were first installed. Current WWTPs nutrient loads to Jamaica Bay are approximately 13 995 kg N/d and 2767 kg P/d. At Black Bank, the biomass and abundance of roots and rhizomes and percentage of organic matter on soil were significantly lower, rhizomes larger in diameter, carbon dioxide emission rates and peat particle density significantly greater, and soil strength significantly lower compared to the stable JoCo Marsh, suggesting Black Bank has elevated d

  18. Carbon and nitrogen inputs affect soil microbial community structure and function

    NASA Astrophysics Data System (ADS)

    Liu, X. J. A.; Mau, R. L.; Hayer, M.; Finley, B. K.; Schwartz, E.; Dijkstra, P.; Hungate, B. A.

    2016-12-01

    Climate change has been projected to increase energy and nutrient inputs to soils, affecting soil organic matter (SOM) decomposition (priming effect) and microbial communities. However, many important questions remain: how do labile C and/or N inputs affect priming and microbial communities? What is the relationship between them? To address these questions, we applied N (NH4NO3 ; 100 µg N g-1 wk-1), C (13C glucose; 1000 µg C g-1 wk-1), C+N to four different soils for five weeks. We found: 1) N showed no effect, whereas C induced the greatest priming, and C+N had significantly lower priming than C. 2) C and C+N additions increased the relative abundance of actinobacteria, proteobacteria, and firmicutes, but reduced relative abundance of acidobacteria, chloroflexi, verrucomicrobia, planctomycetes, and gemmatimonadetes. 3) Actinobacteria and proteobacteria increased relative abundance over time, but most others decreased over time. 4) substrate additions (N, C, C+N) significantly reduced microbial alpha diversity, which also decreased over time. 5) For beta diversity, C and C+N formed significantly different communities compare to the control and N treatments. Overtime, microbial community structure significantly altered. Four soils have drastically different community structures. These results indicate amounts of substrate C were determinant factors in modulating the rate of SOM decomposition and microbial communities. Variable responses of different microbial communities to labile C and N inputs indicate that complex relationships between priming and microbial functions. In general, we demonstrate that energy inputs can quickly accelerate SOM decomposition whereas extra N input can slow this process, though both had similar microbial community responses.

  19. Fungal-to-bacterial dominance of soil detrital food-webs: Consequences for biogeochemistry

    NASA Astrophysics Data System (ADS)

    Rousk, Johannes; Frey, Serita

    2015-04-01

    Resolving fungal and bacterial groups within the microbial decomposer community is thought to capture disparate microbial life strategies, associating bacteria with an r-selected strategy for carbon (C) and nutrient use, and fungi with a K-selected strategy. Additionally, food-web models have established a widely held belief that the bacterial decomposer pathway in soil supports high turnover rates of easily available substrates, while the slower fungal pathway supports the decomposition of more complex organic material, thus characterising the biogeochemistry of the ecosystem. Three field-experiments to generate gradients of SOC-quality were assessed. (1) the Detritus Input, Removal, and Trenching - DIRT - experiment in a temperate forest in mixed hardwood stands at Harvard Forest LTER, US. There, experimentally adjusted litter input and root input had affected the SOC quality during 23 years. (2) field-application of 14-C labelled glucose to grassland soils, sampled over the course of 13 months to generate an age-gradient of SOM (1 day - 13 months). (3) The Park Grass Experiment at Rothamsted, UK, where 150-years continuous N-fertilisation (0, 50, 100, 150 kg N ha-1 y-1) has affected the quality of SOM in grassland soils. A combination of carbon stable and radio isotope studies, fungal and bacterial growth and biomass measurements, and C and N mineralisation (15N pool dilution) assays were used to investigate how SOC-quality influenced fungal and bacterial food-web pathways and the implications this had for C and nutrient turnover. There was no support that decomposer food-webs dominated by bacteria support high turnover rates of easily available substrates, while slower fungal-dominated decomposition pathways support the decomposition of more complex organic material. Rather, an association between high quality SOC and fungi emerges from the results. This suggests that we need to revise our basic understanding for soil microbial communities and the processes they regulate in soil.

  20. Seasonality, Rather than Nutrient Addition or Vegetation Types, Influenced Short-Term Temperature Sensitivity of Soil Organic Carbon Decomposition

    PubMed Central

    He, Feng-Peng; Wang, Wei

    2016-01-01

    The response of microbial respiration from soil organic carbon (SOC) decomposition to environmental changes plays a key role in predicting future trends of atmospheric CO2 concentration. However, it remains uncertain whether there is a universal trend in the response of microbial respiration to increased temperature and nutrient addition among different vegetation types. In this study, soils were sampled in spring, summer, autumn and winter from five dominant vegetation types, including pine, larch and birch forest, shrubland, and grassland, in the Saihanba area of northern China. Soil samples from each season were incubated at 1, 10, and 20°C for 5 to 7 days. Nitrogen (N; 0.035 mM as NH4NO3) and phosphorus (P; 0.03 mM as P2O5) were added to soil samples, and the responses of soil microbial respiration to increased temperature and nutrient addition were determined. We found a universal trend that soil microbial respiration increased with increased temperature regardless of sampling season or vegetation type. The temperature sensitivity (indicated by Q10, the increase in respiration rate with a 10°C increase in temperature) of microbial respiration was higher in spring and autumn than in summer and winter, irrespective of vegetation type. The Q10 was significantly positively correlated with microbial biomass and the fungal: bacterial ratio. Microbial respiration (or Q10) did not significantly respond to N or P addition. Our results suggest that short-term nutrient input might not change the SOC decomposition rate or its temperature sensitivity, whereas increased temperature might significantly enhance SOC decomposition in spring and autumn, compared with winter and summer. PMID:27070782

  1. Effects of ammonium on elemental nutrition of red spruce and indicator plants grown in acid soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoelldampf, B.; Barker, A.V.

    Decline of high elevation red spruce forests in the northeastern United States has been related to acid rain, particularly with respect to the deposition of nitrogenous materials. Ca and Mg deficiencies may be induced by input of air-borne nitrogenous nutrients into the forest ecosystem. This research investigated the effects of N nutrition on mineral nutrition of red spruce and radish, as an indicator plant, grown in acid forest soil. Red spruce and radishes in the greenhouse were treated with complete nutrient solutions with 15 mM N supplied as 0, 3.75, 7.5, 11.25, or 15 mM NH[sub 4][sup +] with themore » remainder being supplied as NO[sub 3][sup [minus

  2. Eleven years of crop diversification alters decomposition dynamics of litter mixtures incubated with soil

    DOE PAGES

    McDaniel, M. D.; Grandy, A. S.; Tiemann, L. K.; ...

    2016-08-11

    Agricultural crop rotations have been shown to increase soil carbon (C), nitrogen (N), and microbial biomass. The mechanisms behind these increases remain unclear, but may be linked to the diversity of crop residue inputs to soil organic matter (SOM). Here, we used a residue mixture incubation to examine how variation in long-term diversity of plant communities in agroecosystems influences decomposition of residue mixtures, thus providing a comparison of the effects of plant diversification on decomposition in the long term (via crop rotation) and short term (via residue mixtures). Three crop residue mixtures, ranging in diversity from two to four species,more » were incubated for 360 d with soils from five crop rotations, ranging from monoculture corn (mC) to a complex five-crop rotation. In response, we measured fundamental soil pools and processes underlying C and N cycling. These included soil respiration, inorganic N, microbial biomass, and extracellular enzymes. We hypothesized that soils with more diverse cropping histories would show greater synergistic mixture effects than mC. For most variables (except extracellular enzymes), crop rotation history, or the long-term history of plant diversity in the field, had a stronger effect on soil processes than mixture composition. In contrast to our hypothesis, the mC soil had nearly three and seven times greater synergistic mixture effects for respiration and microbial biomass N, respectively, compared with soils from crop rotations. This was due to the low response of the mC soils to poor quality residues (corn and wheat), likely resulting from a lack of available C and nutrients to cometabolize these residues. These results indicate that diversifying crop rotations in agricultural systems alter the decomposition dynamics of new residue inputs, which may be linked to the benefits of increasing crop rotation diversity on soil nutrient cycling, SOM dynamics, and yields.« less

  3. Negative effects of excessive soil phosphorus on floristic quality in Ohio wetlands

    USGS Publications Warehouse

    Stapanian, Martin A.; Schumacher, William; Gara, Brian; Monteith, Steve

    2016-01-01

    Excessive soil nutrients, often from agricultural runoff, have been shown to negatively impact some aspects of wetland plant communities. We measured plant-available phosphorus (Mehlich-3: MeP) in soil samples, and assessed the vascular plant community and habitat degradation at 27 emergent and 13 forested wetlands in Ohio, USA. We tested two hypotheses: (1) that an index of vegetation biological integrity based on floristic quality was lower in wetlands with higher concentrations of MeP in the soil, and (2) that higher concentrations of MeP occurred in wetlands with more habitat degradation (i.e., lower quality), as estimated by a rapid assessment method. Hypothesis (1) was supported for emergent, but not for forested wetlands. Hypothesis (2) was marginally supported (P = 0.09) for emergent, but not supported for forested wetlands. The results indicate that the effect of concentration of phosphorus in wetland soils and the quality of plant species assemblages in wetlands is more complex than shown in site-specific studies and may depend in part on degree of disturbance in the surrounding watershed and dominant wetland vegetation type. Woody plants in forested wetlands are typically longer lived than herbaceous species in the understory and emergent wetlands, and may persist despite high inputs of phosphorus. Further, the forested wetlands were typically surrounded by a wide band of forest vegetation, which may provide a barrier against sedimentation and the associated phosphorus inputs to the wetland interior. Our results indicate that inferences about soil nutrient conditions made from rapid assessment methods for assessing wetland habitat condition may not be reliable.

  4. Fatal attraction: vegetation responses to nutrient inputs attract herbivores to infectious anthrax carcass sites.

    PubMed

    Turner, Wendy C; Kausrud, Kyrre L; Krishnappa, Yathin S; Cromsigt, Joris P G M; Ganz, Holly H; Mapaure, Isaac; Cloete, Claudine C; Havarua, Zepee; Küsters, Martina; Getz, Wayne M; Stenseth, Nils Chr

    2014-11-22

    Parasites can shape the foraging behaviour of their hosts through cues indicating risk of infection. When cues for risk co-occur with desired traits such as forage quality, individuals face a trade-off between nutrient acquisition and parasite exposure. We evaluated how this trade-off may influence disease transmission in a 3-year experimental study of anthrax in a guild of mammalian herbivores in Etosha National Park, Namibia. At plains zebra (Equus quagga) carcass sites we assessed (i) carcass nutrient effects on soils and grasses, (ii) concentrations of Bacillus anthracis (BA) on grasses and in soils, and (iii) herbivore grazing behaviour, compared with control sites, using motion-sensing camera traps. We found that carcass-mediated nutrient pulses improved soil and vegetation, and that BA is found on grasses up to 2 years after death. Host foraging responses to carcass sites shifted from avoidance to attraction, and ultimately to no preference, with the strength and duration of these behavioural responses varying among herbivore species. Our results demonstrate that animal carcasses alter the environment and attract grazing hosts to parasite aggregations. This attraction may enhance transmission rates, suggesting that hosts are limited in their ability to trade off nutrient intake with parasite avoidance when relying on indirect cues. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. Nitrogen Flux in Watersheds: The Role of Soil Distributions and Climate in Nitrogen Flux to the Coastal Ecosystems

    NASA Astrophysics Data System (ADS)

    Showers, W. J.; Reyes, M. M.; Genna, B. J.

    2009-12-01

    Quantifying the flux of nitrate from different landscape sources in watersheds is important to understand the increased flux of nitrogen to coastal ecosystems. Recent technological advances in chemical sensor networks has demonstrated that chemical variability in aquatic environments are chronically under-sampled, and that many nutrient monitoring programs with monthly or daily sampling rates are inadequate to characterize the dominate seasonal, daily or semi-diurnal fluxes in watersheds. The RiverNet program has measured the nitrate flux in the Neuse River Basin, NC on a 15 minute interval over the past eight years. Significant diurnal variation has been observed in nitrate concentrations during high and low flow periods associated with waste water treatment plants in urban watersheds that are not present in agricultural watersheds. Discharge and N flux in the basin also has significant inter-annual variations associated with El Nino oscillations modified by the North Atlantic oscillation. Positive JMA and NAO indexes are associated with increased groundwater levels, nutrient fluxes, and estuary fish kills. To understand how climate oscillation affect discharge and nutrient fluxes, we have monitored runoff/drainages and groundwater inputs adjacent to a large waste application field over the past 4 years, and used the nitrate inputs as a tracer. Surface water run off is well correlated to precipitation patterns and is the largest nutrient flux into the river. Groundwater inputs are variable spatially and temporally, and are controlled by geology and groundwater levels. Hydric soil spatial distributions are an excellent predictor of nutrient transport across landscapes, and is related to the distribution of biogeochemical “hotspots” The isotopic composition of oxygen and nitrogen in dissolved nitrate indicate that sources change with discharge state, and that atmospherically deposited nitrogen is only important to river fluxes in forested and urban watersheds. These results also indicate that the contribution of wastewater treatment plants from urban watersheds has been greatly under-estimated in current models. Prediction of future changes in discharge and nutrient flux by the modeling of climate oscillations has important implications for water resources policy and drought management for public policy and utility managers.

  6. Impacts of Cover Crops on Water and Nutrient Dynamics in Agroecosystems

    NASA Astrophysics Data System (ADS)

    Williard, K.; Swanberg, S.; Schoonover, J.

    2013-05-01

    Intensive cropping systems of corn (Zea Mays L.) and soybeans (Glycine max) are commonly leaky systems with respect to nitrogen (N). Reactive N outputs from agroecosystems can contribute to eutrophication and hypoxic zones in downstream water bodies and greenhouse gas (N2O) emissions. Incorporating cover crops into temperate agroecosystem rotations has been promoted as a tool to increase nitrogen use efficiency and thus limit reactive N outputs to the environment. Our objective was determine how cereal rye (Secale cereal L.) and annual ryegrass (Lolium multiflorum) cover crops impact nutrient and soil water dynamics in an intensive corn and soybean cropping rotation in central Illinois. Cover crops were planted in mid to late October and terminated in early April prior to corn or soybean planting. In the spring just prior to cover crop termination, soil moisture levels were lower in the cover crop plots compared to no cover plots. This can be a concern for the subsequent crop in relatively dry years, which the Midwestern United States experienced in 2012. No cover plots had greater nutrient leaching below the rooting zone compared to cover crop areas, as expected. The cover crops were likely scavenging nutrients during the fall and early spring and should provide nutrients to the subsequent crop via decomposition and mineralization of the cover crop residue. Over the long term, cover crop systems should produce greater inputs and cycling of carbon and N, increasing the productivity of crops due to the long-term accumulation of soil organic matter. This study demonstrates that there may be short term trade-offs in reduced soil moisture levels that should be considered alongside the long term nutrient scavenging and recycling benefits of cover crops.

  7. African crop yield reductions due to increasingly unbalanced Nitrogen and Phosphorus consumption

    NASA Astrophysics Data System (ADS)

    van der Velde, Marijn; Folberth, Christian; Balkovič, Juraj; Ciais, Philippe; Fritz, Steffen; Janssens, Ivan A.; Obersteiner, Michael; See, Linda; Skalský, Rastislav; Xiong, Wei; Peñuealas, Josep

    2014-05-01

    The impact of soil nutrient depletion on crop production has been known for decades, but robust assessments of the impact of increasingly unbalanced nitrogen (N) and phosphorus (P) application rates on crop production are lacking. Here, we use crop response functions based on 741 FAO maize crop trials and EPIC crop modeling across Africa to examine maize yield deficits resulting from unbalanced N:P applications under low, medium, and high input scenarios, for past (1975), current, and future N:P mass ratios of respectively, 1:0.29, 1:0.15, and 1:0.05. At low N inputs (10 kg/ha), current yield deficits amount to 10% but will increase up to 27% under the assumed future N:P ratio, while at medium N inputs (50 kg N/ha), future yield losses could amount to over 40%. The EPIC crop model was then used to simulate maize yields across Africa. The model results showed relative median future yield reductions at low N inputs of 40%, and 50% at medium and high inputs, albeit with large spatial variability. Dominant low-quality soils such as Ferralsols, which are strongly adsorbing P, and Arenosols with a low nutrient retention capacity, are associated with a strong yield decline, although Arenosols show very variable crop yield losses at low inputs. Optimal N:P ratios, i.e. those where the lowest amount of applied P produces the highest yield (given N input) where calculated with EPIC to be as low as 1:0.5. Finally, we estimated the additional P required given current N inputs, and given N inputs that would allow Africa to close yield gaps (ca. 70%). At current N inputs, P consumption would have to increase 2.3-fold to be optimal, and to increase 11.7-fold to close yield gaps. The P demand to overcome these yield deficits would provide a significant additional pressure on current global extraction of P resources.

  8. Effects of Plant Diversity, Functional Group Composition, and Fertilization on Soil Microbial Properties in Experimental Grassland

    PubMed Central

    Strecker, Tanja; Barnard, Romain L.; Niklaus, Pascal A.; Scherer-Lorenzen, Michael; Weigelt, Alexandra; Scheu, Stefan; Eisenhauer, Nico

    2015-01-01

    Background Loss of biodiversity and increased nutrient inputs are two of the most crucial anthropogenic factors driving ecosystem change. Although both received considerable attention in previous studies, information on their interactive effects on ecosystem functioning is scarce. In particular, little is known on how soil biota and their functions are affected by combined changes in plant diversity and fertilization. Methodology/Principal Findings We investigated the effects of plant diversity, functional community composition, and fertilization on the biomass and respiration of soil microbial communities in a long-term biodiversity experiment in semi-natural grassland (Jena Experiment). Plant species richness enhanced microbial basal respiration and microbial biomass, but did not significantly affect microbial specific respiration. In contrast, the presence of legumes and fertilization significantly decreased microbial specific respiration, without altering microbial biomass. The effect of legumes was superimposed by fertilization as indicated by a significant interaction between the presence of legumes and fertilization. Further, changes in microbial stoichiometry (C-to-N ratio) and specific respiration suggest the presence of legumes to reduce N limitation of soil microorganisms and to modify microbial C use efficiency. Conclusions/Significance Our study highlights the role of plant species and functional group diversity as well as interactions between plant community composition and fertilizer application for soil microbial functions. Our results suggest soil microbial stoichiometry to be a powerful indicator of microbial functioning under N limited conditions. Although our results support the notion that plant diversity and fertilizer application independently affect microbial functioning, legume effects on microbial N limitation were superimposed by fertilization, indicating significant interactions between the functional composition of plant communities and nutrient inputs for soil processes. PMID:25938580

  9. High Microbial Diversity Promotes Soil Ecosystem Functioning.

    PubMed

    Maron, Pierre-Alain; Sarr, Amadou; Kaisermann, Aurore; Lévêque, Jean; Mathieu, Olivier; Guigue, Julien; Karimi, Battle; Bernard, Laetitia; Dequiedt, Samuel; Terrat, Sébastien; Chabbi, Abad; Ranjard, Lionel

    2018-05-01

    In soil, the link between microbial diversity and carbon transformations is challenged by the concept of functional redundancy. Here, we hypothesized that functional redundancy may decrease with increasing carbon source recalcitrance and that coupling of diversity with C cycling may change accordingly. We manipulated microbial diversity to examine how diversity decrease affects the decomposition of easily degradable (i.e., allochthonous plant residues) versus recalcitrant (i.e., autochthonous organic matter) C sources. We found that a decrease in microbial diversity (i) affected the decomposition of both autochthonous and allochthonous carbon sources, thereby reducing global CO 2 emission by up to 40%, and (ii) shaped the source of CO 2 emission toward preferential decomposition of most degradable C sources. Our results also revealed that the significance of the diversity effect increases with nutrient availability. Altogether, these findings show that C cycling in soil may be more vulnerable to microbial diversity changes than expected from previous studies, particularly in ecosystems exposed to nutrient inputs. Thus, concern about the preservation of microbial diversity may be highly relevant in the current global-change context assumed to impact soil biodiversity and the pulse inputs of plant residues and rhizodeposits into the soil. IMPORTANCE With hundreds of thousands of taxa per gram of soil, microbial diversity dominates soil biodiversity. While numerous studies have established that microbial communities respond rapidly to environmental changes, the relationship between microbial diversity and soil functioning remains controversial. Using a well-controlled laboratory approach, we provide empirical evidence that microbial diversity may be of high significance for organic matter decomposition, a major process on which rely many of the ecosystem services provided by the soil ecosystem. These new findings should be taken into account in future studies aimed at understanding and predicting the functional consequences of changes in microbial diversity on soil ecosystem services and carbon storage in soil. Copyright © 2018 American Society for Microbiology.

  10. Special features of the dayCent modeling package and additional procedures for parameterization, calibration, validation, and applications

    USDA-ARS?s Scientific Manuscript database

    DayCent (Daily Century) is a biogeochemical model of intermediate complexity used to simulate flows of carbon and nutrients for crop, grassland, forest, and savanna ecosystems. Required model inputs are: soil texture, current and historical land use, vegetation cover, and daily maximum/minimum tempe...

  11. Effect of management on nitrogen budgets and implications for air, soil, and water quality

    USDA-ARS?s Scientific Manuscript database

    Nitrogen is a key nutrient for both national and global food security, and nitrogen inputs from organic and/or inorganic sources are essential to maintain sustainable and economically viable agricultural systems. The challenge with nitrogen is that it is very dynamic and mobile, and some forms are s...

  12. Soil aggregation and aggregating agents as affected by long term contrasting management of an Anthrosol

    NASA Astrophysics Data System (ADS)

    Zhang, Shulan; Wang, Renjie; Yang, Xueyun; Sun, Benhua; Li, Qinghui

    2016-12-01

    Soil aggregation was studied in a 21-year experiment conducted on an Anthrosol. The soil management regimes consisted of cropland abandonment, bare fallow without vegetation and cropping system. The cropping system was combined with the following nutrient management treatments: control (CONTROL, no nutrient input); nitrogen, phosphorus and potassium (NPK); straw plus NPK (SNPK); and manure (M) plus NPK (MNPK). Compared with the CONTROL treatment, the abandonment treatment significantly increased the formation of large soil macroaggregates (>2 mm) and consequently improved the stability of aggregates in the surface soil layer due to enhancement of hyphal length and of soil organic matter content. However, in response to long-term bare fallow treatment aggregate stability was low, as were the levels of aggregating agents. Long term fertilization significantly redistributed macroaggregates; this could be mainly ascribed to soil organic matter contributing to the formation of 0.5-2 mm classes of aggregates and a decrease in the formation of the >2 mm class of aggregates, especially in the MNPK treatment. Overall, hyphae represented a major aggregating agent in both of the systems tested, while soil organic compounds played significantly different roles in stabilizing aggregates in Anthrosol when the cropping system and the soil management regimes were compared.

  13. Soil aggregation and aggregating agents as affected by long term contrasting management of an Anthrosol

    PubMed Central

    Zhang, Shulan; Wang, Renjie; Yang, Xueyun; Sun, Benhua; Li, Qinghui

    2016-01-01

    Soil aggregation was studied in a 21-year experiment conducted on an Anthrosol. The soil management regimes consisted of cropland abandonment, bare fallow without vegetation and cropping system. The cropping system was combined with the following nutrient management treatments: control (CONTROL, no nutrient input); nitrogen, phosphorus and potassium (NPK); straw plus NPK (SNPK); and manure (M) plus NPK (MNPK). Compared with the CONTROL treatment, the abandonment treatment significantly increased the formation of large soil macroaggregates (>2 mm) and consequently improved the stability of aggregates in the surface soil layer due to enhancement of hyphal length and of soil organic matter content. However, in response to long-term bare fallow treatment aggregate stability was low, as were the levels of aggregating agents. Long term fertilization significantly redistributed macroaggregates; this could be mainly ascribed to soil organic matter contributing to the formation of 0.5–2 mm classes of aggregates and a decrease in the formation of the >2 mm class of aggregates, especially in the MNPK treatment. Overall, hyphae represented a major aggregating agent in both of the systems tested, while soil organic compounds played significantly different roles in stabilizing aggregates in Anthrosol when the cropping system and the soil management regimes were compared. PMID:27958366

  14. Biogeochemistry of the Amazon River Basin: the role of aquatic ecosystems in the Amazon functioning

    NASA Astrophysics Data System (ADS)

    Victoria, R. L.; Ballester, V. R.; Krushe, A. V.; Richey, J. E.; Aufdenkampe, A. K.; Kavaguishi, N. L.; Gomes, B. M.; Victoria, D. D.; Montebello, A. A.; Niell, C.; Deegan, L.

    2004-12-01

    In this study we present the results of an integrated analysis of physical and anthropogenic controls of river biogeochemistry in Amazônia. At the meso-scale level, our results show that both soil properties and land use are the main drivers of river biogeochemistry and metabolism, with pasture cover and soil exchange cation capacity explaining 99% (p < 0.01) of the variability observed in surface water ions and nutrients concentrations. In small rivers, forest clearing can increase cations, P and C inputs. P and light are the main PPL limiting factors in forested streams, while in pasture streams N becomes limiting. P export to streams may increase or remain nearly undetectable after forest-to-pasture conversion, depending on soil type. Pasture streams on Oxisols have very low P export, while on Ultisols P export is increased. Conversions of forest to pasture leads to extensive growth of in channel Paspalum resulting in higher DOC concentrations and respiration rates. Pasture streams have higher DOC fluxes when compared to the forest ones. In pasture areas the soil are compacted, there is less infiltration and higher surface run off, leaching soil superficial layers and caring more DOC to the streams. In forest areas infiltration is deeper into the soils and canopy interaction is higher. Mineralogy and soil properties are key factors determining exports of nutrients to streams. Therefore, land use change effects on nutrient export from terrestrial to aquatic ecosystems and the atmosphere must be understood within the context of varying soil properties across the Amazon Basin.

  15. Eco-Stoichiometric Alterations in Paddy Soil Ecosystem Driven by Phosphorus Application

    PubMed Central

    Li, Xia; Wang, Hang; Gan, ShaoHua; Jiang, DaQian; Tian, GuangMing; Zhang, ZhiJian

    2013-01-01

    Agricultural fertilization may change processes of elemental biogeochemical cycles and alter the ecological function. Ecoenzymatic stoichiometric feature plays a critical role in global soil carbon (C) metabolism, driving element cycles, and mediating atmospheric composition in response to agricultural nutrient management. Despite the importance on crop growth, the role of phosphorous (P) in compliance with eco-stoichiometry on soil C and nitrogen (N) sequestration in the paddy field remains poorly understood in the context of climate change. Here, we collected soil samples from a field experiment after 6 years of chemical P application at a gradient of 0 (P-0), 30 (P-30), 60 (P-60), and 90 (P-90) kg ha−1 in order to evaluate the role of P on stoichiometric properties in terms of soil chemical, microbial biomass, and eco-enzyme activities as well as greenhouse gas (GHG: CO2, N2O and CH4) emissions. Continuous P input increased soil total organic C and N by 1.3–9.2% and 3%–13%, respectively. P input induced C and N limitations as indicated by the decreased ratio of C:P and N:P in the soil and microbial biomass. A synergistic mechanism among the ecoenzymatic stoichiometry, which regulated the ecological function of microbial C and N acquisition and were stoichiometrically related to P input, stimulated soil C and N sequestration in the paddy field. The lower emissions of N2O and CH4 under the higher P application (P-60 and P-90) in July and the insignificant difference in N2O emission in August compared to P-30; however, continuous P input enhanced CO2 fluxes for both samplings. There is a technical conflict for simultaneously regulating three types of GHGs in terms of the eco-stoichiometry mechanism under P fertilization. Thus, it is recommended that the P input in paddy fields not exceed 60 kg ha−1 may maximize soil C sequestration, minimize P export, and guarantee grain yields. PMID:23667435

  16. Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models

    NASA Astrophysics Data System (ADS)

    Chadburn, Sarah E.; Krinner, Gerhard; Porada, Philipp; Bartsch, Annett; Beer, Christian; Belelli Marchesini, Luca; Boike, Julia; Ekici, Altug; Elberling, Bo; Friborg, Thomas; Hugelius, Gustaf; Johansson, Margareta; Kuhry, Peter; Kutzbach, Lars; Langer, Moritz; Lund, Magnus; Parmentier, Frans-Jan W.; Peng, Shushi; Van Huissteden, Ko; Wang, Tao; Westermann, Sebastian; Zhu, Dan; Burke, Eleanor J.

    2017-11-01

    It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that an improved simulation of photosynthesis would also lead to an improved simulation of soil carbon stocks. However, the stocks are also influenced by soil carbon burial (e.g. through cryoturbation) and the rate of heterotrophic respiration, which depends on the soil physical state. More detailed below-ground measurements are needed to fully evaluate biological and physical soil processes. Furthermore, even if these processes are well modelled, the soil carbon profiles cannot resemble peat layers as peat accumulation processes are not represented in the models. Thus, we identify three priority areas for model development: (1) dynamic vegetation including (a) climate and (b) nutrient limitation effects; (2) adding moss as a plant functional type; and an (3) improved vertical profile of soil carbon including peat processes.

  17. An introduced predator alters Aleutian Island plant communities by thwarting nutrient subsidies

    USGS Publications Warehouse

    Maron, J.L.; Estes, J.A.; Croll, D.A.; Danner, E.M.; Elmendorf, S.C.; Buckelew, S.L.

    2006-01-01

    The ramifying effects of top predators on food webs traditionally have been studied within the framework of trophic cascades. Trophic cascades are compelling because they embody powerful indirect effects of predators on primary production. Although less studied, indirect effects of predators may occur via routes that are not exclusively trophic. We quantified how the introduction of foxes onto the Aleutian Islands transformed plant communities by reducing abundant seabird populations, thereby disrupting nutrient subsidies vectored by seabirds from sea to land. We compared soil and plant fertility, plant biomass and community composition, and stable isotopes of nitrogen in soil, plants, and other organisms on nine fox-infested and nine historically fox-free islands across the Aleutians. Additionally, we experimentally augmented nutrients on a fox-infested island to test whether differences in plant productivity and composition between fox-infested and fox-free islands could have arisen from differences in nutrient inputs between island types. Islands with historical fox infestations had soils low in phosphorus and nitrogen and plants low in tissue nitrogen. Soils, plants, slugs, flies, spiders, and bird droppings on these islands had low d15N values indicating that these organisms obtained nitrogen from internally derived sources. In contrast, soils, plants, and higher trophic level organisms on fox-free islands had elevated d15N signatures indicating that they utilized nutrients derived from the marine environment. Furthermore, soil phosphorus (but not nitrogen) and plant tissue nitrogen were higher on fox-free than fox-infested islands. Nutrient subsidized fox-free islands supported lush, high biomass plant communities dominated by graminoids. Fox-infested islands were less graminoid dominated and had higher cover and biomass of low-lying forbs and dwarf shrubs. While d15N profiles of soils and plants and graminoid biomass varied with island size and distance from shore, after accounting for these effects differences between fox-infested and fox-free islands still existed. Fertilization over four years caused a 24-fold increase in graminoid biomass and a shift toward a more graminoid dominated plant community typical of fox-free islands. These results indicate that apex predators can influence plant productivity and composition through complex interaction web pathways involving both top-down forcing and bottom-up nutrient exchanges across systems. ?? 2006 by the Ecological Society of America.

  18. System dynamics modeling of nitrogen removal in a stormwater infiltration basin with biosorption-activated media.

    PubMed

    Xuan, Zhemin; Chang, Ni-Bin; Wanielista, Martin P; Williams, Evan Shane

    2013-07-01

    Stormwater infiltration basins, one of the typical stormwater best management practices, are commonly constructed for surface water pollution control, flood mitigation, and groundwater restoration in rural or residential areas. These basins have soils with better infiltration capacity than the native soil; however, the ever-increasing contribution of nutrients to groundwater from stormwater due to urban expansion makes existing infiltration basins unable to meet groundwater quality criteria related to environmental sustainability and public health. This issue requires retrofitting current infiltration basins for flood control as well as nutrient control before the stormwater enters the groundwater. An existing stormwater infiltration basin in north-central Florida was selected, retrofitted, and monitored to identify subsurface physiochemical and biological processes during 2007-2010 to investigate nutrient control processes. This implementation in the nexus of contaminant hydrology and ecological engineering adopted amended soil layers packed with biosorption activated media (BAM; tire crumb, silt, clay, and sand) to perform nutrient removal in a partitioned forebay using a berm. This study presents an infiltration basin-nitrogen removal (IBNR) model, a system dynamics model that simulates nitrogen cycling in this BAM-based stormwater infiltration basin with respect to changing hydrologic conditions and varying dissolved nitrogen concentrations. Modeling outputs of IBNR indicate that denitrification is the biogeochemical indicator in the BAM layer that accounted for a loss of about one third of the total dissolved nitrogen mass input. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Biogeochemistry of Decomposition and Detrital Processing

    NASA Astrophysics Data System (ADS)

    Sanderman, J.; Amundson, R.

    2003-12-01

    Decomposition is a key ecological process that roughly balances net primary production in terrestrial ecosystems and is an essential process in resupplying nutrients to the plant community. Decomposition consists of three concurrent processes: communition or fragmentation, leaching of water-soluble compounds, and microbial catabolism. Decomposition can also be viewed as a sequential process, what Eijsackers and Zehnder (1990) compare to a Russian matriochka doll. Soil macrofauna fragment and partially solubilize plant residues, facilitating establishment of a community of decomposer microorganisms. This decomposer community will gradually shift as the most easily degraded plant compounds are utilized and the more recalcitrant materials begin to accumulate. Given enough time and the proper environmental conditions, most naturally occurring compounds can completely be mineralized to inorganic forms. Simultaneously with mineralization, the process of humification acts to transform a fraction of the plant residues into stable soil organic matter (SOM) or humus. For reference, Schlesinger (1990) estimated that only ˜0.7% of detritus eventually becomes stabilized into humus.Decomposition plays a key role in the cycling of most plant macro- and micronutrients and in the formation of humus. Figure 1 places the roles of detrital processing and mineralization within the context of the biogeochemical cycling of essential plant nutrients. Chapin (1991) found that while the atmosphere supplied 4% and mineral weathering supplied no nitrogen and <1% of phosphorus, internal nutrient recycling is the source for >95% of all the nitrogen and phosphorus uptake by tundra species in Barrow, Alaska. In a cool temperate forest, nutrient recycling accounted for 93%, 89%, 88%, and 65% of total sources for nitrogen, phosphorus, potassium, and calcium, respectively ( Chapin, 1991). (13K)Figure 1. A decomposition-centric biogeochemical model of nutrient cycling. Although there is significant external input (1) and output (2) from neighboring ecosystems (such as erosion), weathering of primary minerals (3), loss of secondary minerals (4), atmospheric deposition and N-fixation (5) and volatilization (6), the majority of plant-available nutrients are supplied by internal recycling through decomposition. Nutrients that are taken up by plants (7) are either consumed by fauna (8) and returned to the soil through defecation and mortality (10) or returned to the soil through litterfall and mortality (9). Detritus and humus can be immobilized into microbial biomass (11 and 13). Humus is formed by the transformation and stabilization of detrital (12) and microbial (14) compounds. During these transformations, SOM is being continually mineralized by the microorganisms (15) replenishing the inorganic nutrient pool (after Swift et al., 1979). The second major ecosystem role of decomposition is in the formation and stabilization of humus. The cycling and stabilization of SOM in the litter-soil system is presented in a conceptual model in Figure 2. Parallel with litterfall and most root turnover, detrital processing is concentrated at or near the soil surface. As labile SOM is preferentially degraded, there is a progressive shift from labile to passive SOM with increasing depth. There are three basic mechanisms for SOM accumulation in the mineral soil: bioturbation or physical mixing of the soil by burrowing animals (e.g., earthworms, gophers, etc.), in situ decomposition of roots and root exudates, and the leaching of soluble organic compounds. In the absence of bioturbation, distinct litter layers often accumulate above the mineral soil. In grasslands where the majority of net primary productivity (NPP) is allocated belowground, root inputs will dominate. In sandy soils with ample rainfall, leaching may be the major process incorporating carbon into the soil. (11K)Figure 2. Conceptual model of carbon cycling in the litter-soil system. In each horizon or depth increment, SOM is represented by three pools: labile SOM, slow SOM, and passive SOM. Inputs include aboveground litterfall and belowground root turnover and exudates, which will be distributed among the pools based on the biochemical nature of the material. Outputs from each pool include mineralization to CO2 (dashed lines), humification (labile→slow→passive), and downward transport due to leaching and physical mixing. Communition by soil fauna will accelerate the decomposition process and reveal previously inaccessible materials. Soil mixing and other disturbances can also make physically protected passive SOM available to microbial attack (passive→slow). There exists an amazing body of literature on the subject of decomposition that draws from many disciplines - including ecology, soil science, microbiology, plant physiology, biochemistry, and zoology. In this chapter, we have attempted to draw information from all of these fields to present an integrated analysis of decomposition in a biogeochemical context. We begin by reviewing the composition of detrital resources and SOM (Section 8.07.2), the organisms responsible for decomposition ( Section 8.07.3), and some methods for quantifying decomposition rates ( Section 8.07.4). This is followed by a discussion of the mechanisms behind decomposition ( Section 8.07.5), humification ( Section 8.07.6), and the controls on these processes ( Section 8.07.7). We conclude the chapter with a brief discussion on how current biogeochemical models incorporate this information ( Section 8.07.8).

  20. Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake.

    PubMed

    Lentz, R D; Ippolito, J A

    2012-01-01

    Carbon-rich biochar derived from the pyrolysis of biomass can sequester atmospheric CO, mitigate climate change, and potentially increase crop productivity. However, research is needed to confirm the suitability and sustainability of biochar application to different soils. To an irrigated calcareous soil, we applied stockpiled dairy manure (42 Mg ha dry wt) and hardwood-derived biochar (22.4 Mg ha), singly and in combination with manure, along with a control, yielding four treatments. Nitrogen fertilizer was applied when needed (based on preseason soil test N and crop requirements) in all plots and years, with N mineralized from added manure included in this determination. Available soil nutrients (NH-N; NO-N; Olsen P; and diethylenetriaminepentaacetic acid-extractable K, Mg, Na, Cu, Mn, Zn, and Fe), total C (TC), total N (TN), total organic C (TOC), and pH were evaluated annually, and silage corn nutrient concentration, yield, and uptake were measured over two growing seasons. Biochar treatment resulted in a 1.5-fold increase in available soil Mn and a 1.4-fold increase in TC and TOC, whereas manure produced a 1.2- to 1.7-fold increase in available nutrients (except Fe), compared with controls. In 2009 biochar increased corn silage B concentration but produced no yield increase; in 2010 biochar decreased corn silage TN (33%), S (7%) concentrations, and yield (36%) relative to controls. Manure produced a 1.3-fold increase in corn silage Cu, Mn, S, Mg, K, and TN concentrations and yield compared with the control in 2010. The combined biochar-manure effects were not synergistic except in the case of available soil Mn. In these calcareous soils, biochar did not alter pH or availability of P and cations, as is typically observed for acidic soils. If the second year results are representative, they suggest that biochar applications to calcareous soils may lead to reduced N availability, requiring additional soil N inputs to maintain yield targets. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Negative effects of excessive soil phosphorus on floristic quality in Ohio wetlands.

    PubMed

    Stapanian, Martin A; Schumacher, William; Gara, Brian; Monteith, Steven E

    2016-05-01

    Excessive soil nutrients, often from agricultural runoff, have been shown to negatively impact some aspects of wetland plant communities. We measured plant-available phosphorus (Mehlich-3: MeP) in soil samples, and assessed the vascular plant community and habitat degradation at 27 emergent and 13 forested wetlands in Ohio, USA. We tested two hypotheses: (1) that an index of vegetation biological integrity based on floristic quality was lower in wetlands with higher concentrations of MeP in the soil, and (2) that higher concentrations of MeP occurred in wetlands with more habitat degradation (i.e., lower quality), as estimated by a rapid assessment method. Hypothesis (1) was supported for emergent, but not for forested wetlands. Hypothesis (2) was marginally supported (P=0.09) for emergent, but not supported for forested wetlands. The results indicate that the effect of concentration of phosphorus in wetland soils and the quality of plant species assemblages in wetlands is more complex than shown in site-specific studies and may depend in part on degree of disturbance in the surrounding watershed and dominant wetland vegetation type. Woody plants in forested wetlands are typically longer lived than herbaceous species in the understory and emergent wetlands, and may persist despite high inputs of phosphorus. Further, the forested wetlands were typically surrounded by a wide band of forest vegetation, which may provide a barrier against sedimentation and the associated phosphorus inputs to the wetland interior. Our results indicate that inferences about soil nutrient conditions made from rapid assessment methods for assessing wetland habitat condition may not be reliable. Copyright © 2016. Published by Elsevier B.V.

  2. Recovery of arctic tundra from thermal erosion disturbance is constrained by nutrient accumulation: a modeling analysis.

    PubMed

    Pearce, A R; Rastetter, E B; Kwiatkowski, B L; Bowden, W B; Mack, M C; Jiang, Y

    2015-07-01

    Abstract. We calibrated the Multiple Element Limitation (MEL) model to Alaskan arctic tundra to simulate recovery of thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could significantly alter regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as the climate warms. We simulated recovery following TEF stabilization and did not address initial, short-term losses of C and nutrients during TEF formation. To capture the variability among and within TEFs, we modeled a range of post-stabilization conditions by varying the initial size of SOM stocks and nutrient supply rates. Simulations indicate that nitrogen (N) losses after the TEF stabilizes are small, but phosphorus (P) losses continue. Vegetation biomass recovered 90% of its undisturbed C, N, and P stocks in 100 years using nutrients mineralized from SOM. Because of low litter inputs but continued decomposition, younger SOM continued to be lost for 10 years after the TEF began to recover, but recovered to about 84% of its undisturbed amount in 100 years. The older recalcitrant SOM in mineral soil continued to be lost throughout the 100-year simulation. Simulations suggest that biomass recovery depended on the amount of SOM remaining after disturbance. Recovery was initially limited by the photosynthetic capacity of vegetation but became co-limited by N and P once a plant canopy developed. Biomass and SOM recovery was enhanced by increasing nutrient supplies, but the magnitude, source, and controls on these supplies are poorly understood. Faster mineralization of nutrients from SOM (e.g., by warming) enhanced vegetation recovery but delayed recovery of SOM. Taken together, these results suggest that although vegetation and surface SOM on TEFs recovered quickly (25 and 100 years, respectively), the recovery of deep, mineral soil SOM took centuries and represented a major ecosystem C loss.

  3. Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status

    NASA Astrophysics Data System (ADS)

    Ťupek, Boris; Ortiz, Carina A.; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-08-01

    Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem-atmosphere carbon dioxide exchange by process-based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead to a modeling bias in predictions of SOC stock change.We aimed to evaluate SOC stock estimates of process-based models (Yasso07, Q, and CENTURY soil sub-model v4) against a massive Swedish forest soil inventory data set (3230 samples) organized by a recursive partitioning method into distinct soil groups with underlying SOC stock development linked to physicochemical conditions.For two-thirds of measurements all models predicted accurate SOC stock levels regardless of the detail of input data, e.g., whether they ignored or included soil properties. However, in fertile sites with high N deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for the site-specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well-sorted parent material, indeed have had other predominant drivers of SOC stabilization lacking in the models, presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic matter mineralization has to be re-evaluated, since correct SOC stocks are decisive for predicting future SOC change and soil CO2 efflux.

  4. Trichoderma Biofertilizer Links to Altered Soil Chemistry, Altered Microbial Communities, and Improved Grassland Biomass.

    PubMed

    Zhang, Fengge; Huo, Yunqian; Cobb, Adam B; Luo, Gongwen; Zhou, Jiqiong; Yang, Gaowen; Wilson, Gail W T; Zhang, Yingjun

    2018-01-01

    In grasslands, forage and livestock production results in soil nutrient deficits as grasslands typically receive no nutrient inputs, leading to a loss of grassland biomass. The application of mature compost has been shown to effectively increase grassland nutrient availability. However, research on fertilization regime influence and potential microbial ecological regulation mechanisms are rarely conducted in grassland soil. We conducted a two-year experiment in meadow steppe grasslands, focusing on above- and belowground consequences of organic or Trichoderma biofertilizer applications and potential soil microbial ecological mechanisms underlying soil chemistry and microbial community responses. Grassland biomass significantly ( p = 0.019) increased following amendment with 9,000 kg ha -1 of Trichoderma biofertilizer (composted cattle manure + inoculum) compared with other assessed organic or biofertilizer rates, except for BOF3000 (fertilized with 3,000 kg ha -1 biofertilizer). This rate of Trichoderma biofertilizer treatment increased soil antifungal compounds that may suppress pathogenic fungi, potentially partially responsible for improved grassland biomass. Nonmetric multidimensional scaling (NMDS) revealed soil chemistry and fungal communities were all separated by different fertilization regime. Trichoderma biofertilizer (9,000 kg ha -1 ) increased relative abundances of Archaeorhizomyces and Trichoderma while decreasing Ophiosphaerella . Trichoderma can improve grassland biomass, while Ophiosphaerella has the opposite effect as it may secrete metabolites causing grass necrosis. Correlations between soil properties and microbial genera showed plant-available phosphorus may influence grassland biomass by increasing Archaeorhizomyces and Trichoderma while reducing Ophiosphaerella . According to our structural equation modeling (SEM), Trichoderma abundance was the primary contributor to aboveground grassland biomass. Our results suggest Trichoderma biofertilizer could be an important tool for management of soils and ultimately grassland plant biomass.

  5. Trichoderma Biofertilizer Links to Altered Soil Chemistry, Altered Microbial Communities, and Improved Grassland Biomass

    PubMed Central

    Zhang, Fengge; Huo, Yunqian; Cobb, Adam B.; Luo, Gongwen; Zhou, Jiqiong; Yang, Gaowen; Wilson, Gail W. T.; Zhang, Yingjun

    2018-01-01

    In grasslands, forage and livestock production results in soil nutrient deficits as grasslands typically receive no nutrient inputs, leading to a loss of grassland biomass. The application of mature compost has been shown to effectively increase grassland nutrient availability. However, research on fertilization regime influence and potential microbial ecological regulation mechanisms are rarely conducted in grassland soil. We conducted a two-year experiment in meadow steppe grasslands, focusing on above- and belowground consequences of organic or Trichoderma biofertilizer applications and potential soil microbial ecological mechanisms underlying soil chemistry and microbial community responses. Grassland biomass significantly (p = 0.019) increased following amendment with 9,000 kg ha−1 of Trichoderma biofertilizer (composted cattle manure + inoculum) compared with other assessed organic or biofertilizer rates, except for BOF3000 (fertilized with 3,000 kg ha−1 biofertilizer). This rate of Trichoderma biofertilizer treatment increased soil antifungal compounds that may suppress pathogenic fungi, potentially partially responsible for improved grassland biomass. Nonmetric multidimensional scaling (NMDS) revealed soil chemistry and fungal communities were all separated by different fertilization regime. Trichoderma biofertilizer (9,000 kg ha−1) increased relative abundances of Archaeorhizomyces and Trichoderma while decreasing Ophiosphaerella. Trichoderma can improve grassland biomass, while Ophiosphaerella has the opposite effect as it may secrete metabolites causing grass necrosis. Correlations between soil properties and microbial genera showed plant-available phosphorus may influence grassland biomass by increasing Archaeorhizomyces and Trichoderma while reducing Ophiosphaerella. According to our structural equation modeling (SEM), Trichoderma abundance was the primary contributor to aboveground grassland biomass. Our results suggest Trichoderma biofertilizer could be an important tool for management of soils and ultimately grassland plant biomass. PMID:29760689

  6. Variation in nitrogen use efficiencies on Dutch dairy farms.

    PubMed

    Daatselaar, Co Hg; Reijs, Joan R; Oenema, Jouke; Doornewaard, Gerben J; Aarts, H Frans M

    2015-12-01

    On dairy farms, the input of nutrients including nitrogen is higher than the output in products such as milk and meat. This causes losses of nitrogen to the environment. One of the indicators for the losses of nitrogen is the nitrogen use efficiency. In the Dutch Minerals Policy Monitoring Program (LMM), many data on nutrients of a few hundred farms are collected which can be processed by the instrument Annual Nutrient Cycle Assessment (ANCA, in Dutch: Kringloopwijzer) in order to provide nitrogen use efficiencies. After dividing the dairy farms (available in the LMM program) according to soil type and in different classes for milk production ha(-1) , it is shown that considerable differences in nitrogen use efficiency exist between farms on the same soil type and with the same level of milk production ha(-1) . This offers opportunities for improvement of the nitrogen use efficiency on many dairy farms. Benchmarking will be a useful first step in this process. © 2015 Society of Chemical Industry.

  7. Manure and residue inputs maintained SOC in conservation production systems in the Upper Midwest

    USDA-ARS?s Scientific Manuscript database

    Conservation production systems are needed in the upper Midwest to slow down soil and nutrient loss through tillage-induced erosion. However, due to the cool, wet climate, producers are reluctant to adapt no-till strategies. With focus on strip-tillage (ST) and a diverse four-year crop rotation (4y...

  8. Season mediates herbivore effects on litter and soil microbial abundance and activity in a semi-arid woodland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Classen, Aimee T; Overby, Stephen; Hart, Stephen C

    2007-01-01

    Herbivores can directly impact ecosystem function by altering litter quality entering an ecosystem or indirectly by affecting a shift in the microbial community that mediate nutrient processes. We examine herbivore susceptibility and resistance effects on litter microarthropod and soil microbial communities to test the general hypothesis that herbivore driven changes in litter inputs will feedback to the microbial community. Our study population consisted of individual trees that are susceptible or resistant to the stem-boring moth (Dioryctria albovittella) and trees that herbivores have been manually removed since 1982. Moth herbivory increased pi on litter nitrogen concentrations (16%) and canopy precipitation infiltrationmore » (28%), both significant factors influencing litter and soil microbial populations. Our research resulted in three major conclusions: 1) In spite of an increase in litter quality, herbivory does not change litter microarthropod abundance or species richness. 2) Herbivore susceptibility alters bulk soil microbial communities, but not soil properties. 3) Season has a strong influence on microbial communities, and their response to herbivore inputs, in this semi-arid ecosystem.« less

  9. Increasing floodplain connectivity through urban stream restoration increases nutrient and sediment retention

    USGS Publications Warehouse

    McMillan, Sara K.; Noe, Gregory

    2017-01-01

    Stream restoration practices frequently aim to increase connectivity between the stream channel and its floodplain to improve channel stability and enhance water quality through sediment trapping and nutrient retention. To measure the effectiveness of restoration and to understand the drivers of these functional responses, we monitored five restored urban streams that represent a range of channel morphology and restoration ages. High and low elevation floodplain plots were established in triplicate in each stream to capture variation in floodplain connectivity. We measured ecosystem geomorphic and soil attributes, sediment and nutrient loading, and rates of soil nutrient biogeochemistry processes (denitrification; N and P mineralization) then used boosted regression trees (BRT) to identify controls on sedimentation and nutrient processing. Local channel and floodplain morphology and position within the river network controlled connectivity with increased sedimentation at sites downstream of impaired reaches and at floodplain plots near the stream channel and at low elevations. We observed that nitrogen loading (both dissolved and particulate) was positively correlated with denitrification and N mineralization and dissolved phosphate loading positively influenced P mineralization; however, none of these input rates or transformations differed between floodplain elevation categories. Instead, continuous gradients of connectivity were observed rather than categorical shifts between inset and high floodplains. Organic matter and nutrient content in floodplain soils increased with the time since restoration, which highlights the importance of recovery time after construction that is needed for restored systems to increase ecosystem functions. Our results highlight the importance of restoring floodplains downstream of sources of impairment and building them at lower elevations so they flood frequently, not just during bankfull events. This integrated approach has the greatest potential for increasing trapping of sediment, nutrients, and associated pollutants in restored streams and thereby improving water quality in urban watersheds.

  10. Degradation of Tibetan grasslands: Consequences for soil organic carbon and nutrients losses

    NASA Astrophysics Data System (ADS)

    Liu, Shibin; Schleuss, Per-Marten; Kuzyakov, Yakov

    2017-04-01

    The Kobresia pastures, commonly known as "alpine meadow", cover the southeastern quarter of the Tibetan Highlands ( 450, 000 km2). They host important grazing ground for livestock (i.e. yaks, sheep and goats) and thus ensure the livelihood of the Tibetan herders. The Kobresia pastures also store huge amount of soil organic carbon (SOC) and nutrients (e.g. nitrogen (N) and phosphorus (P)), which are required for sufficient forage production. In recent decades, the Kobresia pastures have experienced severe degradation due to anthropogenic activities and climate change, which has initiated high losses of SOC and nutrients and threatened the functioning of this ecosystem. Plenty studies have been implemented showing the response of degradation on SOC and nutrients levels on local scale. They classify these alpine pastures into various degradation stages that are mainly based on vegetation characteristics (e.g. vegetation coverage, proportion of edible plants). Within this study we synthesized their results in a review for a better understanding of SOC and nutrients losses following pasture degradation across the whole ecosystem. We aggregated the degraded Kobresia pastures into five degradation stages: Non-degraded, Light degradation, Moderate degradation, Heavy degradation and Extreme degradation. Results show that degradation from light to extreme stages has lost on average 42 ± 2 % SOC, 33 ± 6 % N and 17 ± 4 % P as compared to the non-degraded pastures. This implies strong reduction of soil fertility and an exacerbation prevailing N and P limitations. Concurrently, degradation has decreased aboveground and belowground biomass by 42 ± 3 % and 45 ± 6 %, which reflects (a) decreasing photosynthetic C input and (b) less available forage for livestock. Besides, the declining vegetation promotes wind and water erosion. In conclusion, our results provide an overview and a quantification of degradation impacts on plant characteristics and soil properties that improve estimations regarding SOC and nutrients losses across the whole ecosystem. This highly matters because large amounts of SOC have been lost due to erosion and mineralization. Most likely this has polluted the Tibetan headwaters and contributed to climate change, respectively. Further, the decreasing N and P losses have reduced soil fertility lowering forage production. Therefore, it endangers the livelihood of the Tibetan herders, which highly rely on forage to feed their livestock. Despite plenty of ameliorations (e.g. fertilization, grazing enclosure, reseeding) have been proposed and implemented at many locations, their impacts on pasture ecosystems (especially on soil fertility) are still subtle and thus require further investigations. Keywords: Kobresia pastures, Tibetan Plateau, Grassland degradation, Soil organic carbon, Soil nutrients

  11. Critical Zone Services as Environmental Assessment Criteria in Intensively Managed Agricultural Landscapes

    NASA Astrophysics Data System (ADS)

    Richardson, M.; Kumar, P.

    2016-12-01

    The critical zone (CZ) includes the biophysical processes occurring from the top of the vegetation canopy to the weathering zone below the groundwater table. CZ services provide a measure for the goods and benefits derived from CZ processes. In intensively managed landscapes (IML), the provisioning, supporting, and regulating services are altered through anthropogenic energy inputs to derive more productivity, as agricultural products, from these landscapes than would be possible under natural conditions. However, the energy or cost equivalents of alterations to CZ functions within landscape profiles are unknown. The valuation of CZ services in energy or monetary terms provides a more concrete tool for characterizing seemingly abstract environmental damages from agricultural production systems. A multi-layer canopy-root-soil model is combined with nutrient and water flux models to simulate the movement of nutrients throughout the soil system. This data enables the measurement of agricultural anthropogenic impacts to the CZ's nutrient cycling supporting services and atmospheric stabilizing regulating services defined by the flux of carbon and nutrients. Such measurements include soil carbon storage, soil carbon respiration, nitrate leaching, and nitrous oxide flux into the atmosphere. Additionally, the socioeconomic values of corn feed and ethanol define the primary productivity supporting services of each crop use.In the debate between feed production and corn-based ethanol production, measured nutrient CZ services can cost up to four times more than traditionally estimated CO2 equivalences for the entire bioenergy production system. Energy efficiency in addition to environmental impacts demonstrate how the inclusion of CZ services is necessary in accounting for the entire life cycle of agricultural production systems. These results conclude that feed production systems are more energy efficient and less environmentally costly than corn-based ethanol systems.

  12. Global comparison reveals biogenic weathering as driven by nutrient limitation at ecosystem scale

    NASA Astrophysics Data System (ADS)

    Boy, Jens; Godoy, Roberto; Dechene, Annika; Shibistova, Olga; Amir, Hamid; Iskandar, Issi; Fogliano, Bruno; Boy, Diana; McCulloch, Robert; Andrino, Alberto; Gschwendtner, Silvia; Marin, Cesar; Sauheitl, Leopold; Dultz, Stefan; Mikutta, Robert; Guggenberger, Georg

    2017-04-01

    A substantial contribution of biogenic weathering in ecosystem nutrition, especially by symbiotic microorganisms, has often been proposed, but large-scale in vivo studies are still missing. Here we compare a set of ecosystems spanning from the Antarctic to tropical forests for their potential biogenic weathering and its drivers. To address biogenic weathering rates, we installed mineral mesocosms only accessible for bacteria and fungi for up to 4 years, which contained freshly broken and defined nutrient-baring minerals in soil A horizons of ecosystems along a gradient of soil development differing in climate and plant species communities. Alterations of the buried minerals were analyzed by grid-intersection, confocal lascer scanning microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy on the surface and on thin sections. On selected sites, carbon fluxes were tracked by 13C labeling, and microbial community was identified by DNA sequencing. In young ecosystems (protosoils) biogenic weathering is almost absent and starts after first carbon accumulation by aeolian (later litter) inputs and is mainly performed by bacteria. With ongoing soil development and appearance of symbiotic (mycorrhized) plants, nutrient availability in soil increasingly drove biogenic weathering, and fungi became the far more important players than bacteria. We found a close relation between fungal biogenic weathering and available potassium across all 16 forested sites in the study, regardless of the dominant mycorrhiza type (AM or EM), climate, and plant-species composition. We conclude that nutrient limitations at ecosystem scale are generally counteracted by adapted fungal biogenic weathering. The close relation between fungal weathering and plant-available nutrients over a large range of severely contrasting ecosystems points towards a direct energetic support of these weathering processes by the photoautotrophic community, making biogenic weathering a directional on-demand process common in all types of ecosystems.

  13. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes

    PubMed Central

    Wang, Hui; Boutton, Thomas W.; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-01-01

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two 13C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change. PMID:25960162

  14. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes.

    PubMed

    Wang, Hui; Boutton, Thomas W; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-05-11

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two (13)C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change.

  15. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Boutton, Thomas W.; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-05-01

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two 13C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change.

  16. Effects of nitrogen enrichment on soil organic matter in tropical forests with different ambient nutrient status

    NASA Astrophysics Data System (ADS)

    Vaughan, E.; Cusack, D. F.; McDowell, W. H.; Marin-Spiotta, E.

    2017-12-01

    Nitrogen (N) enrichment is a widespread and increasingly important human influence on ecosystems globally, with implications for net primary production and biogeochemical processes. Previous research has shown that N enrichment can alter soil carbon (C) cycling, although the direction and magnitude of the changes are not consistent across studies, and may change with time. Inconsistent responses to N additions may be due to differences in ambient nutrient status, and/or variable responses of plant C inputs and microbial decomposition. Although plant production in the tropics is not often limited by N, soil processes may respond differently to N enrichment. Our study uses a 15-year N addition experiment at two different tropical forest sites in the Luquillo Long-Term Ecological Research project site in Puerto Rico to address long-term changes in soil C pools due to fertilization. The two forests differ in elevation and ambient nutrient status. Soil sampling three and five years post-fertilization showed increased soil C concentrations under fertilization, driven by increases in mineral-associated C (Cusack et al. 2011). However, the longer-term trends at these sites are unknown. To this end, soil samples were collected following fifteen years of fertilization. Soils were sampled from 0-10 cm and 10-20 cm. Bulk soil C and N concentrations will be measured and compared to samples collected before fertilization (2002) and three years post fertilization (2005). We are using density fractionation to isolate different soil organic matter pools into a free light, occluded light, and dense, mineral associated fraction. These pools represent different mechanisms of soil organic matter stabilization, and provide more detailed insight into changes in bulk soil C. These data will provide insight into the effects of N enrichment on tropical forest soils, and how those effects may change through time with a unique long-term data set.

  17. Multiple constraint modeling of nutrient cycling stoichiometry following forest clearing and pasture abandonment in the Eastern Amazon

    NASA Astrophysics Data System (ADS)

    Davidson, Eric; Nifong, Rachel

    2017-04-01

    While deforestation has declined since its peak, land-use change continues to modify Amazonian landscapes. The responses and feedbacks of biogeochemical cycles to these changes play an important role in determining possible future trajectories of ecosystem function and for land stewardship through effects on rates of secondary forest regrowth, soil emissions of greenhouse gases, inputs of nutrients to groundwater and streamwater, and nutrient management in agroecosystems. Here we present a new synthetic analyses of data from the NASA-supported LBA-ECO project and others datasets on nutrient cycling in cattle pastures, secondary forests, and mature forests at Paragominas, Pará, Brazil. We have developed a stoichiometric model relating C-N-P interactions during original forest clearing, extensive and intensive pasture management, and secondary forest regrowth, constrained by multiple observations of ecosystem stocks and fluxes in each land use. While P is conservatively cycled in all land uses, we demonstrate that pyrolyzation of N during pasture formation and during additional burns for pasture management depletes available-N pools, consistent with observations of lower rates of N leaching and trace gas emission and consistent with secondary forest growth responses to experimental N amendments. The soils store large stocks of N and P, and our parameterization of available forms of these nutrients for steady-state dynamics in the mature forest yield reasonable estimates of net N and P mineralization available for grasses and secondary forest species at rates consistent with observed biomass accumulation and productivity in these modified ecosystems. Because grasses and forests have much different demands for N relative to P, the land use has important biogeochemical impacts. The model demonstrates the need for periodic P inputs for sustainable pasture management and for a period of significant biological N fixation for early-to-mid-successional secondary forest regrowth. The model framework illustrates the relative magnitudes of changing stocks and flows of nutrients and attendant ecosystem functions through the phases of land use change experienced in eastern Amazonia.

  18. Protection from wintertime rainfall reduces nutrient losses and greenhouse gas emissions during the decomposition of poultry and horse manure-based amendments.

    PubMed

    Maltais-Landry, Gabriel; Neufeld, Katarina; Poon, David; Grant, Nicholas; Nesic, Zoran; Smukler, Sean

    2018-04-01

    Manure-based soil amendments (herein "amendments") are important fertility sources, but differences among amendment types and management can significantly affect their nutrient value and environmental impacts. A 6-month in situ decomposition experiment was conducted to determine how protection from wintertime rainfall affected nutrient losses and greenhouse gas (GHG) emissions in poultry (broiler chicken and turkey) and horse amendments. Changes in total nutrient concentration were measured every 3 months, changes in ammonium (NH 4 + ) and nitrate (NO 3 - ) concentrations every month, and GHG emissions of carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) every 7-14 days. Poultry amendments maintained higher nutrient concentrations (except for K), higher emissions of CO 2 and N 2 O, and lower CH 4 emissions than horse amendments. Exposing amendments to rainfall increased total N and NH 4 + losses in poultry amendments, P losses in turkey and horse amendments, and K losses and cumulative N 2 O emissions for all amendments. However, it did not affect CO 2 or CH 4 emissions. Overall, rainfall exposure would decrease total N inputs by 37% (horse), 59% (broiler chicken), or 74% (turkey) for a given application rate (wet weight basis) after 6 months of decomposition, with similar losses for NH 4 + (69-96%), P (41-73%), and K (91-97%). This study confirms the benefits of facilities protected from rainfall to reduce nutrient losses and GHG emissions during amendment decomposition. The impact of rainfall protection on nutrient losses and GHG emissions was monitored during the decomposition of broiler chicken, turkey, and horse manure-based soil amendments. Amendments exposed to rainfall had large ammonium and potassium losses, resulting in a 37-74% decrease in N inputs when compared with amendments protected from rainfall. Nitrous oxide emissions were also higher with rainfall exposure, although it had no effect on carbon dioxide and methane emissions. Overall, this work highlights the benefits of rainfall protection during amendment decomposition to reduce nutrient losses and GHG emissions.

  19. The role of precision agriculture for improved nutrient management on farms.

    PubMed

    Hedley, Carolyn

    2015-01-01

    Precision agriculture uses proximal and remote sensor surveys to delineate and monitor within-field variations in soil and crop attributes, guiding variable rate control of inputs, so that in-season management can be responsive, e.g. matching strategic nitrogen fertiliser application to site-specific field conditions. It has the potential to improve production and nutrient use efficiency, ensuring that nutrients do not leach from or accumulate in excessive concentrations in parts of the field, which creates environmental problems. The discipline emerged in the 1980s with the advent of affordable geographic positioning systems (GPS), and has further developed with access to an array of affordable soil and crop sensors, improved computer power and software, and equipment with precision application control, e.g. variable rate fertiliser and irrigation systems. Precision agriculture focusses on improving nutrient use efficiency at the appropriate scale requiring (1) appropriate decision support systems (e.g. digital prescription maps), and (2) equipment capable of varying application at these different scales, e.g. the footprint of a one-irrigation sprinkler or a fertiliser top-dressing aircraft. This article reviews the rapid development of this discipline, and uses New Zealand as a case study example, as it is a country where agriculture drives economic growth. Here, the high yield potentials on often young, variable soils provide opportunities for effective financial return from investment in these new technologies. © 2014 Society of Chemical Industry.

  20. Short-term effects of fertility management under organic farming in Mediterranean region on soil properties and tomato production

    NASA Astrophysics Data System (ADS)

    Cavoski, Ivana; Chami, Ziad Al; Jarrar, Mohammad; Dumontet, Stefano; Mondelli, Donato

    2014-05-01

    In organic farming, plant production depends almost exclusively on nutrient deriving from the decomposition of exogenous organic matter in soil which is able to provide significant quantities of several important nutrients for the plant growth. However, in the soil the timing and amount of mineralization often does not coincide with crop nutritional need, making in-season fertilization necessary. The Regulation (EC) No 889/2008 on organic farming standards recognizes these needs and allows the use of a limited range fertilizers and soil conditioners (inputs) in order to meet nutritional needs of the plants and to achieve short term economically viable yield. Short-term open field experiment was conducted at the Mediterranean Agronomic Institute of Bari (MAIB) located in Apulia region (Southern Italy) in order study the effects of different fertilization scenarios based on equilibrated nutritional requirement on tomato (Lycopersicon esculentum Mill, cv. San Marzano) production efficiency and soil chemical properties. In soil dressing phase, three months before planting, biochar (BCH), organic fertilizers (OF), combined treatment (BCH+OF), cattle manure and vineyard wood compost (MVC), dairy wastes industry and vineyard wood compost (DVC) and unamended soil as control (CON) were established. In the pre-crop phase, organic and/or mineral fertilizers were incorporated into the previous treatments except CON and BCH in order to achieve balanced N, P and K application rates for tomato plants. Different fertilization scenarios significantly increased the yields over CON and BCH treatments, maintaining fruits quality. In short period of time, most of the soil parameters remained invariable, only available phosphorus significantly increased in the treatments which received organic fertilizers maybe due to the slight reduction in soil pH. However, such results are not surprising, if we consider the quantity of amendments and fertilizers applied in the experiment, as well as a short term study. Future research needs to address the scope for increasing nutrient use efficiency and monitoring of soil nutrient pools in long term studies. Keywords: organic farming, fertility management, tomato crop, Biochar

  1. Microbial colonization and controls in dryland systems

    USGS Publications Warehouse

    Pointing, Stephen B.; Belnap, Jayne

    2012-01-01

    Drylands constitute the most extensive terrestrial biome, covering more than one-third of the Earth's continental surface. In these environments, stress limits animal and plant life, so life forms that can survive desiccation and then resume growth following subsequent wetting assume the foremost role in ecosystem processes. In this Review, we describe how these organisms assemble in unique soil- and rock-surface communities to form a thin veneer of mostly microbial biomass across hot and cold deserts. These communities mediate inputs and outputs of gases, nutrients and water from desert surfaces, as well as regulating weathering, soil stability, and hydrological and nutrient cycles. The magnitude of regional and global desert-related environmental impacts is affected by these surface communities; here, we also discuss the challenges for incorporating the consideration of these communities and their effects into the management of dryland resources.

  2. Mitigation of nonpoint source pollution in rural areas: From control to synergies of multi ecosystem services.

    PubMed

    Wu, Yonghong; Liu, Junzhuo; Shen, Renfang; Fu, Bojie

    2017-12-31

    Nonpoint source (NPS) pollution produced by human activities in rural areas has induced excessive nutrient input into surface waters and the decline of water quality. The essence of NPS pollution is the transport of nutrients between soil and water. Traditional NPS pollution control strategies, however, are mainly based on the solid and liquid phases, with little focus on the bio-phase between water and soil. The pollutants produced from NPS can be regarded as a resource if recycled or reused in an appropriate way in the agricultural ecosystem. This mini review proposes novel strategies for NPS pollution control based on three phases (liquid, solid and bio-phase) and highlights the regulating services of an agricultural ecosystem by optimizing land use/cover types. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Real-time x-ray fluorescence analysis of crop canopy to spatially assess phytoextraction efficiency and subsurface status of low-Z elements: a case study for phosphorus

    NASA Astrophysics Data System (ADS)

    Dao, Thanh

    2017-04-01

    Leaf analysis has been extensively used to interpret results of nutrient supplementation studies about crop growth and yield responses, and to define availability thresholds for a wide range of soils and climatic conditions. The compositional results reflect the nutritional status, uptake efficiency, and the geo-chemical environment of the element in the subsurface. An X-ray fluorescence (XRF)-based proximal sensing approach was evaluated and proposed for real-time determination of water content and element-specific composition of corn seedling leaves, which was comprised mostly of essential macronutrients of low-atomic number Z, such as phosphorus (P) or potassium. Intensities of scattered radiation associated with the X-ray tube Ag anode were significantly correlated with leaf water content (θw), which was used to normalize fluorescence intensities of P. Crop canopy water status was also obtained as ancillary data. The θw - P relative concentration relationship was best described by a sigmoidal function (r2 = 0.938 and RMSE=0.02). The Ag-Lα line was deemed to be effective for normalizing the intensities of Kα lines of P and other low-Z elements, in addition to the commonly used Kα and Kβ lines. Its intensity was significantly correlated to leaf water content and was used to develop calibrations and obtain P concentration on a dry weight basis and unbiased estimates of crop P status. Therefore, the in situ fluorescence sensing system presents a new paradigm in nutrient management to re-evaluate calibrations of observed crop responses against those predicted by current soil testing and fertility recommendations. Updates to the rates of supplemental P and crop growth response relationships are critically needed as crop cultivars, supplemental P sources, or alternative soil-crop management systems are continually changing. Changes in soil microenvironments that are site- or field-specific, and climate are expected to continue to be the norm and can modify those soil-plant relationships. The high-throughput of hand-held XRFS enhances our ability to make management adjustment, particularly at the short early stages of growth, when crop plants are most susceptible to P deficiency. The precision of macronutrient management can be applied at a field-specific scale. As the process can be repeated for each growing season, the knowledge base of soil fertility, crop extraction efficiency and uptake, and elemental availability can only grow in time to improve the predictability of site-specific plant responses to given yield goals and levels of nutrient and soil management inputs. Matching nutrient supply to actual levels needed by the crop minimizes loss of excess agricultural inputs and reduces the risks of adverse impact on the health of the surrounding soil and water resources.

  4. Molecular and Imaging Insights into the Formation of Soil Organic Matter in a Red Pine Rhizosphere

    NASA Astrophysics Data System (ADS)

    Dohnalkova, A.; Tfaily, M.; Smith, A. P.; Chu, R. K.; Crump, A.; Brislawn, C.; Varga, T.; Shi, Z.; Thomashow, L. S.; Harsh, J. B.; Balogh-Brunstad, Z.; Keller, C. K.

    2017-12-01

    Microbially-derived carbon inputs to soils play an important role in forming soil organic matter (SOM), but detailed knowledge of basic mechanisms of carbon (C) cycling, such as stabilization of organic C compounds originating from rhizodeposition, is limited. The objective of this study aimed to investigate the stability of rhizosphere-produced carbon components in a model laboratory mesocosm of Pinus resinosa grown in a designed mineral soil mix. We hypothesized that nutrient limitation would cause formation of microbially-produced C constituents that would contribute to SOM stabilization. We focused on the processes of rhizodeposition in the rhizosphere, and we utilized a suite of advanced imaging and molecular techniques to obtain a molecular-level identification of the microbial community and the newly-formed SOM compounds in the rhizosphere and the bulk soil. We considered implications regarding their degree of long-term stability. The microbes in this controlled, nutrient-limited system, without pre-existing organic matter, produced extracellular polymeric substances that formed associations with nutrient-bearing minerals and contributed to the microbial mineral weathering process. Electron microscopy revealed unique ultrastructural residual signatures of biogenic C compounds, and the increased presence of an amorphous organic phase associated with the mineral phase was evidenced by X-ray diffraction. These findings provide insight into the various degrees of stability of microbial SOM products in ecosystems and evidence that the residual biogenic material associated with mineral matrices may be important components in current carbon cycle models.

  5. Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine

    Treesearch

    John S. King; Timothy J. Albaugh; H. Lee Allen; Boyd R. Strain; Phillip Dougherty

    2002-01-01

    Availability of growth limiting resources may alter root dynamics in forest ecosystems, possibly affecting the land-atmosphere exchange of carbon. This was evaluated for a commercially important southern timber species by installing a factorial experiment of fertilization and irrigation treatments in an 8-yr-old loblolly pine (Pinus taeda) plantation...

  6. Development and Application of Regression Models for Estimating Nutrient Concentrations in Streams of the Conterminous United States, 1992-2001

    USGS Publications Warehouse

    Spahr, Norman E.; Mueller, David K.; Wolock, David M.; Hitt, Kerie J.; Gronberg, JoAnn M.

    2010-01-01

    Data collected for the U.S. Geological Survey National Water-Quality Assessment program from 1992-2001 were used to investigate the relations between nutrient concentrations and nutrient sources, hydrology, and basin characteristics. Regression models were developed to estimate annual flow-weighted concentrations of total nitrogen and total phosphorus using explanatory variables derived from currently available national ancillary data. Different total-nitrogen regression models were used for agricultural (25 percent or more of basin area classified as agricultural land use) and nonagricultural basins. Atmospheric, fertilizer, and manure inputs of nitrogen, percent sand in soil, subsurface drainage, overland flow, mean annual precipitation, and percent undeveloped area were significant variables in the agricultural basin total nitrogen model. Significant explanatory variables in the nonagricultural total nitrogen model were total nonpoint-source nitrogen input (sum of nitrogen from manure, fertilizer, and atmospheric deposition), population density, mean annual runoff, and percent base flow. The concentrations of nutrients derived from regression (CONDOR) models were applied to drainage basins associated with the U.S. Environmental Protection Agency (USEPA) River Reach File (RF1) to predict flow-weighted mean annual total nitrogen concentrations for the conterminous United States. The majority of stream miles in the Nation have predicted concentrations less than 5 milligrams per liter. Concentrations greater than 5 milligrams per liter were predicted for a broad area extending from Ohio to eastern Nebraska, areas spatially associated with greater application of fertilizer and manure. Probabilities that mean annual total-nitrogen concentrations exceed the USEPA regional nutrient criteria were determined by incorporating model prediction uncertainty. In all nutrient regions where criteria have been established, there is at least a 50 percent probability of exceeding the criteria in more than half of the stream miles. Dividing calibration sites into agricultural and nonagricultural groups did not improve the explanatory capability for total phosphorus models. The group of explanatory variables that yielded the lowest model error for mean annual total phosphorus concentrations includes phosphorus input from manure, population density, amounts of range land and forest land, percent sand in soil, and percent base flow. However, the large unexplained variability and associated model error precluded the use of the total phosphorus model for nationwide extrapolations.

  7. Sensitivity of Arctic Permafrost Carbon in the Mackenzie River Basin: A substrate addition and incubation experiment

    NASA Astrophysics Data System (ADS)

    Hedgpeth, A.; Beilman, D.; Crow, S. E.

    2014-12-01

    Arctic soil organic matter (SOM) mineralization processes are fundamental to the functioning of high latitude soils in relation to nutrients, stability, and feedbacks to atmospheric CO2 and climate. The arctic permafrost zone covers 25% of the northern hemisphere and contains 1672Pg of soil carbon (C). 88% of this C currently resides in frozen soils that are vulnerable to environmental change. For instance, arctic growing seasons may be lengthened, resulting in an increase in plant productivity and rate of below ground labile C inputs as root exudates. Understanding controls on Arctic SOM dynamics requires recognition that labile C inputs have the potential to significantly affect mineralization of previously stable SOM, also known as 'priming effects'. We conducted a substrate addition incubation experiment to quantify and compare respiration in highly organic (42-48 %C) permafrost soils along a north-south transect in western Canada. Near surface soils (10-20 cm) were collected from permafrost peatland sites in the Mackenzie River Basin from 69.2-62.6°N. The surface soils are fairly young (Δ14C values > -140.0) and can be assumed to contain relatively reactive soil carbon. To assess whether addition of labile substrate alters SOM decomposition dynamics, 4.77-11.75 g of permafrost soil were spiked with 0.5 mg D-glucose g-1 soil and incubated at 5°C. A mass balance approach was used to determin substrate-induced respiration and preliminary results suggest a potential for positive priming in these C-rich soils. Baseline respiration rates from the three sites were similar (0.067-0.263 mg CO2 g-1 soil C) yet show some site-specific trends. The rate at which added substrate was utilized within these soils suggests that other factors besides temperature and soil C content are controlling substrate consumption and its effect on SOM decomposition. Microbial activity can be stimulated by substrate addition to such an extent that SOM turnover is enhanced, suggesting that soil C decay rates and processes are not constant, but depend on the inter-soil dynamics of other soil C pools. If these C rich soils contain ample C-resources to fuel extra microbial SOM decomposition, then possibly this enhanced use of SOM is not as a means of C acquisition, but to mobilize nutrients needed to meet microbial growth requirements.

  8. The stocks and flows of nitrogen, phosphorus and potassium across a 30-year time series for agriculture in Huantai county, China.

    PubMed

    Bellarby, Jessica; Surridge, Ben W J; Haygarth, Philip M; Liu, Kun; Siciliano, Giuseppina; Smith, Laurence; Rahn, Clive; Meng, Fanqiao

    2018-04-01

    In order to improve the efficiency of nutrient use whilst also meeting projected changes in the demand for food within China, new nutrient management frameworks comprised of policy, practice and the means of delivering change are required. These frameworks should be underpinned by systemic analyses of the stocks and flows of nutrients within agricultural production. In this paper, a 30-year time series of the stocks and flows of nitrogen (N), phosphorus (P) and potassium (K) are reported for Huantai county, an exemplar area of intensive agricultural production in the North China Plain. Substance flow analyses were constructed for the major crop systems in the county across the period 1983-2014. On average across all production systems between 2010 and 2014, total annual nutrient inputs to agricultural land in Huantai county remained high at 18.1kt N, 2.7kt P and 7.8kt K (696kg N ha -1 ; 104kgP ha -1 ; 300kgK ha -1 ). Whilst the application of inorganic fertiliser dominated these inputs, crop residues, atmospheric deposition and livestock manure represented significant, yet largely unrecognised, sources of nutrients, depending on the individual production system and the period of time. Whilst nutrient use efficiency (NUE) increased for N and P between 1983 and 2014, future improvements in NUE will require better alignment of nutrient inputs and crop demand. This is particularly true for high-value fruit and vegetable production, in which appropriate recognition of nutrient supply from sources such as manure and from soil reserves will be required to enhance NUE. Aligned with the structural organisation of the public agricultural extension service at county-scale in China, our analyses highlight key areas for the development of future agricultural policy and farm advice in order to rebalance the management of natural resources from a focus on production and growth towards the aims of efficiency and sustainability. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Aeolian Sediment Trapping Efficiencies of Sparse Vegetation and its Ecohydrological Consequences in Drylands

    NASA Astrophysics Data System (ADS)

    Gonzales, H. B.; Ravi, S.; Li, J. J.; Sankey, J. B.

    2016-12-01

    Hydrological and aeolian processes control the redistribution of soil and nutrients in arid and semi arid environments thereby contributing to the formation of heterogeneous patchy landscapes with nutrient-rich resource islands surrounded by nutrient depleted bare soil patches. The differential trapping of soil particles by vegetation canopies may result in textural changes beneath the vegetation, which, in turn, can alter the hydrological processes such as infiltration and runoff. We conducted infiltration experiments and soil grain size analysis of several shrub (Larrea tridentate) and grass (Bouteloua eriopoda) microsites and in a heterogeneous landscape in the Chihuahuan desert (New Mexico, USA). Our results indicate heterogeneity in soil texture and infiltration patterns under grass and shrub microsites. We assessed the trapping effectiveness of vegetation canopies using a novel computational fluid dynamics (CFD) approach. An open-source software (OpenFOAM) was used to validate the data gathered from particle size distribution (PSD) analysis of soil within the shrub and grass microsites and their porosities (91% for shrub and 68% for grass) determined using terrestrial LiDAR surveys. Three-dimensional architectures of the shrub and grass were created using an open-source computer-aided design (CAD) software (Blender). The readily available solvers within the OpenFOAM architecture were modified to test the validity and optimize input parameters in assessing trapping efficiencies of sparse vegetation against aeolian sediment flux. The results from the numerical simulations explained the observed textual changes under grass and shrub canopies and highlighted the role of sediment trapping by canopies in structuring patch-scale hydrological processes.

  10. The loss of ecosystem services due to land degradation. Integration of mechanistic and probabilistic models in an Ethiopian case study

    NASA Astrophysics Data System (ADS)

    Cerretelli, Stefania; Poggio, Laura; Gimona, Alessandro; Peressotti, Alessandro; Black, Helaina

    2017-04-01

    Land and soil degradation are widespread especially in dry and developing countries such as Ethiopia. Land degradation leads to ecosystems services (ESS) degradation, because it causes the depletion and loss of several soil functions. Ethiopia's farmland faces intense degradation due to deforestation, agricultural land expansion, land overexploitation and overgrazing. In this study we modelled the impact of physical factors on ESS degradation, in particular soil erodibility, carbon storage and nutrient retention, in the Ethiopian Great Rift Valley, northwestern of Hawassa. We used models of the Sediment retention/loss, the Nutrient Retention/loss (from the software suite InVEST) and Carbon Storage. To run the models we coupled soil local data (such as soil organic carbon, soil texture) with remote sensing data as input in the parametrization phase, e.g. to derive a land use map, to calculate the aboveground and belowground carbon, the evapotraspiration coefficient and the capacity of vegetation to retain nutrient. We then used spatialised Bayesian Belief Networks (sBBNs) predicting ecosystem services degradation on the basis of the results of the three mechanistic models. The results show i) the importance of mapping of ESS degradation taking into consideration the spatial heterogeneity and the cross-correlations between impacts ii) the fundamental role of remote sensing data in monitoring and modelling in remote, data-poor areas and iii) the important role of spatial BBNs in providing spatially explicit measures of risk and uncertainty. This approach could help decision makers to identify priority areas for intervention in order to reduce land and ecosystem services degradation.

  11. Influence of different acid and alkaline cleaning agents on the effects of irrigation of synthetic dairy factory effluent on soil quality, ryegrass growth and nutrient uptake.

    PubMed

    Liu, Y-Y; Haynes, R J

    2013-01-01

    The aim of this study was to examine the effects of replacement of phosphoric acid with nitric or acetic acid, and replacement of NaOH with KOH, as cleaning agents in dairy factories, on the effects that irrigation of dairy factory effluent (DFE) has on the soil-plant system. A 16-week greenhouse study was carried out in which the effects of addition of synthetic dairy factory effluent containing (a) milk residues alone or milk residues plus (b) H(3)PO(4)/NaOH, (c) H(3)PO(4)/HNO(3)/NaOH or (d) CH(3)COOH/KOH, on soil's chemical, physical and microbial properties and perennial ryegrass growth and nutrient uptake were investigated. The cumulative effect of DFE addition was to increase exchangeable Na, K, Ca, Mg, exchangeable sodium percentage, microbial biomass C and N and basal respiration in the soil. Dry matter yields of ryegrass were increased by additions of DFE other than that containing CH(3)COOH. Plant uptake of P, Ca and Mg was in the same order as their inputs in DFE but for Na; inputs were an order of magnitude greater than plant uptake. Replacement of NaOH by KOH resulted in increased accumulation of exchangeable K. The effects of added NaOH and KOH on promoting breakdown of soil aggregates during wet sieving (and formation of a < 0.25 mm size class) were similar. Replacement of H(2)PO(4) by HNO(3) is a viable but CH(3)COOH appears to have detrimental effects on plant growth. Replacement of NaOH by KOH lowers the likelihood of phytotoxic effects of Na, but K and Na have similar effects on disaggregation.

  12. Organic matter quantity and source affects microbial community structure and function following volcanic eruption on Kasatochi Island, Alaska

    USGS Publications Warehouse

    Zeglin, Lydia H.; Wang, Bronwen; Waythomas, Christopher F.; Rainey, Frederick; Talbot, Sandra L.

    2016-01-01

    In August 2008, Kasatochi volcano erupted and buried a small island in pyroclastic deposits and fine ash; since then, microbes, plants and birds have begun to re-colonize the initially sterile surface. Five years post-eruption, bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) copy numbers and extracellular enzyme activity (EEA) potentials were one to two orders of magnitude greater in pyroclastic materials with organic matter (OM) inputs relative to those without, despite minimal accumulation of OM (< 0.2%C). When normalized by OM levels, post-eruptive surfaces with OM inputs had the highest β-glucosidase, phosphatase, NAGase and cellobiohydrolase activities, and had microbial population sizes approaching those in reference soils. In contrast, the strongest factor determining bacterial community composition was the dominance of plants versus birds as OM input vectors. Although soil pH ranged from 3.9 to 7.0, and %C ranged 100×, differentiation between plant- and bird-associated microbial communities suggested that cell dispersal or nutrient availability are more likely drivers of assembly than pH or OM content. This study exemplifies the complex relationship between microbial cell dispersal, soil geochemistry, and microbial structure and function; and illustrates the potential for soil microbiota to be resilient to disturbance.

  13. Long-term diffuse phosphorus pollution dynamics under the combined influence of land use and soil property variations.

    PubMed

    Huang, Haobo; Ouyang, Wei; Wu, Haotian; Liu, Hongbin; Andrea, Critto

    2017-02-01

    Analyses of the spatial-temporal distribution of diffuse pollution in agricultural regions are essential to the sustained management of water resources. Although nutrients, such as phosphorus fertilizers, can promote crop growth while improving soil fertility, excessive nutrient inputs can produce diffuse pollution, which may results in water quality degradation. The objective of this paper is to employ the SWAT (Soil and Water Assessment Tool) to estimate diffuse P effects on temporal and spatial distributions for a typical agricultural watershed and to identify the conjunct and independent influences of long-term land use and soil properties variation on diffuse P. With the validated model, the four-period simulation results (from 1979 to 2009) indicate that land use changes from agricultural development increased diffuse P yields. However, regarding updated soil properties, no significant differences of P yield were found between 1979 and 2009, demonstrating that impact of the cropland expansion were naturalized with soil property variations. An F-test was employed to assess the essentiality of all of the variables examined during the simulation period, and the test results indicated that diffuse P loading was more sensitive to soil properties than to land use. Before the P pollution control project about the land use optimization planning, it is more effective to distinguish the impacts of land use and soil properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Distribution and abundance of fungi in the soils of Taylor Valley, Antarctica

    USGS Publications Warehouse

    Connell, L.; Redman, R.; Craig, S.; Rodriguez, R.

    2006-01-01

    The occurrence and distribution of culturable fungi in Taylor Valley, Antarctica was assessed in terms of soil habitat. Soil transects throughout the valley revealed differential habitat utilization between filamentous and non-filamentous (yeast and yeast-like) fungi. In addition, there were significant differences in species distribution patterns with respect to soil pH, moisture, distance from marine coastline, carbon, chlorophyll a, salinity, elevation and solar inputs. Filamentous fungal abundance is most closely associated with habitats having higher pH, and soil moistures. These close associations were not found with yeast and yeast-like fungi demonstrating that yeast and yeast-like fungi utilize a broader range of habitat. An intensive survey of the Victoria Land is necessary to gain a better understanding of their role in soil functioning and nutrient cycling processes. ?? 2006 Elsevier Ltd. All rights reserved.

  15. The influences of changing weather patterns and land management on runoff biogeochemistry in a snowmelt dominated agricultural region

    NASA Astrophysics Data System (ADS)

    Wilson, H. F.; Elliott, J. A.; Glenn, A. J.

    2017-12-01

    Runoff generation and the associated export of nitrogen, phosphorus, and organic carbon on the Northern Great Plains have historically been dominated by snowmelt runoff. In this region the transport of elements primarily occurs in dissolved rather than particulate forms, so cropland management practices designed to reduce particulate losses tend to be ineffective in reducing nutrient runoff. Over the last decade a higher frequency of high volume and intensity rainfall has been observed, leading to rainfall runoff and downstream flooding. To evaluate interactions between tillage, crop residue management, fertilization practices, weather, and runoff biogeochemistry a network of 18 single field scale watersheds (2-6 ha.) has been established in Manitoba, Canada over a range of fertilization (no input to high input) and tillage (zero tillage to frequent tillage). Soils in this network are typical of cropland in the region with clay or clay loam textures, but soil phosphorus differs greatly depending on input practices (3 to 25 mg kg-1 sodium bicarbonate extractable P). Monitoring of runoff chemistry and hydrology at these sites was initiated in 2013 and over the course of 5 years high volume snowmelt runoff from deep snowpack (125mm snow water equivalent), low volume snowmelt from shallow snowpack (25mm snow water equivalent) and extreme rainfall runoff events in spring have all been observed. Event based analyses of the drivers of runoff chemistry indicate that spring fertilization practices (depth, amount, and timing) influence concentrations of N and P in runoff during large rainfall runoff events, but for snowmelt runoff the near surface soil chemistry, tillage, and crop residue management are of greater importance. Management recommendations that might be suggested to reduce nutrient export and downstream eutrophication in the region differ for snowmelt and rainfall, but are not mutually exclusive.

  16. Evolutionary Divergences in Root Exudate Composition among Ecologically-Contrasting Helianthus Species

    PubMed Central

    Bowsher, Alan W.; Ali, Rifhat; Harding, Scott A.; Tsai, Chung-Jui; Donovan, Lisa A.

    2016-01-01

    Plant roots exude numerous metabolites into the soil that influence nutrient availability. Although root exudate composition is hypothesized to be under selection in low fertility soils, few studies have tested this hypothesis in a phylogenetic framework. In this study, we examined root exudates of three pairs of Helianthus species chosen as phylogenetically-independent contrasts with respect to native soil nutrient availability. Under controlled environmental conditions, seedlings were grown to the three-leaf-pair stage, then transferred to either high or low nutrient treatments. After five days of nutrient treatments, we used gas chromatography-mass spectrometry for analysis of root exudates, and detected 37 metabolites across species. When compared in the high nutrient treatment, species native to low nutrient soils exhibited overall higher exudation than their sister species native to high nutrient soils in all three species pairs, providing support for repeated evolutionary shifts in response to native soil fertility. Species native to low nutrient soils and those native to high nutrient soils responded similarly to low nutrient treatments with increased exudation of organic acids (fumaric, citric, malic acids) and glucose, potentially as a mechanism to enhance nutrition acquisition. However, species native to low nutrient soils also responded to low nutrient treatments with a larger decrease in exudation of amino acids than species native to high nutrient soils in all three species pairs. This indicates that species native to low nutrient soils have evolved a unique sensitivity to changes in nutrient availability for some, but not all, root exudates. Overall, these repeated evolutionary divergences between species native to low nutrient soils and those native to high nutrient soils provide evidence for the adaptive value of root exudation, and its plasticity, in contrasting soil environments. PMID:26824236

  17. Evolutionary Divergences in Root Exudate Composition among Ecologically-Contrasting Helianthus Species.

    PubMed

    Bowsher, Alan W; Ali, Rifhat; Harding, Scott A; Tsai, Chung-Jui; Donovan, Lisa A

    2016-01-01

    Plant roots exude numerous metabolites into the soil that influence nutrient availability. Although root exudate composition is hypothesized to be under selection in low fertility soils, few studies have tested this hypothesis in a phylogenetic framework. In this study, we examined root exudates of three pairs of Helianthus species chosen as phylogenetically-independent contrasts with respect to native soil nutrient availability. Under controlled environmental conditions, seedlings were grown to the three-leaf-pair stage, then transferred to either high or low nutrient treatments. After five days of nutrient treatments, we used gas chromatography-mass spectrometry for analysis of root exudates, and detected 37 metabolites across species. When compared in the high nutrient treatment, species native to low nutrient soils exhibited overall higher exudation than their sister species native to high nutrient soils in all three species pairs, providing support for repeated evolutionary shifts in response to native soil fertility. Species native to low nutrient soils and those native to high nutrient soils responded similarly to low nutrient treatments with increased exudation of organic acids (fumaric, citric, malic acids) and glucose, potentially as a mechanism to enhance nutrition acquisition. However, species native to low nutrient soils also responded to low nutrient treatments with a larger decrease in exudation of amino acids than species native to high nutrient soils in all three species pairs. This indicates that species native to low nutrient soils have evolved a unique sensitivity to changes in nutrient availability for some, but not all, root exudates. Overall, these repeated evolutionary divergences between species native to low nutrient soils and those native to high nutrient soils provide evidence for the adaptive value of root exudation, and its plasticity, in contrasting soil environments.

  18. Microbial responses and nitrous oxide emissions during wetting and drying of organically and conventionally managed soil under tomatoes

    USGS Publications Warehouse

    Burger, M.; Jackson, L.E.; Lundquist, E.J.; Louie, D.T.; Miller, R.L.; Rolston, D.E.; Scow, K.M.

    2005-01-01

    The types and amounts of carbon (C) and nitrogen (N) inputs, as well as irrigation management are likely to influence gaseous emissions and microbial ecology of agricultural soil. Carbon dioxide (CO2) and nitrous oxide (N2O) efflux, with and without acetylene inhibition, inorganic N, and microbial biomass C were measured after irrigation or simulated rainfall in two agricultural fields under tomatoes (Lycopersicon esculentum). The two fields, located in the California Central Valley, had either a history of high organic matter (OM) inputs ("organic" management) or one of low OM and inorganic fertilizer inputs ("conventional" management). In microcosms, where short-term microbial responses to wetting and drying were studied, the highest CO2 efflux took place at about 60% water-filled pore space (WFPS). At this moisture level, phospholipid fatty acids (PLFA) indicative of microbial nutrient availability were elevated and a PLFA stress indicator was depressed, suggesting peak microbial activity. The highest N 2O efflux in the organically managed soil (0.94 mg N2O-N m-2 h-1) occurred after manure and legume cover crop incorporation, and in the conventionally managed soil (2.12 mg N2O-N m-2 h-1) after inorganic N fertilizer inputs. Elevated N2O emissions occurred at a WFPS >60% and lasted <2 days after wetting, probably because the top layer (0-150 mm) of this silt loam soil dried quickly. Therefore, in these cropping systems, irrigation management might control the duration of elevated N2O efflux, even when C and inorganic N availability are high, whereas inorganic N concentrations should be kept low during times when soil moisture cannot be controlled.

  19. Soil amendment affects Cd uptake by wheat - are we underestimating the risks from chloride inputs?

    PubMed

    Dahlin, A Sigrun; Eriksson, Jan; Campbell, Colin D; Öborn, Ingrid

    2016-06-01

    Many parts of the world are investigating the efficacy of recycling nutrient resources to agriculture from different industry and domestic sectors as part of a more circular economy. The complex nature of recycled products as soil amendments coupled to the large diversity of soil types and their inherent properties make it difficult to optimize the benefits and minimize the risks from potentially toxic elements often present in recycled materials. Here we investigated how wheat grain cadmium (Cd) concentration was affected by soil amendments, namely human urine and biogas digestate compared to traditional farm manures and mineral fertilizers. We show that Cl(-) inadvertently added to soils with e.g. urine or biogas digestate strongly increased crop Cd concentrations, largely by mobilizing inherent soil Cd. This resulted in wheat grain Cd levels that could result in exceeding recommended WHO limits for dietary intake. This was evident even in soils with low inherent Cd content and when Cd inputs were low. The future of a circular economy that helps to underpin global food security needs to ensure that the effects of applying complex materials to different types of agricultural land are fully understood and do not jeopardize food safety. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Filling the gap in Ca input-output budgets in base-poor forest ecosystems: The contribution of non-crystalline phases evidenced by stable isotopic dilution

    NASA Astrophysics Data System (ADS)

    van der Heijden, Gregory; Legout, Arnaud; Mareschal, Louis; Ranger, Jacques; Dambrine, Etienne

    2017-07-01

    In terrestrial ecosystems, plant-available pools of magnesium and calcium are assumed to be stored in the soil as exchangeable cations adsorbed on the surface of mineral and/or organic particles. The pools of exchangeable magnesium and calcium are measured by ion-exchange soil extractions. These pools are sustained in the long term by the weathering of primary minerals in the soil and atmospheric inputs. This conceptual model is the base of input-output budgets from which soil acidification and the sustainability of soil chemical fertility is inferred. However, this model has been questioned by data from long-term forest ecosystem monitoring sites, particularly for calcium. Quantifying the contribution of atmospheric inputs, ion exchange and weathering of both primary, secondary and non-crystalline phases to tree nutrition in the short term is challenging. In this study, we developed and applied a novel isotopic dilution technique using the stable isotopes of magnesium and calcium to study the contribution of the different soil phases to soil solution chemistry in a very acidic soil. The labile pools of Mg and Ca in the soil (pools in equilibrium with the soil solution) were isotopically labeled by spraying a solution enriched in 26Mg and 44Ca on the soil. Labeled soil columns were then percolated with a dilute acid solution during a 3-month period and the isotopic dilution of the tracers was monitored in the leaching solution, in the exchangeable (2 sequential 1 mol L-1 ammonium acetate extractions) and non-crystalline (2 sequential soil digestions: oxalic acid followed by nitric acid) phases. Significant amounts of Mg and Ca isotope tracer were recovered in the non-crystalline soil phases. These phases represented from 5% to 25% and from 24% to 50%, respectively, of the Mg and Ca labile pools during the experiment. Our results show that non-crystalline phases act as both a source and a sink of calcium and magnesium in the soil, and contribute directly to soil solution chemistry on very short-term time scales. These phases are very abundant in acid soils and, in the present study, represent a substantial calcium pool (equivalent in size to the Ca exchangeable pool). The gradual isotopic dilution of Mg and Ca isotope ratios in the leaching solution during the experiment evidenced an input flux of Mg and Ca originating from a pool other than the labile pool. While the Mg input flux originated primarily from the weathering of primary minerals and secondarily from the non-crystalline phases, the Ca input flux originated primarily from the non-crystalline phases. Our results also show that the net calcium release flux from these phases may represent a significant source of calcium in forest ecosystems and actively contribute to compensating the depletion of Ca exchangeable pools in the soil. Non-crystalline phases therefore should be taken into account when computing input-output nutrient budgets and soil acid neutralizing capacity.

  1. Atmospheric Inputs of Nitrogen, Carbon, and Phosphorus across an Urban Area: Unaccounted Fluxes and Canopy Influences

    NASA Astrophysics Data System (ADS)

    Decina, Stephen M.; Templer, Pamela H.; Hutyra, Lucy R.

    2018-02-01

    Rates of atmospheric deposition are declining across the United States, yet urban areas remain hotspots of atmospheric deposition. While past studies show elevated rates of inorganic nitrogen (N) deposition in cities, less is known about atmospheric inputs of organic N, organic carbon (C), and organic and inorganic phosphorus (P), all of which can affect ecosystem processes, water quality, and air quality. Further, the effect of the tree canopy on amounts and forms of nutrients reaching urban ground surfaces is not well-characterized. We measured growing season rates of total N, organic C, and total P in bulk atmospheric inputs, throughfall, and soil solution around the greater Boston area. We found that organic N constitutes a third of total N inputs, organic C inputs are comparable to rural inputs, and inorganic P inputs are 1.2 times higher than those in sewage effluent. Atmospheric inputs are enhanced two-to-eight times in late spring and are elevated beneath tree canopies, suggesting that trees augment atmospheric inputs to ground surfaces. Additionally, throughfall inputs may directly enter runoff when trees extend above impervious surfaces, as is the case with 26.1% of Boston's tree canopy. Our results indicate that the urban atmosphere is a significant source of elemental inputs that may impact urban ecosystems and efforts to improve water quality, particularly in terms of P. Further, as cities create policies encouraging tree planting to provide ecosystem services, locating trees above permeable surfaces to reduce runoff nutrient loads may be essential to managing urban biogeochemical cycling and water quality.

  2. Verification and completion of a soil data base for process based erosion model applications in Mato Grosso/Brazil

    NASA Astrophysics Data System (ADS)

    Schindewolf, Marcus; Schultze, Nico; Schönke, Daniela; Amorim, Ricardo S. S.; Schmidt, Jürgen

    2014-05-01

    The study area of central Mato Grosso is subjected to severe soil erosion. Continuous erosion leads to massive losses of top soil and related organic carbon. Consequently agricultural soil soils suffer a drop in soil fertility which only can be balanced by mineral fertilization. In order to control soil degradation and organic carbon losses of Mato Grosso cropland soils a process based soil loss and deposition model is used. Applying the model it will be possible to: - identify the main areas affected by soil erosion or deposition in different scales under present and future climate and socio-economic conditions - estimate the related nutrient and organic carbon losses/yields - figure out site-related causes of soil mobilization/deposition - locate sediment and sediment related nutrient and organic matter pass over points into surface water bodies - estimate the impacts of climate and land use changes on the losses of top soil, sediment bound nutrients and organic carbon. Model input parameters include digital elevation data, precipitation characteristics and standard soil properties as particle size distribution, total organic carbon (TOC) and bulk density. The effects of different types of land use and agricultural management practices are accounted for by varying site-specific parameters predominantly related to soil surface properties such as erosional resistance, hydraulic roughness and percentage ground cover. In this context the existing EROSION 3D soil parameter data base deducted from large scale rainfall simulations in Germany is verified for application in the study area, using small scale disc type rainfall simulator with an additional runoff reflux approach. Thus it's possible to enlarge virtual plot length up to at least 10 m. Experimental plots are located in Cuiabá region of central Mato Grosso in order to cover the most relevant land use variants and tillage practices in the region. Results show that derived model parameters are highly influenced by soil management. This indicates a high importance of tillage impact on resistance to erosion, mulch cover and TOC. The measured parameter ranges can generally be confirmed by the existing data base, which only need to be completed due to changed phenological stages in Mato Grosso compared to German conditions.

  3. Biodegradable Plastic Mulch Films: Impacts on Soil Microbial Communities and Ecosystem Functions.

    PubMed

    Bandopadhyay, Sreejata; Martin-Closas, Lluis; Pelacho, Ana M; DeBruyn, Jennifer M

    2018-01-01

    Agricultural plastic mulch films are widely used in specialty crop production systems because of their agronomic benefits. Biodegradable plastic mulches (BDMs) offer an environmentally sustainable alternative to conventional polyethylene (PE) mulch. Unlike PE films, which need to be removed after use, BDMs are tilled into soil where they are expected to biodegrade. However, there remains considerable uncertainty about long-term impacts of BDM incorporation on soil ecosystems. BDMs potentially influence soil microbial communities in two ways: first, as a surface barrier prior to soil incorporation, indirectly affecting soil microclimate and atmosphere (similar to PE films) and second, after soil incorporation, as a direct input of physical fragments, which add carbon, microorganisms, additives, and adherent chemicals. This review summarizes the current literature on impacts of plastic mulches on soil biological and biogeochemical processes, with a special emphasis on BDMs. The combined findings indicated that when used as a surface barrier, plastic mulches altered soil microbial community composition and functioning via microclimate modification, though the nature of these alterations varied between studies. In addition, BDM incorporation into soil can result in enhanced microbial activity and enrichment of fungal taxa. This suggests that despite the fact that total carbon input from BDMs is minuscule, a stimulatory effect on microbial activity may ultimately affect soil organic matter dynamics. To address the current knowledge gaps, long term studies and a better understanding of impacts of BDMs on nutrient biogeochemistry are needed. These are critical to evaluating BDMs as they relate to soil health and agroecosystem sustainability.

  4. The relative importance of vertical soil nutrient heterogeneity, and mean and depth-specific soil nutrient availabilities for tree species richness in tropical forests and woodlands.

    PubMed

    Shirima, Deo D; Totland, Ørjan; Moe, Stein R

    2016-11-01

    The relative importance of resource heterogeneity and quantity on plant diversity is an ongoing debate among ecologists, but we have limited knowledge on relationships between tree diversity and heterogeneity in soil nutrient availability in tropical forests. We expected tree species richness to be: (1) positively related to vertical soil nutrient heterogeneity; (2) negatively related to mean soil nutrient availability; and (3) more influenced by nutrient availability in the upper than lower soil horizons. Using a data set from 60, 20 × 40-m plots in a moist forest, and 126 plots in miombo woodlands in Tanzania, we regressed tree species richness against vertical soil nutrient heterogeneity, both depth-specific (0-15, 15-30, and 30-60 cm) and mean soil nutrient availability, and soil physical properties, with elevation and measures of anthropogenic disturbance as co-variables. Overall, vertical soil nutrient heterogeneity was the best predictor of tree species richness in miombo but, contrary to our prediction, the relationships between tree species richness and soil nutrient heterogeneity were negative. In the moist forest, mean soil nutrient availability explained considerable variations in tree species richness, and in line with our expectations, these relationships were mainly negative. Soil nutrient availability in the top soil layer explained more of the variation in tree species richness than that in the middle and lower layers in both vegetation types. Our study shows that vertical soil nutrient heterogeneity and mean availability can influence tree species richness at different magnitudes in intensively utilized tropical vegetation types.

  5. Regional inventory of soil surface nitrogen balances in Indian agriculture (2000-2001).

    PubMed

    Prasad, V Krishna; Badarinath, K V S; Yonemura, S; Tsuruta, H

    2004-11-01

    Nitrogen regulates several ecological and biogeochemical processes and excess reactive nitrogen in the environment can lead to pollution problems, including the deterioration of air quality, disruption of forest processes, acidification of lakes and streams, and degradation of coastal waters. Much of the excess nitrogen inputs are related to food and energy production. An important step to understanding the sources of nitrogen and ultimately defining solutions to excess nitrogen is to describe the geographic distribution of agricultural nitrogen contributions from different regions. In this study, soil surface nitrogen loads were quantified for different states of India for the period 2000-2001. Nearly 35.4 Tg of nitrogen has been estimated as inputs from different sources, with output nitrogen from harvested crops of about 21.20 Tg. The soil surface nitrogen balance, estimated as inputs minus outputs, is found to be about 14.4 Tg surplus from the agricultural land of India. Livestock manure constituted a major percentage of total inputs (44.06%), followed by inorganic fertilizer (32.48%), atmospheric deposition (11.86%) and nitrogen fixation (11.58%). Nitrogen balance varied from deficit to surplus for different states. The highest nitrogen surplus was found in Uttar Pradesh (2.50 Tg) followed by Madhya Pradesh (1.83 Tg), Andhra Pradesh (1.79 Tg), etc. A negative nitrogen balance was found in Orissa (-0.01 Tg), Andaman Nicobar Islands (-0.32 Tg) and for some of the northeastern states. Major fertilizer consumption states were found to be Tamilnadu (204 kg/ha), Haryana (132 kg/ha), Punjab (148 kg/ha), followed by others. Similarly, nitrogen inputs from total livestock excretions were found to be high for Kerala (616 kg/ha), Jammu and Kashmir (389 kg/ha), Tamil Nadu (338 kg/ha), etc. The average nitrogen surplus of about 54 kg/ha observed for the agricultural land of the entire country of India is comparatively higher than the average surplus of about 31 kg/ha reported for European countries. These results, obtained from nutrient mass balance calculations, will be useful to formulate nutrient management plans relating to fertilizer usage, livestock management and for adopting some best management strategies at a state level in India.

  6. [Effects of litterfall and root input on soil physical and chemical properties in Pinus massoniana plantations in Three Gorges Reservoir Area, China].

    PubMed

    Ge, Xiao-Gai; Huang, Zhi-Lin; Cheng, Rui-Mei; Zeng, Li-Xiong; Xiao, Wen-Fa; Tan, Ben-Wang

    2012-12-01

    An investigation was made on the soil physical and chemical properties in different-aged Pinus massoniana plantations in Three Gorges Reservoir Area under effects of litterfall and roots. The annual litter production in mature stand was 19.4% and 65.7% higher than that in nearly mature and middle-aged stands, respectively. The litter standing amount was in the sequence of mature stand > middle-aged stand > nearly mature stand, while the litter turnover coefficient was in the order of nearly mature stand (0.51) > mature stand (0.40) > middle-aged stand (0.36). The total root biomass, live root biomass, and dead root biomass were the highest in middle-aged stand, and the lowest in nearly mature stand. In middle-aged stand, soil total porosity was the highest, and soil bulk density was the lowest. Soil organic matter and total nitrogen contents were in the order of mature stand > middle-aged stand > nearly mature stand, soil nitrate nitrogen occupied a larger proportion of soil mineral N in nearly mature stand, while ammonium nitrogen accounted more in middle-aged and mature stands. In nearly mature stand, litter production was moderate but turnover coefficient was the highest, and soil nutrient contents were the lowest. In middle-aged stand, root biomass and soil total porosity were the highest, and soil bulk density were the lowest. In mature stand, root biomass was lower while soil nutrient contents were the highest. The increase of root biomass could improve soil physical properties.

  7. Effectiveness of SWAT in characterizing the watershed hydrology in the snowy-mountainous Lower Bear Malad River (LBMR) watershed in Box Elder County, Utah

    NASA Astrophysics Data System (ADS)

    Salha, A. A.; Stevens, D. K.

    2015-12-01

    Distributed watershed models are essential for quantifying sediment and nutrient loads that originate from point and nonpoint sources. Such models are primary means towards generating pollutant estimates in ungaged watersheds and respond well at watershed scales by capturing the variability in soils, climatic conditions, land uses/covers and management conditions over extended periods of time. This effort evaluates the performance of the Soil and Water Assessment Tool (SWAT) model as a watershed level tool to investigate, manage, and characterize the transport and fate of nutrients in Lower Bear Malad River (LBMR) watershed (Subbasin HUC 16010204) in Utah. Water quality concerns have been documented and are primarily attributed to high phosphorus and total suspended sediment concentrations caused by agricultural and farming practices along with identified point sources (WWTPs). Input data such as Digital Elevation Model (DEM), land use/Land cover (LULC), soils, and climate data for 10 years (2000-2010) is utilized to quantify the LBMR streamflow. Such modeling is useful in developing the required water quality regulations such as Total Maximum Daily Loads (TMDL). Measured concentrations of nutrients were closely captured by simulated monthly nutrient concentrations based on the R2 and Nash- Sutcliffe fitness criteria. The model is expected to be able to identify contaminant non-point sources, identify areas of high pollution risk, locate optimal monitoring sites, and evaluate best management practices to cost-effectively reduce pollution and improve water quality as required by the LBMR watershed's TMDL.

  8. Effects of Land-use/Land-cover and Climate Changes on Water Quantity and Quality in Sub-basins near Major US Cities in the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Murphy, L.; Al-Hamdan, M. Z.; Crosson, W. L.; Barik, M.

    2017-12-01

    Land-cover change over time to urbanized, less permeable surfaces, leads to reduced water infiltration at the location of water input while simultaneously transporting sediments, nutrients and contaminants farther downstream. With an abundance of agricultural fields bordering the greater urban areas of Milwaukee, Detroit, and Chicago, water and nutrient transport is vital to the farming industry, wetlands, and communities that rely on water availability. Two USGS stream gages each located within a sub-basin near each of these Great Lakes Region cities were examined, one with primarily urban land-cover between 1992 and 2011, and one with primarily agriculture land-cover. ArcSWAT, a watershed model and soil and water assessment tool used in extension with ArcGIS, was used to develop hydrologic models that vary the land-covers to simulate surface runoff during a model run period from 2004 to 2008. Model inputs that include a digital elevation model (DEM), Landsat-derived land-use/land-cover (LULC) satellite images from 1992, 2001, and 2011, soil classification, and meteorological data were used to determine the effect of different land-covers on the water runoff, nutrients and sediments. The models were then calibrated and validated to USGS stream gage data measurements over time. Additionally, the watershed model was run based on meteorological data from an IPCC CMIP5 high emissions climate change scenario for 2050. Model outputs from the different LCLU scenarios were statistically evaluated and results showed that water runoff, nutrients and sediments were impacted by LULC change in four out of the six sub-basins. In the 2050 climate scenario, only one out of the six sub-basin's water quantity and quality was affected. These results contribute to the importance of developing hydrologic models as the dependence on the Great Lakes as a freshwater resource competes with the expansion of urbanization leading to the movement of runoff, nutrients, and sediments off the land.

  9. Establishing a Multi-spatial Wireless Sensor Network to Monitor Nitrate Concentrations in Soil Moisture

    NASA Astrophysics Data System (ADS)

    Haux, E.; Busek, N.; Park, Y.; Estrin, D.; Harmon, T. C.

    2004-12-01

    The use of reclaimed wastewater for irrigation in agriculture can be a significant source of nutrients, in particular nitrogen species, but its use raises concern for groundwater, riparian, and water quality. A 'smart' technology would have the ability to measure wastewater nutrients as they enter the irrigation system, monitor their transport in situ and optimally control inputs with little human intervention, all in real-time. Soil heterogeneity and economic issues require, however, a balance between cost and the spatial and temporal scales of the monitoring effort. Therefore, a wireless and embedded sensor network, deployed in the soil vertically across the horizon, is capable of collecting, processing, and transmitting sensor data. The network consists of several networked nodes or 'pylons', each outfitted with an array of sensors measuring humidity, temperature, precipitation, soil moisture, and aqueous nitrate concentrations. Individual sensor arrays are controlled by a MICA2 mote (Crossbow Technology Inc., San Jose, CA) programmed with TinyOS (University of California, Berkeley, CA) and a Stargate (Crossbow Technology Inc., San Jose, CA) base-station capable of GPRS for data transmission. Results are reported for the construction and testing of a prototypical pylon at the benchtop and in the field.

  10. Wastewater and sludge reuse in agriculture

    NASA Astrophysics Data System (ADS)

    Kalavrouziotis, Ioannis

    2016-04-01

    The reuse of Municipal wastewaters (TMWW) for irrigation of crops, and of sludge for the amendment of soils, is a multidimensional disposal practice aiming at: (i) minimizing the environmental problems by releasing the pressure exerted by these two inputs on the environment, (ii) providing the growing plants with water and nutrients and (ii) improving soil fertility and productivity, The research work conducted in our University in relation to accomplishing a safe reuse has been focused on the study of the following aspects of reuse: (i) heavy metal accumulation in soils and plants with emphasis on their edible part. This aspect has been studied by conducting a series of experiments aiming at the study of the accumulation of heavy metals in soils, and in plant roots, stalks, leaves and fruits. The conclusions drawn so far with regard to the order of accumulation of heavy metals are: Roots>leaves>stalks>fruits ( edible parts) (ii) interactions between heavy metals, plant nutrients and soil chemical and physical properties. After the examinations of hundreds of interactions, and the development of a quantification of the interactions contribution, it was found that considerable quantities of heavy metals and nutrients are contributed to the soil and to various plant parts , emphasizing the important role of the elemental interactions in plants.(iii) assessment of soil pollution with heavy metals based on pollution indices, Three pollution Indices have been established by our research team and were proposed internationally for application in actual practice for the prediction of soil pollution due to long term reuse of wastewater and sludge. These indices are as follows: (a) Elemental pollution Index (EPI), (b) Heavy Metal Load (HML), and (c) Total Concentration Factor (TCF) and (iv) construction of a computer program for the control of the reuse of TMWW and sludge, and forecasting soil pollution due to accumulation of heavy metal by means of pollution indices.

  11. How to improve fertility of African soils? Leguminous fallows (Cameroon), addition of farmyard manure and mineral fertilizer (Kenya), organic residues management and introduction of N2 fixing species in forest plantations (Congo).

    NASA Astrophysics Data System (ADS)

    Koutika, Lydie-Stella; Mareschal, Louis; Mouanda, Cadeau; Epron, Daniel

    2014-05-01

    Most of African soils are inherently infertile and poor in nutrients mainly nitrogen and phosphorus. Several practices are used to improve soil fertility, increase productivity and ensure their sustainability. Soil fertility in the leguminous fallows was evaluated through particulate organic matter (POM), the more active part of soil organic matter (SOM) in Cameroon. The combination of mineral and organic (manure) fertilizers increased microbial P biomass allowing the release of P along the plant growing period in the Kenyan soils. Organic residues management and introduction of nitrogen fixing species (Acacia) were used to improve soil fertility and sustain forest productivity on the coastal plains of Congo. SOM fractionation was made under Pueraria, Mucuna fallows and natural regrowth mainly Chromolaena and under 3 forest plantation treatments installed in previous savanna: 1) no input, 2) normal input, and 3) double input of organic residues. Microbial P biomass and sequential P fractionation were evaluated in high and low P fixing soils. N, C, available P and pH were determined on soil sampled in acacia (100A), eucalypt (100E) and mixed-species (50A:50E) stands. N and P were determined in aboveground litters and in leaves, bark and wood of trees. The two leguminous fallows increased N content in POM fractions i.e., N >1% for Pueraria and Mucuna against N<1% for natural regrowth in the 0-0.10m depth, probably through N input from N2 fixation from the atmosphere (Cameroon).The addition of mineral fertilizers and farmyard manure increases P biomass (4.8 after 2 weeks to 15.2 after 16 weeks), and then decreased to 9.7 mg P g-1 soil (week 32). It also changes the P Hedley fractions partition in the high P fixing Kenyan soil (0-0.10m). After two rotations (14 years), SOM mineralization was the highest in the double input of organic residues treatment (low coarse POM 5.6 g kg-1 of soil and high organo-mineral fraction (OMF) 115 g kg-1 of soil). The introduction of A. mangium in eucalypt plantations increased the soil N concentration under the mixed-species stand (N>0.06%) compared to under the pure eucalypt stand (N<0.05%) in the 0-0.05 m, along with an increase in soil C concentration (C>1% in the mixed stand and C< 0.9 in the pure Eucalyptus stand).

  12. Degradation of soil fertility can cancel pollination benefits in sunflower.

    PubMed

    Tamburini, Giovanni; Berti, Antonio; Morari, Francesco; Marini, Lorenzo

    2016-02-01

    Pollination and soil fertility are important ecosystem services to agriculture but their relative roles and potential interactions are poorly understood. We explored the combined effects of pollination and soil fertility in sunflower using soils from a trial characterized by different long-term input management in order to recreate plausible levels of soil fertility. Pollinator exclusion was used as a proxy for a highly eroded pollination service. Pollination benefits to yield depended on soil fertility, i.e., insect pollination enhanced seed set and yield only under higher soil fertility indicating that limited nutrient availability may constrain pollination benefits. Our study provides evidence for interactions between above- and belowground ecosystem services, highlighting the crucial role of soil fertility in supporting agricultural production not only directly, but also indirectly through pollination. Management strategies aimed at enhancing pollination services might fail in increasing yield in landscapes characterized by high soil service degradation. Comprehensive knowledge about service interactions is therefore essential for the correct management of ecosystem services in agricultural landscapes.

  13. Effect of soil in nutrient cycle assessment at dairy farms

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Maricke; de Boer, Imke; van Dam, Jos; van Middelaar, Corina; Stoof, Cathelijne

    2016-04-01

    Annual farm nutrient cycle assessments give valuable insight in the nutrient cycles and nutrient losses at dairy farms. It describes nutrient use efficiencies for the entire farm and for the underlying components cattle, manure, crops and soil. In many modelling studies, soil is kept as a constant factor, while soil quality is vital for soil functioning of the ecosystem. Improving soil quality will improve the nutrient cycle, and will also have positive effect on the soil functions crop production, water cycling and greenhouse gas mitigation. Spatial variation of soil properties within a farm, however, are not included in annual nutrient cycle assessments. Therefore it is impossible to identify fields where most profit can be gained by improving farm management at field level, and it is not possible to identify and to quantify nutrient flow path ways. The aim of this study is to develop a framework to improve the annual nutrient cycle assessment at Dutch dairy farms, by including soil properties and their spatial variation within farms. Soil type and soil quality will be described by visual soil assessment of soil quality characteristics. The visual observations will be linked to the nutrient cycle assessment, using soil-hydrological model SWAP. We will demonstrate how soil quality at field level can impact on crop production, eutrophication potential and greenhouse gas potential at farm level. Also, we will show how this framework can be used by farmers to improve their farm management. This new approach is focusing on annual nutrient cycle assessment, but could also be used in life cycle assessment. It will improve understanding of soil functioning and dairy farm management.

  14. Seasonal Variation and Sources of Dissolved Nutrients in the Yellow River, China

    PubMed Central

    Gong, Yao; Yu, Zhigang; Yao, Qingzhen; Chen, Hongtao; Mi, Tiezhu; Tan, Jiaqiang

    2015-01-01

    The rapid growth of the economy in China has caused dramatic growth in the industrial and agricultural development in the Yellow River (YR) watershed. The hydrology of the YR has changed dramatically due to the climate changes and water management practices, which have resulted in a great variation in the fluxes of riverine nutrients carried by the YR. To study these changes dissolved nutrients in the YR were measured monthly at Lijin station in the downstream region of the YR from 2002 to 2004. This study provides detailed information on the nutrient status for the relevant studies in the lower YR and the Bohai Sea. The YR was enriched in nitrate (average 314 μmol·L−1) with a lower concentration of dissolved silicate (average 131 μmol·L−1) and relatively low dissolved phosphate (average 0.35 μmol·L−1). Nutrient concentrations exhibited substantial seasonal and yearly variations. The annual fluxes of dissolved inorganic nitrogen, phosphate, and silicate in 2004 were 5.3, 2.5, and 4.2 times those in 2002, respectively, primarily due to the increase in river discharge. The relative contributions of nutrient inputs to nitrogen in the YR were: wastewater > fertilizer > atmospheric deposition > soil; while to phosphorus were: wastewater > fertilizer > soil > atmospheric deposition. The ratios of N, P and Si suggest that the YR at Lijin is strongly P-limited with respect to potential phytoplankton growth. PMID:26287226

  15. Phosphorus in global agricultural soils: spatially explicit modelling of soil phosphorus and crop uptake for 1900 to 2010

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Beusen, A.; Bouwman, L.; Apeldoorn, D. V.; Yu, C.

    2016-12-01

    Phosphorus (P) plays a vital role in global crop production and food security. To explore the global P status of soils, in this study we developed a spatially explicit version of a two-pool dynamic soil P model at 0.5°resolution. With this model, we analyzed the historical changes of soil P inputs (including manure and inorganic P fertilizer) from 1900 to 2010, reproduced the historical crop P uptake, calculated the phosphorus use efficiency (PUE) and conducted a comprehensive inventory of soil P pools and P budgets (deficit and surplus) in global soils under croplands. Our results suggest that the spatially explicit model is capable of simulating the long-term soil P budget changes and crop uptake, with model simulations closely matching historical P uptake for cropland in all countries. The global P inputs from fertilizers and manure increased from 2 Tg P in 1900 to 23 Tg P in 2010 with great variation across different regions and countries of the world. The magnitude of crop uptake has also changed rapidly over the 20th century: according to our model, crop P uptake per hectare in Western Europe increased by more than three times while the total soil P stock per hectare increased by close to 37% due to long-term P surplus application, with a slight decrease in recent years. Croplands in China (total P per hectare slight decline during 1900-1970, +34% since 1970) and India (total P per hectare gradual increase by 14% since 1900, 6% since 1970) are currently in the phase of accumulation.The total soil P content per hectare in Sub-Saharan Africa has slightly decreased since 1900.Our model is a promising tool to analyze the changes in the soil P status and the capacity of soils to supply P to crops, including future projections of required nutrient inputs.

  16. Soil nematode communities are ecologically more mature beneath late- than early-successional stage biological soil crusts

    USGS Publications Warehouse

    Darby, B.J.; Neher, D.A.; Belnap, J.

    2007-01-01

    Biological soil crusts are key mediators of carbon and nitrogen inputs for arid land soils and often represent a dominant portion of the soil surface cover in arid lands. Free-living soil nematode communities reflect their environment and have been used as biological indicators of soil condition. In this study, we test the hypothesis that nematode communities are successionally more mature beneath well-developed, late-successional stage crusts than immature, early-successional stage crusts. We identified and enumerated nematodes by genus from beneath early- and late-stage crusts from both the Colorado Plateau, Utah (cool, winter rain desert) and Chihuahuan Desert, New Mexico (hot, summer rain desert) at 0-10 and 10-30 cm depths. As hypothesized, nematode abundance, richness, diversity, and successional maturity were greater beneath well-developed crusts than immature crusts. The mechanism of this aboveground-belowground link between biological soil crusts and nematode community composition is likely the increased food, habitat, nutrient inputs, moisture retention, and/or environmental stability provided by late-successional crusts. Canonical correspondence analysis of nematode genera demonstrated that nematode community composition differed greatly between geographic locations that contrast in temperature, precipitation, and soil texture. We found unique assemblages of genera among combinations of location and crust type that reveal a gap in scientific knowledge regarding empirically derived characterization of dominant nematode genera in deserts soils and their functional role in a crust-associated food web. ?? 2006 Elsevier B.V. All rights reserved.

  17. Below the disappearing marshes of an urban estuary: historic nitrogen trends and soil structure

    USGS Publications Warehouse

    Wigand, Cathleen; Roman, Charles T.; Davey, Earl; Stolt, Mark; Johnson, Roxanne; Hanson, Alana; Watson, Elizabeth B.; Moran, S. Bradley; Cahoon, Donald R.; Lynch, James C.; Rafferty, Patricia

    2014-01-01

    Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wastewater nutrients are suspected to be an important contributing cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen isotopes, and soil surveys to examine the temporal relationships between human population growth and soil nitrogen; and we evaluated soil structure with computer-aided tomography, surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear strength to examine differences among disappearing (Black Bank and Big Egg) and stable marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the 1930s when wastewater treatment plants (WWTPs) were first installed. Current WWTPs nutrient loads to Jamaica Bay are approximately 13 995 kg N/d and 2767 kg P/d. At Black Bank, the biomass and abundance of roots and rhizomes and percentage of organic matter on soil were significantly lower, rhizomes larger in diameter, carbon dioxide emission rates and peat particle density significantly greater, and soil strength significantly lower compared to the stable JoCo Marsh, suggesting Black Bank has elevated decomposition rates, more decomposed peat, and highly waterlogged peat. Despite these differences, the rates of accretion and surface elevation change were similar for both marshes, and the rates of elevation change approximated the long term relative rate of sea level rise estimated from tide gauge data at nearby Sandy Hook, New Jersey. We hypothesize that Black Bank marsh kept pace with sea level rise by the accretion of material on the marsh surface, and the maintenance of soil volume through production of larger diameter rhizomes and swelling (dilation) of waterlogged peat. JoCo Marsh kept pace with sea-level rise through surface accretion and soil organic matter accumulation. Understanding the effects of multiple stressors, including nutrient enrichment, on soil structure, organic matter accumulation, and elevation change will better inform management decisions aimed at maintaining and restoring coastal marshes.

  18. Below the disappearing marshes of an urban estuary: historic nitrogen trends and soil structure.

    PubMed

    Wigand, Cathleen; Roman, Charles T; Davey, Earl; Stolt, Mark; Johnson, Roxanne; Hanson, Alana; Watson, Elizabeth B; Moran, S Bradley; Cahoon, Donald R; Lynch, James C; Rafferty, Patricia

    2014-06-01

    Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wastewater nutrients are suspected to be an important contributing cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen isotopes, and soil surveys to examine the temporal relationships between human population growth and soil nitrogen; and we evaluated soil structure with computer-aided tomography, surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear strength to examine differences among disappearing (Black Bank and Big Egg) and stable marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the 1930s when wastewater treatment plants (WWTPs) were first installed. Current WWTPs nutrient loads to Jamaica Bay are approximately 13 995 kg N/d and 2767 kg P/d. At Black Bank, the biomass and abundance of roots and rhizomes and percentage of organic matter on soil were significantly lower, rhizomes larger in diameter, carbon dioxide emission rates and peat particle density significantly greater, and soil strength significantly lower compared to the stable JoCo Marsh, suggesting Black Bank has elevated decomposition rates, more decomposed peat, and highly waterlogged peat. Despite these differences, the rates of accretion and surface elevation change were similar for both marshes, and the rates of elevation change approximated the long-term relative rate of sea level rise estimated from tide gauge data at nearby Sandy Hook, New Jersey. We hypothesize that Black Bank marsh kept pace with sea level rise by the accretion of material on the marsh surface, and the maintenance of soil volume through production of larger diameter rhizomes and swelling (dilation) of waterlogged peat. JoCo Marsh kept pace with sea-level rise through surface accretion and soil organic matter accumulation. Understanding the effects of multiple stressors, including nutrient enrichment, on soil structure, organic matter accumulation, and elevation change will better inform management decisions aimed at maintaining and restoring coastal marshes.

  19. Organic matter quantity and source affects microbial community structure and function following volcanic eruption on Kasatochi Island, Alaska.

    PubMed

    Zeglin, Lydia H; Wang, Bronwen; Waythomas, Christopher; Rainey, Frederick; Talbot, Sandra L

    2016-01-01

    In August 2008, Kasatochi volcano erupted and buried a small island in pyroclastic deposits and fine ash; since then, microbes, plants and birds have begun to re-colonize the initially sterile surface. Five years post-eruption, bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) copy numbers and extracellular enzyme activity (EEA) potentials were one to two orders of magnitude greater in pyroclastic materials with organic matter (OM) inputs relative to those without, despite minimal accumulation of OM (< 0.2%C). When normalized by OM levels, post-eruptive surfaces with OM inputs had the highest β-glucosidase, phosphatase, NAGase and cellobiohydrolase activities, and had microbial population sizes approaching those in reference soils. In contrast, the strongest factor determining bacterial community composition was the dominance of plants versus birds as OM input vectors. Although soil pH ranged from 3.9 to 7.0, and %C ranged 100×, differentiation between plant- and bird-associated microbial communities suggested that cell dispersal or nutrient availability are more likely drivers of assembly than pH or OM content. This study exemplifies the complex relationship between microbial cell dispersal, soil geochemistry, and microbial structure and function; and illustrates the potential for soil microbiota to be resilient to disturbance. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Zhongmin; Su, Weiqin; Chen, Huaihai

    Long-term Elevated nitrogen (N) input from anthropogenic sources may cause soil acidification and decrease crop yield, yet the response of the belowground microbial community to long-term N input and the input of N combined with phosphorus (P) and potassium (K) is still poorly understood. Here, we explored the effect of long-term N and NPK fertilization on soil bacterial diversity and community composition using meta-analysis of a global dataset. Nitrogen fertilization decreased soil pH, and increased soil organic carbon (C) and available N contents. Bacterial taxonomic diversity was decreased by N fertilization alone, but was increased by NPK fertilization. The effectmore » of N fertilization on bacterial diversity depends on soil texture and water management, but independent of crop type or N application rate. Both soil pH and organic C content were positively related to changes in bacterial diversity under N fertilization, while soil organic C was the dominant factor determining changes in bacterial diversity under NPK fertilization. Microbial biomass C decreased with decreasing bacterial diversity under long-term N fertilization. Nitrogen fertilization increased the relative abundance of copiotrophic bacteria (i.e. Proteobacteria and Actinobacteria), but reduced the abundance of oligotrophic taxa (i.e. Acidobacteria), consistent with the general life history strategy theory for bacteria. The relative abundance of Proteobacteria was also increased by NPK fertilization. The positive correlation between N application rate and the relative abundance of Actinobacteria indicates that increased N availability favored the growth of Actinobacteria. This first global analysis of long-term N and NPK fertilization effect on bacterial diversity and community composition suggests that N input decreases bacterial diversity but favors the growth of copiotrophic bacteria, providing a reference for nutrient management strategies for maintaining belowground microbial diversity in agro-ecosystems worldwide.« less

  1. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe

    DOE PAGES

    Dai, Zhongmin; Su, Weiqin; Chen, Huaihai; ...

    2018-04-25

    Long-term Elevated nitrogen (N) input from anthropogenic sources may cause soil acidification and decrease crop yield, yet the response of the belowground microbial community to long-term N input and the input of N combined with phosphorus (P) and potassium (K) is still poorly understood. Here, we explored the effect of long-term N and NPK fertilization on soil bacterial diversity and community composition using meta-analysis of a global dataset. Nitrogen fertilization decreased soil pH, and increased soil organic carbon (C) and available N contents. Bacterial taxonomic diversity was decreased by N fertilization alone, but was increased by NPK fertilization. The effectmore » of N fertilization on bacterial diversity depends on soil texture and water management, but independent of crop type or N application rate. Both soil pH and organic C content were positively related to changes in bacterial diversity under N fertilization, while soil organic C was the dominant factor determining changes in bacterial diversity under NPK fertilization. Microbial biomass C decreased with decreasing bacterial diversity under long-term N fertilization. Nitrogen fertilization increased the relative abundance of copiotrophic bacteria (i.e. Proteobacteria and Actinobacteria), but reduced the abundance of oligotrophic taxa (i.e. Acidobacteria), consistent with the general life history strategy theory for bacteria. The relative abundance of Proteobacteria was also increased by NPK fertilization. The positive correlation between N application rate and the relative abundance of Actinobacteria indicates that increased N availability favored the growth of Actinobacteria. This first global analysis of long-term N and NPK fertilization effect on bacterial diversity and community composition suggests that N input decreases bacterial diversity but favors the growth of copiotrophic bacteria, providing a reference for nutrient management strategies for maintaining belowground microbial diversity in agro-ecosystems worldwide.« less

  2. Nitrogen soil emissions and belowground plant processes in Mediterranean annual pastures are altered by ozone exposure and N-inputs

    NASA Astrophysics Data System (ADS)

    Sánchez-Martín, L.; Bermejo-Bermejo, V.; García-Torres, L.; Alonso, R.; de la Cruz, A.; Calvete-Sogo, H.; Vallejo, A.

    2017-09-01

    Increasing tropospheric ozone (O3) and atmospheric nitrogen (N) deposition alter the structure and composition of pastures. These changes could affect N and C compounds in the soil that in turn can influence soil microbial activity and processes involved in the emission of N oxides, methane (CH4) and carbon dioxide (CO2), but these effects have been scarcely studied. Through an open top chamber (OTC) field experiment, the combined effects of both pollutants on soil gas emissions from an annual experimental Mediterranean community were assessed. Four O3 treatments and three different N input levels were considered. Fluxes of nitric (NO) and nitrous (N2O) oxide, CH4 and CO2 were analysed as well as soil mineral N and dissolved organic carbon. Belowground plant parameters like root biomass and root C and N content were also sampled. Ozone strongly increased soil N2O emissions, doubling the cumulative emission through the growing cycle in the highest O3 treatment, while N-inputs enhanced more slightly NO; CH4 and CO2 where not affected. Both N-gases had a clear seasonality, peaking at the start and at the end of the season when pasture physiological activity is minimal; thus, higher microorganism activity occurred when pasture had a low nutrient demand. The O3-induced peak of N2O under low N availability at the end of the growing season was counterbalanced by the high N inputs. These effects were related to the O3 x N significant interaction found for the root-N content in the grass and the enhanced senescence of the community. Results indicate the importance of the belowground processes, where competition between plants and microorganisms for the available soil N is a key factor, for understanding the ecosystem responses to O3 and N.

  3. Nutrient Sourcing of Ten Plant Species in the Southwest U.S. using Strontium Isotopes: Effects of Rooting Depth, Bedrock Type, and Landscape Age

    NASA Astrophysics Data System (ADS)

    Reynolds, A. C.; Quade, J.; Betancourt, J. L.

    2007-12-01

    For decades, researchers have been examining chronosequences in Hawaii to quantify mineral weathering rates and tropical plant nutrient pools. Within El Malpais National Park, New Mexico, well-dated basalt flows allow for comparison of the Hawaiian data to a semi-arid ecosystem. We measured 87Sr/86Sr ratios in cellulose and bedrock to gauge tree, shrub, & grass (Pinus ponderosa, Pinus edulis, Juniperus monosperma, Juniperus scopulorum, Populus tremuloides, Chrysothamus nauseosus, Fallugia paradoxa, Rhus trilobata, Bouteloua gracilis, and Xanthoparmelia lineola (Berry) Hale) dependence on atmospheric dust as a nutrient source. Sampling sites varied by bedrock type (limestone, sandstone, granite, cinder and basalt) and by age (Quaternary to Precambrian) providing a wide and discrete range of 87Sr/86Sr ratios. Thus, we can pinpoint the roles landscape age (3 ka to greater than 200 ka) and bedrock recalcitrance play in mineral weathering versus eolian dust influence. This study suggests that dust dominates the nutrient cycle on younger landscapes (3 ka), shows a mixture of mineral weathering-dust inputs by 9 ka, and is rock-dominated by 120 ka. Rates of soil nutrient depletion vary in older, non-basalt landscapes (>250 ka), depending on the type the parent bedrock. For example, landscapes on Precambrian gneiss and Paleozoic limestone still show significant mineral contributions while the quartz-rich, carbonate-cemented Zuni Sandstone is almost completely eolian-dominated. Cellulose 87Sr/86Sr variation by plant species at a single site allows us to monitor plant rooting depths and interspecies competition for vital nutrients. Within semiarid ecosystems, nutrient concentrations exhibit both vertical and lateral heterogeneity. The reasons for this variation include vertical and lateral heterogeneity in soil moisture and foliar trapping of nutrient-rich dust followed by incorporation of the throughfall into the underlying soil. This study shows that throughfall does play a significant role for certain species (e.g. J. monosperma) but not for others. A species' ability to trap dust and its overall rooting depths both influence its nutrient intake.

  4. [Biogeochemical cycles in natural forest and conifer plantations in the high mountains of Colombia].

    PubMed

    León, Juan Diego; González, María Isabel; Gallardo, Juan Fernando

    2011-12-01

    Plant litter production and decomposition are two important processes in forest ecosystems, since they provide the main organic matter input to soil and regulate nutrient cycling. With the aim to study these processes, litterfall, standing litter and nutrient return were studied for three years in an oak forest (Quercus humboldtii), pine (Pinus patula) and cypress (Cupressus lusitanica) plantations, located in highlands of the Central Cordillera of Colombia. Evaluation methods included: fine litter collection at fortnightly intervals using litter traps; the litter layer samples at the end of each sampling year and chemical analyses of both litterfall and standing litter. Fine litter fall observed was similar in oak forest (7.5 Mg ha/y) and in pine (7.8 Mg ha/y), but very low in cypress (3.5 Mg ha/y). Litter standing was 1.76, 1.73 and 1.3 Mg ha/y in oak, pine and cypress, respectively. The mean residence time of the standing litter was of 3.3 years for cypress, 2.1 years for pine and 1.8 years for oak forests. In contrast, the total amount of retained elements (N, P, S, Ca, Mg, K, Cu, Fe, Mn and Zn) in the standing litter was higher in pine (115 kg/ha), followed by oak (78 kg/ha) and cypress (24 kg/ha). Oak forests showed the lowest mean residence time of nutrients and the highest nutrients return to the soil as a consequence of a faster decomposition. Thus, a higher nutrient supply to soils from oaks than from tree plantations, seems to be an ecological advantage for recovering and maintaining the main ecosystem functioning features, which needs to be taken into account in restoration programs in this highly degraded Andean mountains.

  5. Investigation of Soil Erosion and Phosphorus Transport within an Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Klik, A.; Jester, W.; Muhar, A.; Peinsitt, A.; Rampazzo, N.; Mentler, A.; Staudinger, B.; Eder, M.

    2003-04-01

    In a 40 ha agricultural used watershed in Austria, surface runoff, soil erosion and nutrient losses are measured spatially distributed with 12 small erosion plots. Crops during growing season 2002 are canola, corn, sunflower, winter wheat, winter barley, rye, sugar beets, and pasture. Canopy height and canopy cover are observed in 14-day intervals. Four times per year soil water content, shear stress and random roughness of the surface are measured in a 25 x 25 m grid (140 points). The same raster is sampled for soil texture analyses and content of different phosphorus fractions in the 0-10 cm soil depth. Spatially distributed data are used for geostatistical analysis. Along three transects hydrologic conditions of the hillslope position (top, middle, foot) are investigated by measuring soil water content and soil matrix potential. After erosive events erosion features (rills, deposition, ...) are mapped using GPS. All measured data will be used as input parameters for the Limburg Soil Erosion Model (LISEM).

  6. Soil-Plant Nutrient Interactions on Manure-Enriched Calcareous Soils

    USDA-ARS?s Scientific Manuscript database

    Nutrient accumulations on heavily manured soils can trigger soil and plant nutrient interactions. The goal of the study was to determine the current impact of dairy manure applications on nutrient concentrations in soil and tissue for irrigated corn silage crops grown in Southern Idaho. At harvest,...

  7. Nutrient variations from swine manure to agricultural land

    PubMed Central

    You, Byung-Gu; Shim, Soomin; Choi, Yoon-Seok

    2018-01-01

    Objective Swine manure in Korea is separated into solid and liquid phases which are composted separately and then applied on land. The nutrient accumulation in soil has been a big issue in Korea but the basic investigation about nutrient input on arable land has not been achieved in detail. Within the nutrient production from livestock at the national level, most values are calculated by multiplication of the number of animals with the excreta unit per animal. However, the actual amount of nutrients from swine manure may be totally different with the nutrients applied to soil since livestock breeding systems are not the same with each country. Methods This study investigated 15 farms producing solid compost and 14 farms producing liquid compost. Composting for solid phase used the Turning+Aeration (TA) or Turning (T) only methods, while liquid phase aeration composting was achieved by continuous (CA), intermittent (IA), or no aeration (NA). Three scenarios were constructed for investigating solid compost: i) farm investigation, ii) reference study, and iii) theoretical P changes (ΔP = 0), whereas an experiment for water evaporation was conducted for analyzing liquid compost. Results In farm investigation, weight loss rates of 62% and 63% were obtained for TA and T, respectively, while evaporation rates for liquid compost were 8.75, 7.27, and 5.14 L/m2·d for CA, IA, and NA, respectively. Farm investigation provided with the combined nutrient load (solid+liquid) of VS, N, and P of 117.6, 7.2, and 2.7 kg/head·yr. Nutrient load calculated from farm investigation is about two times higher than the calculated with reference documents. Conclusion The nutrient loading coefficients from one swine (solid+liquid) were (volatile solids, 0.79; nitrogen, 0.53; phosphorus, 0.71) with nutrient loss of 21%, 47%, and 29%, respectively. The nutrient count from livestock manure using the excretion unit has probably been overestimated without consideration of the nutrient loss. PMID:29268574

  8. Adaptability in linkage of soil carbon nutrient cycles - the SEAM model

    NASA Astrophysics Data System (ADS)

    Wutzler, Thomas; Zaehle, Sönke; Schrumpf, Marion; Ahrens, Bernhard; Reichstein, Markus

    2017-04-01

    In order to understand the coupling of carbon (C) and nitrogen (N) cycles, it is necessary to understand C and N-use efficiencies of microbial soil organic matter (SOM) decomposition. While important controls of those efficiencies by microbial community adaptations have been shown at the scale of a soil pore, an abstract simplified representation of community adaptations is needed at ecosystem scale. Therefore we developed the soil enzyme allocation model (SEAM), which takes a holistic, partly optimality based approach to describe C and N dynamics at the spatial scale of an ecosystem and time-scales of years and longer. We explicitly modelled community adaptation strategies of resource allocation to extracellular enzymes and enzyme limitations on SOM decomposition. Using SEAM, we explored whether alternative strategy-hypotheses can have strong effects on SOM and inorganic N cycling. Results from prototypical simulations and a calibration to observations of an intensive pasture site showed that the so-called revenue enzyme allocation strategy was most viable. This strategy accounts for microbial adaptations to both, stoichiometry and amount of different SOM resources, and supported the largest microbial biomass under a wide range of conditions. Predictions of the SEAM model were qualitatively similar to models explicitly representing competing microbial groups. With adaptive enzyme allocation under conditions of high C/N ratio of litter inputs, N in formerly locked in slowly degrading SOM pools was made accessible, whereas with high N inputs, N was sequestered in SOM and protected from leaching. The finding that adaptation in enzyme allocation changes C and N-use efficiencies of SOM decomposition implies that concepts of C-nutrient cycle interactions should take account for the effects of such adaptations. This can be done using a holistic optimality approach.

  9. Scaling of physical constraints at the root-soil interface to macroscopic patterns of nutrient retention in ecosystems.

    PubMed

    Gerber, Stefan; Brookshire, E N Jack

    2014-03-01

    Nutrient limitation in terrestrial ecosystems is often accompanied with maintaining a nearly closed vegetation-soil nutrient cycle. The ability to retain nutrients in an ecosystem requires the capacity of the plant-soil system to draw down nutrient levels in soils effectually such that export concentrations in soil solutions remain low. Here we address the physical constraints of plant nutrient uptake that may be limited by the diffusive movement of nutrients in soils, by the uptake at the root/mycorrhizal surface, and from interactions with soil water flow. We derive an analytical framework of soil nutrient transport and uptake and predict levels of plant available nutrient concentration and residence time. Our results, which we evaluate for nitrogen, show that the physical environment permits plants to lower soil solute concentration substantially. Our analysis confirms that plant uptake capacities in soils are considerable, such that water movement in soils is generally too small to significantly erode dissolved plant-available nitrogen. Inorganic nitrogen concentrations in headwater streams are congruent with the prediction of our theoretical framework. Our framework offers a physical-based parameterization of nutrient uptake in ecosystem models and has the potential to serve as an important tool toward scaling biogeochemical cycles from individual roots to landscapes.

  10. Exploring the impact of agriculture on nitrogen and phosphorus biogeochemistry in global rivers during the twentieth century (Invited)

    NASA Astrophysics Data System (ADS)

    Bouwman, L.; Beusen, A.; Van Beek, L. P.

    2013-12-01

    Nutrients are transported from land to sea through the continuum formed by soils, groundwater, riparian zones, floodplains, streams, rivers, lakes, and reservoirs. The hydrology, ecology and biogeochemical processing in each of these components are strongly coupled and result in retention of a significant fraction of the nutrients transported. This paper analyzes the global changes in nutrient biogeochemical processes and retention in rivers during the past century (1900-2000); this period encompasses dramatic increases in human population and economic human activities including agriculture that have resulted in major changes in land use, nutrient use in agriculture, wastewater flows and human interventions in the hydrology (1). We use the hydrological PCR-GLOBWB model (2) for the period 1900-2000, including climate variability and the history of dam construction and land use conversion. Global agricultural and natural N and P soil budgets for the period 1900-2000 are the starting point to simulate nutrient flows from the soil via surface runoff and leaching through the groundwater system and riparian zones. In-stream processes are described with the nutrient spiraling concept. In the period 1900-2000, the global soil N budget surplus (inputs minus withdrawal in harvested crops) for agricultural and natural ecosystems increased from 118 to 202 Tg yr-1, and the global P budget increased from < 0.5 to 11 Tg P yr-1. As a result of this massive increase, nutrient delivery to streams and river nutrient export has increased rapidly in the 20th century. Model results are sensitive to factors determining the N and P delivery, as well as in-stream processes. The most uncertain factors are N delivery to streams by groundwater (denitrification as a function of thickness and reactivity of aquifers), and in-stream N and P retention parameters (net uptake velocity, retention as function of concentration). References 1. Bouwman AF, Beusen AHW, Griffioen J, Van Groenigen JW, Hefting MM, Oenema O, et al. Global trends and uncertainties in terrestrial denitrification and N2O emissions. Philosophical Transactions of the Royal Society B: Biological Sciences. 2013;368(20130112). 2. Van Beek LPH, Wada Y, Bierkens MFP. Global monthly water stress: 1. Water balance and water availability. Water Resour Res. 2011;47(7):W07517.

  11. Artificial Root Exudate System (ARES): a field approach to simulate tree root exudation in soils

    NASA Astrophysics Data System (ADS)

    Lopez-Sangil, Luis; Estradera-Gumbau, Eduard; George, Charles; Sayer, Emma

    2016-04-01

    The exudation of labile solutes by fine roots represents an important strategy for plants to promote soil nutrient availability in terrestrial ecosystems. Compounds exuded by roots (mainly sugars, carboxylic and amino acids) provide energy to soil microbes, thus priming the mineralization of soil organic matter (SOM) and the consequent release of inorganic nutrients into the rhizosphere. Studies in several forest ecosystems suggest that tree root exudates represent 1 to 10% of the total photoassimilated C, with exudation rates increasing markedly under elevated CO2 scenarios. Despite their importance in ecosystem functioning, we know little about how tree root exudation affect soil carbon dynamics in situ. This is mainly because there has been no viable method to experimentally control inputs of root exudates at field scale. Here, I present a method to apply artificial root exudates below the soil surface in small field plots. The artificial root exudate system (ARES) consists of a water container with a mixture of labile carbon solutes (mimicking tree root exudate rates and composition), which feeds a system of drip-tips covering an area of 1 m2. The tips are evenly distributed every 20 cm and inserted 4-cm into the soil with minimal disturbance. The system is regulated by a mechanical timer, such that artificial root exudate solution can be applied at frequent, regular daily intervals. We tested ARES from April to September 2015 (growing season) within a leaf-litter manipulation experiment ongoing in temperate deciduous woodland in the UK. Soil respiration was measured monthly, and soil samples were taken at the end of the growing season for PLFA, enzymatic activity and nutrient analyses. First results show a very rapid mineralization of the root exudate compounds and, interestingly, long-term increases in SOM respiration, with negligible effects on soil moisture levels. Large positive priming effects (2.5-fold increase in soil respiration during the growing season) were observed in absence of aboveground forest litter, with lower or no priming when the litter was present. Preliminary results show that soil microbial community is also significantly affected by ARES.

  12. Analysis of field-scale spatial correlations and variations of soil nutrients using geostatistics.

    PubMed

    Liu, Ruimin; Xu, Fei; Yu, Wenwen; Shi, Jianhan; Zhang, Peipei; Shen, Zhenyao

    2016-02-01

    Spatial correlations and soil nutrient variations are important for soil nutrient management. They help to reduce the negative impacts of agricultural nonpoint source pollution. Based on the sampled available nitrogen (AN), available phosphorus (AP), and available potassium (AK), soil nutrient data from 2010, the spatial correlation, was analyzed, and the probabilities of the nutrient's abundance or deficiency were discussed. This paper presents a statistical approach to spatial analysis, the spatial correlation analysis (SCA), which was originally developed for describing heterogeneity in the presence of correlated variation and based on ordinary kriging (OK) results. Indicator kriging (IK) was used to assess the susceptibility of excess of soil nutrients based on crop needs. The kriged results showed there was a distinct spatial variability in the concentration of all three soil nutrients. High concentrations of these three soil nutrients were found near Anzhou. As the distance from the center of town increased, the concentration of the soil nutrients gradually decreased. Spatially, the relationship between AN and AP was negative, and the relationship between AP and AK was not clear. The IK results showed that there were few areas with a risk of AN and AP overabundance. However, almost the entire study region was at risk of AK overabundance. Based on the soil nutrient distribution results, it is clear that the spatial variability of the soil nutrients differed throughout the study region. This spatial soil nutrient variability might be caused by different fertilizer types and different fertilizing practices.

  13. Biodegradable Plastic Mulch Films: Impacts on Soil Microbial Communities and Ecosystem Functions

    PubMed Central

    Bandopadhyay, Sreejata; Martin-Closas, Lluis; Pelacho, Ana M.; DeBruyn, Jennifer M.

    2018-01-01

    Agricultural plastic mulch films are widely used in specialty crop production systems because of their agronomic benefits. Biodegradable plastic mulches (BDMs) offer an environmentally sustainable alternative to conventional polyethylene (PE) mulch. Unlike PE films, which need to be removed after use, BDMs are tilled into soil where they are expected to biodegrade. However, there remains considerable uncertainty about long-term impacts of BDM incorporation on soil ecosystems. BDMs potentially influence soil microbial communities in two ways: first, as a surface barrier prior to soil incorporation, indirectly affecting soil microclimate and atmosphere (similar to PE films) and second, after soil incorporation, as a direct input of physical fragments, which add carbon, microorganisms, additives, and adherent chemicals. This review summarizes the current literature on impacts of plastic mulches on soil biological and biogeochemical processes, with a special emphasis on BDMs. The combined findings indicated that when used as a surface barrier, plastic mulches altered soil microbial community composition and functioning via microclimate modification, though the nature of these alterations varied between studies. In addition, BDM incorporation into soil can result in enhanced microbial activity and enrichment of fungal taxa. This suggests that despite the fact that total carbon input from BDMs is minuscule, a stimulatory effect on microbial activity may ultimately affect soil organic matter dynamics. To address the current knowledge gaps, long term studies and a better understanding of impacts of BDMs on nutrient biogeochemistry are needed. These are critical to evaluating BDMs as they relate to soil health and agroecosystem sustainability. PMID:29755440

  14. Long Term Large Scale river nutrient changes across the UK

    NASA Astrophysics Data System (ADS)

    Bell, Victoria; Naden, Pam; Tipping, Ed; Davies, Helen; Davies, Jessica; Dragosits, Ulli; Muhammed, Shibu; Quinton, John; Stuart, Marianne; Whitmore, Andy; Wu, Lianhai

    2017-04-01

    During recent decades and centuries, pools and fluxes of Carbon, Nitrogen and Phosphorus (C, N and P) in UK rivers and ecosystems have been transformed by the spread and fertiliser-based intensification of agriculture (necessary to sustain human populations), by atmospheric pollution, by human waste (rising in line with population growth), and now by climate change. The principal objective of the UK's NERC-funded Macronutrients LTLS research project has been to account for observable terrestrial and aquatic pools, concentrations and fluxes of C, N and P on the basis of past inputs, biotic and abiotic interactions, and transport processes. More specifically, over the last 200 years, what have been the temporal responses of plant and soil nutrient pools in different UK catchments to nutrient enrichment, and what have been the consequent effects on nutrient transfers from land to the atmosphere, freshwaters and estuaries? The work described here addresses the second question by providing an integrated quantitative description of the interlinked land and water pools and annual fluxes of C, N and P for UK catchments over time. A national-scale modelling environment has been developed, combining simple physically-based gridded models that can be parameterised using recent observations before application to long timescales. The LTLS Integrated Model (LTLS-IM) uses readily-available driving data (climate, land-use, nutrient inputs, topography), and model estimates of both terrestrial and freshwater nutrient loads have been compared with measurements from sites across the UK. Here, the focus is on the freshwater nutrient component of the LTLS-IM, but the terrestrial nutrient inputs required for this are provided by models of nutrient processes in semi-natural and agricultural systems, and from simple models of nutrients arising from human waste. In the freshwater model, lateral routing of dissolved and particulate nutrients and within-river processing such as denitrification, decomposition and chlorophyll growth are undertaken, and the effects of groundwater storage and processes in lakes connected to the river network can be included. Following assessment against observations of terrestrial and nutrient fluxes in rivers across the UK, the LTLS-IM has been run nationally for 200 years (1800 to 2010), and the work presented here provides, for the first time, national, regional or catchment estimates of the origins and trends in riverine nutrients in the period following the industrial revolution. Ongoing work is now exploring the effects of future climate, waste water treatment and land-management scenarios on water quality, and the effects of nutrient enrichment on the development of eutrophication in rivers.

  15. Wading bird guano enrichment of soil nutrients in tree islands of the Florida Everglades.

    PubMed

    Irick, Daniel L; Gu, Binhe; Li, Yuncong C; Inglett, Patrick W; Frederick, Peter C; Ross, Michael S; Wright, Alan L; Ewe, Sharon M L

    2015-11-01

    Differential distribution of nutrients within an ecosystem can offer insight of ecological and physical processes that are otherwise unclear. This study was conducted to determine if enrichment of phosphorus (P) in tree island soils of the Florida Everglades can be explained by bird guano deposition. Concentrations of total carbon, nitrogen (N), and P, and N stable isotope ratio (δ(15)N) were determined on soil samples from 46 tree islands. Total elemental concentrations and δ(15)N were determined on wading bird guano. Sequential chemical extraction of P pools was also performed on guano. Guano contained between 53.1 and 123.7 g-N kg(-1) and 20.7 and 56.7 g-P kg(-1). Most of the P present in guano was extractable by HCl, which ranged from 82 to 97% of the total P. Total P of tree islands classified as having low or high P soils averaged 0.71 and 40.6 g kg(-1), respectively. Tree island soil with high total P concentration was found to have a similar δ(15)N signature and total P concentration as bird guano. Phosphorus concentrations and δ(15)N were positively correlated in tree island soils (r = 0.83, p< 0.0001). Potential input of guano with elevated concentrations of N and P, and (15)N enriched N, relative to other sources suggests that guano deposition in tree island soils is a mechanism contributing to this pattern. Copyright © 2015. Published by Elsevier B.V.

  16. Spatial variability assessment of soil nutrients in an intense agricultural area, a case study of Rugao County in Yangtze River Delta Region, China

    NASA Astrophysics Data System (ADS)

    Zhao, Yongcun; Xu, Xianghua; Darilek, Jeremy Landon; Huang, Biao; Sun, Weixia; Shi, Xuezheng

    2009-05-01

    Topsoil samples (0-20 cm) ( n = 237) were collected from Rugao County, China. Geostatistical variogram analysis, sequential Gaussian simulation (SGS), and principal component (PC) analysis were applied to assess spatial variability of soil nutrients, identify the possible areas of nutrient deficiency, and explore spatial scale of variability of soil nutrients in the county. High variability of soil nutrient such as soil organic matter (SOM), total nitrogen (TN), available P, K, Fe, Mn, Cu, Zn, and B concentrations were observed. Soil nutrient properties displayed significant differences in their spatial structures, with available Cu having strong spatial dependence, SOM and available P having weak spatial dependence, and other nutrient properties having moderate spatial dependence. The soil nutrient deficiency, defined here as measured nutrient concentrations which do not meet the advisory threshold values specific to the county for dominant crops, namely rice, wheat, and rape seeds, was observed in available K and Zn, and the deficient areas covered 38 and 11%, respectively. The first three PCs of the nine soil nutrient properties explained 62.40% of the total variance. TN and SOM with higher loadings on PC1 are closely related to soil texture derived from different parent materials. The PC2 combined intermediate response variables such as available Zn and P that are likely to be controlled by land use and soil pH. Available B has the highest loading on PC3 and its variability of concentrations may be primarily ascribed to localized anthropogenic influence. The amelioration of soil physical properties (i.e. soil texture) and soil pH may improve the availability of soil nutrients and the sustainability of the agricultural system of Rugao County.

  17. Insight into litter decomposition driven by nutrient demands of symbiosis system through the hypha bridge of arbuscular mycorrhizal fungi.

    PubMed

    Kong, Xiangshi; Jia, Yanyan; Song, Fuqiang; Tian, Kai; Lin, Hong; Bei, Zhanlin; Jia, Xiuqin; Yao, Bei; Guo, Peng; Tian, Xingjun

    2018-02-01

    Arbuscular mycorrhizal fungi (AMF) play an important role in litter decomposition. This study investigated how soil nutrient level affected the process. Results showed that AMF colonization had no significant effect on litter decomposition under normal soil nutrient conditions. However, litter decomposition was accelerated significantly under lower nutrient conditions. Soil microbial biomass in decomposition system was significantly increased. Especially, in moderate lower nutrient treatment (condition of half-normal soil nutrient), litters exhibited the highest decomposition rate, AMF hypha revealed the greatest density, and enzymes (especially nitrate reductase) showed the highest activities as well. Meanwhile, the immobilization of nitrogen (N) in the decomposing litter remarkably decreased. Our results suggested that the roles AMF played in ecosystem were largely affected by soil nutrient levels. At normal soil nutrient level, AMF exhibited limited effects in promoting decomposition. When soil nutrient level decreased, the promoting effect of AMF on litter decomposition began to appear, especially on N mobilization. However, under extremely low nutrient conditions, AMF showed less influence on decomposition and may even compete with decomposer microorganisms for nutrients.

  18. Atmospheric deposition as a source of carbon and nutrients to barren, alpine soils of the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.

    2012-03-01

    Many alpine areas are experiencing intense deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, we evaluated the magnitude and chemical quality of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were approximately 1.0 mg L-1and weekly concentrations reached peaks as high at 6-10 mg L-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. Relationships among DOC concentration, dissolved organic matter (DOM) fluorescence properties, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples and, therefore, likely to be more bioavailable to microbes in barren alpine soils. Bioavailability experiments with different types of atmospheric C sources are needed to better evaluate the substrate quality of atmospheric C inputs. Our C budget estimates for the Green Lake 4 catchment suggest that atmospheric deposition represents an average input of approximately 13 kg C ha-1 yr-1 that could be as high as 24 kg C ha-1 yr-1 in high dust years and approaches that of autotrophic C fixation in barren soils.

  19. Impact of savanna conversion to oil palm plantations on C stocks dynamics and soil fertility

    NASA Astrophysics Data System (ADS)

    Quezada, Juan Carlos; Guillaume, Thomas; Buttler, Alexandre; Ruegg, Johanna

    2017-04-01

    Large-scale expansion of oil palm cultivation on forested land in South-East Asia during the last decades lead to high negative environmental impacts. Because rainforests store high amount of C, their conversion to oil palm plantations results in large net CO2 emissions. Oil palm cultivation in tropical ecosystems such as savanna that store less C than forests is seen as an alternative to reduce greenhouse gas emissions of future oil palm development. While this option is more and more frequently mentioned, few data are available on the effective gain in C storage. Furthermore negative impact on soil organic carbon and soil fertility could offset gains of C storage in oil palm biomass. Here, we present results on aboveground and belowground C stocks and soil nutrient dynamics over a full rotation cycle of oil palm plantations established on tropical savanna grasslands. Three natural savanna grasslands as reference sites and 9 oil palm plantations ranging from two to twenty-seven years old were selected in the Llanos in Colombia. Oxisols were sampled down to 70 cm in each management zones of oil palm plantations (weeded circle, interrow, frond piles and harvesting path). Taking advantages of a shift from C4 to C3 vegetation, we quantified savanna-derived soil organic carbon (SOC) decomposition and oil palm-derived SOC stabilization rates and how they were affected by management practices (mineral fertilization, organic amendments, etc.). Results show that, in opposite to forest conversion, C storage increases when savannas are converted to oil palm plantations. Because soil C storage was very low in natural conditions, SOC changes had little effects on overall C storage. Substitution of savanna-derived SOC by oil palm-derived SOC was very fast in the topsoil and highest under frond pile and weeded circle where C and nutrients inputs are highest. However, stabilization of oil palm-derived SOC compensated loss of savanna-derived SOC rather than increased SOC stocks, indicating high SOC turnover. High turnover are explained by high nutrients inputs and little capacity of Oxisols to physically protect SOC. In conclusion, conversion of savanna to oil palm plantations results in a gain in ecosystem C storage as long as the cultivation lasts. Negative impacts on soil fertility are limited because savanna soils have low initial soil fertility. With more than 7 million ha of well-drained natural savanna grasslands, the Llanos could play a significant role in oil palm development. Nonetheless, a complete assessment of environmental impacts including biodiversity or water consumption is still necessary for the assessment on sustainability of the conversion of savanna to oil palm plantations.

  20. Spatial Heterogeneity of Soil Nutrients after the Establishment of Caragana intermedia Plantation on Sand Dunes in Alpine Sandy Land of the Tibet Plateau

    PubMed Central

    Li, Qingxue; Jia, Zhiqing; Zhu, Yajuan; Wang, Yongsheng; Li, Hong; Yang, Defu; Zhao, Xuebin

    2015-01-01

    The Gonghe Basin region of the Tibet Plateau is severely affected by desertification. Compared with other desertified land, the main features of this region is windy, cold and short growing season, resulting in relatively difficult for vegetation restoration. In this harsh environment, identification the spatial distribution of soil nutrients and analysis its impact factors after vegetation establishment will be helpful for understanding the ecological relationship between soil and environment. Therefore, in this study, the 12-year-old C. intermedia plantation on sand dunes was selected as the experimental site. Soil samples were collected under and between shrubs on the windward slopes, dune tops and leeward slopes with different soil depth. Then analyzed soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP) and available potassium (AK). The results showed that the spatial heterogeneity of soil nutrients was existed in C. intermedia plantation on sand dunes. (1) Depth was the most important impact factor, soil nutrients were decreased with greater soil depth. One of the possible reasons is that windblown fine materials and litters were accumulated on surface soil, when they were decomposed, more nutrients were aggregated on surface soil. (2) Topography also affected the distribution of soil nutrients, more soil nutrients distributed on windward slopes. The herbaceous coverage were higher and C. intermedia ground diameter were larger on windward slopes, both of them probably related to the high soil nutrients level for windward slopes. (3) Soil “fertile islands” were formed, and the “fertile islands” were more marked on lower soil nutrients level topography positions, while it decreased towards higher soil nutrients level topography positions. The enrichment ratio (E) for TN and AN were higher than other nutrients, most likely because C. intermedia is a leguminous shrub. PMID:25946170

  1. Spatial Heterogeneity of Soil Nutrients after the Establishment of Caragana intermedia Plantation on Sand Dunes in Alpine Sandy Land of the Tibet Plateau.

    PubMed

    Li, Qingxue; Jia, Zhiqing; Zhu, Yajuan; Wang, Yongsheng; Li, Hong; Yang, Defu; Zhao, Xuebin

    2015-01-01

    The Gonghe Basin region of the Tibet Plateau is severely affected by desertification. Compared with other desertified land, the main features of this region is windy, cold and short growing season, resulting in relatively difficult for vegetation restoration. In this harsh environment, identification the spatial distribution of soil nutrients and analysis its impact factors after vegetation establishment will be helpful for understanding the ecological relationship between soil and environment. Therefore, in this study, the 12-year-old C. intermedia plantation on sand dunes was selected as the experimental site. Soil samples were collected under and between shrubs on the windward slopes, dune tops and leeward slopes with different soil depth. Then analyzed soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP) and available potassium (AK). The results showed that the spatial heterogeneity of soil nutrients was existed in C. intermedia plantation on sand dunes. (1) Depth was the most important impact factor, soil nutrients were decreased with greater soil depth. One of the possible reasons is that windblown fine materials and litters were accumulated on surface soil, when they were decomposed, more nutrients were aggregated on surface soil. (2) Topography also affected the distribution of soil nutrients, more soil nutrients distributed on windward slopes. The herbaceous coverage were higher and C. intermedia ground diameter were larger on windward slopes, both of them probably related to the high soil nutrients level for windward slopes. (3) Soil "fertile islands" were formed, and the "fertile islands" were more marked on lower soil nutrients level topography positions, while it decreased towards higher soil nutrients level topography positions. The enrichment ratio (E) for TN and AN were higher than other nutrients, most likely because C. intermedia is a leguminous shrub.

  2. Nutrient loading and macrophyte growth in Wilson Inlet, a bar-built southwestern Australian estuary

    NASA Astrophysics Data System (ADS)

    Lukatelich, R. J.; Schofield, N. J.; McComb, A. J.

    1987-02-01

    Wilson Inlet is a 'bar-built' estuary, open to the ocean only when a sandbar has been breached after river flow. estimates are presented of phosphorus and nitrogen loadings from rivers, losses to the ocean, and amounts present in estuarine components during a particular year. Following bar opening, a volume of water equivalent to 35% of estuarine volume at the time was lost, providing a major loss of dissolved nutrients from the estuary. While the bar was open (51 days) water was displaced through river flow, but there was little tidal exchange. There was net retention of phosphorus (about 60% of river input) and some loss of nitrogen (less than 15%). Much of the nutrient held in the estuary was in surface sediments, but concentrations have shown little change with time and are similar to other southwestern estuaries. In contrast there have been massive increases in the biomass of Ruppia megacarpa Mason in recent years; this constitutes more than 90% of plant biomass. The nutrient bank in this plant is large compared to the water column, and amounts recycled through plant material greatly exceeded riverine loading in the year of the study. Tissue N concentrations were relatively high and constant, tissue P relatively low and seasonally variable, suggesting P limitation of plant biomass. Estimates of nutrient loading from streams showed relatively higher nutrient inputs from catchments cleared for agriculture. These are in higher rainfall areas, have high drainage densities, large proportions of sandy soils and are subjected to phosphatic fertilizer application.

  3. Hydrologic dynamics and ecosystem structure.

    PubMed

    Rodríguez-Iturbe, I

    2003-01-01

    Ecohydrology is the science that studies the mutual interaction between the hydrological cycle and ecosystems. Such an interaction is especially intense in water-controlled ecosystems, where water may be a limiting factor, not only because of its scarcity, but also because of its intermittent and unpredictable appearance. Hydrologic dynamics is shown to be a crucial factor for ecological patterns and processes. The probabilistic structure of soil moisture in time and space is presented as the key linkage between soil, climate and vegetation dynamics. Nutrient cycles, vegetation coexistence and plant response to environmental conditions are all intimately linked to the stochastic fluctuation of the hydrologic inputs driving an ecosystem.

  4. Evaluation of Two Soil Water Redistribution Models (Finite Difference and Hourly Cascade Approach) Through The Comparison of Continuous field Sensor-Based Measurements

    NASA Astrophysics Data System (ADS)

    Ferreyra, R.; Stockle, C. O.; Huggins, D. R.

    2014-12-01

    Soil water storage and dynamics are of critical importance for a variety of processes in terrestrial ecosystems, including agriculture. Many of those systems are under significant pressure in terms of water availability and use. Therefore, assessing alternative scenarios through hydrological models is an increasingly valuable exercise. Soil water holding capacity is defined by the concepts of soil field capacity and plant available water, which are directly related to soil physical properties. Both concepts define the energy status of water in the root system and closely interact with plant physiological processes. Furthermore, these concepts play a key role in the environmental transport of nutrients and pollutants. Soil physical parameters (e.g. saturated hydraulic conductivity, total porosity and water release curve) are required as input for field-scale soil water redistribution models. These parameters are normally not easy to measure or monitor, and estimation through pedotransfer functions is often inadequate. Our objectives are to improve field-scale hydrological modeling by: (1) assessing new undisturbed methodologies for determining important soil physical parameters necessary for model inputs; and (2) evaluating model outputs, making a detailed specification of soil parameters and the particular boundary condition that are driving water movement under two contrasting environments. Soil physical properties (saturated hydraulic conductivity and determination of water release curves) were quantified using undisturbed laboratory methodologies for two different soil textural classes (silt loam and sandy loam) and used to evaluate two soil water redistribution models (finite difference solution and hourly cascade approach). We will report on model corroboration results performed using in situ, continuous, field measurements with soil water content capacitance probes and digital tensiometers. Here, natural drainage and water redistribution were monitored following a controlled water application where the study areas were isolated from other water inputs and outputs. We will also report on the assessment of two soil water sensors (Decagon Devices 5TM capacitance probe and UMS T4 tensiometers) for the two soil textural classes in terms of consistency and replicability.

  5. The Technology Roadmap for Plant/Crop-Based Renewable Resources 2020

    DTIC Science & Technology

    2005-01-01

    field. Poultry Swine Cattle Feed for Livestock Export (grain) Export (food) Food and Industrial Ethanol High Fructose Corn Syrup In a similar manner...terrestrial nutrients. The United States has significant resources in good soils, extensive natural water distribution, and a technology base that allows...yield to provide a 2-fold (vs 98) increase in carbon output per unit input. Develop systems approaches to minimize impact on land, air, and water

  6. Increased plant growth from nitrogen addition should conserve phosphorus in terrestrial ecosystems.

    PubMed

    Perring, Michael P; Hedin, Lars O; Levin, Simon A; McGroddy, Megan; de Mazancourt, Claire

    2008-02-12

    Inputs of available nitrogen (N) to ecosystems have grown over the recent past. There is limited general understanding of how increased N inputs affect the cycling and retention of other potentially limiting nutrients. Using a plant-soil nutrient model, and by explicitly coupling N and phosphorus (P) in plant biomass, we examine the impact of increasing N supply on the ecosystem cycling and retention of P, assuming that the main impact of N is to increase plant growth. We find divergent responses in the P cycle depending on the specific pathway by which nutrients are lost from the ecosystem. Retention of P is promoted if the relative propensity for loss of plant available P is greater than that for the loss of less readily available organic P. This is the first theoretical demonstration that the coupled response of ecosystem-scale nutrient cycles critically depends on the form of nutrient loss. P retention might be lessened, or reversed, depending on the kinetics and size of a buffering reactive P pool. These properties determine the reactive pool's ability to supply available P. Parameterization of the model across a range of forest ecosystems spanning various environmental and climatic conditions indicates that enhanced plant growth due to increased N should trigger increased P conservation within ecosystems while leading to more dissolved organic P loss. We discuss how the magnitude and direction of the effect of N may also depend on other processes.

  7. Influence of crop rotation and tillage intensity on soil physical properties and functions

    NASA Astrophysics Data System (ADS)

    Krümmelbein, Julia

    2013-04-01

    Soil tillage intensity can vary concerning tillage depth, frequency, power input into the soil and degree of soil turn-over. Conventional tillage systems where a plough is regularly used to turn over the soil can be differentiated from reduced tillage systems without ploughing but with loosening the upper soil and no tillage systems. Between conventional tillage and no tillage is a wide range of more or less reduced tillage systems. In our case the different tillage intensities are not induced by different agricultural machinery or techniques, but result from varying crop rotations with more or less perennial crops and therefore lower or higher tillage frequency. Our experimental area constitutes of quite unstructured substrates, partly heavily compacted. The development of a functioning soil structure and accumulation of nutrients and organic matter are of high importance. Three different crop rotations induce varying tillage intensities and frequencies. The first crop rotation (Alfalfa monoculture) has only experienced seed bed preparation once and subsequently is wheeled once a year to cut and chaff the biomass. The second crop rotation contains perennial and annual crops and has therefore been tilled more often, while the third crop rotation consists only of annual crops with annual seedbed preparation. Our results show that reduced tillage intensity/frequency combined with the intense root growth of Alfalfa creates the most favourable soil physical state of the substrate compared to increased tillage and lower root growth intensity of the other crop rotations. Soil tillage disturbs soil structure development, especially when the substrate is mechanically unstable as in our case. For such problematic locations it is recommendable to reduce tillage intensity and/or frequency to allow the development of soil structure enhanced by root growth and thereby the accumulation of organic matter and nutrients within the rooting zone.

  8. Arctic Tundra Soils: A Microbial Feast That Shrubs Will Cease

    NASA Astrophysics Data System (ADS)

    Machmuller, M.; Calderon, F.; Cotrufo, M. F.; Lynch, L.; Paul, E. A.; Wallenstein, M. D.

    2016-12-01

    Rapid climate warming may already be driving rapid decomposition of the vast stocks of carbon in Arctic tundra soils. However, stimulated decomposition may also release nitrogen and support increased plant productivity, potentially counteracting soil carbon losses. At the same time, these two processes interact, with plant derived carbon potentially fueling soil microbes to attack soil organic matter (SOM) to acquire nitrogen- a process known as priming. Thus, differences in the physiology, stoichiometry and microbial interactions among plant species could affect climate-carbon feedbacks. To reconcile these interactive mechanisms, we examined how vegetation type (Betula nana and Eriophorum vaginatum) and fertilization (short-term and long-term) influenced the decomposition of native SOM after labile carbon and nutrient addition. We hypothesized that labile carbon inputs would stimulate the loss of native SOM, but the magnitude of this effect would be indirectly related to soil nitrogen concentrations (e.g. SOM priming would be highest in N-limited soils). We added isotopically enriched (13C) glucose and ammonium nitrate to soils under shrub (B. nana) and tussock (E. vaginatum) vegetation. We found that nitrogen additions stimulated priming only in tussock soils, characterized by lower nutrient concentrations and microbial biomass (p<0.05). There was no evidence of priming in soils that had been fertilized for >20yrs. Rather, we found that long-term fertilization shifted SOM chemistry towards a greater abundance of recalcitrant SOM, lower microbial biomass, and decreased SOM respiration (p<0.05). Our results suggest that, in the short-term, the magnitude of SOM priming is dependent on vegetation and soil nitrogen concentrations, but this effect may not persist if shrubs increase in abundance under climate warming. Therefore, including nitrogen as a control on SOM decomposition and priming is critical to accurately model the effects of climate change on arctic carbon storage.

  9. The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils.

    PubMed

    Schmidt, S K; Reed, Sasha C; Nemergut, Diana R; Grandy, A Stuart; Cleveland, Cory C; Weintraub, Michael N; Hill, Andrew W; Costello, Elizabeth K; Meyer, A F; Neff, J C; Martin, A M

    2008-12-22

    Global climate change has accelerated the pace of glacial retreat in high-latitude and high-elevation environments, exposing lands that remain devoid of vegetation for many years. The exposure of 'new' soil is particularly apparent at high elevations (5000 metres above sea level) in the Peruvian Andes, where extreme environmental conditions hinder plant colonization. Nonetheless, these seemingly barren soils contain a diverse microbial community; yet the biogeochemical role of micro-organisms at these extreme elevations remains unknown. Using biogeochemical and molecular techniques, we investigated the biological community structure and ecosystem functioning of the pre-plant stages of primary succession in soils along a high-Andean chronosequence. We found that recently glaciated soils were colonized by a diverse community of cyanobacteria during the first 4-5 years following glacial retreat. This significant increase in cyanobacterial diversity corresponded with equally dramatic increases in soil stability, heterotrophic microbial biomass, soil enzyme activity and the presence and abundance of photosynthetic and photoprotective pigments. Furthermore, we found that soil nitrogen-fixation rates increased almost two orders of magnitude during the first 4-5 years of succession, many years before the establishment of mosses, lichens or vascular plants. Carbon analyses (pyrolysis-gas chromatography/mass spectroscopy) of soil organic matter suggested that soil carbon along the chronosequence was of microbial origin. This indicates that inputs of nutrients and organic matter during early ecosystem development at these sites are dominated by microbial carbon and nitrogen fixation. Overall, our results indicate that photosynthetic and nitrogen-fixing bacteria play important roles in acquiring nutrients and facilitating ecological succession in soils near some of the highest elevation receding glaciers on the Earth.

  10. Effects of P and C inputs on microbial activities in P limiting bulk and rhizosphere soil

    NASA Astrophysics Data System (ADS)

    Bilyera, Nataliya

    2017-04-01

    Keywords: phosphorus, soil ATP, phosphatase, microbial biomass, Cambisol. Phosphorus (P) is the second important nutrient for plants and limiting element in many ecosystems. P is a non-renewable resource, and based on its current rate of use, it has been estimated that the worlds known reserves of P rocks may be depleted within the current century. Soils with high-sorption P capacity require higher P additions, but, do not provide plants with sufficient available P. Therefore, it is necessary to reduce P application rates, but facilitate soil microbiological activity to maintain good P availability for plants. We aimed to study soil adenosine triphosphate (ATP), microbial biomass (MBC) and phosphatase activity as microbial response to contrasting P input in a low P Cambisol in a 5 days incubation experiment. The treatments were i) bulk soil (no C), ii) rhizosphere soil (10 μg C g-1 soil day-1 - root exudates imitation) and iii) glucose addition to soil (50 μg C g-1 soil - for microbial activation). Three rates of P as KH2PO4 were applied at each C treatments: i) no P (P0) - for P severe limitation; ii) 10% P from initial extractable soil P (P10) - low P input; and iii) 50% P from initial extractable soil P (P50) - high P input. We tested the following hypotheses: 1) the better response of MBC and ATP to P is expected to be in the rhizosphere soil, as continuous C input resulted in gradual microbial activation; 2) phosphatase activity will decrease with increasing P rates in all soils. Microbial biomass grew linear (R2=0.99) and simultaneously with incremental P addition in bulk soil. In rhizosphere and C-amended soils, on contrary, the MBC response to P level was represented by quadratic model (y=-0.06x2+2.84x+37.03; R2=0.93). This model shows the highest MBC value at P23, which indicates optimal and the most effective application rate for this soil type. The correlation between soil ATP content and P rates ascended in the order bulk soil (R2=0.34) > C-amended soil (R2=0.51) > rhizosphere soil (R2=0.97). That proves our hypothesis that continuous C input (similar to root exudations) stimulates gradual microorganism activation. The soil ATP content per gram of microbial biomass C increased linearly (y=5.09x + 21.4; R2= 0.99) with increasing P rates in rhizosphere, whereas in bulk and C-amendment soils the effect of P was less pronounced. Phosphatase activity declined (57 and 64%) exponentially with increasing P rates for rhizosphere (R2=0.84) and C-amended (R2=0.98) soils, that complies with our hypothesis. In bulk soil, on contrary, phosphatase activity increased (35%) at P10 and remained constant at P50. P0 was resulted in 5-folds higher phosphatase activity in rhizosphere and C-amended soils compared to bulk soil. This proves the significance of root exudates in facilitation of microbial phosphatase production. Our results show that P (re)cycling can be accelerated in P-deficient soils by C addition and so, excessive P fertilization can be avoided to maintain ecosystem sustainability.

  11. Global warming potential and greenhouse gas emission under different soil nutrient management practices in soybean-wheat system of central India.

    PubMed

    Lenka, Sangeeta; Lenka, Narendra Kumar; Singh, Amar Bahadur; Singh, B; Raghuwanshi, Jyothi

    2017-02-01

    Soil nutrient management is a key component contributing to the greenhouse gas (GHG) flux and mitigation potential of agricultural production systems. However, the effect of soil nutrient management practices on GHG flux and global warming potential (GWP) is less understood in agricultural soils of India. The present study was conducted to compare three nutrient management systems practiced for nine consecutive years in a soybean-wheat cropping system in the Vertisols of India, in terms of GHG flux and GWP. The treatments were composed of 100% organic (ONM), 100% inorganic (NPK), and integrated nutrient management (INM) with 50% organic + 50% inorganic inputs. The gas samples for GHGs (CO 2 , CH 4 , and N 2 O) were collected by static chamber method at about 15-day interval during 2012-13 growing season. The change in soil organic carbon (SOC) content was estimated in terms of the changes in SOC stock in the 0-15 cm soil over the 9-year period covering 2004 to 2013. There was a net uptake of CH 4 in all the treatments in both soybean and wheat crop seasons. The cumulative N 2 O and CO 2 emissions were in the order of INM > ONM > NPK with significant difference between treatments (p < 0.05) in both the crop seasons. The annual GWP, expressed in terms of CH 4 and N 2 O emission, also followed the same trend and was estimated to be 1126, 1002, and 896 kg CO 2 eq ha -1  year -1 under INM, ONM, and NPK treatments, respectively. However, the change in SOC stock was significantly higher under ONM (1250 kg ha -1  year -1 ) followed by INM (417 kg ha -1  year -1 ) and least under NPK (198 kg ha -1  year -1 ) treatment. The wheat equivalent yield was similar under ONM and INM treatments and was significantly lower under NPK treatment. Thus, the GWP per unit grain yield was lower under ONM followed by NPK and INM treatments and varied from 250, 261, and 307 kg CO 2 eq Mg -1 grain yield under ONM, NPK, and INM treatments, respectively.

  12. Comparison of ion-exchange resin counterions in the nutrient measurement of calcareous soils: Implications for correlative studies of plant-soil relationships

    USGS Publications Warehouse

    Sherrod, S.K.; Belnap, J.; Miller, M.E.

    2003-01-01

    For more than 40 years, ion-exchange resins have been used to characterize nutrient bioavailability in terrestrial and aquatic ecosystems. To date, however, no standardized methodology has been developed, particularly with respect to the counterions that initially occupy resin exchange sites. To determine whether different resin counterions yield different measures of soil nutrients and rank soils differently with respect to their measured nutrient bioavailability, we compared nutrient measurements by three common counterion combinations (HCl, HOH, and NaHCO3). Five sandy calcareous soils were chosen to represent a range of soil characteristics at Canyonlands National Park, Utah, and resin capsules charged with the different counterions equilibrated in saturated pastes of these soils for one week. Data were converted to proportions of total ions of corresponding charge for ANOVA. Results from the different methods were not comparable with respect to any nutrient. Of eleven nutrients measured, all but iron (Fe2+), manganese (Mn2+), and zinc (Zn2+) differed significantly (p ??? 0.05) as a function of soil x counterion interactions; Fe2+ and Zn2+ varied as functions of counterion alone. Of the counterion combinations, HCl-resins yielded the most net ion exchange with all measured nutrients except Na+, NH4+, and HPO42-, the three of which desorbed in the greatest quantities from HOH-resins. Conventional chemical extractions using ammonium acetate generally yielded high proportional values of Ca2+, K+, and Na+. Further, among-soil rankings of nutrient bioavailability varied widely among methods. This study highlights the fact that various ion-exchange resin techniques for measuring soil nutrients may have differential effects on the soil-resin environment and yield data that should not be compared nor considered interchangeable. The most appropriate methods for characterizing soil-nutrient bioavailability depends on soil characteristics and likely on the physiological uptake mechanisms of plants or functional groups of interest. The effects of different extraction techniques on nutrient measures should be understood before selecting an extraction method. For example, in the calcareous soils used for this experiment, nutrient extraction methods that alter soil carbonates through dissolution or precipitation could compromise the accurate measurement of plant-available nutrients. The implications of this study emphasize the universal importance of understanding the differential effects of alternate methods on soil chemistry.

  13. Impacts of 120 years of fertilizer addition on a temperate grassland ecosystem

    PubMed Central

    Kidd, Jonathan; Manning, Peter; Simkin, Janet; Peacock, Simon; Stockdale, Elizabeth

    2017-01-01

    The widespread application of fertilizers has greatly influenced many processes and properties of agroecosystems, and agricultural fertilization is expected to increase even further in the future. To date, most research on fertilizer impacts has used short-term studies, which may be unrepresentative of long-term responses, thus hindering our capacity to predict long-term impacts. Here, we examined the effects of long-term fertilizer addition on key ecosystem properties in a long-term grassland experiment (Palace Leas Hay Meadow) in which farmyard manure (FYM) and inorganic fertilizer treatments have been applied consistently for 120 years in order to characterize the experimental site more fully and compare ecosystem responses with those observed at other long-term and short-term experiments. FYM inputs increased soil organic carbon (SOC) stocks, hay yield, nutrient availability and acted as a buffer against soil acidification (>pH 5). In contrast, N-containing inorganic fertilizers strongly acidified the soil (

  14. Differential Responses of Arctic Vegetation to Nutrient Enrichment by Plankton- and Fish-Eating Colonial Seabirds in Spitsbergen

    PubMed Central

    Zwolicki, Adrian; Zmudczyńska-Skarbek, Katarzyna; Matuła, Jan; Wojtuń, Bronisław; Stempniewicz, Lech

    2016-01-01

    The role of seabirds as sea-land biovectors of nutrients is well documented. However, no studies have examined whether and how colonial seabirds that differ in diet may influence terrestrial vegetation. Therefore, the purpose of the study was to describe and compare plant communities located in the vicinity of the two most common types of seabird colonies in Arctic, occupied by piscivorous or planktivorous species. Within 46 plots arranged in four transects in the vicinity of planktivorous (little auk, Alle alle) and piscivorous colonies (mixed colony of Brunnich’s guillemot, Uria lomvia, and black-legged kittiwake, Rissa tridactyla) we measured the following: guano deposition, physical and chemical characteristics of soil, total nitrogen and its stable isotope signatures in soil and plants, ground vegetation cover of vascular plants and mosses, and the occurrence of lichens, algae and cyanobacteria. Using LINKTREE analysis, we distinguished five plant communities, which reflected declining influence along a birds fertilization gradient measured as guano deposition. SIMPROOF test revealed that these communities differed significantly in species composition, with the differences related to total soil nitrogen content and δ15N, distinctive levels of phosphates, potassium and nitrates, and physical soil properties, i.e., pH, conductivity and moisture. The communities were also clearly distinguished by distance from the bird colony. The two colony types promoted development of specific plant communities: the immediate vicinity of the planktivorous colony characterized by a Deschampsia alpina–Cerastium arcticum community while under the piscivorous colony a Cochlearia groenlandica–Poa alpina community was present. Despite the similar size of the colonies and similar magnitude of guano input, differences between ornithogenic communities were connected mostly to phosphate content in the soil. Our results show that the guano input from seabirds which have different diets can affect High Arctic vegetation in specific and more complex ways than previously realized. PMID:28083002

  15. Differential Responses of Arctic Vegetation to Nutrient Enrichment by Plankton- and Fish-Eating Colonial Seabirds in Spitsbergen.

    PubMed

    Zwolicki, Adrian; Zmudczyńska-Skarbek, Katarzyna; Matuła, Jan; Wojtuń, Bronisław; Stempniewicz, Lech

    2016-01-01

    The role of seabirds as sea-land biovectors of nutrients is well documented. However, no studies have examined whether and how colonial seabirds that differ in diet may influence terrestrial vegetation. Therefore, the purpose of the study was to describe and compare plant communities located in the vicinity of the two most common types of seabird colonies in Arctic, occupied by piscivorous or planktivorous species. Within 46 plots arranged in four transects in the vicinity of planktivorous (little auk, Alle alle ) and piscivorous colonies (mixed colony of Brunnich's guillemot, Uria lomvia , and black-legged kittiwake, Rissa tridactyla ) we measured the following: guano deposition, physical and chemical characteristics of soil, total nitrogen and its stable isotope signatures in soil and plants, ground vegetation cover of vascular plants and mosses, and the occurrence of lichens, algae and cyanobacteria. Using LINKTREE analysis, we distinguished five plant communities, which reflected declining influence along a birds fertilization gradient measured as guano deposition. SIMPROOF test revealed that these communities differed significantly in species composition, with the differences related to total soil nitrogen content and δ 15 N, distinctive levels of phosphates, potassium and nitrates, and physical soil properties, i.e., pH, conductivity and moisture. The communities were also clearly distinguished by distance from the bird colony. The two colony types promoted development of specific plant communities: the immediate vicinity of the planktivorous colony characterized by a Deschampsia alpina - Cerastium arcticum community while under the piscivorous colony a Cochlearia groenlandica-Poa alpina community was present. Despite the similar size of the colonies and similar magnitude of guano input, differences between ornithogenic communities were connected mostly to phosphate content in the soil. Our results show that the guano input from seabirds which have different diets can affect High Arctic vegetation in specific and more complex ways than previously realized.

  16. Rubber Trees Demonstrate a Clear Retranslocation Under Seasonal Drought and Cold Stresses

    PubMed Central

    Li, Yuwu; Lan, Guoyu; Xia, Yujie

    2016-01-01

    Having been introduced to the northern edge of Asian tropics, the rubber tree (Hevea brasiliensis) has become deciduous in this climate with seasonal drought and cold stresses. To determine its internal nutrient strategy during leaf senescence and deciduous periods, we investigated mature leaf and senescent leaf nutrients, water-soluble soil nutrients and characteristics of soil microbiota in nine different ages of monoculture rubber plantations. Rubber trees demonstrate complicated retranslocation of N, P, and K during foliar turnover. Approximately 50.26% of leaf nutrients and 21.47% of soil nutrients were redistributed to the rubber tree body during the leaf senescence and withering stages. However, no significant changes in the structure- or function-related properties of soil microbes were detected. These nutrient retranslocation strategy may be important stress responses. In the nutrient retranslocation process, soil plays a dual role as nutrient supplier and nutrient “bank.” Soil received the nutrients from abscised leaves, and also supplied nutrients to trees in the non-growth stage. Nutrient absorption and accumulation began before the leaves started to wither and fall. PMID:28066467

  17. Effects of seabird nitrogen input on biomass and carbon accumulation after 50 years of primary succession on a young volcanic island, Surtsey

    NASA Astrophysics Data System (ADS)

    Leblans, N. I. W.; Sigurdsson, B. D.; Roefs, P.; Thuys, R.; Magnússon, B.; Janssens, I. A.

    2014-11-01

    What happens during primary succession after the first colonizers have occupied a pristine surface largely depends on how they ameliorate living conditions for other species. For vascular plants the onset of soil development and associated increase in nutrient (mainly nitrogen; N) and water availability is especially important. Here, we report the relationship between N accumulation and biomass and ecosystem carbon (C) stocks in a 50-year-old volcanic island, Surtsey, Iceland, where N stocks are still exceptionally low. However, a 28-year-old seagull colony on the island provided nutrient-enriched areas, which enabled us to assess the relationship between N stock and biomass and ecosystem C stocks across a much larger range in N stock. Further, we compared areas on shallow and deep tephra sands as we expected that deep-rooted systems would be more efficient in retaining N. The sparsely vegetated area outside the colony had accumulated 0.7 kg N ha-1 yr-1, which was ca. 50-60% of the estimated N input rate from wet deposition. This approximates values for systems under low N input and bare dune habitats. The seagulls have added, on average, 47 kg N ha-1 yr-1, which induced a shift from belowground to aboveground in ecosystem N and C stocks and doubled the ecosystem N-use efficiency, determined as the ratio of biomass and C storage per unit N input. Soil depth did not significantly affect total N stocks, which suggests a high N retention potential. Both total ecosystem biomass and C stocks were strongly correlated with N stock inside the colony, which indicated the important role of N during the first steps of primary succession. Inside the colony, the ecosystem biomass C stocks (17-27 ton C ha-1) had reached normal values for grasslands, while the soil organic carbon (SOC) stocks (4-10 ton C ha-1 were only a fraction of normal grassland values. Thus, it will take a long time until the SOC stock reaches equilibrium with the current primary production, during which conditions for new colonists may change.

  18. Loblolly pine growth and soil nutrient stocks eight years after forest slash incorporation

    Treesearch

    Felipe G. Sanchez; Emily A. Carter; Zakiya H. Leggett

    2009-01-01

    Incorporation of forest slash during stand establishment is proposed as a means of increasing soil carbon and nutrient stocks. If effective, the increased soil carbon and nutrient status may result in increased aboveground tree growth. Eight years after study installation, the impact of forest slash incorporation into the soil on soil carbon and nutrient stocks, foliar...

  19. Soil Fertility Status, Nutrient Uptake, and Maize (Zea mays L.) Yield Following Organic Matters and P Fertilizer Application on Andisol

    NASA Astrophysics Data System (ADS)

    Minardi, S.; Harieni, S.; Anasrullah, A.; Purwanto, H.

    2017-04-01

    Objective of this study were to elucidate effects of organic matters and P fertilizer application on soil fertility status, nutrient uptake and maize yield in the Andisol. This experiment consisted of two factors. The first factor comprised of four levels of organic matters input (without organic matter, manure, rice straw, and Gliricidia sepium leaves), with the application dosage 10 t.ha-1 and the second factor comprised of three levels of P fertilizer application (without P addition (control), 50 kg P2O5 ha-1, 100 kg P2O5 ha-1). Results of this study showed that organic matters and P fertilizer application improved soil fertility status, especially pH, soil organic C, cation exchange capacity (CEC), available P which resulted in an increase in P uptake that improve yield of maize. The highest yield of maize (corn cob) was obtained through application Gliricida sepium (8.40 t.ha-1), followed by manure (6.02 t.ha-1) and rice straw (5.87 t.ha-1). Application of 50 kg P2O5 Ha-1 yield was (5.76 t.ha-1) and application of 100 Kg P2O5 Ha-1 yield was (6.12 t.ha-1).

  20. Terra-Preta-Technology as an innovative system component to create circulation oriented, sustainable land use systems

    NASA Astrophysics Data System (ADS)

    Dotterweich, M.; Böttcher, J.; Krieger, A.

    2012-04-01

    This paper presents current research and application projects on innovative system solutions which are based on the implementation of a regional resource efficient material flow management as well as utilising "Terra-Preta-Technology" as an innovative system component. Terra Preta Substrate (TPS) is a recently developed substance composed of liquid and solid organic matter, including biochar, altered by acid-lactic fermentation. Based on their properties, positive effects on water and nutrient retention, soil microbiological activity, and cation-exchange capacity are expected and currently investigated by different projects. TPS further sequesters carbon and decreases NO2 emissions from fertilized soils as observed by the use of biochar. The production of TPS is based on a circulation oriented organic waste management system directly adapted to the local available inputs and desired soil amendment properties. The production of TPS is possible with simple box systems for subsistence farming but also on a much larger scale as modular industrial plants for farmers or commercial and municipal waste management companies in sizes from 500 and 50,000 m3. The Terra-Preta-Technology enhances solutions to soil conservation, soil amelioration, humic formation, reduced water consumption, long term carbon sequestration, nutrient retention, containment binding, and to biodiversity on local to a regional scale. The projects also involve research of ancient land management systems to enhance resource efficiency by means of an integrative and transdisciplinary approach.

  1. Seedling growth responses to soil resources in the understory of a wet tropical forest.

    PubMed

    Holste, Ellen K; Kobe, Richard K; Vriesendorp, Corine F

    2011-09-01

    Plant growth responses to resources may be an important mechanism that influences species' distributions, coexistence, and community structure. Irradiance is considered the most important resource for seedling growth in the understory of wet tropical forests, but multiple soil nutrients and species have yet to be examined simultaneously with irradiance under field conditions. To identify potentially limiting resources, we modeled tree seedling growth as a function of irradiance and soil nutrients across five sites, spanning a soil fertility gradient in old-growth, wet tropical forests at La Selva Biological Station, Costa Rica. We measured an array of soil nutrients including total nitrogen (total N), inorganic N (nitrate [NO3-] and ammonium [NH4+]), phosphate (PO4-), and sum of base cations (SBC; potassium, magnesium, and calcium). Shade in the forest understory did not preclude seedling growth correlations with soil nutrients. Irradiance was a significant predictor of growth in 52% of the species, inorganic N in 54% (NO3- in 32%; NH4+ in 34%), total N in 47%, SBC in 39%, and PO4- in 29%. Overall, growth was correlated with both irradiance and soil nutrients in 45% of species and with soil nutrients only in an additional 48%; rarely was irradiance alone correlated with growth. Contrary to expectations, the magnitudes of growth effects, assessed as the maximum growth response to significant resources for each species, were similar for irradiance and most soil nutrients. Among species whose growth correlated with soil nutrients, the rank importance of nutrient effects was SBC, followed by N (total N, NO3-, and/or NH4+) and PO4-. Species' growth responsiveness (i.e., magnitudes of effect) to irradiance and soil nutrients was negatively correlated with species' shade tolerance (survival under 1% full sun). In this broad survey of species and resources, the nearly ubiquitous effects of soil nutrients on seedling growth challenge the idea that soil nutrients are less important than irradiance in the light-limited understory of wet tropical forests.

  2. Soil Nutrient Content Influences the Abundance of Soil Microbes but Not Plant Biomass at the Small-Scale

    PubMed Central

    Koorem, Kadri; Gazol, Antonio; Öpik, Maarja; Moora, Mari; Saks, Ülle; Uibopuu, Annika; Sõber, Virve; Zobel, Martin

    2014-01-01

    Small-scale heterogeneity of abiotic and biotic factors is expected to play a crucial role in species coexistence. It is known that plants are able to concentrate their root biomass into areas with high nutrient content and also acquire nutrients via symbiotic microorganisms such as arbuscular mycorrhizal (AM) fungi. At the same time, little is known about the small-scale distribution of soil nutrients, microbes and plant biomass occurring in the same area. We examined small-scale temporal and spatial variation as well as covariation of soil nutrients, microbial biomass (using soil fatty acid biomarker content) and above- and belowground biomass of herbaceous plants in a natural herb-rich boreonemoral spruce forest. The abundance of AM fungi and bacteria decreased during the plant growing season while soil nutrient content rather increased. The abundance of all microbes studied also varied in space and was affected by soil nutrient content. In particular, the abundance of AM fungi was negatively related to soil phosphorus and positively influenced by soil nitrogen content. Neither shoot nor root biomass of herbaceous plants showed any significant relationship with variation in soil nutrient content or the abundance of soil microbes. Our study suggests that plants can compensate for low soil phosphorus concentration via interactions with soil microbes, most probably due to a more efficient symbiosis with AM fungi. This compensation results in relatively constant plant biomass despite variation in soil phosphorous content and in the abundance of AM fungi. Hence, it is crucial to consider both soil nutrient content and the abundance of soil microbes when exploring the mechanisms driving vegetation patterns. PMID:24637633

  3. Comparison of ion-exchange resin counterions in the nutrient measurement of calcareous soils: implications for correlative studies of plant-soil relationships

    USGS Publications Warehouse

    Sherrod, S.K.; Belnap, Jayne; Miller, M.E.

    2003-01-01

    For more than 40 years, ion-exchange resins have been used to characterize nutrient bioavailability in terrestrial and aquatic ecosystems. To date, however, no standardized methodology has been developed, particularly with respect to the counterions that initially occupy resin exchange sites. To determine whether different resin counterions yield different measures of soil nutrients and rank soils differently with respect to their measured nutrient bioavailability, we compared nutrient measurements by three common counterion combinations (HCl, HOH, and NaHCO3). Five sandy calcareous soils were chosen to represent a range of soil characteristics at Canyonlands National Park, Utah, and resin capsules charged with the different counterions equilibrated in saturated pastes of these soils for one week. Data were converted to proportions of total ions of corresponding charge for ANOVA. Results from the different methods were not comparable with respect to any nutrient. Of eleven nutrients measured, all but iron (Fe2+), manganese (Mn2+), and zinc (Zn2+) differed significantly (pa??0.05) as a function of soilcounterion interactions; Fe2+ and Zn2+ varied as functions of counterion alone. Of the counterion combinations, HCl-resins yielded the most net ion exchange with all measured nutrients except Na+, and the three of which desorbed in the greatest quantities from HOH-resins. Conventional chemical extractions using ammonium acetate generally yielded high proportional values of Ca2+, K+, and Na+. Further, among-soil rankings of nutrient bioavailability varied widely among methods. This study highlights the fact that various ion-exchange resin techniques for measuring soil nutrients may have differential effects on the soil-resin environment and yield data that should not be compared nor considered interchangeable. The most appropriate methods for characterizing soil-nutrient bioavailability depends on soil characteristics and likely on the physiological uptake mechanisms of plants or functional groups of interest. The effects of different extraction techniques on nutrient measures should be understood before selecting an extraction method. For example, in the calcareous soils used for this experiment, nutrient extraction methods that alter soil carbonates through dissolution or precipitation could compromise the accurate measurement of plant-available nutrients. The implications of this study emphasize the universal importance of understanding the differential effects of alternate methods on soil chemistry.

  4. Effects of five years of frequent N additions, with or without acidity, on the growth and below-ground dynamics of a young Sitka spruce stand growing on an acid peat: implications for sustainability

    NASA Astrophysics Data System (ADS)

    Stutter, M. I.; Alam, M. S.; Langan, S. J.; Woodin, S. J.; Smart, R. P.; Cresser, M. S.

    2004-06-01

    An experiment comparing effects of sulphuric acid and reduced N deposition on soil water quality and on chemical and physical growth indicators for forest ecosystems is described. Six H2SO4 and (NH4)2SO4 treatment loads, from 0 - 44 and 0 - 25 kmolc ha-1 yr-1, respectively, were applied to outdoor microcosms of Pinus sylvestris seedlings in 3 acid to intermediate upland soils (calc-silicate, quartzite and granite) for 2 years. Different soil types responded similarly to H2SO4 loads, resulting in decreased leachate pH, but differently to reduced N inputs. In microcosms of calc-silicate soil, nitrification of NH4 resulted in lower pH and higher cation leaching than in acid treatments. By contrast, in quartzite and granite soils, (NH4)2SO4 promoted direct cation leaching, although leachate pH increased. The results highlighted the importance of soil composition on the nature of the cations leached, the SO4 adsorption capacities and microbial N transformations. Greater seedling growth on calc-silicate soils under both treatment types was related to sustained nutrient availability. Reductions in foliar P and Mg with higher N treatments were observed for seedlings in the calc-silicate soil. There were few treatment effects on quartzite and granite microcosm tree seedlings since P limitation precluded seedling growth responses to treatments. Hence, any benefits of N deposition to seedlings on quartzite and granite soils appeared limited by availability of co-nutrients, exacerbated by rapid depletion of soil exchangeable base cations.

  5. Comparison of methods for nutrient measurement in calcareous soils: Ion-exchange resin bag, capsule, membrane, and chemical extractions

    USGS Publications Warehouse

    Sherrod, S.K.; Belnap, J.; Miller, M.E.

    2002-01-01

    Four methods for measuring quantities of 12 plant-available nutrients were compared using three sandy soils in a series of three experiments. Three of the methods use different ion-exchange resin forms—bags, capsules, and membranes—and the fourth was conventional chemical extraction. The first experiment compared nutrient extraction data from a medium of sand saturated with a nutrient solution. The second and third experiments used Nakai and Sheppard series soils from Canyonlands National Park, which are relatively high in soil carbonates. The second experiment compared nutrient extraction data provided by the four methods from soils equilibrated at two temperatures, “warm” and “cold.” The third experiment extracted nutrients from the same soils in a field equilibration. Our results show that the four extraction techniques are not comparable. This conclusion is due to differences among the methods in the net quantities of nutrients extracted from equivalent soil volumes, in the proportional representation of nutrients within similar soils and treatments, in the measurement of nutrients that were added in known quantities, and even in the order of nutrients ranked by net abundance. We attribute the disparities in nutrient measurement among the different resin forms to interacting effects of the inherent differences in resin exchange capacity, differences among nutrients in their resin affinities, and possibly the relatively short equilibration time for laboratory trials. One constraint for measuring carbonate-related nutrients in high-carbonate soils is the conventional ammonium acetate extraction method, which we suspect of dissolving fine CaCO3 particles that are more abundant in Nakai series soils, resulting in erroneously high Ca2+ estimates. For study of plant-available nutrients, it is important to identify the nutrients of foremost interest and understand differences in their resin sorption dynamics to determine the most appropriate extraction method.

  6. Eutrophication of Buttermilk Bay, a cape cod coastal embayment: Concentrations of nutrients and watershed nutrient budgets

    NASA Astrophysics Data System (ADS)

    Valiela, Ivan; Costa, Joseph E.

    1988-07-01

    Nutrient concentrations in Buttermilk Bay, a coastal embayment on the northern end of Buzzards Bay, MA, are higher in the nearshore where salinities are lower. This pattern suggests that freshwater sources may contribute significantly to nutrient inputs into Buttermilk Bay. To evaluate the relative importance of the various sources we estimated inputs of nutrients by each major source into the watershed and into the bay itself. Septic systems contributed about 40% of the nitrogen and phosphorus entering the watershed, with precipitation and fertilizer use adding the remainder. Groundwater transported over 85% of the nitrogen and 75% of the phosphorus entering the bay. Most nutrients entering the watershed failed to reach the bay; uptake by forests, soils, denitrification, and adsorption intercepted two-thirds of the nitrogen and nine-tenths of the phosphorus that entered the watershed. The nutrients that did reach the bay most likely originated from subsoil injections into groundwater by septic tanks, plus some leaching of fertilizers. Buttermilk Bay water has relatively low nutrient concentrations, probably because of uptake of nutrients by macrophytes and because of relatively rapid tidal flushing. Annual budgets of nutrients entering the watershed showed a low nitrogen-to-phosphorus ratio of 6, but passage of nutrients through the watershed raised N/P to 23, probably because of adsorption of PO4 during transit. The N/P ratio of water that leaves the watershed and presumably enters the bay is probably high enough to maintain active growth of nitrogenlimited coastal producers. There is a seasonal shift in N/P in the water column of Buttermilk Bay. N/P exceeded the 16∶1 Redfield ratio during midwinter; the remainder of the year N/P fell below 16∶1. This suggests that annual budgets do not provide sufficiently detailed data with which to interpret nutrient-limitation of producers. Further, some idea of water turnover is also needed to evaluate impact of loading rates. Urbanization of watersheds seems to increase loadings to nearshore environments, and to shift the nutrient loadings delivered to coastal waters to relatively high N-to-P ratios, potentially stimulating growth of nitrogen-limited primary producers.

  7. Biochar-enhanced composts reduce the potential leaching of nutrients and heavy metals and suppress plant-parasitic nematodes in excessively fertilized cucumber soils.

    PubMed

    Cao, Yune; Gao, Yanming; Qi, Yanbin; Li, Jianshe

    2018-03-01

    Excessive fertilization is a common agricultural practice that has largely reduced soil nutrient retention capacity and led to nutrient leaching in China. To reduce nutrient leaching, in this study, we evaluated the application of biochar, compost, and biochar-compost on soil properties, leaching water quality, and cucumber plant growth in soils with different nutrient levels. In general, the concentrations of nutrients and heavy metals in leaching water were higher under high-nutrient conditions than under low-nutrient conditions. Both biochar and compost efficiently enhanced soil cation exchange capacity (CEC), water holding capacity (WHC), and microbial biomass carbon (MBC), nitrogen (MBN), and phosphorus (MBP), reduced the potential leaching of nutrients and heavy metals, and improved plant growth. The efficiency of biochar and compost in soil CEC, WHC, MBC, MBN, and MBP and plant growth was enhanced when applied jointly. In addition, biochar and biochar-enhanced compost efficiently suppressed plant-parasitic nematode infestation in a soil with high levels of both N and P. Our results suggest that biochar-enhanced compost can reduce the potential environmental risks in excessively fertilized vegetable soils.

  8. Vertical patterns and controls of soil nutrients in alpine grassland: Implications for nutrient uptake.

    PubMed

    Tian, Liming; Zhao, Lin; Wu, Xiaodong; Fang, Hongbing; Zhao, Yonghua; Yue, Guangyang; Liu, Guimin; Chen, Hao

    2017-12-31

    Vertical patterns and determinants of soil nutrients are critical to understand nutrient cycling in high-altitude ecosystems; however, they remain poorly understood in the alpine grassland due to lack of systematic field observations. In this study, we examined vertical distributions of soil nutrients and their influencing factors within the upper 1m of soil, using data of 68 soil profiles surveyed in the alpine grassland of the eastern Qinghai-Tibet Plateau. Soil organic carbon (SOC) and total nitrogen (TN) stocks decreased with depth in both alpine meadow (AM) and alpine steppe (AS), but remain constant along the soil profile in alpine swamp meadow (ASM). Total phosphorus, Ca 2+ , and Mg 2+ stocks slightly increased with depth in ASM. K + stock decreased with depth, while Na + stock increased slightly with depth among different vegetation types; however, SO 4 2- and Cl - stocks remained relatively uniform throughout different depth intervals in the alpine grassland. Except for SOC and TN, soil nutrient stocks in the top 20cm soils were significantly lower in ASM compared to those in AM and AS. Correlation analyses showed that SOC and TN stocks in the alpine grassland positively correlated with vegetation coverage, soil moisture, clay content, and silt content, while they negatively related to sand content and soil pH. However, base cation stocks revealed contrary relationships with those environmental variables compared to SOC and TN stocks. These correlations varied between vegetation types. In addition, no significant relationship was detected between topographic factors and soil nutrients. Our findings suggest that plant cycling and soil moisture primarily control vertical distributions of soil nutrients (e.g. K) in the alpine grassland and highlight that vegetation types in high-altitude permafrost regions significantly affect soil nutrients. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Soil moisture and texture primarily control the soil nutrient stoichiometry across the Tibetan grassland.

    PubMed

    Tian, Liming; Zhao, Lin; Wu, Xiaodong; Fang, Hongbing; Zhao, Yonghua; Hu, Guojie; Yue, Guangyang; Sheng, Yu; Wu, Jichun; Chen, Ji; Wang, Zhiwei; Li, Wangping; Zou, Defu; Ping, Chien-Lu; Shang, Wen; Zhao, Yuguo; Zhang, Ganlin

    2018-05-01

    Soil nutrient stoichiometry and its environmental controllers play vital roles in understanding soil-plant interaction and nutrient cycling under a changing environment, while they remain poorly understood in alpine grassland due to lack of systematic field investigations. We examined the patterns and controls of soil nutrients stoichiometry for the top 10cm soils across the Tibetan ecosystems. Soil nutrient stoichiometry varied substantially among vegetation types. Alpine swamp meadow had larger topsoil C:N, C:P, N:P, and C:K ratios compared to the alpine meadow, alpine steppe, and alpine desert. In addition, the presence or absence of permafrost did not significantly impact soil nutrient stoichiometry in Tibetan grassland. Moreover, clay and silt contents explained approximately 32.5% of the total variation in soil C:N ratio. Climate, topography, soil properties, and vegetation combined to explain 10.3-13.2% for the stoichiometry of soil C:P, N:P, and C:K. Furthermore, soil C and N were weakly related to P and K in alpine grassland. These results indicated that the nutrient limitation in alpine ecosystem might shifts from N-limited to P-limited or K-limited due to the increase of N deposition and decrease of soil P and K contents under the changing climate conditions and weathering stages. Finally, we suggested that soil moisture and mud content could be good predictors of topsoil nutrient stoichiometry in Tibetan grassland. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Impact of Temperature and Nutrients on Carbon: Nutrient Tissue Stoichiometry of Submerged Aquatic Plants: An Experiment and Meta-Analysis.

    PubMed

    Velthuis, Mandy; van Deelen, Emma; van Donk, Ellen; Zhang, Peiyu; Bakker, Elisabeth S

    2017-01-01

    Human activity is currently changing our environment rapidly, with predicted temperature increases of 1-5°C over the coming century and increased nitrogen and phosphorus inputs in aquatic ecosystems. In the shallow parts of these ecosystems, submerged aquatic plants enhance water clarity by resource competition with phytoplankton, provide habitat, and serve as a food source for other organisms. The carbon:nutrient stoichiometry of submerged aquatic plants can be affected by changes in both temperature and nutrient availability. We hypothesized that elevated temperature leads to higher carbon:nutrient ratios through enhanced nutrient-use efficiency, while nutrient addition leads to lower carbon:nutrient ratios by the luxurious uptake of nutrients. We addressed these hypotheses with an experimental and a meta-analytical approach. We performed a full-factorial microcosm experiment with the freshwater plant Elodea nuttallii grown at 10, 15, 20, and 25°C on sediment consisting of pond soil/sand mixtures with 100, 50, 25, and 12.5% pond soil. To address the effect of climatic warming and nutrient addition on the carbon:nutrient stoichiometry of submerged freshwater and marine plants we performed a meta-analysis on experimental studies that elevated temperature and/or added nutrients (nitrogen and phosphorus). In the microcosm experiment, C:N ratios of Elodea nuttallii decreased with increasing temperature, and this effect was most pronounced at intermediate nutrient availability. Furthermore, higher nutrient availability led to decreased aboveground C:P ratios. In the meta-analysis, nutrient addition led to a 25, 22, and 16% reduction in aboveground C:N and C:P ratios and belowground C:N ratios, accompanied with increased N content. No consistent effect of elevated temperature on plant stoichiometry could be observed, as very few studies were found on this topic and contrasting results were reported. We conclude that while nutrient addition consistently leads to decreased carbon:nutrient ratios, elevated temperature does not change submerged aquatic plant carbon:nutrient stoichiometry in a consistent manner. This effect is rather dependent on nutrient availability and may be species-specific. As changes in the carbon:nutrient stoichiometry of submerged aquatic plants can impact the transfer of energy to higher trophic levels, these results suggest that eutrophication may enhance plant consumption and decomposition, which could in turn have consequences for carbon sequestration.

  11. Selection of Optimal Auxiliary Soil Nutrient Variables for Cokriging Interpolation

    PubMed Central

    Song, Genxin; Zhang, Jing; Wang, Ke

    2014-01-01

    In order to explore the selection of the best auxiliary variables (BAVs) when using the Cokriging method for soil attribute interpolation, this paper investigated the selection of BAVs from terrain parameters, soil trace elements, and soil nutrient attributes when applying Cokriging interpolation to soil nutrients (organic matter, total N, available P, and available K). In total, 670 soil samples were collected in Fuyang, and the nutrient and trace element attributes of the soil samples were determined. Based on the spatial autocorrelation of soil attributes, the Digital Elevation Model (DEM) data for Fuyang was combined to explore the coordinate relationship among terrain parameters, trace elements, and soil nutrient attributes. Variables with a high correlation to soil nutrient attributes were selected as BAVs for Cokriging interpolation of soil nutrients, and variables with poor correlation were selected as poor auxiliary variables (PAVs). The results of Cokriging interpolations using BAVs and PAVs were then compared. The results indicated that Cokriging interpolation with BAVs yielded more accurate results than Cokriging interpolation with PAVs (the mean absolute error of BAV interpolation results for organic matter, total N, available P, and available K were 0.020, 0.002, 7.616, and 12.4702, respectively, and the mean absolute error of PAV interpolation results were 0.052, 0.037, 15.619, and 0.037, respectively). The results indicated that Cokriging interpolation with BAVs can significantly improve the accuracy of Cokriging interpolation for soil nutrient attributes. This study provides meaningful guidance and reference for the selection of auxiliary parameters for the application of Cokriging interpolation to soil nutrient attributes. PMID:24927129

  12. Spatial Differentiation of Arable Land and Permanent Grasslands to Improve a Regional Land Management Model for Nutrient Balancing

    NASA Astrophysics Data System (ADS)

    Gómez Giménez, M.; Della Peruta, R.; de Jong, R.; Keller, A.; Schaepman, M. E.

    2015-12-01

    Agroecosystems play an important role providing economic and ecosystem services, which directly impact society. Inappropriate land use and unsustainable agricultural management with associated nutrient cycles can jeopardize important soil functions such as food production, livestock feeding and conservation of biodiversity. The objective of this study was to integrate remotely sensed land cover information into a regional Land Management Model (LMM) to improve the assessment of spatial explicit nutrient balances for agroecosystems. Remotely sensed data as well as an optimized parameter set contributed to feed the LMM providing a better spatial allocation of agricultural data aggregated at farm level. The integration of land use information in the land allocation process relied predominantly on three factors: i) spatial resolution, ii) classification accuracy and iii) parcels definition. The best-input parameter combination resulted in two different land cover classifications with overall accuracies of 98%, improving the LMM performance by 16% as compared to using non-spatially explicit input. Firstly, the use of spatial explicit information improved the spatial allocation output resulting in a pattern that better followed parcel boundaries (Figure 1). Second, the high classification accuracies ensured consistency between the datasets used. Third, the use of a suitable spatial unit to define the parcels boundaries influenced the model in terms of computational time and the amount of farmland allocated. We conclude that the combined use of remote sensing (RS) data with the LMM has the potential to provide highly accurate information of spatial explicit nutrient balances that are crucial for policy options concerning sustainable management of agricultural soils. Figure 1. Details of the spatial pattern obtained: a) Using only the farm census data, b) using also land use information. Framed in black in the left image (a), examples of artifacts that disappeared when using land use information (right image, b). Colors represent different ownership.

  13. Depletion and Redistribution of Soil Nutrients in Response to Wind Erosion in Desert Grasslands of the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Li, J.; Okin, G.; Hartman, L.; Epstein, H.

    2005-12-01

    Wind is a key abiotic factor that determines the spatial distribution of soil nutrients in arid grasslands with large unvegetated gaps, such as those found in the southwestern US. On the landscape scale, basic relationships such as wind erosion rate vs. vegetative cover, and soil nutrient removal rate vs. vegetative cover have not yet been extensively studied. In a series of experiments conducted in the Jornada Experimental Range near Las Cruces, New Mexico, we have examined these relationships to determine the impact of wind erosion and dust emission on pools of soil nutrients. In the experiments, varying levels of cover were achieved by vegetation removal on 25 m x 50 m plots. Intense surface soil sampling was conducted to monitor spatial distribution of soil nutrients. Large numbers of aeolian sediment samplers were installed to obtain estimates of vertical and horizontal dust flux. Available data from one wind erosion season show that: 1) total organic C (TOC) and total N (TN) content in the windblown sediment collected at the height of 1 m were 2.2 to 7.2 times larger than those of nutrients in the surface soil (enrichment ratio); 2) enrichment ratio generally increases with the increase of vegetative cover, indicating biotic processes continually add nutrients to surface soil in high-cover treatments, while nutrients are depleted in low-cover treatments; 3) average horizontal mass flux is 12 times larger in the bare plot than in the control plot, indicating the extreme importance of vegetative cover in protecting soil nutrient loss caused by wind erosion; 4) detectable soil nutrient depletion happened within one windy season in plots with vegetation removal, especially for TOC and TN, reflecting the importance of biotic processes in maintaining nutrient pools in the surface soil; and, 5) after only a single windy season, wind erosion can significantly alter the spatial pattern of soil nutrients.

  14. Factors Controlling Nitrogen Loadings in Major River Basins Across the United States

    NASA Astrophysics Data System (ADS)

    Boyer, E. W.; Alexander, R. B.; Galloway, J. N.; Golden, H. E.; Moore, R. B.; Schwarz, G. E.; Harvey, J. W.; Gomez-Velez, J. D.; Scott, D.; Clune, J.

    2017-12-01

    Inputs of reactive nitrogen (all N species except for N2) have been increasing worldwide, largely due to human activities associated with food production and energy consumption via the combustion of fossil fuels and biofuels. Despite the obvious essential benefits of a plentiful supply of food and energy, the adverse consequences associated with the accumulation of N in the environment are large. Most of the N created by human activities is released to the environment, often with unintended negative consequences. The greater the inputs of N to the landscape, the greater the potential for negative effects - caused by greenhouse gas production, ground level ozone, acid deposition, and N overload; which in turn can contribute to climate change, degradation of soils and vegetation, acidification of surface waters, coastal eutrophication, hypoxia, habitat loss, and loss of stratospheric ozone. Here we present a contemporary inventory of reactive N inputs to major water regions in the United States, and discuss accounting methods for quantifying N sources and transport. Furthermore, we quantify loadings of N from terrestrial headwaters downstream to coastal estuaries and embayments. N delivery to downstream waters is influenced by nutrient sources as well as coupled hydrological and biogeochemical processes occurring along the river corridor (e.g., travel time distributions, denitrification, and storage) that scale with stream size and are affected by impoundments such as lakes and reservoirs. This underscores the need to account for the nonlinear interactions of aquatic transport processes with watershed nutrient sources, as well as cumulative effects, in developing efficient nutrient reduction strategies. Our work is useful as a benchmark of the current N situation against which future progress can be assessed in varying water regions of the country; amidst changing N inputs, policies, and management strategies. Our results stem from the EPA Integrated Nitrogen Advisory Committee, the EPA Center for Integrated Multi-Scale Nutrient Pollution Solutions, and the John Wesley Powell Center River Corridor Working Group.

  15. Research on the degradation of tropical arable land soil: Part II. The distribution of soil nutrients in eastern part of Hainan Island

    NASA Astrophysics Data System (ADS)

    Wang, Dengfeng; Wei, Zhiyuan; Qi, Zhiping

    Research on the temporal and spatial distribution of soil nutrients in tropical arable land is very important to promote the tropical sustainable agriculture development. Take the Eastern part of Hainan as research area, applying GIS spatial analysis technique, analyzing the temporal and spatial variation of soil N, P and K contents in arable land. The results indicate that the contents of soil N, P and K were 0.28%, 0.20% and 1.75% respectively in 2005. The concentrations of total N and P in arable land soil increased significantly from 1980s to 2005. The variances in contents of soil nutrients were closely related to the application of chemical fertilizers in recent years, and the uneven distribution of soil nutrient contents was a reflection of fertilizer application in research area. Fertilization can be planned based on the distribution of soil nutrients and the spatial analysis techniques, so as to sustain balance of soil nutrients contents.

  16. Elkhorn Slough: Detecting Eutrophication through Geospatial Modeling Applications

    NASA Astrophysics Data System (ADS)

    Caraballo Álvarez, I. O.; Childs, A.; Jurich, K.

    2016-12-01

    Elkhorn Slough in Monterey, California, has experienced substantial nutrient loading and eutrophication over the past 21 years as a result of fertilizer-rich runoff from nearby agricultural fields. This study seeks to identify and track spatial patterns of eutrophication hotspots and the correlation to land use changes, possible nutrient sources, and general climatic trends using remotely sensed and in situ data. Threats of rising sea level, subsiding marshes, and increased eutrophication hotspots demonstrate the necessity to analyze the effects of increasing nutrient loads, relative sea level changes, and sedimentation within Elkhorn Slough. The Soil & Water Assessment Tool (SWAT) model integrates specified inputs to assess nutrient and sediment loading and their sources. TerrSet's Land Change Modeler forecasts the future potential of land change transitions for various land cover classes around the slough as a result of nutrient loading, eutrophication, and increased sedimentation. TerrSet's Earth Trends Modeler provides a comprehensive analysis of image time series to rapidly assess long term eutrophication trends and detect spatial patterns of known hotspots. Results from this study will inform future coastal management practices and provide greater spatial and temporal insight into Elkhorn Slough eutrophication dynamics.

  17. Using organic matter to increase soil fertility in Burundi: potentials and limitations

    NASA Astrophysics Data System (ADS)

    Kaboneka, Salvator

    2015-04-01

    Agriculture production in Burundi is dominated by small scale farmers (0.5 ha/household) who have only very limited access to mineral inputs. In the past, farmers have relied on fallow practices combined with farm yard manures to maintain and improve soil fertility. However, due to the high population growth and high population density (370/km²), fallow practices are nowadays no longer feasible, animal manures cannot be produced in sufficient quantities to maintain soil productivity and food insecurity has become a quasi permanent reality. Most Burundian soils are characterized by 1:1 types of clay minerals (kaolinite) and are acidic in nature. Such soils are of very low cation exchange capacity (CEC). To compare the effect of % clays and % organic matter (% C), correlations tests have been conducted between the two parameters and the CEC. It was found that in high altitude kaolinitic and acidic soils, CEC was highly correlated to % C and less correlated to % clay, suggesting that organic matter could play an important role in improving fertility and productivity of these soils. Based on these findings, additional studies have been conducted to evaluate the fertilizer and soil amendment values of animal manures (cattle, goat, chicken), and leguminous (Calliandra calothyrsus, Gliricidia sepium, Senna simea, Senna spectabilis) and non-leguminous (Tithonia diversifolia) foliar biomass. It was observed that chicken manure significantly reduces Al3+ levels in acidic soils, while Tithonia diversifolia outperforms in nutrient releases compared to the commonly known leguminous agroforestry shrubs and trees indicated above. Although the above mentioned organic sources can contribute to the soil nutrients supply, the quantities potentially available on farm are generally small. The only solution is to supplement these organic sources with other organic sources (compost, organic household waste), chemical fertilizers and mineral amendments (lime) to achieve Integrated Soil Fertility Management. The amendments with inorganic minerals must be on the one hand as specific as possible to function as a real site-specific fertilizer, on the other hand it should be a generic blend to make it less expensive. This is a dilemma, and requires new ways of balancing organic matter and nutrients in the soils. Key words: Kaolinitic and acidic soils, CEC, Organic matter, animal manures, foliar biomass.

  18. Long-term nutrient fertilization and the carbon balance of permanent grassland: any evidence for sustainable intensification?

    NASA Astrophysics Data System (ADS)

    Fornara, Dario A.; Wasson, Elizabeth-Anne; Christie, Peter; Watson, Catherine J.

    2016-09-01

    Sustainable grassland intensification aims to increase plant yields while maintaining the ability of soil to act as a sink rather than sources of atmospheric CO2. High biomass yields from managed grasslands, however, can be only maintained through long-term nutrient fertilization, which can significantly affect soil carbon (C) storage and cycling. Key questions remain about (1) how long-term inorganic vs. organic fertilization influences soil C stocks, and (2) how soil C gains (or losses) contribute to the long-term C balance of managed grasslands. Using 43 years of data from a permanent grassland experiment, we show that soils not only act as significant C sinks but have not yet reached C saturation. Even unfertilized control soils showed C sequestration rates of 0.35 Mg C ha-1 yr-1 (i.e. 35 g C m-2 yr-1; 0-15 cm depth) between 1970 and 2013. High application rates of liquid manure (i.e. cattle slurry) further increased soil C sequestration to 0.86 Mg C ha-1 yr-1 (i.e. 86 g C m-2 yr-1) and a key cause of this C accrual was greater C inputs from cattle slurry. However, average coefficients of slurry-C retention in soils suggest that 85 % of C added yearly through liquid manure is lost possibly via CO2 fluxes and organic C leaching. Inorganically fertilized soils (i.e. NPK) had the lowest C-gain efficiency (i.e. unit of C gained per unit of N added) and lowest C sequestration (similar to control soils). Soils receiving cattle slurry showed higher C-gain and N-retention efficiencies compared to soils receiving NPK or pig slurry. We estimate that net rates of CO2-sequestration in the top 15 cm of the soil can offset 9-25 % of GHG (greenhouse gas) emissions from intensive management. However, because of multiple GHG sources associated with livestock farming, the net C balance of these grasslands remains positive (9-12 Mg CO2-equivalent ha-1 yr-1), thus contributing to climate change. Further C-gain efficiencies (e.g. reduced enteric fermentation and use of feed concentrates, better nutrient management) are required to make grassland intensification more sustainable.

  19. Artificial Soil With Build-In Plant Nutrients

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Allen, Earl; Henninger, Donald; Golden, D. C.

    1995-01-01

    Nutrients contained in sandlike material. Artificial soil provides nutrients to plants during several growing seasons without need to add fertilizer or nutrient solution. When watered, artificial soil slowly releases all materials a plant needs to grow. Developed as medium for growing crops in space. Also used to grow plants on Earth under controlled conditions or even to augment natural soil.

  20. Negative global phosphorus budgets challenge sustainable intensification of grasslands

    PubMed Central

    Sattari, S. Z.; Bouwman, A. F.; Martinez Rodríguez, R.; Beusen, A. H. W.; van Ittersum, M. K.

    2016-01-01

    Grasslands provide grass and fodder to sustain the growing need for ruminant meat and milk. Soil nutrients in grasslands are removed through withdrawal in these livestock products and through animal manure that originates from grasslands and is spread in croplands. This leads to loss of soil fertility, because globally most grasslands receive no mineral fertilizer. Here we show that phosphorus (P) inputs (mineral and organic) in global grasslands will have to increase more than fourfold in 2050 relative to 2005 to achieve an anticipated 80% increase in grass production (for milk and meat), while maintaining the soil P status. Combined with requirements for cropland, we estimate that mineral P fertilizer use must double by 2050 to sustain future crop and grassland production. Our findings point to the need to better understand the role of grasslands and their soil P status and their importance for global food security. PMID:26882144

  1. Response of detritus food web and litter quality to elevated CO2 and crop cultivars and their feedback to soil functionality

    NASA Astrophysics Data System (ADS)

    Hu, Zhengkun; Chen, Xiaoyun; Zhu, Chunwu; Bonkowski, Michael; Hu, Shuijin; Li, Huixin; Hu, Feng; Liu, Manqiang

    2017-04-01

    Elevated atmospheric CO2 concentrations (eCO2) often increase plant growth and alter the belowground detritus soil food web. Interactions with agriculture management may further modify soil process and the associated ecosystem functionality. Little attention, however, has been directed toward assessing the responses of soil food web and their feedback to soil functionality, particularly in wetland agroecosystems. We report results from a long-term free air CO2 enrichment (FACE) experiment in a rice paddy field that examined the responses of detritus food webs to eCO2 (200 ppm higher than ambient CO2 (aCO2)) of two rice cultivars with distinctly weak and strong responses to eCO2. Soil detritus food web components, including soil microbes and microfauna, soil environment as well as resources availability variables, were determined at the rice ripening stage. To obtain the information of soil functionality, indicated by litter decomposition and enzyme activities, we adopted a reciprocal transplant approach that fully manipulate the factors of litter straw and food web components for the incubation of 120 days. Results about the field investigation showed that eCO2 lead to a higher C/N ratio of litter and soil compared to aCO2, especially for the strong responsive cultivar. eCO2-induced enhanced carbon input stimulated the fungal decomposition pathway by increasing fungal biomass, fungi: bacteria ratio and fungivorous nematode. Results from the manipulative incubation experiment showed eCO2-induced lower quality of straw decreased cumulative C mineralization, but changes in detritus food web induced by eCO2 and strongly responsive cultivar lead to an increased CO2 respiration coincidently within each straw type, mainly due to the adaption to the high C/N ratio environment which increased their functional breadth. Based on SEMs and curves of carbon mineralization rate, soil communities showed significant effects on C release at the early stage through mediating enzyme activities involved in carbon and nutrient cycling. Our results indicated that resource quality played a pivotal role in mediating soil functionality as it primarily determined the rate and degree of decomposition, but soil community composition could modify how resource quality affected this soil process. eCO2 and crop cultivar migration significantly altered straw quality and soil community composition, and thus affected soil functioning. Our findings highlight that alterations of soil functional guilds under future climate and appropriate agricultural strategy change the carbon and nutrient cycling of ecosystem. Key-words: Global change; Nitrogen input; Crop cultivar; Rhizosphere food webs; Root microbiome; Microbial community; Soil fauna

  2. Soil fertility and the role of soils for food security in developing countries

    NASA Astrophysics Data System (ADS)

    Tittonell, Pablo

    2015-04-01

    Addressing current and future food security is not just a matter of producing more food globally. Agricultural productivity must increase where food is most needed, and where both rural and urban populations are expected to increase the fastest in the near future. This is the situation in most of sub-Saharan Africa and in several other regions of Latin America, Asia and the Pacific. There are some common denominators to these regions. In the first place, the inability of the majority of farmers to access and/or to afford agricultural inputs. Second, the severity with which climate change impacts on some of these regions. Third, the extent of soil degradation, which is estimated at 25% of the arable land in the world. And finally, the fact that some of these regions are hosting valuable biodiversity and/or delivering ecosystem services of global or regional importance, which often leads to competing claims between the local and international communities. It has been repeatedly shown that the technologies of industrial agriculture as practiced in developed regions are ineffective at sustaining soil productivity in the context of smallholder family agriculture. Restoring soil productivity and ecosystem functions in these contexts requires new ways of managing soil fertility. These include: (i) innovative forms of 'precision' agriculture that consider the diversity, heterogeneity and dynamics of smallholder farming systems; (ii) a systems approach to nutrient acquisition and management; (iii) agroecological strategies for the restoration of degraded soils and the maintenance of soil physical properties; and (iv) to capitalize on the recent and growing understanding on soil trophic networks to increase nutrient and water use efficiency. I will provide examples on advances in these fronts, and discuss the challenges ahead their broad implementation by farmers in developing regions.

  3. Canopy Nutrient Cycling In Afromontane Tropical Forests At Different Successional Stages

    NASA Astrophysics Data System (ADS)

    Nyirambangutse, B.; Zibera, E.; Dusenge, M. E.; Nsabimana, D.; Pleijel, H.; Uddling, J.; Wallin, G.

    2017-12-01

    Canopy nutrient composition and cycling control biogeochemical processes and tree growth in forests. However, the understanding of nutrient limitations and cycling in tropical montane forests (TMF) is currently limited, in particular for Afromontane forests. In this study we investigated leaf nutrient composition and resorption, canopy nutrient cycling and soil carbon and nutrient content in 15 permanent plots at different successional stages in a TMF (elevation 1950 to 2550 m a.s.l.) in Rwanda, Central Africa. Leaf concentrations of 12 elements were analyzed in attached green leaves as well as in shed leaves of 10 early (ES) and 10 late (LS) successional tree species. Leaf nutrient concentrations mostly did not differ between ES and LS species (exception: K was 20% higher in ES), but the ratios of P, K and Mg to N were significantly higher in ES species. Mean resorption efficiencies of N (37%), P (48%) and K (46%) were much higher than for other nutrients. Nutrient resorption efficiency exhibited very large interspecific variation, did not differ between ES and LS species, and was not related to the leaf concentration of the respective element. Total leaf litterfall was on average 4.9 t ha-1 yr-1 (66% of total litterfall) and was independent of the successional stage of the forest. The total content of C, N, P and K in leaf litterfall did not differ between ES and LS stands. Ground litter turnover rates of C and N were 0.98 and 0.78 y-1, respectively. High leaf N concentrations, intermediate N:P ratios and low resorption efficiencies compared to values reported for other TMFs indicate high fertility and likely co-limitation by N and P, however progressively increasing towards P limitation during the course of succession. Our results further demonstrate that resorption efficiency and canopy litterfall inputs to soil mostly do not differ between ES and LS species in Afromontane tropical forests.

  4. Long-term agroecosystem research in the central Mississippi river basin: dissolved nitrogen and phosphorus transport in a high-runoff-potential watershed.

    PubMed

    Lerch, R N; Baffaut, C; Kitchen, N R; Sadler, E J

    2015-01-01

    Long-term monitoring data from agricultural watersheds are needed to determine if efforts to reduce nutrient transport from crop and pasture land have been effective. Goodwater Creek Experimental Watershed (GCEW), located in northeastern Missouri, is a high-runoff-potential watershed dominated by claypan soils. The objectives of this study were to: (i) summarize dissolved NH-N, NO-N, and PO-P flow-weighted concentrations (FWC), daily loads, and yields (unit area loads) in GCEW from 1992 to 2010; (ii) assess time trends and relationships between precipitation, land use, and fertilizer inputs and nutrient transport; and (iii) provide context to the GCEW data by comparisons with other Corn Belt watersheds. Significant declines in annual and quarterly FWCs and yields occurred for all three nutrient species during the study, and the decreases were most evident for NO-N. Substantial decreases in first- and fourth-quarter NO-N FWCs and daily loads and modest decreases in first-quarter PO-P daily loads were observed. Declines in NO-N and PO-P transport were attributed to decreased winter wheat ( L.) and increased corn ( L.) production that shifted fertilizer application from fall to spring as well as to improved management, such as increased use of incorporation. Regression models and correlation analyses indicated that precipitation, land use, and fertilizer inputs were critical factors controlling transport. Within the Mississippi River Basin, NO-N yields in GCEW were much lower than in tile-drained areas, but PO-P yields were among the highest in the basin. Overall, results demonstrated that reductions in fall-applied fertilizer and improved fertilizer management reduced N and P transport in GCEW. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. History of nutrient inputs to the northeastern United States, 1930-2000

    NASA Astrophysics Data System (ADS)

    Hale, Rebecca L.; Hoover, Joseph H.; Wollheim, Wilfred M.; Vörösmarty, Charles J.

    2013-04-01

    Humans have dramatically altered nutrient cycles at local to global scales. We examined changes in anthropogenic nutrient inputs to the northeastern United States (NE) from 1930 to 2000. We created a comprehensive time series of anthropogenic N and P inputs to 437 counties in the NE at 5 year intervals. Inputs included atmospheric N deposition, biological N2 fixation, fertilizer, detergent P, livestock feed, and human food. Exports included exports of feed and food and volatilization of ammonia. N inputs to the NE increased throughout the study period, primarily due to increases in atmospheric deposition and fertilizer. P inputs increased until 1970 and then declined due to decreased fertilizer and detergent inputs. Livestock consistently consumed the majority of nutrient inputs over time and space. The area of crop agriculture declined during the study period but consumed more nutrients as fertilizer. We found that stoichiometry (N:P) of inputs and absolute amounts of N matched nutritional needs (livestock, humans, crops) when atmospheric components (N deposition, N2 fixation) were not included. Differences between N and P led to major changes in N:P stoichiometry over time, consistent with global trends. N:P decreased from 1930 to 1970 due to increased inputs of P, and increased from 1970 to 2000 due to increased N deposition and fertilizer and decreases in P fertilizer and detergent use. We found that nutrient use is a dynamic product of social, economic, political, and environmental interactions. Therefore, future nutrient management must take into account these factors to design successful and effective nutrient reduction measures.

  6. Climate and soil-age constraints on nutrient uplift and retention by plants.

    PubMed

    Porder, Stephen; Chadwick, Oliver A

    2009-03-01

    Plants and soils represent coevolving components of ecosystems, and while the effects of soils (e.g., nutrient availability) on plants have been extensively documented, the effect of plants on soils has received less attention. Furthermore there has been no systematic investigation of how plant effects vary across important ecological gradients in climate or soil age, which leaves a substantial gap in our understanding of how plant-soil systems develop. In this context, we analyzed changes in nutrient availability and elemental losses from the entire weathering zone at 35 sites arrayed across climatic and soil-age gradients on the island of Hawai'i. The sites are located on three basaltic lava flows (ages 10, 170, and 350 kyr) each of which crosses a precipitation gradient from approximately 500 to 2500 mm/yr. By comparing the loss of nutrient (potassium, phosphorus) and non-nutrient (e.g., sodium) rock-derived elements, we identify a climatic zone at intermediate rainfall where the retention of plant nutrients in the upper soil is most pronounced. We further show that there are several abiotic constraints on plant-driven retention of nutrients. At the dry sites (< or = 750 mm/yr on all three flows), plants slow the loss of nutrients, but the effect (as measured by the difference between K and Na losses) is small, perhaps because of low plant cover and productivity. At intermediate rainfall (750-1400 mm/yr) but negative water balance, plants substantially enrich both nutrient cations and P relative to Na in the surface horizons, an effect that remains strong even after 350 kyr of soil development. In contrast, at high rainfall (> or = 1500 mm/yr) and positive water balance, the effect of plants on nutrient distributions diminishes with soil age as leaching losses overwhelm the uplift and retention of nutrients by plants after 350 kyr of soil development. The effect of plants on soil nutrient distributions can also be mediated by the movement of iron (Fe), and substantial Fe losses at high rainfall on the older flows are highly correlated with P losses. Thus redox-driven redistribution of Fe may place a further abiotic constraint on nutrient retention by plants. In combination, these data indicate that the effects of soil aging on plant uplift and retention of nutrients differ markedly with precipitation, and we view this as a potentially fruitful area for future research.

  7. [Changes of soil nutrient contents after prescribed burning of forestland in Heshan City, Guangdong Province].

    PubMed

    Sun, Yu-xin; Wu, Jian-ping; Zhou, Li-xia; Lin, Yong-biao; Fu, Sheng-lei

    2009-03-01

    A comparative study was conducted to analyze the changes of soil nutrient contents in Eucalyptus forestland and in shrubland after three years of prescribed burning. In Eucalyptus forestland, soil organic carbon, total nitrogen, available potassium contents and soil pH decreased significantly; soil available phosphorus and exchangeable magnesium contents, net nitrogen mineralization rate and ammonification rate also decreased but showed no significant difference. In shrubland, soil exchangeable calcium content increased significantly, but the contents of other nutrients had no significant change. The main reason of the lower soil net nitrogen mineralization rate in Eucalyptus forest could be the decrease of available substrates and the uptake of larger amount of soil nutrients by the fast growth of Eucalyptus. The soil nutrients in shrubland had a quick restoration rate after burning.

  8. Cotton Production Practices Change Soil Properties

    NASA Astrophysics Data System (ADS)

    Blaise, D.; Singh, J. V.

    2012-04-01

    Historically, indigenous Asiatic cottons (Gossypium arboreum) were cultivated with minimal inputs in India. The introduction of the Upland cottons (G. hirsutum) and later the hybrid (H-4) triggered a whole set of intensified agronomic management with reliance on high doses of fertilisers and pesticide usage. In 2002, the transgenic Bt cotton hybrids were introduced and released for commercial cultivation. Presently, more than 95% of the nearly 12.2 million hectares of cotton area is under the Bt transgenic hybrids. These hybrids are not only high yielding but have reduced the dependence on pesticide because of an effective control of the lepidopteran pests. Thus, a change in the management practices is evident over the years. In this paper, we discuss the impact of two major agronomic management practices namely, nutrient management and tillage besides organic cotton cultivation in the rainfed cotton growing regions of central India characterized by sub-humid to semi-arid climate and dominated by Vertisols. Long-term studies at Nagpur, Maharashtra indicated the importance of integrated nutrient management (INM) wherein a part of the nutrient needs through fertiliser was substituted with organic manures such as farmyard manure (FYM). With the application of mineral fertilisers alone, soils became deficient in micronutrients. This was not observed with the FYM amended plots. Further, the manure amended plots had a better soil physical properties and the water holding capacity of the soil improved due to improvements in soil organic matter (SOM). Similarly, in a separate experiment, an improvement in SOM was observed in the organically managed fields because of continuous addition of organic residues. Further, it resulted in greater biological activity compared to the conventionally managed fields. Conservation tillage systems such as reduced tillage (RT) are a means to improve soil health and crop productivity. Long-term studies on tillage practices such as conventional tillage {CT}, RT with two inter-row cultivations {RT1} and RT with no inter-row cultivation {RT2} were conducted for 11 years. At the end of the study, an improvement in the soil physical properties such as water stable aggregates and mean weight diameter were observed in the RT system and the plots amended with green manure (GM) cover crop compared to those without. Further, available soil moisture content was greater in the GM mulched plots up to 0.60 m depth compared to the without GM treatment. The RT systems, too, had a higher SOM content than the CT probably due to less soil disturbance and greater retention of crop residues. INM and conservation tillage are strategies to sequester C and reduce emissions. It can also mitigate green house gas emissions because less of fertiliser would be used in the INM treatments. Studies conducted, thus far, have not indicated any adverse effect of Bt cotton cultivation. However, there could be a possibility, of nutrient depletion with the cultivation of Bt transgenic hybrids because of higher biomass and nutrient removal increasing the nutrient demand. Studies on these aspects are needed to understand how long-term cultivation of Bt cotton hybrids will alter the soil properties.

  9. Effects of soil applications of micro-nutrients and chelating agent citric acid on mineral nutrients in soybean seeds

    USDA-ARS?s Scientific Manuscript database

    Micro-nutrients deficiency in soil result in crop yield loss and poor seed quality. Correcting this deficiency is normally conducted by foliar or soil application. The objective of this research was to determine the effects of soil applications of five micro-nutrients (Mn, Cu, Zn, Mo, and B) with a ...

  10. Water-quality assessment of the Albemarle-Pamlico drainage basin, North Carolina and Virginia; characterization of suspended sediment, nutrients, and pesticides

    USGS Publications Warehouse

    Harned, Douglas; McMahon, Gerard; Spruill, T.B.; Woodside, M.D.

    1995-01-01

    The 28,000-square-mile Albemarle-Pamlico drainage basin includes the Roanoke, Dan, Chowan Tar, and Neuse Rivers. The basin extends through four physiographic provinces in North Carolina and Virginia-Valley and Ridge, Blue Ridge, Piedmont and Coastal Plain. The spatial and temporal trends in ground-water and riverine water quality in the study area were characterized by using readily available data sources The primary data sources that were used included the U.S. Geological Survey's National Water Data Storage and Retrieval System (WATSTORE) database, the U.S. Environmental Protection Agency's Storage and Retrieval System (STORET) database, and results of a few investigations of pesticide occurrence. The principal water-quality constituents examined were suspended sediment, nutrients, and pesticides. The data examined generally spanned the period from 1950 to 1993. The only significant trends in suspended sediment were detected at three Chowan River tributary sites which showed long-term decreases. Suspended- and total-solids concentrations have decreased throughout the Albemarle-Pamlico drainage basin. The decreases are probably a result of (1) construction of new lakes and ponds in the basin, which trap solids, (2) improved agricultural soil management, and (3) improved wastewater treatment. Nutrient point sources are much less than nonpoint nutrient sources at the eight NASQAN basins examined for nutrient loads. The greatest nitrogen inputs are associated with crop fertilizer and biological nitrogen fixation by soybeans and peanuts, whereas atmospheric and animal-related nitrogen inputs are comparable in magnitude. The largest phosphorus inputs are associated with animal wastes. The most commonly detected pesticides in surface water in the STORET database were atrazine and aldrin.Intensive organonitrogen herbicide sampling of Chicod Creek in 1992 showed seasonal variations in pesticide concentration. The most commonly detected herbicides were atrazine, alachlor, metolachlor, prometon, and metribuzin. No relation between streamflow and pesticide concentration was evident.

  11. The Nutrient Pool of Five Important Bottomland Hardwood Soils

    Treesearch

    John K. Francis

    1988-01-01

    Heretofore, with the exception of N, the concentration of total nutrients and the amount of variation in nutrient concentrations among and within soil series and depths within the rooting zone of forested alluvial soils of the South was unknown. Information about total nutrient concentrations is important in studying the danger of nutrient depletion posed by total tree...

  12. Complementary models of tree species-soil relationships in old-growth temperate forests

    USGS Publications Warehouse

    Cross, Alison; Perakis, Steven S.

    2011-01-01

    Ecosystem level studies identify plant soil feed backs as important controls on soil nutrient availability,particularly for nitrogen and phosphorus. Although site and species specific studies of tree species soil relationships are relatively common,comparatively fewer studies consider multiple coexisting speciesin old-growth forests across a range of sites that vary underlying soil fertility. We characterized patterns in forest floor and mineral soil nutrients associated with four common tree species across eight undisturbed old-growth forests in Oregon, USA, and used two complementary conceptual models to assess tree species soil relationships. Plant soil feedbacks that could reinforce sitelevel differences in nutrient availability were assessed using the context dependent relationships model, where by relative species based differences in each soil nutrient divergedorconvergedas nutrient status changed across sites. Tree species soil relationships that did not reflect strong feedbacks were evaluated using a site independent relationships model, where by forest floor and surface mineral soil nutrient tools differed consistently by tree species across sites,without variation in deeper mineral soils. We found that theorganically cycled elements carbon, nitrogen, and phosphorus exhibited context-dependent differences among species in both forest floor and mineral soil, and most of ten followed adivergence model,where by species differences were greatest at high-nutrient sites. These patterns are consistent with the oryemphasizing biotic control of these elements through plant soil feedback mechanisms. Site independent species differences were strongest for pool so if the weather able cations calcium, magnesium, potassium,as well as phosphorus, in mineral soils. Site independent species differences in forest floor nutrients we reattributable too nespecies that displayed significant greater forest floor mass accumulation. Our finding confirmed that site-independent and context-dependent tree species-soil relationships occur simultaneouslyinold-grow the temperate forests, with context-dependent relationships strongest for organically cycled elements, and site-independent relationships strongest for weather able elements with in organic cycling phases. These models provide complementary explanations for patterns of nutrient accumulation and cycling in mixed species old-growth temperate forests.

  13. Influence of Anthropogenic Nutrient Additions on Greenhouse Gas Production Rates at Water-soil Interfaces in an Urban Dominated Estuary

    NASA Astrophysics Data System (ADS)

    Brigham, B. A.; O'Mullan, G. D.; Bird, J. A.

    2014-12-01

    The tidal Hudson River Estuary (HRE) receives significant inputs of readily dissolvable carbon (C) and nitrogen (N) from incomplete wastewater treatment and sewer overflow during storm events associated with NYC and other urban centers. Nutrient deposition may alter C utilization in the estuarine water column, associated sediments and surrounding wetlands. In these anaerobic systems, we hypothesize that microbial activity is limited by the availability of easily-degradable C (not electron acceptors), which acts as a co-metabolite and provides energy for organic matter decomposition. Sporadic transport of highly C enriched storm derived runoff may substantially enhance greenhouse gas (GHG) production rates through the utilization of stored C pools. To test our hypothesis carbon dioxide (CO2) and methane (CH4) process rates (1) were evaluated from soil cores removed from three distinct HRE wetland sites (Saw Mill Creek, Piermont, and Iona Island Marsh(s)) across a salinity gradient and incubated under varying nutrient treatments. Further, CO2 and CH4 surface water effluxes (2) were quantified from multiple river cruises spanning two years at varying distance from nutrient sources associated with NYC. Incubation experiments from wetland soil core experiments demonstrated that readily degradable C but not inorganic N additions stimulated GHG production (200 - 350 ug C g-1 of dry soil day-1) threefold compared to negative controls. The HRE was found to be both a CO2 and CH4 source under all conditions. The greatest GHG efflux (300 - 3000 nmoles C m-2 day-1) was quantified in mid-channel, tributary, and near shore sites in close proximity to NYC which following precipitation events demonstrated 2-20X increased GHG efflux. These results demonstrate that anthropogenic C additions associated with dense urban centers have the potential to enhance anaerobic microbial degradation of organic matter and subsequent GHG production.

  14. Intercropping Enhances Productivity and Maintains the Most Soil Fertility Properties Relative to Sole Cropping

    PubMed Central

    Wang, Zhi-Gang; Jin, Xin; Bao, Xing-Guo; Li, Xiao-Fei; Zhao, Jian-Hua; Sun, Jian-Hao; Christie, Peter; Li, Long

    2014-01-01

    Yield and nutrient acquisition advantages are frequently found in intercropping systems. However, there are few published reports on soil fertility in intercropping relative to monocultures. A field experiment was therefore established in 2009 in Gansu province, northwest China. The treatments comprised maize/faba bean, maize/soybean, maize/chickpea and maize/turnip intercropping, and their correspoding monocropping. In 2011 (the 3rd year) and 2012 (the 4th year) the yields and some soil chemical properties and enzyme activities were examined after all crop species were harvested or at later growth stages. Both grain yields and nutrient acquisition were significantly greater in all four intercropping systems than corresponding monocropping over two years. Generally, soil organic matter (OM) did not differ significantly from monocropping but did increase in maize/chickpea in 2012 and maize/turnip in both years. Soil total N (TN) did not differ between intercropping and monocropping in either year with the sole exception of maize/faba bean intercropping receiving 80 kg P ha−1 in 2011. Intercropping significantly reduced soil Olsen-P only in 2012, soil exchangeable K in both years, soil cation exchangeable capacity (CEC) in 2012, and soil pH in 2012. In the majority of cases soil enzyme activities did not differ across all the cropping systems at different P application rates compared to monocrops, with the exception of soil acid phosphatase activity which was higher in maize/legume intercropping than in the corresponding monocrops at 40 kg ha−1 P in 2011. P fertilization can alleviate the decline in soil Olsen-P and in soil CEC to some extent. In summary, intercropping enhanced productivity and maintained the majority of soil fertility properties for at least three to four years, especially at suitable P application rates. The results indicate that maize-based intercropping may be an efficient cropping system for sustainable agriculture with carefully managed fertilizer inputs. PMID:25486249

  15. Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea.

    PubMed

    Kim, Jeong Myeong; Roh, An-Sung; Choi, Seung-Chul; Kim, Eun-Jeong; Choi, Moon-Tae; Ahn, Byung-Koo; Kim, Sun-Kuk; Lee, Young-Han; Joa, Jae-Ho; Kang, Seong-Soo; Lee, Shin Ae; Ahn, Jae-Hyung; Song, Jaekyeong; Weon, Hang-Yeon

    2016-12-01

    Soil microorganisms play an essential role in soil ecosystem processes such as organic matter decomposition, nutrient cycling, and plant nutrient availability. The land use for greenhouse cultivation has been increasing continuously, which involves an intensive input of agricultural materials to enhance productivity; however, relatively little is known about bacterial communities in greenhouse soils. To assess the effects of environmental factors on the soil bacterial diversity and community composition, a total of 187 greenhouse soil samples collected across Korea were subjected to bacterial 16S rRNA gene pyrosequencing analysis. A total of 11,865 operational taxonomic units at a 97% similarity cutoff level were detected from 847,560 sequences. Among nine soil factors evaluated; pH, electrical conductivity (EC), exchangeable cations (Ca 2+ , Mg 2+ , Na + , and K + ), available P 2 O 5 , organic matter, and NO 3 -N, soil pH was most strongly correlated with bacterial richness (polynomial regression, pH: R 2 = 0.1683, P < 0.001) and diversity (pH: R 2 = 0.1765, P < 0.001). Community dissimilarities (Bray-Curtis distance) were positively correlated with Euclidean distance for pH and EC (Mantel test, pH: r = 0.2672, P < 0.001; EC: r = 0.1473, P < 0.001). Among dominant phyla (> 1%), the relative abundances of Proteobacteria, Gemmatimonadetes, Acidobacteria, Bacteroidetes, Chloroflexi, and Planctomycetes were also more strongly correlated with pH and EC values, compared with other soil cation contents, such as Ca 2+ , Mg 2+ , Na + , and K + . Our results suggest that, despite the heterogeneity of various environmental variables, the bacterial communities of the intensively cultivated greenhouse soils were particularly influenced by soil pH and EC. These findings therefore shed light on the soil microbial ecology of greenhouse cultivation, which should be helpful for devising effective management strategies to enhance soil microbial diversity and improving crop productivity.

  16. Direct quantification of long-term rock nitrogen inputs to temperate forest ecosystems.

    PubMed

    Morford, Scott L; Houlton, Benjamin Z; Dahlgren, Randy A

    2016-01-01

    Sedimentary and metasedimentary rocks contain large reservoirs of fixed nitrogen (N), but questions remain over the importance of rock N weathering inputs in terrestrial ecosystems. Here we provide direct evidence for rock N weathering (i.e., loss of N from rock) in three temperate forest sites residing on a N-rich parent material (820-1050 mg N kg(-1); mica schist) in the Klamath Mountains (northern California and southern Oregon), USA. Our method combines a mass balance model of element addition/ depletion with a procedure for quantifying fixed N in rock minerals, enabling quantification of rock N inputs to bioavailable reservoirs in soil and regolith. Across all sites, -37% to 48% of the initial bedrock N content has undergone long-term weathering in the soil. Combined with regional denudation estimates (sum of physical + chemical erosion), these weathering fractions translate to 1.6-10.7 kg x ha(-1) x yr(-1) of rock N input to these forest ecosystems. These N input fluxes are substantial in light of estimates for atmospheric sources in these sites (4.5-7.0 kg x ha(-1) x yr(-1)). In addition, N depletion from rock minerals was greater than sodium, suggesting active biologically mediated weathering of growth-limiting nutrients compared to nonessential elements. These results point to regional tectonics, biologically mediated weathering effects, and rock N chemistry in shaping the magnitude of rock N inputs to the forest ecosystems examined.

  17. Soil quality succession of mudflat in coastal area of China under different types of man-made land uses

    NASA Astrophysics Data System (ADS)

    Lu, Haiying; Shao, Hongbo; Xu, Zhaolong; Peng, Cheng

    2017-04-01

    Marshy reclamation in coastal area is becoming an important strategy for food safety security and economic development in China. After the reclamation of mudflat, the nutrient concentration in soil is one of the dominated factors restricting the development of marshy agriculture. However, little information is available for soil nutrient dynamics and its driving mechanisms under different types of man-made land uses. In this review, we summarized the soil nutrient dynamics under different types of man-made land uses (bare mudflat soil, rice-wheat rotation soil, aquaculture soil, and forest soil), including the change of physical and chemical features of the reclaimed soil; ii) the dynamics of soil organic matters and its driving mechanism in marshy land; iii) the migration of N, P, and K in marshy soil; and iv) the oriented cultivation and improvement for soil nutrient in marshy soil. This study contributes not only to understanding the soil nutrient cycling in marshy land, but also to providing valuable information for the sustainable development of salt-soil agriculture in marshy land along seaside cities of China.

  18. Soil water nitrate and ammonium dynamics under a sewage effluent irrigated eucalypt plantation.

    PubMed

    Livesley, S J; Adams, M A; Grierson, P F

    2007-01-01

    Managed forests and plantations are appropriate ecosystems for land-based treatment of effluent, but concerns remain regarding nutrient contamination of ground- and surface waters. Monthly NO3-N and NH4-N concentrations in soil water, accumulated soil N, and gross ammonification and nitrification rates were measured in the second year of a second rotation of an effluent irrigated Eucalyptus globulus plantation in southern Western Australia to investigate the separate and interactive effects of drip and sprinkler irrigation, effluent and water irrigation, irrigation rate, and harvest residues retention. Nitrate concentrations of soil water were greater under effluent irrigation than water irrigation but remained <15 mg L(-1) when irrigated at the normal rate (1.5-2.0 mm d(-1)), and there was little evidence of downward movement. In contrast, NH4-N concentrations of soil water at 30 and 100 cm were generally greater under effluent irrigation than water irrigation when irrigated at the normal rate because of direct effluent NH4-N input and indirect ammonification of soil organic N. Drip irrigation of effluent approximately doubled peak NO3-N and NH4-N concentrations in soil water. Harvest residue retention reduced concentrations of soil water NO3-N at 30 cm during active sprinkler irrigation, but after 1 yr of irrigation there was no significant difference in the amount of N stored in the soil system, although harvest residue retention did enhance the "nitrate flush" in the following spring. Gross mineralization rates without irrigation increased with harvest residue retention and further increased with water irrigation. Irrigation with effluent further increased gross nitrification to 3.1 mg N kg(-1) d(-1) when harvest residues were retained but had no effect on gross ammonification, which suggested the importance of heterotrophic nitrification. The downward movement of N under effluent irrigation was dominated by NH4-N rather than NO3-N. Improving the capacity of forest soils to store and transform N inputs through organic matter management must consider the dynamic equilibrium between N input, uptake, and immobilization according to soil C status, and the effect changing microbial processes and environmental conditions can have on this equilibrium.

  19. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Soil fertility and crop nutrient management practice... Requirements § 205.203 Soil fertility and crop nutrient management practice standard. (a) The producer must..., and biological condition of soil and minimize soil erosion. (b) The producer must manage crop...

  20. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Soil fertility and crop nutrient management practice... Requirements § 205.203 Soil fertility and crop nutrient management practice standard. (a) The producer must..., and biological condition of soil and minimize soil erosion. (b) The producer must manage crop...

  1. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Soil fertility and crop nutrient management practice... Requirements § 205.203 Soil fertility and crop nutrient management practice standard. (a) The producer must..., and biological condition of soil and minimize soil erosion. (b) The producer must manage crop...

  2. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Soil fertility and crop nutrient management practice... Requirements § 205.203 Soil fertility and crop nutrient management practice standard. (a) The producer must..., and biological condition of soil and minimize soil erosion. (b) The producer must manage crop...

  3. Rapid Shifts in Soil Nutrients and Decomposition Enzyme Activity in Early Succession Following Forest Fire

    DOE PAGES

    Knelman, Joseph E.; Graham, Emily B.; Ferrenberg, Scott; ...

    2017-09-15

    In post-disturbance landscapes nutrient availability has proven a major control on ecological succession. In this study, we examined variation in connections between soil nutrient availability and decomposition extracellular enzyme activity (EEA) across post fire secondary succession in forest soils as well as after a secondary flood disturbance. We also examined possible linkages between edaphic properties and bacterial communities based on 16S rRNA gene analysis. We found that with advancing succession in a post-fire landscape, the relationship between soil nutrients and EEA became stronger over time. In general, late successional soils showed stronger connections between EEA and soil nutrient status, whilemore » early successional soils were marked by a complete decoupling of nutrients and EEA. We also found that soil moisture and bacterial communities of post-fire disturbance soils were susceptible to change following the secondary flood disturbance, while undisturbed, reference forest soils were not. Our results demonstrate that nutrient pools correlating with EEA change over time. While past work has largely focused on ecosystem succession on decadal timescales, our work suggests that nutrients shift in their relative importance as a control of decomposition EEA in the earliest stages of secondary succession. Furthermore, this work emphasizes the relevance of successional stage, even on short timescales, in predicting rates of carbon and nitrogen cycling, especially as disturbances become more frequent in a rapidly changing world.« less

  4. Rapid Shifts in Soil Nutrients and Decomposition Enzyme Activity in Early Succession Following Forest Fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knelman, Joseph E.; Graham, Emily B.; Ferrenberg, Scott

    In post-disturbance landscapes nutrient availability has proven a major control on ecological succession. In this study, we examined variation in connections between soil nutrient availability and decomposition extracellular enzyme activity (EEA) across post fire secondary succession in forest soils as well as after a secondary flood disturbance. We also examined possible linkages between edaphic properties and bacterial communities based on 16S rRNA gene analysis. We found that with advancing succession in a post-fire landscape, the relationship between soil nutrients and EEA became stronger over time. In general, late successional soils showed stronger connections between EEA and soil nutrient status, whilemore » early successional soils were marked by a complete decoupling of nutrients and EEA. We also found that soil moisture and bacterial communities of post-fire disturbance soils were susceptible to change following the secondary flood disturbance, while undisturbed, reference forest soils were not. Our results demonstrate that nutrient pools correlating with EEA change over time. While past work has largely focused on ecosystem succession on decadal timescales, our work suggests that nutrients shift in their relative importance as a control of decomposition EEA in the earliest stages of secondary succession. Furthermore, this work emphasizes the relevance of successional stage, even on short timescales, in predicting rates of carbon and nitrogen cycling, especially as disturbances become more frequent in a rapidly changing world.« less

  5. Impact of simulated atmospheric nitrogen deposition on nutrient cycling and carbon sink via mycorrhizal fungi in two nutrient-poor peatlands

    NASA Astrophysics Data System (ADS)

    Larmola, Tuula; Kiheri, Heikki; Bubier, Jill L.; van Dijk, Netty; Dise, Nancy; Fritze, Hannu; Hobbie, Erik A.; Juutinen, Sari; Laiho, Raija; Moore, Tim R.; Pennanen, Taina

    2017-04-01

    Peatlands store one third of the global soil carbon (C) pool. Long-term fertilization experiments in nutrient-poor peatlands showed that simulated atmospheric nitrogen (N) deposition does not enhance ecosystem C uptake but reduces C sink potential. Recent studies have shown that a significant proportion of C input to soil in low-fertility forests entered the soil through mycorrhizal fungi, rather than as plant litter. Is atmospheric N deposition diminishing peatland C sink potential due to the suppression of ericoid mycorrhizal fungi? We studied how nutrient addition influences plant biomass allocation and the extent to which plants rely on mycorrhizal N uptake at two of the longest-running nutrient addition experiments on peatlands, Whim Bog, United Kingdom, and Mer Bleue Bog, Canada. We determined the peak growing season aboveground biomass production and coverage of vascular plants using the point intercept method. We also analyzed isotopic δ15N patterns and nutrient contents in leaves of dominant ericoid mycorrhizal shrubs as well as the non-mycorrhizal sedge Eriophorum vaginatum under different nutrient addition treatments. The treatments receive an additional load of 1.6-6.4 N g m-2 y-1 either as ammonium (NH4) nitrate (NO3) or NH4NO3 and with or without phosphorus (P) and potassium (K), alongside unfertilized controls. After 11-16 years of nutrient addition, the vegetation structure had changed remarkably. Ten of the eleven nutrient addition treatments showed an increase of up to 60% in total vascular plant abundance. Only three (NH4Cl, NH4ClPK, NaNO3PK) of the nutrient addition treatments showed a concurrent decrease of down to 50% in the relative proportion of ericoid mycorrhizal shrubs to total vascular plant abundance. The response to nutrient load may be explained by the water table depth, the form of N added and whether N was added with PK. Shrubs were strong competitors at the dry Mer Bleue bog while sedges gained in abundance at the wetter Whim bog. Our results also suggest that the impacts of reduced and oxidized N on above ground biomass of ericoid shrubs differ and that plants have become increasingly P limited under high simulated atmospheric N deposition. Combined with mycorrhizal abundance and foliar isotopic δ15N patterns, the data will allow us to estimate the extent to which plants rely on mycorrhizal N uptake and whether mycorrhizal responses are linked to diminished C sink potential. This evidence is needed to establish critical loads for C sink potential in peatlands.

  6. How Saharan Dust Slows River Knickpoints: Coupling Vegetation Canopy, Soils and the Foundation of the Critical Zone

    NASA Astrophysics Data System (ADS)

    Brocard, G. Y.; Willenbring, J. K.; Harrison, E. J.; Scatena, F. N.

    2015-12-01

    Forest succession theory maintains that trees drape existing landscapes as passive niche optimizers, but in the Luquillo Mountains in Puerto Rico, the forest exerts a powerful control on erosion. The Luquillo Critical Zone observatory is set in the Luquillo Mountains, an isolated massif at the northeastern tip of Puerto Rico Island which receives up to five meters of rainfall annually. Most of the rainfall received in the mountains is conveyed as quick flow through soil macropores, inhibiting soil erosion by overland flow. Physical erosion is kept low, occurring in the form of infrequent shallow landslides, thus increasing the residence time of minerals in the near-surface environment. The extensive chemical alteration of minerals generates a thick saprolite covered by fine-grained soil. Over the quartz diorite bedrock that characterizes the southern side of the mountains, the weathering process generates saprolite tens of meters deep that is almost completely devoid of weatherable minerals. Soils forming over this saprolite are nutrient-poor, forcing the rainforest to retrieve its nutrients from atmospheric fluxes, such as Saharan dust and marine aerosols. These atmospheric inputs are thus indirectly essential for the forest to be able to maintain slow erosion rates over the mountains. At lower elevation, using cosmogenic nuclide-derived denudation rates, we identified a wave of incision which has been propagating upstream over the past 4 My in the form of very steep and slowly migrating knickpoints. Bedrock abrasion and plucking are infrequent along the knickpoint faces, because the bedrock is massive and because rivers are bedload-starved. This situation is due to the highly weathered upland soils and slow erosion rates and high weathering rate upstream, which acts to reduce bedload grain size and limits bedload fluxes to the knickpoint, respectively. The soils change radically where the wave of erosion has passed and has increased erosion rates. There, nutrient-rich minerals make their way up into the soils, providing available cations to the forest. This is in turn has a measurable effect on forest biomass and on forest species composition.

  7. No signs of soil organic matter accumulation and of changes in nutrient (N-P) limitation during tropical secondary forest succession in the wet tropics of Southwest Costa Rica

    NASA Astrophysics Data System (ADS)

    Wanek, Wolfgang; Oberdorfer, Sarah; Oberleitner, Florian; Hietz, Peter; Dullinger, Stefan; Zehetner, Franz

    2017-04-01

    Secondary forests comprise large tracts of the tropical land area, due to ongoing changes in land-use, including selective logging and agricultural land abandonment. Recent meta-analyses demonstrated that temperature and precipitation are key drivers of forest ecosystem recovery, particularly of soil organic carbon (SOC) build-up, where losses of SOC after deforestation and cultivation (and its recovery after abandonment) were largest in the wet tropical lowlands. However, wet lowland tropical chronosequences are strongly underrepresented (<10% of all data with MAP >4000 mm) and the large variance in this group may be explained by soil type and soil nutrients. Moreover strong effects of (and changes in) nutrient limitation, with an intermittent change from P to N limitation of plant production in young tropical secondary forests, have been identified in a few studies. For this study we established a tropical secondary forest chronosequence, identifying old pastures (>40 years), young to old secondary forests (1-55 years) and old-growth forests based on aerial photographs and satellite images dating from the 1960s to the 2010s in SW Costa Rica, a region where mean annual temperature is 27°C and mean annual precipitation between 5000 and 6000 mm. Soil samples were taken incrementally to 45 cm depth, sieved and soils and roots collected and analysed. Bulk density decreased and SOC content increased from pastures to secondary forests and old-growth forests, with the net effect on soil C stocks (between 63 and 92 Mg ha-1 (0-45 cm)) being neutral. SOC stocks were generally high, due to high fine root densities and associated high root inputs to mineral soils in pastures and forests. SOC showed relatively slow turnover times, based on root and soil delta13C values, with turnover times of 120 and 210 years in topsoils and subsoils, indicating strong stabilization of SOM due to mineral binding and high aggregate stability (>80%). At the same time we found no change in soil N and P availability, but high microbial N:P ratios and very low Olsen P, indicating P limitation across the whole chronosequence due to strong chemical soil weathering and P fixation to Fe and Al oxides. In contrast we found an intermittent decrease in soil pH and in base saturation from pastures to young secondary forests and later increases towards old-growth forests. This dip in base saturation is most likely related to the high demand for base cations during rapid biomass build-up (particularly Ca-rich wood) during early secondary succession which is later counterbalanced by cation pumping by deep rooting trees from cation-rich deep soil layers and redistribution to the topsoils through litterfall and root turnover. The presented results on SOM and nutrient dynamics will be set in relation to aboveground biomass recovery at the same sites, and compared to other forest chronosequences in the tropics, to better understand climate and nutrient effects on the recovery of tropical forests after abandonment of agricultural land.

  8. Illuminating pathways of forest nutrient provision: relative release from soil mineral and organic pools

    NASA Astrophysics Data System (ADS)

    Hauser, E.; Billings, S. A.

    2017-12-01

    Depletion of geogenic nutrients during soil weathering can prompt vegetation to rely on other sources, such as organic matter (OM) decay, to meet growth requirements. Weathered soils also tend to permit deep rooting, a phenomenon sometimes attributed to vegetation foraging for geogenic nutrients. This study examines the extent to which OM recycling provides nutrients to vegetation growing in soils with diverse weathering states. We thus address the fundamental problem of how forest vegetation obtains sufficient nutrition to support productivity despite wide variation in soils' nutrient contents. We hypothesized that vegetation growing on highly weathered soils relies on nutrients released from OM decay to a greater extent than vegetation growing on less weathered, more nutrient-rich substrates. For four mineralogically diverse Critical Zone Observatories (CZO) and Critical Zone Exploratory Network sites, we calculated weathering indices and approximated vegetation nutrient demand and nutrient release from OM decay. We also measured nutrient release rates from OM decay at each site. We then assessed the relationship between degree of soil weathering and the estimated fraction of nutrient demand satisfied by OM derived nutrients. Results are consistent with our hypothesis. The chemical index of alteration (CIA), a weathering index that increases in value with mineral depletion, varies predictably from 90 at the highly weathered Calhoun CZO to 60 at the Catalina CZO, where soils are more recently developed. Estimates of rates of K release from OM decay increase with CIA values. The highest release rate is 2.4 gK m-2 y-1 at Calhoun, accounting for 30% of annual vegetation K uptake; at Catalina, less than 0.5 gm-2 y-1 K is released, meeting 14% of vegetation demand. CIA also co-varies with rooting depth across sites: the deepest roots at the Calhoun sites are growing in soils with the highest CIA values, while the deepest roots at Catalina sites are growing in soils with much lower CIA values. Thus, provision of plant-available nutrients from OM decay appears greater at more weathered sites, and dominant nutrient sources accessed by deep roots (OM- vs. rock-derived) may vary predictably with soil weathering stage. On-going incubations will permit us to assess these relationships for multiple geogenic nutrients.

  9. Watershed delineation and nitrogen source analysis for Bayou ...

    EPA Pesticide Factsheets

    Nutrient pollution in stormwater runoff from urbanized areas contributes to water quality degradation in streams and receiving waterbodies. Agriculture, population growth, and industrial activities are significant sources of nitrogen inputs for surface waters. Increased nitrogen loading stimulates eutrophication through algal blooms, which leads to an overall decrease in drinking water and aquatic habitat quality. Bayou Chico, a highly urbanized watershed in the Pensacola Bay system in northwest Florida, is a nutrient-impaired waterbody under management to reduce bacteria and nutrient loadings, in accordance with the Florida Department of Environmental Protection’s (FDEP) Basin Management Action Plan. Best management practices and green infrastructure (GI) throughout Bayou Chico help reduce nitrogen inputs by retaining and filtering water. GI can function as a nitrogen sink by sorption or infiltration into soils, sequestration into plant material, and denitrification through microbial processes. However, a better understanding of the efficiency of these systems is needed to better inform management practices on future nitrogen reduction. This project will address two issues relating to the presence of nitrogen in the Bayou Chico watershed: 1) the identification of specific nitrogen sources within urbanized areas, and 2) the potential rates of nitrogen removal and sequestration from GI and nitrogen transport throughout the bayou. To accomplish these goals, nitr

  10. Utilization and management of organic wastes in Chinese agriculture: past, present and perspectives.

    PubMed

    Ju, Xiaotang; Zhang, Fusuo; Bao, Xuemei; Römheld, V; Roelcke, M

    2005-09-01

    Recycling and composting of organic materials such as animal waste, crop residues and green manures has a long tradition in China. In the past, the application of organic manures guaranteed a high return of organic materials and plant mineral nutrients and thus maintained soil fertility and crop yield. As a result of rapid economic development coupled with the increasing urbanization and labour costs, the recycling rate of organic materials in Chinese agriculture has dramatically declined during the last two decades, in particular in the more developed eastern and southeastern provinces of China. Improper handling and storage of the organic wastes is causing severe air and water pollution. Because farmers are using increasing amounts of mineral fertilizer, only 47% of the cropland is still receiving organic manure, which accounted for 18% of N, 28% of P and 75% of K in the total nutrient input in 2000. Nowadays, the average proportion of nutrients (N+P+K) supplemented by organic manure in Chinese cropland is only 35% of the total amount of nutrients from both inorganic and organic sources. In China, one of the major causes is the increasing de-coupling of animal and plant production. This is occurring at a time when "re-coupling" is partly being considered in Western countries as a means to improve soil fertility and reduce pollution from animal husbandry. Re-coupling of modern animal and plant production is urgently needed in China. A comprehensive plan to develop intensive animal husbandry while taking into account the environmental impact of liquid and gaseous emissions and the nutrient requirements of the crops as well as the organic carbon requirements of the soil are absolutely necessary. As a consequence of a stronger consideration of ecological aspects in agriculture, a range of environmental standards has been issued and various legal initiatives are being taken in China. Their enforcement should be strictly monitored.

  11. Utilization and management of organic wastes in Chinese agriculture: past, present and perspectives.

    PubMed

    Ju, Xiaotang; Zhang, Fusuo; Bao, Xuemei; Römheld, V; Roelcke, M

    2005-12-01

    Recycling and composting of organic materials such as animal waste, crop residues and green manures has a long tradition in China. In the past, the application of organic manures guaranteed a high return of organic materials and plant mineral nutrients and thus maintained soil fertility and crop yield. As a result of rapid economic development coupled with the increasing urbanization and labour costs, the recycling rate of organic materials in Chinese agriculture has dramatically declined during the last two decades, in particular in the more developed eastern and southeastern provinces of China. Improper handling and storage of the organic wastes is causing severe air and water pollution. Because farmers are using increasing amounts of mineral fertilizer, only 47% of the cropland is still receiving organic manure, which accounted for 18% of N, 28% of P and 75% of K in the total nutrient input in 2000. Nowadays, the average proportion of nutrients (N+P+K) supplemented by organic manure in Chinese cropland is only 35% of the total amount of nutrients from both inorganic and organic sources. In China, one of the major causes is the increasing de-coupling of animal and plant production. This is occurring at a time when "re-coupling" is partly being considered in Western countries as a means to improve soil fertility and reduce pollution from animal husbandry. Re-coupling of modern animal and plant production is urgently needed in China. A comprehensive plan to develop intensive animal husbandry while taking into account the environmental impact of liquid and gaseous emissions and the nutrient requirements of the crops as well as the organic carbon requirements of the soil are absolutely necessary. As a consequence of a stronger consideration of ecological aspects in agriculture, a range of environmental standards has been issued and various legal initiatives are being taken in China. Their enforcement should be strictly monitored.

  12. Soil nutrient concentration and distribution at riverbanks undergoing different land management practices: Implications for riverbank management

    NASA Astrophysics Data System (ADS)

    Xue, X. H.; Chang, S.; Yuan, L. Y.

    2017-08-01

    Riverbanks are important boundaries for the nutrient cycling between lands and freshwaters. This research aimed to explore effects of different land management methods on the soil nutrient concentration and distribution at riverbanks. Soils from the reed-covered riverbanks of middle Yangtze River were studied, including the soils respectively undergoing systematic agriculture (gathering young tender shoots, reaping reed straws, and burning residual straws), fires and no disturbances. Results showed that the agricultural activities sharply decreased the contents of soil organic matter (SOM), N, P and K in subsurface soils but less decreased the surface SOM, N and K contents, whereas phosphorus were evidently decreased at both surface and subsurface layers. In contrast, the single application of fires caused a marked increase of SOM, N, P and K contents in both surface and subsurface soils but had little impacts on soil nutrient distributions. Soils under all the three conditions showed a relative increase of soil nutrients at riverbank foot. This comparative study indicated that the different or even contrary effects of riverbank management practices on soil nutrient statuses should be carefully taken into account when assessing the ecological effects of management practices.

  13. Nutrient properties of five West Virginia forest soils

    Treesearch

    L. R. Auchmoody

    1972-01-01

    Nutrient levels in five well-drained forest soils of the northern mountain section of West Virginia were generally associated with the type of parent rocks from which the soils had formed. But in some instances, different rock types yielded soils of similar nutrient composition. Soils formed from limestone and calcareous shale were usually higher in fertility than...

  14. Impacts of soil petroleum contamination on nutrient release during litter decomposition of Hippophae rhamnoides.

    PubMed

    Zhang, Xiaoxi; Liu, Zengwen; Luc, Nhu Trung; Yu, Qi; Liu, Xiaobo; Liang, Xiao

    2016-03-01

    Petroleum exploitation causes contamination of shrub lands close to oil wells. Soil petroleum contamination affects nutrient release during the litter decomposition of shrubs, which influences nutrient recycling and the maintenance of soil fertility. Hence, this contamination may reduce the long-term growth and stability of shrub communities and consequently, the effects of phytoremediation. Fresh foliar litter of Hippophae rhamnoides, a potential phytoremediating species, was collected for this study. The litter was placed in litterbags and then buried in different petroleum-polluted soil media (the petroleum concentrations were 15, 30, and 45 g kg(-1) dry soil, which were considered as slightly, moderately and seriously polluted soil, respectively) for a decomposition test. The impacts of petroleum contamination on the release of nutrients (including N, P, K, Cu, Zn, Fe, Mn, Ca and Mg) were assessed. The results showed that (1) after one year of decomposition, the release of all nutrients was accelerated in the slightly polluted soil. In the moderately polluted soil, P release was accelerated, while Cu, Zn and Mn release was inhibited. In the seriously polluted soil, Cu and Zn release was accelerated, while the release of the other nutrients was inhibited. (2) The effect of petroleum on nutrient release from litter differed in different periods during decomposition; this was mainly due to changes in soil microorganisms and enzymes under the stress of petroleum contamination. (3) To maintain the nutrient cycling and the soil fertility of shrub lands, H. rhamnoides is only suitable for phytoremediation of soils containing less than 30 g kg(-1) of petroleum.

  15. Capturing sediment and nutrients in irrigated terraced landscapes

    NASA Astrophysics Data System (ADS)

    Slaets, Johanna; Schmitter, Petra; Hilger, Thomas; Piepho, Hans-Peter; Dercon, Gerd; Cadisch, Georg

    2016-04-01

    Terraces are often promoted as green filters in landscapes, buffering discharge and constituent peaks. For irrigated rice terraces, however, this mitigating potential has not been assessed at the landscape level. Additionally, sediment and nutrient inputs potentially affect soil fertility in agricultural terraces and therefore yield - the extent of the impact depending on the quality and quantity of the captured material. Quantifying such upland-lowland linkages is particularly important in intensely cultivated landscapes, as declining upland soil fertility could alter beneficial hydrological connectivity between terraces and surrounding landscapes. In this study, we therefore quantified the sediment, sediment-associated organic carbon and nitrogen inputs and losses for a 13 ha paddy rice area, surrounded by upland maize cultivation in Northwest Vietnam in 2010 and 2011. Turbidity sensors were used in combination with a linear mixed model in order to obtain continuous predictions of the constituent concentrations. Sediment texture was determined using mid-infrared spectroscopy. Uncertainty on annual load estimates was quantified by calculating 95% confidence intervals with a bootstrap approach. Sediment inputs from irrigation water to the rice area amounted to 48 Mg ha-1 a-1 and runoff during rainfall events contributed an additional 16 Mg ha-1 a-1. Export from the rice terraces equalled 63 Mg ha-1 a-1 of sediments, resulting in a net balance of 28 Mg ha-1 a-1 or a trapping of almost half of the annual sediment inputs. Runoff contributed one third of the sand inputs, while irrigated sediments were predominantly silty. As paddy outflow contained almost exclusively silt- and clay-sized material, 24 Mg ha-1 a-1 of captured sediments consisted of sand. The sediment-associated organic carbon resulted in a deposit of 1.09 Mg ha-1 a-1. For sediment-associated nitrogen, 0.68 Mg ha-1 a-1 was trapped in the terraces. Combining both sediment-associated and dissolved nitrogen, irrigation water provided a total input of 1.11 Mg ha-1 a-1, of which 54% was in the plant-available forms of ammonium and nitrate - an input larger than the recommended application of chemical fertilizer. Rice terraces were net traps for sediment and protected downstream areas by filtering coarse sediments. Combined with the importance of irrigation water as a source of organic carbon and nitrogen for the rice, this connectivity underscores the vulnerability of agricultural terraces to changes in surrounding land use.

  16. Erosion and landscape development decouple strontium and sulfur in the transition to dominance by atmospheric inputs

    USGS Publications Warehouse

    Bern, C.R.; Porder, S.; Townsend, A.R.

    2007-01-01

    Weathering and leaching can progressively deplete the pools of soluble, rock-derived elements in soils and ecosystems over millennial time-scales, such that productivity increasingly relies on inputs from atmospheric deposition. This transition has been explored using strontium isotopes, which have been widely assumed to be a proxy for the provenance of other rock-derived elements. We compared rock versus atmospheric proportions of strontium to those for sulfur, a plant macronutrient, at several tropical forest sites in Hawaii and Costa Rica. Isotopic analyses reveal that sulfur is often decoupled from strontium in the transition to atmospheric dependence. Decoupling is likely the result of differences in chemical factors such as atmospheric input rates, mobility in the soil environment, and mineral weathering susceptibility. Strontium and sulfur decoupling appears to be accentuated by the physical process of erosion. Erosion rates are presumed to be high on the Osa Peninsula of Costa Rica, where the recent onset of rapid tectonic uplift has placed the landscape in a transient state. Decoupling is strong there, as erosion has rejuvenated the supply of rock-derived strontium but not sulfur. The landscape response to changes in tectonic uplift on the Osa Peninsula has produced decoupling at the landscape scale. Decoupling is more variable along a Hawaiian catena, presumably due to smaller scale variations in erosion rates and their influence on rejuvenation of rock-strontium inputs. These results illustrate how chemical and physical processes can interact to produce contrasting origins for different nutrient elements in soils and the ecosystems they support. ?? 2007 Elsevier B.V. All rights reserved.

  17. Evaluating hillslope and riparian contributions to dissolved nitrogen (N) export from a boreal forest catchment

    NASA Astrophysics Data System (ADS)

    Blackburn, M.; Ledesma, José L. J.; Näsholm, Torgny; Laudon, Hjalmar; Sponseller, Ryan A.

    2017-02-01

    Catchment science has long held that the chemistry of small streams reflects the landscapes they drain. However, understanding the contribution of different landscape units to stream chemistry remains a challenge which frequently limits our understanding of export dynamics. For limiting nutrients such as nitrogen (N), an implicit assumption is that the most spatially extensive landscape units (e.g., uplands) act as the primary sources to surface waters, while near-stream zones function more often as sinks. These assumptions, based largely on studies in high-gradient systems or in regions with elevated inputs of anthropogenic N, may not apply to low-gradient, nutrient-poor, and peat-rich catchments characteristic of many northern ecosystems. We quantified patterns of N mobilization along a hillslope transect in a northern boreal catchment to assess the extent to which organic matter-rich riparian soils regulate the flux of N to streams. Contrary to the prevailing view of riparian functioning, we found that near-stream, organic soils supported concentrations and fluxes of ammonium (NH4+) and dissolved organic nitrogen that were much higher than the contributing upslope forest soils. These results suggest that stream N chemistry is connected to N mobilization and mineralization within the riparian zone rather than the wider landscape. Results further suggest that water table fluctuation in near-surface riparian soils may promote elevated rates of net N mineralization in these landscapes.

  18. NMR and mass spectrometry of phosphorus in wetlands

    USGS Publications Warehouse

    El-Rifai, H.; Heerboth, M.; Gedris, T.E.; Newman, S.; Orem, W.; Cooper, W.T.

    2008-01-01

    There is at present little information on the long-term stability of phosphorus sequestered in wetlands. Phosphorus sequestered during high loading periods may be relatively unstable and easily remobilized following changes in nutrient status or hydrological regime, but the chemical forms of sequestered phosphorus that do remobilize are largely unknown at this time. A lack of suitable analytical techniques has contributed to this dearth of knowledge regarding the stability of soil organic phosphorus. We analysed phosphorus in soils from the 'head' of Rescue Strand tree island and an adjacent marsh in the Florida Everglades by 31P nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry. Tree islands are important areas of biodiversity within the Everglades and offer a unique opportunity to study phosphorus sequestration because they are exposed to large phosphorus loads and appear to be natural nutrient sinks. The 31P NMR profiling of extracts from surface and sediment samples in the tree island indicates that phosphorus input to Rescue Strand tree island soils is mostly in the form of inorganic ortho-phosphate and is either refractory when deposited or rapidly recycled by the native vegetation into a stable phosphorus pool largely resistant to re-utilization by plants or microbes. Mass spectrometry revealed the presence of inositol hexakisphosphate, a common organic monophosphate ester not previously observed in Everglades' soils. ?? 2008 The Authors.

  19. Soil chemistry changes beneath decomposing cadavers over a one-year period.

    PubMed

    Szelecz, Ildikó; Koenig, Isabelle; Seppey, Christophe V W; Le Bayon, Renée-Claire; Mitchell, Edward A D

    2018-05-01

    Decomposing vertebrate cadavers release large, localized inputs of nutrients. These temporally limited resource patches affect nutrient cycling and soil organisms. The impact of decomposing cadavers on soil chemistry is relevant to soil biology, as a natural disturbance, and forensic science, to estimate the postmortem interval. However, cadaver impacts on soils are rarely studied, making it difficult to identify common patterns. We investigated the effects of decomposing pig cadavers (Sus scrofa domesticus) on soil chemistry (pH, ammonium, nitrate, nitrogen, phosphorous, potassium and carbon) over a one-year period in a spruce-dominant forest. Four treatments were applied, each with five replicates: two treatments including pig cadavers (placed on the ground and hung one metre above ground) and two controls (bare soil and bags filled with soil placed on the ground i.e. "fake pig" treatment). In the first two months (15-59 days after the start of the experiment), cadavers caused significant increases of ammonium, nitrogen, phosphorous and potassium (p<0.05) whereas nitrate significantly increased towards the end of the study (263-367 days; p<0.05). Soil pH increased significantly at first and then decreased significantly at the end of the experiment. After one year, some markers returned to basal levels (i.e. not significantly different from control plots), whereas others were still significantly different. Based on these response patterns and in comparison with previous studies, we define three categories of chemical markers that may have the potential to date the time since death: early peak markers (EPM), late peak markers (LPM) and late decrease markers (LDM). The marker categories will enhance our understanding of soil processes and can be highly useful when changes in soil chemistry are related to changes in the composition of soil organism communities. For actual casework further studies and more data are necessary to refine the marker categories along a more precise timeline and to develop a method that can be used in court. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Sagebrush wildfire effects on surface soil nutrient availability: A temporal and spatial study

    USDA-ARS?s Scientific Manuscript database

    Wildfires occurring in Artemisia (sagebrush) ecosystems can temporarily increase soil nutrient availability in surface soil. Less is known, however, on how soil nutrient availability changes over time and microsite location post-wildfire. In Oct., 2013 a wildfire approximately 30 km north of Reno, N...

  1. [Modeling the Influencing Factors of Karstification and Karst Carbon Cycle in Laboratory].

    PubMed

    Zhao, Rui-yi; Lü, Xian-fu; Duan, Yi-fan

    2015-08-01

    To analyze the influencing factors of karstification and karst carbon cycle, a simulation experiment was carried out and 6 soil columns were designed. The results showed that the content of H2O4, hydrodynamic condition and thickness of the soil had important influence on karstification and karst carbon cycle. For the soil columns which were covered by the same thickness of soil, the concentrations of Ca2+ + Mg2+ and SO4(2-) followed the order of B20-2 > B20-1 > B20-3, B50-2 > B50-1 > B50-3. This meant that input of H2SO4 enhanced the karstification and increasing infiltration water had significant dilution effect on the chemical properties. For the soil columns with different thickness of soil but with the same slag pile and hydrodynamic conditions, the concentrations of Ca2+ + Mg2+ and SO4(2-) followed the order of B50-1 > B20-1, B50-2 > B20-2, B50-3 > B20-3. It was demonstrated that more carbonate rock was dissolved under the thick soil columns. In addition, the net consumption of CO2 mainly depended on the content of H2SO4 in this experiment due to slight contribution of H2CO3 to carbonate rock dissolution. More content of H2SO4 brought about less net consumption of C02, but B50-2 was an exception. Organic matter and other nutrients might be input into deep soil with the slag pile, and they promoted the production of soil C)2. Therefore, more CO2 was consumed due to the increased contribution of H2CO to karstification.

  2. NPKS uptake, sensing, and signaling and miRNAs in plant nutrient stress.

    PubMed

    Nath, Manoj; Tuteja, Narendra

    2016-05-01

    Sessile nature of higher plants consequently makes it highly adaptable for nutrient absorption and acquisition from soil. Plants require 17 essential elements for their growth and development which include 14 minerals (macronutrients: N, P, K, Mg, Ca, S; micronutrients: Cl, Fe, B, Mn, Zn, Cu, Ni, Mo) and 3 non-mineral (C, H, O) elements. The roots of higher plants must acquire these macronutrients and micronutrients from rhizosphere and further allocate to other plant parts for completing their life cycle. Plants evolved an intricate series of signaling and sensing cascades to maintain nutrient homeostasis and to cope with nutrient stress/availability. The specific receptors for nutrients in root, root system architecture, and internal signaling pathways help to develop plasticity in response to the nutrient starvation. Nitrogen (N), phosphorus (P), potassium (K), and sulfur (S) are essential for various metabolic processes, and their deficiency negatively effects the plant growth and yield. Genes coding for transporters and receptors for nutrients as well as some small non-coding RNAs have been implicated in nutrient uptake and signaling. This review summarizes the N, P, K, and S uptake, sensing and signaling events in nutrient stress condition especially in model plant Arabidopsis thaliana and involvement of microRNAs in nutrient deficiency. This article also provides a framework of uptake, sensing, signaling and to highlight the microRNA as an emerging major players in nutrient stress condition. Nutrient-plant-miRNA cross talk may help plant to cope up nutrient stress, and understanding their precise mechanism(s) will be necessary to develop high yielding smart crop with low nutrient input.

  3. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility.

    PubMed

    Hagemann, Nikolas; Joseph, Stephen; Schmidt, Hans-Peter; Kammann, Claudia I; Harter, Johannes; Borch, Thomas; Young, Robert B; Varga, Krisztina; Taherymoosavi, Sarasadat; Elliott, K Wade; McKenna, Amy; Albu, Mihaela; Mayrhofer, Claudia; Obst, Martin; Conte, Pellegrino; Dieguez-Alonso, Alba; Orsetti, Silvia; Subdiaga, Edisson; Behrens, Sebastian; Kappler, Andreas

    2017-10-20

    Amending soil with biochar (pyrolized biomass) is suggested as a globally applicable approach to address climate change and soil degradation by carbon sequestration, reducing soil-borne greenhouse-gas emissions and increasing soil nutrient retention. Biochar was shown to promote plant growth, especially when combined with nutrient-rich organic matter, e.g., co-composted biochar. Plant growth promotion was explained by slow release of nutrients, although a mechanistic understanding of nutrient storage in biochar is missing. Here we identify a complex, nutrient-rich organic coating on co-composted biochar that covers the outer and inner (pore) surfaces of biochar particles using high-resolution spectro(micro)scopy and mass spectrometry. Fast field cycling nuclear magnetic resonance, electrochemical analysis and gas adsorption demonstrated that this coating adds hydrophilicity, redox-active moieties, and additional mesoporosity, which strengthens biochar-water interactions and thus enhances nutrient retention. This implies that the functioning of biochar in soil is determined by the formation of an organic coating, rather than biochar surface oxidation, as previously suggested.

  4. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe.

    PubMed

    Dai, Zhongmin; Su, Weiqin; Chen, Huaihai; Barberán, Albert; Zhao, Haochun; Yu, Mengjie; Yu, Lu; Brookes, Philip C; Schadt, Christopher W; Chang, Scott X; Xu, Jianming

    2018-04-12

    Long-term elevated nitrogen (N) input from anthropogenic sources may cause soil acidification and decrease crop yield, yet the response of the belowground microbial community to long-term N input alone or in combination with phosphorus (P) and potassium (K) is poorly understood. We explored the effect of long-term N and NPK fertilization on soil bacterial diversity and community composition using meta-analysis of a global dataset. Nitrogen fertilization decreased soil pH, and increased soil organic carbon (C) and available N contents. Bacterial taxonomic diversity was decreased by N fertilization alone, but was increased by NPK fertilization. The effect of N fertilization on bacterial diversity varied with soil texture and water management, but was independent of crop type or N application rate. Changes in bacterial diversity were positively related to both soil pH and organic C content under N fertilization alone, but only to soil organic C under NPK fertilization. Microbial biomass C decreased with decreasing bacterial diversity under long-term N fertilization. Nitrogen fertilization increased the relative abundance of Proteobacteria and Actinobacteria, but reduced the abundance of Acidobacteria, consistent with the general life history strategy theory for bacteria. The positive correlation between N application rate and the relative abundance of Actinobacteria indicates that increased N availability favored the growth of Actinobacteria. This first global analysis of long-term N and NPK fertilization that differentially affects bacterial diversity and community composition provides a reference for nutrient management strategies for maintaining belowground microbial diversity in agro-ecosystems worldwide. © 2018 John Wiley & Sons Ltd.

  5. Factors controlling soil organic carbon stability along a temperate forest altitudinal gradient

    PubMed Central

    Tian, Qiuxiang; He, Hongbo; Cheng, Weixin; Bai, Zhen; Wang, Yang; Zhang, Xudong

    2016-01-01

    Changes in soil organic carbon (SOC) stability may alter carbon release from the soil and, consequently, atmospheric CO2 concentration. The mean annual temperature (MAT) can change the soil physico-chemical characteristics and alter the quality and quantity of litter input into the soil that regulate SOC stability. However, the relationship between climate and SOC stability remains unclear. A 500-day incubation experiment was carried out on soils from an 11 °C-gradient mountainous system on Changbai Mountain in northeast China. Soil respiration during the incubation fitted well to a three-pool (labile, intermediate and stable) SOC decomposition model. A correlation analysis revealed that the MAT only influenced the labile carbon pool size and not the SOC stability. The intermediate carbon pool contributed dominantly to cumulative carbon release. The size of the intermediate pool was strongly related to the percentage of sand particle. The decomposition rate of the intermediate pool was negatively related to soil nitrogen availability. Because both soil texture and nitrogen availability are temperature independent, the stability of SOC was not associated with the MAT, but was heavily influenced by the intrinsic processes of SOC formation and the nutrient status. PMID:26733344

  6. Productivity and nutrient cycling in bioenergy cropping systems

    NASA Astrophysics Data System (ADS)

    Heggenstaller, Andrew Howard

    One of the greatest obstacles confronting large-scale biomass production for energy applications is the development of cropping systems that balance the need for increased productive capacity with the maintenance of other critical ecosystem functions including nutrient cycling and retention. To address questions of productivity and nutrient dynamics in bioenergy cropping systems, we conducted two sets of field experiments during 2005-2007, investigating annual and perennial cropping systems designed to generate biomass energy feedstocks. In the first experiment we evaluated productivity and crop and soil nutrient dynamics in three prototypical bioenergy double-crop systems, and in a conventionally managed sole-crop corn system. Double-cropping systems included fall-seeded forage triticale (x Triticosecale Wittmack), succeeded by one of three summer-adapted crops: corn (Zea mays L.), sorghum-sudangrass [Sorghum bicolor (L.) Moench], or sunn hemp (Crotalaria juncea L.). Total dry matter production was greater for triticale/corn and triticale/sorghum-sudangrass compared to sole-crop corn. Functional growth analysis revealed that photosynthetic duration was more important than photosynthetic efficiency in determining biomass productivity of sole-crop corn and double-crop triticale/corn, and that greater yield in the tiritcale/corn system was the outcome of photosynthesis occurring over an extended duration. Increased growth duration in double-crop systems was also associated with reductions in potentially leachable soil nitrogen relative to sole-crop corn. However, nutrient removal in harvested biomass was also greater in the double-crop systems, indicating that over the long-term, double-cropping would mandate increased fertilizer inputs. In a second experiment we assessed the effects of N fertilization on biomass and nutrient partitioning between aboveground and belowground crop components, and on carbon storage by four perennial, warm-season grasses: big bluestem (Andropogon geradii Vitman), switchgrass (Panicum virgatum L.), indiangrass [ Sorghastrum nutans (L.) Nash], and eastern gamagrass (Tripsacum dactyloides L.). Generally, the optimum rate of fertilization for biomass yield by the grasses was 140 kg N ha-1. Nitrogen inputs also had pronounced but grass-specific effects on biomass and nutrient partitioning, and on carbon storage. For big bluestem and switchgrass, 140 kg N ha -1. maximized root biomass, favored allocation of nutrients to roots over shoots, and led to net increases in carbon storage over the study duration. In contrast, for indiangrass and eastern gamagrass, root biomass and root nutrient allocation were generally adversely affected by N fertilization and carbon storage increased only with 0 or 65 kg N ha-1. For all grasses, 220 kg N ha -1 tended to shift allocation of nutrients to shoots over roots and resulted in no net increase in carbon storage. Optimal nitrogen management strategies for perennial, warm-season grass energy crops should take into consideration the effects of N on biomass yield as well as factors such as nutrient and carbon balance that will also impact economic feasibility and environmental sustainability.

  7. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances.

    PubMed

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot(-1)). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot(-1)) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot(-1)) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.

  8. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances

    PubMed Central

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot−1). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot−1) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot−1) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials. PMID:25977938

  9. A comparison of drainage basin nutrient inputs with instream nutrient loads for seven rivers in Georgia and Florida, 1986-90

    USGS Publications Warehouse

    Asbury, C.E.; Oaksford, E.T.

    1997-01-01

    Instream nutrient loads of the Altamaha, Suwannee, St. Johns, Satilla, Ogeechee, Withlacoochee, and Ochlockonee River Basins were computed and compared with nutrient inputs for each basin for the period 1986-90. Nutrient constituents that were considered included nitrate, ammonia, organic nitrogen, and total phosphorus. Sources of nutrients considered for this analysis included atmospheric deposition, fertilizer, animal waste, wastewater-treatment plant discharge, and septic discharge. The mean nitrogen input ranged from 2,400 kilograms per year per square kilometer (kg/yr)km2 in the Withlacoochee River Basin to 5,470 (kg/yr)km2 in the Altamaha River Basin. The Satilla and Ochlockonee River Basins also had large amounts of nitrogen input per unit area, totaling 5,430 and 4,920 (kg/yr)km2, respectively.Fertilizer or animal waste, as sources of nitrogen, predominated in all basins. Atmospheric deposition contributed less than one-fourth of the mean total nitrogen input to all basins and was consistently the third largest input in all but the Ogeechee River Basin, where it was the second largest.The mean total phosphorus input ranged from 331 (kg/yr)km2 in the Withlacoochee River Basin to 1,380 (kg/yr)km2 in both the Altamaha and Satilla River Basins. The Ochlockonee River Basin had a phosphorus input of 1,140 (kg/yr)km2.Per unit area, the Suwannee River discharged the highest instream mean total nitrogen and phosphorus loads and also discharged higher instream nitrate loads per unit area than the other six rivers. Phosphorus loads in stream discharge were highest in the Suwannee and Ochlockonee Rivers.The ratio of nutrient outputs to inputs for the seven studied rivers ranged from 4.2 to 14.9 percent, with the St. Johns (14.9 percent) and Suwannee (12.1 percent) Rivers having significantly higher percentages than those from the other basins. The output/input percentages for mean total phosphorus ranged from 1.0 to 7.0 percent, with the St. Johns (6.2 percent) and Suwannee (7.0 percent) Rivers exporting the highest percentage of phosphorus.Although instream nutrient loads constitute only one of the various pathways nutrients may take in leaving a river basin, only a relatively small part of nutrient input to the basin leaves the basin in stream discharge for the major coastal rivers examined in this study. The actual amount of nutrient transported in a river basin depends on the ways in which nutrients are physically handled, geographically distributed, and chemically assimilated within a river basin.

  10. Remote Sensing Analysis of Malawi's Agricultural Inputs Subsidy and Climate Variability Impacts on Productivity

    NASA Astrophysics Data System (ADS)

    Galford, G. L.; Fiske, G. J.; Sedano, F.; Michelson, H.

    2016-12-01

    Agriculture in sub-Saharan Africa is characterized by smallholder production and low yields ( 1 ton ha-1 year-1 since records began in 1961) for staple food crops such as maize (Zea mays). Many years of low-input farming have depleted much of the region's agricultural land of critical soil carbon and nitrogen, further reducing yield potentials. Malawi is a 98,000 km2 subtropical nation with a short rainy season from November to May, with most rainfall occurring between December and mid-April. This short growing season supports the cultivation of one primary crop, maize. In Malawi, many smallholder farmers face annual nutrient deficits as nutrients removed as grain harvest and residues are beyond replenishment levels. As a result, Malawi has had stagnant maize yields averaging 1.2 ton ha-1 year-1 for decades. After multiple years of drought and widespread hunger in the early 2000s, Malawi introduced an agricultural input support program (fertilizer and seed subsidy) in time for the 2006 harvest that was designed to restore soil nutrients, improve maize production, and decrease dependence on food aid. Malawi's subsidy program targets 50-67% of smallholder farmers who cultivate half a hectare or less, yet collectively supply 80% of the country's maize. The country has achieved significant increases in crop yields (now 2 tons/ha/year) and, as our analysis shows, benefited from a new resilience against drought. We utilized Landsat time series to determine cropland extent from 2000-present and identify areas of marginal and/or intermittent production. We found a strong latitudinal gradient of precipitation variability from north to south in CHIRPS data. We used the precipitation variability to normalize trends in a productivity proxy derived from MODIS EVI. After normalization of productivity to precipitation variability, we found significant productivity trends correlated to subsidy distribution. This work was conducted with Google's Earth Engine, a cloud-based platform for data storage and analysis with unprecedented speed and efficient computing by making use of Google's computing infrastructure.

  11. Potential substitution of mineral P fertilizer by manure: EPIC development and implementation

    NASA Astrophysics Data System (ADS)

    Azevedo, Ligia B.; Vadas, Peter A.; Balkovič, Juraj; Skalský, Rastislav; Folberth, Christian; van der Velde, Marijn; Obersteiner, Michael

    2016-04-01

    Sources of mineral phosphorus (P) fertilizers are non-renewable. Although the longevity of P mines and the risk of future P depletion are highly debated P scarcity may be detrimental to agriculture in various ways. Some of these impacts include increasing food insecurity and nitrogen (N) and P imbalances, serious fluctuations in the global fertilizer and crop market prices, and contribution in geopolitical conflicts. P-rich waste produced from livestock production activities (i.e. manure) are an alternative to mineral P fertilizer. The substitution of mineral fertilizer with manure (1) delays the depletion of phosphate rock stocks, (2) reduces the vulnerability of P fertilizer importing countries to sudden changes in the fertilizer market, (3) reduces the chances of geopolitical conflicts arising from P exploitation pressures, (4) avoids the need for environmental protection policies in livestock systems, (5) is an opportunity for the boosting of crop yields in low nutrient input agricultural systems, and (6) contributes to the inflow of not only P but also other essential nutrients to agricultural soils. The Environmental Policy Integrated Climate model (EPIC) is a widely used process-based, crop model integrating various environmental flows relevant to crop production as well as environmental quality assessments. We simulate crop yields using a powerful computer cluster infra-structure (known as EPIC-IIASA) in combination with spatially-explicit EPIC input data on climate, management, soils, and landscape. EPIC-IIASA contains over 131,000 simulation units and it has 5 arc-min resolution. In this work, we implement two process-based models of manure biogeochemistry into EPIC-IIASA, i.e. SurPhos (for P) and Manure DNDC (for N and carbon) and a fate model model describing nutrient outflows from fertilizer via runoff. For EGU, we will use EPIC-IIASA to quantify the potential of mineral P fertilizer substitution with manure. Specifically, we will estimate the relative increase (or decrease) in crop yields under mineral P depletion scenarios and the intensification of manure use as an alternative P input for the major crops (i.e., wheat, barley, rye, rice, maize, and potatoes). This work will take into account existing estimates of livestock population densities, existing manure recycling technologies, and transportation costs.

  12. Phosphorus, zinc, and boron influence yield components in Earliglow strawberry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, G.M.; Pritts, M.P.

    1993-01-01

    The main effects and interactions of soil-applied P, B, and Zn on yield and its components were examined in the field at two pH levels with Earliglow' strawberries (Fragaria ananassa Duch.). Applied nutrients had significant effects on several yield components, but responses depended on the levels of other nutrients or the soil pH. At a soil pH of 5.5, yield responded linearly to B and quadratically to P. At pH 6.5, P interacted with B and Zn. Fruit count per inflorescence was the yield component most strongly associated with yield, followed by individual fruit weight. However, these two yield componentsmore » responded differently to soil-applied nutrients. Foliar nutrient levels generally did not increase with the amount of applied nutrient, but often an applied nutrient had a strong effect on the level of another nutrient. Leaf nutrient levels were often correlated with fruit levels, but foliar and fruit levels at harvest were not related to reproductive performance. The study identifies some of the problems inherent in using foliar nutrient levels to predict a yield response and demonstrates how plant responses to single nutrients depend on soil chemistry and the presence of other nutrients.« less

  13. Changes in soil nutrients after 10 years of cattle manure and swine effluent application

    USDA-ARS?s Scientific Manuscript database

    Application of cattle manure and swine effluent to cropland builds nutrient pools, affects soil quality, and increases crop productivity. The objective of the present study was to evaluate the rate of change in soil nutrient concentration and soil chemical properties due to cattle manure and swine e...

  14. Nutrient Limitation of Microbial Mediated Decomposition and Arctic Soil Chronology

    NASA Astrophysics Data System (ADS)

    Melle, C. J.; Darrouzet-Nardi, A.; Wallenstein, M. D.

    2012-12-01

    Soils of northern permafrost regions currently contain twice as much carbon as the entire Earth's atmosphere. Traditionally, environmental constraints have limited microbial activity resulting in restricted decomposition of soil organic matter in these systems and accumulation of massive amounts of soil organic carbon (SOC), however climate change is reducing the constraints of decomposition in arctic permafrost regions. Carbon cycling in nutrient poor, arctic ecosystems is tightly coupled to other biogeochemical cycles. Several studies have suggested strong nitrogen limitations of primary productivity and potentially warm-season microbial activity in these nutrient deficient soils. Nitrogen is required for microbial extracellular enzyme production which drives the decomposition of soil organic matter (SOM). Nitrogen limited arctic soils may also experience limitation via labile carbon availability despite the SOM rich environment due to low extracellular enzyme production. Few studies have directly addressed nutrient induced microbial limitation in SOC rich arctic tundra soils, and even less is known about the potential for nutrient co-limitation. Additionally, through the process of becoming deglaciated, sites within close proximity to one another may have experienced drastic differences in their effective soil ages due to the varied length of their active histories. Many soil properties and nutrient deficiencies are directly related to soil age, however this chronology has not previously been a focus of research on nutrient limitation of arctic soil microbial activity. Understanding of nutrient limitations, as well as potential co-limitation, on arctic soil microbial activity has important implications for carbon cycling and the ultimate fate of the current arctic SOC reservoir. Analyses of nutrient limitation on soils of a single site are not adequate for fully understanding the controls on soil microbial activity across a vast land mass with large variation in effective soil age. My research is focused on addressing the questions of the extent of microbial N limitation in arctic tundra soils, the potential for co-limitation of labile C despite a high SOC environment, and the dependence, if any, nutrient limitation may have on the effective age of the soil. I have addressed these questions by conducting a laboratory soil incubation of factorial design with treatments of amended glucose, amended ammonium nitrate, and a control consisting of an addition of an equivalent volume of deionized water. Moist acid tundra soils possessing similar soil properties from two arctic sites of close proximity yet with varying deglaciation chronologies were utilized in my study. Soil properties of C-mineralization via respiration, microbial biomass, and nitrogen content in the forms of ammonium, nitrate, and total free amino acids and microbial extra-cellular enzyme production were assayed to determine the microbial response to the experimental treatments. Through the results of this work, I hope to better our understanding of biogeochemical cycling within arctic tundra ecosystems and the response to climate change by contributing to existing knowledge of nutrient limitation on microbial mediated decomposition of SOC in the arctic and how this may differ in soils of varying effective age.

  15. Nutrient and organic matter inputs to Hawaiian anchialine ponds: influences of n-fixing and non-n-fixing trees

    Treesearch

    Kehauwealani K. Nelson-Kaula; Rebecca Ostertag; R. Flint Hughes; Bruce D. Dudley

    2016-01-01

    Invasive nitrogen-fixing plants often increase energy and nutrient inputs to both terrestrial and aquatic ecosystems via litterfall, and these effects may be more pronounced in areas lacking native N2-fixers. We examined organic matter and nutrient inputs to and around anchialine ponds...

  16. Nitrogen and phosphorus resorption in a neotropical rain forest of a nutrient-rich soil.

    PubMed

    Martínez-Sánchez, José Luis

    2005-01-01

    In tropical forests with nutrient-rich soil tree's nutrient resorption from senesced leaves has not always been observed to be low. Perhaps this lack of consistence is partly owing to the nutrient resorption methods used. The aim of the study was to analyse N and P resorption proficiency from tropical rain forest trees in a nutrient-rich soil. It was hypothesised that trees would exhibit low nutrient resorption in a nutrient-rich soil. The soil concentrations of total N and extractable P, among other physical and chemical characteristics, were analysed in 30 samples in the soil surface (10 cm) of three undisturbed forest plots at 'Estaci6n de Biologia Los Tuxtlas' on the east coast of Mexico (18 degrees 34' - 18 degrees 36' N, 95 degrees 04' - 95 degrees 09' W). N and P resorption proficiency were determined from senescing leaves in 11 dominant tree species. Nitrogen was analysed by microkjeldahl digestion with sulphuric acid and distilled with boric acid, and phosphorus was analysed by digestion with nitric acid and perchloric acid. Soil was rich in total N (0.50%, n = 30) and extractable P (4.11 microg g(-1) n = 30). As expected, trees showed incomplete N (1.13%, n = 11) and P (0.11%, n = 1) resorption. With a more accurate method of nutrient resorption assessment, it is possible to prove that a forest community with a nutrient-rich soil can have low levels of N and P resorption.

  17. Biogeographic differences in soil biota promote invasive grass response to nutrient addition relative to co-occurring species despite lack of belowground enemy release.

    PubMed

    Broadbent, Arthur A D; Stevens, Carly J; Ostle, Nicholas J; Orwin, Kate H

    2018-03-01

    Multiple plant species invasions and increases in nutrient availability are pervasive drivers of global environmental change that often co-occur. Many plant invasion studies, however, focus on single-species or single-mechanism invasions, risking an oversimplification of a multifaceted process. Here, we test how biogeographic differences in soil biota, such as belowground enemy release, interact with increases in nutrient availability to influence invasive plant growth. We conducted a greenhouse experiment using three co-occurring invasive grasses and one native grass. We grew species in live and sterilized soil from the invader's native (United Kingdom) and introduced (New Zealand) ranges with a nutrient addition treatment. We found no evidence for belowground enemy release. However, species' responses to nutrients varied, and this depended on soil origin and sterilization. In live soil from the introduced range, the invasive species Lolium perenne L. responded more positively to nutrient addition than co-occurring invasive and native species. In contrast, in live soil from the native range and in sterilized soils, there were no differences in species' responses to nutrients. This suggests that the presence of soil biota from the introduced range allowed L. perenne to capture additional nutrients better than co-occurring species. Considering the globally widespread nature of anthropogenic nutrient additions to ecosystems, this effect could be contributing to a global homogenization of flora and the associated losses in native species diversity.

  18. Unstable Pore-Water Flow in Intertidal Wetlands

    NASA Astrophysics Data System (ADS)

    Barry, D. A.; Shen, C.; Li, L.

    2014-12-01

    Salt marshes are important intertidal wetlands strongly influenced by interactions between surface water and groundwater. Bordered by coastal water, the marsh system undergoes cycles of inundation and exposure driven by the tide. This leads to dynamic, complex pore-water flow and solute transport in the marsh soil. Pore-water circulations occur over vastly different spatial and temporal scales with strong link to the marsh topography. These circulations control solute transport between the marsh soil and the tidal creek, and ultimately affect the overall nutrient exchange between the marsh and coastal water. The pore-water flows also dictate the soil condition, particularly aeration, which influences the marsh plant growth. Numerous studies have been carried out to examine the pore-water flow process in the marsh soil driven by tides, focusing on stable flow with the assumption of homogeneity in soil and fluid properties. This assumption, however, is questionable given the actual inhomogeneous conditions in the field. For example, the salinity of surface water in the tidal creek varies temporally and spatially due to the influence of rainfall and evapotranspiration as well as the freshwater input from upland areas to the estuary, creating density gradients across the marsh surface and within the marsh soil. Many marshes possess soil stratigraphy with low-permeability mud typically overlying high-permeability sandy deposits. Macropores such as crab burrows are commonly distributed in salt marsh sediments. All these conditions are prone to the development of non-uniform, unstable preferential pore-water flow in the marsh soil, for example, funnelling and fingering. Here we present results from laboratory experiments and numerical simulations to explore such unstable flow. In particular, the analysis aims to address how the unstable flow modifies patterns of local pore-water movement and solute transport, as well as the overall exchange between the marsh soil and creek water. The changes would influence not only the marsh soil condition for plant growth but also nutrient cycling in the marsh soil and discharge to the coastal sea.

  19. Effects of Soil Texture on Belowground Carbon and Nutrient Storage in a Lowland Amazonian Forest Ecosystem.

    Treesearch

    Whendee L. Silver; Jason Neff; Megan McGroddy; Ed Veldkamp; Michael Keller; Raimundo Cosme

    2000-01-01

    Soil texture plays a key role in belowground C storage in forest ecosystems and strongly influences nutrient availability and retention, particularly in highly weathered soils. We used field data and the Century ecosystem model to explore the role of soil texture in belowground C storage, nutrient pool sizes, and N fluxes in highly weathered soils in an Amazonian...

  20. Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation

    NASA Astrophysics Data System (ADS)

    Vanlauwe, B.; Descheemaeker, K.; Giller, K. E.; Huising, J.; Merckx, R.; Nziguheba, G.; Wendt, J.; Zingore, S.

    2015-06-01

    Intensification of smallholder agriculture in sub-Saharan Africa is necessary to address rural poverty and natural resource degradation. Integrated soil fertility management (ISFM) is a means to enhance crop productivity while maximizing the agronomic efficiency (AE) of applied inputs, and can thus contribute to sustainable intensification. ISFM consists of a set of best practices, preferably used in combination, including the use of appropriate germplasm, the appropriate use of fertilizer and of organic resources, and good agronomic practices. The large variability in soil fertility conditions within smallholder farms is also recognized within ISFM, including soils with constraints beyond those addressed by fertilizer and organic inputs. The variable biophysical environments that characterize smallholder farming systems have profound effects on crop productivity and AE, and targeted application of agro-inputs and management practices is necessary to enhance AE. Further, management decisions depend on the farmer's resource endowments and production objectives. In this paper we discuss the "local adaptation" component of ISFM and how this can be conceptualized within an ISFM framework, backstopped by analysis of AE at plot and farm level. At plot level, a set of four constraints to maximum AE is discussed in relation to "local adaptation": soil acidity, secondary nutrient and micronutrient (SMN) deficiencies, physical constraints, and drought stress. In each of these cases, examples are presented whereby amendments and/or practices addressing these have a significantly positive impact on fertilizer AE, including mechanistic principles underlying these effects. While the impact of such amendments and/or practices is easily understood for some practices (e.g. the application of SMNs where these are limiting), for others, more complex processes influence AE (e.g. water harvesting under varying rainfall conditions). At farm scale, adjusting fertilizer applications to within-farm soil fertility gradients has the potential to increase AE compared with blanket recommendations, in particular where fertility gradients are strong. In the final section, "local adaption" is discussed in relation to scale issues and decision support tools are evaluated as a means to create a better understanding of complexity at farm level and to communicate appropriate scenarios for allocating agro-inputs and management practices within heterogeneous farming environments.

  1. Plant colonization, succession and ecosystem development on Surtsey with reference to neighbouring islands

    NASA Astrophysics Data System (ADS)

    Magnússon, B.; Magnússon, S. H.; Ólafsson, E.; Sigurdsson, B. D.

    2014-06-01

    Plant colonization and succession on Surtsey volcanic island, formed in 1963, have been closely followed. In 2013, a total of 69 vascular plant species had been discovered on the island; of these 59 were present and 39 had established viable populations. Surtsey had more than twice the species of any of the comparable neighbouring islands and all their common species had established on Surtsey. The first colonizers were dispersed by sea, but after 1985 bird-dispersal became the principal pathway with the formation of a seagull colony on the island and consequent site amelioration. This allowed wind-dispersed species to establish after 1990. Since 2007 there has been a net loss of species on the island. A study of plant succession, soil formation and invertebrate communities in permanent plots on Surtsey and on two older neighbouring islands (plants and soil) has revealed that seabirds, through their transfer of nutrients from sea to land, are major drivers of development of these ecosystems. In the area impacted by seagulls dense grassland swards have developed and plant cover, species richness, diversity, plant biomass and soil carbon become significantly higher than in low-impact areas, which remained relatively barren. A similar difference was found for the invertebrate fauna. After 2000, the vegetation of the oldest part of the seagull colony became increasingly dominated by long-lived, rhizomatous grasses (Festuca, Poa, Leymus) with a decline in species richness and diversity. Old grasslands of the neighbouring islands Elliðaey (puffin colony, high nutrient input) and Heimaey (no seabirds, low nutrient input) contrasted sharply. The puffin grassland of Elliðaey was very dense and species-poor. Dominated by Festuca and Poa, it it was very similar to the seagull grassland developing on Surtsey. The Heimaey grassland was significantly higher in species richness and diversity, and had a more even cover of dominants (Festuca/Agrostis/Ranunculus). We forecast that with continued erosion of Surtsey, loss of habitats and increasing impact from seabirds a lush, species poor grassland will develop and persist, as on the old neighbouring islands.

  2. Plant colonization, succession and ecosystem development on Surtsey with reference to neighbouring islands

    NASA Astrophysics Data System (ADS)

    Magnússon, B.; Magnússon, S. H.; Ólafsson, E.; Sigurdsson, B. D.

    2014-10-01

    Plant colonization and succession on the volcanic island of Surtsey, formed in 1963, have been closely followed. In 2013, a total of 69 vascular plant species had been discovered on the island; of these, 59 were present and 39 had established viable populations. Surtsey had more than twice the species of any of the comparable neighbouring islands, and all of their common species had established on Surtsey. The first colonizers were dispersed by sea, but, after 1985, bird dispersal became the principal pathway with the formation of a seagull colony on the island and consequent site amelioration. This allowed wind-dispersed species to establish after 1990. Since 2007, there has been a net loss of species on the island. A study of plant succession, soil formation and invertebrate communities in permanent plots on Surtsey and on two older neighbouring islands (plants and soil) has revealed that seabirds, through their transfer of nutrients from sea to land, are major drivers of development of these ecosystems. In the area impacted by seagulls, dense grassland swards have developed and plant cover, species richness, diversity, plant biomass and soil carbon become significantly higher than in low-impact areas, which remained relatively barren. A similar difference was found for the invertebrate fauna. After 2000, the vegetation of the oldest part of the seagull colony became increasingly dominated by long-lived, rhizomatous grasses (Festuca, Poa, Leymus) with a decline in species richness and diversity. Old grasslands of the neighbouring islands Elliđaey (puffin colony, high nutrient input) and Heimaey (no seabirds, low nutrient input) contrasted sharply. The puffin grassland of Elliđaey was very dense and species-poor. It was dominated by Festuca and Poa, and very similar to the seagull grassland developing on Surtsey. The Heimaey grassland was significantly higher in species richness and diversity, and had a more even cover of dominants (Festuca/Agrostis/Ranunculus). We forecast that, with continued erosion of Surtsey, loss of habitats and increasing impact from seabirds a lush, species-poor grassland will develop and persist, as on the old neighbouring islands.

  3. Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests

    DOE PAGES

    Zhu, Q.; Riley, W. J.; Tang, J.; ...

    2016-01-18

    Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH 4 +, NO 3 − and PO x; representing the sum of PO 4 3−, HPOmore » 4 2− and H 2PO 4 −) and five potential competitors (plant roots, decomposing microbes, nitrifiers, denitrifiers and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N 2O emissions, free phosphorus, sorbed phosphorus and NH 4 + pools at a tropical forest site (Tapajos). The overall model uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer–substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results also imply that under strong nutrient limitation, relative competitiveness depends strongly on the competitor functional traits (affinity and nutrient carrier enzyme abundance). We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen and phosphorus elevated conditions, the model accurately replicated the experimentally observed competition among nutrient consumers. Although we used as many observations as we could obtain, more nutrient addition experiments in tropical systems would greatly benefit model testing and calibration. In summary, the N-COM model provides an ecologically consistent representation of nutrient competition appropriate for land BGC models integrated in Earth System Models.« less

  4. Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Q.; Riley, W. J.; Tang, J.

    Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH 4 +, NO 3 − and PO x; representing the sum of PO 4 3−, HPOmore » 4 2− and H 2PO 4 −) and five potential competitors (plant roots, decomposing microbes, nitrifiers, denitrifiers and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N 2O emissions, free phosphorus, sorbed phosphorus and NH 4 + pools at a tropical forest site (Tapajos). The overall model uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer–substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results also imply that under strong nutrient limitation, relative competitiveness depends strongly on the competitor functional traits (affinity and nutrient carrier enzyme abundance). We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen and phosphorus elevated conditions, the model accurately replicated the experimentally observed competition among nutrient consumers. Although we used as many observations as we could obtain, more nutrient addition experiments in tropical systems would greatly benefit model testing and calibration. In summary, the N-COM model provides an ecologically consistent representation of nutrient competition appropriate for land BGC models integrated in Earth System Models.« less

  5. Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Riley, W. J.; Tang, J.; Koven, C. D.

    2016-01-01

    Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH4+, NO3- and POx; representing the sum of PO43-, HPO42- and H2PO4-) and five potential competitors (plant roots, decomposing microbes, nitrifiers, denitrifiers and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N2O emissions, free phosphorus, sorbed phosphorus and NH4+ pools at a tropical forest site (Tapajos). The overall model uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer-substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results also imply that under strong nutrient limitation, relative competitiveness depends strongly on the competitor functional traits (affinity and nutrient carrier enzyme abundance). We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen and phosphorus elevated conditions, the model accurately replicated the experimentally observed competition among nutrient consumers. Although we used as many observations as we could obtain, more nutrient addition experiments in tropical systems would greatly benefit model testing and calibration. In summary, the N-COM model provides an ecologically consistent representation of nutrient competition appropriate for land BGC models integrated in Earth System Models.

  6. Bioavailability of Dissolved Organic Carbon and Nitrogen From Tropical Montane Rainforest Streams Across a Geologic age Gradient

    NASA Astrophysics Data System (ADS)

    Wiegner, T. N.

    2005-05-01

    Dissolved organic matter (DOM) is metabolically important in streams. Its bioavailability is influenced by organic matter sources to streams and inorganic nutrient availability. As forest canopies and soils develop over time, organic matter inputs to streams should switch from algal to watershed sources. Across this succession gradient, nutrient limitation should also change. This study examines how chemical composition and bioavailability of DOM from tropical montane rainforest streams on Hawaii change across a geologic age gradient from 4 ky to 150 ky. Dissolved organic C (DOC) and N (DON) concentrations, chemical characteristics, and bioavailability varied with site age. With increasing stream age, DOC and DON concentrations, DOM aromaticity, and the C:N of the stream DOM increased. Changes in stream DOM chemistry and inorganic nutrient availability affected DOM bioavailability. Fifty percent of the DOC from the 4 ky site was bioavailable, where little to none was bioavailable from the older streams. Inorganic nutrient availability did not affect DOC bioavailability. In contrast, DON bioavailability was similar (12%) across sites and was affected by inorganic nutrient availability. This study demonstrates that the chemistry and metabolism of streams draining forests change with ecosystem age and development.

  7. The role of arbuscular mycorrhizas in reducing soil nutrient loss.

    PubMed

    Cavagnaro, Timothy R; Bender, S Franz; Asghari, Hamid R; Heijden, Marcel G A van der

    2015-05-01

    Substantial amounts of nutrients are lost from soils via leaching and as gaseous emissions. These losses can be environmentally damaging and expensive in terms of lost agricultural production. Plants have evolved many traits to optimize nutrient acquisition, including the formation of arbuscular mycorrhizas (AM), associations of plant roots with fungi that acquire soil nutrients. There is emerging evidence that AM have the ability to reduce nutrient loss from soils by enlarging the nutrient interception zone and preventing nutrient loss after rain-induced leaching events. Until recently, this important ecosystem service of AM had been largely overlooked. Here we review the role of AM in reducing nutrient loss and conclude that this role cannot be ignored if we are to increase global food production in an environmentally sustainable manner. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. County-level estimates of nutrient inputs to the landsurface of the conterminous United States, 1982-2001

    USGS Publications Warehouse

    Ruddy, Barbara C.; Lorenz, David L.; Mueller, David K.

    2006-01-01

    Nutrient input data for fertilizer use, livestock manure, and atmospheric deposition from various sources were estimated and allocated to counties in the conterminous United States for the years 1982 through 2001. These nationally consistent nutrient input data are needed by the National Water-Quality Assessment Program for investigations of stream- and ground-water quality. For nitrogen, the largest source was farm fertilizer; for phosphorus, the largest sources were farm fertilizer and livestock manure. Nutrient inputs from fertilizer use in nonfarm areas, while locally important, were an order of magnitude smaller than inputs from other sources. Nutrient inputs from all sources increased between 1987 and 1997, but the relative proportions of nutrients from each source were constant. Farm-fertilizer inputs were highest in the upper Midwest, along eastern coastal areas, and in irrigated areas of the West. Nonfarm-fertilizer use was similar in major metropolitan areas throughout the Nation, but was more extensive in the more populated Eastern and Central States and in California. Areas of greater manure inputs were located throughout the South-central and Southeastern States and in scattered areas of the West. Nitrogen deposition from the atmosphere generally increased from west to east and is related to the location of major sources and the effects of precipitation and prevailing winds. These nutrient-loading data at the county level are expected to be the fundamental basis for national and regional assessments of water quality for the National Water-Quality Assessment Program and other large-scale programs.

  9. Watershed responses to Amazon soya bean cropland expansion and intensification.

    PubMed

    Neill, Christopher; Coe, Michael T; Riskin, Shelby H; Krusche, Alex V; Elsenbeer, Helmut; Macedo, Marcia N; McHorney, Richard; Lefebvre, Paul; Davidson, Eric A; Scheffler, Raphael; Figueira, Adelaine Michela e Silva; Porder, Stephen; Deegan, Linda A

    2013-06-05

    The expansion and intensification of soya bean agriculture in southeastern Amazonia can alter watershed hydrology and biogeochemistry by changing the land cover, water balance and nutrient inputs. Several new insights on the responses of watershed hydrology and biogeochemistry to deforestation in Mato Grosso have emerged from recent intensive field campaigns in this region. Because of reduced evapotranspiration, total water export increases threefold to fourfold in soya bean watersheds compared with forest. However, the deep and highly permeable soils on the broad plateaus on which much of the soya bean cultivation has expanded buffer small soya bean watersheds against increased stormflows. Concentrations of nitrate and phosphate do not differ between forest or soya bean watersheds because fixation of phosphorus fertilizer by iron and aluminium oxides and anion exchange of nitrate in deep soils restrict nutrient movement. Despite resistance to biogeochemical change, streams in soya bean watersheds have higher temperatures caused by impoundments and reduction of bordering riparian forest. In larger rivers, increased water flow, current velocities and sediment flux following deforestation can reshape stream morphology, suggesting that cumulative impacts of deforestation in small watersheds will occur at larger scales.

  10. Nitrogen excess in North American ecosystems: Predisposing factors, ecosystem responses, and management strategies

    USGS Publications Warehouse

    Fenn, M.E.; Poth, M.A.; Aber, J.D.; Baron, Jill S.; Bormann, B.T.; Johnson, D.W.; Lemly, A.D.; McNulty, S.G.; Ryan, D.F.; Stottlemyer, R.

    1998-01-01

    Most forests in North America remain nitrogen limited, although recent studies have identified forested areas that exhibit symptoms of N excess, analogous to overfertilization of arable land. Nitrogen excess in watersheds is detrimental because of disruptions in plant/soil nutrient relations, increased soil acidification and aluminum mobility, increased emissions of nitrogenous greenhouse gases from soil, reduced methane consumption in soil, decreased water quality, toxic effects on freshwater biota, and eutrophication of coastal marine waters. Elevated nitrate (NO3/-) loss to groundwater or surface waters is the primary symptom of N excess. Additional symptoms include increasing N concentrations and higher N:nutrient ratios in foliage (i.e., N:Mg, N:P), foliar accumulation of amino acids or NO3/-, and low soil C:N ratios. Recent nitrogen-fertilization studies in New England and Europe provide preliminary evidence that some forests receiving chronic N inputs may decline in productivity and experience greater mortality. Long-term fertilization at Mount Ascutney, Vermont, suggests that declining and slow N-cycling coniferous stands may be replaced by fast-growing and fast N-cycling deciduous forests. Symptoms of N saturation are particularly severe in high-elevation, nonaggrading spruce-fir ecosystems in the Appalachian Mountains and in eastern hardwood watersheds at the Fernow Experimental Forest near Parsons, West Virginia. In the Los Angeles Air Basin, mixed conifer forests and chaparral watersheds with high smog exposure are N saturated and exhibit the highest streamwater NO3/- concentrations for wildlands in North America. High-elevation alpine watersheds in the Colorado Front Range and a deciduous forest in Ontario, Canada, are N saturated, although N deposition is moderate (~8 kg??ha-1??yr-1). In contrast, the Harvard Forest hardwood stand in Massachusetts has absorbed >900 kg N/ha during 8 yr of N amendment studies without significant NO3/- leaching, illustrating that ecosystems vary widely in the capacity to retain N inputs. Overly mature forests with high N deposition, high soil N stores, and low soil C:N ratios are prone to N saturation and NO3/- leaching. Additional characteristics favoring low N retention capacity include a short growing season (reduced plant N demand) and reduced contact time between drainage water and soil (i.e., porous coarse-textured soils, exposed bedrock or talus). Temporal patterns of hydrologic fluxes interact with biotic uptake and internal cycling patterns in determining ecosystem N retention. Soils are the largest storage pool for N inputs, although vegetation uptake is also important. Recent studies indicate that nitrification may be widespread in undisturbed ecosystems, and that microbial assimilation of NO3/- may be a significant N retention mechanism, contrary to previous assumptions. Further studies are needed to elucidate the sites, forms, and mechanisms of N retention and incorporation into soil organic matter, and to test potential management options for mitigating N losses from forests. Implementation of intensive management practices in N-saturated ecosystems may only be feasible in high-priority areas and on a limited scale. Reduction of N emissions would be a preferable solution, although major reductions in the near future are unlikely in many areas due to economic, energy-use, policy, and demographic considerations.

  11. Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to climate change across catchments with different geology and topography

    NASA Astrophysics Data System (ADS)

    Crossman, J.; Futter, M. N.; Whitehead, P. G.; Stainsby, E.; Baulch, H. M.; Jin, L.; Oni, S. K.; Wilby, R. L.; Dillon, P. J.

    2014-07-01

    Hydrological processes determine the transport of nutrients and passage of diffuse pollution. Consequently, catchments are likely to exhibit individual hydrochemical responses (sensitivities) to climate change, which is expected to alter the timing and amount of runoff, and to impact in-stream water quality. In developing robust catchment management strategies and quantifying plausible future hydrochemical conditions it is therefore equally important to consider the potential for spatial variability in, and causal factors of, catchment sensitivity, as to explore future changes in climatic pressures. This study seeks to identify those factors which influence hydrochemical sensitivity to climate change. A perturbed physics ensemble (PPE), derived from a series of Global Climate Model (GCM) variants with specific climate sensitivities was used to project future climate change and uncertainty. Using the Integrated Catchment Model of Phosphorus Dynamics (INCA-P), we quantified potential hydrochemical responses in four neighbouring catchments (with similar land use but varying topographic and geological characteristics) in southern Ontario, Canada. Responses were assessed by comparing a 30 year baseline (1968-1997) to two future periods: 2020-2049 and 2060-2089. Although projected climate change and uncertainties were similar across these catchments, hydrochemical responses (sensitivity) were highly varied. Sensitivity was governed by soil type (influencing flow pathways) and nutrient transport mechanisms. Clay-rich catchments were most sensitive, with total phosphorus (TP) being rapidly transported to rivers via overland flow. In these catchments large annual reductions in TP loads were projected. Sensitivity in the other two catchments, dominated by sandy-loams, was lower due to a larger proportion of soil matrix flow, longer soil water residence times and seasonal variability in soil-P saturation. Here smaller changes in TP loads, predominantly increases, were projected. These results suggest that the clay content of soils could be a good indicator of the sensitivity of catchments to climatic input, and reinforces calls for catchment-specific management plans.

  12. Dynamics of indigenous bacterial communities associated with crude oil degradation in soil microcosms during nutrient-enhanced bioremediation.

    PubMed

    Chikere, Chioma B; Surridge, Karen; Okpokwasili, Gideon C; Cloete, Thomas E

    2012-03-01

    Bacterial population dynamics were examined during bioremediation of an African soil contaminated with Arabian light crude oil and nutrient enrichment (biostimulation). Polymerase chain reaction followed by denaturing gradient gel electrophoresis (DGGE) were used to generate bacterial community fingerprints of the different treatments employing the 16S ribosomal ribonucleic acid (rRNA) gene as molecular marker. The DGGE patterns of the nutrient-amended soils indicated the presence of distinguishable bands corresponding to the oil-contaminated-nutrient-enriched soils, which were not present in the oil-contaminated and pristine control soils. Further characterization of the dominant DGGE bands after excision, reamplification and sequencing revealed that Corynebacterium spp., Dietzia spp., Rhodococcus erythropolis sp., Nocardioides sp., Low G+C (guanine plus cytosine) Gram positive bacterial clones and several uncultured bacterial clones were the dominant bacterial groups after biostimulation. Prominent Corynebacterium sp. IC10 sequence was detected across all nutrient-amended soils but not in oil-contaminated control soil. Total heterotrophic and hydrocarbon utilizing bacterial counts increased significantly in the nutrient-amended soils 2 weeks post contamination whereas oil-contaminated and pristine control soils remained fairly stable throughout the experimental period. Gas chromatographic analysis of residual hydrocarbons in biostimulated soils showed marked attenuation of contaminants starting from the second to the sixth week after contamination whereas no significant reduction in hydrocarbon peaks were seen in the oil-contaminated control soil throughout the 6-week experimental period. Results obtained indicated that nutrient amendment of oil-contaminated soil selected and enriched the bacterial communities mainly of the Actinobacteria phylogenetic group capable of surviving in toxic contamination with concomitant biodegradation of the hydrocarbons. The present study therefore demonstrated that the soil investigated harbours hydrocarbon-degrading bacterial populations which can be biostimulated to achieve effective bioremediation of oil-contaminated soil.

  13. Flooding forested groundwater recharge areas modifies microbial communities from top soil to groundwater table.

    PubMed

    Schütz, Kirsten; Nagel, Peter; Vetter, Walter; Kandeler, Ellen; Ruess, Liliane

    2009-01-01

    Subsurface microorganisms are crucial for contaminant degradation and maintenance of groundwater quality. This study investigates the microbial biomass and community composition [by phospholipid fatty acids (PLFAs)], as well as physical and chemical soil characteristics at woodland flooding sites of an artificial groundwater recharge system used for drinking water production. Vertical soil profiles to c. 4 m at two watered and one nonwatered site were analyzed. The microbial biomass was equal in watered and nonwatered sites, and considerable fractions (25-42%) were located in 40-340 cm depth. The microbial community structure differed significantly between watered and nonwatered sites, predominantly below 100 cm depth. Proportions of the bacterial PLFAs 16:1omega5, 16:1omega7, cy17:0 and 18:1omega9t, and the long-chained PLFAs 22:1omega9 and 24:1omega9 were more prominent at the watered sites, whereas branched, saturated PLFAs (iso/anteiso) dominated at the nonwatered site. PLFA community indices indicated stress response (trans/cis ratio), higher nutrient availability (unsaturation index) and changes in membrane fluidity (iso/anteiso ratio) due to flooding. In conclusion, water recharge processes led to nutrient input and altered environmental conditions, which resulted in a highly active and adapted microbial community residing in the vadose zone that effectively degraded organic compounds.

  14. Soil Nutrient Assessment for Urban Ecosystems in Hubei, China

    PubMed Central

    Li, Zhi-guo; Zhang, Guo-shi; Liu, Yi; Wan, Kai-yuan; Zhang, Run-hua; Chen, Fang

    2013-01-01

    Recent urban landscape vegetation surveys conducted in many cities in China identified numerous plant nutrient deficiencies, especially in newly developed cities. Soil nutrients and soil nutrient management in the cities of Hubei province have not received adequate attention to date. The aims of this study were to characterize the available nutrients of urban soils from nine cities in Hubei province, China, and to assess how soil nutrient status is related to land use type and topography. Soil nutrients were measured in 405 sites from 1,215 soil samples collected from four land use types (park, institutional [including government building grounds, municipal party grounds, university grounds, and garden city institutes], residential, and roadside verges) and three topographies (mountainous [142–425 m a.s.l], hilly [66–112 m a.s.l], and plain [26–30 m a.s.l]). Chemical analyses showed that urban soils in Hubei had high pH and lower soil organic matter, available nitrogen (N), available phosphorus (P), and available boron (B) concentrations than natural soils. Nutrient concentrations were significantly different among land use types, with the roadside and residential areas having greater concentrations of calcium (Ca), sulfur (S), copper (Cu), manganese (Mn), and zinc (Zn) that were not deficient against the recommended ranges. Topographic comparisons showed statistically significant effects for 8 of the 11 chemical variables (p < 0.05). Concentrations of N, Ca, Mg, S, Cu, and Mn in plain cities were greater than those in mountainous cities and show a negative correlation with city elevation. These results provide data on urban soils characteristics in land use types and topography, and deliver significant information for city planners and policy makers. PMID:24086647

  15. Soil nutrient assessment for urban ecosystems in Hubei, China.

    PubMed

    Li, Zhi-Guo; Zhang, Guo-Shi; Liu, Yi; Wan, Kai-Yuan; Zhang, Run-Hua; Chen, Fang

    2013-01-01

    Recent urban landscape vegetation surveys conducted in many cities in China identified numerous plant nutrient deficiencies, especially in newly developed cities. Soil nutrients and soil nutrient management in the cities of Hubei province have not received adequate attention to date. The aims of this study were to characterize the available nutrients of urban soils from nine cities in Hubei province, China, and to assess how soil nutrient status is related to land use type and topography. Soil nutrients were measured in 405 sites from 1,215 soil samples collected from four land use types (park, institutional [including government building grounds, municipal party grounds, university grounds, and garden city institutes], residential, and roadside verges) and three topographies (mountainous [142-425 m a.s.l], hilly [66-112 m a.s.l], and plain [26-30 m a.s.l]). Chemical analyses showed that urban soils in Hubei had high pH and lower soil organic matter, available nitrogen (N), available phosphorus (P), and available boron (B) concentrations than natural soils. Nutrient concentrations were significantly different among land use types, with the roadside and residential areas having greater concentrations of calcium (Ca), sulfur (S), copper (Cu), manganese (Mn), and zinc (Zn) that were not deficient against the recommended ranges. Topographic comparisons showed statistically significant effects for 8 of the 11 chemical variables (p < 0.05). Concentrations of N, Ca, Mg, S, Cu, and Mn in plain cities were greater than those in mountainous cities and show a negative correlation with city elevation. These results provide data on urban soils characteristics in land use types and topography, and deliver significant information for city planners and policy makers.

  16. Impacts of land use and Ugandan farmer's cultural and economic status on soil organic matter and soil fertility

    NASA Astrophysics Data System (ADS)

    Tiemann, Lisa; Grandy, Stuart; Hartter, Joel

    2014-05-01

    Soil is the keystone in building sustainable agricultural systems, but increased demand for these soil services has led to soil degradation, particularly in sub-Saharan Africa. In Uganda, where population growth rates are 9th highest in the world, increasing pressure on soil resources and potential losses of SOM are particularly concerning because there is virtually no use of fertilizers or other inputs on farms. In addition, smallholder farmers in Uganda are placing greater emphasis on resource-intensive cash crops like maize, and thereby straining soil resources. In this study we investigate the relationships between land use decisions and soil fertility to better understand declines in soil fertility and how they might be slowed near Kibale National Park (KNP), Uganda, a global biodiversity hotspot. Within 2.5 km of the KNP border, we conducted household surveys and collected soil samples in 160 farms along a 20 km north-south transect. We also collected soils from inside KNP, adjacent to farms we visited, to serve as controls. Cultural differences in land use, such as greater residue removal and a lower likelihood of legumes in rotation with the Bakiga, likely led to the greater declines in SOM and soil fertility we observed in Bakiga compared to Batooro maize fields. We also found that households in areas of high soil fertility are more reliant on maize sales. Surprisingly, these same areas have also seen relatively smaller declines in total SOM, but do show larger relative declines in nutrients (e.g. N, P and K) when compared to the adjacent KNP soils. We found lower depletion of nutrients and overall higher soil fertility measures and more stability of SOM in banana fields compared to maize fields, which is due to transferring maize crop residues to banana plantations as well as no-till practices in banana fields. Our work reveals that complex interactions between edaphic soil properties, land use management, cultural background, perceptions of soil fertility and SOM dynamics will constrain the region's capacity to meet the demands of rapid population growth.

  17. Monitoring water quality in Northwest Atlantic coastal waters using dinoflagellate cysts

    EPA Science Inventory

    Nutrient pollution is a major environmental problem in many coastal waters around the US. Determining the total input of nutrients to estuaries is a challenge. One method to evaluate nutrient input is through nutrient loading models. Another method relies upon using indicators as...

  18. Drivers of decomposition in forest soils: Insights from a trans-European experiment.

    NASA Astrophysics Data System (ADS)

    Hood-Nowotny, Rebecca

    2017-04-01

    Meta-data analyses and the model based hypotheses state that global soil C storage is controlled by microbial scale processes of fungal competition for available nitrogen (N). The details of these microbe-dependent feedback mechanisms on N and C dynamics in European soils are largely unknown and contentious. Global trends of increasing atmospheric N deposition and the continuing use of inorganic N fertilizer in both agriculture and forestry mean that the soils vital function as a carbon sink is potentially under threat. We set out to experimentally investigate these hypotheses across a Trans-European gradient of forest soils and provide reliable information on soil microbial responses to nitrogen inputs for predictive climate change models. Changes in nutrient status could result in a chain reaction of interacting microbial mechanisms which in turn could lead to the shifts in underlying ecosystem biogeochemical process rates. Recent meta-analysis has shown that plant fungal symbiont community structure, exerts a greater fundamental control over soil C storage than temperature, precipitation or net primary production. Based on the hypothesis that plant associated fungi effectively scavenge all available organic and inorganic N leaving little N for the growth of the free-living decomposer microbial community and preventing further breakdown of SOM. To investigate these possible effects we have sampled forest soils across a trans European gradient (ALTER-net-MSII network) which have received additional inputs of inorganic nitrogen fertilizer or carbon in the form of sugar, over a three year period. We have studied both nitrogen and carbon dynamics in these systems using a tool box of stable isotopes, high through-put sequencing for microbial community analysis and be-spoke litter bags to tease out the dominant drivers of decomposition. The results and conclusions from these analyses will be presented.

  19. Scientific and technical advisory committee review of the nutrient inputs to the watershed model

    USDA-ARS?s Scientific Manuscript database

    The following is a report by a STAC Review Team concerning the methods and documentation used by the Chesapeake Bay Partnership for evaluation of nutrient inputs to Phase 6 of the Chesapeake Bay Watershed Model. The “STAC Review of the Nutrient Inputs to the Watershed Model” (previously referred to...

  20. Plant response to nutrient availability across variable bedrock geologies

    USGS Publications Warehouse

    Castle, S.C.; Neff, J.C.

    2009-01-01

    We investigated the role of rock-derived mineral nutrient availability on the nutrient dynamics of overlying forest communities (Populus tremuloides and Picea engelmanni-Abies lasiocarpa v. arizonica) across three parent materials (andesite, limestone, and sandstone) in the southern Rocky Mountains of Colorado. Broad geochemical differences were observed between bedrock materials; however, bulk soil chemistries were remarkably similar between the three different sites. In contrast, soil nutrient pools were considerably different, particularly for P, Ca, and Mg concentrations. Despite variations in nutrient stocks and nutrient availability in soils, we observed relatively inflexible foliar concentrations and foliar stoichiometries for both deciduous and coniferous species. Foliar nutrient resorption (P and K) in the deciduous species followed patterns of nutrient content across substrate types, with higher resorption corresponding to lower bedrock concentrations. Work presented here indicates a complex plant response to available soil nutrients, wherein plant nutrient use compensates for variations in supply gradients and results in the maintenance of a narrow range in foliar stoichiometry. ?? 2008 Springer Science+Business Media, LLC.

  1. Effects of harvesting on nitrogen and phosphorus availability in riparian management zone soils in Minnesota, USA

    Treesearch

    Douglas N. Kastendick; Eric K. Zenner; Brian J. Palik; Randall K. Kolka; Charles R. Blinn

    2012-01-01

    Riparian management zones (RMZs) protect streams from excess nutrients, yet few studies have looked at soil nutrients in forested RMZs or the impacts of partial harvesting on nutrient availability. We investigated the impacts of upland clearcutting in conjunction with uncut and partially harvested RMZs (40% basal area reduction) on soil nutrients in forests in...

  2. [Relationships between soil nutrients and rhizospheric soil microbial communities and enzyme activities in a maize-capsicum intercropping system].

    PubMed

    Xu, Qiang; Cheng, Zhi-Hui; Meng, Huan-Wen; Zhang, Yu

    2007-12-01

    By using plastic sheet and nylon mesh to partition the root systems of maize and capsicum in a maize-capsicum intercropping system, this paper studied the relationships between soil biological factors and nutritive status in the intercropping system, with no partitioning and maize monoculture and capsicum monoculture as the control. The results showed that intercropping maize and capsicum had its high superiority. In the treatments of no partitioning and nylon mesh portioning in the intercropping system, soil enzyme activities, microbial individuals and nutrient contents were significantly higher, compared with those in the treatments of nylon mesh partitioning and monocultures. All kinds of soil available nutrients showed significant or very significant positive correlations with soil biological factors, except that soil available Mg was negatively correlated with soil fungi and catalase activity. Pathway analysis indicated that in the intercropping system, soil urease, catalase, protease, and bacteria were the main factors affecting the accumulation of soil organic matter, saccharase was the most important factor affecting soil alkali-hydrolyzable N, urease was the most important factor affecting soil available P, and bacteria largely determined soil available K. Soil alkaline phosphatase and fungi selectively affected the accumulation of soil organic matter and available N, P and K. There was a slight negative correlation between soil actinomycetes and soil nutrients, suggesting that actinomycetes had little effect on soil nutrient formation.

  3. Nutrient stoichiometry of temperate trees and effects on the coupled cycles of carbon, nitrogen, and cations in soil

    NASA Astrophysics Data System (ADS)

    Mueller, K. E.; Oleksyn, J.; Hobbie, S. E.; Reich, P.; Chorover, J. D.; Freeman, K. H.; Eissenstat, D.

    2009-12-01

    Nutrient stoichiometry of leaf litter (LL) is a potentially important driver of plant effects on soil biogeochemistry; it is also responsive to environmental perturbations and differs among plant functional groups that may have predictable responses to the environment. Thus variation in LL nutrient stoichiometry may provide a predictive framework for the influence of global change on soil. However, this approach depends on several key, but poorly tested assumptions, including: 1) other plant organs follow similar patterns and have similar effects on soil biogeochemistry, and 2) patterns in leaf traits, functional group dominance, and soil properties across large-spatial scales are predictive at smaller scales. To address these assumptions and test the utility of nutrient stoichiometry as a predictive framework for soil change, we synthesize data on tree stoichiometry and soil biogeochemistry from a long-term (> 30 yr) common garden experiment containing replicated, monoculture plots of 14 temperate tree species. LL nutrient stoichiometry alone is insufficient to explain differences in biogeochemical cycling among tree species, in part due to the dissimilarity of leaf and root traits within species. Notably, different elements and plant organs have independent impacts on soil biogeochemistry. LL nitrogen (N) concentration and lignin:N ratios have small or negligible effects on soil carbon (C), N, and cation cycling, while LL-calcium (Ca) drives differences in litter decomposition and soil pH among species in a manner consistent with nutrient requirements of anecic earthworms. However, LL-Ca effects on C and N cycles in soil appear minor compared to the influences of root N and, unexpectedly, green leaf N, which combine to drive differences in soil N dynamics via unique mechanisms consistent with nutrient requirements of soil microbes and the trees. In turn, soil N dynamics are strongly correlated with soil acidity and C stabilization. By taking into account the stoichiometry of each plant organ, of soil microbes and fauna, and the interactions among C, N, and cation cycles, the predictive capacity of tree nutrient stoichiometry for understanding soil change is apparent, albeit complex.

  4. Controls on microalgal community structures in cryoconite holes upon high-Arctic glaciers, Svalbard

    NASA Astrophysics Data System (ADS)

    Vonnahme, T. R.; Devetter, M.; Žárský, J. D.; Šabacká, M.; Elster, J.

    2016-02-01

    Glaciers are known to harbor surprisingly complex ecosystems. On their surface, distinct cylindrical holes filled with meltwater and sediments are considered hot spots for microbial life. The present paper addresses possible biological interactions within the community of prokaryotic cyanobacteria and eukaryotic microalgae (microalgae) and relations to their potential grazers, such as tardigrades and rotifers, additional to their environmental controls. Svalbard glaciers with substantial allochthonous input of material from local sources reveal high microalgal densities. Small valley glaciers with high sediment coverages and high impact of birds show high biomasses and support a high biological diversity. Invertebrate grazer densities do not show any significant negative correlation with microalgal abundances but rather a positive correlation with eukaryotic microalgae. Shared environmental preferences and a positive effect of grazing are the proposed mechanisms to explain these correlations. Most microalgae found in this study form colonies (< 10 cells, or > 25 µm), which may protect them against invertebrate grazing. This finding rather indicates grazing as a positive control on eukaryotic microalgae by nutrient recycling. Density differences between the eukaryotic microalgae and prokaryotic cyanobacteria and their high distinction in redundancy (RDA) and principal component (PCA) analyses indicate that these two groups are in strong contrast. Eukaryotic microalgae occurred mainly in unstable cryoconite holes with high sediment loads, high N : P ratios, and a high impact of nutrient input by bird guano, as a proxy for nutrients. In these environments autochthonous nitrogen fixation appears to be negligible. Selective wind transport of Oscillatoriales via soil and dust particles is proposed to explain their dominance in cryoconites further away from the glacier margins. We propose that, for the studied glaciers, nutrient levels related to recycling of limiting nutrients are the main factor driving variation in the community structure of microalgae and grazers.

  5. Soil nutrient availability and reproductive effort drive patterns in nutrient resorption in Pentachlethra macroloba

    Treesearch

    K. L. Tully; Tana Wood; A. M. Schwantes; D. Lawrence

    2013-01-01

    The removal of nutrients from senescing tissues, nutrient resorption, is a key strategy for conserving nutrients in plants. However, our understanding of what drives patterns of nutrient resorption in tropical trees is limited. We examined the effects of nutrient sources (stand-level and tree-level soil fertility) and sinks (reproductive effort) on nitrogen (N) and...

  6. Microbial N and P mining regulates the effect of N deposition on soil organic matter turnover

    NASA Astrophysics Data System (ADS)

    Meyer, Nele; Welp, Gerhard; Rodionov, Andrei; Borchard, Nils; Martius, Christopher; Amelung, Wulf

    2017-04-01

    Nitrogen (N) deposition to soils has become a global issue during the last decades. Its effect on mineralization of soil organic carbon (SOC), however, is still debated. Common theories based on Liebig's law predict higher SOC mineralization rates in nutrient-rich than in nutrient-poor soils. Contrastingly, the concept of microbial N mining predicts lower mineralization rates after N deposition. The latter is explained by ceased decomposition of recalcitrant soil organic matter (SOM) as the need of microbes to acquire N from this pool decreases. As N deposition might shift the nutrient balance towards relative phosphorus (P) deficiency, it is also necessary to consider P mining in this context. Due to limited knowledge about microbial nutrient mining, any predictions of N deposition effects are difficult. This study aims at elucidating the preconditions under which microbial nutrient mining occurs in soil. We hypothesized that the occurrence of N and P mining is controlled by the current nutrient status of the soil. Likewise, soils might respond differently to N additions. To investigate this hypothesis, we conducted substrate-induced respiration measurements on soils with pronounced gradients of N and P availability. We used topsoil samples taken repeatedly from a site which was up to 7 years under bare fallow (Selhausen, Germany) and up to 4 m deep tropical forest soils (Kalimantan, Indonesia). Additional nutrient manipulations (glucose, glucose+N, glucose+P, glucose+N+P additions) were conducted to study the effect of nutrient additions. Samples were incubated for one month. We further conducted 13C labeling experiments to trace the sources of CO2 (sugar vs. SOM derived CO2) for further hints on nutrient mining. Mineralization of glucose was limited by a lack of available N in the bare fallow soil but microbes were able to slowly acquire N from previously unavailable pools. This resulted in a slightly higher release of native SOM-derived CO2 compared to N-fertilized treatments. Nutrient additions had no effect on cumulative CO2 evolution in tropical topsoils. Subsoils of the tropical sites (20 - 100 cm depth) were co-limited by N and P. Here, alleviation of either N or P deficiency was necessary to stimulate the mineralization of glucose. In the deep subsoil (>150 cm depth) only the combined additions of N+P induced any CO2 release. Our results reveal that mining of both N and P potentially occurs but is restricted by multiple nutrient limitations, by the absence of potentially accessible nutrients (e.g., in the deep subsoil), and by full nutrient supply (e.g., high nutrient contents make mining unnecessary). The results suggest several implications for N deposition effects: 1) N deposition decreases (recalcitrant) SOC mineralization in former N-deficient soils, 2) N deposition increases SOC mineralization in former co-limited soils as it facilitates mining of the required P, 3) N deposition has no effect in nutrient rich topsoils.

  7. Roots bridge water to nutrients: a study of utilizing hydraulic redistribution through root systems to extract nutrients in the dry soils

    NASA Astrophysics Data System (ADS)

    Yan, J.; Ghezzehei, T. A.

    2017-12-01

    The rhizosphere is the region of soil that surrounds by individual plant roots. While its small volume and narrow region compared to bulk soil, the rhizosphere regulates numerous processes that determine physical structure, nutrient distribution, and biodiversity of soils. One of the most important and distinct functions of the rhizosphere is the capacity of roots to bridge and redistribute soil water from wet soil layers to drier layers. This process was identified and defined as hydraulic lift or hydraulic redistribution, a passive process driven by gradients in water potentials and it has attracted much research attention due to its important role in global water circulation and agriculture security. However, while previous studies mostly focused on the hydrological or physiological impacts of hydraulic redistribution, limited research has been conducted to elucidate its role in nutrient cycling and uptake. In this study, we aim to test the possibility of utilizing hydraulic redistribution to facilitate the nutrient movement and uptake from resource segregated zone. Our overarching hypothesis is that plants can extract nutrients from the drier but nutrient-rich regions by supplying sufficient amounts of water from the wet but nutrient-deficient regions. To test our hypothesis, we designed split-root systems of tomatoes with unequal supply of water and nutrients in different root compartments. More specifically, we transplanted tomato seedlings into sand or soil mediums, and grew them under conditions with alternate 12-h lightness and darkness. We continuously monitored the temperature, water and nutrient content of soils in these separated compartments. The above and below ground biomass were also quantified to evaluate the impacts on the plant growth. The results were compared to a control with evenly supply of water and nutrients to assess the plant growth, nutrient leaching and uptake without hydraulic redistribution.

  8. Modelling soil carbon flows and stocks following a carbon balance approach at regional scale for the EU-27

    NASA Astrophysics Data System (ADS)

    Lesschen, Jan Peter; Sikirica, Natasa; Bonten, Luc; Dibari, Camilla; Sanchez, Berta; Kuikman, Peter

    2014-05-01

    Soil Organic Carbon (SOC) is a key parameter to many soil functions and services. SOC is essential to support water retention and nutrient buffering and mineralization in the soil as well as to enhance soil biodiversity. Consequently, loss of SOC or low SOC levels might threaten soil productivity or even lead to a collapse of a farming system. Identification of areas in Europe with critically low SOC levels or with a negative carbon balance is a challenge in order to apply the appropriate strategies to restore these areas or prevent further SOC losses. The objective of this study is to assess current soil carbon flows and stocks at a regional scale; we follow a carbon balance approach which we developed within the MITERRA-Europe model. MITERRA-Europe is an environmental impact assessment model and calculates nitrogen and greenhouse emission on a deterministic and annual basis using emission and leaching factors at regional level (NUTS2, comparable to province level) in the EU27. The model already contained a soil carbon module based on the IPCC stock change approach. Within the EU FP7 SmartSoil project we developed a SOC balance approach, for which we quantified the input of carbon (manure, crop residues, other organic inputs) and the losses of carbon (decomposition, leaching and erosion). The calculations rules from the Roth-C model were used to estimate SOC decomposition. For the actual soil carbon stocks we used the data from the LUCAS soil sample survey. LUCAS collected soil samples in 2009 at about 22000 locations across the EU, which were analysed for a range of soil properties. Land management practices are accounted for, based on data from the EU wide Survey on Agricultural Production Methods in the 2010 Farm Structure Survey. The survey comprises data on the application of soil tillage, soil cover, crop rotation and irrigation. Based on the simulated soil carbon balance and the actual carbon stocks from LUCAS we now can identify regions within the EU that are at risk. We further present results of the potential soil carbon sequestration by land management practices, such as cover crops, zero and reduced tillage, crop residue management and additional input of organic carbon. These results will be relevant for defining region specific strategies to reach the policy target on preventing loss of soil organic matter as stipulated in the Roadmap to a Resource Efficient Europe.

  9. Effect of Mixed Systems on Crop Productivity

    NASA Astrophysics Data System (ADS)

    Senturklu, Songul; Landblom, Douglas; Cihacek, Larry; Brevik, Eric

    2017-04-01

    The goals of this non-irrigated research has been to determine the effect of mixed systems integration on crop, soil, and beef cattle production in the northern Great Plains region of the United States. Over a 5-year period, growing spring wheat (HRSW-C) continuously year after year was compared to a 5-year crop rotation that included spring wheat (HRSW-R), cover crop (dual crop consisting of winter triticale/hairy vetch seeded in the fall and harvested for hay followed by a 7-species cover crop that was seeded in June after hay harvest), forage corn, field pea/barley, and sunflower. Control 5-year HRSW yield was 2690 kg/ha compared to 2757 kg/ha for HRSW grown in rotation. Available soil nitrogen (N) is often the most important limitation for crop production. Expensive fertilizer inputs were reduced in this study due to the mixed system's complementarity in which the rotation system that included beef cattle grazing sustained N availability and increased nutrient cycling, which had a positive effect on all crops grown in the rotation. Growing HRSW continuously requires less intensive management and in this research was 14.5% less profitable. Whereas, when crop management increased and complementing crops were grown in rotation to produce crops and provide feed for grazing livestock, soil nutrient cycling improved. Increased nutrient cycling increased crop rotation yields and yearling beef cattle steers that grazing annual forages in the rotation gain more body weight than similar steers grazing NGP native range. Results of this long-term research will be presented in a PICO format for participant discussion.

  10. Sources, transformations, and hydrological processes that control stream nitrate and dissolved organic matter concentrations during snowmelt in an upland forest

    USGS Publications Warehouse

    Sebestyen, Stephen D.; Boyer, Elizabeth W.; Shanley, James B.; Kendall, Carol; Doctor, Daniel H.; Aiken, George R.; Ohte, Nobuhito

    2008-01-01

    We explored catchment processes that control stream nutrient concentrations at an upland forest in northeastern Vermont, USA, where inputs of nitrogen via atmospheric deposition are among the highest in the nation and affect ecosystem functioning. We traced sources of water, nitrate, and dissolved organic matter (DOM) using stream water samples collected at high frequency during spring snowmelt. Hydrochemistry, isotopic tracers, and end‐member mixing analyses suggested the timing, sources, and source areas from which water and nutrients entered the stream. Although stream‐dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) both originated from leaching of soluble organic matter, flushing responses between these two DOM components varied because of dynamic shifts of hydrological flow paths and sources that supply the highest concentrations of DOC and DON. High concentrations of stream water nitrate originated from atmospheric sources as well as nitrified sources from catchment soils. We detected nitrification in surficial soils during late snowmelt which affected the nitrate supply that was available to be transported to streams. However, isotopic tracers showed that the majority of nitrate in upslope surficial soil waters after the onset of snowmelt originated from atmospheric sources. A fraction of the atmospheric nitrogen was directly delivered to the stream, and this finding highlights the importance of quick flow pathways during snowmelt events. These findings indicate that interactions among sources, transformations, and hydrologic transport processes must be deciphered to understand why concentrations vary over time and over space as well as to elucidate the direct effects of human activities on nutrient dynamics in upland forest streams.

  11. Modification of soils by plants: sustainability by design

    NASA Astrophysics Data System (ADS)

    Hallett, Paul; White, Philip; Garcia Moreno, Rosario; Vetterlein, Doris

    2014-05-01

    In recent years, food and environmental security threats have increased the prominence and funding of soil science. A growing area is the study of root-soil interactions in soil, driven by the need to increase crop productivity, whilst also decreasing inputs. The untapped potential in manipulating soil properties with plants to increase food security is increasingly recognised. We argue that this area of soil science has been successful for a number of reasons: (1) it offers something positive, in terms of more food for a growing population; (2) the research is collaborative, with plant and soil scientists working together and bringing the research from the lab to the field by working across a broad range of disciplines; (3) there have been technical advances in both plant genetics and soil science that allow for very novel and exciting research questions to be answered; and (4) there are commercial demands from both plant breeding companies and farmers for more sustainable crop varieties, which provides lobbying power to funders. However, soil science is still viewed by many as 'bucket science' where the answers are known but just poorly applied in farming practice. We know this is nonsense, but how do we convince others? Using examples from our EGU 2014 session, we will demonstrate how recent scientific advances in soil science have greatly increased the understanding of the root-soil interface. The research includes new technologies such as high resolution non-invasive imaging of roots in soil, the use of model plants that have controlled traits that modify soils, molecular biology approaches to investigate nutrient cycling and other microbial functions affected by plants, and the development of new models of root growth, nutrient capture and plant-soil water relations. Despite a surge of soil researchers studying roots, the research still fails to attract the attention or funding of other disciplines, including our collaborators in plant science. This is typical of many areas of soil science. We will discuss opportunities to increase demand for our science and its impact in addressing food security challenges.

  12. Spatial variation in edaphic characteristics is a stronger control than nitrogen inputs in regulating soil microbial effects on a desert grass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Y. Anny; Sinsabaugh, Robert L.; Kuske, Cheryl Rae

    Increased atmospheric nitrogen (N) deposition can have wide-ranging effects on plant community structure and ecosystem function, some of which may be indirectly mediated by soil microbial responses to an altered biogeochemical environment. In this study, soils from a field N fertilization experiment that spanned a soil texture gradient were used as inocula in the greenhouse to assess the indirect effects of soil microbial communities on growth of a desert grass. Plant performance and interaction with soil microbiota were evaluated via plant above- and belowground biomass, leaf N concentration, and root fungal colonization. Nitrogen fertilization in the field increased the benefitsmore » of soil microbial inoculation to plant leaf N concentration, but did not alter the effect of soil microbes on plant growth. Plant-microbe interaction outcomes differed most strongly among sites with different soil textures, where the soil microbial community from the sandiest site was most beneficial to host plant growth. In conclusion, the findings of this study suggest that in a desert grassland, increases in atmospheric N deposition may exert a more subtle influence on plant-microbe interactions by altering plant nutrient status, whereas edaphic factors can alter the whole-plant growth response to soil microbial associates.« less

  13. Spatial variation in edaphic characteristics is a stronger control than nitrogen inputs in regulating soil microbial effects on a desert grass

    DOE PAGES

    Chung, Y. Anny; Sinsabaugh, Robert L.; Kuske, Cheryl Rae; ...

    2017-03-22

    Increased atmospheric nitrogen (N) deposition can have wide-ranging effects on plant community structure and ecosystem function, some of which may be indirectly mediated by soil microbial responses to an altered biogeochemical environment. In this study, soils from a field N fertilization experiment that spanned a soil texture gradient were used as inocula in the greenhouse to assess the indirect effects of soil microbial communities on growth of a desert grass. Plant performance and interaction with soil microbiota were evaluated via plant above- and belowground biomass, leaf N concentration, and root fungal colonization. Nitrogen fertilization in the field increased the benefitsmore » of soil microbial inoculation to plant leaf N concentration, but did not alter the effect of soil microbes on plant growth. Plant-microbe interaction outcomes differed most strongly among sites with different soil textures, where the soil microbial community from the sandiest site was most beneficial to host plant growth. In conclusion, the findings of this study suggest that in a desert grassland, increases in atmospheric N deposition may exert a more subtle influence on plant-microbe interactions by altering plant nutrient status, whereas edaphic factors can alter the whole-plant growth response to soil microbial associates.« less

  14. Spatial variation in edaphic characteristics is a stronger control than nitrogen inputs in regulating soil microbial effects on a desert grass

    USGS Publications Warehouse

    Chung, Y. Anny; Sinsabaugh, Robert L; Kuske, Cheryl R.; Reed, Sasha C.; Rudgers, Jennifer A.

    2017-01-01

    Increased atmospheric nitrogen (N) deposition can have wide-ranging effects on plant community structure and ecosystem function, some of which may be indirectly mediated by soil microbial responses to an altered biogeochemical environment. In this study, soils from a field N fertilization experiment that spanned a soil texture gradient were used as inocula in the greenhouse to assess the indirect effects of soil microbial communities on growth of a desert grass. Plant performance and interaction with soil microbiota were evaluated via plant above- and belowground biomass, leaf N concentration, and root fungal colonization. Nitrogen fertilization in the field increased the benefits of soil microbial inoculation to plant leaf N concentration, but did not alter the effect of soil microbes on plant growth. Plant-microbe interaction outcomes differed most strongly among sites with different soil textures, where the soil microbial community from the sandiest site was most beneficial to host plant growth. The findings of this study suggest that in a desert grassland, increases in atmospheric N deposition may exert a more subtle influence on plant-microbe interactions by altering plant nutrient status, whereas edaphic factors can alter the whole-plant growth response to soil microbial associates.

  15. Responses of nutrient capture and fine root morphology of subalpine coniferous tree Picea asperata to nutrient heterogeneity and competition

    PubMed Central

    Nan, Hongwei; Liang, Jin; Cheng, Xinying; Zhao, ChunZhang; Yin, HuaJun; Yin, ChunYing; Liu, Qing

    2017-01-01

    Investigating the responses of trees to the heterogeneous distribution of nutrients in soil and simultaneous presence of neighboring roots could strengthen the understanding of an influential mechanism on tree growth and provide a scientific basis for forest management. Here, we conducted two split-pot experiments to investigate the effects of nutrient heterogeneity and intraspecific competition on the fine root morphology and nutrient capture of Picea asperata. The results showed that P. asperata efficiently captured nutrients by increasing the specific root length (SRL) and specific root area (SRA) of first-and second-order roots and decreasing the tissue density of first-order roots to avoid competition for resources and space with neighboring roots. The nutrient heterogeneity and addition of fertilization did not affect the fine root morphology, but enhanced the P and K concentrations in the fine roots in the absence of a competitor. On the interaction between nutrient heterogeneity and competition, competition decreased the SRL and SRA but enhanced the capture of K under heterogeneous soil compared with under homogeneous soil. Additionally, the P concentration, but not the K concentration, was linearly correlated to root morphology in heterogeneous soil, even when competition was present. The results suggested that root morphological features were only stimulated when the soil nutrients were insufficient for plant growth and the nutrients accumulations by root were mainly affected by the soil nutrients more than the root morphology. PMID:29095947

  16. Reducing environmental risk of excessively fertilized soils and improving cucumber growth by Caragana microphylla-straw compost application in long-term continuous cropping systems.

    PubMed

    Tian, Yongqiang; Wang, Qing; Zhang, Weihua; Gao, Lihong

    2016-02-15

    Continuous cropping is a common agricultural practice in the word. In China, farmers often apply excessive fertilizers to fields in an attempt to maintain yields in continuous cropping systems. However, this practice often results in high nutrient concentrations in soils, nutrient pollution in leaching water and more crop disease. Here, we investigated 8 different soils from continuously cropped cucumbers in Northern China that grouped into those with extremely high nutrient levels (EHNL) and those with lower nutrient levels (LNL). All soils were treated with Caragana microphylla-straw (CMS) compost addition, and then were used to measure soil physiochemical and microbial properties, leaching water quality, plant root growth and cucumber fruit yield. In general, the EHNL-soil showed higher nitrate, phosphorus and potassium concentrations in the leaching water compared to the LNL-soil. However, the CMS compost application increased soil nutrient and water holding capacities, total microbial biomass (bacteria and fungi), root length, plant biomass and fruit yields, but decreased nutrient concentrations in the leaching water from the EHNL-soil. In addition, the CMS compost decreased the number of Fusarium oxysporum f. sp. cucumerinum in soils with very high concentration of mineral nitrogen. Our results infer that CMS compost application was an effective method for reducing environmental risk of excessively fertilized soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Management practices affect soil nutrients and bacterial populations in backgrounding beef feedlot

    USDA-ARS?s Scientific Manuscript database

    Contaminants associated with manure in animal production sites are of significant concern. Unless properly managed, high soil nutrient concentrations in feedlots can deteriorate soil and water quality. This three year study tested a nutrient management strategy with three sequentially imposed manage...

  18. Soil as a record of the past: Mass migration as the result of soil exhausting

    NASA Astrophysics Data System (ADS)

    van Mourik, Jan; Kluiving, Sjoerd

    2014-05-01

    An extensive area in Northwest Europe is covered by chemical poor Late Glacial aeolian sands. Till the Bronze Age the soils evolution in the coversand landscapes correlated with the geomorphological structure, Umbric Podzols on coversand ridges, Gleyic Podzols on coversand planes and Umbric or Histic Arenosols in brook valleys. Essential was the storage of nutrients in the biomass of the forest system. The nutrient cycle has been for long time a stabilizing factor in the forest ecosystems, repressing further soil acidification. Human occupation resulted in transformation of natural to cultural soilscapes. Agricultural management introduced lateral transport of nutrients from the soil system to the market and interrupted the natural vertical cycling. The results were soil exhaustion and acceleration of soil acidification. 1. In the early Bronze Age, shifting cultivation was applied to create small lots of arable land. Burning of forest means acceleration of the release of organic stored nutrients, available for crop production. However, the moderate rain climate of Northwest Europe caused leaching of released nutrients that were not quickly recycled. Nutrient losses stimulated the soil acidification and in very dry seasons even small scale sand drifting could occur. Without any nutrient addition (fertilization), shifting cultivation is not a form of sustainable land use and led to land degradation. 2. In the early Iron Age, the system Celtic field came in use. Systematic transport of nutrients from green strips to production lots and harvesting caused gradual nutrient losses of the soilscape and accelerated the soil acidification; Umbric Podzols degraded to Carbic Podzols. Celtic Field land management was also not a sustainable form of land use and led to land degradation. 3. Later in time, the lateral transport of nutrients increased during application of plaggic agriculture. Soil acidification continued on heath lands, the production area of organic manure. During the period with plaggic agriculture, the soils on arable fields development from Umbric Podzols to Plaggic podzols and Plaggic Anthrosols. Agriculture on such field became sustainable under conditions of a low productivity. In several archaeological studies there is evidence that the human impact on soils caused significant nutrient losses, soil degradation and diminishing crop production. People had to migrate to another area which a higher soil fertility to guarantee food production. Patterns of migration to fertile areas (if available) have been studied by archaeologists. Lack of space urged people to invent management techniques and equipment to increase crop production inside the occupied area.

  19. Non-Linear Nitrogen Cycling and Ecosystem Calcium Depletion Along a Temperate Forest Soil Nitrogen Gradient

    NASA Astrophysics Data System (ADS)

    Sinkhorn, E. R.; Perakis, S. S.; Compton, J. E.; Cromack, K.; Bullen, T. D.

    2007-12-01

    Understanding how N availability influences base cation stores is critical for assessing long-term ecosystem sustainability. Indices of nitrogen (N) availability and the distribution of nutrients in plant biomass, soil, and soil water were examined across ten Douglas-fir (Pseudotsuga menziesii) stands spanning a three-fold soil N gradient (0-10 cm: 0.21 - 0.69% N, 0-100 cm: 9.2 - 28.8 Mg N ha-1) in the Oregon Coast Range. This gradient is largely the consequence of historical inputs from N2-fixing red alder stands that can add 100-200 kg N ha-1 yr-1 to the ecosystem for decades. Annual net N mineralization and litterfall N return displayed non-linear relationships with soil N, increasing initially, and then decreasing as N-richness increased. In contrast, nitrate leaching from deep soils increased linearly across the soil N gradient and ranged from 0.074 to 30 kg N ha-1 yr-1. Soil exchangeable Ca, Mg, and K pools to 1 m depth were negatively related to nitrate losses across sites. Ca was the only base cation exhibiting concentration decreases in both plant and soil pools across the soil N gradient, and a greater proportion of total available ecosystem Ca was sequestered in aboveground plant biomass at high N, low Ca sites. Our work supports a hierarchical model of coupled N-Ca cycles across gradients of soil N enrichment, with microbial production of mobile nitrate anions leading to depletion of readily available Ca at the ecosystem scale, and plant sequestration promoting Ca conservation as Ca supply diminishes. The preferential storage of Ca in aboveground biomass at high N and low Ca sites, while critical for sustaining plant productivity, may also predispose forests to Ca depletion in areas managed for intensive biomass removal. Long-term N enrichment of temperate forest soils appears capable of sustaining an open N cycle and key symptoms of N-saturation for multiple decades after the cessation of elevated N inputs.

  20. Modeling nitrate leaching and optimizing water and nitrogen management under irrigated maize in desert oases in Northwestern China.

    PubMed

    Hu, Kelin; Li, Yong; Chen, Weiping; Chen, Deli; Wei, Yongping; Edis, Robert; Li, Baoguo; Huang, Yuanfang; Zhang, Yuanpei

    2010-01-01

    Understanding water and N transport through the soil profile is important for efficient irrigation and nutrient management to minimize nitrate leaching to the groundwater, and to promote agricultural sustainable development in desert oases. In this study, a process-based water and nitrogen management model (WNMM) was used to simulate soil water movement, nitrate transport, and crop growth (maize [Zea mays L.]) under desert oasis conditions in northwestern China. The model was calibrated and validated with a field experiment. The model simulation results showed that about 35% of total water input and 58% of the total N input were leached to <1.8 m depth under traditional management practice. Excessive irrigation and N fertilizer application, high nitrate concentration in the irrigation water, together with the sandy soil texture, resulted in large nitrate leaching. Nitrate leaching was significantly reduced under the improved management practice suggested by farm extension personnel; however, the water and nitrate inputs still far exceeded the crop requirements. More than 1700 scenarios combining various types of irrigation and fertilizer practices were simulated. Quantitative analysis was conducted to obtain the best management practices (BMPs) with simultaneous consideration of crop yield, water use efficiency, fertilizer N use efficiency, and nitrate leaching. The results indicated that the BMPs under the specific desert oasis conditions are to irrigate the maize with 600 mm of water in eight times with a single fertilizer application at a rate of 75 kg N ha(-1).

  1. Farmers' Perception of Integrated Soil Fertility and Nutrient Management for Sustainable Crop Production: A Study of Rural Areas in Bangladesh

    ERIC Educational Resources Information Center

    Farouque, Md. Golam; Takeya, Hiroyuki

    2007-01-01

    This study aimed to determine farmers' perception of integrated soil fertility and nutrient management for sustainable crop production. Integrated soil fertility (ISF) and nutrient management (NM) is an advanced approach to maintain soil fertility and to enhance crop productivity. A total number of 120 farmers from eight villages in four districts…

  2. Bio-augmentation and nutrient amendment decrease concentration of mercury in contaminated soil.

    PubMed

    Mahbub, Khandaker Rayhan; Krishnan, Kannan; Andrews, Stuart; Venter, Henrietta; Naidu, Ravi; Megharaj, Mallavarapu

    2017-01-15

    Four mercury (Hg) contaminated soils with different pH (7.6, 8.5, 4.2 and 7.02) and total organic carbon contents (2.1, 2.2, 4 and 0.9%) were subjected to bioremediation utilizing a Hg volatilizing bacterial strain Sphingobium SA2 and nutrient amendment. In a field with ~280mg/kgHg, 60% of Hg was removed by bio-augmentation in 7days, and the removal was improved when nutrients were added. Whereas in artificially spiked soils, with ~100mg/kgHg, removal due to bio-augmentation was 33 to 48% in 14days. In the field contaminated soil, nutrient amendment alone without bio-augmentation removed 50% of Hg in 28days. Nutrient amendment also had an impact on Hg remediation in the spiked soils, but the best results were obtained when the strain and nutrients both were applied. The development of longer root lengths from lettuce and cucumber seeds grown in the remediated soils confirmed that the soil quality improved after bioremediation. This study clearly demonstrates the potential of Hg-reducing bacteria in remediation of Hg-contaminated soils. However, it is desirable to trap the volatilized Hg for enhanced bioremediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effects of seabird nitrogen input on biomass and carbon accumulation after 50 years of primary succession on a young volcanic island, Surtsey

    NASA Astrophysics Data System (ADS)

    Leblans, N. I. W.; Sigurdsson, B. D.; Roefs, P.; Thuys, R.; Magnússon, B.; Janssens, I. A.

    2014-05-01

    What happens during primary succession after the first colonizers have occupied a pristine surface largely depends on how they ameliorate living conditions for other species. For vascular plants the onset of soil development and associated increase in nutrient (mainly nitrogen, N) and water availability is especially important. Here, we report the relation between N accumulation and biomass- and ecosystem carbon (C) stocks in a 50 year old volcanic island, Surtsey, in Iceland, where N stocks are still exceptionally low. However, 27 year old seagull colony on the island provided nutrient-enriched areas, which enabled us to assess the relationship between N stock and biomass- and ecosystem C stocks across a much larger range in N stock. Further, we compared areas on shallow and deep tephra sands as we expected that deep-rooted systems would be more efficient in retaining N. The sparsely vegetated area outside the colony was more efficient in N retention than we expected and had accumulated 0.7 kg N ha-1 yr-1, which was ca. 60% of the estimated N input rate from wet deposition. The seagulls have added, on average, 47 kg N ha-1 yr-1, which induced a shift from belowground to aboveground in ecosystem N and C stocks and doubled the ecosystem "N use efficiency", determined as the ratio of biomass and C storage per unit N input. Soil depth did not significantly affect total N stocks, which suggests a high N retention potential. Both total ecosystem biomass and C stocks were strongly correlated with N stock inside the colony, which indicated the important role of N during the first steps of primary succession. Inside the colony, the ecosystem biomass C stocks (17-27 kg C ha-1) had reached normal values for grasslands, while the soil organic carbon stocks (SOC; 4-10 kg C ha-1) were only a fraction of normal grassland values. Thus, it will take a long time until the SOC stock reaches equilibrium with the current primary production; during which conditions for new colonists may change.

  4. Responses of Roadside Soil Cation Pools to Vehicular Emission Deposition in Southern California

    NASA Astrophysics Data System (ADS)

    Rossi, R.; Bain, D. J.; Jenerette, D.; Clarke, L. W.; Wilson, K.

    2013-12-01

    Roadside soils are heavily loaded with NO3- due to vehicular emissions. This deposition likely acidifies these soils, potentially mobilizing cationic species from soil exchange sites. Acidification driven mobilization is well documented in forest soils, but poorly understood in roadside soils. Metal concentrations in park and garden soils collected from Southern California were examined across gradients of soil chemistry, road network density, climate, and geology to examine cation mobilization effects. In our samples, soil pH is not clearly related to distance from the roadside or underlying geology. However, the depletion of several elements (Al, K) is clearly observed in near-road environments. These depletion trends occur despite contrary trends, including increased soil surface areas and soil organic matter in near-road environments. Additionally, inputs from the weathering of road building materials appear to affect soil chemistry. For example, soil Ca patterns remain relatively consistent relative to roads, suggesting Ca bearing weathering products replenish soil Ca pools in near-road areas. Simple mixing models constructed using elemental ratios are consistent with road material Ca source contributions. Observed near-road patterns in soil chemistry likely influence local ecological function, shifting plant communities and soil functions. Clear understanding of these shifts is essential to the effective use of green infrastructure and other strategies utilized to control road-sourced nutrients. This analytical framework can be applied globally as road networks continue to expand and affect larger ecosystems.

  5. Effects of Successive Harvests on Soil Nutrient Stocks in Established Tropical Plantation Forests

    NASA Astrophysics Data System (ADS)

    Mendoza, L.; McMahon, D.; Jackson, R. B.

    2017-12-01

    Large-scale plantation forests in tropical regions alter biogeochemical processes, raising concerns about the long-term sustainability of this land use. Current commercial practices result in nutrient export with removed biomass that may not be balanced by fertilizer application. Consequent changes in a landscape's nutrient distributions can affect the growth of future plantations or other vegetation. Prior studies have reported changes in soil chemical and physical properties when plantation forests replace pastures or native vegetation, but few have examined the impacts of multiple harvest cycles following plantation establishment. This study analyzed macronutrient and carbon content of soil samples from the world's most productive plantation forests, in southeastern Brazil, to understand the long-term effects of plantation forests on soil nutrient stocks and soil fertility. Soil was collected from Eucalyptus plantation sites and adjacent vegetation in 2004 and again in 2016, after at least one full cycle of harvesting and replanting. We found that within surface soil (0-10 cm) Mg and N did not change significantly and C, P, K and Ca concentrations generally increased, but to varying extents within individual management units. This trend of increasing nutrient concentrations suggests that additional harvests do not result in cumulative nutrient depletion. However, large changes in Ca and K concentrations in individual plantation units indicate that added fertilizer does not consistently accumulate in the surface soil. Analysis of deeper soil layers and comparison to unfertilized vegetation will help to determine the fate of fertilizers and native soil nutrients in repeatedly harvested plantations. These results address the necessity of long-term investigation of nutrient changes to better understand and determine the impacts of different types of land use in the tropics.

  6. Rapid Recovery of a Gully Thermokarst: 10 Years of Observation of the Toolik River Thermokarst, North Slope, Alaska

    NASA Astrophysics Data System (ADS)

    Bowden, W. B.; Gooseff, M. N.; Stuckey, J. J.; Fulweber, R. A.; Larouche, J. R.

    2014-12-01

    As permafrost thaws, previously frozen soils may become unstable and subside, in some cases forming thermo-erosional features such as gully thermokarst (GTKs). The formation of these features can result in sediment and nutrient inputs to local streams and lakes. The initial evolution of GTKs is rapid (months to several years) and appears to follow a progression in which the loss of ground ice in the soil creates a subsurface cavity that allows for the transport of water downslope, followed by the collapse of the overlying soil into the cavity, with a subsequent period of sediment and nutrient export. However, there is considerable uncertainty about the length of time these features remain unstable and actively transport sediments and nutrients. We followed the evolution of one moderately-sized (~5,000 m2) GTK located in the headwaters of the Toolik River (N68.692733° W149.205433°) on the North Slope of Alaska (USA). This feature formed in July 2003 and we monitored it for several years thereafter. In 2007 we began to monitor the shape and contours of this feature and quantified the level of ecologically important solutes it exports to the local stream. As expected, large quantities of sediment and nutrients were exported from this feature when it first formed. However, within a year or two the sediment export decreased to episodic events and the nutrient export, while elevated above reference levels, was not remarkably high. Between 2007 and the present (2014), the shape and topography of the feature have changed very little (Figure) except for some headwall retrogression, suggesting that long-term sediment transport has decreased dramatically. Thus, the overall sediment loading to the river was smaller and has decreased more rapidly than we expected. The rapid reduction in sediment and nutrient delivery is consistent with the more recent geomorphic evolution and stabilization of this feature. We conclude - contrary to our initial hypotheses - that these features form and stabilize rather quickly (~10 years) and that their influences on local streams and lakes might be ephemeral. Thus, the greater importance of these features may be as indicators of general permafrost degradation in the area and the attendant losses of carbon and other nutrients that this degradation implies.

  7. Patterns and processes of nutrient transfers from land to water: a catchment approach to evaluate Good Agricultural Practice in Ireland

    NASA Astrophysics Data System (ADS)

    Mellander, P.-E.; Melland, A. R.; Shortle, G.; Wall, D.; Mechan, S.; Buckley, C.; Fealy, R.; Jordan, P.

    2009-04-01

    Eutrophication of fresh, transitional and coastal waters by excessive nutrient inputs is one of the most widespread water quality problems in developed countries. Sources of nutrient nitrogen (N) and phosphorus (P) can come from a multiplicity of sources and be dependent on numerous hydrological controls from catchments with both urban and agricultural landuses. Aquatic impacts are widely reported as a result of excessive nutrient transfers from land to water and include changes in ecological integrity and loss of amenity. In the European Union, the Water Framework Directive (WFD) and associated Directives are the key structures with which member states must develop national and often trans-national polices to deal with issues of water resources management. The linked Nitrates Directive is particularly concerned with integrating sustainable agriculture and good water quality objectives and is written into national polices. In Ireland this policy is the Nitrates Directive National Action Programme (NAP), Statutory Instruction 378, Good Agricultural Practise regulation, and amongst other things, sets targets and limits on the use of organic and inorganic fertilisers, soil fertility and slurry/fertiliser spreading and cultivation times. To evaluate the effectiveness of this policy, Teagasc, the Irish Agriculture and Food Development Authority, is undertaking a catchment scale audit on sources, sinks, and changes in nutrient use and export over several years. The Agricultural Catchments Programme is based on a science-stakeholder-management partnership to generate knowledge and specifically to protect water quality from nitrogen and phosphorus transfers within the constraints of the requirements of modern Irish agricultural practises. Eight catchments of 5-12 km2 have been selected for the programme to represent a range of agricultural intensities and vulnerabilities to nitrogen and phosphorus loss including catchments that are situated on permeable and impermeable grassland soils; areas where arable production represents a significant landuse; and catchments on productive and unproductive aquifers. The catchments were identified using a GIS-based multicriteria decision analysis with objective criteria that included landuse data (including agricultural and settlement statistics) combined with soils and geology data to evaluate the risk of P and N loss. Shortlisted catchments were then finalised using practical criteria based on the potential for hydrometry and hydrochemistry research. In each catchment, a conceptual model approach is being used to hypothesize the sources, seasonal mobilisation and pathways of nutrients and water through the soil/subsoil system and transfer into surface and ground water systems to stratify each catchment experimental design. Knowledge of the nutrient management of each catchment farm and resulting soil fertility will be used to monitor the sources of agricultural N and P. Environmental soil nutrient tests will provide baselines and checks on the potential for mobilisation. Areas of high soil fertility that are coincident with high surface or sub-surface hydrological connectivity will be monitored for subsequent nutrient transfer. Other potential nutrient source loads within the catchments, such as rural waste-water treatment plants and domestic septic systems, will be factored in as non-agricultural sources. Similarly, the potential for farmyard transfers will also be assessed. The net balance of nutrient transfer at the catchment outlets will be monitored using a high resolution method that is coincident with hydrometric measurements to ensure that there is a full understanding of the inter-dependence between point and diffuse nutrient transfers and hydrodynamics. This source to transfer approach is highly appropriate and a move towards inductive understanding of nutrient use and export in river catchments - the scale at which policies for water resources management will be assessed under the WFD. The data are also highly conducive to constraining catchment scale, distributed models for predicting chemical transfers in runoff. As the Programme is aiming to integrate the often perceived contentious objectives of water quality management with those of sustainable agriculture, farm economics will also be monitored at the same time and an assessment made of farmer attitudes. An advisory programme is also a major component and dedicated farm advisors will ensure that farmers are fully appraised of obligations and opportunities in the National Action Programme.

  8. Mechanisms of soil degradation and consequences for carbon stocks on Tibetan grasslands

    NASA Astrophysics Data System (ADS)

    Kuzyakov, Yakov; Schleuss, Per-Marten; Miehe, Georg; Heitkamp, Felix; Sebeer, Elke; Spielvogel, Sandra; Xu, Xingliang; Guggenberger, Georg

    2016-04-01

    Tibetan grasslands provide tremendous sinks for carbon (C) and represent important grazing ground. Strong degradation - the destroying the upper root-mat/soil horizon of Kobresia pastures, has dramatic consequences for soil organic carbon (SOC) and nutrient storage. To demonstrate specific degradation patterns and elucidate mechanisms, as well as to assess consequences for SOC storage, we investigated a sequence of six degradation stages common over the whole Kobresia ecosystem. The soil degradation sequence consists of following mechanisms: Overgrazing and trampling by livestock provide the prerequisite for grassland degradation as both (a) cause plant dying, (b) reduce grassland recovery and (c) destroy protective Kobresia root-mats. These anthropogenic induced processes are amplified by naturally occurring degradation in harsh climate. The frequently repeated soil moisture and temperature fluctuations induce volume changes and tensions leading to polygonal cracking of the root mats. Then the plants die and erosion gradually extend the surface cracks. Soil erosion cause a high SOC loss from the upper horizons (0-10 cm: ~5.1 kg C m-2), whereas SOC loss beneath the surface cracks is caused by both, decreasing root C-input and SOC mineralization (SOC losses by mineralization: ~2.5 kg C m-2). Root biomass decreases with degradation and indicated lower C input. The negative δ13C shift of SOC reflects intensive decomposition and corresponds to a relative enrichment of 13C depleted lignin components. We conclude that the combined effects of overgrazing and harsh climate reduce root C input, increase SOC decomposition and initiate erosion leading to SOC loss up to 70% of intact soil (0-30 cm: ~7.6 kg C m-2). Consequently, a high amount of C is released back to the atmosphere as CO2, or is deposited in depressions and river beds creating a potential source of N2O and CH4. Concluding, anthropogenically induced overgrazing makes the Kobresia root-mat sensitive to natural degradation processes and lead to strong up to complete destroying of soils and so, of pastures ground and ecosystems on Tibetan plateau.

  9. Advancing Analysis of Spatio-Temporal Variations of Soil Nutrients in the Water Level Fluctuation Zone of China’s Three Gorges Reservoir Using Self-Organizing Map

    PubMed Central

    Ye, Chen; Li, Siyue; Yang, Yuyi; Shu, Xiao; Zhang, Jiaquan; Zhang, Quanfa

    2015-01-01

    The ~350 km2 water level fluctuation zone (WLFZ) in the Three Gorges Reservoir (TGR) of China, situated at the intersection of terrestrial and aquatic ecosystems, experiences a great hydrological change with prolonged winter inundation. Soil samples were collected in 12 sites pre- (September 2008) and post submergence (June 2009) in the WLFZ and analyzed for soil nutrients. Self-organizing map (SOM) and statistical analysis including multi-way ANOVA, paired-T test, and stepwise least squares multiple regression were employed to determine the spatio-temporal variations of soil nutrients in relation to submergence, and their correlations with soil physical characteristics. Results showed significant spatial variability in nutrients along ~600 km long shoreline of the TGR before and after submergence. There were higher contents of organic matter, total nitrogen (TN), and nitrate (NO3-) in the lower reach and total phosphorus (TP) in the upper reach that were primarily due to the spatial variations in soil particle size composition and anthropogenic activities. Submergence enhanced soil available potassium (K), while significantly decreased soil N, possibly due to the alterations of soil particle size composition and increase in soil pH. In addition, SOM analysis determined important roles of soil pH value, bulk density, soil particle size (i.e., silt and sand) and nutrients (TP, TK, and AK) on the spatial and temporal variations in soil quality. Our results suggest that urban sewage and agricultural runoffs are primary pollutants that affect soil nutrients in the WLFZ of TGR. PMID:25789612

  10. Improving soil nutrient availability increases carbon rhizodeposition under maize and soybean in Mollisols.

    PubMed

    Qiao, Yunfa; Miao, Shujie; Han, Xiaozeng; Yue, Shuping; Tang, Caixian

    2017-12-15

    Rhizodeposited carbon (C) is an important source of soil organic C, and plays an important role in the C cycle in the soil-plant-atmosphere continuum. However, interactive effects of plant species and soil nutrient availability on C rhizodeposition remain unclear. This experiment examined the effect of soil nutrient availability on C rhizodeposition of C4 maize and C3 soybean with contrasting photosynthetic capacity. The soils (Mollisols) were collected from three treatments of no fertilizer (Control), inorganic fertilizer only (NPK), and NPK plus organic manure (NPKM) in a 24-year fertilization field trial. The plants were labelled with 13 C at the vegetative and reproductive stages. The 13 C abundance of shoots, roots and soil were quantified at 0, 7days after 13 C labelling, and at maturity. Increasing soil nutrient availability enhanced the C rhizodeposition due to the greater C fixation in shoots and distribution to roots and soil. The higher amount of averaged below-ground C allocated to soil resulted in greater specific rhizodeposited C from soybean than maize. Additional organic amendment further enhanced them. As a result, higher soil nutrient availability increased total soil organic C under both maize and soybean systems though there was no significant difference between the two crop systems. All these suggested that higher soil nutrient availability favors C rhizodeposition. Mean 80, 260 and 300kgfixedCha -1 were estimated to transfer into soil in the Control, NPK and NPKM treatments, respectively, during one growing season. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Nutrient leaching losses in lowland forests converted to oil palm and rubber plantations in Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Kurniawan, Syahrul; Corre, Marife D.; Rahayu Utami, Sri; Veldkamp, Edzo

    2015-04-01

    In the last two decades, Sumatra, Indonesia is experiencing rapid expansion of oil palm and rubber plantations by conversion of rainforest. This is evident from the 2.9 thousand km2 decrease in forest area in this region over the last 15 years. Such rapid land-use change necessitates assessment of its environmental impacts. Our study was aimed to assess the impact of forest conversion to oil palm and rubber plantations on nutrient leaching losses. Land-use conversion increases nutrient leaching losses due to changes in vegetation litter input, rooting depth, nutrient cycling and management (e.g. fertilization) practices. Our study area was in Jambi Province, Sumatra, Indonesia. We selected two soil landscapes in this region: loam and clay Acrisol soils. At each soil landscape, we investigated four land-use systems: lowland secondary rainforest, secondary forest with regenerating rubber (referred here as jungle rubber), rubber (7-17 years old) and oil palm plantations (9-16 years old). Each land use in each soil landscape was represented by four sites as replicates, totaling to 32 sites. We measured leaching losses using suction lysimeters installed at 1.5-m soil depth, which was well below the rooting depth, with bi-weekly to monthly sampling from February to December 2013. In general, the loam Acrisol landscape, particularly the forest and oil palm plantations, had lower soil solution pH and higher leaching fluxes of dissolved organic N, Na, Ca, Mg, total Al, total S and Cl than the clay Acrisol of the same land uses (all P ≤ 0.05). Among land uses in the loam Acrisol landscape, oil palm had lower soil solution pH and higher leaching fluxes of NH4+, NO3-, dissolved organic C, total P, total S and Cl than rubber plantation whereas forest and jungle rubber showed intermediate fluxes (all P ≤ 0.05, except P ≤ 0.09 for total P); oil palm had also higher Na, Ca, Mg and total Al leaching fluxes than all the other land uses (all P ≤ 0.05, except P ≤ 0.09 for Na and Mg). In the clay Acrisol landscape, oil palm showed higher leaching losses of dissolved organic C and Ca than forest whereas jungle rubber and rubber plantation had intermediate fluxes; oil palm had also higher Na, Mg and total Si leaching losses than all the other land uses (all P ≤ 0.05). The low soil solution pH, which was negatively correlated with total Al, and large mineral N and total P leaching losses in oil palm were due to N and P fertilization, and the large base cation losses were attributable to liming and ash from biomass burning. Such increased nutrient leaching losses with forest conversion to oil palm plantation calls for improved management to minimize losses and its effects on ground water quality.

  12. N-P-K balance in a milk production system on a C. nlemfuensis grassland and a biomass bank of P. purpureum CT-115 clone

    NASA Astrophysics Data System (ADS)

    Crespo, G.; Rodriguez, I.; Martinez, O.

    2009-04-01

    In very intensive milk production systems in Europe and America with the use of high amounts of chemical fertilizers, the nutrient recycling models consider the losses by leaching and N volatilization, as well as the hydro physical characteristics of the soil affecting the performance of this element (10; 6). However, in more extensive milk production systems, low input agriculture forming the natural cycle occurring within each farm, is of vital importance to potentate nutrient recycling for a stable animal production. The objective is the determination of the values of N, P and K inputs and outputs in a dairy farm with a sward composed by 60% of C. nlemfuensis and 40% of P. purpureum CT-115, associated with legumes in 28% of the area and the balance of these nutrients in the system using the "Recycling" software proposed by Crespo et al (2007). The grassland covered an area of 53.4 ha, composed by C. nlemfuensis (60%), P. purpureum CT-115 (40%) and L. leucocephala and C. cajan legumes intercropped in 28% of the area. The dairy herd consisted of 114 cows, 35 replacement heifers and 24 calves. There was a milk yield of 100 000 litters and the animals consumed 825 t DM from pastures and 75.1 t DM from other supplementary feeds. Nutrients extracted by pastures, nutrients intake by animals from pastures, symbiotically N fixation by legumes and N, P and K determinations outside the system due to animal production were determined (3-11). Volatilized ammonia, nutrient input and litter accumulated in the paddocks were measured once each season of the year. In the whole system the balance indicates negative values of N, P and K. Out of the total amount of nutrients consumed, animals used only 16 kg N, 5 Kg P and 4 Kg K for milk production, LW gain and calf production, the remainder returned to the system through excretions. Hence, more than 90% of the N and K, and approximately 81% of the P consumed by the animals were recycled to the system through the excretions. These results agree with those reported by Jarvis (1993) and Cadish et al (1994). However, 40% of the excretions occurred in the shade buildings and milking parlours ant thus these nutrients did not recycle in the system. An important internal recycling mechanism, especially for nitrogen and potassium, is their remobilization by the rejected pasture to re-use them for the regrowth activity. This is of particular interest in CT-115 Bank, since stems of CT-115 plants left after grazing remobilize an important amount of these nutrients, guarantee a favourable pasture regrowth (Martinez 1996). The return of all the excretion to the grassland is recommended as well as increasing the area of legumes to attain a satisfactory balance of N, P and K in the system. Further studies must consider maintenance fertilization, nutrient losses due to leaching and denitrification, as well as variation of the stable OM in the soil and the influence of hydro physical properties in the recycling process. The "Recycling" software was effective to determine the balance of nutrients in the dairy farm. Cadish, G., Schunke, R.N & Giller, K.E. 1994. Nitrogen cycling in a pure grass pasture and a grass-legume mixture on a red latosol in Brazil. Tropical Grasslands 28:43. Crespo G. y Rodríguez, I. 2006. Contribución al conocimiento del reciclaje de los nutrientes en el sistema suelo-pasto-animal. Instituto de Ciencia Animal, Editorial EDICA, La Habana, Cuba, 94 pp. Hirata, M., Sugimoto, Y.G & Ueno, M.1991. Use of a mathematical model to evaluate the effects of dung from grazing animals on pasture production. J. Japan Grassld. Sci. 37:303.

  13. Soil Organic Carbon and Nutrient Dynamics in Reclaimed Appalachian Mine Soil

    NASA Astrophysics Data System (ADS)

    Acton, P.; Fox, J.; Campbell, J. E.; Rowe, H. D.; Jones, A.

    2011-12-01

    Past research has shown that drastically disturbed and degraded soils can offer a high potential for soil organic carbon and aboveground carbon sequestration. Little work has been done on both the functioning of soil carbon accumulation and turnover in reclaimed surface mining soils. Reclamation practices of surface coal mine soils in the Southern Appalachian forest region of the United States emphasizes heavy compaction of surface material to provide slope stability and reduce surface erosion, and topsoil is not typically added. An analysis of the previously collected data has provided a 14 year chronosequence of SOC uptake and development in the soil column and revealed that these soils are sequestering carbon at a rate of 1.3 MgC ha-1 yr-1, which is 1.6 to 3 times less than mining soils reported for other regions. Results of bulk density analysis indicate a contrast between 0 - 10 cm (1.51 g cm-3) and 10 - 50 cm (2.04 g cm-3) depth intervals. Aggregate stability was also quantified as well as dynamic soil texture measurements. With this analysis, it has been established that these soils are well below their potential in terms of the ability to store and cycle carbon and other nutrients as well their ability to sustain a fully-functioning forested ecosystem typical for the region. We are taking an integrated approach that relies on ecological observations for present conditions combined with computational modeling to understand long-term soil organic carbon (SOC) accumulation and turnover in regards to SOC sequestration potential and quantification of specific processes by which these soils develop. A dual-isotope end-member model, utilizing the carbon 13 and nitrogen 15 stable isotopes, is being developed to provide greater input into the mathematical separation of organic carbon derived from new soil inputs and existing coal carbon. Soils from the study sites have been isolated into three distinct size pools, and elemental and isotopic analysis of these samples was performed. These results are being used to calibrate an isotope fractionation model to quantify decomposition rates of various conceptual organic matter pools. The hydrology of the mine soils is being modeled using the SCS curve number method to quantify infiltration rates. An assessment of above and belowground biomass was performed to provide estimates for annual plant production. Soil samples will be analyzed for micronutrient content. The CENTURY soil organic matter model will be utilized to provide a biogeochemical analysis of the plant and soil ecosystem. Simulations will be made under varying climatic and land-use changes. Surface coal mine extraction can act as a disturbance and greatly impacts the terrestrial carbon reservoir through initial removal of aboveground biomass and soil carbon and thereafter mineland reclamation. This research will provide a better understanding of the net impact of surface coal mining on terrestrial carbon, thus accounting for long term C sequestration in the soils and aboveground biomass that might offset drastic carbon disturbance in the initial stage of surface mining.

  14. Bacterial diversity and community structure in lettuce soil are shifted by cultivation time

    NASA Astrophysics Data System (ADS)

    Liu, Yiqian; Chang, Qing; Guo, Xu; Yi, Xinxin

    2017-08-01

    Compared with cereal production, vegetable production usually requires a greater degree of management and larger input of nutrients and irrigation, but these systems are not sustainable in the long term. This study aimed to what extent lettuce determine the bacterial community composition in the soil, during lettuce cultivation, pesticides and fertilizers were not apply to soil. Soil samples were collected from depths of 0-20cm and 20-40cm. A highthroughput sequencing approach was employed to investigate bacterial communities in lettuce-cultivated soil samples in a time-dependent manner. The dominant bacteria in the lettuce soil samples were mainly Proteobacteria, Actinobacteria, Chloroflexi, Nitrospirae, Firmicutes, Acidobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, Gemmatimo nadetes, Cyanobacteria. Proteobacteria was the most abundant phylum in the 6 soil samples. The relative abundance of Acidobacteria, Firmicutes, Bacteroidetes, Verrucomicrobia and Cyanobacteria decreased through time of lettuce cultivation, but the relative abundance of Proteobacteria, Actinobacteria, Gemmatimonadetes, Chloroflexi, Planctomycetes and Nitrospirae increased over time. In the 0-20cm depth group and the 20-40cm depth soil, a similar pattern was observed that the percentage number of only shared OTUs between the early and late stage was lower than that between the early and middle stage soil, the result showed that lettuce growth can affect structure of soil bacterial communities.

  15. Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility.

    PubMed

    Navarrete, Acacio Aparecido; Soares, Tielle; Rossetto, Raffaella; van Veen, Johannes Antonie; Tsai, Siu Mui; Kuramae, Eiko Eurya

    2015-09-01

    Here we show that verrucomicrobial community structure and abundance are extremely sensitive to changes in chemical factors linked to soil fertility. Terminal restriction fragment length polymorphism fingerprint and real-time quantitative PCR assay were used to analyze changes in verrucomicrobial communities associated with contrasting soil nutrient conditions in tropical regions. In case study Model I ("Slash-and-burn deforestation") the verrucomicrobial community structures revealed disparate patterns in nutrient-enriched soils after slash-and-burn deforestation and natural nutrient-poor soils under an adjacent primary forest in the Amazonia (R = 0.819, P = 0.002). The relative proportion of Verrucomicrobia declined in response to increased soil fertility after slash-and-burn deforestation, accounting on average, for 4 and 2 % of the total bacterial signal, in natural nutrient-poor forest soils and nutrient-enriched deforested soils, respectively. In case study Model II ("Management practices for sugarcane") disparate patterns were revealed in sugarcane rhizosphere sampled on optimal and deficient soil fertility for sugarcane (R = 0.786, P = 0.002). Verrucomicrobial community abundance in sugarcane rhizosphere was negatively correlated with soil fertility, accounting for 2 and 5 % of the total bacterial signal, under optimal and deficient soil fertility conditions for sugarcane, respectively. In nutrient-enriched soils, verrucomicrobial community structures were related to soil factors linked to soil fertility, such as total nitrogen, phosphorus, potassium and sum of bases, i.e., the sum of calcium, magnesium and potassium contents. We conclude that community structure and abundance represent important ecological aspects in soil verrucomicrobial communities for tracking the changes in chemical factors linked to soil fertility under tropical environmental conditions.

  16. Nutrient Effects on Belowground Organic Matter in a ...

    EPA Pesticide Factsheets

    Belowground structure and carbon dioxide emission rates were examined in minerogenic marshes of the North Inlet estuary, a system dominated by depositional processes and typical of the southeastern USA. Three areas were sampled: a long-term nutrient enrichment experiment (Goat Island); a fringing marsh that only receives drainage from an entirely forested watershed (upper Crab Haul Creek); and three locations along a creek basin that receives drainage from a residential and golf course development situated at its headwaters (Debidue Creek). Responses to fertilization at Goat Island were an increase in soil organic matter, an increase in number of rhizomes, enlarged rhizome diameters, decreased fine root mass, and increased carbon dioxide emission rates. At the Crab Haul Creek, the greatest abundances of coarse roots and rhizomes were observed in the high marsh compared to the low marsh and creekbank. The upper and mid Debidue Creek, which may be influenced by nutrient inputs associated with land development, had significantly fewer rhizomes compared to the mouth, which was dominated by exchange with bay waters. Carbon dioxide emission rates at the fertilized Goat Island plots were similar in magnitude to the upper Debidue Creek and significantly greater than the Goat Island control plots and the Crab Haul Creek. Inputs of sediment and particulates in marshes dominated by depositional processes such as the North Inlet may buffer the system from adverse effects of

  17. A mathematical model of reservoir sediment quality prediction based on land-use and erosion processes in watershed

    NASA Astrophysics Data System (ADS)

    Junakova, N.; Balintova, M.; Junak, J.

    2017-10-01

    The aim of this paper is to propose a mathematical model for determining of total nitrogen (N) and phosphorus (P) content in eroded soil particles with emphasis on prediction of bottom sediment quality in reservoirs. The adsorbed nutrient concentrations are calculated using the Universal Soil Loss Equation (USLE) extended by the determination of the average soil nutrient concentration in top soils. The average annual vegetation and management factor is divided into five periods of the cropping cycle. For selected plants, the average plant nutrient uptake divided into five cropping periods is also proposed. The average nutrient concentrations in eroded soil particles in adsorbed form are modified by sediment enrichment ratio to obtain the total nutrient content in transported soil particles. The model was designed for the conditions of north-eastern Slovakia. The study was carried out in the agricultural basin of the small water reservoir Klusov.

  18. Mass migration as the result of soil exhausting

    NASA Astrophysics Data System (ADS)

    van Mourik, Jan; Kluiving, Sjoerd

    2014-05-01

    An extensive area in Northwest Europe is covered by chemical poor Late Glacial aeolian sands. Till the Bronze Age the soils evolution in the coversand landscapes correlated with the geomorphological structure, Umbric Podzols on coversand ridges, Gleyic Podzols on coversand planes and Umbric or Histic Arenosols in brook valleys. Essential was the storage of nutrients in the biomass of the forest system. The nutrient cycle has been for long time a stabilizing factor in the forest ecosystems, repressing further soil acidification. Human occupation resulted in transformation of natural to cultural soilscapes. Agricultural management introduced lateral transport of nutrients from the soil system to the market and interrupted the natural vertical cycling. The results were soil exhaustion and acceleration of soil acidification. 1. In the early Bronze Age, shifting cultivation was applied to create small lots of arable land. Burning of forest means acceleration of the release of organic stored nutrients, available for crop production. However, the moderate rain climate of Northwest Europe caused leaching of released nutrients that were not quickly recycled. Nutrient losses stimulated the soil acidification and in very dry seasons even small scale sand drifting could occur. Without any nutrient addition (fertilization), shifting cultivation is not a form of sustainable land use and led to land degradation. 2. In the early Iron Age, the system Celtic field came in use. Systematic transport of nutrients from green strips to production lots and harvesting caused gradual nutrient losses of the soilscape and accelerated the soil acidification; Umbric Podzols degraded to Carbic Podzols. Celtic Field land management was also not a sustainable form of land use and led to land degradation. 3. Later in time, the lateral transport of nutrients increased during application of plaggic agriculture. Soil acidification continued on heath lands, the production area of organic manure. During the period with plaggic agriculture, the soils on arable fields development from Umbric Podzols to Plaggic podzols and Plaggic Anthrosols. Agriculture on such field became sustainable under conditions of a low productivity. In several archaeological studies there is evidence that the human impact on soils caused significant nutrient losses, soil degradation and diminishing crop production. People had to migrate to another area which a higher soil fertility to guarantee food production. Patterns of migration to fertile areas (if available) have been studied by archaeologists. Lack of space urged people to invent management techniques and equipment to increase crop production inside the occupied area.

  19. Enhancement and inhibition of microbial activity in hydrocarbon- contaminated arctic soils: Implications for nutrient-amended bioremediation

    USGS Publications Warehouse

    Braddock, J.F.; Ruth, M.L.; Catterall, P.H.; Walworth, J.L.; McCarthy, K.A.

    1997-01-01

    Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (<1%) end low moisture (1-3%) contents. We examined the effects of nutrient additions on microorganisms in contaminated soil from this site in laboratory microcosms and in mesocosms incubated for 6 weeks in the field. Nitrogen was the major limiting nutrient in this system, but microbial populations and activity were maximally enhanced by additions of both nitrogen and phosphorus. When nutrients were added to soil in the field at three levels of N:P (100:45, 200:90, and 300:135 mg/kg soil), the greatest stimulation in microbial activity occurred at the lowest, rather than the highest, level of nutrient addition. The total soil-water potentials ranged from -2 to -15 bar with increasing levels of fertilizer. Semivolatile hydrocarbon concentrations declined significantly only in the soils treated at the low fertilizer level. These results indicate that an understanding of nutrient effects at a specific site is essential for successful bioremediation.Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (<1%) and low moisture (1-3%) contents. We examined the effects of nutrient additions on microorganisms in contaminated soil from this site in laboratory microcosms and in mesocosms incubated for 6 weeks in the field. Nitrogen was the major limiting nutrient in this system, but microbial populations and activity were maximally enhanced by additions of both nitrogen and phosphorus. When nutrients were added to soil in the field at three levels of N:P (100:45, 200:90, and 300:135 mg/kg soil), the greatest stimulation in microbial activity occurred at the lowest, rather than the highest, level of nutrient addition. The total soil-water potentials ranged from -2 to -15 bar with increasing levels of fertilizer. Semi-volatile hydrocarbon concentrations declined significantly only in the soils treated at the low fertilizer level. These results indicate that an understanding of nutrient effects at a specific site is essential for successful bioremediation.

  20. Isolation and identification of soil fungi isolates from forest soil for flooded soil recovery

    NASA Astrophysics Data System (ADS)

    Hazwani Aziz, Nor; Zainol, Norazwina

    2018-04-01

    Soil fungi have been evaluated for their ability in increasing and recovering nitrogen, phosphorus and potassium content in flooded soil and in promoting the growth of the host plant. Host plant was cultivated in a mixture of fertile forest soil (nutrient-rich soil) and simulated flooded soil (nutrient-poor soil) in an optimized soil condition for two weeks. The soil sample was harvested every day until two weeks of planting and was tested for nitrogen, phosphorus and potassium concentration. Soil fungi were isolated by using dilution plating technique and was identified by Biolog’s Microbial Systems. The concentration of nitrogen, phosphorus, and potassium was found to be increasing after two weeks by two to three times approximately from the initial concentration recorded. Two fungi species were identified with probability more than 90% namely Aspergillus aculeatus and Paecilomyces lilacinus. Both identified fungi were found to be beneficial in enhancing plant growth and increasing the availability of nutrient content in the soil and thus recovering the nutrient content in the flooded soil.

  1. Nutrient leaching, soil pH and changes in microbial community increase with time in lead-contaminated boreal forest soil at a shooting range area.

    PubMed

    Selonen, Salla; Setälä, Heikki

    2017-02-01

    Despite the known toxicity of lead (Pb), Pb pellets are widely used at shotgun shooting ranges over the world. However, the impacts of Pb on soil nutrients and soil microbes, playing a crucial role in nutrient cycling, are poorly understood. Furthermore, it is unknown whether these impacts change with time after the cessation of shooting. To shed light on these issues, three study sites in the same coniferous forest in a shooting range area were studied: an uncontaminated control site and an active and an abandoned shooting range, both sharing a similar Pb pellet load in the soil, but the latter with a 20-year longer contamination history. Soil pH and nitrate concentration increased, whilst soil phosphate concentration and fungal phospholipid fatty acid (PLFA) decreased due to Pb contamination. Our results imply that shooting-derived Pb can influence soil nutrients and microbes not only directly but also indirectly by increasing soil pH. However, these mechanisms cannot be differentiated here. Many of the Pb-induced changes were most pronounced at the abandoned range, and nutrient leaching was increased only at that site. These results suggest that Pb disturbs the structure and functions of the soil system and impairs a crucial ecosystem service, the ability to retain nutrients. Furthermore, the risks of shooting-derived Pb to the environment increase with time.

  2. Nutrient feedbacks to soil heterotrophic nitrogen fixation in forests

    USGS Publications Warehouse

    Perakis, Steven; Pett-Ridge, Julie C.; Catricala, Christina E.

    2017-01-01

    Multiple nutrient cycles regulate biological nitrogen (N) fixation in forests, yet long-term feedbacks between N-fixation and coupled element cycles remain largely unexplored. We examined soil nutrients and heterotrophic N-fixation across a gradient of 24 temperate conifer forests shaped by legacies of symbiotic N-fixing trees. We observed positive relationships among mineral soil pools of N, carbon (C), organic molybdenum (Mo), and organic phosphorus (P) across sites, evidence that legacies of symbiotic N-fixing trees can increase the abundance of multiple elements important to heterotrophic N-fixation. Soil N accumulation lowered rates of heterotrophic N-fixation in organic horizons due to both N inhibition of nitrogenase enzymes and declines in soil organic matter quality. Experimental fertilization of organic horizon soil revealed widespread Mo limitation of heterotrophic N-fixation, especially at sites where soil Mo was scarce relative to C. Fertilization also revealed widespread absence of P limitation, consistent with high soil P:Mo ratios. Responses of heterotrophic N-fixation to added Mo (positive) and N (negative) were correlated across sites, evidence that multiple nutrient controls of heterotrophic N-fixation were more common than single-nutrient effects. We propose a conceptual model where symbiotic N-fixation promotes coupled N, C, P, and Mo accumulation in soil, leading to positive feedback that relaxes nutrient limitation of overall N-fixation, though heterotrophic N-fixation is primarily suppressed by strong negative feedback from long-term soil N accumulation.

  3. Inorganic fertilizers after broiler litter amendment reduce surplus nutrients in orchardgrass soils

    USDA-ARS?s Scientific Manuscript database

    The common producer practice to dispose of broiler litter at high rates to forage crops allow excessive accumulation of soil nutrients. A remediation study was developed to examine if inorganic fertilizer application over the residual fertility of broiler litter would reduce surplus soil nutrients i...

  4. Topographic controls on soil nutrient variations in a Silvopasture system

    USDA-ARS?s Scientific Manuscript database

    Topography plays a crucial role in the spatial distribution of nutrients in soils because of its influence on the flow and (re)distribution of water and energy in a landscape. Information on the spatial pattern of soil nutrient distribution would benefit management decisions to maximize crop yield a...

  5. Amplifying the benefits of agroecology by using the right cultivars.

    PubMed

    Noguera, D; Laossi, K-R; Lavelle, P; De Carvalho, M H Cruz; Asakawa, N; Botero, C; Barot, S

    2011-10-01

    Tropical soils are particularly vulnerable to fertility losses due to their low capacity to retain organic matter and mineral nutrients. This urges the development of new agricultural practices to manage mineral nutrients and organic matter in a more sustainable way while relying less on fertilizer inputs. Two methods pertaining to ecological engineering and agroecology have been tested with some success: (1) the addition of biochar to the soil, and (2) the maintenance of higher earthworm densities. However, modern crop varieties have been selected to be adapted to agricultural practices and to the soil conditions they lead to and common cultivars might not be adapted to new practices. Using rice as a model plant, we compared the responsiveness to biochar and earthworms of five rice cultivars with contrasted selection histories. These cultivars had contrasted responsivenesses to earthworms, biochar, and the combination of both. The mean relative increase in grain biomass, among all treatments and cultivars, was 94% and 32%, respectively, with and without fertilization. Choosing the best combination of cultivar and treatment led to a more than fourfold increase in this mean benefit (a 437% and a 353% relative increase in grain biomass, respectively, with and without fertilization). Besides, the more rustic cultivar, a local landrace adapted to diverse and difficult conditions, responded the best to earthworms in terms of total biomass, while a modern common cultivar responded the best in term of grain biomass. This suggests that cultivars could be selected to amplify the benefit of biochar- and earthworm-based practices. Overall, selecting new cultivars interacting more closely with soil organisms and soil heterogeneity could increase agriculture sustainability, fostering the positive feedback loop between soils and plants that has evolved in natural ecosystems.

  6. Variation in wood nutrients along a tropical soil fertility gradient.

    PubMed

    Heineman, Katherine D; Turner, Benjamin L; Dalling, James W

    2016-07-01

    Wood contains the majority of the nutrients in tropical trees, yet controls over wood nutrient concentrations and their function are poorly understood. We measured wood nutrient concentrations in 106 tree species in 10 forest plots spanning a regional fertility gradient in Panama. For a subset of species, we quantified foliar nutrients and wood density to test whether wood nutrients scale with foliar nutrients at the species level, or wood nutrient storage increases with wood density as predicted by the wood economics spectrum. Wood nutrient concentrations varied enormously among species from fourfold in nitrogen (N) to > 30-fold in calcium (Ca), potassium (K), magnesium (Mg) and phosphorus (P). Community-weighted mean wood nutrient concentrations correlated positively with soil Ca, K, Mg and P concentrations. Wood nutrients scaled positively with leaf nutrients, supporting the hypothesis that nutrient allocation is conserved across plant organs. Wood P was most sensitive to variation in soil nutrient availability, and significant radial declines in wood P indicated that tropical trees retranslocate P as sapwood transitions to heartwood. Wood P decreased with increasing wood density, suggesting that low wood P and dense wood are traits associated with tree species persistence on low fertility soils. Substantial variation among species and communities in wood nutrient concentrations suggests that allocation of nutrients to wood, especially P, influences species distributions and nutrient dynamics in tropical forests. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. Removal of an apex predator initiates a trophic cascade that extends from herbivores to vegetation and the soil nutrient pool

    PubMed Central

    2017-01-01

    It is widely assumed that organisms at low trophic levels, particularly microbes and plants, are essential to basic services in ecosystems, such as nutrient cycling. In theory, apex predators' effects on ecosystems could extend to nutrient cycling and the soil nutrient pool by influencing the intensity and spatial organization of herbivory. Here, we take advantage of a long-term manipulation of dingo abundance across Australia's dingo-proof fence in the Strzelecki Desert to investigate the effects that removal of an apex predator has on herbivore abundance, vegetation and the soil nutrient pool. Results showed that kangaroos were more abundant where dingoes were rare, and effects of kangaroo exclusion on vegetation, and total carbon, total nitrogen and available phosphorus in the soil were marked where dingoes were rare, but negligible where dingoes were common. By showing that a trophic cascade resulting from an apex predator's lethal effects on herbivores extends to the soil nutrient pool, we demonstrate a hitherto unappreciated pathway via which predators can influence nutrient dynamics. A key implication of our study is the vast spatial scale across which apex predators' effects on herbivore populations operate and, in turn, effects on the soil nutrient pool and ecosystem productivity could become manifest. PMID:28490624

  8. Nutrient inputs into the Gulf of Finland: Trends and water protection targets

    NASA Astrophysics Data System (ADS)

    Knuuttila, Seppo; Räike, Antti; Ekholm, Petri; Kondratyev, Sergey

    2017-07-01

    The catchment area of the Gulf of Finland (GOF) is nearly 14 times larger than the sea area and is home to 12 million people. The GOF is thus heavily polluted by nutrients, and eutrophication is one of the major environmental concerns. The aim of this study was to estimate trends in the nutrient input and to evaluate whether current water protection targets (national, EU, HELCOM) will be achieved. We used both national and international (HELCOM) databases to evaluate nutrient inputs from the surrounding three countries (Estonia, Finland and Russia). The average nitrogen (N) input into the GOF was 112,000 t y- 1 for the period 2009-2013, with rivers responsible for 79%, direct point sources accounting for 10% and deposition for 11% of the input. Phosphorus (P) input was 4270 t y- 1, of which rivers were responsible for 88% and point sources for 12%. The largest proportions (61% for N and 73% for P) of the inputs came from Russia, despite the specific areal inputs (input divided by land area) being smaller than in Estonia and Finland. The changes in nutrient inputs into the GOF are largely due to the changes in Russian inputs, and in particular changes in the nutrient fluxes of the River Neva. The latest available flow-normalised data showed that N export decreased slightly from 1994 to 2010, while flow-normalised P export had clearly decreased by 2010. The P input ending up in the GOF as a whole has decreased significantly over the past 10 years as a result of the re-construction of wastewater treatment infrastructure in St Petersburg and following control of a P leak at the Phosphorit factory in 2012. This measure also explains the steep decrease in riverine P export during recent years. Further reduction of inputs to meet the ambitious nutrient reduction goals of HELCOM and of WFD seems to be a challenge for Finland and Estonia in particular. Russia appears to have already reached approximately 90% of the BSAP's reduction target, with fulfilment of the remainder of the P target appearing a fairly realistic aim as well.

  9. Leaching of mercury from seal carcasses into Antarctic soils.

    PubMed

    Zvěřina, Ondřej; Coufalík, Pavel; Brat, Kristián; Červenka, Rostislav; Kuta, Jan; Mikeš, Ondřej; Komárek, Josef

    2017-01-01

    More than 400 seal mummies and skeletons are now mapped in the northern part of James Ross Island, Antarctica. Decomposing carcasses represent a rare source of both organic matter and associated elements for the soil. Owing to their high trophic position, seals are known to carry a significant mercury body burden. This work focuses on the extent of the mercury input from seal carcasses and shows that such carcasses represent locally significant sources of mercury and methylmercury for the environment. Mercury contents in soil samples from the surrounding areas were determined using a single-purpose AAS mercury analyzer. For the determination of methylmercury, an ultra-sensitive isotopic dilution HPLC-ICP-MS technique was used. In the soils lying directly under seal carcasses, mercury contents were higher, with levels reaching almost 40 μg/kg dry weight of which methylmercury formed up to 2.8 % of the total. The spatial distribution implies rather slow vertical transport to the lower soil layers instead of a horizontal spread. For comparison, the background level of mercury in soils of the investigated area was found to be 8 μg/kg dry weight, with methylmercury accounting for less than 0.1 %. Apart from the direct mercury input, an enhanced level of nutrients in the vicinity of carcasses enables the growth of lichens and mosses with accumulative ability with respect to metals. The enhanced capacity of soil to retain mercury is also anticipated due to the high content of total organic carbon (from 1.6 to 7.5 %). According to the results, seal remains represent a clear source of mercury in the observed area.

  10. Evaluation of Karst Soil Erosion and Nutrient Loss Based on RUSLE Model in Guizhou Province

    NASA Astrophysics Data System (ADS)

    Zeng, Cheng; Li, Yangbing; Bai, Xiaoyong; Luo, Guangjie

    2018-01-01

    Based on GIS technology and RUSLE model, the spatial variation characteristics of soil erosion were analyzed in karst areas, and the relationship between soil erosion and soil nutrient loss was discussed. The results showed that the soil differences in spatial variation between nutrient losses. The results illustrate the total soil erosion in is 10316.31 × 104t • a-1, accounting for 84.95% of the total land area in Guizhou Province. The spatial distribution of soil erosion showing the characteristics of the southeast to the northwest strip. The annual average soil erosion modulu is 691.94 t • km-2 • a-1, of which karst is 720.28t • km-2 • a-1 and non-karst is 689.53 t • km-2 • a-1. The total nutrient losses such as soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP) and total potassium (TK) were 596.72 × 104t • a-1 due to soil erosion, and SOC, TN and TP and TK were 38.13, 1.61, 0.41 and 14.70t • km-2 • a-1, respectively. The average amount of loss and total loss are the largest in non-karst, and four kinds of nutrient is the smallest in karst gorge. The spatial variation of soil erosion in the study area is the process of increasing the erosion area with the increase of the erosion rate, and the difference of the spatial distribution of soil erosion determines the spatial distribution of soil nutrient loss.

  11. Nutrient removal and greenhouse gas emissions in duckweed treatment ponds.

    PubMed

    Sims, Atreyee; Gajaraj, Shashikanth; Hu, Zhiqiang

    2013-03-01

    Stormwater treatment ponds provide a variety of functions including sediment retention, organic and nutrient removal, and habitat restoration. The treatment ponds are, however, also a source of greenhouse gases. The objectives of this study were to assess greenhouse gas (CH(4), CO(2) and N(2)O) emissions in duckweed treatment ponds (DWPs) treating simulated stormwater and to determine the role of ammonia-oxidizing organisms in nutrient removal and methanogens in greenhouse gas emissions. Two replicated DWPs operated at a hydraulic retention time (HRT) of 10 days were able to remove 84% (± 4% [standard deviation]) chemical oxygen demand (COD), 79% (± 3%) NH(4)(+)-N, 86% (± 2%) NO(3)(-)-N and 56% (± 7%) orthophosphate. CH(4) emission rates in the DWPs ranged from 502 to 1900 mg CH(4) m(-2) d(-1) while those of nitrous oxide (N(2)O) ranged from 0.63 to 4 mg N(2)O m(-2) d(-1). The CO(2) emission rates ranged from 1700 to 3300 mg CO(2) m(-2) day(-1). Duckweed coverage on water surface along with the continued deposit of duckweed debris in the DWPs and low-nutrient influent water created a low dissolved oxygen environment for the growth of unique ammonia-oxidizing organisms and methanogens. Archaeal and bacterial amoA abundance in the DWPs ranged from (1.5 ± 0.2) × 10(7) to (1.7 ± 0.2) × 10(8) copies/g dry soil and from (1.0 ± 0.3) × 10(3) to (1.5 ± 0.4) × 10(6) copies/g dry soil, respectively. The 16S rRNA acetoclastic and hydrogenotrophic methanogens ranged from (5.2 ± 0.2) × 10(5) to (9.0 ± 0.3) × 10(6) copies/g dry soil and from (1.0 ± 0.1) × 10(2) to (5.5 ± 0.4) × 10(3) copies/g dry soil, respectively. Ammonia-oxidizing archaea (AOA) appeared to be the dominant nitrifiers and acetoclastic Methanosaeta was the major methanogenic genus. The results suggest that methane is the predominant (>90%) greenhouse gas in the DWPs, where the relatively low stormwater nutrient inputs facilitate the growth of K-strategists such as AOA and Methanosaeta that may be responsible for ammonia removal and greenhouse gas emissions, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Filling Gaps in Biogeochemical Understanding of Wildfire Effects on Watersheds and Water Quality

    NASA Astrophysics Data System (ADS)

    Rhoades, Charles; Covino, Timothy; Chow, Alex

    2017-04-01

    Large, high-severity wildfires alter the biogeochemical conditions that determine how watersheds retain and release nutrients and influence stream water quality. These effects are commonly expected to abate within a few years, but recent studies show that post-fire watershed changes can have persistent, but poorly-understood biogeochemical consequences. Owing to the increased frequency and extent of high-severity wildfires predicted for western North America, and the growing awareness of the links between wildfire and clean water supply, there is a need to address these knowledge gaps. For the past 15 years we have tracked stream nutrients, chemistry, temperature, and sediment after the 2002 Hayman Fire, the largest wildfire in Colorado history. Our earlier work showed that headwater catchments that experienced extensive, high-severity forest fires had elevated stream nitrate, temperature, and turbidity for five post-fire years. Recent sampling, conducted 13 and 14 years after the fire, found that turbidity had largely returned to pretreatment levels, but that stream nitrate remained an order of magnitude above pre-fire levels in catchments with extensive high-severity wildfire. Stream temperature and total dissolved nitrogen concentration also remained higher in those catchments compared to unburned streams. Decreased plant demand is the mechanism commonly credited for post-fire nutrient losses, though our current work is evaluating the implications of soil and stream nutrient uptake and supply on persistent nitrogen (N) export from severely-burned catchments. For example, we have measured higher total soil N and higher net N mineralization in severely-burned portions of the Hayman Fire compared to moderately or unburned areas, indicating that higher soil N supply may contribute to N losses from upland soils. Conversely, using a nutrient tracer approach we found reduced N uptake in burned streams, which suggests a switch from the N-limited conditions typical of pristine catchments. Low stream dissolved organic carbon (DOC) in severely-burned catchments suggests greater carbon limitation on in-stream biological activity. This is the likely result of organic matter losses during the wildfire compounded by low allochthonous inputs from uplands or riparian zones. We also find that catchments with severely-burned headwater reaches and sparse riparian vegetation have high stream nitrate. Our findings regarding soil N supply and in-stream N retention coupled with the persistent N losses from burned headwaters and exposed riparian zones help prioritize restoration efforts aimed at mitigating long-term water quality effects of severe wildfires.

  13. Hydrology and Soil Manipulations of Iron-Rich Ditch Mesocosms Provide Little Evidence of Phosphorus Capture within the Profile.

    PubMed

    Ruppert, David E; Needelman, Brian A; Kleinman, Peter J A; Rabenhorst, Martin C; Momen, Bahram; Wester, David B

    2017-05-01

    Agricultural drainage ditches function as first-order streams and affect nutrient management. Soil mesocosms from a ditch featuring a vertical (increasing upward) gradient in iron (Fe) and phosphorus (P) were subjected to hydraulic and soil treatments. These manipulations mimicked aspects of dredging and controlled drainage and inspected the soil release and retention of P. Treatments did not remove P from simulated groundwater. Throughput water either gained in P (lack of dredging, especially under Fe-reducing conditions) or had P concentrations indistinguishable from input water (dredging). Undredged mesocosms, when Fe-reducing, released Fe and P simultaneously. Simultaneous release of P and Fe from our Fe-reducing mesocosms indicates a mechanism whereby P capture occurs by Fe precipitation upon emergence to aerated surficial waters. Upwelling and surficial phases of ditch hydrology and the lowering of the ditch surface on dredging complicate interpretation of traditional means of describing ditch P retention and release. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Rhizosphere Processes Are Quantitatively Important Components of Terrestrial Biogeochemical Cycles: Data & Models

    NASA Astrophysics Data System (ADS)

    Finzi, A.

    2016-12-01

    The rhizosphere is a hot spot and hot moment for biogeochemical cycles. Microbial activity, extracellular enzyme activity and element cycles are greatly enhanced by root derived carbon inputs. As such the rhizosphere may be an important driver of ecosystem responses to global changes such as rising temperatures and atmospheric CO2 concentrations. Empirical research on the rhizosphere is extensive but extrapolation of rhizosphere processes to large spatial and temporal scales is largely uninterrogated. Using a combination of field studies, meta-analysis and numerical models we have found good reason to think that scaling is possible. In this talk I discuss the results of this research and focus on the results of a new modeling effort that explicitly links root distribution and architecture with a model of microbial physiology to assess the extent to which rhizosphere processes may affect ecosystem responses to global change. Results to date suggest that root inputs of C and possibly nutrients (ie, nitrogen) impact the fate of new C inputs to the soil (ie, accumulation or loss) in response to warming and enhanced productivity at elevated CO2. The model also provides qualitative guidance on incorporating the known effects of ectomycorrhizal fungi on decomposition and rates of soil C and N cycling.

  15. Targeting the right input data to improve crop modeling at global level

    NASA Astrophysics Data System (ADS)

    Adam, M.; Robertson, R.; Gbegbelegbe, S.; Jones, J. W.; Boote, K. J.; Asseng, S.

    2012-12-01

    Designed for location-specific simulations, the use of crop models at a global level raises important questions. Crop models are originally premised on small unit areas where environmental conditions and management practices are considered homogeneous. Specific information describing soils, climate, management, and crop characteristics are used in the calibration process. However, when scaling up for global application, we rely on information derived from geographical information systems and weather generators. To run crop models at broad, we use a modeling platform that assumes a uniformly generated grid cell as a unit area. Specific weather, specific soil and specific management practices for each crop are represented for each of the cell grids. Studies on the impacts of the uncertainties of weather information and climate change on crop yield at a global level have been carried out (Osborne et al, 2007, Nelson et al., 2010, van Bussel et al, 2011). Detailed information on soils and management practices at global level are very scarce but recognized to be of critical importance (Reidsma et al., 2009). Few attempts to assess the impact of their uncertainties on cropping systems performances can be found. The objectives of this study are (i) to determine sensitivities of a crop model to soil and management practices, inputs most relevant to low input rainfed cropping systems, and (ii) to define hotspots of sensitivity according to the input data. We ran DSSAT v4.5 globally (CERES-CROPSIM) to simulate wheat yields at 45arc-minute resolution. Cultivar parameters were calibrated and validated for different mega-environments (results not shown). The model was run for nitrogen-limited production systems. This setting was chosen as the most representative to simulate actual yield (especially for low-input rainfed agricultural systems) and assumes crop growth to be free of any pest and diseases damages. We conducted a sensitivity analysis on contrasting management practices, initial soil conditions, and soil characteristics information. Management practices were represented by planting date and the amount of fertilizer, initial conditions estimates for initial nitrogen, soil water, and stable soil carbon, and soil information is based on a simplified version of the WISE database, characterized by soil organic matter, texture and soil depth. We considered these factors as the most important determinants of nutrient supply to crops during their growing season. Our first global results demonstrate that the model is most sensitive to the initial conditions in terms of soil carbon and nitrogen (CN): wheat yields decreased by 45% when soil CN is null and increase by 15% when twice the soil CN content of the reference run is used. The yields did not appear to be very sensitive to initial soil water conditions, varying from 0% yield increase when initial soil water is set to wilting point to 6% yield increase when it was set to field capacity. They are slightly sensitive to nitrogen application: 8% yield decrease when no N is applied to 9% yield increase when 150 kg.ha-1 is applied. However, with closer examination of results, the model is more sensitive to nitrogen application than to initial soil CN content in Vietnam, Thailand and Japan compared to the rest of the world. More analyses per region and results on the planting dates and soil properties will be presented.

  16. Agronomic and environmental consequences of using liquid mineral concentrates on arable farms.

    PubMed

    Schils, René L M; Postma, Romke; van Rotterdam, Debby; Zwart, Kor B

    2015-12-01

    In regions with intensive livestock systems, the processing of manure into liquid mineral concentrates is seen as an option to increase the nutrient use efficiency of manures. The agricultural sector anticipates that these products may in future be regarded as regular mineral fertilisers. We assessed the agronomic suitability and impact on greenhouse gas (GHG) and ammonia emissions of using liquid mineral concentrates on arable farms. The phosphate requirements on arable farms were largely met by raw pig slurry, given its large regional availability. After the initial nutrient input by means of pig slurry, the nitrogen/phosphate ratio of the remaining nutrient crop requirements determined the additional amount of liquid mineral concentrates that can be used. For sandy soils, liquid mineral concentrates could supply 50% of the nitrogen requirement, whereas for clay soils the concentrates did not meet the required nitrogen/phosphate ratio. The total GHG emissions per kg of plant available nitrogen ranged from -65 to 33 kg CO2 -equivalents. It increased in the order digestates < mineral fertiliser < raw slurries. Liquid mineral concentrates had limited added value for arable farms. For an increased suitability it is necessary that liquid mineral concentrates do not contain phosphate and that the nitrogen availability is increased. In the manure-processing chain, anaerobic digestion had a dominant and beneficial effect on GHG emissions. © 2015 Society of Chemical Industry.

  17. Linking spatial patterns of soil redistribution traced with 137Cs and soil nutrients in a Mediterranean mountain agroecosystem (NE Spain)

    NASA Astrophysics Data System (ADS)

    Quijano, Laura; Gaspar, Leticia; Navas, Ana

    2016-04-01

    Mediterranean mountain agroecosystems are prone to soil loss mainly due to the accelerated erosion as a consequence of human induced changes from agriculture and grazing practices over the last centuries and the climatic conditions (i.e. irregular and scarce precipitations and drought periods). Soil erosion leads to soil degradation inducing the loss of soil functions. The progressive decline of soil functions thereof soil quality is associated to a decrease of soil productivity and can threat the sustainability of cultivated soils. The use of fallout 137Cs as a soil movement tracer provides useful data to identify areas where loss and gain of 137Cs occurs and that of soil. This study aims to address soil movement and soil nutrient dynamics closely related to the status of soil degradation. A rain-fed cereal field (1.6 ha) representative of Mediterranean mountain agricultural landscapes (42°25'41''N 1°13'8''W) was selected to examine the effects of soil redistribution processes on the spatial variability of soil organic carbon (SOC) and nitrogen (SON) and their relationships with soil properties and topographic characteristics. From the hydrological point of view, the field is isolated due to the effect of landscape features and man-made structures. Climate is continental Mediterranean with an average annual rainfall of 500 mm and soils are Calcisols. The reference inventories of 137Cs and soil nutrients were established from 21 soil samples collected in nearby undisturbed areas under typical Mediterranean vegetation cover. A total of 156 bulk soil samples (30-50 cm depth) and 156 topsoil samples (5 cm) were collected on a 10 m grid. 137Cs and soil nutrients loss and gain areas were identified by comparing the reference inventories with the values of inventories at the sampling points. A new approach to characterize and measure active (ACF) and stable (SCF) carbon fraction contents by using a dry combustion method based on the oxidation temperature of carbon fractions to analyze the SOC pool dynamics is presented in this study. A detailed field topographic survey and mapping of the spatial variability of soil properties and nutrient contents from soil analyses displayed similar spatial patterns of 137Cs and soil nutrients that also were directly and significantly correlated (p≤0.01). As much as 70% of the surface of the study field had lower values of 137Cs inventory indicating a predominance of soil loss linked to a generalized loss of soil nutrients. SOC gain was found in less than 1% of the study field and there was a large loss of SON compared to the undisturbed reference site. Higher and significant (p≤0.01) contents of soil nutrients were found in topsoil samples than in the bulk ones. Furthermore, there was an enrichment of the relative contribution of ACF to total SOC in sampling points where there was a 137Cs gain in both bulk and topsoil samples. Understanding patterns of soil nutrients can be useful for developing and implementing land management strategies to preserve soil quality in Mediterranean agricultural areas.

  18. Atmospheric deposition as a source of carbon and nutrients to an alpine catchment of the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.

    2012-08-01

    Many alpine areas are experiencing deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, atmospheric deposition sources may be an important source of C and nutrients for these environments. We evaluated the magnitude of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long-term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were 1.12 ± 0.19 mg l-1, and weekly concentrations reached peaks as high at 6-10 mg l-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. To investigate potential sources of C in atmospheric deposition, we evaluated the chemical quality of dissolved organic matter (DOM) and relationships between DOM and other solutes in wet deposition. Relationships between DOC concentration, fluorescence, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring, which may reflect an association of DOM with dust. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples. Our C budget estimates for the Green Lake 4 catchment illustrated that wet deposition (9.9 kg C ha-1 yr-1) and dry deposition (6.9 kg C ha-1 yr-1) were a combined input of approximately 17 kg C ha-1 yr-1, which could be as high as 24 kg C ha-1 yr-1 in high dust years. This atmospheric C input approached the C input from microbial autotrophic production in barren soils. Atmospheric wet and dry deposition also contributed 4.3 kg N ha-1 yr-1, 0.15 kg P ha-1 yr-1, and 2.7 kg Ca2+ ha-1 yr-1 to this alpine catchment.

  19. Mineral Types and Tree Species Determine the Functional and Taxonomic Structures of Forest Soil Bacterial Communities.

    PubMed

    Colin, Y; Nicolitch, O; Turpault, M-P; Uroz, S

    2017-03-01

    Although minerals represent important soil constituents, their impact on the diversity and structure of soil microbial communities remains poorly documented. In this study, pure mineral particles with various chemistries (i.e., obsidian, apatite, and calcite) were considered. Each mineral type was conditioned in mesh bags and incubated in soil below different tree stands (beech, coppice with standards, and Corsican pine) for 2.5 years to determine the relative impacts of mineralogy and mineral weatherability on the taxonomic and functional diversities of mineral-associated bacterial communities. After this incubation period, the minerals and the surrounding bulk soil were collected to determine mass loss and to perform soil analyses, enzymatic assays, and cultivation-dependent and -independent analyses. Notably, our 16S rRNA gene pyrosequencing analyses revealed that after the 2.5-year incubation period, the mineral-associated bacterial communities strongly differed from those of the surrounding bulk soil for all tree stands considered. When focusing only on minerals, our analyses showed that the bacterial communities associated with calcite, the less recalcitrant mineral type, significantly differed from those that colonized obsidian and apatite minerals. The cultivation-dependent analysis revealed significantly higher abundances of effective mineral-weathering bacteria on the most recalcitrant minerals (i.e., apatite and obsidian). Together, our data showed an enrichment of Betaproteobacteria and effective mineral-weathering bacteria related to the Burkholderia and Collimonas genera on the minerals, suggesting a key role for these taxa in mineral weathering and nutrient cycling in nutrient-poor forest ecosystems. IMPORTANCE Forests are usually developed on nutrient-poor and rocky soils, while nutrient-rich soils have been dedicated to agriculture. In this context, nutrient recycling and nutrient access are key processes in such environments. Deciphering how soil mineralogy influences the diversity, structure, and function of soil bacterial communities in relation to the soil conditions is crucial to better understanding the relative role of the soil bacterial communities in nutrient cycling and plant nutrition in nutrient-poor environments. The present study determined in detail the diversity and structure of bacterial communities associated with different mineral types incubated for 2.5 years in the soil under different tree species using cultivation-dependent and -independent analyses. Our data showed an enrichment of specific bacterial taxa on the minerals, specifically on the most weathered minerals, suggesting that they play key roles in mineral weathering and nutrient cycling in nutrient-poor forest ecosystems. Copyright © 2017 American Society for Microbiology.

  20. Mineral Types and Tree Species Determine the Functional and Taxonomic Structures of Forest Soil Bacterial Communities

    PubMed Central

    Colin, Y.; Nicolitch, O.; Turpault, M.-P.

    2016-01-01

    ABSTRACT Although minerals represent important soil constituents, their impact on the diversity and structure of soil microbial communities remains poorly documented. In this study, pure mineral particles with various chemistries (i.e., obsidian, apatite, and calcite) were considered. Each mineral type was conditioned in mesh bags and incubated in soil below different tree stands (beech, coppice with standards, and Corsican pine) for 2.5 years to determine the relative impacts of mineralogy and mineral weatherability on the taxonomic and functional diversities of mineral-associated bacterial communities. After this incubation period, the minerals and the surrounding bulk soil were collected to determine mass loss and to perform soil analyses, enzymatic assays, and cultivation-dependent and -independent analyses. Notably, our 16S rRNA gene pyrosequencing analyses revealed that after the 2.5-year incubation period, the mineral-associated bacterial communities strongly differed from those of the surrounding bulk soil for all tree stands considered. When focusing only on minerals, our analyses showed that the bacterial communities associated with calcite, the less recalcitrant mineral type, significantly differed from those that colonized obsidian and apatite minerals. The cultivation-dependent analysis revealed significantly higher abundances of effective mineral-weathering bacteria on the most recalcitrant minerals (i.e., apatite and obsidian). Together, our data showed an enrichment of Betaproteobacteria and effective mineral-weathering bacteria related to the Burkholderia and Collimonas genera on the minerals, suggesting a key role for these taxa in mineral weathering and nutrient cycling in nutrient-poor forest ecosystems. IMPORTANCE Forests are usually developed on nutrient-poor and rocky soils, while nutrient-rich soils have been dedicated to agriculture. In this context, nutrient recycling and nutrient access are key processes in such environments. Deciphering how soil mineralogy influences the diversity, structure, and function of soil bacterial communities in relation to the soil conditions is crucial to better understanding the relative role of the soil bacterial communities in nutrient cycling and plant nutrition in nutrient-poor environments. The present study determined in detail the diversity and structure of bacterial communities associated with different mineral types incubated for 2.5 years in the soil under different tree species using cultivation-dependent and -independent analyses. Our data showed an enrichment of specific bacterial taxa on the minerals, specifically on the most weathered minerals, suggesting that they play key roles in mineral weathering and nutrient cycling in nutrient-poor forest ecosystems. PMID:28003192

  1. Effects of fresh and aged biochars from pyrolysis and hydrothermal carbonization on nutrient sorption in agricultural soils

    NASA Astrophysics Data System (ADS)

    Gronwald, M.; Don, A.; Tiemeyer, B.; Helfrich, M.

    2015-01-01

    Leaching of nutrients from agricultural soils causes major environmental problems that may be reduced with biochar amendments to the soils. Biochars are characterised by a high adsorption capacity, i.e., they may retain nutrients such nitrate and ammonium. However, biochar properties strongly depend on feedstock and the production process. We investigated the nutrient retention capacity of biochars derived from pyrolysis (pyrochar) as well as from hydrothermal carbonization (hydrochar; produced at 200 and 250 °C) from three different feedstocks (digestates, Miscanthus, woodchips) mixed into different soil substrates (sandy loam and silty loam). Moreover, we investigated the influence of biochar degradation on its nutrient retention capacity using a seven-month in-situ field incubation of pyrochar and hydrochar. Pyrochars showed the highest ability to retain nitrate, ammonium and phosphate, with pyrochar from woodchips being particularly efficient in nitrate adsorption. Ammonium adsorption of pyrochars was controlled by the soil type of the soil-biochar mixture. We found some ammonium retention on sandy soils, but no pyrochar effect or even ammonium leaching from the loamy soil. The phosphate retention capacity of pyrochars strongly depended on the pyrochar feedstock with large phosphate leaching from digestate-derived pyrochar and some adsorption capacity from woodchip-derived pyrochar. Application of hydrochars to agricultural soils caused small, and often not significant, effects on nutrient retention. In contrast, some hydrochars did increase the leaching of nutrients compared to the non-amended control soil. We found a surprisingly rapid loss of the biochars' adsorption capacity after field application of the biochars. For all sites and for hydrochar and pyrochar, the adsorption capacity was reduced by 60-80% to less or no nitrate and ammonium adsorption. Thus, our results cast doubt on the efficiency of biochar applications to temperate zone soils to minimize nutrient losses via leaching.

  2. Effects of fresh and aged chars from pyrolysis and hydrothermal carbonization on nutrient sorption in agricultural soils

    NASA Astrophysics Data System (ADS)

    Gronwald, M.; Don, A.; Tiemeyer, B.; Helfrich, M.

    2015-06-01

    Leaching of nutrients from agricultural soils causes major environmental problems that may be reduced with amendments of chars derived from pyrolysis (pyrochars) or hydrothermal carbonization (hydrochars). Chars are characterized by a high adsorption capacity - i.e. they may retain nutrients such as nitrate and ammonium. However, the physicochemical properties of the chars and hence their sorption capacity likely depend on feedstock and the production process. We investigated the nutrient retention capacity of pyrochars and hydrochars from three different feedstocks (digestates, Miscanthus, woodchips) mixed into different soil substrates (sandy loam and silty loam). Moreover, we investigated the influence of char degradation on its nutrient retention capacity using a 7-month in situ field incubation of pyrochar and hydrochar mixed into soils at three different field sites. Pyrochars showed the highest ability to retain nitrate, ammonium and phosphate, with pyrochar from woodchips being particularly efficient in nitrate adsorption. Ammonium adsorption of pyrochars was controlled by the soil type of the soil-char mixture. We found some ammonium retention on sandy soils, but no pyrochar effect or even ammonium leaching from the loamy soil. The phosphate retention capacity of pyrochars strongly depended on the pyrochar feedstock with large phosphate leaching from digestate-derived pyrochar and some adsorption capacity from woodchip-derived pyrochar. Application of hydrochars to agricultural soils caused small, and often not significant, effects on nutrient retention. In contrast, some hydrochars did increase the leaching of nutrients compared to the non-amended control soil. We found a surprisingly rapid loss of the chars' adsorption capacity after field application of the chars. For all sites and for hydrochar and pyrochar, the adsorption capacity was reduced by 60-80 % to less or no nitrate and ammonium adsorption. Thus, our results cast doubt on the efficiency of char applications to temperate zone soils to minimize nutrient losses via leaching.

  3. Waterborne nutrient flow through an upland-peatland watershed in Minnesota

    Treesearch

    Elon S. Verry; D.R. Timmons

    1982-01-01

    Water and nutrient flow were measured on a complex upland-peatland watershed in north central Minnesota. Annual water budgets for upland and peatland components and for the total watershed were developed. Nutrient input and output budgets were developed for each component on a seasonal basis, using net precipitation inputs, and an annual nutrient budget was developed...

  4. Scale-location specific relations between soil nutrients and topographic factors in the Fen River Basin, Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Zhu, Hongfen; Bi, Rutian; Duan, Yonghong; Xu, Zhanjun

    2017-06-01

    Understanding scale- and location-specific variations of soil nutrients in cultivated land is a crucial consideration for managing agriculture and natural resources effectively. In the present study, wavelet coherency was used to reveal the scale-location specific correlations between soil nutrients, including soil organic matter (SOM), total nitrogen (TN), available phosphorus (AP), and available potassium (AK), as well as topographic factors (elevation, slope, aspect, and wetness index) in the cultivated land of the Fen River Basin in Shanxi Province, China. The results showed that SOM, TN, AP, and AK were significantly inter-correlated, and that the scales at which soil nutrients were correlated differed in different landscapes, and were generally smaller in topographically rougher terrain. All soil nutrients but TN were significantly influenced by the wetness index at relatively large scales (32-72 km) and AK was significantly affected by the aspect at large scales at partial locations, showing localized features. The results of this study imply that the wetness index should be taken into account during farming practices to improve the soil nutrients of cultivated land in the Fen River Basin at large scales.

  5. Effects of nutrient and lime additions in mine site rehabilitation strategies on the accumulation of antimony and arsenic by native Australian plants.

    PubMed

    Wilson, Susan C; Leech, Calvin D; Butler, Leo; Lisle, Leanne; Ashley, Paul M; Lockwood, Peter V

    2013-10-15

    The effects of nutrient and lime additions on antimony (Sb) and arsenic (As) accumulation by native Australian and naturalised plants growing in two contaminated mine site soils (2,735 mg kg(-1) and 4,517 mg kg(-1) Sb; 826 mg kg(-1) and 1606 As mgkg(-1)) was investigated using a glasshouse pot experiment. The results indicated an increase in soil solution concentrations with nutrient addition in both soils and also with nutrient+lime addition for Sb in one soil. Metalloid concentrations in plant roots were significantly greater than concentrations in above ground plant parts. The metalloid transfer to above ground plant parts from the roots and from the soil was, however, low (ratio of leaf concentration/soil concentration≪1) for all species studied. Eucalyptus michaeliana was the most successful at colonisation with lowest metalloid transfer to above ground plant parts. Addition of nutrients and nutrients+lime to soils, in general, increased plant metalloid accumulation. Relative As accumulation was greater than that of Sb. All the plant species studied were suitable for consideration in the mine soil phytostabilisation strategies but lime additions should be limited and longer term trials also recommended. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. 12 years of intensive management increases soil carbon stocks in Loblolly pine and Sweetgum stands

    NASA Astrophysics Data System (ADS)

    Sanchez, F. G.; Samuelson, L.; Johnsen, K.

    2009-12-01

    To achieve and maintain productivity goals, forest managers rely on intensive management strategies. These strategies have resulted in considerable gains in forest productivity. However, the impacts of these strategies on belowground carbon dynamics is less clear. Carbon dynamics are influenced by a multitude of factors including soil moisture, nutrient status, net primary productivity and carbon allocation patterns. In this study, we describe the impact of four management strategies on soil carbon and nitrogen stocks in 12-year-old loblolly pine and sweetgum plantations. The management strategies are: (1) complete understory control, (2) complete understory control + drip irrigation, (3) complete understory control + drip irrigation and fertilization and (4) complete understory control + drip irrigation and fertilization and pest control. These management strategies were replicated on 3 blocks in a randomized complete block design. After 12 years, soil carbon stocks increased with increasing management intensity for both tree species. This effect was consistent throughout the depth increments measured (0-10, 10-20, 20-30 cm). Alternatively, no significant effect was detected for soil nitrogen at any depth increment. Sweetgum had higher soil carbon and nitrogen stocks at each depth increment than loblolly pine. There was a greater difference in nitrogen stocks than carbon stocks between the two species resulting in lower soil C:N ratios in the sweetgum stands. These observations may be due to differences in net primary productivity, rooting structure and carbon allocation patterns of sweetgum compared with loblolly pine. To determine the relative stability of the carbon and nitrogen stocks for the different treatments and tree species, we sequentially fractionated the soil samples into six fractions of differing stability. Although soil carbon stocks for both species increased with management intensity, there was no detectable difference in the soil carbon fractions based on management intensity. Additionally, there was no difference between soil carbon fractions based on tree species. These observations suggest that although external inputs (i.e., moisture, carbon and nutrients) increase soil carbon stocks, they do not alter soil carbon stabilization mechanisms at these sites.

  7. Nutrient losses from Fall and Winter-applied manure: Effects of timing and soil temperature

    USDA-ARS?s Scientific Manuscript database

    Soil temperature is a major environmental factor that affects both the infiltration of meltwater and precipitation, and nutrient cycling. The objectives of this study were to determine nutrient losses in runoff and leachate from fall and winter-applied dairy manure based on the soil temperature at t...

  8. Nutrient losses from fall- and winter-applied manure: effects of timing and soil temperature

    USDA-ARS?s Scientific Manuscript database

    Soil temperature is a major environmental factor that affects meltwater and precipitation infiltration and nutrient cycling. The objective of this study was to determine nutrient losses in runoff and leachate from fall- and winter-applied dairy manure as affected by soil temperature at the time of a...

  9. Enzyme Sorption onto Soil and Biocarbon Amendments Alters Catalytic Capacity and Depends on the Specific Protein and pH

    NASA Astrophysics Data System (ADS)

    Foster, E.; Fogle, E. J.; Cotrufo, M. F.

    2017-12-01

    Enzymes catalyze biogeochemical reactions in soils and play a key role in nutrient cycling in agricultural systems. Often, to increase soil nutrients, agricultural managers add organic amendments and have recently experimented with charcoal-like biocarbon products. These amendments can enhance soil water and nutrient holding capacity through increasing porosity. However, the large surface area of the biocarbon has the potential to sorb nutrients and other organic molecules. Does the biocarbon decrease nutrient cycling through sorption of enzymes? In a laboratory setting, we compared the interaction of two purified enzymes β-glucosidase and acid phosphatase with a sandy clay loam and two biocarbons. We quantified the sorbed enzymes at three different pHs using a Bradford protein assay and then measured the activity of the sorbed enzyme via high-throughput fluorometric analysis. Both sorption and activity depended upon the solid phase, pH, and specific enzyme. Overall the high surface area biocarbon impacted the catalytic capacity of the enzymes more than the loam soil, which may have implications for soil nutrient management with these organic amendments.

  10. Shoot ionome to predict the synergism and antagonism between nutrients as affected by substrate and physiological status.

    PubMed

    Pii, Youry; Cesco, Stefano; Mimmo, Tanja

    2015-09-01

    The elemental composition of a tissue or organism is defined as ionome. However, the combined effects on the shoot ionome determined by the taxonomic character, the nutrient status and different substrates have not been investigated. This study tests the hypothesis that phylogenetic variation of monocots and dicots grown in iron deficiency can be distinguished by the shoot ionome. We analyzed 18 elements in barley, cucumber and tomato and in two substrates (hydroponic vs soil) with different nutritional regimes. Multivariate analysis evidenced a clear separation between the species. In hydroponic conditions the main drivers separating the species are non essential-nutrients as Ti, Al, Na and Li, which were positively correlated with macro- (P, K) and micronutrients (Fe, Zn, Mo, B). The separation between species is confirmed when plants are grown on soil, but the distribution is determined especially by macronutrients (S, P, K, Ca, Mg) and micronutrients (B). A number of macro (Mg, Ca, S, P, K) and micronutrients (Fe, Mn, Zn, Cu, Mo, B) contribute to plant growth and several other important physiological and metabolic plant activities. The results reported here confirmed that the synergism and antagonism between them and other non-essential elements (Ti, Al, Si, Na) define the plant taxonomic character. The ionome profile might thus be exploited as a tool for the diagnosis of plants physiological/nutritional status but also in defining biofortification strategies to optimize both mineral enrichment of staple food crops and the nutrient input as fertilizers. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. The soil carbon dilemma in the humid tropics: cannot hoard it!?

    NASA Astrophysics Data System (ADS)

    Sommer, Rolf; Paul, Birthe; Kihara, Job

    2017-04-01

    As Albrecht (1938) wrote some 70 years ago: "[Soil] Organic matter functions mainly as it is decayed and destroyed. Its value lies in its dynamic nature." Thus, by merely hoarding rather than using soil organic matter (SOM; compare also Janzen, 2006) with the aim to sequester carbon (C) in soils, we risk neglecting the crucial aspect that decomposing SOM and the release of nutrients (and concurrently CO2) is the basis for a healthy crop, decent yields and thus food security. This is even more true so in the tropics, where the majority of soils have low intrinsic fertility. In the absence of sufficient nutrient inputs through fertilizers in smallholder subsistence agriculture predominating e.g. in sub-Saharan Africa (SSA), SOM turnover is the key driver of crop productivity. On the other hand, humid tropical conditions - high temperatures and long periods of moist conditions - are very conducive to SOM decay. Therefore, maintaining SOM levels requires the constant input of significant amounts of organic matter; material that is often in low supply while then first of all used as animal feed in SSA mixed-crop livestock systems. In this context it is not surprising that for SSA very few studies so far have been published that showcased viable agronomic management systems that did also sequester notable C in the soil. The two long-term trials of the International Center for Tropical Agriculture (CIAT) in Western Kenya are no exception. Neither Conservation Agriculture (CA) nor Integrated Soil Fertility Management (ISFM) management practices over a period of 12 years could prevent the topsoil from losing C. But, these two practices could significantly slow down C losses in comparison to treatments representing common farmer practice. Also in comparison to the latter, yields of CA and ISFM plots were 2-4 time higher. This example shows that hoarding SOM in soils under humid tropical conditions is a challenge, and to attain amounts required to come even close to the 4p1000 C-sequestration targets are (yet?) make-believe. However, using SOM, while replenishing losses as much as possible, provides for a notable increase in soil fertility and crop yields while - as a co-benefit - reducing carbon emissions from these systems. The presentation will discuss this dilemma and elaborate on the pros and cons of alternatively using soil organic carbon emission intensities - analogous to the concept of greenhouse gas emissions intensities from livestock, which could be a smarter way of assessing the climate footprint of smallholder agricultural systems in the tropics. ========== Albrecht, W.A., 1938. Loss of soil organic matter and its restoration. In: United States Department of Agriculture, Soils and Men: Yearbook of Agriculture 1938. US Government Printing Office, pp. 347-360 Janzen, H.H. 2006. The soil carbon dilemma: Shall we hoard it or use it? Soil Biology & Biochemistry 38, 419-424.

  12. Soil process-oriented modelling of within-field variability based on high-resolution 3D soil type distribution maps.

    NASA Astrophysics Data System (ADS)

    Bönecke, Eric; Lück, Erika; Gründling, Ralf; Rühlmann, Jörg; Franko, Uwe

    2016-04-01

    Today, the knowledge of within-field variability is essential for numerous purposes, including practical issues, such as precision and sustainable soil management. Therefore, process-oriented soil models have been applied for a considerable time to answer question of spatial soil nutrient and water dynamics, although, they can only be as consistent as their variation and resolution of soil input data. Traditional approaches, describe distribution of soil types, soil texture or other soil properties for greater soil units through generalised point information, e.g. from classical soil survey maps. Those simplifications are known to be afflicted with large uncertainties. Varying soil, crop or yield conditions are detected even within such homogenised soil units. However, recent advances of non-invasive soil survey and on-the-go monitoring techniques, made it possible to obtain vertical and horizontal dense information (3D) about various soil properties, particularly soil texture distribution which serves as an essential soil key variable affecting various other soil properties. Thus, in this study we based our simulations on detailed 3D soil type distribution (STD) maps (4x4 m) to adjacently built-up sufficient informative soil profiles including various soil physical and chemical properties. Our estimates of spatial STD are based on high-resolution lateral and vertical changes of electrical resistivity (ER), detected by a relatively new multi-sensor on-the-go ER monitoring device. We performed an algorithm including fuzzy-c-mean (FCM) logic and traditional soil classification to estimate STD from those inverted and layer-wise available ER data. STD is then used as key input parameter for our carbon, nitrogen and water transport model. We identified Pedological horizon depths and inferred hydrological soil variables (field capacity, permanent wilting point) from pedotransferfunctions (PTF) for each horizon. Furthermore, the spatial distribution of soil organic carbon (SOC), as essential input variable, was predicted by measured soil samples and associated to STD of the upper 30 cm. The comprehensive and high-resolution (4x4 m) soil profile information (up to 2 m soil depth) were then used to initialise a soil process model (Carbon and Nitrogen Dynamics - CANDY) for soil functional modelling (daily steps of matter fluxes, soil temperature and water balances). Our study was conducted on a practical field (~32,000 m²) of an agricultural farm in Central Germany with Chernozem soils under arid conditions (average rainfall < 550 mm). This soil region is known to have differences in soil structure mainly occurring within the subsoil, since topsoil conditions are described as homogenous. The modelled soil functions considered local climate information and practical farming activities. Results show, as expected, distinguished functional variability, both on spatial and temporal resolution for subsoil evident structures, e.g. visible differences for available water capacity within 0-100 cm but homogenous conditions for the topsoil.

  13. Legacies of Human Impact: Long-Term Nitrogen Dynamics, from the Mississippi to the Mekong

    NASA Astrophysics Data System (ADS)

    Van Meter, K. J.; Van Cappellen, P.; Basu, N. B.

    2017-12-01

    Global flows of reactive nitrogen (N) have increased significantly over the last century in response to land-use change, agricultural intensification and elevated levels of atmospheric N deposition. Despite widespread implementation of a range of conservation measures to mitigate the impacts of N-intensive agriculture, N concentrations in surface waters are in many cases remaining steady or continuing to increase. Such lack of response has been attributed to legacy N stores in subsurface reservoirs that contribute to time lags between conservation measures implemented on the landscape and water quality benefits realized in receiving water bodies. It has remained unclear, however, what the magnitudes of such stores might be, and how they are partitioned between shallow soil and deeper groundwater reservoirs. In the present work, we have synthesized data to develop a comprehensive, 214-year (1800 - 2014) trajectory of N inputs to the land surface of watersheds across a global continuum of watersheds, from the Mississippi to the Mekong and beyond. Using our ELEMeNT model, a process-based model that pairs long-term nutrient input trajectories with a travel time-based approach, we have reconstructed historic nutrient yields at the outlets of major global watersheds and have estimated the magnitudes of N accumulation in both soil and groundwater pools. Our results show significant N loading above baseline levels many major watersheds before the widespread use of commercial N fertilizers, generally coinciding with periods of significant conversion of pristine land to row-crop agriculture. Our results also highlight the varying importance of biogeochemical and hydrologic N legacies across a wide distribution of climate, land use, and management. The results of the present study suggest that anthropogenic N legacies are a major driver of both current and future water quality, and that the presence of these legacies significantly impacts global nutrient cycling.

  14. A spatial and seasonal assessment of river water chemistry across North West England.

    PubMed

    Rothwell, J J; Dise, N B; Taylor, K G; Allott, T E H; Scholefield, P; Davies, H; Neal, C

    2010-01-15

    This paper presents information on the spatial and seasonal patterns of river water chemistry at approximately 800 sites in North West England based on data from the Environment Agency regional monitoring programme. Within a GIS framework, the linkages between average water chemistry (pH, sulphate, base cations, nutrients and metals) catchment characteristics (topography, land cover, soil hydrology, base flow index and geology), rainfall, deposition chemistry and geo-spatial information on discharge consents (point sources) are examined. Water quality maps reveal that there is a clear distinction between the uplands and lowlands. Upland waters are acidic and have low concentrations of base cations, explained by background geological sources and land cover. Localised high concentrations of metals occur in areas of the Cumbrian Fells which are subjected to mining effluent inputs. Nutrient concentrations are low in the uplands with the exception sites receiving effluent inputs from rural point sources. In the lowlands, both past and present human activities have a major impact on river water chemistry, especially in the urban and industrial heartlands of Greater Manchester, south Lancashire and Merseyside. Over 40% of the sites have average orthophosphate concentrations >0.1mg-Pl(-1). Results suggest that the dominant control on orthophosphate concentrations is point source contributions from sewage effluent inputs. Diffuse agricultural sources are also important, although this influence is masked by the impact of point sources. Average nitrate concentrations are linked to the coverage of arable land, although sewage effluent inputs have a significant effect on nitrate concentrations. Metal concentrations in the lowlands are linked to diffuse and point sources. The study demonstrates that point sources, as well as diffuse sources, need to be considered when targeting measures for the effective reduction in river nutrient concentrations. This issue is clearly important with regards to the European Union Water Framework Directive, eutrophication and river water quality. Copyright 2009 Elsevier B.V. All rights reserved.

  15. Relationship between fire temperature and changes in chemical soil properties: a conceptual model of nutrient release

    NASA Astrophysics Data System (ADS)

    Thomaz, Edivaldo L.; Doerr, Stefan H.

    2014-05-01

    The purpose of this study was to evaluate the effects of fire temperatures (i.e., soil heating) on nutrient release and aggregate physical changes in soil. A preliminary conceptual model of nutrient release was established based on results obtained from a controlled burn in a slash-and-burn agricultural system located in Brazil. The study was carried out in clayey subtropical soil (humic Cambisol) from a plot that had been fallow for 8 years. A set of three thermocouples were placed in four trenches at the following depths: 0 cm on the top of the mineral horizon, 1.0 cm within the mineral horizon, and 2 cm within the mineral horizon. Three soil samples (true independent sample) were collected approximately 12 hours post-fire at depths of 0-2.5 cm. Soil chemical changes were more sensitive to fire temperatures than aggregate physical soil characteristics. Most of the nutrient response to soil heating was not linear. The results demonstrated that moderate temperatures (< 400°C) had a major effect on nutrient release (i.e., the optimum effect), whereas high temperatures (> 500 °C) decreased soil fertility.

  16. Maintaining adequate nutrient supply - Principles, decision-support tools, and best management practices [Chapter 6

    Treesearch

    Robert B. Harrison; Douglas A. Maguire; Deborah Page-Dumroese

    2011-01-01

    Maintaining adequate nutrient supply to maintain or enhance tree vigor and forest growth requires conservation of topsoil and soil organic matter. Sometimes nutrient amendments are also required to supplement inherent nutrient-pool limitations or replenish nutrients removed in harvested material. The goal is to maintain the productive potential of the soil and, when...

  17. [Change traits of phosphorous consumption structure in China and their effects on environmental phosphorous loads].

    PubMed

    Ma, Dun-Chao; Hu, Shan-Ying; Chen, Ding-Jiang; Li, You-Run

    2012-04-01

    Substance flow analysis was used to construct a model to analyze change traits of China's phosphorous (P) consumption structure from 1980 to 2008 and their influences on environmental phosphorous loads, then the correlation between several socioeconomic factors and phosphorous consumption pollution was investigated. It is found that phosphorous nutrient inputs of urban life and rural life on a per capita level climbed to 1.20 kg x a(-1) and 0.99 kg x a(-1) from 0.83 kg x a(-1) and 0.75 kg x a(-1) respectively, but phosphorous recycling ratios of urban life fell to 15.6% from 62.6%. P inputs of animal husbandry and planting also kept increasing, but the recycling ratio of the former decreased from 67.5% to 40.5%, meanwhile much P input of the latter was left in agricultural soil. Correlation coefficients were all above 0.90, indicating that population, urbanization level, development levels of planting and animal husbandry were important incentives for P consumption pollution in China. Environmental Kuznets curve showed that China still stayed in the early development stage, promoting economic growth at an expense of environmental quality. This study demonstrates that China's P consumption system is being transformed into a linear and open structure, and that P nutrient loss and environmental P loads increase continually.

  18. Nitrogen and phosphorus economy of a legume tree-cereal intercropping system under controlled conditions.

    PubMed

    Isaac, M E; Hinsinger, P; Harmand, J M

    2012-09-15

    Considerable amounts of nitrogen (N) and phosphorus (P) fertilizers have been mis-used in agroecosystems, with profound alteration to the biogeochemical cycles of these two major nutrients. To reduce excess fertilizer use, plant-mediated nutrient supply through N(2)-fixation, transfer of fixed N and mobilization of soil P may be important processes for the nutrient economy of low-input tree-based intercropping systems. In this study, we quantified plant performance, P acquisition and belowground N transfer from the N(2)-fixing tree to the cereal crop under varying root contact intensity and P supplies. We cultivated Acacia senegal var senegal in pot-culture containing 90% sand and 10% vermiculite under 3 levels of exponentially supplied P. Acacia plants were then intercropped with durum wheat (Triticum turgidum durum) in the same pots with variable levels of adsorbed P or transplanted and intercropped with durum wheat in rhizoboxes excluding direct root contact on P-poor red Mediterranean soils. In pot-culture, wheat biomass and P content increased in relation to the P gradient. Strong isotopic evidence of belowground N transfer, based on the isotopic signature (δ(15)N) of tree foliage and wheat shoots, was systematically found under high P in pot-culture, with an average N transfer value of 14.0% of wheat total N after 21 days of contact between the two species. In the rhizoboxes, we observed limitations on growth and P uptake of intercropped wheat due to competitive effects on soil resources and minimal evidence of belowground N transfer of N from acacia to wheat. In this intercrop, specifically in pot-culture, facilitation for N transfer from the legume tree to the crop showed to be effective especially when crop N uptake was increased (or stimulated) as occurred under high P conditions and when competition was low. Understanding these processes is important to the nutrient economy and appropriate management of legume-based agroforestry systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. 12 years of irrigation in a drought stressed pine forest speeds up carbon cycling and alters the soil biome but has negligible effects on soil organic matter storage

    NASA Astrophysics Data System (ADS)

    Hagedorn, Frank; Hartmann, Martin; Brunner, Ivano; Rigling, Andreas; Herzog, Claude; Schaub, Marcus; Frey, Beat

    2017-04-01

    Inneralpine valleys are experiencing repeated summer droughts, which have caused a die-back of pine forests since the 1990s. Drought limits the metabolic activity and hence C cycling in the plant and soil system. The net effects of drought on soil organic matter (SOM) storage is, however, ambiguous as drought affects both C inputs and outputs. Moreover, in the long-term, water limitation is also altering above- and belowground diversity due to species-dependent resistance and adaptation to drought. In our study, we explored how ten years of irrigation of a water-limited pine forest in the central European Alps altered above- and belowground diversity and C cycling in the plant and soil systems. The decadal long irrigation during summer time strongly increased ecosystem productivity with litter fall and fine root biomass being increased by +50 and +40%, respectively. At the same time, soil CO2 efflux was stimulated by 60%, indicating that the removal of water limitation enhanced both the inputs and outputs of C into soils. The accelerated C cycling was also mirrored by compositional shifts in the soil microbiome. 454-pyrosequencing of ribosomal marker genes indicated that irrigation promoted bacteria and fungi with more copiotrophic life style strategies, that are typical for nutrient-rich conditions associated with a higher decomposition. Determination of SOM pools revealed a C loss in the organic layer under irrigation (-900 gC m-2) but a C gain in the mineral soil (+970 gC m-2), resulting in a negligible net effect. The likely mechanisms for the altered vertical SOM distribution might be (1) an accelerated mineralization of litter in conjunction with higher C inputs from the rhizosphere and/or (2) an increased incorporation of litter in the mineral soil as suggested by a litter bag experiment showing a stimulated activity of the macrofauna with a 5-fold increase of the earthworm density. In summary, our long-term irrigation experiment revealed that the removal of water limitation during summer in a drought-prone pine forest strongly altered C fluxes and the belowground community composition. However, the net effect on SOM stocks was negligible due to a balancing out of C in- and outputs.

  20. Do aggregate stability and soil organic matter content increase following organic inputs?

    NASA Astrophysics Data System (ADS)

    Lehtinen, Taru; Gísladóttir, Guðrún; van Leeuwen, Jeroen P.; Bloem, Jaap; Steffens, Markus; Vala Ragnarsdóttir, Kristin

    2014-05-01

    Agriculture is facing several challenges such as loss of soil organic matter (SOM); thus, sustainable farming management practices are needed. Organic farming is growing as an alternative to conventional farming; in Iceland approximately 1% and in Austria 16% of utilized agricultural area is under organic farming practice. We analyzed the effect of different farming practices (organic, and conventional) on soil physicochemical and microbiological properties in grassland soils in Iceland and cropland soils in Austria. Organic farms differed from conventional farms by absence of chemical fertilizers and pesticide use. At these farms, we investigated soil physicochemical (e.g. soil texture, pH, CAL-extractable P and K) and microbiological properties (fungal and bacterial biomass and activity). The effects of farming practices on soil macroaggregate stability and SOM quantity, quality and distribution between different fractions were studied following a density fractionation. In Iceland, we sampled six grassland sites on Brown (BA) and Histic (HA) Andosols; two sites on extensively managed grasslands, two sites under organic and two sites under conventional farming practice. In Austria, we sampled four cropland sites on Haplic Chernozems; two sites under organic and two sites under conventional farming practice. We found significantly higher macroaggregate stability in the organic compared to the conventional grasslands in Iceland. In contrast, slightly higher macroaggregation in conventional compared to the organic farming practice was found in croplands in Austria, although the difference was not significant. Macroaggregates were positively correlated with fungal biomass in Iceland, and with Feo and fungal activity in Austria. In Austria, SOM content and nutrient status (except for lower CAL-extractable P at one site) were similar between organic and conventional farms. Our results show that the organic inputs may have enhanced macroaggregation in organic farming practice compared to conventional in the permanent grassland soils in Iceland but were only enough to maintain the SOM content and macroaggregation in the cropland soils in Austria.

  1. Nutrient leaching in a Colombian savanna Oxisol amended with biochar.

    PubMed

    Major, Julie; Rondon, Marco; Molina, Diego; Riha, Susan J; Lehmann, Johannes

    2012-01-01

    Nutrient leaching in highly weathered tropical soils often poses a challenge for crop production. We investigated the effects of applying 20 t ha biochar (BC) to a Colombian savanna Oxisol on soil hydrology and nutrient leaching in field experiments. Measurements were made over the third and fourth years after a single BC application. Nutrient contents in the soil solution were measured under one maize and one soybean crop each year that were routinely fertilized with mineral fertilizers. Leaching by unsaturated water flux was calculated using soil solution sampled with suction cup lysimeters and water flux estimates generated by the model HYDRUS 1-D. No significant difference ( > 0.05) was observed in surface-saturated hydraulic conductivity or soil water retention curves, resulting in no relevant changes in water percolation after BC additions in the studied soils. However, due to differences in soil solution concentrations, leaching of inorganic N, Ca, Mg, and K measured up to a depth of 0.6 m increased ( < 0.05), whereas P leaching decreased, and leaching of all nutrients (except P) at a depth of 1.2 m was significantly reduced with BC application. Changes in leaching at 2.0 m depth with BC additions were about one order of magnitude lower than at other depths, except for P. Biochar applications increased soil solution concentrations and downward movement of nutrients in the root zone and decreased leaching of Ca, Mg, and Sr at 1.2 m, possibly by a combination of retention and crop nutrient uptake. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Role of model structure on the response of soil biogeochemistry to hydro-climatic fluctuations

    NASA Astrophysics Data System (ADS)

    Manzoni, S.; Porporato, A.

    2005-05-01

    Soil carbon and nutrient cycles are strongly affected by hydro-climatic variability, which interacts with the internal ecosystem structure. Here we test the implications of biogeochemical model structure on such dynamics by extending an existing model by the authors and coworkers. When forced by hydro-climatic fluctuations, the different model structures induce specific preferential nutrient paths among the soil pools, which in turn affect nutrient distribution and availability to microbes and plants. In particular, if it is assumed that microbes can directly assimilate organic nitrogen, plants tend to be inferior competitors for nutrients even in well-watered conditions, while if a certain amount of organic nitrogen is assumed to be mineralized without being first incorporated into microbial cells, vegetation can be advantaged over a wide range of soil moisture values. We also investigate the intensification of competition for nutrients (e.g., nitrogen) between plant and soil microbial communities under extreme hydrologic conditions, such as droughts and intense storms. Frequent rainfall events may determine ideal soil moisture conditions for plant uptake, enhancing nitrogen leaching while lowering oxygen concentration and inhibiting microbial activity. During droughts, the soil water potential often drops to the point of hampering the plant nutrient uptake while still remaining high enough for microbial decomposition and nitrogen immobilization. The interplay of microbe and vegetation water stress is investigated in depth as it controls the ability of one community (e.g., plants or soil microbes) to establish competitive advantage on the other. The long-term effects of these dynamics of competition and nutrient allocation are explored under steady-state and stochastic soil moisture conditions to analyze the feedbacks between soil organic matter and vegetation dynamics.

  3. Effects of five years of frequent N additions, with or without acidity, on the growth and below-ground dynamics of a young Sitka spruce stand growing on an acid peat: implications for sustainability

    NASA Astrophysics Data System (ADS)

    Sheppard, L. J.; Crossley, A.; Harvey, F. J.; Skiba, U.; Coward, P.; Ingleby, K.

    A field manipulation study was established to demonstrate effects of simulated wet N and S deposition on a young (planted 1986) stand of Sitka spruce growing on a predominantly organic soil in an area of low (8-10 kg N ha-1 yr-1) background N deposition in the Scottish borders. From 1996, treatments (six) were applied to the canopies of ten-tree plots in each of four blocks. N was provided as NH4NO3, either with H2SO4 (pH 2.5) at 48 or 96 kg N ha-1 yr-1 inputs or without, at 48 kg N ha-1 yr-1 along with wet (rain water) and dry controls (scaffolding) and a S treatment (Na2SO4). Positive responses (+>20% over 5 years) with respect to stem area increment were measured in response to N inputs, irrespective of whether acid was included. The positive response to N was not dose related and was achieved against falling base cation concentrations in the foliage, particularly with respect to K. The results suggest young trees are able to buffer the low nutrient levels and produce new growth when there is sufficient N. Inputs of 96 kg N ha-1 yr-1, in addition to ambient N inputs, on this site exceeded tree demand resulting in elevated foliar N, N2O losses and measurable soil water N. These excessive N inputs did not reduce stem area growth.

  4. Do ungulates accelerate or decelerate nitrogen cycling?

    USGS Publications Warehouse

    Singer, F.J.; Schoenecker, K.A.

    2003-01-01

    Nitrogen (N) is an essential nutrient for plants and animals, and N may be limiting in many western US grassland and shrubland ungulate winter ranges. Ungulates may influence N pools and they may alter N inputs and outputs (losses) to the ecosystem in a number of ways. In this paper we compare the ecosystem effects of ungulate herbivory in two western national parks, Rocky Mountain National Park (RMNP), Colorado, and Yellowstone National Park (YNP), Wyoming. We compare ungulate herbivory effects on N pools, N fluxes, N yields, and plant productivity in the context of the accelerating and decelerating nutrient cycling scenarios [Ecology 79 (1998) 165]. We concluded that the YNP grasslands fit the accelerating nutrient cycling scenario for ungulate herbivory: in response to grazing, grassland plant species abundance was largely unaltered, net annual aboveground primary productivity (NAPP) was stimulated (except during drought), consumption of key N-rich forages by ungulates was moderate and their abundance was sustained, soil N mineralization rates doubled, N pools increased, aboveground N yield increased, and N concentrations increased in most grassland plant species. Grazing in grasslands in RMNP resulted in no consistent detectable acceleration or deceleration of nutrient cycling. Grazing effects in short willow and aspen vegetation types in RMNP fit the decelerating nutrient cycling scenario of Ritchie et al. [Ecology 79 (1998) 165]. Key N-rich forages declined due to herbivory (willows, aspen, herbaceous vegetation). Aboveground production declined, soil N mineralization rates declined, N pools declined (NO3− pools were 30% that of ungrazed controls), and aboveground N yield declined. We believe that the higher ungulate densities and rates of plant consumption in RMNP, large declines in N-rich forage plants, and possibly a tendency of ungulates to move N from willow and aspen vegetation types to other types in RMNP, contributed to deceleration of nutrient cycling in two vegetation types in RMNP compared to acceleration in grasslands in YNP.

  5. Plant and soil nutrient stoichiometry along primary ecological successions: Is there any link?

    PubMed Central

    Di Palo, Francesca

    2017-01-01

    Ecological stoichiometry suggests that plant Nitrogen (N)-to-Phosphorus (P) ratios respond to changes in both soil N:P stoichiometry and soil N and P availability. Thus we would expect that soil and plant N:P ratios be significantly related along natural gradients of soil development such as those associated with primary ecological successions. Here we explicitly search for linkages between plant and soil N:P stoichiometry along four primary successions distributed across Europe. We measured N and P content in soils and plant compartments (leaf, stem and root) of 72 wild plant species distributed along two sand dune and two glacier successions where soil age ranges from few to thousand years old. Overall we found that soil N:P ratios strongly increased along successional stages, however, plant N:P ratios were neither related to soil N:P stoichiometry nor to changes in soil N and P availability. Instead changes in plant nutrient stoichiometry were “driven” by plant-functional-group identity. Not only N:P ratios differed between legumes, grasses and forbs but each of these plant functional groups maintained N:P ratios relatively constant across pioneer, middle and advanced successional stages. Our evidence is that soil nutrient stoichiometry may not be a good predictor of changes in plant N:P stoichiometry along natural primary ecological successions, which have not reached yet a retrogressive stage. This could be because wild-plants rely on mechanisms of internal nutrient regulation, which make them less dependent to changes in soil nutrient availability under unpredictable environmental conditions. Further studies need to clarify what underlying evolutionary and eco-physiological mechanisms determine changes in nutrient stoichiometry in plant species distributed across natural environmental gradients. PMID:28787437

  6. How interacting fungal species and mineral nitrogen inputs affect transfer of nitrogen from litter via arbuscular mycorrhizal mycelium.

    PubMed

    He, Yuejun; Cornelissen, J Hans C; Zhong, Zhangcheng; Dong, Ming; Jiang, Changhong

    2017-04-01

    In the karst landscape, widespread in the world including southern China, soil nutrient supply is strongly constrained. In such environments, arbuscular mycorrhizal (AM) fungi may facilitate plant nutrient uptake. However, the possible role of different AM fungal species, and their interactions, especially in transferring nitrogen (N) from litter to plant, is poorly understood. We conducted two microcosm experiments to investigate the role that two karst soil AM fungi, Glomus etunicatum and Glomus mosseae, play in the transfer of N from decomposing litter to the host plant and to determine how N availability influences these processes. In experiment 1, Cinnamomum camphora tree seedlings were grown in compartments inoculated with G. etunicatum. Lolium perenne leaf litter labeled with δ 15 N was added to the soil in unplanted compartments. Compartments containing the δ 15 N labeled litter were either accessible to hyphae but not to seedling roots or were not accessible to hyphae or roots. The addition of mineral N to one of the host compartments at the start of the experiment significantly increased the biomass of the C. camphora seedlings, N content and N:P ratio, AM mycelium length, and soil microbial biomass carbon and N. However, significantly, more δ 15 N was acquired, from the leaf litter by the AM hyphae and transferred to the host when mineral N was not added to the soil. In experiment 2, in which C. camphora seedlings were inoculated with both G. etunicatum and G. mosseae rather than with G. mosseae alone, there was a significant increase in mycelial growth (50.21%), in soil microbial biomass carbon (417.73%) in the rhizosphere, and in the amount of δ 15 N that was transferred to the host. These findings suggest that maintaining AM fungal diversity in karst soils could be important for mediating N transfer from organic material to host plants in N-poor soils.

  7. Nutrient dynamics and plant assemblages of Macrotermes falciger mounds in a savanna ecosystem

    NASA Astrophysics Data System (ADS)

    Muvengwi, Justice; Ndagurwa, Hilton G. T.; Nyenda, Tatenda; Mbiba, Monicah

    2016-10-01

    Termites through mound construction and foraging activities contribute significantly to carbon and nutrient fluxes in nutrient-poor savannas. Despite this recognition, studies on the influence of termite mounds on carbon and nitrogen dynamics in sub-tropical savannas are limited. In this regard, we examined soil nutrient concentrations, organic carbon and nitrogen mineralization in incubation experiments in mounds of Macrotermes falciger and surrounding soils of sub-tropical savanna, northeast Zimbabwe. We also addressed whether termite mounds altered the plant community and if effects were similar across functional groups i.e. grasses, forbs or woody plants. Mound soils had significantly higher silt and clay content, pH and concentrations of calcium (Ca), magnesium (Mg), potassium (K), organic carbon (C), ammonium (NH4+) and nitrate (NO3-) than surrounding soils, with marginal differences in phosphorus (P) and sodium (Na) between mounds and matrix soils. Nutrient enrichment increased by a factor ranging from 1.5 for C, 4.9 for Mg up to 10.3 for Ca. Although C mineralization, nitrification and nitrification fraction were similar between mounds and matrix soils, nitrogen mineralization was elevated on mounds relative to surrounding matrix soils. As a result, termite mounds supported unique plant communities rich and abundant in woody species but less diverse in grasses and forbs than the surrounding savanna matrix in response to mound-induced shifts in soil parameters specifically increased clay content, drainage and water availability, nutrient status and base cation (mainly Ca, Mg and Na) concentration. In conclusion, by altering soil properties such as texture, moisture content and nutrient status, termite mounds can alter the structure and composition of sub-tropical savanna plant communities, and these results are consistent with findings in other savanna systems suggesting that increase in soil clay content, nutrient status and associated changes in the plant community assemblage may be a general property of mound building termites.

  8. Nutrient use preferences among soil Streptomyces suggest greater resource competition in monoculture than polyculture plant communities

    USDA-ARS?s Scientific Manuscript database

    Nutrient use overlap among sympatric Streptomyces populations is correlated with pathogen inhibitory capacity, yet there is little information on either the factors that influence nutrient use overlap among coexisting populations or the diversity of nutrient use among soil Streptomyces. We examined ...

  9. [Effects of different water and fertilizer supply on cucumber soil nutrient content, enzyme activity, and microbial diversity].

    PubMed

    Wei, Ze-Xiu; Liang, Yin-Li; Inoue, Mitsuhiro; Zhou, Mao-Juan; Huang, Mao-Lin; Gu, Jian-Feng; Wu, Yan

    2009-07-01

    With cucumber (Cucumis sativus L.) variety Jinyou 1 as test material, a greenhouse experiment was conducted to study the effects of different water and fertilizer supply on the cucumber soil nutrient content, enzyme activity, and microbial diversity. Three water regimes (50%-60%, 70%-80%, and 90%-100% soil relative moisture content) and two fertilization practices (600 kg N x hm(-2) + 420 kg P2O5 x hm(-2) and 420 kg N x hm(-2) + 294 kg P2O5 x hm(-2)) were designed. The increase of water and fertilizer supply benefited the increase of soil available P content and sucrase activity. Increasing fertilization rate increased soil NH(4+)-N content but decreased soil protease activity, and increasing soil relative moisture content decreased the soil NH(4+)-N content and urease activity. Soil microbial diversity had no significant correlations with soil nutrient contents, but significantly positively correlated with soil urease activity and negatively correlated with soil sucrase activity. Among the treatments, the treatment 70%-80% soil relative moisture content + 600 kg N x hm(-2) and 420 kg P2O5 x hm(-2) had the highest soil nutrient contents, soil urease, sucrase, and phosphatase activities, and soil microbial diversity and evenness, being the best in soil potential productivity.

  10. Changes in biogeochemical cycling following forest defoliation by pine wilt disease in Kiryu experimental catchment in Japan

    NASA Astrophysics Data System (ADS)

    Tokuchi, Naoko; Ohte, Nobuhito; Hobara, Satoru; Kim, Su-Jin; Masanori, Katsuyama

    2004-10-01

    Changes in nutrient budgets and hydrological processes due to the natural disturbance of pine wilt disease (PWD) were monitored in a small, forested watershed in Japan. The disturbance caused changes in soil nitrogen transformations. Pre-disturbance, mineralized nitrogen remained in the form of NH4+, whereas in disturbed areas most mineralized nitrogen was nitrified. Stream NO3- concentrations increased following PWD. There was a delay between time of disturbance and the increase of NO3- in ground and stream waters. Stream concentrations of NO3- and cations (Ca2+ + Mg2+) were significantly correlated from 1994 to 1996, whereas the correlation among NO3-, H+, and SO42- was significant only in 1995. Although both cation exchange and SO42- adsorption buffered protons, cation exchange was the dominant and continuous mechanism for acid buffering. SO42- adsorption was variable and highly pH dependent. The disturbance also resulted in slight delayed changes of input-output nutrient balances. The nitrogen contribution to PWD litter inputs was 7.39 kmol ha-1, and nitrogen loss from streamwater was less than 0.5 kmol ha-1 year-1 throughout the observation period. This large discrepancy suggested substantial nitrogen immobilization.

  11. Tree species, spatial heterogeneity, and seasonality drive soil fungal abundance, richness, and composition in Neotropical rainforests.

    PubMed

    Kivlin, Stephanie N; Hawkes, Christine V

    2016-12-01

    Tropical ecosystems remain poorly understood and this is particularly true for belowground soil fungi. Soil fungi may respond to plant identity when, for example, plants differentially allocate resources belowground. However, spatial and temporal heterogeneity in factors such as plant inputs, moisture, or nutrients can also affect fungal communities and obscure our ability to detect plant effects in single time point studies or within diverse forests. To address this, we sampled replicated monocultures of four tree species and secondary forest controls sampled in the drier and wetter seasons over 2 years. Fungal community composition was primarily related to vegetation type and spatial heterogeneity in the effects of vegetation type, with increasing divergence partly reflecting greater differences in soil pH and soil moisture. Across wetter versus drier dates, fungi were 7% less diverse, but up to four-fold more abundant. The combined effects of tree species and seasonality suggest that predicted losses of tropical tree diversity and intensification of drought have the potential to cascade belowground to affect both diversity and abundance of tropical soil fungi. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. [An optical-fiber-sensor-based spectrophotometer for soil non-metallic nutrient determination].

    PubMed

    He, Dong-xian; Hu, Juan-xiu; Lu, Shao-kun; He, Hou-yong

    2012-01-01

    In order to achieve rapid, convenient and efficient soil nutrient determination in soil testing and fertilizer recommendation, a portable optical-fiber-sensor-based spectrophotometer including immersed fiber sensor, flat field holographic concave grating, and diode array detector was developed for soil non-metallic nutrient determination. According to national standard of ultraviolet and visible spectrophotometer with JJG 178-2007, the wavelength accuracy and repeatability, baseline stability, transmittance accuracy and repeatability measured by the prototype instrument were satisfied with the national standard of III level; minimum spectral bandwidth, noise and excursion, and stray light were satisfied with the national standard of IV level. Significant linear relationships with slope of closing to 1 were found between the soil available nutrient contents including soil nitrate nitrogen, ammonia nitrogen, available phosphorus, available sulfur, available boron, and organic matter measured by the prototype instrument compared with that measured by two commercial single-beam-based and dual-beam-based spectrophotometers. No significant differences were revealed from the above comparison data. Therefore, the optical-fiber-sensor-based spectrophotometer can be used for rapid soil non-metallic nutrient determination with a high accuracy.

  13. Controls of bedrock geochemistry on soil and plant nutrients in Southeastern Utah

    USGS Publications Warehouse

    Neff, J.C.; Reynolds, R.; Sanford, R.L.; Fernandez, D.; Lamothe, P.

    2006-01-01

    The cold deserts of the Colorado Plateau contain numerous geologically and geochemically distinct sedimentary bedrock types. In the area near Canyonlands National Park in Southeastern Utah, geochemical variation in geologic substrates is related to the depositional environment with higher concentrations of Fe, Al, P, K, and Mg in sediments deposited in alluvial or marine environments and lower concentrations in bedrock derived from eolian sand dunes. Availability of soil nutrients to vegetation is also controlled by the formation of secondary minerals, particularly for P and Ca availability, which, in some geologic settings, appears closely related to variation of CaCO3 and Ca-phosphates in soils. However, the results of this study also indicate that P content is related to bedrock and soil Fe and Al content suggesting that the deposition history of the bedrock and the presence of P-bearing Fe and Al minerals, is important to contemporary P cycling in this region. The relation between bedrock type and exchangeable Mg and K is less clear-cut, despite large variation in bedrock concentrations of these elements. We examined soil nutrient concentrations and foliar nutrient concentration of grasses, shrubs, conifers, and forbs in four geochemically distinct field sites. All four of the functional plant groups had similar proportional responses to variation in soil nutrient availability despite large absolute differences in foliar nutrient concentrations and stoichiometry across species. Foliar P concentration (normalized to N) in particular showed relatively small variation across different geochemical settings despite large variation in soil P availability in these study sites. The limited foliar variation in bedrock-derived nutrients suggests that the dominant plant species in this dryland setting have a remarkably strong capacity to maintain foliar chemistry ratios despite large underlying differences in soil nutrient availability. ?? 2006 Springer Science+Business Media, Inc.

  14. Nitrogen enrichment and speciation in a coral reef lagoon driven by groundwater inputs of bird guano

    NASA Astrophysics Data System (ADS)

    McMahon, Ashly; Santos, Isaac R.

    2017-09-01

    While the influence of river inputs on coral reef biogeochemistry has been investigated, there is limited information on nutrient fluxes related to submarine groundwater discharge (SGD). Here, we investigate whether significant saline groundwater-derived nutrient inputs from bird guano drive coral reef photosynthesis and calcification off Heron Island (Great Barrier Reef, Australia). We used multiple experimental approaches including groundwater sampling, beach face transects, and detailed time series observations to assess the dynamics and speciation of groundwater nutrients as they travel across the island and discharge into the coral reef lagoon. Nitrogen speciation shifted from nitrate-dominated groundwater (>90% of total dissolved nitrogen) to a coral reef lagoon dominated by dissolved organic nitrogen (DON; ˜86%). There was a minimum input of nitrate of 2.1 mmol m-2 d-1 into the lagoon from tidally driven submarine groundwater discharge estimated from a radon mass balance model. An independent approach based on the enrichment of dissolved nutrients during isolation at low tide implied nitrate fluxes of 5.4 mmol m-2 d-1. A correlation was observed between nitrate and daytime net ecosystem production and calcification. We suggest that groundwater nutrients derived from bird guano may offer a significant addition to oligotrophic coral reef lagoons and fuel ecosystem productivity and the coastal carbon cycle near Heron Island. The large input of groundwater nutrients in Heron Island may serve as a natural ecological analogue to other coral reefs subject to large nutrient inputs from anthropogenic sources.

  15. Tracing C Fluxes From Leaf Litter To Microbial Respired CO2 And Specific Soil Compounds

    NASA Astrophysics Data System (ADS)

    Rubino, M.; Lubritto, C.; D'Onofrio, A.; Gleixner, G.; Terrasi, F.; Cotrufo, F. M.

    2004-12-01

    Despite litter decomposition is one of the major process controlling soil C stores and nutrient cycling, yet C dynamics during litter decay are poorly understood and quantified. Here we report the results of a laboratory experiment where 13C depleted leaf litter was incubated on a 13C enriched soil with the aims to: i) partition the C loss during litter decay into microbial respired-CO2 and C input into the soil; ii) identify the soil compounds where litter derived C is retained; iii) assess whether litter quality is a determinant of both the above processes. Three 13C-depleted leaf litter(delta13C ca. -43), differing in their degradability, were incubated on C4 soil (delta13C ca. -18) under laboratory controlled conditions for 8 months, with litter respiration and delta13C-CO2 being measured at regular intervals. At harvest, Compound Specific Isotope Analyses was performed on soil and litter samples in order to follow the fate of litter-derived C compounds in the various pools of SOMƒn The delta13C of soils carbohydrates, alkanes and Phospho Lipids Fatty Acids (PLFA) were measured, and the mixing model approach used to quantify the contribution of litter derived C to the specific compounds.

  16. Modeling long-term changes in tundra carbon balance following wildfire, climate change, and potential nutrient addition.

    PubMed

    Jiang, Yueyang; Rastetter, Edward B; Shaver, Gaius R; Rocha, Adrian V; Zhuang, Qianlai; Kwiatkowski, Bonnie L

    2017-01-01

    To investigate the underlying mechanisms that control long-term recovery of tundra carbon (C) and nutrients after fire, we employed the Multiple Element Limitation (MEL) model to simulate 200-yr post-fire changes in the biogeochemistry of three sites along a burn severity gradient in response to increases in air temperature, CO 2 concentration, nitrogen (N) deposition, and phosphorus (P) weathering rates. The simulations were conducted for severely burned, moderately burned, and unburned arctic tundra. Our simulations indicated that recovery of C balance after fire was mainly determined by the internal redistribution of nutrients among ecosystem components (controlled by air temperature), rather than the supply of nutrients from external sources (e.g., nitrogen deposition and fixation, phosphorus weathering). Increases in air temperature and atmospheric CO 2 concentration resulted in (1) a net transfer of nutrient from soil organic matter to vegetation and (2) higher C : nutrient ratios in vegetation and soil organic matter. These changes led to gains in vegetation biomass C but net losses in soil organic C stocks. Under a warming climate, nutrients lost in wildfire were difficult to recover because the warming-induced acceleration in nutrient cycles caused further net nutrient loss from the system through leaching. In both burned and unburned tundra, the warming-caused acceleration in nutrient cycles and increases in ecosystem C stocks were eventually constrained by increases in soil C : nutrient ratios, which increased microbial retention of plant-available nutrients in the soil. Accelerated nutrient turnover, loss of C, and increasing soil temperatures will likely result in vegetation changes, which further regulate the long-term biogeochemical succession. Our analysis should help in the assessment of tundra C budgets and of the recovery of biogeochemical function following fire, which is in turn necessary for the maintenance of wildlife habitat and tundra vegetation. © 2016 by the Ecological Society of America.

  17. Combined Influence of Landscape Composition and Nutrient Inputs on Lake Trophic Structure

    EPA Science Inventory

    The concentration of chlorophyll a is a measure of the biological productivity of a lake and is largely (but not exclusively) determined by available nutrients. As nutrient inputs increase, productivity increases and lakes transition from low trophic state (e.g. oligotrophic) to...

  18. Digital data used to relate nutrient inputs to water quality in the Chesapeake Bay watershed, version 3.0

    USGS Publications Warehouse

    Brakebill, John W.; Preston, Stephen D.

    2004-01-01

    Chesapeake Bay restoration efforts are focused on improving water quality, living resources, and ecological habitats by 2010. One aspect of the water-quality restoration is the refinement of strategies designed to implement nutrient-reduction practices within the Bay watershed. These strategies are being refined and implemented by resource managers of the Chesapeake Bay Program (CBP), a partnership comprised of various Federal, State, and local agencies that includes jurisdictions within Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia, and the District of Columbia. The U.S. Geological Survey (USGS), an active member of the CBP, provides necessary water-quality information for these Chesapeake Bay nutrient-reduction strategy revisions and evaluations. The formulation and revision of effective nutrient-reduction strategies requires detailed scientific information and an analytical understanding of the sources, transport, and delivery of nutrients to the Chesapeake Bay. The USGS is supporting these strategies by providing scientific information to resource managers that can help them evaluate and understand these processes. One statistical model available to resource managers is a collection of SPAtially Referenced Regressions On Watershed (SPARROW) attributes, which uses a nonlinear regression approach to spatially relate nutrient sources and watershed characteristics to nutrient loads of streams throughout the Chesapeake Bay watershed. Developed by the USGS, information generated by SPARROW can help resource managers determine the geographical distribution and relative contribution of nutrient sources and the factors that affect their transport to the Bay. Nutrient source information representing the late 1990s time period was obtained from several agencies and used to create and compile digital spatial datasets of total nitrogen and total phosphorus contributions that served as input sources to the SPARROW models. These data represent atmospheric deposition, point-source locations, land-use, land-cover, and agricultural sources such as commercial fertilizer and manure applications. Watershed-characteristics datasets representing factors that affect the transport of nutrients also were compiled from previous applications of the SPARROW models in the Chesapeake Bay watershed. Datasets include average-annual precipitation and temperature, slope, soil permeability, and hydrogeomorphic regions. Nutrient-input and watershed-characteristics datasets representing conditions during the late 1990s were merged with a connected network of stream reaches and watersheds to provide the spatial detail required by SPARROW. Stream-nutrient load estimates for 125 sampling sites (87 for total nitrogen and 103 for total phosphorus) served as the dependent variables for the regressions, and were used to calibrate models of total nitrogen and total phosphorus depicting late 1990s conditions in the Chesapeake Bay watershed. Spatial data generated for the models can be used to identify the location of nutrient sources, while the models' nutrient estimates can be used to evaluate stream-nutrient load contributed locally by each source evaluated, the amount of local load generated that is transported to the Bay, and the factors that affect the nutrient transport. Applying the SPARROW methodology to late 1990s information completes three time periods (late 1980s, early 1990s, and late 1990s) of viable data that resource managers can use to evaluate the water-quality conditions within the Bay watershed in order to refine restoration goals and nutrient-reduction strategies.

  19. In situ measurements of root exudation in three hardwood species in southern Indiana

    NASA Astrophysics Data System (ADS)

    O'Connor, D. A.; Brzostek, E. R.; Fisher, J. B.; Phillips, R.

    2012-12-01

    Root exudation - the release of soluble organic compounds to soil - has long been considered a black box in ecology owing to methodological difficulties associated with measuring this flux in situ. This knowledge gap is significant given recent findings that suggest exudate inputs are appreciable in magnitude (2-5% of net primary production) and are coupled to microbial activities, nutrient release and soil organic matter decomposition. We developed a novel experimental system for collecting exudates from intact roots of field-grown trees using cuvettes filled with sterile glass beads. We measured root exudation for three tree species in ~80 year old mixed hardwood forest in south central Indiana, USA in the summer of 2012. Exudation rates varied from 0 to 1413 ug C/g root/day, and differed by sampling date and among trees species. Overall, rates were greater in early relative to late July, and greater in sugar maple (Acer saccharum) and white oak (Quercus alba) relative to tulip poplar (Liriodendron tulipifera). Across all species, exudation rates were correlated with root mass, indicating that greater allocation to roots likely increases the amount of C available to fuel soil microbial activity. Collectively, the results of this study should enable us to develop improved model parameterizations of the C costs associated with nutrient acquisition, an important feedback for predicting the role of vegetation in mediating climate change.

  20. Evaluating the Contributions of Atmospheric Deposition of Carbon and Other Nutrients to Nitrification in Alpine Environments

    NASA Astrophysics Data System (ADS)

    Oldani, K. M.; Mladenov, N.; Williams, M. W.

    2013-12-01

    The Colorado Front Range of the Rocky Mountains contains undeveloped, barren soils, yet in this environment there is strong evidence for a microbial role in increased nitrogen (N) export. Barren soils in alpine environments are severely carbon-limited, which is the main energy source for microbial activity and sustenance of life. It has been shown that atmospheric deposition can contain high amounts of organic carbon (C). Atmospheric pollutants, dust events, and biological aerosols, such as bacteria, may be important contributors to the atmospheric organic C load. In this stage of the research we evaluated seasonal trends in the chemical composition and optical spectroscopic (fluorescence and UV-vis absorbance) signatures of snow, wet deposition, and dry deposition in an alpine environment at Niwot Ridge in the Rocky Mountains of Colorado to obtain a better understanding of the sources and chemical character of atmospheric deposition. Our results reveal a positive trend between dissolved organic carbon concentrations and calcium, nitrate and sulfate concentrations in wet and dry deposition, which may be derived from such sources as dust and urban air pollution. We also observed the presence of seasonally-variable fluorescent components that may be attributed to fluorescent pigments in bacteria. These results are relevant because atmospheric inputs of carbon and other nutrients may influence nitrification in barren, alpine soils and, ultimately, the export of nitrate to alpine watersheds.

  1. Evaluation of pre-crops and organic fertilization program on the subsequent crop under Mediterranean conditions: case of South of Italy

    NASA Astrophysics Data System (ADS)

    Chami, Ziad Al; Hmid, Amine; Baysal, Damla; Amer, Nasser; Bitar, Lina Al; Aksoy, Uygun

    2013-04-01

    Organic farming systems rely on soil fertility management to enhance the soil chemical properties for the optimization of crop production and increase food quality. Soil fertility-building crops have been reported as a way to reduce inputs of fertilizers, improve soil fertility and increase the subsequent crop yield. A four-year rotation programme was launched by the Mediterranean Agronomic Institute of Bari that aims at identifying the most suitable fertilization strategy in organic farming for Mediterranean countries under the prevailing conditions. The present study was conducted in southern Italy and it consists in evaluating the effects of pre-crops (faba bean, vetch and broccoli) in comparison to a fallow test on the subsequent crop (zucchini, tomato, lettuce and radish) in four consecutive years. Vetch and faba bean were able to satisfy the nutrient requirement of the main crop without any compost application; while commercial compost was applied to broccoli and fallow treatments prior to transplanting the main crop. The main soil chemical parameters: organic carbon, total nitrogen, available phosphorus, and exchangeable potassium were improved over four years experiment. The trend was consistent; all main chemical parameters displayed a significant increase in all treatments, while no significant differences were obtained between treatments. Based on the results obtained in the first two years, the effect of different pre-crops and fertilizers on zucchini and organic tomato qualitative and quantitative parameters were not significant. While the results obtained in the third and forth years showed that pre-crops and fertilizers had significant effects on lettuce and radish yield and quality. Low nitrate contents were found in fallow and broccoli treatments (70 to 80% lower) in comparison to Vetch and Faba bean treatments and the ascorbic acid contents were (20 to 40% higher) after broccoli and fallow treatments. The low nitrate content in broccoli and fallow treatment can be due to the compost application rich in humified organic matter. Humified organic matter breaks down very slowly in the soil releasing gradually nutrients. Whereas, the high amount of fresh organic matter incorporated with vetch and faba bean may break down quickly in comparison to compost, releasing a flush of nutrients for plant growth. Additionally, nutrient accumulation such as nitrate can lead in a decrease in the vitamin C content. These suggest that the pre-crops, especially vetch and faba bean, can improve main crop yields; while compost improves the quality parameters.

  2. Acid or N? Disentangling Nutrient- and pH Effects of Nitrogen and Sulfur Deposition to Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Goodale, C. L.

    2016-12-01

    Nitrogen deposition can act as both a nutrient and acidifying agent with sometimes synergistic and sometimes contradictory effects on ecosystem processes. However, these two roles are rarely separated. Similarly, deposition patterns of N and S often covary, making it difficult to correctly attribute their respective roles on the biogeochemistry of downwind ecosystems. In 2011, we initiated a N x pH (S) experiment in six mixed hardwood stands (3 primary, 3 secondary) in Central New York designed to separate nutrient and acidifying impacts of N and S deposition. Three treatments included two 50 N ha-1 yr-1 additions in forms intended to raise (NaNO3) or lower ((NH4)2SO4) soil pH as well as elemental S treatment to acidify without N. Five years of treatment shifted surface soil pH in the expected directions. Treatment effects on soil extract DOC correlated with pH, with lower DOC concentration and aromaticity in the acidifying treatments. Foliar litterfall did not vary by stand age or treatment, but N and S treatments enriched litterfall N and S concentrations, respectively. Wood production did not vary significantly by stand age or treatment but trended toward an increase in response to the N additions in both stand ages. The treatments did not affect early stages of litter decomposition, but both N additions and acidification suppressed decomposition in later stages, with largest effects from acidification alone. Soil respiration responses followed those of litter decomposition, except that the response of respiration to the NaNO3 addition depended on the stand's mycorrhizal composition, with greater suppression in stands with a higher fraction of ectomycorrhizal tree species. Together, these results show that both N addition and acidification can suppress decomposition rates, but likely for different reasons that may be linked to plant carbon allocation (for N) and microbial function (pH). Distinguishing these mechanisms will be important for projecting recovery of ecosystem processes to changing N and S inputs.

  3. Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to climate change across catchments with different geology and topography

    NASA Astrophysics Data System (ADS)

    Crossman, J.; Futter, M. N.; Whitehead, P. G.; Stainsby, E.; Baulch, H. M.; Jin, L.; Oni, S. K.; Wilby, R. L.; Dillon, P. J.

    2014-12-01

    Hydrological processes determine the transport of nutrients and passage of diffuse pollution. Consequently, catchments are likely to exhibit individual hydrochemical responses (sensitivities) to climate change, which are expected to alter the timing and amount of runoff, and to impact in-stream water quality. In developing robust catchment management strategies and quantifying plausible future hydrochemical conditions it is therefore equally important to consider the potential for spatial variability in, and causal factors of, catchment sensitivity, as it is to explore future changes in climatic pressures. This study seeks to identify those factors which influence hydrochemical sensitivity to climate change. A perturbed physics ensemble (PPE), derived from a series of global climate model (GCM) variants with specific climate sensitivities was used to project future climate change and uncertainty. Using the INtegrated CAtchment model of Phosphorus dynamics (INCA-P), we quantified potential hydrochemical responses in four neighbouring catchments (with similar land use but varying topographic and geological characteristics) in southern Ontario, Canada. Responses were assessed by comparing a 30 year baseline (1968-1997) to two future periods: 2020-2049 and 2060-2089. Although projected climate change and uncertainties were similar across these catchments, hydrochemical responses (sensitivities) were highly varied. Sensitivity was governed by quaternary geology (influencing flow pathways) and nutrient transport mechanisms. Clay-rich catchments were most sensitive, with total phosphorus (TP) being rapidly transported to rivers via overland flow. In these catchments large annual reductions in TP loads were projected. Sensitivity in the other two catchments, dominated by sandy loams, was lower due to a larger proportion of soil matrix flow, longer soil water residence times and seasonal variability in soil-P saturation. Here smaller changes in TP loads, predominantly increases, were projected. These results suggest that the clay content of soils could be a good indicator of the sensitivity of catchments to climatic input, and reinforces calls for catchment-specific management plans.

  4. Geostatistical approach for management of soil nutrients with special emphasis on different forms of potassium considering their spatial variation in intensive cropping system of West Bengal, India.

    PubMed

    Chatterjee, Sourov; Santra, Priyabrata; Majumdar, Kaushik; Ghosh, Debjani; Das, Indranil; Sanyal, S K

    2015-04-01

    A large part of precision agriculture research in the developing countries is devoted towards precision nutrient management aspects. This has led to better economics and efficiency of nutrient use with off-farm advantages of environmental security. The keystone of precision nutrient management is analysis and interpretation of spatial variability of soils by establishing management zones. In this study, spatial variability of major soil nutrient contents was evaluated in the Ghoragacha village of North 24 Parganas district of West Bengal, India. Surface soil samples from 100 locations, covering different cropping systems of the village, was collected from 0 to 15 cm depth using 100×100 m grid system and analyzed in the laboratory to determine organic carbon (OC), available nitrogen (N), phosphorus (P), and potassium (K) contents of the soil as well as its water-soluble K (KWS), exchangeable K (KEX), and non-exchangeable forms of K (KNEX). Geostatistical analyses were performed to determine the spatial variation structure of each nutrient content within the village, followed by the generation of surface maps through kriging. Four commonly used semivariogram models, i.e., spherical, exponential, Gaussian, and linear models were fitted to each soil property, and the best one was used to prepare surface maps through krigging. Spherical model was found the best for available N and P contents, while linear and exponential model was the best for OC and available K, and for KWS and KNEK, Gausian model was the best. Surface maps of nutrient contents showed that N content (129-195 kg ha(-1)) was the most limiting factor throughout the village, while P status was generally very high ( 10-678 kg ha(-1)) in the soils of the present village. Among the different soil K fractions, KWS registered the maximum variability (CV 75%), while the remaining soil K fractions showed moderate to high variation. Interestingly, KNEX content also showed high variability, which essentially indicates reserve native K exploitation under intensive cultivation. These maps highlight the necessity of estimating the other soil K fractions as well for better understanding of soil K supplying capacity and K fertilization strategy rather than the current recommendations, based on the plant-available K alone. In conclusion, the present study revealed that the variability of nutrient distribution was a consequence of complex interactions between the cropping system, nutrient application rates, and the native soil characteristics, and such interactions could be utilized to develop the nutrient management strategies for intensive small-holder system.

  5. Model analysis of riparian buffer effectiveness for reducing nutrient inputs to streams in agricultural landscapes

    NASA Astrophysics Data System (ADS)

    McKane, R. B.; M, S.; F, P.; Kwiatkowski, B. L.; Rastetter, E. B.

    2006-12-01

    Federal and state agencies responsible for protecting water quality rely mainly on statistically-based methods to assess and manage risks to the nation's streams, lakes and estuaries. Although statistical approaches provide valuable information on current trends in water quality, process-based simulation models are essential for understanding and forecasting how changes in human activities across complex landscapes impact the transport of nutrients and contaminants to surface waters. To address this need, we developed a broadly applicable, process-based watershed simulator that links a spatially-explicit hydrologic model and a terrestrial biogeochemistry model (MEL). See Stieglitz et al. and Pan et al., this meeting, for details on the design and verification of this simulator. Here we apply the watershed simulator to a generalized agricultural setting to demonstrate its potential for informing policy and management decisions concerning water quality. This demonstration specifically explores the effectiveness of riparian buffers for reducing the transport of nitrogenous fertilizers from agricultural fields to streams. The interaction of hydrologic and biogeochemical processes represented in our simulator allows several important questions to be addressed. (1) For a range of upland fertilization rates, to what extent do riparian buffers reduce nitrogen inputs to streams? (2) How does buffer effectiveness change over time as the plant-soil system approaches N-saturation? (3) How can buffers be managed to increase their effectiveness, e.g., through periodic harvest and replanting? The model results illustrate that, while the answers to these questions depend to some extent on site factors (climatic regime, soil properties and vegetation type), in all cases riparian buffers have a limited capacity to reduce nitrogen inputs to streams where fertilization rates approach those typically used for intensive agriculture (e.g., 200 kg N per ha per year for corn in the U.S.A. Midwestern states). We also discuss how the insights gained from our approach cannot be achieved with modeling tools that are not both spatially explicit and process-based.

  6. Anaerobic soil disinfestation impact on soil nutrients dynamics and nitrous oxide emissions in fresh-market tomato

    USDA-ARS?s Scientific Manuscript database

    Anaerobic soil disinfestation (ASD) is proposed as a pre-plant, non-chemical soil disinfestation technique to control several soilborne phytosanitary issues. Limited information is available on the impact of ASD on soil fertility, plant growth, and potential nutrient loss. The objectives of the curr...

  7. Fire effects on ponderosa pine soils and their management implications

    Treesearch

    W.W. Covington; S.S. Sackett

    1990-01-01

    Fire in southwestern ponderosa pine induces changes in soil properties including decreasing the amount of nutrients stored in fuels (forest floor, woody litter, and understory vegetation) increasing the amount of nutrients on the soil surface (the "ashbed effect"), and increasing the inorganic nitrogen and moisture content in the mineral soil. Soil...

  8. WATERSHEED NUTRIENT INPUTS, PHYTOPLANKTON ACCUMULATION, AND C STOCKS IN CHESAPEAKE BAY

    EPA Science Inventory

    Inputs of N and P to Chesapeake Bay have been enhanced by anthropogenic activities. Fertilizers, developed areas, N emissions, and industrial effluents contribute to point and diffuse sources currently 2-20X higher than those from undisturbed watersheds. Enhanced nutrient inputs ...

  9. Plant Nutrition 2: Macronutrients (N, P, K, S, Mg, and Ca)

    PubMed Central

    2014-01-01

    Summary In the second of three lessons spanning the topic of Plant Nutrition, we examine how macronutrients affect plant growth. Specifically, we look at (1) the availability of nutrients in the soil along with the effects of soil microbes and physical properties on their availability; (2) nutrient uptake from the external environment, across plasma membranes and into plant cells; (3) in some cases, the assimilation of the nutrient into organic molecules; (4) the distribution and redistribution of nutrients throughout the plant; and (5) regulation of these processes. In parallel, we examine the genetic basis of a plant's nutrient use efficiency (NUE) and evaluate strategies by which to replenish nutrients that growing plants extract from soil.

  10. [Mechanism of nutrient preservation and supply by soil and its regulation. IV. Fertility regulation and improvement of brown earth type vegetable garden soil and their essence].

    PubMed

    Chen, L; Zhou, L

    2000-08-01

    Pot experiment studies on the fertility regulation and improvement of fertile and infertile brown earth type vegetable garden soils and their functionary essence show that under conditions of taking different soil fertility improvement measures, the nutrient contents in fertile and infertile soils were not always higher than the controls, but the aggregation densities of soil microaggregates were increased, and the proportion of different microaggregates was more rational. There was no significant relationship between soil productivity and soil microaggregates proportion. It is proved that the essence of soil fertility improvement consists in the ultimate change of the preservation and supply capacities of soil nutrients, and the proportion of soil microaggregates could be an integrative index to evaluate the level of soil fertility and the efficiency of soil improvement.

  11. [Spatial variability of surface soil nutrients in the landslide area of Beichuan County, South- west China, after 5 · 12 Wenchuan Earthquake].

    PubMed

    Mai, Ji-shan; Zhao, Ting-ning; Zheng, Jiang-kun; Shi, Chang-qing

    2015-12-01

    Based on grid sampling and laboratory analysis, spatial variability of surface soil nutrients was analyzed with GS⁺ and other statistics methods on the landslide area of Fenghuang Mountain, Leigu Town, Beichuan County. The results showed that except for high variability of available phosphorus, other soil nutrients exhibited moderate variability. The ratios of nugget to sill of the soil available phosphorus and soil organic carbon were 27.9% and 28.8%, respectively, showing moderate spatial correlation, while the ratios of nugget to sill of the total nitrogen (20.0%), total phosphorus (24.3%), total potassium (11.1%), available nitrogen (11.2%), and available potassium (22.7%) suggested strong spatial correlation. The total phosphorus had the maximum range (1232.7 m), followed by available nitrogen (541.27 m), total nitrogen (468.35 m), total potassium (136.0 m), available potassium (128.7 m), available phosphorus (116.6 m), and soil organic carbon (93.5 m). Soil nutrients had no significant variation with the increase of altitude, but gradually increased from the landslide area, the transition area, to the little-impacted area. The total and available phosphorus contents of the landslide area decreased by 10.3% and 79.7% compared to that of the little-impacted area, respectively. The soil nutrient contents in the transition area accounted for 31.1%-87.2% of that of the little-impacted area, with the nant reason for the spatial variability of surface soil nutrients.

  12. Watershed responses to Amazon soya bean cropland expansion and intensification

    PubMed Central

    Neill, Christopher; Coe, Michael T.; Riskin, Shelby H.; Krusche, Alex V.; Elsenbeer, Helmut; Macedo, Marcia N.; McHorney, Richard; Lefebvre, Paul; Davidson, Eric A.; Scheffler, Raphael; Figueira, Adelaine Michela e Silva; Porder, Stephen; Deegan, Linda A.

    2013-01-01

    The expansion and intensification of soya bean agriculture in southeastern Amazonia can alter watershed hydrology and biogeochemistry by changing the land cover, water balance and nutrient inputs. Several new insights on the responses of watershed hydrology and biogeochemistry to deforestation in Mato Grosso have emerged from recent intensive field campaigns in this region. Because of reduced evapotranspiration, total water export increases threefold to fourfold in soya bean watersheds compared with forest. However, the deep and highly permeable soils on the broad plateaus on which much of the soya bean cultivation has expanded buffer small soya bean watersheds against increased stormflows. Concentrations of nitrate and phosphate do not differ between forest or soya bean watersheds because fixation of phosphorus fertilizer by iron and aluminium oxides and anion exchange of nitrate in deep soils restrict nutrient movement. Despite resistance to biogeochemical change, streams in soya bean watersheds have higher temperatures caused by impoundments and reduction of bordering riparian forest. In larger rivers, increased water flow, current velocities and sediment flux following deforestation can reshape stream morphology, suggesting that cumulative impacts of deforestation in small watersheds will occur at larger scales. PMID:23610178

  13. Effects of Nutrient Enrichment on Microbial Communities and Carbon Cycling in Wetland Soils

    NASA Astrophysics Data System (ADS)

    Hartman, W.; Neubauer, S. C.; Richardson, C. J.

    2013-12-01

    Soil microbial communities are responsible for catalyzing biogeochemical transformations underlying critical wetland functions, including cycling of carbon (C) and nutrients, and emissions of greenhouse gasses (GHG). Alteration of nutrient availability in wetland soils may commonly occur as the result of anthropogenic impacts including runoff from human land uses in uplands, alteration of hydrology, and atmospheric deposition. However, the impacts of altered nutrient availability on microbial communities and carbon cycling in wetland soils are poorly understood. To assess these impacts, soil microbial communities and carbon cycling were determined in replicate experimental nutrient addition plots (control, +N, +P, +NP) across several wetland types, including pocosin peat bogs (NC), freshwater tidal marshes (GA), and tidal salt marshes (SC). Microbial communities were determined by pyrosequencing (Roche 454) extracted soil DNA, targeting both bacteria (16S rDNA) and fungi (LSU) at a depth of ca. 1000 sequences per plot. Wetland carbon cycling was evaluated using static chambers to determine soil GHG fluxes, and plant inclusion chambers were used to determine ecosystem C cycling. Soil bacterial communities responded to nutrient addition treatments in freshwater and tidal marshes, while fungal communities did not respond to treatments in any of our sites. We also compared microbial communities to continuous biogeochemical variables in soil, and found that bacterial community composition was correlated only with the content and availability of soil phosphorus, while fungi responded to phosphorus stoichiometry and soil pH. Surprisingly, we did not find a significant effect of our nutrient addition treatments on most metrics of carbon cycling. However, we did find that several metrics of soil carbon cycling appeared much more related to soil phosphorus than to nitrogen or soil carbon pools. Finally, while overall microbial community composition was weakly correlated with soil carbon cycling, our work did identify a small number of individual taxonomic groups that were more strongly correlated with soil CO2 flux. These results suggest that a small number of microbial groups may potentially serve as keystone taxa (and functional indicators), which simple community fingerprinting approaches may overlook. Our results also demonstrate strong effects of soil phosphorus availability on both microbial communities and soil carbon cycling, even in wetland types traditionally considered to be nitrogen limited.

  14. Reconciling opposing soil processes in row-crop agroecosystems via soil functional zone management

    USDA-ARS?s Scientific Manuscript database

    Sustaining soil productivity in agroecosystems presents a fundamental ecological challenge: nutrient provisioning depends upon aggregate turnover and microbial decomposition of organic matter (SOM); yet to prevent soil depletion these processes must be balanced by those that restore nutrients and SO...

  15. Nutrient availability in rangeland soils: influence of prescribed burning, herbaceous vegetation removal, overseeding with Bromus tectorum, season, and elevation

    Treesearch

    R. R. Blank; J. Chambers; B. Roundy; A. Whittaker

    2007-01-01

    Soil nutrient availability influences plant invasions. Resin capsules were used to examine soil nutrient bioavailability along 2 sagebrush-grassland elevation transects in the east Tintic Range (Utah) and Shoshone Range (Nevada). In the fall of 2001, treatments were applied to 3 replicate plots at each site, which included prescribed burning, herbaceous vegetation...

  16. Predictable communities of soil bacteria in relation to nutrient concentration and successional stage in a laboratory culture experiment.

    PubMed

    Song, Woojin; Kim, Mincheol; Tripathi, Binu M; Kim, Hyoki; Adams, Jonathan M

    2016-06-01

    It is difficult to understand the processes that structure immensely complex bacterial communities in the soil environment, necessitating a simplifying experimental approach. Here, we set up a microcosm culturing experiment with soil bacteria, at a range of nutrient concentrations, and compared these over time to understand the relationship between soil bacterial community structure and time/nutrient concentration. DNA from each replicate was analysed using HiSeq2000 Illumina sequencing of the 16S rRNA gene. We found that each nutrient treatment, and each time point during the experiment, produces characteristic bacterial communities that occur predictably between replicates. It is clear that within the context of this experiment, many soil bacteria have distinct niches from one another, in terms of both nutrient concentration, and successional time point since a resource first became available. This fine niche differentiation may in part help to explain the coexistence of a diversity of bacteria in soils. In this experiment, we show that the unimodal relationship between nutrient concentration/time and species diversity often reported in communities of larger organisms is also evident in microbial communities. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Riley, W. J.; Tang, J.; Koven, C. D.

    2015-03-01

    Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate, and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH4+, NO3-, and POx (representing the sum of PO43-, HPO42-, and H2PO4-)) and five potential competitors (plant roots, decomposing microbes, nitrifiers, denitrifiers, and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N2O emissions, free phosphorus, sorbed phosphorus, and free NH4+ at a tropical forest site (Tapajos). The overall model posterior uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer-substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results imply that the competitiveness (from most to least competitive) followed this order: (1) for NH4+, nitrifiers ~ decomposing microbes > plant roots, (2) for NO3-, denitrifiers ~ decomposing microbes > plant roots, (3) for POx, mineral surfaces > decomposing microbes ~ plant roots. Although smaller, plant relative competitiveness is of the same order of magnitude as microbes. We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen and phosphorus elevated conditions, the model accurately replicated the experimentally observed competition among different nutrient consumers. Although we used as many observations as we could obtain, more nutrient addition experiments in tropical systems would greatly benefit model testing and calibration. In summary, the N-COM model provides an ecologically consistent representation of nutrient competition appropriate for land BGC models integrated in Earth System Models.

  18. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests.

    PubMed

    Augusto, Laurent; De Schrijver, An; Vesterdal, Lars; Smolander, Aino; Prescott, Cindy; Ranger, Jacques

    2015-05-01

    It has been recognized for a long time that the overstorey composition of a forest partly determines its biological and physical-chemical functioning. Here, we review evidence of the influence of evergreen gymnosperm (EG) tree species and deciduous angiosperm (DA) tree species on the water balance, physical-chemical soil properties and biogeochemical cycling of carbon and nutrients. We used scientific publications based on experimental designs where all species grew on the same parent material and initial soil, and were similar in stage of stand development, former land use and current management. We present the current state of the art, define knowledge gaps, and briefly discuss how selection of tree species can be used to mitigate pollution or enhance accumulation of stable organic carbon in the soil. The presence of EGs generally induces a lower rate of precipitation input into the soil than DAs, resulting in drier soil conditions and lower water discharge. Soil temperature is generally not different, or slightly lower, under an EG canopy compared to a DA canopy. Chemical properties, such as soil pH, can also be significantly modified by taxonomic groups of tree species. Biomass production is usually similar or lower in DA stands than in stands of EGs. Aboveground production of dead organic matter appears to be of the same order of magnitude between tree species groups growing on the same site. Some DAs induce more rapid decomposition of litter than EGs because of the chemical properties of their tissues, higher soil moisture and favourable conditions for earthworms. Forest floors consequently tend to be thicker in EG forests compared to DA forests. Many factors, such as litter lignin content, influence litter decomposition and it is difficult to identify specific litter-quality parameters that distinguish litter decomposition rates of EGs from DAs. Although it has been suggested that DAs can result in higher accumulation of soil carbon stocks, evidence from field studies does not show any obvious trend. Further research is required to clarify if accumulation of carbon in soils (i.e. forest floor + mineral soil) is different between the two types of trees. Production of belowground dead organic matter appears to be of similar magnitude in DA and EG forests, and root decomposition rate lower under EGs than DAs. However there are some discrepancies and still are insufficient data about belowground pools and processes that require further research. Relatively larger amounts of nutrients enter the soil-plant biogeochemical cycle under the influence of EGs than DAs, but recycling of nutrients appears to be slightly enhanced by DAs. Understanding the mechanisms underlying forest ecosystem functioning is essential to predicting the consequences of the expected tree species migration under global change. This knowledge can also be used as a mitigation tool regarding carbon sequestration or management of surface waters because the type of tree species affects forest growth, carbon, water and nutrient cycling. © 2014 Institut National de la Recherche Agronomique. Biological Reviews © 2014 Cambridge Philosophical Society.

  19. Carbon and nitrogen dynamics across a bedrock-regulated subarctic pH gradient

    NASA Astrophysics Data System (ADS)

    Tomczyk, N.; Heim, E. W.; Sadowsky, J.; Remiszewski, K.; Varner, R. K.; Bryce, J. G.; Frey, S. D.

    2014-12-01

    Bedrock geochemistry has been shown to influence landscape evolution due to nutrient limitation on primary production. There may also be less direct interactions between bedrock-derived chemicals and ecosystem function. Effects of calcium (Ca) and pH on soil carbon (C) and nitrogen (N) cycling have been shown in acid impacted forests o f North America. Understanding intrinsic factors that affect C and nutrient dynamics in subarctic ecosystems has implications for how these ecosystems will respond to a changing climate. How the soil microbial community allocates enzymes to acquire resources from the environment can indicate whether a system is nutrient or energy limited. This study examined whether bedrock geochemistry exerts pressure on nutrient cycles in the overlying soils. In thin, weakly developed soils, bedrock is the primary mineral material and is a source of vital nutrients. Nitrogen (N) and C are not derived from bedrock, but their cycling is still affected by reactions with geologically-derived chemicals. Our study sites near Abisko, Sweden (~68°N) were selected adjacent to five distinct bedrock outcrops (quartzite, slate, carbonate, and two different metasedimenty units). All sites were at a similar elevation (~700 m a.s.l.) and had similar vegetation (subarctic heath). Nutrient concentrations in bedrock and soils were measured in addition to soil microbial biomass and extracellular enzyme activity. We found a statistically significant correlation between soil Ca concentrations and soil pH (r = 0.88, p < 0.01). There were also significant relationships between soil pH and the ratio of C-acquiring to N-acquiring enzyme activity (r = -0.89, p < 0.01), soil pH and soil C-to-N ratio (r = -0.76, p < 0.01), and the ratio of C-acquiring to N-acquiring enzyme activity and soil C-to-N ratio (r = 0.78, p < 0.01). These results suggest that soil Ca concentrations influence C and N cycling dynamics in these soils through their effect on soil pH.

  20. Imaging and Analytical Approaches for Characterization of Soil Mineral Weathering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dohnalkova, Alice; Arey, Bruce; Varga, Tamas

    Soil minerals weathering is the primary natural source of nutrients necessary to sustain productivity in terrestrial ecosystems. Soil microbial communities increase soil mineral weathering and mineral-derived nutrient availability through physical and chemical processes. Rhizosphere, the zone immediately surrounding plant roots, is a biogeochemical hotspot with microbial activity, soil organic matter production, mineral weathering, and secondary phase formation all happening in a small temporally ephemeral zone of steep geochemical gradients. The detailed exploration of the micro-scale rhizosphere is essential to our better understanding of large-scale processes in soils, such as nutrient cycling, transport and fate of soil components, microbial-mineral interactions, soilmore » erosion, soil organic matter turnover and its molecular-level characterization, and predictive modeling.« less

Top