Sample records for sol-gel precursor solution

  1. Sol-gel chemistry-based Ucon-coated columns for capillary electrophoresis.

    PubMed

    Hayes, J D; Malik, A

    1997-07-18

    A sol-gel chemistry-based novel approach for the preparation of a Ucon-coated fused-silica capillary column in capillary electrophoresis is presented. In this approach the sol-gel process is carried out inside 25 microm I.D. fused-silica capillaries. The sol solution contained appropriate quantities of an alkoxide-based sol-gel precursor, a polymeric coating material (Ucon), a crosslinking reagent, a surface derivatizing reagent, controlled amounts of water and a catalyst dissolved in a suitable solvent system. The coating procedure involves filling a capillary with the sol solution and allowing the sol-gel process to proceed for an optimum period. Hydrolysis of the alkoxide precursor and polycondensation of the hydrolyzed products with the surface silanol groups and the hydroxy-terminated Ucon molecules lead to the formation of a surface-bonded sol-gel coating on the inner walls of the capillary. The thickness of the coated film can be controlled by varying the reaction time, coating solution composition and experimental conditions. Commercial availability of high purity sol-gel precursors (e.g., TEOS 99.999%), the ease of coating, run-to-run and column-to-column reproducibility, and long column lifetimes make sol-gel coating chemistry very much suitable for being applied in analytical microseparations column technology. Test samples of basic proteins and nucleotides were used to evaluate the column performance. These results show that the sol-gel coating scheme has allowed for the generation of bio-compatible surfaces characterized by high separation efficiencies in CE. For different types of solutes, the sol-gel coated Ucon column consistently provided migration time R.S.D. values of the order of 0.5%.

  2. Sol-gel processing with inorganic metal salt precursors

    DOEpatents

    Hu, Zhong-Cheng

    2004-10-19

    Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.

  3. Synthesis of Sol-Gel Precursors for Ceramics from Lunar and Martian Soil Simulars

    NASA Technical Reports Server (NTRS)

    Sibille, L.; Gavira-Gallardo, J. A.; Hourlier-Bahloul, D.

    2004-01-01

    Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report initial results on the production of sol-gel precursors for ceramic products using mineral resources available in martian or lunar soil. The presence of SO2, TiO2, and Al2O3 in both martian (44 wt.% SiO2, 1 wt.% TiO2, 7 wt.% Al2O3) and lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from lunar and martian soil simulars. Clear solutions of sol-gel precursors have been obtained by dissolution of silica from lunar soil similar JSC-1 in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Similarly, sol-gel solutions produced from martian soil simulars reveal higher contents of iron oxides. Characterization of the precursor molecules and efforts to further concentrate and hydrolyze the products to obtain gel materials will be presented for evaluation as ceramic precursors.

  4. Synthesis of Sol-Gel Precursors for Ceramics from Lunar and Martian Soil Simulars

    NASA Technical Reports Server (NTRS)

    Sibille, L.; Gavira-Gallardo, J. A.; Hourlier-Bahloul, D.

    2003-01-01

    Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report initial results on the production of sol-gel precursors for ceramic products using mineral resources available in martian or lunar soil. The presence of SiO2, TiO2, and Al2O3 in both martian (44 wt.% SiO2, 1 wt.% TiO2,7 wt.% Al2O3) and lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from lunar and martian soil simulars. Clear solutions of sol-gel precursors have been obtained by dissolution of silica from lunar soil simular in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Similarly, sol-gel solutions produced from martian soil simulars reveal higher contents of iron oxides. The elemental composition and structure of the precursor molecules were characterized. Further concentration and hydrolysis of the products was performed to obtain gel materials for evaluation as ceramic precursors.

  5. Method of making ionic liquid mediated sol-gel sorbents

    DOEpatents

    Malik, Abdul; Shearrow, Anne M.

    2017-01-31

    Ionic liquid (IL)-mediated sol-gel hybrid organic-inorganic materials present enormous potential for effective use in analytical microextraction. One obstacle to materializing this prospect arises from high viscosity of ILs significantly slowing down sol-gel reactions. A method was developed which provides phosphonium-based, pyridinium-based, and imidazolium-based IL-mediated advanced sol-gel organic-inorganic hybrid materials for capillary microextraction. Scanning electron microscopy results demonstrate that ILs can serve as porogenic agents in sol-gel reactions. IL-mediated sol-gel coatings prepared with silanol-terminated polymers provided up to 28 times higher extractions compared to analogous sol-gel coatings prepared without any IL in the sol solution. This study shows that IL-generated porous morphology alone is not enough to provide effective extraction media: careful choice of the organic polymer and the precursor with close sol-gel reactivity must be made to ensure effective chemical bonding of the organic polymer to the created sol-gel material to be able to provide the desired sorbent characteristics.

  6. Synthesis and Microstructure of Highly Oriented PbTiO3 Thin Films Prepared by a Sol-Gel Method

    DTIC Science & Technology

    1989-06-01

    lead acetate with titanium isopropoxide * in 2-methoxyethanol,* in a method similar to that reported by Gurkovitch and Blum." The resulting yellow-gold...orientation by a sol-gel processing method. EXPERIMENTAL Precursor Solution Preparation Stock solutions of complex Pb-Ti alkoxide were prepared by reacting... solution had an equivalent PbTiO 3 concentration of approximately 66 wt%. The alkoxide solutions were handled as moisture-sensitive reagents and, as

  7. Sol-gel approach to in situ creation of high pH-resistant surface-bonded organic-inorganic hybrid zirconia coating for capillary microextraction (in-tube SPME).

    PubMed

    Alhooshani, Khalid; Kim, Tae-Young; Kabir, Abuzar; Malik, Abdul

    2005-01-07

    A novel zirconia-based hybrid organic-inorganic sol-gel coating was developed for capillary microextraction (CME) (in-tube SPME). High degree of chemical inertness inherent in zirconia makes it very difficult to covalently bind a suitable organic ligand to its surface. In the present work, this problem was addressed from a sol-gel chemistry point of view. Principles of sol-gel chemistry were employed to chemically bind a hydroxy-terminated silicone polymer (polydimethyldiphenylsiloxane, PDMDPS) to a sol-gel zirconia network in the course of its evolution from a highly reactive alkoxide precursor undergoing controlled hydrolytic polycondensation reactions. A fused silica capillary was filled with a properly designed sol solution to allow for the sol-gel reactions to take place within the capillary for a predetermined period of time (typically 15-30 min). In the course of this process, a layer of the evolving hybrid organic-inorganic sol-gel polymer got chemically anchored to the silanol groups on the capillary inner walls via condensation reaction. At the end of this in-capillary residence time, the unbonded part of the sol solution was expelled from the capillary under helium pressure, leaving behind a chemically bonded sol-gel zirconia-PDMDPS coating on the inner walls. Polycyclic aromatic hydrocarbons, ketones, and aldehydes were efficiently extracted and preconcentrated from dilute aqueous samples using sol-gel zirconia-PDMDPS coated capillaries followed by thermal desorption and GC analysis of the extracted solutes. The newly developed sol-gel hybrid zirconia coatings demonstrated excellent pH stability, and retained the extraction characteristics intact even after continuous rinsing with a 0.1 M NaOH solution for 24 h. To our knowledge, this is the first report on the use of a sol-gel zirconia-based hybrid organic-inorganic coating as an extraction medium in solid phase microextraction (SPME).

  8. Modification of Different Zirconium Propoxide Precursors by Diethanolamine. Is There a Shelf Stability Issue for Sol-Gel Applications?

    PubMed Central

    Spijksma, Gerald I.; Blank, Dave H. A.; Bouwmeester, Henny J. M.; Kessler, Vadim G.

    2009-01-01

    Modification of different zirconium propoxide precursors with H2dea was investigated by characterization of the isolated modified species. Upon modification of zirconium n-propoxide and [Zr(OnPr)(OiPr)3(iPrOH)]2 with ½ a mol equivalent of H2dea the complexes [Zr2(OnPr)6(OCH2CH2)2NH]2 (1) and [Zr2(OnPr)2(OiPr)4(OCH2CH2)2NH]2 (2) were obtained. However, 1H-NMR studies of these tetranuclear compounds showed that these are not time-stable either in solution or solid form. The effect of this time instability on material properties is demonstrated by light scattering and TEM experiments. Modification of zirconium isopropoxide with either ½ or 1 equivalent mol of H2dea results in formation of the trinuclear complex, Zr{η3μ2-NH(C2H4O)2}3[Zr(OiPr)3]2(iPrOH)2 (3) countering a unique nona-coordinated central zirconium atom. This complex 3 is one of the first modified zirconium propoxide precursors shown to be stable in solution for long periods of time. The particle size and morphology of the products of sol-gel synthesis are strongly dependent on the time factor and eventual heat treatment of the precursor solution. Reproducible sol-gel synthesis requires the use of solution stable precursors. PMID:20087472

  9. Influence of calcium precursors on the morphology and crystallinity of sol gel-derived hydroxyapatite nanoparticles

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi Natarajan, U.; Rajeswari, S.

    2008-10-01

    Nanosized hydroxyapatite (HAP) particles were prepared by sol-gel method from the water-based solution of calcium and phosphorus precursor. In this study, two calcium precursors such as calcium nitrate tetrahydrate and calcium acetate were chosen as calcium precursors. The influence of aging period, pH, viscosity and sintering temperature on crystallinity and morphology of the HAP particles were investigated for the two calcium precursors with triethyl phosphate precursor. The morphology of nano-HAP towards phosphorous precursor was dependent on the type of calcium precursor used. The HAP prepared from calcium nitrate and triethyl phosphate was spherically shaped whereas the one from calcium acetate was found to be fibrous in structure. Both HAPs were stable up to 1200 °C and their crystallinity increased with respect to the sintering temperature. The obtained sample was characterized through X-ray diffraction (XRD), P 31 nuclear magnetic resonance (NMR), scanning electronic microscopy (SEM) and TEM analysis. The sol derived from the optimized aging period for the two different calcium precursors was coated on 316L stainless-steel (SS) implant and its corrosion resistivity during long-term implantation was studied by cyclic polarization in Ringer's solution. Both HAPs have their own desirable qualities and were found to be corrosion resistive.

  10. A new sol-gel processing routine without chelating agents for preparing highly transparent solutions and nanothin films: engineering the role of chemistry to design the process

    NASA Astrophysics Data System (ADS)

    Ashiri, Rouholah

    2015-01-01

    The great sensitivity of titanium alkoxides to hydrolysis makes their sol-gel transformation very fast and thus difficult to control. A method was proposed to alleviate this drawback. Preparation of highly transparent solutions and nanothin films is another objective of the present research. Employing nanoemulsion method and optimizing the processing conditions, a clear solution of well-dispersed nanosized particles was obtained. With the proposed process BaTiO3 precursor sols and nanothin films with enhanced optical transparency towards the visible were prepared. The optimal formulation of the sol consists of acetic acid, barium acetate, 2-propanol, TTIP and deionized water with 6:1:1:1:150 M ratios, respectively. It was found that the reduction of the temperature in the initial stage of mixing of precursors controls the size of the forming species and accordingly improves the stability and transparency of the sol. The results also showed that the applied modifications and optimizations significantly downsize the particles within the sol to the nanometric scale and accordingly result in a significant improvement in the optical response of the products.

  11. Aging effects of the precursor solutions on the properties of spin coated Ga-doped ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serrao, Felcy Jyothi, E-mail: jyothiserrao@gmail.com; Dharmaprakash, S. M.

    2015-06-24

    In this study, gallium doped zinc oxide thin films (GZO) were grown on a glass substrate by a simple sol-gel process and spin coating technique using zinc acetate and gallium nitrate (3at%) as precursors for Zn and Ga ions respectively. The effects of aging time of the precursor solution on the structural and optical properties of the GZO films were investigated. The surface morphology, grain size, film thickness and optical properties of the GZO films were found to depend directly on the sol aging time. XRD studies reveal that the films are polycrystalline with a hexagonal wurtzite structure and showmore » the c-axis grain orientation. Optical transmittance spectra of all the films exhibited transmittance higher than about 82% within the visible wavelength region. A sharp fundamental absorption edge with a slight blue shifting was observed with an increase in sol aging time which can be explained by Burstein-Moss effect. The result indicates that an appropriate aging time of the sol is important for the improvement of the structural and optical properties of GZO thin films derived from sol-gel method.« less

  12. Enhancement of Ce/Cr Codopant Solubility and Chemical Homogeneity in TiO2 Nanoparticles through Sol-Gel versus Pechini Syntheses.

    PubMed

    Chen, Wen-Fan; Mofarah, Sajjad S; Hanaor, Dorian Amir Henry; Koshy, Pramod; Chen, Hsin-Kai; Jiang, Yue; Sorrell, Charles Christopher

    2018-06-18

    Ce/Cr codoped TiO 2 nanoparticles were synthesized using sol-gel and Pechini methods with heat treatment at 400 °C for 4 h. A conventional sol-gel process produced well-crystallized anatase, while Pechini synthesis yielded less-ordered mixed-phase anatase + rutile; this suggests that the latter method enhances Ce solubility and increases chemical homogeneity but destabilizes the TiO 2 lattice. Greater structural disruption from the decomposition of the Pechini precursor formed more open agglomerated morphologies, while the lower levels of structural disruption from pyrolysis of the dried sol-gel precursor resulted in denser agglomerates of lower surface areas. Codoping and associated destabilization of the lattice reduced the binding energies in both powders. Cr 4+ formation in sol-gel powders and Cr 6+ formation in Pechini powders suggest that these valence changes derive from synergistic electron exchange from intervalence and/or multivalence charge transfer. Since Ce is too large to allow either substitutional or interstitial solid solubility, the concept of integrated solubility is introduced, in which the Ti site and an adjacent interstice are occupied by the large Ce ion. The photocatalytic performance data show that codoping was detrimental owing to the effects of reduced crystallinity from lattice destabilization and surface area. Two regimes of mechanistic behavior are seen, which are attributed to the unsaturated solid solutions at lower codopant levels and supersaturated solid solutions at higher levels. The present work demonstrates that the Pechini method offers a processing technique that is superior to sol-gel because the former facilitates solid solubility and consequent chemical homogeneity.

  13. Solventless sol-gel chemistry through ring-opening polymerization of bridged disilaoxacyclopentanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAHIMIAN,KAMYAR; LOY,DOUGLAS A.

    2000-04-04

    Disilaoxacyclopentanes have proven to be excellent precursors to sol-gel type materials. These materials have shown promise as precursors for encapsulation and microelectronics applications. The polymers are highly crosslinked and are structurally similar to traditional sol-gels, but unlike typical sol-gels they are prepared without the use of solvents and water, they have low VOC's and show little shrinkage during processing.

  14. Solid-gel precursor solutions and methods for the fabrication of polymetallicsiloxane coating films

    DOEpatents

    Sugama, Toshifumi

    1992-01-01

    Solutions and preparation methods necessary for the fabrication of metal oxide cross-linked polysiloxane coating films are disclosed. The films are useful in provide heat resistance against oxidation, wear resistance, thermal insulation, and corrosion resistance of substrates. The sol-gel precursor solution comprises a mixture of a monomeric organoalkoxysilane, a metal alkoxide M(OR).sub.n (wherein M is Ti, Zr, Ge or Al; R is CH.sub.3, C.sub.2 H.sub.5 or C.sub.3 H.sub.7 ; and n is 3 or 4), methanol, water, HCl and NaOH. The invention provides a sol-gel solution, and a method of use thereof, which can be applied and processed at low temperatures (i.e., <1000.degree. C.). The substrate can be coated by immersing it in the above mentioned solution at ambient temperature. The substrate is then withdrawn from the solution. Next, the coated substrate is heated for a time sufficient and at a temperature sufficient to yield a solid coating. The coated substrate is then heated for a time sufficient, and temperature sufficient to produce a polymetallicsiloxane coating.

  15. Solid-gel precursor solutions and methods for the fabrication of polymetallicsiloxane coating films

    DOEpatents

    Sugama, Toshifumi

    1993-01-01

    Solutions and preparation methods necessary for the fabrication of metal oxide cross-linked polysiloxane coating films are disclosed. The films are useful in provide heat resistance against oxidation, wear resistance, thermal insulation, and corrosion resistance of substrates. The sol-gel precursor solution comprises a mixture of a monomeric organoalkoxysilane, a metal alkoxide M(OR).sub.n (wherein M is Ti, Zr, Ge or Al; R is CH.sub.3, C.sub.2 H.sub.5 or C.sub.3 H.sub.7 ; and n is 3 or 4), methanol, water, HCl and NaOH. The invention provides a sol-gel solution, and a method of use thereof, which can be applied and processed at low temperatures (i.e., <1000.degree. C.). The substrate can be coated by immersing it in the above mentioned solution at ambient temperature. The substrate is then withdrawn from the solution. Next, the coated substrate is heated for a time sufficient and at a temperature sufficient to yield a solid coating. The coated substrate is then heated for a time sufficient, and temperature sufficient to produce a polymetallicsiloxane coating.

  16. Solid-gel precursor solutions and methods for the fabrication of polymetallicsiloxane coating films

    DOEpatents

    Toshifumi Sugama.

    1993-04-06

    Solutions and preparation methods necessary for the fabrication of metal oxide cross-linked polysiloxane coating films are disclosed. The films are useful in provide heat resistance against oxidation, wear resistance, thermal insulation, and corrosion resistance of substrates. The sol-gel precursor solution comprises a mixture of a monomeric organoalkoxysilane, a metal alkoxide M(OR)[sub n] (wherein M is Ti, Zr, Ge or Al; R is CH[sub 3], C[sub 2]H[sub 5] or C[sub 3]H[sub 7]; and n is 3 or 4), methanol, water, HCl and NaOH. The invention provides a sol-gel solution, and a method of use thereof, which can be applied and processed at low temperatures (i.e., < 1,000 C.). The substrate can be coated by immersing it in the above mentioned solution at ambient temperature. The substrate is then withdrawn from the solution. Next, the coated substrate is heated for a time sufficient and at a temperature sufficient to yield a solid coating. The coated substrate is then heated for a time sufficient, and temperature sufficient to produce a polymetallicsiloxane coating.

  17. Studies of (3-mercaptopropyl)trimethoxylsilane and bis(trimethoxysilyl)ethane sol-gel coating on copper and aluminum.

    PubMed

    Li, Ying-Sing; Lu, Weijie; Wang, Yu; Tran, Tuan

    2009-09-01

    Bis(trimethoxysilyl)ethane (BTMSE) and (3-mercaptopropyl)trimethoxysilane (MPTMS) have been used as precursors to prepare sol-gels and hybrid sol-gel under acidic condition. From the X-ray photoelectron spectroscopy data on MPTMS sol-gel coated aluminum and copper, it has been shown that the silane film is covalently bonded to Al surface through the interfacial condensation. There is no evidence of bonding interaction between the thiol group and the Cu. The recorded reflection adsorption IR (RAIR) spectrum has provided evidence that the coating BTMSE film covalently interacts with Al. Vibrational assignments have been suggested for pure BTMSE, BTMSE sol-gel, BTMSE xerogel, and BTMSE coated Al panel based on the group frequencies and the variation of frequencies with the sample treatment conditions. The progression of condensation reaction has been observed from the IR spectra of the BTMSE sol-gel and the sol-gel coated film after the treatments at different temperatures with different lengths of time. The corrosion protection of the sol-gel coated Al and Cu has been characterized in NaCl solutions by cyclic voltammetric, potentiodynamic polarization and impedance spectroscopy methods. All these electrochemical measurements indicate that the sol-gel coated metals have better corrosion protection than the corresponding uncoated metals.

  18. Sol-gel preparation of lead magnesium niobate (PMN) powders and thin films

    DOEpatents

    Boyle, T.J.

    1999-01-12

    A method of preparing a lead magnesium niobium oxide (PMN), Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}, precursor solution by a solvent method wherein a liquid solution of a lead-complex PMN precursor is combined with a liquid solution of a niobium-complex PMN precursor, the combined lead- and niobium-complex liquid solutions are reacted with a magnesium-alkyl solution, forming a PMN precursor solution and a lead-based precipitate, and the precipitate is separated from the reacted liquid PMN precursor solution to form a precipitate-free PMN precursor solution. This precursor solution can be processed to form both ferroelectric powders and thin films. 3 figs.

  19. Sol-Gel Preparation Of Lead Magnesium Ni Obate (Pmn) Powdersand Thin Films

    DOEpatents

    Boyle, Timothy J.

    1999-01-12

    A method of preparing a lead magnesium niobium oxide (PMN), Pb(Mg.sub.1/3 Nb.sub.2/3)O.sub.3, precursor solution by a solvent method wherein a liquid solution of a lead-complex PMN precursor is combined with a liquid solution of a niobium-complex PMN precursor, the combined lead- and niobium-complex liquid solutions are reacted with a magnesium-alkyl solution, forming a PMN precursor solution and a lead-based precipitate, and the precipitate is separated from the reacted liquid PMN precursor solution to form a precipitate-free PMN precursor solution. This precursor solution can be processed to form both ferroelectric powders and thin films.

  20. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    DOEpatents

    Martino, Anthony; Yamanaka, Stacey A.; Kawola, Jeffrey S.; Showalter, Steven K.; Loy, Douglas A.

    1998-01-01

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5-10 nm in diameter with a monodisperse size distribution.

  1. Organic-Inorganic Hybrids Using Novel Phenylethynyl Imide Silanes

    NASA Technical Reports Server (NTRS)

    Park, C.; Lowther, S. E.; Smith, J. G., Jr.

    2001-01-01

    In this presentation, polyimide-silica hybrids using novel phenylethynyl imide silanes are reported. The phenylethynyl group is present in the organic precursor as either a pendent or an end group to bond chemically with the polyimide adhesive containing phenylethynyl groups during processing, while the silane group of the organic precursor would chemically react with the inorganic precursor through oxane bond formation. The chemical compositions of these novel hybrids were examined using X-ray mapping modes of scanning electron microscopy (SEM), which revealed a silicon gradient interphase between the high surface energy substrate and the polyimide adhesive. Novel aromatic phenylethynyl imide silanes (APEISs) and pendent phenylethynyl imide oligomeric disilanes (PPEIDSs) have been synthesized, and sol-gel solutions containing the new silanes, a phenylethynyl terminated imide oligomer (PETI-5), and an inorganic precursor were formulated to develop a gradient hybrid interphase between a titanium alloy and the adhesive. Two different sol-gel systems were investigated to develop organic-inorganic hybrids. Hybrid I was composed of an organic precursor containing both phenylethynyl and silane groups (PPEIDS) and an inorganic precursor. Functional group concentrations were controlled by the variation of the molecular weight of the imide backbone of PPEIDS. Hybrid II was composed of organic and inorganic precursors and a coupling agent containing both phenylethynyl and silane groups. Morphology and chemical composition of the hybrid interphase between the inorganic substrate and the adhesive were investigated, and the bond strength and durability were evaluated using lap shear tests at various conditions. The assessment of how the bonding at an interface is affected by various sol-gel solution compositions and environments is reported.

  2. Synthesis and characterization of TiC nanopowders via sol-gel and subsequent carbothermal reduction process

    NASA Astrophysics Data System (ADS)

    Chen, Xu; Fan, Jinglian; Lu, Qiong

    2018-06-01

    TiC nanocrystalline powders were synthesized by in-situ carbothermic reduction of Ti-O-C precursor under vacuum atmosphere. And the Ti-O-C precursor was formed by sol-gel method from titanium butyrate (TBOT) and sucrose. To obtain stable sol, TBOT was directly added into mixed solution which contains water, sucrose, acetic acid (AcOH) and acetylacetone (ACAC). This procedure is more convenient and economical because it avoids the use of alcohol which is used as solvent in most reports of alkoxide hydrolysis sol-gel method. TG-DSC, XRD, FTIR and SEM/TEM were employed to analyze and characterize the product during the entire process. The phase composition and crystalline structure parameters of powders with different C/Ti molar ratio were investigated by Rietveld refinement method, and elemental quantitative analysis of the samples were performed. Furthermore, the optimal parameters of carbothermal reduction were obtained and the grain growth mechanism was demonstrated. The results show that TiC nanocrystalline powders (C/Ti molar ratio is 3.5 in the precursor) were synthesized at 1300 °C for 2 h, which have near standard lattice parameter, well crystallinity and fine average grain size ( 37.4 nm).

  3. Effect of Chelating Agents on the Stability of Nano-TiO2 Sol Particles for Sol-Gel Coating.

    PubMed

    Maeng, Wan Young; Yoo, Mi

    2015-11-01

    Agglomeration of sol particles in a titanium alkoxide (tetrabutyl orthotitanate (TBOT), > 97%) solution during the hydrolysis and condensation steps makes the sol solution difficult to use for synthesizing homogeneous sol-gel coating. Here, we have investigated the effect of stabilizing agents (acetic acid and ethyl acetoacetate (EAcAc)) on the agglomeration of Ti alkoxide particles during hydrolysis and condensation in order to determine the optimized conditions for controlling the precipitation of TiO2 particles. The study was conducted at R(AC) ([acetic acid]/[TBOT]) = 0.1-5 and R(EAcAc)([EAcAc]/[TBOT]) = 0.05-0.65. We also studied the effects of a basic catalyst ethanolamine (ETA), water, and HCl on sol stability. The chelating ligands in the precursor sol were analyzed with FT-IR. The coating properties were examined by focused ion beam. The stabilizing agents (acetic acid and EAcAc) significantly influenced the agglomeration and precipitation of TBOT precursor particles during hydrolysis. As R(AC) and R(EAcAc) increased, the agglomeration remarkably decreased. The stability of the sol with acetic acid and EAcAc arises from the coordination of the chelating ligand to TBOT that hinders hydrolysis and condensation. A uniform fine coating (thickness: 30 nm) on stainless steel was obtained by using an optimized sol with R(AC) = 0.5 and R(EAcAc) = 0.65.

  4. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    DOEpatents

    Martino, A.; Yamanaka, S.A.; Kawola, J.S.; Showalter, S.K.; Loy, D.A.

    1998-09-29

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis are disclosed. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5--10 nm in diameter with a monodisperse size distribution. 1 fig.

  5. Synthesis of Silver-Strontium Titanate Hybrid Nanoparticles by Sol-Gel-Hydrothermal Method.

    PubMed

    Ueno, Shintaro; Nakashima, Kouichi; Sakamoto, Yasunao; Wada, Satoshi

    2015-03-24

    Silver (Ag) nanoparticle-loaded strontium titanate (SrTiO₃) nanoparticles were attempted to be synthesized by a sol-gel-hydrothermal method. We prepared the titanium oxide precursor gels incorporated with Ag⁺ and Sr 2+ ions with various molar ratios, and they were successfully converted into the Ag-SrTiO₃ hybrid nanoparticles by the hydrothermal treatment at 230 °C in strontium hydroxide aqueous solutions. The morphology of the SrTiO₃ nanoparticles is dendritic in the presence and absence of Ag⁺ ions. The precursor gels, which act as the high reactive precursor, give rise to high nucleation and growth rates under the hydrothermal conditions, and the resultant diffusion-limited aggregation phenomena facilitate the dendritic growth of SrTiO₃. From the field-emission transmission electron microscope observation of these Ag-SrTiO₃ hybrid nanoparticles, the Ag nanoparticles with a size of a few tens of nanometers are distributed without severe agglomeration, owing to the competitive formation reactions of Ag and SrTiO₃.

  6. Preparation of fullerene/glass composites

    DOEpatents

    Mattes, Benjamin R.; McBranch, Duncan W.; Robinson, Jeanne M.; Koskelo, Aaron C.; Love, Steven P.

    1995-01-01

    Synthesis of fullerene/glass composites. A direct method for preparing solid solutions of C.sub.60 in silicon dioxide (SiO.sub.2) glass matrices by means of sol-gel chemistry is described. In order to produce highly concentrated fullerene-sol-gel-composites it is necessary to increase the solubility of these "guests" in a delivery solvent which is compatible with the starter sol (receiving solvent). Sonication results in aggregate disruption by treatment with high frequency sound waves, thereby accelerating the rate of hydrolysis of the alkoxide precursor, and the solution process for the C.sub.60. Depending upon the preparative procedure, C.sub.60 dispersed within the glass matrix as microcrystalline domains, or dispersed as true molecular solutions of C.sub.60 in a solid glass matrix, is generated by the present method.

  7. Preparation of fullerene/glass composites

    DOEpatents

    Mattes, B.R.; McBranch, D.W.; Robinson, J.M.; Koskelo, A.C.; Love, S.P.

    1995-05-30

    Synthesis of fullerene/glass composites is described. A direct method for preparing solid solutions of C{sub 60} in silicon dioxide (SiO{sub 2}) glass matrices by means of sol-gel chemistry is described. In order to produce highly concentrated fullerene-sol-gel-composites it is necessary to increase the solubility of these ``guests`` in a delivery solvent which is compatible with the starter sol (receiving solvent). Sonication results in aggregate disruption by treatment with high frequency sound waves, thereby accelerating the rate of hydrolysis of the alkoxide precursor, and the solution process for the C{sub 60}. Depending upon the preparative procedure, C{sub 60} dispersed within the glass matrix as microcrystalline domains, or dispersed as true molecular solutions of C{sub 60} in a solid glass matrix, is generated by the present method.

  8. Encapsulation of Polymer Colloids in a Sol-Gel Matrix. Direct-Writing of Coassembling Organic-Inorganic Hybrid Photonic Crystals.

    PubMed

    Mikosch, Annabel; Kuehne, Alexander J C

    2016-03-22

    The spontaneous self-assembly of polymer colloids into ordered arrangements provides a facile strategy for the creation of photonic crystals. However, these structures often suffer from defects and insufficient cohesion, which result in flaking and delamination from the substrate. A coassembly process has been developed for convective assembly, resulting in large-area encapsulated colloidal crystals. However, to generate patterns or discrete deposits in designated places, convective assembly is not suitable. Here we experimentally develop conditions for direct-writing of coassembling monodisperse dye-doped polystyrene particles with a sol-gel precursor to form solid encapsulated photonic crystals. In a simple procedure the colloids are formulated in a sol-gel precursor solution, drop-cast on a flat substrate, and dried. We here establish the optimal parameters to form reproducible highly ordered photonic crystals with good optical performance. The obtained photonic crystals interact with light in the visible spectrum with a narrow optical stop-gap.

  9. Additive Manufacturing of Transparent Silica Glass from Solutions.

    PubMed

    Cooperstein, Ido; Shukrun, Efrat; Press, Ofir; Kamyshny, Alexander; Magdassi, Shlomo

    2018-06-06

    A sol, aqueous solution-based ink is presented for fabrication of 3D transparent silica glass objects with complex geometries, by a simple 3D printing process conducted at room temperature. The ink combines a hybrid ceramic precursor that can undergo both the photopolymerization reaction and a sol-gel process, both in the solution form, without any particles. The printing is conducted by localized photopolymerization with the use of a low-cost 3D printer. Following printing, upon aging and densifying, the resulting objects convert from a gel to a xerogel and then to a fused silica. The printed objects, which are composed of fused silica, are transparent and have tunable density and refractive indices.

  10. Ternary Phase-Separation Investigation of Sol-Gel Derived Silica from Ethyl Silicate 40

    PubMed Central

    Wang, Shengnan; Wang, David K.; Smart, Simon; Diniz da Costa, João C.

    2015-01-01

    A ternary phase-separation investigation of the ethyl silicate 40 (ES40) sol-gel process was conducted using ethanol and water as the solvent and hydrolysing agent, respectively. This oligomeric silica precursor underwent various degrees of phase separation behaviour in solution during the sol-gel reactions as a function of temperature and H2O/Si ratios. The solution composition within the immiscible region of the ES40 phase-separated system shows that the hydrolysis and condensation reactions decreased with decreasing reaction temperature. A mesoporous structure was obtained at low temperature due to weak drying forces from slow solvent evaporation on one hand and formation of unreacted ES40 cages in the other, which reduced network shrinkage and produced larger pores. This was attributed to the concentration of the reactive sites around the phase-separated interface, which enhanced the condensation and crosslinking. Contrary to dense silica structures obtained from sol-gel reactions in the miscible region, higher microporosity was produced via a phase-separated sol-gel system by using high H2O/Si ratios. This tailoring process facilitated further condensation reactions and crosslinking of silica chains, which coupled with stiffening of the network, made it more resistant to compression and densification. PMID:26411484

  11. Sol-gel open tubular ODS columns with reversed electroosmotic flow for capillary electrochromatography.

    PubMed

    Hayes, J D; Malik, A

    2001-03-01

    Sol-gel chemistry was successfully used for the fabrication of open tubular columns with surface-bonded octadecylsilane (ODS) stationary-phase coating for capillary electrochromatography (OT-CEC). Following column preparations, a series of experiments were performed to investigate the performance of the sol-gel coated ODS columns in OT-CEC. The incorporation of N-octadecyldimethyl[3-(trimethoxysilyl)propyl]ammonium chloride as one of the sol-gel precursors played an important role in the electrochromatographic performance of the prepared columns. This chemical reagent possesses a chromatographically favorable, bonded ODS moiety, in conjunction with three methoxy groups allowing for sol-gel reactivity. In addition, a positively charged nitrogen atom is present in the molecular structure of this reagent and provides a positively charged capillary surface responsible for the reversed electroosmotic flow (EOF) in the columns during CEC operation. Comparative studies involving the EOF within such sol-gel ODS coated and uncoated capillaries were performed using acetonitrile and methanol as the organic modifiers in the mobile phase. The use of a deactivating reagent, phenyldimethylsilane, in the sol-gel solution was evaluated. Efficiency values of over 400,000 theoretical plates per meter were achieved in CEC on a 64 cm x 25 microm i.d. sol-gel ODS open tubular column. Test mixtures of polycyclic aromatic hydrocarbons, benzene derivatives, and aromatic aldehydes and ketones were used to evaluate the CEC performances of both nondeactivated and deactivated open tubular sol-gel columns. The effects of mobile-phase organic modifier contents and pH on EOF in such columns were evaluated. The prepared sol-gel ODS columns are characterized by switchable electroosmotic flow. A pH value of approximately 8.5 was found correspond to the isoelectric point for the prepared sol-gel ODS coatings.

  12. Sol-gel derived C-SiC composites and protective coatings for sustained durability in the space environment

    NASA Astrophysics Data System (ADS)

    Haruvy, Yair; Liedtke, Volker

    2003-09-01

    Composites and coatings were produced via the fast sol-gel process of a mixture of alkoxysilane precursors. The composites were comprised of carbon fibers, fabrics, or their precursors as reinforcement, and sol-gel-derived silicon carbide as matrix, aiming at high-temperature stable ceramics that can be utilized for re-entry structures. The protective coatings were comprised of fluorine-rich sol-gel derived resins, which exhibit high flexibility and coherence to provide sustained ATOX protection necessary for LEO space-exposed elements. For producing the composites, the sol-gel-derived resin is cast onto the reinforcement fibers/fabrics mat (carbon or its precursors) to produce a 'green' composite that is being cured. The 'green' composite is converted into a C-SiC composite via a gradual heat-pressure process under inert atmosphere, during which the organic substituents on the silicon atoms undergo internal oxidative pyrolysis via the schematic reaction: (SiRO3/2)n -> SiC + CO2 + H2O. The composition of the resultant silicon-oxi-carbide is tailorable via modifying the composition of the sol-gel reactants. The reinforcement, when made of carbon precursors, is converted into carbon during the heat-and-pressure processing as well. The C-SiC composites thus derived exhibit superior thermal stability and comparable thermal conductivity, combined with good mechanical strength features and failure resistance, which render them greatly applicable for re-entry shielding, heat-exchange pipes, and the like. Fluorine rich sol-gel derived coatings were developed as well, via the use of HF rich sol-gel process. These coatings provide oxidation-protection via the silica formation process, together with flexibility that allows 18,000 repetitive folding of the coating without cracking.

  13. Thermostability of glucose oxidase in silica gel obtained by sol-gel method and in solution studied by fluorimetric method.

    PubMed

    Przybyt, Małgorzata; Miller, Ewa; Szreder, Tomasz

    2011-04-04

    The thermostability of glucose oxidase entrapped in silica gel obtained by sol-gel method was studied by thermostimulated fluorescence of FAD at pH 5 and 7 and compared with that of the native enzyme in the solution and at the presence of ethanol. The unfolding temperatures were found to be lower for the enzyme immobilised in gel as compared with the native enzyme but higher as for the enzyme at the presence of ethanol. In gel, the thermal denaturation of glucose oxidase is independent on pH while in solution the enzyme is more stable at pH 5. The investigation the enzyme in different environment by steady-state fluorescence of FAD and tryptophan, synchronous fluorescence and time-resolved fluorescence of tryptophan indicates that the state of the molecule (tertiary structure and molecular dynamics) is different in gel and in solution. The ethanol produced during gel precursor hydrolysis is not the main factor influencing the thermostability of the enzyme but more important are interactions of the protein with the gel lattice. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. The application of silicon sol-gel technology to forensic blood substitute development: Mimicking aspects of whole human blood rheology.

    PubMed

    Stotesbury, Theresa; Illes, Mike; Wilson, Paul; Vreugdenhil, Andrew J

    2017-01-01

    Solution-gelation chemistry has promising applications in forensic synthetic blood substitute development. This research offers a silicon-based sol-gel approach to creating stable materials that share similar rheological properties to that of whole human blood samples. Room temperature, high water content, silicon sol-gels were created using the organosilane precursors 3-glycidoxypropyltrimethoxysilane and tetraethylorthosilicate along with various concentrations of filler and pigment. Shear-thinning non-Newtonian properties were observed within most formulations of the presented materials. The effects of colloidal concentration, temperature, age and filler addition on the viscosity of the sol-gels were investigated. SEM-EDS analysis was used to identify the behavior of the fillers within the film and support their inclusion for basic bloodstain pattern simulation. A final proposed candidate sol-gel was assessed using a previously reported passive drip simulation test on a hard, dry surface and passed. This works represents encouraging development in providing safe material alternatives to using whole human blood for forensic training and research. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Screen-Printing of ZnO Nanostructures from Sol-Gel Solutions for Their Application in Dye-Sensitized Solar Cells.

    PubMed

    Sarkar, Kuhu; Braden, Erik V; Bonke, Shannon A; Bach, Udo; Müller-Buschbaum, Peter

    2015-08-24

    Diblock copolymers have been used in sol-gel synthesis to successfully tailor the nanoscale morphology of thin ZnO films. As the fabrication of several-micron-thick mesoporous films such as those required in dye-sensitized solar cells (DSSCs) was difficult with this approach, we exploited the benefits of diblock-copolymer-directed synthesis that made it compatible with screen printing. The simple conversion of the diblock copolymer ZnO precursor sol to a screen-printing paste was not possible as it resulted in poor film properties. To overcome this problem, an alternative route is proposed in which the diblock copolymer ZnO precursor sol is first blade coated and calcined, then converted to a screen-printing paste. This allows the benefits of diblock-copolymer-directed particle formation to be compatible with printing methods. The morphologies of the ZnO nanostructures were studied by SEM and correlated with the current density-voltage characteristics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Studies on modification of ZnO sol-gel spin coated on flexible substrate at low temperature: Effect of time exposure

    NASA Astrophysics Data System (ADS)

    Kamardin, Ili Liyana Khairunnisa; Ainuddin, Ainun Rahmahwati

    2017-04-01

    Transparent Conducting Oxide (TCO) Film has been chosen as flexible substrate recently in the application of a device. One of the TCO mostly used is ITO/PET substrates. Through this communication, the effect of time exposure of ZnO thin film by modified sol-gel deposited on flexible substrates was investigated. 0.75 M of NaOH and C6H8O7 were dropped directly into precursor solution right before aging process in order to modified precursor solution environment condition. x-ray diffraction pattern recorded plane (100) and (101) as preferential growth orientation. The (101) plane was selected to calculate the average crystallite. The atomic force microscopy indicated RMS value for NaOH samples increased with time exposure. Meanwhile, for C6H8O7 samples decreased with hot water treatment time exposure.

  17. Large-Scale Precise Printing of Ultrathin Sol-Gel Oxide Dielectrics for Directly Patterned Solution-Processed Metal Oxide Transistor Arrays.

    PubMed

    Lee, Won-June; Park, Won-Tae; Park, Sungjun; Sung, Sujin; Noh, Yong-Young; Yoon, Myung-Han

    2015-09-09

    Ultrathin and dense metal oxide gate di-electric layers are reported by a simple printing of AlOx and HfOx sol-gel precursors. Large-area printed indium gallium zinc oxide (IGZO) thin-film transistor arrays, which exhibit mobilities >5 cm(2) V(-1) s(-1) and gate leakage current of 10(-9) A cm(-2) at a very low operation voltage of 2 V, are demonstrated by continuous simple bar-coated processes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Sol-gel modification of wood substrates to retard weathering

    Treesearch

    Mandla A Tshabalala; Sam Williams

    2008-01-01

    Wood specimens were treated with sol-gel systems based on metalorganic precursors of silicon (Si), iron (Fe), zirconium (Zr), and titanium (Ti). The effect of these sol-gel systems on weathering properties of wood was investigated. These sol-gel systems were found to have a positive effect on surface color stability and water vapor resistance of the specimens. Under...

  19. Structural development and kinetic analysis of PbTiO3 powders processed at low-temperature via new sol-gel approach

    NASA Astrophysics Data System (ADS)

    Bel-Hadj-Tahar, Radhouane; Abboud, Mohamed

    2018-04-01

    The synthesis of crystalline lead titanate powder by a generic low-temperature sol-gel approach is developed. Acetoin was added as ligand, instead of the commonly used alkanolamines, to ensure total dissolution of the precursor compounds. The feasibility of the acetoin-Ti isopropoxide complex as a new precursor of PbTiO3 perovskite particles via sol-gel method has been demonstrated. No excess lead has been introduced. Nanometric PbTiO3 crystallites have been formed at 400 °C under atmospheric pressure from titanium isopropoxide and lead acetate in alcoholic solution by remarkably low activation energy of crystallization process of 90 kJ mol-1. The powders show tetragonal lattice and dendritic morphology. In addition to the effect of heat-treatment temperature, time, and atmosphere, the sol chemistry particularly influenced the phase composition, particle size, and particle morphology. The use of different ligands significantly modified powder morphology. The extent of the crystallization was quantitatively evaluated by differential thermal analysis and analyzed by Johnson-Mehl-Avrami approach. The crystallization followed two rate regimes depending on the interval of the crystallized fraction.

  20. Molecularly imprinted sol-gel nanofibers based solid phase microextraction coupled on-line with high performance liquid chromatography for selective determination of acesulfame.

    PubMed

    Moein, Mohammad Mahdi; Javanbakht, Mehran; Karimi, Mohammad; Akbari-Adergani, Behrouz

    2015-03-01

    Sol-gel based molecularly imprinted polymer (MIP) nanofiber was successfully fabricated by electrospinning technique on the surface of a stainless steel bar. The manufactured tool was applied for on-line selective solid phase microextraction (SPME) and determination of acesulfame (ACF) as an artificial sweetener with high performance liquid chromatography (HPLC). The selective ability of method for the extraction of ACF was investigated in the presence of some selected sweeteners such as saccharine (SCH), aspartame (ASP) and caffeine (CAF). Electrospinning of MIP sol-gel solution on the stainless steel bar provided an unbreakable sorbent with high thermal, mechanical, and chemical stability. Moreover, application of the MIP-SPME tool revealed a unique approach for the selective microextraction of the analyte in beverage samples. In this work, 3-(triethoxysilyl)-propylamine (TMSPA) was chosen as a precursor due to its ability to imprint the analyte by hydrogen bonding, Van der Walls, and dipole-dipole interactions. Nylon 6 was also added as a backbone and support for the precursor in which sol could greatly growth during the sol-gel process and makes the solution electrospinable. Various effective parameters in the extraction efficiency of the MIP-SPME tool such as loading time, flow rate, desorption time, selectivity, and the sample volume were evaluated. The linearity for the ACF in beverage sample was in the range of 0.78-100.5 ng mL(-1). Limit of detection (LOD) and quantification (LOQ) were 0.23 and 0.78 ng mL(-1) respectively. The RSD values (n=5) were all below 3.5%at the 20 ng mL(-1) level. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Sol-gel type synthesis of Bi.sub.2 (Sr,Ta.sub.2)O.sub.9 using an acetate based system

    DOEpatents

    Boyle, Timothy J.

    1997-01-01

    A method of forming a layered-perovskite bismuth-strontium-tantalum oxide (SBT) ferroelectric material is performed by dissolving a bismuth compound in a first solvent to form a first solution, mixing a strontium compound and a tantalum compound to form a binary mixture, dissolving the binary mixture in a second solvent to form a second solution, mixing the first solution with the second solution to form a SBT precursor solution, evaporating the first and second solvents to form a SBT precursor material and subsequently sintering said SBT precursor material in the presence of oxygen.

  2. Sol-gel type synthesis of Bi{sub 2}(Sr,Ta{sub 2})O{sub 9} using an acetate based system

    DOEpatents

    Boyle, T.J.

    1997-11-04

    A method of forming a layered-perovskite bismuth-strontium-tantalum oxide (SBT) ferroelectric material is performed by dissolving a bismuth compound in a first solvent to form a first solution, mixing a strontium compound and a tantalum compound to form a binary mixture, dissolving the binary mixture in a second solvent to form a second solution, mixing the first solution with the second solution to form a SBT precursor solution, evaporating the first and second solvents to form a SBT precursor material and subsequently sintering said SBT precursor material in the presence of oxygen. 6 figs.

  3. Microstructure investigation on micropore formation in microporous silica materials prepared via a catalytic sol-gel process by small angle X-ray scattering.

    PubMed

    Shimizu, Wataru; Hokka, Junsuke; Sato, Takaaki; Usami, Hisanao; Murakami, Yasushi

    2011-08-04

    The so-called sol-gel technique has been shown to be a template-free, efficient way to create functional porous silica materials having uniform micropores. This appears to be closely linked with a postulation that the formation of weakly branched polymer-like aggregates in a precursor solution is a key to the uniform micropore generation. However, how such a polymer-like structure can precisely be controlled, and further, how the generated low-fractal dimension solution structure is imprinted on the solid silica materials still remain elusive. Here we present fabrication of microporous silica from tetramethyl orthosilicate (TMOS) using a recently developed catalytic sol-gel process based on a nonionic hydroxyacetone (HA) catalyst. Small angle X-ray scattering (SAXS), nitrogen adsorption porosimetry, and transmission electron microscope (TEM) allowed us to observe the whole structural evolution, ranging from polymer-like aggregates in the precursor solution to agglomeration with heat treatment and microporous morphology of silica powders after drying and hydrolysis. Using the HA catalyst with short chain monohydric alcohols (methanol or ethanol) in the precursor solution, polymer-like aggregates having microscopic correlation length (or mesh-size) < 2 nm and low fractal dimensions ∼2, which is identical to that of an ideal coil polymer, can selectively be synthesized, yielding the uniform micropores with diameters <2 nm in the solid materials. In contrast, the absence of HA or substitution of 1-propanol led to considerably different scattering behavior reflecting the particle-like aggregate formation in the precursor solution, which resulted in the formation of mesopores (diameter >2 nm) in the solid product due to apertures between the particle-like aggregates. The data demonstrate that the extremely fine porous silica architecture comes essentially from a gaussian polymer-like nature of the silica aggregates in the precursor having the microscopic mesh-size and their successful imprint on the solid product. The result offers a general but significantly efficient route to creating precisely designed fine porous silica materials under mild condition that serve as low refractive index and efficient thermal insulation materials in their practical applications.

  4. The influence of precursor addition order on the porosity of sol-gel bioactive glasses.

    PubMed

    Fernando, Delihta; Colon, Pierre; Cresswell, Mark; Journet, Catherine; Pradelle-Plasse, Nelly; Jackson, Phil; Grosgogeat, Brigitte; Attik, Nina

    2018-06-16

    The superior textural properties of sol-gel derived bioactive glasses compared to conventional melt quench glasses accounts for their accelerated bioactivity in vitro. Several studies have explored ways to improve the surface properties of sol-gel glasses in order to maximise their efficiency for bone and tooth regeneration. In this study, we investigated the effect of order of network modifying precursor addition on the textural properties of sol-gel derived bioactive glasses. The effect of precursor addition order on the glass characteristics was assessed by switching the order of network modifying precursor (calcium acetate monohydrate and sodium acetate anhydrous) addition for a fixed composition of bioactive glass (75SiO 2 :5CaO:10Na 2 O:10P 2 O 5 ). The results of this study showed that the order of precursor addition does influence the porosity of these glasses. For the glasses of a fixed composition and preparation conditions we achieved a doubling of surface area, a 1.5 times increase in pore volume and a 1.2 times decrease in pore size just by the mixing the network modifying precursors and adding them together in the sol-gel preparation. This simple and straightforward route adaptation to the preparation of bioactive glasses would allow us to enhance the textural properties of existing and novel composition of bioactive glasses and thus accelerate their bioactivity. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  5. Sol-Gel Processing of MgF₂ Antireflective Coatings.

    PubMed

    Löbmann, Peer

    2018-05-02

    There are different approaches for the preparation of porous antireflective λ/4 MgF₂ films from liquid precursors. Among these, the non-aqueous fluorolytic synthesis of precursor solutions offers many advantages in terms of processing simplicity and scalability. In this paper, the structural features and optical performance of the resulting films are highlighted, and their specific interactions with different inorganic substrates are discussed. Due to their excellent abrasion resistance, coatings have a high potential for applications on glass. Using solvothermal treatment of precursor solutions, also the processing of thermally sensitive polymer substrates becomes feasible.

  6. Solvent-resistant sol-gel polydimethyldiphenylsiloxane coating for on-line hyphenation of capillary microextraction with high-performance liquid chromatography.

    PubMed

    Segro, Scott S; Malik, Abdul

    2008-09-26

    A sol-gel polydimethyldiphenylsiloxane (PDMDPS) coating was developed for capillary microextraction on-line hyphenated with high-performance liquid chromatography (HPLC). This coating was created using methyltrimethoxysilane (MTMS) as the sol-gel precursor and di-hydroxy-terminated PDMDPS as the sol-gel active polymer. The methyl and phenyl groups on the sol-gel active polymer and the methyl groups on the sol-gel precursor ultimately turned into pendant groups providing the ability to extract non-polar analytes. A 40-cm segment of 0.25 mm I.D. fused silica capillary containing the sol-gel PDMDPS coating was installed as an external sampling loop in an HPLC injection port. Aqueous samples containing polycyclic aromatic hydrocarbons (PAHs), aromatic compounds, ketones, and aldehydes were passed through this capillary wherein the analytes were extracted by the sol-gel coating. The extracted analytes were then transferred to the HPLC column using isocratic or gradient elution with an acetonitrile/water mobile phase. This capillary demonstrated excellent extraction capability for non-polar (e.g., polycyclic aromatic hydrocarbons and aromatic compounds) as well as moderately polar compounds, such as aromatic amines, ketones, and aldehydes. The test results indicate that PDMDPS can be successfully immobilized into a sol-gel network and that the resulting solvent-resistant sol-gel organic-inorganic hybrid coating can be effectively used for on-line hyphenation of capillary microextraction with high-performance liquid chromatography. The test results also indicate that the sol-gel PDMDPS coated capillary is resistant to high-temperature solvents, making it suitable for applications in high-temperature HPLC. To the best of our knowledge, this is the first report on the creation of a silica-based sol-gel PDMDPS coating used in capillary microextraction on-line hyphenated to HPLC.

  7. Synthesis of Biocompatible Surfaces by Different Techniques

    DTIC Science & Technology

    2002-04-01

    production . In the other hand, polymers are widely used in bone/cartilage implants, both, as polymeric materials themselves and as a polymeric surface on a...focus on the production of HA scaffolds by a sol-gel method using different drying processes, and on the study of the plasma polymerization technique to...precursor at 3. SA-stoichiometric amount (to maintain Ca/P= 1,67) of the calcium precursor solution (3 M solution in anhidrous etanol ) was added dropwise

  8. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method. Optimisation, characterisation and rheology.

    PubMed

    Tredwin, Christopher J; Young, Anne M; Georgiou, George; Shin, Song-Hee; Kim, Hae-Won; Knowles, Jonathan C

    2013-02-01

    Currently, most titanium implant coatings are made using hydroxyapatite and a plasma spraying technique. There are however limitations associated with plasma spraying processes including poor adherence, high porosity and cost. An alternative method utilising the sol-gel technique offers many potential advantages but is currently lacking research data for this application. It was the objective of this study to characterise and optimise the production of Hydroxyapatite (HA), fluorhydroxyapatite (FHA) and fluorapatite (FA) using a sol-gel technique and assess the rheological properties of these materials. HA, FHA and FA were synthesised by a sol-gel method. Calcium nitrate and triethylphosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride (NH4F) were incorporated for the preparation of the sol-gel derived FHA and FA. Optimisation of the chemistry and subsequent characterisation of the sol-gel derived materials was carried out using X-ray Diffraction (XRD) and Differential Thermal Analysis (DTA). Rheology of the sol-gels was investigated using a viscometer and contact angle measurement. A protocol was established that allowed synthesis of HA, FHA and FA that were at least 99% phase pure. The more fluoride incorporated into the apatite structure; the lower the crystallisation temperature, the smaller the unit cell size (changes in the a-axis), the higher the viscosity and contact angle of the sol-gel derived apatite. A technique has been developed for the production of HA, FHA and FA by the sol-gel technique. Increasing fluoride substitution in the apatite structure alters the potential coating properties. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  9. Metal-oxide-based energetic materials and synthesis thereof

    DOEpatents

    Tillotson, Thomas M. , Simpson; Randall, L [Livermore, CA; Hrubesh, Lawrence W [Pleasanton, CA

    2006-01-17

    A method of preparing energetic metal-oxide-based energetic materials using sol-gel chemistry has been invented. The wet chemical sol-gel processing provides an improvement in both safety and performance. Essentially, a metal-oxide oxidizer skeletal structure is prepared from hydrolyzable metals (metal salts or metal alkoxides) with fuel added to the sol prior to gelation or synthesized within the porosity metal-oxide gel matrix. With metal salt precursors a proton scavenger is used to destabilize the sol and induce gelation. With metal alkoxide precursors standard well-known sol-gel hydrolysis and condensation reactions are used. Drying is done by standard sol-gel practices, either by a slow evaporation of the liquid residing within the pores to produce a high density solid nanocomposite, or by supercritical extraction to produce a lower density, high porous nanocomposite. Other ingredients may be added to this basic nanostructure to change physical and chemical properties, which include organic constituents for binders or gas generators during reactions, burn rate modifiers, or spectral emitters.

  10. Preparation of titanium dioxide films by sol-gel route for gas sensors

    NASA Astrophysics Data System (ADS)

    Schiopu, Vasilica; Matei, Alina; Cernica, Ileana; Podaru, Cecilia

    2009-01-01

    Semiconductor oxides such as SnO2, TiO2, WO3, ZnO2 etc. have been shown to be useful as gas sensor materials for monitoring various pollutant gases like H2S, NOx, NH3 etc. In this work, we would like to present the preparation of titanium dioxide films for gas sensor application, via the sol-gel technique. The coating solution was prepared by using titanium isopropoxide precursor, which was hydrolyzed with distilled water under the catalytic effect of different acids (HNO3, HCl or CH3COOH). Titanium dioxide films have been deposited using spin coating method and then synthesized at different temperatures. Fourier transform infrared spectroscopy observation has been used to analyze the sol-gel process. The morphology and the structure of the thin films were analyzed.

  11. Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material

    DOEpatents

    Panitz, Janda K.; Reed, Scott T.; Ashley, Carol S.; Neiser, Richard A.; Moffatt, William C.

    1999-01-01

    Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties.

  12. Investigation of phase evolution of CaCu3Ti4O12 (CCTO) by in situ synchrotron high-temperature powder diffraction

    NASA Astrophysics Data System (ADS)

    Ouyang, Xin; Huang, Saifang; Zhang, Weijun; Cao, Peng; Huang, Zhaohui; Gao, Wei

    2014-03-01

    In situ synchrotron X-ray powder diffraction was used to study the high-temperature phase evolution of CaCu3Ti4O12 (CCTO) precursors prepared via solid-state and sol-gel methods. After the precursors are heated to 1225 °C, the CCTO phase is the main phase observed in the calcined powder, with the presence of some minor impurities. Comparing the two precursors, we found that the onset temperature for the CCTO phase formation is 800 °C in the sol-gel precursor, lower than that in the solid-state precursor (875 °C). Intermediate phases were only observed in the sol-gel precursor. Both precursors are able to be calcined to sub-micrometric sized powders. Based on the synchrotron data along with differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), the phase formation sequence and mechanism during calcination are proposed in this study.

  13. Choosing the best molecular precursor to prepare Li4Ti5O12 by the sol-gel method using (1)H NMR: evidence of [Ti3(OEt)13](-) in solution.

    PubMed

    García-Herbosa, Gabriel; Aparicio, Mario; Mosa, Jadra; Cuevas, José V; Torroba, Tomás

    2016-09-21

    (1)H NMR spectroscopy at 400 MHz in toluene-d8 of evaporated mixtures of lithium ethoxide and titanium(iv) isopropoxide in ethanol, used to prepare the spinel Li4Ti5O12 by the sol-gel method, may help clarify why the atomic ratio 5Li : 5Ti and not 4Li : 5Ti is the right choice to obtain the pure phase when performing hydrolysis at room temperature. The mixtures xLiOEt/yTi(OPr(i))4 in ethanol undergo alcohol exchange at room temperature, and the evaporated residues contain double lithium-titanium ethoxide [LiTi3(OEt)13] rather than simple mixtures of single metal alkoxides; this is of great relevance to truly understanding the chemistry and structural changes in the sol-gel process. Detailed inspection of the (1)H and (13)C VT NMR spectra of mixtures with different Li/Ti atomic ratios unequivocally shows the formation of [LiTi3(OEt)13] in a solution at low temperature. The methylene signals of free lithium ethoxide and Li[Ti3(OEt)13] coalesce at 20 °C when the atomic ratio is 5 : 5; however, the same coalescence is only observed above 60 °C when the atomic ratio is 4 : 5. We suggest that the highest chemical equivalence observed by (1)H NMR spectroscopy achieved through chemical exchange of ethoxide groups involves the highest microscopic structural homogeneity of the sol precursor and will lead to the best gel after hydrolysis. Variable temperature (1)H NMR spectra at 400 MHz of variable molar ratios of LiOEt/Ti(OPr(i))4 are discussed to understand the structural features of the sol precursor. While the precursor with the atomic ratio 5Li : 5Ti shows no signal of free LiOEt at 20 °C, both 4Li : 5Ti and 7Li : 5Ti show free LiOEt at 20 °C in their (1)H NMR spectra, indicating that the molar ratio 5Li : 5Ti gives the maximum rate of chemical exchange. DFT calculations have been performed to support the structure of the anion [Ti3(OEt)13](-) at room temperature.

  14. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method: dissolution behaviour and biological properties after crystallisation.

    PubMed

    Tredwin, Christopher J; Young, Anne M; Abou Neel, Ensanya A; Georgiou, George; Knowles, Jonathan C

    2014-01-01

    Hydroxyapatite (HA), fluor-hydroxyapatite (FHA) with varying levels of fluoride ion substitution and fluorapatite (FA) were synthesised by the sol-gel method as possible implant coating or bone-grafting materials. Calcium nitrate and triethyl phosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride were incorporated for the preparation of the FHA and FA sol-gels. After heating and powdering the sol-gels, dissolution behaviour was assessed using ion chromatography to measure Ca(2+) and PO4 (3-) ion release. Biological behaviour was assessed using cellular proliferation with human osteosarcoma cells and alamarBlue™ assay. Statistical analysis was performed with a two way analysis of variance and post hoc testing with a Bonferroni correction. Increasing fluoride substitution into an apatite structure decreased the dissolution rate. Increasing the firing temperature of the HA, FHA and FA sol-gels up to 1,000 °C decreased the dissolution rate. There was significantly higher cellular proliferation on highly substituted FHA and FA than on HA or Titanium. The properties of an implant coating or bone grafting material can be tailored to meet specific requirements by altering the amount of fluoride that is incorporated into the original apatite structure. The dissolution behaviour can further be altered by the temperature at which the sol-gel is fired.

  15. Sol-gel precursors and products thereof

    DOEpatents

    Warren, Scott C.; DiSalvo, Jr., Francis J.; Weisner, Ulrich B.

    2017-02-14

    The present invention provides a generalizable single-source sol-gel precursor capable of introducing a wide range of functionalities to metal oxides such as silica. The sol-gel precursor facilitates a one-molecule, one-step approach to the synthesis of metal-silica hybrids with combinations of biological, catalytic, magnetic, and optical functionalities. The single-source precursor also provides a flexible route for simultaneously incorporating functional species of many different types. The ligands employed for functionalizing the metal oxides are derived from a library of amino acids, hydroxy acids, or peptides and a silicon alkoxide, allowing many biological functionalities to be built into silica hybrids. The ligands can coordinate with a wide range of metals via a carboxylic acid, thereby allowing direct incorporation of inorganic functionalities from across the periodic table. Using the single-source precursor a wide range of functionalized nanostructures such as monolith structures, mesostructures, multiple metal gradient mesostructures and Stober-type nanoparticles can be synthesized. ##STR00001##

  16. Spray drying of silica microparticles for sustained release application with a new sol-gel precursor.

    PubMed

    Wang, Bifeng; Friess, Wolfgang

    2017-10-30

    A new precursor, tetrakis(2-methoxyethyl) orthosilicate (TMEOS) was used to fabricate microparticles for sustained release application, specifically for biopharmaceuticals, by spray drying. The advantages of TMEOS over the currently applied precursors are its water solubility and hydrolysis at moderate pH without the need of organic solvents or catalyzers. Thus a detrimental effect on biomolecular drug is avoided. By generating spray-dried silica particles encapsulating the high molecular weight model compound FITC-dextran 150 via the nano spray dryer Büchi-90, we demonstrated how formulation parameters affect and enable control of drug release properties. The implemented strategies to regulate release included incorporating different quantities of dextrans with varying molecular weight as well as adjusting the pH of the precursor solution to modify the internal microstructures. The addition of dextran significantly altered the released amount, while the release became faster with increasing dextran molecular weight. A sustained release over 35days could be achieved with addition of 60 kD dextran. The rate of FITC-Dextran 150 release from the dextran 60 containing particles decreased with higher precursor solution pH. In conclusion, the new precursor TMEOS presents a promising alternative sol-gel technology based carrier material for sustained release application of high molecular weight biopharmaceutical drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Silica- and germania-based dual-ligand sol-gel organic-inorganic hybrid sorbents combining superhydrophobicity and π-π interaction. The role of inorganic substrate in sol-gel capillary microextraction.

    PubMed

    Seyyal, Emre; Malik, Abdul

    2017-04-29

    Principles of sol-gel chemistry were utilized to create silica- and germania-based dual-ligand surface-bonded sol-gel coatings providing enhanced performance in capillary microextraction (CME) through a combination of ligand superhydrophobicity and π-π interaction. These organic-inorganic hybrid coatings were prepared using sol-gel precursors with bonded perfluorododecyl (PF-C 12 ) and phenethyl (PhE) ligands. Here, the ability of the PF-C 12 ligand to provide enhanced hydrophobic interaction was advantageously combined with π-π interaction capability of the PhE moiety to attain the desired sorbent performance in CME. The effect of the inorganic sorbent component on microextraction performance of was explored by comparing microextraction characteristics of silica- and germania-based sol-gel sorbents. The germania-based dual-ligand sol-gel sorbent demonstrated superior CME performance compared to its silica-based counterpart. Thermogravimetric analysis (TGA) of the created silica- and germania-based dual-ligand sol-gel sorbents suggested higher carbon loading on the germania-based sorbent. This might be indicative of more effective condensation of the organic ligand-bearing sol-gel-active chemical species to the germania-based sol-gel network (than to its silica-based counterpart) evolving in the sol solution. The type and concentration of the organic ligands were varied in the sol-gel sorbents to fine-tune extraction selectivity toward different classes of analytes. Specific extraction (SE) values were used for an objective comparison of the prepared sol-gel CME sorbents. The sorbents with higher content of PF-C 12 showed remarkable affinity for aliphatic hydrocarbons. Compared to their single-ligand sol-gel counterparts, the dual-ligand sol-gel coatings demonstrated significantly superior CME performance in the extraction of alkylbenzenes, providing up to ∼65.0% higher SE values. The prepared sol-gel CME coatings provided low ng L -1 limit of detections (LOD) (4.2-26.3 ng L -1 ) for environmentally important analytes including polycyclic aromatic hydrocarbons, ketones and aliphatic hydrocarbons. In CME-GC experiments (n = 5), the capillary-to-capillary RSD value was ∼2.1%; such a low RSD value is indicative of excellent reproducibility of the sol-gel method used for the preparation of these CME coatings. The dual-ligand sol-gel coating provided stable performance in capillary microextraction of analytes from saline samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material

    DOEpatents

    Panitz, J.K.; Reed, S.T.; Ashley, C.S.; Neiser, R.A.; Moffatt, W.C.

    1999-07-20

    Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties. 6 figs.

  19. Micro-structural evolution and biomineralization behavior of carbon nanofiber/bioactive glass composites induced by precursor aging time.

    PubMed

    Jia, Xiaolong; Tang, Tianhong; Cheng, Dan; Zhang, Cuihua; Zhang, Ran; Cai, Qing; Yang, Xiaoping

    2015-12-01

    Bioactive glass (BG)-containing carbon nanofibers (CNFs) are promising orthopaedic biomaterials. Herein, CNF composites were produced from electrospinning of polyacrylonitrile (PAN)/BG sol-gel precursor solution, followed by carbonization. Choosing 58S-type BG (mol%: 58.0% SiO2-26.3% CaO-15.7% P2O5) as the model, micro-structural evolution of CNF/BG composites was systematically evaluated in relating to aging times of BG precursor solution. With aging time prolonging, BG precursors underwent morphological changes from small sol clusters with loosely and randomly branched structure to highly crosslinked Si-network structure, showing continuous increase in solution viscosity. BG precursor solution with low viscosity could mix well with PAN solution, resulting in CNF composite with homogeneously distributed BG component. Whereas, BG precursor gel with densely crosslinked Si-network structure led to uneven distribution of BG component along final CNFs due to its significant phase separation from PAN component. Meanwhile, BG nanoparticles in CNFs demonstrated micro-structural evolution that they transited from weak to strong crystal state along with longer aging time. Biomineralization in simulated body fluid and in vitro osteoblasts proliferation were then applied to determine the bioactivity of CNF/BG composites. CNF/BG composites prepared from shorter aging time could induce both faster apatite deposition and cell proliferation rate. It was suggested weakly crystallized BG nanoparticles along CNFs dissolved fast and was able to provide numerous nucleation sites for apatite deposition, which also favored the proliferation of osteoblasts cells. Aging time could thus be a useful tool to regulate the biological features of CNF/BG composites. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The low temperature synthesis, characterization and properties of ferroelectrics

    NASA Astrophysics Data System (ADS)

    Xu, Jie

    2000-10-01

    PZT 50:50 xerogels prepared by two different sol-gel routes crystallized in a similar fashion to give a mixture of tetragonal and rhombohedral at high temperature (1000°C). Both the diffraction and EXAFS data suggest that the compositional inhomogeneity of the samples prepared by the two routes is similar. The crystallization of CZT gels is complicated. Crystalline CaCO 3 was always detected in the dry gels regardless of the sample composition and preparation methods. At intermediate temperatures a fluorite related phase was always formed and it transformed to perovskite at higher temperatures. The EXAFS data suggest that perovskite CZT samples prepared using alkoxide sol-gel chemistry may not be random solid solutions. All the solution processed ZrTiO4 materials crystallized in the range 600--700°C. The KTN samples prepared using a conventional alkoxide sol-gel route crystallized completely to perovskite at lower temperatures than those prepared using prehydrolyzed precursors. The EXAFS data for the KTN samples prepared using a conventional alkoxide sol-gel route are consistent with a random distribution of tantalum and niobium in the solid solution. However, materials prepared using the inhomogeneous sol-gel route and by the direct reaction of mixed oxides were shown to be compositionally inhomogeneous. The heterogeneity could not be removed by regrinding and heating the mixed oxide samples several times. K2Ta4-xNbxO11 (x = 0, 2, 4) samples were prepared using alkoxide sol-gel chemistry and their crystallization was examined by powder X-ray diffraction. A Rietveld structure analysis of the pyrochlore formed from a gel with bulk composition K2Ta 2Nb2O11 indicated that it was rich in potassium relative to the bulk sample. On heating to high temperatures tetragonal tungsten bronzes were formed. A Rietveld analysis was also performed for K2Ta 2Nb2O11 with tetragonal tungsten bronze structure. The defect pyrochlores "AgTaO3" and GaTaO 3 were synthesized by ion-exchange using pyrochlore KTaO3 as a starting material. The structures of the pyrochlores were examined using the Rietveld method. The pyrochlore-to-perovskite transformations were also explored.

  1. Thermodynamic analysis of sol-gel transition of gelatin in terms of water activity in various solutions.

    PubMed

    Miyawaki, Osato; Omote, Chiaki; Matsuhira, Keiko

    2015-12-01

    Sol-gel transition of gelatin was analyzed as a multisite stoichiometric reaction of a gelatin molecule with water and solute molecules. The equilibrium sol-gel transition temperature, Tt , was estimated from the average of gelation and melting temperature measured by differential scanning calorimetry. From Tt and the melting enthalpy, ΔHsol , the equilibrium sol-to-gel ratio was estimated by the van't Hoff equation. The reciprocal form of the Wyman-Tanford equation, which describes the sol-to-gel ratio as a function of water activity, was successfully applied to obtain a good linear relationship. From this analysis, the role of water activity on the sol-gel transition of gelatin was clearly explained and the contributions of hydration and solute binding to gelatin molecules were separately discussed in sol-gel transition. The general solution for the free energy for gel-stabilization in various solutions was obtained as a simple function of solute concentration. © 2015 Wiley Periodicals, Inc.

  2. Synthesis and Study of Gel Calcined Cd-Sn Oxide Nanocomposites

    NASA Astrophysics Data System (ADS)

    De, Arijit; Kundu, Susmita

    2016-07-01

    Cd-Sn oxide nanocomposites were synthesized by sol-gel method from precursor sol containing Cd:Sn = 2:1 and 1:1 mol ratio. Instead of coprecipitation, a simple novel gel calcination route was followed. Cd (NO3)2. 4H2O and SnCl4. 5H2O were used as starting materials. Gel was calcined at 1050 °C for 2 h to obtain nanocomposites. XRD analysis reveals the presence of orthorhombic, cubic Cd2SnO4 along with orthorhombic, hexagonal CdSnO3 phases in both the composites. SEM and TEM studies indicate the development of nanocomposites of different shapes suggesting different degrees of polymerization in precursor sol of different composition. UV-Vis absorption spectra show a blue shift for both the composites compared to bulk values. Decrease of polarization with frequency, dipole contribution to the polarization, and more sensitivity to ethanol vapor were observed for the nanocomposite derived from precursor sol containing Cd:Sn = 2:1 mol ratio.

  3. Sol-Gel Processing of MgF2 Antireflective Coatings

    PubMed Central

    Löbmann, Peer

    2018-01-01

    There are different approaches for the preparation of porous antireflective λ/4 MgF2 films from liquid precursors. Among these, the non-aqueous fluorolytic synthesis of precursor solutions offers many advantages in terms of processing simplicity and scalability. In this paper, the structural features and optical performance of the resulting films are highlighted, and their specific interactions with different inorganic substrates are discussed. Due to their excellent abrasion resistance, coatings have a high potential for applications on glass. Using solvothermal treatment of precursor solutions, also the processing of thermally sensitive polymer substrates becomes feasible. PMID:29724064

  4. Solventless sol-gel chemistry through ring-opening polymerization of bridged disilaoxacyclopentanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAHIMIAN,KAMYAR; LOY,DOUGLAS A.

    2000-05-01

    Ring-opening polymerization (ROP) of disilaoxacyclopentanes has proven to be an excellent approach to sol-gel type hybrid organic-inorganic materials. These materials have shown promise as precursors for encapsulation and microelectronics applications. The polymers are highly crosslinked and are structurally similar to traditional sol-gels, but unlike typical sol-gels they are prepared by an organic base or Bronsted acid (formic or triflic acid), without the use of solvents and water, they have low VOC's and show little shrinkage during processing.

  5. Optical properties of rhodamine 6G-doped TiO2 sol-gel films

    NASA Astrophysics Data System (ADS)

    Tomás, S. A.; Stolik, S.; Palomino, R.; Lozada, R.; Persson, C.; Ahuja, R.; Pepe, I.; Ferreira da Silva, A.

    2005-06-01

    The optical properties of titania (TiO2) thin films prepared by the sol-gel process and doped with rhodamine 6G were studied by Photoacoustic Spectroscopy. Rhodamine 6G-doping was achieved by adding 0.01%, 0.02%, 0.05% y 0.1% mol rhodamine to a solution that contained titanium isopropoxide as precursor. Two absorption regions were distinguished in the absorption spectrum of a typical rhodamine 6G-doped TiO2 film. A shift of these bands occured as a function of rhodamine 6G-doping concentration. In addition, the optical absorption and band gap energy for rutile-phase TiO2 films were calculated employing the full-potential linearized augmented plane wave method. A comparison of these calculations with experimental data of TiO2 films prepared by sol-gel at room temperature was performed.

  6. Sol-Gel Precursors for Ceramics from Minerals Simulating Soils from the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Sibille, Laurent; Gavira-Gallardo, Jose-Antonio; Hourlier-Bahloul, Djamila

    2003-01-01

    Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report some preliminary results on the production of sol-gel precursors for ceramic products using mineral resources available in Martian or Lunar soil. The presence of SiO2, TiO2, and A12O3 in both Martian (44 wt.% SiO2, 1 wt.% TiO2, 7 wt.% Al2O3) and Lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from Lunar and Martian simulant soils. Clear sol-gel precursors have been obtained by dissolution of silica from Lunar simulant soil in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Thermogravimetric Analysis and X-ray Photoelectron Spectroscopy were used to characterize the elemental composition and structure of the precursor molecules. Further concentration and hydrolysis of the products was performed to obtain gel materials for evaluation as ceramic precursors. In the second set of experiments, we used the same starting materials to synthesize silicate esters in acidified alcohol mixtures. Preliminary results indicate the presence of silicon alkoxides in the product of distillation.

  7. Synthesis of LiCoO 2 thin films by sol/gel process

    NASA Astrophysics Data System (ADS)

    Porthault, H.; Le Cras, F.; Franger, S.

    LiCoO 2 thin films were synthesized by sol/gel process using acrylic acid (AA) as chelating agent. The gel formulation was optimized by varying solvent (ethylene glycol or water) and precursors molar ratios (Li, Co, AA) in order to obtain a dense film for positive electrode of lithium batteries. The gel was deposited by spin-coating technique on an Au/TiO 2/SiN/SiO 2/Si substrate. Thin films were deposited by either single or multistep process to enhance the density of the thin film and then calcined during 5 h at 800 °C to obtain the R-3m phase (HT-LiCoO 2). A chemical characterization of the solution was realized by Fourier Transform Infrared (FTIR) spectroscopy. Thermal decomposition of precursors and gel was studied by Thermo Gravimetric Analyses (TGA). Further investigations were done to characterize rheologic behaviour of the gel and solvents affinity with the substrate. Crystallinity and morphology were analyzed respectively by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The formation of R-3m phase was confirmed by the electrochemical behaviour of the gel derived LiCoO 2. Cyclic voltammograms and galvanostatic cycling show typical curve shape of the HT-LiCoO 2.

  8. High Refractive Organic–Inorganic Hybrid Films Prepared by Low Water Sol-Gel and UV-Irradiation Processes

    PubMed Central

    Ma, Hsiao-Yuan; Wang, Tzong-Liu; Chang, Pei-Yu; Yang, Chien-Hsin

    2016-01-01

    Organic-inorganic hybrid sols (Ti–O–Si precursor) were first synthesized by the sol-gel method at low addition of water, and were then employed to prepare a highly refractive hybrid optical film. This film was obtained by blending the Ti–O–Si precursor with 2-phenylphenoxyethyl acrylate (OPPEA) to perform photo-polymerization by ultraviolet (UV) irradiation. Results show that the film transparency of poly(Ti–O–Si precursor-co-OPPEA) film is higher than that of a pure poly(Ti–O–Si precursor) film, and that this poly(Ti–O–Si precursor-co-OPPEA) hybrid film exhibits a high transparency of ~93.7% coupled with a high refractive index (n) of 1.83 corresponding to a thickness of 2.59 μm. PMID:28344303

  9. Photoluminescence and photoconductivity studies on amorphous and crystalline ZnO thin films obtained by sol-gel method

    NASA Astrophysics Data System (ADS)

    Valverde-Aguilar, G.; Manríquez Zepeda, J. L.

    2015-03-01

    Amorphous and crystalline ZnO thin films were obtained by the sol-gel process. A precursor solution of ZnO was synthesized by using zinc acetate dehydrate as inorganic precursor at room temperature. The films were spin-coated on silicon and glass wafers and gelled in humid air. The films were calcined at 450 °C for 15 min to produce ZnO nanocrystals with a wurtzite structure. Crystalline ZnO film exhibits an absorption band located at 359 nm (3.4 eV). Photoconductivity technique was used to determine the charge transport mechanism on both kinds of films. Experimental data were fitted with straight lines at darkness and under illumination at 355 and 633 nm wavelengths. This indicates an ohmic behavior. The photovoltaic and photoconductivity parameters were determined from the current density versus the applied electrical field results.

  10. Facile preparation in two steps of highly hydrophobic coatings on polypropylene surface

    NASA Astrophysics Data System (ADS)

    Petcu, Cristian; Nistor, Cristina Lavinia; Purcar, Violeta; Cinteză, Ludmila Otilia; Spătaru, Cătălin-Ilie; Ghiurea, Marius; Ianchiş, Raluca; Anastasescu, Mihai; Stoica, Mihai

    2015-08-01

    Monolayer and bilayer coatings deposited on polypropylene (PP) surface were prepared by sol-gel process at room temperature. Monolayer coatings were produced from sol-gel acidic solutions, containing tetraethylorthosilicate (TEOS) and different co-precursors such as phenyltriethoxysilane (PhTES), octylmethyldimethoxysilane (OMDMS) and dodecyltriethoxysilane (DOTES). Bilayer coatings consist of one layer prepared in a similar way described for monolayer coatings, followed by a second layer, obtained from fluorinated silica nanoparticles dispersion. The fluorinated group has been confirmed by the presence of Csbnd F bonds along with network Sisbnd Osbnd Si vibrational mode. Water contact angle values registered for bilayer-coated polypropylene are higher, comparing with the reference (pristine PP) and with the monolayer-coated substrate, and varies as a function of the hydrophobic functional groups of the silica co-precursors: phenyl < octyl < dodecyl. The fluorooctyl functions lead to a significant decrease in the surface energy values for bilayer coating, with very small values of polar component.

  11. Synthesis of polymeric fluorinated sol-gel precursor for fabrication of superhydrophobic coating

    NASA Astrophysics Data System (ADS)

    Li, Qianqian; Yan, Yuheng; Yu, Miao; Song, Botao; Shi, Suqing; Gong, Yongkuan

    2016-03-01

    A fluorinated polymeric sol-gel precursor (PFT) is synthesized by copolymerization of 2,3,4,5,5,5-hexafluoro-2,4-bis(trifluorinated methyl)pentyl methacrylate (FMA) and 3-methacryloxypropyltrimethoxysilane (TSMA) to replace the expensive long chain fluorinated alkylsilanes. The fluorinated silica sol is prepared by introducing PFT as co-precursor of tetraethyl orthosilicate (TEOS) in the sol-gel process with ammonium hydroxide as catalyst, which is then used to fabricate superhydrophobic coating on glass substrate through a simple dip-coating method. The effects of PFT concentrations on the chemical structure of the formed fluorinated silica, the surface chemical composition, surface morphology, wetting and self-cleaning properties of the resultant fluorinated silica coatings were studied by using X-ray powder diffraction (XRD), Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectrophotometer (XPS), scanning electron microscopy (SEM) and water contact angle measurements (WCA). The results show that the fluorinated silica sols are successfully obtained. The size and size distribution of the fluorinated silica particles are found greatly dependent on the concentration of PFT, which play a crucial role in the surface morphology of the corresponding fluorinated silica coatings. The suitable PFT concentration added in the sol-gel stage, i.e. for F-sol-1 and F-sol-2, is helpful to achieve both the low surface energy and multi-scaled microstructures, leading to the formation of the superhydrophobic coatings with bio-mimicking self-cleaning property similar to lotus leaves.

  12. Infrared and Raman spectra of triacetoxyvinylsilane, aqueous sol-gel and xerogel

    NASA Astrophysics Data System (ADS)

    Li, Ying-Sing; Ba, Abdul; Mahmood, Maleeha S.

    2009-04-01

    Triacetoxyvinylsilane (TAVS) has been used as a precursor to prepare sol-gel under aqueous conditions. The sol-gel product has been applied for the surface treatment of aluminum. Infrared and Raman spectra have been collected for TAVS and for TAVS sol-gel, xerogel and sol-gel-coated aluminum. Vibrational analyses have been suggested for the recorded spectra based essentially on the group frequencies and the spectral variation with the change of the sol-gel product states and the vibrational assignments of similar molecules. From the recorded infrared and Raman spectra of the sol-gel and xerogel, it is found that the sol-gel produced in the process with TAVS is essentially the same as that prepared from vinyltriethoxysilane. Thermo-gravimetric analysis (TGA) of TAVS xerogel has been conducted, and an explanation has been given in coordination with the results obtained from IR spectroscopic study of the xerogels cured at different temperatures. The study has demonstrated the thermal effect on the condensation of the sol-gel process and on the vinyl decomposition of TAVS xerogel.

  13. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method: bonding to titanium and scanning electron microscopy.

    PubMed

    Tredwin, Christopher J; Georgiou, George; Kim, Hae-Won; Knowles, Jonathan C

    2013-05-01

    Hydroxyapatite (HA), fluor-hydroxyapatite (FHA) with varying levels of fluoride ion substitution and fluorapatite (FA) production has been characterised and optimised by the sol-gel method and the dissolution and biological properties of these materials were investigated. It was the objective of this study to investigate the potential bond strength and interaction of these materials with titanium. HA, FHA and FA were synthesised by a sol-gel method. Calcium nitrate and triethyl phosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride (NH4F) were incorporated for the preparation of the FHA and FA sol-gels. Using a spin coating technique the sol-gels were coated onto commercially pure titanium disks and crystallised at various temperatures. Using scanning electron microscopy (SEM) and elemental analysis, the surface characteristics, coating thickness and interaction of the Ti substrate and coating were investigated. The bond strengths of the coating to the Ti were investigated using an Instron Universal Load Testing Machine. Statistical analysis was performed with a two-way analysis of variance and post hoc testing with a Bonferroni correction. (1) Coating speed inversely influenced the coating thickness. (2) Increasing fluoride ion substitution and heating temperature significantly increased bond strength and (3) increasing fluoride ion substitution increased the coating thickness. FHA and FA synthesised using the sol-gel technique may offer a superior alternative to coating titanium implants with HA and plasma spraying. HA, FHA and FA materials synthesised by the sol-gel method may also have a use as bone grafting materials. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Innovative Formulation Combining Al, Zr and Si Precursors to Obtain Anticorrosion Hybrid Sol-Gel Coating.

    PubMed

    Genet, Clément; Menu, Marie-Joëlle; Gavard, Olivier; Ansart, Florence; Gressier, Marie; Montpellaz, Robin

    2018-05-10

    The aim of our study is to improve the aluminium alloy corrosion resistance with Organic-Inorganic Hybrid (OIH) sol-gel coating. Coatings are obtained from unusual formulation with precursors mixing: glycidoxypropyltrimethoxysilane (GPTMS), zirconium (IV) propoxide (TPOZ) and aluminium tri-sec-butoxide (ASB). This formulation was characterized and compared with sol formulations GPTMS/TPOZ and GPTMS/ASB. In each formulation, a corrosion inhibitor, cerium (III) nitrate hexahydrate, is employed to improve the corrosion performance. Coatings obtained from sol based on GPTMS/TPOZ/ASB have good anti-corrosion performances with Natural Salt Spray (NSS) resistance of 500 h for a thickness lower than 4 µm. Contact angle measurement showed a coating hydrophobic behaviour. To understand these performances, nuclear magnetic resonance (NMR) analyses were performed, results make sol-gel coating condensation evident and are in very good agreement with previous results.

  15. An investigation of GaN thin films on AlN on sapphire substrate by sol-gel spin coating method

    NASA Astrophysics Data System (ADS)

    Amin, Nur Fahana Mohd; Ng, Sha Shiong

    2017-12-01

    In this research, the gallium nitride (GaN) thin films were deposited on aluminium nitride on sapphire (AlN/Al2O3) substrate by sol-gel spin coating method. Simple ethanol-based precursor with the addition of diethanolamine solution was used. The structural and morphology properties of synthesized GaN thin films were characterized by using X-ray Diffraction, Field-Emission Scanning Electron Microscopy and Atomic Force Microscopy. While the elemental compositions and the lattice vibrational properties of the films were investigated by means of the Energy Dispersive X-ray spectroscopy and Raman spectroscopy. All the results revealed that the wurtzite structure GaN thin films with GaN(002) preferred orientation and smooth surface morphology were successfully grown on AlN/Al2O3 substrate by using inexpensive and simplified sol-gel spin coating technique. The sol-gel spin coated GaN thin film with lowest oxygen content was also achieved.FESEM images show that GaN thin films with uniform and packed grains were formed. Based on the obtained results, it can be concluded that wurtzite structure GaN thin films were successfully deposited on AlN/Al2O3 substrate.

  16. Synthesis of galium nitride thin films using sol-gel dip coating method

    NASA Astrophysics Data System (ADS)

    Hamid, Maizatul Akmam Ab; Ng, Sha Shiong

    2017-12-01

    In this research, gallium nitride (GaN) thin film were grown on silicon (Si) substrate by a low-cost sol-gel dip coating deposition method. The GaN precursor solution was prepared using gallium (III) nitrate hydrate powder, ethanol and diethanolamine as a starting material, solvent and surfactant respectively. The structural, morphological and optical characteristics of the deposited GaN thin film were investigated. Field-emission scanning electron microscopy observations showed that crack free and dense grains GaN thin films were formed. Energy dispersive X-ray analysis confirmed that the oxygen content in the deposited films was low. X-ray diffraction results revealed that deposited GaN thin films have hexagonal wurtzite structure.

  17. Catalytic activity of acid and base with different concentration on sol-gel kinetics of silica by ultrasonic method.

    PubMed

    Das, R K; Das, M

    2015-09-01

    The effects of both acid (acetic acid) and base (ammonia) catalysts in varying on the sol-gel synthesis of SiO2 nanoparticles using tetra ethyl ortho silicate (TEOS) as a precursor was determined by ultrasonic method. The ultrasonic velocity was received by pulsar receiver. The ultrasonic velocity in the sol and the parameter ΔT (time difference between the original pulse and first back wall echo of the sol) was varied with time of gelation. The graphs of ln[ln1/ΔT] vs ln(t), indicate two region - nonlinear region and a linear region. The time corresponds to the point at which the non-linear region change to linear region is considered as gel time for the respective solutions. Gelation time is found to be dependent on the concentration and types of catalyst and is found from the graphs based on Avrami equation. The rate of condensation is found to be faster for base catalyst. The gelation process was also characterized by viscosity measurement. Normal sol-gel process was also carried out along with the ultrasonic one to compare the effectiveness of ultrasonic. The silica gel was calcined and the powdered sample was characterized with scanning electron microscopy, energy dispersive spectra, X-ray diffractogram, and FTIR spectroscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Sol-gel process for the manufacture of high power switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landingham, Richard L.; Satcher, Jr, Joe; Reibold, Robert

    According to one embodiment, a photoconductive semiconductor switch includes a structure of nanopowder of a high band gap material, where the nanopowder is optically transparent, and where the nanopowder has a physical characteristic of formation from a sol-gel process. According to another embodiment, a method includes mixing a sol-gel precursor compound, a hydroxy benzene and an aldehyde in a solvent thereby creating a mixture, causing the mixture to gel thereby forming a wet gel, drying the wet gel to form a nanopowder, and applying a thermal treatment to form a SiC nanopowder.

  19. Aqueous silicates in biological sol-gel applications: new perspectives for old precursors.

    PubMed

    Coradin, Thibaud; Livage, Jacques

    2007-09-01

    Identification of silica sol-gel chemistry with silicon alkoxide hydrolysis and condensation processes is common in modern materials science. However, aqueous silicates exhibit several features indicating that they may be more suitable precursors for specific fields of research and applications related to biology and medicine. In this Account, we illustrate the potentialities of such aqueous precursors for biomimetic studies, bio-hybrid material design, and bioencapsulation routes. We emphasize that the natural relevance, the biocompatibility, and the low ecological impact of silicate chemistry may balance its lack of diversity, flexibility, and processability.

  20. Reactive Molecular Dynamics Investigations of Alkoxysilane Sol-Gel and Surface Coating Processes

    NASA Astrophysics Data System (ADS)

    Deetz, Joshua David

    The ability to generate nanostructured materials with tailored morphology or chemistry is of great technological interest. One proven method of generating metal-oxide materials, and chemically modifying metal-oxide surfaces is through the reactions of molecular building blocks known as alkoxysilanes. Alkoxysilanes are a class of chemicals which contain one or more organic alkoxy groups bonded to silicon atoms. Alkoxysilane (Si-O-R) chemical groups can undergo reactions to form bridges (Si-O-M) with metal oxides. Due to their ability to "attach" to metal-oxides through condensation reactions, alkoxysilanes have a number of interesting applications, such as: the generation of synthetic siloxane materials through the sol-gel process, and the formation of functionalized surface coatings on metal-oxide surfaces. Despite widespread study of sol-gel and surface coatings processes, it is difficult to predict the morphology of the final products due to the large number of process variables involved, such as precursor molecule structure, solvent effects, solution composition, temperature, and pH. To determine the influence of these variables on the products of sol-gel and coatings processes reactive molecular dynamics simulations are used. A reactive force field was used (ReaxFF) to allow the chemical bonds in simulation to dynamically form and break. The force field parameters were optimized using a parallel optimization scheme with a combination of experimental information, and density functional theory calculations. Polycondensation of alkoxysilanes in mixtures of alcohol and water were studied. Steric effects were observed to influence the rates of hydrolysis and condensation in solutions containing different precursor monomers. By restricting the access of nucleophiles to the central silicon atom, the nucleation rate of siloxanes can be controlled. The influence of solution precursor, water, and methanol composition on reaction rates was explored. It was determined that the rate of alkoxysilane hydrolysis is strongly dependent on the concentration of water. The dynamics of siloxane cluster formation are revealed, which provides insight for experimentalists. The silanization of hydroxylated silica surfaces by alkoxysilanes was modeled in pseudo-infinite liquid solution. Butyl-, octyl-, or dodecylsilanes were exposed to hydroxylated silica surfaces in order to observe the influence of silyl headgroup size on the morphology and formation kinetics of silane films on silica substrates. The radius of gyration and order parameter of the hydrocarbon silyl groups were found to increase with grafting density. This was the first simulation study of the dynamic grafting of alkoxysilanes to a substrate.

  1. Effect of calcium source on structure and properties of sol-gel derived bioactive glasses.

    PubMed

    Yu, Bobo; Turdean-Ionescu, Claudia A; Martin, Richard A; Newport, Robert J; Hanna, John V; Smith, Mark E; Jones, Julian R

    2012-12-18

    The aim was to determine the most effective calcium precursor for synthesis of sol-gel hybrids and for improving homogeneity of sol-gel bioactive glasses. Sol-gel derived bioactive calcium silicate glasses are one of the most promising materials for bone regeneration. Inorganic/organic hybrid materials, which are synthesized by incorporating a polymer into the sol-gel process, have also recently been produced to improve toughness. Calcium nitrate is conventionally used as the calcium source, but it has several disadvantages. Calcium nitrate causes inhomogeneity by forming calcium-rich regions, and it requires high temperature treatment (>400 °C) for calcium to be incorporated into the silicate network. Nitrates are also toxic and need to be burnt off. Calcium nitrate therefore cannot be used in the synthesis of hybrids as the highest temperature used in the process is typically 40-60 °C. Therefore, a different precursor is needed that can incorporate calcium into the silica network and enhance the homogeneity of the glasses at low (room) temperature. In this work, calcium methoxyethoxide (CME) was used to synthesize sol-gel bioactive glasses with a range of final processing temperatures from 60 to 800 °C. Comparison is made between the use of CME and calcium chloride and calcium nitrate. Using advanced probe techniques, the temperature at which Ca is incorporated into the network was identified for 70S30C (70 mol % SiO(2), 30 mol % CaO) for each of the calcium precursors. When CaCl(2) was used, the Ca did not seem to enter the network at any of the temperatures used. In contrast, Ca from CME entered the silica network at room temperature, as confirmed by X-ray diffraction, (29)Si magic angle spinning nuclear magnetic resonance spectroscopy, and dissolution studies. CME should be used in preference to calcium salts for hybrid synthesis and may improve homogeneity of sol-gel glasses.

  2. Dielectric and Piezoelectric Properties of PZT Composite Thick Films with Variable Solution to Powder Ratios.

    PubMed

    Wu, Dawei; Zhou, Qifa; Shung, Koping Kirk; Bharadwaja, Srowthi N; Zhang, Dongshe; Zheng, Haixing

    2009-05-08

    The use of PZT films in sliver-mode high-frequency ultrasonic transducers applications requires thick, dense, and crack-free films with excellent piezoelectric and dielectric properties. In this work, PZT composite solutions were used to deposit PZT films >10 μm in thickness. It was found that the functional properties depend strongly on the mass ratio of PZT sol-gel solution to PZT powder in the composite solution. Both the remanent polarization, P(r), and transverse piezoelectric coefficient, e(31,) (f), increase with increasing proportion of the sol-gel solution in the precursor. Films prepared using a solution-to-powder mass ratio of 0.5 have a remanent polarization of 8 μC/cm(2), a dielectric constant of 450 (at 1 kHz), and e(31,) (f) = -2.8 C/m(2). Increasing the solution-to-powder mass ratio to 6, the films were found to have remanent polarizations as large as 37 μC/cm(2), a dielectric constant of 1250 (at 1 kHz) and e(31,) (f) = -5.8 C/m(2).

  3. Sol-Gel Deposited Double Layer TiO₂ and Al₂O₃ Anti-Reflection Coating for Silicon Solar Cell.

    PubMed

    Jung, Jinsu; Jannat, Azmira; Akhtar, M Shaheer; Yang, O-Bong

    2018-02-01

    In this work, the deposition of double layer ARC on p-type Si solar cells was carried out by simple spin coating using sol-gel derived Al2O3 and TiO2 precursors for the fabrication of crystalline Si solar cells. The first ARC layer was created by freshly prepared sol-gel derived Al2O3 precursor using spin coating technique and then second ARC layer of TiO2 was deposited with sol-gel derived TiO2 precursor, which was finally annealed at 400 °C. The double layer Al2O3/TiO2 ARC on Si wafer exhibited the low average reflectance of 4.74% in the wavelength range of 400 and 1000 nm. The fabricated solar cells based on double TiO2/Al2O3 ARC attained the conversion efficiency of ~13.95% with short circuit current (JSC) of 35.27 mA/cm2, open circuit voltage (VOC) of 593.35 mV and fill factor (FF) of 66.67%. Moreover, the fabricated solar cells presented relatively low series resistance (Rs) as compared to single layer ARCs, resulting in the high VOC and FF.

  4. Creation of high-refractive-index amorphous titanium oxide thin films from low-fractal-dimension polymeric precursors synthesized by a sol-gel technique with a hydrazine monohydrochloride catalyst.

    PubMed

    Shimizu, Wataru; Nakamura, Satoshi; Sato, Takaaki; Murakami, Yasushi

    2012-08-21

    Amorphous titanium dioxide (TiO(2)) thin films exhibiting high refractive indices (n ≈ 2.1) and high transparency were fabricated by spin-coating titanium oxide liquid precursors having a weakly branched polymeric structure. The precursor solution was prepared from titanium tetra-n-butoxide (TTBO) via the catalytic sol-gel process with hydrazine monohydrochloride used as a salt catalyst, which serves as a conjugate acid-base pair catalyst. Our unique catalytic sol-gel technique accelerated the overall polycondensation reaction of partially hydrolyzed alkoxides, which facilitated the formation of liner polymer-like titanium oxide aggregates having a low fractal dimension of ca. (5)/(3), known as a characteristic of the so-called "expanded polymer chain". Such linear polymeric features are essential to the production of highly dense amorphous TiO(2) thin films; mutual interpenetration of the linear polymeric aggregates avoided the creation of void space that is often generated by the densification of high-fractal-dimension (particle-like) aggregates produced in a conventional sol-gel process. The mesh size of the titanium oxide polymers can be tuned either by water concentration or the reaction time, and the smaller mesh size in the liquid precursor led to a higher n value of the solid thin film, thanks to its higher local electron density. The reaction that required no addition of organic ligand to stabilize titanium alkoxides was advantageous to overcoming issues from organic residues such as coloration. The dense amorphous film structure suppressed light scattering loss owing to its extremely smooth surface and the absence of inhomogeneous grains or particles. Furthermore, the fabrication can be accomplished at a low heating temperature of <80 °C. Indeed, we successfully obtained a transparent film with a high refractive index of n = 2.064 (at λ = 633 nm) on a low-heat-resistance plastic, poly(methyl methacrylate), at 60 °C. The result offers an efficient route to high-refractive-index amorphous TiO(2) films as well as base materials for a wider range of applications.

  5. Synthesis and characterization of titanium dioxide (TiO2) nanopowder

    NASA Astrophysics Data System (ADS)

    Munirah, S.; Nadzirah, Sh.; Khusaimi, Z.; Fazlena, H.; Rusop, M.

    2018-05-01

    Titanium dioxide (TiO2) powder was synthesized via sol-gel technique using Titanium tetraisopropoxide (TTIP) and ethanol as precursors. Acetylacetone, distilled water, polyethylene glycol (PEG) and stabilizers (glacial acetic acid and nitric acid) were then added to the solution. The solution was left for ageing for 24 hours and then dried into powder. The synthesized powders were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetric Analysis (TGA).

  6. Structural and morphological characterization of anatase TiO 2 coating on χ-Alumina scale fiber fabricated by sol-gel dip-coating method

    NASA Astrophysics Data System (ADS)

    Nguyen, Hue Thi; Miao, Lei; Tanemura, Sakae; Tanemura, Masaki; Toh, Shoichi; Kaneko, Kenji; Kawasaki, Masahiro

    2004-10-01

    Anatase TiO 2 coatings 0.4 μm thick have been successfully fabricated by sol-gel dip-coating process on χ-Al 2O 3 fibers 100 μm by 10 cm long with a surface fish-scale. This was achieved by adjustment of the sol-gel parameters such as molar ratio of the precursors in TiO 2-sols, dip-coating time, drying duration in air, heating processes and number of cyclical repetitions of the process. Two samples were prepared using two sols containing different molar ratios of precursors. XRD, TEM, EDS and SEM characterization confirmed: (1) the similarity of the growth of anatase-TiO 2 from two sols under the optimal sol-gel parameters, (2) that the coatings are composed of aggregated crystallites of 10-25 nm in diameter, (3) the good compositional uniformity of Ti in the fabricated anatase-TiO 2 crystallites, (4) a surface covering ratio of anatase-TiO 2 around the fiber of at least 90%, and (5) that there is a good adherence of the fabricated anatase-TiO 2 layer on alumina fiber as evidenced by the lack of cracking and peeling off traces around the boundary between the coating and the fiber.

  7. Development of new solid-phase microextraction fibers by sol-gel technology for the determination of organophosphorus pesticide multiresidues in food.

    PubMed

    Yu, Jianxin; Wu, Caiying; Xing, Jun

    2004-05-21

    Allyloxy bisbenzo 16-crown-5 trimethoxysilane was first used as precursor to prepare the sol-gel-derived bisbenzo crown ether/hydroxyl-terminated silicone oil (OH-TSO) SPME coating. The coating procedure involving sol solution composition and conditioning process was presented. Compared with commercial SPME stationary phases, the new coatings showed higher extraction efficiency and therefore could provide higher sensitivity for organphosphorous pesticides (OPs). Limits of detection (LODs) were in the range of 0.003-1.0 ng/g for these OPs in food samples (honey, juice, orange and pakchoi). The optimal extraction conditions of the new coatings to OPs in these samples were investigated by adjusting extraction time, salt addition, extraction temperature, and dilution ratios of samples with distilled water by using SPME coupled with gas chromatography (GC)-flame photometric detection (FPD). The method was applied to determine the concentrations of OPs in real samples.

  8. Passive Vibration Damping Materials: Piezoelectric Ceramics Composites for Vibration Damping Applications

    DTIC Science & Technology

    1993-02-01

    CBu)4 j 80% solution In 1-butanol, titanium S mable PZT. and NuOW=a isopropoxide (Ti(OPf1 )4], niobium ethoxide (Nb(OC 2 H5) 5 i, ýand cadrrtni qa...fibers(5). We have chosen the sol-gel route to produce PZT fiber of less that 30Mm diameter by spin-drawing PZT solutions at proper viscosity. The first...dielectric constant and electromechanical coupling by controlling grain growth and grain boundary conditions. PZT precursor solutions in the form of viscous

  9. Low cost sol-gel derived SiC-SiO2 nanocomposite as anti reflection layer for enhanced performance of crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Jannat, Azmira; Lee, Woojin; Akhtar, M. Shaheer; Li, Zhen Yu; Yang, O.-Bong

    2016-04-01

    This paper describes the preparation, characterizations and the antireflection (AR) coating application in crystalline silicon solar cells of sol-gel derived SiC-SiO2 nanocomposite. The prepared SiC-SiO2 nanocomposite was effectively applied as AR layer on p-type Si-wafer via two step processes, where the sol-gel of precursor solution was first coated on p-type Si-wafer using spin coating at 2000 rpm and then subjected to annealing at 450 °C for 1 h. The crystalline, and structural observations revealed the existence of SiC and SiO2 phases, which noticeably confirmed the formation of SiC-SiO2 nanocomposite. The SiC-SiO2 layer on Si solar cells was found to be an excellent AR coating, exhibiting the low reflectance of 7.08% at wavelengths ranging from 400 to 1000 nm. The fabricated crystalline Si solar cell with SiC-SiO2 nanocomposite AR coating showed comparable power conversion efficiency of 16.99% to the conventional SixNx AR coated Si solar cell. New and effective sol-gel derived SiC-SiO2 AR layer would offer a promising technique to produce high performance Si solar cells with low-cost.

  10. The influence of phosphorus precursors on the synthesis and bioactivity of SiO2-CaO-P 2O 5 sol-gel glasses and glass-ceramics.

    PubMed

    Siqueira, Renato Luiz; Zanotto, Edgar Dutra

    2013-02-01

    Bioactive glasses and glass-ceramics of the SiO(2)-CaO-P(2)O(5) system were synthesised by means of a sol-gel method using different phosphorus precursors according to their respective rates of hydrolysis-triethylphosphate (OP(OC(2)H(5))(3)), phosphoric acid (H(3)PO(4)) and a solution prepared by dissolving phosphorus oxide (P(2)O(5)) in ethanol. The resulting materials were characterised by differential scanning calorimetry and thermogravimetry, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy and by in vitro bioactivity tests in acellular simulated body fluid. The different precursors significantly affected the main steps of the synthesis, beginning with the time required for gel formation. The most striking influence of these precursors was observed during the thermal treatments at 700-1,200 °C that were used to convert the gels into glasses and glass-ceramics. The samples exhibited very different mineralisation behaviours; especially those prepared using the phosphoric acid, which had a reduced onset temperature of crystallisation and an increased resistance to devitrification. However, all resulting materials were bioactive. The in vitro bioactivity of these materials was strongly affected by the heat treatment temperature. In general, their bioactivity decreased with increasing treatment temperature. For crystallised samples obtained above 900 °C, the bioactivity was favoured by the presence of two crystalline phases: wollastonite (CaSiO(3)) and tricalcium phosphate (α-Ca(3)(PO(4))(2)).

  11. Deep ultraviolet laser direct write for patterning sol-gel InGaZnO semiconducting micro/nanowires and improving field-effect mobility

    PubMed Central

    Lin, Hung-Cheng; Stehlin, Fabrice; Soppera, Olivier; Zan, Hsiao-Wen; Li, Chang-Hung; Wieder, Fernand; Ponche, Arnaud; Berling, Dominique; Yeh, Bo-Hung; Wang, Kuan-Hsun

    2015-01-01

    Deep-UV (DUV) laser was used to directly write indium-gallium-zinc-oxide (IGZO) precursor solution and form micro and nanoscale patterns. The directional DUV laser beam avoids the substrate heating and suppresses the diffraction effect. A IGZO precursor solution was also developed to fulfill the requirements for direct photopatterning and for achieving semi-conducting properties with thermal annealing at moderate temperature. The DUV-induced crosslinking of the starting material allows direct write of semi-conducting channels in thin-film transistors but also it improves the field-effect mobility and surface roughness. Material analysis has been carried out by XPS, FTIR, spectroscopic ellipsometry and AFM and the effect of DUV on the final material structure is discussed. The DUV irradiation step results in photolysis and a partial condensation of the inorganic network that freezes the sol-gel layer in a homogeneous distribution, lowering possibilities of thermally induced reorganization at the atomic scale. Laser irradiation allows high-resolution photopatterning and high-enough field-effect mobility, which enables the easy fabrication of oxide nanowires for applications in solar cell, display, flexible electronics, and biomedical sensors. PMID:26014902

  12. Method for fabrication of ceramic dielectric films on copper foils

    DOEpatents

    Ma, Beihai; Narayanan, Manoj; Dorris, Stephen E.; Balachandran, Uthamalingam

    2017-06-14

    The present invention provides copper substrate coated with a lead-lanthanum-zirconium-titanium (PLZT) ceramic film, which is prepared by a method comprising applying a layer of a sol-gel composition onto a copper foil. The sol-gel composition comprises a precursor of a ceramic material suspended in 2-methoxyethanol. The layer of sol-gel is then dried at a temperature up to about 250.degree. C. The dried layer is then pyrolyzed at a temperature in the range of about 300 to about 450.degree. C. to form a ceramic film from the ceramic precursor. The ceramic film is then crystallized at a temperature in the range of about 600 to about 750.degree. C. The drying, pyrolyzing and crystallizing are performed under a flowing stream of an inert gas.

  13. Characterization of the Sol-Gel Transition for Zirconia-Toughened Alumina Precursors

    NASA Technical Reports Server (NTRS)

    Moeti, I.; Karikari, E.; Chen, J.

    1998-01-01

    High purity ZTA ceramic powders with and without yttria were produced using metal alkoxide precursors. ZTA ceramic powders with varying volume percents of zirconia were prepared (7, 15, and 22%). Aluminum tri-sec butoxide, zirconium propoxide, and yttrium isopropoxide were the reagents used. Synthesis conditions were varied to control the hydrolysis and the aging conditions for the sol to gel transition. FTIR analysis and theological characterization were used to follow the structural evolution during the sol to gel transition. The greater extent of hydrolysis and the build-up of structure measured from viscoelastic properties were consistent. Heat treatment was conducted to produce submicron grain fully crystalline ZTA ceramic powders. In all experimental cases a-alumina and tetragonal zirconia phases were confirmed even in the absence of yttria.

  14. Free-standing coating patterns fabricated by ultraviolet contact lithography using photosensitive sol-gel coatings

    NASA Astrophysics Data System (ADS)

    Xiang, Youlai; Du, Ai; Li, Xiaoguang; Sun, Wei; Wu, Shuai; Li, Tiemin; Liu, Mingfang; Zhou, Bin

    2017-07-01

    Photosensitive ZrO2-SiO2 hybrid sol-gel coatings containing large contents of chelating rings were prepared by using the zirconium n-butoxide (TBOZ) and methyltriethoxysilane (MTES) as hybrid precursors, and benzoylacetone (BZAC) as chelating agent. The change of ultraviolet (UV) absorption spectra, chemical composition, and optical properties of ZrO2-SiO2 hybrid sol-gel coatings were analyzed before and after UV exposure and calcination. The refractive index of the ZrO2-SiO2 hybrid gel coatings decreased from 1.673 to 1.561 with the increase of the molar content of MTES in precursors. The sol-gel coating patterns with the periods of 20.24 μm, 10.11 μm and 3.99 μm on the PAMS substrates were firstly obtained by using the photosensitive ZrO2-SiO2 hybrid sol-gel films as fundamental materials through a process of UV contact lithography with photo masks and etching with ethanol. Finally, the free-standing gel coating patterns supported by copper grids, with the period of 12.70 μm and line width of 4.93 μm, and the period of 14.20 μm and line width of 3.82 μm, were obtained by removing the PAMS thermal degradation sacrifice layer after being calcined at 330 °C. Micrometer-periodic free-standing gel coating patterns with different structure have potential applications in the laser physical experiments.

  15. Production of continuous mullite fiber via sol-gel processing

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Sparks, J. Scott; Esker, David C.

    1990-01-01

    The development of a continuous ceramic fiber which could be used in rocket engine and rocket boosters applications was investigated at the Marshall Space Flight Center. Methods of ceramic fiber production such as melt spinning, chemical vapor deposition, and precursor polymeric fiber decomposition are discussed and compared with sol-gel processing. The production of ceramics via the sol-gel method consists of two steps, hydrolysis and polycondensation, to form the preceramic, followed by consolidation into the glass or ceramic structure. The advantages of the sol-gel method include better homogeneity and purity, lower preparation temperature, and the ability to form unique compositions. The disadvantages are the high cost of raw materials, large shrinkage during drying and firing which can lead to cracks, and long processing times. Preparation procedures for aluminosilicate sol-gel and for continuous mullite fibers are described.

  16. Brilliant molecular nanocrystals emerging from sol-gel thin films: towards a new generation of fluorescent biochips.

    PubMed

    Dubuisson, E; Monnier, V; Sanz-Menez, N; Boury, B; Usson, Y; Pansu, R B; Ibanez, A

    2009-08-05

    To develop highly sensitive biosensors, we made directly available to biological aqueous solutions organic nanocrystals previously grown in the pores of sol-gel films. Through the controlled dissolution of the sol-gel surface, we obtained emerging nanocrystals that remained strongly anchored to the sol-gel coating for good mechanical stability of the final sensing device. We demonstrated that in the presence of a solution of DNA functionalized with a molecular probe, the nanocrystal fluorescence is strongly quenched by Förster resonance energy transfer thus opening the way towards very sensitive fluorescent biosensors through biomolecules grafted onto fluorescent nanocrystals. Finally, this controlled dissolution, involving weak concentrated NaOH solution, is a generic process that can be used for the thinning of any kind of sol-gel layer.

  17. Optimisation of a sol-gel synthesis route for the preparation of MgF2 particles for a large scale coating process.

    PubMed

    Scheurell, K; Noack, J; König, R; Hegmann, J; Jahn, R; Hofmann, Th; Löbmann, P; Lintner, B; Garcia-Juan, P; Eicher, J; Kemnitz, E

    2015-12-07

    A synthesis route for the preparation of optically transparent magnesium fluoride sols using magnesium acetate tetrahydrate as precursor is described. The obtained magnesium fluoride sols are stable for several months and can be applied for antireflective coatings on glass substrates. Reaction parameters in the course of sol synthesis are described in detail. Thus, properties of the precursor materials play a crucial role in the formation of the desired magnesium fluoride nanoparticles, this is drying the precursor has to be performed under defined mild conditions, re-solvation of the dried precursor has to be avoided and addition of water to the final sol-system has to be controlled strictly. Important properties of the magnesium fluoride sols like viscosity, particle size distribution, and structural information are presented as well.

  18. Preparation of glass-forming materials from granulated blast furnace slag

    NASA Astrophysics Data System (ADS)

    Alonso, M.; Sáinz, E.; Lopez, F. A.

    1996-10-01

    Glass precursor materials, to be used for the vitrification of hazardous wastes, have been prepared from blast furnace slag powder through a sol-gel route. The slag is initially reacted with a mixture of alcohol (ethanol or methanol) and mineral acid (HNO3 or H2SO4) to give a sol principally consisting of Si, Ca, Al, and Mg alkoxides. Gelation is carried out with variable amounts of either ammonia or water. The gelation rate can be made as fast as desired by adding excess hydrolizing agent or else by distilling the excess alcohol out of the alkoxide solution. The resulting gel is first dried at low temperature and ground. The powder thus obtained is then heat treated at several temperatures. The intermediate and final materials are characterized by thermal analysis, infrared (IR) spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), and chemical analysis. From the results, the operating conditions yielding a variety of glass precursors differing in their composition are established. The method, in comparison with direct vitrification of slag, presents a number of advantages: (1) the glass precursor obtained devitrifies at higher temperatures; (2) it enables the adjustment, to a certain extent, of the chemical composition of the glass precursor; and (3) it permits recovering marketable materials at different stages of the process.

  19. Method for fabrication of ceramic dielectric films on copper foils

    DOEpatents

    Ma, Beihai; Narayanan, Manoj; Dorris, Stephen E.; Balachandran, Uthamalingam

    2015-03-10

    The present invention provides a method for fabricating a ceramic film on a copper foil. The method comprises applying a layer of a sol-gel composition onto a copper foil. The sol-gel composition comprises a precursor of a ceramic material suspended in 2-methoxyethanol. The layer of sol-gel is then dried at a temperature up to about 250.degree. C. The dried layer is then pyrolyzed at a temperature in the range of about 300 to about 450.degree. C. to form a ceramic film from the ceramic precursor. The ceramic film is then crystallized at a temperature in the range of about 600 to about 750.degree. C. The drying, pyrolyzing and crystallizing are performed under a flowing stream of an inert gas. In some embodiments an additional layer of the sol-gel composition is applied onto the ceramic film and the drying, pyrolyzing and crystallizing steps are repeated for the additional layer to build up a thicker ceramic layer on the copper foil. The process can be repeated one or more times if desired.

  20. Effect of Sol Concentration, Aging and Drying Process on Cerium Stabilization Zirconium Gel Produced by External Gelation

    NASA Astrophysics Data System (ADS)

    Sukarsono, R.; Rachmawati, M.; Susilowati, S. R.; Husnurrofiq, D.; Nurwidyaningrum, K.; Dewi, A. K.

    2018-02-01

    Cerium Stabilized Zirconium gel has been prepared using external gelation process. As the raw materials was used ZrO(NO3)2 and Ce(NO3)4 nitrate salt which was dissolved with water into Zr-Ce nitrate mixture. The concentration of the nitrate salt mixture in the sol solution was varied by varying the concentration of zirconium and cerium nitrate in the sol solution and the addition of PVA and THFA to produce a sol with a viscosity of 40-60 cP. The viscosity range of 40-60cP is the viscosity of the sol solution that was easy to produce a good gel in the gelation apparatus. Sol solution was casted in a gelation column equipped with following tools: a 1 mm diameter drip nozzle which was vibrated to adjust the best frequency and amplitude of vibration, a flow meter to measure the flow rate of sol, flowing of NH3 gas to presolidification process. Gelation column was contained NH4OH solution as gelation medium and gel container to collect gel product. Gel obtained from the gelation process than processed with ageing, washing, drying and calcinations to get round gel and not broken at calcinations up to 500°C. The parameters observed in this research are variation of Zr nitrate concentration, Ce nitrate concentration, ratio of Zr and Ce in the sol and ageing and drying process method which was appropriate to get a good gel. From the gelation processes that has been done, it can be seen that with the presolidification process can be obtained a round gel and without presolidification process, produce not round gel. In the process of ageing to get not broken gel, ageing was done on the rotary flask so that during the ageing, gels rotate in gelation media. Gels, then be washed by dilute ammonium nitrate, demireralized water and iso prophyl alcohol. The washed gel was then dried by vacuum drying to form pores on the gel which become the path for the gases resulting from decomposition of the gel to exit the gel. Vacuum drying can prevent cracking because the pores allow the gel to release the decomposition of the material during heating. Larger the concentration of nitric metal in sol solution, yields a gel with a larger diameter of gels. This research allows us to plan the diameter of the sintered particles to be made.

  1. Spectroscopic studies of triethoxysilane sol-gel and coating process.

    PubMed

    Li, Ying-Sing; Ba, Abdul

    2008-10-01

    Silica sol-gels have been prepared under different conditions using triethoxysilane (TES) as precursor. The prepared sol-gels have been used to coat aluminum for corrosion protection. Vibrational assignments have been made for most vibration bands of TES, TES sol-gel, TES sol-gel-coated aluminum and xerogel. It has been noticed that air moisture may have helped the hydrolysis of the thin coating films. Xerogels have been obtained from the sol-gel under different temperature conditions and the resulting samples have been characterized by using infrared and Raman spectroscopic methods. IR data indicate that the sol-gel process is incomplete under the ambient conditions although an aqueous condition can have slightly improved the process. Two nonequivalent silicon atoms have been identified from the collected 29Si NMR spectra for the sol-gel, supporting the result derived from the IR data. The frequency of Si-H bending vibration has been found to be more sensitive to the skeletal structure than that of the Si-H stretching vibration. A higher temperature condition could favor the progression of hydrolysis and condensation. A temperature higher than 300 degrees C would cause sample decomposition without seriously damaging the silica network. From infrared intensity measurements and thermo-gravimetric analyses, the fractions of incomplete hydrolysis and condensation species have been estimated to be 4% and 3%, respectively. Electrochemical data have shown that the sol-gel coating significantly improves the corrosion protection properties of aluminum.

  2. Role of precursors and coating polymers in sol-gel chemistry toward enhanced selectivity and efficiency in solid phase microextraction.

    PubMed

    Bagheri, Habib; Piri-Moghadam, Hamed; Ahdi, Tayebeh

    2012-09-12

    To evaluate the selectivity and efficiency of solid phase microextraction (SPME) fiber coatings, synthesized by sol-gel technology, roles of precursors and coating polymers were extensively investigated. An on-line combination of capillary microextraction (CME) technique and high performance liquid chromatography (HPLC) was set up to perform the investigation. Ten different fiber coatings were synthesized in which five of them contained only the precursor and the rests were prepared using both the precursor and coating polymer. All the coatings were chemically bonded to the inner surface of copper tubes, intended to be used as the CME device and already functionalized by self-assembly monolayers of 3-(mercaptopropyl)trimethoxysilane (3MPTMOS). The selected precursors included tetramethoxysilane (TMOS), 3-(trimethoxysilyl)propylmethacrylate (TMSPMA), 3-(triethoxysilyl)-propylamine (TMSPA), 3MPTMOS, [3-(2,3-epoxypropoxy)-propyl]-trimethoxysilane (EPPTMOS) while poly(ethyleneglycol) (PEG) was chosen as the coating polymer. The effects of different precursors on the extraction efficiency and selectivity, was studied by selecting a list of compounds ranging from non-polar to polar ones, i.e. polycyclic aromatic hydrocarbon, herbicides, estrogens and triazines. The results from CME-HPLC analysis revealed that there is no significant difference between precursors, except TMOS, in which has the lowest extraction efficiency. Most of the selected precursors have rather similar interactions toward the selected analytes which include Van der Walls, dipole-dipole and hydrogen bond while TMOS has only dipole-dipole interaction and therefore the least efficiency. TMOS is silica but the other sorbents are organically modified silica (ORMOSIL). Our investigation revealed that it is rather impossible to prepare a selective coating using conventional sol-gel methodologies. The comparison study performed among the fiber coatings contained only a precursor and those synthesized by a precursor along with coating polymer proved that the extraction efficiency obtained for all coatings are the same. This is an indication that by selecting the appropriate precursor there is no need to use any coating polymer. In overall, a fiber coating in sol-gel process could be synthesize with no coating polymer which leads to faster, easier, cheaper and more controllable synthesis. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Sol-gel applications for ceramic membrane preparation

    NASA Astrophysics Data System (ADS)

    Erdem, I.

    2017-02-01

    Ceramic membranes possessing superior properties compared to polymeric membranes are more durable under severe working conditions and therefore their service life is longer. The ceramic membranes are composed of some layers. The support is the layer composed of coarser ceramic structure and responsible for mechanical durability under filtration pressure and it is prepared by consolidation of ceramic powders. The top layer is composed of a finer ceramic micro-structure mainly responsible for the separation of components present in the fluid to be filtered and sol-gel method is a versatile tool to prepare such a tailor-made ceramic filtration structure with finer pores. Depending on the type of filtration (e.g. micro-filtration, ultra-filtration, nano-filtration) aiming separation of components with different sizes, sols with different particulate sizes should be prepared and consolidated with varying precursors and preparation conditions. The coating of sol on the support layer and heat treatment application to have a stable ceramic micro-structure are also important steps determining the final properties of the top layer. Sol-gel method with various controllable parameters (e.g. precursor type, sol formation kinetics, heat treatment conditions) is a practical tool for the preparation of top layers of ceramic composite membranes with desired physicochemical properties.

  4. Sol-Gel Process for Making Pt-Ru Fuel-Cell Catalysts

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Valdez, Thomas; Kumta, Prashant; Kim, Y.

    2005-01-01

    A sol-gel process has been developed as a superior alternative to a prior process for making platinum-ruthenium alloy catalysts for electro-oxidation of methanol in fuel cells. The starting materials in the prior process are chloride salts of platinum and ruthenium. The process involves multiple steps, is time-consuming, and yields a Pt-Ru product that has relatively low specific surface area and contains some chloride residue. Low specific surface area translates to incomplete utilization of the catalytic activity that might otherwise be available, while chloride residue further reduces catalytic activity ("poisons" the catalyst). In contrast, the sol-gel process involves fewer steps and less time, does not leave chloride residue, and yields a product of greater specific area and, hence, greater catalytic activity. In this sol-gel process (see figure), the starting materials are platinum(II) acetylacetonate [Pt(C5H7O2)2, also denoted Pt-acac] and ruthenium(III) acetylacetonate [Ru(C5H7O2)3, also denoted Ru-acac]. First, Pt-acac and Ru-acac are dissolved in acetone at the desired concentrations (typically, 0.00338 moles of each salt per 100 mL of acetone) at a temperature of 50 C. A solution of 25 percent tetramethylammonium hydroxide [(CH3)4NOH, also denoted TMAH] in methanol is added to the Pt-acac/Ruacac/ acetone solution to act as a high-molecular-weight hydrolyzing agent. The addition of the TMAH counteracts the undesired tendency of Pt-acac and Ru-acac to precipitate as separate phases during the subsequent evaporation of the solvent, thereby helping to yield a desired homogeneous amorphous gel. The solution is stirred for 10 minutes, then the solvent is evaporated until the solution becomes viscous, eventually transforming into a gel. The viscous gel is dried in air at a temperature of 170 C for about 10 hours. The dried gel is crushed to make a powder that is the immediate precursor of the final catalytic product. The precursor powder is converted to the final product in a controlled-atmosphere heat treatment. Desirably, the final product is a phase-pure (Pt phase only) Pt-Ru powder with a high specific surface area. The conditions of the controlled- atmosphere heat are critical for obtaining the aforementioned desired properties. A typical heat treatment that yields best results for a catalytic alloy of equimolar amounts of Pt and Ru consists of at least two cycles of heating to a temperature of 300 C and holding at 300 C for several hours, all carried out in an atmosphere of 1 percent O2 and 99 percent N2. The resulting powder consists of crystallites with typical linear dimensions of <10 nm. Tests have shown that the powder is highly effective in catalyzing the electro-oxidation of methanol.

  5. Effect of annealing temperature on structural, morphological and electrical properties of nanoparticles TiO{sub 2} thin films by sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muaz, A. K. M.; Hashim, U., E-mail: uda@unimap.edu.my; Arshad, M. K. Md.

    2016-07-06

    In this paper, the sol-gel method is used to prepare nanoparticles titanium dioxide (TiO{sub 2}) thin films at different annealing temperature. The prepared sol was deposited on the p-SiO{sub 2} substrates by spin coating technique under room temperature. The nanoparticles TiO{sub 2} solution was synthesized using Ti{OCH(CH_3)_2}{sub 4} as a precursor with an methanol solution at a molar ratio 1:10. The prepared TiO{sub 2} sols will further validate through structural, morphological and electrical properties. From the X-ray diffraction (XRD) analysis, as-deposited films was found to be amorphous in nature and tend to transform into tetragonal anatase and rutile phase asmore » the films annealed at 573 and 773 K, respectively. The diversification of the surface roughness was characterized by atomic force microscopy (AFM) indicated the roughness and thickness very dependent on the annealing temperature. The two-point probe electrical resistance and conductance of nanoparticles TiO{sub 2} thin films were determined by the DC current-voltage (IV) analysis. From the I-V measurement, the electrical conductance increased as the films annealed at higher temperature.« less

  6. Sol-gel derived (La 0.8M 0.2)CrO 3 (M dbnd Ca, Sr) coating layer on stainless-steel substrate for use as a separator in intermediate-temperature solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    A Lee, E.; Lee, S.; Hwang, H. J.; Moon, J.-W.

    A ceramic coating technique is applied to reduce the voltage drop caused by oxidation of the metallic separator (SUS444) in intermediate-temperature (IT) solid oxide fuel cell (SOFCs) systems. Precursor solutions for (La, Ca)CrO 3 (LCC) and (La, Sr)CrO 3 (LSC) coatings are prepared by adding nitric acid and ethylene glycol into an aqueous solution of lanthanum, strontium (or calcium) and chromium nitrates. Dried LCC and LSC gel films are heat-treated at 400-800 °C after dip-coating on the SUS444 substrate. XRD and Fourier-transform infrared (FT-IR) analysis is used to examine the crystallization behaviour and chemical structure of the precursor solution. The oxidation behaviour of the coated SUS444 substrate is compared with an uncoated SUS444 substrate. The oxidation of the SUS444 is inhibited by the LCC and LSC thin film layers.

  7. Characterisation of well-adhered ZrO2 layers produced on structured reactors using the sonochemical sol-gel method

    NASA Astrophysics Data System (ADS)

    Jodłowski, Przemysław J.; Chlebda, Damian K.; Jędrzejczyk, Roman J.; Dziedzicka, Anna; Kuterasiński, Łukasz; Sitarz, Maciej

    2018-01-01

    The aim of this study was to obtain thin zirconium dioxide coatings on structured reactors using the sonochemical sol-gel method. The preparation method of metal oxide layers on metallic structures was based on the synergistic combination of three approaches: the application of ultrasonic irradiation during the synthesis of Zr sol-gel based on a precursor solution containing zirconium(IV) n-propoxide, the addition of stabilszing agents, and the deposition of ZrO2 on the metallic structures using the dip-coating method. As a result, dense, uniform zirconium dioxide films were obtained on the FeCrAlloy supports. The structured reactors were characterised by various physicochemical methods, such as BET, AFM, EDX, XRF, XRD, XPS and in situ Raman spectroscopy. The results of the structural analysis by Raman and XPS spectroscopy confirmed that the metallic surface was covered by a ZrO2 layer without any impurities. SEM/EDX mapping revealed that the deposited ZrO2 covered the metallic support uniformly. The mechanical and high temperature tests showed that the developed ultrasound assisted sol-gel method is an efficient way to obtain thin, well-adhered zirconium dioxide layers on the structured reactors. The prepared metallic supports covered with thin ZrO2 layers may be a good alternative to layered structured reactors in several dynamics flow processes, for example for gas exhaust abatement.

  8. Cu-Doped ZnO Thin Films Deposited by a Sol-Gel Process Using Two Copper Precursors: Gas-Sensing Performance in a Propane Atmosphere.

    PubMed

    Gómez-Pozos, Heberto; Arredondo, Emma Julia Luna; Maldonado Álvarez, Arturo; Biswal, Rajesh; Kudriavtsev, Yuriy; Pérez, Jaime Vega; Casallas-Moreno, Yenny Lucero; Olvera Amador, María de la Luz

    2016-01-29

    A study on the propane gas-sensing properties of Cu-doped ZnO thin films is presented in this work. The films were deposited on glass substrates by sol-gel and dip coating methods, using zinc acetate as a zinc precursor, copper acetate and copper chloride as precursors for doping. For higher sensitivity values, two film thickness values are controlled by the six and eight dippings, whereas for doping, three dippings were used, irrespective of the Cu precursor. The film structure was analyzed by X-ray diffractometry, and the analysis of the surface morphology and film composition was made through scanning electron microscopy (SEM) and secondary ion mass spectroscopy (SIMS), respectively. The sensing properties of Cu-doped ZnO thin films were then characterized in a propane atmosphere, C₃H₈, at different concentration levels and different operation temperatures of 100, 200 and 300 °C. Cu-doped ZnO films doped with copper chloride presented the highest sensitivity of approximately 6 × 10⁴, confirming a strong dependence on the dopant precursor type. The results obtained in this work show that the use of Cu as a dopant in ZnO films processed by sol-gel produces excellent catalysts for sensing C₃H₈ gas.

  9. Amoeba-like self-oscillating polymeric fluids with autonomous sol-gel transition

    PubMed Central

    Onoda, Michika; Ueki, Takeshi; Tamate, Ryota; Shibayama, Mitsuhiro; Yoshida, Ryo

    2017-01-01

    In the field of polymer science, many kinds of polymeric material systems that show a sol-gel transition have been created. However, most systems are unidirectional stimuli-responsive systems that require physical signals such as a change in temperature. Here, we report on the design of a block copolymer solution that undergoes autonomous and periodic sol-gel transition under constant conditions without any on–off switching through external stimuli. The amplitude of this self-oscillation of the viscosity is about 2,000 mPa s. We also demonstrate an intermittent forward motion of a droplet of the polymer solution synchronized with the autonomous sol-gel transition. This polymer solution bears the potential to become the base for a type of slime-like soft robot that can transform its shape kaleidoscopically and move autonomously, which is associated with the living amoeba that moves forward by a repeated sol-gel transition. PMID:28703123

  10. Amoeba-like self-oscillating polymeric fluids with autonomous sol-gel transition

    NASA Astrophysics Data System (ADS)

    Onoda, Michika; Ueki, Takeshi; Tamate, Ryota; Shibayama, Mitsuhiro; Yoshida, Ryo

    2017-07-01

    In the field of polymer science, many kinds of polymeric material systems that show a sol-gel transition have been created. However, most systems are unidirectional stimuli-responsive systems that require physical signals such as a change in temperature. Here, we report on the design of a block copolymer solution that undergoes autonomous and periodic sol-gel transition under constant conditions without any on-off switching through external stimuli. The amplitude of this self-oscillation of the viscosity is about 2,000 mPa s. We also demonstrate an intermittent forward motion of a droplet of the polymer solution synchronized with the autonomous sol-gel transition. This polymer solution bears the potential to become the base for a type of slime-like soft robot that can transform its shape kaleidoscopically and move autonomously, which is associated with the living amoeba that moves forward by a repeated sol-gel transition.

  11. Sol-gel layers for ceramic microsystems application

    NASA Astrophysics Data System (ADS)

    Czok, Mateusz; Golonka, Leszek

    2016-11-01

    This paper describes research on sol-gel solutions preparation process. Utilize of a sol-gel layers in the LTCC technology for reduction of surface roughness and influence on the ceramics properties is examined and described. The influence of sol-gel layer on possible sedimentation of dyes or biological substances in channels, mixers or chambers of ceramic microfluidic structures was investigated. Moreover, properties of sol-gel coated surfaces have been precisely examined and described. Finally, positive results of conducted experiments made it possible to design and manufacture a simple microfluidic ceramic structure, with embedded protective layer of sol-gel, for fluorescence measurements.

  12. Optical and morphological properties of sol gel derived titanium dioxide films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, A. B.; Sharma, S. K.; M, Vishwas

    2015-08-28

    Titanium oxide (Titania) thin films were synthesized on different substrates via the sol-gel dip-coating method using alkoxide solution. Some selected samples were also prepared with different percentage of Lead (Pb). The influence of Pb addition in precursor sol on the optical properties of titanium dioxide thin films was studied. The optical transmittance in the visible region has increased with increase in weight percentage of lead. The refractive index was slightly decreased with Pb addition. Crystallization of these coatings was achieved through thermal annealing at temperatures above 400 °C. The structural properties and surface morphology of the crystallized coatings were studiedmore » by Scanning Electron Microscopy. Increase in average grain size from 250 nm to 350 nm with increase in Pb concentration is observed. Films were appeared to more coarse with increase in Pb addition. An increase in Pb addition resulted increase in average roughness from 12 nm to 25 nm.« less

  13. Chemistry of surface nanostructures in lead precursor-rich PbZr0.52Ti0.48O3 sol-gel films

    NASA Astrophysics Data System (ADS)

    Gueye, I.; Le Rhun, G.; Gergaud, P.; Renault, O.; Defay, E.; Barrett, N.

    2016-02-01

    We present a study of the chemistry of the nanostructured phase at the surface of lead zirconium titanate PbZr0.52Ti0.48O3 (PZT) films synthesized by sol-gel method. In sol-gel synthesis, excess lead precursor is used to maintain the target stoichiometry. Surface nanostructures appear at 10% excess whereas 30% excess inhibits their formation. Using the surface-sensitive, quantitative X-ray photoelectron spectroscopy and glancing angle X-ray diffraction we have shown that the chemical composition of the nanostructures is ZrO1.82-1.89 rather than pyrochlore often described in the literature. The presence of a possibly discontinuous layer of wide band gap ZrO1.82-1.89 could be of importance in determining the electrical properties of PZT-based metal-insulator-metal heterostructures.

  14. Microwave-Assisted Synthesis of High Dielectric Constant CaCu3Ti4O12 from Sol-Gel Precursor

    NASA Astrophysics Data System (ADS)

    Ouyang, Xin; Cao, Peng; Huang, Saifang; Zhang, Weijun; Huang, Zhaohui; Gao, Wei

    2015-07-01

    CaCu3Ti4O12 (CCTO) powders derived from sol-gel precursors were calcined and sintered via microwave radiation. The obtained CCTO powders were compared with that obtained via a conventional heating method. For microwave heating, 89.1 wt.% CCTO was achieved from the sol-gel precursor, after only 17 min at 950°C. In contrast, the conventional calcination method required 3 h to generate 87.6 wt.% CCTO content at 1100°C. In addition, the CCTO powders prepared through 17 min of microwave calcination exhibited a small particle size distribution of D50 = 3.826 μm. It was found that a lengthy hold time of 1 h by microwave sintering is required to obtain a high dielectric constant (3.14 × 103 at 102 Hz) and a reasonably low dielectric loss (0.161) in the sintered CCTO ceramic. Based upon the distinct microstructures, the dielectric responses of the CCTO samples sintered by different methods are attributed to space charge polarization and internal barrier layer capacitor mechanism.

  15. Nanoporous titanium niobium oxide and titanium tantalum oxide compositions and their use in anodes of lithium ion batteries

    DOEpatents

    Dai, Sheng; Guo, Bingkun; Sun, Xiao-Guang; Qiao, Zhenan

    2017-10-31

    Nanoporous metal oxide framework compositions useful as anodic materials in a lithium ion battery, the composition comprising metal oxide nanocrystals interconnected in a nanoporous framework and having interconnected channels, wherein the metal in said metal oxide comprises titanium and at least one metal selected from niobium and tantalum, e.g., TiNb.sub.2-x Ta.sub.xO.sub.y (wherein x is a value from 0 to 2, and y is a value from 7 to 10) and Ti.sub.2Nb.sub.10-vTa.sub.vO.sub.w (wherein v is a value from 0 to 2, and w is a value from 27 to 29). A novel sol gel method is also described in which sol gel reactive precursors are combined with a templating agent under sol gel reaction conditions to produce a hybrid precursor, and the precursor calcined to form the anodic composition. The invention is also directed to lithium ion batteries in which the nanoporous framework material is incorporated in an anode of the battery.

  16. Hybrid Silicon-Based Organic/Inorganic Block Copolymers with Sol-Gel Active Moieties: Synthetic Advances, Self-Assembly and Applications in Biomedicine and Materials Science.

    PubMed

    Czarnecki, Sebastian; Bertin, Annabelle

    2018-03-07

    Hybrid silicon-based organic/inorganic (multi)block copolymers are promising polymeric precursors to create robust nano-objects and nanomaterials due to their sol-gel active moieties via self-assembly in solution or in bulk. Such nano-objects and nanomaterials have great potential in biomedicine as nanocarriers or scaffolds for bone regeneration as well as in materials science as Pickering emulsifiers, photonic crystals or coatings/films with antibiofouling, antibacterial or water- and oil-repellent properties. Thus, this Review outlines recent synthetic efforts in the preparation of these hybrid inorganic/organic block copolymers, gives an overview of their self-assembled structures and finally presents recent examples of their use in the biomedical field and material science. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The effect of polymer composition on the gelation behavior of PLGA-g-PEG biodegradable thermoreversible gels.

    PubMed

    Tarasevich, B J; Gutowska, A; Li, X S; Jeong, B-M

    2009-04-01

    Graft copolymers consisting of a poly(D,L-lactic acid-co-glycolic acid) backbone grafted with polyethylene glycol side chains were synthesized and formed thermoreversible gels in aqueous solutions that exhibited solution behavior at low temperature and sol-to-gel transitions at higher temperature. The composition of the polymer and relative amounts of polylactic acid, glycolic acid, and ethylene glycol were varied by controlling the precursor concentrations and reaction temperature. The gelation temperature could be systematically tailored from 15 to 34 degrees C by increasing the concentration of polyethylene glycol in the graft copolymer. The gelation temperature also depended on the polymer molecular weight and concentration. This work has importance for the development of water soluble gels with tailored compositions and gelation temperatures for use in tissue engineering and as injectable depots for drug delivery. Copyright 2008 Wiley Periodicals, Inc.

  18. Sol-Gel Manufactured Energetic Materials

    DOEpatents

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2005-05-17

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  19. Sol-gel manufactured energetic materials

    DOEpatents

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2003-12-23

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  20. Preparation of long alumina fibers by sol-gel method using tartaric acid

    NASA Astrophysics Data System (ADS)

    Tan, Hong-Bin

    2011-12-01

    Long alumina fibers were prepared by sol-gel method. The spinning sol was obtained by mixing aluminum nitrate, tartaric acid, and polyvinylpyrrolidone with a mass ratio of 10:3:1.5. Thermogravimetry-differential scanning calorimetry (TG-DSC), Fourier transform infrared (FT-IR) spectra, X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used to characterize the properties of the gel and ceramic fibers. A little of α-Al2O3 phase is observed in the alumina precursor gel fibers sintered at 1273 K. The fibers with a uniform diameter can be obtained when sintered at 1473 K, and its main phase is also indentified as α-Al2O3.

  1. Method of producing optical quality glass having a selected refractive index

    DOEpatents

    Poco, John F.; Hrubesh, Lawrence W.

    2000-01-01

    Optical quality glass having a selected refractive index is produced by a two stage drying process. A gel is produced using sol-gel chemistry techniques and first dried by controlled evaporation until the gel volume reaches a pre-selected value. This pre-selected volume determines the density and refractive index of the finally dried gel. The gel is refilled with solvent in a saturated vapor environment, and then dried again by supercritical extraction of the solvent to form a glass. The glass has a refractive index less than the full density of glass, and the range of achievable refractive indices depends on the composition of the glass. Glasses having different refractive indices chosen from an uninterrupted range of values can be produced from a single precursor solution.

  2. Fibrous selective emitter structures from sol-gel process

    NASA Astrophysics Data System (ADS)

    Chen, K. C.

    1999-03-01

    Selective emitters have the potential benefit of high efficiency due to the matching of emission spectra to the response of photovoltaic (PV) cells. Continuous uniform rare-earth oxide selective emitter fibers were successfully fabricated using a viscous solution made from metal organic precursors. Cylindrical- and planar configuration emitter structures were made by direct cross-winding or stacking of precursor fiber layers. The combustion and optical performance of the planar emitter structures were tested. The results indicates that both the designing of the fiber packing density and the thickness is critical for high photon and power output.

  3. Sol gel synthesis and characterization studies of Cupromanganite CaCu3Mn4O12

    NASA Astrophysics Data System (ADS)

    Nurulhuda, A.; Warikh, A. R. M.; Hafizzal, Y.

    2017-08-01

    A single-phase CaCu3Mn4O12 electroceramic had been prepared via sol gel method and fairly well densified at relative low temperature under atmospheric condition where the crystallization of CaCu3Mn4O12 occurred due to amorphous polymeric mixture. The precursor was prepared by mixing the solutions with 0.6 M citric acid (C6H8O7) as a chelating reagent with the mol ratio 1:2. The precursor gel formed was calcined and sintered at range 400 °C to 800°C by varying dwell time. Material formations under the reported conditions have been confirmed by X-ray diffraction (XRD). The results show that the formation of CaCu3Mn4O12 started at 500 ° C and was formed completely at 700 ° C for 18 hours. The microstructure of all CaCu3Mn4O12 was analysed using field emission scanning electron microscopy (FESEM). A smaller particle size with higher grain boundary was obtained at sintering 700°C to 800°C. FESEM results show the significant influence of calcinations and sintering parameter on the microstructure behaviour of CaCu2Mn4O12.

  4. Molecularly imprinted polymer-sol-gel tablet toward micro-solid phase extraction: II. Determination of amphetamine in human urine samples by liquid chromatography-tandem mass spectrometry.

    PubMed

    El-Beqqali, Aziza; Andersson, Lars I; Jeppsson, Amin Dadoun; Abdel-Rehim, Mohamed

    2017-09-15

    Amphetamine selective molecularly imprinted sol-gel polymer tablets, MIP-tablets, for solid-phase microextraction of biofluid samples were prepared. An acetonitrile solution of deuterated amphetamine template and silane precursor, 3-(propylmethacrylate) trimethoxysilane, was soaked into the pores of polyethylene tablet substrates and polymerized by an acid-catalysed sol-gel process. Application of the resultant MIP-tablets to extract amphetamine from human urine samples followed by LC-MS/MS analysis was investigated. The extraction protocol was optimised with respect to pH of sample, addition of sodium chloride, extraction time, desorption solvent and desorption time. The final analysis method determined amphetamine in human urine with a limit of detection (LOD) of 1.0ng/mL and a lower limit of quantification (LLOQ) of 5ng/mL. Validation demonstrated accuracy of the method was 91.0-104.0% and inter-assay precision was 4.8-8.5% (RSD). Extraction recovery was 80%. The MIP-tablets could be re-used and the same tablet could be employed for more than twenty extractions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Preparation of TiO2-SiO2 via sol-gel method: Effect of Silica precursor on Catalytic and Photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Fatimah, I.

    2017-02-01

    TiO2-SiO2have been synthesized by the sol-gel method from titanium isopropoxide and varied silica precursors: tetraethyl orthosilicate and tetra methyl ortho silicate. To study the effect of the precursor, prepared materials were characterized by X-ray diffraction, scanning electron microscopy, Diffuse Reflectance UV-vis optical absorption, and also gas sorption analysis. XRD patterns showed the formation of TiO2 anatase in the TiO2-SiO2 composite with different crystallite size from different silica precursor as well as the different surface morphology. The DRUV-vis absorption spectra exhibit similar band gap energy correspond to 3.21eV value while the surface area, pore volume and pore radius of the materials seems to be affected by the precursor. The higher specific surface area contributes to give the enhanced activity in phenol hydroxylation and methylene blue photodegradation.

  6. Cu-Doped ZnO Thin Films Deposited by a Sol-Gel Process Using Two Copper Precursors: Gas-Sensing Performance in a Propane Atmosphere

    PubMed Central

    Gómez-Pozos, Heberto; Arredondo, Emma Julia Luna; Maldonado Álvarez, Arturo; Biswal, Rajesh; Kudriavtsev, Yuriy; Pérez, Jaime Vega; Casallas-Moreno, Yenny Lucero; Olvera Amador, María de la Luz

    2016-01-01

    A study on the propane gas-sensing properties of Cu-doped ZnO thin films is presented in this work. The films were deposited on glass substrates by sol-gel and dip coating methods, using zinc acetate as a zinc precursor, copper acetate and copper chloride as precursors for doping. For higher sensitivity values, two film thickness values are controlled by the six and eight dippings, whereas for doping, three dippings were used, irrespective of the Cu precursor. The film structure was analyzed by X-ray diffractometry, and the analysis of the surface morphology and film composition was made through scanning electron microscopy (SEM) and secondary ion mass spectroscopy (SIMS), respectively. The sensing properties of Cu-doped ZnO thin films were then characterized in a propane atmosphere, C3H8, at different concentration levels and different operation temperatures of 100, 200 and 300 °C. Cu-doped ZnO films doped with copper chloride presented the highest sensitivity of approximately 6 × 104, confirming a strong dependence on the dopant precursor type. The results obtained in this work show that the use of Cu as a dopant in ZnO films processed by sol-gel produces excellent catalysts for sensing C3H8 gas. PMID:28787885

  7. Processing of non-oxide ceramics from sol-gel methods

    DOEpatents

    Landingham, Richard; Reibold, Robert A.; Satcher, Joe

    2014-12-12

    A general procedure applied to a variety of sol-gel precursors and solvent systems for preparing and controlling homogeneous dispersions of very small particles within each other. Fine homogenous dispersions processed at elevated temperatures and controlled atmospheres make a ceramic powder to be consolidated into a component by standard commercial means: sinter, hot press, hot isostatic pressing (HIP), hot/cold extrusion, spark plasma sinter (SPS), etc.

  8. Sol-Gel Entrapped Levonorgestrel Antibodies: Activity and Structural Changes as a Function of Different Polymer Formats

    PubMed Central

    Shalev, Moran; Miriam, Altstein

    2011-01-01

    The paper describes development of a sol-gel based immunoaffinity method for the steroid hormone levonorgestrel (LNG) and the effects of changes in the sol-gel matrix format on the activity of the entrapped antibodies (Abs) and on matrix structure. The best sol-gel format for Ab entrapment was found to be a tetramethoxysilane (TMOS) based matrix at a TMOS:water ratio of 1:8, containing 10% polyethylene glycol (PEG) of MW 0.4 kDa. Addition of higher percentages of PEG or a higher MW PEG did not improve activity. No activity was obtained with a TMOS:water ratio of 1:12, most likely because of the very dense polymer that resulted from these polymerization conditions. Only minor differences in the non-specific binding were obtained with the various formats. TMOS was found to be more effective than tetrakis (2-hydroxyethyl)orthosilicate (THEOS) for entrapment of anti-levonorgestrel (LNG) Abs. However, aging the THEOS-based sol-gel for a few weeks at 4 °C stabilized the entrapped Abs and increased its binding capacity. Confocal fluorescent microscopy with fluorescein isothiocyanate (FITC) labeled immunoglobulines (IgGs) entrapped in the sol-gel matrix showed that the entrapped Abs were distributed homogenously within the gel. Scanning electron microscopy (SEM) images have shown the diverse structures of the various sol-gel formats and precursors. PMID:28880001

  9. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Klimov, Victor L.; Petruska, Melissa A.

    2010-05-25

    The present invention is directed to a process for preparing a solid composite having colloidal nanocrystals dispersed within a sol-gel matrix, the process including admixing colloidal nanocrystals with an amphiphilic polymer including hydrophilic groups selected from the group consisting of --COOH, --OH, --SO.sub.3H, --NH.sub.2, and --PO.sub.3H.sub.2 within a solvent to form an alcohol-soluble colloidal nanocrystal-polymer complex, admixing the alcohol-soluble colloidal nanocrystal-polymer complex and a sol-gel precursor material, and, forming the solid composite from the admixture. The present invention is also directed to the resultant solid composites and to the alcohol-soluble colloidal nanocrystal-polymer complexes.

  10. Investigation of optical properties of anthocyanin doped into sol-gel based matrix

    NASA Astrophysics Data System (ADS)

    Hashim, Hasrina; Abdul Aziz, Nik Mohd Azmi Nik; Isnin, Aishah

    2012-06-01

    Anthocyanin dye was extracted from petal of Hibiscus rosasinensis (Bunga Raya) and doped into sol-gel based matrix to investigate an effect of pH change on its optical properties. Sol-gel matrix based on Vinyl triethoxysilene (VTES) as a precursor was prepared through Sol-gel process at pH 7. The sol was doped with 0.1% of Anthocyanin and the same amount of dye was also dissolved in ethanol as a comparative sample. Hydrochloric Acid, HCl and Tetramethylammonium Hydroxide, TMAH were used to change the pH value by adding them at various concentrations into each sample. The emission spectra and chemical structures of the samples were measured by Spectrofluorometer and Fourier Transform Infrared (FTIR) respectively. When excited at 410 nm, two emission peaks at about 492 and 574 nm were observed for Anthocyanin in acidic environment both in ethanol and VTES sol. In base environment however, only Anthocyanin dissolved in ethanol produced emission peak with a single peak at about 539 nm. The sensitivity of Anthocyanin dye toward pH changes in VTES open a possibility to use it as sensing element in which sol-gel based matrix are known to have higher mechanical strength and thermal stability.

  11. Spectroscopic characterization of zirconium(IV) and hafniumf(IV) gallate phthalocyanines in monolithic silica gels obtained by sol gel method

    NASA Astrophysics Data System (ADS)

    Gerasymchuk, Y. S.; Chernii, V. Ya.; Tomachynski, L. A.; Legendziewicz, J.; Radzki, St.

    2005-07-01

    The Zr(IV) and Hf(IV) phthalocyanines, with gallate as axial ligand coordinated to the central metal atom of phthalocyanine, were incorporated in silica gels during sol-gel process with using tetraethyl orthosilicate (TEOS) as precursor. The obtained mixed inorganic-organic composites were transparent and homogeneous. The absorption and emission properties of these materials in comparison with the spectra of the Zr(IV) and Hf(IV) phthalocyanines in various solvents were investigated. The spectra were correlated with various stage of the sol-gel process. It was established that in the gels concurrence of the monomer and dimer form is different in sol, alco-, hydro- and xerogels. The intensive 700-725 nm fluorescence emission upon relatively long-wavelength excitation and unusually large (about 45 nm) Stokes shift in the Q region, suggest that Zr(IV) and Hf(IV) phthalocyanines could be considered as photosensitizers in the PDT method (photodynamic therapy).

  12. Sol-gel synthesis of mesoporous CaCu{sub 3}Ti{sub 4}O{sub 12} thin films and their gas sensing response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parra, R., E-mail: rparra@fi.mdp.edu.a; Savu, R.; Ramajo, L.A.

    2010-06-15

    A new sol-gel synthesis procedure of stable calcium copper titanate (CaCu{sub 3}Ti{sub 4}O{sub 12}-CCTO) precursor sols for the fabrication of porous films was developed. The composition of the sol was selected in order to avoid the precipitation of undesired phases; ethanol was used as solvent, acetic acid as modifier and poly(ethyleneglycol) as a linker agent. Films deposited by spin-coating onto oxidized silicon substrates were annealed at 700 {sup o}C. The main phase present in the samples, as detected by X-ray diffraction and Raman spectroscopy, was CaCu{sub 3}Ti{sub 4}O{sub 12}. Scanning electron microscopy analysis showed that mesoporous structures, with thicknesses betweenmore » 200 and 400 nm, were developed as a result of the processing conditions. The films were tested regarding their sensibility towards oxygen and nitrogen at atmospheric pressure using working temperatures from 200 to 290 {sup o}C. The samples exhibited n-type conductivity, high sensitivity and short response times. These characteristics indicate that CCTO mesoporous structures obtained by sol-gel are suitable for application in gas sensing. - Graphical abstract: A sol-gel synthesis procedure toward stable CaCu{sub 3}Ti{sub 4}O{sub 12}-precursor sols avoiding the precipitation of undesired compounds is proposed. Films deposited by spin-coating onto oxidized silicon substrates were annealed at 700 {sup o}C. The thickness varied between 200 and 400 nm depending on sol composition. The films, tested as gas sensors for O{sub 2}, showed n-type conductivity, good sensitivity and short response times.« less

  13. Red shifts of the Eg(1) Raman mode of nanocrystalline TiO2:Er monoliths grown by sol-gel process

    NASA Astrophysics Data System (ADS)

    Palomino-Merino, R.; Trejo-Garcia, P.; Portillo-Moreno, O.; Jiménez-Sandoval, S.; Tomás, S. A.; Zelaya-Angel, O.; Lozada-Morales, R.; Castaño, V. M.

    2015-08-01

    Nanocrystalline monoliths of Er doped TiO2 were prepared by the sol-gel technique, by controlling the Er-doping levels into the TiO2 precursor solution. As-prepared and annealed in air samples showed the anatase TiO2 phase. The average diameter of the nanoparticles ranged from 19 to 2.6 nm as the nominal concentration of Er varies from 0% to 7%, as revealed by EDS analysis in an electron microscope. Photo Acoustic Spectroscopy (PAS) allowed calculate the forbidden band gap, evidencing an absorption edge at around 300 nm, attributed to TiO2 and evidence of electronic transitions or Er3+. The Raman spectra, corresponding to the anatase phase, show the main phonon mode Eg(1) band position at 144 cm-1 with a red shift for the annealing samples.

  14. An ion-imprinted silica-supported organic-inorganic hybrid sorbent prepared by a surface imprinting technique combined with a polysaccharide incorporated sol-gel process for selective separation of cadmium(II) from aqueous solution.

    PubMed

    Li, Feng; Jiang, Hongquan; Zhang, Shusheng

    2007-03-15

    Ion-imprinting concept and polysaccharide incorporated sol-gel process were applied to the preparation of a new silica-supported organic-inorganic hybrid sorbent for selective separation of Cd(II) from aqueous solution. In the prepared shell/core composite sorbent, covalently surface coating on the supporting silica gel was achieved by using a Cd(II)-imprinting sol-gel process starting from an inorganic precursor, gamma-glycidoxypropyltrimethoxysiloxane (GPTMS), and a functional biopolymer, chitosan (CS). The sorbent was prepared through self-hydrolysis of GPTMS, self-condensation and co-condensation of silanol groups (Si-OH) from siloxane and silica gel surface, in combination with in situ covalent cross-linking of CS with partial amine shielded by Cd(II) complexation. Extraction of the imprinting molecules left a predetermined arrangement of ligands and tailored binding pockets for Cd(II). The prepared sorbent was characterized by using X-ray energy dispersion spectroscopy (EDX), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Batch experiments were conducted to study the sorption performance by removal of Cd(II) when present singly or in binary system, an aqueous Cd(II) and Zn(II) mixture. The ion-imprinted composite sorbent offered a fast kinetics for the sorption of Cd(II) and the maximum capacity was 1.14mmolg(-1). The uptake capacity of the imprinted sorbent and the selectivity coefficient were much higher than that of the non-imprinted sorbent. The imprinted sorbent exhibited high reusability. The prepared functional sorbent was shown to be promising for the preconcentration of cadmium in environmental and biological samples.

  15. Structural and Luminescence Properties of Lu2O3:Eu3+ F127 Tri-Block Copolymer Modified Thin Films Prepared by Sol-Gel Method

    PubMed Central

    de Jesus Morales Ramírez, Angel; Hernández, Margarita García; Murillo, Antonieta García; de Jesús Carrillo Romo, Felipe; Palmerin, Joel Moreno; Velazquez, Dulce Yolotzin Medina; Jota, María Luz Carrera

    2013-01-01

    Lu2O3:Eu3+ transparent, high density, and optical quality thin films were prepared using the sol-gel dip-coating technique, starting with lutetium and europium nitrates as precursors and followed by hydrolysis in an ethanol-ethylene glycol solution. Acetic acid and acetylacetonate were incorporated in order to adjust pH and as a sol stabilizer. In order to increment the thickness of the films and orient the structure, F127 Pluronic acid was incorporated during the sol formation. Structural, morphological, and optical properties of the films were investigated for different F127/Lu molar ratios (0–5) in order to obtain high optical quality films with enhanced thickness compared with the traditional method. X-ray diffraction (XRD) shows that the films present a highly oriented cubic structure <111> beyond 1073 K for a 3-layer film, on silica glass substrates. The thickness, density, porosity, and refractive index evolution of the films were investigated by means of m-lines microscopy along with the morphology by scanning electron microscope (SEM) and luminescent properties. PMID:28809336

  16. Investigations on photolon-and porphyrin-doped sol-gel fiberoptic coatings for laser-assisted applications in medicine

    NASA Astrophysics Data System (ADS)

    Bindig, U.; Ulatowska-Jarza, A.; Kopaczynska, M.; Müller, G.; Podbielska, H.

    2008-01-01

    In view of laser-assisted medical applications, the construction of silica-based sol-gel fiberoptic sensors based on photolon (Ph) and protoporphyrin IX (PP IX) is discussed. Electron microscopy and AFM were used to characterize the silica sol-gel coatings. AFM measurements indicate a change in the surface porosity. The PP IX-based sensors were constructed as a one-layer optode as well as a multilayered structure. An additional hybrid sensor made up of alternate layers of PP IX-and Ph-doped sol-gel was also constructed and examined. Sol-gel matrices were prepared from silicate precursor tetraethylorthosilicate (TEOS) mixed with ethanol in acid-catalyzed hydrolysis. The carrier matrices of photosensitive dyes were produced with factor R = 20, where R denotes the ratio of solvent moles (ethanol) to the number of TEOS moles. A multilayered coating was built up using the reverse-dipping technique. The overall coating thickness was determined by electron microscopy. Doped sol-gels with different PP IX concentrations were used to produce fiberoptic coatings. The film optodes with a different number of layers were examined by fluorescence spectroscopy. It was found that photolon and protoporphyrin IX entrapped in sol-gel preserve their chemical reactivity and have contact with the external environment. The hybrid sensor demonstrated clear fluorescence and a reversible behavior in gaseous environments.

  17. Treating Fibrous Insulation to Reduce Thermal Conductivity

    NASA Technical Reports Server (NTRS)

    Zinn, Alfred; Tarkanian, Ryan

    2009-01-01

    A chemical treatment reduces the convective and radiative contributions to the effective thermal conductivity of porous fibrous thermal-insulation tile. The net effect of the treatment is to coat the surfaces of fibers with a mixture of transition-metal oxides (TMOs) without filling the pores. The TMO coats reduce the cross-sectional areas available for convection while absorbing and scattering thermal radiation in the pores, thereby rendering the tile largely opaque to thermal radiation. The treatment involves a sol-gel process: A solution containing a mixture of transition-metal-oxide-precursor salts plus a gelling agent (e.g., tetraethylorthosilicate) is partially cured, then, before it visibly gels, is used to impregnate the tile. The solution in the tile is gelled, then dried, and then the tile is fired to convert the precursor salts to the desired mixed TMO phases. The amounts of the various TMOs ultimately incorporated into the tile can be tailored via the concentrations of salts in the solution, and the impregnation depth can be tailored via the viscosity of the solution and/or the volume of the solution relative to that of the tile. The amounts of the TMOs determine the absorption and scattering spectra.

  18. Production and characterization of europium doped sol-gel yttrium oxide

    NASA Astrophysics Data System (ADS)

    Krebs, J. K.; Hobson, Christopher; Silversmith, Ann

    2004-03-01

    Sol-gel produced materials have recently gained attention for their use in producing nanoscale dielectric materials for confinement studies. Lanthanide impurities in the dielectric enable experimenters to optically probe the structure and dynamic properties of the nanoparticle hosts. We report on an alkoxide sol-gel production method used to produce trivalent europium doped yttrium oxide. Our process follows the standard hydrolysis of an alkoxide precursor with water containing the lanthanide ions. The sol is then aged and calcined at 800 ^oC to produce the powder samples. X-ray diffraction confirms the structure of the powder is that of Y_2O_3. The emission and excitation of the europium impurities is consistent with that of europium doped single crystal yttrium oxide, where it is known that the europium ions substitute for yttrium in the lattice. We therefore conclude that the sol-gel process enables the incorporation of europium ions into the yttrium oxide structure at temperatures far below the melting temperature. The results of preliminary dynamics measurements will also be discussed.

  19. A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst.

    PubMed

    Faure, J; Drevet, R; Lemelle, A; Ben Jaber, N; Tara, A; El Btaouri, H; Benhayoune, H

    2015-02-01

    In this paper a new sol-gel approach was explored for the synthesis of the 45S5 bioactive glass. We demonstrate that citric acid can be used instead of the usual nitric acid to catalyze the sol-gel reactions. The substitution of nitric acid by citric acid allows to reduce strongly the concentration of the acid solution necessary to catalyze the hydrolysis of silicon and phosphorus alkoxides. Two sol-gel powders with chemical compositions very close to that of the 45S5 were obtained by using either a 2M nitric acid solution or either a 5mM citric acid solution. These powders were characterized and compared to the commercial Bioglass®. The surface properties of the two bioglass powders were assessed by scanning electron microscopy (SEM) and by Brunauer-Emmett-Teller method (BET). The Fourier transformed infrared spectroscopy (FTIR) and the X-ray diffraction (XRD) revealed a partial crystallization associated to the formation of crystalline phases on the two sol-gel powders. The in vitro bioactivity was then studied at the key times during the first hours of immersion into acellular Simulated Body Fluid (SBF). After 4h immersion into SBF we clearly demonstrate that the bioactivity level of the two sol-gel powders is similar and much higher than that of the commercial Bioglass®. This bioactivity improvement is associated to the increase of the porosity and the specific surface area of the powders synthesized by the sol-gel process. Moreover, the nitric acid is efficiently substituted by the citric acid to catalyze the sol-gel reactions without alteration of the bioactivity of the 45S5 bioactive glass. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Structural, magnetic and hyperfine characterization of ZnxFe3-xO4 nanoparticles prepared by sol-gel approach via inorganic precursors

    NASA Astrophysics Data System (ADS)

    Kotsikau, Dzmitry; Pankov, Vladimir; Petrova, Elena; Natarov, Valentin; Filimonov, Dmitry; Pokholok, Konstantin

    2018-03-01

    Structural characteristics and magnetic properties of ZnxFe3-xO4 (where x = 0; 0.09; 0.18; 0.45; 1) nanoparticles were studied with X-ray diffraction (XRD), transmission electron microscopy (TEM), infrared spectroscopy (IR) and vibrating sample magnetometry (VSM). Oxidation of Fe2+ ions, redistribution of Zn2+ and Fe3+ ions between octahedral and tetrahedral sites, and the formation of cation vacancies in spinel-type cubic structure of the obtained ZnxFe3-x-y□yO4 substitutional solid solutions were revealed by 57Fe Mössbauer spectroscopy. The nanoparticles synthesized via a modified sol-gel method using inorganic precursors have a size of 4-10 nm, single-phase composition, superparamagnetic behavior at room temperature (300 K) and a relatively hydrophilic surface to form stable aqueous suspensions. The maximum magnetization of 59 emu/g at 300 K corresponds to Zn0.18Fe2.82O4 composition. The listed features make the materials promising candidates for various biological and medical applications such as contrast-enhanced magnetic resonance imaging, hyperthermia of pathological tissues, controlled drug release, and separation of nucleic acids.

  1. ZnO-based regenerable sulfur sorbents for fluid-bed/transport reactor applications

    DOEpatents

    Slimane, Rachid B.; Abbasian, Javad; Williams, Brett E.

    2004-09-21

    A method for producing regenerable sulfur sorbents in which a support material precursor is mixed with isopropanol and a first portion of deionized water at an elevated temperature to form a sol mixture. A metal oxide precursor comprising a metal suitable for use as a sulfur sorbent is dissolved in a second portion of deionized water, forming a metal salt solution. The metal salt solution and the sol mixture are mixed with a sol peptizing agent while heating and stirring, resulting in formation of a peptized sol mixture. The metal oxide precursor is dispersed substantially throughout the peptized sol mixture, which is then dried, forming a dry peptized sol mixture. The dry peptized sol mixture is then calcined and the resulting calcined material is then converted to particles.

  2. Cellulose-silica/gold nanomaterials for electronic applications.

    PubMed

    Kim, Gwang-Hoon; Ramesh, Sivalingam; Kim, Joo-Hyung; Jung, Dongsoo; Kim, Heung Soo

    2014-10-01

    Cellulose and one dimensional nano-material composite has been investigated for various industrial applications due to their optical, mechanical and electrical properties. In present investigation, cellulose/silica and silica-gold hybrid biomaterials were prepared by sol-gel covalent cross-linking process. The tetraethoxysiliane (TEOS) and gold precursors and γ-aminopropyltriethoxysilane (γ-APTES) as coupling agent were used for sol-gel cross-linking process. The chemical and morphological properties of cellulose/silica and cellulose/silica-gold nano-materials via covalent cross-linking hybrids were confirmed by FTIR, XRD, SEM, and TEM analysis. In the sol-gel process, the inorganic particles were dispersed in the cellulose host matrix at the nanometer scale, bonding to the cellulose through the covalent bonds.

  3. Macroporous ceramics by colloidal templating

    NASA Astrophysics Data System (ADS)

    Subramaniam, G.; Pine, David J.

    2000-04-01

    We describe a novel method of fabricating macroporous ceramics employing colloidal dispersion of ultrafine ceramic particles with latex particles as the templates. The colloidal particles form a particulate gel on drying and fill the voids of the ordered latex templates. Subsequent removal of the template by calcination results in the formation of an ordered macroporous ceramic. The process has significant advantages over the traditional sol-gel process employing alkoxide precursors. Most importantly, the much lower shrinkage compared to the sol-gel process enabled us to produce larger pieces of the sample. The larger shrinkage involved in the sol-gel process often results in small and fragile pieces of the macroporous material which has to be subsequently heat treated to induce crystallization. The ability to choose crystalline colloidal particles in our method obviates the need for heat treatment to achieve crystallinity. We have synthesized a variety of materials such as macroporous silica, titania, alumina and recently have also extended the approach to macroporous silicon which is not amenable to the sol-gel process.

  4. A comparative study of the properties of five-layered Aurivillius oxides A2Bi4Ti5O18 (A = Ba, Pb, and Sr) synthesized by different wet chemical routes

    NASA Astrophysics Data System (ADS)

    Dubey, Shivangi; Subohi, Oroosa; Kurchania, Rajnish

    2018-07-01

    This paper reports the detailed study of the effect of different wet chemical synthesis routes (solution combustion, co-precipitation, and sol-gel route) on the microstructure, phase formation, dielectric, electrical, and ferroelectric properties of five-layered Aurivillius oxides: A2Bi4Ti5O18 (A = Ba, Pb, and Sr). Different synthesis parameters like the precursors used, synthesis temperature, and reaction time affects the morphology of the ceramics. Microstructure in turn influences the dielectric and ferroelectric properties. It was observed that the sol-gel-synthesized ceramics possess higher dielectric constant and remanent polarization, low dielectric loss due to lower conductivity in these samples as a result of higher density in these compounds as compared to those synthesized by other wet chemical synthesis routes such as solution combustion route and co-precipitation technique. The XRD data are used for phase analysis and surface morphology is studied using SEM images. Dielectric and electrical properties are investigated as a function of frequency and temperature.

  5. Infrared and Raman spectroscopic studies of tris-[3-(trimethoxysilyl)propyl] isocyanurate, its sol-gel process, and coating on aluminum and copper.

    PubMed

    Li, Ying-Sing; Church, Jeffrey S; Woodhead, Andrea L; Vecchio, Nicolas E; Yang, Johnny

    2014-11-11

    Tris-[3-(trimethoxysilyl)propyl] isocyanurate (TTPI) has been used as a precursor to prepare a sol using ethanol as the solvent under acidic conditions. The sol-gel was applied for the surface treatment of aluminum and copper. Infrared and Raman spectra have been recorded for pure TTPI and the TTPI sol, xerogel and TTPI sol-gel coated metals. From the vibrational spectra, TTPI is likely to have the C1 point group. Vibrational assignments are suggested based on group frequencies, the expected reactions in the sol-gel process and the vibrational studies of some related molecules. From the experimental infrared spectra of xerogels annealed at different temperatures and from the thermal-gravimetric analysis, it is found that the TTPI xerogel decomposes at around 450°C with silica being the major decomposition product. A cyclic voltammetric study of the metal electrodes coated with different concentrations of TTPI ranging from 5% to 42% (v/v) has shown that the films with high concentrations of sol would provide better corrosion protection for aluminum and copper. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The Effect of Different Coupling Agents on Nano-ZnO Materials Obtained via the Sol-Gel Process.

    PubMed

    Purcar, Violeta; Şomoghi, Raluca; Niţu, Sabina Georgiana; Nicolae, Cristian-Andi; Alexandrescu, Elvira; Gîfu, Ioana Cătălina; Gabor, Augusta Raluca; Stroescu, Hermine; Ianchiş, Raluca; Căprărescu, Simona; Cinteză, Ludmila Otilia

    2017-12-12

    Hybrid nanomaterials based on zinc oxide were synthesized via the sol-gel method, using different silane coupling agents: (3-glycidyloxypropyl)trimethoxysilane (GPTMS), phenyltriethoxysilane (PhTES), octyltriethoxysilane (OTES), and octadecyltriethoxysilane (ODTES). Morphological properties and the silane precursor type effect on the particle size were investigated using dynamic light scattering (DLS), environmental scanning electron microscopy (ESEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The bonding characteristics of modified ZnO materials were investigated using Fourier transform infrared spectroscopy (FTIR). The final solutions were deposited on metallic substrate (aluminum) in order to realize coatings with various wettability and roughness. The morphological studies, obtained by ESEM and TEM analysis, showed that the sizes of the ZnO nanoparticles are changed as function of silane precursor used in synthesis. The thermal stability of modified ZnO materials showed that the degradation of the alkyl groups takes place in the 300-500 °C range. Water wettability study revealed a contact angle of 142 ± 5° for the surface covered with ZnO material modified with ODTES and showed that the water contact angle increases as the alkyl chain from the silica precursor increases. These modified ZnO materials, therefore, can be easily incorporated in coatings for various applications such as anti-corrosion and anti-icing.

  7. Controlled Sol-Gel Transitions of a Thermoresponsive Polymer in a Photoswitchable Azobenzene Ionic Liquid as a Molecular Trigger.

    PubMed

    Wang, Caihong; Hashimoto, Kei; Tamate, Ryota; Kokubo, Hisashi; Watanabe, Masayoshi

    2018-01-02

    Producing ionic liquids (ILs) that function as molecular trigger for macroscopic change is a challenging issue. Photoisomerization of an azobenzene IL at the molecular level evokes a macroscopic response (light-controlled mechanical sol-gel transitions) for ABA triblock copolymer solutions. The A endblocks, poly(2-phenylethyl methacrylate), show a lower critical solution temperature in the IL mixture containing azobenzene, while the B midblock, poly(methyl methacrylate), is compatible with the mixture. In a concentrated polymer solution, different gelation temperatures were observed in it under dark and UV conditions. Light-controlled sol-gel transitions were achieved by a photoresponsive solubility change of the A endblocks upon photoisomerization of the azobenzene IL. Therefore, an azobenzene IL as a molecular switch can tune the self-assembly of a thermoresponsive polymer, leading to macroscopic light-controlled sol-gel transitions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effects of N precursor on the agglomeration and visible light photocatalytic activity of N-doped TiO2 nanocrystalline powder.

    PubMed

    Hu, Yulong; Liu, Hongfang; Rao, Qiuhua; Kong, Xiaodong; Sun, Wei; Guo, Xingpeng

    2011-04-01

    N-doped TiO2 nanocrystalline powders were prepared by the sol-gel method using various N precursors, including triethylamine, hydrazine hydrate, ethylenediamine, ammonium hydroxide, and urea. The samples were characterized by X-ray diffraction, N2 adsorption isotherms, transmission electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The photocatalytic activities of as-prepared samples under irradiation of visible light (lambda > 405 nm) were evaluated by photodecomposition of methyl orange. The alkalinity of N precursor was found to play a key role in the gel process. The N precursor with moderate alkalinity causes TiO2 nanoparticles to be sol-transformed into a loosely agglomerated gel. This transformation facilitates the preparation of an N-doped TiO2 powder with small nanocrystal size, large specific surface area, and high N doping level and results in high visible light photocatalytic activity. The N in TiO2 with N is binding energy at 399-400 eV may be assigned to the N-H species located in interstitial sites of TiO2 lattice which is the active N species responsible for the visible light photocatalytic activity. The N species of N 1s peak at 402 and 405 eV are ineffective to the visible light photocatalytic activity and may inhibit the photocatalytic activity. Moreover, a TiO2 nanoparticle powder with large specific area can be achieved by using urea as a template and then by using ammonium hydroxide to transform the sol into gel.

  9. Tuning of thermally induced sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid).

    PubMed

    Jin, Naixiong; Zhang, Hao; Jin, Shi; Dadmun, Mark D; Zhao, Bin

    2012-03-15

    We report in this article a method to tune the sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers that consist of two blocks exhibiting distinct lower critical solution temperatures (LCSTs) in water. A small amount of weak acid groups is statistically incorporated into the lower LCST block so that its LCST can be tuned by varying solution pH. Well-defined diblock copolymers, poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid) (PTEGMA-b-P(DEGEA-co-AA)), were prepared by reversible addition-fragmentation chain transfer polymerization and postpolymerization modification. PTEGMA and PDEGEA are thermosensitive water-soluble polymers with LCSTs of 58 and 9 °C, respectively, in water. A 25 wt % aqueous solution of PTEGMA-b-P(DEGEA-co-AA) with a molar ratio of DEGEA to AA units of 100:5.2 at pH = 3.24 underwent multiple phase transitions upon heating, from a clear, free-flowing liquid (<15 °C) to a clear, free-standing gel (15-46 °C) to a clear, free-flowing hot liquid (47-56 °C), and a cloudy mixture (≥57 °C). With the increase of pH, the sol-to-gel transition temperature (T(sol-gel)) shifted to higher values, while the gel-to-sol transition (T(gel-sol)) and the clouding temperature (T(clouding)) of the sample remained essentially the same. These transitions and the tunability of T(sol-gel) originated from the thermosensitive properties of two blocks of the diblock copolymer and the pH dependence of the LCST of P(DEGEA-co-AA), which were confirmed by dynamic light scattering and differential scanning calorimetry studies. Using the vial inversion test method, we mapped out the C-shaped sol-gel phase diagrams of the diblock copolymer in aqueous buffers in the moderate concentration range at three different pH values (3.24, 5.58, and 5.82, all measured at ~0 °C). While the upper temperature boundaries overlapped, the lower temperature boundary shifted upward and the critical gelation concentration increased with the increase of pH. The AA content in PTEGMA-b-P(DEGEA-co-AA) was found to have a significant effect on the pH dependence of T(sol-gel). For PTEGMA-b-P(DEGEA-co-AA) with a molar ratio of DEGEA to AA units of 100:10, the T(sol-gel) of its 25 wt % aqueous solution increased faster with the increase of pH than that of PTEGMA-b-P(DEGEA-co-AA) with a DEGEA-to-AA molar ratio of 100:5.2. © 2012 American Chemical Society

  10. Spatially resolved speckle-correlometry of sol-gel transition

    NASA Astrophysics Data System (ADS)

    Isaeva, A. A.; Isaeva, E. A.; Pantyukov, A. V.; Zimnyakov, D. A.

    2018-04-01

    Sol-gel transition was studied using the speckle correlometry method with a localized light source and spatial filtering of backscattered radiation. Water solutions of technical or food gelatin with added TiO2 nanoparticles were used as studied objects. Structural transformation of "sol-gel" system was studied at various temperatures from 25°C to 50°C using analysis of the correlation and structure functions of speckle intensity fluctuations. The characteristic temperatures of "sol - gel" transition were evaluated for studied systems. Obtained results can be used for various applications in biomedicine and food industry.

  11. Microstructure and dielectric properties of silver-barium titanate nanocomplex materials by wet chemical approach

    NASA Astrophysics Data System (ADS)

    Ueno, Shintaro; Sakamoto, Yasunao; Nakashima, Kouichi; Wada, Satoshi

    2014-09-01

    To develop ceramic capacitors with a high effective dielectric constant, we attempted to fabricate BaTiO3 (BT) complexes with embedded Ag nanoparticles by wet chemical processes. Ag nanoparticle-adsorbed dendritic BT particles, Ag-BT hybrid particles, were synthesized from the sol-gel-derived precursor gel powders containing Ag, Ba, and Ti by hydrothermal treatment. These particles were pressed with BT fillers and TiO2 precursor nanoparticles into green compacts, and then, the green compacts were chemically converted into the Ag/BT nanocomplex compacts in Ba(OH)2 aqueous solution under the hydrothermal condition at 160 °C. The effective dielectric constant of the resultant Ag/BT nanocomplexes increases with an increase in Ag content. The maximal effective dielectric constant of approximately 900 was recorded for the nanocomplex with the Ag content of 10.7 vol %.

  12. Characterizations of maghemite thin films prepared by a sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, L. N., E-mail: lau7798@gmail.com; Ibrahim, N. B., E-mail: baayah@ukm.edu.my

    2015-09-25

    Iron is one of the abundant elements of Mother Nature and its compound, iron oxide is an interesting material to study since its discovery in the form of magnetite. It can exist in many phases such as hematite and maghemite, this unique nature has put it as a potential candidate in various applications. The aim of this work is to study the influence of different precursor concentrations on the microstructural and magnetic properties of iron oxide thin film. All samples were prepared via the sol-gel method followed by a spin coating technique on quartz substrates. Iron oxide films were confirmedmore » as maghemite phase from X-ray diffraction patterns. The film morphology was examined by a field emission scanning electron microscope and it showed non-systematic value of average grain size and film thickness throughout the study. Hysteresis loop further confirmed that maghemite is a magnetic material when it was characterized by a vibrating sample magnetometer. The coercivity did not show any correlation with molarity. Nevertheless, it increased as the precursor concentration of the film increased due to the domain behaviour. In conclusion, maghemite thin films were successfully synthesized by the sol-gel method with different precursor concentrations in this work.« less

  13. Highly efficient up-conversion and bright white light in RE co-doped KYF4 nanocrystals in sol-gel silica matrix

    NASA Astrophysics Data System (ADS)

    Méndez-Ramos, J.; Yanes, A. C.; Santana-Alonso, A.; del-Castillo, J.

    2013-01-01

    Transparent nano-glass-ceramics comprising Yb3+, Er3+ and Tm3+ co-doped KYF4 nanocrystals have been developed from sol-gel method. A structural analysis by means of X-ray diffraction confirmed the precipitation of cubic KYF4 nanocrystals into a silica matrix. Visible luminescence has been analyzed as function of treatment temperature of precursor sol-gel glasses. Highly efficient up-conversion emissions have been obtained under 980 nm excitation and studied by varying the doping level, processing temperature and pump power. Color tuneability has been quantified in terms of CIE diagram and in particular, a white-balanced overall emission has been achieved for a certain doping level and thermal treatment.

  14. Preparation and characterization of conductive and transparent ruthenium dioxide sol-gel films.

    PubMed

    Allhusen, John S; Conboy, John C

    2013-11-27

    RuO2 conductive thin films were synthesized using the sol-gel method and deposited onto transparent insulating substrates. The optical transmission, film thickness, surface morphology and composition, resistivity, and spectroelectrochemical performance have been characterized. The optical transmission values of these films ranged from 70 to 89% in the visible region and from 56 to 88% in the infrared region. Resistivity values of the RuO2 sol-gel films varied from 1.02 × 10(-3) to 1.13 Ω cm and are highly dependent on the initial solution concentration of RuO2 in the sol-gel. The RuO2 sol-gel films were used as electrodes for the electrochemical oxidation and reduction of ferrocenemethanol. The electrochemical behavior of our novel RuO2 sol-gel films was compared to that of a standard platinum disk electrode and showed no appreciable differences in the half-wave potential (E1/2). The mechanical and chemical stability of the coatings was tested by physical abrasion and exposure to highly acidic, oxidizing Piranha solution. Repeated exposure to these extreme conditions did not result in any appreciable decline in electrochemical performance. Finally, the use of the novel RuO2 sol-gel conductive and transparent films was demonstrated in a spectroelectrochemistry experiment in which the oxidation and reduction of ferrocenemethanol was monitored via UV-vis spectroscopy as the applied potential was cycled.

  15. Study on the Effect of Various Sol-Gel Concentration to the Electrical, Structural and Optical Properties of the Nanostructured Titanium Dioxide Thin Films

    NASA Astrophysics Data System (ADS)

    Ahmad, M. K.; Rusop, M.

    2009-06-01

    Nanostructured Titanium Dioxide (TiO2) thin film with various sol-gel concentration has been successfully prepared using sol-gel spin coating method. The sol-gel concentration of nanostructured TiO2 thin films are varied at 0.1 M, 0.2 M, 0.3 M and 0.4 M, respectively. The effects of different sol-gel concentration of nanostructured TiO2 thin film structural, electrical and optical properties have been studied. The effects of these properties were characterized using X-Ray Diffractometer (XRD), 2-point probe I-V measurement and UV-Vis-NIR Spectrophotometer. For electrical properties, 0.2 M of sol-gel concentration gives the lowest sheet resistance among other concentrated sol-gels. As for structural properties, 0.1 M of concentration gives very weak peak, and continues stronger as in comes to 0.2 M until 0.4 M. It is due to amount of solute (i.e Titanium Isopropoxide) increases in the solution and therefore the intensity of (101) planes become higher. The optical transmission in the visible region (450-1000 nm) for 0.1 M and 0.2 M are the highest (>80%), indicating that the films are transparent in the visible region. The transmission decreases sharply near the ultraviolet region due to the band gap absorption.

  16. Process for preparing energetic materials

    DOEpatents

    Simpson, Randall L [Livermore, CA; Lee, Ronald S [Livermore, CA; Tillotson, Thomas M [Tracy, CA; Hrubesh, Lawrence W [Pleasanton, CA; Swansiger, Rosalind W [Livermore, CA; Fox, Glenn A [Livermore, CA

    2011-12-13

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  17. Thin sol-gel-derived silica coatings on dental pure titanium casting.

    PubMed

    Yoshida, K; Kamada, K; Sato, K; Hatada, R; Baba, K; Atsuta, M

    1999-01-01

    The sol-gel dipping process, in which liquid silicon alkoxide is transformed into a solid silicon-oxygen network, can produce a thin film coating of silica (SiO(2)). The features of this method are high homogeneity and purity of the thin SiO(2) film and a low sinter temperature, which are important in the preparation of coating films that can protect metallic ion release from the metal substrate and prevent attachment of dental plaque. We evaluated the surface properties of dental pure titanium casting coated with a thin SiO(2) or SiO(2)/F-hybrid film by the sol-gel dipping process. The metal specimens were pretreated by dipping in isopropylalcohol solution containing 10 wt% 3-aminopropyl trimethoxysilane and treated by dipping in the silica precursor solution for 5 min, withdrawal at a speed of 2 mm/min, air-drying for 20 min at room temperature, heating at 120 degrees C for 20 min, and then storing at room temperature. Both SiO(2) and SiO(2)/F films bonded strongly (above 55 MPa) to pure titanium substrate by a tensile test. SiO(2(-)) and SiO(2)/F-coated specimens immersed in 1 wt% of lactic acid solution for two weeks showed significantly less release of titanium ions (30. 5 ppb/cm(2) and 9.5 ppb/cm(2), respectively) from the substrate than noncoated specimens (235.2 ppb/cm(2)). Hydrophobilization of SiO(2(-)) and SiO(2)/F-coated surfaces resulted in significant increases of contact angle of water (81.6 degrees and 105.7 degrees, respectively) compared with noncoated metal specimens (62.1 degrees ). The formation of both thin SiO(2) and SiO(2)/F-hybrid films by the sol-gel dipping process on the surface of dental pure titanium casting may be useful clinically in enhancing the bond strength of dental resin cements to titanium, preventing titanium ions release from the substrate, and reducing the accumulation of dental plaque attaching to intraoral dental restorations. Copyright 1999 John Wiley & Sons, Inc.

  18. One-pot preparation of silica-supported hybrid immobilized metal affinity adsorbent with macroporous surface based on surface imprinting coating technique combined with polysaccharide incorporated sol--gel process.

    PubMed

    Li, Feng; Li, Xue-Mei; Zhang, Shu-Sheng

    2006-10-06

    A simple and reliable one-pot approach using surface imprinting coating technique combined with polysaccharide incorporated sol-gel process was established to synthesize a new organic-inorganic hybrid matrix possessing macroporous surface and functional ligand. Using mesoporous silica gel being a support, immobilized metal affinity adsorbent with a macroporous shell/mesoporous core structure was obtained after metal ion loading. In the prepared matrix, covalently bonded coating and morphology manipulation on silica gel was achieved by using one-pot sol-gel process starting from an inorganic precursor, -glycidoxypropyltrimethoxysiloxane (GPTMS), and a functional biopolymer, chitosan (CS) at the atmosphere of imprinting polyethylene glycol (PEG). Self-hydrolysis of GPTMS, self-condensation, and co-condensation of silanol groups (Si-OH) from siloxane and silica gel surface, and in situ covalent cross-linking of CS created an orderly coating on silica gel surface. PEG extraction using hot ammonium hydroxide solution gave a chemically and mechanically stabilized pore structure and deactivated residual epoxy groups. The prepared matrix was characterized by using X-ray energy dispersion spectroscopy (EDX), scanning electron microscopy (SEM) and mercury intrusion porosimetry. The matrix possessed a high capacity for copper ion loading. Protein adsorption performance of the new immobilized metal affinity adsorbent was evaluated by batch adsorption and column chromatographic experiment using bovine serum albumin (BSA) as a simple model protein. Under the optimized coating conditions, the obtained macroporous surface resulted in a fast kinetics and high capability for protein adsorption, while the matrix non-charged with metal ions offered a low non-specific adsorption.

  19. Sol-gel method for encapsulating molecules

    DOEpatents

    Brinker, C. Jeffrey; Ashley, Carol S.; Bhatia, Rimple; Singh, Anup K.

    2002-01-01

    A method for encapsulating organic molecules, and in particular, biomolecules using sol-gel chemistry. A silica sol is prepared from an aqueous alkali metal silicate solution, such as a mixture of silicon dioxide and sodium or potassium oxide in water. The pH is adjusted to a suitably low value to stabilize the sol by minimizing the rate of siloxane condensation, thereby allowing storage stability of the sol prior to gelation. The organic molecules, generally in solution, is then added with the organic molecules being encapsulated in the sol matrix. After aging, either a thin film can be prepared or a gel can be formed with the encapsulated molecules. Depending upon the acid used, pH, and other processing conditions, the gelation time can be from one minute up to several days. In the method of the present invention, no alcohols are generated as by-products during the sol-gel and encapsulation steps. The organic molecules can be added at any desired pH value, where the pH value is generally chosen to achieve the desired reactivity of the organic molecules. The method of the present invention thereby presents a sufficiently mild encapsulation method to retain a significant portion of the activity of the biomolecules, compared with the activity of the biomolecules in free solution.

  20. Determination of Insulator-to-Semiconductor Transition in Sol-Gel Oxide Semiconductors Using Derivative Spectroscopy.

    PubMed

    Lee, Woobin; Choi, Seungbeom; Kim, Kyung Tae; Kang, Jingu; Park, Sung Kyu; Kim, Yong-Hoon

    2015-12-23

    We report a derivative spectroscopic method for determining insulator-to-semiconductor transition during sol-gel metal-oxide semiconductor formation. When an as-spun sol-gel precursor film is photochemically activated and changes to semiconducting state, the light absorption characteristics of the metal-oxide film is considerable changed particularly in the ultraviolet region. As a result, a peak is generated in the first-order derivatives of light absorption ( A' ) vs. wavelength (λ) plots, and by tracing the peak center shift and peak intensity, transition from insulating-to-semiconducting state of the film can be monitored. The peak generation and peak center shift are described based on photon-energy-dependent absorption coefficient of metal-oxide films. We discuss detailed analysis method for metal-oxide semiconductor films and its application in thin-film transistor fabrication. We believe this derivative spectroscopy based determination can be beneficial for a non-destructive and a rapid monitoring of the insulator-to-semiconductor transition in sol-gel oxide semiconductor formation.

  1. Investigation of novel sol-gel hydrophobic surfaces for desorption electrospray ionization-mass spectrometry analysis.

    PubMed

    Penna, Andrea; Elviri, Lisa; Careri, Maria; Mangia, Alessandro; Predieri, Giovanni

    2011-05-01

    Sol-gel-based materials were synthesized, characterized and finally tested as solid supports for desorption electrospray ionization-mass spectrometry (DESI-MS) analysis of a mixture of compounds of different polarity. Films with thickness in the 2-4 μm range were obtained by a dip-coating process using tetraethoxysilane (TEOS) and octyltriethoxysilane (OTES) as sol-gel precursors. Three types of surface with different hydrophobic character were obtained by varying the TEOS/OTES ratio in the sol-gel mixture. Each coating was characterized by atomic force microscopy investigations, gaining insight into homogeneity, smoothness and thickness of the obtained films. To study hydrophobicity of each surface, surface free energy measurements were performed. Different DESI-MS responses were observed when different solvent mixture deposition procedures and solvent spray compositions were investigated. Results were finally compared to those obtained by using commercial polytetrafluoroethylene-coated slides. It was found that surface free energy plays an important role in the desorption/ionization process as a function of the polarity of analytes.

  2. Sol-Gel Chemistry for Carbon Dots.

    PubMed

    Malfatti, Luca; Innocenzi, Plinio

    2018-03-14

    Carbon dots are an emerging class of carbon-based nanostructures produced by low-cost raw materials which exhibit a widely-tunable photoluminescence and a high quantum yield. The potential of these nanomaterials as a substitute of semiconductor quantum dots in optoelectronics and biomedicine is very high, however they need a customized chemistry to be integrated in host-guest systems or functionalized in core-shell structures. This review is focused on recent advances of the sol-gel chemistry applied to the C-dots technology. The surface modification, the fine tailoring of the chemical composition and the embedding into a complex nanostructured material are the main targets of combining sol-gel processing with C-dots chemistry. In addition, the synergistic effect of the sol-gel precursor combined with the C-dots contribute to modify the intrinsic chemo-physical properties of the dots, empowering the emission efficiency or enabling the tuning of the photoluminescence over a wide range of the visible spectrum. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Water-based sol-gel synthesis of hydroxyapatite: process development.

    PubMed

    Liu, D M; Troczynski, T; Tseng, W J

    2001-07-01

    Hydroxyapatite (HA) ceramics were synthesized using a sol-gel route with triethyl phosphite and calcium nitrate as phosphorus and calcium precursors, respectively. Two solvents, water and anhydrous ethanol, were used as diluting media for HA sol preparation. The sols were stable and no gelling occurred in ambient environment for over 5 days. The sols became a white gel only after removal of the solvents at 60 degrees C. X-ray diffraction showed that apatitic structure first appeared at a temperature as low as 350 degrees C. The crystal size and the HA content in both gels increase with increasing calcination temperature. The type of initial diluting media (i.e., water vs. anhydrous ethanol) did not affect the microstructural evolution and crystallinity of the resulting HA ceramic. The ethanol-based sol dip-coated onto a Ti substrate, followed by calcination at 450 degrees C, was found to be porous with pore size ranging from 0.3 to 1 microm. This morphology is beneficial to the circulation of physiological fluid when the coating is used for biomedical applications. The satisfactory adhesion between the coating and substrate suggests its suitability for load-bearing uses.

  4. Matrix molecularly imprinted mesoporous sol-gel sorbent for efficient solid-phase extraction of chloramphenicol from milk.

    PubMed

    Samanidou, Victoria; Kehagia, Maria; Kabir, Abuzar; Furton, Kenneth G

    2016-03-31

    Highly selective and efficient chloramphenicol imprinted sol-gel silica based inorganic polymeric sorbent (sol-gel MIP) was synthesized via matrix imprinting approach for the extraction of chloramphenicol in milk. Chloramphenicol was used as the template molecule, 3-aminopropyltriethoxysilane (3-APTES) and triethoxyphenylsilane (TEPS) as the functional precursors, tetramethyl orthosilicate (TMOS) as the cross-linker, isopropanol as the solvent/porogen, and HCl as the sol-gel catalyst. Non-imprinted sol-gel polymer (sol-gel NIP) was synthesized under identical conditions in absence of template molecules for comparison purpose. Both synthesized materials were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and nitrogen adsorption porosimetry, which unambiguously confirmed their significant structural and morphological differences. The synthesized MIP and NIP materials were evaluated as sorbents for molecularly imprinted solid phase extraction (MISPE) of chloramphenicol in milk. The effect of critical extraction parameters (flow rate, elution solvent, sample and eluent volume, selectivity coefficient, retention capacity) was studied in terms of retention and desorption of chloramphenicol. Competition and cross reactivity tests have proved that sol-gel MIP sorbent possesses significantly higher specific retention and enrichment capacity for chloramphenicol compared to its non-imprinted analogue. The maximum imprinting factor (IF) was found as 9.7, whereas the highest adsorption capacity of chloramphenicol by sol-gel MIP was 23 mg/g. The sol-gel MIP was found to be adequately selective towards chloramphenicol to provide the necessary minimum required performance limit (MRPL) of 0.3 μg/kg set forth by European Commission after analysis by LC-MS even without requiring time consuming solvent evaporation and sample reconstitution step, often considered as an integral part in solid phase extraction work-flow. Intra and inter-assay RSD values were less than 13% and accuracy expressed as relative recovery ranged from 85 to 106%. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Fabrication of advanced electrochemical energy materials using sol-gel processing techniques

    NASA Technical Reports Server (NTRS)

    Chu, C. T.; Chu, Jay; Zheng, Haixing

    1995-01-01

    Advanced materials play an important role in electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. They are being used as both electrodes and electrolytes. Sol-gel processing is a versatile solution technique used in fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. The application of sol-gel processing in the fabrication of advanced electrochemical energy materials will be presented. The potentials of sol-gel derived materials for electrochemical energy applications will be discussed along with some examples of successful applications. Sol-gel derived metal oxide electrode materials such as V2O5 cathodes have been demonstrated in solid-slate thin film batteries; solid electrolytes materials such as beta-alumina for advanced secondary batteries had been prepared by the sol-gel technique long time ago; and high surface area transition metal compounds for capacitive energy storage applications can also be synthesized with this method.

  6. Constitutional self-organization of adenine-uracil-derived hybrid materials.

    PubMed

    Arnal-Hérault, Carole; Barboiu, Mihai; Pasc, Andreea; Michau, Mathieu; Perriat, Pascal; van der Lee, Arie

    2007-01-01

    The alkoxysilane nucleobase adenine (A) and uracil (U) precursors described in this paper generate in solution a complex library of hydrogen-bonded aggregates, which can be expressed in the solid state as discrete higher oligomers. The different interconverting outputs that nucleobases may form by oligomerization define a dynamic polyfunctional diversity that may be "extracted selectively" in solid state by sol-gel transcription, under the intrinsic stability of the system. After the sol-gel process, unique constitutional preference for specific geometries in hybrid materials is consistent with a preferential arrangement of nucleobase systems, favoring the self-assembly by the Hoogsteen geometry. FTIR and NMR spectroscopy and X-ray powder diffraction experiments demonstrate the formation of self-organized hybrid supramolecular materials. Electron microscopy reveals the micrometric platelike morphology of the hybrid materials. The M(A-U) hybrid material is nanostructured in ordered circular domains of 5 nm in diameter of alternative light and dark rows with an one-dimensional periodicity of 3.5 A.

  7. Morphology dependent catalytic activity of TiO{sub 2} nanostructures towards photodegradation of Rose Bengal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, Ritu; Kumar, Ashok; Rana, Pawan S., E-mail: drpawansrana.phy@dcrustm.org

    2015-08-28

    This work deals with the synthesis of TiO{sub 2} nanostructures using sol-gel and hydrothermal method for evaluating their photodegradation performance towards decolorization of Rose Bengal (RB). A combination of characterization techniques including X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and UV–Vis spectroscopy were utilized to evaluate the structural, morphological and optical properties of the obtained nanostructures. It was observed that the TiO{sub 2} nanoparticles prepared using hydrothermal method were highly crystalline and possess higher band gap value, even when same conditions of temperature, pressure, precursor ratios and solvent amount was kept constant while synthesizing TiO{sub 2} nanostructures viamore » sol-gel method. The obvious effect of porous morphology exhibited by TiO{sub 2} nanoparticles prepared using hydrothermal route is reflected in its decolorization performance whereby 92.5% of the RB dye solution was degraded in 70 min of irradiation time.« less

  8. A new strategy for surface modification of polysulfone membrane by in situ imprinted sol-gel method for the selective separation and screening of L-Tyrosine as a lung cancer biomarker.

    PubMed

    Moein, Mohammad Mahdi; Javanbakht, Mehran; Karimi, Mohammad; Akbari-adergani, Behrouz; Abdel-Rehim, Mohamed

    2015-03-21

    In this work, a novel method based on in situ molecularly imprinted sol-gel for the surface modification of a polysulfone membrane (PSM) was developed. A modified molecularly imprinted sol-gel polysulfone membrane (MSM) was placed in a homemade plastic tube and coupled on-line with LC/MS/MS for the selective extraction and screening of l-Tyrosine (Tyr) as a tentative lung cancer biomarker in human plasma samples. The existence of molecularly imprinted sol-gel layers on both sides of a PSM was examined using scanning electron microscopy (SEM). To evaluate the role of precursor in the extraction performance, repeatability, and selectivity of developed method, three precursors, 3-(propylmethacrylate) trimethoxysilane (P1), 3-(triethoxysilyl)-propylamine (P2), tetraethyl orthosilicate (P3), individually and together were used for treatment of PSM. Our investigation showed that a single precursor's route is more repeatable, straightforward, precise, accurate, and selective for the extraction of Tyr in plasma samples. Moreover, to achieve the best conditions and extraction efficiency, the effect of influential parameters, including the conditioning, washing, and elution of solvents, sample flow rate, loading time, desorption time, loading sample volume, salt effect, pH, and adsorption capacity for the most efficiently prepared membranes were truly investigated. The non-molecularly imprinted sol-gel polysulfone membrane (NSM) was prepared as a blank via the same process but in the absence of the Tyr. The LOD (S/N = 3/1) was 0.1 nmol L(-1) and the LOQ (S/N = 10/1) was 0.34 nmol L(-1) for Tyr in the plasma samples. The linearity for the Tyr was in the range of 0.34-2000 nmol L(-1) in the plasma samples. The coefficients of determination values were ≥0.998 for all runs. The extraction recovery was between 80%-85% for Tyr in the plasma samples. In addition, MSM could be used for up to 50 extractions without a significant change in recovery percentage.

  9. Synthesis of PbS/TiO2 nanocomposite materials using the sol-gel process via the incorporation of lead thiolates

    NASA Astrophysics Data System (ADS)

    Patel, Khushikumari

    PbS/TiO2 nanocomposites were prepared by two methods using the sol-gel process: a one step process and a multi-step process. The incorporation of 3-mercaptopropionic acid, followed by the addition of Pb2+ generated covalently incorporated lead thiolate precursors which can then be converted to PbS/TiO2 nanocomposites by controlled thermal decomposition. Various ratios of bifunctional linker to matrix were used to monitor the incorporation of functional groups of the ceramic matrix, and the sol-gel process was used to produce a high yield ceramic materials. This allows solutions to chemically bind and form solid state ceramics, while allowing complex compounds to combine with a high degree of homogeneity. 3-mercaptoproprionic acid, was added to the titania gel, and as a source of sulfur component to bind to the titania. PbS/TiO2 nanocomposites were studied using FTIR spectroscopy. The covalent bonding between PbS and the titania ceramics was also confirmed with the signal intensity in the infrared spectra. The success of the covalent bond between the thiolate and ceramics led to possibility of nanocomposites. X-ray diffraction was used analyze the structure of the nanocomposites X-ray diffraction results showed lead sulfide nanocrystals in the ceramic matrix as well as the size of the particles. The presence of crystalline PbS and particle size was determined using powder X-ray diffraction.

  10. Influence of annealing temperature on optical properties of Al doped ZnO nanoparticles via sol-gel methods

    NASA Astrophysics Data System (ADS)

    Rashid, Affa Rozana Abd; Hazwani, Tuan Nur; Mukhtar, Wan Maisarah; Taib, Nur Athirah Mohd

    2018-06-01

    Zinc oxide (ZnO) thin films have become technologically important materials due to their wide range of electrical and optical properties. The characteristics can be further adjusted by adequate doping processes. The effect of dopant concentration of Al, heating treatment and annealing in reducing atmosphere on the optical properties of the thin films is discussed. Undoped and aluminum-doped zinc oxide (AZO) thin films are prepared by the sol-gel method. Zinc acetate dihydrate, 2-methoxyethanol and monoethanolamine are used as precursor, solvent and stabilizer. In the case of AZO, aluminum nitrate nanohydrate is added to the precursor solution with an atomic percentage equal to 0 %, 1 %, 2 % and 3 % of Al. The multi thin layers are transformed into ZnO upon annealing at 450 °C and 500 °C. The optical properties such as transmittance, absorbance, band gap and refractive index of the thin films have been investigated by using UV-Visible Spectroscopy (UV-Vis). The results show that the effect of aluminium dopant concentration on the optical properties is depend on the post-heat treatment of the films. By doping with Al, the transmittance spectra in visible range increased and widen the band gap of ZnO which might due to Burstein-moss effects.

  11. Effect of annealing temperature on optical properties of binary zinc tin oxide nano-composite prepared by sol-gel route using simple precursors: structural and optical studies by DRS, FT-IR, XRD, FESEM investigations.

    PubMed

    Habibi, Mohammad Hossein; Mardani, Maryam

    2015-02-25

    Binary zinc tin oxide nano-composite was synthesized by a facile sol-gel method using simple precursors from the solutions consisting of zinc acetate, tin(IV) chloride and ethanol. Effect of annealing temperature on optical and structural properties was investigated using X-ray diffraction (XRD), diffuse reflectance spectra (DRS), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). XRD results revealed the existence of the ZnO and SnO2 phases. FESEM results showed that binary zinc tin oxide nano-composites ranges from 56 to 60 nm in diameter at 400°C and 500°C annealing temperatures respectively. The optical band gap was increased from 2.72 eV to 3.11 eV with the increasing of the annealing temperature. FTIR results confirmed the presence of zinc oxide and tin oxide and the broad absorption peaks at 3426 and 1602 cm(-1) can be ascribed to the vibration of absorptive water, and the absorption peaks at 546, 1038 and 1410 cm(-1) are due to the vibration of Zn-O or Sn-O groups in binary zinc tin oxide. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Phase study of titanium dioxide nanoparticle prepared via sol-gel process

    NASA Astrophysics Data System (ADS)

    Oladeji Araoyinbo, Alaba; Bakri Abdullah, Mohd Mustafa Al; Salleh, Mohd Arif Anuar Mohd; Aziz, Nurul Nadia Abdul; Iskandar Azmi, Azwan

    2018-03-01

    In this study, titanium dioxide nanoparticles have been prepared via sol-gel process using titanium tetraisopropoxide as a precursor with hydrochloric acid as a catalyst, and ethanol with deionized water as solvents. The value of pH used is set to 3, 7 and 8. The sols obtained were dried at 100 °C for 1 hr and calcined at 350, 550, and 750 °C for 3 hrs to observe the phase transformation of titanium dioxide nanoparticle. The samples were characterized by x-ray diffraction and field emission scanning electron microscope. The morphology analysis is obtained from field emission scanning electron microscope. The phase transformation was investigated by x-ray diffraction. It was found that the pH of the solution affect the agglomeration of titanium dioxide particle. The x-ray diffraction pattern of titanium dioxide shows the anatase phase most abundant at temperature of 350 °C. At temperature of 550 °C the anatase and rutile phase were present. At temperature of 750 °C the rutile phase was the most abundant for pH 3, 7 and 8. It was confirmed that at higher temperature the rutile phase which is the stable phase are mostly present.

  13. Solid-state NMR study of geopolymer prepared by sol-gel chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Yi-Ling; Hanna, John V.; Lee, Yuan-Ling, E-mail: yuanlinglee@ntu.edu.t

    2010-12-15

    Geopolymers are a new class of materials formed by the condensation of aluminosilicates and silicates obtained from natural minerals or industrial wastes. In this work, the sol-gel method is used to synthesize precursor materials for the preparation of geopolymers. The geopolymer samples prepared by our synthetic route have been characterized by a series of physical techniques, including Fourier-transform infrared, X-ray diffraction, and multinuclear solid-state NMR. The results are very similar to those obtained for the geopolymers prepared from natural kaolinite. We believe that our synthetic approach can offer a good opportunity for the medical applications of geopolymer. -- Graphical abstract:more » Geopolymer prepared by the sol-gel route has the same spectroscopic properties as the sample prepared from the natural kaolinite. Display Omitted« less

  14. Preparation of hydrophobic organic aeorgels

    DOEpatents

    Baumann, Theodore F.; Satcher, Jr., Joe H.; Gash, Alexander E.

    2007-11-06

    Synthetic methods for the preparation of hydrophobic organics aerogels. One method involves the sol-gel polymerization of 1,3-dimethoxybenzene or 1,3,5-trimethoxybenzene with formaldehyde in non-aqueous solvents. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be dried using either supercritical solvent extraction to generate the new organic aerogels or air dried to produce an xerogel. Other methods involve the sol-gel polymerization of 1,3,5 trihydroxy benzene (phloroglucinol) or 1,3 dihydroxy benzene (resorcinol) and various aldehydes in non-aqueous solvents. These methods use a procedure analogous to the one-step base and two-step base/acid catalyzed polycondensation of phloroglucinol and formaldehyde, but the base catalyst used is triethylamine. These methods can be applied to a variety of other sol-gel precursors and solvent systems. These hydrophobic organics aerogels have numerous application potentials in the field of material absorbers and water-proof insulation.

  15. Preparation of hydrophobic organic aeorgels

    DOEpatents

    Baumann, Theodore F.; Satcher, Jr., Joe H.; Gash, Alexander E.

    2004-10-19

    Synthetic methods for the preparation of hydrophobic organics aerogels. One method involves the sol-gel polymerization of 1,3-dimethoxybenzene or 1,3,5-trimethoxybenzene with formaldehyde in non-aqueous solvents. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be dried using either supercritical solvent extraction to generate the new organic aerogels or air dried to produce an xerogel. Other methods involve the sol-gel polymerization of 1,3,5 trihydroxy benzene (phloroglucinol) or 1,3 dihydroxy benzene (resorcinol) and various aldehydes in non-aqueous solvents. These methods use a procedure analogous to the one-step base and two-step base/acid catalyzed polycondensation of phloroglucinol and formaldehyde, but the base catalyst used is triethylamine. These methods can be applied to a variety of other sol-gel precursors and solvent systems. These hydrophobic organics aerogels have numerous application potentials in the field of material absorbers and water-proof insulation.

  16. Effect of aging temperature on formation of sol-gel derived fluor-hydroxyapatite nanoparticles.

    PubMed

    Joughehdoust, S; Behnamghader, A; Jahandideh, R; Manafi, S

    2010-04-01

    Synthetic hydroxyapatite (HA) has been recognized as one of the most important bone substitute materials in orthopaedics and dentistry over past few decades because of its chemical and biological similarity to the mineral phase of human bone. One solution for reduction the solubility of HA in biological environments is replacing F- by OH in HA structure and forming fluor-hydroxyapatite (FHA) solid solution. In this paper, FHA nanoparticles were successfully synthesized by a sol-gel method. Also, the influence of aging temperature on formation of FHA powder was studied. Equimolar solutions of calcium nitrate tetrahydrate, triethyl phosphite and ammonium fluoride in ethanol were used as Ca, P and F precursors. After aging at different temperatures, the synthesized powders were heat treated at 550 degrees C. The powders were investigated with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), selected area electron diffraction pattern (SAED), energy dispersive analysis of X-ray (EDAX) and zetasizer measurement. The results of XRD proved the presence of fluorapatite (FA) and HA in all samples. In addition, the formation of FHA was confirmed by FT-IR results. XRD studies also showed that the crystallites were in nanometric scale. At the same time, this result was in good agreement with the result of zetasizer analysis.

  17. Sol-gel encapsulation for controlled drug release and biosensing

    NASA Astrophysics Data System (ADS)

    Fang, Jonathan

    The main focus of this dissertation is to investigate the use of sol-gel encapsulation of biomolecules for controlled drug release and biosensing. Controlled drug release has advantages over conventional therapies in that it maintains a constant, therapeutic drug level in the body for prolonged periods of time. The anti-hypertensive drug Captopril was encapsulated in sol-gel materials of various forms, such as silica xerogels and nanoparticles. The primary objective was to show that sol-gel silica materials are promising drug carriers for controlled release by releasing Captopril at a release rate that is within a therapeutic range. We were able to demonstrate desired release for over a week from Captopril-doped silica xerogels and overall release from Captopril-doped silica nanoparticles. As an aside, the antibiotic Vancomycin was also encapsulated in these porous silica nanoparticles and desired release was obtained for several days in-vitro. The second part of the dissertation focuses on immobilizing antibodies and proteins in sol-gel to detect various analytes, such as hormones and amino acids. Sol-gel competitive immunoassays on antibody-doped silica xerogels were used for hormone detection. Calibration for insulin and C-peptide in standard solutions was obtained in the nM range. In addition, NASA-Ames is also interested in developing a reagentless biosensor using bacterial periplasmic binding proteins (bPBPs) to detect specific biomarkers, such as amino acids and phosphate. These bPBPs were doubly labeled with two different fluorophores and encapsulated in silica xerogels. Ligand-binding experiments were performed on the bPBPs in solution and in sol-gel. Ligand-binding was monitored by fluorescence resonance energy transfer (FRET) between the two fluorophores on the bPBP. Titration data show that one bPBP has retained its ligand-binding properties in sol-gel.

  18. A copper ion-selective electrode with high selectivity prepared by sol-gel and coated wire techniques.

    PubMed

    Mazloum Ardakani, M; Salavati-Niasari, M; Khayat Kashani, M; Ghoreishi, S M

    2004-03-01

    A sol-gel electrode and a coated wire ion-selective poly(vinyl chloride) membrane, based on thiosemicarbazone as a neutral carrier, were successfully developed for the detection of Cu (II) in aqueous solutions. The sol-gel electrode and coated electrode exhibited linear response with Nernstian slopes of 29.2 and 28.1 mV per decade respectively, within the copper ion concentration ranges 1.0 x 10(-5) - 1.0 x 10(-1) M and 6.0 x 10(-6) - 1.0 x 10(-1) M for coated and sol-gel sensors. The coated and sol-gel electrodes show detection limits of 3.0 x 10(-6) and 6.0 x 10(-6) M respectively. The electrodes exhibited good selectivities for a number of alkali, alkaline earth, transition and heavy metal ions. The proposed electrodes have response times ranging from 10-50 s to achieve a 95% steady potential for Cu2+ concentration. The electrodes are suitable for use in aqueous solutions over a wide pH range (4-7.5). Applications of these electrodes for the determination of copper in real samples, and as an indicator electrode for potentiometric titration of Cu2+ ion using EDTA, are reported. The lifetimes of the electrodes were tested over a period of six months to investigate their stability. No significant change in the performance of the sol-gel electrode was observed over this period, but after two months the coated wire copper-selective electrode exhibited a gradual decrease in the slope. The selectivity of the sol-gel electrode was found to be better than that of the coated wire copper-selective electrode. Based on these results, a novel sol-gel copper-selective electrode is proposed for the determination of copper, and applied to real sample assays.

  19. Methods for and products of processing nanostructure nitride, carbonitride and oxycarbonitride electrode power materials by utilizing sol gel technology for supercapacitor applications

    DOEpatents

    Huang, Yuhong; Wei, Oiang; Chu, Chung-tse; Zheng, Haixing

    2001-01-01

    Metal nitride, carbonitride, and oxycarbonitride powder with high surface area (up to 150 m.sup.2 /g) is prepared by using sol-gel process. The metal organic precursor, alkoxides or amides, is synthesized firstly. The metal organic precursor is modified by using unhydrolyzable organic ligands or templates. A wet gel is formed then by hydrolysis and condensation process. The solvent in the wet gel is then be removed supercritically to form porous amorphous hydroxide. This porous hydroxide materials is sintered to 725.degree. C. under the ammonia flow and porous nitride powder is formed. The other way to obtain high surface area nitride, carbonitride, and oxycarbonitride powder is to pyrolyze polymerized templated metal amides aerogel in an inert atmosphere. The electrochemical capacitors are prepared by using sol-gel prepared nitride, carbonitride, and oxycarbonitride powder. Two methods are used to assemble the capacitors. Electrode is formed either by pressing the mixture of nitride powder and binder to a foil, or by depositing electrode coating onto metal current collector. The binder or coating is converted into a continuous network of electrode material after thermal treatment to provide enhanced energy and power density. Liquid electrolyte is soaked into porous electrode. The electrochemical capacitor assembly further has a porous separator layer between two electrodes/electrolyte and forming a unit cell.

  20. Molecular receptors in metal oxide sol-gel materials prepared via molecular imprinting

    DOEpatents

    Sasaki, Darryl Y.; Brinker, C. Jeffrey; Ashley, Carol S.; Daitch, Charles E.; Shea, Kenneth J.; Rush, Daniel J.

    2000-01-01

    A method is provided for molecularly imprinting the surface of a sol-gel material, by forming a solution comprised of a sol-gel material, a solvent, an imprinting molecule, and a functionalizing siloxane monomer of the form Si(OR).sub.3-n X.sub.n, wherein n is an integer between zero and three and X is a functional group capable of reacting with the imprinting molecule, evaporating the solvent, and removing the imprinting molecule to form the molecularly imprinted metal oxide sol-gel material. The use of metal oxide sol-gels allows the material porosity, pore size, density, surface area, hardness, electrostatic charge, polarity, optical density, and surface hydrophobicity to be tailored and be employed as sensors and in catalytic and separations operations.

  1. Template-free magnesium oxide hollow sphere inclusion in organic-inorganic hybrid films via sol-gel reaction.

    PubMed

    Kang, Eun-Seok; Takahashi, Masahide; Tokuda, Yomei; Yoko, Toshinobu

    2006-06-06

    Magnesium oxide hollow spheres without a template core were conveniently prepared by stabilized bubble formation in a hybrid solution containing a magnesium acetate precursor, thus avoiding the complicated preparation process using a template. The hollow sphere could be aligned along the radial striation by spin coating, and its diameter from a micrometer to submicrometer dimension could be easily modified by the solution composition. It was also possible to control the open or closed hollow sphere by changing the solvent. Thus, the produced magnesium oxide hollow sphere is envisioned to have applications in many areas such as medicine, analysis, optics, and so on.

  2. Dynamic light-scattering study of gelatin and aggregation of gastric mucin

    NASA Astrophysics Data System (ADS)

    Bansil, Rama; Cao, Xingxiang; Bhaskar, K. Ramakrishnan; LaMont, Jeffrey T.

    1997-05-01

    Dynamic light scattering studies show that concentration and pH play important roles in determining pig gastric mucin's (PGM) ability to aggregate and gel. At low concentrations, PGM macromolecules exist in solution predominantly in the form of monomers. At high concentrations, PGM macromolecules aggregate to form supra-macromolecular clusters. When the pH of the high concentration PGM solution is changed from 7.0 to 2.0, the system undergoes a sol-gel transition: from a solution of polydisperse aggregates to a gel. This pH and concentration dependent sol-gel transition of PGM solution may provide a mechanism for the mammalian stomach to protect itself against being digested by the gastric juice.

  3. Enhancement of the inverted polymer solar cells via ZnO doped with CTAB

    NASA Astrophysics Data System (ADS)

    Sivashnamugan, Kundan; Guo, Tzung-Fang; Hsu, Yao-Jane; Wen, Ten-Chin

    2018-02-01

    A facile approach enhancing electron extraction in zinc oxide (ZnO) electron transfer interlayer and improving performance of bulk-heterojunction (BHJ) polymer solar cells (PSCs) by adding cetyltrimethylammonium bromide (CTAB) into sol-gel ZnO precursor solution was demonstrated in this work. The power conversion efficiency (PCE) has a 24.1% increment after modification. Our results show that CTAB can dramatically influence optical, electrical and morphological properties of ZnO electron transfer layer, and work as effective additive to enhance the performance of bulk- heterojunction polymer solar cells.

  4. Preparation of hydroxyapatite nanoparticles by sol-gel method with optimum processing parameters

    NASA Astrophysics Data System (ADS)

    Yusoff, Yusriha Mohd; Salimi, Midhat Nabil Ahmad; Anuar, Adilah

    2015-05-01

    Many studies have been carried out in order to prepare hydroxyapatite (HAp) by various methods. In this study, we focused on the preparation of HAp nanoparticles by using sol-gel technique in which few parameters are optimized which were stirring rate, aging time and sintering temperature. HAp nanoparticles were prepared by using precursors of calcium nitrate tetrahydrate, Ca(NO3)2.4H2O and phosphorous pentoxide, P2O5. Both precursors are mixed in ethanol respectively before they were mixed together in which it formed a stable sol. Fourier transform infrared (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM) were used for its characterization in terms of functional group, phase composition, crystallite size and morphology of the nanoparticles produced. FTIR spectra showed that the functional groups that present in all five samples were corresponding to the formation of HAp. Besides, XRD shows that only one phase was formed which was hydroxyapatite. Meanwhile, SEM shows that the small particles combine together to form agglomeration.

  5. A fluorescence study of liposomes entrapped in sol-gel materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanaka, S.A.; Singh, S.; Sasaki, D.Y.

    1997-12-31

    Liposomes of phosphatidylcholine lipids were successfully entrapped in silicates using the sol-gel method with complete retention of the molecular aggregates over long periods in aqueous solution. Fluorescent studies of the small unilamellar vesicles of 5% pyrene labeled lipid PSIDA with DSPC remobilized in the gel found significant lipid reorganization upon aging in aqueous solutions. Monitoring of pyrene excimer (470 nm) to monomer (375 nm) ratios in the bilayer reveals that the silicate matrix tends to disperse PSIDA lipid aggregates from that observed in free solution. On an interesting note, the liposomes in the gel at pH 7.5. The PSIDA/DSPC liposomes,more » sensitive to heavy metal ions in free solution, maintain similar sensitivity in the gel yet the sensor material can not be recycled.« less

  6. A new powder production route for transparent spinel windows: powder synthesis and window properties

    NASA Astrophysics Data System (ADS)

    Cook, Ronald; Kochis, Michael; Reimanis, Ivar; Kleebe, Hans-Joachim

    2005-05-01

    Spinel powders for the production of transparent polycrystalline ceramic windows have been produced using a number of traditional ceramic and sol-gel methods. We have demonstrated that magnesium aluminate spinel powders produced from the reaction of organo-magnesium compounds with surface modified boehmite precursors can be used to produce high quality transparent spinel parts. The new powder production method allows fine control over the starting particle size, size distribution, purity and stoichiometry. The new process involves formation of a boehmite sol-gel from the hydrolysis of aluminum alkoxides followed by surface modification of the boehmite nanoparticles using carboxylic acids. The resulting surface modified boehmite nanoparticles can then be metal exchanged at room temperature with magnesium acetylacetonate to make a precursor powder that is readily transformed into pure phase spinel.

  7. Fast and efficient proteolysis by reusable pepsin-encapsulated magnetic sol-gel material for mass spectrometry-based proteomics applications.

    PubMed

    Kayili, H Mehmet; Salih, Bekir

    2016-08-01

    Hydrophobic silicon-based material having magnetic properties was fairly synthesized by a classical sol-gel approach. Pepsin enzyme was encapsulated in the sol-gel material and the enzyme activity was evaluated in consequence of the digestion of some common proteins such as α- and β-casein, cytochrome c, myoglobin, and bovine serum albumin (BSA) both in a single protein batch and in the protein mixture. The optimum digestion time of the studied proteins using pepsin-encapsulated magnetic sol-gel material was found to be 20min. To produce the magnetic sol-gel material for convenient and easy proteomics applications, Fe3O4 was doped inside sol-gel material during the gelation step. It was observed that the activity of encapsulated pepsin was not affected by the amount of Fe3O4. Poly(ethylene glycol) was also inserted in sol-gel bulk to obtain suitable roughness and increase the hydrophilicity of the material surface to let protein molecules reach to the sol-gel material easily. The digestion of the protein mixture and non-fat bovine milk was performed with the pepsin-encapsulated magnetic sol-gel material and the digested solutions were analyzed using SDS-PAGE, MALDI-TOF-MS and LC-MS/MS for the protein identification. Reusability of the pepsin-encapsulated sol-gel material was examined and it was determined that they could be used at least 20 times. Finally, IgG digestions with a fast incubation time period were carried out using pepsin-encapsulated sol-gel material for generation of (Fab)2 product to evaluate the kinetic performance of the material. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Magnetic and structural properties of CoFe 2O 4 thin films synthesized via a sol-gel process

    NASA Astrophysics Data System (ADS)

    dos S. Duque, J. G.; Macêdo, M. A.; Moreno, N. O.; Lopez, J. L.; Pfanes, H.-D.

    2001-05-01

    Using a sol-gel process having the coconut water as a precursor of organic chain, we synthesized thin films of cobalt ferrite. The films were characterized by using a SQUID magnetometer, an X-ray diffractometer, an X-ray spectrophotometer, Mössbauer spectroscopy and atomic force microscope. Co ferrite films annealed at 500°C for 2 h show grain sizes between 10 and 20 nm, grown as single-phase spinel structure and exhibit high coercivity and a moderate saturation magnetization (above 30 kOe).

  9. Synthesis of hybrid sol-gel coatings for corrosion protection of we54-ae magnesium alloy

    NASA Astrophysics Data System (ADS)

    Hernández-Barrios, C. A.; Duarte, N. Z.; Hernández, L. M.; Peña, D. Y.; Coy, A. E.; Viejo, F.

    2013-11-01

    The present work shows some preliminary results related to the synthesis, characterization and corrosion evaluation of different hybrid sol-gel coatings applied on the WE54-AE magnesium alloy attending to the two experimental variables, i.e. the precursors ratio and the aging time, which may affect the quality and the electrochemical properties of the coatings resultant. The experimental results confirmed that, under some specific experimental conditions, it was possible to obtain homogeneous and uniform, porous coatings with good corrosion resistance that also permit to accommodate corrosion inhibitors.

  10. Effects of sol-gel processing parameters on the phases and microstructures of HA films.

    PubMed

    Wang, Diangang; Chen, Chuanzhong; Liu, Xiuna; Lei, Tingquan

    2007-06-15

    Bioactive hydroxyapatite (HA) films were fabricated by a sol-gel method and triethylphosphate and calcium nitrate were used as the phosphorus and calcium precursors, respectively. The effects of the heat treatment temperature, pH level and substrate materials on the phases and microstructures of HA films were studied by X-ray diffraction (XRD), scanning electronic microscopy (SEM) and electronic probe microanalysis (EPMA) and so on. The results show that all the sol-gel films are composed of the phases of HA, CaO, TiO(2) and CaTiO(3). With increasing the calcining temperature, the crystallinity of the films increases, the structure becomes more compact and changes from granular and lamellar to cellular structure, and the Ca/P ratio increases slightly because of the loss of P in the films. The addition of ammonia (adjusting the pH level to be about 7.5) can increase the HA content in the films, and the difference of substrate materials only has a little influence on the microstructure of the sol-gel films.

  11. Infiltration of methylammonium metal halide in highly porous membranes using sol-gel-derived coating method

    NASA Astrophysics Data System (ADS)

    Kwon, Seung Lee; Jin, Young Un; Kim, Byeong Jo; Han, Man Hyung; Han, Gill Sang; Shin, Seunghak; Lee, Sangwook; Jung, Hyun Suk

    2017-09-01

    Organic-inorganic halide perovskites (OIHPs) has emerged as promising optoelectronic materials for solar cells and light-emitting diodes. OIHPs are usually coated on a flat surface or mesoporous scaffold for the applications. Herein, we report a facile sol-gel-derived solution route for coating methylammonium lead iodide (MAPbI3) perovskite layers onto various nanoporous structures. We found that lead-acetate solution has superior infiltration property onto surface of oxide membranes, and it can easily be converted to MAPbI3 by sequential transform to PbO, PbI2, and finally MAPbI3. Excellent pore-filling and full coverage of the nanostructures with the final MAPbI3 perovskite material are demonstrated via this sol-gel-derived solution route, using mesoporous TiO2, TiO2 nanorods, and high-aspect ratio nanopores in anodic aluminum oxide membranes. Given that this sol-gel-based method fills nanopores better than other conventional coating methods for OIHPs, this method may find wide applications in nanostructured OIHPs-based optoelectronic systems.

  12. Electrochemical and In Vitro Behavior of Nanostructure Sol-Gel Coated 316L Stainless Steel Incorporated with Rosemary Extract

    NASA Astrophysics Data System (ADS)

    Motalebi, Abolfazl; Nasr-Esfahani, Mojtaba

    2013-06-01

    The corrosion resistance of AISI 316L stainless steel for biomedical applications, was significantly enhanced by means of hybrid organic-inorganic sol-gel thin films deposited by spin-coating. Thin films of less than 100 nm with different hybrid characters were obtained by incorporating rosemary extract as green corrosion inhibitor. The morphology, composition, and adhesion of hybrid sol-gel coatings have been examined by SEM, EDX, and pull-off test, respectively. Addition of high additive concentrations (0.1%) did not disorganize the sol-gel network. Direct pull-off test recorded a mean coating-substrate bonding strength larger than 21.2 MPa for the hybrid sol-gel coating. The effect of rosemary extract, with various added concentrations from 0.012 to 0.1%, on the anticorrosion properties of sol-gel films have been characterized by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in simulated body fluid (SBF) solution and has been compared to the bare metal. Rosemary extract additions (0.05%) have significantly increased the corrosion protection of the sol-gel thin film to higher than 90%. The in vitro bioactivity of prepared films indicates that hydroxyapatite nuclei can form and grow on the surface of the doped sol-gel thin films. The present study shows that due to their excellent anticorrosion properties, bioactivity and bonding strength to substrate, doped sol-gel thin films are practical hybrid films in biomedical applications.

  13. rhEGF-containing thermosensitive and mucoadhesive polymeric sol-gel for endoscopic treatment of gastric ulcer and bleeding.

    PubMed

    Maeng, Jin Hee; So, Jung Won; Kim, Jungju; Kim, In Ae; Jung, Ji Hoon; Min, Kyunghyun; Lee, Don Haeng; Yang, Su-Geun

    2014-03-01

    Gastrointestinal endoscopy is a standard diagnostic tool for gastrointestinal ulcers and cancer. In this study, we have developed recombinant human epidermal growth factor-containing ulcer-coating polymeric sol-gel for endoscopic application. Chitosan and pluronic F127 were employed for their thermoresponsive and bioadhesive properties. At temperatures below 21, polymeric sol-gel remains liquid during endoscopic application and transforms to gel at body temperature after application on ulcers. In an in vitro cellular wounding assay, recombinant human epidermal growth factor sol-gel significantly enhanced the cell migration and decreased the wounding area (68%) compared to nontreated, recombinant human epidermal growth factor solution, and sol-gel without recombinant human epidermal growth factor (42, 49, and 32 % decreased at day 1). The in vivo ulcer-healing study was performed in an acetic acid-induced gastric ulcer rat model and proved that our recombinant human epidermal growth factor endoscopic sol-gel facilitated the ulcer-healing process more efficiently than the other treatments. Ulcer sizes in the recombinant human epidermal growth factor sol-gel group were decreased 2.9- and 2.1-fold compared with those in the nontreated group on days 1 and 3 after ulceration, respectively. The mucosal thickness in the recombinant human epidermal growth factor sol-gel group was significantly increased compared to that in the nontreated group (3.2- and 6.9-fold on days 1 and 3 after ulceration, respectively). In a gastric retention study, recombinant human epidermal growth factor sol-gel stayed on the gastric mucosa more than 2 h after application. The present study suggests that recombinant human epidermal growth factor sol-gel is a prospective candidate for treating gastric ulcers via endoscopic application.

  14. CO2 Responsive Imidazolium-Type Poly(Ionic Liquid) Gels.

    PubMed

    Zhang, Jing; Xu, Dan; Guo, Jiangna; Sun, Zhe; Qian, Wenjing; Zhang, Ye; Yan, Feng

    2016-07-01

    Poly(ionic liquid) (PIL) gels with CO2 stimulus responsiveness have been synthesized through the copolymerization of an imidazolium-type ionic liquid monomer with 2-(dimethyl amino) ethyl methacrylate. Upon bubbling with CO2 gas, the prepared PIL solution is converted to a transparent and stable gel, which can be turned back to the initial solution state after N2 bubbling. The reversible sol-gel phase transition behavior is proved by the reversible values of viscosity and ionic conductivity. The possible mechanism for such a reversible sol-gel phase transition is demonstrated by NMR, conductivity, and rheological measurements. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Direct inkjet printing of miniaturized luminescent YAG:Er3+ from sol-gel precursor

    NASA Astrophysics Data System (ADS)

    Hong, Yuzhe; Chen, Zhaoxi; Trofimov, Artem A.; Lei, Jincheng; Chen, Jie; Yuan, Lei; Zhu, Wenge; Xiao, Hai; Xu, Dong; Jacobsohn, Luiz G.; Kornev, Konstantin G.; Bordia, Rajendra K.; Peng, Fei

    2017-06-01

    This work focuses on demonstrating the fabrication of miniaturized scintillators based on rare earth activated YAG ceramics using the direct inkjet printing method. Erbium was chosen as the activator, and YAG sol-gel precursor inks were prepared under precise hydrolysis and polycondensation reactions. The precursors showed excellent control over rheology and surface tension, resulting in good printability. One of the most important challenges of inkjet printing of lines is the stability of lines. Line stability during printing is highly dependent on the printing frequency, drop spacing and substrate temperature. When a line was printed drop by drop, bulges were always observed during printing at 25 °C. This instability was significantly suppressed when the substrates were slightly heated. Adding polyvinylpyrrolidone to the precursor helped eliminate pores and cracks during firing. Crack-free YAG lines with ∼200 nm thickness were obtained after firing. The photoluminescence of YAG:Er heat-treated at 1200 °C for 1 h was optimized for an Er concentration of 2 wt%. X-ray induced radioluminescence was dominated by emission lines at 398 and 567 nm.

  16. The effect of high temperature sol-gel polymerization parameters on the microstructure and properties of hydrophobic phenol-formaldehyde/silica hybrid aerogels.

    PubMed

    Seraji, Mohamad Mehdi; Sameri, Ghasem; Davarpanah, Jamal; Bahramian, Ahmad Reza

    2017-05-01

    Phenol-formaldehyde/silica hybrid aerogels with different degree of hydrophobicity were successfully synthesized via high temperature sol-gel polymerization. Tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) were used as precursor and co-precursor of the hydrophobic silica-based phase, respectively. The hydrolysis step of silica based sols were conducted by acid catalyzed reactions and HCl was used as hydrolysis catalyst. The chemical structure of prepared hybrid aerogels was characterized by Fourier Transform Infrared spectroscopy (FT-IR). The effect of MTES/TEOS proportion and catalyst content on the morphology and microstructure of samples were investigated by FE-SEM and C, Si mapping analysis. The acid catalyzed hydrolysis of TEOS and MTES sols leads to formation of a sol with primarily silica particles in the organic-inorganic hybrid sol and varying colloid growth mechanisms were occurred with change in MTES and HCl molar ratio. With the increasing of MTES content, the microstructure of samples changed from uniform colloidal network, core-shell structure to polymeric structure with a huge phase separation. The increasing of HCl mole fraction leads to smaller particle size. Moreover, the shrinkage of samples was decreased and water contact angles of the resulted aerogels were increased from 40 to 156.8° with the increases of MTES content. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Secondary Crystal Growth on a Cracked Hydrotalcite-Based Film Synthesized by the Sol-Gel Method.

    PubMed

    Lee, Wooyoung; Lee, Chan Hyun; Lee, Ki Bong

    2016-05-02

    The sol-gel synthesis method is an attractive technology for the fabrication of ceramic films due to its preparation simplicity and ease of varying the metal composition. However, this technique presents some limitations in relation to the film thickness. Notably, when the film thickness exceeds the critical limit, large tensile stresses occur, resulting in a cracked morphology. In this study, a secondary crystal growth method was introduced as a post-treatment process for Mg/Al hydrotalcite-based films synthesized by the sol-gel method, which typically present a cracked morphology. The cracked hydrotalcite-based film was hydrothermally treated for the secondary growth of hydrotalcite crystals. In the resulting film, hydrotalcite grew with a vertical orientation, and the gaps formed during the sol-gel synthesis were filled with hydrotalcite after the crystal growth. The secondary crystal growth method provides a new solution for cracked ceramic films synthesized by the sol-gel method.

  18. Synthesis and characterization of CdO nano particles by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Vadgama, V. S.; Vyas, R. P.; Jogiya, B. V.; Joshi, M. J.

    2017-05-01

    Cadmium Oxide (CdO) is an inorganic compound and one of the main precursors to other cadmium compounds. It finds applications in cadmium plating, storage batteries, in transparent conducting film, etc. Here, an attempt is made to synthesize CdO nano particles by sol-gel technique. The gel was prepared using cadmium nitrate tetra hydrate (Cd(NO3)2.4H2O) and aqueous ammonium hydroxide (NH4OH) as a precursor. The synthesized powder is further characterized by techniques like Powder X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and Thermal gravimetric analysis (TGA). Powder XRD analysis suggested the nano-crystalline nature of the sample with the cubic crystal system. Nano scaled particles of spherical morphology with the size ranging from 50-100 nm are observed from TEM images. While, FT-IR study is used to confirm the presence of different functional groups. Thermo-gravimetric analysis suggests the highly thermally stable nature of the samples. The results are discussed.

  19. Preparation of plutonium-bearing ceramics via mechanically activated precursor

    NASA Astrophysics Data System (ADS)

    Chizhevskaya, S. V.; Stefanovsky, S. V.

    2000-07-01

    The problem of excess weapons plutonium disposition is suggested to be solved by means of its incorporation in stable ceramics with high chemical durability and radiation resistivity. The most promising host phases for plutonium as well as uranium and neutron poisons (gadolinium, hafnium) are zirconolite, pyrochlore, zircon, zirconia [1,2], and murataite [3]. Their production requires high temperatures and a fine-grained homogeneous precursor to reach final waste form with high quality and low leachability. Currently various routes to homogeneous products preparation such as sol-gel technology, wet-milling, and grinding in a ball or planetary mill are used. The best result demonstrates sol-gel technology but this route is very complicated. An alternative technology for preparation of ceramic precursors is the treatment of the oxide batch with high mechanical energy [4]. Such a treatment produces combination of mechanical (fine milling with formation of various defects, homogenization) and chemical (split bonds with formation of active centers—free radicals, ion-radicals, etc.) effects resulting in higher reactivity of the activated batch.

  20. Sol-gel based optical sensor for determination of Fe (II): a novel probe for iron speciation.

    PubMed

    Samadi-Maybodi, Abdolraouf; Rezaei, Vida; Rastegarzadeh, Saadat

    2015-02-05

    A highly selective optical sensor for Fe (II) ions was developed based on entrapment of a sensitive reagent, 2,4,6-tri(2-pyridyl)-s-triazine (TPTZ), in a silica sol-gel thin film coated on a glass substrate. The thin films fabricated based on tetraethoxysilane (TEOS) as precursor, sol-gel pH∼3, water:alkoxyde ratio of 4:1 and TPTZ concentration of 0.112 mol L(-1). The influence of sol-gel parameters on sensing behavior of the fabricated sensor was also investigated. The fabricated sensor can be used for determination of Fe (II) ion with an outstanding high selectivity over a dynamic range of 5-115 ng mL(-1) and a detection limit of 1.68 ng mL(-1). It also showed reproducible results with relative standard deviation of 3.5% and 1.27% for 10 and 90 ng mL(-1) of Fe (II), respectively, along with a fast response time of ∼120 s. Total iron also was determined after reduction of Fe (III) to Fe (II) using ascorbic acid as reducing agent. Then, the concentration of Fe (III) was calculated by subtracting the concentration of Fe (II) from the total iron concentration. Interference studies showed a good selectivity for Fe (II) with trapping TPTZ into sol-gel matrix and appropriately adjusting the structure of doped sol-gel. The sensor was compared with other sensors and was applied to determine iron in different water samples with good results. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Design and synthesis of inorganic/organic hybrid electrochemical materials

    NASA Astrophysics Data System (ADS)

    Harreld, John H.

    An ambient pressure method for drying sol-gel materials is developed to synthesize high porosity (80--90%), high surface area vanadium oxide and silica aerogel materials (150--300 and 1000 m2/g for vanadium pentoxide and silica, respectively). The synthesis approach uses liquid exchange to replace the pore fluid with a low surface tension, nonpolar solvent which reduces the capillary pressures developed during drying. The Good-Girifalco interaction parameter is used to calculate pore stresses resulting from drying silica gels from various liquids. Vanadium oxide/polypyrrole hybrid aerogels are prepared using three strategies. These approaches focus on either sequential or consecutive polymerization of the inorganic and organic networks. Microcomposite aerogels are synthesized by encapsulating a dispersion of preformed polypyrrole in a vanadium pentoxide gel. In the second approach, pyrrole is polymerized and doped within the pore volume of preformed vanadium pentoxide gel. When the inorganic and organic precursors are polymerized simultaneously, the resulting gels exhibited a nanometer scaled microstructure with homogeneous distributions of either phases. Through this route, a suitable microstructure and composition for a lithium secondary battery cathode is obtained. Lithiated aerogels of hydrated nickel, cobalt, and mixed nickel-cobalt oxides are synthesized from lithium hydroxide and transition metal acetate precursors. The XRD analyses indicate that the nickel containing gels exhibit a lithium deficiency (less than 1 Li/transition metal. By increasing the concentration of the lithium precursor the lithium content in nickel oxides is increased, and additional base solution is no longer required to catalyze gelation. A non-hydrolytic sol-gel approach is utilized to create tin oxide and tin-aluminum binary oxide aerogels with high porosity (90%) and high surface area (300 m2/g). XRD data from single phase tin oxide aerogel indicates the growth of SnO2 crystallites between 150--400°C in air, accompanied by a reduction in surface area (30 m2/g). Heated tin oxide aerogel exhibits comparable reversible specific capacity (390 mAh/g) as that of commercial SnO2 (420 mAh/g). Amorphous tin oxide aerogel is stabilized to higher temperatures when aluminum oxide is incorporated into the structure. The tin oxide phase remains electrochemically active towards lithium insertion and exhibits excellent reversibility during cycling.

  2. Sol-gel preparation of hydrophobic silica antireflective coatings with low refractive index by base/acid two-step catalysis.

    PubMed

    Cai, Shuang; Zhang, Yulu; Zhang, Hongli; Yan, Hongwei; Lv, Haibing; Jiang, Bo

    2014-07-23

    Hydrophobic antireflective coatings with a low refractive index were prepared via a base/acid-catalyzed two-step sol-gel process using tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) as precursors, respectively. The base-catalyzed hydrolysis of TEOS leads to the formation of a sol with spherical silica particles in the first step. In the second step, the acid-catalyzed MTES hydrolysis and condensation occur at the surface of the initial base-catalyzed spherical silica particles, which enlarge the silica particle size from 12.9 to 35.0 nm. By a dip-coating process, this hybrid sol gives an antireflective coating with a refractive index of about 1.15. Moreover, the water contact angles of the resulted coatings increase from 22.4 to 108.7° with the increases of MTES content, which affords the coatings an excellent hydrophobicity. A "core-shell" particle growth mechanism of the hybrid sol was proposed and the relationship between the microstructure of silica sols and the properties of AR coatings was investigated.

  3. Resistance of dichromated gelatin as photoresist

    NASA Astrophysics Data System (ADS)

    Lin, Pang; Yan, Yingbai; Jin, Guofan; Wu, Minxian

    1999-09-01

    Based on the photographic chemistry, chemically hardening method was selected to enhance the anti-etch capability of gelatin. With the consideration of hardener and permeating processing, formaldehyde is the most ideal option due to the smallest molecule size and covalent cross-link with gelatin. After hardened in formaldehyde, the resistance of the gelatin was obtained by etched in 1% HF solution. The result showed that anti-etch capability of the gelatin layer increased with tanning time, but the increasing rate reduced gradually and tended to saturation. Based on the experimental results, dissolving-flaking hypothesis for chemically hardening gelatin was presented. Sol-gel coatings were etched with 1% HF solution. Compared with the etching rate of gelatin layer, it showed that gelatin could be used as resist to fabricate optical elements in sol-gel coating. With the cleaving-etch method and hardening of dichromated gelatin (DCG), DCG was used as a photoresist for fabricating sol-gel optical elements. As an application, a sol-gel random phase plate was fabricated.

  4. Synthesis of nano-sized lithium cobalt oxide via a sol-gel method

    NASA Astrophysics Data System (ADS)

    Li, Guangfen; Zhang, Jing

    2012-07-01

    In this study, nano-structured LiCoO2 thin film were synthesized by coupling a sol-gel process with a spin-coating method using polyacrylic acid (PAA) as chelating agent. The optimized conditions for obtaining a better gel formulation and subsequent homogenous dense film were investigated by varying the calcination temperature, the molar mass of PAA, and the precursor's molar ratios of PAA, lithium, and cobalt ions. The gel films on the silicon substrate surfaces were deposited by multi-step spin-coating process for either increasing the density of the gel film or adjusting the quantity of PAA in the film. The gel film was calcined by an optimized two-step heating procedure in order to obtain regular nano-structured LiCoO2 materials. Both atomic force microscopy (AFM) and scanning electron microscopy (SEM) were utilized to analyze the crystalline and the morphology of the films, respectively.

  5. Vibrational spectroscopic studies of (3-mercaptopropyl)trimethoxylsilane sol-gel and its coating.

    PubMed

    Li, Ying-Sing; Wang, Yu; Tran, Tuan; Perkins, Anshion

    2005-10-01

    Organosilane sol-gels have been prepared under different conditions from mercaptopropyltrimethoxysilane (MPTMS) and mercaptopropyltriethoxysilane (MPTES). These sol-gels were applied for the thin film coating on aluminum. Vibrational spectroscopy has been employed to trace and to study the proceeding of the sol-gel formation and the curing of the coated films on Al. Based on the group frequencies as well as their spectral behavior under different conditions, vibrational assignments have been made for most of the observed bands. Surface enhanced Raman scattering has revealed the chemical adsorption of MPTMS sol-gel on silver particles. Recorded reflection and absorption infrared (RAIR) spectra of coated tiles cured at different temperatures have indicated that surface reaction may occur at high temperature. The anticorrosion characters of the coated metals have been evaluated with the measured electrochemical data. Results from cyclic voltammographs have indicated that each layer of sol-gel coating would reduce the redox current across the electrode/electrolyte solution interface. Tafel plots have shown that the anodic current of the coated electrode decreases significantly and the corrosion potentials shift to the positive side.

  6. Detection of Hydrofluoric Acid by a SiO2 Sol-Gel Coating Fiber-Optic Probe Based on Reflection-Based Localized Surface Plasmon Resonance

    PubMed Central

    Chen, I-Cherng; Lin, Shiu-Shiung; Lin, Tsao-Jen; Du, Je-Kang

    2011-01-01

    A novel fiber-optic probe based on reflection-based localized surface plasmon resonance (LSPR) was developed to quantify the concentration of hydrofluoric acid (HF) in aqueous solutions. The LSPR sensor was constructed with a gold nanoparticle-modified PMMA fiber, integrated with a SiO2 sol-gel coating. This fiber-sensor was utilized to assess the relationship between HF concentration and SiO2 sol-gel layer etching reduction. The results demonstrated the LSPR sensor was capable of detecting HF-related erosion of hydrofluoric acid solutions of concentrations ranging from 1% to 5% using Relative RI Change Rates. The development of the LSPR sensor constitutes the basis of a detector with significant sensitivity for practical use in monitoring HF solution concentrations. PMID:22319388

  7. In situ analysis of phase transformation in sol-gel cogelified nanopowder mixture of Al 2O 3 and TiO 2 using synchrotron X-ray radiation diffraction experiments

    NASA Astrophysics Data System (ADS)

    Jianu, A.; Stanciu, L.; Groza, J. R.; Lathe, Ch.; Burkel, E.

    2003-01-01

    Aluminium titanate (Al 2TiO 5) has been selected for study due to its high melting point and thermal shock resistance. In situ analysis of phase transformation and of transformation kinetics of sol-gel powder mixture of alumina and titania cogelified samples was performed using high-temperature synchrotron radiation X-ray diffraction experiments. The high reactivity and molecular mixing of sol-gel cogelified precursor powders contributed to the evolution of the reaction. The stability of the TiO 2-tetragonal structure (anatase) increases due to Al 2O 3 presence. The temperature of the aluminium titanate endothermic reaction decreases when heating rate increases. The results obtained by in situ analysis have been used to establish the sintering parameters in order to obtain fully transformed, dense aluminium titanate bulk ceramics.

  8. Novel carboxy functionalized sol-gel precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolter, H.; Storch, W.; Gellermann, C.

    1996-12-31

    A novel family of inorganic-organic copolymers (ORMOCER`s) derived from urethane- and thioether(meth)acrylate alkoxysilanes has been successfully exploited for a variety of diverse applications. In order to widen the range of applications an additional functionality (carboxy group) has been incorporated int his silane type. Conventional sol-gel processing facilitates the formation of an inorganic Si-O-Si-network via hydrolysis and polycondensation reactions of alkoxysilyl moieties and in addition, the (meth)acrylate groups are available for radically induced polymerization to obtain a complementary organic polymer structure. The presence of a carboxy group would appear to have great potential for a range of diverse areas of application,more » such as an internal catalyst for the sol-gel process, complexation of elements such as Zr and Ti, increasing the adhesion to various substrates and modification of solubility. A number of novel silanes and their syntheses will be described in this paper.« less

  9. Sol-gel synthesis, phase composition, morphological and structural characterization of Ca10(PO4)6(OH)2: XRD, FTIR, SEM, 3D SEM and solid-state NMR studies

    NASA Astrophysics Data System (ADS)

    Kareiva, Simonas; Klimavicius, Vytautas; Momot, Aleksandr; Kausteklis, Jonas; Prichodko, Aleksandra; Dagys, Laurynas; Ivanauskas, Feliksas; Sakirzanovas, Simas; Balevicius, Vytautas; Kareiva, Aivaras

    2016-09-01

    Aqueous sol-gel chemistry route based on ammonium-hydrogen phosphate as the phosphorus precursor, calcium acetate monohydrate as source of calcium ions, and 1,2-ethylendiaminetetraacetic acid (EDTA), or 1,2-diaminocyclohexanetetracetic acid (DCTA), or tartaric acid (TA), or ethylene glycol (EG), or glycerol (GL) as complexing agents have been used to prepare calcium hydroxyapatite (Ca10(PO4)6(OH)2, CHAp). The phase transformations, composition, and structural changes in the polycrystalline samples were studied by infrared spectroscopy (FTIR), X-ray powder diffraction analysis (XRD), and scanning electron microscopy (SEM). The local short-range (nano- and mezo-) scale effects in CHAp were studied using solid-state NMR spectroscopy. The spatial 3D data from the SEM images of CHAp samples obtained by TA, EG and GL sol-gel routes were recovered for the first time to our knowledge.

  10. The Critical Role of Thioacetamide Concentration in the Formation of ZnO/ZnS Heterostructures by Sol-Gel Process

    PubMed Central

    Kiatkoski Kaminski, Renata Cristina; Caetano, Bruno Leonardo; Magnani, Marina; Meneau, Florian; Rochet, Amélie; Santilli, Celso Valentim; Briois, Valérie; Bourgaux, Claudie

    2018-01-01

    ZnO/ZnS heterostructures have emerged as an attractive approach for tailoring the properties of particles comprising these semiconductors. They can be synthesized using low temperature sol-gel routes. The present work yields insight into the mechanisms involved in the formation of ZnO/ZnS nanostructures. ZnO colloidal suspensions, prepared by hydrolysis and condensation of a Zn acetate precursor solution, were allowed to react with an ethanolic thioacetamide solution (TAA) as sulfur source. The reactions were monitored in situ by Small Angle X-ray Scattering (SAXS) and UV-vis spectroscopy, and the final colloidal suspensions were characterized by High Resolution Transmission Electron Microscopy (HRTEM). The powders extracted at the end of the reactions were analyzed by X-ray Absorption spectroscopy (XAS) and X-ray diffraction (XRD). Depending on TAA concentration, different nanostructures were revealed. ZnO and ZnS phases were mainly obtained at low and high TAA concentrations, respectively. At intermediate TAA concentrations, we evidenced the formation of ZnO/ZnS heterostructures. ZnS formation could take place via direct crystal growth involving Zn ions remaining in solution and S ions provided by TAA and/or chemical conversion of ZnO to ZnS. The combination of all the characterization techniques was crucial to elucidate the reaction steps and the nature of the final products. PMID:29360735

  11. Development and application of a new solid-phase microextraction fiber by sol-gel technology on titanium wire.

    PubMed

    Es-haghi, Ali; Hosseini, Seyed Maryam; Khoshhesab, Zahra Monsef

    2012-09-12

    Novel solid-phase microextraction fibers were prepared based on sol-gel technique. Commonly used fused silica substrate was replaced by titanium wire which provided high strength and longer fiber life cycle. Titanium isopropoxide was employed as the precursor which provides a sol solution containing Ti-OH groups and shows more tendencies to the molecularly similar group on the substrate. Three different polymers, poly (dimethylsiloxane) (PDMS), poly(ethylenepropyleneglycol)-monobutyl ether (Ucon) and polyethylene glycol (PEG) were employed as coating polymer in preparing three different fibers. The applicability of these fibers was assessed for the headspace SPME (HS-SPME) of benzene, toluene, ethylbenzene and xylenes (BTEX) from water sample followed by gas chromatography-mass spectrometry (GC-MS). Effects of different parameters such as fiber coating type, extraction condition, desorption condition were investigated and optimized. Under the optimized conditions, LODs and LOQs of 0.75-10 μg L(-1) (S/N=3) and 1-20 μg L(-1) (S/N=10) were respectively obtained. The method showed linearity in the range of 10-25,000 μg L(-1) with correlation coefficient of >0.99. The relative standard deviation was less than 8%. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Tertiary-amine-containing thermo- and pH-sensitive hydrophilic ABA triblock copolymers: effect of different tertiary amines on thermally induced sol-gel transitions.

    PubMed

    Henn, Daniel M; Wright, Roger A E; Woodcock, Jeremiah W; Hu, Bin; Zhao, Bin

    2014-03-11

    This Article reports on the synthesis of a series of well-defined, tertiary-amine-containing ABA triblock copolymers, composed of a poly(ethylene oxide) (PEO) central block and thermo- and pH-sensitive outer blocks, and the study of the effect of different tertiary amines on thermally induced sol-gel transition temperatures (T(sol-gel)) of their 10 wt % aqueous solutions. The doubly responsive ABA triblock copolymers were prepared from a difunctional PEO macroinitiator by atom transfer radical polymerization of methoxydi(ethylene glycol) methacrylate and ethoxydi(ethylene glycol) methacrylate at a feed molar ratio of 30:70 with ∼5 mol % of either N,N-diethylaminoethyl methacrylate (DEAEMA), N,N-diisopropylaminoethyl methacrylate, or N,N-di(n-butyl)aminoethyl methacrylate. The chain lengths of thermosensitive outer blocks and the molar contents of tertiary amines were very similar for all copolymers. Using rheological measurements, we determined the pH dependences of T(sol-gel) of 10 wt % aqueous solutions of these copolymers in a phosphate buffer. The T(sol-gel) versus pH curves of all polymers exhibited a sigmoidal shape. The T(sol-gel) increased with decreasing pH; the changes were small on both high and low pH sides. At a specific pH, the T(sol-gel) decreased with increasing the hydrophobicity of the tertiary amine, and upon decreasing pH the onset pH value for the T(sol-gel) to begin to increase noticeably was lower for the more hydrophobic tertiary amine-containing copolymer. In addition, we studied the effect of different tertiary amines on the release behavior of FITC-dextran from 10 wt % micellar gels in an acidic medium at 37 and 27 °C. The release profiles for three studied hydrogels at 37 °C were essentially the same, suggesting that the release was dominated by the diffusion of FITC-dextran. At 27 °C, the release was significantly faster for the DEAEMA-containing copolymer, indicating that both diffusion and gel dissolution contributed to the release at this temperature.

  13. Spectroscopic studies of trimetoxypropylsilane and bis(trimethoxysilyl)ethane sol-gel coatings on aluminum and copper.

    PubMed

    Li, Ying-Sing; Tran, Tuan; Xu, Yue; Vecchio, Nicolas E

    2006-11-01

    Trimethoxypropylsilane (TMPS) and bis(trimethoxysilyl)ethane (BTMSE) were used as surface modifiers of metal vie the sol-gel process and dip coating. In addition to the single coating of Al, Cu and Sn, double treatments of Al were also conducted by combining coatings with these sol-gels in different sequences. Reflection and absorption infrared spectroscopy (RAIR) was employed to characterize and to trace the proceeding of the sol-gel process of the films. It was found that the silanol condensation occurs in the coating films on Al and the covalent linkage exists between the TMPS film and copper surface. From the assigned vibration modes, two conformers were identified in pure TMPS, TMPS sol-gel and coated film. A series of dip coating experiments with different concentrations of TMPS sol-gel was conducted, and the results from the collected RAIR spectra of the coated samples suggested that the coated Cu consistently has a better RAIR spectrum than that of the coated Al. The TMPS sol-gel appeared to have a better affinity to Cu than to Al. The temperature effect and the aging effect in the coating films were studied. X-ray photoelectronic spectroscopy (XPS) was employed to characterize the coated film, and the XPS data confirm the formation of the siloxane film from the silane coupling agents (SCA). Electrochemical impedance spectra (EIS) have been collected for bare Al and Cu, BTMSE sol-gel coated Al, and TMPS sol-gel coated Cu in 0.15M NaCl solution. The corresponding electronic circuit parameters have been determined to match the experimental EIS data.

  14. Biological influence of Ca/P ratio on calcium phosphate coatings by sol-gel processing.

    PubMed

    Catauro, M; Papale, F; Sapio, L; Naviglio, S

    2016-08-01

    The objective of this work has been to develop low temperature sol-gel glass coatings to modify the substrate surface and to evaluate their bioactivity and biocompatibility. Glasses, based on SiO2·CaO·P2O5, were synthesized by the sol-gel technique using tetraethyl orthosilicate, calcium nitrate tetrahydrate and triethyl phosphate as precursors of SiO2, CaO and P2O5, respectively. Those materials, still in the sol phase, have been used to coat substrates by means of the dip-coating technique. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) has been used for characterize coatings and a microstructural analysis has been obtained using scanning electron microscopy (SEM). The potential applications of the coatings in the biomedical field were evaluated by bioactivity and biocompatibility tests. The coated substrate was immersed in simulated body fluid (SBF) for 21days and the hydroxyapatite deposition on its surface was subsequently evaluated via SEM-EDXS analysis, as an index of bone-bonding capability. In order to study the cell behavior and response to our silica based materials, prepared via the sol-gel method, with various Ca/P ratio and coating substrate, we have used the human osteoblast-like U2OS cell line. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Synthesis of PEG-rich PLGA-PEG-PLGA for the PLGA-PEG-PLGA/laponite hydrogels with thermoresponsive sol-gel transitions

    NASA Astrophysics Data System (ADS)

    Tanimoto, Keishi; Maeda, Tomoki; Hotta, Atsushi

    Poly (D,L-lactide-co-glycolide)-b-poly (ethylene glycol)-b-poly (D,L-lactide-co-glycolide) (PLGA-PEG-PLGA) possesses moderate biocompatibility originating from the relatively shorter PEG block in its polymeric molecule. For the maximum utilization of the highly biocompatible PEG block, the PEG block should be relatively longer, and thus the PEG/PLGA ratio, the molecular weight ratio of PEG and PLGA, should be higher. In addition, for the wider use of PLGA-PEG-PLGA in the biological fields, the aqueous PLGA-PEG-PLGA solution should transfer from sol to gel states in response to the increase in temperature. It was reported, however, through the previous researches, that the PLGA-PEG-PLGA solution with a high PEG/PLGA ratio (above 0.5) would not exhibit thermoresponsive sol-gel transitions. In this work, PLGA-PEG-PLGAs with higher PEG/PLGA ratios were synthesized and the laponite, an inorganic nanoparticle, was added to the solutions to realize the thermoresponsive sol-gel transition. It was found that the PLGA-PEG-PLGA with the high PEG/PLGA ratio of 3.0 could exhibit the thermoresponsive sol-gel transition by adding laponite at 1.25 weight percent. The physical characteristics of the gel were also studied by the dynamic mechanical analysis (DMA) This work was supported by a Grant-in-Aid for Scientific Research (A) (No. 15H02298 to A.H.) and a Grant-in-Aid for Research Activity Start-up (No.15H06586 to T.M.) from JSPS: KAKENHI\\x9D.

  16. nanoparticles but affecting morphology under broader view

    NASA Astrophysics Data System (ADS)

    Karkare, Manasi Manoj

    2014-07-01

    In this study, anatase titanium dioxide nanoparticles were successfully prepared by a sol-gel method using two different precursors, titanium isopropoxide and titanium butoxide. Hydrochloric acid or nitric acid was added to adjust the pH of the solution. The sols obtained were dried at 80 °C and calcined at 450 °C for 3 h. The nanostructures were characterised by scanning electron microscopy, FTIR and ultraviolet-visible spectroscopy. The phase transformations were investigated by an X-ray diffractometer. Highly crystalline anatase titania nanoparticles could be obtained through the controlled hydrolysis reaction rate. The sizes of synthesized particles were in the range 5-13 nm, i.e. 9 nm on an average and with a regular shape. The size of nanoparticles was not affected by the choice of precursor. The broad view of the samples prepared using titanium isopropoxide showed film-like structures, whereas the samples prepared using titanium butoxide showed spherical granules. A red shift of 0.13 eV was observed in the band gap in the case of non-spherical particles compared to spherical ones.

  17. Lightweight Ceramic Composition of Carbon Silicon Oxygen and Boron

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B. (Inventor); Hsu, Ming-Ta (Inventor); Chen, Timothy S. (Inventor)

    1997-01-01

    Lightweight, monolithic ceramics resistant to oxidation in air at high temperatures are made by impregnating a porous carbon preform with a sol which contains a mixture of tetraethoxysilane, dimethyldiethoxysilane and trimethyl borate. The sol is gelled and dried on the carbon preform to form a ceramic precursor. The precursor is pyrolyzed in an inert atmosphere to form the ceramic which is made of carbon, silicon, oxygen and boron. The carbon of the preform reacts with the dried gel during the pyrolysis to form a component of the resulting ceramic. The ceramic is of the same size, shape and form as the carbon precursor. Thus, using a porous, fibrous carbon precursor, such as a carbon felt, results in a porous, fibrous ceramic. Ceramics of the invention are useful as lightweight tiles for a reentry spacecraft.

  18. Effect of reaction solvent on hydroxyapatite synthesis in sol-gel process

    NASA Astrophysics Data System (ADS)

    Nazeer, Muhammad Anwaar; Yilgor, Emel; Yagci, Mustafa Baris; Unal, Ugur; Yilgor, Iskender

    2017-12-01

    Synthesis of hydroxyapatite (HA) through sol-gel process in different solvent systems is reported. Calcium nitrate tetrahydrate (CNTH) and diammonium hydrogen phosphate (DAHP) were used as calcium and phosphorus precursors, respectively. Three different synthesis reactions were carried out by changing the solvent media, while keeping all other process parameters constant. A measure of 0.5 M aqueous DAHP solution was used in all reactions while CNTH was dissolved in distilled water, tetrahydrofuran (THF) and N,N-dimethylformamide (DMF) at a concentration of 0.5 M. Ammonia solution (28-30%) was used to maintain the pH of the reaction mixtures in the 10-12 range. All reactions were carried out at 40 ± 2°C for 4 h. Upon completion of the reactions, products were filtered, washed and calcined at 500°C for 2 h. It was clearly demonstrated through various techniques that the dielectric constant and polarity of the solvent mixture strongly influence the chemical structure and morphological properties of calcium phosphate synthesized. Water-based reaction medium, with highest dielectric constant, mainly produced β-calcium pyrophosphate (β-CPF) with a minor amount of HA. DMF/water system yielded HA as the major phase with a very minor amount of β-CPF. THF/water solvent system with the lowest dielectric constant resulted in the formation of pure HA.

  19. Low temperature synthesis of CaO-SiO2 glasses having stable liquid-liquid immiscibility by sol-gel process

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1990-01-01

    Calcium silicate glass compositions lying within the liquid-liquid immiscibility dome of the phase diagram, which could not have been prepared by the conventional melting method, were synthesized by the sol-gel process. Hydrolysis and polycondensation of tetraethyl orthosilicate (TEOS) solutions containing up to 20 mol percent calcium nitrate resulted in the formation of clear and transparent gels. The gel formation time decreased with increase in water:TEOS mole ratio, calcium content, and the reaction temperature. Smaller values of gel times in the presence of calcium nitrate are probably caused by lowering of the ionic charge on the sol particles by the salt present. The gelation activation energy, E(sub gel), was evaluated from temperature dependence of the gel time. Presence of Ca(2+) ions or the water:TEOS mole ratio did not have an appreciable effect on the value of E(sub gel). Presence of glycerol in the solution helped in the formation of crack-free monolithic gel specimens. Chemical and structural changes occurring in the gels, as a function of the heat treatments, have been monitored using DTA, TGA, IR-spectroscopy, x ray diffraction, surface area and pore size distribution measurements.

  20. Low temperature synthesis of CaO-SiO2 glasses having stable liquid-liquid immiscibility by the sol-gel process

    NASA Technical Reports Server (NTRS)

    Bansal, N. P.

    1992-01-01

    Calcium silicate glass compositions lying within the liquid-liquid immiscibility dome of the phase diagram, which could not have been prepared by the conventional melting method, were synthesized by the sol-gel process. Hydrolysis and polycondensation of tetraethyl orthosilicate (TEOS) solutions containing up to 20 mol percent calcium nitrate resulted in the formation of clear and transparent gels. The gel formation time decreased with increase in water: TEOS mole ratio, calcium content, and the reaction temperature. Smaller values of gel times in the presence of calcium nitrate are probably caused by lowering of the ionic charge on the sol particles by the salt present. The gelation activation energy, E(sub gel), was evaluated from temperature dependence of the gel time. Presence of Ca(2+) ions or the water:TEOS mole ratio did not have an appreciable effect on the value of E(sub gel). Presence of glycerol in the solution helped in the formation of crack-free monolithic gel specimens. Chemical and structural changes occurring in the gels, as a function of the heat treatments, have been monitored using DTA, TGA, IR-spectroscopy, X-ray diffraction, surface area and pore size distribution measurements.

  1. Method of Cross-Linking Aerogels Using a One-Pot Reaction Scheme

    NASA Technical Reports Server (NTRS)

    Meador, Ann B.; Capadona, Lynn A.

    2008-01-01

    A document discusses a new, simplified method for cross-linking silica and other oxide aerogels, with a polymeric material to increase strength of such materials without adversely affecting porosity or low density. This innovation introduces the polymer precursor into the sol before gelation either as an agent, which co-reacts with the oxide gel, or as soluble polymer precursors, which do not interact with the oxide gel in any way. Subsequent exposure to heat, light, catalyst or other method of promoting polymerization causes cross-linking without any additional infiltration steps.

  2. Fabrication of highly uniform and porous MgF2 anti-reflective coatings by polymer-based sol-gel processing on large-area glass substrates.

    PubMed

    Raut, Hemant Kumar; Dinachali, Saman Safari; Ansah-Antwi, Kwadwo Konadu; Ganesh, V Anand; Ramakrishna, Seeram

    2013-12-20

    Despite recent progress in the fabrication of magnesium fluoride (MgF2) anti-reflective coatings (ARCs), simple, effective and scalable sol-gel fabrication of MgF2 ARCs for large-area glass substrates has prospective application in various optoelectronic devices. In this paper, a polymer-based sol-gel route was devised to fabricate highly uniform and porous MgF2 ARCs on large-area glass substrates. A sol-gel precursor made of polyvinyl acetate and magnesium trifluoroacetate assisted in the formation of uniformly mesoporous MgF2 ARCs on glass substrates, leading to the attainment of a refractive index of ~1.23. Systematic optimization of the thickness of the ARC in the sub-wavelength regime led to achieving ~99.4% transmittance in the case of the porous MgF2 ARC glass. Precise control of the thickness of porous MgF2 ARC glass also resulted in a mere ~0.1% reflection, virtually eliminating reflection off the glass surface at the target wavelength. Further manipulation of the thickness of the ARC on either side of the glass substrate led to the fabrication of relatively broadband, porous MgF2 ARC glass.

  3. High surface area neodymium phosphate nano particles by modified aqueous sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankar, Sasidharan; Warrier, Krishna Gopakumar, E-mail: wwarrierkgk@yahoo.co.in; Komban, Rajesh

    2011-12-15

    Graphical abstract: Synthesis of nano rod shaped neodymium phosphate particles with specific surface area as high as 107 m{sup 2} g{sup -1} and particles could be compacted and sintered at as low as 1300 Degree-Sign C to a density of 98.5% (theoretical) with an average grain size of {approx}1 {mu}m. Highlights: Black-Right-Pointing-Pointer Nano size neodymium phosphate is synthesized and characterized using a novel modified aqueous sol gel process. Black-Right-Pointing-Pointer Specific surface area above 100 m{sup 2} g{sup -1} achieved without the addition of any complexing agents. Black-Right-Pointing-Pointer High sintered density reported than the density obtained for powder synthesized through conventionalmore » solid state reaction. Black-Right-Pointing-Pointer The particles are nano sized and have rod shape morphology and are retained at higher temperatures. Black-Right-Pointing-Pointer An average grain size of {approx}1 {mu}m obtained for sintered NdPO{sub 4} after thermal etching at 1400 Degree-Sign C. -- Abstract: Synthesis of nano rod shaped neodymium phosphate (NdPO{sub 4}) particles with specific surface area as high as 107 m{sup 2}g{sup -1} and an average length of 50 nm with aspect ratio 5 was achieved using modified sol gel method. Crystallite size calculated from the X-ray diffraction data by applying Scherer equation was 5 nm for the precursor gel after calcination at 400 Degree-Sign C. NdPO{sub 4} was first precipitated from neodymium nitrate solution using phosphoric acid followed by peptization using dilute nitric acid and further gelation in ammonia atmosphere. The calcined gel powders were further characterized by surface area (Brunauer-Emmet-Teller nitrogen adsorption analysis), Transmission electron microscopy, scanning electron microscopy, UV-vis and FT-IR analysis. Transmission electron microscopy confirms the formation of rod like morphology from the sol, gel and the calcined particles in nano size range. These particles could be compacted and sintered at as low as 1300 Degree-Sign C to a density of 98.5% (theoretical) with an average grain size of {approx}1 {mu}m.« less

  4. Entrapment of subtilisin in ceramic sol-gel coating for antifouling applications.

    PubMed

    Regina, Viduthalai Rasheedkhan; Søhoel, Helmer; Lokanathan, Arcot Raghupathi; Bischoff, Claus; Kingshott, Peter; Revsbech, Niels Peter; Meyer, Rikke Louise

    2012-11-01

    Enzymes with antifouling properties are of great interest in developing nontoxic antifouling coatings. A bottleneck in developing enzyme-based antifouling coatings is to immobilize the enzyme in a suitable coating matrix without compromising its activity and stability. Entrapment of enzymes in ceramics using the sol-gel method is known to have several advantages over other immobilization methods. The sol-gel method can be used to make robust coatings, and the aim of this study was to explore if sol-gel technology can be used to develop robust coatings harboring active enzymes for antifouling applications. We successfully entrapped a protease, subtilisin (Savinase, Novozymes), in a ceramic coating using a sol-gel method. The sol-gel formulation, when coated on a stainless steel surface, adhered strongly and cured at room temperature in less than 8 h. The resultant coating was smoother and less hydrophobic than stainless steel. Changes in the coating's surface structure, thickness and chemistry indicate that the coating undergoes gradual erosion in aqueous medium, which results in release of subtilisin. Subtilisin activity in the coating increased initially, and then gradually decreased. After 9 months, 13% of the initial enzyme activity remained. Compared to stainless steel, the sol-gel-coated surfaces with active subtilisin were able to reduce bacterial attachment of both Gram positive and Gram negative bacteria by 2 orders of magnitude. Together, our results demonstrate that the sol-gel method is a promising coating technology for entrapping active enzymes, presenting an interesting avenue for enzyme-based antifouling solutions.

  5. The impact of sintering temperature on structural, morphological and thermoelectric properties of zinc titanate nanocrystals

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, P.; Murugu thiruvalluvan, T. M. V.; Arivanandhan, M.; Jayakumari, T.; Anandan, P.

    2017-07-01

    The effect of sintering temperature and Ti:Zn ratio of precursor solutions on the structural, morphological and thermoelectric properties of Zinc titanate (TZO) nanocrystals have been investigated. TZO nanocrystals were synthesized by changing the molar ratio of precursors of Zn and Ti sources by sol-gel method. The synthesized materials were sintered at different temperatures and the formation of multi phases of TZO were analysed by x-ray diffraction studies. The morphological properties and composition of TZO samples were studied by FESEM, TEM and XPS analysis. The thermoelectric properties of the TZO have been studied by measuring the Seebeck coefficient of the materials at various temperature. It was observed that the Seebeck coefficient of TZO sample increases with increasing Zn content in the sample especially at high temperature.

  6. Constructing a superhydrophobic surface on polydimethylsiloxane via spin coating and vapor-liquid sol-gel process.

    PubMed

    Peng, Yu-Ting; Lo, Kuo-Feng; Juang, Yi-Je

    2010-04-06

    In this study, a superhydrophobic surface on polydimethylsiloxane (PDMS) substrate was constructed via the proposed vapor-liquid sol-gel process in conjunction with spin coating of dodecyltrichlorosilane (DTS). Unlike the conventional sol-gel process where the reaction takes place in the liquid phase, layers of silica (SiO(2)) particles were formed through the reaction between the reactant spin-coated on the PDMS surface and vapor of the acid solution. This led to the SiO(2) particles inlaid on the PDMS surface. Followed by subsequent spin coating of DTS solution, the wrinkle-like structure was formed, and the static contact angle of the water droplet on the surface could reach 162 degrees with 2 degrees sliding angle and less than 5 degrees contact angle hysteresis. The effect of layers of SiO(2) particles, concentrations of DTS solution and surface topography on superhydrophobicity of the surface is discussed.

  7. A review on development of solid phase microextraction fibers by sol-gel methods and their applications.

    PubMed

    Kumar, Ashwini; Gaurav; Malik, Ashok Kumar; Tewary, Dhananjay Kumar; Singh, Baldev

    2008-03-03

    Solid phase microextraction (SPME) is an innovative, solvent free technology that is fast, economical and versatile. SPME is a fiber coated with a liquid (polymer), a solid (sorbent) or a combination of both. The fiber coating takes up the compounds from the sample by absorption in the case of liquid coatings or adsorption in the case of solid coatings. The SPME fiber is then transferred with the help of a syringe like device into the analytical instrument for desorption and analysis of the target analytes. The sol-gel process provides a versatile method to prepare size, shape and charge selective materials of high purity and homogeneity by means of preparation techniques different from the traditional ones, for the chemical analysis. This review is on the current state of the art and future trends in the developments of solid phase microextraction (SPME) fibers using sol-gel method. To achieve more selective determination of different compound classes, the variety of different coating material for SPME fibers has increased. Further developments in SPME as a highly efficient extraction technique, will greatly depend on new breakthroughs in the area of new coating material developments for the SPME fibers. In sol-gel approach, appropriate sol-gel precursors and other building blocks can be selected to create a stationary phase with desired structural and surface properties. This approach is efficient in integrating the advantageous properties of organic and inorganic material systems and thereby increasing and improving the extraction selectivity of the produced amalgam organic-inorganic stationary phases. This review is mainly focused on recent advanced developments in the design, synthesis, characterisation, properties and application of sol-gel in preparation of coatings for the SPME fibers.

  8. Sol-gel Technology and Advanced Electrochemical Energy Storage Materials

    NASA Technical Reports Server (NTRS)

    Chu, Chung-tse; Zheng, Haixing

    1996-01-01

    Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.

  9. Development of highly-ordered, ferroelectric inverse opal films using sol gel infiltration

    NASA Astrophysics Data System (ADS)

    Matsuura, N.; Yang, S.; Sun, P.; Ruda, H. E.

    2005-07-01

    Highly-ordered, ferroelectric, Pb-doped Ba0.7Sr0.3TiO3, inverse opal films were fabricated by spin-coating a sol gel precursor into a polystyrene artificial opal template followed by heat treatment. Thin films of the ferroelectric were independently studied and were shown to exhibit good dielectric properties and high refractive indices. The excellent quality of the final inverse opal film using this spin-coating infiltration method was confirmed by scanning electron microscopy images and the good correspondence between optical reflection data and theoretical simulations. Using this method, the structural and material parameters of the final ferroelectric inverse opal film were easily adjusted by template heating and through repeated infiltrations, without changes in the initial template or precursor. Also, crack-free inverse opal thin films were fabricated over areas comparable to that of the initial crack-free polystyrene template (˜100 by 100 μm2).

  10. Methyltrimethoxysilane (MTMS)-based silica-iron oxide superhydrophobic nanocomposites.

    PubMed

    Nadargi, Digambar; Gurav, Jyoti; Marioni, Miguel A; Romer, Sara; Matam, Santhosh; Koebel, Matthias M

    2015-12-01

    We report a facile synthesis of superhydrophobic silica-iron oxide nanocomposites via a co-precursor sol-gel process. The choice of the silica precursor (Methyltrimethoxysilane, MTMS) in combination with iron nitrate altered the pore structure dramatically. The influence of iron oxide doping on the structural properties of pristine MTMS aerogel is discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Chemical Processing of Nanostructured Coatings

    DTIC Science & Technology

    2000-01-01

    increasing particle loading in sol-gel process (8-10). This approach involved dispersing large ceramic powders in sol-gel solution, and the mixture...the high loading of ceramic powders. One way to prepare thicker coatings is to add powders into the sol. This helps to reduce the capillary stresses...thickness that range between 2 and 4 microns. In order to investigate the nature and origin of the textured region of the coatings, GIXS was used to

  12. Enhance the pyroelectricity of polyvinylidene fluoride by graphene-oxide doping.

    PubMed

    Hu, Yuh-Chung; Hsu, Wei-Li; Wang, Yi-Ta; Ho, Cheng-Tao; Chang, Pei-Zen

    2014-04-16

    The high quality properties and benefits of graphene-oxide have generated an active area of research where many investigations have shown potential applications in various technological fields. This paper proposes a methodology for enhancing the pyro-electricity of PVDF by graphene-oxide doping. The PVDF film with graphene-oxide is prepared by the sol-gel method. Firstly, PVDF and graphene-oxide powders are dispersed into dimethylformamide as solvent to form a sol solution. Secondly, the sol solution is deposited on a flexible ITO/PET substrate by spin-coating. Thirdly, the particles in the sol solution are polymerized through baking off the solvent to produce a gel in a state of a continuous network of PVDF and graphene-oxide. The final annealing process pyrolyzes the gel and form a β-phase PVDF film with graphene-oxide doping. A complete study on the process of the graphene oxide doping of PVDF is accomplished. Some key points about the process are addressed based on experiments. The solutions to some key issues are found in this work, such as the porosity of film, the annealing temperature limitation by the use of flexible PET substrate, and the concentrations of PVDF and graphene-oxide.

  13. Chemical Sensors Based on IR Spectroscopy and Surface-Modified Waveguides

    NASA Technical Reports Server (NTRS)

    Lopez, Gabriel P.; Niemczyk, Thomas

    1999-01-01

    Sol-gel processing techniques have been used to apply thin porous films to the surfaces of planar infrared (IR) waveguides to produce widely useful chemical sensors. The thin- film coating serves to diminish the concentration of water and increase the concentration of the analyte in the region probed by the evanescent IR wave. These porous films are composed of silica, and therefore, conventional silica surface modification techniques can be used to give the surface a specific functional character. The sol-gel film was surface-modified to make the film highly hydrophobic. These sensors were shown to be capable of detecting non-polar organic analytes, such as benzonitrile, in aqueous solution with detection limits in the ppb range. Further, these porous sol-gel structures allow the analytes to diffuse into and out of the films rapidly, thus reaching equilibrium in less than ten seconds. These sensors are unique because of the fact that their operation is based on the measurement of an IR absorption spectrum. Thus, these sensors are able to identify the analytes as well as measure concentration with high sensitivity. These developments have been documented in previous reports and publications. Recently, we have also targeted detection of the polar organic molecules acetone and isopropanol in aqueous solution. Polar organics are widely used in industrial and chemical processes, hence it is of interest to monitor their presence in effluents or decontamination process flows. Although large improvements in detection limits were expected with non-polar organic molecules in aqueous solutions using very hydrophobic porous sol-gel films on silicon attenuated total reflectance (Si ATR) waveguides, it was not as clear what the detection enhancements might be for polar organic molecules. This report describes the use of modified sol-gel-coated Si ATR sensors for trace detection and quantitation of small polar organic molecules in aqueous solutions. The detection of both acetone and isopropanol molecules in aqueous solution has been previously reported for chalcogenide fiber optic sensors. The sol-gel film was produced using a mixture of ethyltriethoxysilane and tetraethoxysilane and the surface modification was carried out using trimethylchlorosilane. We have demonstrated that this film concentrates the target polar analytes from aqueous solution in the region probed by the evanescent wave to improve detection limits by as much as a factor of 450.

  14. pH-resistant titania hybrid organic-inorganic sol-gel coating for solid-phase microextraction of polar compounds.

    PubMed

    Li, Xiujuan; Gao, Jie; Zeng, Zhaorui

    2007-05-02

    A novel titania-hydroxy-terminated silicone oil (titania-OH-TSO) sol-gel coating was developed for solid-phase microextraction of polar compounds. In general, titania-based sol-gel reaction is very fast and need to be decelerated by the use of suitable chelating agents. But in the present work, a judiciously designed sol solution ingredients was used to create the titania-OH-TSO coating without the addition of any chelating agent, which simplified the sol-gel procedure. Thanks to the variety of titania's adsorption sites and their acid-base characteristics, aromatic amines, phenols and polycyclic aromatic hydrocarbons were efficiently extracted and preconcentrated from aqueous samples followed by thermal desorption and GC analysis. The newly developed sol-gel hybrid titania coating demonstrated excellent pH stability, and retained its extraction characteristics intact even after continuous rinsing with a 3 M HCl or NaOH solution for 12 h. Furthermore, it could withstand temperatures as high as 320 degrees C. Practical application was demonstrated through the analysis of six aromatic amines in dye process wastewater. A linearity of four orders of magnitude was obtained with correlation coefficient better than 0.9982. The detection limits ranged from 0.22 to 0.84 microg L(-1) and the repeatability of the measurements was <7.0%. The recoveries of these compounds studied in the wastewater were in the ranges 83.6-101.4%, indicating the method accuracy.

  15. Benzimidazole Based Aerogel Materials

    NASA Technical Reports Server (NTRS)

    Rhine, Wendell E. (Inventor); Mihalcik, David (Inventor)

    2016-01-01

    The present invention provides aerogel materials based on imidazoles and polyimidazoles. The polyimidazole based aerogel materials can be thermally stable up to 500 C or more, and can be carbonized to produce a carbon aerogel having a char yield of 60% or more, specifically 70% or more. The present invention also provides methods of producing polyimidazole based aerogel materials by reacting at least one monomer in a suitable solvent to form a polybenzimidazole gel precursor solution, casting the polybenzimidazole gel precursor solution into a fiber reinforcement phase, allowing the at least one gel precursor in the precursor solution to transition into a gel material, and drying the gel materials to remove at least a portion of the solvent, to obtain an polybenzimidazole-based aerogel material.

  16. Sol-gel processed porous silica carriers for the controlled release of diclofenac diethylamine.

    PubMed

    Czarnobaj, Katarzyna; Czarnobaj, Joanna

    2008-10-01

    Silica xerogels doped with diclofenac diethylamine were prepared by the sol-gel method from a hydrolysed tetraethoxysilane (TEOS) solution containing diclofenac diethylamine. Two different catalysts, drying conditions and levels of water content were used to alter the microstructure of the silica xerogels. The aim of this study was to determine the rate of Diclofenac release from the silica xerogels. This in vitro study showed that the sol-gel method is useful for entrapping Diclofenac in the pores of xerogels. It also showed that, in vitro, Diclofenac is released from the silica xerogel, through the pores, by diffusion. Base-catalysed gels proved to be much more effective than acid-catalyzed gels. (c) 2008 Wiley Periodicals, Inc.

  17. Controlled Synthesis and Utilization of Metal and Oxide Hybrid Nanoparticles

    NASA Astrophysics Data System (ADS)

    Crane, Cameron

    This dissertation reports the development of synthetic methods concerning rationally-designed, hybrid, and multifunctional nanomaterials. These methods are based on a wet chemical, solution phase approach that utilizes the knowledge of synthetic organic and inorganic chemistry to generate building blocks in solution for the growth of nanocrystals and hybrid nanostructures. This work builds on the prior knowledge of shape-controlled synthesis of noble metal nanocrystals and expands into the challenging realm of the more reactive first row transition metals. Specifically, a microemulsion sol-gel method was developed to synthesize Au-SiO2 dimers as precursors for the synthesis of segmented heterostructures of noble metals that can be used for catalysis. This microemulsion sol-gel method was modified to synthesize an aqueous suspension of oxidation-resistant Cu-SiO2 core-shell nanoparticles that can be used for sensing and catalysis. A thermal decomposition approach was developed, wherein zero-valence metal precursor complexes in the presence of seed nanoparticles produced metal-metal oxide core-shell structures with well-controlled shell thickness. This method was demonstrated on AuCu 3-Fe3O4, AuCu3-NiO, and AuCu3 -MnO core-shell systems. Switching the core from AuCu3 alloy to pure Cu, this method could extend to Cu-Fe3O4 and Cu-MnO systems. Further etching the Cu core in these core-shell structures led to the formation of the hollow metal oxides which provides a versatile route to hollow nanostructures of metal oxides. This work develops the synthetic library of tools for the production of hybrid nanostructures with multiple functionalities.

  18. Ultrasonication-enhanced gelation properties of a versatile amphiphilic formamidine-based gelator exhibiting both organogelation and hydrogelation abilities.

    PubMed

    Bachl, Jürgen; Sampedro, Diego; Mayr, Judith; Díaz Díaz, David

    2017-08-30

    We describe the preparation of a novel amphiphilic gelator built from a formamidine core, which is able to form a variety of physical organogels and hydrogels at concentrations ranging from 15 to 150 mg mL -1 . Interestingly, ultrasound treatment of isotropic solutions (i.e., gel-precursor) resulted in a remarkable enhancement of the gelation kinetics as well as the gelation scope and characteristic gel properties (e.g., critical gelation concentration, gel-to-sol transition temperature, viscoelastic moduli) in comparison to the heating-cooling protocol typically used to obtain supramolecular gels. Thermoreversibility, thixotropy, injectability and multistimuli responsiveness are some of the most relevant functionalities of these gels. Electron microscopy imaging revealed the formation of entangled networks made of fibers of nanometer diameters and micrometer lengths, with different morphological features depending on the solvent. Insights into the driving forces for molecular aggregations were obtained from FTIR, NMR, PXRD and computational studies. The results suggest a major stabilization of the fibers through additive N-HO hydrogen bonds, in combination with hydrophobic interactions, over π-π stacking interactions.

  19. Surface modification of quartz fibres for dental composites through a sol-gel process.

    PubMed

    Wang, Yazi; Wang, Renlin; Habib, Eric; Wang, Ruili; Zhang, Qinghong; Sun, Bin; Zhu, Meifang

    2017-05-01

    In this study, quartz fibres (QFs) surface modification using a sol-gel method was proposed and dental posts reinforced with modified QFs were produced. A silica sol (SS) was prepared using tetraethoxysilane (TEOS) and 3-methacryloxypropyltrimethoxysilane (γ-MPS) as precursors. The amount of γ-MPS in the sol-gel system was varied from 0 to 24wt.% with a constant molar ratio of TEOS, ethanol, deionized water, and HCl. Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and contact angle (CA) measurements were used to characterize the modified QFs, which confirmed that SS had successfully coated the surface of QFs. SEM images showed good interfacial bonding between the modified QFs and the resin matrix. The results of three-point bending tests of the fibre reinforced composite (FRC) posts showed that the QFs modified by SS with 12wt.% γ-MPS presented the best mechanical properties, demonstrating improvements of 108.3% and 89.6% for the flexural strength and flexural modulus, respectively, compared with untreated QFs. Furthermore, the sorption and solubility of the prepared dental posts were also studied by immersing the posts in artificial saliva (AS) for 4weeks, and yielded favourable results. This sol-gel surface modification method promises to resolve interfacial bonding issues of fibres with the resin matrix, and produce FRC posts with excellent properties. Copyright © 2017. Published by Elsevier B.V.

  20. Structure and luminescence properties of Tb3+-doped Lu3Al5O12 films prepared by Pechini sol-gel method

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Shen, Siqing; Xie, Jianjun; Shi, Ying; Ai, Fei

    2011-02-01

    Tb3+-doped Lu3Al5O12(hereinafter referred to as LuAG:Tb) films were successfully prepared by Pechini sol-gel process and spin-coating technique on carefully cleaned (111) silicon wafer. The microstructure and optical properties of the LuAG:Tb films were studied by X-ray diffraction (XRD), atomic force microscopy(AFM), as well as photoluminescence (PL) spectra. The XRD results showed that the precursor films started to crystallize at about 900°C. All as-calcined LuAG:Tb films showed the Tb3+ characteristic emission bands.

  1. Structure and luminescence properties of Tb3+-doped Lu3Al5O12 films prepared by Pechini sol-gel method

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Shen, Siqing; Xie, Jianjun; Shi, Ying; Ai, Fei

    2010-10-01

    Tb3+-doped Lu3Al5O12(hereinafter referred to as LuAG:Tb) films were successfully prepared by Pechini sol-gel process and spin-coating technique on carefully cleaned (111) silicon wafer. The microstructure and optical properties of the LuAG:Tb films were studied by X-ray diffraction (XRD), atomic force microscopy(AFM), as well as photoluminescence (PL) spectra. The XRD results showed that the precursor films started to crystallize at about 900°C. All as-calcined LuAG:Tb films showed the Tb3+ characteristic emission bands.

  2. Surface and catalytic properties of acid metal carbons prepared by the sol gel method

    NASA Astrophysics Data System (ADS)

    Aguado-Serrano, J.; Rojas-Cervantes, M. L.; Martín-Aranda, R. M.; López-Peinado, A. J.; Gómez-Serrano, V.

    2006-06-01

    The sol-gel method has been applied for the synthesis of a series of acid metal-carbon xerogels (with M = V, Cr, Mo and Ni) by polymerisation of resorcinol with formaldehyde in the presence of metallic precursors. A blank sample was also prepared without any metal addition. The xerogels were heated in nitrogen at 1000 °C to obtain the pyrolysed products. The samples were characterised by different techniques such as thermal-mass spectrometry analysis, gas physisorption, and mercury porosimetry. In addition, the acid character of the pyrolysed products was tested by the Claisen-Schmidt condensation between benzaldehyde and acetophenone for the formation of chalcones.

  3. Highly stable precursor solution containing ZnO nanoparticles for the preparation of ZnO thin film transistors.

    PubMed

    Huang, Heh-Chang; Hsieh, Tsung-Eong

    2010-07-23

    ZnO particles with an average size of about 5 nm were prepared via a sol-gel chemical route and the silane coupling agent, (3-glycidyloxypropyl)-trimethoxysilane (GPTS), was adopted to enhance the dispersion of the ZnO nanoparticles in ethyl glycol (EG) solution. A ZnO surface potential as high as 66 mV was observed and a sedimentation test showed that the ZnO precursor solution remains transparent for six months of storage, elucidating the success of surface modification on ZnO nanoparticles. The ZnO thin films were then prepared by spin coating the precursor solution on a Si wafer and annealing treatments at temperatures up to 500 degrees C were performed for subsequent preparation of ZnO thin film transistors (TFTs). Microstructure characterization revealed that the coalescence of ZnO nanoparticles occurs at temperatures as low as 200 degrees C to result in a highly uniform, nearly pore-free layer. However, annealing at higher temperatures was required to remove organic residues in the ZnO layer for satisfactory device performance. The 500 degrees C-annealed ZnO TFT sample exhibited the best electrical properties with on/off ratio = 10(5), threshold voltage = 17.1 V and mobility (micro) = 0.104 cm(2) V(-1) s(-1).

  4. Fabrication and characterization of highly transparent and conductive indium tin oxide films made with different solution-based methods

    NASA Astrophysics Data System (ADS)

    Xia, N.; Gerhardt, R. A.

    2016-11-01

    Solution-based fabrication methods can greatly reduce the cost and broaden the applications of transparent conducting oxides films, such as indium tin oxide (ITO) films. In this paper, we report on ITO films fabricated by spin coating methods on glass substrates with two different ITO sources: (1) a commercial ITO nanopowder water dispersion and (2) a sol-gel ITO solution. A simple and fast air annealing process was used to treat as-coated ITO films on a controlled temperature hot plate. Thermogravimetric analysis and x-ray diffraction showed that highly crystalline ITO films were formed after the annealing steps. The final ITO films had a good combination of optical properties and electrical properties, especially for films made from five layers of sol-gel ITO (92.66% transmittance and 8.7 × 10-3 Ω cm resistivity). The surface morphology and conducting network on the ITO films were characterized by non-contact and current atomic force microscopy. It was found that conducting paths were only partially connected for the nanoparticle ITO dispersion films, whereas the sol-gel ITO films had a more uniformly distributed conducting network on the surface. We also used the sol-gel ITO films to fabricate a simple liquid crystal display (LCD) device to demonstrate the excellent properties of our films.

  5. Dip-coating of nano-sized CeO2 on SiC membrane and its effect on thermal diffusivity.

    PubMed

    Park, Jihye; Jung, Miewon

    2014-05-01

    CeO2-SiC mixed composite membrane was fabricated with porous SiC ceramic and cerium oxide powder synthesized by sol-gel process. This CeO2-SiC membrane and SiC membrane which is made by the purified SiC ceramic were pressed and sintered in Ar atmosphere. And then, the SiC membrane was dip-coated by cerium oxide precursor sol solution and heat-treated in air. The surface morphology, particle size, porosity and structure analysis of the mixing and dip-coating SiC membrane were monitored by FE-SEM and X-ray diffraction analysis. Surface area, pore volume and pore diameter were determined by BET instrument. Thermal diffusivity was measured by laser flash method with increasing temperature. The relation between porosity and thermal diffusivity from different preparation process has been discussed on this study.

  6. Phytic acid derived bioactive CaO-P2O5-SiO2 gel-glasses.

    PubMed

    Li, Ailing; Qiu, Dong

    2011-12-01

    The possibility of using phytic acid as a precursor to synthesize CaO-P(2)O(5)-SiO(2) glasses by sol-gel method has been explored and the pseudo ternary phase diagram has been established. It was shown that gel-glasses over a broader range of compositions could be prepared compared to other phosphorus precursors or melt-quenching method. Furthermore, phytic acid was found to assist calcium being incorporated into glass networks. In vitro tests in simulated body fluid (SBF) were performed on the above gel-glasses and it was found that they were bioactive over a much broader compositional range especially at high phosphate content, thus enabling one to design bioactive materials with various degradation rates by adjusting the phosphate content.

  7. Sol-gel derived sorbents

    DOEpatents

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  8. Solid-phase assays for small molecule screening using sol-gel entrapped proteins.

    PubMed

    Lebert, Julie M; Forsberg, Erica M; Brennan, John D

    2008-04-01

    With compound libraries exceeding one million compounds, the ability to quickly and effectively screen these compounds against relevant pharmaceutical targets has become crucial. Solid-phase assays present several advantages over solution-based methods. For example, a higher degree of miniaturization can be achieved, functional- and affinity-based studies are possible, and a variety of detection methods can be used. Unfortunately, most protein immobilization methods are either too harsh or require recombinant proteins and thus are not amenable to delicate proteins such as kinases and membrane-bound receptors. Sol-gel encapsulation of proteins in an inorganic silica matrix has emerged as a novel solid-phase assay platform. In this minireview, we discuss the development of sol-gel derived protein microarrays and sol-gel based monolithic bioaffinity columns for the high-throughput screening of small molecule libraries and mixtures.

  9. Polymer-Silica Nanocomposites: A Versatile Platform for Multifunctional Materials

    NASA Astrophysics Data System (ADS)

    Chiu, Chi-Kai

    Solution sol-gel synthesis is a versatile approach to create polymer-silica nanocomposite materials. The solution-to-solid transformation results in a solid consisting of interconnected nanoporous structure in 3D space, making it the ideal material for filtration, encapsulation, optics, electronics, drug release, and biomaterials, etc. Although the pore between nano and meso size may be tunable using different reaction conditions, the intrinsic properties such as limited diffusion within pore structure, complicated interfacial interactions at the pore surfaces, shrinkage and stress-induced cracking and brittleness have limited the applications of this material. To overcome these problems, diffusion, pore size, shrinkage and stress-induced defects need further investigation. Thus, the presented thesis will address these important questions such as whether these limitations can be utilized as the novel method to create new materials and lead to new applications. First, the behaviors of polymers such as poly(ethylene glycol) inside the silica pores are examined by studying the nucleation and growth of AgCl at the surface of the porous matrix. The pore structure and the pressure induced by the shrinkage affect have been found to induce the growth of AgCl nanocrystals. When the same process is carried out at 160 °C, silver metallization is possible. Due to the shrinkage-induced stresses, the polymer tends to move into open crack spaces and exterior surfaces, forming interconnected silver structure. This interconnected silver structure is very unique because its density is not related to the size scale of nanopore structures. These findings suggest that it is possible to utilize defect surface of silica material as the template to create interconnected silver structure. When the scale is small, polymer may no longer be needed if the diffusion length of Ag is more than the size of silica particles. To validate our assumption, monoliths of sol-gel sample containing AgNO3 was ground into two different sizes of powder followed by powder pressing, heat-treating and etching. A new robust porous silver foam was then successfully made. By combining the results from room temperature and high temperature processes, we further study the patterned silver nanoparticles arrays in order to examine how mobility of silver can be controlled on a quantifiable scale. Furthermore, we have identified a thiolcontaining sol-gel precursor to control the affinity between silver and silica matrix. Lastly, the effects of interfacial interactions between sol-gel silica and other nanocomposite components and the effect of thickness of the sol-gel layer on mechanical properties were investigated. These studies were applied to the biomimetic hydroxyapatite-gelatin system. We have found that by limiting the thickness while maintaining interfacial interactions of the sol-gel layer, a unique moldable property and short hardening time from these nanocomposites can be achieved without compromising its biocompatibility. Their biocompatibility has been proven based on the in vitro and in vivo testing of these materials. In conclusion, the present study has demonstrated that polymer-silica nanocomposite is a versatile platform to carry out applications in nanocrystal growth, nanoporous metals, metal-ceramic composites, nano-imprint thin film, and bone grafts. These important findings not only provide new insights into nanocomposites but also give new meanings to the previously functional-limited sol-gel materials.

  10. Assembly of large-area, highly ordered, crack-free inverse opal films

    PubMed Central

    Hatton, Benjamin; Mishchenko, Lidiya; Davis, Stan; Sandhage, Kenneth H.; Aizenberg, Joanna

    2010-01-01

    Whereas considerable interest exists in self-assembly of well-ordered, porous “inverse opal” structures for optical, electronic, and (bio)chemical applications, uncontrolled defect formation has limited the scale-up and practicality of such approaches. Here we demonstrate a new method for assembling highly ordered, crack-free inverse opal films over a centimeter scale. Multilayered composite colloidal crystal films have been generated via evaporative deposition of polymeric colloidal spheres suspended within a hydrolyzed silicate sol-gel precursor solution. The coassembly of a sacrificial colloidal template with a matrix material avoids the need for liquid infiltration into the preassembled colloidal crystal and minimizes the associated cracking and inhomogeneities of the resulting inverse opal films. We discuss the underlying mechanisms that may account for the formation of large-area defect-free films, their unique preferential growth along the 〈110〉 direction and unusual fracture behavior. We demonstrate that this coassembly approach allows the fabrication of hierarchical structures not achievable by conventional methods, such as multilayered films and deposition onto patterned or curved surfaces. These robust SiO2 inverse opals can be transformed into various materials that retain the morphology and order of the original films, as exemplified by the reactive conversion into Si or TiO2 replicas. We show that colloidal coassembly is available for a range of organometallic sol-gel and polymer matrix precursors, and represents a simple, low-cost, scalable method for generating high-quality, chemically tailorable inverse opal films for a variety of applications. PMID:20484675

  11. Characterization and nanomechanical properties of novel dental implant coatings containing copper decorated-carbon nanotubes.

    PubMed

    Sasani, N; Vahdati Khaki, J; Mojtaba Zebarjad, S

    2014-09-01

    Fluorapatite-titania coated Ti-based implants are promising for using in dental surgery for restoring teeth. One of the challenges in implantology is to achieve a bioactive coating with appropriate mechanical properties. In this research, simple sol-gel method was developed for synthesis of fluorapatite-titania-carbon nanotube decorated with antibacterial agent. Triethyl phosphate [PO4(C2H5)3], calcium nitrate [Ca(NO3)2] and ammonium fluoride (NH4F) were used as precursors under an ethanol-water based solution for fluorapatite (FA) production. Titanium isopropoxide and isopropanol were used as starting materials for making TiO2 sol-gels. Also, Copper acetate [Cu(C2H3O2)2·H2O] was used as precursor for decoration of multi walled carbon nanotubes (MWCNTs) with wet chemical method. The decorated MWCNTs (CNT(Cu)) were evaluated by transmission electron microscopy (TEM). The phase identification of the FA-TiO2-CNT(Cu) coating was carried out by XRD analysis. Morphology of coated samples was investigated by SEM observations. The surface elastic modulus and hardness of coatings were studied using nanoindentation technique. The results indicate that novel dental implant coating containing FA, TiO2 and copper decorated MWCNTs have proper morphological features. The results of nanoindentation test show that incorporation of CNT(Cu) in FA-TiO2 matrix can improve the nanomechanical properties of composite coating. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Synthesis and characterization of NiO nanopowder by sol-gel process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ningsih, Sherly Kasuma Warda

    2015-09-30

    Preparation of nickel oxide (NiO) nanopowder by sol-gel process has been studied. NiO nanopowders were obtained by sol-gel method by using nickel nitrate hexahydrate and sodium hydroxide and aquadest were used as precursor, agent precipitator and solvent, respectively. The powders were formed by drying at 110°C and followed by heating in the furnace at 400°C for 1.5 hours. The product was obtained black powder. The product was characterized by Energy Dispesive X-ray Fluorescence (ED-XRF), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The ED-XRF pattern shows the composition of NiO produced was 97.1%. The XRD pattern showed NiO forms weremore » produced generally in monoclinic stucture. The crystalline size of NiO was obtained in the range 40-85 nm. SEM micrograph clearly showed that powder had a spherical with uniform distribution size is 0.1-1.0 µm approximately.« less

  13. Structure and intense UV up-conversion emissions in RE3+-doped sol-gel glass-ceramics containing KYF4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Yanes, A. C.; Santana-Alonso, A.; Méndez-Ramos, J.; del-Castillo, J.

    2013-12-01

    Transparent nano-glass-ceramics containing KYF4 nanocrystals were successfully obtained by the sol-gel method, doped with Eu3+ and co-doped with Yb3+ and Tm3+ ions. Precipitation of cubic KYF4 nanocrystals was confirmed by X-ray diffraction and high-resolution transmission electron microscope images. Excitation and emission spectra let us to discern between ions into KYF4 nanocrystals and those remaining in a glassy environment, supplemented with time-resolved photoluminescence decays, that also clearly reveal differences between local environments. Unusual high-energy up-conversion emissions in the UV range were obtained in Yb3+-Tm3+ co-doped samples, and involved mechanisms were discussed. The intensity of these high-energy emissions was analyzed as a function of Yb3+ concentration, heat treatment temperature of precursor sol-gel glasses and pump power, determining the optimum values for potential optical applications as highly efficient UV up-conversion materials in UV solid-state lasers.

  14. Sol-gel immobilization as a suitable technique for enhancement of α-amylase activity of Aspergillus oryzae PP.

    PubMed

    Evstatieva, Yana; Yordanova, Mariya; Chernev, Georgi; Ruseva, Yanislava; Nikolova, Dilyana

    2014-07-04

    Bioencapsulation of microbial cells in silica-based matrices has proved to be a good strategy to enhance the biosynthetic capabilities and viability of bioproducers. In the present study, mycelium and pellet cultures of strain Aspergillus oryzae PP were successfully immobilized in sol-gel hybrid matrices composed of tetraethylorthosilicate as an inorganic precursor, 5% (w/v) starch and 10 or 15% (w/v) polyethylene oxide, or 10% (w/v) calcium alginate as organic compounds. Biosynthetic activity of immobilized cultures was investigated by batch and fed-batch cultivation and the obtained results of 3042.04 IU cm -3 were comparable with the enzyme activity of the free cell culture. Immobilized cultures retained their viability and biosynthetic capabilities up to the 744th h during fed-batch fermentation processes. Consequently, sol-gel encapsulation in hybrid matrices could be considered as a promising technique for immobilization of Aspergillus oryzae PP in order to increase the α-amylase production.

  15. 3D Printed PEG-Based Hybrid Nanocomposites Obtained by Sol-Gel Technique.

    PubMed

    Chiappone, Annalisa; Fantino, Erika; Roppolo, Ignazio; Lorusso, Massimo; Manfredi, Diego; Fino, Paolo; Pirri, Candido Fabrizio; Calignano, Flaviana

    2016-03-02

    In this work, three-dimensional (3D) structured hybrid materials were fabricated combining 3D printing technology with in situ generation of inorganic nanoparticles by sol-gel technique. Those materials, consisting of silica nanodomains covalently interconnected with organic polymers, were 3D printed in complex multilayered architectures, incorporating liquid silica precursors into a photocurable oligomer in the presence of suitable photoinitiators and exposing them to a digital light system. A post sol-gel treatment in acidic vapors allowed the in situ generation of the inorganic phase in a dedicated step. This method allows to build hybrid structures operating with a full liquid formulation without meeting the drawbacks of incorporating inorganic powders into 3D printable formulations. The influence of the generated silica nanoparticle on the printed objects was deeply investigated at macro- and nanoscale; the resulting light hybrid structures show improved mechanical properties and, thus, have a huge potential for applications in a variety of advanced technologies.

  16. Sol-gel derived CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics: Synthesis, characterization and electrical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Laijun; Fan Huiqing; Fang Pinyang

    2008-07-01

    The giant dielectric constant material CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) has been synthesized by sol-gel method, for the first time, using nitrate and alkoxide precursor. The electrical properties of CCTO ceramics, showing an enormously large dielectric constant {epsilon} {approx} 60,000 (100 Hz at RT), were investigated in the temperature range from 298 to 358 K at 0, 5, 10, 20, and 40 V dc. The phases, microstructures, and impedance properties of final samples were characterized by X-ray diffraction, scanning electron microscopy, and precision impedance analyzer. The dielectric permittivity of CCTO synthesized by sol-gel method is at least three times ofmore » magnitude larger than that synthesized by other low-temperature method and solid-state reaction method. Furthermore, the results support the internal barrier layer capacitor (IBLC) model of Schottky barriers at grain boundaries between semiconducting grains.« less

  17. Production of Monodisperse Cerium Oxide Microspheres with Diameters near 100 µm by Internal Gelation Sol-Gel Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce

    2018-05-01

    Internal gelation sol-gel methods have used a variety of sphere forming methods in the past to produce metal oxide microspheres, but typically with poor control over the size uniformity at diameters near 100 µm. This work describes efforts to make and measure internal gelation, sol-gel microspheres with very uniform diameters in the 100 – 200 µm size range using a two-fluid nozzle. A custom apparatus was used to form aqueous droplets of sol-gel feed solutions in silicone oil and heat them to cause gelation of the spheres. Gelled spheres were washed, dried, and sintered prior to mounting on glass slidesmore » for optical imaging and analysis. Microsphere diameters and shape factors were determined as a function of silicone oil flow rate in a two-fluid nozzle and the size of a needle dispensing the aqueous sol-gel solution. Nine batches of microspheres were analyzed and had diameters ranging from 65.5 ± 2.4 µm for the smallest needle and fastest silicone oil flow rate to 211 ± 4.7 µm for the largest needle and slowest silicone oil flow rate. Standard deviations for measured diameters were less than 8% for all samples and most were less than 4%. Microspheres had excellent circularity with measured shape factors of 0.9 – 1. However, processing of optical images was complicated by shadow effects in the photoresist layer on glass slides and by overlapping microspheres. Based on calculated flow parameters, microspheres were produced in a simple dripping mode in the two-fluid nozzle. Using flow rates consistent with a simple dripping mode in a two-fluid nozzle configuration allows for very uniform oxide microspheres to be produced using the internal-gelation sol-gel method.« less

  18. Synthesis of phthalocyanine doped sol-gel materials

    NASA Technical Reports Server (NTRS)

    Dunn, Bruce

    1993-01-01

    The synthesis of sol-gel silica materials doped with three different types of metallophthalocyanines has been studied. Homogeneous materials of good optical quality were prepared and the first optical limiting measurements of dyes in sol-gel hosts were carried out. The properties of these solid state limiters are similar to limiters based on phthalocyanine (Pc) in solution. Sol-gel silica materials containing copper, tin and germanium phthalocyanines were investigated. The initial step in all cases was to prepare silica sols by the sonogel method using tetramethoxy silane (TMOS), HCl and distilled water. Thereafter, the synthesis depended upon the specific Pc and its solubility characteristics. Copper phthalocyanine tetrasulfonic acid tetra sodium salt (CuPc4S) is soluble in water and various doping levels (1 x 10 (exp -4) M to 1 x 10 (exp -5) M) were added to the sol. The group IV Pc's, SnPc(OSi(n-hexyl)3)2 and GePc(OSi(n-hexyl)3)2, are insoluble in water and the process was changed accordingly. In these cases, the compounds were dissolved in THF and then added to the sol. The Pc concentration in the sol was 2 x 10(exp -5)M. The samples were then aged and dried in the standard method of making xerogel monoliths. Comparative nanosecond optical limiting experiments were performed on silica xerogels that were doped with the different metallophthalocyanines. The ratio of the net excited state absorption cross section (sigma(sub e)) to the ground state cross section (sigma(sub g)) is an important figure of merit that is used to characterize these materials. By this standard the SnPc sample exhibits the best limiting for the Pc doped sol-gel materials. Its cross section ratio of 19 compares favorably with the value of 22 that was measured in toluene. The GePc materials appear to not be as useful as those containing SnPc. The GePc doped solids exhibit a higher onset energy (2.5 mj and lower cross section ratio, 7. The CuPc4S sol-gel material has a still lower cross section ratio, 4, however, the tetrasulfonate groups make the dye soluble in water which greatly facilitates its incorporation into the sol-gel matrix. The nonlinear transmission of CuPc4S in a pH 2 buffer solution and in a silica xerogel were compared. It is evident that the CuPc4S preserves its optical limiting behavior in the sol-gel matrix, indicating that the fundamental excited state absorption process is essentially the same for a molecule in solution or in the solid state. Although the spectroscopic details of energy level lifetimes are unknown, the significance is that passive optical limiting has been achieved in the solid state via incorporation of a dye into an inorganic host. The only compromise occurs at the extremely high energy regime where photobleaching is observed. This is a result of the limited mobility of the dye molecules in the solid silica host relative to a liquid host. The effects of photodegradation in the xerogel are additive, whereas the solution provides a supply of fresh molecules that are free to enter the active volume between pulses.

  19. Synthesis and Characterization of BaFe12O19 Thin Films Using Suspension of Nano Powders

    NASA Astrophysics Data System (ADS)

    Salemizadeh, Saman; Seyyed Ebrahimi, S. A.

    BaM thin films have been synthesized by dispersing the dried gel nano powders prepared by Sol-Gel method. The solution was made by dissolving iron nitrate Fe(NO3).9H2O, barium nitrate Ba(NO3)2 and citric acid in deyonized water and methanol. This sol was slowly evaporated until a dried gel was formed. This dried gel was then added to ethylene glycol. The final solution was vigorously shaken and mixed in ultrasonic cleaner for 30 min to disperse particles sufficiently. Then the prepared solution spin coated on Si(110) substrate. The obtained thin films were dried at 120 °C and then calcined at 900 °C for 1 h. The films were characterized using X-ray diffraction (XRD) and vibrating sample magnetometer (VSM).

  20. Chitosan-doped-hybrid/TiO2 nanocomposite based sol-gel coating for the corrosion resistance of aluminum metal in 3.5% NaCl medium.

    PubMed

    J, Balaji; M G, Sethuraman

    2017-11-01

    The study outlines the role of chitosan, a biopolymer on corrosion behavior of Hy/nano-TiO 2 based sol-gel coating over aluminum metal. In this study organic-inorganic hybrid sols were synthesized through hydrolysis and condensation of 3-glycidoxypropyltrimethoxy silane (GPTMS), tetraethoxysilane (TEOS) and titanium (IV) isopropoxide (TIP) in acidic solution. Chitosan was doped into sol-gel matrix and self-assembled over aluminum substrate. The resultant chitosan-doped-Hy/nano-TiO 2 sol-gel coating was characterized by Fourier Transform Infrared (FT-IR) spectra, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Energy-Dispersive X-ray Spectroscopy (EDX) analyses. The as-tailored aluminum substrate was evaluated for corrosion resistance in neutral medium. The protection ability of these coatings was evaluated by electrochemical impedance studies (EIS) and potentiodynamic polarization (PP) measurements in 3.5% NaCl medium. The EIS and PP results showed that chitosan-doped- Hy/nano-TiO 2 sol-gel coating exhibited better protection from corrosion than the undoped Hy/TiO 2 nanocomposite coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Spectroscopic and electrochemical characterization of cytochrome c encapsulated in a bio sol-gel matrix.

    PubMed

    Deriu, Daniela; Pagnotta, Sara Emanuela; Santucci, Roberto; Rosato, Nicola

    2008-08-01

    Sol-gel technique represents a remarkably versatile method for protein encapsulation. To enhance sol-gel biocompatibility, systems envisaging the presence of calcium and phosphates in the sol-gel composition were recently prepared and investigated. Unfortunately, the low pH at which solutions were prepared (pH < 2.5) dramatically limited their application to proteins, because the acidic environment induces protein denaturation. In this paper we apply a new protocol based on the introduction of calcium nitrate to the inorganic phase, with formation of a binary bioactive system. In this case protein encapsulation results versatile and secure, being achieved at a pH close to neutrality (pH 6.0); also, the presence of calcium is expected to enhance system biocompatibility. To determine the properties of the salt-doped sol-gel and the influence exerted on entrapped biosystems, the structural and functional properties of embedded cytochrome c have been investigated. Data obtained indicate that the salt-doped sol-gel induces no significant change in the structure and the redox properties of the embedded protein; also, the matrix increases protein stability. Interestingly, the presence of calcium nitrate appears determinant for refolding of the acid-denatured protein. This is of interest in the perspective of future applications in biosensoristic area.

  2. Electrochromic TiO2 Thin Film Prepared by Dip-Coating Technique

    NASA Astrophysics Data System (ADS)

    Suriani, S.; Kamisah, M. M.

    2002-12-01

    Titanium dioxide (TiO2) thin films were prepared by using sol-gel dip coating technique. The coating solutions were prepared by reacting titanium isopropoxide as precursors and ethanol as solvent. The films were formed on transparent ITO-coated glass by a dip coating technique and final dried at various temperatures up to 600 °C for 30 minutes. The films were characterized with the UV-Vis-NIR Spectrometer, Scanning Electron Microscopy (SEM) and X-ray diffractometer (XRD). XRD results show that the films dried at 600 °C form anatase structure. From the spectroscopic studies, the sample shows electrochromic property.

  3. Second harmonic generation of template synthesized PbTiO 3 nanostructures

    NASA Astrophysics Data System (ADS)

    Chang, Ki-Seog; Park, Yong-Heon; Bu, Sang-Don; Hernandez, Bernadette A.; Fisher, Ellen R.; Dorhout, Peter K.

    2007-09-01

    The lead titanate (PbTiO3) nanotubes were prepared with a chelate sol-gel of titanium isopropoxide (Ti(OiPr)4) and lead acetate (Pb(OAc)2-3H2O) by using AlOx template. Whatman® anodisc membranes (with a 200 nm pore size) served as the template. The template was dipped into the precursor, PbTiO3 solution, allowed to air dry, and then calcined at 650 °C. Recently, we have characterized a signal of second harmonic generation (SHG); 532 nm on 1064 nm of Nd:YAG laser beam in the PbTiO3 nanotubes with AlOx template.

  4. Development and Characterization of Titanium Dioxide Gel with Encapsulated Bacteriorhodopsin for Hydrogen Production.

    PubMed

    Johnson, Kaitlin E; Gakhar, Sukriti; Risbud, Subhash H; Longo, Marjorie L

    2018-06-06

    We study bacteriorhodopsin (BR) in its native purple membrane encapsulated within amorphous titanium dioxide, or titania, gels and in the presence of titania sol-particles to explore this system for hydrogen production. Förster resonance energy transfer between BR and titanium dioxide sol particles was used to conclude that there is nanometer-scale proximity of bacteriorhodopsin to the titanium dioxide. The detection of BR-titania sol aggregates by fluorescence anisotropy and particle sizing indicated the affinity amorphous titania has for BR without the use of additional cross-linkers. UV-Visible spectroscopy of BR-titania gels show that methanol addition did not denature BR at a 25 mM concentration presence as a sacrificial electron donor. Additionally, confinement of BR in the gels significantly limited protein denaturation at higher concentration of added methanol or ethanol. Subsequently, titania gels fabricated through the sol-gel process using a titanium ethoxide precursor, water and the addition of 25 mM methanol were used to encapsulate BR and a platinum reduction catalyst for the production of hydrogen gas under white light irradiation. The inclusion of 5 µM bacteriorhodopsin resulted in a hydrogen production rate of about 3.8 µmole hydrogen mL -1 hr -1 , an increase of 52% compared to gels containing no protein. Electron transfer and proton pumping by BR in close proximity to the titania gel surface are feasible explanations for the enhanced production of hydrogen without the need to crosslink BR to the titania gel. This work sets the stage for further developments of amorphous, rather than crystalline, titania-encapsulated bacteriorhodopsin for solar-driven hydrogen production through water-splitting.

  5. Rheological study of physical cross-linked quaternized cellulose hydrogels induced by β-glycerophosphate.

    PubMed

    You, Jun; Zhou, Jinping; Li, Qian; Zhang, Lina

    2012-03-20

    As a weak base, β-glycerophosphate (β-GP) was used to spontaneously initiate gelation of quaternized cellulose (QC) solutions at body temperature. The QC/β-GP solutions are flowable below or at room temperature but gel rapidly under physiological conditions. In order to clarify the sol-gel transition process of the QC/β-GP systems, the complex was investigated by dynamic viscoelastic measurements. The shear storage modulus (G') and loss modulus (G″) as a function of (1) concentration of β-GP (c(β-GP)), (2) concentration of QC (c(QC)), (3) degree of substitution (DS; i.e., the average number of substituted hydroxyl groups in the anhydroglucose unit) of QC, (4) viscosity-average molecular weight (M(η)) of QC, and (5) solvent medium were studied by the oscillatory rheology. The sol-gel transition temperature of QC/β-GP solutions decreased with an increase of c(QC) and c(β-GP), the M(η) of QC, and a decrease of the DS of QC and pH of the solvent. The sol-gel transition temperature and time could be easily controlled by adjusting the concentrations of QC and β-GP, M(η) and DS of QC, and the solvent medium. Gels formed after heating were irreversible; i.e., after cooling to lower temperature they could not be dissolved to become liquid again. The aggregation and entanglement of QC chains, electrostatic interaction, and hydrogen bonding between QC and β-GP were the main factors responsible for the irreversible sol-gel transition behavior of QC/β-GP systems.

  6. Rapid fabrication of titania nanofibers by electrospinning

    NASA Astrophysics Data System (ADS)

    Li, Dan; Xia, Younan

    2003-11-01

    This paper describes a simple and convenient procedure for fabricating polycrystalline titania nanofibers with controllable diameter and porous structures. By combining sol-gel technique and electrospinning, nanofibers made of poly(vinyl pyrrolidone) (PVP) and amorphous TiO2 were firstly obtained by electrospinning an ethanol solution containing both PVP and titanium tetraisopropoxide under appropriate high voltages. These nanofibers could be subsequently converted to anatase without changing their morphology via calcination in air at 500°C. The average diameter of these ceramic nanofibers could be controlled in the range from 20 to 200 nm by varying a number of parameters such as the voltage, the feeding rate of the precursor solution, the ratio between PVP and titanium tetraisopropoxide, and their concentrations in the alcohol solution. Titanium tetraisopropoxide could be transferred to titania nanofibers with ~100% yield by using this technique.

  7. Microwave sintering of sol-gel derived abrasive grain

    DOEpatents

    Plovnick, Ross; Celikkaya, Ahmet; Blake, Rodger D.

    1997-01-01

    A method is provided for making microwave-sintered, free flowing alpha alumina-based ceramic abrasive grain, under conditions effective to couple microwaves with calcined alpha alumina-based abrasive gain precursor and sinter it at a temperature of at least about 1150.degree. C.

  8. Three-phase molecularly imprinted sol-gel based hollow fiber liquid-phase microextraction combined with liquid chromatography-tandem mass spectrometry for enrichment and selective determination of a tentative lung cancer biomarker.

    PubMed

    Moein, Mohammad Mahdi; Javanbakht, Mehran; Karimi, Mohammad; Akbari-Adergani, Behrouz; Abdel-Rehim, Mohamed

    2015-07-15

    In the present study, the modification of a polysulfone hollow fiber membrane with in situ molecularly imprinted sol-gel process (as a novel and one-step method) was prepared and investigated. 3-(propylmethacrylate)trimethoxysilane (3PMTMOS) as an inorganic precursor was used for preparation of molecularly imprinted sol-gel. The modified molecularly imprinted sol-gel hollow fiber membrane (MSHM) was used for the liquid-phase microextraction (LPME) of hippuric acid (HA) in human plasma and urine samples. MSHM as a selective, robust, and durable tool was used for at least 50 extractions without significant decrease in the extraction efficiency. The non-molecularly imprinted sol-gel hollow fiber membrane (NSHM) as blank hollow fiber membrane was prepared by the same process, only without HA. To achieve the best condition, influential parameters on the extraction efficiency were thoroughly investigated. The capability of this robust, green, and simple method for extraction of HA was successfully accomplished with LC/MS/MS. The limits of detection (LOD) and quantification (LOQ) in human plasma and urine samples were 0.3 and 1.0nmolL(-1), respectively. The standard calibration curves were obtained within the concentration range 1-2000nmolL(-1) for HA in human plasma and urine. The coefficients of determination (r(2)) were ≥0.998. The obtained data exhibited recoveries were higher than 89% for the extraction of HA in human plasma and urine samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Investigation of the dielectric function of solution-processed InGaZnO films using ellipsometry.

    PubMed

    Kim, Tae Jung; Yoon, Jae Jin; Hwang, Soo Min; Choi, Jun Hyuk; Hwang, Soon Yong; Ghong, Tae Ho; Barange, Nilesh; Kim, Jun Young; Kim, Young Dong; Joo, Jinho

    2012-07-01

    The optical properties of InGaZnO (IGZO) films grown through the sol-gel process as a function of sintering time were investigated with spectroscopic ellipsometry (SE). The IGZO precursor sol was prepared by mixing In nitrate, Ga nitrate, and Zn acetate at a molar ratio of In:Ga:Zn = 3:1:1. The solution was deposited on a SiO2/Si substrate via spin coating. Sintering was performed at 400 degrees C for 1-15 h in an ambient atmosphere. The optical properties were measured over the range 1.12-6.52 eV via variable angle SE, at room temperature. The angle of incidence was varied from 50 to 70 degrees in 5 degree steps. To extract the pure optical properties of IGZO, multilayer-structure calculation with Tauc-Lorentz dispersion relation for IGZO was performed. The changes in the dielectric function of the IGZO films with varying sintering time were observed. The resultant optical properties can be related to the concentration of oxygen vacancies in the material, which can be controlled by the sintering time.

  10. Thermal Annealing Effect on Optical Properties of Binary TiO₂-SiO₂ Sol-Gel Coatings.

    PubMed

    Wang, Xiaodong; Wu, Guangming; Zhou, Bin; Shen, Jun

    2012-12-24

    TiO₂-SiO₂ binary coatings were deposited by a sol-gel dip-coating method using tetrabutyl titanate and tetraethyl orthosilicate as precursors. The structure and chemical composition of the coatings annealed at different temperatures were analyzed by Raman spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. The refractive indices of the coatings were calculated from the measured transmittance and reflectance spectra. An increase in refractive index with the high temperature thermal annealing process was observed. The Raman and FTIR results indicate that the refractive index variation is due to changes in the removal of the organic component, phase separation and the crystal structure of the binary coatings.

  11. Titanium (IV) sol-gel chemistry in varied gravity environments

    NASA Astrophysics Data System (ADS)

    Hales, Matthew; Martens, Wayde; Steinberg, Theodore

    Sol-gel synthesis in reduced gravity is a relatively new topic in the literature and further inves-tigation is essential to realise its potential and application to other sol-gel systems. The sol-gel technique has been successfully applied to the synthesis of silica systems of varying porosity for many diverse applications [1-5]. It is proposed that current methods for the synthesis of silica sol-gels in reduced gravity may be applied to titanium sol-gel processing in order to enhance desirable physical and chemical characteristics of the final materials. The physical and chemical formation mechanisms for titanium alkoxide based sol-gels, to date, is not fully understood. However, various authors [6-9] have described potential methods to control the hydrolysis and condensation reactions of titanium alkoxides through the use of chemical inhibitors. A preliminary study of the reaction kinetics of titanium alkoxide sol-gel reaction in normal gravity was undertaken in order to determine reactant mixtures suitable for further testing under varied gravity conditions of limited duration. Through the use of 1H Nuclear Magnetic Resonance spectroscopy (NMR) for structural analysis of precursor materials, Ultra-Violet-Visible spectroscopy (UV-VIS) and viscosity measurements, it was demonstrated that not only could the rate of the chemical reaction could be controlled, but directed linear chain growth within the resulting gel structure was achievable through the use of increased inhibitor concentrations. Two unique test systems have been fabricated to study the effects of varied gravity (reduced, normal, high) on the formation of titanium sol-gels. Whilst the first system is to be used in conjunction with the recently commissioned drop tower facility at Queensland University of Technology in Brisbane, Australia to produce reduced gravity conditions. The second system is a centrifuge capable of providing high gravity environments of up to 70 G's for extended periods of time. The test systems and experimental results obtained will be presented. 1. Okubo, T., Tsuchida, A., Okuda, T., Fujitsuna, K., Ishikawa, M., Morita, T., Tada, T. , Kinetic Analyses of Colloidal Crystallization in Microgravity -Aircraft Experiments. . Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999. 153: p. 515-524. 2. Okubo, T., Tsuchida, A., Kobayashi, K., Kuno, A., Morita, T., Fujishima, M., Kohno, Y., Kinetic Study of the Formation Reaction of Colloidal Silica Spheres in Microgravity Using Aircraft. Colloid Polymer Science, 1999. 277(5): p. 474-478. 3. Pienaar, C.L., Chiffoleau, G. J. A., Follens, L. R. A., Martens, J. A., Kirschhock, C. E. A., Steinberg, T. A., Effect of Gravity on the Gelation of Silica Sols. Chem. Mater., 2007. 19(4): p. 660-664. 4. Smith, D.D., et al., Effect of Microgravity on the Growth of Silica Nanostructures. Langmuir, 2000. 16(26): p. 10055-10060. 5. Zhang, X., Johnson, D.P., Manerbino, A.R., Moore, J.J., Schowengerdt, F. , Recent Mi-crogravity Results in the Synthesis of Porous Materials. AIP Conference Proceedings (Space Technology and Applications International Forum-1999, Pt. 1), 1999. 458: p. 88-93. 6. Dunbar, P.B., Bendzko, N.J.,, 1H and 13C NMR observation of the reaction of acetic acid with titanium isopropoxide. Materials Chemistry and Physics, 1999. 59: p. 26-35. 7. Krunks, M., Oja, I., T˜nsuaadu, K., Es-Souni, M., Gruselle, M., Niinistü,. L, Thermoanalytical study of acetylacetonate-modified titanium (iv) isopropoxide as precursor for TiO2 films. Journal of Thermal Analysis and Calorimetry, 2005: p. 483-488. 8. Moran, P.D., Bowmaker, G. A., Cooney, R. P., Vibrational Spectra and Molecular Associa-tion of Titanium Tetraisopropoxide. Inorg. Chem., 1998. 37(1): p. 2741-2748. 9. Somogyvari, A., Serpone, N.,, Evidence for five-coordination in titanium(1V) complexes. A nuclear magnetic resonance investigation. Canadian Journal of Chemistry, 1977. 56: p. 316-319.

  12. Sol-gel preparation of self-cleaning SiO2-TiO2/SiO2-TiO2 double-layer antireflective coating for solar glass

    NASA Astrophysics Data System (ADS)

    Lin, Wensheng; Zheng, Jiaxian; Yan, Lianghong; Zhang, Xinxiang

    2018-03-01

    Self-cleaning SiO2-TiO2/SiO2-TiO2 double-layer antireflective (AR) coating is prepared by sol-gel process. SiO2 sol is prepared by using tetraethyl orthosilicate (TEOS) as precursor and ammonia as catalyst, while TiO2 sol was prepared by using tetrabutyl orthotitanate (TBOT) as precursor and hydrochloric acid as catalyst. The effect of TiO2 content on refractive index, abrasion-resistance and photo-catalytic activity of SiO2-TiO2 hybrid thin films or powders is systematically investigated. It is found that the refractive index of SiO2-TiO2 hybrid thin films increases gradually from 1.18 to 1.53 as the weight ratio of TiO2 to SiO2 increased from 0 to 1.0. The SiO2-TiO2 hybrid thin film and powder possesses good abrasion-resistance and photo-catalytic activity, respectively, as the weight ratio of TiO2 to SiO2 is 0.4. The degradation degree of Rhodamine B by SiO2-TiO2 hybrid powder is 88.3%. Finally, SiO2-TiO2/SiO2-TiO2 double-layer AR coating with high transmittance, abrasion-resistance and self-cleaning property is realized.

  13. Research of obtaining TiO2 by sol-gel method using titanium isopropoxide TIP and tetra-n-butyl orthotitanate TNB

    NASA Astrophysics Data System (ADS)

    Gómez de Salazar, J. M.; Nutescu Duduman, C.; Juárez Gonzalez, M.; Palamarciuc, I.; Barrena Pérez, M. I.; Carcea, I.

    2016-08-01

    Titanium dioxide crystallises in three polymorphs: anatase, rutile and brookite. Rutile is most stable form of the TiO2 polymorphs. In this paper we concentrate on obtaining rutile and anatase, both used in various applications. The chosen method is sol-gel, which is a reliable method used for obtaining titanium oxides. We prepared titanium dioxide with using titanium isopropoxide (TIP) with chemical construction (C12H28O4Ti) and tetra-n-butyl orthotitanate (TNB) with chemical construction (C16H36O4Ti). The experiments were carried out in order to compare the results of the samples with similar reaction conditions, but with different precursors, thus concluding which precursor gives best results. Using different analysis techniques as X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Thermogravimetric Analysis (TGA) we characterised the samples morphologically and structurally.

  14. Anisotropic growth and formation mechanism investigation of 1D ZnO nanorods in spin-coating sol-gel process.

    PubMed

    Song, Yijian; Zheng, Maojun; Ma, Li; Shen, Wenzhong

    2010-01-01

    ZnO nanorods are fabricated on glass substrate by spin-coating sol-gel process using non-basic aged solution and annealing. Sample solutions reserved in room temperature for different time (one day, one month, two months and four months) are prepared for the experiment. The morphology study indicates that the aging time has direct influence on the final products. This is verified by the Transmission Electron Microscopy and Photon Correlation Spectroscopy study. Small crystalline nanoparticles would gradually nucleate and aggregate in the sol during the aging process. They act as nucleation site for the secondary crystal growth into nanorods during anneal. Both the size of crystalline particles in the sol and the size of nanorods will grow bigger as the aging time increases. The products' structure and optical property are further studied by X-ray diffraction spectroscopy, Photoluminescence and Raman spectroscopy. This work also helps to further clarify the formation mechanism of ZnO nanorods by solution-based method.

  15. A review of photocatalysts prepared by sol-gel method for VOCs removal.

    PubMed

    Tseng, Ting Ke; Lin, Yi Shing; Chen, Yi Ju; Chu, Hsin

    2010-05-28

    The sol-gel process is a wet-chemical technique (chemical solution deposition), which has been widely used in the fields of materials science, ceramic engineering, and especially in the preparation of photocatalysts. Volatile organic compounds (VOCs) are prevalent components of indoor air pollution. Among the approaches to remove VOCs from indoor air, photocatalytic oxidation (PCO) is regarded as a promising method. This paper is a review of the status of research on the sol-gel method for photocatalyst preparation and for the PCO purification of VOCs. The review and discussion will focus on the preparation and coating of various photocatalysts, operational parameters, and will provide an overview of general PCO models described in the literature.

  16. Organic/inorganic hybrid coatings for anticorrosion

    NASA Astrophysics Data System (ADS)

    He, Zhouying

    Compared to organic coatings, organic-inorganic hybrid coatings can potentially improve the anticorrosion performance. The organic phase provides the excellent mechaincal and barrier properties while the inorganic phase acts as an adhesion promoter and corrosion inhibitor. Despite that many studies on alkoxylsilane-based hybrid coatings have been developed and studied, their weatherability and anticorrosion performance has been rarely evaluated. On the other hand, organic-inorganic hybrid coatings based on mixed sol-gel precursors have received much less attention compared to alkoxylsilane-based hybrid coatings. In the first part, polyurethane hybrid coatings with a unique hybrid crosslinked structure as an improved unicoat were successfully prepared. The effect of polyesters on physical properties of the hybrid coatings was studied. Polyurethane coatings derived from cycloaliphatic polyester show comparable properties than those derived from the commercially viable aromatic polyester. Introducing the polysiloxane part into the polyurethane coatings enhanced the crosslinking density, Tg, mechanical properties, and general coating properties. The increased adhesion between the hybrid coating and the substrate make the hybrid coating a good candidate for anticorrosion application, which is shown by electrochemical impedance spectroscopy (EIS). The degradation mechanism of the polyurethane/polysiloxane hybrid coatings under various weathering conditions was shown to be the scission of the urethane and ester groups in the organic phase along with reorganizing and rearranging of the inorganic phase. The anticorrosion performance of the cycloaliphatic hybrid was much better than that of aromatic based hybrid under outdoor weathering based on visual observation and EIS analysis. Acid undercutting is an issue for TEOS based hybrid coating. In the second part, design of experiments (DOEs) was used to statistically investigate on the effect of sol-gel precursors. The synergistic effect of the mixed sol-gel precursors was shown to enhance the overall properties and was also observed structurally by SAXS and SEM. The improved resistance to the acid undercutting was observed for mixed sol-gel precursors based hybrids. The application of hybrids provides excellent anticorrosive properties as observed in salt spray and EIS study. The formation of Al2O3 protective layer as well as M-O-Al covalent bond provided the basis for excellent corrosion protection on Al substrate. However, the generation of Fe ions as corrosion product caused the accumulation of electrolyte, which resulted in the delamination of the coating on steel substrate. In this way, the corrosion of steel substrate is much faster than that of Al substrate. The maintenance of high impedance and corresponding resistance and capacitance based on EIS results further confirmed the great anticorrosion performance of hybrids on both Al and steel substrate.

  17. Sol-gel processing of bioactive glass nanoparticles: A review.

    PubMed

    Zheng, Kai; Boccaccini, Aldo R

    2017-11-01

    Silicate-based bioactive glass nanoparticles (BGN) are gaining increasing attention in various biomedical applications due to their unique properties. Controlled synthesis of BGN is critical to their effective use in biomedical applications since BGN characteristics, such as morphology and composition, determining the properties of BGN, are highly related to the synthesis process. In the last decade, numerous investigations focusing on BGN synthesis have been reported. BGN can mainly be produced through the conventional melt-quench approach or by sol-gel methods. The latter approaches are drawing widespread attention, considering the convenience and versatility they offer to tune the properties of BGN. In this paper, we review the strategies of sol-gel processing of BGN, including those adopting different catalysts for initiating the hydrolysis and condensation of silicate precursors as well as those combining sol-gel chemistry with other techniques. The processes and mechanism of different synthesis approaches are introduced and discussed in detail. Considering the importance of the BGN morphology and composition to their biomedical applications, strategies put forward to control the size, shape, pore structure and composition of BGN are discussed. BGN are particularly interesting biomaterials for bone-related applications, however, they also have potential for other biomedical applications, e.g. in soft tissue regeneration/repair. Therefore, in the last part of this review, recently reported applications of BGN in soft tissue repair and wound healing are presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Production of monodisperse cerium oxide microspheres with diameters near 100 μm by internal-gelation sol–gel methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce D.

    Internal gelation sol-gel methods have used a variety of sphere forming methods in the past to produce metal oxide microspheres, but typically with poor control over the size uniformity at diameters near 100 µm. This work describes efforts to make and measure internal gelation, sol-gel microspheres with very uniform diameters in the 100 – 200 µm size range using a two-fluid nozzle. A custom apparatus was used to form aqueous droplets of sol-gel feed solutions in silicone oil and heat them to cause gelation of the spheres. Gelled spheres were washed, dried, and sintered prior to mounting on glass slidesmore » for optical imaging and analysis. Microsphere diameters and shape factors were determined as a function of silicone oil flow rate in a two-fluid nozzle and the size of a needle dispensing the aqueous sol-gel solution. Nine batches of microspheres were analyzed and had diameters ranging from 65.5 ± 2.4 µm for the smallest needle and fastest silicone oil flow rate to 211 ± 4.7 µm for the largest needle and slowest silicone oil flow rate. Standard deviations for measured diameters were less than 8% for all samples and most were less than 4%. Microspheres had excellent circularity with measured shape factors of 0.9 – 1. However, processing of optical images was complicated by shadow effects in the photoresist layer on glass slides and by overlapping microspheres. Based on calculated flow parameters, microspheres were produced in a simple dripping mode in the two-fluid nozzle. Using flow rates consistent with a simple dripping mode in a two-fluid nozzle configuration allows for very uniform oxide microspheres to be produced using the internal-gelation sol-gel method.« less

  19. STUDY ON SYNTHESIS AND EVOLUTION OF NANOCRYSTALLINE Mg4Ta2O9 BY AQUEOUS SOL-GEL PROCESS

    NASA Astrophysics Data System (ADS)

    Wu, H. T.; Yang, C. H.; Wu, W. B.; Yue, Y. L.

    2012-06-01

    Nanosized and highly reactive Mg4Ta2O9 were successfully synthesized by aqueous sol-gel method compared with conventional solid-state method. Ta-Mg-citric acid solution was first formed and then evaporated resulting in a dry gel for calcination in the temperature ranging from 600°C to 800°C for crystallization in oxygen atmosphere. The crystallization process from the gel to crystalline Mg4Ta2O9 was identified by thermal analysis and phase evolution of powders was studied using X-ray diffraction (XRD) technique during calcinations. Particle size and morphology were examined by transmission electron microscopy (TEM) and high resolution scanning electron microscopy (HR-SEM). The results revealed that sol-gel process showed great advantages over conventional solid-state method and Mg4Ta2O9 nanopowders with the size of 20-30 nm were obtained at 800°C.

  20. Nanostructured aluminium titanate (Al{sub 2}TiO{sub 5}) particles and nanofibers: Synthesis and mechanism of microstructural evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azarniya, Abolfazl, E-mail: abolfazl_azarniya@mehr.sharif.ir; Azarniya, Amir, E-mail: a.azarnia91@gmail.com; Hosseini, Hamid Reza Madaah, E-mail: madaah@sharif.ir

    In this study, aluminium titanate (AT) particles and nanofibers were synthesized through citrate sol gel and sol gel-assisted electrospinning methods in both nanostructured powder and nanofiber forms. The results of X-ray diffraction analysis, field-emission scanning electron microscopy and differential thermal analysis showed that the synthetic products benefit a nanostructured nature with a grain size less than 70 nm. The optimal values for time and temperature at which a roughly pure AT is attained were determined as 2 h and 900 °C, respectively. It was found that the sol gel precursor bears an amorphous structure till 700 °C and begins tomore » be crystallized to alumina, anatase and AT at higher temperatures. Moreover, AT tends to decompose into rutile and alumina at temperatures higher than 900 °C and its degradation rate reaches a maximum at temperatures near to 1100 °C. In this synthesis, citric acid was used as a chelating agent for Al{sup 3} {sup +} and Ti{sup 4} {sup +} ions and it was shown that a low citric acid-to-metal cation ratio leads to larger numbers of nuclei during crystallization and smaller grain size. Finally, a model was suggested to describe the microstructural evolution of AT compound based on a nucleation and growth regime. - Graphical abstract: Display Omitted - Highlights: • We synthesized aluminium titanate ceramic in both powder and nanofiber forms. • The methods in use were citrate sol gel and sol gel-assisted electrospinning. • Powders and nanofibers bear a nanostructured nature with a grain size less than 70 nm. • A model is suggested to describe microstructural evolution of synthetic products.« less

  1. Nanostructured Silica/Gold-Cellulose-Bonded Amino-POSS Hybrid Composite via Sol-Gel Process and Its Properties.

    PubMed

    Ramesh, Sivalingam; Kim, Heung Soo; Lee, Young-Jun; Hong, Gwang-Wook; Kim, Joo-Hyung

    2017-12-01

    It is demonstrated in this paper that silica nanoparticles coated with core/shell gold provide efficient thermal, optical, and morphological properties with respect to the cellulose-polyhedral oligomeric silsesquioxanes (POSS) hybrid system. The one-step synthesis of a silica/gold nanocomposite is achieved with a simultaneous hydrolysis and reduction of gold chloride in the presence of formic acid, and the trimethoxysilane group acts as a silica precursor. The focus here comprises the synthesis of cellulose-POSS and silica/gold hybrid nanocomposites using the following two methods: (1) an in situ sol-gel process and (2) a polyvinyl alcohol/tetrakis (hydroxymethyl)phosphonium chloride process. Accordingly, the silica/gold core/shell nanoparticles are synthesized. The growth and attachment of the gold nanoparticles onto the functionalized surface of the silica at the nanometer scale is achieved via both the sol-gel and the tetrakis (hydroxymethyl) phosphonium chloride processes. The cellulose-POSS-silica/gold nanocomposites are characterized according to Fourier transformed infrared spectroscopy, Raman, X-ray diffraction, UV, photoluminescence, SEM, energy-dispersive X-ray spectroscopy, TEM, thermogravimetric, and Brunauer-Emmett-Teller analyses.

  2. Nanostructured Silica/Gold-Cellulose-Bonded Amino-POSS Hybrid Composite via Sol-Gel Process and Its Properties

    NASA Astrophysics Data System (ADS)

    Ramesh, Sivalingam; Kim, Heung Soo; Lee, Young-June; Hong, Gwang-Wook; Kim, Joo-Hyung

    2017-06-01

    It is demonstrated in this paper that silica nanoparticles coated with core/shell gold provide efficient thermal, optical, and morphological properties with respect to the cellulose-polyhedral oligomeric silsesquioxanes (POSS) hybrid system. The one-step synthesis of a silica/gold nanocomposite is achieved with a simultaneous hydrolysis and reduction of gold chloride in the presence of formic acid, and the trimethoxysilane group acts as a silica precursor. The focus here comprises the synthesis of cellulose-POSS and silica/gold hybrid nanocomposites using the following two methods: (1) an in situ sol-gel process and (2) a polyvinyl alcohol/tetrakis (hydroxymethyl)phosphonium chloride process. Accordingly, the silica/gold core/shell nanoparticles are synthesized. The growth and attachment of the gold nanoparticles onto the functionalized surface of the silica at the nanometer scale is achieved via both the sol-gel and the tetrakis (hydroxymethyl) phosphonium chloride processes. The cellulose-POSS-silica/gold nanocomposites are characterized according to Fourier transformed infrared spectroscopy, Raman, X-ray diffraction, UV, photoluminescence, SEM, energy-dispersive X-ray spectroscopy, TEM, thermogravimetric, and Brunauer-Emmett-Teller analyses.

  3. Polymer/glass nanocomposite fiber as an insulating material

    NASA Astrophysics Data System (ADS)

    Taygun, M. Erol; Akkaya, I.; Gönen, S. Ö.; Küçükbayrak, S.

    2017-02-01

    Production of the insulation materials with using nanofibers is the unique idea. With this idea, insulating facilities are enhanced with compressing air between the layers of nanofibers. Basically, glass wool is used as an insulation material. On the other hand, nanofiber glasses can be preferred for insulation purposes to be able to obtain insulation materials better then glass wool. From this point of view in this study, glass nanofibers were formed with sol-gel method by utilizing electrospinning technique. In the experimental part, first of all, sol-gel and polyvinylpyrolidone (PVP)/ethanol solutions were prepared. Then the relation of rheological properties with electrospinnability of PVP/sol-gel solutions was investigated by using a rheometer. Results showed that viscosity increased with the concentration of PVP. Meanwhile, the morphology of electrospun PVP/glass nanofibers was investigated by scanning electron microscope. It was also observed that the homogeneous nanofiber structure was obtained when the viscosity of the solution was 0.006 Pa.s. According to SEM results, it was concluded that nanocomposite fiber having a nanostructured morphology may be a good candidate for thermal insulation applications in the industry.

  4. Production of Monodisperse Cerium Oxide Microspheres with Diameters near 100 µm by Internal-Gelation Sol-Gel Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce

    Cerium dioxide microspheres with uniform diameters between 65 – 211 µm were fabricated using internal gelation sol-gel methods. Although uniform microspheres are produced for nuclear fuel applications with diameters above 300 µm, sol-gel microspheres with diameters of 50 - 200 µm have historically been made by emulsion techniques and had poor size uniformity [1, 2]. An internal gelation, sol-gel apparatus was designed and constructed to accommodate the production of small, uniform microspheres whereby cerium-containing solutions were dispersed into flowing silicone oil and heated in a gelation column to initiate solidification [3, 4]. Problems with premature feed gelation and microsphere coalescencemore » were overcome by equipment modifications unique among known internal gelation setups. Microspheres were fabricated and sized in batches as a function of dispersing needle diameter and silicone oil flow rate in the two-fluid nozzle in order to determine the range of sizes possible and corresponding degree of monodispersity. Initial experiments with poor size uniformity were linked to microsphere coalescence in the gelation column prior to solidification as well as excessive flow rates for the cerium feed solution. Average diameter standard deviations as low as 2.23% were observed after optimization of flow rates and minimization of coalescence reactions.« less

  5. Chitosan-based thermosensitive hydrogel as a promising ocular drug delivery system: preparation, characterization, and in vivo evaluation.

    PubMed

    Chen, Xingwei; Li, Xinru; Zhou, Yanxia; Wang, Xiaoning; Zhang, Yanhui; Fan, Yating; Huang, Yanqing; Liu, Yan

    2012-11-01

    The purpose of this study was to evaluate the feasibility of in situ thermosensitive hydrogel based on chitosan in combination with disodium α-d-Glucose 1-phosphate (DGP) for ocular drug delivery system. Aqueous solution of chitosan/DGP underwent sol-gel transition as temperature increased which was flowing sol at room temperature and then turned into non-flowing hydrogel at physiological temperature. The properties of gels were characterized regarding gelation time, gelation temperature, and morphology. The sol-to-gel phase transition behaviors were affected by the concentrations of chitosan, DGP and the model drug levocetirizine dihydrochloride (LD). The developed hydrogel presented a characteristic of a rapid release at the initial period followed by a sustained release and remarkably enhanced the cornea penetration of LD. The results of ocular irritation demonstrated the excellent ocular tolerance of the hydrogel. The ocular residence time for the hydrogel was significantly prolonged compared with eye drops. The drug-loaded hydrogel produced more effective anti-allergic conjunctivitis effects compared with LD aqueous solution. These results showed that the chitosan/DGP thermosensitive hydrogel could be used as an ideal ocular drug delivery system in terms of the suitable sol-gel transition temperature, mild pH environment in the hydrogel as well as the organic solvent free.

  6. A thermosensitive hydrogel based on biodegradable amphiphilic poly(ethylene glycol) polycaprolactone poly(ethylene glycol) block copolymers

    NASA Astrophysics Data System (ADS)

    Gong, Chang Yang; Qian, Zhi Yong; Liu, Cai Bing; Juan Huang, Mei; Gu, Ying Chun; Wen, Yan Jun; Kan, Bing; Wang, Ke; Dai, Mei; Li, Xing Yi; Gou, Ma Ling; Tu, Ming Jing; Wei, Yu Quan

    2007-06-01

    A series of low molecular weight poly(ethylene glycol)-polycaprolactone-poly(ethylene glycol) (PEG-PCL-PEG) biodegradable block copolymers were successfully synthesized using isophorone diisocyanate (IPDI) as the coupling agent, and were characterized using 1H NMR and Fourier transform infrared spectroscopy. The aqueous solutions of the PEG-PCL-PEG copolymers displayed a special thermosensitive gel-sol transition when the concentration was above the corresponding critical gel concentration. Gel-sol phase diagrams were recorded using the test-tube-inversion method; they depended on the hydrophilic/hydrophobic balance in the macromolecular structure, as well as some other factors, including the heating history, volume, and the ageing time of the copolymer aqueous solutions and dissolution temperature of the copolymers. As a result, the gel-sol transition temperature range could be altered, which might be very useful for application in injectable drug delivery systems. This work was financially supported by the Chinese Key Basic Research Program (2004CB518800 and 2004CB518807), and the Sichuan Key Project of Science and Technology (06(05SG022-021-02)).

  7. Encapsulation of fluorescence vegetable extracts within a templated sol-gel matrix

    NASA Astrophysics Data System (ADS)

    Lacatusu, Ioana; Badea, Nicoleta; Nita, Rodica; Murariu, Alina; Miculescu, Florin; Iosub, Ion; Meghea, Aurelia

    2010-04-01

    The sol-gel encapsulation of labile substances with specific properties and recognition functions within robust polymer matrices remains a challenging task, despite the considerable research that has been focused on this field. Numerous studies have been reported in the field of sol-gel processes regarding different physical and chemical packing of sensitive biomolecules encapsulated in silica matrix. In this paper the classical sol-gel synthesis has been used under mild conditions in order to minimize denaturizing effects on encapsulated active vegetable extracts from flavones class. The silica templated matrix was obtained by using two types of surfactants with different alkyl chain (didodecyldimethyl-ammonium bromide and trioctadecylmetilammonium bromide) as structure-directing agents for the silicon oxide framework. An organic precursor of silicic acid (triethoxymethylsilane) has been used and it was processed by competitive hydrolysis and polycondensation reactions under controlled directions assured by the presence of oriented template. Silica materials thus obtained are used for encapsulation of two flavonoid samples containing as active principles two sources: rutin and a vegetable extract from Begonia plant. The synthesis of encapsulated nanocompounds has been achieved taking into consideration the specific interaction between the colloidal gel precursors and molecular structures of selected biomolecules. The main objective was to improve the encapsulation conditions for specific biomolecules, searching for the highest stability and functionality without loosing the quality of the flavonoid properties, particularly optical properties like fluorescence. The structural properties of the encapsulated samples have been studied by FT-IR and UV-VIS spectroscopy, thermal analysis and SEM/EDX analysis. The fluorescence experiments showed that, in the case of all four encapsulated samples, the fluorescence spectra manifest a significant increase in intensity signals, with more than 10 times for individual flavonoid and 50 times for Begonia extract. This behaviour are mainly assigned to the physical interaction of flavonoid molecules with the residual hydroxyl groups of silica, excellent synergistic properties of silica and the favourable conformation arrangement of organic molecules inside the silica network. The size distribution of synthesised polymeric silica materials have been investigated by dynamic light scattering (DLS) and optical microscopy.

  8. A new sol-gel process for producing Na(2)O-containing bioactive glass ceramics.

    PubMed

    Chen, Qi-Zhi; Li, Yuan; Jin, Li-Yu; Quinn, Julian M W; Komesaroff, Paul A

    2010-10-01

    The sol-gel process of producing SiO(2)-CaO bioactive glasses is well established, but problems remain with the poor mechanical properties of the amorphous form and the bioinertness of its crystalline counterpart. These properties may be improved by incorporating Na(2)O into bioactive glasses, which can result in the formation of a hard yet biodegradable crystalline phase from bioactive glasses when sintered. However, production of Na(2)O-containing bioactive glasses by sol-gel methods has proved to be difficult. This work reports a new sol-gel process for the production of Na(2)O-containing bioactive glass ceramics, potentially enabling their use as medical implantation materials. Fine powders of 45S5 (a Na(2)O-containing composition) glass ceramic have for the first time been successfully synthesized using the sol-gel technique in aqueous solution under ambient conditions, with the mean particle size being approximately 5 microm. A comparative study of sol-gel derived S70C30 (a Na(2)O-free composition) and 45S5 glass ceramic materials revealed that the latter possesses a number of features desirable in biomaterials used for bone tissue engineering, including (i) the crystalline phase Na(2)Ca(2)Si(3)O(9) that couples good mechanical strength with satisfactory biodegradability, (ii) formation of hydroxyapatite, which may promote good bone bonding and (iii) cytocompatibility. In contrast, the sol-gel derived S70C30 glass ceramic consisted of a virtually inert crystalline phase CaSiO(3). Moreover, amorphous S70C30 largely transited to CaCO(3) with minor hydroxyapatite when immersed in simulated body fluid under standard tissue culture conditions. In conclusion, sol-gel derived Na(2)O-containing glass ceramics have significant advantages over related Na(2)O-free materials, having a greatly improved combination of mechanical capability and biological absorbability. 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Structural and photoluminescence properties of Ni doped CdS nanoparticles synthesis by sol gel method

    NASA Astrophysics Data System (ADS)

    Mahdi, Hadeel Salih; Parveen, Azra; Azam, Ameer

    2018-05-01

    Ni doped CdS nanoparticles have been successfully synthesized by sol-gel method. Nickel nitrate, cadmium nitrate, sodium sulfide has been used as precursors for the preparation of these Ni-doped CdS nanoparticles. The structural properties were studied by X-ray diffraction analysis. Surface morphology and the composition of the samples were studied by scanning electron microscope (SEM). The X-ray diffraction results revealed that the Ni-doped CdS nanoparticles were in hexagonal structure. The crystallite size was determined from Debye-Scherer equation and showed that the particle size increases with the doping of Ni. Optical absorption spectra of Ni doped CdS also was studied by Photoluminescence spectroscopy in the range of 200-600 nm.

  10. SrFe 12O 19 prepared by the proteic sol-gel process

    NASA Astrophysics Data System (ADS)

    Brito, P. C. A.; Gomes, R. F.; Duque, J. G. S.; Macêdo, M. A.

    2006-10-01

    Powders of strontium hexaferrite (SrFe 12O 19) were prepared by the proteic sol-gel process using coconut water as a precursor. X-ray diffraction (XRD) measurement showed the formation of SrFe 12O 19 with a small amount of the hematite for the sample calcined at 1000 °C with Fe/Sr=12. Rietveld refinement disclosed that this sample had 87.56% of the SrFe 12O 19 and 12.44% of Fe 2O 3 and the values for Rp, Rwp and χ2 were 4.28%, 5.93% and 1.71, respectively. The magnetic properties were Ms=64 emu/g, Mr/ Ms=0.55 and Hc=1.4 kOe for a crystallite size of 57 nm.

  11. Optical properties of ZnO powder prepared by using a proteic sol-gel process

    NASA Astrophysics Data System (ADS)

    Kwon, Bong-Joon; Woo, Hyun-Joo; Park, Ji-Yeon; Jang, Kiwan; Lim, Seung-Hyuk; Cho, Yong-Hoon

    2013-03-01

    We have studied the optical properties of ZnO powder synthesized by using a proteic sol-gel process with coconut water as the precursor. The energy dispersive X-ray spectrometer and X-ray diffraction results show high purity of the synthesized ZnO powder. From the low-temperature (12 K) and power-dependent PL spectra, the donor-bound exciton, the acceptor-bound exciton, the donor-to-acceptor pair (DAP), and the phonon-replica of the DAP transition have been observed at 3.38, 3.34, 3.26, and 3.19 eV, respectively. The free exciton emission (˜3.3 eV) is also observed at 300 K in the temperature-dependent PL spectra.

  12. Correlation of the oxidation state of cerium in sol-gel glasses as a function of thermal treatment via optical spectroscopy and XANES studies.

    PubMed

    Assefa, Zerihun; Haire, R G; Caulder, D L; Shuh, D K

    2004-07-01

    Sol-gel glass matrices containing lanthanides have numerous technological applications and their formation involves several chemical facets. In the case of cerium, its ability to exist in two different oxidation states or in mixed valence state provides additional complexities for the sol-gel process. The oxidation state of cerium present during different facets of preparation of sol-gel glasses, and also as a function of the starting oxidation state of cerium added, were studied both by optical spectroscopy and X-ray absorption near-edge structures (XANES). The findings acquired by each approach were compared. The primary focus was on the redox chemistries associated with sample preparation, gelation, and thermal treatment. When Ce3+ is introduced into the starting sols, the trivalent state normally prevails in the wet and room temperature-dried gels. Heating in air at >100 degrees C can generate a light yellow coloration with partial oxidation to the tetravalent state. Above 200 degrees C and up to approximately 1000 degrees C, cerium is oxidized to its tetravalent state. In contrast, when tetravalent cerium is introduced into the sol, both the wet and room temperature-dried gels lose the yellow-brown color of the initial ceric ammonium nitrate solution. When the sol-gel is heated to 110 degrees C it turns yellowish as the cerium tends to be re-oxidized. The yellow color is believed to represent the effect of oxidation and oligomerization of the cerium-silanol units in the matrix. The luminescence properties are also affected by these changes, the details of which are reported herein.

  13. Self-assembling Structures and Sol-Gel Transition of Optically Active and Racemic 12-Hydroxystearic Acids in Organic Solvents

    NASA Astrophysics Data System (ADS)

    Takeno, Hiroyuki; Mochizuki, Tomomitsu; Yoshiba, Kazuto; Kondo, Shingo; Dobashi, Toshiaki

    Self-assembling structures and sol-gel transition in solution of optically active and racemic 12-Hydroxystearic acids (HSA) have been investigated by means of small-angle X-ray scattering (SAXS), differential scanning calorimetry and rheological measurements. Apparently two kinds of gel, transparent gel and turbid gel were obtained in different solvents or by changing concentrations in the same solvent. The melting temperature of the turbid gel is higher than that of the transparent gel. The difference can be qualitatively explained by the dissolution of the crystals (melting point depression) in non-ideal solutions. The SAXS profiles of the transparent gel composed of fibrillar structures have a similar shape at different concentrations, although the intensity is larger for the gels with higher concentrations of 12-HSA. The SAXS analysis reveals that the cross-section of fibrils have square or circular shape (no anisotropic shape) with the radius of gyration 83 Å. On the other hand, for the turbid gel structural inhomnogeneity becomes significant with concentration. The gelation properties and the structures are found to be similar in the racemic HSA gel and the optically active (D-HSA) gel.

  14. Robotic deposition and in vitro characterization of 3D gelatin-bioactive glass hybrid scaffolds for biomedical applications.

    PubMed

    Gao, Chunxia; Rahaman, Mohamed N; Gao, Qiang; Teramoto, Akira; Abe, Koji

    2013-07-01

    The development of inorganic-organic hybrid scaffolds with controllable degradation and bioactive properties is receiving considerable interest for bone and tissue regeneration. The objective of this study was to create hybrid scaffolds of gelatin and bioactive glass (BG) with a controlled, three-dimensional (3D) architecture by a combined sol-gel and robotic deposition (robocasting) method and evaluate their mechanical response, bioactivity, and response to cells in vitro. Inks for robotic deposition of the scaffolds were prepared by dissolving gelatin in a sol-gel precursor solution of the bioactive glass (70SiO2 -25CaO-5P2 O5 ; mol%) and aging the solution to form a gel with the requisite viscosity. After drying and crosslinking, the gelatin-BG scaffolds, with a grid-like architecture (filament diameter ∼350 µm; pore width ∼550 µm), showed an elasto-plastic response, with a compressive strength of 5.1 ± 0.6 MPa, in the range of values for human trabecular bone (2-12 MPa). When immersed in phosphate-buffered saline, the crosslinked scaffolds rapidly absorbed water (∼440% of its dry weight after 2 h) and showed an elastic response at deformations up to ∼60%. Immersion of the scaffolds in a simulated body fluid resulted in the formation of a hydroxyapatite-like surface layer within 5 days, indicating their bioactivity in vitro. The scaffolds supported the proliferation, alkaline phosphatase activity, and mineralization of osteogenic MC3T3-E1 cells in vitro, showing their biocompatibility. Altogether, the results indicate that these gelatin-BG hybrid scaffolds with a controlled, 3D architecture of inter-connected pores have potential for use as implants for bone regeneration. Copyright © 2012 Wiley Periodicals, Inc.

  15. Insights into gelation kinetics and gel front migration in cation-induced polysaccharide hydrogels by viscoelastic and turbidity measurements: Effect of the nature of divalent cations.

    PubMed

    Huynh, Uyen T D; Chambin, Odile; du Poset, Aline Maire; Assifaoui, Ali

    2018-06-15

    Polysaccharide-based hydrogels were prepared by the diffusion of various divalent cations (X 2+ ) into the polygalacturonate (polyGal) solution through a dialysis membrane. The diffusion of various divalent cations (Mg 2+ , Ca 2+ , Zn 2+ and Ba 2+ ) was investigated. The polyGal gel growth was studied as a function of the initial cation concentration by both viscoelastic and turbidity measurements. We have demonstrated for the first time that the determination of the spatiotemporal variation of turbidity during the gelation process allowed to study the gel front migration. For Ca-polyGal, Zn-polyGal and Ba-polyGal, the gel front migration was characterized by the presence of a peak at the sol/gel interface. This peak was not observed in the case of Mg-polyGal where the gel was not formed. The apparent diffusion coefficient of the gel front (D app ) which was calculated from the evolution of this peak increased when the initial cation concentration was increased. Moreover, we have suggested a gelation mechanism based on the presence of a threshold molar ratio R* (=[X 2+ ]/[Galacturonic unit]) in which some point-like crosslinks are precursors of the formation of dimers and multimers inducing the contraction of the gel and thus the formation of the gel front. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Computational investigation of intense short-wavelength laser interaction with rare gas clusters

    NASA Astrophysics Data System (ADS)

    Bigaouette, Nicolas

    Current Very High Temperature Reactor designs incorporate TRi-structural ISOtropic (TRISO) particle fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel by dropping a cold precursor solution into a column of hot trichloroethylene (TCE). The temperature difference drives the liquid precursor solution to precipitate the metal solution into gel spheres before reaching the bottom of a production column. Over time, gelation byproducts inhibit complete gelation and the TCE must be purified or discarded. The resulting mixed-waste stream is expensive to dispose of or recycle, and changing the forming fluid to a non-hazardous alternative could greatly improve the economics of kernel production. Selection criteria for a replacement forming fluid narrowed a list of ~10,800 chemicals to yield ten potential replacements. The physical properties of the alternatives were measured as a function of temperature between 25 °C and 80 °C. Calculated terminal velocities and heat transfer rates provided an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane were selected for further testing, and surrogate yttria-stabilized zirconia (YSZ) kernels were produced using these selected fluids. The kernels were characterized for density, geometry, composition, and crystallinity and compared to a control group of kernels produced in silicone oil. Production in 1-bromotetradecane showed positive results, producing dense (93.8 %TD) and spherical (1.03 aspect ratio) kernels, but proper gelation did not occur in the other alternative forming fluids. With many of the YSZ kernels not properly gelling within the length of the column, this project further investigated the heat transfer properties of the forming fluids and precursor solution. A sensitivity study revealed that the heat transfer properties of the precursor solution have the strongest impact on gelation time. A COMSOL heat transfer model estimated an effective thermal diffusivity range for the YSZ precursor solution as 1.13x10 -8 m2/s to 3.35x10-8 m 2/s, which is an order of magnitude smaller than the value used in previous studies. 1-bromotetradecane is recommended for further investigation with the production of uranium-based kernels.

  17. Amorphous Metal Oxide Thin Films from Aqueous Precursors: New Routes to High-kappa Dielectrics, Impact of Annealing Atmosphere Humidity, and Elucidation of Non-Uniform Composition Profiles

    NASA Astrophysics Data System (ADS)

    Woods, Keenan N.

    Metal oxide thin films serve as critical components in many modern technologies, including microelectronic devices. Industrial state-of-the-art production utilizes vapor-phase techniques to make high-quality (dense, smooth, uniform) thin film materials. However, vapor-phase techniques require large energy inputs and expensive equipment and precursors. Solution-phase routes to metal oxides have attracted great interest as cost-effective alternatives to vapor-phase methods and also offer the potential of large-area coverage, facile control of metal composition, and low-temperature processing. Solution deposition has previously been dominated by sol-gel routes, which utilize organic ligands, additives, and/or solvents. However, sol-gel films are often porous and contain residual carbon impurities, which can negatively impact device properties. All-inorganic aqueous routes produce dense, ultrasmooth films without carbon impurities, but the mechanisms involved in converting aqueous precursors to metal oxides are virtually unexplored. Understanding these mechanisms and the parameters that influence them is critical for widespread use of aqueous approaches to prepare microelectronic components. Additionally, understanding (and controlling) density and composition inhomogeneities is important for optimizing electronic properties. An overview of deposition approaches and the challenges facing aqueous routes are presented in Chapter I. A summary of thin film characterization techniques central to this work is given in Chapter II. This dissertation contributes to the field of solution-phase deposition by focusing on three areas. First, an all-inorganic aqueous route to high-kappa metal oxide dielectrics is developed for two ternary systems. Chapters III and IV detail the film formation chemistry and film properties of lanthanum zirconium oxide (LZO) and zirconium aluminum oxide (ZAO), respectively. The functionality of these dielectrics as device components is also demonstrated. Second, the impact of steam annealing on the evolution of aqueous-derived films is reported. Chapter V demonstrates that steam annealing lowers processing temperatures by effectively reducing residual counterion content, improving film stability with respect to water absorption, and enhancing dielectric properties of LZO films. Third, density and composition inhomogeneities in aqueous-derived films are investigated. Chapters VI and VII examine density inhomogeneities in single- and multi-metal component thin films, respectively, and show that these density inhomogeneities are related to inhomogeneous metal component distributions. This dissertation includes previously published coauthored material.

  18. Novel sol-gel organic-inorganic hybrid materials for drug delivery.

    PubMed

    Catauro, Michelina; Verardi, Duilio; Melisi, Daniela; Belotti, Federico; Mustarelli, Piercarlo

    2010-01-01

    The aim of the present study was to synthetize and characterize novel sol-gel organic-inorganic hybrid materials to be used for controlled drug delivery application. Organic-inorganic hybrid class I materials based on poly(epsilon-caprolactone) (PCL 6, 12, 24 and 50 wt%) and zirconia-yttria (ZrO2-5%Y2O3) were synthesized by a sol-gel method, from a multicomponent solution containing zirconium propoxide [Zr(OC2H7)4], yttrium chloride (YCl3), PCL, water and chloroform (CHCl3). The structure of the hybrids was obtained by means of hydrogen bonds between the Zr-OH group (H-donor) in the sol-gel intermediate species and the carboxylic group (H-acceptor) in the repeating units of the polymer. The presence of hydrogen bonds between organic-inorganic components of the hybrid materials was suggested by Fourier transform infrared (FTIR) analysis, and strongly supported by solid-state NMR. A single-step, sol-gel process was then used to precipitate microspheres containing ketoprofen or indomethacin for controlled drug delivery applications. Release kinetics in a simulated body fluid (SBF) were subsequently investigated. The amount of drug released was detected by UV-VIS spectroscopy. Pure anti-inflammatory agents exhibited linear release with time, in contrast drugs entrapped in the organic-inorganic hybrids were released with a logarithmic time dependence, starting with an initial burst effect followed by a gradual decrease. The synthesis of amorphous materials containing drugs, obtained by sol-gel methods, helps to devise new strategies for controlled drug delivery system design.

  19. Blue light emission from trivalent cerium doped in sol-gel silica glass

    NASA Astrophysics Data System (ADS)

    Tokumitsu, Seika; Murakami, Yukon; Oda, Hisaya; Kawabe, Yutaka

    2017-02-01

    Rare earths in glass matrices are promising for active optical devices as amplifiers and lasers. Emission originating from d-f transitions in sol-gel glass has not been studied very often, while those based on f-f transitions were widely utilized. However, d-f emission in rare earths is very important because of their strong oscillator strength and broad emission widths suitable for the application to scintillators and solid-state lasers. Co-doping of aluminum in sol-gel synthesis was known to be effective for the emission enhancement of trivalent terbium and europium. Recently, we applied aluminum co-doping to cerium and europium systems in sol-gel glass to succeed in the observation of strong blue light emission originating from d-f transitions. Glass samples were prepared with conventional sol-gel process where tetramethylorthosilicate was hydrolyzed in the mixture of water, ethanol and dimethylformamide with nitric acid catalyst. After adding cerium nitrate and aluminum nitrate, the solution experienced drying followed by calcination at 1,050°C under air environment. When molar ratio of cerium to silicon was adjusted at 0.1% and Al concentration was varied in 0.1 2.0%, transparent glass products showed bright and broad blue photoluminescence under UV illumination. The fluorescence lifetimes were found to be about 50 90 ns, indicating that the emission was due to d-f transitions. Considering the simplicity of the process, blue phosphors based on sol-gel glass will be very promising for future applications.

  20. Dielectric relaxation and electrical conductivity in Bi 5NbO 10 oxygen ion conductors prepared by a modified sol-gel process

    NASA Astrophysics Data System (ADS)

    Hou, Jungang; Vaish, Rahul; Qu, Yuanfang; Krsmanovic, Dalibor; Varma, K. B. R.; Kumar, R. V.

    Crystalline Bi 5NbO 10 nanoparticles have been achieved through a modified sol-gel process using a mixture of ethylenediamine and ethanolamine as a solvent. The Bi 5NbO 10 nanoparticles were characterized by X-ray diffraction (XRD), differential scanning calorimetry/thermogravimetry (DSC/TG), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and Raman spectroscopy. The results showed that well-dispersed 5-60 nm Bi 5NbO 10 nanoparticles were prepared through heat-treating the precursor at 650 °C and the high density pellets were obtained at temperatures lower than those commonly employed. The frequency and temperature dependence of the dielectric constant and the electrical conductivity of the Bi 5NbO 10 solid solutions were investigated in the 0.1 Hz to 1 MHz frequency range. Two distinct relaxation mechanisms were observed in the plots of dielectric loss and the imaginary part of impedance (Z″) versus frequency in the temperature range of 200-350 °C. The dielectric constant and the loss in the low frequency regime were electrode dependent. The ionic conductivity of Bi 5NbO 10 solid solutions at 700 °C is 2.86 Ω -1 m -1 which is in same order of magnitude for Y 2O 3-stabilized ZrO 2 ceramics at same temperature. These results suggest that Bi 5NbO 10 is a promising material for an oxygen ion conductor.

  1. Synthesis of a fluorine-free polymeric water-repellent agent for creation of superhydrophobic fabrics

    NASA Astrophysics Data System (ADS)

    Shen, Keke; Yu, Miao; Li, Qianqian; Sun, Wei; Zhang, Xiting; Quan, Miao; Liu, Zhengtang; Shi, Suqing; Gong, Yongkuan

    2017-12-01

    A non-fluorinated polymeric alkylsilane, poly(isobutyl methacrylate-co-3-methacryloxypropyltrimethoxysilane) (PIT), is designed and synthesized to replace the commercial long-chain perfluoroalkylsilane (FAS) water-repellent agent. The superhydrophobic polyester fabrics are prepared by anchoring sol-gel derived silica nanoparticles onto alkali-treated polyester fabric surfaces and subsequently hydrophobilizing with PIT, using FAS as control. The surface chemical composition, surface morphology, wetting behavior and durability of the modified polyester fabrics are characterized by scanning electron microscopy (SEM), X-ray photoelectron spectrophotometer (XPS) and video-based contact angle goniometer, respectively. The results show that a porous silica layer could be successfully fabricated onto the surface of polyester fabric through base-catalyzed sol-gel process with tetraethoxysilane (TEOS) as precursor, incorporating additional nanostructured roughness essential for superhydrophobicity. At the same time, such a silica primer layer could provide both secondary reactive moieties (-Si - OH) for the subsequent surface hydrophobization and acceptable adhesion at the silica-polyester fabric interface. When silica modified polyester fabric (SiO2@ fabric) is hydrophobized by PIT solution (10 mg/mL), excellent water-repellency could be obtained. The water contact angle is up to 154° and the sliding angle is about 5°. Compared with small molecule water-repellent agent FAS, PIT modified SiO2@ fabric exhibits greatly improved solvent resistance under ultra-sonication, abrasion and simulated laundering durability. The anti-stain property of PIT-modified SiO2@ fabric is also evaluated by using different aqueous colored solutions.

  2. A Review of Photocatalysts Prepared by Sol-Gel Method for VOCs Removal

    PubMed Central

    Tseng, Ting Ke; Lin, Yi Shing; Chen, Yi Ju; Chu, Hsin

    2010-01-01

    The sol-gel process is a wet-chemical technique (chemical solution deposition), which has been widely used in the fields of materials science, ceramic engineering, and especially in the preparation of photocatalysts. Volatile organic compounds (VOCs) are prevalent components of indoor air pollution. Among the approaches to remove VOCs from indoor air, photocatalytic oxidation (PCO) is regarded as a promising method. This paper is a review of the status of research on the sol-gel method for photocatalyst preparation and for the PCO purification of VOCs. The review and discussion will focus on the preparation and coating of various photocatalysts, operational parameters, and will provide an overview of general PCO models described in the literature. PMID:20640156

  3. Improvement of the photovoltaic performance of Cu2ZnSn(S x Se1-x )4 solar cells by adding polymer in the precursor solution

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Li, Yong-Feng; Yao, Bin; Ding, Zhan-Hui; Deng, Rui; Zhao, Hai-Feng; Zhang, Li-Gong; Zhang, Zhen-Zhong

    2018-03-01

    Kesterite Cu2ZnSn(S x Se1-x )4 (CZTSSe) thin films and related solar cells were successfully fabricated by a facile sol-gel method and selenization process. The influence of Polyvinylpyrrolidone (PVP) additive on the properties of the CZTSSe films and the power conversion efficiency (PCE) of the solar cells were investigated. The results reveal that the qualities of CZTSSe films can be manipulated by incorporating a small amount of PVP. With addition of 1 wt% of PVP, the smoothness and grain size of the CZTSSe films were greatly improved. The contact at the CZTSSe/Mo interface was also improved. As a result, the optimized PCE of solar cells improved from 2.24% to 4.34% after the addition of 1 wt% PVP due to the decrease of recombination at the interfaces. These results suggest that polymer addition in the precursor solution is a promising method for obtaining high quality of CZTSSe films and high-performance solar cells.

  4. COLLABORATIVE RESEARCH AND DEVELOPMENT (CR&D) Delivery Order 0065: Nanostructured Dynamic Modulus Materials

    DTIC Science & Technology

    2008-03-01

    solution-gelation (sol- gel) technique, to form hybrids of these materials with high-Tg open-cell foams so as to enhance shape memory characteristics , and...did not demonstrate the shape memory properties of the original Morthane thermoplastic due to the suppression of crystallinity following sol-gel...method. The utilization of photolatent bases to allow for improved reaction control and the combination of this system with Basotect™ open-cell foam in

  5. Electric-Field-Oriented Growth of Long Hair-Like Silica Microfibrils and Derived Functional Monolithic Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Michael Z.; DePaoli, David W.; Kuritz, Tanya

    We present a “bottom-up” fabrication approach to first grow a new class of inorganic (silica) long hair-like microfibers or microwires and then to form monolithic solid pellet that contains parallel arrays of bundled microfibers with a controlled orientation. During the sol-gel solution processing, reactive precursor species are utilized as molecular “building blocks” for the field-directed assembly growth of microfibers driven by an electric field of pulsed direct current (dc) with controlled frequency. In principle, this reactive electrofibrilation process that combines an external field with a solid-phase nucleation and growth process has no limitation on reactions (such as the one heremore » that involves sol-gel reaction chemistry) and on materials compositions (such as the example silica oxide), thus will enable bulk production of long microfibers of wide variety of inorganic materials (other oxides or metals). Furthermore, we have fabricated uniquely architectured monolithic solid materials containing aligned microfibers by “wet press” of the in-situ grown microfiber structure in the electric field. The consolidated monolithic slabs (1 cm x 1 cm x 3 mm) have shown anisotropic properties and desirable retention of DNA molecule fragments, thus, could serve as a platform stationary-phase materials for future development of capillary electrochromatography for biomolecule separations.« less

  6. Electric-Field-Oriented Growth of Long Hair-Like Silica Microfibrils and Derived Functional Monolithic Solids

    DOE PAGES

    Hu, Michael Z.; DePaoli, David W.; Kuritz, Tanya; ...

    2017-09-11

    We present a “bottom-up” fabrication approach to first grow a new class of inorganic (silica) long hair-like microfibers or microwires and then to form monolithic solid pellet that contains parallel arrays of bundled microfibers with a controlled orientation. During the sol-gel solution processing, reactive precursor species are utilized as molecular “building blocks” for the field-directed assembly growth of microfibers driven by an electric field of pulsed direct current (dc) with controlled frequency. In principle, this reactive electrofibrilation process that combines an external field with a solid-phase nucleation and growth process has no limitation on reactions (such as the one heremore » that involves sol-gel reaction chemistry) and on materials compositions (such as the example silica oxide), thus will enable bulk production of long microfibers of wide variety of inorganic materials (other oxides or metals). Furthermore, we have fabricated uniquely architectured monolithic solid materials containing aligned microfibers by “wet press” of the in-situ grown microfiber structure in the electric field. The consolidated monolithic slabs (1 cm x 1 cm x 3 mm) have shown anisotropic properties and desirable retention of DNA molecule fragments, thus, could serve as a platform stationary-phase materials for future development of capillary electrochromatography for biomolecule separations.« less

  7. Effects of sol-gel synthesis on 5Fe-15Mn-40Zn-40Ti-O mixed oxide structure and its H2S removal efficiency from industrial gas streams.

    PubMed

    Polychronopoulou, Kyriaki; Efstathiou, Angelos M

    2009-06-15

    A novel Fe-Mn-Zn-Ti-O mixed metal oxide has been developed for efficient low-temperature (25-50 degrees C) removal of H2S from a gas mixture containing 600 ppm H2S, 25 vol% H2, 7.5 vol % CO2, and 1-3 vol% H2O that simulates typical conditions experienced at the outlet of a bioreactor loaded with sulfate metal reducing bacteria (SMRB) that converts toxic Cr6+ and As5+ present in ground and surface waters and soils into nontoxic elements. During the latter conversion H2S gas is produced and has to be treated. In the present work it is demonstrated for the first time that by using the sol-gel synthesis route at given experimental conditions (e.g., metal precursor salts, solvent system, and solution pH), optimum structural properties for the Fe-Mn-Zn-Ti-O solid can be obtained for maximization of H2S uptake. In particular, at 25 degrees C an H2S uptake (0.085 g H2S/g solid) larger by at least a factor of 3 compared to a commercial Ni-based H2S absorbent material was obtained.

  8. The characteristic of carbon-coated LiFePO{sub 4} as cathode material for lithium ion battery synthesized by sol-gel process in one step heating and varied pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triwibowo, J., E-mail: joko.triwibowo@lipi.go.id; Yuniarti, E.; Suharyadi, E.

    2014-09-25

    This research has been done on the synthesis of carbon coated LiFePO{sub 4} through sol-gel process. Carbon layer serves for improving electronic conductivity, while the variation of pH in the sol-gel process is intended to obtain the morphology of the material that may improve battery performance. LiFePO{sub 4}/C precursors are Li{sub 2}CO{sub 3}, NH{sub 4}H{sub 2}PO{sub 4} and FeC{sub 2}O{sub 4}.H{sub 2}O and citric acid. In the synthesis process, consisting of a colloidal suspension FeC{sub 2}O{sub 4}.H{sub 2}O and distilled water mixed with a colloidal suspension consisting of NH{sub 4}H{sub 2}PO{sub 4}, Li{sub 2}CO{sub 3}, and distilled water. Variations additionmore » of citric acid is used to control the pH of the gel formed by mixing two colloidal suspensions. Sol in this study had a pH of 5, 5.4 and 5.8. The obtained wet gel is further dried in the oven and then sintered at a temperature 700°C for 10 hours. The resulting material is further characterized by XRD to determine the phases formed. The resulting powder morphology is observed through SEM. Specific surface area of the powder was tested by BET, while the electronic conductivity characterized with EIS.« less

  9. High strength air-dried aerogels

    DOEpatents

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  10. Modified Au nanoparticles-imprinted sol-gel, multiwall carbon nanotubes pencil graphite electrode used as a sensor for ranitidine determination.

    PubMed

    Rezaei, B; Lotfi-Forushani, H; Ensafi, A A

    2014-04-01

    A new, simple, and disposable molecularly imprinted electrochemical sensor for the determination of ranitidine was developed on pencil graphite electrode (PGE) via cyclic voltammetry (CV). The PGEs were coated with MWCNTs containing the carboxylic functional group (f-MWCNTs), imprinted with sol-gel and Au nanoparticle (AuNPs) layers (AuNP/MIP-sol-gel/f-MWCNT/PGE), respectively, to enhance the electrode's electrical transmission and sensitivity. The thin film of molecularly imprinted sol-gel polymers with specific binding sites for ranitidine was cast on modified PGE by electrochemical deposition. The AuNP/MIP-sol-gel/f-MWCNT/PGE thus developed was characterized by electrochemical impedance spectroscopy (EIS) and CV. The interaction between the imprinted sensor and the target molecule was also observed on the electrode by measuring the current response of 5.0mMK3[Fe(CN)6] solution as an electrochemical probe. The pick currents of ranitidine increased linearly with concentration in the ranges of 0.05 to 2.0μM, with a detection limit of (S/N=3) 0.02μM. Finally, the modified electrode was successfully employed to determine ranitidine in human urine samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Development of Alkoxide Precursors-Based Hybrid Coatings on Ti-6Al-4V Alloy for Biomedical Applications: Influence of pH of Sol

    NASA Astrophysics Data System (ADS)

    Salvador, D. G.; Marcolin, P.; Beltrami, L. V. R.; Brandalise, R. N.; Kunst, S. R.

    2018-04-01

    The Ti-6Al-4V alloy, widely used in biomedical applications, is associated with cytotoxic effects due to the release of aluminum and vanadium ions in the human body. One of the most effective ways to control the release of cytotoxic ions is through anti-corrosive coatings. Among them, the alkoxysilanes stand out for their good barrier properties and the absence of toxicity. Aiming to improve the clinical success rate of metallic implants, this study sets out to evaluate the influence of the pH of the sol on the physico-chemical, morphological, mechanical and electrochemical characteristics of hybrid films based on 3-(trimethoxysilylpropyl)methacrylate (MAP) and tetraethoxysilane (TEOS) applied to Ti-6Al-4V. The film was prepared by using the sol-gel method for pH values of 3, 4, and 5. The results indicated that maintaining the pH of the sol at 4 favors the hydrolysis rate of alkoxide precursors, which results in a uniform, dense and adherent film with excellent anti-corrosion performance.

  12. Relationship between sol-gel conditions and enzyme stability: a case study with β-galactosidase/silica biocatalyst for whey hydrolysis.

    PubMed

    Escobar, Sindy; Bernal, Claudia; Mesa, Monica

    2015-01-01

    The sol-gel process has been very useful for preparing active and stable biocatalysts, with the possibility of being reused. Especially those based on silica are well known. However, the study of the enzyme behavior during this process is not well understood until now and more, if the surfactant is involved in the synthesis mixture. This work is devoted to the encapsulation of β-galactosidase from Bacillus circulans in silica by sol-gel process, assisted by non-ionic Triton X-100 surfactant. The correlation between enzyme activity results for the β-galactosidase in three different environments (soluble in buffered aqueous reference solution, in the silica sol, and entrapment on the silica matrix) explains the enzyme behavior under stress conditions offered by the silica sol composition and gelation conditions. A stable β-galactosidase/silica biocatalyst is obtained using sodium silicate, which is a cheap source of silica, in the presence of non-ionic Triton X-100, which avoids the enzyme deactivation, even at 40 °C. The obtained biocatalyst is used in the whey hydrolysis for obtaining high value products from this waste. The preservation of the enzyme stability, which is one of the most important challenges on the enzyme immobilization through the silica sol-gel, is achieved in this study.

  13. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Dong-Kyun; Volosin, Alex

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite materialmore » can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.« less

  14. Sol-gel method to fabricate CaP scaffolds by robocasting for tissue engineering.

    PubMed

    Houmard, Manuel; Fu, Qiang; Saiz, Eduardo; Tomsia, Antoni P

    2012-04-01

    Highly porous calcium phosphate (CaP) scaffolds for bone-tissue engineering were fabricated by combining a robocasting process with a sol-gel synthesis that mixed Calcium Nitrate Tetrahydrate and Triethyl Phosphite precursors in an aqueous medium. The resulting gels were used to print scaffolds by robocasting without the use of binder to increase the viscosity of the paste. X-ray diffraction analysis confirmed that the process yielded hydroxyapatite and β-tricalcium phosphate biphasic composite powders. Thus, the scaffold composition after crystallization of the amorphous structure could be easily modified by varying the initial Ca/P ratio during synthesis. The compressive strengths of the scaffolds are ~6 MPa, which is in the range of human cancellous bone (2-12 MPa). These highly porous scaffolds (~73 vol% porosity) are composed of macro-pores of ~260 μm in size; such porosity is expected to enable bone ingrowth into the scaffold for bone repair applications. The chemistry, porosity, and surface topography of such scaffolds can also be modified by the process parameters to favor bone formation. The studied sol-gel process can be used to coat these scaffolds by dip-coating, which induces a significant enhancement of mechanical properties. This can adjust scaffold properties such as composition and surface morphology, which consequently may improve their performances.

  15. Cultivation and energy efficient harvesting of microalgae using thermoreversible sol-gel transition

    PubMed Central

    Estime, Bendy; Ren, Dacheng; Sureshkumar, Radhakrishna

    2017-01-01

    Microalgae represent a promising source of renewable biomass for the production of biofuels and valuable chemicals. However, energy efficient cultivation and harvesting technologies are necessary to improve economic viability. A Tris-Acetate-Phosphate-Pluronic (TAPP) medium that undergoes a thermoreversible sol-gel transition is developed to efficiently culture and harvest microalgae without affecting the productivity as compared to that in traditional culture in a well-mixed suspension. After seeding microalgae in the TAPP medium in a solution phase at 15 °C, the temperature is increased by 7 °C to induce gelation. Within the gel, microalgae are observed to grow in large clusters rather than as isolated cells. The settling velocity of the microalgal clusters is approximately ten times larger than that of individual cells cultured in typical solution media. Such clusters are easily harvested gravimetrically by decreasing the temperature to bring the medium to a solution phase. PMID:28102313

  16. Molecular interactions in high conductive gel electrolytes based on low molecular weight gelator.

    PubMed

    Bielejewski, Michał; Łapiński, Andrzej; Demchuk, Oleg

    2017-03-15

    Organic ionic gel (OIG) electrolytes, also known as gel electrolytes or ionogels are one example of modern functional materials with the potential to use in wide range of electrochemical applications. The functionality of OIGs arises from the thermally reversible solidification of electrolytes or ionic liquids and their superior ionic conductivity. To understand and to predict the properties of these systems it is important to get the knowledge about the interactions on molecular level between the solid gelator matrix and the electrolyte solution. This paper reports the spectroscopic studies (FT-IR, UV-Vis and Raman) of the gel electrolyte based on low molecular weight gelator methyl-4,6-O-(p-nitrobenzylidene)-α-d-glucopyranoside and solution of quaternary ammonium salt, tetramethylammonium bromide. The solidification process was based on sol-gel technique. Below characteristic temperature, defined as gel to sol phase transition temperature, T gs , the samples were solid-like and showed high conductivity values of the same order as observed for pure liquid electrolytes. The investigations were performed for a OIGs in a wide range of molar concentrations of the electrolyte solution. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Influence of initial sulfur content in precursor solution for the growth of molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Tan, A. L.; Ng, S. S.; Abu Hassan, H.

    2018-04-01

    This work investigated the influence of initial sulfur content in the precursor solution for the growth of molybdenum disulfide (MoS2) films by thermal vapour sulfurization (TVS) with sol-gel spin coating as pre-deposition technique. The early introduction of sulfur shows the presence of grains are uniformly distributed and homogeneous on the surface of the film. MoS2 (002) planes are detected for both films with and without initial sulfur conditions, however, the presence of initial sulfur contents gives slightly higher intensity of diffraction peak. Two phonon modes for MoS2, namely the E2g 1 (in-plane) and the A1g (out-of plane), are well detected from which the frequency difference of Raman peaks between E2g 1 and A1g suggest the grown MoS2 consisted of multi-layers. There is a slight shift of E2g 1 which is caused by the carbon impurities but no shift for A1g. Besides, MoS2 film with the presence of initial sulfur content shows better crystal as indicated by its narrower Raman peaks linewidth. Two broad absorption peaks of MoS2 are detected at 614nm and 665nm. Hence, the early introduction of sulfur content in prepared precursor solution is one way of optimizing the growth of MoS2 films.

  18. [pH sensors based on rubbery ormosils preparation and their spectrum studies].

    PubMed

    Chen, Xi; Dai, Yuan-jing; Li, Wei; Zhuang, Zhi-xia; Wang, Xiao-ru

    2002-02-01

    A new type of methyl substituted ormosils as a matrix for bromophenol blue (BPhB) and bromocresol green (BCG) is described. The new ormosils combine features of classical TEOS sol-gel material such as solvability in organic solvent and those of sol-gel glasses such as transparent and a porous structure, the ormosils also make a good mechanical stability. The influence of the conditions during the polymerisation process on the photochemical properties of BPhB and BCG has been studied. This sol-gel material was wed to immobilize pH-sensitive absorption dyes, bromothymol blue and bromocresol green, to prepare pH sensing films. The several aspects of the sensing films, including the leaching of the dye from gel, response time to different pH buffer solution, absorption spectra and the improvement of the immobilization of the dyes to filmo, were also discussed.

  19. Wet-chemical fabrication of a single leakage-channel grating coupler

    NASA Astrophysics Data System (ADS)

    Weisenbach, Lori; Zelinski, Brian J. J.; Roncone, Ronald L.; Burke, James J.

    1995-04-01

    We demonstrate the fabrication of a unique optical device, the single leakage-channel grating coupler, using sol-gel techniques. Design specifications are outlined to establish the material criteria for the sol-gel compositions. Material choice and preparation are described. We evaluate the characteristics and performance of the single leakage-channel grating coupler by comparing the predicted and the measured branching ratios. The branching ratio of the solution-derived device is within 3% of the theoretically predicted value.

  20. Effect of urea on heat-induced gelation of bovine serum albumin (BSA) studied by rheology and small angle neutron scattering (SANS)

    NASA Astrophysics Data System (ADS)

    Nnyigide, Osita Sunday; Oh, Yuna; Song, Hyeong Yong; Park, Eun-kyoung; Choi, Soo-Hyung; Hyun, Kyu

    2017-05-01

    This paper reports the effects of urea on the heat-induced gelation of bovine serum albumin (BSA), which was studied by the tube inversion method, rheological measurements, and small-angle neutron scattering (SANS). An increase in the urea concentration accelerated the rate of gelation because the protein molecules have already been unfolded to some extent during sample preparation in the urea solution. In addition, the BSA solution in the presence of urea underwent a sol-gel-sol transition during the time sweep test at a constant temperature of 80oC. On the other hand, the BSA solution without urea turned into a hard and brittle gel that did not return to the solution state during isothermal heating at a constant temperature of 80oC. Aggregation and re-bonding of the denatured and unfolded protein chains led to gel formation. Urea added to the protein denatures its tertiary and secondary structures by simultaneously disrupting the hydrogen bonds, hydrophobic interactions, and altering the solvent properties. Furthermore, urea induces thermoreversible chemical interactions in BSA solutions leading to the formation of a gel with dynamic properties under these experimental conditions.

  1. Effect of precursors condition on the structural morphology of synthesized GaN

    NASA Astrophysics Data System (ADS)

    Muzammil, P.; Basha, S. Munawar; Muhammad, G. Shakil

    2018-05-01

    GaN nanostructures were synthesized using different mole concentration of precursor composing of gallium nitrate and PVP by sol-gel method. The structural analysis using X-ray diffraction shows the wurtzite form of GaN nanostructure, also it observed that the concentration of precursor play a vital role in structural quality as FWHM increase for higher concentration. From the SEM image it observed that for 0.25 and 0.5 M concentration the honey bee and nanorod structure were obtained. The micro-Raman analysis shows a strong E2H peak of GaN nanostructure.

  2. Enhanced photocatalytic degradation of 2-propanol over macroporous GaN/ZnO solid solution prepared by a novel sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lizhong; Ouyang, Shuxin; Ren, Bofan

    2015-10-01

    Macroporous GaN/ZnO solid solution photocatalyst is synthesized through a novel sol-gel method under mild conditions. The performance of as-synthesized solid solution photocatalyst is evaluated for decomposition of gaseous 2-propanol (IPA). It is found that due to enhancement in both the adsorption to gaseous IPA and the absorbance to visible light, the porous GaN/ZnO solid solution exhibits a good photocatalytic performance for IPA decomposition. Moreover, the mechanism for photocatalytic degradation IPA over porous GaN/ZnO solid solution is also investigated in comparison with those for the two end materials ZnO and GaN. The trapping effects with different scavengers prove that both themore » photoexcited electrons and holes affect the IPA photodegradation process, simultaneously.« less

  3. Iron specificity of a biosensor based on fluorescent pyoverdin immobilized in sol-gel glass

    PubMed Central

    2011-01-01

    Two current technologies used in biosensor development are very promising: 1. The sol-gel process of making microporous glass at room temperature, and 2. Using a fluorescent compound that undergoes fluorescence quenching in response to a specific analyte. These technologies have been combined to produce an iron biosensor. To optimize the iron (II or III) specificity of an iron biosensor, pyoverdin (a fluorescent siderophore produced by Pseudomonas spp.) was immobilized in 3 formulations of porous sol-gel glass. The formulations, A, B, and C, varied in the amount of water added, resulting in respective R values (molar ratio of water:silicon) of 5.6, 8.2, and 10.8. Pyoverdin-doped sol-gel pellets were placed in a flow cell in a fluorometer and the fluorescence quenching was measured as pellets were exposed to 0.28 - 0.56 mM iron (II or III). After 10 minutes of exposure to iron, ferrous ion caused a small fluorescence quenching (89 - 97% of the initial fluorescence, over the range of iron tested) while ferric ion caused much greater quenching (65 - 88%). The most specific and linear response was observed for pyoverdin immobilized in sol-gel C. In contrast, a solution of pyoverdin (3.0 μM) exposed to iron (II or III) for 10 minutes showed an increase in fluorescence (101 - 114%) at low ferrous concentrations (0.45 - 2.18 μM) while exposure to all ferric ion concentrations (0.45 - 3.03 μM) caused quenching. In summary, the iron specificity of pyoverdin was improved by immobilizing it in sol-gel glass C. PMID:21554740

  4. Molecular Level Understanding of Sodium Dodecyl Sulfate (SDS) Induced Sol-Gel Transition of Pluronic F127 Using Fisetin as a Fluorescent Molecular Probe.

    PubMed

    Mishra, Jhili; Swain, Jitendriya; Mishra, Ashok Kumar

    2018-01-11

    The thermoreversible sol-gel transition of pluronic F127 is markedly altered even with addition of submicellar concentration of sodium dodecyl sulfate (SDS) surfactant. Multiple fluorescence parameters like fluorescence intensity, fluorescence anisotropy and fluorescence lifetime of both the prototropic forms (anion (A - *) and phototautomer FT*) of the photoprototropic fluorescent probe fisetin has been efficiently used to understand the molecular level properties like polarity and microviscosity of the PF127-SDS system as a function of temperature. The SDS-induced increase in the interfacial hydrophobicity level is seen to affect the sol-gel phase transition of PF127 (21-18 °C). The E T (30) polarity parameter value of anionic emission of fisetin suggests that there is a considerable decrease in the polarity of the PF127 medium with increase in temperature and with the addition of SDS. The microviscosity progressively increases from ∼5 mPa s (sol state, 10 °C) to ∼22.01 mPa s (gel state 35 °C) in aqueous solution of PF127. The variation in microviscosity with addition of SDS in PF127-SDS mixed system is significant in sol phase whereas in gel phase this variation is significantly less. Temperature dependent fluorescence lifetime of FT* indicates that there is heterogeneity in distribution of fisetin molecules at different domains of PF127. This work also show-cases the sensitivity of fisetin toward change in polarity and change in sol-gel transition temperature of copolymer PF127 with variation in temperature (both forward and reverse directions) and SDS.

  5. Effect of sintering on optical, structural and photoluminescence properties of ZnO thin films prepared by sol-gel process.

    PubMed

    Vishwas, M; Narasimha Rao, K; Arjuna Gowda, K V; Chakradhar, R P S

    2010-09-15

    Zinc oxide (ZnO) thin films have been deposited on glass substrates via sol-gel technique using zinc acetate dihydrate as precursor by spin coating of the sol at 2000 rpm. Effects of annealing temperature on optical, structural and photo luminescence properties of the deposited ZnO films have been investigated. The phase transition from amorphous to polycrystalline hexagonal wurtzite structure was observed at an annealing temperature of 400 degrees C. An average transmittance of 87% in the visible region has been obtained at room temperature. The optical transmittance has slightly increased with increase of annealing temperature. The band gap energy was estimated by Tauc's method and found to be 3.22 eV at room temperature. The optical band gap energy has decreased with increasing annealing temperature. The photoluminescence (PL) intensity increased with annealing temperature up to 200 degrees C and decreased at 300 degrees C. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Optical, electrical and dielectric properties of TiO2-SiO2 films prepared by a cost effective sol-gel process.

    PubMed

    Vishwas, M; Rao, K Narasimha; Gowda, K V Arjuna; Chakradhar, R P S

    2011-12-01

    Titanium dioxide (TiO(2)) and silicon dioxide (SiO(2)) thin films and their mixed films were synthesized by the sol-gel spin coating method using titanium tetra isopropoxide (TTIP) and tetra ethyl ortho silicate (TEOS) as the precursor materials for TiO(2) and SiO(2) respectively. The pure and composite films of TiO(2) and SiO(2) were deposited on glass and silicon substrates. The optical properties were studied for different compositions of TiO(2) and SiO(2) sols and the refractive index and optical band gap energies were estimated. MOS capacitors were fabricated using TiO(2) films on p-silicon (100) substrates. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics were studied and the electrical resistivity and dielectric constant were estimated for the films annealed at 200°C for their possible use in optoelectronic applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakina, O. V., E-mail: ovbakina@ispms.tsc.ru; Glazkova, E. A., E-mail: eagl@ispms.tsc.ru; Svarovskaya, N. V., E-mail: nvsv@ispms.tsc.ru

    In the current paper, the mixed SiO{sub 2}/Al{sub 2}O{sub 3} aerogel was synthesized by sol-gel method with subcritical drying and characterized. Tetraethoxysilane was used as a precursor of silicon sol. The flower-shaped alumina suspension was peptized to produce alumina sol. The aerogel texture, morphology, and structure were determined using scanning electron microscopy, X-ray diffraction, low-temperature nitrogen adsorption, and high-resolution spectroscopy. A special attention was paid to the pore structure of aerogel, and aerogel framework was formed by the spherical agglomerates containing spherical particles of silicon oxide and alumina nanopetals. The pore size distribution was bimodal with peaks of 5.5 nm andmore » 77 nm.« less

  8. Sol-gel derived polymer composites for energy storage and conversion

    NASA Astrophysics Data System (ADS)

    Han, Kuo

    Sol-gel process is a simple chemistry to convert the small precursor molecules into an inorganic polymer, which could be applied to synthesize inorganic materials, modify the interface of materials, bridge the organic and inorganic materials, etc. In this dissertation, novel sol-gel derived composites have been developed for high dielectric breakdown capacitors, low high frequency loss capacitors and flexible piezoelectrics. Numerous efforts have been made in the past decades to improve the energy storage capability of composite materials by incorporating nanometer scale ceramic addictives with high dielectric permittivity into dielectric polymers with high breakdown strength. However, most composites suffer from the low breakdown strength and make the potential gain in energy density small. Here, a new chemical strategy is proposed that, through sol-gel reactions between ceramic precursors and functional groups at the end of the functionalized Poly(vinylidene fluoride -co-chlorotrifluoroethylene) chains, amorphous low permittivity ceramics was in-situ generated in the polymer matrix and cross-linked the polymer chains simultaneously. By carefully tuning precursors, the polymer/precursors feeding ratios, a series of nanocomposites were systematically designed. All the samples are comprehensively characterized and the structure-property correlations are well investigated. The optimal samples exhibit higher breakdown strength than the pristine polymer. The enhanced breakdown strength ascribed to low contrast in permittivity, great dispersion and improved electrical and mechanical properties. This newly developed approach has shown great promise for new composite capacitors. The percolative polymer composites have recently exhibited great potential in energy storage due to their high dielectric permittivities at the neighborhood of the percolation threshold. Yet high energy dissipation and poor voltage endurance of the percolative composites resulted from electrical conduction are still open issues to be addressed before full potential can be realized. Herein we report the percolative composites based on ferroelectric poly(vinylidene fluoride-co-chlorotrifluoroethylene) as the matrix and sol-gel derived SiO2 coated reduced graphene oxide nanosheets as the filler. By capitalizing on the SiO2 surface layers which have high electrical resistivity and breakdown strength, the composites exhibit superior dielectric performance as compared to the respective composites containing bare reduced graphene oxide nanosheet fillers. In addition to greatly reduced dielectric loss, little change in dielectric loss has been observed within medium frequency range (ie. 300 KHz-3 MHz) in the prepared composites even with a filler concentration beyond the percolation threshold, indicating significantly suppressed energy dissipation and the feasibility of using the conductor-insulator composites beyond the percolation threshold. Moreover, remarkable breakdown strength of 80 MV/m at the percolation threshold has been achieved in the composite, which far exceeds those of conventional percolative composites (lower than 0.1 MV/m in most cases) and thus enables the applications of the percolative composites at high electric fields. This work offers a new avenue to the percolative polymer composites exhibiting high permittivity, reduced loss and excellent breakdown strength for electrical energy storage applications. Flexible piezoelectric materials have attracted extensive attention because they can provide a practical way to scavenge energy from the environment and motions. It also provides the possibility to fabricate wearable and self-powered energy generator for powering small electronic devices. In the dissertation a new composite including BTO 3D structure and PDMS has been successfully fabricated using the sol-gel process. The structure, flexibility, dielectric and piezoelectric properties have been well studied. The new material shows a high g33 value of more than 400 mV m/N. Moreover, the durability of this composite has been confirmed by cycle tests even though the BTO structure falls apart into small pieces in the PDMS matrix. The unique morphology of the composite allows the broken piece to connect with each other to generate power under stress. This work also opens a new route toward flexible piezoelectric composites.

  9. Exploring encapsulation mechanism of DNA and mononucleotides in sol-gel derived silica.

    PubMed

    Kapusuz, Derya; Durucan, Caner

    2017-07-01

    The encapsulation mechanism of DNA in sol-gel derived silica has been explored in order to elucidate the effect of DNA conformation on encapsulation and to identify the nature of chemical/physical interaction of DNA with silica during and after sol-gel transition. In this respect, double stranded DNA and dAMP (2'-deoxyadenosine 5'-monophosphate) were encapsulated in silica using an alkoxide-based sol-gel route. Biomolecule-encapsulating gels have been characterized using UV-Vis, 29 Si NMR, FTIR spectroscopy and gas adsorption (BET) to investigate chemical interactions of biomolecules with the porous silica network and to examine the extent of sol-gel reactions upon encapsulation. Ethidium bromide intercalation and leach out tests showed that helix conformation of DNA was preserved after encapsulation. For both biomolecules, high water-to-alkoxide ratio promoted water-producing condensation and prevented alcoholic denaturation. NMR and FTIR analyses confirmed high hydraulic reactivity (water adsorption) for more silanol groups-containing DNA and dAMP encapsulated gels than plain silica gel. No chemical binding/interaction occurred between biomolecules and silica network. DNA and dAMP encapsulated silica gelled faster than plain silica due to basic nature of DNA or dAMP containing buffer solutions. DNA was not released from silica gels to aqueous environment up to 9 days. The chemical association between DNA/dAMP and silica host was through phosphate groups and molecular water attached to silanols, acting as a barrier around biomolecules. The helix morphology was found not to be essential for such interaction. BET analyses showed that interconnected, inkbottle-shaped mesoporous silica network was condensed around DNA and dAMP molecules.

  10. Graphene oxide caged in cellulose microbeads for removal of malachite green dye from aqueous solution.

    PubMed

    Zhang, Xiaomei; Yu, Hongwen; Yang, Hongjun; Wan, Yuchun; Hu, Hong; Zhai, Zhuang; Qin, Jieming

    2015-01-01

    A simple sol-gel method using non-toxic and cost-effective precursors has been developed to prepare graphene oxide (GO)/cellulose bead (GOCB) composites for removal of dye pollutants. Taking advantage of the combined benefits of GO and cellulose, the prepared GOCB composites exhibit excellent removal efficiency towards malachite green (>96%) and can be reused for over 5 times through simple filtration method. The high-decontamination performance of the GOCB system is strongly dependent on encapsulation amount of GO, temperature and pH value. In addition, the adsorption behavior of this new adsorbent fits well with the Langmuir isotherm and pseudo-second-order kinetic model. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Preparation of TiO2-ZnO and its activity test in sonophotocatalytic degradation of phenol

    NASA Astrophysics Data System (ADS)

    Fatimah, Is; Novitasari

    2016-02-01

    Synthesis of TiO2-ZnO and its activity test in Sono photocatalysis degradation of phenol has been conducted. The synthesis was performed by the sol-gel mechanism by using titanium isopropoxide and zinc acetate as precursors with the Ti: Zn ratio of 5:1. Characterization of material were conducted by x-ray diffraction analysis, surface area analysis and also diffuse reflectance UV-Visible spectrophotometry. The material obtained from the synthesis was tested in photocatalysis, Sono catalysis and Sono photocatalysis degradation of phenol solution. Results showed that material exhibited the activity of varied mechanism o- phenol degradation. In advance, the Sono photocatalysis degradation produced the synergy index of 1.169 compared to both photocatalysis and Sono catalysis.

  12. The incorporation of calix[6]arene and cyclodextrin derivatives into sol-gels for the preparation of stationary phases for gas chromatography.

    PubMed

    Delahousse, Guillaume; Peulon-Agasse, Valérie; Debray, Jean-Christophe; Vaccaro, Marie; Cravotto, Giancarlo; Jabin, Ivan; Cardinael, Pascal

    2013-11-29

    New polyethylene-glycol-based sol-gels containing cyclodextrin or calix[6]arene derivatives have been synthesized. An original method for sol-gel preparation and capillary column coating, which consumes smaller quantities of selectors and allows for control of their amounts in the stationary phase, is reported herein. The new stationary phases exhibited excellent column efficiencies over a large range of temperatures and thermal stability up to 280°C. The cyclodextrin derivative generally showed the best separation factors for aromatic positional isomers. The calix[6]arene derivative exhibited the best selectivity for the polychlorobiphenyl congeners and some polycyclic aromatic hydrocarbon isomers. The relationship between the structure and the chromatographic properties of the selectors is discussed. The tert-butyl groups on the upper rim of the calix[6]arene were found to possibly play an important role in the recognition of solutes. The incorporation of the cyclodextrin derivative into the sol-gel matrix did not affect its enantioselective recognition capabilities. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation.

    PubMed

    Gąsiorek, Jolanta; Szczurek, Anna; Babiarczuk, Bartosz; Kaleta, Jerzy; Jones, Walis; Krzak, Justyna

    2018-01-26

    Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented.

  14. Resistive switching memory devices composed of binary transition metal oxides using sol-gel chemistry.

    PubMed

    Lee, Chanwoo; Kim, Inpyo; Choi, Wonsup; Shin, Hyunjung; Cho, Jinhan

    2009-04-21

    We describe a novel and versatile approach for preparing resistive switching memory devices based on binary transition metal oxides (TMOs). Titanium isopropoxide (TIPP) was spin-coated onto platinum (Pt)-coated silicon substrates using a sol-gel process. The sol-gel-derived layer was converted into a TiO2 film by thermal annealing. A top electrode (Ag electrode) was then coated onto the TiO2 films to complete device fabrication. When an external bias was applied to the devices, a switching phenomenon independent of the voltage polarity (i.e., unipolar switching) was observed at low operating voltages (about 0.6 VRESET and 1.4 VSET). In addition, it was confirmed that the electrical properties (i.e., retention time, cycling test and switching speed) of the sol-gel-derived devices were comparable to those of vacuum deposited devices. This approach can be extended to a variety of binary TMOs such as niobium oxides. The reported approach offers new opportunities for preparing the binary TMO-based resistive switching memory devices allowing a facile solution processing.

  15. Protection of enzymes from photodegradation by entrapment within alumina.

    PubMed

    Shapovalova, Olga E; Levy, David; Avnir, David; Vinogradov, Vladimir V

    2016-10-01

    Most enzymes are highly sensitive to UV-light in all of its ranges and their activity can irreversibly drop even after a short time of exposure. Here we report a solution of this problem by using sol-gel matrices as effective protectors against this route of enzyme inactivation and denaturation. The concept presented here utilizes several modes of action: First, the entrapment within the rigid ceramic sol-gel matrix, inhibits denaturation motions, and the hydration shell around the entrapped protein provides extra protection. Second, the matrix itself - alumina in this report - absorbs UV light. And third, sol-gel materials have been shown to be quite universal in their ability to entrap small molecules, and so co-entrapment with well documented sun-screening molecules (2-hydroxybenzophenone, 2,2'-dihydroxybenzophenone, and 2,2'-dihydroxy-4-methoxybenzophenone) is an additional key protective tool. Three different enzymes as models were chosen for the experiments: carbonic anhydrase, acid phosphatase and horseradish peroxidase. All showed greatly enhanced UV (regions UV-A, UV-B, and UV-C) stabilization after entrapment within the doped sol-gel alumina matrices. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation

    PubMed Central

    Gąsiorek, Jolanta; Babiarczuk, Bartosz; Kaleta, Jerzy; Jones, Walis; Krzak, Justyna

    2018-01-01

    Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented. PMID:29373540

  17. Sol/Gel Processing Techniques for Glass Matrix Composites.

    DTIC Science & Technology

    1987-11-01

    silica alkoxide gels were also produced by an initial partial hydrolysis of TEOS. ,. After an aging period of 18-24 hrs. titanium (IV) isopropoxide ...preparation of these materials is the large difference in hydrolysis rate for titanium versus silica alkoxides. Thus, the tendency towards phase separation in...ethanol solution (Ref. 6-9). After an aging time, the more reactive titanium alkoxide is added. This solution gels quickly and is ready to be further

  18. Development of a fiber coating based on molecular sol-gel imprinting technology for selective solid-phase micro extraction of caffeine from human serum and determination by gas chromatography/mass spectrometry.

    PubMed

    Rajabi Khorrami, Afshin; Rashidpur, Amene

    2012-05-21

    In this work, a molecular sol-gel imprinting approach has been introduced to produce a fiber coating for selective direct immersion solid-phase microextraction (SPME) of caffeine. The polymerization mixture was composed of vinyl trimethoxysilane and methacrylic acid as vinyl sol-gel precursor and functional monomer, respectively. Caffeine was used as template molecule during polymerization process. The prepared fibers could be coupled directly to gas chromatography/mass spectrometry (GC/MS) and used for trace analysis of caffeine in a complex sample such as human serum. The parameters influencing SPME such as time, temperature and stirring speed were optimized. The prepared coating showed good selectivity towards caffeine in the presence of some structurally related compounds. Also, it offered high imprinting capability in comparison to bare fiber and non-imprinted coating. Linear range for caffeine detection was 1-80 μg mL(-1) and the limit of detection was 0.1 μg mL(-1). The intra-day and inter-day precisions of the peak areas for five replicates were 10 and 16%, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Preparation of Mn, Ni, Co ferrite highly porous silica nanocomposite aerogels by an urea-assisted sol-gel procedure.

    PubMed

    Loche, Danilo; Casula, Maria F; Falqui, Andrea; Marras, Sergio; Corrias, Anna

    2010-02-01

    The preparation of highly porous MnFe2O4-SiO2 and NiFe2O4-SiO2 nanocomposite aerogels with high purity and homogeneity was successfully achieved by a sol-gel procedure involving urea-assisted co-gelation of the precursor phases firstly applied for the synthesis of CoFe2O4-SiO2. This method allows fast gelation, giving rise to aerogels with 97% porosity. The structural, morphological and textural characterization as a function of thermal treatments was carried out by a multitechnique approach confirming that, as in the case of CoFe2O4-SiO2, the formation of single nanocrystals of manganese ferrite and nickel ferrite with spinel structure occurs after heating at 750 degrees C and is complete at 900 degrees C when the high porosity typical of aerogels is still retained. Thermogravimetric analysis (TG), differential thermal analysis (DTA), N2-physisorption at 77 K, powder X-ray diffraction (XRD), and transmission electron microscopy (TEM) indicate that the compositional homogeneity, crystallite size, thermal stability, and porosity are controlled by the sol-gel parameters of the preparation.

  20. Fast nucleation for silica nanoparticle synthesis using a sol-gel method.

    PubMed

    Dixit, Chandra K; Bhakta, Snehasis; Kumar, Ajeet; Suib, Steven L; Rusling, James F

    2016-12-01

    We have developed a method that for the first time allowed us to synthesize silica particles in 20 minutes using a sol-gel preparation. Therefore, it is critically important to understand the synthesis mechanism and kinetic behavior in order to achieve a higher degree of fine tuning ability during the synthesis. In this study, we have employed our ability to modulate the physical nature of the reaction medium from sol-gel to emulsion, which has allowed us to halt the reaction at a particular time; this has allowed us to precisely understand the mechanism and chemistry of the silica polymerization. The synthesis medium is kept quite simple with tetraethyl orthosilicate (TEOS) as a precursor in an equi-volumetric ethanol-water system and with sodium hydroxide as a catalyst. Synthesis is performed under ambient conditions at 20 °C for 20 minutes followed by phasing out of any unreacted TEOS and polysilicic acid chains via their emulsification with supersaturated water. We have also demonstrated that the developed particles with various sizes can be used as seeds for further particle growth and other applications. Luminol, a chemiluminescent molecule, has been entrapped successfully between the layers of silica and was demonstrated for the chemiluminescence of these particles.

  1. Characterization of chemical warfare G-agent hydrolysis products by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Inscore, Frank E.; Gift, Alan D.; Maksymiuk, Paul; Farquharson, Stuart

    2004-12-01

    The United States and its allies have been increasingly challenged by terrorism, and since the September 11, 2001 attacks and the war in Afghanistan and Iraq, homeland security has become a national priority. The simplicity in manufacturing chemical warfare agents, the relatively low cost, and previous deployment raises public concern that they may also be used by terrorists or rogue nations. We have been investigating the ability of surface-enhanced Raman spectroscopy (SERS) to detect extremely low concentrations (e.g. part-per-billion) of chemical agents, as might be found in poisoned water. Since trace quantities of nerve agents can be hydrolyzed in the presence of water, we have expanded our studies to include such degradation products. Our SERS-active medium consists of silver or gold nanoparticles incorporated into a sol-gel matrix, which is immobilized in a glass capillary. The choice of sol-gel precursor allows controlling hydrophobicity, while the porous silica network offers a unique environment for stabilizing the SERS-active metals. Here we present the use of these metal-doped sol-gels to selectively enhance the Raman signal of the hydrolyzed products of the G-series nerve agents.

  2. To study the effect of calcinations durations and temperature on optical and structural properties of MgO-CuO nanocomposites

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Praveen, Sharma, Ashwani; Parmar, R.; Dahiya, S.; Kishor, N.

    2016-05-01

    The MgO-CuO nanocomposites has been synthesized by a sol-gel techniques based on precursor polyvinyl alcohol (PVA). In this work appropriate concentration of cupric nitrate, Magnisium nitrate and PVA are mixed with 50:50 ethanol water followed by heated to 80°C to form a homogeneous gel solution. The obtained gel was slowly heated at 100°C to evaporate the solvent to form a hard homogeneous gel. The hard gel was calcinated at temperature 600°C for 4 hrs and 6 hrs thereafter, crushed the material in agate-motar so that it is converted into fine powder form. The prepared nanocomposites have been characterized using X-Ray Diffraction (XRD), FTIR, UV-VIS spectroscopy, SEM etc. The size of MgO-CuO nanocomposites heated at 600°C for 4 hours and 6 hours evaluated by Debye Scherrer formula are 17.1 nm and 21.2 nm respectively and results show that Size of MgO-CuO nanocomposites increases with increase of calcinations durations. IR spectra is also used to determine purity of samples. Absorption spectra confirm the synthesis of nanomaterials. SEM images give the indication of morphology of the nanocomposites.

  3. Assembly of phosphide nanocrystals into porous networks: formation of InP gels and aerogels.

    PubMed

    Hitihami-Mudiyanselage, Asha; Senevirathne, Keerthi; Brock, Stephanie L

    2013-02-26

    The applicability of sol-gel nanoparticle assembly routes, previously employed for metal chalcogenides, to phosphides is reported for the case of InP. Two different sizes (3.5 and 6.0 nm) of InP nanoparticles were synthesized by solution-phase arrested precipitation, capped with thiolate ligands, and oxidized with H₂O₂ or O₂/light to induce gel formation. The gels were aged, solvent-exchanged, and then supercritically dried to obtain aerogels with both meso- (2-50 nm) and macropores (>50 nm) and accessible surface areas of ∼200 m²/g. Aerogels showed higher band gap values relative to precursor nanoparticles, suggesting that during the process of assembling nanoparticles into 3D architectures, particle size reduction may have taken place. In contrast to metal chalcogenide gelation, InP gels did not form using tetranitromethane, a non-oxygen-transferring oxidant. The requirement of an oxygen-transferring oxidant, combined with X-ray photoelectron spectroscopy data showing oxidized phosphorus, suggests gelation is occurring due to condensation of phosphorus oxoanionic moieties generated at the interfaces. The ability to link discrete InP nanoparticles into a 3D porous network while maintaining quantum confinement is expected to facilitate exploitation of nanostructured InP in solid-state devices.

  4. Influence of polyols on the formation of nanocrystalline nickel ferrite inside silica matrices

    NASA Astrophysics Data System (ADS)

    Stoia, Marcela; Barvinschi, Paul; Barbu-Tudoran, Lucian; Bunoiu, Mădălin

    2017-01-01

    We have synthesized nickel ferrite/silica nanocomposites, using a modified sol-gel method that combines the sol-gel processing with the thermal decomposition of metal-organic precursors, leading to a homogenous dispersion of ferrite nanoparticles within the silica matrix and a narrow size distribution. We used as starting materials tetraethyl orthosilicate (TEOS) as source of silica, Fe(III) and Ni(II) nitrates as sources of metal cations, and polyols as reducing agent (polyvinyl alcohol, 1,4-butanediol and their mixture). TG/DTA coupled technique evidenced the redox interaction between the polyol and the mixture of metal nitrates during the heating of the gel, with formation of nickel ferrite precursors in the pores of the silica-gels. FT-IR spectroscopy confirmed the formation of metal carboxylates inside the silica-gels and the interaction of the polyols with the Si-OH groups of the polysiloxane network. X-ray diffractometry evidenced that in case of nanocomposites obtained by using a single polyol, nickel ferrite forms as single crystalline phase inside the amorphous silica matrix, while in case of using a mixture of polyols the nickel oxide appears as a secondary phase. TEM microscopy and elemental mapping evidenced the fine nature of the obtained nickel ferrite nanoparticles that are homogenously dispersed within the silica matrix. The obtained nanocomposites exhibit magnetic behavior very close to superparamagnetism slightly depending on the presence and nature of the organic compounds used in synthesis; the magnetization reached at 5 kOe magnetic field was 7 emu/g for all composites.

  5. Ionogel Electrolytes through Sol-Gel Processing

    NASA Astrophysics Data System (ADS)

    Horowitz, Ariel I.

    Electrical energy needs have intensified due to the ubiquity of personal electronics, the decarbonization of energy services through electrification, and the use of intermittent renewable energy sources. Despite developments in mechanical and thermal methods, electrochemical technologies are the most convenient and effective means of storing electrical energy. These technologies include both electrochemical cells, commonly called batteries, and electrochemical double-layer capacitors, or "supercapacitors", which store energy electrostatically. Both device types require an ion-conducting electrolyte. Current devices use solutions of complex salts in organic solvents, leading to both toxicity and flammability concerns. These drawbacks can be avoided by replacing conventional electrolytes with room-temperature molten salts, known as ionic liquids (ILs). ILs are non-volatile, non-flammable, and offer high conductivity and good electrochemical stability. Device mass can be reduced by combining ILs with a solid scaffold material to form an "ionogel," further improving performance metrics. In this work, sol-gel chemistry is explored as a means of forming ionogel electrolytes. Sol-gel chemistry is a solution-based, industrially-relevant, well-studied technique by which solids such as silica can be formed in situ. Previous works used a simple acid-catalyzed sol-gel reaction to create brittle, glassy ionogels. Here, both the range of products that can be accomplished through sol-gel processing and the understanding of interactions between ILs and the sol-gel reaction network are greatly expanded. This work introduces novel ionogel materials, including soft and compliant silica-supported ionogels and PDMS-supported ionogels. The impacts of the reactive formulation, IL identity, and casting time are detailed. It is demonstrated that variations in formulation can lead to rapid gelation and open pore structures in the silica scaffold or slow gelation and more dense silica morphologies. The IL identity is shown to have an impact on the apparent strength of the acid catalyst, leading to significant shifts in gelation time. Delayed casting is proven to be an optimal technique for avoiding pore blockage when combining ionogels with high surface area electrodes for supercapacitor applications. Finally, a simple recycling process is proposed, establishing that ILs can be easily reclaimed from silica-supported ionogels and reused, thereby validating the reputation of ILs as "green" materials.

  6. Efficient One-Pot Synthesis of Colloidal Zirconium Oxide Nanoparticles for High-Refractive-Index Nanocomposites.

    PubMed

    Liu, Chao; Hajagos, Tibor Jacob; Chen, Dustin; Chen, Yi; Kishpaugh, David; Pei, Qibing

    2016-02-01

    Zirconium oxide nanoparticles are promising candidates for optical engineering, photocatalysis, and high-κ dielectrics. However, reported synthetic methods for the colloidal zirconium oxide nanoparticles use unstable alkoxide precursors and have various other drawbacks, limiting their wide application. Here, we report a facile one-pot method for the synthesis of colloidally stable zirconium oxide nanoparticles. Using a simple solution of zirconium trifluoroacetate in oleylamine, highly stable zirconium oxide nanoparticles have been synthesized with high yield, following a proposed amidization-assisted sol-gel mechanism. The nanoparticles can be readily dispersed in nonpolar solvents, forming a long-term stable transparent solution, which can be further used to fabricate high-refractive-index nanocomposites in both monolith and thin-film forms. In addition, the same method has also been extended to the synthesis of titanium oxide nanoparticles, demonstrating its general applicability to all group IVB metal oxide nanoparticles.

  7. TiO2 and its composites as effective photocatalyst for glucose degradation processes

    NASA Astrophysics Data System (ADS)

    Kukh, A. A.; Ivanenko, I. M.; Astrelin, I. M.

    2018-03-01

    Titanium-dioxide photocatalyst was impregnated onto the activated carbon using originally developed low-temperature sol-gel method to form a TiO2:AC composite material. 15% (mass.) solution Ti2(SO4)3 in sulphuric acid was used as a precursor for photocatalyst synthesis. The highly effective composite material was obtained through a combination of properties of titanium dioxide and activated carbon. Synthesized composites TiO2 with activated carbon demonstrate highly developed surface characteristics and exhibit significantly higher activity in comparison with samples of pure TiO2 synthesized the same way, existing analogues of pure TiO2 synthesized from TiCl3 and even industrial photocatalyst. This was testified by the degradation of 1% aqueous glucose solution using TiO2:AC, samples of pure TiO2 and commercial TiO2 AEROXIDE® TiO2 P25 produced by EVONIK Industries.

  8. A Sol-Gel-Modified Poly(methyl methacrylate) Electrophoresis Microchip with a Hydrophilic Channel Wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Gang; Xu, Xuejiao; Lin, Yuehe

    2007-07-27

    A sol-gel method was employed to fabricate a poly(methyl methacrylate) (PMMA) electrophoresis microchip that contains a hydrophilic channel wall. To fabricate such a device, tetraethoxysilane (TEOS) was injected into the PMMA channel and was allowed to diffuse into the surface layer for 24 h. After removing the excess TEOS, the channel was filled with an acidic solution for 3 h. Subsequently, the channel was flushed with water and was pretreated in an oven to obtain a sol-gel-modified PMMA microchip. The water contact angle for the sol-gel-modified PMMA was 27.4° compared with 66.3° for the pure PMMA. In addition, the electro-osmoticmore » flow increased from 2.13×10-4 cm2 V-1 s-1 for the native-PMMA channel to 4.86×10-4 cm2 V-1 s-1 for the modified one. The analytical performance of the sol-gel-modified PMMA microchip was demonstrated for the electrophoretic separation of several purines, coupled with amperometric detection. The separation efficiency of uric acid increased to 74 882.3 m-1 compared with 14 730.5 m-1 for native-PMMA microchips. The result of this simple modification is a significant improvement in the performance of PMMA for microchip electrophoresis and microfluidic applications.« less

  9. Effect of N, S Co-doped TiO2 concentration on photocatalytic degradation of phenol

    NASA Astrophysics Data System (ADS)

    Yunus, Nur Najwa; Hamzah, Fazlena; So'aib, Mohamad Sufian; Krishnan, Jagannathan

    2017-12-01

    The effect of N, S Co-doped TiO2 concentration on photocatalytic degradation of phenol was investigated. The photocatalyst were prepared using sol-gel method with different concentration of dopant ranging from 0.5% to 1.0%. The precursor of titania was Titanium (IV) isopropoxide (TTIP) while the sources of nitrogen and sulfur were ammonium nitrate and thiourea respectively. The precursors were mixed to obtain a gel. The gel was dried, ground and calcined at 600 °C. The characterization of the photocatalyst using XRD showed the presence of anatase phase only and dopant concentration of 1.0% had the smallest size of crystallite which is 24 nm. The performance of the photocatalyst was tested under visible light for five hours of irradiation time. The highest degradation efficiency of phenol was at 81.8% by dopant concentration of 1.0%.

  10. Transparent organic/inorganic hybrid sol-gel materials based on perfluorinated polymers and silica

    NASA Astrophysics Data System (ADS)

    Wojcik, Anna B.; Klein, Lisa C.

    1996-01-01

    Two types of hybrid gels based on silica and perfluorinated polymers have been prepared. The first type involves a perfluorinated polymer containing acrylate groups. Perfluoropolyether diol diacrylate (PFDA) was functionalized by reacting it with (3-mercapto-propyl) trimethoxysilane by a Michael addition. The resulting silyl derivative (PFDAS) was able to copolymerize with a silica precursor, tetraethylorthosilicate (TEOS), resulting in perfluorinated polymer/silica hybrid gels. For the second type, perfluoroalkylsilane (FAS), vinyltriethoxysilane (VTES), and TEOS were polymerized in one step. In both cases, the gels were transparent, crack-free and water repellent. Since the inorganic and organic components are covalently bonded to each other, these materials can be classified as organic/inorganic copolymers.

  11. Metal-silica sol-gel materials

    NASA Technical Reports Server (NTRS)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  12. Sol gel derived hydroxyapatite coatings on titanium and its alloy Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Stoch, A.; Jastrzebski, W.; Długoń, E.; Lejda, W.; Trybalska, B.; Stoch, G. J.; Adamczyk, A.

    2005-06-01

    Titanium has been used for many medical and dental applications; however, its joining to a living bone is not satisfactorily good or the implant integration with bone tissue takes several months.The aim of this work is to produce hydroxyapatite (HAP) coatings on titanium and its alloy for facilitating and shortening the processes towards osseointegration. HAP coatings were obtained by sol-gel method with sol solutions prepared from calcium nitrate tetrahydrate and triammonium phosphate trihydrate as the calcium and phosphorous sources. Two types of gelatine were added to the sol: agar-agar or animals gelatine. Both were found to enhance the formation and stability of amorphous HAP using soluble salts as the sources of calcium and phosphate. HAP coatings were deposited from HAP-GEL sol using dip-withdrawal technique, then the plates were dried and annealed at temperatures 460-750 °C. FTIR spectroscopy and XRD analysis were used to study the phase composition of phosphate coatings. Morphology and chemical analysis of HAP layers was performed using a scanning electron microscope equipped with an energy dispersive X-ray analyser (SEM+EDX). The biological activity of sol-gel phosphate coatings was observed during thermostatic held in simulated body fluid (SBF). It was found that chemical composition and structure of HAP coatings depends on pH and final thermal treatment of the layer.

  13. Sol-gel synthesis and adsorption properties of mesoporous manganese oxide

    NASA Astrophysics Data System (ADS)

    Ivanets, A. I.; Kuznetsova, T. F.; Prozorovich, V. G.

    2015-03-01

    Sol-gel synthesis of mesoporous xerogels of manganese oxide with different phase compositions has been performed. The manganese oxide sols were obtained by redox reactions of potassium permanganate with hydrogen peroxide or manganese(II) chloride in aqueous solutions. The isotherms of the low-temperature adsorption-desorption of nitrogen with manganese oxide xerogels treated at 80, 200, 400, and 600°C were measured. The samples were studied by electron microscopy and thermal and XRD analysis. The phase transformation and the changes in the adsorption and capillary-condensation properties of manganese oxide were shown to depend on the sol synthesis conditions and the temperature of the thermal treatment of the gel. The X-ray amorphous samples heated at 80°C were shown to have low values of the specific surface; at higher temperatures, the xerogel crystallized into mixed phases with various compositions and its surface area increased at 200-400°C and decreased at 600°C.

  14. Investigation of Annealing Temperature on Copper Oxide Thin Films Using Sol-Gel Spin Coating Technique

    NASA Astrophysics Data System (ADS)

    Hashim, H.; Samat, S. F. A.; Shariffudin, S. S.; Saad, P. S. M.

    2018-03-01

    Copper (II) Oxide or cupric oxide (CuO) is one of the well-known materials studied for thin films applications. This paper was studied on the effect of annealing temperature to CuO thin films using sol-gel method and spin coating technique. The solution was prepared by sol-gel method and the thin films were synthesized at various temperatures from 500°C to 700°C that deposited onto the quartz substrates. After the annealing process, the thin films were uniform and brownish black in colour. The measurements were performed by atomic force microscopy (AFM), surface profiler (SP), two-point probe and Ultraviolet-visible (UV-Vis-NIR) spectrometer. From the optical measurement, the band gap was estimated to be 1.44eV for sample annealed at 550°C.

  15. Chitosan-silane sol-gel hybrid thin films with controllable layer thickness and morphology.

    PubMed

    Spirk, Stefan; Findenig, Gerald; Doliska, Ales; Reichel, Victoria E; Swanson, Nicole L; Kargl, Rupert; Ribitsch, Volker; Stana-Kleinschek, Karin

    2013-03-01

    The preparation of thin films of chitosan-silane hybrid materials by combining sol-gel processing and spin coating is reported. A variety of silanes can be used as starting materials for the preparation of such thin films, namely tetraethoxysilane, tri-tert-butoxysilanol, trimethylethoxysilane, p-trifluoromethyltetra-fluorophenyltriethoxysilane, trivinylmethoxysilane, (methoxymethyl)trimethyl-silane, and hexamethoxydisilane. These silanes are subjected to a sol-gel process before they are added to acidic chitosan solutions. The chitosan:silane ratio is kept constant at 6:1 (w/w) and dilutions with ethanol are prepared and spin coated. Depending on the degree of dilution, film thickness can be controlled in a range between 5 and 70 nm. For the determination of additional surface properties, static water contact angle measurements and atomic force microscopy have been employed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Double-Layer Surface Modification of Polyamide Denture Base Material by Functionalized Sol-Gel Based Silica for Adhesion Improvement.

    PubMed

    Hafezeqoran, Ali; Koodaryan, Roodabeh

    2017-09-21

    Limited surface treatments have been proposed to improve the bond strength between autopolymerizing resin and polyamide denture base materials. Still, the bond strength of autopolymerizing resins to nylon polymer is not strong enough to repair the fractured denture effectively. This study aimed to introduce a novel method to improve the adhesion of autopolymerizing resin to polyamide polymer by a double layer deposition of sol-gel silica and N-2-(aminoethyl)-3-aminopropyltrimethoxysilane (AE-APTMS). The silica sol was synthesized by acid-catalyzed hydrolysis of tetraethylorthosilicate (TEOS) as silica precursors. Polyamide specimens were dipped in TEOS-derived sol (TS group, n = 28), and exposed to ultraviolet (UV) light under O 2 flow for 30 minutes. UV-treated specimens were immersed in AE-APTMS solution and left for 24 hours at room temperature. The other specimens were either immersed in AE-APTMS solution (AP group, n = 28) or left untreated (NT group, n = 28). Surface characterization was investigated by fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Two autopolymerizing resins (subgroups G and T, n = 14) were bonded to the specimens, thermocycled, and then tested for shear bond strength with a universal testing machine. Data were analyzed with one-way ANOVA followed by Tukey's HSD (α = 0.05). FTIR spectra of treated surfaces confirmed the chemical modification and appearance of functional groups on the polymer. One-way ANOVA revealed significant differences in shear bond strength among the study groups. Tukey's HSD showed that TS T and TS G groups had significantly higher shear bond strength than control groups (p = 0.001 and p < 0.001, respectively). Moreover, bond strength values of AP T were statistically significant compared to controls (p = 0.017). Amino functionalized TEOS-derived silica coating is a simple and cost-effective method for improving the bond strength between the autopolymerizing resin and polyamide denture base. Amino-functionalized silica coating could represent a more applicable and convenient option for improving the repair strength of autopolymerizing resin to polyamide polymer. © 2017 by the American College of Prosthodontists.

  17. Preparation of Flame Retardant Polyacrylonitrile Fabric Based on Sol-Gel and Layer-by-Layer Assembly

    PubMed Central

    Ren, Yuanlin; Huo, Tongguo; Qin, Yiwen; Liu, Xiaohui

    2018-01-01

    This paper aims to develop a novel method, i.e., sol-gel combined with layer-by-layer assembly technology, to impart flame retardancy on polyacrylonitrile (PAN) fabrics. Silica-sol was synthesized via the sol-gel process and acted as cationic solution, and phytic acid (PA) was used as the anionic medium. Flame-retardant-treated PAN fabric (FR-PAN) could achieve excellent flame retardancy with 10 bilayer (10BL) coating through layer-by-layer assembly. The structure of the fabrics was characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The thermal stability and flame retardancy were evaluated by thermogravimetric (TG) analysis, cone calorimetry (CC) and limiting oxygen index (LOI). The LOI value of the coated fabric was up to 33.2 vol % and the char residue at 800 °C also increased to 57 wt %. Cone calorimetry tests revealed that, compared to the control fabric, the peak of heat release rate (PHRR) and total heat release (THR) of FR-PAN decreased by 66% and 73%, respectively. These results indicated that sol-gel combined with layer-by-layer assembly technique could impart PAN fabric with satisfactory flame-retardant properties, showing an efficient flame retardant strategy for PAN fabric. PMID:29570646

  18. Preparation of Flame Retardant Polyacrylonitrile Fabric Based on Sol-Gel and Layer-by-Layer Assembly.

    PubMed

    Ren, Yuanlin; Huo, Tongguo; Qin, Yiwen; Liu, Xiaohui

    2018-03-23

    This paper aims to develop a novel method, i.e., sol-gel combined with layer-by-layer assembly technology, to impart flame retardancy on polyacrylonitrile (PAN) fabrics. Silica-sol was synthesized via the sol-gel process and acted as cationic solution, and phytic acid (PA) was used as the anionic medium. Flame-retardant-treated PAN fabric (FR-PAN) could achieve excellent flame retardancy with 10 bilayer (10BL) coating through layer-by-layer assembly. The structure of the fabrics was characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The thermal stability and flame retardancy were evaluated by thermogravimetric (TG) analysis, cone calorimetry (CC) and limiting oxygen index (LOI). The LOI value of the coated fabric was up to 33.2 vol % and the char residue at 800 °C also increased to 57 wt %. Cone calorimetry tests revealed that, compared to the control fabric, the peak of heat release rate (PHRR) and total heat release (THR) of FR-PAN decreased by 66% and 73%, respectively. These results indicated that sol-gel combined with layer-by-layer assembly technique could impart PAN fabric with satisfactory flame-retardant properties, showing an efficient flame retardant strategy for PAN fabric.

  19. Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials.

    PubMed

    Gorni, Giulio; Velázquez, Jose J; Mosa, Jadra; Balda, Rolindes; Fernández, Joaquin; Durán, Alicia; Castro, Yolanda

    2018-01-30

    Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used method to prepare these materials but sol-gel has been indicated as a suitable alternative. Many papers have been published since the end of the 1990s, when these materials were prepared by sol-gel for the first time, thus a review of the achievements obtained so far is necessary. In the first part of this paper, a review of transparent sol-gel glass-ceramics is made focusing mainly on oxyfluoride compositions. Many interesting optical results have been obtained but very little innovation of synthesis and processing is found with respect to pioneering papers published 20 years ago. In the second part we describe the improvements in synthesis and processing obtained by the authors during the last five years. The main achievements are the preparation of oxyfluoride glass-ceramics with a much higher fluoride crystal fraction, at least double that reported up to now, and the first synthesis of NaGdF₄ glass-ceramics. Moreover, a new SiO₂ precursor was introduced in the synthesis, allowing for a reduction in the treatment temperature and favoring hydroxyl group removal. Interesting optical properties demonstrated the incorporation of dopant ions in the fluoride crystals, thus obtaining crystal-like spectra along with higher efficiencies with respect to xerogels, and hence demonstrating that these materials are a suitable alternative for photonic applications.

  20. Luminescence of Er 3+-doped nanostructured SiO 2-LaF 3 glass-ceramics prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Rodríguez, V. D.; Del Castillo, J.; Yanes, A. C.; Méndez-Ramos, J.; Torres, M.; Peraza, J.

    2007-07-01

    Transparent glass ceramics with composition of 95SiO2-5LaF3 doped with 0.1 mol% of Er3+ were synthesized by thermal treatment of precursor sol-gel glasses. Segregated LaF3 nanocrystals in the glass were confirmed from a structural analysis performed by X-ray diffraction. Blue, green and red efficient up-conversion emissions were observed under 980 nm excitation at room temperature. Under this excitation near infrared down-conversion at 1.55 μm is also observed. These results could be attributed to the precipitation of LaF3 nanocrystals and the incorporation of most Er3+ ions in these nanocrystals. The mechanisms involved in the up-conversion emissions could be ascribed to two and three photon processes.

  1. Sol-gel synthesis and densification of aluminoborosilicate powders. Part 1: Synthesis

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey; Selvaduray, Guna; Leiser, Daniel

    1992-01-01

    Aluminoborosilicate powders high in alumina content were synthesized by the sol-gel process utilizing various methods of preparation. Properties and microstructural effects related to these syntheses were examined. After heating to 600 C for 2 h in flowing air, the powders were amorphous with the metal oxides comprising 87 percent of the weight and uncombusted organics the remainder. DTA of dried powders revealed a T(sub g) at approximately 835 C and an exotherm near 900 C due to crystallization. Powders derived from aluminum secbutoxide consisted of particles with a mean diameter 5 microns less than those from aluminum isopropoxide. Powders synthesized with aluminum isopropoxide produced agglomerates comprised of rod shaped particulates while powders made with the secbutoxide precursor produced irregular glassy shards. Compacts formed from these powders required different loadings for equivalent densities according to the method of synthesis.

  2. Enzymatic synthesis of lignin-siloxane hybrid functional polymers.

    PubMed

    Prasetyo, Endry Nugroho; Kudanga, Tukayi; Fischer, Roman; Eichinger, Reinhard; Nyanhongo, Gibson S; Guebitz, Georg M

    2012-02-01

    This study combines the properties of siloxanes and lignin polymers to produce hybrid functional polymers that can be used as adhesives, coating materials, and/or multifunctionalized thin-coating films. Lignin-silica hybrid copolymers were synthesized by using a sol-gel process. Laccases from Trametes hirsuta were used to oxidize lignosulphonates to enhance their reactivity towards siloxanes and then were incorporated into siloxane precursors undergoing a sol-gel process. In vitro copolymerization studies using pure lignin monomers with aminosilanes or ethoxytrimethylsilane and analysis by ²⁹Si NMR spectroscopy revealed hybrid products. Except for kraft lignin, an increase in lignin concentration positively affected the tensile strength in all samples. Similarly, the viscosity generally increased in all samples with increasing lignin concentration and also affected the curing time. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Integrating nanohybrid membranes of reduced graphene oxide: chitosan: silica sol gel with fiber optic SPR for caffeine detection

    NASA Astrophysics Data System (ADS)

    Kant, Ravi; Tabassum, Rana; Gupta, Banshi D.

    2017-05-01

    Caffeine is the most popular psychoactive drug consumed in the world for improving alertness and enhancing wakefulness. However, caffeine consumption beyond limits can result in lot of physiological complications in human beings. In this work, we report a novel detection scheme for caffeine integrating nanohybrid membranes of reduced graphene oxide (rGO) in chitosan modified silica sol gel (rGO: chitosan: silica sol gel) with fiber optic surface plasmon resonance. The chemically synthesized nanohybrid membrane forming the sensing route has been dip coated over silver coated unclad central portion of an optical fiber. The sensor works on the mechanism of modification of dielectric function of sensing layer on exposure to analyte solution which is manifested in terms of red shift in resonance wavelength. The concentration of rGO in polymer network of chitosan and silica sol gel and dipping time of the silver coated probe in the solution of nanohybrid membrane have been optimized to extricate the supreme performance of the sensor. The optimized sensing probe possesses a reasonably good sensitivity and follows an exponentially declining trend within the entire investigating range of caffeine concentration. The sensor boasts of an unparalleled limit of detection value of 1.994 nM and works well in concentration range of 0-500 nM with a response time of 16 s. The impeccable sensor methodology adopted in this work combining fiber optic SPR with nanotechnology furnishes a novel perspective for caffeine determination in commercial foodstuffs and biological fluids.

  4. Quantitative determination of Escherichia coli based on the electrochemical measurement of bacterial catalase activity using H2O2-selective organic/inorganic-hybrid sol-gel film-modified Pt electrode.

    PubMed

    Hasebe, Yasushi; Fukuzawa, Michiru; Matsuhisa, Hironori

    2009-01-01

    Quantitative determination of Escherichia coli (E. coli) concentration was achieved by measuring the intrinsic catalase activity of E. coli using novel H2O2-selective organic/inorganic-hybrid sol-gel film-modified platinum (Pt) wire electrode. This hybrid sol-gel film is composed of three kinds of organosilanes and two biopolymers (i.e., chitosan and bovine serum albumin), and exhibited an excellent permselectivity toward H2O2 based on a size-exclusive mechanism. The steady-state anodic current for 100 [xmol/L H2O2 at +0.6 V (vs. Ag/AgCl) in 0.1 mol/L phosphate buffer (pH 6.5) solution was apparently diminished by the addition of E. coli samples, due to the decomposition of H2O2 by intrinsic catalase activity of E. coli. The time-dependent decrease in current (-AI/At) was significantly dependent on the E. coli concentration. The -AI/At was enhanced by the permeabilization pretreatment of E. coli samples with the mixed solution of polymyxin B and lysozyme. This H2O2-selective organic/inorganic-hybrid sol-gel film-modified platinum (Pt) wire electrode allowed quantitative determination of E. coli concentration ranging from 10(6) to 10(9) CFU/mL within 30 min. This method required no label and complicated procedure, and allowed rapid, simple and cost-effective quantitative electrochemical determination of catalase-positive bacteria.

  5. Sol-gel analogous aminolysis-ammonolysis of chlorosilanes to chlorine-free Si/(C)/N-materials.

    PubMed

    Wiltzsch, Conny; Wagler, Jörg; Roewer, Gerhard; Kroke, Edwin

    2009-07-28

    Large amounts of chlorosilanes, especially SiCl4 and CH3SiCl3, are produced as side-products of the industrial fabrication of solar or electronic grade silicon and the Müller-Rochow process. It was a goal of the present study to transform these compounds into useful chlorine-free precursors for Si/(C)/N ceramics via a sol-gel analogous liquid processing route. Chlorine substitution of the chlorosilanes (mixtures) with diethylamine did not yield chlorine-free products, complete reactions are only possible with lithium diethylamide. However, aminolyses with n-propylamine were successful. Transamination with ammonia was not possible with diethylaminosilanes but was with n-propylaminosilanes in various solvents. This result was attributed to steric reasons and polar interactions of the N-H groups. Colourless solid or liquid polysilazanes were obtained, depending on the silane (mixture) and the solvent. Transamination reactions of CH3Si(NH-n-Pr)3 in chloroform reproducibly yielded a cage-like oligosilazane of the composition (CH3)9Si9(NH)12N. Single crystal X-ray structure analysis revealed a seven-cyclic cluster containing four six- and three ten-membered silazane rings. This unique silazane cage as well as the other aminosilanes and the silazanes were comprehensively characterised using multi-nuclear solid state and solution NMR, elemental analyses and thermal gravimetry (TGA).

  6. Production of monodisperse cerium oxide microspheres with diameters near 100 µm by internal-gelation sol–gel methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce D.

    Cerium dioxide microspheres with uniform diameters between 65 – 211 µm were fabricated using internal gelation sol-gel methods. Although uniform microspheres are produced for nuclear fuel applications with diameters above 300 µm, sol-gel microspheres with diameters of 50 - 200 µm have historically been made by emulsion techniques and had poor size uniformity [1, 2]. An internal gelation, sol-gel apparatus was designed and constructed to accommodate the production of small, uniform microspheres whereby cerium-containing solutions were dispersed into flowing silicone oil and heated in a gelation column to initiate solidification [3, 4]. Problems with premature feed gelation and microsphere coalescencemore » were overcome by equipment modifications unique among known internal gelation setups. Microspheres were fabricated and sized in batches as a function of dispersing needle diameter and silicone oil flow rate in the two-fluid nozzle in order to determine the range of sizes possible and corresponding degree of monodispersity. Initial experiments with poor size uniformity were linked to microsphere coalescence in the gelation column prior to solidification as well as excessive flow rates for the cerium feed solution. Average diameter standard deviations as low as 2.23% were observed after optimization of flow rates and minimization of coalescence reactions.« less

  7. Hybrid organic-inorganic sol-gel materials and components for integrated optoelectronics

    NASA Astrophysics Data System (ADS)

    Lu, Dong

    On the technical platform of hybrid organic-inorganic sol-gel, the integrated optoelectronics in the forms of heterogeneous integration between the hybrid sol-gel waveguide and the high refractive index semiconductors and the nonlinear functional doping of disperse red chromophore into hybrid sol-gel is developed. The structure of hybrid sol-gel waveguide on high index semiconductor substrate is designed with BPM-CAD software. A hybrid sol-gel based on MAPTMS and TEOS suitable for lower cladding for the waveguide is developed. The multi-layer hybrid sol-gel waveguide with good mode confinement and low polarization dependence is fabricated on Si and InP. As proof of concept, a 1 x 12 beam splitter based on multimode interference is fabricated on silicon substrate. The device shows excess loss below 0.65 dB and imbalance below 0.28 dB for both TE and TM polarization. A nonlinear active hybrid sol-gel doped with disperse red 13 has been developed by simple co-solvent method. It permits high loading concentration and has low optical loss at 1550 nm. The second-order nonlinear property of the active sol-gel is induced with corona poling and studied with second harmonic generation. A 3-fold of enhancement in the poling efficiency is achieved by blue light assisted corona poling. The chromophore alignment stability is improved by reducing the free volume of the formed inorganic network from the sol-gel condensation reaction. An active sol-gel channel waveguide has been fabricated using active and passive hybrid sol-gel materials by only photopatterning and spin-coating. An amplitude modulator based on the active sol-gel containing 30 wt.% of DR13 shows an electro-optic coefficient of 14 pm/V at 1550 nm and stable operation within the observation time of 24 days.

  8. Aptamer entrapment in microfluidic channel using one-step sol-gel process, in view of the integration of a new selective extraction phase for lab-on-a-chip.

    PubMed

    Perréard, Camille; d'Orlyé, Fanny; Griveau, Sophie; Liu, Baohong; Bedioui, Fethi; Varenne, Anne

    2017-10-01

    There is a great demand for integrating sample treatment into μTASs. In this context, we developed a new sol-gel phase for extraction of trace compounds in complex matrices. For this purpose, the incorporation of aptamers in silica-based gel within PDMS/glass microfluidic channels was performed for the first time by a one-step sol-gel process. The effective gel attachment onto microchannel walls and aptamer incorporation in the polymerized gel were evaluated using fluorescence microscopy. A good gel stability and aptamer incorporation inside the microchannel was demonstrated upon rinsing and over storage time. The ability of gel-encapsulated aptamers to interact with its specific target (either sulforhodamine B as model fluorescent target, or diclofenac, a pain killer drug) was assessed too. The binding capacity of entrapped aptamers was quantified (in the micromolar range) and the selectivity of the interaction was evidenced. Preservation of aptamers binding affinity to target molecules was therefore demonstrated. Dissociation constant of the aptamer-target complex and interaction selectivity were evaluated similar to those in bulk solution. This opens the way to new selective on-chip SPE techniques for sample pretreatment. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Sol-gel-Derived nano-sized double layer anti-reflection coatings (SiO2/TiO2) for low-cost solar cell fabrication.

    PubMed

    Lee, Seung Jun; Hur, Man Gyu; Yoon, Dae Ho

    2013-11-01

    We investigate nano-sized double layer anti-reflection coatings (ARCs) using a TiO2 and SiO2 sol-gel solution process for mono-crystalline silicon solar cells. The process can be easily adapted for spraying sol-gel coatings to reduce manufacturing cost. The spray-coated SiO2/TiO2 nano-sized double layer ARCs were deposited on mono-crystalline silicon solar cells, and they showed good optical properties. The spray coating process is a lower-cost fabrication process for large-scale coating than vacuum deposition processes such as PECVD. The measured average optical reflectance (300-1200 nm) was about approximately 8% for SiO2/TiO2 nano-sized double layer ARCs. The electrical parameters of a mono-crystalline silicon solar cell and reflection losses show that the SiO2/TiO2 stacks can improve cell efficiency by 0.2% compared to a non-coated mono-crystalline silicon solar cell. In the results, good correlation between theoretical and experimental data was obtained. We expect that the sol-gel spray-coated mono-crystalline silicon solar cells have high potential for low-cost solar cell fabrication.

  10. [Effect of silicon coating on bonding strength of ceramics and titanium].

    PubMed

    Zhou, Shu; Wang, Yu; Zhang, Fei-Min; Guang, Han-Bing

    2009-06-01

    This study investigated the effect of silicon coating (SiO2) by solution-gelatin (Sol-Gel) technology on bonding strength of titanium and ceramics. Sixteen pure titanium specimens with the size of 25 mm x 3 mm x 0.5 mm were divided into two groups (n=8), test group was silicon coated by Sol-Gel technology, the other one was control group. The middle area of the samples were veneered with Vita Titankeramik system, the phase composition of two specimens were characterized by X-ray diffraction (XRD). The bonding strength of titanium/porcelain was evaluated using three-point bending test. The interface of titanium and porcelain and fractured titanium surface were investigated by scanning electron microscope (SEM) with energy depressive spectrum (EDS). Contents of surface silicon increased after modification with silicon coated by Sol-Gel technology. The mean bonding strength of test group and control group were (37.768 +/- 0.777) MPa and (29.483 +/- 1.007) MPa. There was a statistically significant difference (P=0.000) between them. The bonded ceramic boundary of test group was wider than control group. Silicon coating by Sol-Gel technology was significant in improving bonding strength of titanium/Vita Titankeramik system.

  11. A New Route to Liposil Formation by an Interfacial Sol-Gel Process Confined by Lipid Bilayer.

    PubMed

    Shen, Shukun; Yang, Lu; Lu, Yaxing; Chen, Jian-Gang; Song, Shaofei; Hu, Daodao; Parikh, Atul

    2015-11-18

    We report a new and simple approach to prepare a class of silica-reinforced liposomes with hybrid core-shell nanostructures. The amphiphilic natural structure of lipids was exploited to sequester hydrophobic molecules, namely precursor TEOS and pyrene, in the hydrophobic midplane of liposomal bilayer assemblies in the aqueous phase. Subsequent interfacial hydrolysis of TEOS at the bilayer/water interface and ensuing condensation within the hydrophobic interstices of the lipid bilayer drives silica formation in situ, producing a novel class of silica-lipid hybrid liposils. Structural characterization by scanning- and transmission electron microscopy confirm that the liposils so generated preserve closed topologies and size-monodipersity of the parent lecithin liposomes, and DSC-TGA and XRD measurements provide evidence for the silica coating. Monitoring fluorescence measurements using embedded pyrene yield detailed information on microenvironment changes, which occur during sol-gel process and shed light on the structural evolution during silica formation. We envisage that liposils formed by this simple, new approach, exploiting the hydrophobic core of the lipid bilayer to spatially localize silica-forming precursors enables preparation of stable liposils exhibiting capacity for cargo encapsulation, bicompatibility, and fluorescence monitoring, more generally opening a window for construction of stable, functional hybrid materials.

  12. Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area

    NASA Astrophysics Data System (ADS)

    Parale, Vinayak G.; Han, Wooje; Jung, Hae-Noo-Ree; Lee, Kyu-Yeon; Park, Hyung-Ho

    2018-01-01

    In the present paper, we report the synthesis of tetrapropoxysilane (TPOS)-based silica aerogels with high surface area and large pore volume. The silica aerogels were prepared by a two-step sol-gel process followed by surface modification via a simple ambient pressure drying approach. In order to minimize drying shrinkage and obtain hydrophobic aerogels, the surface of the alcogels was modified using trichloromethylsilane as a silylating agent. The effect of the sol-gel compositional parameters on the polymerization of aerogels prepared by TPOS, one of the precursors belonging to the Si(OR)4 family, was reported for the first time. The oxalic acid and NH4OH concentrations were adjusted to achieve good-quality aerogels with high surface area, low density, and high transparency. Controlling the hydrolysis and condensation reactions of the TPOS precursor turned out to be the most important factor to determine the pore characteristics of the aerogel. Highly transparent aerogels with high specific surface area (938 m2/g) and low density (0.047 g/cm3) could be obtained using an optimized TPOS/MeOH molar ratio with appropriate concentrations of oxalic acid and NH4OH.

  13. Fabrication of transparent ceramics using nanoparticles

    DOEpatents

    Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A

    2012-09-18

    A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.

  14. Preparation of Composite Coating on AZ91D Magnesium Alloy by Silica Sol-Micro Oxidation

    NASA Astrophysics Data System (ADS)

    Shao, Zhongcai; Zhang, Feifei; Zhao, Ruiqiang; Shen, Xiaoyi

    2016-03-01

    Composite coating was prepared on AZ91D magnesium alloy with a new method which combined silica sol with micro-arc oxidation (MAO). The MAO coating was prepared on the basis of MAO solution, and then coated by sol-gel process. The composite coating was obtained after second MAO treatment. Scanning electron microscopy coupled with X-ray diffraction (XRD), energy spectrum analysis and electrochemical testing was applied to characterize the properties of MAO coating and composite coating. The experimental test results indicated that the Si element derived from SiO2 gel particle embedded into the MAO coating by second MAO treatment. The surface of composite coating became dense and the holes were smaller with silica sol sealing process. The corrosion resistance of composite coating was improved than the MAO coating.

  15. Influence of carboxylic acid type on microstructure and magnetic properties of polymeric complex sol-gel driven NiFe2O4

    NASA Astrophysics Data System (ADS)

    Hessien, M. M.; Mostafa, Nasser Y.; Abd-Elkader, Omar H.

    2016-01-01

    Citric, oxalic and tartaric acids were used for synthesis of NiFe2O4 using polymeric complex precursor route. The dry precursor gels were calcined at various temperatures (400-1100 °C) for 2 h. All carboxylic acids produce iron-deficient NiFe2O4 with considerable amount of α-Fe2O3 at 400 °C. Increase in the annealing temperature caused reaction of α-Fe2O3 with iron-deficient ferrite phase. The amount of initially formed α-Fe2O3 is directly correlated with stability constant and inversely correlated with the decomposition temperature of Fe(III) carboxylate precursors. In case of tartaric acid precursor, single phase of the ferrite was obtained at 450 °C. However, in case of oxalic acid and citric acid precursors, single phase ferrite was obtained at 550 °C and 700 °C, respectively. The lattice parameters were increased with increasing annealing temperature and with decreasing the amount of α-Fe2O3. Maximum saturation magnetization (55 emu/g) was achieved using tartaric acid precursor annealed at 1100 °C.

  16. Effect of acidity on the citrate-nitrate combustion synthesis of alumina-zirconia composite powder

    NASA Astrophysics Data System (ADS)

    Chandradass, J.; Kim, Ki Hyeon

    2009-12-01

    Alumina-zirconia composite powders were produced by sol-gel autocombustion. 20 wt.% ZrO2-Al2O3 mixture precursor solutions were chelated by citric acid ions at different pH. DTA analysis shows sluggish decomposition at low pH, whereas there was rapid decomposition at high pH = 9. XRD patterns of the calcined powders showed that well crystallized powder with 100 % tetragonal phase and α-alumina phase is produced when pH = 0.58 (without ammonia addition). TEM characterization of composite powders revealed homogenous distribution of nanosized zirconia particles in the alumina matrix. FTIR analysis shows peaks at 590 cm-1 and 454 cm-1, which are identified as the characteristic absorption bands of Zr-O and Al-O.

  17. Preparation of Self-assembly Mesoporous TiO2 Using Block Copolymer Pluronic PE6200 Template

    NASA Astrophysics Data System (ADS)

    Septina, W.; Yuliarto, B.; Nugraha

    2008-03-01

    In this research, nanocrystal mesoporous TiO2 powders were synthesized by sol-gel method, with TiCl4 as a precursor in methanol solution. Block copolymer Pluronic PE 6200 was used as pores template. It was found that from the XRD measurements, both at 400 °C and 450 °C calcination temperatures, resulted in nanocrystal TiO2 with anatase phase. Based on N2 adsorption characterization (BET method), TiO2 samples have surface area 108 m2/g and 88 m2/g for 400 °C and 450 °C calcination temperatures respectively. From Small-angle Neutron Scattering (SANS) patterns, it is investigated that TiO2 samples have mesoporous structure where the pore order degree depend on the calcination temperature.

  18. Cyclization Phenomena in the Sol-Gel Polymerization of a,w-Bis(triethoxysilyl)alkanes and Incorporation of the Cyclic Structures into Network Silsesquioxane Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, T.M.; Carpenter, J.P.; Dorhout, P.K.

    1999-01-04

    Intramolecular cyclizations during acid-catalyzed, sol-gel polymerizations of ct,co- bis(tietioxysilyl)aWmes substintidly lengtien gelties formonomers witietiylene- (l), propylene- (2), and butylene-(3)-bridging groups. These cyclizations reactions were found, using mass spectrometry and %i NMR spectroscopy, to lead preferentially to monomeric and dimeric products based on six and seven membered disilsesquioxane rings. 1,2- Bis(triethoxysilyl)ethane (1) reacts under acidic conditions to give a bicyclic drier (5) that is composed of two annelated seven membered rings. Under the same conditions, 1,3- bis(triethoxysilyl)propane (2), 1,4-bis(triethoxysilyl)butane (3), and z-1,4- bis(triethoxysilyl)but-2-ene (10) undergo an intramolecular condensation reaction to give the six membemd and seven membered cyclic disilsesquioxanes 6, 7,more » and 11. Subsequently, these cyclic monomers slowly react to form the tricyclic dirners 8,9 and 12. With NaOH as polymerization catalyst these cyclic silsesquioxanes readily ~aeted to afford gels that were shown by CP MAS z%i NMR and infr=d spectroscopes to retain some cyclic structures. Comparison of the porosity and microstructwe of xerogels prepared from the cyclic monomers 6 and 7 with gels prepared directly from their acyclic precursors 2 and 3, indicate that the final pore structure of the xerogels is markedly dependent on the nature of the precursor. In addition, despite the fact that the monomeric cyclic disilsesquioxane species can not be isolated from 1-3 under basic conditions due to their rapid rate of gelation, spectroscopic techniques also detected the presence of the cyclic structures in the resulting polymeric gels.« less

  19. Synthesis of microspheres of triuranium octaoxide by simultaneous water and nitrate extraction from ascorbate-uranyl sols.

    PubMed

    Brykala, M; Deptula, A; Rogowski, M; Lada, W; Olczak, T; Wawszczak, D; Smolinski, T; Wojtowicz, P; Modolo, G

    A new method for synthesis of uranium oxide microspheres (diameter <100 μm) has been developed. It is a variant of our patented Complex Sol-Gel Process, which has been used to synthesize high-quality powders of a wide variety of complex oxides. Starting uranyl-nitrate-ascorbate sols were prepared by addition of ascorbic acid to uranyl nitrate hexahydrate solution and alkalizing by aqueous ammonium hydroxide and then emulsified in 2-ethylhexanol-1 containing 1v/o SPAN-80. Drops of emulsion were firstly gelled by extraction of water by the solvent. Destruction of the microspheres during thermal treatment, owing to highly reactive components in the gels, requires modification of the gelation step by Double Extraction Process-simultaneously extraction of water and nitrates using Primene JMT, which completely eliminates these problem. Final step was calcination in air of obtained microspheres of gels to triuranium octaoxide.

  20. Improvement of Adhesion Properties and Corrosion Resistance of Sol-Gel Coating on Zinc.

    PubMed

    Savignac, Pauline; Menu, Marie-Joëlle; Gressier, Marie; Denat, Bastien; Khadir, Yacine El; Manov, Stephan; Ansart, Florence

    2018-05-03

    Corrosion is a major problem for durability of many metals and alloys. Among the efficient classical surface treatments, chromate-based treatments must be banished from industrial use due to their toxicity. At the same time, sol-gel routes have demonstrated high potential to develop an efficient barrier effect against aggressive environments. By this process, the anti-corrosion property can be also associated to others in the case of the development of multi-functional hybrid coatings. In this paper, the main goal is precisely to improve both the corrosion resistance and the adhesion properties of phosphated zinc substrates by the deposition of a hybrid (organic-inorganic) sol-gel layer. To reach this double objective, a choice between two formulations 3-glycidoxypropyltrimethoxysilane (GPTMS)/aluminum-tri-sec-butoxide (ASB) and 3-(trimethoxysilyl)propylmethacrylate (MAP)/tetraethylorthosilicate (TEOS) was firstly made based on the results obtained by microstructural characterizations using SEM, optical analysis, and mechanical characterization such as shock and/or scratch tests (coupled to climatic chamber and salt spray exposure). Several investigations were performed in this study, and the best formulation and performances of the system were obtained by adding a new precursor (1-[3-(trimethoxysilyl)propyl]ureido-UPS) under controlled conditions, as detailed in this paper.

  1. Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process.

    PubMed

    Rashti, Ali; Yahyaei, Hossein; Firoozi, Saman; Ramezani, Sara; Rahiminejad, Ali; Karimi, Roya; Farzaneh, Khadijeh; Mohseni, Mohsen; Ghanbari, Hossein

    2016-12-01

    Due to high biocompatibility, polyurethane has found many applications, particularly in development of biomedical devices. A new nanocomposite based on thermoset polyurethane and silica nanoparticles was synthesized using sol-gel method. Sol-gel process was fulfilled in two acidic and basic conditions by using tetraethylorthosilicate (TEOS) and trimethoxyisocyanatesilane as precursors. The hybrid films characterized for mechanical and surface properties using tensile strength, contact angle, ATR-FTIR and scanning electron microscopy. Biocompatibility and cytotoxicity of the hybrids were assessed using standard MTT, LDH and TUNEL assays. The results revealed that incorporation of silica nanoparticles was significantly improved tensile strength and mechanical properties of the hybrids. Based on the contact angle results, silica nanoparticles increased hydrophilicity of the hybrids. Biocompatibility by using human lung epithelial cell line (MRC-5) demonstrated that the hybrids were significantly less cytotoxic compared to pristine polymer as tested by MTT and LDH assays. TUNEL assay revealed no signs of apoptosis in all tested samples. The results of this study demonstrated that incorporation of silica nanoparticles into polyurethane lead to the enhancement of biocompatibility, indicating that these hybrids could potentially be used in biomedical field in particular as a new coating for medical implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Transformation of silicate gels during heat treatment in air and in argon - Spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Rokita, M.; Mozgawa, W.; Adamczyk, A.

    2014-07-01

    The sol-gel method offers the possibility of obtaining silicate materials with different chemical compositions. When using TEOS or other organic precursor to silica capable of hydrolysis and poly-condensation, it is possible to use inorganic or organic precursors to produce other ingredients. This paper presents results of studying two series of silicate sols with the addition of calcium, in which the molar ratio of calcium to silicon was Ca/Si = x/(100 - x), where x was, respectively, 0-40 (x = 0-control sample). The resulting gels were subjected to heat treatment, wherein the heating was carried out simultaneously in air or in argon. To study the various stages of transformation of the gels, IR spectroscopy was used as the main research method to observe gradual disappearance of bands associated with bonds typical of organic materials and formation of bands characteristic of Si-O-Si bridging bonds. Due to the amorphous or fine crystalline nature of the resulting material, as confirmed in XRD studies, the different bands on the IR spectra were characterized by large full width at half maximum, hence an attempt was made to decompose the spectra into component bands. The analytic parameters of the resulting bands warranted the conclusion that there had been structural changes caused by the varying synthesis parameters. A comparison of the sol spectra after heat treatment in air and in argon at different temperatures showed a clear decrease in the full width at half maximum in the case of bands of samples with calcium content x ⩾ 30. The resulting spectra were compared with spectra of crystalline tobermorite, quartz and pseudowollastonite, which suggested the possibility of existence of areas with quartz-like ordering in the case of materials with calcium content x ⩾ 20 for the samples heated in argon and areas with pseudowollastonite-like ordering in the case of materials with calcium content x ⩾ 10 for the samples heated in air atmosphere. The conclusions drawn on the basis of infrared spectra were confirmed by XRD - prolonged heating of gels at 700 °C allowed us to obtain fine quartz and pseudowollastonite.

  3. Surface Modification of Zirconia Substrate by Calcium Phosphate Particles Using Sol-Gel Method.

    PubMed

    Jin, So Dam; Um, Sang Cheol; Lee, Jong Kook

    2015-08-01

    Surface modification with a biphasic composition of hydroxyapatite (HA) and tricalcium phosphate (TCP) was performed on a zirconia substrate using a sol-gel method. An initial calcium phosphate sol was prepared by mixing a solution of Ca(NO3)2 · 4H20 and (C2H5O)3P(O), while both porous and dense zirconia were used as substrates. The sol-gel coating was performed using a spin coater. The coated porous zirconia substrate was re-sintered at 1350 °C 2 h, while coated dense zirconia substrate was heat-treated at 750 °C 1 h. The microstructure of the resultant HA/TCP coatings was found to be dependent on the type of zirconia substrate used. With porous zirconia as a starting substrate, numerous isolated calcium phosphate particles (TCP and HA) were uniformly dispersed on the surface, and the particle size and covered area were dependent on the viscosity of the calcium phosphate sol. Conversely, when dense zirconia was used as a starting substrate, a thick film of nano-sized HA particles was obtained after heat treatment, however, substantial agglomeration and cracking was also observed.

  4. Sol-gel processing to form doped sol-gel monoliths inside hollow core optical fiber and sol-gel core fiber devices made thereby

    NASA Technical Reports Server (NTRS)

    Shaw, Harry C. (Inventor); Ott, Melanie N. (Inventor); Manuel, Michele V. (Inventor)

    2002-01-01

    A process of fabricating a fiber device includes providing a hollow core fiber, and forming a sol-gel material inside the hollow core fiber. The hollow core fiber is preferably an optical fiber, and the sol-gel material is doped with a dopant. Devices made in this manner includes a wide variety of sensors.

  5. Natamycin based sol-gel antimicrobial coatings on polylactic acid films for food packaging.

    PubMed

    Lantano, Claudia; Alfieri, Ilaria; Cavazza, Antonella; Corradini, Claudio; Lorenzi, Andrea; Zucchetto, Nicola; Montenero, Angelo

    2014-12-15

    In this work a comprehensive study on a new active packaging obtained by a hybrid organic-inorganic coating with antimicrobial properties was carried out. The packaging system based on polylactic acid was realised by sol-gel processing, employing tetraethoxysilane as a precursor of the inorganic phase and polyvinyl alcohol as the organic component, and incorporating natamycin as the active agent. Films with different organic-inorganic ratios (in a range between 1:19 and 1:4) were prepared, and the amount of antimycotic entrapped was found to be modulated by the sol composition, and was between 0.18 and 0.25mg/dm(2). FTIR microspectroscopic measurements were used to characterise the prepared coatings. The antifungal properties of the films were investigated against mould growth on the surface of commercial semi-soft cheese. The release of natamycin from the films to ethanol 50% (v/v) was studied by means of HPLC UV-DAD. The maximal level released was about 0.105 mg/dm(2), which is far below the value allowed by legislation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Novel multifunctional titania-silica-lanthanum phosphate nanocomposite coatings through an all aqueous sol-gel process.

    PubMed

    Smitha, Venu Sreekala; Jyothi, Chembolli Kunhatta; Peer, Mohamed A; Pillai, Saju; Warrier, Krishna Gopakumar

    2013-04-07

    A novel nanocomposite coating containing titania, silica and lanthanum phosphate prepared through an all aqueous sol-gel route exhibits excellent self-cleaning ability arising from the synergistic effect of the constituents in the nanocomposite. A highly stable titania-silica-lanthanum phosphate nanocomposite sol having particle size in the range of 30-50 nm has been synthesized starting from a titanyl sulphate precursor, which was further used for the development of photocatalytically active composite coatings on glass. The coatings prepared by the dip coating technique as well as the nanocomposite powders are heat treated and characterized further for their morphology and multifunctionality. The nanocomposite containing 1.5 wt% LaPO4 has shown a surface area as high as 138 m(2) g(-1) and a methylene blue degradation efficiency of 94% in two hours of UV exposure. The composite coating has shown very good homogeneity evidenced by transparency as high as 99.5% and low wetting behaviour. The present novel approach for energy conserving, aqueous derived, self-cleaning coatings may be suitable for large scale industrial applications.

  7. TiO2/WO3 photoactive bilayers in the UV-Vis light region

    NASA Astrophysics Data System (ADS)

    Vasilaki, E.; Vernardou, D.; Kenanakis, G.; Vamvakaki, M.; Katsarakis, N.

    2017-04-01

    In this work, photoactive bilayered films consisting of anatase TiO2 and monoclinic WO3 were synthesized by a sol-gel route. Titanium isopropoxide and tungsten hexachloride were used as metal precursors and deposition was achieved by spin-coating on Corning glass substrates. The samples were characterized by X-ray diffraction, photoluminescence, UV-Vis, and Raman spectroscopy, as well as field emission scanning electron microscopy. The prepared immobilized catalysts were tested for their photocatalytic performance by the decolorization of methylene blue in aqueous matrices, under UV-Vis light irradiation. The annealing process influenced the crystallinity of the bilayered films, while the concentration of the tungsten precursor solution and the position of the tungsten trioxide layer further affected their photocatalytic performance. In particular, the photocatalytic performance of the bilayered films was optimized at a concentration of 0.1 M of the WO3 precursor solution, when deposited as an overlying layer on TiO2 by two annealing steps ( 76% methylene blue decolorization in 300 min of irradiation versus 59% in the case of a bare TiO2 film). In general, the coupled layer catalysts exhibited superior photoactivity compared to that of bare TiO2 films with WO3 acting as an electron trap, resulting, therefore, in a more efficient electron-hole separation and inhibiting their recombination.

  8. Asymmetric bioreduction of acetophenones by Baker's yeast and its cell-free extract encapsulated in sol-gel silica materials

    NASA Astrophysics Data System (ADS)

    Kato, Katsuya; Nakamura, Hitomi; Nakanishi, Kazuma

    2014-02-01

    Baker's yeast (BY) encapsulated in silica materials was synthesized using a yeast cell suspension and its cell-free extract during a sol-gel reaction of tetramethoxysilane with nitric acid as a catalyst. The synthesized samples were fully characterized using various methods, such as scanning electron microscopy, nitrogen adsorption-desorption, Fourier transform infrared spectroscopy, thermogravimetry, and differential thermal analysis. The BY cells were easily encapsulated inside silica-gel networks, and the ratio of the cells in the silica gel was approximately 75 wt%, which indicated that a large volume of BY was trapped with a small amount of silica. The enzyme activity (asymmetric reduction of prochiral ketones) of BY and its cell-free extract encapsulated in silica gel was investigated in detail. The activities and enantioselectivities of free and encapsulated BY were similar to those of acetophenone and its fluorine derivatives, which indicated that the conformation structure of BY enzymes inside silica-gel networks did not change. In addition, the encapsulated BY exhibited considerably better solvent (methanol) stability and recyclability compared to free BY solution. We expect that the development of BY encapsulated in sol-gel silica materials will significantly impact the industrial-scale advancement of high-efficiency and low-cost biocatalysts for the synthesis of valuable chiral alcohols.

  9. Structural properties and gas sensing behavior of sol-gel grown nanostructured zinc oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajyaguru, Bhargav; Gadani, Keval; Kansara, S. B.

    2016-05-06

    In this communication, we report the results of the studies on structural properties and gas sensing behavior of nanostructured ZnO grown using acetone precursor based modified sol-gel technique. Final product of ZnO was sintered at different temperatures to vary the crystallite size while their structural properties have been studied using X-ray diffraction (XRD) measurement performed at room temperature. XRD results suggest the single phasic nature of all the samples and crystallite size increases from 11.53 to 20.96 nm with increase in sintering temperature. Gas sensing behavior has been studied for acetone gas which indicates that lower sintered samples are moremore » capable to sense the acetone gas and related mechanism has been discussed in the light of crystallite size, crystal boundary density, defect mechanism and possible chemical reaction between gas traces and various oxygen species.« less

  10. Structure and up-conversion luminescence in sol-gel derived Er 3+-Yb 3+ co-doped SiO 2:PbF 2 nano-glass-ceramics

    NASA Astrophysics Data System (ADS)

    del-Castillo, J.; Yanes, A. C.; Méndez-Ramos, J.; Tikhomirov, V. K.; Rodríguez, V. D.

    2009-11-01

    Transparent oxyfluoride nano-glass-ceramics 90(SiO 2)10(PbF 2) co-doped with 0.3 Yb 3+ and 0.1 Er 3+ (mol%) have been prepared by thermal treatment of precursor sol-gel glasses. X-ray diffraction and high resolution transmission electron microscopy analysis pointed out a precipitation of cubic β-PbF 2 nanocrystals of certain diameter in nano-glass-ceramics varying from 10 to 20 nm depending on heat treatment conditions. The incorporation of Yb 3+ and Er 3+ dopants in these nanocrystals has been confirmed by signatures of luminescence spectroscopy. Up-conversion luminescence pumped at 980 nm has been detected. Colour tuneability of up-conversion luminescence varying pump power has been analyzed in terms of standard chromaticity diagram. This tuneability opens applications for up-conversion phosphors and three-dimensional optical recording.

  11. Trimetallic oxide nanocomposites of transition metals titanium and vanadium by sol-gel technique: synthesis, characterization and electronic properties

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Mishra, Neeraj Kumar; Sachan, Komal; Ali, Md Asif; Soaham Gupta, Sachchidanand; Singh, Rajeev

    2018-04-01

    Novel titanium and vanadium based trimetallic oxide nanocomposites (TMONCs) have been synthesized using metal salts of titanium-vanadium along with three others metals viz. tin, aluminium and zinc as precursors by the sol-gel method. Aqueous ammonia and hydrazine hydrate were used as the reducing agents. The preparations of nanocomposites were monitored by observing the visual changes during each step of synthesis. The synthesized TMONCs were characterized using UV–vis, SEM, EDX, TEM and DLS. Band gap of the synthesized TMONCs ranges from 3–4.5 eV determined using tauc plot. FTIR study revealed the molecular stretching and bending peaks of corresponding M–O/M–O–M bonds thus confirming their formation. Molecular composition and particle size were determined using EDX and DLS respectively. Molecular shape, size and surface morphology have been examined by SEM and TEM.

  12. Effects of ion irradiation on the mechanical properties of SiNa wO xC yH z sol-gel derived thin films

    NASA Astrophysics Data System (ADS)

    Lucca, D. A.; Qi, Y.; Harriman, T. A.; Prenzel, T.; Wang, Y. Q.; Nastasi, M.; Dong, J.; Mehner, A.

    2010-10-01

    A study of the effects of ion irradiation of hybrid organic/inorganic modified silicate thin films on their mechanical properties is presented. NaOH catalyzed SiNa wO xC yH z thin films were synthesized by sol-gel processing from tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) precursors and spin-coated onto Si substrates. After drying at 300 °C, the films were irradiated with 125 keV H + or 250 keV N 2+ at fluences ranging from 1 × 10 14 to 2.5 × 10 16 ions/cm 2. Nanoindentation was used to characterize the films. Changes in hardness and reduced elastic modulus were examined as a function of ion fluence and irradiating species. The resulting increases in hardness and reduced elastic modulus are compared to similarly processed acid catalyzed silicate thin films.

  13. Chemically Derived Dense Alumina-Zirconia Composites for Improved Mechanical and Wear Erosion Properties

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As a result of this funded project high purity Zirconia-Toughened Alumina (ZTA) ceramic powders with and without yttria were produced using metal alkoxide precursors. ZTA ceramic powders with varying volume percents of zirconia were prepared (7, 15, and 22%). Aluminum tri-sec butoxide, zirconium propoxide, and yttrium isopropoxide were the reagents used. Synthesis conditions were varied to control the hydrolysis and the aging conditions for the sol to gel transition. FTIR analysis and rheological characterization were used to follow the structural evolution during the sol to gel transition. The greater extent of hydrolysis and the build-up of structure measured from viscoelastic properties were consistent. Heat treatment was conducted to produce submicron grain fully crystalline ZTA ceramic powders. This improved materials should have enhanced properties such strength, toughness, and wear resistance for advanced structural applications, for example engine components in high technology aerospace applications.

  14. Sol-Gel Glasses

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  15. Morphological control of heterostructured nanowires synthesized by sol-flame method

    PubMed Central

    2013-01-01

    Heterostructured nanowires, such as core/shell nanowires and nanoparticle-decorated nanowires, are versatile building blocks for a wide range of applications because they integrate dissimilar materials at the nanometer scale to achieve unique functionalities. The sol-flame method is a new, rapid, low-cost, versatile, and scalable method for the synthesis of heterostructured nanowires, in which arrays of nanowires are decorated with other materials in the form of shells or chains of nanoparticles. In a typical sol-flame synthesis, nanowires are dip-coated with a solution containing precursors of the materials to be decorated, then dried in air, and subsequently heated in the post-flame region of a flame at high temperature (over 900°C) for only a few seconds. Here, we report the effects of the precursor solution on the final morphology of the heterostructured nanowire using Co3O4 decorated CuO nanowires as a model system. When a volatile cobalt salt precursor is used with sufficient residual solvent, both solvent and cobalt precursor evaporate during the flame annealing step, leading to the formation of Co3O4 nanoparticle chains by a gas-solid transition. The length of the nanoparticle chains is mainly controlled by the temperature of combustion of the solvent. On the other hand, when a non-volatile cobalt salt precursor is used, only the solvent evaporates and the cobalt salt is converted to nanoparticles by a liquid–solid transition, forming a conformal Co3O4 shell. This study facilitates the use of the sol-flame method for synthesizing heterostructured nanowires with controlled morphologies to satisfy the needs of diverse applications. PMID:23924299

  16. Urea functionalized surface-bonded sol-gel coating for on-line hyphenation of capillary microextraction with high-performance liquid chromatography.

    PubMed

    Jillani, Shehzada Muhammad Sajid; Alhooshani, Khalid

    2018-03-30

    Sol-gel urea functionalized-[bis(hydroxyethyl)amine] terminated polydimethylsiloxane coating was developed for capillary microextraction-high performance liquid chromatographic analysis from aqueous samples. A fused silica capillary is coated from the inside with surface bonded coating material and is created through in-situ sol-gel reaction. The urea-functionalized coating was immobilized to the inner surface of the capillary by the condensation reaction of silanol groups of capillary and sol-solution. The characterization of the coating material was successfully done by using X-ray photoelectron spectroscopy, thermogravimetric analysis, field emission scanning electron microscope, and energy dispersive X-ray spectrometer. To make a setup of online capillary microextraction-high performance liquid chromatography, the urea functionalized capillary was installed in the HPLC manual injection port. The analytes of interest were pre-concentrated in the coated sampling loop, desorbed by the mobile phase, chromatographically separated on C-18 column, and analyzed by UV detector. Sol-gel coated capillaries were used for online extraction and high-performance liquid chromatographic analysis of phenols, ketones, aldehydes, and polyaromatic hydrocarbons. This newly developed coating showed excellent extraction for a variety of analytes ranging from highly polar to non-polar in nature. The analysis using sol-gel coating showed excellent overall sensitivity in terms of lower detection limits (S/N = 3) for the analytes (0.10 ng mL -1 -14.29 ng mL -1 ) with acceptable reproducibility that is less than 12.0%RSD (n = 3). Moreover, the capillary to capillary reproducibility of the analysis was also tested by changing the capillary of the same size. This provided excellent%RSD of less than 10.0% (n = 3). Copyright © 2018 Elsevier B.V. All rights reserved.

  17. In situ observation of sol-gel transition of agarose aqueous solution by fluorescence measurement.

    PubMed

    Wang, Zheng; Yang, Kun; Li, Haining; Yuan, Chaosheng; Zhu, Xiang; Huang, Haijun; Wang, Yongqiang; Su, Lei; Fang, Yapeng

    2018-06-01

    Sol-gel transition behavior of agarose aqueous solution was investigated by using rheology and fluorescence measurement. On heating, the storage modulus G' decreased gradually, then deviated abruptly at the temperature of about 65°C, and finally decreased slowly again. For fluorescence measurement, the phase transition point kept almost at the temperature of 65°C, which was consistent with that in rheology measurement. Upon compression, it was indicated that the fluorescence lifetime for the probe in the agarose aqueous solution showed a dramatic change in the vicinity of the phase transition point. T vs. P phase diagram of agarose aqueous solution was constructed, which showed that the melting point was an increasing function of pressure. Based on the phase diagram, the agarose gels were prepared by cooling under atmospheric pressure and the pressure of 300MPa, respectively. From the result of the recovered samples studied by optical rheometry, it was found that agarose gel prepared under high pressure had a higher elasticity and lower viscosity index, compared with that under atmospheric pressure. It could be speculated that such kinds of properties might be attributed to the smaller pore size during gelation under high pressure. Copyright © 2018. Published by Elsevier B.V.

  18. Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials

    PubMed Central

    Gorni, Giulio; Mosa, Jadra; Balda, Rolindes; Fernández, Joaquin; Durán, Alicia; Castro, Yolanda

    2018-01-01

    Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used method to prepare these materials but sol-gel has been indicated as a suitable alternative. Many papers have been published since the end of the 1990s, when these materials were prepared by sol-gel for the first time, thus a review of the achievements obtained so far is necessary. In the first part of this paper, a review of transparent sol-gel glass-ceramics is made focusing mainly on oxyfluoride compositions. Many interesting optical results have been obtained but very little innovation of synthesis and processing is found with respect to pioneering papers published 20 years ago. In the second part we describe the improvements in synthesis and processing obtained by the authors during the last five years. The main achievements are the preparation of oxyfluoride glass-ceramics with a much higher fluoride crystal fraction, at least double that reported up to now, and the first synthesis of NaGdF4 glass-ceramics. Moreover, a new SiO2 precursor was introduced in the synthesis, allowing for a reduction in the treatment temperature and favoring hydroxyl group removal. Interesting optical properties demonstrated the incorporation of dopant ions in the fluoride crystals, thus obtaining crystal-like spectra along with higher efficiencies with respect to xerogels, and hence demonstrating that these materials are a suitable alternative for photonic applications. PMID:29385706

  19. Radiation hardening in sol-gel derived Er{sup 3+}-doped silica glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hari Babu, B., E-mail: hariphy2012@gmail.com, E-mail: matthieu.lancry@u-psud.fr; León Pichel, Mónica; Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS-UPSud 8182, Université Paris Sud, 91405 Orsay

    2015-09-28

    The aim of the present paper is to report the effect of radiation on the Er{sup 3+}-doped sol-gel silica glasses. A possible application of these sol-gel glasses could be their use in harsh radiation environments. The sol-gel glasses are fabricated by densification of erbium salt-soaked nanoporous silica xerogels through polymeric sol-gel technique. The radiation-induced attenuation of Er{sup 3+}-doped sol-gel silica is found to increase with erbium content. Electron paramagnetic resonance studies reveal the presence of E′{sub δ} point defects. This happens in the sol-gel aluminum-silica glass after an exposure to γ-rays (kGy) and in sol-gel silica glass after an exposuremore » to electrons (MGy). The concentration levels of these point defects are much lower in γ-ray irradiated sol-gel silica glasses. When the samples are co-doped with Al, the exposure to γ-ray radiation causes a possible reduction of the erbium valence from Er{sup 3+} to Er{sup 2+} ions. This process occurs in association with the formation of aluminum oxygen hole centers and different intrinsic point defects.« less

  20. Chemical Routes to Ceramics With Tunable Properties and Structures

    DTIC Science & Technology

    2006-07-26

    thermolytic or chemical reactions, and then dissolution of the alumina membrane to leave the free standing fibers. In our work, we used alumina membranes ...converted the precursor to a boron carbide coating. Dissolution of the coated alumina membranes with HF then yielded free-standing nanocylindrical...construct, via sol-gel condensations, ordered macroporous arrays of titania , zirconia, and alumina . Other work employing the silica templates have

  1. Printable Integrated Photonic Devices

    DTIC Science & Technology

    2016-06-16

    titanium dioxide ( TiO2 ), having n>2 and an excellent optical transmission (>90%) down to 400 nm wavelength. We developed a hybrid organic-inorganic...1) Figure 1: aBeam’s proprietary TiO2 (ceramic) based high-refractive index imprint material (a) refractive index vs. wavelength, and (b...nanocrystals were synthesized and incorporated into the sol-gel precursor. TiO2 based imprint materials typically require high annealing temperature at

  2. Synthesis and characterization of ZnO:TiO2 nano composites thin films deposited on glass substrate by sol-gel spray coating technique

    NASA Astrophysics Data System (ADS)

    Sutanto, Heri; Nurhasanah, Iis; Hidayanto, Eko; Wibowo, Singgih; Hadiyanto

    2015-12-01

    In this work, (ZnO)x:(TiO2)1-x nano composites thin films, with x = 1, 0.75, 0.5, 0.25, and 0, have been prepared by sol-gel spray coating technique onto glass substrate. Pure TiO2 and ZnO thin films were synthesized from titanium isopropoxide-based and zinc acetate-based precursor solutions, respectively, whereas the composite films were obtained from the mixture of these solutions at the specific % vol ratios. The properties and performance of nano composite ZnO, TiO2 and ZnO:TiO2 thin films at different composition have been investigated. Ultraviolet - Visible (UV-Vis) Spectrophotometer and Scanning Electron Microscopy (SEM) were employed in order to get morphology and transmittance of thin films. Testing the ability of photocatalytic activity of obtained films was conducted on photodegradation of methylene blue (MB) dye and organic pollutants of wastewater under a 30 watt UV light irradiation, then testing BOD, COD and TPC were conducted. Using the Tauc model, the band-gap energy decreased from 3.12 eV to 3.02 eV for the sample with x = 1 and 0, respectively. This decrease occured along with the replacement of percentage of ZnO by TiO2 on the films. This decrease also reduced the minimum energy that required for electron excitation. Obtained thin films had nanoscale roughness level with range 3.64 to 17.30 nm. The film with x= 0 has the biggest removal percentage on BOD, COD and TPC mesurements with percentage 54.82%, 62.73% and 99.88%, respectively.

  3. Process for Preparing Epoxy-Reinforced Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B (Inventor)

    2016-01-01

    One-pot reaction process for preparing epoxy-reinforced monolithic silica aerogels comprising the reaction of at least one silicon compound selected from the group consisting of alkoxysilanes, orthosilicates and combination thereof in any ratio with effective amounts of an epoxy monomer and an aminoalkoxy silane to obtain an epoxy monomer-silica sol in solution, subsequently preparing an epoxy-monomer silica gel from said silica sol solution followed by initiating polymerization of the epoxy monomer to obtain the epoxy-reinforced monolithic silica aerogel.

  4. Epidemic models for phase transitions: application to a physical gel

    NASA Astrophysics Data System (ADS)

    Bilge, A. H.; Pekcan, O.; Kara, S.; Ogrenci, A. S.

    2017-09-01

    Carrageenan gels are characterized by reversible sol-gel and gel-sol transitions under cooling and heating processes and these transitions are approximated by generalized logistic growth curves. We express the transitions of carrageenan-water system, as a representative of reversible physical gels, in terms of a modified Susceptible-Infected-Susceptible epidemic model, as opposed to the Susceptible-Infected-Removed model used to represent the (irreversible) chemical gel formation in the previous work. We locate the gel point Tc of sol-gel and gel-sol transitions and we find that, for the sol-gel transition (cooling), Tc > Tsg (transition temperature), i.e. Tc is earlier in time for all carrageenan contents and moves forward in time and gets closer to Tsg as the carrageenan content increases. For the gel-sol transition (heating), Tc is relatively closer to Tgs; it is greater than Tgs, i.e. later in time for low carrageenan contents and moves backward as carrageenan content increases.

  5. Determination of Aromatic Amines Using Solid-Phase Microextraction Based on an Ionic Liquid-Mediated Sol-Gel Technique.

    PubMed

    Abbasi, Vajihe; Sarafraz-Yazdi, Ali; Amiri, Amirhassan; Vatani, Hossein

    2016-04-01

    A headspace solid-phase microextraction (HS-SPME) method was developed for isolation of monocyclic aromatic amines from water samples followed by gas chromatography-flame ionization detector (GC-FID). In this work, the effect of the presence of ionic liquid (namely, 1-hexyl-3-methyl-imidazolium hexafluorophosphate [C6MIM][PF6]) was investigated in the sol-gel coating solutions on the morphology and extraction behavior of the resulting hybrid organic-inorganic sol-gel sorbents utilized in SPME. Hydroxy-terminated poly(dimethylsiloxane) (PDMS) was used as the sol-gel active organic component for sol-gel hybrid coatings. Two different coated fibers that were prepared are PDMS and PDMS-IL ([C6MIM][PF6]) fibers. Under the optimal conditions, the method detection limits (S/N = 3) with PDMS-IL were in the range of 0.001-0.1 ng/mL and the limits of quantification (S/N = 10) between 0.005 and 0.5 ng/mL. The relative standard deviations for one fiber (n = 5) were obtained from 3.1 up to 8.5% and between fibers or batch to batch (n = 3) in the range of 5.3-10.1%. The developed method was successfully applied to real water and juice fruits samples while the relative recovery percentages obtained for the spiked water samples at 0.1 ng/mL were from 83.3 to 95.0%. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. High-Quality Solution-Processed Silicon Oxide Gate Dielectric Applied on Indium Oxide Based Thin-Film Transistors.

    PubMed

    Jaehnike, Felix; Pham, Duy Vu; Anselmann, Ralf; Bock, Claudia; Kunze, Ulrich

    2015-07-01

    A silicon oxide gate dielectric was synthesized by a facile sol-gel reaction and applied to solution-processed indium oxide based thin-film transistors (TFTs). The SiOx sol-gel was spin-coated on highly doped silicon substrates and converted to a dense dielectric film with a smooth surface at a maximum processing temperature of T = 350 °C. The synthesis was systematically improved, so that the solution-processed silicon oxide finally achieved comparable break downfield strength (7 MV/cm) and leakage current densities (<10 nA/cm(2) at 1 MV/cm) to thermally grown silicon dioxide (SiO2). The good quality of the dielectric layer was successfully proven in bottom-gate, bottom-contact metal oxide TFTs and compared to reference TFTs with thermally grown SiO2. Both transistor types have field-effect mobility values as high as 28 cm(2)/(Vs) with an on/off current ratio of 10(8), subthreshold swings of 0.30 and 0.37 V/dec, respectively, and a threshold voltage close to zero. The good device performance could be attributed to the smooth dielectric/semiconductor interface and low interface trap density. Thus, the sol-gel-derived SiO2 is a promising candidate for a high-quality dielectric layer on many substrates and high-performance large-area applications.

  7. Synthesis and characterization of spin-coated ZnS thin films

    NASA Astrophysics Data System (ADS)

    Zaman, M. Burhanuz; Chandel, Tarun; Dehury, Kshetramohan; Rajaram, P.

    2018-05-01

    In this paper, we report synthesis of ZnS thin films using a sol-gel method. A unique aprotic solvent, dimethlysulphoxide (DMSO) has been used to obtain a homogeneous ZnS gel. Zinc acetate and thiourea were used as the precursor sources for Zn and S, respectively, to deposit nanocrystalline ZnS thin films. Optical, structural and morphological properties of the films were studied. Optical studies reveal high transmittance of the samples over the entire visible region. The energy band gap (Eg) for the ZnS thin films is found to be about 3.6 eV which matches with that of bulk ZnS. The interference fringes in transmissions spectrum show the high quality of synthesized samples. Strong photoluminescence peak in the UV region makes the films suitable for optoelectronic applications. X-ray diffraction studies reveal that sol-gel derived ZnS thin films are polycrystalline in nature with hexagonal structure. SEM studies confirmed that the ZnS films show smooth and uniform grains morphology having size in 20-25 nm range. The EDAX studies confirmed that the films are nearly stoichiometric.

  8. Nanosilica coating for bonding improvements to zirconia.

    PubMed

    Chen, Chen; Chen, Gang; Xie, Haifeng; Dai, Wenyong; Zhang, Feimin

    2013-01-01

    Resin bonding to zirconia cannot be established from standard methods that are currently utilized in conventional silica-based dental ceramics. The solution-gelatin (sol-gel) process is a well developed silica-coating technique used to modify the surface of nonsilica-based ceramics. Here, we use this technique to improve resin bonding to zirconia, which we compared to zirconia surfaces treated with alumina sandblasting and tribochemical silica coating. We used the shear bond strength test to examine the effect of the various coatings on the short-term resin bonding of zirconia. Furthermore, we employed field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, and Fourier transform infrared spectroscopy to characterize the zirconia surfaces. Water-mist spraying was used to evaluate the durability of the coatings. To evaluate the biological safety of the experimental sol-gel silica coating, we conducted an in vitro Salmonella typhimurium reverse mutation assay (Ames mutagenicity test), cytotoxicity tests, and in vivo oral mucous membrane irritation tests. When compared to the conventional tribochemical silica coating, the experimental sol-gel silica coating provided the same shear bond strength, higher silicon contents, and better durability. Moreover, we observed no apparent mutagenicity, cytotoxicity, or irritation in this study. Therefore, the sol-gel technique represents a promising method for producing silica coatings on zirconia.

  9. Outdoor weathering of sol-gel-treated wood

    Treesearch

    Mandla A Tshabalala; Ryan Libert; Nancy Ross Sutherland

    2009-01-01

    Outdoor weathering of wood specimens treated with sol-gel formulations based on methyltrimethoxysilane (MTMOS), hexadecyltrimethoxysilane (HDTMOS), and ferric-zirconia-titania (Fe-Zr-Ti) sol was evaluated. The sol-gel process allowed deposition of a thin film of hybrid inorganic-organic networks (gel) in the wood cell wall that resulted in improved outdoor weathering...

  10. Rheological and micro-Raman time-series characterization of enzyme sol–gel solution toward morphological control of electrospun fibers

    PubMed Central

    Oriero, Dennis A; Weakley, Andrew T; Aston, D Eric

    2012-01-01

    Rheological and micro-Raman time-series characterizations were used to investigate the chemical evolutionary changes of silica sol–gel mixtures for electrospinning fibers to immobilize an enzyme (tyrosinase). Results of dynamic rheological measurements agreed with the expected structural transitions associated with reacting sol–gel systems. The electrospinning sols exhibited shear-thinning behavior typical of a power law model. Ultrafine (200–300 nm diameter) fibers were produced at early and late times within the reaction window of approximately one hour from initial mixing of sol solutions with and without enzyme; diameter distributions of these fibers showed much smaller deviations than expected. The enzyme markedly increased magnitudes of both elastic and viscous moduli but had no significant impact on final fiber diameters, suggesting that the shear-thinning behavior of both sol–gel mixtures is dominant in the fiber elongation process. The time course and scale for the electrospinning batch fabrication show strong correlations between the magnitudes in rheological property changes over time and the chemical functional group evolution obtained from micro-Raman time-series analysis of the reacting sol–gel systems. PMID:27877486

  11. Evidence of modifications of micellar interface in sol-gel glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catuara, C.M.; Lin, C.T.

    1994-12-31

    A new sol-gel procedure using micellar solutions has been developed to immobilize local anesthetic drugs in optically transparent glass. Dibucaine was selected as a direct emission probe at 77 K for determining the forms of the anesthetic drug (free base, monoprotonated, and/or diprotonated) and its location (hydrophobic core, interfacial layer or hydrophilic region) in micelles. The photophysical properties of local anesthetics obtained in gels are compared to those in solutions. During the gelation stage, the predominant drug species was identified as free base dibucaine embedded in the hydrophobic core of neutral as well as charged micelles. This observation suggests thatmore » the micellar interface was modified by the large hydrophilic gel surface during the gelation stage. The modified micellar interface allows an increase in the partition of free base dibucaine into the hydrophobic region. At the xerogel stage, however, the collapse of micellar structure provides a direct interaction of dibucaine with the acidic gel surface, leading to a formation of diprotonated dibucaine. The results are discussed in terms of molecular basis of pharmacological implications such as drug delivery, release, and transport under microencapsulation conditions.« less

  12. All optical controlled photonic integrated circuits using azo dye functionized sol-gel material

    NASA Astrophysics Data System (ADS)

    Ke, Xianjun

    The main focus of this dissertation is development and characterization of all-optical controllable azo dye functionized sol gel material, demonstrating a PIC fabrication technique on glass substrate using such material, and exploration and feasibility demonstration of three PIC functional devices namely optical variable attenuator, optical switches, and optical tunable filters using the material. The realization of all the devices in this dissertation are based on one material: dye functionalized sol-gel material. A photochromic sol-gel material functionalized with azo dye was synthesized and characterized. It possesses a photochromic characteristic under the control of green laser beam illumination. The material characteristics suggest the possibility of a new promising material platform candidate for the fabrication of alloptical controlled photonic integrated circuits. As the first potential application of the dye functionalized sol-gel material, an alloptical variable attenuator was designed and demonstrated. The optical variable attenuation is achieved in Mach-Zehnder interferometric configuration through all-optical modulation of sol-gel waveguide phase shifters. A 2 x 2 optical switch based on multimode interference (MMI) waveguide structure is proposed in the dissertation. The schematic configuration of the optical switch consists of a cascade of two identical MMIs with two all-optical controlled phase shifters realized by using the photochromic sol-gel material. The cross or bar switch state of the optical switch is determined by the phase difference between the two sol-gel waveguide phase shifters. An all-optical tunable filter is designed and its feasibility demonstrated by using the sol-gel photochromic material. Except for the phase change demonstrated on sol-gel waveguide phase shifters, dynamic gratings were observed on sol-gel film when exposed to two interference beams. This reveals the possibility of realizing Bragg grating-based tunable filters. The schematic configuration of proposed tunable filters consists of a single straight waveguide embedded with a sol-gel waveguide. The wavelength tuning of the tunable filters is accomplished by varying the grating period.

  13. Increasing the activity and enantioselectivity of lipases by sol-gel immobilization: further advancements of practical interest

    NASA Astrophysics Data System (ADS)

    Tielmann, Patrick; Kierkels, Hans; Zonta, Albin; Ilie, Adriana; Reetz, Manfred T.

    2014-05-01

    The entrapment of lipases in hydrophobic silicate matrices formed by sol-gel mediated hydrolysis of RSi(OCH3)3/Si(OCH3)4 as originally reported in 1996 has been improved over the years by a number of modifications. In the production of second-generation sol-gel lipase immobilizates, a variety of additives during the sol-gel process leads to increased activity and enhanced stereoselectivity in esterifying kinetic resolution. Recent advances in this type of lipase immobilization are reviewed here, in addition to new results regarding the sol-gel entrapment of the lipase from Burkholderia cepacia. It constitutes an excellent heterogeneous biocatalyst in the acylating kinetic resolution of two synthetically and industrially important chiral alcohols, rac-sulcatol and rac-trans-2-methoxycyclohexanol. The observation that the catalyst can be used 10 times in recycling experiments without losing its significant activity or enantioselectivity demonstrates the practical viability of the sol-gel approach.The entrapment of lipases in hydrophobic silicate matrices formed by sol-gel mediated hydrolysis of RSi(OCH3)3/Si(OCH3)4 as originally reported in 1996 has been improved over the years by a number of modifications. In the production of second-generation sol-gel lipase immobilizates, a variety of additives during the sol-gel process leads to increased activity and enhanced stereoselectivity in esterifying kinetic resolution. Recent advances in this type of lipase immobilization are reviewed here, in addition to new results regarding the sol-gel entrapment of the lipase from Burkholderia cepacia. It constitutes an excellent heterogeneous biocatalyst in the acylating kinetic resolution of two synthetically and industrially important chiral alcohols, rac-sulcatol and rac-trans-2-methoxycyclohexanol. The observation that the catalyst can be used 10 times in recycling experiments without losing its significant activity or enantioselectivity demonstrates the practical viability of the sol-gel approach. Dedicated to the pioneer of sol-gel enzyme immobilization, Professor David Avnir, on the occasion of his 65th birthday.

  14. Solution-Processed Gallium–Tin-Based Oxide Semiconductors for Thin-Film Transistors

    PubMed Central

    Zhang, Xue; Lee, Hyeonju; Kim, Jungwon; Kim, Eui-Jik; Park, Jaehoon

    2017-01-01

    We investigated the effects of gallium (Ga) and tin (Sn) compositions on the structural and chemical properties of Ga–Sn-mixed (Ga:Sn) oxide films and the electrical properties of Ga:Sn oxide thin-film transistors (TFTs). The thermogravimetric analysis results indicate that solution-processed oxide films can be produced via thermal annealing at 500 °C. The oxygen deficiency ratio in the Ga:Sn oxide film increased from 0.18 (Ga oxide) and 0.30 (Sn oxide) to 0.36, while the X-ray diffraction peaks corresponding to Sn oxide significantly reduced. The Ga:Sn oxide film exhibited smaller grains compared to the nanocrystalline Sn oxide film, while the Ga oxide film exhibited an amorphous morphology. We found that the electrical properties of TFTs significantly improve by mixing Ga and Sn. Here, the optimum weight ratio of the constituents in the mixture of Ga and Sn precursor sols was determined to be 1.0:0.9 (Ga precursor sol:Sn precursor sol) for application in the solution-processed Ga:Sn oxide TFTs. In addition, when the Ga(1.0):Sn(0.9) oxide film was thermally annealed at 900 °C, the field-effect mobility of the TFT was notably enhanced from 0.02 to 1.03 cm2/Vs. Therefore, the mixing concentration ratio and annealing temperature are crucial for the chemical and morphological properties of solution-processed Ga:Sn oxide films and for the TFT performance. PMID:29283408

  15. A novel tantalum-based sol-gel packed microextraction syringe for highly specific enrichment of phosphopeptides in MALDI-MS applications.

    PubMed

    Çelikbıçak, Ömür; Atakay, Mehmet; Güler, Ülkü; Salih, Bekir

    2013-08-07

    A new tantalum-based sol-gel material was synthesized using a unique sol-gel synthesis pathway by PEG incorporation into the sol-gel structure without performing a calcination step. This improved its chemical and physical properties for the high capacity and selective enrichment of phosphopeptides from protein digests in complex biological media. The specificity of the tantalum-based sol-gel material for phosphopeptides was evaluated and compared with tantalum(V) oxide (Ta2O5) in different phosphopeptide enrichment applications. The tantalum-based sol-gel and tantalum(V) oxide were characterized in detail using FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM), and also using a surface area and pore size analyzer. In the characterization studies, the surface morphology, pore volume, crystallinity of the materials and PEG incorporation into the sol-gel structure to produce a more hydrophilic material were successfully demonstrated. The X-ray diffractograms of the two different materials were compared and it was noted that the broad signals of the tantalum-based sol-gel clearly represented the amorphous structure of the sol-gel material, which was more likely to create enough surface area and to provide more accessible tantalum atoms for phosphopeptides to be easily adsorbed when compared with the neat and more crystalline structure of Ta2O5. Therefore, the phosphopeptide enrichment performance of the tantalum-based sol-gels was found to be remarkably higher than the more crystalline Ta2O5 in our studies. Phosphopeptides at femtomole levels could be selectively enriched using the tantalum-based sol-gel and detected with a higher signal-to-noise ratio by matrix-assisted laser desorption/ionization-mass spectrometer (MALDI-MS). Moreover, phosphopeptides in a tryptic digest of non-fat bovine milk as a complex real-world biological sample were retained with higher yield using a tantalum-based sol-gel. Additionally, the sol-gel material was packed into a standard syringe (0.5 mL) to enhance the ease of use of the sol-gel material and for the elimination of additional mixing and separation procedures during the adsorption, washing and elution steps of the enrichment procedure. It was found that up to 28 phosphopeptides in milk digest were easily detectable by MALDI-MS at femtomole levels (around 20 fmol) using the microextraction syringe within less than one minute.

  16. Superhydrophobicity of electrospray-synthesized fluorinated silica layers.

    PubMed

    Kim, Eun-Kyeong; Lee, Chul-Sung; Kim, Sang Sub

    2012-02-15

    The preparation of superhydrophobic SiO(2) layers through a combination of a nanoscale surface roughness and a fluorination treatment is reported. Electrospraying SiO(2) precursor solutions that had been prepared by a sol-gel chemical route produced very rough SiO(2) layers. Subsequent fluorination treatment with a solution containing trichloro(1H,1H,2H,2H-perfluorooctyl)silane resulted in highly rough, fluorinated SiO(2) layers. The fluorinated rough SiO(2) layers exhibited excellent repellency toward various liquid droplets. In particular, water repellency of 168° was observed. On the bases of Cassie-Baxter and Young-Dupre equations, the surface fraction and the work of adhesion of the rough, fluorinated SiO(2) layers were respectively estimated. In light of the durability in water, ultraviolet resistance, and thermal stability, the superhydrophobic SiO(2) layers prepared in this work hold promise in a range of practical applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Photocatalytic hydrogen evolution of palladium nanoparticles decorated black TiO2 calcined in argon atmosphere

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chung; Hsiao, Kai-Chi; Chang, Yin-Hsuan; Chan, Shun-Hsiang

    2018-02-01

    Black TiO2 nanoparticles (BTN) was prepared by sol-gel derived precursor calcined in an argon atmosphere. The synthesized BTN with trivalent titanium ion, structural defect, and oxygen vacancy shows a remarkably high absorbance in the visible light spectrum. BTN thus behaves a higher visible-active nanoreactor than white TiO2 nanoparticles (WTN) in the aqueous solution for organic pollutant degradation. Moreover, palladium decoration on the BTN surface (Pd-BTN) demonstrates a fascinating clean energy application. The obtained Pd-BTN fulfills a satisfied green material demand in the photocatalytic hydrogen production application. Pd-BTN calcined at 400 °C (Pd-BTN-400) shows the high photocatalytic hydrogen generation rate of 5200 μmol/g h under UV-A irradiation and 9300 μmol/g h under UV-B irradiation, respectively. The well-developed material, Pd-BTN-400, could be one of the best solutions in the concern of clean energy and water-purification with regard to the continuous environmental issue.

  18. Effect of annealing temperature on physical properties of solution processed nickel oxide thin films

    NASA Astrophysics Data System (ADS)

    Sahoo, Pooja; Thangavel, R.

    2018-05-01

    In this report, NiO thin films were prepared at different annealing temperatures from nickel acetate precursor by sol-gel spin coating method. These films were characterized by different analytical techniques to obtain their structural, optical morphological and electrical properties using X-ray diffractometer (XRD), Field emission scanning electron microscopy (FESEM), UV-Vis NIR double beam spectrophotometer and Keithley 2450 source meter respectively. FESEM images clearly indicates the formation of a homogenous and porous films. Due to their porosity, they can be used in sensing applications. The optical absorption spectra elucidated that the films are highly transparent and have a suitable band gap which are in similar agreement with earlier reports. The current enhancement under illumination shows the suitability of nanostructured NiO thin films in its application in photovoltaics.

  19. Effect of Cerium Doped on the Poly(3-(Trimethoxysilyl)propyl methacrylate) Characteristic as Corrosion Protection Material of Carbon Steel

    NASA Astrophysics Data System (ADS)

    Rochmah, D. N.; Syakir, N.; Susilawati, T.; Suryaningsih, S.; Fitrilawati

    2017-05-01

    The hybrid polymer precursor was synthesized from monomer of 3-(trimethoxysilyl) propyl methacrylate (TMSPMA) using sol-gel method and doped with inhibitor of Cerium Nitrate Hexahydrate with a concentration of 0.2%. The synthesized material was coated on a carbon steel surface by solution casting technique and followed by a photopolymerisation process. Corrosion tests were performed by using Electrochemical Impedance Spectroscopy (EIS) in 3.5% NaCl at the critical temperature of 75°C. Result of EIS data and their fitting analysis using an equivalent circuit model shows that a coating of poly(TMSPMA)-Cerium on the surface of carbon steel form a layer of protection and caused increasing of impedance value significantly. The impedance is higher compared to the carbon steel that coated with poly(TMSPMA) only.

  20. Sol-Gel deposition of inorganic alkoxides on wood surfaces to enhance their durability under exposure to sunlight and moisture

    Treesearch

    Mandla A. Tshabalala

    2005-01-01

    Wood specimens were coated with sol-gel deposits of aluminum isopropoxide, titanium isopropoxide, or zirconium propoxide in the presence of methytrimethoxysilane. Both zirconium propoxide and titanium isopropoxide sol-gel deposits reduced water sorption, whereas aluminum isopropoxide sol-gel deposit increased water sorption, compared with uncoated wood specimens. There...

  1. Synthesis of LiFePO4/C composites based on natural iron stone using a sol gel method

    NASA Astrophysics Data System (ADS)

    Angela, Riyan; Islam, Humaatul; Sari, Vamellia; Latif, Chaironi; Zainuri, Mochamad; Pratapa, Suminar

    2017-01-01

    Synthesis of LiFePO4/C composites has been carried out using a sol gel method. The Fe precursor was made from a natural iron stone of Tanah Laut, South Kalimantan, while the other raw materials were commercial Li2CO3 powder and NH4H2PO4 powder with HCl and water as solvents. Citric acid was used as the carbon source in the synthesis. This study used a molar ratio of 1:1:2 for Li:Fe:P with variation of added citric acid of 1.5 and 2.5 g. The solutions were dried in air at 100°C. The dried powders were characterized using DSC-TGA and then calcined at 600 and 700°C under argon environment for 10 hours. The calcined powders were characterized by X-ray diffractometry (XRD), scanning electron microscopy-energy dispersive x-ray (SEM-EDX), and LCR meter. It was found that the samples contained LiFePO4 as the dominant phase and LiFeP2O7 and Fe2O3 as secondary phases. The analysis showed that the addition of citric acid influenced the electronic conductivity of the composites. A Rietveld relative weight fraction of up to 94.7% was achieved in the synthesis at temperature 600°C. The LFP/C sample exhibited electronic conductivity of 4.56×10-3 Scm-1 which was six times of that of the pure LFP.

  2. Isocyanate Cross-Linked Silica: Structurally Strong Aerogels

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Sotiriou-Leventis, Chariklia; Zhang, Guo-Hui; Rawashdeh, Abdel-Monem M.

    2002-01-01

    Molecular-level synergism between the silica nanoparticles of pre-formed monoliths and molecular cross-linkers inverts the relative host-guest roles in glass-polymer composites, leading to new strong low-density materials. Attempts to load gels with variable amounts of polyurethane precursors such as di-ISO and diol end-capped polybutylene adipate followed by heat treatment, washing, and supercritical drying led to opaque materials, somewhat stronger than silica but still quite brittle and much inferior to the materials described above. Direct mixing of a diisocyanate and an alcohol-free sol has been attempted recently by Yim et al. Reportedly, that procedure leads to week-long gelation times and requires an at least equally long aging period. In our attempt to add various amounts of di-ISO in a base-catalyzed sol in PC, we also noticed a week-long gelation time. The resulting aerogels were translucent but no less brittle than native silica. According to more recent studies, if propylene carbonate is replaced with acetone, it leads not only to shorter processing times, but also to much stronger gels that can tolerate loads in excess of 40 kg in the arrangement presented. We attribute that behavior to the lower viscosity of acetone, that allows faster diffusion of the di-ISO solution within the pores before di-ISO has time to react with the surface of silica. Further studies are underway to vary the chemical identity of the diisocyanate, as well as the composition and density of silica.

  3. Sol-gel preparation of silica and titania thin films

    NASA Astrophysics Data System (ADS)

    Thoř, Tomáš; Václavík, Jan

    2016-11-01

    Thin films of silicon dioxide (SiO2) and titanium dioxide (TiO2) for application in precision optics prepared via the solgel route are being investigated in this paper. The sol-gel process presents a low cost approach, which is capable of tailoring thin films of various materials in optical grade quality. Both SiO2 and TiO2 are materials well known for their application in the field of anti-reflective and also highly reflective optical coatings. For precision optics purposes, thickness control and high quality of such coatings are of utmost importance. In this work, thin films were deposited on microscope glass slides substrates using the dip-coating technique from a solution based on alkoxide precursors of tetraethyl orthosilicate (TEOS) and titanium isopropoxide (TIP) for SiO2 and TiO2, respectively. As-deposited films were studied using spectroscopic ellipsometry to determine their thickness and refractive index. Using a semi-empirical equation, a relationship between the coating speed and the heat-treated film thickness was described for both SiO2 and TiO2 thin films. This allows us to control the final heat-treated thin film thickness by simply adjusting the coating speed. Furthermore, films' surface was studied using the white-light interferometry. As-prepared films exhibited low surface roughness with the area roughness parameter Sq being on average of 0.799 nm and 0.33 nm for SiO2 and TiO2, respectively.

  4. Self-organization of porphyrin units induced by magnetic field during sol-gel polymerization.

    PubMed

    Lerouge, Frédéric; Cerveau, Geneviève; Corriu, Robert J P; Stern, Christine; Guilard, Roger

    2007-04-21

    The use of a magnetic field as a controlling factor during the hydrolysis-polycondensation of porphyrin precursors substituted by Si(OR)(3) groups, induces a self-organization of porphyrin moieties due to the stacking of these units in the hybrid material and this study also confirms the effect of the magnetic field in the nano- and micrometric organization during the kinetically controlled polycondensation process.

  5. Electronic nose screening of ethanol release during sol-gel encapsulation. A novel non-invasive method to test silica polymerisation.

    PubMed

    Lovino, Magalí; Cardinal, M Fernanda; Zubiri, Diana B V; Bernik, Delia L

    2005-12-15

    Porous silica matrices prepared by sol-gel process yield biocompatible materials adequate for encapsulation of biomolecules or drugs. The procedure is simple and fast, but when alkoxyde precursors like tetraethoxysilane (TEOS) are used the polymerisation reaction leads to the formation of alcohol as a by-product, which can produce undesirable effects on the activity of entrapped enzymes or modify a drug release kinetic. Therefore, it is critical to determine that no remnant ethanol is left prior using or storing the obtained biomaterial. In this regard, the technique used in the alcohol determination should be non-invasive and non-destructive to preserve the encapsulation device intact and ready to use. In this work we have successfully used a portable electronic nose (e-nose) for the screening of silica polymerisation process during theophylline encapsulation. TEOS reaction was "smelt" since precursor pre-hydrolysis until the end of ethanol release, sensed directly at the headspace of matrices slabs. Measurements showed that ethanol was negligible since 10th day in polymeric slabs of 10 mm width and 2 cm diameter. This first use of e-nose following a polymerisation reaction opens a wide number of putative applications in pharmaceutical and biochemical fields.

  6. Versatile bio-ink for covalent immobilization of chimeric avidin on sol-gel substrates.

    PubMed

    Heikkinen, Jarkko J; Kivimäki, Liisa; Määttä, Juha A E; Mäkelä, Inka; Hakalahti, Leena; Takkinen, Kristiina; Kulomaa, Markku S; Hytönen, Vesa P; Hormi, Osmo E O

    2011-10-15

    A bio-ink for covalent deposition of thermostable, high affinity biotin-binding chimeric avidin onto sol-gel substrates was developed. The bio-ink was prepared from heterobifunctional crosslinker 6-maleimidohexanoic acid N-hydroxysuccinimide which was first reacted either with 3-aminopropyltriethoxysilane or 3-aminopropyldimethylethoxysilane to form silane linkers 6-maleimide-N-(3-(triethoxysilyl)propyl)hexanamide or -(ethoxydimethylsilyl)propyl)-hexanamide. C-terminal cysteine genetically engineered to chimeric avidin was reacted with the maleimide group of silane linker in methanol/PBS solution to form a suspension, which was printed on sol-gel modified PMMA film. Different concentrations of chimeric avidin and ratios between silane linkers were tested to find the best properties for the bio-ink to enable gravure or inkjet printing. Bio-ink prepared from 3-aminopropyltriethoxysilane was found to provide the highest amount of active immobilized chimeric avidin. The developed bio-ink was shown to be valuable for automated fabrication of avidin-functionalized polymer films. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. The Complex Sol-Gel Process for producing small ThO2 microspheres

    NASA Astrophysics Data System (ADS)

    Brykala, Marcin; Rogowski, Marcin

    2016-05-01

    Thorium based fuels offer several benefits compared to uranium based fuels thus they might be an attractive alternative to conventional fuel types. This study is devoted to the synthesis and the characterization of small thorium dioxide microspheres (Ø <50 μm). Their application involves using powder-free process, called the Complex Sol-Gel Process. The source sols used for the processes were prepared by the method where in the starting ascorbic acid solution the solid thorium nitrate was dissolved and partially neutralized by aqueous ammonia under pH control. The microspheres of thorium-ascorbate gel were obtained using the ICHTJ Process (INCT in English). Studies allowed to determine an optimal heat treatment with calcination temperature of 700 °C and temperature rate not higher than 2 °C/min which enabled us to obtain a crack-free surface of microspheres. The main parameters which have a strong influence on the synthesis method and features of the spherical particles of thorium dioxide are described in this article.

  8. Fabrication of hydrophobic compressed oil palm trunk surface by sol-gel process

    NASA Astrophysics Data System (ADS)

    Muzakir, Syafiqah; Salim, Nurjannah; Huda Abu Bakar, Nurul; Roslan, Rasidi; Sin, Lim Wan; Hashim, Rokiah

    2018-04-01

    Improvement of the robustness of hydrophobic surfaces is crucial to achieving commercial applications of these surfaces in such various areas as self-cleaning, water repellency and corrosion resistance. Compressed oil palm trunk (OPT) panel is one of potential product which can be used as panelling and indoor furniture application. By adding hydrophobic properties to compressed oil palm trunk panel might increase the application of compressed oil palm trunk especially for outdoor application. In this study, fabrication is using the sol-gel technique. Sol-gel was prepared by adding ethanol with Hexadecyl Trimethyl Ammonium Bromide (CTAB) solution with Tetraethyl Orthosilicate (TEOS) with surface modification of chlorotrimethylsilane (CTMS). The surface with hydrophobic coating was undergone surface analysis with contact angle machine with the aid of software SCA 20 and the determined of the morphology of surface with scanning electron microscope (SEM). The produced compressed oil palm trunk surfaces exhibited promising hydrophobic properties with a contact angle of 104° and the relatively better mechanical robustness.

  9. Sol-gel based oxidation catalyst and coating system using same

    NASA Technical Reports Server (NTRS)

    Leighty, Bradley D. (Inventor); Watkins, Anthony N. (Inventor); Patry, JoAnne L. (Inventor); Schryer, Jacqueline L. (Inventor); Oglesby, Donald M. (Inventor)

    2010-01-01

    An oxidation catalyst system is formed by particles of an oxidation catalyst dispersed in a porous sol-gel binder. The oxidation catalyst system can be applied by brush or spray painting while the sol-gel binder is in its sol state.

  10. Anti-adhesive effect of poloxamer-based thermo-sensitive sol-gel in rabbit laminectomy model.

    PubMed

    Shin, Sung Joon; Lee, Jae Hyup; So, Jungwon; Min, Kyungdan

    2016-11-01

    Poloxamer-based thermo-sensitive sol-gel has been developed to reduce the incidence of postoperative scar formation at the laminectomy site. The purpose of this study was to evaluate the anti-adhesive effect of poloxamer based thermo-sensitive sol-gel compared to hyaluronate based solution after laminectomy, using a rabbit model. A thermo-sensitive anti-adhesive with a property of sol-gel transition was manufactured by a physical mixture of Poloxamer188/407, Chitosan and Gelatin. The viscosity in different temperatures was assessed. 72 adult New Zealand rabbits underwent lumbar laminectomy and were randomly divided into experimental (treated with the newly developed agent), positive (treated with hyaluronate based solution), and negative control groups. Each group was subdivided into 1 and 4-week subgroups. Gross and histological evaluations were performed to assess the extent of epidural adhesion. The experimental group showed significantly higher viscosity compared to the positive control group and showed a significant increase of viscosity as the temperature increased. Gross evaluation showed no statistically significant differences between the 1- and 4-week subgroups. However, histologic evaluation showed significant differences both in 1- and 4-week subgroups. Although the 4-week histologic results of the experimental and the positive control subgroups showed no significant difference, both subgroups revealed higher value compared to the negative control subgroup with regard to the ratio of adhesion less than 50 %. The new poloxamer based thermo-sensitive agent showed superior efficacy over the hyaluronate based agent at 1 week postoperatively. At 4 weeks postoperatively, there were no statistically significant differences between the two agents, although both showed efficacy over the sham group.

  11. Optical biosensing of nitrite ions using cytochrome cd1 nitrite reductase encapsulated in a sol-gel matrix.

    PubMed

    Ferretti, S; Lee, S K; MacCraith, B D; Oliva, A G; Richardson, D J; Russell, D A; Sapsford, K E; Vidal, M

    2000-11-01

    Nitrite is an important human health and environmental analyte. As such, the European Union (EU) has imposed a limit for nitrite in potable water of 0.1 mg l-1 (2.18 microM). In order to develop an optical biosensing system for the determination of nitrite ions in environmental waters, cytochrome cd1 nitrite reductase has been extracted and purified from the bacterium Paracoccus pantotrophus. The protein has been spectroscopically characterised in solution and important kinetic parameters of nitrite reduction of the cytochrome cd1 enzyme, i.e., Km, Vmax and kcat have been determined. The influence of pH on the activity of the cytochrome cd1 has been investigated and the results suggest that this enzyme can be used for the determination of nitrite in the pH range 6-9. Biosensing experiments with the cytochrome cd1 in solution suggested that the decrease in intensity of the absorption band associated with the d1 haem (which is the nitrite binding site), at 460 nm, with increasing nitrite concentrations would enable the measurement of this analyte with the optimum limit of detection. The cytochrome cd1 has been encapsulated in a bulk sol-gel monolith with no structural changes observed and retention of enzymatic activity. The detection of nitrite ions in the range 0.075-1.250 microM was achieved, with a limit of detection of 0.075 microM. In order to increase the speed of response, a sol-gel sandwich thin film structure was formulated with the cytochrome cd1. This structure enabled the determination of nitrite concentrations within ca. 5 min. The sol-gel sandwich entrapped cytochrome cd1 enzyme was found to be stable for several months when the films were stored at 4 degrees C.

  12. Phospholipid Fatty Acids as Physiological Indicators of Paracoccus denitrificans Encapsulated in Silica Sol-Gel Hydrogels

    PubMed Central

    Trögl, Josef; Jirková, Ivana; Kuráň, Pavel; Akhmetshina, Elmira; Brovdyová, Tat′jána; Sirotkin, Alexander; Kirilina, Tatiana

    2015-01-01

    The phospholipid fatty acid (PLFA) content was determined in samples of Paracoccus denitrificans encapsulated in silica hydrogel films prepared from prepolymerized tetramethoxysilane (TMOS). Immediately after encapsulation the total PLFA concentration was linearly proportional to the optical density (600 nm) of the input microbial suspension (R2 = 0.99). After 7 days this relationship remained linear, but with significantly decreased slope, indicating a higher extinction of bacteria in suspensions of input concentration 108 cells/mL and higher. trans-Fatty acids, indicators of cytoplasmatic membrane disturbances, were below the detection limit. The cy/pre ratio (i.e., ratio of cyclopropylated fatty acids (cy17:0 + cy19:0) to their metabolic precursors (16:1ω7 + 18:1ω7)), an indicator of the transition of the culture to a stationary growth-phase, decreased depending on co-immobilization of nutrients in the order phosphate buffer > mineral medium > Luria Broth rich medium. The ratio, too, was logarithmically proportional to cell concentration. These results confirm the applicability of total PLFA as an indicator for the determination of living biomass and cy/pre ratio for determination of nutrient limitation of microorganisms encapsulated in sol-gel matrices. This may be of interest for monitoring of sol-gel encapsulated bacteria proposed as optical recognition elements in biosensor construction, as well as other biotechnological applications. PMID:25690547

  13. Preparation of mesoporous silica microparticles by sol-gel/emulsion route for protein release.

    PubMed

    Vlasenkova, Mariya I; Dolinina, Ekaterina S; Parfenyuk, Elena V

    2018-04-06

    Encapsulation of therapeutic proteins into particles from appropriate material can improve both stability and delivery of the drugs, and the obtained particles can serve as a platform for development of their new oral formulations. The main goal of this work was development of sol-gel/emulsion method for preparation of silica microcapsules capable of controlled release of encapsulated protein without loss of its native structure. For this purpose, the reported in literature direct sol-gel/W/O/W emulsion method of protein encapsulation was used with some modifications, because the original method did not allow to prepare silica microcapsules capable for protein release. The particles were synthesized using sodium silicate and tetraethoxysilane as silica precursors and different compositions of oil phase. In vitro kinetics of bovine serum albumin (BSA) release in buffer (pH 7.4) was studied by Fourier transform infrared (FTIR) and fluorescence spectrometry, respectively. Structural state of encapsulated BSA and after release was evaluated. It was found that the synthesis conditions influenced substantially the porous structure of the unloaded silica particles, release properties of the BSA-loaded silica particles and structural state of the encapsulated and released protein. The modified synthesis conditions made it possible to obtain the silica particles capable of controlled release of the protein during a week without loss of the protein native structure.

  14. Silicon-zinc-glycerol hydrogel, a potential immunotropic agent for topical application.

    PubMed

    Khonina, Tat'yana G; Ivanenko, Maria V; Chupakhin, Oleg N; Safronov, Alexander P; Bogdanova, Ekaterina A; Karabanalov, Maxim S; Permikin, Vasily V; Larionov, Leonid P; Drozdova, Lyudmila I

    2017-09-30

    Nanoparticles synthesized using sol-gel method are promising agents for biomedical applications, in particular for the therapy and diagnosis of various diseases. Using silicon and zinc glycerolates as biocompatible precursors we synthesized by the sol-gel method a new bioactive silicon-zinc-containing glycerohydrogel combining the positive pharmacological properties of the precursors. In the present work the structural features of silicon-zinc-containing glycerohydrogel and its immunotropic properties were studied. The advanced physical methods, including XRD, TEM, dynamic and electrophoretic light scattering, were used for studying the structural features of the gel. Hydrolysis of zinc monoglycerolate was investigated under gelation conditions. Evaluation of the efficiency of silicon-zinc-containing glycerohydrogel in providing immune functions was carried out using a model of the complicated wound process behind immunosuppression induced by hydrocortisone administration in the Wistar rats. It has been shown that zinc monoglycerolate exists in the state of amorphous nanoparticles in the cells of 3D-network formed due to incomplete hydrolysis of silicon glycerolates and subsequent silanol condensation. Zinc monoglycerolate is not hydrolyzed and does not enter 3D-network of the gel with the formation of Zn-O-Si groups, but it forms a separate phase. Immunotropic action of silicon-zinc-containing glycerohydrogel was revealed by the histology and immunohistochemistry methods. Amorphous nanoparticles of zinc monoglycerolate, water-soluble silicon glycerolates, and products of their hydrolytic transformations, which are present in a aqueous-glycerol medium, are in the first place responsible for the pharmacological activity of hydrogel. The results obtained allow us to consider silicon-zinc-containing glycerohydrogel as a promising immunotropic agent for topical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. NMR studies of water dynamics during sol-to-gel transition of poly (N-isopropylacrylamide) in concentrated aqueous solution

    USDA-ARS?s Scientific Manuscript database

    The thermo-sensitive polymer, poly(N-isopropylacrylamide) (PNIPAM) undergoes a coil-to-globule transition in an aqueous solution as the temperature is raised through the lower critical solution temperature. Thus far, little is known about the dynamical states of the water molecules that contribute ...

  16. Thermal aging effect of vanadyl acetylacetonate precursor for deposition of VO{sub 2} thin films with thermochromic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jung-Hoon; Nam, Sang-Hun; Kim, Donguk

    Highlights: • 7 day aged VO(acac){sub 2} sol shows enhanced adhesivity on the SiO{sub 2} compared with non-aged sol. • The aging process has significantly affected the morphologies of VO{sub 2} films. • From the FT-IR spectra, thermal aging process provides the deformation of precursor. • The metal insulator transition (MIT) efficiency (ΔT{sub at2000} {sub nm}) reached a maximum value of 51% at 7 day aging. • Thermal aging process could shorten the aging time of sol solution. - Abstract: Thermochromic properties of vanadium dioxide (VO{sub 2}) have been studied extensively due to their IR reflection applications in energy smartmore » windows. In this paper, we studied the optical switching property of VO{sub 2} thin film, depending on the thermal aging time of the vanadyl acetylacetonate (VO(acac){sub 2}) precursor. We found the alteration of the IR spectra of the precursor by tuning the aging time as well as heat treatments of the precursor. An aging effect of vanadium precursor directly affects the morphologies, optical switching property and crystallinity of VO{sub 2} films. The optimum condition was achieved at the 7 day aging time with metal insulator transition (MIT) efficiency of 50%.« less

  17. Controlled release of vancomycin from thin sol-gel films on implant surfaces successfully controls osteomyelitis.

    PubMed

    Adams, Christopher S; Antoci, Valentin; Harrison, Gerald; Patal, Payal; Freeman, Terry A; Shapiro, Irving M; Parvizi, Javad; Hickok, Noreen J; Radin, Shula; Ducheyne, Paul

    2009-06-01

    Peri-prosthetic infection remains a serious complication of joint replacement surgery. Herein, we demonstrate that a vancomycin-containing sol-gel film on Ti alloy rods can successfully treat bacterial infections in an animal model. The vancomycin-containing sol-gel films exhibited predictable release kinetics, while significantly inhibiting S. aureus adhesion. When evaluated in a rat osteomyelitis model, microbiological analysis indicated that the vancomycin-containing sol-gel film caused a profound decrease in S. aureus number. Radiologically, while the control side showed extensive bone degradation, including abscesses and an extensive periosteal reaction, rods coated with the vancomycin-containing sol-gel film resulted in minimal signs of infection. MicroCT analysis confirmed the radiological results, while demonstrating that the vancomycin-containing sol-gel film significantly protected dense bone from resorption and minimized remodeling. These results clearly demonstrate that this novel thin sol-gel technology can be used for the targeted delivery of antibiotics for the treatment of periprosthetic as well as other bone infections. Copyright 2008 Orthopaedic Research Society

  18. Hydrophobicity of hemp shiv treated with sol-gel coatings

    NASA Astrophysics Data System (ADS)

    Hussain, Atif; Calabria-Holley, Juliana; Schorr, Diane; Jiang, Yunhong; Lawrence, Mike; Blanchet, Pierre

    2018-03-01

    This is the first time sol-gel technology is used in the treatment of hemp shiv to develop sustainable thermal insulation building materials. The impact on the hydrophobicity of hemp shiv by depositing functionalised sol-gel coatings using hexadecyltrimethoxysilane (HDTMS) has been investigated. Bio-based materials have tendency to absorb large amounts of water due to their hydrophilic nature and highly porous structure. In this work, the influence of catalysts, solvent dilution and HDTMS loading in the silica sols on the hydrophobicity of hemp shiv surface has been reported. The hydrophobicity of sol-gel coated hemp shiv increased significantly when using acid catalysed sols which provided water contact angles of up to 118° at 1% HDTMS loading. Ethanol diluted sol-gel coatings enhanced the surface roughness of the hemp shiv by 36% as observed under 3D optical profilometer. The XPS results revealed that the surface chemical composition of the hemp shiv was altered by the sol-gel coating, blocking the hydroxyl sites responsible for hydrophilicity.

  19. Optical fiber sensor having a sol-gel fiber core and a method of making

    DOEpatents

    Tao, Shiquan; Jindal, Rajeev; Winstead, Christopher; Singh, Jagdish P.

    2006-06-06

    A simple, economic wet chemical procedure is described for making sol-gel fibers. The sol-gel fibers made from this process are transparent to ultraviolet, visible and near infrared light. Light can be guided in these fibers by using an organic polymer as a fiber cladding. Alternatively, air can be used as a low refractive index medium. The sol-gel fibers have a micro pore structure which allows molecules to diffuse into the fiber core from the surrounding environment. Chemical and biochemical reagents can be doped into the fiber core. The sol-gel fiber can be used as a transducer for constructing an optical fiber sensor. The optical fiber sensor having an active sol-gel fiber core is more sensitive than conventional evanescent wave absorption based optical fiber sensors.

  20. Processing and Characterization of Sol-Gel Cerium Oxide Microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClure, Zachary D.; Padilla Cintron, Cristina

    Of interest to space exploration and power generation, Radioisotope Thermoelectric Generators (RTGs) can provide long-term power to remote electronic systems without the need for refueling or replacement. Plutonium-238 (Pu-238) remains one of the more promising materials for thermoelectric power generation due to its high power density, long half-life, and low gamma emissions. Traditional methods for processing Pu-238 include ball milling irregular precipitated powders before pressing and sintering into a dense pellet. The resulting submicron particulates of Pu-238 quickly accumulate and contaminate glove boxes. An alternative and dust-free method for Pu-238 processing is internal gelation via sol-gel techniques. Sol-gel methodology createsmore » monodisperse and uniform microspheres that can be packed and pressed into a pellet. For this study cerium oxide microspheres were produced as a surrogate to Pu-238. The similar electronic orbitals between cerium and plutonium make cerium an ideal choice for non-radioactive work. Before the microspheres can be sintered and pressed they must be washed to remove the processing oil and any unreacted substituents. An investigation was performed on the washing step to find an appropriate wash solution that reduced waste and flammable risk. Cerium oxide microspheres were processed, washed, and characterized to determine the effectiveness of the new wash solution.« less

  1. Influence of crosslinker structure on performance of functionalised organic-inorganic hybrid sol-gel coating

    NASA Astrophysics Data System (ADS)

    Vasiljević, J.; Zorko, M.; Štular, D.; Tomšič, B.; Jerman, I.; Orel, B.; Medved, J.; Simončič, B.

    2017-10-01

    This research aimed to investigate the influence of the co-condensation of the three different organofunctional trialkoxysilane precursors with two different crosslinkers, i.e. tetraethoxysilane or organocyclotetrasiloxane on the performance and the washing fastness of this multicomponent multifunctional sol-gel coating on cellulose fibres. To this aim, a three-component equimolar sol mixture (MC), which included 1H,1H,2H,2H-perfluorooctyltriethoxysilane (SiF), 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride (SiQ) and P,P-diphenyl-N-(3-(trimethoxysilyl)propyl) phosphinic amide (SiP) in combination with two different concentrations of TEOS (T and 3T) or organocyclotetrasiloxane 2,4,6,8-tetrakis(2-(diethoxy(methyl)silyl)ethyl)-2,4,6,8-tetramethyl-cyclotetrasiloxane (T4) as crosslinkers, was applied to the cotton fibres by a pad-dry-cure process. The functional properties of the coated samples before and after repeated washing were investigated by the water θ (W) and n-hexadecane θ (C16) static contact angle as well as water sliding (roll-off) (α) angle measurements. The inclusion of both TEOS and T4 into the MC sol increased the hydrophobic affect and simultaneously decreased the oleophobic effect of the MC coating. These phenomena were more pronounced for higher concentration of TEOS and T4 crosslinker. The inclusion of T4 into the MC sol improved the coating washing fastness to a significantly higher extent than the inclusion of TEOS, with respect to the applied concentrations.

  2. Effects of sol-gel processed silica coating on bond strength of resin cements to glass-infiltrated alumina ceramic.

    PubMed

    Xie, Haifeng; Wang, Xiaozu; Wang, Yu; Zhang, Feimin; Chen, Chen; Xia, Yang

    2009-02-01

    The aim of this study was to verify the effects of sol-gel processed silica coating on the bond strength between resin cement and glass-infiltrated aluminum oxide ceramic. Silica coatings were prepared on glass-infiltrated aluminum oxide ceramic surface via the sol-gel process. Atomic Force Microscope (AFM), Fourier Transmission Infrared spectrum (FTIR), and Energy Dispersive X-ray Spectroscopy (EDS) were used for coating characterization. Forty-eight blocks of glass-infiltrated aluminum oxide ceramic were fabricated. The ceramic surfaces were polished following sandblasting. Three groups of specimens (16 for each group) with different surface treatment were prepared. Group P: no treatment; group PO: treated with silane solution; group PTO: silica coating via sol-gel process, followed by silane application. Composite cylinders were luted with resin cement to the test specimens. Half of the specimens in each group were stored in distilled water for 24 h and the other half were stored in distilled water for 30 days before shear loading in a universal testing machine until failure. Selected ceramic surfaces were analyzed to identify the failure mode using a scanning electron microscopy (SEM). Nanostructured silica coatings were prepared on glass-infiltrated aluminum oxide ceramic surfaces by the sol-gel process. The silicon element on the ceramic surface increased significantly after the coating process. The mean shear bond strength values (standard deviation) before artificial aging were: group P: 1.882 +/- 0.156 MPa; group PO: 2.177 +/- 0.226 MPa; group PTO: 3.574 +/- 0.671 MPa. Statistically significant differences existed between group PTO and group P, and group PTO and groups PO. The failure mode for group P and group PO was adhesive, while group PTO was mixed. The mean shear bond strength values (standard deviation) after artificial aging were: group P: 1.594 +/- 0.111 MPa; group PO: 2.120 +/- 0.339 MPa; group PTO: 2.955 +/- 0.113 MPa. Statistically significant differences existed between each two groups after artificial aging, group P had the lowest bond durability, and group PTO had the highest bond durability. The sol-gel process is an effective way to prepare silica coating on dental glass-infiltrated alumina ceramic. Sol-gel processed silica coating can improve the resin bond strength of glass-infiltrated alumina ceramic.

  3. Thioether-functionalized mesoporous fiber membranes: sol-gel combined electrospun fabrication and their applications for Hg2+ removal.

    PubMed

    Teng, Minmin; Wang, Hongtao; Li, Fengting; Zhang, Bingru

    2011-03-01

    Mesoporous polyvinylpyrrolidone (PVP)/SiO(2) composite nanofiber membranes functionalized with thioether groups have been fabricated by a combination method of sol-gel process and electrospinning. The precursor sol was synthesized by one-step co-condensation of tetraethyl orthosilicate (TEOS) and 1,4-bis(triethoxysilyl)propane tetrasulfide (BTESPTS, (CH(3)CH(2)O)(3)Si(CH(2))(3)S-S-S-S(CH(2))(3)Si-(OCH(2)CH(3))(3)), with the triblock copolymer poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (P123, EO(20)PO(70)EO(20)) as template. After the addition of PVP, nanofiber membranes were prepared by electrospinning. The membranes were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) images, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), N(2) adsorption-desorption isotherms, and an Elementar Vario EL analyzer. The composites were used as highly selective adsorbents for Hg(2+) due to the modification with thioether groups (-S-), and were conveniently separated from the waste water. The composite could be regenerated through acidification. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Molecularly Imprinted Sol-Gel-Based QCM Sensor Arrays for the Detection and Recognition of Volatile Aldehydes.

    PubMed

    Liu, Chuanjun; Wyszynski, Bartosz; Yatabe, Rui; Hayashi, Kenshi; Toko, Kiyoshi

    2017-02-16

    The detection and recognition of metabolically derived aldehydes, which have been identified as important products of oxidative stress and biomarkers of cancers; are considered as an effective approach for early cancer detection as well as health status monitoring. Quartz crystal microbalance (QCM) sensor arrays based on molecularly imprinted sol-gel (MISG) materials were developed in this work for highly sensitive detection and highly selective recognition of typical aldehyde vapors including hexanal (HAL); nonanal (NAL) and bezaldehyde (BAL). The MISGs were prepared by a sol-gel procedure using two matrix precursors: tetraethyl orthosilicate (TEOS) and tetrabutoxytitanium (TBOT). Aminopropyltriethoxysilane (APT); diethylaminopropyltrimethoxysilane (EAP) and trimethoxy-phenylsilane (TMP) were added as functional monomers to adjust the imprinting effect of the matrix. Hexanoic acid (HA); nonanoic acid (NA) and benzoic acid (BA) were used as psuedotemplates in view of their analogous structure to the target molecules as well as the strong hydrogen-bonding interaction with the matrix. Totally 13 types of MISGs with different components were prepared and coated on QCM electrodes by spin coating. Their sensing characters towards the three aldehyde vapors with different concentrations were investigated qualitatively. The results demonstrated that the response of individual sensors to each target strongly depended on the matrix precursors; functional monomers and template molecules. An optimization of the 13 MISG materials was carried out based on statistical analysis such as principle component analysis (PCA); multivariate analysis of covariance (MANCOVA) and hierarchical cluster analysis (HCA). The optimized sensor array consisting of five channels showed a high discrimination ability on the aldehyde vapors; which was confirmed by quantitative comparison with a randomly selected array. It was suggested that both the molecularly imprinting (MIP) effect and the matrix effect contributed to the sensitivity and selectivity of the optimized sensor array. The developed MISGs were expected to be promising materials for the detection and recognition of volatile aldehydes contained in exhaled breath or human body odor.

  5. Molecularly Imprinted Sol-Gel-Based QCM Sensor Arrays for the Detection and Recognition of Volatile Aldehydes

    PubMed Central

    Liu, Chuanjun; Wyszynski, Bartosz; Yatabe, Rui; Hayashi, Kenshi; Toko, Kiyoshi

    2017-01-01

    The detection and recognition of metabolically derived aldehydes, which have been identified as important products of oxidative stress and biomarkers of cancers; are considered as an effective approach for early cancer detection as well as health status monitoring. Quartz crystal microbalance (QCM) sensor arrays based on molecularly imprinted sol-gel (MISG) materials were developed in this work for highly sensitive detection and highly selective recognition of typical aldehyde vapors including hexanal (HAL); nonanal (NAL) and bezaldehyde (BAL). The MISGs were prepared by a sol-gel procedure using two matrix precursors: tetraethyl orthosilicate (TEOS) and tetrabutoxytitanium (TBOT). Aminopropyltriethoxysilane (APT); diethylaminopropyltrimethoxysilane (EAP) and trimethoxy-phenylsilane (TMP) were added as functional monomers to adjust the imprinting effect of the matrix. Hexanoic acid (HA); nonanoic acid (NA) and benzoic acid (BA) were used as psuedotemplates in view of their analogous structure to the target molecules as well as the strong hydrogen-bonding interaction with the matrix. Totally 13 types of MISGs with different components were prepared and coated on QCM electrodes by spin coating. Their sensing characters towards the three aldehyde vapors with different concentrations were investigated qualitatively. The results demonstrated that the response of individual sensors to each target strongly depended on the matrix precursors; functional monomers and template molecules. An optimization of the 13 MISG materials was carried out based on statistical analysis such as principle component analysis (PCA); multivariate analysis of covariance (MANCOVA) and hierarchical cluster analysis (HCA). The optimized sensor array consisting of five channels showed a high discrimination ability on the aldehyde vapors; which was confirmed by quantitative comparison with a randomly selected array. It was suggested that both the molecularly imprinting (MIP) effect and the matrix effect contributed to the sensitivity and selectivity of the optimized sensor array. The developed MISGs were expected to be promising materials for the detection and recognition of volatile aldehydes contained in exhaled breath or human body odor. PMID:28212347

  6. Sol-Gel Synthesis of Fe-Doped TiO2 Nanocrystals

    NASA Astrophysics Data System (ADS)

    Marami, Mohammad Bagher; Farahmandjou, Majid; Khoshnevisan, Bahram

    2018-03-01

    Fe-doped TiO2 powders were synthesized by the sol-gel method using titanium (IV) isopropoxide (TTIP) as the starting material, ethanol as solvent, and ethylene glycol (EG) as stabilizer. These prepared samples were characterized by x-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), Fourier-transform infrared (FTIR) spectroscopy, diffuse reflection spectroscopy (DRS), energy-dispersive x-ray spectroscopy (EDX), and photoluminescence (PL) analyses to study their structure, morphology, and optical properties. The particle size of Fe-doped TiO2 was in the range of 18-39 nm and the minimum crystallite size was achieved for 4 mol.% of Fe. The XRD result of the samples that were doped with Fe showed a tetragonal structure. It also revealed the coexistence of the anatase and rutile phases, and showed that their ratio changed with various molar concentrations of Fe dopant. FTIR spectroscopy showed the presence of the Ti-O vibration band in the samples. PL analysis revealed the PL property in the UV region. Visible irradiation and the intensity of PL spectra were both reduced by doping TiO2 with 3 mol.% of Fe as compared to the pure variety. The spectra from the DRS showed a red shift and a reduction of 2.6 eV in the band gap energy for 4 mol.% Fe-doped TiO2. The optimum level of impurity (4 mol.%) for Fe-doped TiO2 nanoparticles (NPs), which improve the optical and electrical properties by using new precursors and can be used in solar cells and electronic devices, was determined. The novelty of this work consists of: the Fe/TiO2 NPs are synthesized by new precursors from sol-gel synthesis of iron and TTIP using acetic acid-catalyzed solvolysis (original idea) and the optical properties optimized with a mixture of phases (anatase/rutile) of Fe-doped TiO2 by this facile method.

  7. Sol-Gel Synthesis of Fe-Doped TiO2 Nanocrystals

    NASA Astrophysics Data System (ADS)

    Marami, Mohammad Bagher; Farahmandjou, Majid; Khoshnevisan, Bahram

    2018-07-01

    Fe-doped TiO2 powders were synthesized by the sol-gel method using titanium (IV) isopropoxide (TTIP) as the starting material, ethanol as solvent, and ethylene glycol (EG) as stabilizer. These prepared samples were characterized by x-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), Fourier-transform infrared (FTIR) spectroscopy, diffuse reflection spectroscopy (DRS), energy-dispersive x-ray spectroscopy (EDX), and photoluminescence (PL) analyses to study their structure, morphology, and optical properties. The particle size of Fe-doped TiO2 was in the range of 18-39 nm and the minimum crystallite size was achieved for 4 mol.% of Fe. The XRD result of the samples that were doped with Fe showed a tetragonal structure. It also revealed the coexistence of the anatase and rutile phases, and showed that their ratio changed with various molar concentrations of Fe dopant. FTIR spectroscopy showed the presence of the Ti-O vibration band in the samples. PL analysis revealed the PL property in the UV region. Visible irradiation and the intensity of PL spectra were both reduced by doping TiO2 with 3 mol.% of Fe as compared to the pure variety. The spectra from the DRS showed a red shift and a reduction of 2.6 eV in the band gap energy for 4 mol.% Fe-doped TiO2. The optimum level of impurity (4 mol.%) for Fe-doped TiO2 nanoparticles (NPs), which improve the optical and electrical properties by using new precursors and can be used in solar cells and electronic devices, was determined. The novelty of this work consists of: the Fe/TiO2 NPs are synthesized by new precursors from sol-gel synthesis of iron and TTIP using acetic acid-catalyzed solvolysis (original idea) and the optical properties optimized with a mixture of phases (anatase /rutile) of Fe-doped TiO2 by this facile method.

  8. Tantala-based sol-gel coating for capillary microextraction on-line coupled to high-performance liquid chromatography.

    PubMed

    Tran, MinhPhuong; Turner, Erica B; Segro, Scott S; Fang, Li; Seyyal, Emre; Malik, Abdul

    2017-11-03

    A sol-gel organic-inorganic hybrid sorbent, consisting of chemically integrated tantalum (V) ethoxide (TaEO) and polypropylene glycol methacrylate (PPGM), was developed for capillary microextraction (CME). The sol-gel sorbent was synthesized within a fused silica capillary through hydrolytic polycondensation of TaEO and chemical incorporation of PPGM into the evolving sol-gel tantala network. A part of the organic-inorganic hybrid sol-gel network evolving in the vicinity of the capillary walls had favorable conditions to get chemically bonded to the silanol groups on the capillary surface forming a surface-bonded coating. The newly developed sol-gel sorbent was employed to isolate and enrich a variety of analytes from aqueous samples for on-line analysis by high-performance liquid chromatography (HPLC) equipped with a UV detector. CME was performed on aqueous samples containing trace concentrations of analytes representing polycyclic aromatic hydrocarbons, ketones, alcohols, amines, nucleosides, and nucleotides. This sol-gel hybrid coating provided efficient extraction with CME-HPLC detection limits ranging from 4.41pM to 28.19 pM. Due to direct chemical bonding between the sol-gel sorbent coating and the fused silica capillary inner surface, this sol-gel sorbent exhibited enhanced solvent stability. The sol-gel tantala-based sorbent also exhibited excellent pH stability over a wide pH range (pH 0-pH 14). Furthermore, it displayed great performance reproducibility in CME-HPLC providing run-to-run HPLC peak area relative standard deviation (RSD) values between 0.23% and 3.83%. The capillary-to-capillary RSD (n=3), characterizing capillary preparation method reproducibility, ranged from 0.24% to 4.11%. The results show great performance consistency and application potential for the sol-gel tantala-PPGM sorbent in various fields including biomedical, pharmaceutical, and environmental areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, R.W.

    1998-04-28

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes {<=}1000 {angstrom}, and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050 C to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors. 8 figs.

  10. Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, Richard W.

    1998-04-28

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes .ltoreq.1000 .ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050.degree. C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.

  11. Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, Richard W.

    1995-01-01

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes.ltoreq.1000.ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050.degree. C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.

  12. Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, R.W.

    1995-12-19

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes{<=}1000{angstrom}, and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050 C to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors. 8 figs.

  13. Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, Richard W.

    1996-01-01

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes .ltoreq.1000.ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050.degree. C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.

  14. Strength of interactions between immobilized dye molecules and sol-gel matrices.

    PubMed

    Ismail, Fanya; Schoenleber, Monika; Mansour, Rolan; Bastani, Behnam; Fielden, Peter; Goddard, Nicholas J

    2011-02-21

    In this paper we present a new theory to re-examine the immobilization technique of dye doped sol-gel films, define the strength and types of possible bonds between the immobilized molecule and sol-gel glass, and show that the immobilized molecule is not free inside the pores as was previously thought. Immobilizing three different pH sensitive dyes with different size and functional groups inside the same sol-gel films revealed important information about the nature of the interaction between the doped molecule and the sol-gel matrix. The samples were characterized by means of ultraviolet-visible spectrophotometer (UV-VIS), thermal gravimetric analysis (TGA), mercury porosimetry (MP), nuclear magnetic resonance spectroscopy ((29)Si NMR) and field-emission environmental scanning electron microscopy (ESEM-FEG). It was found that the doped molecule itself has a great effect on the strength and types of the bonds. A number of factors were identified, such as number and types of the functional groups, overall charge, size, pK(a) and number of the silanol groups which surround the immobilized molecule. These results were confirmed by the successful immobilization of bromocresol green (BCG) after a completely polymerized sol-gel was made. The sol-gel consisted of 50% tetraethoxysilane (TEOS) and 50% methyltriethoxysilane (MTEOS) (w/w). Moreover, the effect of the immobilized molecule on the structure of the sol-gel was studied by means of a leaky waveguide (LW) mode for doped films made before and after polymerization of the sol-gel.

  15. Electrochemical and spectroscopic characterization of surface sol-gel processes.

    PubMed

    Chen, Xiaohong; Wilson, George S

    2004-09-28

    (3-Mercaptopropyl)trimethoxysilane (MTS) forms a unique film on a platinum substrate by self-assembly and sol-gel cross-linking. The gelating and drying states of the self-assembled MTS sol-gel films were probed by use of electrochemical and spectroscopic methods. The thiol moiety was the only active group within the sol-gel network. Gold nanoparticles were employed to detect the availability of the thiol group and their interaction further indicated the physicochemical states of the sol-gel inner structure. It was found that the thiol groups in the open porous MTS aerogel matrix were accessible to the gold nanoparticles while thiol groups in the compact MTS xerogel network were not accessible to the gold nanoparticles. The characteristics of the sol-gel matrix change with time because of its own irreversible gelating and drying process. The present work provides direct evidence of gold nanoparticle binding with thiol groups within the sol-gel structures and explains the different permeability of "aerogel" and "xerogel" films of MTS on the basis of electrochemical and spectroscopic results. Two endogenous species, hydrogen peroxide and ascorbic acid, were used to test the permeability of the self-assembled sol-gel film in different states. The MTS xerogel film on the platinum electrode was extremely selective against ascorbic acid while maintaining high sensitivity to hydrogen peroxide in contrast to the relatively high permeability of ascorbic acid in the MTS aerogel film. This study showed the potential of the MTS sol-gel film as a nanoporous material in biosensor development.

  16. Bactericidal micron-thin sol-gel films prevent pin tract and periprosthetic infection.

    PubMed

    Qu, Haibo; Knabe, Christine; Burke, Megan; Radin, Shula; Garino, Jonathan; Schaer, Thomas; Ducheyne, Paul

    2014-08-01

    Orthopedic injuries constitute the majority of wounds sustained by U.S. soldiers in recent conflicts. The risk of infection is considerable with fracture fixation devices. In this pilot study, we examined the use of unique bactericidal micron-thin sol-gel films on fracture fixation devices and their ability to prevent and eradicate infections. External fixation was studied with micron-thin sol-gel coated percutaneous pins releasing triclosan and inserted medially into rabbit tibiae. A total of 11 rabbits received percutaneous pins that were either uncoated or sol-gel/triclosan coated. Internal fracture fixation was also studied using sol-gel coated intramedullary (IM) nails releasing vancomycin in the intramedullary tibiae. Six sheep received IM nails that were coated with a sol-gel film that either contained vancomycin or did not contain vancomycin. All animals were challenged with Staphylococcus aureus around the implant. Animals were euthanized at 1 month postoperative. Rabbits receiving triclosan/sol-gel coated percutaneous pins did not show signs of infection. Uncoated percutaneous pins had a significantly higher infection rate. In the sheep study, there were no radiographic signs of osteomyelitis with vancomycin/sol-gel coated IM nails, in contrast to the observations in the control cohort. Hence, the nanostructured sol-gel controlled release technology offers the promise of a reliable and continuous delivery system of bactericidals from orthopedic devices to prevent and treat infection. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  17. Electrochemical luminescence determination of hyperin using a sol-gel@graphene luminescent composite film modified electrode for solid phase microextraction

    NASA Astrophysics Data System (ADS)

    Zou, Xiaojun; Shang, Fang; Wang, Sui

    2017-02-01

    In this paper, a novel electrochemiluminescence (ECL) sensor of sol-gel@graphene luminescent composite film modified electrode for hyperin determination was prepared using graphene (G) as solid-phase microextraction (SPME) material, based on selective preconcentration of target onto an electrode and followed by luminol ECL detection. Hyperin was firstly extracted from aqueous solution through the modified GCE. Hydrogel, electrogenerated chemiluminescence reagents, pH of working solution, extraction time and temperature and scan rate were discussed. Under the optimum conditions, the change of ECL intensity was in proportion to the concentration of hyperin in the range of 0.02-0.24 μg/mL with a detection limit of 0.01 μg/mL. This method showed good performance in stability, reproducibility and precision for the determination of hyperin.

  18. Thermal stability of a modified sol-gel derived hydroxyapatite nanopowders

    NASA Astrophysics Data System (ADS)

    Herradi, S.; El Bali, B.; Khaldi, M.; Lachkar, M.

    2017-03-01

    Hydroxyapatite Ca10(PO4)6(OH)2 (HA) powder was successfully synthesized by a modified sol-gel method using a solution of calcium nitrate in ethanol, along with a solution of diammonium hydrogen phosphate in water and NH4OH as starting materials. The Ca/P molar ratio was maintained at 1.67. The powder was subjected to furnace and microwave heating to compare the decomposition of HA and study the crystallite sizes. It was found that microwave heated powders were pure HAP up to 230°C with absence of secondary phases. However, XRD patterns show that furnace heated powders convert completely to β-TCP when treated at 750°C and 1000°C. This result was confirmed by the absence of hydroxyl bands in the FT-IR spectra for these temperatures.

  19. Sol-gel synthesis of lithium metatitanate as tritium breeding material under different sintering conditions

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Wang, Jing; Pu, Wenjing; Li, Kaiping; Ma, Shubing; Wang, Weihua

    2018-04-01

    Lithium metatitanate (Li2TiO3) is a promising tritium breeding material candidate for solid blanket of D-T fusion reactors, due to its high mechanical strength, chemical stability, and tritium release rate. In this paper, Li2TiO3 powder with homogeneous crystal structure is synthesized by sol-gel method. The chemical reactions in gel thermal cracking and sintering process are studied by thermo gravimetric/differential scanning calorimetry (TG-DSC). The relationship between the sintering condition and the particle/grain size is characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results show that below 673 K the gel precursor is completely decomposed and Li2TiO3 phase initially forms. The LiTiO2 by-product formed under the reductive atmosphere in muffle furnace, could be oxidized continually to Li2TiO3 at higher sintering temperature (≥1273 K) for longer sintering time (≥10 h). Both grain and particle sizes rely on a linear growth with the increase of sintering time at 1273 K. Over 1473 K, significant agglomerations exist among particles. The optimal sintering condition is selected as 1273 K for 10 h, for the purer Li2TiO3 phase (>99%), smaller grain and particle size.

  20. Preparation and characterization of silica xerogels as carriers for drugs.

    PubMed

    Czarnobaj, K

    2008-11-01

    The aim of the present study was to utilize the sol-gel method to synthesize different forms of xerogel matrices for drugs and to investigate how the synthesis conditions and solubility of drugs influence the change of the profile of drug release and the structure of the matrices. Silica xerogels doped with drugs were prepared by the sol-gel method from a hydrolyzed tetraethoxysilane (TEOS) solution containing two model compounds: diclofenac diethylamine, (DD)--a water-soluble drug or ibuprofen, (IB)--a water insoluble drug. Two procedures were used for the synthesis of sol-gel derived materials: one-step procedure (the sol-gel reaction was carried out under acidic or basic conditions) and the two-step procedure (first, hydrolysis of TEOS was carried out under acidic conditions, and then condensation of silanol groups was carried out under basic conditions) in order to obtain samples with altered microstructures. In vitro release studies of drugs revealed a similar release profile in two steps: an initial diffusion-controlled release followed by a slower release rate. In all the cases studied, the released amount of DD was higher and the released time was shorter compared with IB for the same type of matrices. The released amount of drugs from two-step prepared xerogels was always lower than that from one-step base-catalyzed xerogels. One-step acid-catalyzed xerogels proved unsuitable as the carriers for the examined drugs.

  1. Surface analysis and biocorrosion properties of nanostructured surface sol-gel coatings on Ti6Al4V titanium alloy implants.

    PubMed

    Advincula, Maria C; Petersen, Don; Rahemtulla, Firoz; Advincula, Rigoberto; Lemons, Jack E

    2007-01-01

    Surfaces of biocompatible alloys used as implants play a significant role in their osseointegration. Surface sol-gel processing (SSP), a variant of the bulk sol-gel technique, is a relatively new process to prepare bioreactive nanostructured titanium oxide for thin film coatings. The surface topography, roughness, and composition of sol-gel processed Ti6Al4V titanium alloy coatings was investigated by atomic force microscopy (AFM) and X-ray electron spectroscopy (XPS). This was correlated with corrosion properties, adhesive strength, and bioreactivity in simulated body fluids (SBF). Electroimpedance spectroscopy (EIS) and polarization studies indicated similar advantageous corrosion properties between sol-gel coated and uncoated Ti6Al4V, which was attributed to the stable TiO2 composition, topography, and adhesive strength of the sol-gel coating. In addition, inductive coupled plasma (ICP) and scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) analysis of substrates immersed in SBF revealed higher deposition of calcium and phosphate and low release rates of alloying elements from the sol-gel modified alloys. The equivalent corrosion behavior and the definite increase in nucleation of calcium apatite indicate the potential of the sol-gel coating for enhanced bioimplant applications. 2006 Wiley Periodicals, Inc.

  2. Influence of Chemical Conditions on the Nanoporous Structure of Silicate Aerogels

    PubMed Central

    Sinkó, Katalin

    2010-01-01

    Silica or various silicate aerogels can be characterized by highly porous, open cell, low density structures. The synthesis parameters influence the three-dimensional porous structures by modifying the kinetics and mechanism of hydrolysis and condensation processes. Numerous investigations have shown that the structure of porous materials can be tailored by variations in synthesis conditions (e.g., the type of precursors, catalyst, and surfactants; the ratio of water/precursor; the concentrations; the medium pH; and the solvent). The objectives of this review are to summarize and elucidate the effects of chemical conditions on the nanoporous structure of sol-gel derived silicate aerogels.

  3. Optically enhanced SnO{sub 2}/CdSe core/shell nanostructures grown by sol-gel spin coating method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Vijay, E-mail: vijaynadda83@gmail.com; Goswami, Y. C.; Rajaram, P.

    2015-08-28

    Synthesis of SnO{sub 2}/CdSe metal oxide/ chalcogenide nanostructures on glass micro slides using ultrasonic sol-gel process followed by spin coating has been reported. Stannous chloride, cadmium chloride and selenium dioxide compounds were used for Sn, Cd and Se precursors respectively. Ethylene glycol was used as complexing agent. The samples were characterized by XRD, SEM, AFM and UV-spectrophotometer. All the peaks shown in diffractograms are identified for SnO{sub 2}. Peak broadening observed in core shell due to stress behavior of CdSe lattice. Scanning electron microscope and AFM exhibits the conversion of cluster in to nanorods structures forms. Atomic force microscope showsmore » the structures in nanorods form and a roughness reduced 1.5194 nm by the deposition of CdSe. Uv Visible spectra shows a new absorption edge in the visible region make them useful for optoelectronic applications.« less

  4. One-step synthesis of bioactive glass by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Shih, Shao-Ju; Chou, Yu-Jen; Chien, I.-Chen

    2012-12-01

    Bioactive glasses (BGs) have recently received more attention from biologists and engineers because of their potential applications in bone implants. The sol-gel process is one of the most popular methods for fabricating BGs, and has been used to produce BGs for years. However, the sol-gel process has the disadvantages of discontinuous processing and a long processing time. This study presented a one-step spray pyrolysis (SP) synthesis method to overcome these disadvantages. This SP method has synthesized spherical bioactive glass (SBG) and mesoporous bioactive glass (MBG) particles using Si-, Ca- and P-based precursors. This study used transmission electron microscopy, selected area electron diffraction and X-ray dispersive spectroscopy to characterize the microstructure, crystallographic structure, and chemical composition for the BG particles. In addition, in vitro bioactive tests showed the formation of hydroxyl apatite layers on SBG and MBG particles after immersion in simulated body fluid for 5 h. Experimental results show the SP formation mechanisms of SBG and MBG particles.

  5. Fabrication of ceramic oxide-coated SWNT composites by sol-gel process with a polymer glue

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Gao, Lei; Chen, Yongming

    2011-09-01

    The functional copolymer bearing alkoxysilyl and pyrene groups, poly[3-(triethoxysilyl)propyl methacrylate]- co-[(1-pyrene-methyl) methacrylate] (TEPM13- co-PyMMA3), was synthesized via atom transfer radical polymerization. Attributing the π-π interaction of pyrene units with the walls of single-walled carbon nanotubes (SWNTs), this polymer could disperse and exfoliate SWNTs in different solvents through physical interaction as demonstrated by TEM, UV/Vis absorption, and FT-IR analysis. The alkoxysilyl groups functionalized SWNTs were reacted with different inorganic precursors via sol-gel reaction, and, as a results, silica, titania, and alumina were coated onto the surface of SWNTs, respectively via copolymers as a molecular glue. The nanocomposites of ceramic oxides/SWNTs were characterized by SEM analysis. Dependent upon the feed, the thickness of inorganic coating can be tuned easily. This study supplies a facile and general way to coat SWNTs with ceramic oxides without deteriorating the properties of pristine SWNTs.

  6. Preparation and characterization of molecularly homogeneous silica-titania film by sol-gel process with different synthetic strategies.

    PubMed

    Chen, Hsueh-Shih; Huang, Sheng-Hsin; Perng, Tsong-Pyng

    2012-10-24

    Three silica-titania thin films with various degrees of molecular homogeneity were synthesized by the sol-gel process with the same precursor formula but different reaction paths. The dried films prepared by a single spin-coating process have a thickness of 500-700 nm and displayed no cracks or pin holes. The transmittances and refractive indices of the samples are >97.8% in the range of 350-1800 nm and 1.62-1.65 at 500 nm, respectively. The in-plane and out-of-plane chemical homogeneities of the films were analyzed by X-ray photoelectron spectroscopy and Auger electron spectroscopy, respectively. For the film with the highest degree of homogeneity, the deviations of O, Si, and Ti atomic contents in both in-plane and out-of-plane directions are less than 1.5%, indicating that the film is highly molecularly homogeneous. It also possesses the highest transparency and the lowest refractive index among the three samples.

  7. Effect of annealing on the structural and optical properties of TiO2 powder prepared by sol-gel route

    NASA Astrophysics Data System (ADS)

    Halder, Nilanjan; Misra, Kamakhya Prakash

    2016-05-01

    Using titanium isopropoxide as the precursor, Titanium dioxide (TiO2) powder was synthesized via sol-gel method, a promising low temperature route for preparing nanosized metal oxide semiconductors with good homogeneity at low cost. The as-prepared nano powder was thermally treated in air at 550, 650, 750, 900 and 1100°C for 1hr after drying at room temperature and used for further characterization. X-ray diffraction measurements showed that the annealing treatment has a strong impact on the crystal phase of TiO2 samples. The crystallite size as calculated from Debye Scherer formula lies in the range 29-69 nm and is found to increase with increase in annealing temperature. Photoluminescence studies exhibit an improvement in the optical efficiency of the samples with post synthesis heat treatment. Annealing at temperature above 900°C results in a degradation of the structural and optical quality of the TiO2 nano powder samples.

  8. Sol-gel spin coated well adhered MoO3 thin films as an alternative counter electrode for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Mutta, Geeta R.; Popuri, Srinivasa R.; Wilson, John I. B.; Bennett, Nick S.

    2016-11-01

    In this work, we aim to develop a viable, inexpensive and non-toxic material for counter electrodes in dye sensitized solar cells (DSSCs). We employed an ultra-simple synthesis process to deposit MoO3 thin films at low temperature by sol-gel spin coating technique. These MoO3 films showed good transparency. It is predicted that there will be 150 times reduction of precursors cost by realizing MoO3 thin films as a counter electrode in DSSCs compared to commercial Pt. We achieved a device efficiency of about 20 times higher than that of the previous reported values. In summary we develop a simple low cost preparation of MoO3 films with an easily scaled up process along with good device efficiency. This work encourages the development of novel and relatively new materials and paves the way for massive reduction of industrial costs which is a prime step for commercialization of DSSCs.

  9. Photocatalytic degradation of methyl orange and bromophenol blue dyes in water using sol-gel synthesized TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Dhanalakshmi, J.; Pathinettam Padiyan, D.

    2017-09-01

    TiO2 nanoparticles were prepared by a sol-gel method using titanium tetra isopropoxide as a precursor. The structural, optical, morphological and electrical properties were studied by x-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), a high resolution scanning electron microscope (HR-SEM), a transmission electron microscope (TEM), Raman analysis, Photoluminescence (PL) and impedance spectroscopy. The XRD and Raman spectra revealed that the synthesized samples are in pure anatase phase with an average crystallite size of 18 nm. Photocatalytic activity of the TiO2 nanoparticles was investigated for the degradation of 10 ppm methyl orange (MO) and bromophenol blue (BPB) dye using 10 mg of catalyst. Anatase TiO2 exhibited the removal of 67.12% and 85.51% of MO and BPB, respectively, within 240 min. The photocatalytic degradation process is explained using pseudo second order kinetics and fits well with the higher correlation coefficient.

  10. Synthesis of CaCu3Ti4O12 by modified Sol-gel method with Hydrothermal process

    NASA Astrophysics Data System (ADS)

    Masingboon, C.; Rungruang, S.

    2017-09-01

    CaCu3Ti4O12 powders were synthesized by modified Sol-gel method with Hydrothermal process using Ca(NO3)2· 4H2O, Cu(NO3)2·3H2O, Ti(OC3H7)4 and freshly extracted egg white (ovalbumin) in aqueous medium. The precursor was calcined at 800, 900 and 1000 °C in air for 8 h to obtain nanocrystalline powders of CaCu3Ti4O12. The calcined CaCu3Ti4O12 powders were characterized by XRD, TEM and EDX. The XRD results indicated that all calcined samples have a typical perovskite CaCu3Ti4O12 structure and a small amount of CaTiO3, CuO and TiO2. TEM micrographs showed particle size 100 - 500 nm and EDX results showed elements of CaCu3Ti4O12 powders have calcium, copper, titanium and oxygen.

  11. Chitosan-silica hybrid porous membranes.

    PubMed

    Pandis, Christos; Madeira, Sara; Matos, Joana; Kyritsis, Apostolos; Mano, João F; Ribelles, José Luis Gómez

    2014-09-01

    Chitosan-silica porous hybrids were prepared by a novel strategy in order to improve the mechanical properties of chitosan (CHT) in the hydrogel state. The inorganic silica phase was introduced by sol-gel reactions in acidic medium inside the pores of already prepared porous scaffolds. In order to make the scaffolds insoluble in acidic media chitosan was cross-linked by genipin (GEN) with an optimum GEN concentration of 3.2 wt.%. Sol-gel reactions took place with Tetraethylorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) acting as silica precursors. GPTMS served also as a coupling agent between the free amino groups of chitosan and the silica network. The morphology study of the composite revealed that the silica phase appears as a layer covering the chitosan membrane pore walls. The mechanical properties of the hybrids were characterized by means of compressive stress-strain measurements. By immersion in water the hybrids exhibit an increase in elastic modulus up to two orders of magnitude. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Deactivation of photocatalytically active ZnO nanoparticle and enhancement of its compatibility with organic compounds by surface-capping with organically modified silica

    NASA Astrophysics Data System (ADS)

    Cao, Zhi; Zhang, Zhijun

    2011-02-01

    Tetraethyl orthosilicate (TEOS) and dimethyldiethoxysilane (DEDMS) were used as co-precursors to prepare organically modified silica (ormosil) via sol-gel process. The resultant ormosil was adopted for surface-capping of ZnO nanoparticle, where methyl (organic functional group) and silica (inorganic component) were simultaneously introduced onto the surface of the nanoparticles for realizing dual surface-modification. The ormosil-capped ZnO nanoparticle showed strong hydrophobicity and good compatibility with organic phases, as well as effectively decreased photocatalytic activity and almost unchanged ultraviolet (UV)-shielding ability. More importantly, the comprehensive properties of ormosil-capped ZnO nanoparticle could be manipulated by adjusting the molar ratio of TEOS to DEDMS during sol-gel process. This should help to open a wider window to better utilizing the unique and highly attractive properties such as high UV-shielding ability and high-visible light transparency of ZnO nanoparticle in sunscreen cosmetics.

  13. Sol-gel technique for the preparation of beta-cyclodextrin derivative stationary phase in open-tubular capillary electrochromatography.

    PubMed

    Wang, Y; Zeng, Z; Guan, N; Cheng, J

    2001-07-01

    A novel open-tubular capillary electrochromatography (OT-CEC) column coated with 2,6-dibutyl-beta-cyclodextrin (DB-beta-CD) was prepared using sol-gel technique. In the sol-gel approach, owing to the three-dimensional network of sol-gel and the strong chemical bond between the stationary phase and the surface of capillary columns, good chromatographic characteristics and unique selectivity in separating isomers were shown. We achieved high efficiencies of 5-14 x 10(4) plates/m for the isomeric nitrophenols using the sol-gel-derived DB-beta-CD columns. The migration time reproducibility of the separation of the isomeric nitrophenols was better than 2.2% over five runs and 4.5% from column to column. These sol-gel-coated DB-beta-CD columns have shown improved separations of isomeric aminophenols, isomeric dihydroxybenzenes and isomeric nitrophenols, in comparison with the sol-gel matrix capillary column. The influences of buffer pH and methanol solvent on separation were investigated. The chiral resolution of enantiomers such as ibuprofen and binaphthol was explored primarily.

  14. Sol-gel immobilized short-chain poly(ethylene glycol) coating for capillary microextraction of underivatized polar analytes.

    PubMed

    Kulkarni, Sameer; Shearrow, Anne M; Malik, Abdul

    2007-12-07

    Sol-gel coating with covalently bonded low-molecular-weight (MW<300 Da) poly(ethylene glycol) (PEG) chains was developed for capillary microextraction (CME). The sol-gel chemistry proved effective in the immobilization of low-molecular-weight PEGs thanks to the formation of chemical bonds between the organic-inorganic hybrid sol-gel PEG coating and the fused silica capillary inner surface. This chemical anchorage provided excellent thermal and solvent stability to the created sol-gel PEG coating as is evidenced by its high upper limit of allowable conditioning temperature (340 degrees C) and its practically identical performance before and after rinsing with various solvents. The prepared sol-gel PEG coating provided simultaneous extraction of moderately polar and highly polar analytes from aqueous samples without requiring derivatization, pH adjustment or salting-out procedures. Detection limits on the order of nanogram per liter (ng/L) were achieved in CME-GC-flame ionization detection experiments designed for the preconcentration and trace analysis of both highly polar and moderately polar compounds extracted directly from aqueous media using sol-gel short-chain PEG coated microextraction capillaries.

  15. Evolution of heterogeneity accompanying sol-gel transitions in a supramolecular hydrogel.

    PubMed

    Matsumoto, Yuji; Shundo, Atsuomi; Ohno, Masashi; Tsuruzoe, Nobutomo; Goto, Masahiro; Tanaka, Keiji

    2017-10-18

    When a peptide amphiphile is dispersed in water, it self-assembles into a fibrous network, leading to a supramolecular hydrogel. When the gel is physically disrupted by shaking, it transforms into a sol state. After aging at room temperature for a while, it spontaneously returns to the gel state, called sol-gel transition. However, repeating the sol-gel transition often causes a change in the rheological properties of the gel. To gain a better understanding of the sol-gel transition and its reversibility, we herein examined the thermal motion of probe particles at different locations in a supramolecular hydrogel. The sol obtained by shaking the gel was heterogeneous in terms of the rheological properties and the extent decreased with increasing aging time. This time course of heterogeneity, or homogeneity, which corresponded to the sol-to-gel transition, was observed for the 1st cycle. However, this was not the case for the 2nd and 3rd cycles; the heterogeneity was preserved even after aging. Fourier-transform infrared spectroscopy, small-angle X-ray scattering, and atomic force and confocal laser scanning microscopies revealed that, although the molecular aggregation states of amphiphiles both in the gel and sol remained unchanged with the cycles, the fibril density diversified to high and low density regions even after aging. The tracking of particles with different sizes indicated that the partial mesh size in the high density region and the characteristic length scale of the density fluctuation were smaller than 50 nm and 6 μm, respectively.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusoff, Yusriha Mohd; Salimi, Midhat Nabil Ahmad; Anuar, Adilah

    Many studies have been carried out in order to prepare hydroxyapatite (HAp) by various methods. In this study, we focused on the preparation of HAp nanoparticles by using sol-gel technique in which few parameters are optimized which were stirring rate, aging time and sintering temperature. HAp nanoparticles were prepared by using precursors of calcium nitrate tetrahydrate, Ca(NO{sub 3}){sub 2}.4H{sub 2}O and phosphorous pentoxide, P{sub 2}O{sub 5}. Both precursors are mixed in ethanol respectively before they were mixed together in which it formed a stable sol. Fourier transform infrared (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM) were used formore » its characterization in terms of functional group, phase composition, crystallite size and morphology of the nanoparticles produced. FTIR spectra showed that the functional groups that present in all five samples were corresponding to the formation of HAp. Besides, XRD shows that only one phase was formed which was hydroxyapatite. Meanwhile, SEM shows that the small particles combine together to form agglomeration.« less

  17. Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells.

    PubMed

    Kim, Areum; Lee, Hongseuk; Kwon, Hyeok-Chan; Jung, Hyun Suk; Park, Nam-Gyu; Jeong, Sunho; Moon, Jooho

    2016-03-28

    We report all-solution-processed transparent conductive electrodes based on Ag nanowire (AgNW)-embedded metal oxide composite films for application in organometal halide perovskite solar cells. To address the thermal instability of Ag nanowires, we used combustive sol-gel derived thin films to construct ZnO/ITO/AgNW/ITO composite structures. The resulting composite configuration effectively prevented the AgNWs from undergoing undesirable side-reactions with halogen ions present in the perovskite precursor solutions that significantly deteriorate the optoelectrical properties of Ag nanowires in transparent conductive films. AgNW-based composite electrodes had a transmittance of ∼80% at 550 nm and sheet resistance of 18 Ω sq(-1). Perovskite solar cells fabricated using a fully solution-processed transparent conductive electrode, Au/spiro-OMeTAD/CH3NH3PbI3 + m-Al2O3/ZnO/ITO/AgNW/ITO, exhibited a power conversion efficiency of 8.44% (comparable to that of the FTO/glass-based counterpart at 10.81%) and were stable for 30 days in ambient air. Our results demonstrate the feasibility of using AgNWs as a transparent bottom electrode in perovskite solar cells produced by a fully printable process.

  18. A novel precursor system and its application to produce tin doped indium oxide.

    PubMed

    Veith, M; Bubel, C; Zimmer, M

    2011-06-14

    A new type of precursor has been developed by molecular design and synthesised to produce tin doped indium oxide (ITO). The precursor consists of a newly developed bimetallic indium tin alkoxide, Me(2)In(O(t)Bu)(3)Sn (Me = CH(3), O(t)Bu = OC(CH(3))(3)), which is in equilibrium with an excess of Me(2)In(O(t)Bu). This quasi single-source precursor is applied in a sol-gel process to produce powders and coatings of ITO using a one-step heat treatment process under an inert atmosphere. The main advantage of this system is the simple heat treatment that leads to the disproportionation of the bivalent Sn(II) precursor into Sn(IV) and metallic tin, resulting in an overall reduced state of the metal in the final tin doped indium oxide (ITO) material, hence avoiding the usually necessary reduction step. Solid state (119)Sn-NMR measurements of powder samples confirm the appearance of Sn(II) in an amorphous gel state and of metallic tin after annealing under nitrogen. The corresponding preparation of ITO coatings by spin coating on glass leads to transparent conductive layers with a high transmittance of visible light and a low electrical resistivity without the necessity of a reduction step.

  19. Reconstruction of active regular motion in amoeba extract: dynamic cooperation between sol and gel states.

    PubMed

    Nishigami, Yukinori; Ichikawa, Masatoshi; Kazama, Toshiya; Kobayashi, Ryo; Shimmen, Teruo; Yoshikawa, Kenichi; Sonobe, Seiji

    2013-01-01

    Amoeboid locomotion is one of the typical modes of biological cell migration. Cytoplasmic sol-gel conversion of an actomyosin system is thought to play an important role in locomotion. However, the mechanisms underlying sol-gel conversion, including trigger, signal, and regulating factors, remain unclear. We developed a novel model system in which an actomyosin fraction moves like an amoeba in a cytoplasmic extract. Rheological study of this model system revealed that the actomyosin fraction exhibits shear banding: the sol-gel state of actomyosin can be regulated by shear rate or mechanical force. Furthermore, study of the living cell indicated that the shear-banding property also causes sol-gel conversion with the same order of magnitude as that of shear rate. Our results suggest that the inherent sol-gel transition property plays an essential role in the self-regulation of autonomous translational motion in amoeba.

  20. 3-(Triethoxysilyl)propionitrile sol-gel coating.

    PubMed

    Li, Ying-Sing; Xiao, Yun; Wright, Paul B; Tran, Tuan

    2005-05-01

    3-(Triethoxysilyl)propionitrile (TESPN) sol-gel has been prepared under different conditions. It was employed for coating the surfaces of quartz and aluminum. Infrared (IR) and Raman spectra of TESPN and TESPN sol-gels have been recorded in the study of the sol-gel process. Transmission and reflection absorption IR (RAIR) spectra of TESPN sol-gel coated quartz and aluminum have also been collected for better understanding the film formation on the substrate surfaces. Spectra collected at different temperatures indicated that the silane film on quartz decomposes at 700 degrees C. Results from thermal gravimetric analysis (TGA) supported this result. Based on the group frequencies and the spectral behavior in different states, some vibrational modes were assigned to the observed bands. The anticorrosion behavior of the sol-gel coated aluminum in comparison with the uncoated metal was evaluated by measuring the potentiodynamic polarization and electrochemical impedance spectra (EIS).

  1. Effectiveness of silica based sol-gel microencapsulation method for odorants and flavors leading to sustainable environment

    PubMed Central

    Ashraf, Muhammad Aqeel; Khan, Aysha Masood; Ahmad, Mushtaq; Sarfraz, Maliha

    2015-01-01

    Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol-gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol-gel SiO2 is non-toxic and safe, whereas the sol-gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped active agents, thereby broadening the practical utilization of chemically unstable essential oils (EOs). Reviewing progress in the fabrication of diverse odorant and flavored sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits. PMID:26322304

  2. Effectiveness of silica based sol-gel microencapsulation method for odorants and flavors leading to sustainable environment.

    PubMed

    Ashraf, Muhammad Aqeel; Khan, Aysha Masood; Ahmad, Mushtaq; Sarfraz, Maliha

    2015-01-01

    Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol-gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol-gel SiO2 is non-toxic and safe, whereas the sol-gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped active agents, thereby broadening the practical utilization of chemically unstable essential oils (EOs). Reviewing progress in the fabrication of diverse odorant and flavored sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits.

  3. Preparation of titanium oxide ceramic membranes

    DOEpatents

    Anderson, Marc A.; Xu, Qunyin

    1992-01-01

    A procedure is disclosed for the reliable production of either particulate or polymeric titanium ceramic membranes by a highly constrained sol-gel procedure. The critical constraints in the procedure include the choice of alkyl alcohol solvent, the amount of water and its rate of addition, the pH of the solution during hydrolysis, and the limit of sintering temperature applied to the resulting gels.

  4. Preparation of titanium oxide ceramic membranes

    DOEpatents

    Anderson, M.A.; Xu, Q.

    1992-03-17

    A procedure is disclosed for the reliable production of either particulate or polymeric titanium ceramic membranes by a highly constrained sol-gel procedure. The critical constraints in the procedure include the choice of alkyl alcohol solvent, the amount of water and its rate of addition, the pH of the solution during hydrolysis, and the limit of sintering temperature applied to the resulting gels.

  5. Multicomponent micropatterned sol-gel materials by capillary molding

    NASA Astrophysics Data System (ADS)

    Lochhead, Michael J.; Yager, Paul

    1997-10-01

    A physically and chemically benign method for patterning multiple sol-gel materials onto a single substrate is described. Structures are demonstrated for potential micro- optical chemical sensor, biosensor, and waveguiding applications. Fabrication is based on the micro molding in capillaries (MIMIC) approach. A novel mold design allows several sols to be cast simultaneously. Closely spaced, organically modified silica ridges containing fluorescent dyes are demonstrated. Ridges have cross sectional dimensions from one to 50 micrometers and are centimeters in length. Processing issues, particularly those related to mold filling, are discussed in detail. Because sol-gel MIMIC avoids the harsh physical and chemical environments normally associated with patterning, the approach allows full exploitation of sol- gel processing advantages, such as the ability to entrap sensitive organic dopant molecules in the sol-gel matrix.

  6. Selective filling for patterning in microfluidic channels and integration of chromatography in "lab-on-a-chip" devices using sol-gel technology

    NASA Astrophysics Data System (ADS)

    Jindal, Rohit

    The last decade has seen tremendous advancement in the development of miniaturized chemical analysis system also known as "lab-on-a-chip". It is believed that the true potential of these devices will be achieved by integrating various functions such as separation, reaction, sensing, mixing, pumping, injection and detection onto a single chip. The ability to pattern different functionalities is indispensable for the development of highly integrated devices. In this work, a simple method based on the concept of selective filling is described for patterning in the microfluidic channels. It is based on the difference in the free energy of filling between an open and a covered part of the channel. This method was used for the integration of chromatography in the microfluidic devices. A chromatographic column was realized by utilizing sol-gel as an immobilization matrix for entrapping reversed phase chromatographic particles. Localization of the stationary phase was achieved using the selective filling technique. Channels were fabricated in quartz using photolithography and wet etching. Electroosmotic flow was used for manipulating fluid movement in the channels. Cross channel design was used for making a pulse injection of the solutes in the separation channel. An optical fiber setup was developed for carrying out on-chip UV absorbance detection. Stationary phase was created under different sol-gel synthesis conditions. It was established that the sol-gel synthesis carried out under acidic conditions provides the optimum synthesis conditions for creating separation column. Chromatographic performance of the stationary phase material was demonstrated by separating peptides present in a mixture. The sol-gel immobilization method was extended for the integration of micropump in the chip. The micropump enables pumping of the fluid in field free channels. Preliminary results, demonstrating the potential of carbon nanotubes as a support material in the microfluidic channels, were obtained using CVD (chemical vapor deposition) grown tubes in the channel. Results obtained in this work demonstrate the potential of selective filling technique along with sol-gel technology as a useful tool for the fabrication of multifunctional "lab-on-a-chip" devices.

  7. Study of alumosilicate porcelains: Sol-gel preparation, characterization and erosion evaluated by gravimetric method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdanoviciene, Irma; Jankeviciute, Audrone; Pinkas, Jiri

    2008-11-03

    In this paper, the sol-gel synthesis and characteristic properties of kalsilite-type alumosilicates (KAlSiO{sub 4} and K{sub 0.5}Na{sub 0.5}AlSiO{sub 4}) are reported. The polycrystalline powders were characterized by thermal analysis (TG/DTA), powder X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). Single-phase kalsilite oxides have been obtained after annealing precursor gels for 5 h in the temperature range of 750-850 deg. C. It was demonstrated that crystallinity of the samples slightly depends on the temperature of annealing. From the results obtained, it could be concluded that the KAlSiO{sub 4} solids are composed of the volumetric plate-like grains with no regular sizemore » (from 5 {mu}m to 30 {mu}m at 750 deg. C and around 5-50 {mu}m at 850 deg. C). Larger crystallites for mixed potassium-sodium kalsilite have formed (from 10 {mu}m to 80 {mu}m at 750 deg. C and >100 {mu}m at 850 deg. C) in comparison with potassium kalsilite samples). The erosion of obtained dental porcelain samples stored in saliva, beer and Coca-Cola was compared.« less

  8. Ni(OH)2 Aerogels Incorporated with Polypyrrole as Electrodes for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Scarabelot, Letícia T.; Muller, Daliana; de Souza, Luciana V.; Hotza, Dachamir; Rambo, Carlos R.

    2017-08-01

    This work reports the synthesis of Ni(OH)2 aerogels incorporated in situ with polypyrrole (PPy) for application as electrodes in high-capacity energy storage devices. Ni(OH)2 gels were prepared by the sol-gel method from NiCl2 as precursor and propylene oxide as gelling agent in ethanol. Pyrrole monomer was added prior to gelling of the sol and in situ polymerized using ammonium persulfate as oxidant agent. After solvent exchanges from ethanol to acetone, the gels were dried in a CO2 supercritical point drier. Powdered aerogels were deposited onto both sides of a poly(vinyl alcohol)/H3PO4 film (electrolyte/separator) and the contacts were closed with copper foils, resulting in a complete device. Through cyclic voltammetry and charge/discharge curves, the performance of the supercapacitors was evaluated by the specific capacitance, power and energy densities and series resistance. The specific capacitance was increased by 43% with the incorporation of 0.2 mol/L PPy (276 F/g) and the series resistance obtained decreased by 79% (46.5 Ω/cm2), which reflects the enhanced performance and electrochemical properties of Ni(OH)2 aerogel- based devices incorporated with PPy.

  9. Surface characterization of colloidal-sol gel derived biphasic HA/FA coatings.

    PubMed

    Cheng, Kui; Zhang, Sam; Weng, Wenjian

    2007-10-01

    Hydroxyapatite (HA) powders are ultrasonically dispersed in the precursor of fluoridated hydroxyapatite (FHA) or fluorapatite (FA) to form a "colloidal sol". HA/FA biphasic coatings are prepared on Ti6Al4V substrate via dip coating, 150 degrees C drying and 600 degrees C firing. The coatings show homogenous distribution of HA particles in the FA matrix. The relative phase proportion can be tailored by the amount of HA in the colloidal sol. The surfaces of the coatings consist of two kinds of distinct domains: HA and FA, resulting in a compositionally heterogeneous surface. The biphasic coating surface becomes increasingly rougher with HA powders, from around 200 nm of pure FA to 400-600 nm in Ra of biphasic coatings. The rougher biphasic HA/FA surfaces with chemically controllable domains will favor cell attachment, apatite layer deposition and necessary dissolution in clinical applications.

  10. An antibacterial coating based on a polymer/sol-gel hybrid matrix loaded with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Rivero, Pedro José; Urrutia, Aitor; Goicoechea, Javier; Zamarreño, Carlos Ruiz; Arregui, Francisco Javier; Matías, Ignacio Raúl

    2011-12-01

    In this work a novel antibacterial surface composed of an organic-inorganic hybrid matrix of tetraorthosilicate and a polyelectrolyte is presented. A precursor solution of tetraethoxysilane (TEOS) and poly(acrylic acid sodium salt) (PAA) was prepared and subsequently thin films were fabricated by the dip-coating technique using glass slides as substrates. This hybrid matrix coating is further loaded with silver nanoparticles using an in situ synthesis route. The morphology and composition of the coatings have been studied using UV-VIS spectroscopy and atomic force microscopy (AFM). Energy dispersive X-ray (EDX) was also used to confirm the presence of the resulting silver nanoparticles within the thin films. Finally the coatings have been tested in bacterial cultures of genus Lactobacillus plantarum to observe their antibacterial properties. It has been experimentally demonstrated that these silver loaded organic-inorganic hybrid films have a very good antimicrobial behavior against this type of bacteria.

  11. An inorganic boronate affinity in-needle monolithic device for specific capture of cis-diol containing compounds.

    PubMed

    Jin, Shanxia; Zhang, Wei; Yang, Qin; Dai, Lili; Zhou, Ping

    2018-02-01

    In this work, inorganic boronate affinity monolith was prepared by in situ synthesis in 0.33mm i.d. stainless steel needle through sol-gel process using tetraethoxysilane and tetrabutyl orthotitanate as the co-precursors. The morphology, structure and composition of the monolith were characterized. In contrast to conventional boronate affinity materials, inorganic boric acid was used as affinity ligand. Different compounds were used for the evaluation of the boronate affinity of this inorganic monolithic material. The monolith exhibited good selectivity towards cis-diol containing compounds. Recovery of greater than 90% was achieved for in-needle extraction of catechol under neutral conditions. Owing to the hydrophilic property of the monolith, the procedure of affinity chromatography could be performed in aqueous solution. This monolithic in-needle device will be useful for boronate affinity extraction of small-volume samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Enhanced visible-light-driven photocatalytic activity of mesoporous TiO2-xNx derived from the ethylenediamine-based complex

    NASA Astrophysics Data System (ADS)

    Jiang, Zheng; Kong, Liang; Alenazey, Feraih Sh.; Qian, Yangdong; France, Liam; Xiao, Tiancun; Edwards, Peter P.

    2013-05-01

    A facile solvent evaporation induced self-assembly (SEISA) strategy was developed to synthesize mesoporous N-doped anatase TiO2 (SE-meso-TON) using a single organic complex precursor derived in situ from titanium butoxide and ethylenediamine in ethanol solution. After the evaporation of ethanol in a fume hood and subsequent calcinations at 450 °C, the obtained N-doped TiO2 (meso-TON) anatase was of finite crystallite size, developed porosity, large surface area (101 m2 g-1) and extended light absorption in the visible region. This SE-meso-TON also showed superior photocatalytic activity to the SG-meso-TON anatase prepared via sol-gel synthesis. On the basis of characterization results from XRD, XPS, N2 adsorption-desorption and ESR, the enhanced visible-light-responsive photocatalytic activity of SE-meso-TON was assigned to its developed mesoporosity and reduced oxygen vacancies.

  13. Aerogel and xerogel composites for use as carbon anodes

    DOEpatents

    Cooper, John F.; Tillotson, Thomas M.; Hrubesh, Lawrence W.

    2010-10-12

    A method for forming a reinforced rigid anode monolith and fuel and product of such method. The method includes providing a solution of organic aerogel or xerogel precursors including at least one of a phenolic resin, phenol (hydroxybenzene), resorcinol(1,3-dihydroxybenzene), or catechol(1,2-dihydroxybenzene); at least one aldehyde compound selected from the group consisting of formaldehyde, acetaldehyde, and furfuraldehyde; and an alkali carbonate or phosphoric acid catalyst; adding internal reinforcement materials comprising carbon to said precursor solution to form a precursor mixture; gelling said precursor mixture to form a composite gel; drying said composite gel; and pyrolyzing said composite gel to form a wettable aerogel/carbon composite or a wettable xerogel/carbon composite, wherein said composites comprise chars and said internal reinforcement materials, and wherein said composite is suitable for use as an anode with the chars being fuel capable of being combusted in a molten salt electrochemical fuel cell in the range from 500 C to 800 C to produce electrical energy. Additional methods and systems/compositions are also provided.

  14. Infrared wire-grid polarizer with sol-gel antireflection films on both sides

    NASA Astrophysics Data System (ADS)

    Yamada, Itsunari; Ishihara, Yoshiro

    2017-12-01

    We fabricated an infrared wire-grid polarizer with the high transverse magnetic (TM) polarization transmittance and high extinction ratio by soft imprint lithography, sol-gel method, and Al shadow coating processes. A zilconia film was coated on Si substrate by using sol-gel method and spin coating method. Then, sol-gel zirconia grating was formed on the back side using imprinting using a silicone mold. The polarizer was produced by depositing Al obliquely on the grating. The TM transmittance of the fabricated element was greater than 80% at a wavelength of 4.8 μm. The sol-gel zilconia films acted as antireflection films. The extinction ratio exceeded 26 dB at its wavelength.

  15. Spontaneous formation of linearly arranged microcraters on sol-gel-derived silica-poly(vinylpyrrolidone) hybrid films induced by Bénard-Marangoni convection.

    PubMed

    Uchiyama, Hiroaki; Mantani, Yuto; Kozuka, Hiromitsu

    2012-07-10

    Complex, sophisticated surface patterns on micrometer and nanometer scales are obtained when solvent evaporates from solutions containing nonvolatile solutes dropped on a solid substrate. Such evaporation-driven pattern formation has been utilized as a fabrication process of highly ordered patterns in thin films. Here, we suggested the spontaneous pattern formation induced by Bénard-Marangoni convection triggered by solvent evaporation as a novel patterning process of sol-gel-derived organic-inorganic hybrid films. Microcraters of 1.0-1.5 μm in height and of 100-200 μm in width were spontaneously formed on the surface of silica-poly(vinylpyrrolidone) hybrid films prepared via temperature-controlled dip-coating process, where the surface patterns were linearly arranged parallel to the substrate withdrawal direction. Such highly ordered micropatterns were achieved by Bénard-Marangoni convection activated at high temperatures and the unidirectional flow of the coating solution on the substrate during dip-coating.

  16. Critical behavior of modulus of gel

    NASA Astrophysics Data System (ADS)

    Tokita, Masayuki; Niki, Ryoya; Hikichi, Kunio

    1985-09-01

    The critical behavior of the shear modulus of casein gel is studied. The shear modulus of casein gel scales with the conductivity exponent in the immediate vicinity of the sol-gel transition point. The asymptotic behavior of the modulus in the region far above the transition point is governed by a different exponent which is much larger than the conductivity exponent. These results are explainable by the crossover behavior of the percolation process. This study shows that the gelation of the casein micelle solution is a realization of the percolation process.

  17. Phase equilibrium and preparation, crystallization and viscous sintering of glass in the alumina-silica-lanthanum phosphate system

    NASA Astrophysics Data System (ADS)

    He, Feng

    The phase equilibrium, viscosity of melt-quenched glasses, and processing of sol-gel glasses of the alumina-silica-lanthanum phosphate system were studied. These investigations were directed towards serving the objective of synthesizing nano-structured ceramic-matrix-composites via controlled crystallization of glass precursors. The thermal stability, phase equilibrium, and liquidus temperatures of the alumina- and mullite-lanthanum phosphate systems are determined. An iridium wire heater was constructed to anneal samples up to 2200°C. Phosphorus evaporation losses were significant at high temperatures, especially over 1800°C. The tentative phase diagrams of the two quasi-binary systems were presented. The viscosity of the melt-quenched mullite-lanthanum phosphate glasses was measured by three different methods, including viscous sintering of glass powder compacts, neck formation between two Frenkel glass beads, and thermal analysis of the glass transition. Improved methodologies were developed for applying the interpretative mathematical models to the results of the sintered powder and thermal analytical experiments. Good agreement was found between all three methods for both absolute values and temperature dependence. A sol-gel process was developed as a low temperature route to producing glasses. A unique, single phase mullite gel capable of low temperature (575°C) mullitization was made from tetraethoxysilane and aluminum isopropoxide at room temperature in three days. Low temperature crystallization was attributed to the avoidance of phase segregation during gel formation and annealing. This was greatly enhanced by a combination of low temperature preheating in the amorphous state, a high heating rate during crystallization and low water content. The Al2O3 content in mullite (61-68 mol%) depended on the highest annealing temperature. Two mullite-lanthanum phosphate gels were made based upon modifying the chemical procedures used for the homogeneous single phase and heterogeneous diphasic mullite gels from same starting chemicals. Amorphous powders were obtained after optimized calcinations. Their different crystallization routes and sintering behavior were investigated and correlated with the different homogeneities of precursor gels. Structurally stable open, porous ceramics (up to 80% porosity) were produced from the single-phase gel derived powder, where gases exsolved during calcination caused foaming coincident with sintering. Translucent, dense glass ceramic was made from the calcined diphasic gel by hot-pressing.

  18. Apatite-forming PEEK with TiO2 surface layer coating.

    PubMed

    Kizuki, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi

    2015-01-01

    Polyetheretherketone (PEEK) is widely used in orthopedic implants, such as spinal fusion devices, because of its moderate elastic modulus, as well as relatively high mechanical strength. However, it does not bond to living bone, and hence it needs autograft to be fixed to the bone. In this study, we attempted to add bone-bonding properties to PEEK by coating with TiO2 synthesized by the sol-gel process. When a TiO2 sol solution consisting of titanium isopropoxide, water, ethanol, and nitric acid was deposited on a PEEK substrate without any pretreatment, the formed TiO2 gel layer was easily peeled off after subsequent treatments. However, when the same solution was deposited on PEEK that was preliminarily subjected to UV or O2 plasma treatment, the deposited TiO2 gel layer strongly adhered to the substrate even after subsequent treatments. The strong adhesion was attributed to the interaction among the C-O, C=O, and O-C=O groups on the PEEK owing to the UV or O2 plasma treatment and the Ti-O bond of the TiO2 gel. Apatite did not form on the as-formed TiO2 gel layer in a simulated body fluid (SBF) even within 3 days; however, apatite formed after soaking in 0.1 M HCl solution at 80 °C for 24 h. This apatite formation was attributed to positive surface charge of the TiO2 gel layer induced by the acid treatment. The PEEK with the TiO2 gel layer coating formed by the proposed process is expected to bond to living bone, because a positively charged titanium oxide which facilitates the formation of apatite in SBF within a short period is known to bond to living bone.

  19. Effects of ion irradiation on the surface mechanical behavior of hybrid sol-gel derived silicate thin films

    NASA Astrophysics Data System (ADS)

    Ghisleni, Rudy

    A study on the effects of ion irradiation on the surface mechanical behavior of hybrid sol-gel derived thin films has been performed. Hybrid organic/inorganic modified silicate thin films were synthesized by sol-gel processing from tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) precursors and spin-coated onto (100) Si substrates. The synthesized films were investigated by nanoindentation, photoluminescence spectroscopy, and Raman spectroscopy. Hybrid TEOS/MTES sol-gel films modified by ion irradiation with deposited electronic energies of 1.87 x 1025 eV/cm3 or higher showed higher values of reduced elastic modulus and hardness than 800°C heat treated films. Thus, ion irradiation was found to be an effective means in converting the polymer sol into ceramic type coatings. The ions used in this study were Cu2+, N2+, Si+, O+, N+, He+, and H+, with incident energies ranging from 100 keV to 2 MeV, and fluences ranging from 1 x 1014 to 1 x 1017 ions/cm2. Both the reduced elastic modulus and hardness were seen to increase monotonically with the increase in ion fluence, with an observed maximum hardness of 7.7 GPa (an unirradiated film hardness was 0.4 GPa) and a maximum reduced elastic modulus of 84.0 GPa (an unirradiated film reduced elastic modulus was 7.1 GPa) for 250 keV N2+ irradiation with a 5 x 1016 ions/cm2 fluence. The electronic stopping power was found to be principally responsible for the film hardening, while the role of nuclear stopping power was minimal. A monotonic increase in hardness with increase in electronic energy deposited to the film surface was found. A model describing the hardening of ion irradiated films was developed. This model characterizes the hardening effectiveness of the ion species considered by two parameters: the constant hardening cross-section and the hardening coefficient. Where the hardening cross-section represents the cross-sectional area hardened by the interaction of an incident ion with the target, and the hardening coefficient represents an index of the cross-sectional area gradient as a function of fluence. The increase in hardness of hybrid sol-gel films following ion irradiation was linked to structural changes. Ion irradiation results in a cross-linked silica film as well as the segregation of amorphous carbon clusters, both of which contributed to increase the mechanical properties of the films.

  20. Phase and microstructural development in alumina sol-gel coatings on CoCr alloy.

    PubMed

    Bae, I J; Standard, O C; Roger, G J; Brazil, D

    2004-09-01

    Phase transformation of gamma-Al(2)O(3) to alpha-Al(2)O(3) in alumina sol gel coatings on biomedical CoCr alloy was studied as function of heat treatment temperature and time. Transformation in unseeded coatings was significant only above approximately 1200 degrees C. Addition of alpha-Al(2)O(3) seed particles having an average size of approximately 40 nm lowered the phase transformation temperature to around 800 degrees C. These particles were considered to act as heterogeneous nucleation sites for epitaxial growth of the alpha-Al(2)O(3) phase. The kinetics and activation energy (420 kJ/mol) for the phase transformation in the seeded coatings were similar to those reported for seeded monolithic alumina gels indicating that the transformation mechanism is the same in the two material configurations. Avrami growth parameters indicated that the mechanism was diffusion controlled and invariant over the temperature range studied but that growth was possibly constrained by the finite size of the seed particles and/or coating thickness. The phase transformation occurred by the growth of alpha-Al(2)O(3) grains at the expense of the precursor fine-grained gamma-Al(2)O(3) matrix and near-complete transformation coincided with physical impingement of the growing grains. The grain size at impingement was approximately 100 nm which agreed well with that predicted from the theoretical linear spacing of seed particles in the initial sol.

Top