Science.gov

Sample records for solar absorption spectra

  1. [Study on the effect of solar spectra on the retrieval of atmospheric CO2 concentration using high resolution absorption spectra].

    PubMed

    Hu, Zhen-Hua; Huang, Teng; Wang, Ying-Ping; Ding, Lei; Zheng, Hai-Yang; Fang, Li

    2011-06-01

    Taking solar source as radiation in the near-infrared high-resolution absorption spectrum is widely used in remote sensing of atmospheric parameters. The present paper will take retrieval of the concentration of CO2 for example, and study the effect of solar spectra resolution. Retrieving concentrations of CO2 by using high resolution absorption spectra, a method which uses the program provided by AER to calculate the solar spectra at the top of atmosphere as radiation and combine with the HRATS (high resolution atmospheric transmission simulation) to simulate retrieving concentration of CO2. Numerical simulation shows that the accuracy of solar spectrum is important to retrieval, especially in the hyper-resolution spectral retrieavl, and the error of retrieval concentration has poor linear relation with the resolution of observation, but there is a tendency that the decrease in the resolution requires low resolution of solar spectrum. In order to retrieve the concentration of CO2 of atmosphere, the authors' should take full advantage of high-resolution solar spectrum at the top of atmosphere.

  2. Analysis of Atmospheric Trace Constituents from High Resolution Infrared Balloon-Borne and Ground-Based Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Rinsland, C. P.; Blatherwick, R. D.; Murcray, F. H.; Murcray, D. G.

    1991-01-01

    Recent results and ongoing studies of high resolution solar absorption spectra will be presented. The analysis of these spectra is aimed at the identification and quantification of trace constituents important in atmospheric chemistry of the stratosphere and upper troposphere. Analysis of balloon-borne and ground-based spectra obtained at 0.0025/ cm covering the 700-2200/ cm interval will be presented. Results from ground-based 0.02/ cm solar spectra, from several locations such as Denver, South Pole, M. Loa, and New Zealand will also be shown. The 0.0025/ cm spectra show many new spectroscopic features. The analysis of these spectra, along with corresponding laboratory spectra, improves the spectral line parameters, and thus the accuracy of trace constituents quantification. The combination of the recent balloon flights, with earlier flights data since 1978 at 0.02/ cm resolution, provides trends analysis of several stratospheric trace species. Results for COF2, F22, SF6, and other species will be presented. Analysis of several ground-based solar spectra provides trends for HCl, HF and other species. The retrieval methods used for total column density and altitude distribution for both ground-based and balloon-borne spectra will be presented. These are extended for the analysis of the ground-based spectra to be obtained by the high resolution interferometers of the Network for Detection of Stratospheric Change (NDSC). Progress or the University of Denver studies for the NDSC will be presented. This will include intercomparison of solar spectra and trace gases retrievals obtained from simultaneous scans by the high resolution (0.0025/ cm) interferometers of BRUKER and BOMEM.

  3. Analysis of atmospheric trace constituents from high resolution infrared balloon-borne and ground-based solar absorption spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Rinsland, C. P.; Blatherwick, R. D.; Murcray, F. H.; Murcray, D. G.

    1991-01-01

    Results of ongoing studies of high-resolution solar absorption spectra aimed at the identification and quantification of trace constituents of importance in the chemistry of the stratosphere and upper troposphere are presented. An analysis of balloon-borne and ground-based spectra obtained at 0.0025/cm covering the 700-2200/cm interval is presented. The 0.0025/cm spectra, along with corresponding laboratory spectra, improves the spectral line parameters, and thus the accuracy of quantifying trace constituents. Results for COF2, F22, SF6, and other species are presented. The retrieval methods used for total column density and altitude distribution for both ground-based and balloon-borne spectra are also discussed.

  4. Performance Enhancement of Polymer Solar Cells by Using Two Polymer Donors with Complementary Absorption Spectra.

    PubMed

    Lu, Heng; Zhang, Xuejuan; Li, Cuihong; Wei, Hedi; Liu, Qian; Li, Weiwei; Bo, Zhishan

    2015-07-01

    Performance enhancement of polymer solar cells (PSCs) is achieved by expanding the absorption of the active layer of devices. To better match the spectrum of solar radiation, two polymers with different band gaps are used as the donor material to fabricate ternary polymer cells. Ternary blend PSCs exhibit an enhanced short-circuit current density and open-circuit voltage in comparison with the corresponding HD-PDFC-DTBT (HD)- and DT-PDPPTPT (DPP)-based binary polymer solar cells, respectively. Ternary PSCs show a power conversion efficiency (PCE) of 6.71%, surpassing the corresponding binary PSCs. This work demonstrates that the fabrication of ternary PSCs by using two polymers with complementary absorption is an effective way to improve the device performance.

  5. Using high-resolution laboratory and ground-based solar spectra to assess CH4 absorption coefficient calculations

    NASA Astrophysics Data System (ADS)

    Mendonca, J.; Strong, K.; Sung, K.; Devi, V. M.; Toon, G. C.; Wunch, D.; Franklin, J. E.

    2017-03-01

    A quadratic-speed-dependent Voigt line shape (qSDV) with line mixing (qSDV+LM), together with spectroscopic line parameters from Devi et al. [1,2] for the 2v3 band of CH4, was used to retrieve total columns of CH4 from atmospheric solar absorption spectra. The qSDV line shape (Tran et al., 2013) [3] with line mixing (Lévy et al., 1992) [4] was implemented into the forward model of GFIT (the retrieval algorithm that is at the heart of the GGG software (Wunch et al., 2015) [5]) to calculate CH4 absorption coefficients. High-resolution laboratory spectra of CH4 were used to assess absorption coefficients calculated using a Voigt line shape and spectroscopic parameters from the atm line list (Toon, 2014) [6]. The same laboratory spectra were used to test absorption coefficients calculated using the qSDV+LM line shape with spectroscopic line parameters from Devi et al. [1,2] for the 2v3 band of CH4 and a Voigt line shape for lines that don't belong to the 2v3 band. The spectral line list for lines that don't belong to the 2v3 band is an amalgamation of multiple spectral line lists. We found that for the P, Q, and R branches of the 2v3 band, the qSDV+LM simulated the laboratory spectra better than the Voigt line shape. The qSDV+LM was also used in the spectral fitting of high-resolution solar absorption spectra from four ground-based remote sensing sites and compared to spectra fitted with a Voigt line shape. The average root mean square (RMS) residual for 131,124 solar absorption spectra fitted with absorption coefficients calculated using the qSDV+LM for the 2v3 band of CH4 and the new spectral line list for lines for lines that don't belong to the 2v3 band, was reduced in the P, Q, and R branches by 5%, 13%, and 3%, respectively when compared with spectra fitted using a Voigt line shape and the atm line list. We found that the average total column of CH4 retrieved from these 131,124 spectra, with the qSDV+LM was 1.1±0.3% higher than the retrievals performed using a

  6. The Fundamental Quadrupole Band of (14)N2: Line Positions from High-Resolution Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.

    1991-01-01

    The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.

  7. Absorption spectra and photovoltaic characterization of chlorophyllins as sensitizers for dye-sensitized solar cells.

    PubMed

    Calogero, Giuseppe; Citro, Ilaria; Crupi, Cristina; Di Marco, Gaetano

    2014-11-11

    Dye-sensitized solar cells (DSSCs) based on Chlorine-e6 (Chl-e6), a Chlorophyll a derivative, and Chl-e6 containing Cu, have been investigated by carrying out incident photon to current efficiency (IPCE) and current-voltage (I-V) measurements. The effect of the metallic ion and the influence of the solvent polarity on the dye aggregation and their absorption bands have been analysed by performing electronic absorption measurements. The dependence of the photoelectrochemical parameters of these DSSCs on the electrolyte by the addition of pyrimidine and/or pyrrole has been discussed in details. For the first time I-V curves for a DSSC based on copper Chl-e6 dye have been shown and compared with Zn based chlorophyllin. Furthermore, the performance of a Cu-Chl-e6 based DSSC has been deeply improved by a progressive optimization of the TiO2 multilayer photoanode overcoming the best data reported in literature so far for this dye. It's worth to emphasize that, the analysis reported in this paper supplies very useful information which paves the way to further detailed studies turned to the employment of natural pigments as sensitizers for solar cells.

  8. Ground-based Photon Path Measurements from Solar Absorption Spectra of the O2 A-band

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Wennberg, P. O.; Cageao, R. P.; Pongetti, T. J.; Toon, G. C.; Sander, S. P.

    2005-01-01

    High-resolution solar absorption spectra obtained from Table Mountain Facility (TMF, 34.38degN, 117.68degW, 2286 m elevation) have been analyzed in the region of the O2 A-band. The photon paths of direct sunlight in clear sky cases are retrieved from the O2 absorption lines and compared with ray-tracing calculations based on the solar zenith angle and surface pressure. At a given zenith angle, the ratios of retrieved to geometrically derived photon paths are highly precise (approx.0.2%), but they vary as the zenith angle changes. This is because current models of the spectral lineshape in this band do not properly account for the significant absorption that exists far from the centers of saturated lines. For example, use of a Voigt function with Lorentzian far wings results in an error in the retrieved photon path of as much as 5%, highly correlated with solar zenith angle. Adopting a super-Lorentz function reduces, but does not completely eliminate this problem. New lab measurements of the lineshape are required to make further progress.

  9. Measurements of size and composition of particles in polar stratospheric clouds from infrared solar absorption spectra

    NASA Technical Reports Server (NTRS)

    Kinne, S.; Toon, O. B.; Toon, G. C.; Farmer, C. B.; Browell, E. V.; Mccormick, M. P.

    1989-01-01

    Results are presented on polar stratospheric cloud (PSC) observations, based on IR measurements of solar extinction, made by the airborne JPL Mark IV interferometer during the Airborne Antarctic Ozone Expedition in 1987, together with the instrumentation and the theoretical aspects of data analysis. Thirty-three PSC cases were analyzed and categorized into two types, I and II, which were found to occur at different altitudes during September. Type I clouds, seen at altitudes above 15 km, contained particles with radii of about 0.5 micarons and nitric acid concentrations greater than 40 percent, while type II clouds, found usually below 15 km, contained particles with radii of 6 microns and larger, composed of water ice. In addition, particles of larger than the 15-micron-size detection limit were encounterd.

  10. Creating semiconductor metafilms with designer absorption spectra

    PubMed Central

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-01-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells. PMID:26184335

  11. Spectral response of the intrinsic region of a GaAs-InAs quantum dot solar cell considering the absorption spectra of ideal cubic dots

    NASA Astrophysics Data System (ADS)

    Biswas, Sayantan; Chatterjee, Avigyan; Biswas, Ashim Kumar; Sinha, Amitabha

    2016-10-01

    Recently, attempts have been made by some researchers to improve the efficiency of quantum dot solar cells by incorporating different types of quantum dots. In this paper, the photocurrent density has been obtained considering the absorption spectra of ideal cubic dots. The effects of quantum dot size dispersion on the spectral response of the intrinsic region of a GaAs-InAs quantum dot solar cell have been studied. The dependence of the spectral response of this region on the size of quantum dots of such solar cell has also been investigated. The investigation shows that for smaller quantum dot size dispersion, the spectral response of the intrinsic region of the cell increases significantly. It is further observed that by enlarging the quantum dot size it is possible to enhance the spectral response of such solar cells as it causes better match between absorption spectra of the quantum dots and the solar spectrum. These facts indicate the significant role of quantum dot size and size dispersion on the performance of such devices. Also, the power conversion efficiency of such solar cell has been studied under 1 sun, AM 1.5 condition.

  12. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  13. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  14. Infrared measurements of atmospheric ethane (C2H6) from aircraft and ground-based solar absorption spectra in the 3000/cm region

    NASA Technical Reports Server (NTRS)

    Coffey, M. T.; Mankin, W. G.; Goldman, A.; Rinsland, C. P.; Harvey, G. A.; Devi, V. M.; Stokes, G. M.

    1985-01-01

    A number of prominent Q-branches of the nu-7 band of C2H6 have been identified near 3000/cm in aircraft and ground-based infrared solar absorption spectra. The aircraft spectra provide the column amount above 12 km at various altitudes. The column amount is strongly correlated with tropopause height and can be described by a constant mixing ratio of 0.46 ppbv in the upper troposphere and a mixing ratio scale height of 3.9 km above the tropopause. The ground-based spectra yield a column of 9.0 x 10 to the 15th molecules/sq cm above 2.1 km; combining these results implies a tropospheric mixing ratio of approximately 0.63 ppbv.

  15. Infrared Measurements of Atmospheric Ethane (C2H6) From Aircraft and Ground-Based Solar Absorption Spectra in the 3000/ cm Region

    NASA Technical Reports Server (NTRS)

    Coffey, M. T.; Mankin, W. G.; Goldman, A.; Rinsland, C. P.; Harvey, G. A.; Devi, V. Malathy; Stokes, G. M.

    1985-01-01

    A number or prominent Q-branches or the upsilon(sub 7) band or C2H6 have been identified near 3000/ cm in aircraft and ground-based infrared solar absorption spectra. The aircraft spectra provide the column amount above 12 km at various altitudes. The column amount is strongly correlated with tropopause height and can be described by a constant mixing ratio of 0.46 ppbv in the upper troposphere and a mixing ratio scale height of 3.9 km above the tropopause. The, ground-based spectra yield a column of 9.0 x 10(exp 15) molecules/sq cm above 2.1 km; combining these results implies a tropospheric mixing ratio of approximately 0.63 ppbv.

  16. New atlas of IR solar spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Blatherwick, R. D.; Murcray, F. H.; Vanallen, J. W.; Bradford, C. M.; Cook, G. R.; Murcray, D. G.

    1980-01-01

    Over 4500 absorption lines have been marked on the spectra and the corresponding line positions tabulated. The associated absorbing telluric or solar species for more than 90% of these lines have been identified and only a fraction of the unidentified lines have peak absorptions greater than a few percent. The high resolution and the low Sun spectra greatly enhance the sensitivity limits for identification of trace constituents.

  17. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  18. Optical Absorption Spectra and Electronic Properties of Symmetric and Asymmetric Squaraine Dyes for Use in DSSC Solar Cells: DFT and TD-DFT Studies

    PubMed Central

    El-Shishtawy, Reda M.; Elroby, Shaaban A.; Asiri, Abdullah M.; Müllen, Klaus

    2016-01-01

    The electronic absorption spectra, ground-state geometries and electronic structures of symmetric and asymmetric squaraine dyes (SQD1–SQD4) were investigated using density functional theory (DFT) and time-dependent (TD-DFT) density functional theory at the B3LYP/6-311++G** level. The calculated ground-state geometries reveal pronounced conjugation in these dyes. Long-range corrected time dependent density functionals Perdew, Burke and Ernzerhof (PBE, PBE1PBE (PBE0)), and the exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh) with 6-311++G** basis set were employed to examine optical absorption properties. In an extensive comparison between the optical data and DFT benchmark calculations, the BEP functional with 6-311++G** basis set was found to be the most appropriate in describing the electronic absorption spectra. The calculated energy values of lowest unoccupied molecular orbitals (LUMO) were 3.41, 3.19, 3.38 and 3.23 eV for SQD1, SQD2, SQD3, and SQD4, respectively. These values lie above the LUMO energy (−4.26 eV) of the conduction band of TiO2 nanoparticles indicating possible electron injection from the excited dyes to the conduction band of the TiO2 in dye-sensitized solar cells (DSSCs). Also, aromaticity computation for these dyes are in good agreement with the data obtained optically and geometrically with SQD4 as the highest aromatic structure. Based on the optimized molecular geometries, relative positions of the frontier orbitals, and the absorption maxima, we propose that these dyes are suitable components of photovoltaic DSSC devices. PMID:27043556

  19. Optical Absorption Spectra and Electronic Properties of Symmetric and Asymmetric Squaraine Dyes for Use in DSSC Solar Cells: DFT and TD-DFT Studies.

    PubMed

    El-Shishtawy, Reda M; Elroby, Shaaban A; Asiri, Abdullah M; Müllen, Klaus

    2016-04-01

    The electronic absorption spectra, ground-state geometries and electronic structures of symmetric and asymmetric squaraine dyes (SQD1-SQD4) were investigated using density functional theory (DFT) and time-dependent (TD-DFT) density functional theory at the B3LYP/6-311++G** level. The calculated ground-state geometries reveal pronounced conjugation in these dyes. Long-range corrected time dependent density functionals Perdew, Burke and Ernzerhof (PBE, PBE1PBE (PBE0)), and the exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh) with 6-311++G** basis set were employed to examine optical absorption properties. In an extensive comparison between the optical data and DFT benchmark calculations, the BEP functional with 6-311++G** basis set was found to be the most appropriate in describing the electronic absorption spectra. The calculated energy values of lowest unoccupied molecular orbitals (LUMO) were 3.41, 3.19, 3.38 and 3.23 eV for SQD1, SQD2, SQD3, and SQD4, respectively. These values lie above the LUMO energy (-4.26 eV) of the conduction band of TiO₂ nanoparticles indicating possible electron injection from the excited dyes to the conduction band of the TiO₂ in dye-sensitized solar cells (DSSCs). Also, aromaticity computation for these dyes are in good agreement with the data obtained optically and geometrically with SQD4 as the highest aromatic structure. Based on the optimized molecular geometries, relative positions of the frontier orbitals, and the absorption maxima, we propose that these dyes are suitable components of photovoltaic DSSC devices.

  20. High-Absorption-Efficiency Superlattice Solar Cells by Excitons

    NASA Astrophysics Data System (ADS)

    Nishinaga, Jiro; Kawaharazuka, Atsushi; Onomitsu, Koji; Horikoshi, Yoshiji

    2013-11-01

    The effect of excitonic absorption on solar cell efficiency has been investigated using solar cells with AlGaAs/GaAs superlattice structures. Numerical calculations reveal that excitonic absorption considerably enhances the overall absorption of bulk GaAs. Excitonic absorption shows strong and sharp peaks at the absorption edge and in the energy region above the band gap. Absorption enhancement is also achieved in the AlGaAs/GaAs superlattice. The measured quantum efficiency spectra of the superlattice solar cells are quite similar to the calculated absorption spectra considering the excitonic effect. The superlattice solar cells are confirmed to have high absorption coefficient compared with the GaAs and AlGaAs bulk solar cells. These results suggest that the enhanced absorption by excitons can increase the quantum efficiency of solar cells. This effect is more prominent for the solar cells with small absorption layer thicknesses.

  1. A search for formic acid in the upper troposphere - A tentative identification of the 1105-per cm nu-6 band Q branch in high-resolution balloon-borne solar absorption spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. H.; Murcray, D. G.; Rinsland, C. P.

    1984-01-01

    Infrared solar absorption spectra recorded at 0.02-per cm resolution during a balloon flight from Alamogordo, NM (33 deg N), on March 23, 1981, have been analyzed for the possible presence of absorption by formic acid (HCOOH). An absorption feature at 1105 per cm has been tentatively identified in upper tropospheric spectra as due to the nu-6 band Q branch. A preliminary analysis indicates a concentration of about 0.6 ppbv and 0.4 ppbv near 8 and 10 km, respectively.

  2. Stratospheric NO and NO2 profiles at sunset from analysis of high-resolution balloon-borne infrared solar absorption spectra obtained at 33 deg N and calculations with a time-dependent photochemical model

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Boughner, R. E.; Larsen, J. C.; Goldman, A.; Murcray, F. J.; Murcray, D. G.

    1984-01-01

    Simultaneous stratospheric vertical profiles of NO and NO2 at sunset were derived from an analysis of infrared solar absorption spectra recorded from a float altitude of 33 km with an interferometer system during a balloon flight. A nonlinear least squares procedure was used to analyze the spectral data in regions of absorption by NO and NO2 lines. Normalized factors, determined from calculations of time dependent altitude profiles with a detailed photochemical model, were included in the onion peeling analysis to correct for the rapid diurnal changes in NO and NO2 concentrations with time near sunset. The CO2 profile was also derived from the analysis and is reported.

  3. On optimization of absorption-dispersion spectra

    NASA Astrophysics Data System (ADS)

    Hawranek, J. P.; Grabska, J.; Beć, K. B.

    2016-12-01

    A modified approach to the analysis of spectra of the complex electric permittivity of liquids in the Infrared region is presented. These spectra are derived from experimental spectra of the complex refractive index. Subsequently they are used to determine important secondary quantities, e.g. spectra of complex molecular polarizabilities and an integral property - the molar vibrational polarization. The accuracy of these quantities depends essentially on the accuracy of both components of the complex electric permittivity spectrum. In the proposed procedure, the spectra of the complex electric permittivity are approximated using the Classical Damped Harmonic Oscillator (CDHO) model for the description of individual bandshapes. The CDHO model defines both the real and imaginary part of the complex permittivity. The fitting procedure includes a simultaneous optimization of both the real and imaginary parts of the complex permittivity spectrum. A comparison of absorption-only curve fitting and the novel absorption-dispersion double curve fitting is presented; advantages of the new approach in accuracy, reliability and convergence time are pointed out. Due to the complexity of the problem, the choice was restricted to non-gradient methods of optimization. The performance of several gradientless algorithms was tested. Among numerous procedures the Powell General Least Squares Method Without Derivatives was found to be the most efficient. The reliability of obtained results of the band separatiovn process was tested on several simulated spectra of increasing complexity. The applicability of the developed approach to the analysis of exemplary experimental data was evaluated and discussed.

  4. Solar Absorption in Cloudy Atmospheres

    NASA Technical Reports Server (NTRS)

    Harshvardhan; Ridgway, William; Ramaswamy, V.; Freidenreich, S. M.; Batey, Michael

    1996-01-01

    The theoretical computations used to compute spectral absorption of solar radiation are discussed. Radiative properties relevant to the cloud absorption problem are presented and placed in the context of radiative forcing. Implications for future measuring programs and the effect of horizontal inhomogeneities are discussed.

  5. Terahertz absorption spectra of highly energetic chemicals

    NASA Astrophysics Data System (ADS)

    Slingerland, E. J.; Vallon, M. K.; Jahngen, E. G. E.; Giles, R. H.; Goyette, T. M.

    2010-04-01

    Research into absorption spectra is useful for detecting chemicals in the field. Each molecule absorbs a set of specific frequencies, which are dependent on the molecule's structure. While theoretical models are available for predicting the absorption frequencies of a particular molecule, experimental measurements are a more reliable method of determining a molecule's actual absorption behavior. The goal of this research is to explore chemical markers (absorption frequencies) that can be used to identify highly energetic molecules of interest to the remote sensing community. Particular attention was paid to the frequency ranges located within the terahertz transmission windows of the atmosphere. In addition, theoretical derivations, with the purpose of calculating the detection limits of such chemicals, will also be presented.

  6. Low-bandgap poly(thiophene-phenylene-thiophene) derivatives with broaden absorption spectra for use in high-performance bulk-heterojunction polymer solar cells.

    PubMed

    Chen, Chih-Ping; Chan, Shu-Hua; Chao, Teng-Chih; Ting, Ching; Ko, Bao-Tsan

    2008-09-24

    Two low-bandgap (LGB) conjugated polymers ( P1 and P2) based on thiophene-phenylene-thiophene (TPT) with adequate energy levels have been designed and synthesized for application in bulk-heterojunction polymer solar cells (PSCs). The absorption spectral, electrochemical, field effect hole mobility and photovoltaic properties of LGB TPT derivatives are investigated and compared with poly(3-hexylthiophene) (P3HT). Photophysical studies reveal bandgaps of 1.76 eV for P1 and 1.70 eV for P2, which could effectively harvest broader solar spectrum. In addition, the thin film absorption coefficients of P1 and P2 are 1.6 x 10 (5) cm (-1) (lambda approximately 520 nm) and 1.4 x 10 (5) cm (-1) (lambda approximately 590 nm), respectively. Electrochemical studies indicate desirable HOMO/LUMO levels that enable a high open circuit voltage while blending them with fullerene derivatives as electron acceptors. Furthermore, both materials show sufficient hole mobility (3.4 x 10 (-3) cm (2)/Vs for P2) allowing efficient charge extraction and a good fill-factor for PSC application. High-performance power conversion efficiency (PCE) of 4.4% is obtained under simulated solar light AM 1.5 G (100 mW/cm (2)) from PSC device with an active layer containing 25 wt% P2 and 75 wt% [6,6]-phenyl-C71-butyric acid methyl ester (PC 71BM), which is superior to that of the analogous P3HT cell (3.9%) under the same experimental condition.

  7. High Resolution Spectra of Low Redshift Damped Lyalpha Absorption Systems

    NASA Astrophysics Data System (ADS)

    Cohen, R. D.; Beaver, E. A.; Junkkarinen, V. T.; Lyons, R. W.; Smith, H. E.

    1998-05-01

    We have been able to form a fairly complete picture of the galaxy responsible for the z_a=0.395 absorption line system in PKS 1229--021 by combining Keck HIRES and LRIS spectroscopy with observations taken with the Hubble Space Telescope. The image of the absorber is consistent with the inclined disk of a moderately luminous spiral galaxy. We have not been able to detect the continuum from this galaxy spectroscopically, but our LRIS spectra show emission from [O II] lambda3727 which can be interpreted to be indicative of star formation at the rate of a few M_⊙ per year. The HIRES spectra clearly show an ``edge--leading'' absorption profile. Prochaska and Wolfe have predicted that the velocity of the center of mass of the absorbing galaxy should fall near one edge of the absorption profile if the damped Lyalpha systems are due to the rotating disks of spiral galaxies. The [O II] emission velocity is consistent with this, but there is some ambiguity due to the doublet nature of the [O II] emission. Although the absorption lines of the abundant elements are saturated in the components which correspond to the H I absorption, we have been able to measure accurate column densities for Ca II, Ti II, and Mn II for comparison with the H I column density determined from low resolution HST/FOS spectra. The abundances are compatible with approximately 0.1 of solar, with little or no dust, but they are also consistent with lines of sight toward zeta Oph through warm interstellar clouds. HIRES observations of the z_a=0.692 absorption line system in 3CR 286 will also be discussed, after the data are fully analyzed. This work is part of the Goddard High Resolution Spectrograph Guaranteed Time Observations and is supported by NASA grant NAG5--1858 and the NSF.

  8. Equilibria and absorption spectra of tryptophanase.

    PubMed

    Metzler, C M; Viswanath, R; Metzler, D E

    1991-05-25

    Tryptophanase (tryptophan: indole-lyase) from Escherichia coli has been isolated in the holoenzyme form and its absorption spectra and acid-base chemistry have been reevaluated. Apoenzyme has been prepared by dialysis against sodium phosphate and L-alanine and molar absorptivities of the coenzyme bands have been estimated by readdition of pyridoxal 5'-phosphate. The spectrophotometric titration curve, whose midpoint is at pH 7.6 in 0.1 M potassium phosphate buffers, indicates some degree of cooperativity in dissociation of a pair of protons. Resolution of the computed spectra of individual ionic forms of the enzyme with lognormal distribution curves shows that band shapes are similar to those of model Schiff bases and of aspartate aminotransferase. Using molar areas from the latter we estimated amounts of individual tautomeric species. In addition to ketoenamine and enolimine or covalent adduct the high pH form also appears to contain approximately 18% of a species with a dipolar ionic ring (protonated on the ring nitrogen and with phenolate -O-). We suggest that this may be the catalytically active form of the coenzyme in tryptophanase. The equilibrium between tryptophanase and L-alanine has also been reevaluated.

  9. Millimeter wave absorption spectra of biological samples

    SciTech Connect

    Gandhi, O.P.; Hagmann, M.J.; Hill, D.W.; Partlow, L.M.; Bush, L.

    1980-01-01

    A solid-state computer-controlled system has been used to make swept-frequency measurements of absorption of biological specimens from 26.5 to 90.0 GHz. A wide range of samples was used, including solutions of DNA and RNA, and suspensions of BHK-21/C13 cells, Candida albicans, C krusei, and Escherichia coli. Sharp spectra reported by other workers were not observed. The strong absorbance of water (10--30 dB/mm) caused the absorbance of all aqueous preparations that we examined to have a water-like dependence on frequency. Reduction of incident power (to below 1.0 microW), elimination of modulation, and control of temperature to assure cell viability were not found to significantly alter the water-dominated absorbance. Frozen samples of BHK-21/C13 cells tested at dry ice and liquid nitrogen temperatures were found to have average insertion loss reduced to 0.2 dB/cm but still showed no reproducible peaks that could be attributed to absorption spectra. It is concluded that the special resonances reported by others are likely to be in error.

  10. Tentative identification of the 780/cm nu-4 band Q branch of chlorine nitrate in high-resolution solar absorption spectra of the stratosphere

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Goldman, A.; Murcray, D. G.; Murcray, F. J.; Malathy Devi, V.

    1985-01-01

    According to models of the photochemistry of the stratosphere, chlorine nitrate (ClONO2) is an important temporary reservoir of stratospheric chlorine. At night, ClO is believed to combine in a three-body reaction with NO2 to form chlorine nitrate. During daylight, chlorine nitrate is destroyed by photolysis to form free chlorine and NO3. Infrared spectroscopy has the potential to provide a technique for conducting important quantitative measurements of stratospheric chlorine nitrate. The present paper reports a detailed study of spectra in the 780/cm region. This study has led to the tentative identification of the nu-4 band Q branch of ClONO2 as a significant contributor to the observed stratospheric absorption near 780.21 per cm.

  11. Spectrophotometer-Integrating-Sphere System for Computing Solar Absorptance

    NASA Technical Reports Server (NTRS)

    Witte, William G., Jr.; Slemp, Wayne S.; Perry, John E., Jr.

    1991-01-01

    A commercially available ultraviolet, visible, near-infrared spectrophotometer was modified to utilize an 8-inch-diameter modified Edwards-type integrated sphere. Software was written so that the reflectance spectra could be used to obtain solar absorptance values of 1-inch-diameter specimens. A descriptions of the system, spectral reflectance, and software for calculation of solar absorptance from reflectance data are presented.

  12. Neural Network Solutions to Optical Absorption Spectra

    NASA Astrophysics Data System (ADS)

    Rosenbrock, Conrad

    2012-10-01

    Artificial neural networks have been effective in reducing computation time while achieving remarkable accuracy for a variety of difficult physics problems. Neural networks are trained iteratively by adjusting the size and shape of sums of non-linear functions by varying the function parameters to fit results for complex non-linear systems. For smaller structures, ab initio simulation methods can be used to determine absorption spectra under field perturbations. However, these methods are impractical for larger structures. Designing and training an artificial neural network with simulated data from time-dependent density functional theory may allow time-dependent perturbation effects to be calculated more efficiently. I investigate the design considerations and results of neural network implementations for calculating perturbation-coupled electron oscillations in small molecules.

  13. Optical absorption spectra of dications of carotenoids

    SciTech Connect

    Jeevarajan, J.A.; Wei, C.C.; Jeevarajan, A.S.; Kispert, L.D.

    1996-04-04

    Quantitative optical absorption spectra of the cation radicals and the dications of canthaxanthin (I), {beta}carotene (II), 7`-cyano-7`-ethoxycarbonyl-7`-apo-{beta}-carotene (III), and 7`,7`-dimethyl-7`-apo-{beta}-carotene (IV) in dichloromethane solution are reported. Exclusive formation of dications occurs when the carotenoids are oxidized with ferric chloride. Addition of neutral carotenoid to the dications results in equilibrium formation of cation radicals. Oxidation with iodine in dichloromethane affords only cation radicals; electrochemical oxidation under suitable conditions yields both dications and cation radicals. Values of the optical parameters depend on the nature of the oxidative medium. The oscillator strengths calculated for gas phase cation radicals and dications of I-IV using the INDO/S method show the same trend as the experimental values. 31 refs., 4 figs., 2 tabs.

  14. Photobleaching response of different sources of chromophoric dissolved organic matter exposed to natural solar radiation using absorption and excitation-emission matrix spectra.

    PubMed

    Zhang, Yunlin; Liu, Xiaohan; Osburn, Christopher L; Wang, Mingzhu; Qin, Boqiang; Zhou, Yongqiang

    2013-01-01

    CDOM biogeochemical cycle is driven by several physical and biological processes such as river input, biogeneration and photobleaching that act as primary sinks and sources of CDOM. Watershed-derived allochthonous (WDA) and phytoplankton-derived autochthonous (PDA) CDOM were exposed to 9 days of natural solar radiation to assess the photobleaching response of different CDOM sources, using absorption and fluorescence (excitation-emission matrix) spectroscopy. Our results showed a marked decrease in total dissolved nitrogen (TDN) concentration under natural sunlight exposure for both WDA and PDA CDOM, indicating photoproduction of ammonium from TDN. In contrast, photobleaching caused a marked increase in total dissolved phosphorus (TDP) concentration for both WDA and PDA CDOM. Thus TDN:TDP ratios decreased significantly both for WDA and PDA CDOM, which partially explained the seasonal dynamic of TDN:TDP ratio in Lake Taihu. Photobleaching rate of CDOM absorption a(254), was 0.032 m/MJ for WDA CDOM and 0.051 m/MJ for PDA CDOM from days 0-9, indicating that phototransformations were initially more rapid for the newly produced CDOM from phytoplankton than for the river CDOM. Extrapolation of these values to the field indicated that 3.9%-5.1% CDOM at the water surface was photobleached and mineralized every day in summer in Lake Taihu. Photobleaching caused the increase of spectral slope, spectral slope ratio and molecular size, indicating the CDOM mean molecular weight decrease which was favorable to further microbial degradation of mineralization. Three fluorescent components were validated in parallel factor analysis models calculated separately for WDA and PDA CDOM. Our study suggests that the humic-like fluorescence materials could be rapidly and easily photobleached for WDA and PDA CDOM, but the protein-like fluorescence materials was not photobleached and even increased from the transformation of the humic-like fluorescence substance to the protein

  15. Electronic absorption spectra from first principles

    NASA Astrophysics Data System (ADS)

    Hazra, Anirban

    Methods for simulating electronic absorption spectra of molecules from first principles (i.e., without any experimental input, using quantum mechanics) are developed and compared. The electronic excitation and photoelectron spectra of ethylene are simulated, using the EOM-CCSD method for the electronic structure calculations. The different approaches for simulating spectra are broadly of two types---Frank-Condon (FC) approaches and vibronic coupling approaches. For treating the vibrational motion, the former use the Born-Oppenheimer or single surface approximation while the latter do not. Moreover, in our FC approaches the vibrational Hamiltonian is additively separable along normal mode coordinates, while in vibronic approaches a model Hamiltonian (obtained from ab initio electronic structure theory) provides an intricate coupling between both normal modes and electronic states. A method called vertical FC is proposed, where in accord with the short-time picture of molecular spectroscopy, the approximate excited-state potential energy surface that is used to calculate the electronic spectrum is taken to reproduce the ab initio potential at the ground-state equilibrium geometry. The potential energy surface along normal modes may be treated either in the harmonic approximation or using the full one-dimensional potential. Systems with highly anharmonic potential surfaces can be treated and expensive geometry optimizations are not required, unlike the traditional FC approach. The ultraviolet spectrum of ethylene between 6.2 and 8.7 eV is simulated using vertical FC. While FC approaches for simulation are computationally very efficient, they are not accurate when the underlying approximations are unreasonable. Then, vibronic coupling model Hamiltonians are necessary. Since these Hamiltonians have an analytic form, they are used to map the potential energy surfaces and understand their topology. Spectra are obtained by numerical diagonalization of the Hamiltonians. The

  16. Computed survey spectra of 2-5 micron atmospheric absorption

    NASA Astrophysics Data System (ADS)

    Leslie, D. H.; Lebow, P. S.

    1983-08-01

    Computed high resolution survey spectra of atmospheric absorption coefficient vs wavenumber are presented covering the wavelength region 2-5 micrometers. The 1980 AFGL atmospheric absorption parameter compilation was employed with a mid-latitude, sea-level atmospheric model.

  17. Photobleaching Response of Different Sources of Chromophoric Dissolved Organic Matter Exposed to Natural Solar Radiation Using Absorption and Excitation–Emission Matrix Spectra

    PubMed Central

    Zhang, Yunlin; Liu, Xiaohan; Osburn, Christopher L.; Wang, Mingzhu; Qin, Boqiang; Zhou, Yongqiang

    2013-01-01

    CDOM biogeochemical cycle is driven by several physical and biological processes such as river input, biogeneration and photobleaching that act as primary sinks and sources of CDOM. Watershed-derived allochthonous (WDA) and phytoplankton-derived autochthonous (PDA) CDOM were exposed to 9 days of natural solar radiation to assess the photobleaching response of different CDOM sources, using absorption and fluorescence (excitation-emission matrix) spectroscopy. Our results showed a marked decrease in total dissolved nitrogen (TDN) concentration under natural sunlight exposure for both WDA and PDA CDOM, indicating photoproduction of ammonium from TDN. In contrast, photobleaching caused a marked increase in total dissolved phosphorus (TDP) concentration for both WDA and PDA CDOM. Thus TDN∶TDP ratios decreased significantly both for WDA and PDA CDOM, which partially explained the seasonal dynamic of TDN∶TDP ratio in Lake Taihu. Photobleaching rate of CDOM absorption a(254), was 0.032 m/MJ for WDA CDOM and 0.051 m/MJ for PDA CDOM from days 0–9, indicating that phototransformations were initially more rapid for the newly produced CDOM from phytoplankton than for the river CDOM. Extrapolation of these values to the field indicated that 3.9%–5.1% CDOM at the water surface was photobleached and mineralized every day in summer in Lake Taihu. Photobleaching caused the increase of spectral slope, spectral slope ratio and molecular size, indicating the CDOM mean molecular weight decrease which was favorable to further microbial degradation of mineralization. Three fluorescent components were validated in parallel factor analysis models calculated separately for WDA and PDA CDOM. Our study suggests that the humic-like fluorescence materials could be rapidly and easily photobleached for WDA and PDA CDOM, but the protein-like fluorescence materials was not photobleached and even increased from the transformation of the humic-like fluorescence substance to the protein

  18. Anomalous atmospheric absorption spectra due to water dimer

    NASA Astrophysics Data System (ADS)

    Cai, Peipei; Zhang, Hansheng; Shen, Shanxiong; Cheng, I.-Shan

    1986-11-01

    The anomalous atmospheric absorption spectra in the window wavelength region of 8-14 microns have been suggested due to the water dimer. Based on laboratory measurements, water continuum CO2 laser absorption spectra and a resonance absorption line due to the weak local wave vapor pure rotational transition have been reported. The equilibrium concentration of water dimers in the atmosphere, the electronic binding energy and the theoretical calculations for absorption attenuation have been obtained in agreement with published data.

  19. Fluid absorption solar energy receiver

    NASA Technical Reports Server (NTRS)

    Bair, Edward J.

    1993-01-01

    A conventional solar dynamic system transmits solar energy to the flowing fluid of a thermodynamic cycle through structures which contain the gas and thermal energy storage material. Such a heat transfer mechanism dictates that the structure operate at a higher temperature than the fluid. This investigation reports on a fluid absorption receiver where only a part of the solar energy is transmitted to the structure. The other part is absorbed directly by the fluid. By proportioning these two heat transfer paths the energy to the structure can preheat the fluid, while the energy absorbed directly by the fluid raises the fluid to its final working temperature. The surface temperatures need not exceed the output temperature of the fluid. This makes the output temperature of the gas the maximum temperature in the system. The gas can have local maximum temperatures higher than the output working temperature. However local high temperatures are quickly equilibrated, and since the gas does not emit radiation, local high temperatures do not result in a radiative heat loss. Thermal radiation, thermal conductivity, and heat exchange with the gas all help equilibrate the surface temperature.

  20. FDTD modeling of solar energy absorption in silicon branched nanowires.

    PubMed

    Lundgren, Christin; Lopez, Rene; Redwing, Joan; Melde, Kathleen

    2013-05-06

    Thin film nanostructured photovoltaic cells are increasing in efficiency and decreasing the cost of solar energy. FDTD modeling of branched nanowire 'forests' are shown to have improved optical absorption in the visible and near-IR spectra over nanowire arrays alone, with a factor of 5 enhancement available at 1000 nm. Alternate BNW tree configurations are presented, achieving a maximum absorption of over 95% at 500 nm.

  1. Principal Component Analysis of Arctic Solar Irradiance Spectra

    NASA Technical Reports Server (NTRS)

    Rabbette, Maura; Pilewskie, Peter; Gore, Warren J. (Technical Monitor)

    2000-01-01

    During the FIRE (First ISCPP Regional Experiment) Arctic Cloud Experiment and coincident SHEBA (Surface Heat Budget of the Arctic Ocean) campaign, detailed moderate resolution solar spectral measurements were made to study the radiative energy budget of the coupled Arctic Ocean - Atmosphere system. The NASA Ames Solar Spectral Flux Radiometers (SSFRs) were deployed on the NASA ER-2 and at the SHEBA ice camp. Using the SSFRs we acquired continuous solar spectral irradiance (380-2200 nm) throughout the atmospheric column. Principal Component Analysis (PCA) was used to characterize the several tens of thousands of retrieved SSFR spectra and to determine the number of independent pieces of information that exist in the visible to near-infrared solar irradiance spectra. It was found in both the upwelling and downwelling cases that almost 100% of the spectral information (irradiance retrieved from 1820 wavelength channels) was contained in the first six extracted principal components. The majority of the variability in the Arctic downwelling solar irradiance spectra was explained by a few fundamental components including infrared absorption, scattering, water vapor and ozone. PCA analysis of the SSFR upwelling Arctic irradiance spectra successfully separated surface ice and snow reflection from overlying cloud into distinct components.

  2. Collecting, analyzing and archiving of ground based infrared solar spectra obtained from several locations

    NASA Technical Reports Server (NTRS)

    Murcray, David G.; Murcray, Frank J.; Goldman, Aaron; Mcelroy, Charles T.; Chu, William P.; Rinsland, Curtis P.; Woods, Peter; Matthews, W. A.; Johnston, P. V.

    1990-01-01

    The infrared solar spectrum as observed from the ground under high resolution contains thousands of absorption lines. The majority of these lines are due to compounds that are present in the Earth's atmosphere. Ground based infrared solar spectra contain information concerning the composition of the atmosphere at the time the spectra were obtained. The objective of this program is to record solar spectra from various ground locations, and to analyze and archive these spectra. The analysis consists of determining, for as many of the absorption lines as possible, the molecular species responsible for the absorption, and to verify that current models of infrared transmission match the observed spectra. Archiving is an important part of the program, since a number of the features in the spectra have not been identified. At some later time, when the features are identified, it will be possible to determine the amount of that compound that was present in the atmosphere at the time the spectrum was taken.

  3. The economics of solar powered absorption cooling

    NASA Technical Reports Server (NTRS)

    Bartlett, J. C.

    1978-01-01

    Analytic procedure evaluates cost of combining absorption-cycle chiller with solar-energy system in residential or commercial application. Procedure assumes that solar-energy system already exists to heat building and that cooling system must be added. Decision is whether to cool building with conventional vapor-compression-cycle chiller or to use solar-energy system to provide heat input to absorption chiller.

  4. Power spectra of solar convection

    NASA Technical Reports Server (NTRS)

    Chou, D.-Y.; Labonte, B. J.; Braun, D. C.; Duvall, T. L., Jr.

    1991-01-01

    The properties of convective motions on the sun are studied using Kitt Peak Doppler images and power spectra of convection. The power peaks at a scale of about 29,000 km and drops off smoothly with wavenumber. There is no evidence of apparent energy excess at the scale of the mesogranulation proposed by other authors. The vertical and horizontal power for each wavenumber are obtained and used to calculate the vertical and horizontal velocities of the supergranulation. The amplitude of vertical and horizontal velocities of the supergranulation are 0.034 (+ or - 0.002) km/s and 0.38 (+ or - 0.01) km/s, respectively. The corresponding rms values are 0.024 (+ or - 0.002) km/s and 0.27 (+ or - 0.01) km/s.

  5. Airborne interferometer for atmospheric emission and solar absorption.

    PubMed

    Keith, D W; Dykema, J A; Hu, H; Lapson, L; Anderson, J G

    2001-10-20

    The interferometer for emission and solar absorption (INTESA) is an infrared spectrometer designed to study radiative transfer in the troposphere and lower stratosphere from a NASA ER-2 aircraft. The Fourier-transform spectrometer (FTS) operates from 0.7 to 50 mum with a resolution of 0.7 cm(-1). The FTS observes atmospheric thermal emission from multiple angles above and below the aircraft. A heliostat permits measurement of solar absorption spectra. INTESA's calibration system includes three blackbodies to permit in-flight assessment of radiometric error. Results suggest that the in-flight radiometric accuracy is ~0.5 K in the mid-infrared.

  6. A catalogue of absorption-line systems in QSO spectra

    NASA Astrophysics Data System (ADS)

    Ryabinkov, A. I.; Kaminker, A. D.; Varshalovich, D. A.

    2003-12-01

    We present a new catalog of absorption-line systems identified in the quasar spectra. It contains data on 821 QSOs and 8558 absorption systems comprising 16 139 absorption lines with measured redshifts in the QSO spectra. The catalog includes absorption-line systems consisting of lines of heavy elements, lines of neutral hydrogen, Lyman limit systems, damped Lyα absorption systems, and broad absorption-line systems. Using the data of the present catalog we also discuss redshift distributions of absorption-line systems. Tables 1 and 2 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/412/707

  7. Absorption-Edge-Modulated Transmission Spectra for Water Contaminant Monitoring

    DTIC Science & Technology

    2016-03-31

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--16-9675 Absorption-Edge-Modulated Transmission Spectra for Water Contaminant...ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Absorption-Edge-Modulated Transmission Spectra for Water Contaminant Monitoring...Unlimited Unclassified Unlimited 35 Samuel G. Lambrakos (202) 767-2601 Monitoring of contaminants associated with specific water resources using

  8. An investigation of a mathematical model for atmospheric absorption spectra

    NASA Technical Reports Server (NTRS)

    Niple, E. R.

    1979-01-01

    A computer program that calculates absorption spectra for slant paths through the atmosphere is described. The program uses an efficient convolution technique (Romberg integration) to simulate instrument resolution effects. A brief information analysis is performed on a set of calculated spectra to illustrate how such techniques may be used to explore the quality of the information in a spectrum.

  9. Deconvolution of CPM absorption spectra: A new technique

    NASA Astrophysics Data System (ADS)

    Jensen, Pablo

    1990-12-01

    We have found a new technique for deconvoluting absorption spectra obtained with the constant photocurrent method on hydrogenated amorphous silicon samples. We have shown that our method is simpler and more accurate than those used until now. Finally, examples of spectra deconvolution for one sample after various thermal treatments are provided.

  10. Mid-infrared FEL absorption spectra

    NASA Astrophysics Data System (ADS)

    Kozub, John A.; Feng, Bibo; Gabella, William E.

    2002-04-01

    The Vanderbilt Mark III FEL is a tunable source of high- intensity coherent mid-infrared radiation occurring as a train of picosecond pulses spaced 350ps apart. The laser beam is transported to each laboratory under vacuum, but is typically transmitted through some distance of atmosphere before reaching the target. Losses due to absorption by water vapor and CO2 can be large, and since the bandwidth of the FEL is several percent of the wavelength, the spectrum can be altered by atmospheric absorptions. In order to provide an accurate representation of the laser spectrum delivered to the target, and to investigate any non-linear effects associated with transport of the FEL beam, we have recorded the spectrum of the FEL output using a vacuum spectrometer positioned after measured lengths of atmosphere. The spectrometer is equipped with a linear pyroelectric array which provides the laser spectrum for each pulse. Absorption coefficients are being measured for laboratory air, averaged over the bandwidth of the FEL. The high peak powers of this Fel have induced damage in common infrared-transparent materials; we are also measuring damage thresholds for several materials at various wavelengths.

  11. Terahertz absorption spectra and potential energy distribution of liquid crystals.

    PubMed

    Chen, Zezhang; Jiang, Yurong; Jiang, Lulu; Ma, Heng

    2016-01-15

    In this work, the terahertz (THz) absorption spectra of a set of nematic liquid crystals were studied using the density functional theories (DFT). An accurate assignment of the vibrational modes corresponding to absorption frequencies were performed using potential energy distribution (PED) in a frequency range of 0-3 THz. The impacts of different core structures on THz absorption spectra were discussed. The results indicate that scope of application must be considered in the LC-based THz device designing. This proposed work may give a useful suggestion on the design of novel liquid crystal material in THz wave.

  12. Terahertz absorption spectra and potential energy distribution of liquid crystals

    NASA Astrophysics Data System (ADS)

    Chen, Zezhang; Jiang, Yurong; Jiang, Lulu; Ma, Heng

    2016-01-01

    In this work, the terahertz (THz) absorption spectra of a set of nematic liquid crystals were studied using the density functional theories (DFT). An accurate assignment of the vibrational modes corresponding to absorption frequencies were performed using potential energy distribution (PED) in a frequency range of 0-3 THz. The impacts of different core structures on THz absorption spectra were discussed. The results indicate that scope of application must be considered in the LC-based THz device designing. This proposed work may give a useful suggestion on the design of novel liquid crystal material in THz wave.

  13. Solar Doppler shifts - Sources of continuous spectra

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Harvey, J. W.

    1986-01-01

    Oscillation observations can be used to study nonoscillatory solar phenomena that exhibit Doppler shifts. The paper discusses several effects of these phenomena and their associated temporal and spatial power spectra: (1) they limit the signal-to-noise ratio and sometimes detectability of oscillation modes; (2) there is the potential for better understanding and/or detection of solar phenomena; (3) large-scale convection may spatially modulate oscillation modes, leading to a continuous background spectrum; and (4) in regions of the spectrum where the resolution to separate modes is lacking one can determine upper limits for the integrated effects of modes.

  14. Atmospheric Solar Heating in Minor Absorption Bands

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah

    1998-01-01

    Solar radiation is the primary source of energy driving atmospheric and oceanic circulations. Concerned with the huge computing time required for computing radiative transfer in weather and climate models, solar heating in minor absorption bands has often been neglected. The individual contributions of these minor bands to the atmospheric heating is small, but collectively they are not negligible. The solar heating in minor bands includes the absorption due to water vapor in the photosynthetically active radiation (PAR) spectral region from 14284/cm to 25000/cm, the ozone absorption and Rayleigh scattering in the near infrared, as well as the O2 and CO2 absorption in a number of weak bands. Detailed high spectral- and angular-resolution calculations show that the total effect of these minor absorption is to enhance the atmospheric solar heating by approximately 10%. Depending upon the strength of the absorption and the overlapping among gaseous absorption, different approaches are applied to parameterize these minor absorption. The parameterizations are accurate and require little extra time for computing radiative fluxes. They have been efficiently implemented in the various atmospheric models at NASA/Goddard Space Flight Center, including cloud ensemble, mesoscale, and climate models.

  15. Absorptive coating for aluminum solar panels

    NASA Technical Reports Server (NTRS)

    Desmet, D.; Jason, A.; Parr, A.

    1979-01-01

    Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.

  16. FAST INVERSION OF SOLAR Ca II SPECTRA

    SciTech Connect

    Beck, C.; Choudhary, D. P.; Rezaei, R.; Louis, R. E.

    2015-01-10

    We present a fast (<<1 s per profile) inversion code for solar Ca II lines. The code uses an archive of spectra that are synthesized prior to the inversion under the assumption of local thermodynamic equilibrium (LTE). We show that it can be successfully applied to spectrograph data or more sparsely sampled spectra from two-dimensional spectrometers. From a comparison to a non-LTE inversion of the same set of spectra, we derive a first-order non-LTE correction to the temperature stratifications derived in the LTE approach. The correction factor is close to unity up to log τ ∼ –3 and increases to values of 2.5 and 4 at log τ = –6 in the quiet Sun and the umbra, respectively.

  17. Identification of THz absorption spectra of chemicals using neural networks

    NASA Astrophysics Data System (ADS)

    Shen, Jingling; Jia, Yan; Liang, Meiyan; Chen, Sijia

    2007-09-01

    Absorption spectra in the range from 0.2 to 2.6 THz of chemicals such as illicit drugs and antibiotics obtaining from Terahertz time-domain spectroscopy technique were identified successfully by artificial neural networks. Back Propagation (BP) and Self-Organizing Feature Map (SOM) were investigated to do the identification or classification, respectively. Three-layer BP neural networks were employed to identify absorption spectra of nine illicit drugs and six antibiotics. The spectra of the chemicals were used to train a BP neural network and then the absorption spectra measured in different times were identified by the trained BP neural network. The average identification rate of 76% was achieved. SOM neural networks, another important neural network which sorts input vectors by their similarity, was used to sort 60 absorption spectra from 6 illicit drugs. The whole network was trained by setting a 20×20 and a 16×16 grid, and both of them had given satisfied clustering results. These results indicate that it is feasible to apply BP and SOM neural networks model in the field of THz spectra identification.

  18. High absorption efficiency of AlGaAs/GaAs superlattice solar cells

    NASA Astrophysics Data System (ADS)

    Nishinaga, Jiro; Kawaharazuka, Atsushi; Horikoshi, Yoshiji

    2015-05-01

    The effects of excitonic absorption on the solar cell efficiency have been investigated in solar cells with AlGaAs/GaAs superlattice absorption layers. Numerical calculations reveal that excitonic absorption considerably enhances the overall absorption coefficient. The excitonic absorption shows strong peaks at the absorption edge and in the energy region above the band gap. Absorption enhancement is also achieved in the AlGaAs/GaAs superlattice. The measured quantum efficiency spectra of superlattice solar cells at room temperature are reasonably well reproduced by simulations taking excitonic effects into account. The superlattice solar cells are confirmed to have a high absorbance and good temperature stability. The theoretical analysis of the experimental results confirms that the enhanced excitonic absorption in the superlattice absorption layers survives even at 100 °C, which is considered as the actual device temperature under realistic device operations.

  19. Temporal Evolution of Solar Energetic Particle Spectra

    NASA Astrophysics Data System (ADS)

    Doran, Donald J.; Dalla, Silvia

    2016-08-01

    During solar flares and coronal mass ejections, Solar Energetic Particles (SEPs) may be released into the interplanetary medium and near-Earth locations. The energy spectra of SEP events at 1 AU are typically averaged over the entire event or studied in a few snapshots. In this article we analyze the time evolution of the energy spectra of four large selected SEP events using a large number of snapshots. We use a multi-spacecraft and multi-instrument approach for the observations, obtained over a wide SEP energy range. We find large differences in the spectra at the beginning of the events as measured by different instruments. We show that over time, a wave-like structure is observed traveling through the spectra from the highest energies to the lowest energies, creating an "arch" shape that then straightens into a power law later in the event, after times on the order of 10 hours. We discuss the processes that determine SEP intensities and their role in shaping the spectral time evolution.

  20. Atmospheric solar absorption measurements in the 9-11 micron region using a diode laser heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Harward, C. N.; Hoell, J. M., Jr.

    1980-01-01

    A tunable diode laser heterodyne radiometer was developed for ground based measurements of atmospheric solar absorption spectra in the 9 to 12 micron spectral range. The performance and operating characteristics of this tunable infrared heterodyne radiometer (TIHR) is discussed along with recently measured heterodyne solar absorption spectra in the 10 to 11 micron spectral region.

  1. Demonstrating Absorption Spectra Using Commercially Available Incandescent Light Bulbs

    NASA Astrophysics Data System (ADS)

    Birriel, Jennifer J.

    In introductory astronomy courses, I typically introduce the three types of spectra: continuous, absorption line, and emission line. It is standard practice to use an ordinary incandescent light bulb to demonstrate the production of a continuous spectrum, and gas discharge tubes to demonstrate the production of an emission line spectrum. The concept of an absorption spectrum is more difficult for students to grasp. A variety of commercially available light bulbs can be used to demonstrate absorption spectra. Here I discuss the use of specialty incandescent light bulbs to demonstrate the phenomenon of absorption of the continuous spectrum produced by a hot tungsten filament. The bulbs examined include the GE Reveal bulb, yellow anti-insect lights, colored party bulbs, and an incandescent "black light" bulb. The bulbs can be used in a lecture or laboratory setting.

  2. Theoretical study on absorption and emission spectra of adenine analogues.

    PubMed

    Liu, Hongxia; Song, Qixia; Yang, Yan; Li, Yan; Wang, Haijun

    2014-04-01

    Fluorescent nucleoside analogues have attracted much attention in studying the structure and dynamics of nucleic acids in recent years. In the present work, we use theoretical calculations to investigate the structural and optical properties of four adenine analogues (termed as A1, A2, A3, and A4), and also consider the effects of aqueous solution and base pairing. The results show that the fluorescent adenine analogues can pair with thymine to form stable H-bonded WC base pairs. The excited geometries of both adenine analogues and WC base pairs are similar to the ground geometries. The absorption and emission maxima of adenine analogues are greatly red shifted compared with nature adenine, the oscillator strengths of A1 and A2 are stronger than A3 and A4 in both absorption and emission spectra. The calculated low-energy peaks in the absorption spectra are in good agreement with the experimental data. In general, the aqueous solution and base pairing can slightly red-shift both the absorption and emission maxima, and can increase the oscillator strengths of absorption spectra, but significantly decrease the oscillator strengths of A3 in emission spectra.

  3. Leaf color is fine-tuned on the solar spectra to avoid strand direct solar radiation.

    PubMed

    Kume, Atsushi; Akitsu, Tomoko; Nasahara, Kenlo Nishida

    2016-07-01

    The spectral distributions of light absorption rates by intact leaves are notably different from the incident solar radiation spectra, for reasons that remain elusive. Incident global radiation comprises two main components; direct radiation from the direction of the sun, and diffuse radiation, which is sunlight scattered by molecules, aerosols and clouds. Both irradiance and photon flux density spectra differ between direct and diffuse radiation in their magnitude and profile. However, most research has assumed that the spectra of photosynthetically active radiation (PAR) can be averaged, without considering the radiation classes. We used paired spectroradiometers to sample direct and diffuse solar radiation, and obtained relationships between the PAR spectra and the absorption spectra of photosynthetic pigments and organs. As monomers in solvent, the spectral absorbance of Chl a decreased with the increased spectral irradiance (W m(-2) nm(-1)) of global PAR at noon (R(2) = 0.76), and was suitable to avoid strong spectral irradiance (λmax = 480 nm) rather than absorb photon flux density (μmol m(-2) s(-1) nm(-1)) efficiently. The spectral absorption of photosystems and the intact thallus and leaves decreased linearly with the increased spectral irradiance of direct PAR at noon (I dir-max), where the wavelength was within the 450-650 nm range (R(2) = 0.81). The higher-order structure of photosystems systematically avoided the strong spectral irradiance of I dir-max. However, when whole leaves were considered, leaf anatomical structure and light scattering in leaf tissues made the leaves grey bodies for PAR and enabled high PAR use efficiency. Terrestrial green plants are fine-tuned to spectral dynamics of incident solar radiation and PAR absorption is increased in various structural hierarchies.

  4. Ultraviolet absorption spectra of metalorganic molecules diluted in hydrogen gas

    NASA Astrophysics Data System (ADS)

    Itoh, Hideo; Watanabe, Masanobu; Mukai, Seiji; Yajima, Hiroyoshi

    1988-12-01

    Ultraviolet absorption spectra of trimethyl gallium, triethyl gallium, and trimethyl aluminum diluted in hydrogen gas were measured as a function of the wavelength (185-350 nm) and the concentration of the molecules (4.8×10 -6 -1.6×10 -4 mol/liter). Their absorbances changed linearly with the concentration of the molecules, which allowed us to calculate the molar absorption coefficients of the molecules on the basis of the Beer-Lambert law.

  5. IR absorption spectra of cellulose obtained from ozonated wood

    NASA Astrophysics Data System (ADS)

    Mamleeva, N. A.; Autlov, S. A.; Kharlanov, A. N.; Bazarnova, N. G.; Lunin, V. V.

    2015-08-01

    The kinetic curves of ozone absorption by aspen wood were obtained. Processing of wood with peracetic acid gave cellulose samples. The yields of ozonated wood, water-soluble compounds, and cellulose were determined for the samples corresponding to different consumptions of ozone. The IR absorption spectra of wood and cellulose isolated from ozonated wood were analyzed. The supramolecular structure of cellulose can be changed by varying the conditions of wood ozonation.

  6. [Ultraviolet absorption spectra of iodine, iodide ion and triiodide ion].

    PubMed

    Wei, Yong-Ju; Liu, Cui-Ge; Mo, Li-Ping

    2005-01-01

    Ultraviolet absorption spectra of iodine I2, iodide ion I(-) and triiodide ion I3(-) were studied, and molar absorptivities of these species were determined. Absorption spectrum of I2 aqueous solution appears as an absorption peak at 203 nm with a molar absorptivity of 1.96 x 10(4) L x mol(-1) x cm(-1). Absorption spectrum of I(-) appears as two absorption peaks at 193 and 226 nm with molar absorptivities of 1.42 x 10(4) and 1.34 x 10(4) L x mol(-1) x cm(-1), respectively. When I2 aqueous solution is mixed with KI solution, two absorption peaks appear at 288 and 350 nm, respectively, indicating the formation of I3(-). Using saturation method, molar absorptivities of I3(-) at 288 and 350 nm were determined to be 3.52 x 10(4) and 2.32 x 10(4) L x mol(-1) x cm(-1), respectively.

  7. A Simple Demonstration of Absorption Spectra Using Tungsten Holiday Lights

    ERIC Educational Resources Information Center

    Birriel, Jennifer J.

    2009-01-01

    In a previous paper submitted to the Demonstrations section (Birriel 2008, "Astronomy Education Review," 7, 147), I discussed using commercially available incandescent light bulbs for the purpose of demonstrating absorption spectra in the classroom or laboratory. This demonstration solved a long-standing problem that many of astronomy instructors…

  8. Terrestrial solar spectra, solar simulation and solar cell short-circuit current calibration - A review

    NASA Astrophysics Data System (ADS)

    Matson, R. J.; Emery, K. A.; Bird, R. E.

    1984-03-01

    In this paper, the main issues in modeling and measuring terrestrial solar spectra and their relation to the short-circuit current of solar cells are addressed. These issues are (1) the measured and modeled terrestrial solar spectra, (2) the optimal light sources and their filtering for simulating the standard terrestrial solar irradiance spectrum and (3) the consequences of a mismatch between the chosen standard terrestrial solar spectrum and the actual irradiance conditions for the rated efficiency of a solar cell. In addition, this review provides the photovoltaics community with a tutorial document and a summary of the current activities and results in this field.

  9. Uncertainty analysis for absorption and first-derivative EPR spectra.

    PubMed

    Tseitlin, Mark; Eaton, Sandra S; Eaton, Gareth R

    2012-11-01

    Electron paramagnetic resonance (EPR) experimental techniques produce absorption or first-derivative spectra. Uncertainty analysis provides the basis for comparison of spectra obtained by different methods. In this study it was used to derive analytical equations to relate uncertainties for integrated intensity and line widths obtained from absorption or first-derivative spectra to the signal-to-noise ratio (SNR), with the assumption of white noise. Predicted uncertainties for integrated intensities and line widths are in good agreement with Monte Carlo calculations for Lorentzian and Gaussian lineshapes. Conservative low-pass filtering changes the noise spectrum, which can be modeled in the Monte Carlo simulations. When noise is close to white, the analytical equations provide useful estimates of uncertainties. For example, for a Lorentzian line with white noise, the uncertainty in the number of spins obtained from the first-derivative spectrum is 2.6 times greater than from the absorption spectrum at the same SNR. Uncertainties in line widths obtained from absorption and first-derivative spectra are similar. The impact of integration or differentiation on SNR and on uncertainties in fitting parameters was analyzed. Although integration of the first-derivative spectrum improves the apparent smoothness of the spectrum, it also changes the frequency distribution of the noise. If the lineshape of the signal is known, the integrated intensity can be determined more accurately by fitting the first-derivative spectrum than by first integrating and then fitting the absorption spectrum. Uncertainties in integrated intensities and line widths are less when the parameters are determined from the original data than from spectra that have been either integrated or differentiated.

  10. Possible spinel absorption bands in S-asteroid visible reflectance spectra

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Vilas, F.; Sunshine, J. M.

    1994-01-01

    Minor absorption bands in the 0.55 to 0.7 micron wavelength range of reflectance spectra of 10 S asteroids have been found and compared with those of spinel-group minerals using the modified Gaussian model. Most of these S asteroids are consistently shown to have two absorption bands around 0.6 and 0.67 micron. Of the spinel-group minerals examined in this study, the 0.6 and 0.67 micron bands are most consistent with those seen in chromite. Recently, the existence of spinels has also been detected from the absorption-band features around 1 and 2 micron of two S-asteroid reflectance spectra, and chromite has been found in a primitive achondrite as its major phase. These new findings suggest a possible common existence of spinel-group minerals in the solar system.

  11. The absorption spectra of carbonates and their precursors.

    NASA Astrophysics Data System (ADS)

    Koike, C.; Chihara, H.; Suto, H.

    The carbonates calcite and dolomite have been discovered in the dust shells of evolved stars (Kemper et al. 2002) and young proto stars (Ceccarelli et al. 2002). The mechanism for carbonate formation with a aqueous or non-aqueous process were discussed in their papers. These processes have not yet been reproduced in a laboratory experiment. First of all, we measured the mass absorption spectra of varous carbonates were measured in the mid- and far-infrared region. These spectra show very strong and broad peaks in the far-infrared region. The calcite and dolomite have peaks at about 92 microns and 63 microns, respectively. The alternative process of carbonates has not yet been clear. We investigate the alternative process measuring the spectra of the precursors of carbonates. We will report the preliminary results and discuss about the alternative process comparing the measured spectra of the precursors with the observation.

  12. Solar absorption cooling plant in Seville

    SciTech Connect

    Bermejo, Pablo; Pino, Francisco Javier; Rosa, Felipe

    2010-08-15

    A solar/gas cooling plant at the Engineering School of Seville (Spain) was tested during the period 2008-2009. The system is composed of a double-effect LiBr + water absorption chiller of 174 kW nominal cooling capacity, powered by: (1) a pressurized hot water flow delivered by mean of a 352 m{sup 2} solar field of a linear concentrating Fresnel collector and (2) a direct-fired natural gas burner. The objective of the project is to indentify design improvements for future plants and to serve as a guideline. We focused our attention on the solar collector size and dirtiness, climatology, piping heat losses, operation control and coupling between solar collector and chiller. The daily average Fresnel collector efficiency was 0.35 with a maximum of 0.4. The absorption chiller operated with a daily average coefficient of performance of 1.1-1.25, where the solar energy represented the 75% of generator's total heat input, and the solar cooling ratio (quotient between useful cooling and insolation incident on the solar field) was 0.44. (author)

  13. APM Z >=4 QSO Survey: Spectra and Intervening Absorption Systems

    NASA Astrophysics Data System (ADS)

    Storrie-Lombardi, L. J.; McMahon, R. G.; Irwin, M. J.; Hazard, C.

    1996-09-01

    The APM multicolor survey for bright z > 4 objects, covering 2500 deg^2^ of sky to m_r_ ~ 19, resulted in the discovery of 31 quasars with z ~> 4. High signal-to-noise optical spectrophotometry at 5 A resolution has been obtained for the 28 quasars easily accessible from the northern hemisphere. These spectra have been surveyed to create new samples of high-redshift Lyman-limit systems, damped Lyα absorbers, and metal absorption systems (e.g., C IV and Mg II). In this paper we present the spectra, together with line lists of the detected absorption systems. The QSOs display a wide variety of emission- and absorption-line characteristics, with five exhibiting broad absorption lines and one with extremely strong emission lines (BR 2248 - 1242). Eleven candidate damped Lyα absorption systems have been identified covering the redshift range 2.8 <= z <= 4.4 (eight with z > 3.5). An analysis of the measured redshifts of the high-ionization emission lines with the low-ionization lines shows them to be blueshifted by 430 +/- 60 km s^-1^. In a previous paper (by Storrie-Lombardi et al.) we discussed the redshift evolution of the Lyman limit systems cataloged here. In subsequent papers we will discuss the properties of the Lyα forest absorbers and the redshift and column density evolution of the damped Lyα absorbers.

  14. Effect of pyridine on infrared absorption spectra of copper phthalocyanine.

    PubMed

    Singh, Sukhwinder; Tripathi, S K; Saini, G S S

    2008-02-01

    Infrared absorption spectra of copper phthalocyanine in KBr pellet and pyridine solution in 400-1625 and 2900-3200 cm(-1)regions are reported. In the IR spectra of solid sample, presence of weak bands, which are forbidden according to the selection rules of D4h point group, is explained on the basis of distortion in the copper phthalocyanine molecule caused by the crystal packing effects. Observation of a new band at 1511 cm(-1) and change in intensity of some other bands in pyridine are interpreted on the basis of coordination of the solvent molecule with the central copper ion.

  15. In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance

    NASA Technical Reports Server (NTRS)

    Roesler, Collin S.; Pery, Mary Jane

    1995-01-01

    An inverse model was developed to extract the absortion and scattering (elastic and inelastic) properties of oceanic constituents from surface spectral reflectance measurements. In particular, phytoplankton spectral absorption coefficients, solar-stimulated chlorophyll a fluorescence spectra, and particle backscattering spectra were modeled. The model was tested on 35 reflectance spectra obtained from irradiance measurements in optically diverse ocean waters (0.07 to 25.35 mg/cu m range in surface chlorophyll a concentrations). The universality of the model was demonstrated by the accurate estimation of the spectral phytoplankton absorption coefficents over a range of 3 orders of magnitude (rho = 0.94 at 500 nm). Under most oceanic conditions (chlorophyll a less than 3 mg/cu m) the percent difference between measured and modeled phytoplankton absorption coefficents was less than 35%. Spectral variations in measured phytoplankton absorption spectra were well predicted by the inverse model. Modeled volume fluorescence was weakly correlated with measured chl a; fluorescence quantum yield varied from 0.008 to 0.09 as a function of environment and incident irradiance. Modeled particle backscattering coefficients were linearly related to total particle cross section over a twentyfold range in backscattering coefficents (rho = 0.996, n = 12).

  16. Infrared absorption spectra of metal carbides, nitrides and sulfides

    NASA Technical Reports Server (NTRS)

    Kammori, O.; Sato, K.; Kurosawa, F.

    1981-01-01

    The infrared absorption spectra of 12 kinds of metal carbides, 11 kinds of nitrides, and 7 kinds of sulfides, a total of 30 materials, were measured and the application of the infrared spectra of these materials to analytical chemistry was discussed. The measurements were done in the frequency (wave length) range of (1400 to 400/cm (7 to 25 mu). The carbides Al4C3, B4C, the nitrides AlN, BN, Si3N4, WB, and the sulfides Al2S3, FeS2, MnS, NiS and PbS were noted to have specific absorptions in the measured region. The sensitivity of Boron nitride was especially good and could be detected at 2 to 3 micrograms in 300 mg of potassium bromide.

  17. EPR and electronic absorption spectra of copper bearing turquoise mineral

    NASA Astrophysics Data System (ADS)

    Sharma, K. B. N.; Moorthy, L. R.; Reddy, B. J.; Vedanand, S.

    1988-10-01

    Electron paramagnetic resonance and optical absorption spectra of turquoise have been studied both at room and low temperatures. It is concluded from the EPR spectra that the ground state of Cu 2+ ion in turquoise is 2A g(d x2- y2) and it is sited in an elongated rhombic octahedron (D 2π). The observed absorption bands at 14970 and 18354 cm -1 are assigned at 2A g→ 2B 1 g( dx2- y2→ xy) and 2A g→[ su2B 3g(d x 2-y 2→d yz) respectively assuming D 2π symmetry which are inconsistent with EPR studies. The three bands in the NIR region are attributed to combinations of fundamental modes of the H 2O molecule present in the sample.

  18. UV Spectra, Bombs, and the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Judge, Philip G.

    2015-08-01

    A recent analysis of UV data from the Interface Region Imaging Spectrograph (IRIS) reports plasma “bombs” with temperatures near 8 × 104 K within the solar photosphere. This is a curious result, first because most bomb plasma pressures p (the largest reported case exceeds 103 dyn cm-2) fall well below photospheric pressures (\\gt 7× {10}3), and second, UV radiation cannot easily escape from the photosphere. In the present paper the IRIS data is independently analyzed. I find that the bombs arise from plasma originally at pressures between ≤ 80 and 800 dyne cm-2 before explosion, i.e., between ≥ 850 and 550 km above {τ }500=1. This places the phenomenon’s origin in the low-mid chromosphere or above. I suggest that bomb spectra are more compatible with Alfvénic turbulence than with bi-directional reconnection jets.

  19. Quantifying the Magnitude of Anomalous Solar Absorption

    SciTech Connect

    Ackerman, Thomas P.; Flynn, Donna M.; Marchand, Roger T.

    2003-05-16

    The data set from ARESE II, sponsored by the Atmospheric Radiation Measurement Program, provides a unique opportunity to understand solar absorption in the atmosphere because of the combination of three sets of broadband solar radiometers mounted on the Twin Otter aircraft and the ground based instruments at the ARM Southern Great Plains facility. In this study, we analyze the measurements taken on two clear sky days and three cloudy days and model the solar radiative transfer in each case with two different models. On the two clear days, the calculated and measured column absorptions agree to better than 10 Wm-2, which is about 10% of the total column absorption. Because both the model fluxes and the individual radiometer measurements are accurate to no better than 10 Wm-2, we conclude that the models and measurements are essentially in agreement. For the three cloudy days, the model calculations agree very well with each other and on two of the three days agree with the measurements to 20 Wm-2 or less out of a total column absorption of more than 200 Wm-2, which is again agreement at better than 10%. On the third day, the model and measurements agree to either 8% or 14% depending on which value of surface albedo is used. Differences exceeding 10% represent a significant absorption difference between model and observations. In addition to the uncertainty in absorption due to surface albedo, we show that including aerosol with an optical depth similar to that found on clear days can reduce the difference between model and measurement by 5% or more. Thus, we conclude that the ARESE II results are incompatible with previous studies reporting extreme anomalous absorption and can be modeled with our current understanding of radiative transfer.

  20. Implications for High Energy Blazar Spectra from Intergalactic Absorption Calculations

    NASA Technical Reports Server (NTRS)

    Stecker, F

    2008-01-01

    Given a knowledge of the density spectra intergalactic low energy photons as a function of redshift, one can derive the intrinsic gamma-ray spectra and luminosities of blazars over a range of redshifts and look for possible trends in blazar evolution. Stecker, Baring & Summerlin have found some evidence hinting that TeV blazars with harder spectra have higher intrinsic TeV gamma-ray luminosities and indicating that there may be a correlation of spectral hardness and luminosity with redshift. Further work along these lines, treating recent observations of the blazers lES02291+200 and 3C279 in the TeV and sub-TeV energy ranges, has recently been explored by Stecker & Scully. GLAST will observe and investigate many blazars in the GeV energy range and will be sensitive to blazers at higher redshifts. I examine the implications high redshift gamma-ray absorption for both theoretical and observational blazer studies.

  1. Oscillator strength measurements of atomic absorption lines from stellar spectra

    NASA Astrophysics Data System (ADS)

    Lobel, Alex

    2011-05-01

    Herein we develop a new method to determine oscillator strength values of atomic absorption lines with state-of-the-art detailed spectral synthesis calculations of the optical spectrum of the Sun and of standard spectral reference stars. We update the log(gf) values of 911 neutral lines observed in the KPNO-FTS flux spectrum of the Sun and high-resolution echelle spectra (R = 80 000) of Procyon (F5 IV-V) and Eps Eri (K2 V) observed with large signal-to-noise (S/N) ratios of 2000 using the new Mercator-Hermes spectrograph at La Palma Observatory (Spain). We find for 483 Fe I, 85 Ni I, and 51 Si I absorption lines in the sample a systematic overestimation of the literature log(gf) values with central line depths below 15%. We employ a curve-of-growth analysis technique to test the accuracy of the new oscillator strength values and compare calculated equivalent line widths to the Moore, Minnaert, and Houtgast atlas of the Sun. The online SpectroWeb database at http://spectra.freeshell.org interactively displays the observed and synthetic spectra and provides the new log(gf) values together with important atomic line data. The graphical database is under development for stellar reference spectra of every spectral sub-class observed with large spectral resolution and S/N ratios.

  2. Optical absorption spectra of palladium doped gold cluster cations

    SciTech Connect

    Kaydashev, Vladimir E.; Janssens, Ewald Lievens, Peter

    2015-01-21

    Photoabsorption spectra of gas phase Au{sub n}{sup +} and Au{sub n−1}Pd{sup +} (13 ≤ n ≤ 20) clusters were measured using mass spectrometric recording of wavelength dependent Xe messenger atom photodetachment in the 1.9–3.4 eV photon energy range. Pure cationic gold clusters consisting of 15, 17, and 20 atoms have a higher integrated optical absorption cross section than the neighboring sizes. It is shown that the total optical absorption cross section increases with size and that palladium doping strongly reduces this cross section for all investigated sizes and in particular for n = 14–17 and 20. The largest reduction of optical absorption upon Pd doping is observed for n = 15.

  3. Cloud geometry effects on atmospheric solar absorption

    SciTech Connect

    Fu, Q.; Cribb, M.C.; Barker, H.W.; Krueger, S.K.; Grossman, A.

    2000-04-15

    A 3D broadband solar radiative transfer scheme is formulated by integrating a Monte Carlo photon transport algorithm with the Fu-Liou radiation model. It is applied to fields of tropical mesoscale convective clouds and subtropical marine boundary layer clouds that were generated by a 2D cloud-resolving model. The effects of cloud geometry on the radiative energy budget are examined by comparing the full-resolution Monte Carlo results with those from the independent column approximation (ICA) that applies the plane-parallel radiation model to each column. For the tropical convective cloud system, it is found that cloud geometry effects always enhance atmospheric solar absorption regardless of solar zenith angle. In a large horizontal domain (512 km), differences in domain-averaged atmospheric absorption between the Monte Carlo and the ICA are less than 4 W m{sup {minus}2} in the daytime. However, for a smaller domain (e.g., 75 km) containing a cluster of deep convective towers, domain-averaged absorption can be enhanced by more than 20 W m{sup {minus}2}. For a subtropical marine boundary layer cloud system during the stratus-to-cumulus transition, calculations show that the ICA works very well for domain-averaged fluxes of the stratocumulus cloud fields even for a very small domain (4.8 km). For the trade cumulus cloud field, the effects of cloud sides and horizontal transport of photons become more significant. Calculations have also been made for both cloud systems including black carbon aerosol and a water vapor continuum. It is found that cloud geometry produces no discernible effects on the absorption enhancement due to the black carbon aerosol and water vapor continuum. The current study indicates that the atmospheric absorption enhancement due to cloud-related 3D photon transport is small. This enhancement could not explain the excess absorption suggested by recent studies.

  4. Absorption Features in Spectra of Magnetized Neutron Stars

    SciTech Connect

    Suleimanov, V.; Hambaryan, V.; Neuhaeuser, R.; Potekhin, A. Y.; Pavlov, G. G.; Adelsberg, M. van; Werner, K.

    2011-09-21

    The X-ray spectra of some magnetized isolated neutron stars (NSs) show absorption features with equivalent widths (EWs) of 50-200 eV, whose nature is not yet well known.To explain the prominent absorption features in the soft X-ray spectra of the highly magnetized (B{approx}10{sup 14} G) X-ray dim isolated NSs (XDINSs), we theoretically investigate different NS local surface models, including naked condensed iron surfaces and partially ionized hydrogen model atmospheres, with semi-infinite and thin atmospheres above the condensed surface. We also developed a code for computing light curves and integral emergent spectra of magnetized neutron stars with various temperature and magnetic field distributions over the NS surface. We compare the general properties of the computed and observed light curves and integral spectra for XDINS RBS 1223 and conclude that the observations can be explained by a thin hydrogen atmosphere above the condensed iron surface, while the presence of a strong toroidal magnetic field component on the XDINS surface is unlikely.We suggest that the harmonically spaced absorption features in the soft X-ray spectrum of the central compact object (CCO) 1E 1207.4-5209 (hereafter 1E 1207) correspond to peaks in the energy dependence of the free-free opacity in a quantizing magnetic field, known as quantum oscillations. To explore observable properties of these quantum oscillations, we calculate models of hydrogen NS atmospheres with B{approx}10{sup 10}-10{sup 11} G(i.e., electron cyclotron energy E{sub c,e}{approx}0.1-1 keV) and T{sub eff} = 1-3 MK. Such conditions are thought to be typical for 1E 1207. We show that observable features at the electron cyclotron harmonics with EWs {approx_equal}100-200 eV can arise due to these quantum oscillations.

  5. Observationally determined Fe II oscillator strengths. [interstellar and quasar absorption spectra

    NASA Technical Reports Server (NTRS)

    Van Steenberg, M.; Shull, J. M.; Seab, C. G.

    1983-01-01

    Absorption oscillator strengths for 21 Fe II resonance lines, have been determined using a curve-of-growth analysis of interstellar data from the Copernicus and International Ultraviolet Explorer (IUE) satellites. In addition to slight changes in strengths of the far-UV lines, new f-values are reported for wavelength 1608.45, a prominent line in interstellar and quasar absorption spectra, and for wavelength 2260.08, a weak, newly identified linen in IUE interstellar spectra. An upper limit on the strength of the undetected line at 2366.867 A (UV multiplet 2) is set. Using revised oscillator strengths, Fe II column densities toward 13 OB stars are derived. The interstellar depletions, (Fe/H), relative to solar values range between factors of 10 and 120.

  6. Liquid for absorption of solar heat

    SciTech Connect

    Nakamura, T.; Iwamoto, Y.; Kadotani, K.; Marui, T.

    1984-11-13

    A liquid for the absorption of solar heat, useful as an heat-absorbing medium in water heaters and heat collectors comprises: a dispersing medium selected from the group consisting of propylene glycol, mixture of propylene glycol with water, mixture of propylene glycol with water and glycerin, and mixture of glycerin with water, a dispersant selected from the group consisting of polyvinylpyrrolidone, caramel, and mixture of polyvinylpyrrolidone with caramel, and a powdered activated carbon as a black coloring material.

  7. Transient absorption spectra of the laser-dressed hydrogen atom

    NASA Astrophysics Data System (ADS)

    Murakami, Mitsuko; Chu, Shih-I.

    2013-10-01

    We present a theoretical study of transient absorption spectra of laser-dressed hydrogen atoms, based on numerical solutions of the time-dependent Schrödinger equation. The timing of absorption is controlled by the delay between an extreme ultra violet (XUV) pulse and an infrared (IR) laser field. The XUV pulse is isolated and several hundred attoseconds in duration, which acts as a pump to drive the ground-state electron to excited p states. The subsequent interaction with the IR field produces dressed states, which manifest as sidebands between the 1s-np absorption spectra separated by one IR-photon energy. We demonstrate that the population of dressed states is maximized when the timing of the XUV pulse coincides with the zero crossing of the IR field, and that their energies can be manipulated in a subcycle time scale by adding a chirp to the IR field. An alternative perspective to the problem is to think of the XUV pulse as a probe to detect the dynamical ac Stark shifts. Our results indicate that the accidental degeneracy of the hydrogen excited states is removed while they are dressed by the IR field, leading to large ac Stark shifts. Furthermore, we observe the Autler-Townes doublets for the n=2 and 3 levels using the 656 nm dressing field, but their separation does not agree with the prediction by the conventional three-level model that neglects the dynamical ac Stark shifts.

  8. Solar Absorptance of Cermet Coatings Evaluated

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    2004-01-01

    Cermet coatings, molecular mixtures of metal and ceramic, are being considered for the heat inlet surface of solar Stirling convertors. In this application, the key role of the cermet coating is to absorb as much of the incident solar energy as possible. To achieve this objective, the cermet coating has a high solar absorptance value. Cermet coatings are manufactured utilizing sputter deposition, and many different metal and ceramic combinations can be created. The ability to mix metal and ceramic at the atomic level offers the opportunity to tailor the composition, and hence, the optical properties of these coatings. The NASA Glenn Research Center has prepared and characterized a wide variety of cermet coatings utilizing different metals deposited in an aluminum oxide ceramic matrix. In addition, the atomic oxygen durability of these coatings has been evaluated.

  9. Retrieval of upper atmosphere pressure-temperature profiles from high resolution solar occultation spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Russell, J. M., III; Park, J. H.; Namkung, J.

    1987-01-01

    Pressure-temperature profiles over the 18 to 75 km altitude range were retrieved from 0.01 cm(-1) resolution infrared solar absorption spectra recorded with the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer operating in the solar occultation mode during the Spacelab 3 shuttle mission (April 30 to May 1, 1985). The analysis method is described and preliminary results deduced for five occultation events are compared to correlative pressure-temperature measurments.

  10. Model for Cumulative Solar Heavy Ion Energy and LET Spectra

    NASA Technical Reports Server (NTRS)

    Xapsos, Mike; Barth, Janet; Stauffer, Craig; Jordan, Tom; Mewaldt, Richard

    2007-01-01

    A probabilistic model of cumulative solar heavy ion energy and lineary energy transfer (LET) spectra is developed for spacecraft design applications. Spectra are given as a function of confidence level, mission time period during solar maximum and shielding thickness. It is shown that long-term solar heavy ion fluxes exceed galactic cosmic ray fluxes during solar maximum for shielding levels of interest. Cumulative solar heavy ion fluences should therefore be accounted for in single event effects rate calculations and in the planning of space missions.

  11. Optical Absorption Spectra of Hydrous Wadsleyite to 32 GPa

    NASA Astrophysics Data System (ADS)

    Thomas, S.; Goncharov, A. F.; Jacobsen, S. D.; Bina, C. R.; Frost, D. J.

    2009-05-01

    Optical absorption spectra of high-pressure minerals can be used as indirect tools to calculate radiative conductivity of the Earth's interior [e.g., 1]. Recent high-pressure studies show that e.g. ringwoodite, γ-(Mg,Fe)2SiO4, does not become opaque in the near infrared and visible region, as previously assumed, but remains transparent to 21.5 GPa [2]. Therefore, it has been concluded that radiative heat transfer does not necessarily become blocked at high pressures of the mantle and ferromagnesian minerals actually could contribute to the heat flow in the Earth's interior [2]. In this study we use gem-quality single-crystals of hydrous Fe-bearing wadsleyite, β-(Mg,Fe)2SiO4, that were synthesized at 18 GPa and 1400 °C in a multianvil apparatus. Crystals were analyzed by Mössbauer and Raman spectroscopy, electron microprobe analysis and single-crystal X-ray diffraction. For absorption measurements a double-polished 50 μm sized single-crystal of wadsleyite was loaded in a diamond-anvil cell with neon as pressure medium. Optical absorption spectra were recorded at ambient conditions as well as up to 32 GPa from 400 to 50000 cm-1. At ambient pressure the absorption spectrum reveals two broad bands at - 10000 cm-1 and -15000 cm-1, and an absorption edge in the visible-ultraviolet range. With increasing pressure the absorption spectrum changes, both bands continuously shift to higher frequencies as has been observed for ringwoodite [2], but is contrary to earlier presumptions for wadsleyite [3]. Here, we will discuss band assignment along with the influence of iron, compare our results to previous absorption studies of mantle materials [2], and analyze possible implications for radiative conductivity of the transition zone. References: [1] Goncharov et al. (2008), McGraw Yearbook Sci. Tech., 242-245. [2] Keppler & Smyth (2005), Am. Mineral., 90 1209-1212. [3] Ross (1997), Phys. Chem. Earth, 22 113-118.

  12. Observational Cosmology Using Absorption Lines in Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Aghaee, A.

    2016-09-01

    Distant, highly luminous quasars are important cosmological probes for a variety of astrophysical questions: the first generation of galaxies, the star formation history and metal enrichment in the early Universe, the growth of the first super massive black holes (SMBHs), the role of feedback from quasars and SMBHs in galaxy evolution, the epoch of reionization, etc. In addition, they are used as background illuminating source that reveal any object located by chance on the line of sight. I will present our group works in these issues that can be done using absorption lines in the quasar spectra.

  13. Optical absorption and scattering spectra of pathological stomach tissues

    NASA Astrophysics Data System (ADS)

    Giraev, K. M.; Ashurbekov, N. A.; Lakhina, M. A.

    2011-03-01

    Diffuse reflection spectra of biotissues in vivo and transmission and reflection coefficients for biotissues in vitro are measured over 300-800 nm. These data are used to determine the spectral absorption and scattering indices and the scattering anisotropy factor for stomach mucous membranes under normal and various pathological conditions (chronic atrophic and ulcerous defects, malignant neoplasms). The most importan tphysiological (hemodynamic and oxygenation levels) and structural-morphological (scatterer size and density) parameters are also determined. The results of a morphofunctional study correlate well with the optical properties and are consistent with data from a histomorphological analysis of the corresponding tissues.

  14. The Infrared Spectra and Absorption Intensities of Amorphous Ices

    NASA Astrophysics Data System (ADS)

    Gerakines, Perry A.; Hudson, Reggie L.; Loeffler, Mark

    2016-06-01

    Our research group is carrying out new IR measurements of icy solids relevant to the outer solar system and to the interstellar medium, with an emphasis on amorphous and crystalline ices below ~ 120 K. Our goal is to update and add to the relatively meager literature on this subject and to provide electronic versions of state-of-the-art data, since the abundances of such molecules cannot be deduced without accurate reference spectra and IR band strengths. In the past year, we have focused on three of the simplest and most abundant components of interstellar and solar-system ices: methane (CH4), carbon dioxide (CO2), and methanol (CH3OH). Infrared spectra from ˜ 4500 to 500 cm-1 have been measured for each of these molecules in μm-thick films at temperatures from 10 to 120 K. All known amorphous and crystalline phases have been reproduced and, for some, presented for the first time. We also report measurements of the index of refraction at 670 nm and the mass densities for each ice phase. Comparisons are made to earlier work where possible. Electronic versions of our new results are available at http://science.gsfc.nasa.gov/691/cosmicice/ constants.html.

  15. Solar Absorption in a Stratosphere Perturbed by NOx Injection.

    PubMed

    Luther, F M

    1976-04-02

    The changes in the solar absorption by nitrogen dioxide and ozone induced by the injection of NO(x) (oxides of nitrogen) in the stratosphere are complementary, even though the nitrogen dioxide absorption is only a small fraction of the ozone absorption for an unperturbed stratosphere. The factors causing this effect are described, and an analysis is made of the perturbed solar radiation budget.

  16. Optimization of absorption air-conditioning for solar energy applications

    NASA Technical Reports Server (NTRS)

    Perry, E. H.

    1976-01-01

    Improved performance of solar cooling systems using the lithium bromide water absorption cycle is investigated. Included are computer simulations of a solar-cooled house, analyses and measurements of heat transfer rates in absorption system components, and design and fabrication of various system components. A survey of solar collector convection suppression methods is presented.

  17. Absorption of Solar Radiation by Clouds: Observations Versus Models

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Zhang, M. H.; Minnis, P.; Corsetti, L.; Dutton, E. G.; Forgan, B. W.; Garber, D. P.; Gates, W. L.; Hack, J. J.; Harrison, E. F.; Jing, X.; Kiehl, J. T.; Long, C. N.; Morcrette, J.-J.; Potter, G. L.; Ramanathan, V.; Subasilar, B.; Whitlock, C. H.; Young, D. F.; Zhou, Y.

    1995-01-01

    There has been a long history of unexplained anomalous absorption of solar radiation by clouds. Collocated satellite and surface measurements of solar radiation at five geographically diverse locations showed significant solar absorption by clouds, resulting in about 25 watts per square meter more global-mean absorption by the cloudy atmosphere than predicted by theoretical models. It has often been suggested that tropospheric aerosols could increase cloud absorption. But these aerosols are temporally and spatially heterogeneous, whereas the observed cloud absorption is remarkably invariant with respect to season and location. Although its physical cause is unknown, enhanced cloud absorption substantially alters our understanding of the atmosphere's energy budget.

  18. Guide to solar reference spectra and irradiance models

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent

    The international standard for determining solar irradiances was published by the International Standards Organization (ISO) in May 2007. The document, ISO 21348 Space Environment (natural and artificial) - Process for determining solar irradiances, describes the process for representing solar irradiances. We report on the next progression of standards work, i.e., the development of a guide that identifies solar reference spectra and irradiance models for use in engineering design or scientific research. This document will be produced as an AIAA Guideline and ISO Technical Report. It will describe the content of the reference spectra and models, uncertainties and limitations, technical basis, data bases from which the reference spectra and models are formed, publication references, and sources of computer code for reference spectra and solar irradiance models, including those which provide spectrally-resolved lines as well as solar indices and proxies and which are generally recognized in the solar sciences. The document is intended to assist aircraft and space vehicle designers and developers, heliophysicists, geophysicists, aeronomers, meteorologists, and climatologists in understanding available models, comparing sources of data, and interpreting engineering and scientific results based on different solar reference spectra and irradiance models.

  19. Qualitative Analysis of Liquid Hydrocarbon Mixtures by Absorption Spectra of Their Vapors

    NASA Astrophysics Data System (ADS)

    Vesnin, V. L.

    2016-11-01

    Absorption spectra of saturated vapors of hydrocarbons and their mixtures were studied near their first overtones. Absorption spectra of hydrocarbons in the liquid and vapor states were compared. The ability to analyze qualitatively the compositions of liquid hydrocarbon mixtures using absorption spectra of their vapors was demonstrated. Indirect evidence suggested that the nonlinear absorption as a function of concentration that was seen in liquid hydrocarbon mixtures was negligible in their vapors.

  20. Optimal design of laterally assembled hexagonal silicon nanowires for broadband absorption enhancement in ultrathin solar cells

    NASA Astrophysics Data System (ADS)

    Shahraki, Mojtaba; Salehi, Mohammad Reza; Abiri, Ebrahim

    2015-11-01

    Design approaches to carry out broadband absorption in laterally assembled hexagonal silicon nanowire (NW) solar cells are investigated. Two different methods are proposed to improve the current density of silicon NW solar cells. It is observed that the key to the broadband absorption is disorder and irregularity. The first approach to reach the broadband absorption is using multiple NWs with different geometries. Nevertheless, the maximum enhancement is obtained by introducing irregular NWs. They can support more cavity modes, while scattering by NWs leads to broadening of the absorption spectra. An array of optimized irregular NWs also has preferable features compared to other broadband structures. Using irregular NW arrays, it is possible to improve the absorption enhancement of solar cells without introducing more absorbing material.

  1. Absorption of solar radiation in broken clouds

    SciTech Connect

    Zuev, V.E.; Titov, G.A.; Zhuravleva, T.B.

    1996-04-01

    It is recognized now that the plane-parallel model unsatisfactorily describes the transfer of radiation through broken clouds and that, consequently, the radiation codes of general circulation models (GCMs) must be refined. However, before any refinement in a GCM code is made, it is necessary to investigate the dependence of radiative characteristics on the effects caused by the random geometry of cloud fields. Such studies for mean fluxes of downwelling and upwelling solar radiation in the visible and near-infrared (IR) spectral range were performed by Zuev et al. In this work, we investigate the mean spectral and integrated absorption of solar radiation by broken clouds (in what follows, the term {open_quotes}mean{close_quotes} will be implied but not used, for convenience). To evaluate the potential effect of stochastic geometry, we will compare the absorption by cumulus (0.5 {le} {gamma} {le} 2) to that by equivalent stratus ({gamma} <<1) clouds; here {gamma} = H/D, H is the cloud layer thickness and D the characteristic horizontal cloud size. The equivalent stratus clouds differ from cumulus only in the aspect ratio {gamma}, all the other parameters coinciding.

  2. Absorption spectra of adenocarcinoma and squamous cell carcinoma cervical tissues

    NASA Astrophysics Data System (ADS)

    Ivashko, Pavlo; Peresunko, Olexander; Zelinska, Natalia; Alonova, Marina

    2014-08-01

    We studied a methods of assessment of a connective tissue of cervix in terms of specific volume of fibrous component and an optical density of staining of connective tissue fibers in the stroma of squamous cancer and cervix adenocarcinoma. An absorption spectra of blood plasma of the patients suffering from squamous cancer and cervix adenocarcinoma both before the surgery and in postsurgical periods were obtained. Linear dichroism measurements transmittance in polarized light at different orientations of the polarization plane relative to the direction of the dominant orientation in the structure of the sample of biotissues of stroma of squamous cancer and cervix adenocarcinoma were carried. Results of the investigation of the tumor tissues showed that the magnitude of the linear dichroism Δ is insignificant in the researched spectral range λ=280-840 nm and specific regularities in its change observed short-wave ranges.

  3. Solar assisted gas-fired absorption heat pump

    NASA Astrophysics Data System (ADS)

    Murphy, K. P.; Burke, J. C.; Phillips, B. A.

    1982-08-01

    An evaluation of the technical and economic feasibility of coupling an absorption heat pump and an active solar system for residential applications is discussed. The absorption heat pump is based on a new absorption working pair developed by Allied. Three basic modes of coupling were considered, a series arrangement, a parallel arrangement, and a solar drive arrangement. Little overall difference in performance was found for these three modes but the solar drive was chosen for detailed study. A preliminary design of a dual mode absorption generator was developed capable of using simultaneously heat from gas and solar. The performance of such a system was examined in three cities.

  4. Absorption and electroabsorption spectra of carotenoid cation radical and dication

    NASA Astrophysics Data System (ADS)

    Krawczyk, Stanisław

    1998-05-01

    Radical cations and dications of two carotenoids astaxanthin and canthaxanthin were prepared by oxidation with FeCl 3 in fluorinated alcohols at room temperature. Absorption and electroabsorption (Stark effect) spectra were recorded for astaxanthin cations in mixed frozen matrices at temperatures about 160 K. The D 0→D 2 transition in cation radical is at 835 nm. The electroabsorption spectrum for the D 0→D 2 transition exhibits a negative change of molecular polarizability, Δ α=-1.2·10 -38 C·m 2/V (-105 A 3), which seems to originate from the change in bond order alternation in the ground state rather than from the electric field-induced interaction of D 1 and D 2 excited states. Absorption spectrum of astaxanthin dication is located at 715-717 nm, between those of D 0→D 2 in cation radical and S 0→S 2 in neutral carotenoid. Its shape reflects a short vibronic progression and strong inhomogeneous broadening. The polarizability change on electronic excitation, Δ α=2.89·10 -38 C·m 2/V (260 A 3), is five times smaller than in neutral astaxanthin. This value reflects the larger energetic distance from the lowest excited state to the higher excited states than in the neutral molecule.

  5. Excited state absorption spectra and intersystem crossing kinetics in diazanaphthalenes

    NASA Astrophysics Data System (ADS)

    Scott, Gary W.; Talley, Larry D.; Anderson, Robert W.

    1980-05-01

    Picosecond time-resolved, excited state absorption spectra in the visible following excitation at 355 nm are discussed for room temperature solutions of four diazanaphthalenes (DN)—quinoxaline (1,4-DN), quinazoline (1,3-DN), cinnoline (1,2-DN), and phthalazine (2,3-DN). Kinetics of singlet state decay are obtained by monitoring the decay of Sn←S1 bands. The intersystem crossing rate constant (kisc) is found to vary as kisc(1,4-DN)≳kisc(1,3-DN)≳kisc(1,2-DN). The kisc in phthalazine could not be determined from the weak, visible Sn←S1 absorption. Assuming rapid singlet vibrational relaxation and only minor effects due to energy gap variations, these experimental results agree with statistical limit predictions for the relative nonradiative rate. Calculations of the spin-orbit coupling matrix element βel= , using INDO wave functions, give the ordering βel(1,4-DN)≳βel(2,3-DN)≳βel(1,3-DN) ≳βel(1,2-DN).

  6. Estimation of damped oscillation associated spectra from ultrafast transient absorption spectra.

    PubMed

    van Stokkum, Ivo H M; Jumper, Chanelle C; Snellenburg, Joris J; Scholes, Gregory D; van Grondelle, Rienk; Malý, Pavel

    2016-11-07

    When exciting a complex molecular system with a short optical pulse, all chromophores present in the system can be excited. The resulting superposition of electronically and vibrationally excited states evolves in time, which is monitored with transient absorption spectroscopy. We present a methodology to resolve simultaneously the contributions of the different electronically and vibrationally excited states from the complete data. The evolution of the excited states is described with a superposition of damped oscillations. The amplitude of a damped oscillation cos(ωnt)exp(-γnt) as a function of the detection wavelength constitutes a damped oscillation associated spectrum DOASn(λ) with an accompanying phase characteristic φn(λ). In a case study, the cryptophyte photosynthetic antenna complex PC612 which contains eight bilin chromophores was excited by a broadband optical pulse. Difference absorption spectra from 525 to 715 nm were measured until 1 ns. The population dynamics is described by four lifetimes, with interchromophore equilibration in 0.8 and 7.5 ps. We have resolved 24 DOAS with frequencies between 130 and 1649 cm(-1) and with damping rates between 0.9 and 12 ps(-1). In addition, 11 more DOAS with faster damping rates were necessary to describe the "coherent artefact." The DOAS contains both ground and excited state features. Their interpretation is aided by DOAS analysis of simulated transient absorption signals resulting from stimulated emission and ground state bleach.

  7. Estimation of damped oscillation associated spectra from ultrafast transient absorption spectra

    NASA Astrophysics Data System (ADS)

    van Stokkum, Ivo H. M.; Jumper, Chanelle C.; Snellenburg, Joris J.; Scholes, Gregory D.; van Grondelle, Rienk; Malý, Pavel

    2016-11-01

    When exciting a complex molecular system with a short optical pulse, all chromophores present in the system can be excited. The resulting superposition of electronically and vibrationally excited states evolves in time, which is monitored with transient absorption spectroscopy. We present a methodology to resolve simultaneously the contributions of the different electronically and vibrationally excited states from the complete data. The evolution of the excited states is described with a superposition of damped oscillations. The amplitude of a damped oscillation cos(ωnt)exp(-γnt) as a function of the detection wavelength constitutes a damped oscillation associated spectrum DOASn(λ) with an accompanying phase characteristic φn(λ). In a case study, the cryptophyte photosynthetic antenna complex PC612 which contains eight bilin chromophores was excited by a broadband optical pulse. Difference absorption spectra from 525 to 715 nm were measured until 1 ns. The population dynamics is described by four lifetimes, with interchromophore equilibration in 0.8 and 7.5 ps. We have resolved 24 DOAS with frequencies between 130 and 1649 cm-1 and with damping rates between 0.9 and 12 ps-1. In addition, 11 more DOAS with faster damping rates were necessary to describe the "coherent artefact." The DOAS contains both ground and excited state features. Their interpretation is aided by DOAS analysis of simulated transient absorption signals resulting from stimulated emission and ground state bleach.

  8. High durability solar absorptive coating and methods for making same

    DOEpatents

    Hall, Aaron C.; Adams, David P.

    2016-11-22

    The present invention relates to solar absorptive coatings including a ceramic material. In particular, the coatings of the invention are laser-treated to further enhance the solar absorptivity of the material. Methods of making and using such materials are also described.

  9. Solar Energetic Particle Spectra Measured with PAMELA

    NASA Astrophysics Data System (ADS)

    Ryan, James; Bruno, Alessandro; Boezio, Mirko; Bravar, Ulisse; Christian, Eric; Georgia, De Nolfo; Martucci, Matteo; Merge, Matteo; Munini, Riccardo; Sparvoli, Roberta; Stochaj, Steven; Pamela Collaboration

    2017-01-01

    We have measured the event integrated spectra from several SEP events from 2006 to 2014 in the energy range starting at 80 MeV and extending well above the neutron monitor threshold. The PAMELA instrument is in a high inclination, low Earth orbit and has access to SEPs when at high geographic latitudes. This means that the spectra have been assembled from regularly spaced measurements with gaps during the course of the event. Furthermore, the field of view of PAMELA is small and during the high latitude passes it scans a wide range of asymptotic directions as the spacecraft moves. Correcting for data gaps and solid angle effects, we have compiled event-integrated intensity spectra that typically exhibit power law shapes in energy with an exponential roll over. The events analyzed include two, maybe three, GLEs. In those cases the roll over energy lies above the neutron monitor threshold (1 GV) while the others are lower. We see no qualitative difference between the spectra of GLE vs. non-GLE events. National Science Foundation, NASA, Italian Space Agency, Russian Space Agency.

  10. An Inverse Modeling Approach to Estimating Phytoplankton Pigment Concentrations from Phytoplankton Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.

    2011-01-01

    Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.

  11. Enhanced light absorption of solar cells and photodetectors by diffraction

    DOEpatents

    Zaidi, Saleem H.; Gee, James M.

    2005-02-22

    Enhanced light absorption of solar cells and photodetectors by diffraction is described. Triangular, rectangular, and blazed subwavelength periodic structures are shown to improve performance of solar cells. Surface reflection can be tailored for either broadband, or narrow-band spectral absorption. Enhanced absorption is achieved by efficient optical coupling into obliquely propagating transmitted diffraction orders. Subwavelength one-dimensional structures are designed for polarization-dependent, wavelength-selective absorption in solar cells and photodetectors, while two-dimensional structures are designed for polarization-independent, wavelength-selective absorption therein. Suitable one and two-dimensional subwavelength periodic structures can also be designed for broadband spectral absorption in solar cells and photodetectors. If reactive ion etching (RIE) processes are used to form the grating, RIE-induced surface damage in subwavelength structures can be repaired by forming junctions using ion implantation methods. RIE-induced surface damage can also be removed by post RIE wet-chemical etching treatments.

  12. Optical Absorption Spectra and Excitons of Dye-Substrate Interfaces: Catechol on TiO2(110).

    PubMed

    Mowbray, Duncan John; Migani, Annapaola

    2016-06-14

    Optimizing the photovoltaic efficiency of dye-sensitized solar cells (DSSC) based on staggered gap heterojunctions requires a detailed understanding of sub-band gap transitions in the visible from the dye directly to the substrate's conduction band (CB) (type-II DSSCs). Here, we calculate the optical absorption spectra and spatial distribution of bright excitons in the visible region for a prototypical DSSC, catechol on rutile TiO2(110), as a function of coverage and deprotonation of the OH anchoring groups. This is accomplished by solving the Bethe-Salpeter equation (BSE) based on hybrid range-separated exchange and correlation functional (HSE06) density functional theory (DFT) calculations. Such a treatment is necessary to accurately describe the interfacial level alignment and the weakly bound charge transfer transitions that are the dominant absorption mechanism in type-II DSSCs. Our HSE06 BSE spectra agree semiquantitatively with spectra measured for catechol on anatase TiO2 nanoparticles. Our results suggest deprotonation of catechol's OH anchoring groups, while being nearly isoenergetic at high coverages, shifts the onset of the absorption spectra to lower energies, with a concomitant increase in photovoltaic efficiency. Further, the most relevant bright excitons in the visible region are rather intense charge transfer transitions with the electron and hole spatially separated in both the [110] and [001] directions. Such detailed information on the absorption spectra and excitons is only accessible via periodic models of the combined dye-substrate interface.

  13. Galactic Soft X-ray Emission Revealed with Spectroscopic Study of Absorption and Emission Spectra

    NASA Astrophysics Data System (ADS)

    Yamasaki, Noriko Y.; Mitsuda, K.; Takei, Y.; Hagihara, T.; Yoshino, T.; Wang, Q. D.; Yao, Y.; McCammon, D.

    2010-03-01

    Spectroscopic study of Oxygen emission/absorption lines is a new tool to investigate the nature of the soft X-ray background. We investigated the emission spectra of 14 fields obtained by Suzaku, and detected OVII and OVIII lines separately. There is an almost isotropic OVII line emission with 2 LU intensity. As the attenuation length in the Galactic plane for that energy is short, that OVII emission should arise within 300 pc of our neighborhood. In comparison with the estimated emission measure for the local bubble, the most plausible origin of this component is the solar wind charge exchange with local interstellar materials. Another component presented from the correlation between the OVII and OVIII line intensity is a thermal emission with an apparent temperature of 0.2 keV with a field-to-field fluctuation of 10% in temperature, while the intensity varies about a factor of 4. By the combination analysis of the emission and the absorption spectra, we can investigate the density and the scale length of intervening plasma separately. We analyzed the Chanrdra grating spectra of LMC X-3 and PKS 2155-304, and emission spectra toward the line of sight by Suzaku. In both cases, the combined analysis showed that the hot plasma is not iso-thermal nor uniform. Assuming an exponential disk distribution, the thickness of the disk is as large as a few kpc. It suggests that there is a thick hot disk or hot halo surrounding our Galaxy, which is similar to X-ray hot haloes around several spiral galaxies.

  14. Removal of Mars atmospheric gas absorption from Phobos-2/ISM spectra

    NASA Astrophysics Data System (ADS)

    Castronuovo, M. M.; Ulivieri, C.

    Infrared imaging spectrometer (ISM) is an imaging spectrometer in the range of the near infrared that flew onboard of Soviet probe Phobos 2 in 1989. Its first objective was to obtain information about the mineralogic composition of the soil of Mars and its satellite Phobos, and about the spatial and temporal variability of the Martian atmosphere. In the spectral range of the instrument 0.76-3.16 microns, the radiation emerging from Mars' atmosphere is almost entirely due to the solar radiation reflected by the soil. Therefore, independent knowledge of the spectral transmittance of the atmosphere allows us to eliminate the atmospheric effect from the ISM data and so to obtain the spectral signature of the planet soil. In the present work the Martian atmospheric transmittance has been computed using FASCODE and the spectral lines atlas HITRAN of AFGL. The atmospheric profile has been defined on the basis of the work of Moroz et al. Then, the convolution of the computed transmittance with the response functions of ISM has been carried out to obtain the atmospheric absorption from the measurements it is necessary to renormalize the transmittance computed with FASCODE so that the depth of the absorption bands is the same as that of the bands measured by ISM. Finally, dividing the measured spectra by the computed ones we obtain the spectra signature of Martian soil from which it is possible to deduce the mineralogical composition of the observed zones.

  15. Applying Zeeman Doppler imaging to solar spectra

    NASA Astrophysics Data System (ADS)

    Hussain, G. A. J.; Saar, S. H.; Collier Cameron, A.

    2004-03-01

    A new generation of spectro-polarimeters with high throughput (e.g. CFHT/ESPADONS and LBT/PEPSI) is becoming available. This opportunity can be exploited using Zeeman Doppler imaging (ZDI), a technique that inverts time-series of Stokes V spectra to map stellar surface magnetic fields (Semel 1989). ZDI is assisted by ``Least squares deconvolution'' (LSD), which sums up the signal from 1000's of photospheric lines to produce a mean deconvolved profile with higher S:N (Donati & Collier Cameron 1997).

  16. Absorption in X-ray spectra of high-redshift quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Fiore, Fabrizio; Wilkes, Belinda; Mcdowell, Jonathan; Bechtold, Jill

    1994-01-01

    We present evidence that X-ray absorption is common in high-redshift quasars. We have studied six high-redshift (z approximately 3) quasars with the ROSAT Position Sensitive Proportional Counter (PSPC) of which four are in directions of low Galactic N(sub H). Three out of these four show excess absorption, while only three in approximately 50 z approximately less than 0.4 quasars do, indicating that such absorption must be common, but not ubiquitous, at high redshifts, and that the absorbers must lie at z greater than 0.4. The six quasars were: S5 0014+81, Q0420-388, PKS 0438-436, S4 0636+680. PKS 2000-330, PKS 2126-158, which have redshifts between 2.85 and 3.78. PKS 0438-436 and PKS 2126-158 show evidence for absorption above the local Galactic value at better than 99.999% confidence level. If the absorber is at the redshift of the quasar, then values of N(sub H) = (0.86(+0.49, -0.28)) x 10(exp 22) atoms/sq cm for PKS 0438-436, and N(sub H) = (1.45(+1.20, -0.64)) x 10(exp 22) atoms/ sq cm for PKS 2126-158, are implied, assuming solar abundances. The spectrum of S4 0636+680 also suggests the presence of a similarly large absorption column density at the 98% confidence level. This absorption reverses the trend for the most luminous active galactic nuclei (AGN) to have the least X-ray absorption, so a new mechanism is likely to be responsible. Intervening absorption due to damped Lyman(alpha) systems is a plausible cause. We also suggest, as an intrinsic model, that intracluster material, e.g., a cooling flow, around the quasar could account for both the X-ray spectrum and other properties of these quasars. All the quasars are radio-loud and three are gigahertz peaked (two of the three showing absorption). No excess absorption above the Galactic value is seen toward Q0420-388. This quasar has two damped Lyman(alpha) systems at z = 3.08. The limit on the X-ray column density implies a low ionization fraction, N(H I)/N(H) approximately greater than 4 x 10(exp -3) (3

  17. Simulation of solar radiation absorption in vegetation canopies

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Smith, J. A.

    1980-01-01

    A solar radiation canopy absorption model, including multiple scattering effects, was developed and tested for a lodgepole pine (Pinus contorta) canopy. Reflectance above the canopy, spectral transmittance to the ground layer, and geometric and spectral measurements of canopy elements were made. Relatively large differentials occurred in spectral absorption by canopy layers, especially in the photosynthetically active region, as a function of solar zenith angle. In addition, the proportion of total global irradiance absorbed by individual layers varied greatly as a function of solar zenith angle. However, absorption by the entire canopy system remained relatively constant.

  18. Development of solar driven absorption air conditioners and heat pumps

    NASA Astrophysics Data System (ADS)

    Dao, K.; Wahlig, M.; Wali, E.; Rasson, J.; Molishever, E.

    1980-03-01

    The development of absorption refrigeration systems for solar active heating and cooling applications is discussed. The approaches investigated are those using air-cooled condenser-absorber and those leading to coefficient of performances (COP) that increase continuously with heat source temperature. This is primarily an experimental project, with the emphasis on designing, fabricating and testing absorption chillers in operating regimes that are particularly suited for solar energy applications. Its demonstrated that the conventional single-effect ammonia-water absorption cycle can be used (with minor modifications) for solar cooling.

  19. [Decomposition of hemoglobin UV absorption spectrum into absorption spectra of prosthetic group and apoprotein by means of an additive model].

    PubMed

    Lavrinenko, I A; Vashanov, G A; Artyukhov, V G

    2015-01-01

    The decomposition pathways of hemoglobin UV absorption spectrum into the absorption spectra of the protein and non-protein components are proposed and substantiated by means of an additive model. We have established that the heme component has an absorption band with a maximum at λ(max) = 269.2 nm (ε = 97163) and the apoprotein component has an absorption band with a maximum at λ(max) = 278.4 nm (ε = 48669) for the wavelength range from 240.0 to 320.0 nm. An integral relative proportion of absorption for the heme fraction (78.8%) and apoprotein (21.2%) in the investigating wavelength range is defined.

  20. [Absorption spectra of nucleic acids and related compounds in the spectral region 120--280 nm].

    PubMed

    Kiseleva, M N; Zarochentseva, E P; Dodonova, N Ia

    1975-01-01

    The absorption spectra of thin films of nucleic acids, nucleosides, nucleotides, D-ribose, Na3PO4 in vacuum ultraviolet region are measured. In the spectral region 280--160 nm the absorption spectra consist of the bands of nucleic acid bases. In the range shorter than 160 nm the absorption is determined by phosphate and D-ribose groups. The methods of thin films preparation are discussed.

  1. A QM/MM study of absorption spectra of uracil derivatives in aqueous solution

    NASA Astrophysics Data System (ADS)

    Nakayama, Akira

    2016-12-01

    The absorption spectra of three representative uracil derivatives (uracil, thymine, and 5-fluorouracil) in aqueous solution are investigated by the QM/MM approach, where the CASPT2 method is employed to evaluate the excitation energies. The computed absorption spectra are in good agreement with the experimental results, and in particular, the relative values of the absorption maximum between these derivatives are well reproduced in the simulations.

  2. Studies of OH - absorption and optical absorption spectra in LiNbO 3 : Mg, Ti crystals

    NASA Astrophysics Data System (ADS)

    Liu, Jianjun; Zhang, Wanlin; Zhang, Guangyin

    1996-02-01

    The OH - absorption spectra and the UV absorption edges of LiNbO 3 : Mg, Ti crystals have been measured. It is shown that Ti doping raises the Mg doping threshold level, and shifts the absorption edge towards longer wavelengths. The results can be explained by the formation of Mg Li2+Ti Nb4+ pairs after all antisite defects Nb Li have been replaced.

  3. Titan solar occultation observations reveal transit spectra of a hazy world.

    PubMed

    Robinson, Tyler D; Maltagliati, Luca; Marley, Mark S; Fortney, Jonathan J

    2014-06-24

    High-altitude clouds and hazes are integral to understanding exoplanet observations, and are proposed to explain observed featureless transit spectra. However, it is difficult to make inferences from these data because of the need to disentangle effects of gas absorption from haze extinction. Here, we turn to the quintessential hazy world, Titan, to clarify how high-altitude hazes influence transit spectra. We use solar occultation observations of Titan's atmosphere from the Visual and Infrared Mapping Spectrometer aboard National Aeronautics and Space Administration's (NASA) Cassini spacecraft to generate transit spectra. Data span 0.88-5 μm at a resolution of 12-18 nm, with uncertainties typically smaller than 1%. Our approach exploits symmetry between occultations and transits, producing transit radius spectra that inherently include the effects of haze multiple scattering, refraction, and gas absorption. We use a simple model of haze extinction to explore how Titan's haze affects its transit spectrum. Our spectra show strong methane-absorption features, and weaker features due to other gases. Most importantly, the data demonstrate that high-altitude hazes can severely limit the atmospheric depths probed by transit spectra, bounding observations to pressures smaller than 0.1-10 mbar, depending on wavelength. Unlike the usual assumption made when modeling and interpreting transit observations of potentially hazy worlds, the slope set by haze in our spectra is not flat, and creates a variation in transit height whose magnitude is comparable to those from the strongest gaseous-absorption features. These findings have important consequences for interpreting future exoplanet observations, including those from NASA's James Webb Space Telescope.

  4. Titan solar occultation observations reveal transit spectra of a hazy world

    PubMed Central

    Robinson, Tyler D.; Maltagliati, Luca; Marley, Mark S.; Fortney, Jonathan J.

    2014-01-01

    High-altitude clouds and hazes are integral to understanding exoplanet observations, and are proposed to explain observed featureless transit spectra. However, it is difficult to make inferences from these data because of the need to disentangle effects of gas absorption from haze extinction. Here, we turn to the quintessential hazy world, Titan, to clarify how high-altitude hazes influence transit spectra. We use solar occultation observations of Titan’s atmosphere from the Visual and Infrared Mapping Spectrometer aboard National Aeronautics and Space Administration’s (NASA) Cassini spacecraft to generate transit spectra. Data span 0.88–5 μm at a resolution of 12–18 nm, with uncertainties typically smaller than 1%. Our approach exploits symmetry between occultations and transits, producing transit radius spectra that inherently include the effects of haze multiple scattering, refraction, and gas absorption. We use a simple model of haze extinction to explore how Titan’s haze affects its transit spectrum. Our spectra show strong methane-absorption features, and weaker features due to other gases. Most importantly, the data demonstrate that high-altitude hazes can severely limit the atmospheric depths probed by transit spectra, bounding observations to pressures smaller than 0.1–10 mbar, depending on wavelength. Unlike the usual assumption made when modeling and interpreting transit observations of potentially hazy worlds, the slope set by haze in our spectra is not flat, and creates a variation in transit height whose magnitude is comparable to those from the strongest gaseous-absorption features. These findings have important consequences for interpreting future exoplanet observations, including those from NASA’s James Webb Space Telescope. PMID:24876272

  5. Light Trapping, Absorption and Solar Energy Harvesting by Artificial Materials

    SciTech Connect

    John, Sajeev

    2014-06-04

    We have studied light trapping in conical pore silicon photonic crystal architectures. We find considerable improvement in solar absorption (relative to nanowires) in a square lattice of conical nano-pores.

  6. Isotopic ozone in the 5 μ region from high resolution balloon-borne and ground-based FTIR solar spectra.

    NASA Astrophysics Data System (ADS)

    Goldman, A.; Schoenfeld, W. G.; Stephen, T. M.; Murcray, F. J.; Rinsland, C. P.; Barbe, A.; Hamdouni, A.; Flaud, J.-M.; Camy-Peyret, C.

    1998-05-01

    High resolution (0.002-0.004 cm-1) i.r. solar absorption spectra of the stratosphere obtained during University of Denver balloon flights, and from the ground-based Network for the Detection of Stratospheric Change (NDSC) observatory at Mauna Loa, Hawaii, show numerous spectral features of several isotopic species of O3, in both the 10 μ and 5 μ regions. Many of the 5 μ lines reported here have not been previously observed in atmospheric spectra. The identification and quantification of the lines proceed by combined analyses of the atmospheric spectra, laboratory spectra of enriched samples, and updated line parameter calculations.

  7. [Observation and diagnostic of ultraviolet spectra in the solar transition region].

    PubMed

    Zhang, Min; Wang, Dong

    2011-12-01

    The solar transition region is the thin atmosphere layer between the chromosphere and corona. Although the thickness of the solar transition region is only several hundred kilometers, the parameters of the plasma change dramatically. The temperature increases from 10(4) to 10(6) K and the density drops from 10(10) to 10(8) cm(-3). The emission of the solar transition region is generally of optical-thin far-ultraviolet (FUV) spectral lines, extreme-ultraviolet (EUV) spectral lines and background continuous spectral lines. However, the traditional ground-based observations can not be made for FUV/EUV lines, owing to their strong absorption by ozone and other molecules in the earth's atmosphere. Thus, FUV/EUV lines only can be obtained with space-based observations. In recent decades, the successful launch of space-borne instruments opened a new era of the research for the solar transition region. The present paper reviews the observation history of ultraviolet spectra in the solar transition region and some kinds of space-borne instruments, especially several important spectrometers in recent ten years. At the same time, the diagnostics of the emissivity, electron density and electronic temperature of ultraviolet spectra in the solar transition region are expounded in detail. The shape of ultraviolet line is discussed and several important parameters with physical significance are showed using SOHO/SUMER spectrometer.

  8. Influence of substitution on the T-T absorption spectra in furocoumarins

    NASA Astrophysics Data System (ADS)

    Bryantseva, N. G.

    2006-11-01

    The present paper deals with compounds called photosensitizers, namely, psoralen, 3,4-phenyl-4',5'- cyclohexylpsoralen, 4'-methyl-3,4-cycloheptyl psoralen, 4',5'-dimethyl-3,4-cyclohexyl psoralen (fig. 1). The absorption spectra from excited triplets states were investigated. The computed triplet-triplet absorption spectra of research compounds have been determined using INDO method. The experimental triplet-triplet absorption spectra have been obtained using the technique of laser flash photolysis in ethanol. The compare of computed and experimental data is shows that the computed second band wavelenght throughout agree very well (0,5-6 nm) with experimental data.

  9. [Terahertz Absorption Spectra Simulation of Glutamine Based on Quantum-Chemical Calculation].

    PubMed

    Zhang, Tian-yao; Zhang, Zhao-hui; Zhao, Xiao-yan; Zhang, Han; Yan, Fang; Qian, Ping

    2015-08-01

    With simulation of absorption spectra in THz region based on quantum-chemical calculation, the THz absorption features of target materials can be assigned with theoretical normal vibration modes. This is necessary for deeply understanding the origin of THz absorption spectra. The reliabilities of simulation results mainly depend on the initial structures and theoretical methods used throughout the calculation. In our study, we utilized THz-TDS to obtain the THz absorption spectrum of solid-state L-glutamine. Then three quantum-chemical calculation schemes with different initial structures commonly used in previous studies were proposed to study the inter-molecular interactions' contribution to the THz absorption of glutamine, containing monomer structure, dimer structure and crystal unit cell structure. After structure optimization and vibration modes' calculation based on density functional theory, the calculation results were converted to absorption spectra by Lorentzian line shape function for visual comparison with experimental spectra. The result of dimmer structure is better than monomer structure in number of absorption features while worse than crystal unit cell structure in position of absorption peaks. With the most reliable simulation result from crystal unit cell calculation, we successfully assigned all three experimental absorption peaks of glutamine ranged from 0.3 to 2.6 THz with overall vibration modes. Our study reveals that the crystal unit cell should be used as initial structure during theoretical simulation of solid-state samples' THz absorption spectrum which comprehensively considers not only the intra-molecular interactions but also inter-molecular interactions.

  10. Assignment of benzodiazepine UV absorption spectra by the use of photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Khvostenko, O. G.; Tzeplin, E. E.; Lomakin, G. S.

    2002-04-01

    Correlations between singlet transition energies and energy gaps of corresponding pairs of occupied and unoccupied molecular orbitals were revealed in a series of benzodiazepines. The occupied orbital energies were taken from the photoelectron spectra of the compound investigated, the unoccupied ones were obtained from MNDO/d calculations, and the singlet energies were taken from the UV absorption spectra. The correspondence of the singlet transitions to certain molecular orbitals was established using MNDO/d calculations and comparing between UV and photoelectron spectra. It has been concluded that photoelectron spectroscopy can be applied for interpretation of UV absorption spectra of various compounds on the basis of similar correlations.

  11. Optical absorption of several nanostructures arrays for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Xu, Zhaopeng; Qiao, Huiling; Huangfu, Huichao; Li, Xiaowei; Guo, Jingwei; Wang, Haiyan

    2015-12-01

    To improve the efficiency and reduce the cost of solar cells, it's important to enhance the light absorption. Within the visible solar spectrum based on optimization simulations by COMSOL Multiphysics, the optical absorption of silicon cylindrical nanowires, nanocones and inverted nanocones was calculated respectively. The results reveal that the average absorption for the nanocones between 400 and 800 nm is 70.2%, which is better than cylindrical nanowires (55.3%), inverted nanocones (42.3%) and bulk silicon (42.2%). In addition, more than 95% of light from 630 to 800 nm is reflected for inverted nanocones, which can be used to enhance infrared reflection in photovoltaic devices.

  12. Protonation effects on the UV/Vis absorption spectra of imatinib: a theoretical and experimental study.

    PubMed

    Grante, Ilze; Actins, Andris; Orola, Liana

    2014-08-14

    An experimental and theoretical investigation of protonation effects on the UV/Vis absorption spectra of imatinib showed systematic changes of absorption depending on the pH, and a new absorption band appeared below pH 2. These changes in the UV/Vis absorption spectra were interpreted using quantum chemical calculations. The geometry of various imatinib cations in the gas phase and in ethanol solution was optimized with the DFT/B3LYP method. The resultant geometries were compared to the experimentally determined crystal structures of imatinib salts. The semi-empirical ZINDO-CI method was employed to calculate the absorption lines and electronic transitions. Our study suggests that the formation of the extra near-UV absorption band resulted from an increase of imatinib trication concentration in the solution, while the rapid increase of the first absorption maximum could be attributed to both the formation of imatinib trication and tetracation.

  13. Energy spectra of ions from impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Richardson, I. G.; Wenzel, K.-P.

    1991-01-01

    A study of the energy spectra of ions from impulsive solar flares in the 0.1 to 100 MeV region is reported with data from the combined observations of experiments on the ISEE 3 and IMP 8 spacecraft. Most of the events studied are dominated by He, and these He spectra show a persistent steepening or break above about 10 MeV resulting in an increase in the power-law spectral indices from about 2 to about 3.5 or more. One event, dominated by protons, shows a clear maximum in the spectrum near 1 MeV. If the rollover in the spectrum below 1 MeV is interpreted as a consequence of matter traversal in the solar atmosphere, then the source of the acceleration would lie only about 800 km above the photosphere, well below the corona. An alternative interpretation is that trapping in the acceleration region directly causes a peak in the spectrum.

  14. Inferring surface solar absorption from broadband satellite measurements

    NASA Technical Reports Server (NTRS)

    Cess, Robert D.; Vulis, Inna L.

    1989-01-01

    An atmospheric solar radiation model and surface albedo models that include wavelength dependence and surface anisotropy are combined to study the possibility of inferring the surface solar absorption from satellite measurements. The model includes ocean, desert, pasture land, savannah, and bog surface categories. Problems associated with converting narrowband measurements to broadband quantities are discussed, suggesting that it would be easier to infer surface solar absorption from broadband measurements directly. The practice of adopting a linear relationship between planetary and surface albedo to estimate surface albedos from satellite measurements is examined, showing that the linear conversion between broadband planetary and surface albedos is strongly dependent on vegetation type. It is suggested that there is a linear slope-offset relationship between surface and surface-atmosphere solar absorption.

  15. Solar absorption in thick and multilayered glazings

    SciTech Connect

    Powles, Rebecca; Curcija, Dragan; Kohler, Christian

    2002-02-01

    Thick and multilayered glazings generally have a nonuniform distribution of absorbed solar radiation which is not taken into account by current methods for calculating the center of glass solar gain and thermal performance of glazing systems. This paper presents a more accurate method for calculating the distribution of absorbed solar radiation inside thick and multilayered glazings and demonstrates that this can result in a small but significant difference in steady-state temperature profile and Solar Heat Gain Coefficient for some types of glazing systems when compared to the results of current methods. This indicates that a more detailed approach to calculating the distribution of absorbed solar radiation inside glazings and resulting thermal performance may be justified for certain applications.

  16. Hybrid nanocone forests with high absorption in full-solar spectrum for solar cell applications

    NASA Astrophysics Data System (ADS)

    Yang, Yudong; Mao, Haiyang; Xiong, Jijun; Ming, Anjie; Wang, Weibing

    2016-11-01

    In this work, hybrid nanocone forests (HNFs) with high absorption in full-solar-spectrum are fabricated based on a plasma repolymerization technique. The HNFs combine light trapping effect of the nanocone forests with surface plasmon resonance effect of the metallic nanoparticles, thus can achieve an optimized absorption larger than 80% in the full-solar spectrum (i.e. 200-2500nm). Besides, with the hybrid nanostructures, the absorption decrease around the Si bandgap width can be narrowed greatly, while the normalized utilization efficiency of solar radiation can be increased. Therefore, usage of the HNFs as a texture structure in solar cells to obtain higher conversion efficiencies is foreseeable.

  17. Systematic view of optical absorption spectra in the actinide series

    SciTech Connect

    Carnall, W.T.

    1985-01-01

    In recent years sufficient new spectra of actinides in their numerous valence states have been measured to encourage a broader scale analysis effort than was attempted in the past. Theoretical modelling in terms of effective operators has also undergone development. Well established electronic structure parameters for the trivalent actinides are being used as a basis for estimating parameters in other valence states and relationships to atomic spectra are being extended. Recent contributions to our understanding of the spectra of 4+ actinides have been particularly revealing and supportive of a developing general effort to progress beyond a preoccupation with modelling structure to consideration of the much broader area of structure-bonding relationships. We summarize here both the developments in modelling electronic structure and the interpretation of apparent trends in bonding. 60 refs., 9 figs., 1 tab.

  18. Applications of principal component analysis to breath air absorption spectra profiles classification

    NASA Astrophysics Data System (ADS)

    Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Y.

    2015-12-01

    The results of numerical simulation of application principal component analysis to absorption spectra of breath air of patients with pulmonary diseases are presented. Various methods of experimental data preprocessing are analyzed.

  19. A method for normalization of X-ray absorption spectra

    SciTech Connect

    Weng, T.-C.; Waldo, G.S.; Penner-Hahn, J.E.

    2010-07-20

    Accurate normalization of X-ray absorption data is essential for quantitative analysis of near-edge features. A method, implemented as the program MBACK, to normalize X-ray absorption data to tabulated mass absorption coefficients is described. Comparison of conventional normalization methods with MBACK demonstrates that the new normalization method is not sensitive to the shape of the background function, thus allowing accurate comparison of data collected in transmission mode with data collected using fluorescence ion chambers or solid-state fluorescence detectors. The new method is shown to have better reliability and consistency and smaller errors than conventional normalization methods. The sensitivity of the new normalization method is illustrated by analysis of data collected during an equilibrium titration.

  20. Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter

    NASA Technical Reports Server (NTRS)

    Hoepffner, Nicolas; Sathyendranath, Shubha

    1993-01-01

    The contributions of detrital particles and phytoplankton to total light absorption are retrieved by nonlinear regression on the absorption spectra of total particles from various oceanic regions. The model used explains more than 96% of the variance in the observed particle absorption spectra. The resulting absorption spectra of phytoplankton are then decomposed into several Gaussian bands reflecting absorption by phytoplankton pigments. Such a decomposition, combined with high-performance liquid chromatography data on phytoplankton pigment concentrations, allows the computation of specific absorption coefficients for chlorophylls a, b, and c and carotenoids. The spectral values of these in vivo absorption coefficients are then discussed, considering the effects of secondary pigments which were not measured quantitatively. We show that these coefficients can be used to reconstruct the absorption spectra of phytoplankton at various locations and depths. Discrepancies that do occur at some stations are explained in terms of particle size effect. These coefficients can be used to determine the concentrations of phytoplankton pigments in the water, given the absorption spectrum of total particles.

  1. Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter

    NASA Astrophysics Data System (ADS)

    Hoepffner, Nicolas; Sathyendranath, Shubha

    1993-12-01

    The contributions of detrital particles and phytoplankton to total light absorption are retrieved by nonlinear regression on the absorption spectra of total particles from various oceanic regions. The model used explains more than 96% of the variance in the observed particle absorption spectra. The resulting absorption spectra of phytoplankton are then decomposed into several Gaussian bands reflecting absorption by phytoplankton pigments. Such a decomposition, combined with high-performance liquid chromatography data on phytoplankton pigment concentrations, allows the computation of specific absorption coefficients for chlorophylls a, b, and c and carotenoids. The spectral values of these in vivo absorption coefficients are then discussed, considering the effects of secondary pigments which were not measured quantitatively. We show that these coefficients can be used to reconstruct the absorption spectra of phytoplankton at various locations and depths. Discrepancies that do occur at some stations are explained in terms of particle size effect. These coefficients can be used to determine the concentrations of phytoplankton pigments in the water, given the absorption spectrum of total particles.

  2. Identification of the V3 vibration-rotation band of CF4 in balloon-borne infrared solar spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, D. G.; Murcray, F. J.; Cook, G. R.; Van Allen, J. W.; Bonomo, F. S.; Blatherwick, R. D.

    1979-01-01

    Infrared solar spectra in the 850 to 1350/cm region, at 0.02/cm resolution, were obtained during a balloon flight made on 27 October 1978 from Alamogordo, New Mexico. Analysis of the 1275-1290/cm region indicates that the atmospheric absorption lines of CH4, N2O, H2O, HNO3 and CO2 near 1283/cm are super-imposed on a broader absorption feature which we interpret as due to the V3 band of CF4. Fine structure of CF4 is also identified. Preliminary estimates from the sunset spectra show approximately 75 pptv CF4 near 25 km.

  3. HITRAN spectroscopy evaluation using solar occultation FTIR spectra

    NASA Astrophysics Data System (ADS)

    Toon, Geoffrey C.; Blavier, Jean-Francois; Sung, Keeyoon; Rothman, Laurence S.; E. Gordon, Iouli

    2016-10-01

    High resolution FTIR solar occultation spectra, acquired by the JPL MkIV Fourier transform spectrometer from balloon, covering 650-5650 cm-1 at 0.01 cm-1 resolution, are systematically analyzed using the last four versions of the HITRAN linelist (2000, 2004, 2008, 2012). The rms spectral fitting residuals are used to assess the quality and adequacy of the linelists as a function of wavenumber and altitude. Although there have been substantial overall improvements with each successive version of HITRAN, there are nevertheless a few spectral regions where the latest HITRAN version (2012) has regressed, or produces residuals that far exceed the noise level. A few of these instances are investigated further and their causes identified. We emphasize that fitting atmospheric spectra, in addition to laboratory spectra, should be part of the quality assurance for any new linelist before public release.

  4. Solar power absorption in a glass tube

    NASA Technical Reports Server (NTRS)

    Williams, Michael D.

    1987-01-01

    The optics of a glass tube to be used in near-Earth space at the focus of a solar concentrator has been examined, and an equation for the power absorbed from multiple-reflected light beams in the tube wall has been developed. The equation has been used to calculate the power absorbed by a highly transmissive form of fused silica. The equilibrium temperature reached by the tube with only radiative cooling has also been examined, and it shows a significant rise with large solar concentrations. The results apply specifically to cylindrical containment vessels for space-based solar-pumped lasers and generally to any similarly irradiated tubes.

  5. Improving optical absorptivity of natural dyes for fabrication of efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Hemmatzadeh, Reza; Mohammadi, Ahmad

    2013-11-01

    Efficient and cheap dye-sensitized solar cells (DSSCs) were fabricated using natural dyes from Pastinaca sativa and Beta vulgaris. Natural dyes are environmentally and economically superior to ruthenium-based dyes because they are nontoxic and cheap. However, the conversion efficiency of dye-sensitized solar cells based on natural dyes is low. One way to improve the DSSC performance is to enhance the absorptivity of extracted dyes. We investigated the influence of various factors in the extraction process, such as utilization of different extraction approaches, the acidity of extraction solvent, and different compounds of solvents on the optical absorption spectra. It was found that we could considerably enhance the optical absorptivity of dye and consequently the performance of DSSC by choosing a proper mixture of ethanol and water for extracting solvent and also the acidity of dye solution.

  6. Management of light absorption in extraordinary optical transmission based ultra-thin-film tandem solar cells

    NASA Astrophysics Data System (ADS)

    Mashooq, Kishwar; Talukder, Muhammad Anisuzzaman

    2016-05-01

    polygon, total absorption remains approximately the same. However, the total absorption suffers significantly if the holes are triangle. The transmission spectra of incident light into the bottom subcell, and hence the absorption, change significantly for square and circle holes if the active materials change to cadmium selenide (CdSe) and cadmium telluride (CdTe) in the top and bottom subcells, respectively. Although the intermediate metal layer may induce electron-hole pair recombination due to surface defects, the short-circuit current density of an ultra-thin plasmonic solar cell with an intermediate metal layer with two-dimensional hole array is >9% of that of a structure without the intermediate metal layer.

  7. Seasonal Solar Thermal Absorption Energy Storage Development.

    PubMed

    Daguenet-Frick, Xavier; Gantenbein, Paul; Rommel, Mathias; Fumey, Benjamin; Weber, Robert; Gooneseker, Kanishka; Williamson, Tommy

    2015-01-01

    This article describes a thermochemical seasonal storage with emphasis on the development of a reaction zone for an absorption/desorption unit. The heat and mass exchanges are modelled and the design of a suitable reaction zone is explained. A tube bundle concept is retained for the heat and mass exchangers and the units are manufactured and commissioned. Furthermore, experimental results of both absorption and desorption processes are presented and the exchanged power is compared to the results of the simulations.

  8. Electronic absorption spectra of blood plasma of patients with various forms of goiter

    NASA Astrophysics Data System (ADS)

    Ushenko, O. G.; Poliansky, I. Y.; Guminetskiy, S. G.; Motrich, A. V.; Hyrla, Ya. V.

    2012-01-01

    The results of absorption spectra of blood plasma in the ultraviolet and visible areas of the spectrum using the technique of spherical photometer. Possibilities of using these spectra to detect the diseases - diffuse toxic goiter and nodular euthyroid goiter and to control the surgical treatment of this pathology.

  9. Electronic absorption spectra of blood plasma of patients with various forms of goiter

    NASA Astrophysics Data System (ADS)

    Ushenko, O. G.; Poliansky, I. Y.; Guminetskiy, S. G.; Motrich, A. V.; Hyrla, Ya. V.

    2011-09-01

    The results of absorption spectra of blood plasma in the ultraviolet and visible areas of the spectrum using the technique of spherical photometer. Possibilities of using these spectra to detect the diseases - diffuse toxic goiter and nodular euthyroid goiter and to control the surgical treatment of this pathology.

  10. Analysis of absorption and scattering spectra for assessing apple fruit internal quality after harvest and storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optical absorption and scattering properties are useful for quantifying light interaction with plant tissue, as well as for quality assessment of horticultural products. The aim of this research was to measure the absorption and reduced scattering coefficient spectra of two cultivars of apple (Malus...

  11. The absorption spectra of the complexes of uranium (VI) with some β-diketones

    USGS Publications Warehouse

    Feinstein, H.I.

    1956-01-01

    The absorption spectra of the complexes of uranium (VI) with four β-dike tones were determined under various conditions of pH, concentration of uranium, and alcohol concentration. Under optimum conditions, the maximum molar absorptivity (31,200) is obtained using 2-furoyltrifluoroacetone. This compares with about 4,000 and 19,000 for the thiocyanate and dibenzoylmethane complexes, respectively.

  12. The Extragalactic Background Light and Absorption in Gamma Ray Spectra

    NASA Astrophysics Data System (ADS)

    Gilmore, Rudy C.

    2008-03-01

    Recent state-of-the-art semi-analytic models (SAMs) can now accurately model the history of galaxy formation and evolution. These SAMs utilize a 'forward evolution' approach and include all of the important processes for determining photon emission from galaxies, such as cooling and shock heating of gas, galaxy mergers, star formation and aging, supernova and AGN feedback, and the reprocessing of light by dust. I will be presenting our group's latest prediction of the extra-galactic background light based on this work and will discuss the implications for the attenuation of VHE gamma rays from distant sources due to pair-production. These results will be compared to recent limits placed on the EBL by observations of GeV and TeV blazar spectra by experiments such as H.E.S.S., MAGIC and VERITAS. The implications for reconstructing the intrinsic spectra of distant blazars will be addressed.

  13. On the nitrogen-induced far-infrared absorption spectra

    NASA Technical Reports Server (NTRS)

    Dore, P.; Filabozzi, A.

    1987-01-01

    The rototranslational absorption spectrum of gaseous N2 is analyzed, considering quadrupolar and hexadecapolar induction mechanisms. The available experimental data are accounted for by using a line-shape analysis in which empirical profiles describe the single-line translational profiles. Thus, a simple procedure is derived that allows the prediction of the N2 spectrum at any temperature. On the basis of the results obtained for the pure gas, a procedure to compute the far-infrared spectrum of the N2-Ar gaseous mixture is also proposed. The good agreement between computed and experimental N2-Ar data indicates that it is possible to predict the far-infrared absorption induced by N2 on the isotropic polarizability of any interacting partner.

  14. An iron absorption model of gamma-ray burst spectra

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.; Kargatis, Vincent E.

    1994-01-01

    Most gamma-ray bursts (GRBs) exhibit deficits of X-rays below approximately 200 keV. Here we consider a spectral model in which the burst source is shielded by an optically thick layer of circumburster material (CBM) rich in iron-group elements whose photoelectric absorption opacity exceeds the Thomson opacity below approximately 120 keV. For power-law distributions of absorption depths along the lines of sight the absorbed spectrum can indeed mimic the typial GRB spectrum. This model predicts that (a) the spectrum should evolve monotonically from hard to soft during each energy release, which is observed in most bursts, especially in fast rise exponential decay bursts; (b) Fe spectral features near 7 keV may be present in some bursts; and (c) the ratio of burst distances to the CBM and to Earth should be approximately 10(exp -11) if the spectral evolution is purely due to Fe stripping by the photons.

  15. Electronic and oscillation absorption spectra of blood plamsa at surgical diseases of thyroid gland

    NASA Astrophysics Data System (ADS)

    Guminetskiy, S. G.; Motrich, A. V.; Poliansky, I. Y.; Hyrla, Ya. V.

    2012-01-01

    The results of investigating the absorption spectra of blood plasma in the visible and infrared parts of spectra obtained using the techniques of spherical photometer and spectrophotometric complex "Specord IR75" are presented. The possibility of using these spectra for diagnoses the cases of diffuse toxic goiter and nodular goiter and control of treatment process in postsurgical period in the cases of thyroid gland surgery is estimated.

  16. Electronic and oscillation absorption spectra of blood plamsa at surgical diseases of thyroid gland

    NASA Astrophysics Data System (ADS)

    Guminetskiy, S. G.; Motrich, A. V.; Poliansky, I. Y.; Hyrla, Ya. V.

    2011-09-01

    The results of investigating the absorption spectra of blood plasma in the visible and infrared parts of spectra obtained using the techniques of spherical photometer and spectrophotometric complex "Specord IR75" are presented. The possibility of using these spectra for diagnoses the cases of diffuse toxic goiter and nodular goiter and control of treatment process in postsurgical period in the cases of thyroid gland surgery is estimated.

  17. Absorption Spectra of High-Temperature Solid Propellant Flames

    DTIC Science & Technology

    1974-08-01

    emission, was used as the calibration parameter. A Beer -Lambert type plot of the modified absorbance versus the respective specie concentration...the flame. Where P°^ is the incident radiant power at wave- length X, and P^ is the transmitted radiant power at wavelength A. Beer -Lambert type...absorption spectroscopy is based on the use of the Beer -Lambert Law, 103 P? ^n-^-»Kxce , (1) where P*J is the Incident radiant power, P^ is the

  18. Energetic solar electron spectra and gamma-ray observations

    NASA Astrophysics Data System (ADS)

    Dröge, Wolfgang

    1996-06-01

    We analyze solar energetic electron events measured with particle detectors on board of the ISEE-3 (ICE) and Helios 1 and 2 spacecraft. Energy spectra in the range 0.1 to tens of MeV are generated applying the results of a careful re-examination of the electron response function of the instruments. The spectral shapes of events observed simultaneously, among them five on all three s/c, are in very good agreement inspite of the sometimes considerable difference in azimuthal and radial distances of the s/c with respect to the flare. These findings suggest that transport processes at the Sun and in the interplanetary medium depend only weakly on the electron energy and that the observed spectra are representative of the accelerated electron spectra at the Sun. A comparison of the electron spectra with SMM gamma-ray spectra gives evidence for the existence of different acceleration and emission mechanism in flares with long (LDEs) and short duration (SDEs) soft X-ray emission.

  19. Electronic properties and absorption spectra of ZnSnP{sub 2} using mBJ potential

    SciTech Connect

    Joshi, Ritu Ahuja, B. L.

    2015-06-24

    We present the energy bands and density of states of ZnSnP{sub 2} using full potential linearized augmented plane wave method with modified Becke Johnson potential. It is found that this compound has a direct band gap of about 2.01 eV at Γ point, which originates from the energy difference between P-3p and Sn-5s states. In addition, we have also calculated absorption spectra in the solar energy range and compared it with that of bulk Si to explore the applicability of ZnSnP{sub 2} in photovoltaic and optoelectronic devices.

  20. Theoretical simulation of solar spectra in the middle ultraviolet and visible for atmospheric trace constituent measurements

    NASA Technical Reports Server (NTRS)

    Goldman, A.

    1978-01-01

    Two balloon flights reaching float altitudes of approximately 30 and 40 km respectively, were used to obtain scans of the ultraviolet and visible solar spectra. Both flights covered the UV (2800-3500A) at approximately 0.3A resolution and the visible at approximately 0.6A. Numerous scans were obtained during ascent and from float for both flights. All spectral scans obtained at float, from high sun to low sun, were calibrated in wavelength by using several standard solar spectra for line position references. Comparisons of low sun scans and high sun scans show significant atmospheric continuum extinction and have the potential of being used to identify atmospheric lines superimposed on the attenuated solar spectrum. The resolution was mathematically degraded to approximately 5A to better see the broad band atmospheric extinction. This low resolution is also appropriate for the available low resolution absorption coefficients of NO2 and O3, allowing the identification of NO2 and O3 features on the sunset spectra.

  1. Ab-initio method for X-ray absorption spectra simulation of hydride molecular ions

    NASA Astrophysics Data System (ADS)

    Puglisi, Alessandra; Sisourat, Nicolas; Carniato, Stéphane

    2017-03-01

    Soft X-ray absorption spectra of molecular ions are important data for the modeling and understanding of laboratory and astrophysical plasma. In this work, we present an ab-initio method, based on the Configuration Interaction (CI) approach, for the calculations of energy positions and oscillator strengths of X-ray absorption spectra. Furthermore, we investigate the effects of the choice of the nature and number of spin-orbitals used in the CI expansion on the spectra. The method is applied on three hydride molecular ions, namely CH+, OH+ and SiH+. However, the approach proposed here is general and may thus be applied to any kind of molecular ions.

  2. Electronic structure and TDDFT optical absorption spectra of silver nanorods.

    PubMed

    Johnson, Hannah E; Aikens, Christine M

    2009-04-23

    Density functional theory calculations are employed to determine optimized geometries and excitation spectra for small pentagonal silver nanorods Ag(n), with n = 13, 19, 25, 31, 37, 43, 49, 55, 61, and 67 in various charge states. The asymptotically correct SAOP functional is utilized in the excitation calculations. Silver nanorods exhibit a sharp longitudinal excitation that results from a mixture of orbital transitions; the wavelength for this excitation depends linearly on the length of the nanorod. The broad transverse excitation arises from multiple excited states. A particle-in-a-box model is employed to explain the linear dependence of the longitudinal excitation wavelength on nanorod length.

  3. Carbon dioxide laser absorption spectra of toxic industrial compounds.

    PubMed

    Loper, G L; Sasaki, G R; Stamps, M A

    1982-05-01

    CO(2) laser absorption cross-section data are reported for acrolein, styrene, ethyl acrylate, trichloroethylene, vinyl bromide, and vinylidene chloride. These data indicate that sub parts per billion level, interference-free detection limits should be possible for these compounds by the CO(2) laser photoacoustic technique. Photoacoustic detectabilities below 40 ppb should be possible for these compounds in the presence of ambient air concentrations of water vapor and other anticipated interferences. These compounds are also found not to be important interferences in the detection of toxic hydrazine-based rocket fuels by CO(2) laser spectroscopic techniques.

  4. Effect of the additional anode layers on the absorption enhancement characteristic of plasmonic organic solar cells

    NASA Astrophysics Data System (ADS)

    Yoo, Sanghyuk; Kim, Jungho

    2014-12-01

    We numerically investigate the effect of additional anode layers on the absorption enhancement characteristic of pyramidal-grating plasmonic organic solar cells (OSCs) using the finite element method. The behaviors of the plasmonic absorption enhancement are compared between a “simple” structure consisting of only the active and metal cathode layers and a “practical” structure with the additional anode layers. The plasmonic absorption enhancement is identified by comparing the polarization-dependent absorbance spectra between the planar and plasmonic OSCs. When the active-layer thickness is small, the plasmonic resonance condition changes owing to the addition of the anode layers. When the active-layer thickness is large, the plasmonic resonance condition and corresponding absorption behavior show a slight difference irrespective of the inclusion of the additional anode layers. Therefore, the additional anode layers should be included in the optical analysis and design of plasmonic OSCs when the active-layer thickness is small.

  5. Femtosecond Transient Absorption Spectra and Relaxation Dynamics of SWNT in SDS Micellar Solutions

    NASA Astrophysics Data System (ADS)

    Nadtochenko, V. A.; Lobach, A. S.; Gostev, F. E.; Tcherbinin, D. O.; Sobennikov, A.; Sarkisov, O. M.

    2005-09-01

    Transient absorption spectra and relaxation dynamics of excited SWNT were studied by femtosecond absorption spectroscopy as a function of: the energy of excitation quanta (ℏω = 2 eV, 2.5 eV, 4 eV); the density of the excitation energy; polarizations of the pump and probe pulses. The transient absorption spectra were monitored by white supercontinuum light pulse in the spectral region of ˜ 1.2 ÷ 3.6 eV. The induced transient absorption spectra of SWNT are considered as filling of the size-quantized energy bands with nonequilibrium carriers; renormalization of the one-dimensional energy bands at high density of the induced plasma; quantum confined Stark effect and screening of excitons. The anisotropic relaxation rate is observed.

  6. In vivo absorption spectra of the two stable states of the Euglena photoreceptor photocycle.

    PubMed

    Barsanti, Laura; Coltelli, Primo; Evangelista, Valtere; Passarelli, Vincenzo; Frassanito, Anna Maria; Vesentini, Nicoletta; Santoro, Fabrizio; Gualtieri, Paolo

    2009-01-01

    Euglena gracilis possesses a simple but sophisticated light detecting system, consisting of an eyespot formed by carotenoids globules and a photoreceptor. The photoreceptor of Euglena is characterized by optical bistability, with two stable states. In order to provide important and discriminating information on the series of structural changes that Euglena photoreceptive protein(s) undergoes inside the photoreceptor in response to light, we measured the in vivo absorption spectra of the two stable states A and B of photoreceptor photocycle. Data were collected using two different devices, i.e. a microspectrophotometer and a digital microscope. Our results show that the photocycle and the absorption spectra of the photoreceptor possess strong spectroscopic similarities with a rhodopsin-like protein. Moreover, the analysis of the absorption spectra of the two stable states of the photoreceptor and the absorption spectrum of the eyespot suggests an intriguing hypothesis for the orientation of microalgae toward light.

  7. Energy spectra of ions from impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Richardson, I. G.; Wenzel, K.-P.

    1992-01-01

    A study of the energy spectra of ions from impulsive solar flares in the 0.1-100 MeV region is reported. Most of the events studied are dominated by He and these He spectra show a persistent steepening or break above about 10 MeV resulting in an increase in the power-law spectral indices from about 2 to about 3.5 or more. Spectra of H, He-3, O, and Fe have spectral indices that are consistent with a value of about 3.5 above about 2 MeV/amu. One event, dominated by protons, shows a clear maximum in the spectrum near 1 MeV. If the rollover in the spectrum below 1 MeV is interpreted as a consequence of matter traversal in the solar atmosphere, then the source of the acceleration would lie only about 800 km above the photosphere, well below the corona. Alternative interpretations are that trapping in the acceleration region directly causes a peak in the resulting ion spectrum or that low-energy particles encounter significant additional scattering during transport from the flare.

  8. GOME wavelength calibration using solar and atmospheric spectra

    NASA Technical Reports Server (NTRS)

    Caspar, C.; Chance, K.

    1997-01-01

    Spectral information in the global ozone monitoring experiment (GOME) solar irradiance spectra and GOME earth radiance spectra are used in conjunction with the GOME solar reference spectrum to provide absolute vacuum internal wavelength calibration for GOME. Two methods for wavelength calibration of GOME data are investigated. The first employs chi-square minimization of a merit function involving wavelength and the GOME slit function. It is quite robust and requires little GOME data in the processing (calibration window regions from 15 to 40 pixels). The second employs cross correlation of GOME data and the solar reference spectrum in the Fourier transform domain, using a procedure in the image reduction and analysis facility (IRAF) software system developed for the determination of galaxy redshifts. It also requires small amounts of GOME data (calibration window regions with from 10 to 15 pixels). Both methods provide absolute wavelength calibration accurate to a small fraction of a GOME pixel across the entire GOME spectrum, and to 0.001 nm over much of the range.

  9. Electronic absorption spectra of hydrogenated protonated naphthalene and proflavine

    NASA Astrophysics Data System (ADS)

    Bonaca, A.; Bilalbegović, G.

    2011-09-01

    We study hydrogenated cations of two polycyclic hydrocarbon molecules as models of hydrogenated organic species that form in the interstellar medium. Optical spectra of the hydrogenated naphthalene cation Hn-C10H+8 for n= 1, 2 and 10, as well as the astrobiologically interesting hydrogenated proflavine cation Hn-C13H11N+3 for n= 1 and 14, are calculated. The pseudopotential time-dependent density functional theory is used. It is found that the fully hydrogenated proflavine cation H14-C13H11N+3 shows a broad spectrum in which the positions of individual lines are almost lost. The positions, shapes and intensities of lines change in hydronaphthalene and hydroproflavine cations, showing that hydrogen additions induce substantially different optical spectra in comparison with base polycyclic hydrocarbon cations. One calculated line in the visible spectrum of H10-C10H+8 and one in the visible spectrum of H-C13H11N+3 are close to the measured diffuse interstellar bands. We also present the positions of near-ultraviolet lines.

  10. Monitoring the variability of intrinsic absorption lines in quasar spectra , ,

    SciTech Connect

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael

    2014-09-01

    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 yr (1-3.5 yr in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems or in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable BALs. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density ∼10{sup 3}-10{sup 5} cm{sup –3} and upper limits on the distance of the absorbers from the central engine of the order of a few kiloparsecs. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage.

  11. Increasing efficiency in intermediate band solar cells with overlapping absorptions

    NASA Astrophysics Data System (ADS)

    Krishna, Akshay; Krich, Jacob J.

    2016-07-01

    Intermediate band (IB) materials are promising candidates for realizing high efficiency solar cells. In IB photovoltaics, photons are absorbed in one of three possible electronic transitions—valence to conduction band, valence to intermediate band, or intermediate to conduction band. With fully concentrated sunlight, when the band gaps have been chosen appropriately, the highest efficiency IB solar cells require that these three absorptions be non-overlapping, so absorbed photons of fixed energy contribute to only one transition. The realistic case of overlapping absorptions, where the transitions compete for photons, is generally considered to be a source of loss. We show that overlapping absorptions can in fact lead to significant improvements in IB solar cell efficiencies, especially for IB that are near the middle of the band gap. At low to moderate concentration, the highest efficiency requires overlapping absorptions. We use the detailed-balance method and indicate how much overlap of the absorptions is required to achieve efficiency improvements, comparing with some known cases. These results substantially broaden the set of materials that can be suitable for high-efficiency IB solar cells.

  12. Correlation of solar energetic protons and polar cap absorption

    NASA Astrophysics Data System (ADS)

    Patterson, J. D.; Armstrong, T. P.; Laird, C. M.; Detrick, D. L.; Weatherwax, A. T.

    2001-01-01

    This study shows the results of a model of polar cap absorption events (PCAs) using solar energetic proton flux as an input. The proton data are recorded by the Charged Particle Measurement Experiment (CPME) on board the IMP 8 satellite and are collected by the Applied Physics Laboratory at Johns Hopkins University. The IMP 8 satellite orbits the Earth at distances between 30 and 35 Earth radii, which places it in the solar energetic particle environment throughout most of its orbit. It has been shown in previous studies that these solar energetic particles have direct and immediate access to the polar atmosphere [Reid, 1970]. Our model shows that the majority of the ionization resulting from the influx of solar energetic protons occurs in the altitude range from ~50-90 km. Excess ionization at these altitudes causes enhanced absorption of cosmic HF radio waves. The levels of absorption used for comparison in this study were measured directly by the riometer at South Pole station, Antarctica. The results show a very strong correlation between the incident proton flux and measured path-integrated cosmic HF radio noise absorption for significant events, involving absorptions greater than 1.0 dB. For absorption levels lower than this it is obvious that other phenomena dominate. For HF radio waves the primary contributors to PCA are protons with energies near 20 MeV. This study extends the correlated observations of interplanetary particles and PCA throughout a 9-year period. The close quantitative agreement between the measured and calculated values of absorption supports the validity of the assumptions and suppositions made by this model. The data also suggest a method by which the path-integrated cosmic noise absorption may be used to probe the E and D layers of the ionosphere to determine the effective ion-electron recombination coefficients within these regions.

  13. Linewidths in excitonic absorption spectra of cuprous oxide

    NASA Astrophysics Data System (ADS)

    Schweiner, Frank; Main, Jörg; Wunner, Günter

    2016-02-01

    We present a theoretical calculation of the absorption spectrum of cuprous oxide (Cu2O ) based on the general theory developed by Y. Toyozawa. An inclusion not only of acoustic phonons but also of optical phonons and of specific properties of the excitons in Cu2O like the central-cell corrections for the 1 S exciton allows us to calculate the experimentally observed linewidths in experiments by T. Kazimierczuk et al. [T. Kazimierczuk, D. Fröhlich, S. Scheel, H. Stolz, and M. Bayer, Nature (London) 514, 343 (2014), 10.1038/nature13832] within the same order of magnitude, which demonstrates a clear improvement in comparison to earlier work on this topic. We also discuss a variety of further effects, which explain the still observable discrepancy between theory and experiment but can hardly be included in theoretical calculations.

  14. Absorption spectra of shocked liquid CS/sub 2/

    SciTech Connect

    Dallman, J.C.

    1985-01-01

    The importance of shock initiation of high explosives (HE) was understood as early as 1863 when Alfred Nobel introduced the detonator as a means of detonating nitroglycerine. The critical pressure rise times required to achieve shock initiation and steady propagation of detonation are determined by the chemical and mechanical properties of an explosive. Although progress has been made in the understanding of the effects of mechanical properties, the detailed effects of high pressures on chemical reaction mechanisms are still only poorly understood. This paper reports the results of two experiments using CS/sub 2/, which is known to undergo electronic state transitions when shocked to high pressures. The goal of these experiments was to examine the known shock-generated expansion of CS/sub 2/ absorption bands while generating the shocks with a flyer plate system driven by high explosives.

  15. Monitoring the Variability of Intrinsic Absorption Lines in Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael

    2014-09-01

    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 yr (1-3.5 yr in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems or in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable BALs. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density ~103-105 cm-3 and upper limits on the distance of the absorbers from the central engine of the order of a few kiloparsecs. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage. Based on data collected at Subaru telescope, which is operated by the National Astronomical Observatory of Japan. Based on observations obtained at the European Southern Observatory at La Silla, Chile in programs 65.O-0063(B), 65.O-0474(A), 67.A-0078(A), 68.A-0461(A), 69.A-0204(A), 70.B-0522(A), 072.A-0346(A), 076.A-0860(A), 079.B-0469(A), and 166.A-0106(A).

  16. Global fitting of power spectra of solar-like stars

    NASA Astrophysics Data System (ADS)

    Neiner, C.; Appourchaux, T.

    2004-01-01

    Helioseismology has been able to provide the internal structure of the Sun and its dynamics. These inferences have been made possible by inverting the frequencies and rotational splitting of the p-mode oscillations. Thanks to asteroseismology, similar results can now be obtained for stars other than the Sun. For this purpose, we are developing a numerical code for global fitting of power spectra. The code is currently developed and tested on full-disk integrated solar data obtained with the SOHO/LOI instrument. It will then be applied to synthetic data from the hare-and-hound exercises of COROT. The final goal is to apply the technique to data of solar-like stars obtained with the COROT and Eddington satellites to infer the internal structure and dynamics of those stars.

  17. Simultaneous Fitting of Absorption Spectra and Their Second Derivatives for an Improved Analysis of Protein Infrared Spectra.

    PubMed

    Baldassarre, Maurizio; Li, Chenge; Eremina, Nadejda; Goormaghtigh, Erik; Barth, Andreas

    2015-07-10

    Infrared spectroscopy is a powerful tool in protein science due to its sensitivity to changes in secondary structure or conformation. In order to take advantage of the full power of infrared spectroscopy in structural studies of proteins, complex band contours, such as the amide I band, have to be decomposed into their main component bands, a process referred to as curve fitting. In this paper, we report on an improved curve fitting approach in which absorption spectra and second derivative spectra are fitted simultaneously. Our approach, which we name co-fitting, leads to a more reliable modelling of the experimental data because it uses more spectral information than the standard approach of fitting only the absorption spectrum. It also avoids that the fitting routine becomes trapped in local minima. We have tested the proposed approach using infrared absorption spectra of three mixed α/β proteins with different degrees of spectral overlap in the amide I region: ribonuclease A, pyruvate kinase, and aconitase.

  18. Simultaneous acquisition of absorption and fluorescence spectra of strong absorbers utilizing an evanescent supercontinuum.

    PubMed

    Kiefer, Johannes

    2016-12-15

    The determination of the absorption and emission spectra of strongly absorbing molecules is challenging, and the data can be biased by self-absorption of the fluorescence signal. To overcome this problem, a total internal reflection approach is proposed. The strongly absorbing sample is placed in an evanescent field of the radiation of a supercontinuum source. The collimated reflected light encodes the absorption spectrum, and the isotropic fluorescence emission is collected in a direction perpendicular to the surface at the same time. This ensures that the emitted light has a minimum possibility of self-absorption inside the sample.

  19. Direct Observations of Excess Solar Absorption by Clouds

    NASA Technical Reports Server (NTRS)

    Pilewskie, Peter; Valero, Francisco P. J.

    1995-01-01

    Aircraft measurements of solar flux in the cloudy tropical atmosphere reveal that solar absorption by clouds is anomalously large when compared to theoretical estimates. The ratio of cloud forcing at an altitude of 20 kilometers to that at the surface is 1.58 rather than 1.0 as predicted by models. These results were derived from a cloud radiation experiment in which identical instrumentation was deployed on coordinated stacked aircraft. These findings indicate a significant difference between measurements and theory and imply that the interaction between clouds and solar radiation is poorly understood.

  20. Measurement and feature analysis of absorption spectra of four algal species

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhua; Zhou, Hongli; Han, Bing; Li, Tongji

    2016-04-01

    Two methods for particulate pigments (i.e., quantitative filter technique, QFT, and in vivo measurement, InVivo, respectively) and two methods for dissolved pigments (i.e., Acetone Extracts, AceEx, and high-performance liquid chromatography, HPLC, respectively) were used to obtain the optical absorption coefficient spectra for cultures of four typical algal species. Through normalization and analysis of the spectra, it is shown that (1) the four methods are able to measure optical absorption spectra of particulate and/or dissolved pigments; (2) that the optical absorption spectra of particulate and dissolved pigments were consistent in terms of the peak position in the blue wavelength, and the difference of the peak position in the near infrared wavelength was ~10 nm between each other; and (3) that the leveling effect of the absorption spectra of particulate pigments was significant. These four methods can all effectively measure the absorption coefficients of phytoplankton pigments, while each one has its unique advantages in different applications. Therefore, appropriate method should be carefully selected for various application due to their intrinsic difference.

  1. Measurement and feature analysis of absorption spectra of four algal species

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhua; Zhou, Hongli; Han, Bing; Li, Tongji

    2017-03-01

    Two methods for particulate pigments (i.e., quantitative filter technique, QFT, and in vivo measurement, InVivo, respectively) and two methods for dissolved pigments (i.e., Acetone Extracts, AceEx, and high-performance liquid chromatography, HPLC, respectively) were used to obtain the optical absorption coefficient spectra for cultures of four typical algal species. Through normalization and analysis of the spectra, it is shown that (1) the four methods are able to measure optical absorption spectra of particulate and/or dissolved pigments; (2) that the optical absorption spectra of particulate and dissolved pigments were consistent in terms of the peak position in the blue wavelength, and the difference of the peak position in the near infrared wavelength was 10 nm between each other; and (3) that the leveling effect of the absorption spectra of particulate pigments was significant. These four methods can all effectively measure the absorption coefficients of phytoplankton pigments, while each one has its unique advantages in different applications. Therefore, appropriate method should be carefully selected for various application due to their intrinsic difference.

  2. Quasi-similar decameter emission features appearing in the solar and jovian dynamic spectra

    NASA Astrophysics Data System (ADS)

    Litvinenko, G. V.; Shaposhnikov, V. E.; Konovalenko, A. A.; Zakharenko, V. V.; Panchenko, M.; Dorovsky, V. V.; Brazhenko, A. I.; Rucker, H. O.; Vinogradov, V. V.; Melnik, V. N.

    2016-07-01

    We investigate the dynamic spectra of the Sun and jovian decametric radiation obtained by the authors with the radio telescopes UTR-2 and URAN-2 (Kharkov, Poltava, Ukraine). We focus on the similar structures that appear on the dynamic spectra of those objects: S-bursts, drifting pairs, absorption bursts and zebra patterns. Similarity in structures allows us to assume that the plasma processes in the solar corona and in the jovian magnetosphere might have similar properties. We analyze and compare the main parameters of those structures and describe briefly some mechanisms of their generation that have already discussed in publications. We selected the mechanisms which, in our opinion, most completely and consistently explain the properties of the structures under consideration.

  3. Simulation of the Mars Surface Solar Spectra for Optimized Performance of Triple-Junction Solar Cells

    NASA Technical Reports Server (NTRS)

    Edmondson, Kenneth M.; Joslin, David E.; Fetzer, Chris M.; King, RIchard R.; Karam, Nasser H.; Mardesich, Nick; Stella, Paul M.; Rapp, Donald; Mueller, Robert

    2007-01-01

    The unparalleled success of the Mars Exploration Rovers (MER) powered by GaInP/GaAs/Ge triple-junction solar cells has demonstrated a lifetime for the rovers that exceeded the baseline mission duration by more than a factor of five. This provides confidence in future longer-term solar powered missions on the surface of Mars. However, the solar cells used on the rovers are not optimized for the Mars surface solar spectrum, which is attenuated at shorter wavelengths due to scattering by the dusty atmosphere. The difference between the Mars surface spectrum and the AM0 spectrum increases with solar zenith angle and optical depth. The recent results of a program between JPL and Spectrolab to optimize GaInP/GaAs/Ge solar cells for Mars are presented. Initial characterization focuses on the solar spectrum at 60-degrees zenith angle at an optical depth of 0.5. The 60-degree spectrum is reduced to 1/6 of the AM0 intensity and is further reduced in the blue portion of the spectrum. JPL has modeled the Mars surface solar spectra, modified an X-25 solar simulator, and completed testing of Mars-optimized solar cells previously developed by Spectrolab with the modified X-25 solar simulator. Spectrolab has focused on the optimization of the higher efficiency Ultra Triple-Junction (UTJ) solar cell for Mars. The attenuated blue portion of the spectrum requires the modification of the top sub-cell in the GaInP/GaAs/Ge solar cell for improved current balancing in the triple-junction cell. Initial characterization confirms the predicted increase in power and current matched operation for the Mars surface 60-degree zenith angle solar spectrum.

  4. Muon and Tau Neutrinos Spectra from Solar Flares

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele; Moscato, Federica

    2003-12-01

    Most power-full solar flare as the ones occurred on 23th February 1956, September 29th 1989, 28th October and on 2nd-4th November 2003 are sources of cosmic rays, X, gamma and neutrino bursts. These flares took place both on front or in the edge and in the hidden solar disk. The 4th November event was the most powerful X event in the highest known rank category X28 just at horizons. The observed and estimated total flare energy (EFL ≃ 1031div 1033 erg) should be a source of a prompt secondary neutrino burst originated, by proton-proton-pion production on the sun itself; a more delayed and spread neutrino flux signal arise by the solar charged flare particles reaching the terrestrial atmosphere. These first earliest prompt solar neutrino burst might be observed, in a few neutrino clustered events, in present or future largest neutrino underground detectors as Super-Kamiokande one, in time correlation with the X-Radio flare. The onset in time correlation has great statistical significance. Our first estimate on the neutrino number events detection at the Super-Kamiokande II Laboratory for horizontal or hidden flare is found to be few events: NeV_bar{ν}_e≃ 0.63&etae ()/(35 MeV) ()/(1031 erg); and NeV_bar{ν}μ ≃ 3.58()/(200 MeV) ()/(1031erg) η,SUB>μ, where η≃ 1, Eνμ > 113 MeV. Our first estimates of neutrino signals in largest underground detectors hint for few events in correlation with X, gamma, radio onser. Our approximated spectra for muons and taus from these rare solar eruption are shown over the most common background. The muon and tau signature is very peculiar and characteristic over electron and anti-electron neutrino fluxes. The rise of muon neutrinos will be detectable above the minimal muon threshold Eν ≃ 113 MeV energy, or above the pion and Δ ° thresholds (Eν≃ 151 and 484 MeV). Any large neutrino flare event record might also verify the expected neutrino flavour mixing leading to a few as well as a comparable

  5. Parameterization of cloud effects on the absorption of solar radiation

    NASA Technical Reports Server (NTRS)

    Davies, R.

    1983-01-01

    A radiation parameterization for the NASA Goddard climate model was developed, tested, and implemented. Interactive and off-hire experiments with the climate model to determine the limitations of the present parameterization scheme are summarized. The parameterization of Cloud absorption in terms of solar zeith angle, column water vapors about the cloud top, and cloud liquid water content is discussed.

  6. Enigmatic photon absorption in plasmas near solar interior conditions

    NASA Astrophysics Data System (ADS)

    Iglesias, Carlos A.

    2015-06-01

    Large systematic discrepancies between theoretical and experimental photon absorption of Fe plasmas applicable to the solar interior were reported [Bailey et al., Nature 517, 56 (2015)]. The disagreement is examined in the context of the Thomas-Reiche-Kuhn f-sum rule. The analysis identifies several anomalies in the experimental results.

  7. Measurement of incidence angle dependence of solar absorptance

    NASA Astrophysics Data System (ADS)

    Ohnishi, A.; Hayashi, T.

    1983-12-01

    For measuring solar absorptance dependence on incidence angle, an integrating sphere, in which the sample is fixed on the surface of the sphere, and the incident angle for the monochromatic beam on the surface is adjusted by the rotation of the integrating sphere, is proposed. Results for spacecraft materials are presented. Results for aluminized Teflon are 4% better compared with the standard method.

  8. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium: The Chandra Grating Spectra of XTE J1817-330

    NASA Astrophysics Data System (ADS)

    Gatuzz, E.; García, J.; Mendoza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-05-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 Å broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 Å) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N H = 1.38 ± 0.01 × 1021 cm-2 an ionization parameter of log ξ = -2.70 ± 0.023; an oxygen abundance of A_O= 0.689^{+0.015}_{-0.010}; and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse & Sauval, a rescaling with the revision by Asplund et al. yields A_O=0.952^{+0.020}_{-0.013}, a value close to solar that reinforces the new standard. We identify several atomic absorption lines—Kα, Kβ, and Kγ in O I and O II and Kα in O III, O VI, and O VII—the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n > 2 associated with ISM cold absorption.

  9. Thermal properties of carbon black aqueous nanofluids for solar absorption

    NASA Astrophysics Data System (ADS)

    Han, Dongxiao; Meng, Zhaoguo; Wu, Daxiong; Zhang, Canying; Zhu, Haitao

    2011-07-01

    In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

  10. Thermal properties of carbon black aqueous nanofluids for solar absorption

    PubMed Central

    2011-01-01

    In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency. PMID:21767359

  11. Thermal properties of carbon black aqueous nanofluids for solar absorption.

    PubMed

    Han, Dongxiao; Meng, Zhaoguo; Wu, Daxiong; Zhang, Canying; Zhu, Haitao

    2011-07-18

    In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

  12. Absorption enhancement by textured InP in solar cells

    NASA Astrophysics Data System (ADS)

    Yun, Seokhun; Ji, Taeksoo

    2016-03-01

    III-V compound semiconductors seem to be the ideal materials for photovoltaic devices because they exhibit fast carrier velocity. III-V compound semiconductors, however, are unfavorable materials to be commercialized on large scale photovoltaic devices because of their high material cost. The textured surface shows the potential to increase the performance of solar cells because of the properties such as high absorption and longer light path length. These properties can overcome the disadvantage of the III-V compound semiconductors through thin thickness use when producing solar cells. In this study, we demonstrate that textured surfaces on InP formed by nano-sphere lithography and plasma etching process can enhance the absorption effectively in comparison with planar surface. The power conversion efficiency of InP solar cells using the textured InP and the aluminum doped zinc oxide was achieved up to 8%.

  13. Reassignment of the Iron (3) Absorption Bands in the Spectra of Mars

    NASA Technical Reports Server (NTRS)

    Sherman, D. M.

    1985-01-01

    Absorption features in the near-infrared and visible region reflectance spectra of Mars have been assigned to specific Fe (3+) crystal-field and o(2-) yields Fe(3+) charge transfer transitions. Recently, near-ultraviolet absorption spectra of iron oxides were obtained and the energies of o(2-) yields Fe(3+) charge-transfer (LMCT) transitions were determined from accurate SCF-X # alpha-SW molecular orbital calculations on (FeO6)(9-) and (FeO4)(5-) clusters. Both the theoretical and experimental results, together with existing data in the literature, show that some of the previous Fe(3+) band assignments in the spectra of Mars need to be revised. The theory of Fe(3+) spectra in minerals is discussed and applied to the spectrum of Mars.

  14. Research on the Terahertz Absorption Spectra of Histidine Enantiomer (L) and its Racemic Compound (DL).

    PubMed

    Zhou, Tao; Wu, Yidong; Cao, Juncheng; Zou, Liangliang; Yuan, Jie; Yao, Zhenwei; Xu, Gongjie

    2017-02-01

    Terahertz time-domain spectroscopy (THz-TDS) is used to investigate the absorption spectra of polycrystalline L- and DL-histidine in the frequency range of 10-100 cm(-1). The spectra exhibit distinct differences in peak frequencies between the enantiomer (L-histidine) and racemic compound (DL-histidine). The observed spectral differences are attributed to the intermolecular interactions. With the density function theory (DFT) method, the frequencies of vibrational modes of L-histidine and DL-histidine in the THz range are calculated and well assigned according to the measured spectra. The origin of the observed vibrational modes is found to be non-localized and of a collective (phonon-like) nature, which points to the lattice and skeleton vibrations mediated by the hydrogen bond. Furthermore, we propose and demonstrate a method for determining the composition ratio of histidine mixtures based on the THz absorption spectra.

  15. Theoretical analysis of electronic absorption spectra of vitamin B12 models

    NASA Astrophysics Data System (ADS)

    Andruniow, Tadeusz; Kozlowski, Pawel M.; Zgierski, Marek Z.

    2001-10-01

    Time-dependent density-functional theory (TD-DFT) is applied to analyze the electronic absorption spectra of vitamin B12. To accomplish this two model systems were considered: CN-[CoIII-corrin]-CN (dicyanocobinamide, DCC) and imidazole-[CoIII-corrin]-CN (cyanocobalamin, ImCC). For both models 30 lowest excited states were calculated together with transition dipole moments. When the results of TD-DFT calculations were directly compared with experiment it was found that the theoretical values systematically overestimate experimental data by approximately 0.5 eV. The uniform adjustment of the calculated transition energies allowed detailed analysis of electronic absorption spectra of vitamin B12 models. All absorption bands in spectral range 2.0-5.0 eV were readily assigned. In particular, TD-DFT calculations were able to explain the origin of the shift of the lowest absorption band caused by replacement of the-CN axial ligand by imidazole.

  16. THE STRUCTURE OF THE ULTRAVIOLET ABSORPTION SPECTRA OF CERTAIN PROTEINS AND AMINO ACIDS

    PubMed Central

    Coulter, Calvin B.; Stone, Florence M.; Kabat, Elvin A.

    1936-01-01

    1. The absorption spectra of a number of proteins in the region 2500 to 3000 A. have been found to comprise from six to nine narrow bands. In consequence of variation in the relative intensity of these bands from protein to protein, the absorption curve has a characteristic configuration for each protein. 2. These bands correspond closely in position with the narrow bands which appear in the absorption spectra of tryptophan, tyrosin, and phenylalanine. Tryptophan and tyrosin each present three bands, phenylalanine shows nine. 3. The bands in the proteins are accordingly attributed to these amino acids. In the proteins the bands are displaced from the positions which they occupy in the uncombined amino acids, in most instances, by 10 to 35 A. toward longer wavelengths. 4. The absorption spectrum of Pneumococcus Type I antibody resembles that of normal pseudoglobulin but shows characteristic differences. PMID:19872958

  17. Study of the absorption spectra of Fricke Xylenol Orange gel dosimeters

    SciTech Connect

    Gambarini, Grazia; Artuso, Emanuele; Liosi, Giulia Maria; Giacobbo, Francesca; Mariani, Mari; Brambilla, Luigi; Castiglioni, Chiara; Carrara, Mauro; Pignoli, Emanuele

    2015-07-01

    A systematic study of the absorption spectra of Fricke Xylenol Orange gel dosimeters has been performed, in the wavelength range from 300 nm to 700 nm. The spectrum of Xylenol Orange (without ferrous sulphate solution) has been achieved, in order to subtract its contribution from the absorption spectra of the irradiated Fricke Xylenol Orange gel dosimeters. The absorbance due to ferric ions chelated by Xylenol Orange has been studied for various irradiation doses. Two absorbance peaks are visible, mainly at low doses: the first peak increases with the dose more slowly than the second one. This effect can explain the apparent threshold dose that was frequently evidenced. (authors)

  18. High resolution infrared absorption spectra of various trace gases present in the upper atmosphere of the Earth

    NASA Technical Reports Server (NTRS)

    Hunt, Robert H.

    1988-01-01

    The objective of NASA Grant NsG 7473 was to obtain and analyze high resolution infrared absorption spectra of various trace gases present in the Earth's upper atmosphere. The goal of the spectral analysis was to obtain values of absorption line strengths, widths and frequencies of sufficient accuracy for use in upper atmosphere trace gas monitoring. During the early phase of the grant, high resolution spectra were obtained from two instruments. One was the 0.02/cm resolution vacuum grating spectrometer at the Florida State University and the other was the 0.01/cm resolution Fourier transform spectrometer at the McMath solar telescope at the Kitt Peak Observatory. Using these instruments, a considerable amount of spectra of methane and hydrogen peroxide were obtained and analyzed. During the latter years of the project, data taking was halted while efforts were devoted to building a new 0.0025/cm resolution vacuum Fourier transform spectrometer. Progress during this phase of the grant then became greatly slowed due to a lack of suitable graduate students in the program. However, the instrument was completed and brought to the point of producing interferograms.

  19. Theoretical UV absorption spectra of hydrodynamically escaping O{sub 2}/CO{sub 2}-rich exoplanetary atmospheres

    SciTech Connect

    Gronoff, G.; Mertens, C. J.; Norman, R. B.; Maggiolo, R.; Wedlund, C. Simon; Bell, J.; Bernard, D.; Parkinson, C. J.; Vidal-Madjar, A.

    2014-06-20

    Characterizing Earth- and Venus-like exoplanets' atmospheres to determine if they are habitable and how they are evolving (e.g., equilibrium or strong erosion) is a challenge. For that endeavor, a key element is the retrieval of the exospheric temperature, which is a marker of some of the processes occurring in the lower layers and controls a large part of the atmospheric escape. We describe a method to determine the exospheric temperature of an O{sub 2}- and/or CO{sub 2}-rich transiting exoplanet, and we simulate the respective spectra of such a planet in hydrostatic equilibrium and hydrodynamic escape. The observation of hydrodynamically escaping atmospheres in young planets may help constrain and improve our understanding of the evolution of the solar system's terrestrial planets' atmospheres. We use the dependency of the absorption spectra of the O{sub 2} and CO{sub 2} molecules on the temperature to estimate the temperature independently of the total absorption of the planet. Combining two observables (two parts of the UV spectra that have a different temperature dependency) with the model, we are able to determine the thermospheric density profile and temperature. If the slope of the density profile is inconsistent with the temperature, then we infer the hydrodynamic escape. We address the question of the possible biases in the application of the method to future observations, and we show that the flare activity should be cautiously monitored to avoid large biases.

  20. Absorption Spectra of Broadened Sodium Resonance Lines in Presence of Rare Gases

    SciTech Connect

    Chung, H-K; Shurgalin, M; Babb, J F

    2002-09-11

    The pressure broadening of alkali-metal lines is a fundamental problem with numerous applications. For example, the sodium resonance lines broadened by xenon are important in the production of broad spectra emitted in the HPS (High-Pressure Sodium) lamp and they potentially can be used for gas condition diagnostics. Broadened absorption lines of alkali-metal atoms are prominent in the optical spectra of brown dwarfs and understanding the broadening mechanism will help elucidate the chemical composition and atmospheric properties of those stars. The far-line wing spectra of sodium resonance lines broadened by rare gases are found to exhibit molecular characteristics such as satellites and hence the total absorption coefficients for vapors of Na atoms and perturbing rare gas atoms can be modeled as Na-RG (rare gas) molecular absorption spectra. In this work, using carefully chosen interatomic potentials for Na-RG molecules we carry out quantum-mechanical calculations for reduced absorption coefficients for vapors composed of Na-He, Na-Ar, and Na-Xe. Calculated spectra are compared to available experimental results and the agreement is good in the measured satellite positions and shapes.

  1. A novel acoustic sensor approach to classify seeds based on sound absorption spectra.

    PubMed

    Gasso-Tortajada, Vicent; Ward, Alastair J; Mansur, Hasib; Brøchner, Torben; Sørensen, Claus G; Green, Ole

    2010-01-01

    A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials.

  2. Infrared absorption spectra of molecular crystals: Possible evidence for small-polaron formation?

    NASA Astrophysics Data System (ADS)

    Pržulj, Željko; Čevizović, Dalibor; Zeković, Slobodan; Ivić, Zoran

    2008-09-01

    The temperature dependence of the position of the so-called anomalous band peaked at 1650cm in the IR-absorption spectrum of crystalline acetanilide (ACN) is theoretically investigated within the small-polaron theory. Its pronounced shift towards the position of the normal band is predicted with the rise of temperature. Interpretation of the IR-absorption spectra in terms of small-polaron model has been critically assessed on the basis of these results.

  3. Search for CO absorption bands in IUE far-ultraviolet spectra of cool stars

    NASA Technical Reports Server (NTRS)

    Gessner, Susan E.; Carpenter, Kenneth G.; Robinson, Richard D.

    1994-01-01

    Observations of the red supergiant (M2 Iab) alpha Ori with the Goddard High Resolution Spectrograph (GHRS) on board the Hubble Space Telescope (HST) have provided an unambiguous detection of a far-ultraviolet (far-UV) chromospheric continuum on which are superposed strong molecular absorption bands. The absorption bands have been identified by Carpenter et al. (1994) with the fourth-positive A-X system of CO and are likely formed in the circumstellar shell. Comparison of these GHRS data with archival International Ultraviolet Explorer (IUE) spectra of alpha Ori indicates that both the continuum and the CO absorption features can be seen with IUE, especially if multiple IUE spectra, reduced with the post-1981 IUESIPS extraction procedure (i.e., with an oversampling slit), are carefully coadded to increase the signal to noise over that obtainable with a single spectrum. We therefore initiated a program, utilizing both new and archival IUE Short Wavelength Prime (SWP) spectra, to survey 15 cool, low-gravity stars, including alpha Ori, for the presence of these two new chromospheric and circumstellar shell diagnostics. We establish positive detections of far-UV stellar continua, well above estimated IUE in-order scattered light levels, in spectra of all of the program stars. However, well-defined CO absorption features are seen only in the alpha Ori spectra, even though spectra of most of the program stars have sufficient signal to noise to allow the dectection of features of comparable magnitude to the absorptions seen in alpha Ori. Clearly if CO is present in the circumstellar environments of any of these stars, it is at much lower column densities.

  4. Absorption spectra and spectral-kinetic characteristics of the fluorescence of Sanguinarine in complexes with polyelectrolytes and DNA

    NASA Astrophysics Data System (ADS)

    Motevich, I. G.; Strekal, N. D.; Nowicky, J. W.; Maskevich, S. A.

    2010-07-01

    The absorption spectra and stationary and time resolved fluorescence spectra of the isoquinoline alkaloid sanguinarine are studied in aqueous media and during interactions with synthetic polyelectrolytes (polystyrene sulfonate and polyallylamine) and a natural polyelectrolyte (DNA).

  5. Light absorption and emission in nanowire array solar cells.

    PubMed

    Kupec, Jan; Stoop, Ralph L; Witzigmann, Bernd

    2010-12-20

    Inorganic nanowires are under intense research for large scale solar power generation intended to ultimately contribute a substantial fraction to the overall power mix. Their unique feature is to allow different pathways for the light absorption and carrier transport. In this publication we investigate the properties of a nanowire array acting as a photonic device governed by wave-optical phenomena. We solve the Maxwell equations and calculate the light absorption efficiency for the AM1.5d spectrum and give recommendations on the design. Due to concentration of the incident sunlight at a microscopic level the absorptivity of nanowire solar cells can exceed the absorptivity of an equal amount of material used in thin-film devices. We compute the local density of photon states to assess the effect of emission enhancement, which influences the radiative lifetime of excess carriers. This allows us to compute the efficiency limit within the framework of detailed balance. The efficiency is highly sensitive with respect to the diameter and distance of the nanowires. Designs featuring nanowires below a certain diameter will intrinsically feature low short-circuit current that cannot be compensated even by increasing the nanowire density. Optimum efficiency is not achieved in densely packed arrays, in fact spacing the nanowires further apart (simultaneously decreasing the material use) can even improve efficiency in certain scenarios. We observe absorption enhancement reducing the material use. In terms of carrier generation per material use, nanowire devices can outperform thin-film devices by far.

  6. [High-order derivative spectroscopy of infrared absorption spectra of the reaction centers from Rhodobacter sphaeroides].

    PubMed

    2005-01-01

    The infrared absorption spectra of reduced and chemically oxidized reaction center preparations from the purple bacterium Rhodobacter sphaeroides were investigated by means of high-order derivative spectroscopy. The model Gaussian band with a maximum at 810 nm and a half-band of 15 nm found in the absorption spectrum of the reduced reaction center preparation is eliminated after the oxidation of photoactive bacteriochlorophyll dimer (P). This band was related to the absorption of the P(+)y excitonic band of P. On the basis of experimental results, it was concluded that the bleaching of the P(+)y absorption band at 810 nm in the oxidized reaction center preparations gives the main contribution to the blue shift of the 800 nm absorption band of Rb. sphaeroides reaction centers.

  7. A platform for colorful solar cells with enhanced absorption

    NASA Astrophysics Data System (ADS)

    Dhindsa, Navneet; Walia, Jaspreet; Singh Saini, Simarjeet

    2016-12-01

    We demonstrate submicron thick platform integrating amorphous silicon nanowires and thin-films achieving vivid colors in transmission and reflection. The platform nearly doubles the absorption efficiency compared to the starting thin-film without much compromising with color diverseness. The structural colors can be changed over a wide range by changing the diameters of the nanowires while still keeping the absorption efficiency higher than starting thin-film. The optical response of the platform is conceptually understood for different diameters combined with different thin-film thicknesses indicating the presence of leaky waveguide modes and coupled cavity modes. Our proposed platform can enable architectural low price colorful solar cells on transparent substrates.

  8. A platform for colorful solar cells with enhanced absorption.

    PubMed

    Dhindsa, Navneet; Walia, Jaspreet; Saini, Simarjeet Singh

    2016-12-09

    We demonstrate submicron thick platform integrating amorphous silicon nanowires and thin-films achieving vivid colors in transmission and reflection. The platform nearly doubles the absorption efficiency compared to the starting thin-film without much compromising with color diverseness. The structural colors can be changed over a wide range by changing the diameters of the nanowires while still keeping the absorption efficiency higher than starting thin-film. The optical response of the platform is conceptually understood for different diameters combined with different thin-film thicknesses indicating the presence of leaky waveguide modes and coupled cavity modes. Our proposed platform can enable architectural low price colorful solar cells on transparent substrates.

  9. Effects of crossed electric and magnetic fields on the interband optical absorption spectra of variably spaced semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Zuleta, J. N.; Reyes-Gómez, E.

    2016-05-01

    The interband optical absorption spectra of a GaAs-Ga1-xAlxAs variably spaced semiconductor superlattice under crossed in-plane magnetic and growth-direction applied electric fields are theoretically investigated. The electronic structure, transition strengths and interband absorption coefficients are analyzed within the weak and strong magnetic-field regimes. A dramatic quenching of the absorption coefficient is observed, in the weak magnetic-field regime, as the applied electric field is increased, in good agreement with previous experimental measurements performed in a similar system under growth-direction applied electric fields. A decrease of the resonant tunneling in the superlattice is also theoretically obtained in the strong magnetic-field regime. Moreover, in this case, we found an interband absorption coefficient weakly dependent on the applied electric field. Present theoretical results suggest that an in-plane magnetic field may be used to tune the optical properties of variably spaced semiconductor superlattices, with possible future applications in solar cells and magneto-optical devices.

  10. Oxygen K-edge absorption spectra of small molecules in the gas phase

    SciTech Connect

    Yang, B.X.; Kirz, J.; Sham, T.K.

    1986-01-01

    The absorption spectra of O/sub 2/, CO, CO/sub 2/ and OCS have been recorded in a transmission mode in the energy region from 500 to 950 eV. Recent observation of EXAFS in these molecules is confirmed in this study. 7 refs., 3 figs.

  11. Excited states and absorption spectra of β-diketonate complexes of boron difluoride with aromatic substituents

    NASA Astrophysics Data System (ADS)

    Vovna, V. I.; Kazachek, M. V.; L'vov, I. B.

    2012-04-01

    In the approximation of the time-dependent electron density functional theory, we have studied using the quantum-chemical method the nature of excited states of boron difluoride acetylacetonate F2BAA and its substituted derivatives that contain aromatic groups with one or two benzene cycles in the β-position. Optimization of the geometry of complexes show coplanar positions of cycles for all compounds, except for that with the substituent C6H3(CH3)2. Based on the calculated transition energies and oscillator strengths, we have simulated the absorption spectra in the prevacuum range. The calculated absorption spectra have been compared with the experimental spectra in the gas phase or in solutions. We show that, in the absorption spectra of complexes that contain substituents with one benzene cycle, the first three bands are caused by the transition of π electrons of the substituent to the LUMO of the chelate cycle. In complexes with two cycles in the substituent, the number of these transitions increases to five. As the π system becomes more extended, a bathochromic shift of the first absorption band and an increase in the transition probability are observed.

  12. Absorption and fluorescence spectra of poly(p-phenylenevinylene) (PPV) oligomers: an ab initio simulation.

    PubMed

    Cardozo, Thiago M; Aquino, Adélia J A; Barbatti, Mario; Borges, Itamar; Lischka, Hans

    2015-03-05

    The absorption and fluorescence spectra of poly(p-phenylenevinylene) (PPV) oligomers with up to seven repeat units were theoretically investigated using the algebraic diagrammatic construction method to second order, ADC(2), combined with the resolution-of-the-identity (RI) approach. The ground and first excited state geometries of the oligomers were fully optimized. Vertical excitation energies and oscillator strengths of the first four transitions were computed. The vibrational broadening of the absorption and fluorescence spectra was studied using a semiclassical nuclear ensemble method. After correcting for basis set and solvent effects, we achieved a balanced description of the absorption and fluorescence spectra by means of the ADC(2) approach. This fact is documented by the computed Stokes shift along the PPV series, which is in good agreement with the experimental values. The experimentally observed band width of the UV absorption and fluorescence spectra is well reproduced by the present simulations showing that the nuclear ensemble generated should be well suitable for consecutive surface hopping dynamics simulations.

  13. Fluorescence, Absorption, and Excitation Spectra of Polycyclic Aromatic Hydrocarbons as a Tool for Quantitative Analysis

    ERIC Educational Resources Information Center

    Rivera-Figueroa, A. M.; Ramazan, K. A.; Finlayson-Pitts, B. J.

    2004-01-01

    A quantitative and qualitative study of the interplay between absorption, fluorescence, and excitation spectra of pollutants called polycyclic aromatic hydrocarbons (PAHs) is conducted. The study of five PAH displays the correlation of the above-mentioned properties along with the associated molecular changes.

  14. Design optimization for two-step photon absorption in quantum dot solar cells by using infrared photocurrent spectroscopy

    NASA Astrophysics Data System (ADS)

    Tamaki, R.; Shoji, Y.; Okada, Y.

    2016-03-01

    Multi-stacked quantum dot solar cell (QDSC) is a promising candidate for intermediate band solar cell, which can exceed thermodynamic efficiency limit of single-junction solar cells. In recent years, lots of effort has been made to evaluate and understand the photo-carrier response of two-step photon absorption in QDSCs. One crucial issue is to suppress thermal excitation of photo-carriers out of QDs, which obscures the QD filling under quasi-equilibrium at operation conditions. We have investigated infrared photocurrent spectra of the QD states to conduction band (CB) transition by using Fourier transform infrared (FTIR) spectroscopy. Multi-stacked In(Ga)As QDSCs with different barrier materials, such as GaAs, GaNAs, GaAsSb, and AlGaAs, were investigated. The IR absorption edge of the QD to CB transition was evaluated at low temperature by analyzing the low energy tail of the FTIR spectra. The threshold temperature of the two-step photon absorption in In(Ga)As QDSCs was determined by observing temperature dependence of the IR photo-response. A universal linear relationship between the threshold temperature and the IR absorption edge was obtained in In(Ga)As QDSCs with varied barrier materials. The threshold temperature of 295 K was predicted for the absorption edge at 0.459 eV by extrapolating the linear relationship. It reveals strategy for cell optimization to achieve efficient two-step photon absorption at ambient conditions.

  15. Calibration and analysis of spatially resolved x-ray absorption spectra from a nonuniform plasma

    NASA Astrophysics Data System (ADS)

    Knapp, P. F.; Hansen, S. B.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.

    2012-07-01

    We report here the calibration and analysis techniques used to obtain spatially resolved density and temperature measurements of a pair of imploding aluminum wires from x-ray absorption spectra. A step wedge is used to measure backlighter fluence at the film, allowing transmission through the sample to be measured with an accuracy of ±14% or better. A genetic algorithm is used to search the allowed plasma parameter space and fit synthetic spectra with 20 μm spatial resolution to the measured spectra, taking into account that the object plasma nonuniformity must be physically reasonable. The inferred plasma conditions must be allowed to vary along the absorption path in order to obtain a fit to the spectral data. The temperature is estimated to be accurate to within ±25% and the density to within a factor of two. This information is used to construct two-dimensional maps of the density and temperature of the object plasma.

  16. Understanding the features in the ultrafast transient absorption spectra of CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Do, Thanh Nhut; Ong, Xuanwei; Chan, Yinthai; Tan, Howe-Siang

    2016-12-01

    We describe a model to explain the features of the ultrafast transient absorption (TA) spectra of CdSe core type quantum dots (QDs). The measured TA spectrum consists of contributions by the ground state bleach (GSB), stimulated emission (SE) and excited state absorption (ESA) processes associated with the three lowest energy transition of the QDs. We model the shapes of the GSB, SE and ESA spectral components after fits to the linear absorption. The spectral positions of the ESA components take into account the biexcitonic binding energy. In order to obtain the correct weightage of the GSB, SE and ESA components to the TA spectrum, we enumerate the set of coherence transfer pathways associated with these processes. From our fits of the experimental TA spectra of 65 Å diameter QDs, biexcitonic binding energies for the three lowest energy transitions are obtained.

  17. Solvent and structural effects on the UV absorption spectra of N-(substituted phenyl)-2-cyanoacetamides.

    PubMed

    Matijević, Borko M; Vaštag, Đenđi Đ; Perišić-Janjić, Nada U; Apostolov, Suzana Lj; Milčić, Miloš K; Živanović, Lidija; Marinković, Aleksandar D

    2014-01-03

    UV absorption spectra of N-(substituted phenyl)-2-cyanoacetamides have been recorded in the range 200-400 nm in the set of selected solvents. The solute-solvent interactions were analyzed on the basis of linear solvation energy relationships (LSER) concept proposed by Kamlet and Taft. The effects of substituents on the absorption spectra were interpreted by correlation of absorption frequencies with Hammett substituent constant, σ. It was found that substituents significantly change the extent of conjugation. Furthermore, the experimental findings were interpreted with the aid of ab initio B3LYP/6-311G(d,p) method. Electronic energies was calculated by the use of 6-311++G(3df,3pd) methods with standard polarized continuum model (PCM) for inclusion of the solvent effect.

  18. Radiatively driven winds for different power law spectra. [for explaining narrow and broad quasar absorption lines

    NASA Technical Reports Server (NTRS)

    Beltrametti, M.

    1980-01-01

    The analytic solutions for radiatively driven winds are given for the case in which the winds are driven by absorption of line and continuum radiation. The wind solutions are analytically estimated for different parameters of the central source and for different power law spectra. For flat spectra, three sonic points can exist; it is shown, however, that only one of these sonic points is physically realistic. Parameters of the central source are given which generate winds of further interest for explaining the narrow and broad absorption lines in quasars. For the quasar model presented here, winds which could give rise to the narrow absorption lines are generated by central sources with parameters which are not realistic for quasars.

  19. Delta bilirubin: absorption spectra, molar absorptivity, and reactivity in the diazo reaction.

    PubMed

    Doumas, B T; Wu, T W; Jendrzejczak, B

    1987-06-01

    Delta bilirubin (B delta), isolated from serum, has an absorption maximum near 440 nm and a molar absorptivity of 72,000 L mol-1cm-1 in either Tris HCl (0.1 mol/L, pH 8.5) or phosphate (0.13 mol/L, pH 7.4) buffer. This absorptivity exceeds by approximately 50% and 59%, respectively, that of unconjugated bilirubin in the same buffers. This finding suggests that substantial errors can be incurred in direct spectrophotometry of bilirubins in serum. In the total diazo (TBIL) assay (Clin Chem 1985;31:1779-89), the color yield from B delta increases by 10% as the final diazo concentration is increased from 0.27 to 0.81 mmol/L. In the direct (DBIL) assay, if done in HCl (50 mmol/L), B delta yields approximately 15% more color as the diazo concentration is increased from 0.51 to 1.53 mmol/L, whereas in acetate buffer (0.4 mol/L, pH 4.7) the corresponding color yield is 25% greater. However, the absolute color yield for the reaction in HCl exceeds that in acetate buffer. In both the TBIL and the DBIL assay, B delta reacts slowly, nearly complete reaction requiring 10 min. Thus, B delta may be seriously underestimated in diazo (especially DBIL) methods in which short reaction times (20 s to 1 min) are used.

  20. Electronic structure measurements of metal-organic solar cell dyes using x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnson, Phillip S.

    The focus of this thesis is twofold: to report the results of X-ray absorption studies of metal-organic dye molecules for dye-sensitized solar cells and to provide a basic training manual on X-ray absorption spectroscopy techniques and data analysis. The purpose of our research on solar cell dyes is to work toward an understanding of the factors influencing the electronic structure of the dye: the choice of the metal, its oxidation state, ligands, and cage structure. First we study the effect of replacing Ru in several common dye structures by Fe. First-principles calculations and X-ray absorption spectroscopy at the C 1s and N 1s edges are combined to investigate transition metal dyes in octahedral and square planar N cages. Octahedral molecules are found to have a downward shift in the N 1s-to-pi* transition energy and an upward shift in C 1s-to-pi* transition energy when Ru is replaced by Fe, explained by an extra transfer of negative charge from Fe to the N ligands compared to Ru. For the square planar molecules, the behavior is more complex because of the influence of axial ligands and oxidation state. Next the crystal field parameters for a series of phthalocyanine and porphyrins dyes are systematically determined using density functional calculations and atomic multiplet calculations with polarization-dependent X-ray absorption spectra. The polarization dependence of the spectra provides information on orbital symmetries which ensures the determination of the crystal field parameters is unique. A uniform downward scaling of the calculated crystal field parameters by 5-30% is found to be necessary to best fit the spectra. This work is a part of the ongoing effort to design and test new solar cell dyes. Replacing the rare metal Ru with abundant metals like Fe would be a significant advance for dye-sensitized solar cells. Understanding the effects of changing the metal centers in these dyes in terms of optical absorption, charge transfer, and electronic

  1. Nanofluid optical property characterization: towards efficient direct absorption solar collectors.

    PubMed

    Taylor, Robert A; Phelan, Patrick E; Otanicar, Todd P; Adrian, Ronald; Prasher, Ravi

    2011-03-15

    Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase.

  2. Nanofluid optical property characterization: towards efficient direct absorption solar collectors

    PubMed Central

    2011-01-01

    Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase. PMID:21711750

  3. Improvements in absorption systems for solar air conditioning

    SciTech Connect

    Grossman, G.; Bourne, J.R.; Ben-Dror, J.; Kimchi, Y.; Vardi, I.

    1981-01-01

    A theoretical evaluation is described of two design improvements made in a lithium bromide absorption chiller which increase its efficiency and operating range in solar applications. One is the addition of a solution preheater which allows for a considerable reduction in generator size and cost, and improves performance at part load. The other is the addition of an auxiliary generator which enables the chiller to operate at nominal capacity or higher at all times, while utilizing to a maximum the solar radiation available at the time, however small. This is an effective solution to the problem of back-up required in all solar powered systems. The evaluation has been performed by computer simulation and results are presented for the performance of the unit with different configurations of the above systems.

  4. Computer Simulation of the far Infrared Collision Induced Absorption Spectra of Gaseous CO2

    NASA Technical Reports Server (NTRS)

    Gruszka, Marcin; Borysow, Aleksandra

    1998-01-01

    Far infrared collision induced absorption spectra of gaseous CO2 were computed using molecular dynamics simulations. The quadrupole and hexadecapole multipolar induction, through the trace, and the anisotropy of the molecular polarizability were found to be insufficient to represent properly the dipole induction mechanism. For a detailed analysis of the induction process the spectra obtained were decomposed into components resulting from different terms of the induced dipole. Based on this decomposition, all additional overlap contribution for each term was proposed. When spectra were recomputed including such overlap, good agreement between experiment and simulation was achieved over the temperature range at which measurements exist (233-400 K). The use of an anisotropic intermolecular potential was found to be of critical importance for obtaining the right shape of the far wings of the spectra.

  5. Infrared absorption and Raman scattering spectra of water under pressure via first principles molecular dynamics.

    PubMed

    Ikeda, Takashi

    2014-07-28

    From both the polarized and depolarized Raman scattering spectra of supercritical water a peak located at around 1600 cm(-1), attributed normally to bending mode of water molecules, was experimentally observed to vanish, whereas the corresponding peak remains clearly visible in the measured infrared (IR) absorption spectrum. In this computational study a theoretical formulation for analyzing the IR and Raman spectra is developed via first principles molecular dynamics combined with the modern polarization theory. We demonstrate that the experimentally observed peculiar behavior of the IR and Raman spectra for water are well reproduced in our computational scheme. We discuss the origins of a feature observed at 1600 cm(-1) in Raman spectra of ambient water.

  6. Measurement of solar spectra relating to photosynthesis and solar cells: an inquiry lab for secondary science.

    PubMed

    Ruggirello, Rachel M; Balcerzak, Phyllis; May, Victoria L; Blankenship, Robert E

    2012-07-01

    The process of photosynthesis is central to science curriculum at all levels. This article describes an inquiry-based laboratory investigation developed to explore the impact of light quality on photosynthesis and to connect this process to current research on harvesting solar energy, including bioenergy, artificial photosynthesis, and solar cells. This laboratory was used with high-school science teachers who then took this experience back to their classrooms. During this exercise, teachers used an economical spectroradiometer to measure the solar spectrum and relate this to photosynthetic light absorption by determining the quality of light beneath trees. Following this investigation, teachers learned about the plant-inspired dye-sensitized solar cells and constructed one. To connect their light quality investigation to the efficiency of photosynthesis and solar cells, teachers then collected data at locations with varying quality and intensity of light. In sum, this investigation provides a crucial connection between photosynthesis and cutting edge research on solar energy technologies. Our learning experience provides a new instructional model for understanding a little investigated aspect of photosynthesis and connects to authentic scientific research.

  7. SimBAL: A Spectral Synthesis Approach to Analyzing Broad Absorption Line Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Terndrup, Donald M.; Leighly, Karen; Gallagher, Sarah; Richards, Gordon T.

    2017-01-01

    Broad Absorption Line quasars (BALQSOs) show blueshifted absorption lines in their rest-UV spectra, indicating powerful winds emerging from the central engine. These winds are essential part of quasars: they can carry away angular momentum and thus facilitate accretion through a disk, they can distribute chemically-enriched gas through the intergalactic medium, and they may inject kinetic energy to the host galaxy, influencing its evolution. The traditional method of analyzing BALQSO spectra involves measuring myriad absorption lines, computing the inferred ionic column densities in each feature, and comparing with the output of photonionization models. This method is inefficient and does not handle line blending well. We introduce SimBAL, a spectral synthesis fitting method for BALQSOs, which compares synthetic spectra created from photoionization model results with continuum-normalized observed spectra using Bayesian model calibration. We find that we can obtain an excellent fit to the UV to near-IR spectrum of the low-redshift BALQSO SDSS J0850+4451, including lines from diverse ionization states such as PV, CIII*, SIII, Lyalpha, NV, SiIV, CIV, MgII, and HeI*.

  8. THERMAL ABSORPTION AS THE CAUSE OF GIGAHERTZ-PEAKED SPECTRA IN PULSARS AND MAGNETARS

    SciTech Connect

    Lewandowski, Wojciech; Rożko, Karolina; Kijak, Jarosław; Melikidze, George I.

    2015-07-20

    We present a model that explains the observed deviation of the spectra of some pulsars and magnetars from the power-law spectra that are seen in the bulk of the pulsar population. Our model is based on the assumption that the observed variety of pulsar spectra can be naturally explained by the thermal free–free absorption that takes place in the surroundings of the pulsars. In this context, the variety of the pulsar spectra can be explained according to the shape, density, and temperature of the absorbing media and the optical path of the line of sight across it. We have put specific emphasis on the case of the radio magnetar SGR J1745–2900 (also known as the Sgr A* magnetar), modeling the rapid variations of the pulsar spectrum after the outburst of 2013 April as due to the free–free absorption of the radio emission in the electron material ejected during the magnetar outburst. The ejecta expands with time and consequently the absorption rate decreases and the shape of the spectrum changes in such a way that the peak frequency shifts toward the lower radio frequencies. In the hypothesis of an absorbing medium, we also discuss the similarity between the spectral behavior of the binary pulsar B1259–63 and the spectral peculiarities of isolated pulsars.

  9. Modeling absorption spectra for detection of the combustion products of jet engines by laser remote sensing.

    PubMed

    Voitsekhovskaya, Olga K; Kashirskii, Danila E; Egorov, Oleg V; Shefer, Olga V

    2016-05-10

    The absorption spectra of exhaust gases (H2O, CO, CO2, NO, NO2, and SO2) and aerosol (soot and Al2O3) particles were modeled at different temperatures for the first time and suitable spectral ranges were determined for conducting laser remote sensing of the combustion products of jet engines. The calculations were conducted on the basis of experimental concentrations of the substances and the sizes of the aerosol particles. The temperature and geometric parameters of jet engine exhausts were also taken from the literature. The absorption spectra were obtained via the line-by-line method, making use of the spectral line parameters from the authors' own high-temperature databases (for NO2 and SO2 gases) and the HITEMP 2010 database, and taking into account atmospheric transmission. Finally, the theoretical absorption spectra of the exhaust gases were plotted at temperatures of 400, 700, and 1000 K, and the impact of aerosol particles on the total exhaust spectra was estimated in spectral ranges suitable for remote sensing applications.

  10. Deriving polarization properties of desert-reflected solar spectra with PARASOL data

    NASA Astrophysics Data System (ADS)

    Sun, W.; Baize, R. R.; Lukashin, C.; Hu, Y.

    2015-03-01

    Highlights: 1. Spectral polarization state of reflected solar radiation is needed in correcting satellite data. 2. An algorithm for deriving spectral polarization state of solar light from desert is reported. 3. PARASOL data at 3 polarized channels are used in deriving polarization of whole spectra. 4. Desert-reflected solar ligh's polarization state at any wavelength can be obtained. One of the major objectives of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) is to conduct highly accurate spectral observations to provide an on-orbit inter-calibration standard for relevant Earth observing sensors with various channels. To calibrate an Earth observing sensor's measurements with the highly accurate data from the CLARREO, errors in the measurements caused by the sensor's sensitivity to the polarization state of light must be corrected. For correction of the measurement errors due to the light's polarization, both the instrument's dependence to incidence's polarization status and the on-orbit knowledge of polarization state of light as function of observed scene type, viewing geometry, and solar wavelength, are required. In this study, an algorithm for deriving spectral polarization state of solar light from desert is reported. The desert/bare land surface is assumed to be composed of two types of areas: fine sand grains with diffuse reflection (Lambertian non-polarizer) and quartz-rich sand particles with facets of various orientations (specular-reflection polarizer). The adding-doubling radiative transfer model (ADRTM) is applied to integrate the atmospheric absorption and scattering in the system. Empirical models are adopted in obtaining the diffuse spectral reflectance of sands and the optical depth of the dust aerosols over the desert. The ratio of non-polarizer area to polarizer area and the angular distribution of the facet orientations are determined by fitting the modeled polarization states of light to the measurements at 3 polarized

  11. Detection of significant differences between absorption spectra of neutral helium and low temperature photoionized helium plasmas

    SciTech Connect

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Fok, T.; Jarocki, R.; Szczurek, M.

    2013-11-15

    In this work, spectral investigations of photoionized He plasmas were performed. The photoionized plasmas were created by irradiation of helium stream, with intense pulses from laser-plasma extreme ultraviolet (EUV) source. The EUV source was based on a double-stream Xe/Ne gas-puff target irradiated with 10 ns/10 J Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region below 20 nm, however, spectrally integrated intensity at longer wavelengths was also significant. The EUV radiation was focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulse. The long-wavelength part of the EUV radiation was used for backlighting of the photoionized plasmas to obtain absorption spectra. Both emission and absorption spectra in the EUV range were investigated. Significant differences between absorption spectra acquired for neutral helium and low temperature photoionized plasmas were demonstrated for the first time. Strong increase of intensities and spectral widths of absorption lines, together with a red shift of the K-edge, was shown.

  12. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm

    NASA Astrophysics Data System (ADS)

    Kokaly, Raymond F.; Skidmore, Andrew K.

    2015-12-01

    Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic Csbnd H bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the spectral influences

  13. Vibrational dynamics of DNA. II. Deuterium exchange effects and simulated IR absorption spectra

    NASA Astrophysics Data System (ADS)

    Lee, Chewook; Cho, Minhaeng

    2006-09-01

    In Paper I, we studied vibrational properties of normal bases, base derivatives, Watson-Crick base pairs, and multiple layer base pair stacks in the frequency range of 1400-1800cm-1. However, typical IR absorption spectra of single- and double-stranded DNA have been measured in D2O solution. Consequently, the more relevant bases and base pairs are those with deuterium atoms in replacement with labile amino hydrogen atoms. Thus, we have carried out density functional theory vibrational analyses of properly deuterated bases, base pairs, and stacked base pair systems. In the frequency range of interest, both aromatic ring deformation modes and carbonyl stretching modes appear to be strongly IR active. Basis mode frequencies and vibrational coupling constants are newly determined and used to numerically simulate IR absorption spectra. It turns out that the hydration effects on vibrational spectra are important. The numerically simulated vibrational spectra are directly compared with experiments. Also, the O18-isotope exchange effect on the poly(dG):poly(dC) spectrum is quantitatively described. The present calculation results will be used to further simulate two-dimensional IR photon echo spectra of DNA oligomers in the companion Paper III.

  14. Presence of terrestrial atmospheric gas absorption bands in standard extraterrestrial solar irradiance curves in the near-infrared spectral region.

    PubMed

    Gao, B C; Green, R O

    1995-09-20

    The solar irradiance curves compiled by Wehrli [Physikalisch-Meteorologisches Observatorium Publ. 615 (World Radiation Center, Davosdorf, Switzerland, 1985)] and by Neckel and Labs [Sol. Phys. 90, 205 (1984)] are widely used. These curves were obtained based on measurements of solar radiation from the ground and from aircraft platforms. Contaminations in these curves by atmospheric gaseous absorptions were inevitable. A technique for deriving the transmittance spectrum of the Sun's atmosphere from high-resolution (0.01 cm(-1)) solar occultation spectra measured above the Earth's atmosphere by the use of atmospheric trace molecule spectroscopy (ATMOS) aboard the space shuttle is described. The comparisons of the derived ATMOS solar transmittance spectrum with the two solar irradiance curves show that he curve derived by Wehrli contains many absorption features in the 2.0-2.5-µm region that are not of solar origin, whereas the curve obtained by Neckel and Labs is completely devoid of weak solar absorption features that should be there. An Earth atmospheric oxygen band at 1.268 µm and a water-vapor band near 0.94 µm are likely present in the curve obtained by Wehrli. It is shown that the solar irradiance measurement errors in some narrow spectral intervals can be as large as 20%. An improved solar irradiance spectrum is formed by the incorporation of the solar transmittance spectrum derived from the ATMOS data into the solar irradiance spectrum from Neckel and Labs. The availability of a new solar spectrum from 50 to 50 000 cm(-1) from the U.S. Air Force Phillips Laboratory is also discussed.

  15. Absorption spectra and light penetration depth of normal and pathologically altered human skin

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.; Volotovskaya, A. V.; Ulashchik, V. S.

    2007-05-01

    A three-layered skin model (stratum corneum, epidermis, and dermis) and engineering formulas for radiative transfer theory are used to study absorption spectra and light penetration depths of normal and pathologically altered skin. The formulas include small-angle and asymptotic approximations and a layer-addition method. These characteristics are calculated for wavelengths used for low-intensity laser therapy. We examined several pathologies such as vitiligo, edema, erythematosus lupus, and subcutaneous wound, for which the bulk concentrations of melanin and blood vessels or tissue structure (for subcutaneous wound) change compared with normal skin. The penetration depth spectrum is very similar to the inverted blood absorption spectrum. In other words, the depth is minimal at blood absorption maxima. The calculated absorption spectra enable the power and irradiation wavelength providing the required light effect to be selected. Relationships between the penetration depth and the diffuse reflectance coefficient of skin (unambiguously expressed through the absorption coefficient) are analyzed at different wavelengths. This makes it possible to find relationships between the light fields inside and outside the tissue.

  16. Absorption of Solar Radiation by Clouds: An Overview

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Einaudi, Franco (Technical Monitor)

    2000-01-01

    This talk provides an overview of the subject of absorption of solar radiation by clouds in the earth's atmosphere. The paper summarizes the available evidence which points to disagreements between theoretical and observed values of cloud absorption (and reflections). The importance of these discrepancies, particularly to remote sensing of clouds as well as to studies of cloud physics and earth radiation budgets, is emphasized. Existing cloud absorption and reflection measurements are reviewed and the persistent differences that exist between calculated and measured near-infrared cloud albedos are highlighted. Various explanations for these reflection and absorption discrepancies are discussed under two separate paths: a theoretician's approach and an experimentalist's approach. Examples for the former approach include model accuracy tests, large-droplet hypothesis, excess absorbing aerosol, enhanced water vapor continuum absorption, and effects of cloud inhomogeneity. The latter approach focuses on discussions of instrumental device, calibration, operational strategy, and signal/noise separation. A recommendation for future activities on this subject will be given.

  17. Remote sensing of trace constituents from atmospheric infrared emission and absorption spectra

    NASA Technical Reports Server (NTRS)

    Barker, D. B.; Brooks, J. N.; Goldman, A.; Kosters, J. J.; Murcray, D. G.; Murcray, F. H.; Van Allen, J.; Williams, W. J.

    1976-01-01

    Atmospheric infrared emission and absorption spectra obtained from aircraft and balloon-borne spectrometers are presented. From such spectra, mixing ratio vs altitude profiles are derived for several minor constituents. Recent results for HNO3, CF2Cl2, CFCl3, and HF are presented. In addition, the feasibility of infrared detection of other trace constituents, such as HCl, HF, NH3, NO and SO2, against the rest of the atmospheric background is studied. From this study, made on a line-by-line basis for 'state of the art' airborne spectrometers, potential spectral features for detection of the trace constituents are isolated.

  18. Optical Absorption Spectra of Ternary Complex of Praseodymium in Different Environment

    NASA Astrophysics Data System (ADS)

    Gupta, Anup Kumar; Ujjwal, Shri Kishan

    The optical absorption spectra of complex of Praseodymium in different solvents i.e water, Methanol, Ethanol & Acetic Acid have been recorded in visible region (360-620 nm for Pr3+) using amino acid as primary ligand and diol as secondary ligand. The value of energies & intensities of various transitions have been calculated using Judd-Ofelt relation is in good agreement with experimental result. The study of complex found it to be covalent in nature. The spectra in visible region have been recorded on model uv-2601 Rayleigh analytical instrument corp.

  19. Identification of acetylene (C2H2) in infrared atmospheric absorption spectra

    NASA Astrophysics Data System (ADS)

    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Gillis, J. R.; Bonomo, F. S.; Murcray, F. H.; Murcray, D. G.; Cicerone, R. J.

    1981-12-01

    Infrared atmospheric absorption spectra at ˜0.02 cm-1 resolution obtained during a balloon flight made on March 23, 1981, show absorption features attributable to C2H2. These features are used to derive a preliminary mixing ratio of ˜25 pptv near 9 km. This mixing ratio falls into the range of values we calculate for upper tropospheric C2H2 in a photochemical/transport model but well below values measured previously in samples collected by other researchers.

  20. Identification of acetylene /C2H2/ in infrared atmospheric absorption spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Gillis, J. R.; Bonomo, F. S.; Murcray, F. H.; Murcray, D. G.; Cicerone, R. J.

    1981-01-01

    Infrared atmospheric absorption spectra at 0.02/cm resolution were obtained during a balloon flight on March 23, 1981 from the Holloman AFB, New Mexico. The absorption features, attributed to C2H2, were used to derive a preliminary mixing ratio of about 25 pptv near 9 km, accurate to + or - 40%. This mixing ratio falls into the range of values calculated for the upper troposphere C2H2 in a photochemical/transport model. However, previous measurements from aircraft grab sampling (Cronn and Robinson, 1979) show four to twelve times this C2H2 concentration 1.5 km below the tropopause.

  1. In vivo low-coherence spectroscopic measurements of local hemoglobin absorption spectra in human skin

    NASA Astrophysics Data System (ADS)

    Bosschaart, Nienke; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2011-10-01

    Localized spectroscopic measurements of optical properties are invaluable for diagnostic applications that involve layered tissue structures, but conventional spectroscopic techniques lack exact control over the size and depth of the probed tissue volume. We show that low-coherence spectroscopy (LCS) overcomes these limitations by measuring local attenuation and absorption coefficient spectra in layered phantoms. In addition, we demonstrate the first in vivo LCS measurements of the human epidermis and dermis only. From the measured absorption in two distinct regions of the dermal microcirculation, we determine total hemoglobin concentration (3.0+/-0.5 g/l and 7.8+/-1.2 g/l) and oxygen saturation.

  2. Intervening Mg II absorption systems from the SDSS DR12 quasar spectra

    NASA Astrophysics Data System (ADS)

    Raghunathan, Srinivasan; Clowes, Roger G.; Campusano, Luis E.; Söchting, Ilona K.; Graham, Matthew J.; Williger, Gerard M.

    2016-12-01

    We present the catalogue of the Mg II absorption systems detected at a high significance level using an automated search algorithm in the spectra of quasars from the 12th data release of the Sloan Digital Sky Survey. A total of 266,433 background quasars were searched for the presence of absorption systems in their spectra. The continuum modelling for the quasar spectra was performed using a mean filter. A pseudo-continuum derived using a median filter was used to trace the emission lines. The absorption system catalogue contains 39,694 Mg II systems detected at a 6.0, 3.0σ level respectively for the two lines of the doublet. The catalogue was constrained to an absorption line redshift of 0.35 ≤ z2796 ≤ 2.3. The rest-frame equivalent width of the λ2796 line ranges between 0.2 ≤ Wr ≤ 6.2 Å. Using Gaussian noise-only simulations, we estimate a false positive rate of 7.7 per cent in the catalogue. We measured the number density ∂N2796/∂z of Mg II absorbers and find evidence for steeper evolution of the systems with Wr ≥ 1.2 Å at low redshifts (z2796 ≤ 1.0), consistent with other earlier studies. A suite of null tests over the redshift range 0.5 ≤ z2796 ≤ 1.5 was used to study the presence of systematics and selection effects like the dependence of the number density evolution of the absorption systems on the properties of the background quasar spectra. The null tests do not indicate the presence of any selection effects in the absorption catalogue if the quasars with spectral signal-to-noise level less than 5.0 are removed. The resultant catalogue contains 36,981 absorption systems. The Mg II absorption catalogue is publicly available and can be downloaded from the link http://srini.ph.unimelb.edu.au/mgii.php.

  3. In vivo low-coherence spectroscopic measurements of local hemoglobin absorption spectra in human skin.

    PubMed

    Bosschaart, Nienke; Faber, Dirk J; van Leeuwen, Ton G; Aalders, Maurice C G

    2011-10-01

    Localized spectroscopic measurements of optical properties are invaluable for diagnostic applications that involve layered tissue structures, but conventional spectroscopic techniques lack exact control over the size and depth of the probed tissue volume. We show that low-coherence spectroscopy (LCS) overcomes these limitations by measuring local attenuation and absorption coefficient spectra in layered phantoms. In addition, we demonstrate the first in vivo LCS measurements of the human epidermis and dermis only. From the measured absorption in two distinct regions of the dermal microcirculation, we determine total hemoglobin concentration (3.0±0.5 g∕l and 7.8±1.2 g∕l) and oxygen saturation.

  4. Measurements of trace constituents from atmospheric infrared emission and absorption spectra, a feasibility study

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Williams, W. J.; Murcray, D. G.

    1974-01-01

    The feasibility of detecting eight trace constituents (CH4, HCl, HF, HNO3, NH3, NO, NO2 and SO2) against the rest of the atmospheric background at various altitudes from infrared emission and absorption atmospheric spectra was studied. Line-by-line calculations and observational data were used to establish features that can be observed in the atmospheric spectrum due to each trace constituent. Model calculations were made for experimental conditions which approximately represent state of the art emission and absorption spectrometers.

  5. Computed and Experimental Absorption Spectra of the Perovskite CH3NH3PbI3.

    PubMed

    Zhu, Xi; Su, Haibin; Marcus, Rudolph A; Michel-Beyerle, Maria E

    2014-09-04

    Electronic structure and light absorption properties of the perovskite CH3NH3PbI3 are investigated by relativistic density functional theory with quasiparticle GW corrections and many-body interactions. The nature of the Wannier exciton is studied by solving the Bethe-Salpeter equation augmented with the analysis of a conceptual hydrogen-like model. The computed absorption spectrum unravels a remarkable absorption "gap" between the first two absorption peaks. This discontinuity is maintained in the calculated tetragonal structure that, however, is not stable at low temperature. Most importantly, the discontinuity is also observed in the experimental absorption spectrum of the orthorhombic single crystal at low temperature (4 K). However, in contrast to the single crystal, in a polycrystalline perovskite film at 5 K the "gap" is filled by a monotonously increasing absorption throughout the visible range. This feature of thin films points to the potential significance of defect absorption for the excellent light harvesting properties of perovskite-based solar cells.

  6. Solar absorptance measurements in space on operational spacecraft

    NASA Astrophysics Data System (ADS)

    Babel, Hank W.; Jones, Cherie A.; Wilkes, Donald R.; Linton, Roger C.

    1995-07-01

    Spacecraft hardware such as radiators requires the maintenance of solar absorptance within tight bounds for their design life. Such hardware is sized in part based on the beginning- and end-of-life absorptance. It has been difficult to make accurate end-of-life determinations based on either ground based data or flight data. The synergistic effect of atomic oxygen, ultraviolet radiation, and contamination has made it difficult to duplicate space exposures in the laboratory. The absorptance of flight exposed samples brought back to earth are not representative of the conditions in space because of changes brought about by exposure to air. This paper proposes to augment the current in-space monitoring techniques with periodic, in- space, direct measurements of the solar absorptance on operational hardware. NASA funded AZ Technology to develop a portable, space-rated device similar to the LPSR-200 portable spectroreflectometer, a space portable spectroreflectometer (SPSR). This instrument is robotically compatible and can be run using spacecraft power or batteries. The instrument also has measurement storage capacity for later retrieval and evaluation. Although extensive development work has already been completed, authorization to build a unit for a flight experiment has not been received. The Russians have expressed an interest in having absorptance measurements made on their MIR I Space Station as part of the NASA/MIR flight experiments. Proposals are currently being made to obtain authorization for the construction and use of SPSR on NASA/MIR flight experiments, to help mitigate potential problems for the International Space Station Alpha (ISSA).

  7. Scalar and vector collisional interference in the vibration-rotation absorption spectra of H2 and HD

    NASA Technical Reports Server (NTRS)

    Herman, R. M.

    1987-01-01

    The only atomic or molecular spectra known to exhibit 'collisional interference' effects are those of H2 and its isotopes. Attention is presently given to the sharp absorption spectra of HD, which demonstrate collisional interference effects is a fashion that while surprising has been experimentally verified and theoretically characterized in detail. Collisional interference can dramatically alter the line shapes usually encountered in dipole absorption spectra, while nevertheless remaining narrow.

  8. Theoretical calculations on the electron absorption spectra of selected Polycyclic Aromatic Hydrocarbons (PAH) and derivatives

    NASA Technical Reports Server (NTRS)

    Du, Ping

    1993-01-01

    As a theoretical component of the joint effort with the laboratory of Dr. Lou Allamandola to search for potential candidates for interstellar organic carbon compound that are responsible for the visible diffuse interstellar absorption bands (DIB's), quantum mechanical calculations were performed on the electron absorption spectra of selected polycyclic aromatic hydrocarbons (PAH) and derivatives. In the completed project, 15 different species of naphthalene, its hydrogen abstraction and addition derivatives, and corresponding cations and anions were studied. Using semiempirical quantum mechanical method INDO/S, the ground electronic state of each species was evaluated with restricted Hartree-Fock scheme and limited configuration interaction. The lowest energy spin state for each species was used for electron absorption calculations. Results indicate that these calculations are accurate enough to reproduce the spectra of naphthalene cation and anion observed in neon matrix. The spectral pattern of the hydrogen abstraction and addition derivatives predicted based on these results indicate that the electron configuration of the pi orbitals of these species is the dominant determinant. A combined list of 19 absorptions calculated from 4500 A to 10,400 A were compiled and suggested as potential candidates that are relevant for the DIB's absorptions. Continued studies on pyrene and derivatives revealed the ground state symmetries and multiplicities of its neutral, anionic, and cationic species. Spectral calculations show that the cation (B(sub 3g)-2) and the anion (A(sub u)-2) are more likely to have low energy absorptions in the regions between 10 kK and 20 kK, similar to naphthalene. These absorptions, together with those to be determined from the hydrogen abstraction and addition derivatives of pyrene, can be used to provide additional candidates and suggest experimental work in the search for interstellar compounds that are responsible for DIB's.

  9. Analyzing absorption and scattering spectra of micro-scale structures with spectroscopic optical coherence tomography.

    PubMed

    Yi, Ji; Gong, Jianmin; Li, Xu

    2009-07-20

    We demonstrate the feasibility of characterizing the absorption and scattering spectra of micron-scale structures in a turbid medium using a spectroscopic optical coherence tomography (SOCT) system with a bandwidth of 430-650 nm. SOCT measurements are taken from phantoms composed of fluorescent microspheres. The absorption and scattering spectra are recovered with proper selections of spatial window width in the post processing step. Furthermore, we present an analysis using numerical OCT simulation based on full-wave solutions of the Maxwell's Equation to elucidate the origination of the multiple peaks in the OCT image for a single microsphere. Finally, we demonstrate the possibility of identifying contrast agents concentrated in micron-sized scale in an SOCT image. Two different types of microspheres in gel phantom are discriminated based on their distinguished absorbent feature.

  10. Far-ultraviolet absorption spectra of quasars: How to find missing hot gas and metals

    NASA Technical Reports Server (NTRS)

    Verner, D. A.; Tytler, David; Barthel, P. D.

    1994-01-01

    We show that some high-redshift QSO absorption systems that reveal only the H I Lyman series lines at wavelengths visible from the ground maybe a new class of ultra-high-ionization metal line systems, with metal lines in the far-UV region which is now being explored with satellites. At high temperatures or in intense radiation fields metal systems will not show the usual C IV absorption, and O VI will become the most prominent metal absorber. At still higher ionization, O IV also becomes weak and the strongest metal lines are from Ne VIII, Mg X and Si XII, which have doublets in the rangs 500-800 A. Hence very high ionization metal systems will not show metal lines in existing spectra. Recent X-ray observations show that galaxy halos contain hot gas, so we predict that far-UV spectra of QSOs will also show this gas.

  11. Three-dimensional time-dependent wave-packet calculations of OBrO absorption spectra

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Sun, Zhigang; Cong, Shu-Lin; Lou, Nanquan

    2005-08-01

    The absorption spectra of the C(A22)←X(B12) transition of the OBrO molecule are calculated using three-dimensional time-dependent wave-packet method in Radau coordinates for a total angular momentum J =0. The wave packet is propagated using the split operator technique associated with fast Fourier transform. Employing the basis functions obtained by one-dimensional Fourier grid Hamiltonian method, the initial wave packet is calculated directly on the three-dimensional Fourier grid. The numerical model is characterized by simplicity and efficiency. The ab initio potential surfaces for the C(A22) and X(B12) states are used in the calculation. The calculated absorption spectra of the C(A22)←X(B12) transition of OBrO molecule agree well with the experimental results.

  12. Heavy Ozone Enrichments from ATMOS Infrared Solar Spectra

    NASA Technical Reports Server (NTRS)

    Irion, F. W.; Gunson, M. R.; Rinsland, C. P.; Yung, Y. L.; Abrams, M. C.; Chang, A. Y.; Goldman, A.

    1996-01-01

    Vertical enrichment profiles of stratospheric O-16O-16O-18 and O-16O-18O-16 (hereafter referred to as (668)O3 and (686)O3 respectively) have been derived from space-based solar occultation spectra recorded at 0.01 cm(exp-1) resolution by the ATMOS (Atmospheric Trace MOlecule Spectroscopy) Fourier transform infrared (FTIR) spectrometer. The observations, made during the Spacelab 3 and ATLAS-1, -2, and -3 shuttle missions, cover polar, mid-latitude and tropical regions between 26 to 2.6 mb inclusive (approximately 25 to 41 km). Average enrichments, weighted by molecular (48)O3 density, of (15 +/- 6)% were found for (668)O3 and (10 +/- 7)% for (686)O3. Defining the mixing ratio of (50)O3 as the sum of those for (668)O3 and (686)O3, an enrichment of (13 plus or minus 5)% was found for (50)O3 (1 sigma standard deviation). No latitudinal or vertical gradients were found outside this standard deviation. From a series of ground-based measurements by the ATMOS instrument at Table Mountain, California (34.4 deg N), an average total column (668)O3 enrichment of (17 +/- 4)% (1 sigma standard deviation) was determined, with no significant seasonal variation discernable. Possible biases in the spectral intensities that affect the determination of absolute enrichments are discussed.

  13. Multi-Photon Absorption Spectra: A Comparison Between Transmittance Change and Fluorescence Methods

    DTIC Science & Technology

    2015-05-21

    AFRL-OSR-VA-TR-2015-0134 multi-photon absorption spectra Cleber Mendonca INSTITUTO DE FISICA DE SAO CARLOS Final Report 05/21/2015 DISTRIBUTION A...5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Instituto de Fisica de Sao Carlos - Universidade de Sao Paulo Av...Trabalhador Saocarlense 400 Sao Carlos, SP, 13566-590 Brazil 8. PERFORMING ORGANIZATION REPORT NUMBER Report 3 - Final 9. SPONSORING/MONITORING AGENCY

  14. Emission and absorption spectra of some bridged 1,5-benzodiazepines

    NASA Astrophysics Data System (ADS)

    Mellor, J. M.; Pathirana, R. N.; Stibbard, J. H. A.

    Absorption spectra in neutral and acidic media are reported for a series of bridged 1,5-benzodiazepines, which are unable to tautomerize. Comparison is made with non-bridged 1,5-benzodiazepines capable of tautomeric rearrangement. Both bridged and non-bridged 1,5-benzodiazepines are essentially non-fluorescent due to the "proximity effect" of interaction between singlet ηπ* and ππ* states of similar energy, a phenomenon previously recognised in six-membered nitrogen heterocycles.

  15. Absorption Spectra of Fe, Mn, and Mg Water Complexes Calculated Using Density Functional Theory

    DTIC Science & Technology

    2013-08-20

    the calculated absorption spectra of isolated molecules can help to identify intramolecular vibrational modes of various materials. A series of...Transformation A molecule in 3-dimensions has a total of 3N-6 normal mode vibrations . The Schrodinger equation for the harmonic...oscillations of these normal modes has known solutions. The quantum mechanical spectrum of each of these vibrations is given in the harmonic approximation

  16. Ab initio study of optical absorption spectra of semiconductors and conjugated polymers

    SciTech Connect

    Tiago, M.L.; Chang, Eric K.; Rohlfing, Michael; Louie, Steven G.

    2000-04-30

    The effects of electron-hole interaction on the optical properties of a variety of materials have been calculated using an ab initio method based on solving the Bethe-Salpeter equation. Results on selected semiconductors, insulators, and semiconducting polymers are presented. In the cases of alpha-quartz (SiO2) and poly-phenylene-vinylene, resonant excitonic states qualitatively alter the absorption spectra.

  17. Structure-induced resonant tail-state regime absorption in polymer: fullerene bulk-heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Pfadler, Thomas; Kiel, Thomas; Stärk, Martin; Werra, Julia F. M.; Matyssek, Christian; Sommer, Daniel; Boneberg, Johannes; Busch, Kurt; Weickert, Jonas; Schmidt-Mende, Lukas

    2016-05-01

    In this work, we present resonant tail-state regime absorption enhanced organic photovoltaics. We combine periodically structured TiO2 bottom electrodes with P3HT-PCBM bulk-heterojunction solar cells in an inverted device configuration. The wavelength-scale patterns are transferred to the electron-selective bottom electrodes via direct laser interference patterning, a fast method compatible with roll-to-roll processing. Spectroscopic and optoelectronic device measurements suggest polarization-dependent absorption enhancement along with photocurrent generation unambiguously originating from the population of tail states. We discuss the effects underlying these absorption patterns with the help of electromagnetic simulations using the discontinuous Galerkin time domain method. For this, we focus on the total absorption spectra along with spatially resolved power loss densities. Our simulations stress the tunability of the absorption resonances towards arbitrary wavelength regions.

  18. Algae (Microcystis and Scenedesmus) absorption spectra and its application on Chlorophyll a retrieval

    NASA Astrophysics Data System (ADS)

    Wu, Di; Chen, Maosi; Wang, Qiao; Gao, Wei

    2013-12-01

    Blue algae and green algae are the dominant phytoplankton groups that contribute to the eutrophication and the water bloom in inland water of China. The absorption coefficients (spectra) of the algae, which do not change with its intrinsic optical characteristics and the observation geometry, are strictly additive quantities. The characteristics of the absorption spectra of the two algae are presented. The pure blue algae and the pure green algae cultured in the laboratory environment are diluted and mixed at ten volume ratios. The Quantitative Filter Technique was applied to measure their absorption spectra. The "hot-ethanol extraction" method was chosen to calculate their concentration of Chlorophyll a. The retrieval algorithm developed in this study extracts the mapping information between each individual alga and their Chlorophyll a concentration via Continuous Wavelet Transform, and retrieves the Chlorophyll a concentration of each alga in their mixture using a trust region optimizer. The results show that the retrieved and the measured Chlorophyll a concentrations of the blue algae and the green algae components in the ten mixture match well with the average relative error of 5.55%.

  19. Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-Dioxane

    NASA Astrophysics Data System (ADS)

    Chandran, Satheesh; Varma, Ravi

    2016-01-01

    1, 4-Dioxane (DX) is a commonly found ether in industrially polluted atmosphere. The near infrared absorption spectra of this compound has been recorded in the region 5900-8230 cm- 1 with a resolution of 0.08 cm- 1 using a novel Fourier transform incoherent broadband cavity-enhanced absorption spectrometer (FT-IBBCEAS). All recorded spectra were found to contain regions that are only weakly perturbed. The possible combinations of fundamental modes and their overtone bands corresponding to selected regions in the measured spectra are tabulated. Two interesting spectral regions were identified as 5900-6400 cm- 1 and 8100-8230 cm- 1. No significant spectral interference due to presence of water vapor was observed suggesting the suitability of these spectral signatures for spectroscopic in situ detection of DX. The technique employed here is much more sensitive than standard Fourier transform spectrometer measurements on account of long effective path length achieved. Hence significant enhancement of weaker absorption lines above the noise level was observed as demonstrated by comparison with an available measurement from database.

  20. Modeling of multi-exciton transient absorption spectra of protochlorophyllide aggregates in aqueous solution.

    PubMed

    Sytina, Olga A; Novoderezhkin, Vladimir I; van Grondelle, Rienk; Groot, Marie Louise

    2011-11-03

    Protochlorophyllide (Pchlide) is a natural porphyrin, a precursor of chlorophyll, synthesized by plants for its photosynthetic apparatus. The pigment spontaneously forms aggregates when dissolved in neat water solution. We present here calculations of the transient absorption spectra and its comprising components (ground-state bleach, stimulated emission, and excited-state absorption) for a strongly excitonically coupled linear chain of four Pchlide chromophores, using exciton theory with phenomenological Gaussian line shapes and without energetic disorder. A refined multiexciton model that includes static disorder is applied to fit the experimental power-dependent transient absorption spectra of aqueous protochlorophyllide and the kinetics for delay times up to 20 ps after photoexcitation. We show that population up to the 4-exciton manifold is sufficient to explain the pronounced saturation of the bleaching and the shape changes in the instantaneous, t = 0.2 ps transient spectra when the pulse energy is increased from 10 to 430 nJ per pulse. The decay of the multiexciton manifold is relatively slow and is preceded by a spectroscopically distinct process. We suggest that the exciton states in the Pchlide aggregates are mixed with charge-transfer states (CTS) and that the population and repopulation of the CTS coupled to the exciton states explains the relatively slow decay of the multiexciton manifold. The relevance of our results to the optical properties and dynamics of natural photosynthetic complexes and the possible physical origin of CTS formation are discussed.

  1. The electronic absorption spectra of pyridine azides, solvent-solute interaction.

    PubMed

    Abu-Eittah, Rafie H; Khedr, Mahmoud K

    2009-01-01

    The electronic absorption spectra of: 2-, 3-, and 4-azidopyridines have been investigated in a wide variety of polar and non-polar solvents. According to Onsager model, the studied spectra indicate that the orientation polarization of solvent dipoles affects the electronic spectrum much stronger than the induction polarization of solvent dipoles. The effect of solvent dipole moment predominates that of solvent refractive index in determining the values of band maxima of an electronic spectrum. The spectra of azidopyridines differ basically from these of pyridine or mono-substituted pyridine. Results at hand indicate that the azide group perturbs the pyridine ring in the case of 3-azidopyridine much more than it does in the case of 2-azidopyridine. This result agrees with the predictions of the resonance theory. Although the equilibrium <==> azide tetrazole is well known, yet the observed spectra prove that such an equilibrium does not exist at the studied conditions. The spectra of the studied azidopyridines are characterized by the existence of overlapping transitions. Gaussian analysis is used to obtain nice, resolved spectra. All the observed bands correspond to pi-->pi* transitions, n-->pi* may be overlapped with the stronger pi-->pi* ones.

  2. Hot Experimental Absorption Spectra of CH_4 in the Pentad and Octad Region

    NASA Astrophysics Data System (ADS)

    Hargreaves, Robert J.; Dulick, Michael; Bernath, Peter F.

    2014-06-01

    We present comprehensive line lists of CH_4 at high temperatures for the pentad and octad region (2400-5000 wn). These spectra improve on our previous emission measurements for this region by using a new quartz sample cell in conjunction with a tube furnace (pictured). Ten temperatures have been recorded from room temperature up to 1000°C and our technique involves the acquisition of four separate Fourier transform infrared spectra at each temperature, thus accounting for both the emission and absorption of the molecule and the cell. By combining these four spectra we obtain true transmission spectra of hot CH_4 in this region. Analysis of this set of spectra enables the production of a line list that includes the position, intensity and empirical lower state energy. Our spectra and line lists can be used directly to model planetary atmospheres and brown dwarfs. Hargreaves, R.J., Beale, C.A., Michaux, L., Irfan, M., & Bernath, P.F. 2012, ApJ, 757, 46

  3. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium: The Chandra Grating Spectra of XTE J1817-330

    NASA Technical Reports Server (NTRS)

    Gatuzz, E.; Garcia, J.; Menodza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra towards the X-ray low-mass binary XTE J1817-330. The 11-25 A broadband is described with a simple absorption model that takes into account the pileup effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 A) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain: a column density of N(sub H) = 1.38 +/- 0.01 x 10(exp 21) cm(exp -2); ionization parameter of log xi = .2.70 +/- 0.023; oxygen abundance of A(sub O) = 0.689(exp +0.015./-0.010); and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse and Sauval (1998), a rescaling with the revision by Asplund et al. (2009) yields A(sub O) = 0.952(exp +0.020/-0.013, a value close to solar that reinforces the new standard. We identify several atomic absorption lines.K-alpha , K-beta, and K-gamma in O I and O II; and K-alpha in O III, O VI, and O VII--last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated to ISM cold absorption.

  4. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium:. [The Chandra Grating Spectra of XTE J1817-330

    NASA Technical Reports Server (NTRS)

    Gatuzz, E.; Garcia, J.; Mendoza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 Angstrom broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 Angstroms) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the xstar code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N(sub H) = 1.38 +/- 0.01 × 10(exp 21) cm(exp -2); an ionization parameter of log xi = -2.70 +/- 0.023; an oxygen abundance of A(sub O) = 0.689 (+0.015/-0.010); and ionization fractions of O(sub I)/O = 0.911, O(sub II)/O = 0.077, and O(sub III)/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse & Sauval, a rescaling with the revision by Asplund et al. yields A(sub O) = 0.952(+0.020/-0.013), a value close to solar that reinforces the new standard.We identify several atomic absorption lines-K(alpha), K(beta), and K(gamma) in O(sub I) and O(sub II) and K(alpha) in O(sub III), O(sub VI), and O(sub VII)-the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated with ISM cold absorption.

  5. PHOTOIONIZATION MODELING OF OXYGEN K ABSORPTION IN THE INTERSTELLAR MEDIUM: THE CHANDRA GRATING SPECTRA OF XTE J1817-330

    SciTech Connect

    Gatuzz, E.; Mendoza, C.; Garcia, J.; Lohfink, A.; Kallman, T. R.; Witthoeft, M.; Bautista, M. A.; Palmeri, P.; Quinet, P. E-mail: claudio@ivic.gob.ve E-mail: alohfink@astro.umd.edu E-mail: michael.c.witthoeft@nasa.gov E-mail: palmeri@umons.ac.be

    2013-05-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 A broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 A) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N{sub H} = 1.38 {+-} 0.01 Multiplication-Sign 10{sup 21} cm{sup -2}; an ionization parameter of log {xi} = -2.70 {+-} 0.023; an oxygen abundance of A{sub O}= 0.689{sup +0.015}{sub -0.010}; and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse and Sauval, a rescaling with the revision by Asplund et al. yields A{sub O}=0.952{sup +0.020}{sub -0.013}, a value close to solar that reinforces the new standard. We identify several atomic absorption lines-K{alpha}, K{beta}, and K{gamma} in O I and O II and K{alpha} in O III, O VI, and O VII-the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n > 2 associated with ISM cold absorption.

  6. Photon-photon absorption and the uniqueness of the spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    1984-01-01

    The effects of the feedback of e(+)-e(-) pair reinjection in a plasma due to photon-photon absorption of its own radiation was examined. Under the assumption of continuous electron injection with a power law spectrum E to the minus gamma power and Compton losses only, it is shown that for gamma 2 the steady state electron distribution function has a unique form independent of the primary injection spectrum. This electron distribution function can, by synchrotron emission, reproduce the general characteristics of the observed radio to optical active galactic nuclei spectra. Inverse Compton scattering of the synchrotron photons by the same electron distribution can account for their X-ray spectra, and also implies gamma ray emission from these objects. This result is invoked to account for the similarity of these spectra, and it is consistent with observations of the diffuse gamma ray background.

  7. Solar-based comparison of adsorption and absorption refrigerating machines

    NASA Astrophysics Data System (ADS)

    Ahachad, M.; Almers, A.; Mimet, A.; Draoui, A.

    2005-12-01

    This article attempts to carry out a computer simulation of an aqua-ammonia vapour absorption system, and an activated carbon ammonia adsorption system, with a 1m2 collector area, under climatic conditions of Tangier, north Morocco. This study is very important in order to point out the conditions that make the performance of one cycle superior to the other. The comparison of the performance of sorption cycle is still a difficult academic challenge because some part of the sorption cycle is still at the R&D stage. The effect of operating variables such as generator temperature, condenser temperature and evaporator temperature on the system performance is investigated. This study shows that, in solar applications, the adsorption system is better than the absorption system for several reasons including its efficiency, and that it is simple to operate.

  8. TDDFT prediction of UV-vis absorption and emission spectra of tocopherols in different media.

    PubMed

    Bakhouche, Kahina; Dhaouadi, Zoubeida; Lahmar, Souad; Hammoutène, Dalila

    2015-06-01

    We use the TDDFT/PBE0/6-31+G* method to determine the electronic absorption and emission energies, in different media, of the four forms of tocopherol, which differ by the number and the position of methyl groups on the chromanol. Geometries of the ground state S0 and the first singlet excited state S1 were optimized in the gas phase, and various solvents. The solvent effect is evaluated using an implicit solvation model (IEF-PCM). Our results are compared to the experimental ones obtained for the vitamin E content in several vegetable oils. For all forms of tocopherols, the HOMO-LUMO first vertical excitation is a π-π* transition. Gas phase and non-polar solvents (benzene and toluene) give higher absorption wavelengths than polar solvents (acetone, ethanol, methanol, DMSO, and water); this can be interpreted by a coplanarity between the O-H group and the chroman, allowing a better electronic resonance of the oxygen lone pairs and the aromatic ring, and therefore giving an important absorption wavelength, whereas the polar solvents give high emission wavelengths comparatively to gas phase and non-polar solvents. Fluorescence spectra permit the determination, the separation, and the identification of the four forms of tocopherols by a large difference in emission wavelength values. Graphical Abstract Scheme from process methodological to obtain the absorption and emission spectra for tocopherols.

  9. Determining CDOM Absorption Spectra in Diverse Aquatic Environments Using a Multiple Pathlength, Liquid Core Waveguide System

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; Belz, Mathias; DelCastillo, Carlos; Trzaska, Rick

    2001-01-01

    We evaluated the accuracy, sensitivity and precision of a multiple pathlength, liquid core waveguide (MPLCW) system for measuring colored dissolved organic matter (CDOM) absorption in the UV-visible spectral range (370-700 nm). The MPLCW has four optical paths (2.0, 9.8, 49.3, and 204 cm) coupled to a single Teflon AF sample cell. Water samples were obtained from inland, coastal and ocean waters ranging in salinity from 0 to 36 PSU. Reference solutions for the MPLCW were made having a refractive index of the sample. CDOM absorption coefficients, aCDOM, and the slope of the log-linearized absorption spectra, S, were compared with values obtained using a dual-beam spectrophotometer. Absorption of phenol red secondary standards measured by the MPLCW at 558 nm were highly correlated with spectrophotometer values and showed a linear response across all four pathlengths. Values of aCDOM measured using the MPLCW were virtually identical to spectrophotometer values over a wide range of concentrations. The dynamic range of aCDOM for MPLCW measurements was 0.002 - 231.5 m-1. At low CDOM concentrations spectrophotometric aCDOM were slightly greater than MPLCW values and showed larger fluctuations at longer wavelengths due to limitations in instrument precision. In contrast, MPLCW spectra followed an exponential to 600 nm for all samples.

  10. Time-resolved Absorption Spectra of the Laser-dressed Hydrogen Atom

    NASA Astrophysics Data System (ADS)

    Murakami, Mitsuko; Chu, Shih-I.

    2013-05-01

    A theoretical study of the transient absorption spectra for the laser-dressed hydrogen atom based on the accurate numerical solution of the time-dependent Schrödinger equation is presented. The timing of absorption is controlled by the time delay between an isolated extreme ultraviolet (XUV) pulse and a dressing infrared (IR) field. We identify two different kinds of physical processes in the spectra. One is the formation of dressed states, signified by the appearance of sidebands between the XUV absorption lines separated by one IR-photon energy. We show that their population is maximized when the XUV pulse coincides with the zero-crossing of the IR field, and that their energy can be manipulated by using a chirped IR field. The other process is the dynamical AC Stark shift induced by the IR field and probed by the XUV pulse. Our calculations indicate that the accidental degeneracy of the hydrogen atom leads to the multiple splittings of each XUV absorption line whose separations change in response to a slowly-varying IR envelope. Furthermore, we observe the Autler-Townes doublets for the n=2 and 3 states using the 656 nm dressing field, but their separation does not agree with the prediction by the conventional 3-level model that neglects the dynamical AC Stark effects.

  11. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime.

    PubMed

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V

    2012-06-01

    Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.

  12. Broken-cloud enhancement of solar radiation absorption

    SciTech Connect

    Byrne, R.N.; Somerville, R.C.; Subasilar, B.

    1996-04-01

    Two papers recently published in Science have shown that there is more absorption of solar radiation than estimated by current atmospheric general circulation models (GCMs) and that the discrepancy is associated with cloudy scenes. We have devised a simple model which explains this as an artifact of stochastic radiative transport. We first give a heuristic description, unencumbered by mathematical detail. Consider a simple case with clouds distributed at random within a single level whose upper and lower boundaries are fixed. The solar zenith angle is small to moderate; this is therefore an energetically important case. Fix the average areal liquid water content of the cloud layer, and take the statistics of the cloud distribution to be homogeneous within the layer. Furthermore, assume that all the clouds in the layer have the same liquid water content, constant throughout the cloud, and that apart from their droplet content they are identical to the surrounding clear sky. Let the clouds occupy on the average a fraction p{sub cld} of the volume of the cloudy layer, and let them have a prescribed distribution of sizes about some mean. This is not a fractal distribution, because it has a scale. Cloud shape is unimportant so long as cloud aspect ratios are not far from unity. Take the single-scattering albedo to be unity for the droplets in the clouds. All of the absorption is due to atmospheric gases, so the absorption coefficient at a point is the same for cloud and clear sky. Absorption by droplets is less than 10% effect in the numerical stochastic radiation calculations described below, so it is reasonable to neglect it at this level of idealization.

  13. Implications of New Methane Absorption Coefficients on Uranus Vertical Structure Derived from Near-IR Spectra

    NASA Astrophysics Data System (ADS)

    Fry, Patrick M.; Sromovsky, L. A.

    2009-09-01

    Using new methane absorption coefficients from Karkoschka and Tomasko (2009, submitted to Icarus, "Methane Absorption Coefficients for the Jovian Planets from Laboratory, Huygens, and HST Data"), we fit Uranus near-IR spectra previously analyzed in Sromovsky et al. (2006, Icarus 182, 577-593, Fink and Larson, 1979 J- and H-band), Sromovsky and Fry (2008, Icarus 193, 252-266, 2006 NIRC2 J- and H-band, 2006 SpeX) using Irwin et al. (2006, Icarus 181, 309-319) methane absorption coefficients. Because the new absorption coefficients usually result in higher opacities at the low temperatures seen in Uranus' upper troposphere, our previously derived cloud altitudes are expected to generally rise to higher altitudes. For example, using Lindal et al. (1987, JGR 92, 14987-15001) model D temperature and methane abundance profiles, we are better able to fit the J-band 43-deg. south bright band with the new coefficients (chi-square=205, vs. 315 for Irwin), with the pressure of the upper tropospheric cloud decreasing to 1.6 bars (from 2.4 bars using Irwin coefficients). Improvements in fitting H-band spectra from the same latitude are not as readily obtained. Derived upper tropospheric cloud pressures are very similar using the two absorption datasets (1.6-1.7 bars), but the character of the fits differs. New Karkoschka and Tomasko coefficients better fit some details in the 1.5-1.58 micron region, but Irwin fits the broad absorption band wing at 1.61-1.62 microns better, and the fit chi-square values are similar (K&T: 243, Irwin: 220). Results for a higher methane concentration (Lindal et al. model F) were similar. Whether the new coefficients will simply raise derived altitudes across the planet or will result in fundamental changes in structure is as yet unclear. This work was suported by NASA planetary astronomy and planetary atmospheres programs.

  14. Deriving polarization properties of desert-reflected solar spectra with PARASOL data

    NASA Astrophysics Data System (ADS)

    Sun, W.; Baize, R. R.; Lukashin, C.; Hu, Y.

    2015-07-01

    One of the major objectives of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) is to conduct highly accurate spectral observations to provide an on-orbit inter-calibration standard for relevant Earth-observing sensors with various channels. To calibrate an Earth-observing sensor's measurements with the highly accurate data from the CLARREO, errors in the measurements caused by the sensor's sensitivity to the polarization state of light must be corrected. For correction of the measurement errors due to the light's polarization, both the instrument's dependence on the incident polarization state and the on-orbit knowledge of the polarization state of light as a function of observed scene type, viewing geometry, and solar wavelength are required. In this study, an algorithm for deriving the spectral polarization state of solar light from the desert is reported. The desert/bare land surface is assumed to be composed of two types of areas: fine sand grains with diffuse reflection (Lambertian non-polarizer) and quartz-rich sand particles with facets of various orientations (specular-reflection polarizer). The Adding-Doubling Radiative Transfer Model (ADRTM) is applied to integrate the atmospheric absorption and scattering in the system. Empirical models are adopted in obtaining the diffuse spectral reflectance of sands and the optical depth of the dust aerosols over the desert. The ratio of non-polarizer area to polarizer area and the angular distribution of the facet orientations are determined by fitting the modeled polarization states of light to the measurements at three polarized channels (490, 670, and 865 nm) by the Polarization and Anisotropy of Reflectances for Atmospheric Science instrument coupled with Observations from a Lidar (PARASOL). Based on this physical model of the surface, the desert-reflected solar light's polarization state at any wavelength in the whole solar spectra can be calculated with the ADRTM.

  15. Composite Spectra of Broad Absorption Line Quasars in SDSS-III BOSS

    NASA Astrophysics Data System (ADS)

    Herbst, Hanna; Hamann, Fred; Paris, Isabelle; Capellupo, Daniel M.

    2017-01-01

    We present preliminary results from a study of broad absorption line (BAL) quasars in the SDSS-III BOSS survey. We’re particularly interested in BALs because they arise from quasar outflows, which may be a source of feedback to the host galaxy. We analyze median composite spectra for BOSS QSOs in the redshift range 2.1 to 3.4 sorted by the strength of the BAL absorption troughs, parameterized by the Balnicity Index (BI), to study trends in the emission and absorption properties of BAL quasars. The wavelength coverage and high number of quasars observed in the BOSS survey allow us to examine BALs in the Lyman forest. Our main preliminary results when sorting the quasars by BI are 1) doublet absorption lines such as P V 1128A show a 1:1 ratio across all BI, indicating large column densities at all BI. This suggests that weaker BAL troughs result from smaller covering fractions rather than lower column densities. 2) The He II emission line, which is a measure of the far-UV/near-UV hardness of the ionizing continuum, is weaker in the larger BI composite spectra, indicating a far-UV spectral softening correlated with BI. This is consistent with the radiatively-driven BAL outflows being helped by intrinsically weaker ionizing continuum shapes (e.g., Baskin, Laor, and Hamann 2013). We also find a trend for slightly redder continuum slopes in the larger BI composite spectra, suggesting that the slope differences in the near-UV are also intrinsic.

  16. Sub-bandgap absorption in polymer-fullerene solar cells studied by temperature-dependent external quantum efficiency and absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Presselt, Martin; Herrmann, Felix; Shokhovets, Sviatoslav; Hoppe, Harald; Runge, Erich; Gobsch, Gerhard

    2012-07-01

    We study the sub-bandgap (SBG) absorption in solar cells made of poly(3-hexylthiophene-2,5-diyl) and [6,6]-phenylC61-butyric-acid-methyl-ester by photothermal deflection absorption spectroscopy and measurement of temperature-dependent external-quantum-efficiency (EQE) spectra. Several models for SBG absorption are critically reviewed in view of the EQE results. The latter suggest polaron-related transitions as origin of the Gaussian SBG peak near 1.6 eV. Intermolecular charge transfer (CT) excitations as an explanation cannot completely be ruled out. However, the assumption of CT excitons with large binding energies is difficult to reconcile with the rapid loss of weight of the Gaussian SBG-peak seen in EQE above room temperature.

  17. Microlens array induced light absorption enhancement in polymer solar cells

    SciTech Connect

    Chen, Yuqing; Elshobaki, Moneim; Ye, Zhuo; Park, Joong-Mok; Noack, Max A.; Ho, Kai-Ming; Chaudhary, Sumit

    2013-01-24

    Over the last decade, polymer solar cells (PSCs) have attracted a lot of attention and highest power conversion efficiencies (PCE) are now close to 10%. Here we employ an optical structure – the microlens array (MLA) – to increase light absorption inside the active layer, and PCE of PSCs increased even for optimized devices. Normal incident light rays are refracted at the MLA and travel longer optical paths inside the active layers. Two PSC systems – poly(3-hexylthiophene-2,5-diyl):(6,6)-phenyl C61 butyric acid methyl ester (P3HT:PCBM) and poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]:(6,6)-phenyl C71 butyric acid methyl ester (PCDTBT:PC70BM) – were investigated. In the P3HT:PCBM system, MLA increased the absorption, absolute external quantum efficiency, and the PCE of an optimized device by [similar]4.3%. In the PCDTBT:PC70BM system, MLA increased the absorption, absolute external quantum efficiency, and PCE by more than 10%. In addition, simulations incorporating optical parameters of all structural layers were performed and they support the enhancement of absorption in the active layer with the assistance of MLA. Our results show that utilizing MLA is an effective strategy to further increase light absorption in PSCs, in which optical losses account for [similar]40% of total losses. MLA also does not pose materials processing challenges to the active layers since it is on the other side of the transparent substrate.

  18. Real-time atmospheric absorption spectra for in-flight tuning of an airborne dial system

    NASA Technical Reports Server (NTRS)

    Dombrowski, M.; Walden, H.; Schwemmer, G. K.; Milrod, J.; Korb, C. L.

    1986-01-01

    Real-time measurements of atmospheric absorption spectra are displayed and used to precisely calibrate and fix the frequency of an Alexandrite laser to specific oxygen absorption features for airborne Differential Absorption Lidar (DIAL) measurements of atmospheric pressure and temperature. The DIAL system used contains two narrowband tunable Alexandrite lasers: one is electronically scanned to tune to oxygen absorption features for on-line signals while the second is used to obtain off-line (nonabsorbed) atmospheric return signals. The lidar operator may select the number of shots to be averaged, the altitude, and altitude interval over which the signals are averaged using single key stroke commands. The operator also determines exactly which oxygen absorption lines are scanned by comparing the line spacings and relative strengths with known line parameters, thus calibrating the laser wavelength readout. The system was used successfully to measure the atmospheric pressure profile on the first flights of this lidar, November 20, and December 9, 1985, aboard the NASA Wallops Electra aircraft.

  19. Stratospheric and mesospheric pressure-temperature profiles from rotational analysis of CO2 lines in atmospheric trace molecule spectroscopy/ATLAS 1 infrared solar occultation spectra

    NASA Technical Reports Server (NTRS)

    Stiller, G. P.; Gunson, M. R.; Lowes, L. L.; Abrams, M. C.; Raper, O. F.; Farmer, C. B.; Zander, R.; Rinsland, C. P.

    1995-01-01

    A simple, classical, and expedient method for the retrieval of atmospheric pressure-temperature profiles has been applied to the high-resolution infrared solar absorption spectra obtained with the atmospheric trace molecule spectroscopy (ATMOS) instrument. The basis for this method is a rotational analysis of retrieved apparent abundances from CO2 rovibrational absorption lines, employing existing constituent concentration retrieval software used in the analysis of data returned by ATMOS. Pressure-temperature profiles derived from spectra acquired during the ATLAS 1 space shuttle mission of March-April 1992 are quantitatively evaluated and compared with climatological and meteorological data as a means of assessing the validity of this approach.

  20. Site-dependent factors affecting the economic feasibility of solar powered absorption cooling

    NASA Technical Reports Server (NTRS)

    Bartlett, J. C.

    1977-01-01

    A procedure has been developed which can be used to determine the economic feasibility of solar powered absorption cooling systems. This procedure has been used in a study to investigate the influence of the site-dependent parameters on the economic feasibility of solar absorption cooling. The purpose of this study was to make preliminary site selections for solar powered absorption cooling systems. This paper summarizes the results of that study.

  1. Calculation of UV attenuation and colored dissolved organic matter absorption spectra from measurements of ocean color

    NASA Astrophysics Data System (ADS)

    Johannessen, S. C.; Miller, W. L.; Cullen, J. J.

    2003-09-01

    The absorption of ultraviolet and visible radiation by colored or chromophoric dissolved organic matter (CDOM) drives much of marine photochemistry. It also affects the penetration of ultraviolet radiation (UV) into the water column and can confound remote estimates of chlorophyll concentration. Measurements of ocean color from satellites can be used to predict UV attenuation and CDOM absorption spectra from relationships between visible reflectance, UV attenuation, and absorption by CDOM. Samples were taken from the Bering Sea and from the Mid-Atlantic Bight, and water types ranged from turbid, inshore waters to the Gulf Stream. We determined the following relationships between in situ visible radiance reflectance, Lu/Ed (λ) (sr-1), and diffuse attenuation of UV, Kd(λ) (m-1): Kd(323nm) = 0.781[Lu/Ed(412)/Lu/Ed(555)]-1.07; Kd(338nm) = 0.604[Lu/Ed(412)/Lu/Ed(555)]-1.12; Kd(380 nm) = 0.302[Lu/Ed(412)/Lu/Ed(555)]-1.24. Consistent with published observations, these empirical relationships predict that the spectral slope coefficient of CDOM absorption increases as diffuse attenuation of UV decreases. Excluding samples from turbid bays, the ratio of the CDOM absorption coefficient to Kd is 0.90 at 323 nm, 0.86 at 338 nm, and 0.97 at 380 nm. We applied these relationships to SeaWiFS images of normalized water-leaving radiance to calculate the CDOM absorption and UV attenuation in the Mid-Atlantic Bight in May, July, and August 1998. The images showed a decrease in UV attenuation from May to August of approximately 50%. We also produced images of the areal distribution of the spectral slope coefficient of CDOM absorption in the Georgia Bight. The spectral slope coefficient increased offshore and changed with season.

  2. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm

    USGS Publications Warehouse

    Kokaly, Raymond F.; Skidmore, Andrew K

    2015-01-01

    Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic C-H bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the

  3. The Mid-Infrared Absorption Spectra of Neutral PAHs in Dense Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are common throughout the universe and are expected to be present in dense interstellar clouds. In these environments, some P.4Hs may be present in the gas phase, but most should be frozen into ice mantles or adsorbed onto dust grains and their spectral features are expected to be seen in absorption. Here we extend our previous work on the infrared spectral properties of the small PAH naphthalene (C10H8) in several media to include the full mid-infrared laboratory spectra of 11 other PAHs and related aromatic species frozen in H2O ices. These include the molecules 1,2-dihydronaphthalene, anthracene, 9,1O-dihydroanthracene, phenanthrene, pyrene, benzo[e]pyrene, perylene, benzo(k)fluoranthene, pentacene, benzo[ghi]perylene, and coronene. These results demonstrate that PAHs and related molecules, as a class, show the same spectral behaviors as naphthalene when incorporated into H2O-rich matrices. When compared to the spectra of these same molecules isolated in inert matrices (e.g., Ar or N2), the absorption bands produced when they are frozen in H2O matrices are broader (factors of 3-10), show small position shifts in either direction (usually < 4/cm, always < 10/cm), and show variable changes in relative band strengths (typically factors of 1-3). There is no evidence of systematic increases or decreases in the absolute strengths of the bands of these molecules when they are incorporated in H2O matrices. In H2O-rich ices, their absorption bands are relatively insensitive to concentration over the range of 10 < H2O/PAH < 200): The absorption bands of these molecules are also insensitive to temperature over the 10 K < T < 125 K range, although the spectra can show dramatic changes as the ices are warmed through the temperature range in which amorphous H2O ice converts to its cubic and hexagonal crystalline forms (T > 125 Kj. Given the small observed band shifts cause by H2O, the current database of spectra from Ar matrix

  4. EGRET High Energy Capability and Multiwavelength Flare Studies and Solar Flare Proton Spectra

    NASA Technical Reports Server (NTRS)

    Chupp, Edward L.

    1998-01-01

    The accomplishments of the participation in the Compton Gamma Ray Observatory Guest investigator program is summarized in this report. The work involved the study of Energetic Gamma Ray Experiment Telescope (EGRET)/Total Absorption Shower Counter(TASC) flare data. The specific accomplishments were the use of the accelerator neutron measurements obtained at the University of New Hampshire to verify the TASC response function and to modify the TASC fitting program to include a high energy neutron contribution, and to determine a high energy neutron contribution to the emissions from the 1991 June 11, solar flare. The next step in the analysis of this event was doing fits to the TASC energy-loss spectra as a function of time. A significant hardening of the solar proton spectrum over time was found for the flare. Further data was obtained from the Yohkoh HXT time histories and images for the 1991 October 27 flare. The results to date demonstrate that the TASC spectral analysis contributes crucial information on the particle spectrum interacting at the Sun. The report includes a paper accepted for publication, a draft of a paper to be delivered at the 26th International Cosmic Ray Conference and an abstract of a paper to be presented at the Meeting of the American Physical Society.

  5. The IAG solar flux atlas: Accurate wavelengths and absolute convective blueshift in standard solar spectra

    NASA Astrophysics Data System (ADS)

    Reiners, A.; Mrotzek, N.; Lemke, U.; Hinrichs, J.; Reinsch, K.

    2016-03-01

    We present a new solar flux atlas with the aim of understanding wavelength precision and accuracy in solar benchmark data. The atlas covers the wavelength range 405-2300 nm and was observed at the Institut für Astrophysik, Göttingen (IAG), with a Fourier transform spectrograph (FTS). In contrast to other FTS atlases, the entire visible wavelength range was observed simultaneously using only one spectrograph setting. We compare the wavelength solution of the new atlas to the Kitt Peak solar flux atlases and to the HARPS frequency-comb calibrated solar atlas. Comparison reveals systematics in the two Kitt Peak FTS atlases resulting from their wavelength scale construction, and shows consistency between the IAG and the HARPS atlas. We conclude that the IAG atlas is precise and accurate on the order of ± 10 m s-1 in the wavelength range 405-1065 nm, while the Kitt Peak atlases show deviations as large as several ten to 100 m s-1. We determine absolute convective blueshift across the spectrum from the IAG atlas and report slight differences relative to results from the Kitt Peak atlas that we attribute to the differences between wavelength scales. We conclude that benchmark solar data with accurate wavelength solution are crucial to better understand the effect of convection on stellar radial velocity measurements, which is one of the main limitations of Doppler spectroscopy at m s -1 precision. Data (FITS files of the spectra) and Table A.1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A65

  6. Infrared band absorptance correlations and applications to nongray radiation. [mathematical models of absorption spectra for nongray atmospheres in order to study air pollution

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Manian, S. V. S.

    1976-01-01

    Various mathematical models for infrared radiation absorption spectra for atmospheric gases are reviewed, and continuous correlations for the total absorptance of a wide band are presented. Different band absorptance correlations were employed in two physically realistic problems (radiative transfer in gases with internal heat source, and heat transfer in laminar flow of absorbing-emitting gases between parallel plates) to study their influence on final radiative transfer results. This information will be applied to the study of atmospheric pollutants by infrared radiation measurement.

  7. The effect of ionization on the infrared absorption spectra of PAHs: A preliminary report

    NASA Technical Reports Server (NTRS)

    Defrees, Doug J.; Miller, M. D.

    1989-01-01

    The emission lines observed in many interstellar IR sources at 3.28, 6.2, 7.7, 8.7, and 11.3 microns are theorized to originate from polycyclic aromatic hydrocarbons (PAHs). These assignments are based on analyses of lab IR spectra of neutral PAHs. However, it is likely that in the interstellar medium that PAHs are ionized, i.e., are positively charged. Besides, as pointed out by Allamandola et al., although the IR emission band spectrum resembles what one might expect from a mixture of PAHs, it does not match in details such as frequency, band profile, or relative intensities predicted from the absorption spectra of any known PAH molecule. One source of more information to test the PAH theory is ab initio molecular orbital theory. It can be used to compute, from first principles, the geometries, vibrational frequencies, and vibrational intensities for model PAH compounds which are difficult to study in the lab. The Gaussian 86 computer program was used to determine the effect of ionization on the infrared absorption spectra of several small PAHs: naphthalene and anthracene. A preliminary report is presented of the results of these calculations.

  8. Infrared absorption spectra, radiative efficiencies, and global warming potentials of perfluorocarbons: Comparison between experiment and theory

    NASA Astrophysics Data System (ADS)

    Bravo, IváN.; Aranda, Alfonso; Hurley, Michael D.; Marston, George; Nutt, David R.; Shine, Keith P.; Smith, Kevin; Wallington, Timothy J.

    2010-12-01

    Experimentally and theoretically determined infrared spectra are reported for a series of straight-chain perfluorocarbons: C2F6, C3F8, C4F10, C5F12, C6F14, and C8F18. Theoretical spectra were determined using both density functional (DFT) and ab initio methods. Radiative efficiencies (REs) were determined using the method of Pinnock et al. (1995) and combined with atmospheric lifetimes from the literature to determine global warming potentials (GWPs). Theoretically determined absorption cross sections were within 10% of experimentally determined values. Despite being much less computationally expensive, DFT calculations were generally found to perform better than ab initio methods. There is a strong wavenumber dependence of radiative forcing in the region of the fundamental C-F vibration, and small differences in wavelength between band positions determined by theory and experiment have a significant impact on the REs. We apply an empirical correction to the theoretical spectra and then test this correction on a number of branched chain and cyclic perfluoroalkanes. We then compute absorption cross sections, REs, and GWPs for an additional set of perfluoroalkenes.

  9. Effect of solvent on absorption spectra of all-trans-{beta}-carotene under high pressure

    SciTech Connect

    Liu, W. L.; Zheng, Z. R.; Liu, Z. G.; Zhu, R. B.; Wu, W. Z.; Li, A. H.; Yang, Y. Q.; Dai, Z. F.; Su, W. H.

    2008-03-28

    The absorption spectra of all-trans-{beta}-carotene in n-hexane and carbon disulfide (CS{sub 2}) solutions are measured under high pressure at ambient temperature. The common redshift and broadening in the spectra are observed. Simulation of the absorption spectra was performed by using the time-domain formula of the stochastic model. The pressure dependence of the 0-0 band wavenumber is in agreement with the Bayliss theory at pressure higher than 0.2 GPa. The deviation of the linearity at lower pressure is ascribed to the reorientation of the solvent molecules. Both the redshift and broadening are stronger in CS{sub 2} than that in n-hexane because of the more sensitive pressure dependence of dispersive interactions in CS{sub 2} solution. The effect of pressure on the transition moment is explained with the aid of a simple model involving the relative dimension, location, and orientation of the solute and solvent molecules. The implication of these results for light-harvesting functions of carotenoids in photosynthesis is also discussed.

  10. Effects of Spectralon absorption on reflectance spectra of typical planetary surface analog materials.

    PubMed

    Zhang, Hao; Yang, Yazhou; Jin, Weidong; Liu, Chujian; Hsu, Weibiao

    2014-09-08

    Acquiring accurate visible and near-infrared (VisNIR) reflectance values of atmosphereless celestial bodies is very important in inferring the physical and geological properties of their surficial materials. When a calibration target with inherent non-trivial absorption features is used, the calibrated reflectance would essentially always contain spurious spectral features and the spectroscopic data may easily be misinterpreted if the artifact is not properly taken care of. We demonstrate with laboratory reflectance measurements that the VisNIR spectra of three typical planetary surface analog materials, lunar simulant JSC-1A, olivine and pyroxene grains, have an artificial peak at 2.1 µm when Spectralon-type plaque made of polytetrafluoroethylene is used as the calibration target in the NIR region. The degree of severity of this artifact is dependent on the strength of the 2.0 µm absorption feature of the mineral. Empirical methods are proposed to remove this artifact to bring the spectra close to that calibrated by a gold mirror which does not have any conspicuous absorption features in the NIR region. The correction methods may be applied to reflectance data acquired by the VisNIR imaging spectrometer onboard the Yutu Rover of the Chinese Chang'E 3 lunar mission which employed an onboard Spectralon-type calibration target.

  11. Comparison between IR absorption and raman scattering spectra of liquid and supercritical 1-butanol.

    PubMed

    Sokolova, Maia; Barlow, Stephen J; Bondarenko, Galina V; Gorbaty, Yuri E; Poliakoff, Martyn

    2006-03-23

    Raman spectra of 1-butanol have been obtained at a constant pressure of 500 bar up to 350 degrees C and along isotherms 250, 300, and 350 degrees C up to 600 bar. The purpose of the experiment was to compare responses of Raman and IR absorption spectroscopy to the forming of O-H...O bonds in alcohols. As a result, some important inferences were drawn from the experiment. In particular, it has been estimated quantitatively how the intensity of Raman scattering in the region of the OH band depends on the extent of hydrogen bonding. As might be expected, the dependence is much weaker than in the case of the IR absorption. As was shown, the ratio of integrated intensities of bonded molecules in the absorption and scattering spectra is a constant and does not depend on temperature and density. The effect of cooperativity of hydrogen bonds is confirmed. It was also found that even at high pressures, a noticeable amount of nonbonded molecules exists at room temperature.

  12. Physical Properties of the Interstellar Medium Using High-resolution Chandra Spectra: O K-edge Absorption

    NASA Astrophysics Data System (ADS)

    Gatuzz, E.; García, J.; Mendoza, C.; Kallman, T. R.; Bautista, M. A.; Gorczyca, T. W.

    2014-08-01

    Chandra high-resolution spectra toward eight low-mass Galactic binaries have been analyzed with a photoionization model that is capable of determining the physical state of the interstellar medium. Particular attention is given to the accuracy of the atomic data. Hydrogen column densities are derived with a broadband fit that takes into account pileup effects, and in general are in good agreement with previous results. The dominant features in the oxygen-edge region are O I and O II Kα absorption lines whose simultaneous fits lead to average values of the ionization parameter of log ξ = -2.90 and oxygen abundance of A O = 0.70. The latter is given relative to the standard by Grevesse & Sauval, but rescaling with the revision by Asplund et al. would lead to an average abundance value fairly close to solar. The low average oxygen column density (N O = 9.2 × 1017 cm-2) suggests a correlation with the low ionization parameters, the latter also being in evidence in the column density ratios N(O II)/N(O I) and N(O III)/N(O I) that are estimated to be less than 0.1. We do not find conclusive evidence for absorption by any other compound but atomic oxygen in our oxygen-edge region analysis.

  13. Physical properties of the interstellar medium using high-resolution Chandra spectra: O K-edge absorption

    SciTech Connect

    Gatuzz, E.; Mendoza, C.; García, J.; Kallman, T. R.; Bautista, M. A.; Gorczyca, T. W. E-mail: claudio@ivic.gob.ve E-mail: manuel.bautista@wmich.edu E-mail: timothy.r.kallman@nasa.gov

    2014-08-01

    Chandra high-resolution spectra toward eight low-mass Galactic binaries have been analyzed with a photoionization model that is capable of determining the physical state of the interstellar medium. Particular attention is given to the accuracy of the atomic data. Hydrogen column densities are derived with a broadband fit that takes into account pileup effects, and in general are in good agreement with previous results. The dominant features in the oxygen-edge region are O I and O II Kα absorption lines whose simultaneous fits lead to average values of the ionization parameter of log ξ = –2.90 and oxygen abundance of A{sub O} = 0.70. The latter is given relative to the standard by Grevesse and Sauval, but rescaling with the revision by Asplund et al. would lead to an average abundance value fairly close to solar. The low average oxygen column density (N{sub O} = 9.2 × 10{sup 17} cm{sup –2}) suggests a correlation with the low ionization parameters, the latter also being in evidence in the column density ratios N(O II)/N(O I) and N(O III)/N(O I) that are estimated to be less than 0.1. We do not find conclusive evidence for absorption by any other compound but atomic oxygen in our oxygen-edge region analysis.

  14. First-principles calculation of ground and excited-state absorption spectra of ruby and alexandrite considering lattice relaxation

    NASA Astrophysics Data System (ADS)

    Watanabe, Shinta; Sasaki, Tomomi; Taniguchi, Rie; Ishii, Takugo; Ogasawara, Kazuyoshi

    2009-02-01

    We performed first-principles calculations of multiplet structures and the corresponding ground-state absorption and excited-state absorption spectra for ruby (Cr3+:α-Al2O3) and alexandrite (Cr3+:BeAl2O4) which included lattice relaxation. The lattice relaxation was estimated using the first-principles total energy and molecular-dynamics method of the CASTEP code. The multiplet structure and absorption spectra were calculated using the configuration-interaction method based on density-functional calculations. For both ruby and alexandrite, the theoretical absorption spectra, which were already in reasonable agreement with experimental spectra, were further improved by consideration of lattice relaxation. In the case of ruby, the peak positions and peak intensities were improved through the use of models with relaxations of 11 or more atoms. For alexandrite, the polarization dependence of the U band was significantly improved, even by a model with a relaxation of only seven atoms.

  15. Theoretical studies on the vibrationally-resolved absorption and fluorescence spectra of H-Pyrene+ and H-Coronene+

    NASA Astrophysics Data System (ADS)

    Li, JunFeng; Tian, GuanJun; Luo, Yi; Cao, ZeXing

    2015-11-01

    H-Pyrene+ and H-Coronene+ are important carrier candidates for the diffuse interstellar band. In order to understand the observed absorption and fluorescence emission spectra of H-Pyrene+ and H-Coronene+, time-dependent density functional theory (TD-DFT) method and Franck-Condon approximation have been employed to simulate the corresponding vibrationally-resolved optical spectra. For H-Pyrene+, the calculated absorption, emission and 0-0 band energies are in good agreement with the experimental values. The strong absorption and emission vibrational peaks near the 0-0 band match well with the experiment peaks. A noticeable deviation for several weak peaks far away from the origin band is observed, as a result of the vibronic coupling with other excited states. For H-Coronene+, the predicted vibrationally resolved electronic absorption and emission spectra resemble very well their experimental counterparts spectra, allowing to fully assign the observed vibronic peaks.

  16. Energy Spectra of Very Large Gradual Solar Particle Events

    DTIC Science & Technology

    2001-01-01

    Bastille Day event, the Fe spectrum here does not harden with increasing energy. Instead, it falls much Fig. 2. Sample heavy-ion spectra from the 1998 April... Bastille Day) event from two intervals covering 6–14 and 22–26 hours after the flare (Tylka et al. 2001). The spectra clearly evolve, with e-folding...flare component much larger than 5% is excluded by <QFe> 10 from SEPICA in the Bastille Day event. To model the Fe spectra, we first fit the spectra

  17. Simulations of X-ray absorption spectra: the effect of the solvent.

    PubMed

    Penfold, Thomas J; Curchod, Basile F E; Tavernelli, Ivano; Abela, Rafael; Rothlisberger, Ursula; Chergui, Majed

    2012-07-14

    We perform quantum mechanics/molecular mechanics molecular dynamics simulations on the [Pt(2)(P(2)O(5)H(2))(4)](4-) (abbreviated PtPOP) complex; in water, dimethylformamide and ethanol. These are used to calculate the ground state X-ray absorption spectrum of the complex. The structural parameters from X-ray spectra are usually extracted using a fit of the experimental data. In such simulations the solvent is neglected meaning that any effect of the local environment will be compensated for by structural changes of the solute, leading to possible discrepancies in the extracted structural parameters. Our simulations show a significant solvent effect on the spectra, which has important implications for the structural analysis of molecules in solution.

  18. Ultrafast optical nonlinearity, electronic absorption, vibrational spectra and solvent effect studies of ninhydrin.

    PubMed

    Sajan, D; Devi, T Uma; Safakath, K; Philip, Reji; Němec, Ivan; Karabacak, M

    2013-05-15

    FT-IR, FT-Raman and UV-Vis spectra of the nonlinear optical molecule ninhydrin have been recorded and analyzed. The equilibrium geometry, bonding features, and harmonic vibrational wavenumbers have been investigated with the help of B3LYP density functional theory method. A detailed interpretation of the vibrational spectra is carried out with the aid of normal coordinate analysis following the scaled quantum mechanical force field methodology. Solvent effects have been calculated using time-dependent density functional theory in combination with the polarized continuum model. Natural bond orbital analysis confirms the occurrence of strong intermolecular hydrogen bonding in the molecule. Employing the open-aperture z-scan technique, nonlinear optical absorption of the sample has been studied in the ultrafast and short-pulse excitation regimes, using 100 fs and 5 ns laser pulses respectively. It is found that ninhydrin exhibits optical limiting for both excitations, indicating potential photonic applications.

  19. Multiple-scattering approach to the x-ray-absorption spectra of 3d transition metals

    NASA Astrophysics Data System (ADS)

    Kitamura, Michihide; Muramatsu, Shinji; Sugiura, Chikara

    1986-04-01

    The x-ray-absorption near-edge structure (XANES) has been calculated for the 3d transition metals Cr, Fe, Ni, and Cu from a multiple-scattering approach within the muffin-tin-potential approximation, as a first step to studying the XANES for complicated materials. The muffin-tin potential is constructed via the Mattheiss prescription using the atomic data of Herman and Skillman. It is found that the XANES is sensitive to the potential used and that the calculated XANES spectra reproduce the number of peaks and their separations observed experimentally. The final spectra, including the lifetime-broadening effect, show the general features of each material. We emphasize that the multiple-scattering theory which can be applied to the disordered systems as well as the ordered ones may be promising as a tool to analyze the XANES of complicated materials.

  20. Solvatochromic behavior of the electronic absorption spectra of gallic acid and some of its azo derivatives

    NASA Astrophysics Data System (ADS)

    Masoud, Mamdouh S.; Hagagg, Sawsan S.; Ali, Alaa E.; Nasr, Nessma M.

    The electronic absorption spectra of gallic acid and its azo derivatives have been studied in various solvents of different polarities. Multiple regression techniques were applied to calculate the regression and correlation coefficients based on an equation that relates the wavenumbers of the absorption band maxima (υmax-) to the solvent parameters; refractive index (n), dielectric constant (D), empirical Kamlet-Taft solvent parameters, π*(dipolarity/polarizability), α (solvent hydrogen-bond donor acidity) and β (solvent hydrogen-bond acceptor basicity). The fitting coefficient obtained from this analysis allows estimating the contribution of each type of interactions relative to total spectral shifts in solution. The dependence of υmax- on the solvent parameters indicates that the obtained bands are affected by specific and non-specific solute-solvent interactions.

  1. Paradoxical solvent effects on the absorption and emission spectra of amino-substituted perylene monoimides.

    PubMed

    Zoon, Peter D; Brouwer, Albert M

    2005-08-12

    In N-(2,5-di-tert-butylphenyl)-9-pyrrolidinoperylene-3,4-dicarboximide (5PI) the absorption and emission spectra display large solvatochromic shifts, but, remarkably, the Stokes shift is practically independent of solvent polarity. This unique behavior is caused by the extraordinarily large ground-state dipole moment of 5PI, which further increases upon increasing the solvent polarity, whereas the excited-state dipole moment is less solvent dependent. In the corresponding piperidine compound, 6PI, this effect is much less important owing to the weaker coupling between the amino group and the aromatic imide moiety, and in the corresponding naphthalimide, 5NI, it is absent. The latter shows the conventional solvatochromic behavior of a push-pull substituted conjugated system, that is, minor shifts in absorption and a larger change in the emission energy with solvent polarity.

  2. The X-shooter sample of GRB afterglow spectra: Properties of the absorption features

    NASA Astrophysics Data System (ADS)

    de Ugarte Postigo, Antonio

    2015-08-01

    Since its commissioning at ESO's Very Large Telescope in 2009, the X-shooter spectrograph has become the reference instrument in gamma-ray burst (GRB) afterglow spectroscopy. During this time our collaboration has collected more than 70 spectra of GRB afterglows, with redshifts ranging from 0.06 to 6.3. Thanks to their extreme luminosity and simple intrinsic shape, GRB spectra are optimal tools for the study of galactic environments at basically any redshift. Being produced by the death of short-lived massive stars, they are also tracers of star formation.I will present the sample of absorption spectral features identified in X-shooter's GRB spectra describing observation and analysis techniques. The different features are compared with the characteristics of the explosion (duration, spectral shape, energetics, etc.) and with the properties of the host galaxy (mass, age, etc.) to improve our understanding of the nature of the explosions and how they interact with their environments. Using the large redshift range of the spectra collection we perform studies of the evolution of GRB environments across the history of the Universe and their relation with the evolution of star formation.

  3. Effects of domain size on x-ray absorption spectra of boron nitride doped graphenes

    NASA Astrophysics Data System (ADS)

    Li, Xin; Hua, Weijie; Wang, Bo-Yao; Pong, Way-Faung; Glans, Per-Anders; Guo, Jinghua; Luo, Yi

    2016-08-01

    Doping is an efficient way to open the zero band gap of graphene. The control of the dopant domain size allows us to tailor the electronic structure and the properties of the graphene. We have studied the electronic structure of boron nitride doped graphenes with different domain sizes by simulating their near-edge X-ray absorption fine structure (NEXAFS) spectra at the N K-edge. Six different doping configurations (five quantum dot type and one phase-separated zigzag-edged type) were chosen, and N K-edge NEXAFS spectra were calculated with large truncated cluster models by using the density functional theory with hybrid functional and the equivalent core hole approximation. The opening of the band gap as a function of the domain size is revealed. We found that nitrogens in the dopant boundary contribute a weaker, red-shifted π* peak in the spectra as compared to those in the dopant domain center. The shift is related to the fact that these interfacial nitrogens dominate the lowest conduction band of the system. Upon increasing the domain size, the ratio of interfacial atom decreases, which leads to a blue shift of the π* peak in the total NEXAFS spectra. The spectral evolution agrees well with experiments measured at different BN-dopant concentrations and approaches to that of a pristine h-BN sheet.

  4. Gain and Absorption Spectra of Quantum Wire Lasers Diodes Grown on Nonplanar Substrates

    DTIC Science & Technology

    1992-04-01

    SIMMJ^ COMPONENT PART NOTICE THIS PAPER IS A COMPONENT PART OF THE FOLLOWING COMPILATION REPORT: TTT1F: Integrated Photonics Research. Volume 10...i’t’y Co" .,.*» Dist kl Avji. :.;;fl,’or Spital ulll’MAR85Mb:> OPI: DTIC-TID Integrated Photonics Research -1 Gain and Absorption Spectra of...modulators and switches. 92-31749 Integrated Photonics Research 59 MC2-2 References: 1. E. Kapon, D.M. Hwang and R. Bhat, Phys. Rev. Lett. 63, 430 (1989

  5. Quantum-chemical investigation of the structure and electronic absorption spectra of electroluminescent zinc complexes

    NASA Astrophysics Data System (ADS)

    Minaev, B. F.; Baryshnikov, G. V.; Korop, A. A.; Minaeva, V. A.; Kaplunov, M. G.

    2013-01-01

    Using the quantum chemical methods of the density functional theory and of the electron density topological analysis, we have studied the structure of two recently synthesized electroluminescent zinc complexes, one with aminoquinoline ligands and the other with a Schiff base (N,O-donor). The energies and intensities of vertical excitations for the molecules under study have been calculated in terms of the PM3 semiempirical approximation taking into account the configurational interaction between singly excited singlet excited states. Good agreement between calculation results and experimental data on the electron density topological characteristics and on the visible and UV absorption spectra has been obtained.

  6. Solvent effects on the electronic absorption spectra and acid strength of some substituted pyridinols

    NASA Astrophysics Data System (ADS)

    Hashem, Elham Y.; Saleh, Magda S.

    2002-01-01

    The electronic absorption spectra of some substituted pyridinols in organic solvents of different polarities are studied. Also, the solvent effects on the intramolecular charge transfer bands are discussed using various solvent parameters. The acid-base equilibria of the compounds used are studied spectrophotometrically in various mixed aqueous solvents at 25 °C and 0.1 M ionic strength (NaClO 4). Furthermore, the influence of the solvents on the dissociation constants and tautomeric equilibria of a pyridinol derivatives are discussed. The effect of molecular structure of the pyridinols on the p K's is also examined.

  7. IR absorption and surface-enhanced Raman spectra of the isoquinoline alkaloid berberine

    NASA Astrophysics Data System (ADS)

    Strekal', N. D.; Motevich, I. G.; Nowicky, J. W.; Maskevich, S. A.

    2007-01-01

    We present the IR absorption and surface-enhanced Raman scattering (SERS) spectra of the isoquinoline alkaloid berberine adsorbed on a silver hydrosol and on the surface of a silver electrode for different potentials. Based on quantum chemical calculations, for the first time we have assigned the vibrations in the berberine molecule according to vibrational mode. The effect of the potential of the silver electrode on the geometry of sorption of the molecule on the surface is considered, assuming a short-range mechanism for enhancement of Raman scattering.

  8. A Survey for Intervening CIV Absorption-Line Systems Using SDSS Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Monier, Eric M.; Nestor, D. B.; Daino, M. M.; Quider, A. M.; Rao, S. M.; Turnshek, D. A.

    2006-06-01

    Intervening CIV absorption-line systems are readily found in Sloan Digital Sky Survey (SDSS) quasar spectra at redshifts z > 1.5. Given the large number of absorbers, high statistical accuracy is possible in comparison to what was possible in the past. Here we present preliminary results on the incidence and evolution of the CIV systems as a function of CIV rest equivalent width. The absorber incidence is proportional to the product of gas cross-section and co-moving number density of absorbers, while the rest equivalent width is related to their kinematic spread. We discuss the interpretation of our results.

  9. Disentangling atomic-layer-specific x-ray absorption spectra by Auger electron diffraction spectroscopy

    NASA Astrophysics Data System (ADS)

    Matsui, Fumihiko; Matsushita, Tomohiro; Kato, Yukako; Hashimoto, Mie; Daimon, Hiroshi

    2009-11-01

    In order to investigate the electronic and magnetic structures of each atomic layer at subsurface, we have proposed a new method, Auger electron diffraction spectroscopy, which is the combination of x-ray absorption spectroscopy (XAS) and Auger electron diffraction (AED) techniques. We have measured a series of Ni LMM AED patterns of the Ni film grown on Cu(001) surface for various thicknesses. Then we deduced a set of atomic-layer-specific AED patterns in a numerical way. Furthermore, we developed an algorithm to disentangle XANES spectra from different atomic layers using these atomic-layer-specific AED patterns. Surface and subsurface core level shift were determined for each atomic layer.

  10. The energy calibration of x-ray absorption spectra using multiple-beam diffraction

    SciTech Connect

    Hagelstein, M.; Cunis, S. ); Frahm, R. ); Rabe, P. )

    1992-01-01

    A new method for calibrating the energy scale of x-ray absorption spectra from an energy dispersive spectrometer has been developed. Distinct features in the diffracted intensity of the curved silicon crystal monochromator have been assigned to multiple-beam diffraction. The photon energies of these structures can be calculated if the precise spacing of the diffracting planes and the orientation of the crystal relative to the incident synchrotron radiation are known. The evaluation of Miller indices of operative reflections and the calculation of the corresponding photon energy is presented. The assignment of operative reflexes is simplified if the monochromator crystal can be rotated around the main diffracting vector {bold H}.

  11. Resonant Photoemission and M_{2,3}-Absorption Spectra in Nickel Dichloride

    NASA Astrophysics Data System (ADS)

    Igarashi, J.

    Ni 3p-resonant photoemission and Ni M_{2,3}-absorption spectra are calculated in detail on a cluster of (NiCl_6)^{4-} with the use of the transition matrix elements evaluated on the Herman-Skillman potential in Ni atom. Overall spectral shape agrees well with experiment, allowing a determination of the parameters which characterize Ni 3d and Cl 3p states. Resonance behavior is discussed near the Ni 3p-core level photothreshold. The resonant enhancement is found to be larger for the peak with higher binding energy in the d^7-multiplets.

  12. Absorption and resonance Raman spectra of Pb2, Pb3 and Pb4 in xenon matrices

    NASA Technical Reports Server (NTRS)

    Stranz, D. D.; Khanna, R. K.

    1980-01-01

    Lead metal was vaporized and trapped in solid xenon at 12K. Electronic absorption and resonance Raman spectra were recorded of the resulting matrix, which was shown to contain Pb2, Pb3, and possibly Pb4 molecular species. The vibrational frequency for Pb2 is determined to be 108/cm for the ground state, with a dissociation energy of 82000/cm. Ad3h symmetry is indicated for the Pb3 species, with nu sub 1=117/cm and nu sub 2 = 96 /cm. The existence of Pb4 is suggested by a fundamental and overtone of 111/cm spacing.

  13. A ubiquitous absorption feature in the X-ray spectra of BL Lacertae objects

    NASA Technical Reports Server (NTRS)

    Madejski, Greg M.; Mushotzky, Richard F.; Weaver, Kimberly A.; Arnaud, Keith A.; Urry, C. Megan

    1991-01-01

    The paper presents the broadband (0.5-20-keV) X-ray spectra of five X-ray bright BL Lac objects observed with the Einstein Observatory Solid State Spectrometer (SSS) and Monitor Proportional Counter (MPC) detectors. The combination of moderate energy resolution and broad spectral coverage makes it possible to confirm the presence of an absorption feature at an energy of 650 eV in the BL Lac object PKS 2155-304, originally reported by Canizares and Kruper (1984) based on higher resolution Einstein Objective Grating Spectrometer (OGS) data.

  14. Modulated microwave absorption spectra from Josephson junctions on a scratched niobium wire

    SciTech Connect

    Rubins, R.S. |; Hutton, S.L.; Ravindran, K.; Subbaraman, K.; Drumheller, J.E.

    1997-05-01

    Modulated microwave absorption (MMA) spectra from Josephson junction formations on a scratched Nb wire have been studied at 9.3 GHz and 4 K. The peak-to-peak separation, {delta}H of the Josephson lines was found to vary linearly with P{sup 1/2}, where P is the applied microwave power, in contrast to a recent interpretation of junction formation in pressed lead pieces by Rubins, Drumheller, and Trybula. The interpretation of the MMA data on Nb are given in terms of the theory of Vichery, Beuneu, and Lejay for superconducting loops containing weak links. {copyright} {ital 1997} {ital The American Physical Society}

  15. The Intervening Galaxies Hypothesis of the Absorption Spectra of Quasi-Stellar Objects: Some Statistical Studies

    NASA Astrophysics Data System (ADS)

    Duari, Debiprosad; Narlikar, Jayant V.

    This paper examines, in the light of the available data, the hypothesis that the heavy element absorption line systems in the spectra of QSOs originate through en-route absorption by intervening galaxies, halos etc. Several statistical tests are applied in two different ways to compare the predictions of the intervening galaxies hypothesis (IGH) with actual observations. The database is taken from a recent 1991 compilation of absorption line systems by Junkkarinen, Hewitt and Burbidge. Although, prima facie, a considerable gap is found between the predictions of the intervening galaxies hypothesis and the actual observations despite inclusion of any effects of clustering and some likely selection effects, the gap narrows after invoking evolution in the number density of absorbers and allowing for the incompleteness and inhomogeneity of samples examined. On the latter count the gap might be bridgeable by stretching the parameters of the theory. It is concluded that although the intervening galaxies hypothesis is a possible natural explanation to account for the absorption line systems and may in fact do so in several cases, it seems too simplistic to be able to account for all the available data. It is further stressed that the statistical techniques described here will be useful for future studies of complete and homogenous samples with a view to deciding the extent of applicability of the IGH.

  16. Determination of phosphorus using high-resolution diphosphorus molecular absorption spectra produced in the graphite furnace

    NASA Astrophysics Data System (ADS)

    Huang, Mao Dong; Becker-Ross, Helmut; Okruss, Michael; Geisler, Sebastian; Florek, Stefan

    2016-01-01

    Molecular absorption of diphosphorus was produced in a graphite furnace and evaluated in view of its suitability for phosphorus determination. Measurements were performed with two different high-resolution continuum source absorption spectrometers. The first system is a newly in-house developed simultaneous broad-range spectrograph, which was mainly used for recording overview absorption spectra of P2 between 193 nm and 245 nm. The region covers the main part of the C 1Σu+ ← X 1Σg+ electronic transition and shows a complex structure with many vibrational bands, each consisting of a multitude of sharp rotational lines. With the help of molecular data available for P2, an assignment of the vibrational bands was possible and the rotational structure could be compared with simulated spectra. The second system is a commercial sequential continuum source spectrometer, which was used for the basic analytical measurements. The P2 rotational line at 204.205 nm was selected and systematically evaluated with regard to phosphorus determination. The conditions for P2 generation were optimized and it was found that the combination of a ZrC modified graphite tube and borate as a chemical modifier were essential for a good production of P2. Serious interferences were found in the case of nitrate and sulfuric acid, although the nitrate interference can be eliminated by a higher pyrolysis temperature. The reliability of the method was proved by analysis of certified samples. Using standard tubes, a characteristic mass of 10 ng and a limit of detection of 7 ng were found. The values could further be improved by a factor of ten using a miniaturized tube with an internal diameter of 2 mm. Compared to the conventional method based on the phosphorus absorption line at 213.618 nm, the advantages of using P2 are the gentle temperature conditions and the potential of performing a simultaneous multi-line evaluation to further improve the limit of detection.

  17. Analysis of the Solar Radiation Impact on Cooling Performance of the Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Fedorčák, Pavol; Košičanová, Danica; Nagy, Richard; Mlynár, Peter

    2014-11-01

    Absorption cooling at low power is a new technology which has not yet been applied to current conditioning elements. This paper analyzes the various elements of solar absorption cooling. Individual states were simulated in which working conditions were set for the capability of solar absorption cooling to balance heat loads in the room. The research is based on an experimental device (absorption units with a performance of 10kW) developed at the STU in Bratislava (currently inputs and outputs of cold sources are being measured). Outputs in this paper are processed so that they connect the entire scheme of the solar absorption cooling system (i.e. the relationship between the solar systems hot and cold storage and the absorption unit). To determine the size of the storage required, calculated cooling for summer months is considered by the ramp rate of the absorption unit and required flow rate of the collectors.

  18. Absorption efficiency enhancement in inorganic and organic thin film solar cells via plasmonic honeycomb nanoantenna arrays.

    PubMed

    Tok, Rüştü Umut; Sendur, Kürşat

    2013-08-15

    We demonstrate theoretically that by embedding plasmonic honeycomb nanoantenna arrays into the active layers of inorganic (c-Si) and organic (P3HT:PCBM/PEDOT:PSS) thin film solar cells, absorption efficiency can be improved. To obtain the solar cell absorption spectrum that conforms to the solar radiation, spectral broadening is achieved by breaking the symmetry within the Wigner-Seitz unit cell on a uniform hexagonal grid. For optimized honeycomb designs, absorption efficiency enhancements of 106.2% and 20.8% are achieved for c-Si and P3HT:PCBM/PEDOT:PSS thin film solar cells, respectively. We have demonstrated that the transverse modes are responsible for the enhancement in c-Si solar cells, whereas both the longitudinal and transverse modes, albeit weaker, are the main enhancement mechanisms for P3HT:PCBM/PEDOT:PSS solar cells. For both inorganic and organic solar cells, the absorption enhancement is independent of polarization.

  19. Observed and theoretical spectra in the 10-100 A interval. [of solar spectra

    NASA Technical Reports Server (NTRS)

    Brown, W. A.; Bruner, M. E.; Acton, L. W.

    1988-01-01

    The soft X-ray spectra recorded in two sounding-rocket flights in 1982 and 1985 are compared with predicted spectra. The processed densitometer trace of the full spectrum is presented, together with the new spectrum from the 1985 experiment. The intensities of the lines are then compared with predictions.

  20. Recent Progress Towards Quantum Dot Solar Cells with Enhanced Optical Absorption.

    PubMed

    Zheng, Zerui; Ji, Haining; Yu, Peng; Wang, Zhiming

    2016-12-01

    Quantum dot solar cells, as a promising candidate for the next generation solar cell technology, have received tremendous attention in the last 10 years. Some recent developments in epitaxy growth and device structures have opened up new avenues for practical quantum dot solar cells. Unfortunately, the performance of quantum dot solar cells is often plagued by marginal photon absorption. In this review, we focus on the recent progress made in enhancing optical absorption in quantum dot solar cells, including optimization of quantum dot growth, improving the solar cells structure, and engineering light trapping techniques.

  1. Recent Progress Towards Quantum Dot Solar Cells with Enhanced Optical Absorption

    NASA Astrophysics Data System (ADS)

    Zheng, Zerui; Ji, Haining; Yu, Peng; Wang, Zhiming

    2016-05-01

    Quantum dot solar cells, as a promising candidate for the next generation solar cell technology, have received tremendous attention in the last 10 years. Some recent developments in epitaxy growth and device structures have opened up new avenues for practical quantum dot solar cells. Unfortunately, the performance of quantum dot solar cells is often plagued by marginal photon absorption. In this review, we focus on the recent progress made in enhancing optical absorption in quantum dot solar cells, including optimization of quantum dot growth, improving the solar cells structure, and engineering light trapping techniques.

  2. Performance analysis of solar powered absorption refrigeration system

    NASA Astrophysics Data System (ADS)

    Abu-Ein, Suleiman Qaseem; Fayyad, Sayel M.; Momani, Waleed; Al-Bousoul, Mamdouh

    2009-12-01

    The present work provides a detailed thermodynamic analysis of a 10 kW solar absorption refrigeration system using ammonia-water mixtures as a working medium. This analysis includes both first law and second law of thermodynamics. The coefficient of performance (COP), exergetic coefficient of performance (ECOP) and the exergy losses (Δ E) through each component of the system at different operating conditions are obtained. The minimum and maximum values of COP and ECOP were found to be at 110 and 200°C generator temperatures respectively. About 40% of the system exergy losses were found to be in the generator. The maximum exergy losses in the absorber occur at generator temperature of 130°C for all evaporator temperatures. A computer simulation model is developed to carry out the calculations and to obtain the results of the present study.

  3. Optimum hot water temperature for absorption solar cooling

    SciTech Connect

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R.; Zacarias, A.

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  4. Photonic crystals for improving light absorption in organic solar cells

    SciTech Connect

    Duché, D. Le Rouzo, J.; Masclaux, C.; Gourgon, C.

    2015-02-07

    We theoretically and experimentally study the structuration of organic solar cells in the shape of photonic crystal slabs. By taking advantage of the optical properties of photonic crystals slabs, we show the possibility to couple Bloch modes with very low group velocities in the active layer of the cells. These Bloch modes, also called slow Bloch modes (SBMs), allow increasing the lifetime of photons within the active layer. Finally, we present experimental demonstration performed by using nanoimprint to directly pattern the standard poly-3-hexylthiophène:[6,6]-phenyl-C61-butiryc acid methyl ester organic semiconductor blend in thin film form in the shape of a photonic crystal able to couple SBMs. In agreement with the model, optical characterizations will demonstrate significant photonic absorption gains.

  5. Deriving Polarization Properties of Desert-Reflected Solar Spectra with PARASOL Data

    NASA Technical Reports Server (NTRS)

    Sun, Wenbo; Baize, Rosemary R.; Lukashin, Constantine

    2015-01-01

    Reflected solar radiation from desert is strongly polarized by sand particles. To date, there is no reliable desert surface reflection model to calculate desert reflection matrix. In this study, the PARASOL data are used to retrieve physical properties of desert. These physical properties are then used in the ADRTM to calculate polarization of desert-reflected light for the whole solar spectra.

  6. Role of non-Condon vibronic coupling and conformation change on two-photon absorption spectra of green fluorescent protein

    NASA Astrophysics Data System (ADS)

    Ai, Yuejie; Tian, Guangjun; Luo, Yi

    2013-07-01

    Two-photon absorption spectra of green fluorescent proteins (GFPs) often show a blue-shift band compared to their conventional one-photon absorption spectra, which is an intriguing feature that has not been well understood. We present here a systematic study on one- and two-photon spectra of GFP chromophore by means of the density functional response theory and complete active space self-consistent field (CASSCF) methods. It shows that the popular density functional fails to provide correct vibrational progression for the spectra. The non-Condon vibronic coupling, through the localised intrinsic vibrational modes of the chromophore, is responsible for the blue-shift in the TPA spectra. The cis to trans isomerisation can be identified in high-resolution TPA spectra. Our calculations demonstrate that the high level ab initio multiconfigurational CASSCF method, rather than the conventional density functional theory is required for investigating the essential excited-state properties of the GFP chromophore.

  7. Identifying Student and Teacher Difficulties in Interpreting Atomic Spectra Using a Quantum Model of Emission and Absorption of Radiation

    ERIC Educational Resources Information Center

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-01-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…

  8. K-edge x-ray absorption spectra of Cs and Xe

    SciTech Connect

    Gomilsek, J. Padeznik; Kodre, A.; Arcon, I.; Hribar, M.

    2003-10-01

    X-ray absorption spectrum of cesium vapor in the K-edge region is measured in a stainless steel cell. The spectrum is free of the x-ray absorption fine structure signal and shows small features analogous to those in the spectrum of the neighbor noble gas Xe. Although the large natural width of the K vacancy (>10 eV) washes out most of the details, fingerprints of multielectron excitations can be recognized at energies close to Dirac-Fock estimates of doubly excited states 1s4(d,p,s) and 1s3(d,p). Among these, the 1s3p excitation 1000 eV above the K edge in both spectra is the deepest double excitation observed so far. Within the K-edge profile, some resolution is recovered with numerical deconvolution of the spectra, revealing the coexcitation of the 5(p,s) electrons, and even the valence 6s electron in Cs. As in homologue elements, three-electron excitations, either as separate channels or as configuration admixtures are required to explain some spectral features in detail.

  9. A wavelet analysis for the X-ray absorption spectra of molecules.

    PubMed

    Penfold, T J; Tavernelli, I; Milne, C J; Reinhard, M; El Nahhas, A; Abela, R; Rothlisberger, U; Chergui, M

    2013-01-07

    We present a Wavelet transform analysis for the X-ray absorption spectra of molecules. In contrast to the traditionally used Fourier transform approach, this analysis yields a 2D correlation plot in both R- and k-space. As a consequence, it is possible to distinguish between different scattering pathways at the same distance from the absorbing atom and between the contributions of single and multiple scattering events, making an unambiguous assignment of the fine structure oscillations for complex systems possible. We apply this to two previously studied transition metal complexes, namely iron hexacyanide in both its ferric and ferrous form, and a rhenium diimine complex, [ReX(CO)(3)(bpy)], where X = Br, Cl, or ethyl pyridine (Etpy). Our results demonstrate the potential advantages of using this approach and they highlight the importance of multiple scattering, and specifically the focusing phenomenon to the extended X-ray absorption fine structure (EXAFS) spectra of these complexes. We also shed light on the low sensitivity of the EXAFS spectrum to the Re-X scattering pathway.

  10. A wavelet analysis for the X-ray absorption spectra of molecules

    SciTech Connect

    Penfold, T. J.; Tavernelli, I.; Rothlisberger, U.; Milne, C. J.; Abela, R.; Reinhard, M.; Nahhas, A. El; Chergui, M.

    2013-01-07

    We present a Wavelet transform analysis for the X-ray absorption spectra of molecules. In contrast to the traditionally used Fourier transform approach, this analysis yields a 2D correlation plot in both R- and k-space. As a consequence, it is possible to distinguish between different scattering pathways at the same distance from the absorbing atom and between the contributions of single and multiple scattering events, making an unambiguous assignment of the fine structure oscillations for complex systems possible. We apply this to two previously studied transition metal complexes, namely iron hexacyanide in both its ferric and ferrous form, and a rhenium diimine complex, [ReX(CO){sub 3}(bpy)], where X = Br, Cl, or ethyl pyridine (Etpy). Our results demonstrate the potential advantages of using this approach and they highlight the importance of multiple scattering, and specifically the focusing phenomenon to the extended X-ray absorption fine structure (EXAFS) spectra of these complexes. We also shed light on the low sensitivity of the EXAFS spectrum to the Re-X scattering pathway.

  11. Solvent effects on the absorption and fluorescence spectra of rhaponticin: Experimental and theoretical studies

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Liang, Xuhua; Zhao, Yingyong; Fan, Jun

    2013-02-01

    Rhaponticin (RH) possesses a variety of pharmacological activities including potent antitumor, antitumor-promoting, antithrombotic, antioxidant and vasorelaxant effects. The fundamental photophysics of RH is not well understood. In this work, solvent effect on the photoluminescence behavior of RH was studied by fluorescence and absorption spectra. The bathchromic shift was observed in absorption and fluorescence spectra with the increase of solvents polarity, which implied that transition involved was π → π*. A quantitative estimation of the contribution from different solvatochromic parameters, like normalized transition energy value (ETN), was made using the linear stokes shift (Δν) relationship based on the Lippert-Suppan equation. The ground state and excited state dipole moments were calculated by quantum-mechanical second-order perturbation method as a function of the dielectric constant (ɛ) and refractive index (n). The result was found to be 2.23 and 3.67 D in ground state and excited state respectively. The density functional theory (DFT) was used to obtain the most stable structure, electronic excitation energy, dipole moments and charge distribution. The analysis revealed that the RH exhibited strong photoinduced intramolecular charge transfer (ICT), and the intermolecular hydrogen bonding ability of the solvent was the most important parameter to characterize the photophysics behavior of RH. The hydrogen bonding effect occurred at the localized electron-acceptor oxygen at the glycoside bond. The experimental and theoretical results would help us better understand the photophysical properties of RH.

  12. First principles absorption spectra of Cu{sub n} (n = 2 - 20) clusters.

    SciTech Connect

    Baishya, K.; Idrobo, J. C.; Ogut, S.; Yang, M.; Jackson, K. A.; Jellinek, J.

    2011-06-17

    Optical absorption spectra for the computed ground state structures of copper clusters (Cu{sub n}, n = 2-20) are investigated from first principles using time-dependent density functional theory in the adiabatic local density approximation (TDLDA). The results are compared with available experimental data, existing calculations, and with results from our previous computations on silver and gold clusters. The main effects of d electrons on the absorption spectra, quenching the oscillator strengths, and getting directly involved in low-energy excitations increase in going from Ag{sub n} to Au{sub n} to Cu{sub n} due to the increase in the hybridization of the occupied, yet shallow, d orbitals and the partially occupied s orbitals. We predict that while Cu nanoparticles of spherical or moderately ellipsoidal shape do not exhibit Mie (surface plasmon) resonances, unlike the case for Ag and Au, extremely prolate or oblate Cu nanoparticles with eccentricities near unity should give rise to Mie resonances in the lower end of the visible range and in the infrared. This tunable resonance predicted by the classical Mie-Gans theory is reproduced with remarkable accuracy by our TDLDA computations on hypothetical Cu clusters in the form of zigzag chains with as few as 6 to 20 atoms.

  13. Solar Modulation of Low-Energy Antiproton and Proton Spectra Measured by BESS

    NASA Technical Reports Server (NTRS)

    Mitchell, John W.; Abe, Ko; Fuke, Hideyuki; Haino, Sadakazu; Hams, Thomas; Horikoshi, Atsushi; Kim, Ki-Chun; Lee, MooHyun; Makida, Yashuhiro; Matsuda, Shinya; Moiseev, Alexander; Nishimura, Jun; Nozaki, Mitsuaki

    2007-01-01

    The spectra of low-energy cosmic-ray protons and antiprotons have been measured by BESS in nine high-latitude balloon flights between 1993 and 2004. These measurements span a range of solar activity from the previous solar minimum through solar ma>:im%am and the onset of the present solar minimum, as well as a solar magnetic field reversal from positive to negative in 2000. Because protons and antiprotons differ only in charge sign, these simultaneous measurements provide a sensitive probe of charge dependent solar modulation. The antiproton to proton ratio measured by BESS is consistent with simple spherically symmetric models of solar modulation during the Sun's positive polarity phase, but favor charge-sign-dependent drift models during the negative phase. The BESS measurements will be presented and compared to various models of solar modulation.

  14. The Infrared Spectra and Absorption Intensities of Amorphous Ices: Methane and Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Gerakines, Perry A.; Hudson, Reggie L.; Loeffler, Mark J.

    2015-11-01

    Our research group is carrying out new IR measurements of icy solids relevant to the outer solar system and the interstellar medium, with an emphasis on amorphous and crystalline ices below ~70 K. Our goal is to add to the relatively meager literature on this subject and to provide electronic versions of state-of-the-art data, since the abundances of such molecules cannot be deduced without accurate reference spectra and IR band strengths. In the past year, we have focused on two of the simplest and most abundant components of icy bodies in the solar system - methane (CH4) and carbon dioxide (CO2). Infrared spectra from ˜ 4500 to 500 cm-1 have been measured for each of these molecules in μm-thick films at temperatures from 10 to 70 K. All known amorphous and crystalline phases have been reproduced and, for some, presented for the first time. We also report measurements of the index of refraction at 670 nm and the mass densities for each ice phase. Comparisons are made to earlier work where possible. Electronic versions of our new results are available at http://science.gsfc.nasa.gov/691/cosmicice/ constants.html.

  15. Available solar exergy in an absorption cooling process

    SciTech Connect

    Millan, M.I.; Martin, E.; Hernandez, F.

    1996-06-01

    Using the global solar radiation on a flat plate converter of selective surface, the process temperature, the ambient temperature and the characteristics of the collector as initial data; the maximum available exergy for feeding a lithium bromide absorption cooling machine and its daily distribution in Madrid is determined. The conversion of solar radiation into exergy is calculated through the Mueser endoreversible engine. The model, which takes into account the relative Sun-Earth movements, the presence of the atmosphere, the transitory regime, the losses to the surroundings and the losses caused by the heat capacities effect, allows a maximum hourly exergy efficiency of the available heat between 11 and 14.6% and a daily exergy efficiency in the order of 3% to be obtained. The maximum available daily exergy varies from 800 kJ/(m{sup 2} day) for a very hot clear day to 950 kJ/(m{sup 2} day) for a warm clear day. 11 refs., 2 figs., 4 tabs.

  16. Testing and optical modeling of novel concentrating solar receiver geometries to increase light trapping and effective solar absorptance

    NASA Astrophysics Data System (ADS)

    Yellowhair, Julius; Ho, Clifford K.; Ortega, Jesus D.; Christian, Joshua M.; Andraka, Charles E.

    2015-09-01

    Concentrating solar power receivers are comprised of panels of tubes arranged in a cylindrical or cubical shape on top of a tower. The tubes contain heat-transfer fluid that absorbs energy from the concentrated sunlight incident on the tubes. To increase the solar absorptance, black paint or a solar selective coating is applied to the surface of the tubes. However, these coatings degrade over time and must be reapplied, which reduces the system performance and increases costs. This paper presents an evaluation of novel receiver shapes and geometries that create a light-trapping effect, thereby increasing the effective solar absorptance and efficiency of the solar receiver. Several prototype shapes were fabricated from Inconel 718 and tested in Sandia's solar furnace at an irradiance of ~30 W/cm2. Photographic methods were used to capture the irradiance distribution on the receiver surfaces. The irradiance profiles were compared to results from raytracing models. The effective solar absorptance was also evaluated using the ray-tracing models. Results showed that relative to a flat plate, the new geometries could increase the effective solar absorptance from 86% to 92% for an intrinsic material absorptance of 86%, and from 60% to 73% for an intrinsic material absorptance of 60%.

  17. Heating of the solar corona by the resonant absorption of Alfven waves

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M.

    1986-01-01

    An improved method for calculating the resonance absorption heating rate is discussed and the results are compared with observations in the solar corona. The primary conclusion to be drawn from these calculations is that to the level of the approximation adopted, the observations of the heating rate and nonthermal line broadening in the solar corona are consistent with heating by the resonance absorption mechanism.

  18. Nucleic acid vibrational circular dichroism, absorption, and linear dichroism spectra. I. A DeVoe theory approach.

    PubMed Central

    Self, B D; Moore, D S

    1997-01-01

    Infrared (IR) vibrational circular dichroism (VCD), absorption, and linear dichroism (LD) spectra of four homopolyribonucleotides, poly(rA), poly(rG), poly(rC), and poly(rU), have been calculated, in the 1750-1550 cm-1 spectral region, using the DeVoe polarizability theory. A newly derived algorithm, which approximates the Hilbert transform of imaginaries to reals, was used in the calculations to obtain real parts of oscillator polarizabilities associated with each normal mode. The calculated spectra of the polynucleotides were compared with previously measured solution spectra. The good agreement between calculated and measured polynucleotide spectra indicates, for the first time, that the DeVoe theory is a useful means of calculating the VCD and IR absorption spectra of polynucleotides. For the first time, calculated DeVoe theory VCD and IR absorption spectra of oriented polynucleotides are presented. The calculated VCD spectra for the oriented polynucleotides are used to predict the spectra for such measurements made in the future. The calculated IR spectra for the oriented polynucleotides are useful in interpreting the linear dichroism of the polynucleotides. PMID:9199798

  19. Excitation dynamics in Phycoerythrin 545: modeling of steady-state spectra and transient absorption with modified Redfield theory.

    PubMed

    Novoderezhkin, Vladimir I; Doust, Alexander B; Curutchet, Carles; Scholes, Gregory D; van Grondelle, Rienk

    2010-07-21

    We model the spectra and excitation dynamics in the phycobiliprotein antenna complex PE545 isolated from the unicellular photosynthetic cryptophyte algae Rhodomonas CS24. The excitonic couplings between the eight bilins are calculated using the CIS/6-31G method. The site energies are extracted from a simultaneous fit of the absorption, circular dichroism, fluorescence, and excitation anisotropy spectra together with the transient absorption kinetics using the modified Redfield approach. Quantitative fit of the data enables us to assign the eight exciton components of the spectra and build up the energy transfer picture including pathways and timescales of energy relaxation, thus allowing a visualization of excitation dynamics within the complex.

  20. Inversion of bremsstrahlung spectra emitted by solar plasma

    NASA Astrophysics Data System (ADS)

    Piana, M.

    1994-08-01

    Bremsstrahlung radiation coming from the solar atmosphere is linked to the distribution function of electrons in the solar plasma through a Volterra equation of the first kind. We have assumed the Bethe-Heitler approximation for the bremsstrahlung cross section and we have applied the SVD method to the integral equation with discrete data. Using Tikhonov's regularisation technique, reconstructions of the electronic distribution functions have been obtained, both for simulated and real data.

  1. Determination of the altitude of the nitric acid layer from very high resolution ground-based IR solar spectra

    NASA Technical Reports Server (NTRS)

    Blatherwick, R. D.; Murcray, F. J.; Murcray, D. G.; Locker, M. H.

    1991-01-01

    A ground-based solar spectrum at a spectral resolution of about 0.002/cm is used to determine the altitude of the HNO3 layer. The 870/cm spectral region, which is essentially free from absorptions from other species, is employed. The data were obtained with the University of Denver 2.5-m maximum path difference Fourier Transform interferometer spectrometer system. A set of 13 HNO3 vertical profiles were used in the analysis. The best fit obtained for the 'starting' profile (which is centered at 24 km), and the best fit for the profile centered at 26 km are shown. For displacements of greater than 2 km, the discrepancy between the synthetic and observed spectra becomes readily discernible by inspection of the spectra. It is shown that the 'best fit' rms residuals are quite sensitive to the assumed altitude of the HNO3 layer.

  2. Plastocyanin conformation: an analysis of its near ultraviolet absorption and circular dichroic spectra

    SciTech Connect

    Draheim, J.E.; Anderson, G.P.; Duane, J.W.; Gross, E.L.

    1986-04-01

    The near-ultraviolet absorption and circular dichroic spectra of plastocyanin are dependent upon the redox state, solution pH, and ammonium sulfate concentration. This dependency was observed in plastocyanin isolated from spinach, poplar, and lettuce. Removal of the copper atom also perturbed the near-ultraviolet spectra. Upon reduction there are increases in both extinction and ellipticity at 252 nm. Further increases at 252 nm were observed upon formation of apo plastocyanin eliminating charge transfer transitions as the cause. The spectral changes in the near-ultraviolet imply a flexible tertiary conformation for plastocyanin. There are at least two charge transfer transitions at approx.295-340 nm. One of these transitions is sensitive to low pH's and is attributed to the His 87 copper ligand. The redox state dependent changes observed in the near-ultraviolet spectra of plastocyanin are attenuated either by decreasing the pH to 5 or by increasing the ammonium sulfate concentration to 2.7 M. This attenuation cannot be easily explained by simple charge screening. Hydrophobic interactions probably play an important role in this phenomenon. The pH and redox state dependent conformational changes may play an important role in regulating electron transport.

  3. [Laser induced breakdown spectra of coal sample and self-absorption of the spectral line].

    PubMed

    Zhang, Gui-yin; Ji, Hui; Jin, Yi-dong

    2014-12-01

    The LIBS of one kind of household fuel coal was obtained with the first harmonic output 532 nm of an Nd·YAG laser as radiation source. With the assignment of the spectral lines, it was found that besides the elements C, Si, Mg, Fe, Al, Ca, Ti, Na and K, which are reported to be contained in coal, the presented sample also contains trace elements, such as Cd, Co, Hf, Ir, Li, Mn, Ni, Rb, Sr, V, W, Zn, Zr etc, but the spectral lines corresponding to O and H elements did not appear in the spectra. This is owing to the facts that the transition probability of H and O atoms is small and the energy of the upper level for transition is higher. The results of measurement also show that the intensity of spectral line increases with the laser pulse energy and self-absorption of the spectral lines K766.493 nm and K769.921 nm will appear to some extent. Increasing laser energy further will make self-absorption more obvious. The presence of self-absorption can be attributed to two factors. One is the higher transition rate of K atoms, and the other is that the increase in laser intensity induces the enhancement of the particle number density in the plasma.

  4. Laboratory studies at high resolution of the infrared absorption spectra of a number of gases found in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Hunt, R. H.

    1983-01-01

    The infrared absorption spectra of a number of gases found in planetary atmospheres were studied at high resolution. Absorption line measurements which can be of value for the interpretation of planetary spectra in terms of molecular abundances and conditions in the planetary atmospheres were provided. The high resolution spectra have yielded measurements of individual vibration rotation line parameters including positions, strengths, pressure broadened widths and, where assignments were unknown, the temperature sensitivity of the strengths. Such information allows the determinations of the absorption of a given molecular gas under planetary conditions of temperature and pressure and at the same time it provides the data necessary if the spectra are to be understood in terms of basic molecular theory. Thus this work has included spectral analysis in the form of line assignments as well as fitting of the data to Hamiltonian models. Such fitting is very useful in that it helps to confirm and extend the assignments.

  5. Absorption-mode Fourier transform mass spectrometry: the effects of apodization and phasing on modified protein spectra.

    PubMed

    Qi, Yulin; Li, Huilin; Wills, Rebecca H; Perez-Hurtado, Pilar; Yu, Xiang; Kilgour, David P A; Barrow, Mark P; Lin, Cheng; O'Connor, Peter B

    2013-06-01

    The method of phasing broadband Fourier transform ion cyclotron resonance (FT-ICR) spectra allows plotting the spectra in the absorption-mode; this new approach significantly improves the quality of the data at no extra cost. Herein, an internal calibration method for calculating the phase function has been developed and successfully applied to the top-down spectra of modified proteins, where the peak intensities vary by 100×. The result shows that the use of absorption-mode spectra allows more peaks to be discerned within the recorded data, and this can reveal much greater information about the protein and modifications under investigation. In addition, noise and harmonic peaks can be assigned immediately in the absorption-mode.

  6. Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells.

    PubMed

    Kim, Younghoon; Bicanic, Kristopher; Tan, Hairen; Ouellette, Olivier; Sutherland, Brandon R; García de Arquer, F Pelayo; Jo, Jea Woong; Liu, Mengxia; Sun, Bin; Liu, Min; Hoogland, Sjoerd; Sargent, Edward H

    2017-04-12

    Colloidal quantum dot (CQD) materials are of interest in thin-film solar cells due to their size-tunable bandgap and low-cost solution-processing. However, CQD solar cells suffer from inefficient charge extraction over the film thicknesses required for complete absorption of solar light. Here we show a new strategy to enhance light absorption in CQD solar cells by nanostructuring the CQD film itself at the back interface. We use two-dimensional finite-difference time-domain (FDTD) simulations to study quantitatively the light absorption enhancement in nanostructured back interfaces in CQD solar cells. We implement this experimentally by demonstrating a nanoimprint-transfer-patterning (NTP) process for the fabrication of nanostructured CQD solids with highly ordered patterns. We show that this approach enables a boost in the power conversion efficiency in CQD solar cells primarily due to an increase in short-circuit current density as a result of enhanced absorption through light-trapping.

  7. Solar-absorption measurements of ozone from two ground based FTIR sites

    NASA Astrophysics Data System (ADS)

    Plaza, Eddy; Stremme, Wolfgang; Bezanilla, Alejandro; Grutter, Michel; Blumenstock, Thomas; Hase, Frank; Gisi, Michael

    2013-04-01

    Ozone reduces the amount of ultraviolet light entering earths atmosphere and continuous monitoring of total ozone column especially in higher latitudes has been a major task since the discovery of the stratospheric ozone depletion. As tropospheric ozone is a main greenhouse gas, monitoring of ozone in the lower atmosphere and also in the tropics gains importance. Tropospheric ozone also plays an important role in air quality and high levels of ozone in the boundary layer affects the public health. Ozone is produced through a complicated path of photochemistry processes from volatile organic compounds and nitrogen oxides (NOx)[1]. In large cities, these ozone precursors are mainly emitted from anthropogenic activities and in Mexico City the ozone concentration frequently exceedes the local standard for air quality (e.g. on 80% of the days of the year 2002)[2]. Since May 2012 high resolution Fourier transform infrared solar absorption spectra have been used for determining the total column and profile of ozone at the high altitude remote site Altzomoni (19°.12`N, 98°.65`E) located 60 km southeast of Mexico City at 4000 m a.s.l. These measurements are complemented with solar absorption spectra recorded with a moderate resolution FTIR spectrometer at the UNAM campus in Mexcio City (19°25`N, 99°10`W, 2240 m a.s.l.). The vertical profiles and total columns of ozone are inferred from solar spectra by using the retrieval code PROFFIT. The results are compared with simulations of the Whole Atmosphere Community Climate Model (WACCM) and other correlative data. The ozone column amount in the polluted mixing layer of Mexico City is estimated from the intercomparison of measurements at the urban and remote sites and discussed. [1] Tie, X.; Brasseur, G.; Ying, Z. Impact of Model Resolution on Chemical Ozone Formation in Mexico City: Application of the Wrf-Chem Model. Atmospheric Chemistry and Physics. 2010, 10, 8983-8995. [2] McKinley, G.; Zuk, M.; Hojer, M.; Avalos, M

  8. Analysis of Atmospheric Composition and Tropospheric Variability With Integrated Open- Path and Ground-Based Solar Infrared Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Steill, J. D.; Compton, R. N.; Hager, J. S.

    2006-12-01

    Ground-based solar infrared absorption spectroscopy coupled with open-path spectroscopy provides a means for analysis of the highly variable contribution of the boundary layer to problems of radiative transfer and atmospheric chemistry. This is of particular importance in geographic regions of significant local anthropogenic influence and large tropospheric fluctuations in general. A Bomem DA8 FT-IR integrated with a sun-tracking and open-path system (~0.5 km) is located at The University of Tennessee, in downtown Knoxville and near The Great Smoky Mountains National Park, an area known for problematic air quality. From atmospheric absorption spectra, boundary layer concentrations as well as total column abundances and vertical concentration profiles are derived. A record of more than 1000 solar-sourced atmospheric spectra covering a period greater than three years in duration is under analysis to characterize the limit of precision in total column abundance determinations for many gases such as O3, CO, CH4, N2O, HF and CO2. Initial efforts using atmospheric O2 as a calibration indicate the solar-sourced spectra may not meet the precision required for the highly accurate atmospheric CO2 quantification by such global efforts as the OCO and NDSC. However, the determined variability of CO2 and other gas concentrations is statistically significant and is indicative of local concentration fluxes pertinent to the regional atmospheric chemistry. This is therefore an important data record in the southeastern United States, a somewhat under- sampled geographic region. In addition to providing a means to improve the analysis of solar spectra, the open-path data is useful for elucidation of seasonal and diurnal trends in the trace gas concentrations. This provides an urban air quality monitor in addition to improving the description of the total atmospheric composition, as the open-path system is stable and permanent.

  9. Turbulence in the solar wind: spectra from Voyager 2 data at 5 AU

    NASA Astrophysics Data System (ADS)

    Fraternale, F.; Gallana, L.; Iovieno, M.; Opher, M.; Richardson, J. D.; Tordella, D.

    2016-02-01

    Fluctuations in the flow velocity and magnetic fields are ubiquitous in the Solar System. These fluctuations are turbulent, in the sense that they are disordered and span a broad range of scales in both space and time. The study of solar wind turbulence is motivated by a number of factors all keys to the understanding of the Solar Wind origin and thermodynamics. The solar wind spectral properties are far from uniformity and evolve with the increasing distance from the sun. Most of the available spectra of solar wind turbulence were computed at 1 astronomical unit, while accurate spectra on wide frequency ranges at larger distances are still few. In this paper we consider solar wind spectra derived from the data recorded by the Voyager 2 mission during 1979 at about 5 AU from the sun. Voyager 2 data are an incomplete time series with a voids/signal ratio that typically increases as the spacecraft moves away from the sun (45% missing data in 1979), making the analysis challenging. In order to estimate the uncertainty of the spectral slopes, different methods are tested on synthetic turbulence signals with the same gap distribution as V2 data. Spectra of all variables show a power law scaling with exponents between -2.1 and -1.1, depending on frequency subranges. Probability density functions (PDFs) and correlations indicate that the flow has a significant intermittency.

  10. kspectrum: an open-source code for high-resolution molecular absorption spectra production

    NASA Astrophysics Data System (ADS)

    Eymet, V.; Coustet, C.; Piaud, B.

    2016-01-01

    We present the kspectrum, scientific code that produces high-resolution synthetic absorption spectra from public molecular transition parameters databases. This code was originally required by the atmospheric and astrophysics communities, and its evolution is now driven by new scientific projects among the user community. Since it was designed without any optimization that would be specific to any particular application field, its use could also be extended to other domains. kspectrum produces spectral data that can subsequently be used either for high-resolution radiative transfer simulations, or for producing statistic spectral model parameters using additional tools. This is a open project that aims at providing an up-to-date tool that takes advantage of modern computational hardware and recent parallelization libraries. It is currently provided by Méso-Star (http://www.meso-star.com) under the CeCILL license, and benefits from regular updates and improvements.

  11. Error reduction in retrievals of atmospheric species from symmetrically measured lidar sounding absorption spectra.

    PubMed

    Chen, Jeffrey R; Numata, Kenji; Wu, Stewart T

    2014-10-20

    We report new methods for retrieving atmospheric constituents from symmetrically-measured lidar-sounding absorption spectra. The forward model accounts for laser line-center frequency noise and broadened line-shape, and is essentially linearized by linking estimated optical-depths to the mixing ratios. Errors from the spectral distortion and laser frequency drift are substantially reduced by averaging optical-depths at each pair of symmetric wavelength channels. Retrieval errors from measurement noise and model bias are analyzed parametrically and numerically for multiple atmospheric layers, to provide deeper insight. Errors from surface height and reflectance variations are reduced to tolerable levels by "averaging before log" with pulse-by-pulse ranging knowledge incorporated.

  12. Effect of Pressure on Absorption Spectra of Lycopene in n-Hexane and CS2 Solvents

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Liu, Wei-Long; Zheng, Zhi-Ren; Huo, Ming-Ming; Li, Ai-Hua; Yang, Bin

    2010-01-01

    The absorption spectra of lycopene in n-hexane and CS2 are measured under high pressure and the results are compared with β-carotene. In the lower pressure range, the deviation from the linear dependence on the Bayliss parameter (BP) for β-carotene is more visible than that for lycopene. With the further increase of the solvent BP, the 0-0 bands of lycopene and β-carotene red shift at almost the same rate in n-hexane; however, the 0-0 band of lycopene red shifts slower than that of β-carotene in CS2. The origins of these diversities are discussed taking into account the dispersion interactions and structures of solute and solvent molecules.

  13. Breaking of symmetrical charge distribution in xanthylocyanine chromophores detecting by their absorption spectra

    NASA Astrophysics Data System (ADS)

    Vasyluk, S. V.; Viniychuk, O. O.; Poronik, Ye. M.; Kovtun, Yu. P.; Shandura, M. P.; Yashchuk, V. M.; Kachkovsky, O. D.

    2011-03-01

    A detailed experimental investigation and quantum-chemical analysis of symmetrical cyanines with xanthylium and its substituted derivatives and with different polymethine chain (containing 1 and 2 vinylene groups) have been performed with the goal of understanding the nature of the electronic transitions in molecules. It is established electronic transitions in carbocyanines are similar to that in the typical Brooker's cyanines. In contrast, the absorption spectra of dicarbocyanines demonstrate a strong solvent dependence and substantial band broadening represented by the growth of the short wavelength shoulder. Basing on the results of the quantum-chemical calculation and conception of the mobile solitonic-like charge waves, we have concluded that the dicarbocyanines exist in two charged forms in the ground state with symmetrical and unsymmetrical distributions of the charge density. These are the examples of the cationic cyanines with the shortest chain when the symmetry breaking occurs.

  14. Simulation of X-ray absorption spectra with orthogonality constrained density functional theory†

    PubMed Central

    Derricotte, Wallace D.; Evangelista, Francesco A.

    2015-01-01

    Orthogonality constrained density functional theory (OCDFT) is a variational time-independent approach for the computation of electronic excited states. In this work we extend OCDFT to compute core-excited states and generalize the original formalism to determine multiple excited states. Benchmark computations on a set of 13 small molecules and 40 excited states show that unshifted OCDFT/B3LYP excitation energies have a mean absolute error of 1.0 eV. Contrary to time-dependent DFT, OCDFT excitation energies for first- and second-row elements are computed with near-uniform accuracy. OCDFT core excitation energies are insensitive to the choice of the functional and the amount of Hartree–Fock exchange. We show that OCDFT is a powerful tool for the assignment of X-ray absorption spectra of large molecules by simulating the gas-phase near-edge spectrum of adenine and thymine. PMID:25690350

  15. Comparison of absorption spectra of adenocarcinoma and squamous cell carcinoma cervical tissue

    NASA Astrophysics Data System (ADS)

    Peresunko, O. P.; Zelinska, N. V.; Prydij, O. G.; Zymnyakov, D. A.; Ushakova, O. V.

    2013-12-01

    We studied a methods of assessment of a connective tissue of cervix in terms of specific volume of fibrous component and an optical density of staining of connective tissue fibers in the stroma of squamous cancer and cervix adenocarcinoma. An absorption spectra of blood plasma of the patients suffering from squamous cancer and cervix adenocarcinoma both before the surgery and in postsurgical periods were obtained. Linear dichroism measurements transmittance in polarized light at different orientations of the polarization plane relative to the direction of the dominant orientation in the structure of the sample of biotissues of stroma of squamous cancer and cervix adenocarcinoma were carried. Results of the investigation of the tumor tissues showed that the magnitude of the linear dichroism Δ is insignificant in the researched spectral range λ=280-840 nm and specific regularities in its change observed short-wave ranges.

  16. Calculation of optical and K pre-edge absorption spectra for ferrous iron of distorted sites in oxide crystals

    NASA Astrophysics Data System (ADS)

    Vercamer, Vincent; Hunault, Myrtille O. J. Y.; Lelong, Gérald; Haverkort, Maurits W.; Calas, Georges; Arai, Yusuke; Hijiya, Hiroyuki; Paulatto, Lorenzo; Brouder, Christian; Arrio, Marie-Anne; Juhin, Amélie

    2016-12-01

    Advanced semiempirical calculations have been performed to compute simultaneously optical absorption and K pre-edge x-ray absorption spectra of Fe2 + in four distinct site symmetries found in minerals. The four symmetries, i.e., a distorted octahedron, a distorted tetrahedron, a square planar site, and a trigonal bipyramidal site, are representative of the Fe2 + sites found in crystals and glasses. A particular attention has been paid to the definition of the p -d hybridization Hamiltonian which occurs for noncentrosymmetric symmetries in order to account for electric dipole transitions. For the different sites under study, an excellent agreement between calculations and experiments was found for both optical and x-ray absorption spectra, in particular in terms of relative intensities and energy positions of electronic transitions. To our knowledge, these are the first calculations of optical absorption spectra on Fe2 + placed in such diverse site symmetries, including centrosymmetric sites. The proposed theoretical model should help to interpret the features of both the optical absorption and the K pre-edge absorption spectra of 3 d transition metal ions and to go beyond the usual fingerprint interpretation.

  17. VARIABILITY OF WATER AND OXYGEN ABSORPTION BANDS IN THE DISK-INTEGRATED SPECTRA OF EARTH

    SciTech Connect

    Fujii, Yuka; Suto, Yasushi; Turner, Edwin L.

    2013-03-10

    We study the variability of major atmospheric absorption features in the disk-integrated spectra of Earth with future application to Earth-analogs in mind, concentrating on the diurnal timescale. We first analyze observations of Earth provided by the EPOXI mission, and find 5%-20% fractional variation of the absorption depths of H{sub 2}O and O{sub 2} bands, two molecules that have major signatures in the observed range. From a correlation analysis with the cloud map data from the Earth Observing Satellite (EOS), we find that their variation pattern is primarily due to the uneven cloud cover distribution. In order to account for the observed variation quantitatively, we consider a simple opaque cloud model, which assumes that the clouds totally block the spectral influence of the atmosphere below the cloud layer, equivalent to assuming that the incident light is completely scattered at the cloud top level. The model is reasonably successful, and reproduces the EPOXI data from the pixel-level EOS cloud/water vapor data. A difference in the diurnal variability patterns of H{sub 2}O and O{sub 2} bands is ascribed to the differing vertical and horizontal distribution of those molecular species in the atmosphere. On Earth, the inhomogeneous distribution of atmospheric water vapor is due to the existence of its exchange with liquid and solid phases of H{sub 2}O on the planet's surface on a timescale short compared with atmospheric mixing times. If such differences in variability patterns were detected in spectra of Earth-analogs, it would provide the information on the inhomogeneous composition of their atmospheres.

  18. Assignment and rotational analysis of new absorption bands of carbon dioxide isotopologues in Venus spectra

    NASA Astrophysics Data System (ADS)

    Robert, S.; Borkov, Yu. G.; Vander Auwera, J.; Drummond, R.; Mahieux, A.; Wilquet, V.; Vandaele, A. C.; Perevalov, V. I.; Tashkun, S. A.; Bertaux, J. L.

    2013-01-01

    We present absorption bands of carbon dioxide isotopologues, detected by the Solar Occultation for the Infrared Range (SOIR) instrument on board the Venus Express Satellite. The SOIR instrument combines an echelle spectrometer and an Acousto-Optical Tunable Filter (AOTF) for order selection. It performs solar occultation measurements in the Venus atmosphere in the IR region (2.2-4.3 μm), at a resolution of 0.12-0.18 cm-1. The wavelength range probed by SOIR allows a detailed chemical inventory of the Venus atmosphere above the cloud layer (65-150 km) to be made with emphasis on the vertical distributions of gases. Thanks to the SOIR spectral resolution, a new CO2 absorption band was identified: the 21101-01101 band of 16O12C18O with R branch up to J=31. Two other previously reported bands were observed dispelling any doubts about their identifications: the 20001-00001 band of 16O13C18O [Villanueva G, et al. J Quant Spectrosc Radiat Transfer 2008;109:883-894] and the 01111-00001 band of 16O12C18O [Villanueva G, et al. J Quant Spectrosc Radiat Transfer 2008;109:883-894 and Wilquet V, et al. J Quant Spectrosc Radiat Transfer 2008;109:895-905]. These bands were analyzed, and spectroscopic constants characterizing them were obtained. The rotational assignment of the 20001-00001 band was corrected. The present measurements are compared with data available in the HITRAN database.

  19. Equatorial ionospheric absorption during half a solar cycle (1964-1970)

    NASA Technical Reports Server (NTRS)

    Gnanalingam, S.

    1972-01-01

    An extensive series of vertical incidence absorption measurements made at an equatorial station is analyzed in detail for a better understanding of the lower ionosphere. A quantitive empirical relationship is derived between absorption and 1 to 8 A solar flux for moderate levels of solar activity. It is shown that the threshold flux for D region modification, at a solar zenith angle of 10 deg, is approximately 0.0005 erg/sq/cm/sec. Attention is drawn to the incidence of days of high absorption even in the absence of solar X-ray activity. Available evidence points to variability of the order of 10 to 40% in the intensity of the solar Lyman alpha radiation as the most likely cause of these unusual, though infrequent, enhancements in absorption.

  20. Specific absorption spectra of hemoglobin at different PO2 levels: potential noninvasive method to detect PO2 in tissues.

    PubMed

    Liu, Peipei; Zhu, Zhirong; Zeng, Changchun; Nie, Guang

    2012-12-01

    Hemoglobin (Hb), as one of main components of blood, has a unique quaternary structure. Its release of oxygen is controlled by oxygen partial pressure (PO2). We investigate the specific spectroscopic changes in Hb under different PO2 levels to optimize clinical methods of measuring tissue PO2. The transmissivity of Hb under different PO2 levels is measured with a UV/Vis fiber optic spectrometer. Its plotted absorption spectral curve shows two high absorption peaks at 540 and 576 nm and an absorption valley at 560 nm when PO2 is higher than 100 mm Hg. The two high absorption peaks decrease gradually with a decrease in PO2, whereas the absorption valley at 560 nm increases. When PO2 decreases to approximately 0 mm Hg, the two high absorption peaks disappear completely, while the absorption valley has a hypochromic shift (8 to 10 nm) and forms a specific high absorption peak at approximately 550 nm. The same phenomena can be observed in visible reflectance spectra of finger-tip microcirculation. Specific changes in extinction coefficient and absorption spectra of Hb occur along with variations in PO2, which could be used to explain pathological changes caused by tissue hypoxia and for early detection of oxygen deficiency diseases in clinical monitoring.

  1. Specific absorption spectra of hemoglobin at different PO2 levels: potential noninvasive method to detect PO2 in tissues

    NASA Astrophysics Data System (ADS)

    Liu, Peipei; Zhu, Zhirong; Zeng, Changchun; Nie, Guang

    2012-12-01

    Hemoglobin (Hb), as one of main components of blood, has a unique quaternary structure. Its release of oxygen is controlled by oxygen partial pressure (PO2). We investigate the specific spectroscopic changes in Hb under different PO2 levels to optimize clinical methods of measuring tissue PO2. The transmissivity of Hb under different PO2 levels is measured with a UV/Vis fiber optic spectrometer. Its plotted absorption spectral curve shows two high absorption peaks at 540 and 576 nm and an absorption valley at 560 nm when PO2 is higher than 100 mm Hg. The two high absorption peaks decrease gradually with a decrease in PO2, whereas the absorption valley at 560 nm increases. When PO2 decreases to approximately 0 mm Hg, the two high absorption peaks disappear completely, while the absorption valley has a hypochromic shift (8 to 10 nm) and forms a specific high absorption peak at approximately 550 nm. The same phenomena can be observed in visible reflectance spectra of finger-tip microcirculation. Specific changes in extinction coefficient and absorption spectra of Hb occur along with variations in PO2, which could be used to explain pathological changes caused by tissue hypoxia and for early detection of oxygen deficiency diseases in clinical monitoring.

  2. Spectra and solar energetic protons over 20 GeV in Bastille Day event

    NASA Astrophysics Data System (ADS)

    Wang, Ruiguang; Wang, Jinxiu

    2006-02-01

    Solar energetic particles (SEPs) from large solar flares give important information about the physical process in the solar corona and the heliosphere. Several observations have indicated that solar protons could sometimes be accelerated to at least tens of GeV, even hundreds of GeV, in intense solar energetic process. We studied the solar proton differential energy spectra with energy range of 1 500 MeV at several time intervals during Bastille Day event. It was shown that the spectra could be fitted by a power law function before flare and after flare the power law spectra still existed above 30 MeV although spectra became softer with time. There was a spectral “knee” occurring at ˜30 MeV. We constructed a solar proton differential spectrum from 30 MeV to 3 GeV at peak flux time 10:30 UT and fitted it in the same manner. On the basis of a supposition of having the same power law spectrum in higher energy, we calculated the solar proton integrated fluxes in energy range of from 500 MeV to 20 GeV and compared them with other results obtained from experimental, modelling and theoretical calculations in other big historic SEP events. A Monte Carlo simulation was carried out for a primary proton beam at the top of the atmosphere producing secondary muons on the ground. Based on the simulation, possibility of registering the solar energetic proton beams with energies over 20 GeV was discussed.

  3. Investigation of absorption spectra of Gafchromic EBT2 film's components and their impact on UVR dosimetry

    NASA Astrophysics Data System (ADS)

    Aydarous, Abdulkadir

    2016-05-01

    The absorption spectra of the EBT2 film's components were investigated in conjunction with its use for UVA dosimetry. The polyester (topside) and adhesive layers of the EBT2 film have been gently removed. Gafchromic™ EBT2 films with and without the protected layers (polyester and adhesive) were exposed to UVR of 365 nm for different durations. Thereafter, the UV-visible spectra were measured using a UV-visible spectrophotometer (Model Spectro Dual Split Beam, UVS-2700). Films were digitized using a Nikon CanoScan 9000F Mark II flatbed scanner. The dosimetric characteristics including film's uniformity, reproducibility and post-irradiation development were investigated. The color development of EBT2 and new modified EBT2 (EBT2-M) films irradiated with UVA was relatively stable (less than 1%) immediately after exposure. Based on this study, the sensitivity of EBT2 to UVR with wavelength between ~350 nm and ~390 nm can significantly be enhanced if the adhesive layer (~25 μm) is removed. The polyester layer plays almost no part on absorbing UVR with wavelength between ~320 nm and ~390 nm. Furthermore, various sensitivities for the EBT2-M film has been established depending on the wavelength of analysis.

  4. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    NASA Astrophysics Data System (ADS)

    Porta, A.; Zakari-Issoufou, A.-A.; Fallot, M.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Äystö, J.; Bowry, M.; Briz, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucouanes, A.; Elomaa, V.-V.; Eronen, T.; Estévez, E.; Farrelly, G. F.; Garcia, A. R.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Karvonen, P.; Kolhinen, V. S.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez-Cerdán, A. B.; Podolyák, Zs.; Penttilä, H.; Regan, P. H.; Reponen, M.; Rissanen, J.; Rubio, B.; Shiba, T.; Sonzogni, A. A.; Weber, C.

    2016-03-01

    Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland) using Total Absorption Spectroscopy (TAS). TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  5. Signatures in vibrational and UV-visible absorption spectra for identifying cyclic hydrocarbons by graphene fragments.

    PubMed

    Meng, Yan; Wu, Qi; Chen, Lei; Wangmo, Sonam; Gao, Yang; Wang, Zhigang; Zhang, Rui-Qin; Ding, Dajun; Niehaus, Thomas A; Frauenheim, Thomas

    2013-12-21

    To promote possible applications of graphene in molecular identification based on stacking effects, in particular in recognizing aromatic amino acids and even sequencing nucleobases in life sciences, we comprehensively study the interaction between graphene segments and different cyclic organic hydrocarbons including benzene (C6H6), cyclohexane (C6H12), benzyne (C6H4), cyclohexene (C6H10), 1,3-cyclohexadiene (C6H8(1)) and 1,4-cyclohexadiene (C6H8(2)), using the density-functional tight-binding (DFTB) method. Interestingly, we find obviously different characteristics in Raman vibrational and ultraviolet visible absorption spectra of the small molecules adsorbed on the graphene sheet. Specifically, we find that both spectra involve clearly different characteristic peaks, belonging to the different small molecules upon adsorption, with the ones of ionized molecules being more substantial. Further analysis shows that the adsorptions are almost all due to the presence of dispersion energy in neutral cases and involve charge transfer from the graphene to the small molecules. In contrast, the main binding force in the ionic adsorption systems is the electronic interaction. The results present clear signatures that can be used to recognize different kinds of aromatic hydrocarbon rings on graphene sheets. We expect that our findings will be helpful for designing molecular recognition devices using graphene.

  6. Polarized absorption spectra of single crystals of lunar pyroxenes and olivines.

    NASA Technical Reports Server (NTRS)

    Burns, R. G.; Huggins, F. E.; Abu-Eid, R. M.

    1972-01-01

    Measurements have been made of the polarized absorption spectra (360-2200 nm) of compositionally zoned pyroxene minerals in rocks 10045, 10047 and 10058 and olivines in rocks 10020 and 10022. The Apollo 11 pyroxenes with relatively high Ti/Fe ratios were chosen initially to investigate the presence of crystal field spectra of Fe(2+) and Ti(3+) ions in the minerals. Broad intense bands at about 1000 and 2100 nm arise from spin-allowed, polarization-dependent transitions in Fe(2+) ions in pyroxenes. Several weak sharp peaks occur in the visible region. Peaks at 402, 425, 505, 550, and 585 nm represent spin-forbidden transitions in Fe(2+) ions, while broader bands at 460-470 nm and 650-660 nm are attributed to Ti(3+) ions. Charge transfer bands, which in terrestrial pyroxenes often extend into the visible region, are displaced to shorter wavelengths in lunar pyroxenes. This feature correlates with the absence of Ti(3+) ions in these minerals.

  7. Progress in the Theory and Interpretation of X-ray Absorption Spectra

    NASA Astrophysics Data System (ADS)

    Rehr, J. J.

    2002-03-01

    There has been dramatic progress in recent years in the understanding of x-ray absorption spectra (XAS) [1]. For example, modern real space multiple scattering theory has yielded a quantitative treatment of the extended fine structure in XAS. Crucial in the theory is a treatment of electronic excited states including many-body effects such as inelastic losses and Debye-Waller factors. These developments have led to ab initio codes which permit an interpretation of the spectra in terms of geometrical and electronic properties of materials [2]. Indeed, the availability of such codes has revolutionized experimental investigations based on synchrotron radiation x-ray sources. Algorithmic improvements have recently made possible fast, parallel calculations of the near edge structure (XANES) [3], and approximate treatments of local field effects and many-body amplitude factors. Related techniques have been applied to several other spectroscopies, e.g., anomalous x-ray scattering, x-ray magnetic circular dichroism, and photoelectron diffraction [4]. [1] J. J. Rehr and R. C. Albers, Rev. Mod. Phys. 72, 621 (2000); [2] A. L. Ankudinov, B. Ravel, J.J. Rehr, and S. Conradson, Phys. Rev. B 58, 7565 (1998); [3] A. L. Ankudinov, C. E. Bouldin, J. J. Rehr, J. Sims, and H. Hung, Phys. Rev. B, in press (2002); [4] F. J. Garcia de Abajo, M. A. Van Hove, C. S. Fadley, Phys. Rev. B 63, 075404 (2001).

  8. C-13 NMR chemical shifts and visible absorption spectra of unsymmetrical fluoran dye by MO calculations

    NASA Astrophysics Data System (ADS)

    Hoshiba, T.; Ida, T.; Mizuno, M.; Otsuka, T.; Takaoka, K.; Endo, K.

    2002-01-01

    An unsymmetrical fluoran dye, 3-diethylamino-6-methyl-7-chlorofluoran (DEAMCF) is one of the leuco dyes which shows the coloring-to-decoloring reversible reaction with acidity. We calculated the 13C chemical shieldings of the DEAMCF with the frame model compounds using ab initio gauge invariant atomic orbital methods, and compared it with the experimental shifts. The calculated values of the frame compounds are in good agreement with the experimental ones in the error range of -4.9-16.7 ppm. The calculated ones for the decolored-form of the DEAMCF reflected the observed ones, although the errors range from -13.4 to 23.1 ppm. Furthermore, we analyzed the UV-Visible absorption spectra of the decolored and colored forms of DEAMCF by a semiempirical ZINDO MO method. For the colored form, the observed absorption peaks at 550 and 510 nm correspond to the excitation from π-bonding HOMO (π-electrons which conjugated in xanthene ring) and π-bonding nearest HOMO (π-electrons concentrated in benzene-ring with methyl and Cl groups of xanthene) to π ∗-antibonding LUMO (π ∗-electrons of xanthene), respectively.

  9. Ultraviolet spectra of quenched carbonaceous composite derivatives: Comparison to the '217 nanometer' interstellar absorption feature

    NASA Technical Reports Server (NTRS)

    Sakata, Akira; Wada, Setsuko; Tokunaga, Alan T.; Narisawa, Takatoshi; Nakagawa, Hidehiro; Ono, Hiroshi

    1994-01-01

    QCCs (quenched carbonaceous composite) are amorphus carbonaceous material formed from a hydrocarbon plasma. We present the UV-visible spectra of 'filmy QCC; (obtained outside of the beam ejected from the hydrocarbon plasma) and 'dark QCC' (obtained very near to the beam) for comparison to the stellar extinction curve. When filmy QCC is heated to 500-700 C (thermally altered), the wavelength of the absorption maximum increases form 204 nm to 220-222 nm. The dark QCC has an absorption maximum at 217-222 nm. In addition, the thermally altered filmy QCC has a slope change at about 500 nm which resmbles that in the interstellar extinction curve. The resemblance of the extinction curve of the QCCs to that of the interstellar medium suggests that QCC derivatives may be representative of the type of interstellar material that produces the 217 nm interstellar medium feature. The peak extinction of the dark QCC is higher than the average interstellar extinction curve while that of the thermally altered filmy QCC is lower, so that a mixture of dark and thermally altered filmy QCC can match the peak extinction observed in the interstellar medium. It is shown from electron micrographs that most of the thermally altered flimy QCC is in the form of small grainy structure less than 4 nm in diameter. This shows that the structure unit causing the 217-222 nm feature in QCC is very small.

  10. A combination spectrophotometer for measuring electronic absorption, natural circular dichroism, and magnetic circular dichroism spectra

    NASA Astrophysics Data System (ADS)

    Policke, Timothy A.; Schreiner, Anton F.; Trexler, Jack W.; Knopp, James A.

    1990-08-01

    The design, construction, and evaluation of a combination spectrometer for measuring electronic absorption (EA), natural circular dichroism (CD), and magnetic circular dichroism (MCD) are described. Around the optical components of a JASCO ORD/UV-5 spectropolarimeter, a new EA/CD/MCD instrument was built with the realized intentions of increasing sensitivity and upgrading the analog tube type circuitry to a solid-state digitally, computer-controlled spectrophotometer. It is a flexible, dynamic, and user-controllable system, interfaced to an Apple II Plus computer, for studying instrument and signal parameters. The monochromator (M), photoelastic modulator (PEM), photomultiplier tube applied voltage (PMHV), and photomultiplier tube dc output current (PMdc) are under complete and independent software control. Our system has two unique aspects for obtaining the circular dichroism. First, the ac signal is measured with a voltage-to-frequency (V/f) converter; and, second, both the ac and the dc are independently recorded and their ratio is digitally calculated. This design has several advantages which include the elimination of voltage divider integrated circuits or division electronics, a wide dynamic range, a greater precision of ac values at low percentages of full scale, and the capability of continuous integration over long time periods. Also, both types of spectra, EA and CD or MCD, are obtained from the current output of the PM. This paper not only describes the design of the instrument for obtaining the two types of spectra but also compares four methods of obtaining the circular dichroism. Sensitivities of ˜1×10-7ΔA units are achievable as determined by measuring CD spectra of the well-known enantiomer (+)-[Co(en)3]3+.

  11. Absorption spectra of isomeric OH adducts of 1,3,7-trimethylxanthine

    SciTech Connect

    Vinchurkar, M.S.; Rao, B.S.M.; Mohan, H.; Mittal, J.P.; Schmidt, K.H.; Jonah, C.D.

    1997-04-17

    The reactions of OH{sup .}, O{sup .-}, and SO{sub 4}{sup .-} with 1,3,7-trimethylxanthine (caffeine) were studied by pulse radiolysis with optical and conductance detection techniques. The absorption spectra of transients formed in OH{sup .} reaction in neutral solutions exhibited peaks at 310 and 335 nm, as well as a broad absorption maximum at 500 nm, which decayed by first-order kinetics. The rate (k = (4.0 {+-} 0.5) x 10{sup 4} s{sup -1}) of this decay is independent of pH in the range 4-9 and is in agreement with that determined from the conductance detection (k = 4 x 10{sup 4} s{sup -1}). The spectrum in acidic solutions has only a broad peak around 330 nm with no absorption in the higher wavelength region. The intermediates formed in reaction of O{sup .-} absorb around 310 and at 350 nm, and the first-order decay at the latter wavelength was not seen. The OH radical adds to C-4 (X-40H{sup .}) and C-8 (X-80H{sup .}) positions of caffeine in the ratio 1:2 as determined from the redox titration and conductivity measurements. H abstraction from the methyl group is an additional reaction channel in O{sup .-} reaction. Dehydroxylation of the X-40H{sup .} adduct occurs, whereas the X-80H{sup .} adduct does not undergo ring opening. The spectrum obtained for OH{sup .} reaction in oxygenated solutions is similar to that observed in SO{sub 4}{sup .-} reaction in basic solutions. 25 refs., 5 figs., 1 tab.

  12. A mixed quantum-classical description of pheophorbide a linear absorption spectra: Quantum-corrections of the Qy- and Qx-absorption vibrational satellites

    NASA Astrophysics Data System (ADS)

    Megow, Jörg; Kulesza, Alexander; May, Volkhard

    2016-01-01

    The ground-state classical path approximation is utilized to compute molecular absorption spectra in a mixed quantum-classical frame. To improve the description for high-frequency vibrational satellites, related quantum correction factors are introduced. The improved method is demonstrated for the Qy- and Qx-bands of pheophorbide a.

  13. Soft X-ray absorption spectra in the 0 K region of microporous carbon and some reference aromatic compounds

    SciTech Connect

    Muramatsu, Yasuji; Kuramoto, Kentaro; Gullikson, Eric M.; Perera, Rupert C.C.

    2003-06-01

    To analyze the oxidation states of the graphitic surface of microporous carbon, soft X-ray absorption spectra in the 0 K region have been obtained for microporous carbon and various aromatic compounds. The aromatic molecules studied are substituted with one or more of the following oxygenated functional groups: hydroxy (-OH), carboxy (-COOH), carbonyl (>C=O), formyl (-CH=O), and ether (-O-). From comparison of the soft X-ray absorption spectra of microporous carbon and of reference aromatic compounds, the most probable chemical bonding states of oxygen in microporous carbon are found to be -COOH and >C(H)=O. Spectral features in the soft X-ray absorption spectra of microporous carbon are well explained by the O2p density of states in these oxygenated functional groups from discrete variational (DV)-X{alpha} molecular orbital calculations.

  14. Solar flare particle radiation

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.

    1972-01-01

    The characteristics of the solar particles accelerated by solar flares and subsequently observed near the orbit of the earth are studied. Considered are solar particle intensity-time profiles, the composition and spectra of solar flare events, and the propagation of solar particles in interplanetary space. The effects of solar particles at the earth, riometer observations of polar cap cosmic noise absorption events, and the production of solar cell damage at synchronous altitudes by solar protons are also discussed.

  15. Comparative Investigation of the Efficiency of Absorption of Solar Energy by Carbon Composite Materials

    NASA Astrophysics Data System (ADS)

    Prikhod‧ko, N. G.; Smagulova, G. T.; Rakhymzhan, N. B.; Kim, S.; Lesbaev, B. T.; Nazhipkyzy, M.; Mansurov, Z. A.

    2017-01-01

    This paper presents the results of research on the efficiency of absorption of solar energy by various carbon materials (soot, carbonized apricot pits and rice husks, and carbon nanotubes in the form of a ″forest″), as well as by composites based on them with inclusions of metal oxide nanoparticles. An analysis of the efficiency of absorption of solar energy by various carbon materials has demonstrated the advantage of the carbon material from carbonized apricot pits. The results of the comparative investigation of the absorptivity of apricot pits with that of the coating of a production prototype of solar collector are presented.

  16. Computing the Absorption and Emission Spectra of 5-Methylcytidine in Different Solvents: A Test-Case for Different Solvation Models.

    PubMed

    Martínez-Fernández, L; Pepino, A J; Segarra-Martí, J; Banyasz, A; Garavelli, M; Improta, R

    2016-09-13

    The optical spectra of 5-methylcytidine in three different solvents (tetrahydrofuran, acetonitrile, and water) is measured, showing that both the absorption and the emission maximum in water are significantly blue-shifted (0.08 eV). The absorption spectra are simulated based on CAM-B3LYP/TD-DFT calculations but including solvent effects with three different approaches: (i) a hybrid implicit/explicit full quantum mechanical approach, (ii) a mixed QM/MM static approach, and (iii) a QM/MM method exploiting the structures issuing from molecular dynamics classical simulations. Ab-initio Molecular dynamics simulations based on CAM-B3LYP functionals have also been performed. The adopted approaches all reproduce the main features of the experimental spectra, giving insights on the chemical-physical effects responsible for the solvent shifts in the spectra of 5-methylcytidine and providing the basis for discussing advantages and limitations of the adopted solvation models.

  17. New neutrino physics and the altered shapes of solar neutrino spectra

    NASA Astrophysics Data System (ADS)

    Lopes, Ilídio

    2017-01-01

    Neutrinos coming from the Sun's core have been measured with high precision, and fundamental neutrino oscillation parameters have been determined with good accuracy. In this work, we estimate the impact that a new neutrino physics model, the so-called generalized Mikheyev-Smirnov-Wolfenstein (MSW) oscillation mechanism, has on the shape of some of leading solar neutrino spectra, some of which will be partially tested by the next generation of solar neutrino experiments. In these calculations, we use a high-precision standard solar model in good agreement with helioseismology data. We found that the neutrino spectra of the different solar nuclear reactions of the pp chains and carbon-nitrogen-oxygen cycle have quite distinct sensitivities to the new neutrino physics. The He P and 8B neutrino spectra are the ones in which their shapes are more affected when neutrinos interact with quarks in addition to electrons. The shapes of the 15O and 17F neutrino spectra are also modified, although in these cases the impact is much smaller. Finally, the impact in the shapes of the P P and 13N neutrino spectra is practically negligible.

  18. Source energy spectra from demodulation of solar particle data by interplanetary and coronal transport

    NASA Technical Reports Server (NTRS)

    Perez-Peraza, J.; Alvarez-Madrigal, M.; Rivero, F.; Miroshnichenko, L. I.

    1985-01-01

    The data on source energy spectra of solar cosmic rays (SCR), i.e. the data on the spectrum form and on the absolute SCR are of interest for three reasons: (1) the SCR contain the energy comparable to the total energy of electromagnetic flare radiation (less than or equal to 10 to the 32nd power ergs); (2) the source spectrum form indicates a possible acceleration mechanism (or mechanism); and (3) the accelerated particles are efficiently involved in nuclear electromagnetic and plasma processes in the solar atmosphere. Therefore, the data on SCR source spectra are necessary for a theoretical description of the processes mentioned and for the formulation of the consistent flare model. Below it is attempted to sound solar particle sources by means of SCR energy spectrum obtained near the Sun, at the level of the roots of the interplanetary field lines in the upper solar corona. Data from approx. 60 solar proton events (SPE) between 1956-1981. These data were obtained mainly by the interplanetary demodulation of observed fluxes near the Earth. Further, a model of coronal azimuthal transport is used to demodulate those spectra, and to obtain the source energy spectra.

  19. Measurement of the Solar Absorptance and Thermal Emittance of Lunar Simulants

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Street, Kenneth W.; Gutafson, Robert J.

    2010-01-01

    The first comparative study of the reflectance spectra of lunar simulants is presented. All of the simulants except one had a wavelength-dependant reflectivity ( ( )) near 0.10 over the wavelength range of 8 to 25 m, so they are highly emitting at room temperature and lower. The 300 K emittance ( ) of all the lunar simulants except one ranged from 0.884 to 0.906. The 300 K of JSC Mars-1 simulant was 0.927. There was considerably more variation in the lunar simulant reflectance in the solar spectral range (250 to 2500 nm) than in the thermal infrared. Larger particle size simulants reflected much less than those with smaller particle size. As expected, the lunar highlands simulants were more reflective in this wavelength range than the lunar mare simulants. The integrated solar absorptance ( ) of the simulants ranged from 0.413 to 0.817 for those with smaller particles, and 0.669 to 0.906 for those with larger particles. Although spectral differences were observed, the for the simulants appears to be similar to that of lunar soils (0.65 to 0.88). These data are now available to be used in modeling the effects of dust on thermal control surfaces.

  20. [Characteristics of the absorption spectra of the mixtures of C42(Al), C32 (Si) and so on].

    PubMed

    Chen, W

    1998-12-01

    The mixtures containing C42 (A1), C32 (Si), C30 (Ca) and C28 (Fe) are produced by means of arc discharge and He gas convection. The spectra are measured and compared with the absorption spectra of all carbon molecules. The result shows that after imbeded in all carbon molecules, the Al, Si, Ca and Fe atoms do not change the positions of the absorption peak of original molecules, but only change the probability of pi --> pi* transition and n --> pi* transition of these molecules.

  1. Solvent effects on the steady-state absorption and fluorescence spectra of uracil, thymine and 5-fluorouracil.

    PubMed

    Gustavsson, Thomas; Sarkar, Nilmoni; Bányász, Akos; Markovitsi, Dimitra; Improta, Roberto

    2007-01-01

    We report a comparison of the steady-state absorption and fluorescence spectra of three representative uracil derivatives (uracil, thymine and 5-fluorouracil) in alcoholic solutions. The present results are compared with those from our previous experimental and computational studies of the same compounds in water and acetonitrile. The effects of solvent polarity and hydrogen bonding on the spectra are discussed in the light of theoretical predictions. This comparative analysis provides a more complete picture of the solvent effects on the absorption and fluorescence properties of pyrimidine nucleobases, with special emphasis on the mechanism of the excited state deactivation.

  2. Solar urticaria. Determinations of action and inhibition spectra.

    PubMed

    Hasei, K; Ichihashi, M

    1982-05-01

    A 42-year-old woman acquired solar urticaria approximately ten minutes after exposure to sunlight. Urticaria developed from visible light emitted from a projector lamp after a similar time lag. Monochromatic rays between 400 and 500 nm induced immediate urticaria by irradiation, with four times the minimal urticarial dose. Urticaria that was induced by monochromatic rays of the projector lamp was completely inhibited by immediate reirradiation of test sites with light waves longer that 530 nm. Radiant heat exposure from an electric hair dryer at 50 degrees C had no suppressive effects on the development of urticarial lesions.

  3. Solar-UV-signature mutation prefers TCG to CCG: extrapolative consideration from UVA1-induced mutation spectra in mouse skin.

    PubMed

    Ikehata, Hironobu; Kumagai, Jun; Ono, Tetsuya; Morita, Akimichi

    2013-08-01

    UVA1 exerts its genotoxicity on mammalian skin by producing cyclobutane pyrimidine dimers (CPDs) in DNA and preferentially inducing solar-UV-signature mutations, C → T base substitution mutations at methylated CpG-associated dipyrimidine (Py-mCpG) sites, as demonstrated previously using a 364 nm laser as a UVA1 source and lacZ-transgenic mice that utilize the transgene as a mutational reporter. In the present study, we confirmed that a broadband UVA1 source induced the same mutation profiles in mouse epidermis as the UVA1 laser, generalizing the previous result from a single 364 nm to a wider wavelength range of UVA1 (340-400 nm). Combined with our previous data on the mutation spectra induced in mouse epidermis by UVB, UVA2 and solar UVR, we proved that the solar-UV-signature mutation is commonly observed in the wavelength range from UVB to UVA, and found that UVA1 induces this mutation more preferentially than the other shorter wavelength ranges. This finding indicates that the solar-UV-signature mutation-causing CPDs, which are known to prefer Py-mCpG sites, could be produced with the energy provided by the longer wavelength region of UVR, suggesting a photochemical reaction through the excitation of pyrimidine bases to energy states that can be accomplished by absorption of even low-energy UVR. On the other hand, the lower proportions of solar-UV-signature mutations observed in the mutation spectra for UVB and solar UVR indicate that the direct photochemical reaction through excited singlet state of pyrimidine bases, which can be accomplished only by high-energy UVR, is also involved in the mutation induction at those shorter wavelengths of UVR. We also found that the solar-UV signature prefers 5'-TCG-3' to 5'-CCG-3' as mutational target sites, consistent with the fact that UVA induces CPDs selectively at thymine-containing dipyrimidine sites and that solar UVR induces them preferably at Py-mCpG sites. However, the mutation spectrum in human p53 gene from non

  4. Determination of Total Ozone over Mauna Loa Using Very High Resolution Infrared Solar Spectra

    NASA Technical Reports Server (NTRS)

    David, Shelle J.; Beaton, Sheryl A.; Anderberg, Mary H.; Murcray, Frank J.

    1993-01-01

    A very high resolution infrared Fourier transform spectrometer has been used to record solar spectra at the Mauna Loa Observatory in Hawaii. Spectra are normally taken one day a week at sunrise. These spectra have been analyzed for ozone and N2O total columns, and the ozone column compared with the value reported by tile Mauna Loa Dobson spectrophotometer. Aside from the FTIR reporting about 5% lower values than the Dobson (which may be due to a systematic difference in the treatment of tropospheric ozone), the FTIR and Dobson agree to within 2.7% (RMS) during this period.

  5. Measurement of atmospheric precipitable water using a solar radiometer. [water vapor absorption effects

    NASA Technical Reports Server (NTRS)

    Pitts, D. E.; Dillinger, A. E.; Mcallum, W. E.

    1974-01-01

    A technique is described and tested that allows the determination of atmospheric precipitable water from two measurements of solar intensity: one in a water-vapor absorption band and another in a nearby spectral region unaffected by water vapor.

  6. The manifestation of optical centers in UV-Vis absorption and luminescence spectra of white blood human cells

    NASA Astrophysics Data System (ADS)

    Terent'yeva, Yu G.; Yashchuk, V. M.; Zaika, L. A.; Snitserova, O. M.; Losytsky, M. Yu

    2016-12-01

    A white blood human cells spectral investigation is presented. The aim of this series of experiments was to obtain and analyze the absorption and luminescence (fluorescence and phosphorescence) spectra at room temperature and at 78 K of newly isolated white blood human cells and their organelles. As a result the optical centers and possible biochemical components that form the studied spectra where identified. Also the differences between the spectra of abnormal cells (B-cell chronic lymphocytic leukemia BCLL) and normal ones were studied for the whole cells and individual organelles.

  7. Soft X-ray absorption spectra of aqueous salt solutions with highly charged cations in liquid microjets

    SciTech Connect

    Schwartz, Craig P.; Uejio, Janel S.; Duffin, Andrew M.; Drisdell, Walter S.; Smith, Jared D.; Saykally, Richard J.

    2010-03-11

    X-ray absorption spectra of 1M aqueous solutions of indium (III) chloride, yttrium (III) bromide, lanthanum (III) chloride, tin (IV) chloride and chromium (III) chloride have been measured at the oxygen K-edge. Relatively minor changes are observed in the spectra compared to that of pure water. SnCl{sub 4} and CrCl{sub 3} exhibit a new onset feature which is attributed to formation of hydroxide or other complex molecules in the solution. At higher energy, only relatively minor, but salt-specific changes in the spectra occur. The small magnitude of the observed spectral changes is ascribed to offsetting perturbations by the cations and anions.

  8. Absorption spectra of garnet films between 1. 0 and 1. 8. mu. m by guided-wave optical spectroscopy

    SciTech Connect

    Olivier, M.; Peuzin, J.; Danel, J.; Challeton, D.

    1981-01-15

    Continuous recording of the absorption spectra of thin films by an optical guided-wave technique is demonstrated. In the case of a garnet thin film of compositoin (YSmLuCa)/sub 3/(FeGe)/sub 5/O/sub 12/ it is shown that the near-infrared Sm/sup 3 +/ absorption bands are clearly visible in contrast with conventional transmission measurement. Comparison with the absorption spectrum of bulk Sm/sub 3/Fe/sub 5/O/sub 12/ garnet allows the determination of an Sm concentration in the film.

  9. Improved conversion efficiency of GaN-based solar cells with Mn-doped absorption layer

    NASA Astrophysics Data System (ADS)

    Sheu, Jinn-Kong; Huang, Feng-Wen; Lee, Chia-Hui; Lee, Ming-Lun; Yeh, Yu-Hsiang; Chen, Po-Cheng; Lai, Wei-Chih

    2013-08-01

    GaN-based solar cells with Mn-doped absorption layer grown by metal-organic vapor-phase epitaxy were investigated. The transmittance spectrum and the spectral response showed the presence of an Mn-related band absorption property. Power-dependent, dual-light excitation, and lock-in amplifier techniques were performed to confirm if the two-photon absorption process occurred in the solar cells with Mn-doped GaN absorption layer. Although a slight decrease in an open circuit voltage was observed, a prominent increase in the short circuit current density resulted in a significant enhancement of the overall conversion efficiency. Under one-sun air mass 1.5 G standard testing condition, the conversion efficiency of Mn-doped solar cells can be enhanced by a magnitude of 5 times compared with the cells without Mn-doped absorption layer.

  10. Large Absorption Enhancement in Ultrathin Solar Cells Patterned by Metallic Nanocavity Arrays

    PubMed Central

    Wang, Wei; Zhang, Jiasen; Che, Xiaozhou; Qin, Guogang

    2016-01-01

    A new type of light trapping structure utilizing ring-shaped metallic nanocavity arrays is proposed for the absorption enhancement in ultrathin solar cells with few photonic waveguide modes. Dozens of times of broadband absorption enhancement in the spectral range of 700 to 1100 nm is demonstrated in an ultrathin Si3N4/c-Si/Ag prototype solar cell by means of finite-difference time-domain (FDTD) simulation, and this dramatic absorption enhancement can be attributed to the excitation of plasmonic cavity modes in these nanocavity arrays. The cavity modes optimally compensate for the lack of resonances in the longer wavelength range for ultrathin solar cells, and eventually a maximum Jsc enhancement factor of 2.15 is achieved under AM 1.5G solar illumination. This study opens a new perspective for light management in thin film solar cells and other optoelectronic devices. PMID:27703176

  11. Significant light absorption enhancement in silicon thin film tandem solar cells with metallic nanoparticles.

    PubMed

    Cai, Boyuan; Li, Xiangping; Zhang, Yinan; Jia, Baohua

    2016-05-13

    Enhancing the light absorption in microcrystalline silicon bottom cell of a silicon-based tandem solar cell for photocurrent matching holds the key to achieving the overall solar cell performance breakthroughs. Here, we present a concept for significantly improving the absorption of both subcells simultaneously by simply applying tailored metallic nanoparticles both on the top and at the rear surfaces of the solar cells. Significant light absorption enhancement as large as 56% has been achieved in the bottom subcells. More importantly the thickness of the microcrystalline layer can be reduced by 57% without compromising the optical performance of the tandem solar cell, providing a cost-effective strategy for high performance tandem solar cells.

  12. Large Absorption Enhancement in Ultrathin Solar Cells Patterned by Metallic Nanocavity Arrays

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zhang, Jiasen; Che, Xiaozhou; Qin, Guogang

    2016-10-01

    A new type of light trapping structure utilizing ring-shaped metallic nanocavity arrays is proposed for the absorption enhancement in ultrathin solar cells with few photonic waveguide modes. Dozens of times of broadband absorption enhancement in the spectral range of 700 to 1100 nm is demonstrated in an ultrathin Si3N4/c-Si/Ag prototype solar cell by means of finite-difference time-domain (FDTD) simulation, and this dramatic absorption enhancement can be attributed to the excitation of plasmonic cavity modes in these nanocavity arrays. The cavity modes optimally compensate for the lack of resonances in the longer wavelength range for ultrathin solar cells, and eventually a maximum Jsc enhancement factor of 2.15 is achieved under AM 1.5G solar illumination. This study opens a new perspective for light management in thin film solar cells and other optoelectronic devices.

  13. Detection of water vapour absorption around 363nm in measured atmospheric absorption spectra and its effect on DOAS evaluations

    NASA Astrophysics Data System (ADS)

    Lampel, Johannes; Polyansky, Oleg. L.; Kyuberis, Alexandra A.; Zobov, Nikolai F.; Tennyson, Jonathan; Lodi, Lorenzo; Pöhler, Denis; Frieß, Udo; Platt, Ulrich; Beirle, Steffen; Wagner, Thomas

    2016-04-01

    Water vapour is known to absorb light from the microwave region to the blue part of the visible spectrum at a decreasing magnitude. Ab-initio approaches to model individual absorption lines of the gaseous water molecule predict absorption lines until its dissociation limit at 243 nm. We present first evidence of water vapour absorption at 363 nm from field measurements based on the POKAZATEL absorption line list by Polyansky et al. (2016) using data from Multi-Axis differential optical absorption spectroscopy (MAX-DOAS) and Longpath (LP)-DOAS measurements. The predicted absorptions contribute significantly to the observed optical depths with up to 2 × 10-3. Their magnitude correlates well (R2 = 0.89) to simultaneously measured well-established water vapour absorptions in the blue spectral range from 452-499 nm, but is underestimated by a factor of 2.6 ± 0.6 in the ab-initio model. At a spectral resolution of 0.5nm this leads to a maximum absorption cross-section value of 5.4 × 10-27 cm2/molec at 362.3nm. The results are independent of the employed cross-section data to compensate for the overlayed absorption of the oxygen dimer O4. The newly found absorption can have a significant impact on the spectral retrieval of absorbing trace-gas species in the spectral range around 363 nm. Its effect on the spectral analysis of O4, HONO and OClO are discussed.

  14. Improved Experimental and Theoretical Energy Levels of Carbon I from Solar Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Chang, Edward S.; Geller, Murray

    1997-01-01

    We have improved the energy levels in neutral carbon using high resolution infrared solar spectra. The main source is the ATMOS spectrum measured by the Fourier transaform spectroscopy technique from 600 to 4800 cm-1, supplemented by the MARK IV balloon data, covering from 4700 to 5700 cm-1.

  15. A new solar carbon abundance based on non-LTE CN molecular spectra

    NASA Technical Reports Server (NTRS)

    Mount, G. H.; Linsky, J. L.

    1975-01-01

    A detailed non-LTE analysis of solar CN spectra strongly suggest a revised carbon abundance for the sun. We recommend a value of log carbon abundance = 8.35 plus or minus 0.15 which is significantly lower than the presently accepted value of log carbon abundance = 8.55. This revision may have important consequences in astrophysics.

  16. Profiles of Stratospheric Chlorine Nitrate from ATMOS/ATLAS 1 Infrared Solar Occultation Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Gunson, M. R.; Abrams, M. C.; Zander, R.; Mahieu, E.; Goldman, A.; Ko, M. K. W.; Rodriguez, J. M.; Sze, N. D.

    1994-01-01

    Stratospheric volume mixing ration profiles of chlorine nitrate have been retrieved from 0.01-cm(sub -1) resolution infrared solar occutation spectra recorded at latitudes between 14 degrees N and 54 degrees S by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer during the ATLAS 1 shuttle mission (March 24 to April 2, 1992).

  17. High-Velocity Absorption Features in FUSE Spectra of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Sonneborn, G.; Iping, R. C.; Gull, T. R.; Vieira, G.

    2003-01-01

    Numerous broad (200 to 1000 km/sec) features in the FUSE spectrum (905-1187 A) of eta Carinae are identified as absorption by a forest of high-velocity narrow lines formed in the expanding circumstellar envelope. These features were previously thought to be P-Cygni lines arising in the wind of the central star. The features span a heliocentric velocity range of -140 to -580 km/sec and are seen prominently in low-ionization ground-state transitions (e.g. N I 1134-35, Fe II 1145-42, 1133, 1127- 22, P II 1153, C I 1158) in addition to C III] 1176 A. The high-velocity components of the FUSE transitions have depths about 50% below the continuum. The identifications are consistent with the complex velocity structures seen in ground- and excited-state transitions of Mg I, Mg 11, Fe II, V II, etc observed in STIS/E230H spectra. The origin of other broad features of similar width and depth in the FUSE spectrum, but without low-velocity ISM absorption, are unidentified. However, they are suspected of being absorption of singly-ionized iron-peak elements (e.g. Fe II, V II, Cr II) out of excited levels 1,000 to 20,000 cmE-l above the ground state. The high-velocity features seen in Fe II 1145 are also present in Fe II 1608 (STIS/E140M), but are highly saturated in the latter. Since these transitions have nearly identical log (flambda) (1.998 vs. 2.080), the differences in the profiles are attributable to the different aperture sizes used (30 x 30 arcsec for FUSE, 0.2 x 0.2 arcsec for STIS/E140M). The high-velocity gas appears to be very patchy or has a small covering factor near the central star. Eta Carinae has been observed several times by FUSE over the past three years. The FUSE flux levels and spectral features in eta Car are essentially unchanged over the 2000 March to June 2002 period, establishing a baseline far-UV spectrum in advance of the predicted spectroscopic minimum in 2003.

  18. Transient absorption and luminescence spectra of K9 glass at sub-damage site by ultraviolet laser irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Huang, J.; Geng, F.; Zhou, X. Y.; Feng, S. Q.; Cheng, X. L.; Jiang, X. D.; Wu, W. D.; Zheng, W. G.; Tang, Y. J.

    2014-01-01

    Transient absorption and luminescence spectra at sub-damage site of K9 glass by laser irradiation at 355 nm are presented. The dependence of transient absorption on laser energy and number of pulses was investigated. As the energy density increases to 2.54 and 3.18 J/cm2, the transient absorption intensity reaches to about 0.20 range from 400 to 480 nm. With the increase of number of pulses the process of residual absorption appears, which can be used to explain the fatigue effect of K9 glass. The defects in K9 glass were investigated by fluorescence and Raman spectra. The fluorescence band centered at about 410 nm is attributed to oxygen deficiency centers. The mechanism of two-photon ionization plays a critical role at sub-damage site. Compared to the Raman spectra of pristine site, intensity of Raman spectra is very high at a lower energy density, while it decreased at a higher energy density.

  19. Coronal Radio Sounding Experiments with Mars Express: Scintillation Spectra during Low Solar Activity

    SciTech Connect

    Efimov, A. I.; Lukanina, L. A.; Samoznaev, L. N.; Rudash, V. K.; Chashei, I. V.; Bird, M. K.; Paetzold, M.; Tellmann, S.

    2010-03-25

    Coronal radio sounding observations were carried out with the radio science experiment MaRS on the ESA spacecraft Mars Express during the period from 25 August to 22 October 2004. Differential frequency and log-amplitude fluctuations of the dual-frequency signals were recorded during a period of low solar activity. The data are applicable to low heliographic latitudes, i.e. to slow solar wind. The mean frequency fluctuation and power law index of the frequency fluctuation temporal spectra are determined as a function of heliocentric distance. The radial dependence of the frequency fluctuation spectral index alpha reflects the previously documented flattening of the scintillation power spectra in the solar wind acceleration region. Temporal spectra of S-band and X-band normalized log-amplitude fluctuations were investigated over the range of fluctuation frequencies 0.01 Hzsolar activity. Ranging measurements are presented and compared with frequency and log-amplitude scintillation data. Evidence for a weak increase in the fractional electron density turbulence level is obtained in the range 10-40 solar radii.

  20. The flares of August 1972. [solar flare characteristics and spectra

    NASA Technical Reports Server (NTRS)

    Zirin, H.; Tanaka, K.

    1973-01-01

    Observations of the August, 1972 flares at Big Bear and Tel Aviv, involving monochromatic movies, magnetograms, and spectra, are analyzed. The region (McMath 11976) showed inverted polarity from its inception on July 11; the great activity was due to extremely high shear and gradients in the magnetic field, as well as a constant invasion of one polarity into the opposite; observations in lambda 3835 show remarkable fast flashes in the impulsive flare of 18:38 UT on Aug. 2 with lifetimes of 5 sec, which may be due to dumping of particles in the lower chromosphere. Flare loops show evolutionary increases of their tilts to the neutral line in the flares of Aug. 4 and 7. Spectroscopic observations show red asymmetry and red shift of the H alpha emission in the flash phase of the Aug. 7 flare, as well as substantial velocity shear in the photosphere during the flare, somewhat like earthquake movement along a fault. Finally the total H alpha emission of the Aug. 7 flare could be measured accurately as about 2.5 x 10 to the 30th power erg, considerably less than coarser previous estimates for great flares.

  1. Solvent effect on the absorption spectra of coumarin 120 in water: A combined quantum mechanical and molecular mechanical study.

    PubMed

    Sakata, Tetsuya; Kawashima, Yukio; Nakano, Haruyuki

    2011-01-07

    The solvent effect on the absorption spectra of coumarin 120 (C120) in water was studied utilizing the combined quantum mechanical∕molecular mechanical (QM∕MM) method. In molecular dynamics (MD) simulation, a new sampling scheme was introduced to provide enough samples for both solute and solvent molecules to obtain the average physical properties of the molecules in solution. We sampled the structure of the solute and solvent molecules separately. First, we executed a QM∕MM MD simulation, where we sampled the solute molecule in solution. Next, we chose random solute structures from this simulation and performed classical MD simulation for each chosen solute structure with its geometry fixed. This new scheme allowed us to sample the solute molecule quantum mechanically and sample many solvent structures classically. Excitation energy calculations using the selected samples were carried out by the generalized multiconfigurational perturbation theory. We succeeded in constructing the absorption spectra and realizing the red shift of the absorption spectra found in polar solvents. To understand the motion of C120 in water, we carried out principal component analysis and found that the motion of the methyl group made the largest contribution and the motion of the amino group the second largest. The solvent effect on the absorption spectrum was studied by decomposing it in two components: the effect from the distortion of the solute molecule and the field effect from the solvent molecules. The solvent effect from the solvent molecules shows large contribution to the solvent shift of the peak of the absorption spectrum, while the solvent effect from the solute molecule shows no contribution. The solvent effect from the solute molecule mainly contributes to the broadening of the absorption spectrum. In the solvent effect, the variation in C-C bond length has the largest contribution on the absorption spectrum from the solute molecule. For the solvent effect on the

  2. Solar absorptance and thermal emittance of some common spacecraft thermal-control coatings

    NASA Technical Reports Server (NTRS)

    Henninger, J. H.

    1984-01-01

    Solar absorptance and thermal emittance of spacecraft materials are critical parameters in determining spacecraft temperature control. Because thickness, surface preparation, coatings formulation, manufacturing techniques, etc. affect these parameters, it is usually necessary to measure the absorptance and emittance of materials before they are used. Absorptance and emittance data for many common types of thermal control coatings, are together with some sample spectral data curves of absorptance. In some cases for which ultraviolet and particle radiation data are available, the degraded absorptance and emittance values are also listed.

  3. Finite temperature effects on the X-ray absorption spectra of energy related materials

    NASA Astrophysics Data System (ADS)

    Pascal, Tod; Prendergast, David

    2014-03-01

    We elucidate the role of room-temperature-induced instantaneous structural distortions in the Li K-edge X-ray absorption spectra (XAS) of crystalline LiF, Li2SO4, Li2O, Li3N and Li2CO3 using high resolution X-ray Raman spectroscopy (XRS) measurements and first-principles density functional theory calculations within the eXcited electron and Core Hole (XCH) approach. Based on thermodynamic sampling via ab-initio molecular dynamics (MD) simulations, we find calculated XAS in much better agreement with experiment than those computed using the rigid crystal structure alone. We show that local instantaneous distortion of the atomic lattice perturbs the symmetry of the Li 1 s core-excited-state electronic structure, broadening spectral line-shapes and, in some cases, producing additional spectral features. This work was conducted within the Batteries for Advanced Transportation Technologies (BATT) Program, supported by the U.S. Department of Energy Vehicle Technologies Program under Contract No. DE-AC02-05CH11231.

  4. Modeling of IR absorption spectra of the mixture CO2-He at moderate and high pressures

    NASA Astrophysics Data System (ADS)

    Golovko, Vladimir F.

    2004-02-01

    The He-broadened spectra of carbon dioxide are calculated within the pressure range 2-800 atm in the absorption regions of the bands v2, v3, and 3v3 that are positioned from 590 to 7020 cm-1. The main difficulty is consideration of the line shape narrowing at relatively high pressures. For Q-branches, this effect is observed at atmospheric conditions and, therefore, it is important for remote sounding of the gas atmosphere. The mixtures of the mentioned gases are well studied in experiments and it can serve as a good test for validating the simulating techniques developing. The line by line method is used with modeling of the single line shape without the conventional interference of lines. The problem is focused on the order and disorder in arrangement of the rotational lines with P-, R-, and Q-branches of vibrational bands. A database CDSD-1000 in the HITRAN format is reformatted with adding supplement four parameters for every entry. The physical meaning of the phenomena known as the line and branch mixing is discussed.

  5. Simulation of X-ray absorption spectra with orthogonality constrained density functional theory.

    PubMed

    Derricotte, Wallace D; Evangelista, Francesco A

    2015-06-14

    Orthogonality constrained density functional theory (OCDFT) [F. A. Evangelista, P. Shushkov and J. C. Tully, J. Phys. Chem. A, 2013, 117, 7378] is a variational time-independent approach for the computation of electronic excited states. In this work we extend OCDFT to compute core-excited states and generalize the original formalism to determine multiple excited states. Benchmark computations on a set of 13 small molecules and 40 excited states show that unshifted OCDFT/B3LYP excitation energies have a mean absolute error of 1.0 eV. Contrary to time-dependent DFT, OCDFT excitation energies for first- and second-row elements are computed with near-uniform accuracy. OCDFT core excitation energies are insensitive to the choice of the functional and the amount of Hartree-Fock exchange. We show that OCDFT is a powerful tool for the assignment of X-ray absorption spectra of large molecules by simulating the gas-phase near-edge spectrum of adenine and thymine.

  6. Dielectronic Recombination Of Iron M-shell Ions Motivated By Absorption Features In AGN Spectra

    NASA Astrophysics Data System (ADS)

    Lukic, Dragan; Schnell, M.; Savin, D. W.; Brandau, C.; Schmidt, E. W.; Yu, D.; Bernhardt, D.; Schippers, S.; Müller, A.; Lestinsky, M.; Orlov, D.; Sprenger, F.; Grieser, M.; Repnow, R.; Hoffmann, J.; Wolf, A.

    2006-09-01

    XMM-Newton and Chandra observations of active galactic nuclei (AGN) show spectra rich with X-ray absorption features. These observations have detected a broad unresolved transition array (UTA) between 15-17 Å. This is attributed to inner-shell photoexcitation of M-shell iron ions. Modeling these UTA features is currently limited by uncertainties in the low-temperature dielectronic recombination (DR) data for M-shell iron. In order to resolve this issue, and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. We use the DR data obtained at TSR, to calculate rate coefficients for plasma modeling. We are also providing our data to atomic theorist to benchmark their DR calculations. Here we report our recent experimental results for DR for several iron M-shell ions and plans for future work. This work has been supported in part by NASA, the German Federal Ministry for Education and Research, and the German Research Council

  7. Free-energy predictions and absorption spectra calculations for supramolecular nanocarriers and their photoactive cargo.

    PubMed

    Pietropaolo, Adriana; Tang, Sicheng; Raymo, Françisco M

    2017-04-13

    We reconstructed the free-energy landscape for supramolecular nanoparticles of amphiphilic methacrylated-based co-polymers. Their self-assembly in aqueous solution and encapsulation of borondipyrromethene (BODIPY) derivatives were enforced through atomistic free-energy simulations. The BODIPY binding modes detected in each of the free-energy basins were validated through a comparison of theoretical absorption spectra, calculated at the TD-DFT level, to their experimental counterparts. The nanoparticle distribution is controlled within a thermodynamic regime, with free-energy barriers approaching 8 kcal mol(-1), enabling the existence of different-sized nanoparticles in aqueous solution at room temperature. Two types of supramolecular morphologies were identified. One is compact and spherical in shape and the other is large and donut-like, with the former more stable than the latter by 4 kcal mol(-1). The morphology of the supramolecular host affects the binding mode of the BODIPY guests. Stacked BODIPY aggregates are encapsulated in the spherical nanocarriers, whereas isolated chromophores associate with the donut-shaped assemblies.

  8. Radiation damage of variscite in historic crafts: Solarization, decolouration, structural changes and spectra from ionoluminescence

    NASA Astrophysics Data System (ADS)

    Garcia-Guinea, J.; Correcher, V.; Sanchez-Muñoz, L.; Lopez-Arce, P.; Townsend, P. D.; Hole, D. E.

    2008-01-01

    X-ray diffraction measurements, during halogen lamp illumination to simulate sunlight, (TXRD) show a phase transition from variscite (AlPO 4·H 2O) Messbach to variscite Lucin and a loss of the dark green colour. The differential-thermal and thermo-gravimetric (DTA-TG) analyses and thermoluminescence (TL) peaks all depict this first-order phase transition which takes place under sunlight. From the water vaporization temperature up to circa 650 °C, a second-order phase transition progressively occurs from variscite to berlinite (AlPO 4) by loss of a second unit of water with hydrogen bonded to the lattice. The ion beam luminescence (IBL) spectra of the Zamora variscite display a spectral band from 500 to 570 nm attributed to [UO 2] 2+ in phosphates, and another spectral band from 670 to 740 nm is linked with Cr(VI) 3+ defects situated in octahedral Al(VI) 3+ positions. In the hydrous variscite lattice, the Al-O and P-O chemical bonds are mainly covalent; with the degree of covalency of the P-O chemical bond significantly larger than of Al-O. This open structure of variscite, which has a crystal field of reduced strength, involves small shifts of the absorption bands which intensify the blue-green transmission producing the characteristic emerald colour of the dark green variscite of Zamora. These data provide a valuable basis for detection of solarization damage in historic crafts with inlaid variscite in the Museo del Prado (Madrid, Spain).

  9. An experimental analysis of a doped lithium fluoride direct absorption solar receiver

    NASA Technical Reports Server (NTRS)

    Kesseli, James; Pollak, Tom; Lacy, Dovie

    1988-01-01

    An experimental analysis of two key elements of a direct absorption solar receiver for use with Brayton solar dynamic systems was conducted. Experimental data are presented on LiF crystals doped with dysprosium, samarium, and cobalt fluorides. In addition, a simulation of the cavity/window environment was performed and a posttest inspection was conducted to evaluate chemical reactivity, transmissivity, and condensation rate.

  10. Collisional Processing of Comet and Asteroid Surfaces: Velocity Effects on Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Lederer, S. M.; Jensen, E. A.; Wooden, D. H.; Lindsay, S. S.; Smith, D. C.; Nakamura-Messenger, K.; Keller, L. P.; Cintala, M. J.; Zolensky, M. E.

    2012-01-01

    A new paradigm has emerged where 3.9 Gyr ago, a violent reshuffling reshaped the placement of small bodies in the solar system (the Nice model). Surface properties of these objects may have been affected by collisions caused by this event, and by collisions with other small bodies since their emplacement. These impacts affect the spectrographic observations of these bodies today. Shock effects (e.g., planar dislocations) manifest in minerals allowing astronomers to better understand geophysical impact processing that has occurred on small bodies. At the Experimental Impact Laboratory at NASA Johnson Space Center, we have impacted forsterite and enstatite across a range of velocities. We find that the amount of spectral variation, absorption wavelength, and full width half maximum of the absorbance peaks vary non-linearly with the velocity of the impact. We also find that the spectral variation increases with decreasing crystal size (single solid rock versus granular). Future analyses include quantification of the spectral changes with different impactor densities, temperature, and additional impact velocities. Results on diopside, fayalite, and magnesite can be found in Lederer et al., this meeting.

  11. Collisional Processing Of Comet And Asteroid Surfaces: Velocity Effects On Absorption Spectra

    NASA Astrophysics Data System (ADS)

    Jensen, Elizabeth; Lederer, S. M.; Wooden, D. H.; Lindsay, S. S.; Nakamura-Messenger, K.; Keller, L. P.; Cintala, M. J.; Zolensky, M. E.

    2012-10-01

    A new paradigm has emerged where 3.9 Gyr ago, a violent reshuffling reshaped the placement of small bodies in the solar system (the Nice model). Surface properties of these objects may have been affected by collisions caused by this event, and by collisions with other small bodies since their emplacement. These impacts affect the spectroscopic observations of these bodies today. Shock effects (e.g., planar dislocations) manifest in minerals allowing astronomers to better understand geophysical impact processing that has occurred on small bodies. At the Experimental Impact Laboratory at NASA Johnson Space Center, we have impacted forsterite and enstatite across a range of velocities. We find that the amount of spectral variation, absorption wavelength, and full width half maximum of the absorbance peaks vary non-linearly with the velocity of the impact. We also find that the spectral variation increases with decreasing crystal size (single solid rock versus granular). Future analyses include quantification of the spectral changes with different impactor densities, temperature, and additional impact velocities. Results on diopside, fayalite, and magnesite can be found in Lederer et al., this meeting. Funding was provided by the NASA PG&G grant 09-PGG09-0115, NSF grant AST-1010012, and a Cottrell College Scholarship through the Research Corporation.

  12. Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue.

    PubMed

    Guo, Zijian; Hu, Song; Wang, Lihong V

    2010-06-15

    Optical absorption is closely associated with many physiological important parameters, such as the concentration and oxygen saturation of hemoglobin, and it can be used to quantify the concentrations of nonfluorescent molecules. We propose a method to use acoustic spectra of photoacoustic signals to quantify the absolute optical absorption. This method is self-calibrating and thus insensitive to variations in the optical fluence. Factors such as system bandwidth and acoustic attenuation can affect the quantification but can be canceled by dividing the acoustic spectra measured at two optical wavelengths. Using optical-resolution photoacoustic microscopy, we quantified the absolute optical absorption of black ink samples with various concentrations. We also quantified both the concentration and oxygen saturation of hemoglobin in a live mouse in absolute units.

  13. Bethe-Salpeter calculation of optical-absorption spectra of In2O3 and Ga2O3

    NASA Astrophysics Data System (ADS)

    Varley, Joel B.; Schleife, André

    2015-02-01

    Transparent conducting oxides keep attracting strong scientific interest not only due to their promising potential for ‘transparent electronics’ applications but also due to their intriguing optical absorption characteristics. Materials such as In2O3 and Ga2O3 have complicated unit cells and, consequently, are interesting systems for studying the physics of excitons and anisotropy of optical absorption. Since currently no experimental data is available, for instance, for their dielectric functions across a large photon-energy range, we employ modern first-principles computational approaches based on many-body perturbation theory to provide theoretical-spectroscopy results. Using the Bethe-Salpeter framework, we compute dielectric functions and we compare to spectra computed without excitonic effects. We find that the electron-hole interaction strongly modifies the spectra and we discuss the anisotropy of optical absorption that we find for Ga2O3 in relation to existing theoretical and experimental data.

  14. Quantification of several atmospheric gases from high resolution infrared solar spectra obtained at the South Pole in 1980 and 1986

    NASA Technical Reports Server (NTRS)

    Goldman, Aaron; Murcray, Frank J.; Murcray, Frank H.; Murcray, David G.; Rinsland, Curtis P.

    1988-01-01

    High-resolution solar absorption spectra recorded at the Amundsen-Scott South Pole Station were analyzed to obtain total column amounts of O3, N2O, HNO3, CO2, CH4, and CF2Cl2, and to investigate the differences in the values obtained in December 1980 with those obtained in December 1986. In addition, vertical column amounts for HCl, NO, NO2, and C2H6 were derived for December 1986. One interesting feature of these results is that the total column amounts of HCl measured for several days at the South Pole (/6.4 + or - 0.8/ x 10 to the 15th molecules/sq cm) were high compared with the HCl column amounts reported for lower latitudes.

  15. A parameterization for the absorption of solar radiation by water vapor in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Wang, W.-C.

    1976-01-01

    A parameterization for the absorption of solar radiation as a function of the amount of water vapor in the earth's atmosphere is obtained. Absorption computations are based on the Goody band model and the near-infrared absorption band data of Ludwig et al. A two-parameter Curtis-Godson approximation is used to treat the inhomogeneous atmosphere. Heating rates based on a frequently used one-parameter pressure-scaling approximation are also discussed and compared with the present parameterization.

  16. Retrieval of vertical trace gas profiles from ground-based infrared absorption spectra inside and outside the Antarctic vortex using SFIT2

    NASA Astrophysics Data System (ADS)

    Wood, S. W.; Jones, N. B.; Rinsland, C. P.; Goldman, A.; Connor, B. J.; Stephen, T. M.; Lawrence, B. N.; Murcray, F. J.

    2001-05-01

    SFIT2 has been developed by NIWA, NASA Langley and the University of Denver for the retrieval of vertical trace-gas profiles from high-resolution ground-based infrared absorption spectra measured with Fourier transform spectrometers. Such measurements are made at a number of sites around the world as part of the Network for the Detection of Stratospheric Change (NDSC). The vertical profile information in the measurement is due to the pressure broadening of atmospheric absorption lines in the spectra. The retrieval method is optimal estimation, which uses information from the measurement and supplied a priori information to construct an optimal solution based on the assumed uncertainties of these two information sources. We have used SFIT2 to analyse high spectral resolution (0.0035 cm-1) infrared solar absorption spectra recorded at Arrival Heights in Antarctica (78o S), from shortly after sunrise (day 240) to the end of the year in 1999. The motion of the Antarctic vortex, and the chemical processes within it, cause large changes in the vertical profiles of most of the trace gases measured over the site. We have made use of analyses of scaled potential vorticity (sPV) from UKMO data to classify measurements as inside or outside the vortex. This information has been incorporated into the selection of a priori profile information for the analyses of a number of trace gases that are chemically active or act as tracers, including O3, HNO3, N2O, CH4, HCl and ClONO2. The retrieved mixing ratios of these gases in the lower stratosphere show that the station sampled primarily vortex air during the spring period while the vortex existed, but had brief periods outside the vortex near day 290 and again close to vortex breakdown. Comparison with independent measurements, such as the sPV calculations, satellite temperature measurements and correlative TOMS total ozone measurements, are consistent with these retrievals.

  17. Galactic Cosmic-Ray Energy Spectra and Composition during the 2009-2010 Solar Minimum Period

    NASA Technical Reports Server (NTRS)

    Lave, K. A.; Wiedenbeck, Mark E.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; deNolfo, G. A.; Israel, M. H..; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; VonRosenvinge, T. T.

    2013-01-01

    We report new measurements of the elemental energy spectra and composition of galactic cosmic rays during the 2009-2010 solar minimum period using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer. This period of time exhibited record-setting cosmic-ray intensities and very low levels of solar activity. Results are given for particles with nuclear charge 5 <= Z <= 28 in the energy range approx. 50-550 MeV / nucleon. Several recent improvements have been made to the earlier CRIS data analysis, and therefore updates of our previous observations for the 1997-1998 solar minimum and 2001-2003 solar maximum are also given here. For most species, the reported intensities changed by less than approx. 7%, and the relative abundances changed by less than approx. 4%. Compared with the 1997-1998 solar minimum relative abundances, the 2009-2010 abundances differ by less than 2sigma, with a trend of fewer secondary species observed in the more recent time period. The new 2009-2010 data are also compared with results of a simple "leaky-box" galactic transport model combined with a spherically symmetric solar modulation model. We demonstrate that this model is able to give reasonable fits to the energy spectra and the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe. These results are also shown to be comparable to a GALPROP numerical model that includes the effects of diffusive reacceleration in the interstellar medium.

  18. Needle Profile Grating Structure for Absorption Enhancement in GaAs Thin Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Wang, Yile; Zhang, Xu; Guo, Minqiang; Sun, Xiaohong; Yu, Yanguang; Xi, Jiangtao

    2015-11-01

    We conduct a systematic study of thin film solar cells consisting of a GaAs needle profile (NP) grating structure as a light-trapping layer. The influence of geometric parameters on the optical absorption of the NP grating is investigated using rigorous coupled wave analysis and the finite element method. This type of structure can lead to broadband optical absorption enhancement throughout the wavelength range that we studied. Our simulation results reveal that the absorption efficiency of NP grating can be improved significantly compared with its rectangular grating counterpart. The proposed structure is expected to illuminate the design and fabrication of high-efficiency solar cells.

  19. Integrated three-dimensional photonic nanostructures for achieving near-unity solar absorption and superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Kuang, Ping; Hsieh, Mei-Li; Lin, Shawn-Yu

    2015-06-01

    In this paper, we proposed and realized 3D photonic nanostructures consisting of ultra-thin graded index antireflective coatings (ARCs) and woodpile photonic crystals. The use of the integrated ARC and photonic crystal structure can achieve broadband, broad-angle near unity solar absorption. The amorphous silicon based photonic nanostructure experimentally shows an average absorption of ˜95% for λ = 400-620 nm over a wide angular acceptance of θ = 0°-60°. Theoretical studies show that a Gallium Arsenide (GaAs) based structure can achieve an average absorption of >95% for λ = 400-870 nm. Furthermore, the use of the slanted SiO2 nanorod ARC surface layer by glancing angle deposition exhibits Cassie-Baxter state wetting, and superhydrophobic surface is obtained with highest water contact angle θCB ˜ 153°. These properties are fundamentally important for achieving maximum solar absorption and surface self-cleaning in thin film solar cell applications.

  20. Density functional calculations of the vibronic structure of electronic absorption spectra.

    PubMed

    Dierksen, Marc; Grimme, Stefan

    2004-02-22

    Calculations of the vibronic structure in electronic spectra of large organic molecules based on density functional methods are presented. The geometries of the excited states are obtained from time-dependent density functional (TDDFT) calculations employing the B3LYP hybrid functional. The vibrational functions and transition dipole moment derivatives are calculated within the harmonic approximation by finite difference of analytical gradients and the transition dipole moment, respectively. Normal mode mixing is taken into account by the Duschinsky transformation. The vibronic structure of strongly dipole-allowed transitions is calculated within the Franck-Condon approximation. Weakly dipole-allowed and dipole-forbidden transitions are treated within the Franck-Condon-Herzberg-Teller and Herzberg-Teller approximation, respectively. The absorption spectra of several organic pi systems (anthracene, pentacene, pyrene, octatetraene, styrene, azulene, phenoxyl) are calculated and compared with experimental data. For dipole-allowed transitions in general a very good agreement between theory and experiment is obtained. This indicates the good quality of the optimized geometries and harmonic force fields. Larger errors are found for the weakly dipole-allowed S0 --> S1 transition of pyrene which can tentatively be assigned to TDDFT errors for the relative energies of excited states close to the target state. The weak bands of azulene and phenoxyl are very well described within the Franck-Condon approximation which can be explained by the large energy gap (>1.2 eV) to higher-lying excited states leading to small vibronic couplings. Once corrections are made for the errors in the theoretical 0-0 transition energies, the TDDFT approach to calculate vibronic structure seems to outperform both widely used ab initio methods based on configuration interaction singles or complete active space self-consistent field wave functions and semiempirical treatments regarding accuracy

  1. Analysis of Gain and Absorption Spectra of Gallium Nitride-based Laser Diodes

    NASA Astrophysics Data System (ADS)

    Melo, Thiago

    Laser diodes (LDs) based on the III-Nitride material system, (Al,In,Ga)N, stand to satisfy a number of application needs, and their huge market segment has been further growing with the use of LDs for full color laser projection. All commercially available GaN-based devices are based on the conventional c-plane (polar) orientation of this material. However, strong polarization fields caused by strained quantum-well (QW) layers on c-plane induce the quantum-confined Stark effect (QCSE), which leads to reduced radiative recombination rate and are aggravated when more indium is added into the QW(s) in order to achieve longer wavelengths. A promising solution for this is the use of nonpolar and semipolar crystal growth orientations. Elimination or mitigation of polarization-related fields within the QWs grown along these novel orientations is observed and one expects increased radiative recombination rate and stabilization of the wavelength emission with respect to the injection current. In order to have more insights on the advantages of using the novel crystal orientations of the III-Nitride material system, we compare the gain of LD structures fabricated from c-plane, nonpolar and semipolar GaN substrates. Using thesegmented contact method, single-pass gain spectra of LD epitaxial structures at wafer level are compared for the different crystal orientations as well as the single-pass absorption coefficient spectrum of the active region material and its dependence on reversed bias. Experimental gain spectra under continuous-wave (CW) operation of actual industry LDs fabricated from c-plane and nonpolar/semipolar GaN-based materials emitting wavelengths in the visible are then presented, using the Hakki-Paoli technique at high resolution. Measurements of the transparency current density, total losses and differential modal gain curves up to threshold are analyzed and compared between nonpolar/semipolar and c-plane LDs in violet and blue spectral regions regions. In a

  2. Measurement of cosmic-ray proton and helium spectra during the 1987 solar minimum

    NASA Technical Reports Server (NTRS)

    Seo, E. S.; Ormes, J. F.; Streitmatter, R. E.; Stochaj, S. J.; Jones, W. V.; Stephens, S. A.; Bowen, T.

    1991-01-01

    The differential cosmic-ray proton and helium spectra have been measured during the 1987 solar minimum using a balloon-borne superconducting magnetic spectrometer launched from Prince Albert, Canada. The changing geomagnetic cutoff along the balloon trajectory was observed in the low-energy proton data to be about 25 percent below the nominal calculated values. The absolute particle fluxes were approximately equal to the highest fluxes observed at the previous solar minimum in 1977. Above 10 GV the observed spectra are represented by a power law in rigidity with spectral indices of 2.74 + or - 0.02 for protons and 2.68 + or - 0.03 for helium. The measurements above 200 MeV per nucleon are consistent with rigidity power-law interstellar spectra modulated with the solar modulation parameter phi = 500 MV. The energy dependence of the proton-to-helium ratio is consistent with rigidity power-law injection spectra and rigidity-dependent propagation without reacceleration.

  3. Power Spectra, Power Law Exponents, and Anisotropy of Solar Wind Turbulence at Small Scales

    NASA Technical Reports Server (NTRS)

    Podesta, J. J.; Roberts, D. A.; Goldstein, M. L.

    2006-01-01

    The Wind spacecraft provides simultaneous solar wind velocity and magnetic field measurements with 3- second time resolution, roughly an order of magnitude faster than previous measurements, enabling the small scale features of solar wind turbulence to be studied in unprecedented detail. Almost the entire inertial range can now be explored (the inertial range extends from approximately 1 to 10(exp 3) seconds in the spacecraft frame) although the dissipation range of the velocity fluctuations is still out of reach. Improved measurements of solar wind turbulence spectra at 1 AU in the ecliptic plane are presented including spectra of the energy and cross-helicity, the magnetic and kinetic energies, the Alfven ratio, the normalized cross-helicity, and the Elsasser ratio. Some recent observations and theoretical challenges are discussed including the observation that the velocity and magnetic field spectra often show different power law exponents with values close to 3/2 and 5/3, respectively; the energy (kinetic plus magnetic) and cross-helicity often have approximately equal power law exponents with values intermediate between 3/2 and 5/3; and the Alfven ratio, the ratio of the kinetic to magnetic energy spectra, is often a slowly increasing function of frequency increasing from around 0.4 to 1 for frequencies in the inertial range. Differences between high- and low-speed wind are also discussed. Comparisons with phenomenological turbulence theories show that important aspects of the physics are yet unexplained.

  4. Site dependent factors affecting the economic feasibility of solar powered absorption cooling

    NASA Technical Reports Server (NTRS)

    Bartlett, J. C.

    1978-01-01

    A procedure was developed to evaluate the cost effectiveness of combining an absorption cycle chiller with a solar energy system. A basic assumption of the procedure is that a solar energy system exists for meeting the heating load of the building, and that the building must be cooled. The decision to be made is to either cool the building with a conventional vapor compression cycle chiller or to use the existing solar energy system to provide a heat input to the absorption chiller. Two methods of meeting the cooling load not supplied by solar energy were considered. In the first method, heat is supplied to the absorption chiller by a boiler using fossil fuel. In the second method, the load not met by solar energy is net by a conventional vapor compression chiller. In addition, the procedure can consider waste heat as another form of auxiliary energy. Commercial applications of solar cooling with an absorption chiller were found to be more cost effective than the residential applications. In general, it was found that the larger the chiller, the more economically feasible it would be. Also, it was found that a conventional vapor compression chiller is a viable alternative for the auxiliary cooling source, especially for the larger chillers. The results of the analysis gives a relative rating of the sites considered as to their economic feasibility of solar cooling.

  5. Collison-induced rototranslational absorption spectra of H2-He pairs at temperatures from 40 to 3000 K

    NASA Technical Reports Server (NTRS)

    Borysow, Jacek; Frommhold, Lothar; Birnbaum, George

    1988-01-01

    The zeroth, first, and second spectral moments of the rototranslational collision-induced absorption (RT CIA) spectra of hydrogen-helium mixtures are calculated from the fundamental theory, for temperatures from 40 to 3000 K. With the help of simple analytical functions of three parameters and the information given, the RT CIA spectra of H2-He pairs can be generated on computers of small capacity, with rms deviations from exact quantum profiles of not more than a few percent. Such representations of the CIA spectra are of interest for work related to the atmospheres of the outer planets and cool stars. The theoretical spectra are in close agreement with existing laboratory measurements at various temperatures from about 77 to 3000 K.

  6. Collison-induced rototranslational absorption spectra of H/sub 2/-He pairs at temperatures from 40 to 3000 K

    SciTech Connect

    Borysow, J.; Frommhold, L.; Birnbaum, G.

    1988-03-01

    The zeroth, first, and second spectral moments of the rototranslational collision-induced absorption (RT CIA) spectra of hydrogen-helium mixtures are calculated from the fundamental theory, for temperatures from 40 to 3000 K. With the help of simple analytical functions of three parameters and the information given, the RT CIA spectra of H/sub 2/-He pairs can be generated on computers of small capacity, with rms deviations from exact quantum profiles of not more than a few percent. Such representations of the CIA spectra are of interest for work related to the atmospheres of the outer planets and cool stars. The theoretical spectra are in close agreement with existing laboratory measurements at various temperatures from about 77 to 3000 K. 28 references.

  7. Multiple pre-edge structures in Cu K -edge x-ray absorption spectra of high- Tc cuprates revealed by high-resolution x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Gougoussis, C.; Rueff, J.-P.; Calandra, M.; D'Astuto, M.; Jarrige, I.; Ishii, H.; Shukla, A.; Yamada, I.; Azuma, M.; Takano, M.

    2010-06-01

    Using high-resolution x-ray absorption spectroscopy and state-of-the-art electronic structure calculations we demonstrate that the pre-edge region at the Cu K edge of high- Tc cuprates is composed of several excitations invisible in standard x-ray absorption spectra. We consider in detail the case of Ca2-xCuO2Cl2 and show that the many pre-edge excitations (two for c -axis polarization, four for in-plane polarization and out-of-plane incident x-ray momentum) are dominated by off-site transitions and intersite hybridization. This demonstrates the relevance of approaches beyond the single-site model for the description of the pre edges of correlated materials. Finally, we show the occurrence of a doubling of the main edge peak that is most visible when the polarization is along the c axis. This doubling, that has not been seen in any previous absorption data in cuprates, is not reproduced by first-principles calculations. We suggest that this peak is due to many-body charge-transfer excitations while all the other visible far-edge structures are single particle in origin. Our work indicates that previous interpretations of the Cu K -edge x-ray absorption spectra in high- Tc cuprates can be profitably reconsidered.

  8. Comparison of x-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section

    SciTech Connect

    Sellberg, Jonas A.; Nilsson, Anders; Kaya, Sarp; Segtnan, Vegard H.; Chen, Chen; Tyliszczak, Tolek; Ogasawara, Hirohito; Nordlund, Dennis; Pettersson, Lars G. M.

    2014-07-21

    The effect of crystal growth conditions on the O K-edge x-ray absorption spectra of ice is investigated through detailed analysis of the spectral features. The amount of ice defects is found to be minimized on hydrophobic surfaces, such as BaF{sub 2}(111), with low concentration of nucleation centers. This is manifested through a reduction of the absorption cross-section at 535 eV, which is associated with distorted hydrogen bonds. Furthermore, a connection is made between the observed increase in spectral intensity between 544 and 548 eV and high-symmetry points in the electronic band structure, suggesting a more extended hydrogen-bond network as compared to ices prepared differently. The spectral differences for various ice preparations are compared to the temperature dependence of spectra of liquid water upon supercooling. A double-peak feature in the absorption cross-section between 540 and 543 eV is identified as a characteristic of the crystalline phase. The connection to the interpretation of the liquid phase O K-edge x-ray absorption spectrum is extensively discussed.

  9. Synthesis and evaluation of changes induced by solvent and substituent in electronic absorption spectra of some azo disperse dyes.

    PubMed

    Mohammadi, Asadollah; Yazdanbakhsh, Mohammad Reza; Farahnak, Lahya

    2012-04-01

    Five azo disperse dyes were prepared by diazotizing 4'-aminoacetophenone and p-anisidine and coupling with varies N-alkylated aromatic amines. Characterization of the dyes was carried out by using UV-vis, FTIR and 1H NMR spectroscopic techniques. The electronic absorption spectra of dyes are determined at room temperature in fifteen solvents with different polarities. The solvent dependent maximum absorption band shifts, were investigated using dielectric constant (ɛ), refractive index (n) and Kamlet-Taft polarity parameters (hydrogen bond donating ability (α), hydrogen bond accepting ability (β) and dipolarity/polarizability polarity scale (π*)). Acceptable agreement was found between the maximum absorption band of dyes and solvent polarity parameters especially with π*. The effect of substituents of coupler and/or diazo component on the color of dyes was investigated. The effects of acid and base on the visible absorption maxima of the dyes are also reported.

  10. Electronic absorption spectra of rare earth (III) species in NaCl-2CsCl eutectic based melts

    NASA Astrophysics Data System (ADS)

    Volkovich, V. A.; Ivanov, A. B.; Yakimov, S. M.; Tsarevskii, D. V.; Golovanova, O. A.; Sukhikh, V. V.; Griffiths, T. R.

    2016-09-01

    Electronic absorption spectra of ions of trivalent rare earth elements were measured in the melts based on NaCl-2CsCl eutectic in the wavelength ranges of 190-1350 and 1450-1700 nm. The measurements were performed at 550-850 °C. The EAS of Y, La, Ce and Lu containing melts have no absorption bands in the studied regions. For the remaining REEs (Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) the absorption bands in the EAS were assigned to the corresponding f-f electron transitions. The Stark effect was observed for Yb(III) F5/2 excited state. Increasing temperature leads to decreasing intensity of the absorption bands, except for the bands resulting from hypersensitive transitions. Beer's law was confirmed up to 0.4 M solutions of REE.

  11. Solvent dependence of two-photon absorption spectra of the enhanced green fluorescent protein (eGFP) chromophore

    NASA Astrophysics Data System (ADS)

    Hosoi, Haruko; Tayama, Ryo; Takeuchi, Satoshi; Tahara, Tahei

    2015-06-01

    Two-photon absorption spectra of 4‧-hydroxybenzylidene-2,3-dimethylimidazolinone, a model chromophore of enhanced green fluorescent protein (eGFP), were measured in various solvents. The two-photon absorption band of its anionic form is markedly blue-shifted from the corresponding one-photon absorption band in all solvents. Moreover, the magnitude of the blue shift varies largely depending on the solvent, which does not accord with the assignment of the two-photon absorption band to the transitions to the vibrationally excited S1 state. Our finding is readily rationalized by considering overlapping contributions of the S1 ← S0 and S2 ← S0 transitions, suggesting the involvement of the S2 state also in two-photon fluorescence of eGFP.

  12. Electronic Absorption Spectra of Tetrapyrrole-Based Pigments via TD-DFT: A Reduced Orbital Space Study.

    PubMed

    Shrestha, Kushal; Virgil, Kyle A; Jakubikova, Elena

    2016-07-28

    Tetrapyrrole-based pigments play a crucial role in photosynthesis as principal light absorbers in light-harvesting chemical systems. As such, accurate theoretical descriptions of the electronic absorption spectra of these pigments will aid in the proper description and understanding of the overall photophysics of photosynthesis. In this work, time-dependent density functional theory (TD-DFT) at the CAM-B3LYP/6-31G* level of theory is employed to produce the theoretical absorption spectra of several tetrapyrrole-based pigments. However, the application of TD-DFT to large systems with several hundreds of atoms can become computationally prohibitive. Therefore, in this study, TD-DFT calculations with reduced orbital spaces (ROSs) that exclude portions of occupied and virtual orbitals are pursued as a viable, computationally cost-effective alternative to conventional TD-DFT calculations. The effects of reducing orbital space size on theoretical spectra are qualitatively and quantitatively described, and both conventional and ROS results are benchmarked against experimental absorption spectra of various tetrapyrrole-based pigments. The orbital reduction approach is also applied to a large natural pigment assembly that comprises the principal light-absorbing component of the reaction center in purple bacteria. Overall, we find that TD-DFT calculations with proper and judicious orbital space reductions can adequately reproduce conventional, full orbital space, TD-DFT results of all pigments studied in this work.

  13. Study of electron transition energies between anions and cations in spinel ferrites using differential UV-vis absorption spectra

    NASA Astrophysics Data System (ADS)

    Xue, L. C.; Wu, L. Q.; Li, S. Q.; Li, Z. Z.; Tang, G. D.; Qi, W. H.; Ge, X. S.; Ding, L. L.

    2016-07-01

    It is very important to determine electron transition energies (Etr) between anions and different cations in order to understand the electrical transport and magnetic properties of a material. Many authors have analyzed UV-vis absorption spectra using the curve (αhν)2 vs E, where α is the absorption coefficient and E(=hν) is the photon energy. Such an approach can give only two band gap energies for spinel ferrites. In this paper, using differential UV-vis absorption spectra, dα/dE vs E, we have obtained electron transition energies (Etr) between the anions and cations, Fe2+ and Fe3+ at the (A) and [B] sites and Ni2+ at the [B] sites for the (A)[B]2O4 spinel ferrite samples CoxNi0.7-xFe2.3O4 (0.0≤x≤0.3), CrxNi0.7Fe2.3-xO4 (0.0≤x≤0.3) and Fe3O4. We suggest that the differential UV-vis absorption spectra should be accepted as a general analysis method for determining electron transition energies between anions and cations.

  14. Dielectric core-shell optical antennas for strong solar absorption enhancement.

    PubMed

    Yu, Yiling; Ferry, Vivian E; Alivisatos, A Paul; Cao, Linyou

    2012-07-11

    We demonstrate a new light trapping technique that exploits dielectric core-shell optical antennas to strongly enhance solar absorption. This approach can allow the thickness of active materials in solar cells lowered by almost 1 order of magnitude without scarifying solar absorption capability. For example, it can enable a 70 nm thick hydrogenated amorphous silicon (a-Si:H) thin film to absorb 90% of incident solar radiation above the bandgap, which would otherwise require a thickness of 400 nm in typical antireflective coated thin films. This strong enhancement arises from a controlled optical antenna effect in patterned core-shell nanostructures that consist of absorbing semiconductors and nonabsorbing dielectric materials. This core-shell optical antenna benefits from a multiplication of enhancements contributed by leaky mode resonances (LMRs) in the semiconductor part and antireflection effects in the dielectric part. We investigate the fundamental mechanism for this enhancement multiplication and demonstrate that the size ratio of the semiconductor and the dielectric parts in the core-shell structure is key for optimizing the enhancement. By enabling strong solar absorption enhancement, this approach holds promise for cost reduction and efficiency improvement of solar conversion devices, including solar cells and solar-to-fuel systems. It can generally apply to a wide range of inorganic and organic active materials. This dielectric core-shell antenna can also find applications in other photonic devices such as photodetectors, sensors, and solid-state lighting diodes.

  15. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    PubMed Central

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  16. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    NASA Astrophysics Data System (ADS)

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-07-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.

  17. Ionospheric Absorption on 1539 Khz in Relation to Solar Ionizing Radiation

    NASA Technical Reports Server (NTRS)

    Boska, J.

    1984-01-01

    Radio wave absorption data on 1539 kHz for the summer period of 1978 to 1980 are considered in relation to variations of solar X-ray and L-alpha radiation. It is shown that under non-flare conditions L-alpha dominates in controlling absorption and that X-rays contribute about 10% to the total absorption. Optimum regression equations show that absorption is proportional to the m-th power of ionizing flux where m 1. The role of correcting L-alpha values, measured by the AE-E satellite, is discussed.

  18. Low absorption float glass for back surface solar reflectors

    NASA Astrophysics Data System (ADS)

    Goodyear, J. K.; Lindberg, V. L.

    1980-09-01

    It is shown that low iron float glass with relatively flat surfaces can be fabricated by the float process, and that this glass can make an excellent back surface mirror for solar energy concentrators, such as the heliostats planned for the Solar Ten Megawatt Power Project at Barstow, California. At 3 mm thickness, the low iron glass has a mean solar transmittance of 89.3%, and will produce heliostat mirrors with a calculated solar reflectance of 89.6%. The flatness of Ford 3-mm float glass is approximately 0.4 mrad, which is well below the minimum average slope angle requirement (2.5 mrad) to produce good quality heliostat reflectors.

  19. Electronic structure and optical absorption spectra of CdSe covered with ZnSe and ZnS epilayers

    NASA Astrophysics Data System (ADS)

    Yun, So Jeong; Lee, Geunsik; Kim, Jai Sam; Shin, Seung Koo; Yoon, Young-Gui

    2006-02-01

    Using the first-principles methods we compute the electronic structure and the absorption spectra for a wurtzite CdSe (0001) slab covered with zincblende ZnSe and ZnS epilayers. For each structure we compute the DOS and the imaginary part of the dielectric function. We find that the semiconductor passivation shifts the 'near Fermi-level' states of the bare CdSe slab down to lower energy levels. The migration suggests the decrease of surface effects and energy loss. We observe the substantial reduction of the abnormal peaks in the absorption spectra of the bare CdSe slab, which seems to be a consequence of the DOS migration. This is consistent with the experimental results that a proper passivation enhance the luminescence efficiency. We also study the case that the epilayer surface is terminated with PH 3 and find the PH 3 passivation also reduces the surface state to some extent.

  20. The structure of the absorption spectra of the quasars Q 0420-388 and Q 1101-264

    NASA Astrophysics Data System (ADS)

    Chernomordik, V. V.

    1988-08-01

    The spectra of the quasars Q 0420-388 and Q 1101-264 are studied in the framework of the shock-wave model of the Lyman-alpha forest in the spectra of distant quasars, in which the origin of Lyman-alpha absorption lines is related to absorption zones in the shells of metagalactic shock waves. It is shown that more that 50 percent of the narrow Lyman-alpha abosrption lines are components of doublets, or pairs of nearby lines with the same equivalent widths. This is in good agreement with the predictions of the shock-wave model. The expected H I column density distribution of the Lyman-alpha lines is calculated and is found to be in agreement with the findings of Atwood et al. (1985).

  1. First-principles calculation of principal Hugoniot and K-shell X-ray absorption spectra for warm dense KCl

    SciTech Connect

    Zhao, Shijun; Zhang, Shen; Kang, Wei; Li, Zi; Zhang, Ping; He, Xian-Tu

    2015-06-15

    Principal Hugoniot and K-shell X-ray absorption spectra of warm dense KCl are calculated using the first-principles molecular dynamics (FPMD) method. Evolution of electronic structures as well as the influence of the approximate description of ionization on pressure (caused by the underestimation of the energy gap between conduction bands and valence bands) in the first-principles method are illustrated by the calculation. It is shown that approximate description of ionization in FPMD has small influence on Hugoniot pressure due to mutual compensation of electronic kinetic pressure and virial pressure. The calculation of X-ray absorption spectra shows that the band gap of KCl persists after the pressure ionization of the 3p electrons of Cl and K taking place at lower energy, which provides a detailed understanding to the evolution of electronic structures of warm dense matter.

  2. Faraday rotation fluctutation spectra observed during solar occultation of the Helios spacecraft

    NASA Technical Reports Server (NTRS)

    Andreev, V.; Efimov, A. I.; Samoznaev, L.; Bird, M. K.

    1995-01-01

    Faraday rotation (FR) measurements using linearly polarized radio signals from the two Helios spacecraft were carried out during the period from 1975 to 1984. This paper presents the results of a spectral analysis of the Helios S-band FR fluctuations observed at heliocentric distances from 2.6 to 15 solar radii during the superior conjunctions 1975-1983. The mean intensity of the FR fluctuations does not exceed the noise level for solar offsets greater than ca. 15 solar radii. The rms FR fluctuation amplitude increases rapidly as the radio ray path approaches the Sun, varying according to a power law (exponent: 2.85 +/- 0.15) at solar distances 4-12 solar radii. At distances inside 4 solar radii the increase is even steeper (exponent: 5.6 +/- 0.2). The equivalent two-dimensional FR fluctuation spectrum is well modeled by a single power-law over the frequency range from 5 to 50 mHz. For heliocentric distances larger than 4 solar radii the spectral index varies between 1.1 and 1.6 with a mean value of 1.4 +/- 0.2, corresponding to a 3-D spectral index p = 2.4. FR fluctuations thus display a somwhat lower spectral index compared with phase and amplitude fluctuations. Surprisingly high values of the spectral index were found for measurements inside 4 solar radii (p = 2.9 +/- 0.2). This may arise from the increasingly dominant effect of the magnetic field on radio wave propagation at small solar offsets. Finally, a quasiperiodic component, believed to be associated with Alfven waves, was discovered in some (but not all!) fluctuation spectra observed simultaneously at two ground stations. Characteristic periods and bulk velocities of this component were 240 +/- 30 sec and 300 +/- 60 km/s, respectively.

  3. Simulation of FREE→FREE Absorption Spectra and the Calculation of Interaction Potentials for Alkali-Rare Gas Atom Pairs

    NASA Astrophysics Data System (ADS)

    Hewitt, J. Darby; Spinka, Thomas M.; Readle, Jason. D.; Eden, J. Gary

    2013-06-01

    We have simulated free→free (X^2Σ^+_{1/2}→B^2Σ^+_{1/2}) absorption spectra for alkali-rare gas pairs. By comparing simulation results with experimental data, we have been able to iteratively determine the form for the B^2Σ^+_{1/2} interaction potential for the system for a range in internuclear separation of 1.5-20 Å. Simulation methods will be presented, as will our results pertaining to Cs-Ar.

  4. Interacting He and Ar atoms: Revised theoretical interaction potential, dipole moment, and collision-induced absorption spectra

    SciTech Connect

    Meyer, Wilfried; Frommhold, Lothar

    2015-09-21

    Coupled cluster quantum chemical calculations of the potential energy surface and the induced dipole surface are reported for the He–Ar van der Waals collisional complex. Spectroscopic parameters are derived from global analytical fits while an accurate value for the long-range dipole coefficient D{sub 7} is obtained by perturbation methods. Collision-induced absorption spectra are computed quantum mechanically and compared with existing measurements.

  5. Polarized absorption spectra of aromatic radicals in stretched polymer film. 3. Radical ions of acridine and phenazine

    SciTech Connect

    Sekigucki, K.; Hiratsuka, H.; Tanizaki, Y.; Hatano, Y.

    1980-02-21

    Radical anions and cations of acridine and phenazine have been prepared in polymer film by ..gamma..-ray irradiation at 77 K. For the preparation of radical anions the sample was incorporated into polyethylene film by sec-butylamine, while for radical cations poly(vinyl chloride) film and sec-butyl chloride were used. Polarized absorption spectra of these radical ions have been measured in stretched polymer film and analyzed qualitatively in terms of molecular orbital calculations.

  6. Interacting He and Ar atoms: Revised theoretical interaction potential, dipole moment, and collision-induced absorption spectra.

    PubMed

    Meyer, Wilfried; Frommhold, Lothar

    2015-09-21

    Coupled cluster quantum chemical calculations of the potential energy surface and the induced dipole surface are reported for the He-Ar van der Waals collisional complex. Spectroscopic parameters are derived from global analytical fits while an accurate value for the long-range dipole coefficient D7 is obtained by perturbation methods. Collision-induced absorption spectra are computed quantum mechanically and compared with existing measurements.

  7. Calculation of Vibrational and Electronic Excited-State Absorption Spectra of Arsenic-Water Complexes Using Density Functional Theory

    DTIC Science & Technology

    2016-06-03

    of Arsenic- Water Complexes Using Density Functional Theory June 3, 2016 Approved for public release; distribution is unlimited. L. Huang S.g...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Calculation of Vibrational and Electronic Excited-State Absorption Spectra of Arsenic- Water Complexes Using... water molecules should be associated with response features that are intermediate between that of isolated molecules and that of a bulk system. DFT and

  8. Properties of the Solar Acoustic Source Inferred from Nonadiabatic Oscillation Spectra

    NASA Astrophysics Data System (ADS)

    Wachter, R.; Kosovichev, A. G.

    2005-07-01

    Severino et al. suggested in 2001 that observed power and cross spectra of medium-degree p-modes in velocity and intensity can be described by splitting the solar background noise into correlated, coherent, and uncoherent components. We account for the nonadiabatic nature of solar oscillations by including the perturbations of the radiative energy flux in our model for the oscillations. Our calculations show the potential to explain the observations without the ad hoc phase differences between velocity and intensity oscillations introduced in the model of Severino et al. The phases and amplitudes of the correlated noise components are obtained by fitting our nonadiabatic model to the SOHO MDI power and cross spectra. These parameters provide information about the p-mode excitation process. We show that the type and location of the source can not be uniquely determined by the properties of the resonant p-modes in power and cross spectra of velocity and intensity oscillations. However, we obtain estimates for the phases and amplitudes of the correlated noise, which we interpret in terms of isolated rapid downdrafts in intergranular lanes. This idea is supported by three-dimensional simulations of the upper solar convection zone.

  9. Research program in nuclear and solid state physics. [including pion absorption spectra and muon spin precession

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The survey of negative pion absorption reactions on light and medium nuclei was continued. Muon spin precession was studied using an iron target. An impulse approximation model of the pion absorption process implied that the ion will absorb almost exclusively on nucleon pairs, single nucleon absorption being suppressed by energy and momentum conservation requirements. For measurements on both paramagnetic and ferromagnetic iron, the external magnetic field was supplied by a large C-type electromagnet carrying a current of about 100 amperes.

  10. Application of Video Spectral Comparator (absorption spectra) for establishing the chronological order of intersecting printed strokes and writing pen strokes.

    PubMed

    Kaur, Ridamjeet; Saini, Komal; Sood, N C

    2013-06-01

    The sequence of intersecting strokes of laser printers (black, blue, red and green) and typewriter ink (black) with the strokes of gel pen ink, ballpoint pen ink and fountain pen ink (black, blue, red and green) has been determined by studying their absorption spectra. The absorption spectra have been generated for each of the two pure inks (i.e. A and B) and points of their intersections (i.e. A over B and B over A) by using Video Spectral Comparator (VSC-2000-HR). The study was carried out with an assumption that the peak characteristics of spectra from the point of intersection should correspond to the peak characteristics of pure ink which was executed later. It was observed that the absorption spectrum of intersection corresponds with either the laser printer or the typewriter ink stroke, whether these strokes were executed earlier or later than the writing instrument strokes. As the results obtained from the study were negative, the FDEs are advised against the practice of this technique in the examination of the sequence of intersecting strokes for these specified inks.

  11. Effect of a progressive sound wave on the profiles of spectral lines. 2: Asymmetry of faint Fraunhofer lines. [absorption spectra

    NASA Technical Reports Server (NTRS)

    Kostyk, R. I.

    1974-01-01

    The absorption coefficient profile was calculated for lines of different chemical elements in a medium with progressive sound waves. Calculations show that (1) the degree and direction of asymmetry depend on the atomic ionization potential and the potential of lower level excitation of the individual line; (2) the degree of asymmetry of a line decreases from the center toward the limb of the solar disc; and (3) turbulent motions 'suppress' the asymmetry.

  12. pH-Induced changes in electronic absorption and fluorescence spectra of phenazine derivatives

    NASA Astrophysics Data System (ADS)

    Ryazanova, O. A.; Voloshin, I. M.; Makitruk, V. L.; Zozulya, V. N.; Karachevtsev, V. A.

    2007-04-01

    The visible electronic absorption and fluorescence spectra as well as fluorescence polarization degrees of imidazo-[4,5-d]-phenazine (F1), 2-methylimidazo-[4,5-d]-phenazine (F2), 2-trifluoridemethylimidazo-[4,5-d]-phenazine (F3), 1,2,3-triazole-[4,5-d]-phenazine (F4) and their glycosides, imidazo-[4,5-d]-phenazine-N1-β- D-ribofuranoside (F1rib), 1,2,3-triazole-[4,5-d]-phenazine-N1-β- D-glucopyranoside (F4gl), were investigated in aqueous buffered solutions over the pH range of 0-12, where the spectral transformations were found to be reversible. The effects of protonation and deprotonation on spectral properties of these dyes were studied. We have determined the ranges of pH, where individual ionic species are predominant. In aqueous buffered solutions the fluorescence was found only for neutral species of F1, F1rib, F2, and F4gl dyes, whereas for the ionic forms of these dyes, as well as for F3 and F4 ones, the fluorescence has not been detected. The concentrational deprotonation p Ka values were evaluated from experimental data. It was shown that donor-acceptor properties of the substituent group in the second position of the pentagonal ring substantially affect the values of the deprotonation constants and the character of protonation for chromophore. The substitution of a hydrogen atom in the NH-group by the sugar residue blocks the formation of the anionic species, and results in enhancement of the dye emission intensity. The steep emission dependence for F1 and F1rib over pH range of 0-7 with intensities ratio of IpH 7/ IpH 1 = 60 allows us to propose them as possible indicator dyes in luminescence based pH sensors for investigation of processes accompanied by acidification, e.g. as gastric pH-sensors. A comparative analysis of the studied dyes has shown that F4gl is the most promising compound to be used as a fluorescent probe for investigation of molecular hybridization of nucleic acids.

  13. Si XII X-ray Satellite Lines in Solar Flare Spectra

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.; Dubau, J.; Sylwester, J.; Sylwester, B.

    2006-01-01

    The temperature dependence of the Si XII n=3 and n=4 dielectronic satellite line features at 5.82A and 5.56A respectively, near the Si XIII 1s(sup 2)-1s3p and 1s(sup 2)-1s4p lines (5.681A and 5.405A), is calculated using atomic data presented here. The resulting theoretical spectra are compared with solar flare spectra observed by the RESIK spectrometer on the CORONAS-F spacecraft. The satellites, like the more familiar n=2 satellites near the Si XIII 1s(sup 2)-1s2p lines, are formed mostly by dielectronic recombination, but unlike the n=2 satellites are unblended. The implications for similar satellite lines in flare Fe spectra are discussed.

  14. On the causes of spectral enhancements in solar wind power spectra

    NASA Technical Reports Server (NTRS)

    Unti, T.; Russell, C. T.

    1976-01-01

    Enhancements in power spectra of the solar-wind ion flux in the frequency neighborhood of 0.5 Hz had been noted by Unti et al. (1973). It was speculated that these were due to convected small-scale density irregularities. In this paper, 54 flux spectra calculated from OGO 5 data are examined. It is seen that the few prominent spectral peaks which occur were not generated by density irregularities, but were due to several different causes, including convected discontinuities and propagating transverse waves. A superposition of many spectra, however, reveals a moderate enhancement at a frequency corresponding to convected features with a correlation length of a proton gyroradius, consistent with the results of Neugebauer (1975).

  15. Frequency variations of solar radio zebras and their power-law spectra

    NASA Astrophysics Data System (ADS)

    Karlický, M.

    2014-01-01

    Context. During solar flares several types of radio bursts are observed. The fine striped structures of the type IV solar radio bursts are called zebras. Analyzing them provides important information about the plasma parameters of their radio sources. We present a new analysis of zebras. Aims: Power spectra of the frequency variations of zebras are computed to estimate the spectra of the plasma density variations in radio zebra sources. Methods: Frequency variations of zebra lines and the high-frequency boundary of the whole radio burst were determined with and without the frequency fitting. The computed time dependencies of these variations were analyzed with the Fourier method. Results: First, we computed the variation spectrum of the high-frequency boundary of the whole radio burst, which is composed of several zebra patterns. This power spectrum has a power-law form with a power-law index -1.65. Then, we selected three well-defined zebra-lines in three different zebra patterns and computed the spectra of their frequency variations. The power-law indices in these cases are found to be in the interval between -1.61 and -1.75. Finally, assuming that the zebra-line frequency is generated on the upper-hybrid frequency and that the plasma frequency ωpe is much higher than the electron-cyclotron frequency ωce, the Fourier power spectra are interpreted to be those of the electron plasma density in zebra radio sources.

  16. New Observations of Soft X-ray (0.5-5 keV) Solar Spectra

    NASA Astrophysics Data System (ADS)

    Caspi, A.; Woods, T. N.; Mason, J. P.; Jones, A. R.; Warren, H. P.

    2013-12-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable on many time scales. However, the actual solar soft X-ray (SXR) (0.5-5 keV) spectrum is not well known, particularly during solar quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include high-resolution but very narrow-band spectra from crystal spectrometers (e.g., Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g., GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with moderate energy resolution (~0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and SAX on MESSENGER, although they did not extend to energies below ~1 keV. We present observations of solar SXR emission obtained using new instrumentation flown on recent SDO/EVE calibration rocket underflights. The photon-counting spectrometer, a commercial Amptek X123 with a silicon drift detector and an 8 μm Be window, measures the solar disk-integrated SXR emission from ~0.5 to >10 keV with ~0.15 keV FWHM resolution and 1 s cadence. A novel imager, a pinhole X-ray camera using a cooled frame-transfer CCD (15 μm pixel pitch), Ti/Al/C filter, and 5000 line/mm Au transmission grating, images the full Sun in multiple spectral orders from ~0.1 to ~5 nm with ~10 arcsec/pixel and ~0.01 nm/pixel spatial and spectral detector scales, respectively, and 10 s cadence. These instruments are prototypes for future CubeSat missions currently being developed. We present new results of solar observations on 04 October 2013 (NASA sounding rocket 36.290). We compare with previous results from 23 June 2012 (NASA sounding rocket 36.286), during which solar activity was low and no signal was observed above ~4 keV. We compare our spectral and imaging measurements with spectra and broadband irradiances from other instruments, including SDO/EVE, GOES/XRS, TIMED

  17. Catalogue of solar flare spectra observed at Ondrejov in 1998-2007

    NASA Astrophysics Data System (ADS)

    Kupryakov, Yu. A.; Kotrc, P.; Kashapova, L. K.

    2010-12-01

    We present a catalogue of solar flare data observed with two Ondřejov optical spectrographs during 1998-2007 years. This database was created to enable the data processing more convenient for users interested in the study of the energy release and transport in solar flares. The spectra and Hα filtergrams were obtained both at the Multichannel Flare Spectrograph (MFS) and at the Large Horizontal Spectrograph (HSFA2). The catalogue contains basic information about time of observation of solar flares, their location in AR, importance, availability of related data at the selected X-ray, EUV and radio instruments. The catalogue is available at www.asu.cas.cz/~sos/flare_archive.html.

  18. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation

    SciTech Connect

    Moix, Jeremy M.; Ma, Jian; Cao, Jianshu

    2015-03-07

    A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters.

  19. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation.

    PubMed

    Moix, Jeremy M; Ma, Jian; Cao, Jianshu

    2015-03-07

    A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters.

  20. Electric field effect on the nonlinear and linear intersubband absorption spectra in CdTe/ZnTe spherical quantum dot

    NASA Astrophysics Data System (ADS)

    Kostić, Radmila; Stojanović, Dušanka

    2012-01-01

    Linear and nonlinear absorption spectra of neutral (D0) hydrogenic impurity located at the center of the CdTe/ZnTe spherical quantum dot (QD) were investigated after assuming a spherically symmetric confining potential of finite depth. Calculations were performed under the effective mass approximation on the basis of exact solution of the Schrödinger and Poisson equations. Eigenfunctions were expressed in terms of the Whittaker and Coulomb wave functions. Results for D0 impurity energies of ground 1s, and excited 2p, 3d, and 2s states strongly depend on QD radius if it does not exceed a few effective Bohr radius. Wave functions and Stark shift energy levels in external electric field were determined from a variational-calculus approach for states labeled m=0. The absorption spectra for intersubband transitions were found to depend strongly on the QD radius. Whether or not the impurity is present, the peak energy of absorption decreases with increasing QD radius. An external electric field increases the transition energy but does not significantly change absorption characteristics.

  1. Searching for narrow absorption and emission lines in XMM-Newton spectra of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Campana, S.; Braito, V.; D'Avanzo, P.; Ghirlanda, G.; Melandri, A.; Pescalli, A.; Salafia, O. S.; Salvaterra, R.; Tagliaferri, G.; Vergani, S. D.

    2016-08-01

    We present the results of a spectroscopic search for narrow emission and absorption features in the X-ray spectra of long gamma-ray burst (GRB) afterglows. Using XMM-Newton data, both EPIC and RGS spectra, of six bright (fluence > 10-7 erg cm-2) and relatively nearby (z = 0.54-1.41) GRBs, we performed a blind search for emission or absorption lines that could be related to a high cloud density or metal-rich gas in the environ close to the GRBs. We detected five emission features in four of the six GRBs with an overall statistical significance, assessed through Monte Carlo simulations, of ≲ 3.0σ. Most of the lines are detected around the observed energy of the oxygen edge at ~ 0.5 keV, suggesting that they are not related to the GRB environment but are most likely of Galactic origin. No significant absorption features were detected. A spectral fitting with a free Galactic column density (NH) testing different models for the Galactic absorption confirms this origin because we found an indication of an excess of Galactic NH in these four GRBs with respect to the tabulated values.

  2. pH-dependent absorption spectra of rhodopsin mutant E113Q: On the role of counterions and protein

    NASA Astrophysics Data System (ADS)

    Xie, Peng; Zhou, Panwang; Alsaedi, Ahmed; Zhang, Yan

    2017-03-01

    The absorption spectra of bovine rhodopsin mutant E113Q in solutions were investigated at the molecular level by using a hybrid quantum mechanics/molecular mechanics (QM/MM) method. The calculations suggest the mechanism of the absorption variations of E113Q at different pH values. The results indicate that the polarizations of the counterions in the vicinity of Schiff base under protonation and unprotonation states of the mutant E113Q would be a crucial factor to change the energy gap of the retinal to tune the absorption spectra. Glu-181 residue, which is close to the chromophore, cannot serve as the counterion of the protonated Schiff base of E113Q in dark state. Moreover, the results of the absorption maximum in mutant E113Q with the various anions (Cl-, Br-, I- and NO3-) manifested that the mutant E113Q could have the potential for use as a template of anion biosensors at visible wavelength.

  3. Low-level optical absorption phenomena in organic thin films for solar cell applications investigated by highly sensitive photocurrent and photothermal techniques

    NASA Astrophysics Data System (ADS)

    Goris, Ludwig J.; Haenen, Ken; Nesladek, Milos; Poruba, A.; Vanecek, M.; Wagner, P.; Lutsen, Laurence J.; Manca, Jean; Vanderzande, Dirk; De Schepper, Luc

    2004-09-01

    Optical absorption phenomena and in particular sub band gap absorption features are of great importance in the understanding of processes of charge generation and transport in organic pure and composite semiconductor films. To come towards this objective, an alternative and high sensitive spectroscopic approach is introduced to examine the absorption of light in pure and compound organic semiconductors. Because sub band gap absorption features are typically characterized by very low absorption coefficients, it is not possible to resolve them using common transmission and reflection measurements and high sensitive alternatives are needed. Therefore, a combination of photocurrent (Constant Photocurrent Method CPM/Fourier Transform Photocurrent Spectroscopy FT-PS) and photothermal techniques (Photothermal Deflection Spectroscopy PDS) has been used, increasing sensitivity by a factor of thousand, reaching detectable absorption coefficients ((E) down to 0.1 cm-1. In this way, the dynamic range of measurable absorption coefficients is increased by several orders of magnitude compared to transmission/reflection measurements. These techniques have been used here to characterize ground state absorption of thin films of MDMO-PPV, PCBM and a mixture of both materials in a 1:4 ratio, as typically used in a standard active layer in a fully organic solar cell. The spectra reveal defect related absorption phenomena and significant indication of existing interaction in the ground state between both materials, contrary to the widely spread conviction that this is not the case. Experimental details of the techniques and measurement procedures are explained.

  4. Absorption and scattering of light by pigment particles in solar-absorbing paints.

    PubMed

    Gunde, M K; Orel, Z C

    2000-02-01

    The optical properties of black-pigmented solar absorbing paint were analyzed phenomenologically by use of the Kubelka-Munk theory, including correction for reflection on front and rear surfaces. The effective absorption and scattering coefficients and the efficiency curves for absorption and scattering were calculated for coatings with different pigment-to-volume concentration ratios. The dependence of absorption and scattering efficiency on the pigment-to-volume concentration ratio was analyzed by reference to theoretical data in the literature. It was concluded that, during drying and curing of coatings, spherical primary pigment particles most likely collect in elongated groups oriented perpendicularly to the coating surface. Formation of such groups helps in understanding the independent measurements of solar absorptance.

  5. Integration of Semiconducting Sulfides for Full-Spectrum Solar Energy Absorption and Efficient Charge Separation.

    PubMed

    Zhuang, Tao-Tao; Liu, Yan; Li, Yi; Zhao, Yuan; Wu, Liang; Jiang, Jun; Yu, Shu-Hong

    2016-05-23

    The full harvest of solar energy by semiconductors requires a material that simultaneously absorbs across the whole solar spectrum and collects photogenerated electrons and holes separately. The stepwise integration of three semiconducting sulfides, namely ZnS, CdS, and Cu2-x S, into a single nanocrystal, led to a unique ternary multi-node sheath ZnS-CdS-Cu2-x S heteronanorod for full-spectrum solar energy absorption. Localized surface plasmon resonance (LSPR) in the nonstoichiometric copper sulfide nanostructures enables effective NIR absorption. More significantly, the construction of pn heterojunctions between Cu2-x S and CdS leads to staggered gaps, as confirmed by first-principles simulations. This band alignment causes effective electron-hole separation in the ternary system and hence enables efficient solar energy conversion.

  6. SELF-ABSORPTION IN THE SOLAR TRANSITION REGION

    SciTech Connect

    Yan, Limei; He, Jiansen; Wang, Linghua; Tu, Chuanyi; Zhang, Lei; Peter, Hardi; Chen, Feng; Barczynski, Krzysztof; Tian, Hui; Xia, Lidong

    2015-09-20

    Transient brightenings in the transition region of the Sun have been studied for decades and are usually related to magnetic reconnection. Recently, absorption features due to chromospheric lines have been identified in transition region emission lines raising the question of the thermal stratification during such reconnection events. We analyze data from the Interface Region Imaging Spectrograph in an emerging active region. Here the spectral profiles show clear self-absorption features in the transition region lines of Si iv. While some indications existed that opacity effects might play some role in strong transition region lines, self-absorption has not been observed before. We show why previous instruments could not observe such self-absorption features, and discuss some implications of this observation for the corresponding structure of reconnection events in the atmosphere. Based on this we speculate that a range of phenomena, such as explosive events, blinkers or Ellerman bombs, are just different aspects of the same reconnection event occurring at different heights in the atmosphere.

  7. Broadband absorption enhancement of organic solar cells with interstitial lattice patterned metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Luzhou; Choy, Wallace C. H.; Sha, Wei E. I.

    2013-06-01

    Light blocking induced by top patterned nanostructures is a fundamental limit in solar cells absorption. Here we propose an interstitial lattice patterned organic solar cell which can improve the light blocking of traditional square lattice and achieve broadband absorption enhancement. Compared to square lattice design, the plasmonic mode couplings between individual metallic nanoparticles in the interstitial lattice are more versatile and much stronger. Moreover, plasmonic modes can couple to the guided modes, resulting in large enhancement factor at some wavelengths. The interstitial lattice concept will be a broad interest and great help for high-performance photovoltaics.

  8. Solar irradiance in the stratosphere - Implications for the Herzberg continuum absorption of O2

    NASA Technical Reports Server (NTRS)

    Frederick, J. E.; Mentall, J. E.

    1982-01-01

    A set of solar irradiance observations is analyzed that were performed from the third Solar Absorption Balloon Experiment (SABE-3) as the payload ascended through the stratosphere from 32 to 39 km. Comparison of these data with calculations of the attenuated irradiance based on simultaneous ozone and pressure measurements made from the payload suggests a refinement of the cross section values used in photochemical models. More ultraviolet radiation in the 200-210 nm spectral region reaches the middle stratosphere than is predicted by the absorption data presently available. It is suggested that significantly smaller values for the Herzberg continuum of O2 be used in future models.

  9. Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings.

    PubMed

    Munday, Jeremy N; Atwater, Harry A

    2011-06-08

    We describe an ultrathin solar cell architecture that combines the benefits of both plasmonic photovoltaics and traditional antireflection coatings. Spatially resolved electron generation rates are used to determine the total integrated current improvement under AM1.5G solar illumination, which can reach a factor of 1.8. The frequency-dependent absorption is found to strongly correlate with the occupation of optical modes within the structure, and the improved absorption is mainly attributed to improved coupling to guided modes rather than localized resonant modes.

  10. Carbon-Nanohorn Based Nanofluids for a Direct Absorption Solar Collector for Civil Application.

    PubMed

    Moradi, A; Sani, E; Simonetti, M; Francini, F; Chiavazzo, E; Asinari, P

    2015-05-01

    Direct solar absorption has been often considered in the past as a possible solution for solar thermal collectors for residential and small commercial applications. A direct absorption could indeed improve the performance of solar collectors by skipping one step of the heat transfer mechanism in standard devices and having a more convenient temperature distribution inside the collector. Classical solar thermal collectors have a metal sheet as absorber, designed such that water has the minimum temperature in each transversal section, in order to collect as much solar thermal energy as possible. On the other hand, in a direct configuration, the hottest part of the system is the operating fluid and this allows to have a more efficient conversion. Nanofluids, i.e., fluids with a suspension of nanoparticles, such as carbon nanohorns, could be a good and innovative family of absorbing fluids owing to their higher absorption coefficient compared to the base fluid and stability under moderate temperature gradients. Moreover, carbon nanohorns offer the remarkable advantage of a reduced toxicity over other carbon nanoparticles. In this work, a three-dimensional model of the absorption phenomena in nanofluids within a cylindrical tube is coupled with a computational fluid dynamics (CFD) analysis of the flow and temperature field. Measured optical properties of nanofluids at different concentrations have been implemented in the model. Heat losses due to conduction, convection and radiation at the boundaries are considered as well.

  11. Warming trends in Asia amplified by brown cloud solar absorption.

    PubMed

    Ramanathan, Veerabhadran; Ramana, Muvva V; Roberts, Gregory; Kim, Dohyeong; Corrigan, Craig; Chung, Chul; Winker, David

    2007-08-02

    Atmospheric brown clouds are mostly the result of biomass burning and fossil fuel consumption. They consist of a mixture of light-absorbing and light-scattering aerosols and therefore contribute to atmospheric solar heating and surface cooling. The sum of the two climate forcing terms-the net aerosol forcing effect-is thought to be negative and may have masked as much as half of the global warming attributed to the recent rapid rise in greenhouse gases. There is, however, at least a fourfold uncertainty in the aerosol forcing effect. Atmospheric solar heating is a significant source of the uncertainty, because current estimates are largely derived from model studies. Here we use three lightweight unmanned aerial vehicles that were vertically stacked between 0.5 and 3 km over the polluted Indian Ocean. These unmanned aerial vehicles deployed miniaturized instruments measuring aerosol concentrations, soot amount and solar fluxes. During 18 flight missions the three unmanned aerial vehicles were flown with a horizontal separation of tens of metres or less and a temporal separation of less than ten seconds, which made it possible to measure the atmospheric solar heating rates directly. We found that atmospheric brown clouds enhanced lower atmospheric solar heating by about 50 per cent. Our general circulation model simulations, which take into account the recently observed widespread occurrence of vertically extended atmospheric brown clouds over the Indian Ocean and Asia, suggest that atmospheric brown clouds contribute as much as the recent increase in anthropogenic greenhouse gases to regional lower atmospheric warming trends. We propose that the combined warming trend of 0.25 K per decade may be sufficient to account for the observed retreat of the Himalayan glaciers.

  12. Concentrations of carbonyl sulfide and hydrogen cyanide in the free upper troposphere and lower stratosphere deduced from ATMOS/Spacelab 3 infrared solar occultation spectra

    NASA Technical Reports Server (NTRS)

    Zander, R.; Rinsland, C. P.; Russell, J. M., III; Farmer, C. B.; Norton, R. H.

    1988-01-01

    This paper presents the results on the volume mixing ratio profiles of carbonyl sulfide and hydrogen cyanide, deduced from the spectroscopic analysis of IR solar absorption spectra obtained in the occultation mode with the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument during its mission aboard Spacelab 3. A comparison of the ATMOS measurements for both northern and southern latitudes with previous field investigations at low midlatitudes shows a relatively good agreement. Southern Hemisphere volume mixing ratio profiles for both molecules were obtained for the first time, as were the profiles for the Northern Hemisphere covering the upper troposphere and the lower stratosphere simultaneously.

  13. Measurement of Solar Spectra Relating to Photosynthesis and Solar Cells: An Inquiry Lab for Secondary Science

    ERIC Educational Resources Information Center

    Ruggirello, Rachel M.; Balcerzak, Phyllis; May, Victoria L.; Blankenship, Robert E.

    2012-01-01

    The process of photosynthesis is central to science curriculum at all levels. This article describes an inquiry-based laboratory investigation developed to explore the impact of light quality on photosynthesis and to connect this process to current research on harvesting solar energy, including bioenergy, artificial photosynthesis, and solar…

  14. Simulation of the Mars surface solar spectra for optimized performance of triple junction solar cells

    NASA Technical Reports Server (NTRS)

    Edmondson, Kenneth M.; Joslin, David E.; Fetzer, Chris M.; King, Richard R.; Karam, Nasser H.; Mardesich, Nick; Stella, Paul M.; Rapp, Donald; Mueller, Robert

    2005-01-01

    The unparalleled success of the Mars Exploration Rovers (MER) powered by GaInP/GaAs/Ge triple-junction solar cells has demonstrated a lifetime for the rovers that exceeded the baseline mission duration by more than a factor of five.

  15. Consequences for sun protection factors when solar simulator spectra deviate from the spectrum of the sun.

    PubMed

    Uhlmann, B; Mann, T; Gers-Barlag, H; Alert, D; Sauermann, G

    1996-02-01

    Synopsis The sun protection factor (SPF) of two products, one with an expected SPF of 4 and another with an expected SPF of 15 were determined, using two solar simulators: Multiport Solar UV Simulator (xenon, Solar Light, Philadelphia, PA, USA), and Supersun 5000 (metal halide, Mutzhas, Munich, Germany). The mean SPFs using the Multiport were: 4.8 for the low SPF product and 19.4 for the high SPF one. The results using the Supersun were lower: 2.6 for the low SPF product and 7.2 for the high SPF one. Relative emission spectra of the two sources were recorded using a fluorescence spectrophotometer in bioluminescence mode. Efficacy spectra were calculated and compared with the corresponding spectrum of natural sunlight. It was evident that the spectral power of the xenon source is too high in the UVB, leading to overestimation of SPFs, whereas the Supersun irradiator emits too much in the UVA, resulting in too low SPFs. Heat effects and photodegradation of UV filters are discussed as further possible reasons for the discrepancies between the experimentally determined SPFs. Our results confirm a recent publication about theoretical SPFs, calculated with emission spectra of a xenon source and spectra of the sun at different elevation angles, where the authors provide evidence that in natural sunlight the contribution of UVA to total UV radiation is twice as high as in a xenon source. This may contribute to an understanding of why sunscreens tested according to the FDA method (xenon sources) often yield higher SPFs than those obtained from European testing procedures.

  16. Comparative investigation of the energetic ion spectra comprising the magnetospheric ring currents of the solar system.

    PubMed

    Mauk, B H

    2014-12-01

    Investigated here are factors that control the intensities and shapes of energetic ion spectra that make up the ring current populations of the strongly magnetized planets of the solar system, specifically those of Earth, Jupiter, Saturn, Uranus, and Neptune. Following a previous and similar comparative investigation of radiation belt electrons, we here turn our attention to ions. Specifically, we examine the possible role of the differential ion Kennel-Petschek limit, as moderated by Electromagnetic Ion Cyclotron (EMIC) waves, as a standard for comparing the most intense ion spectra within the strongly magnetized planetary magnetospheres. In carrying out this investigation, the substantial complexities engendered by the very different ion composition distributions of these diverse magnetospheres must be addressed, given that the dispersion properties of the EMIC waves are strongly determined by the ion composition of the plasmas within which the waves propagate. Chosen for comparison are the ion spectra within these systems that are the most intense observed, specifically at 100 keV and 1 MeV. We find that Earth and Jupiter are unique in having their most intense ion spectra likely limited and sculpted by the Kennel-Petschek process. The ion spectra of Saturn, Uranus, and Neptune reside far below their respective limits and are likely limited by interactions with gas and dust (Saturn) and by the absence of robust ion acceleration processes (Uranus and Neptune). Suggestions are provided for further testing the efficacy of the differential Kennel-Petschek limit for ions using the Van Allen Probes.

  17. The Development of Kolmogoroff-Like Power Spectra in the Expanding Solar Wind

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Roberts, D. A.; Ghosh, S.; Deane, A. E.

    1998-01-01

    Power spectra of the solar wind fluctuations consistently exhibit a -5/3 power-law slope consistent with the idea that the medium is undergoing a turbulent cascade as seen in ordinary fluids. This is surprising both because the radial streams and the magnetic field threading the plasma will induce anisotropies and because the expansion of the wind will tend to lead to the suppression of nonlinear cascades. These conditions violate the assumptions used by Kolmogoroff to derive the -5/3 law. We have studied this issue using a compressible IMHD code in spherical coordinates and have shown that a -5/3 spectrum results from a broad-band flat-spectrum input condition that is sheared and distorted by a current sheet as the wind expands. We determine spectra from time series taken at selected points in the domain as is done with observational spacecraft data. The spectra are very like those we have seen in nonexpanding runs and exhibit evolution and compressive characteristics very similar to those seen in observations. We will report on these results in addition to a new set of runs intended to constrain the necessary and sufficient conditions for the spectra to have this form. The simulation also allows us to examine the anisotropy for the spectra to attempt to determine why the result of an isotropic magnetofluid is obtained in a highly anisotropic situation.

  18. Damping and power spectra of quasi-periodic intensity disturbances above a solar polar coronal hole

    NASA Astrophysics Data System (ADS)

    Jiao, Fang-Ran; Xia, Li-Dong; Huang, Zheng-Hua; Li, Bo; Fu, Hui; Yuan, Ding; Chandrashekhar, Kalugodu

    2016-06-01

    We study intensity disturbances above a solar polar coronal hole that can be seen in the AIA 171 Å and 193 Å passbands, aiming to provide more insights into their physical nature. The damping and power spectra of the intensity disturbances with frequencies from 0.07 mHz to 10.5 mHz are investigated. The damping of the intensity disturbances tends to be stronger at lower frequencies, and their damping behavior below 980″ (for comparison, the limb is at 945″) is different from what happens above. No significant difference is found between the damping of the intensity disturbances in the AIA 171 Å and that in the AIA 193 Å. The indices of the power spectra of the intensity disturbances are found to be slightly smaller in the AIA 171 Å than in the AIA 193 Å, but the difference is within one standard deviation. An additional enhanced component is present in the power spectra in a period range of 8-40 min at lower heights. The power spectra of a spicule is highly correlated with its associated intensity disturbance, which suggests that the power spectra of the intensity disturbances might be a mixture of spicules and wave activities. We suggest that each intensity disturbance in the polar coronal hole is possibly a series of independent slow magnetoacoustic waves triggered by spicular activities.

  19. Plasmonic absorption enhancement in organic solar cells by nano disks in a buffer layer

    NASA Astrophysics Data System (ADS)

    Kim, Inho; Seok Jeong, Doo; Seong Lee, Taek; Seong Lee, Wook; Lee, Kyeong-Seok

    2012-05-01

    We demonstrate using finite-difference-time-domain calculations that embedding Ag nano disks (NDs) in the buffer layers of thin P3HT:PCBM organic solar cells can enhance optical absorption in the active layers at specific wavelength range. We show that the aspect ratio of the NDs is a key parameter for strong plasmonic absorption enhancement. Two different plasmonic absorption bands are observed stemming from optical refractive index differences among the layers surrounding the NDs in the solar cell devices. One absorption band by the surface plasmon mode localized at the interface of indium tin oxide/ND, which is undesirable for plasmonic absorption enhancement in the active layer, become negligible as the aspect ratio of the diameter-to-height increased. The other absorption band by the dipole-like surface plasmon mode, which plays a main role in enhancing the absorption in the active layer, is spectrally tunable by adjusting the aspect ratio of the NDs. The influences of diameter, height, and coverage of the NDs on optical absorption in the active layer are discussed. Embedding the optimal size NDs in the buffer layer leads to the enhanced total absorption in the 50 nm thick active layer by 16% relative to that without the NDs, and the optical absorption keeps enhanced with increasing the active layer thickness up to 90 nm. However, further increases in the active layer thickness are detrimental to absorption enhancement, which is considered to be caused by destructive interference between scattered light by the NDs and incident light.

  20. Charge composition and energy spectra of ancient solar flare heavy nuclei. [in carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Goswami, J. N.; Lal, D.; Macdougall, J. D.

    1980-01-01

    Nuclear tracks in olivine grains from three carbonaceous chondrites are analyzed to determine the energy spectra and charge compositions of solar flare heavy nuclei during the early history of the solar system. Track length measurements of grains irradiated before compaction into meteorites over 4 billion years ago were performed accompanied by calibration experiments using heavy ion beams from an accelerator to identify tracks formed by very heavy (Z between 20 and 28) and very very heavy (Z greater than or equal to 30) groups of nuclei in the Murchison, Murray and Cold Bokkeveld meteorite grains. The time-averaged spectral shape of the solar flare very heavy nuclei is found to be similar to that obtained in lunar sample studies and direct observations. The meteorite grains also reproduce the currently observed enrichment of low-energy heavy ions in solar cosmic rays with respect to photospheric levels, with enhancement factors from 2 to 12 in the energy interval 6-10 MeV/n. Variations of very very heavy/very heavy nuclei abundance ratios within individual kinetic energy intervals are interpreted as representing possible changes of solar flare activity on time scales of 10,000 years.

  1. The Effects of Interplanetary Transport in the Event-intergrated Solar Energetic Particle Spectra

    NASA Astrophysics Data System (ADS)

    Zhao, Lulu; Zhang, Ming; Rassoul, Hamid K.

    2017-02-01

    Previous investigations on the energy spectra of solar energetic particle (SEP) events revealed that the energy spectra observed at 1 au often show double power laws with break energies from one to tens of MeV/nuc. In order to determine whether the double power-law features result from the SEP source or the interplanetary transport process from the Sun to 1 au, we separately analyze the SEP spectra in the decay phase, during which the transport effect is minimum. In this paper, we reported three events observed by the Interplanetary Monitory Platform 8 spacecraft, which occurred on 1977 September 19, November 22, and 1979 March 1. For the first two events, the event-integrated spectra of protons possess double power-law profiles with break energies in a range of several MeV to tens of MeV, while the spectra integrated in the decay (reservoir) phase yield single power laws. Moreover, a general trend from a double power law at the rising phase to a single power law at the decay phase is observed. For the third event, both the event-integrated and the reservoir spectra show double power-law features. However, the difference between the low- and high-energy power-law indices is smaller for the reservoir spectrum than the event-integrated spectrum. These features were reproduced by solving the 1D diffusion equation analytically and we suggest that the transport process, especially the diffusion process, plays an important role in breaking the energy spectra.

  2. Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires.

    PubMed

    Massiot, Inès; Colin, Clément; Sauvan, Christophe; Lalanne, Philippe; Cabarrocas, Pere Roca I; Pelouard, Jean-Luc; Collin, Stéphane

    2013-05-06

    We propose a design to confine light absorption in flat and ultra-thin amorphous silicon solar cells with a one-dimensional silver grating embedded in the front window of the cell. We show numerically that multi-resonant light trapping is achieved in both TE and TM polarizations. Each resonance is analyzed in detail and modeled by Fabry-Perot resonances or guided modes via grating coupling. This approach is generalized to a complete amorphous silicon solar cell, with the additional degrees of freedom provided by the buffer layers. These results could guide the design of resonant structures for optimized ultra-thin solar cells.

  3. Energy Spectra, Composition, and Other Properties of Ground-Level Events During Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; COhen, C. M. S.; Labrador, A. W.; Leske, R. A.; Looper, M. D.; Haggerty, D. K.; Mason, G. M.; Mazur, J. E.; vonRosenvinge, T. T.

    2012-01-01

    We report spacecraft measurements of the energy spectra of solar protons and other solar energetic particle properties during the 16 Ground Level Events (GLEs) of Solar Cycle 23. The measurements were made by eight instruments on the ACE, GOES, SAMPBX, and STEREO spacecraft and extend from approximately 0.1 to approximately 500-700 MeV. All of the proton spectra exhibit spectral breaks at energies ranging from approximately 2 to approximately 46 MeV and all are well fit by a double power-law shape. A comparison of GLE events with a larger sample of other solar energetic particle (SEP) events shows that the typical spectral indices are harder in GLE events, with a mean slope of -3.18 at greater than 40 MeV/nuc. In the energy range 45 to 80 MeV/nucleon about approximately 50% of GLE events have properties in common with impulsive He-3-rich SEP events, including enrichments in Ne/O, Fe/O, Ne-22/Ne-20, and elevated mean charge states of Fe. These He-3 rich events contribute to the seed population accelerated by CME-driven shocks. An analysis is presented of whether highly-ionized Fe ions observed in five events could be due to electron stripping during shock acceleration in the low corona. Making use of stripping calculations by others and a coronal density model, we can account for events with mean Fe charge states of (Q(sub Fe) is approximately equal to +20 if the acceleration starts at approximately 1.24-1.6 solar radii, consistent with recent comparisons of CME trajectories and type-II radio bursts. In addition, we suggest that gradual stripping of remnant ions from earlier large SEP events may also contribute a highly-ionized suprathermal seed population. We also discuss how observed SEP spectral slopes relate to the energetics of particle acceleration in GLE and other large SEP events.

  4. Atmospheric Solar Absorption measurements in the lowest 3-km of the atmosphere with small UAVs

    NASA Astrophysics Data System (ADS)

    Ramana, M. V.; Ramanathan, V.; Roberts, G.; Corrigan, C.; Nguyen, H. V.; McFarquhar, G.

    2007-12-01

    This paper reports unique measurements of atmospheric solar absorption and heating rates in the visible (0.4- 0.7 Ým) and broadband (0.3-2.8 Ým) spectral regions using vertically stacked multiple light weight autonomous unmanned aerial vehicles (UAVs) during the Maldives autonomous UAV campaign (MAC). The UAVs and ground based remote sensing instruments determined most of the parameters required for calculating the albedo and vertical distribution of solar fluxes. Measured fluxes have been compared with those derived from a Monte-Carlo radiative transfer algorithm which can incorporate both gaseous and aerosol components. The analysis focuses on a cloud-free day when the air was polluted due to long range transport from India, and the mean aerosol optical depth (AOD) was 0.31 and mean single scattering albedo was 0.92. The UAV measured absorption AOD was 0.019 which agreed within 20% of the value of 0.024 reported by a ground based instrument. The observed and simulated solar absorption agreed within 5% above 1.0 km and aerosol absorption accounted for 30% to 50% of the absorption depending upon the altitude and solar zenith angle. Thus there was no need to invoke anomalous or excess absorption or unknown physics in clear skies, provided we account for aerosol black carbon. The diurnal mean absorption values for altitudes between 0.5 and 3.0 km msl were observed to be 41¡Ó3 Wm-2 (1.5 K/day) in the broadband region and 8¡Ó2 Wm-2 (0.3 K/day) in the visible region. Future investigations into the atmospheric absorption in cloudy skies will characterize the spatial and temporal variation of the cloudy atmosphere in sufficient detail to simulate the vertical distribution of net solar fluxes to permit comparison with the collected radiative observations. This next phase will utilize 4 stacked UAVs to observe the extended cloud decks off the coast of California. A combination of observations and models will then be used to assess if the amount of solar absorption

  5. Membrane-Based Absorption Refrigeration Systems: Nanoengineered Membrane-Based Absorption Cooling for Buildings Using Unconcentrated Solar & Waste Heat

    SciTech Connect

    2010-09-01

    BEETIT Project: UFL is improving a refrigeration system that uses low quality heat to provide the energy needed to drive cooling. This system, known as absorption refrigeration system (ARS), typically consists of large coils that transfer heat. Unfortunately, these large heat exchanger coils are responsible for bulkiness and high cost of ARS. UFL is using new materials as well as system design innovations to develop nanoengineered membranes to allow for enhanced heat exchange that reduces bulkiness. UFL’s design allows for compact, cheaper and more reliable use of ARS that use solar or waste heat.

  6. A Method for the Estimation of p-Mode Parameters from Averaged Solar Oscillation Power Spectra

    NASA Astrophysics Data System (ADS)

    Reiter, J.; Rhodes, E. J., Jr.; Kosovichev, A. G.; Schou, J.; Scherrer, P. H.; Larson, T. P.

    2015-04-01

    A new fitting methodology is presented that is equally well suited for the estimation of low-, medium-, and high-degree mode parameters from m-averaged solar oscillation power spectra of widely differing spectral resolution. This method, which we call the “Windowed, MuLTiple-Peak, averaged-spectrum” or WMLTP Method, constructs a theoretical profile by convolving the weighted sum of the profiles of the modes appearing in the fitting box with the power spectrum of the window function of the observing run, using weights from a leakage matrix that takes into account observational and physical effects, such as the distortion of modes by solar latitudinal differential rotation. We demonstrate that the WMLTP Method makes substantial improvements in the inferences of the properties of the solar oscillations in comparison with a previous method, which employed a single profile to represent each spectral peak. We also present an inversion for the internal solar structure, which is based upon 6366 modes that we computed using the WMLTP method on the 66 day 2010 Solar and Heliospheric Observatory/MDI Dynamics Run. To improve both the numerical stability and reliability of the inversion, we developed a new procedure for the identification and correction of outliers in a frequency dataset. We present evidence for a pronounced departure of the sound speed in the outer half of the solar convection zone and in the subsurface shear layer from the radial sound speed profile contained in Model S of Christensen-Dalsgaard and his collaborators that existed in the rising phase of Solar Cycle 24 during mid-2010.

  7. Stratospheric HNO3 measurements from 0.002/cm resolution solar occultation spectra and improved spectroscopic line parameters in the 5.8-micron region

    NASA Astrophysics Data System (ADS)

    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Kosters, J. J.; Murcray, D. G.; Rinsland, C. P.; Flaud, J.-M.; Camy-Peyret, C.

    1992-02-01

    Very-high-resolution FWHM solar-occultation spectra are investigated with a balloon-borne interferometer using revised spectroscopic line parameters for HNO3, O3, and H2O. The O3 and H2O data are evaluated to determine their capacity for interference in the HNO3 line which is studied in the nu sub 2 band at 5.8 microns. The line parameters developed with the stratospheric data are compared to data based on a HITRAN compilation as well as laboratory spectra with a 0.002/cm resolution. The line list is calculated and shown to include J and Ka transitions which improve the line parameters for HNO3 by accounting for the weaker absorption features in the stratospheric spectra. The stratospheric HNO3 profile developed analytically is compared to those based on reported measurements, and the one developed with the stratospheric solar spectra is found to be consistent with the measurements and confirm inherent measurement biases.

  8. Stratospheric HNO3 measurements from 0.002/cm resolution solar occultation spectra and improved spectroscopic line parameters in the 5.8-micron region

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Kosters, J. J.; Murcray, D. G.; Rinsland, C. P.; Flaud, J.-M.; Camy-Peyret, C.

    1992-01-01

    Very-high-resolution FWHM solar-occultation spectra are investigated with a balloon-borne interferometer using revised spectroscopic line parameters for HNO3, O3, and H2O. The O3 and H2O data are evaluated to determine their capacity for interference in the HNO3 line which is studied in the nu sub 2 band at 5.8 microns. The line parameters developed with the stratospheric data are compared to data based on a HITRAN compilation as well as laboratory spectra with a 0.002/cm resolution. The line list is calculated and shown to include J and Ka transitions which improve the line parameters for HNO3 by accounting for the weaker absorption features in the stratospheric spectra. The stratospheric HNO3 profile developed analytically is compared to those based on reported measurements, and the one developed with the stratospheric solar spectra is found to be consistent with the measurements and confirm inherent measurement biases.

  9. Franck-Condon analysis of the S0 --> T1 absorption and phosphorescence spectra of biphenyl and bridged derivatives

    NASA Astrophysics Data System (ADS)

    Negri, Fabrizia; Zgierski, Marek Z.

    1992-11-01

    The equilibrium geometry and the vibrational force field of the ground and the lowest triplet electronic states of biphenyl and three bridged derivatives-biphenylene, fluorene and phenanthrene-are computed by using an updated version of the QCFF/PI (Quantum Chemical Force Field/π electron) Hamiltonian. The displacement parameters between T1 and S0 are obtained and used to model the S0→T1 absorption and the phosphorescence spectra. The calculated Franck-Condon envelopes are found to be in excellent agreement with the vibrational structure of the observed spectra. The common features of the phosphorescence spectra of biphenyl and fluorene are related to the same orbital nature of the lowest triplet state. The observed asymmetry between the phosphorescence and singlet-triplet absorption spectra of biphenyl is reproduced when the twisted equilibrium geometry of S0 is considered. It is shown that evidence of the nonplanarity of the ground state of biphenyl is manifested by the lower intensity of the band observed in the phosphorescence at 747 cm-1 with respect to the intensity of the same band in fluorene. The increased vibrational activity calculated in the lower frequency region for biphenylene and phenanthrene agrees with the observed spectra and reflects the different orbital nature of the lowest triplet state of the two strongly perturbed bridged derivatives with respect to biphenyl and fluorene. From the analysis of the computed vibrational frequencies, it is suggested that the false origin of the symmetry forbidden phosphorescence of biphenylene is due to the lowest out-of-plane mode of au symmetry.

  10. EVOLUTION OF MAGNETIC HELICITY AND ENERGY SPECTRA OF SOLAR ACTIVE REGIONS

    SciTech Connect

    Zhang, Hongqi; Brandenburg, Axel; Sokoloff, D. D.

    2016-03-10

    We adopt an isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field to estimate the magnetic energy and helicity spectra as well as current helicity spectra of two individual active regions (NOAA 11158 and NOAA 11515) and the change of the spectral indices during their development as well as during the solar cycle. The departure of the spectral indices of magnetic energy and current helicity from 5/3 are analyzed, and it is found that it is lower than the spectral index of the magnetic energy spectrum. Furthermore, the fractional magnetic helicity tends to increase when the scale of the energy-carrying magnetic structures increases. The magnetic helicity of NOAA 11515 violates the expected hemispheric sign rule, which is interpreted as an effect of enhanced field strengths at scales larger than 30–60 Mm with opposite signs of helicity. This is consistent with the general cycle dependence, which shows that around the solar maximum the magnetic energy and helicity spectra are steeper, emphasizing the large-scale field.

  11. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator.

    PubMed

    Xu, Guoying; Chen, Wei; Deng, Shiming; Zhang, Xiaosong; Zhao, Sainan

    2015-12-04

    Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors' tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC) employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC). The theoretical analysis results suggested that the fluid's temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed.

  12. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator

    PubMed Central

    Xu, Guoying; Chen, Wei; Deng, Shiming; Zhang, Xiaosong; Zhao, Sainan

    2015-01-01

    Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors’ tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC) employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC). The theoretical analysis results suggested that the fluid’s temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed. PMID:28347112

  13. Sticking to (first) principles: quantum molecular dynamics and Bayesian probabilistic methods to simulate aquatic pollutant absorption spectra.

    PubMed

    Trerayapiwat, Kasidet; Ricke, Nathan; Cohen, Peter; Poblete, Alex; Rudel, Holly; Eustis, Soren N

    2016-08-10

    This work explores the relationship between theoretically predicted excitation energies and experimental molar absorption spectra as they pertain to environmental aquatic photochemistry. An overview of pertinent Quantum Chemical descriptions of sunlight-driven electronic transitions in organic pollutants is presented. Second, a combined molecular dynamics (MD), time-dependent density functional theory (TD-DFT) analysis of the ultraviolet to visible (UV-Vis) absorption spectra of six model organic compounds is presented alongside accurate experimental data. The functional relationship between the experimentally observed molar absorption spectrum and the discrete quantum transitions is examined. A rigorous comparison of the accuracy of the theoretical transition energies (ΔES0→Sn) and oscillator strength (fS0→Sn) is afforded by the probabilistic convolution and deconvolution procedure described. This method of deconvolution of experimental spectra using a Gaussian Mixture Model combined with Bayesian Information Criteria (BIC) to determine the mean (μ) and standard deviation (σ) as well as the number of observed singlet to singlet transition energy state distributions. This procedure allows a direct comparison of the one-electron (quantum) transitions that are the result of quantum chemical calculations and the ensemble of non-adiabatic quantum states that produce the macroscopic effect of a molar absorption spectrum. Poor agreement between the vertical excitation energies produced from TD-DFT calculations with five different functionals (CAM-B3LYP, PBE0, M06-2X, BP86, and LC-BLYP) suggest a failure of the theory to capture the low energy, environmentally important, electronic transitions in our model organic pollutants. However, the method of explicit-solvation of the organic solute using the quantum Effective Fragment Potential (EFP) in a density functional molecular dynamics trajectory simulation shows promise as a robust model of the hydrated organic

  14. [The absorption and fluorescence spectra of the cyanobacterial phycobilins of cryptoendolithic lichens in the high-polar region of Antarctica].

    PubMed

    Erokhina, L G; Shatilovich, A V; Kaminskaia, O P; Gilichinskiĭ, D A

    2002-01-01

    The algologically pure cultures of the green-brown cyanobacterium Chroococcidiopsis sp. and three cyanobacteria of the genus Gloeocapsa, the blue-green Gloeocapsa sp.1, the brown Gloeocapsa sp.2, and the red-orange Gloeocapsa sp.3, were isolated from sandstones and rock fissures in the high-polar regions of Antarctica. These cyanobacteria are the most widespread phycobionts of cryptoendolithic lichens in these regions. The comparative analysis of the absorption and the second-derivative absorption spectra of the cyanobacteria revealed considerable differences in the content of chlorophyll a and in the content and composition of carotenoids and phycobiliproteins. In addition to phycocyanin, allophycocyanin, and allophycocyanin B, which were present in all of the cyanobacteria studied, Gloeocapsa sp.2 also contained phycoerythrocyanin and Gloeocapsa sp.3 phycoerythrocyanin and C-phycoerythrin (the latter pigment is typical of nitrogen-fixing cyanobacteria). The fluorescence spectra of Gloeocapsa sp.2 and Gloeocapsa sp.3 considerably differed from the fluorescence spectra of the other cyanobacteria as well. The data obtained suggest that various zones of the lichens may be dominated either by photoheterotrophic or photoautotrophic cyanobacterial phycobionts, which differ in the content and composition of photosynthetic pigments.

  15. a Theoretical Model for Wide-Band Infrared-Absorption Molecular Spectra at any Pressure: Fiction or Reality?

    NASA Astrophysics Data System (ADS)

    Buldyreva, Jeanna; Vander Auwera, Jean

    2014-06-01

    Various atmospheric applications require modeling of infrared absorption by the main atmospheric species in wide ranges of frequencies, pressures and temperatures. For different pressure regimes, different mechanisms are responsible for the observed intensities of vibration-rotation line manifolds, and the structure of the bands changes drastically when going from low to high densities. Therefore, no universal theoretical model exists presently to interpret simultaneously collapsed band-shapes observed at very high pressures and isolated-line shapes recorded in sub-atmospheric regimes. Using CO_2 absorption spectra as an example, we introduce some improvements in the non-Markovian Energy-Corrected Sudden model, developed for high-density spectra of arbitrary tensorial rank and generalized recently to parallel and perpendicular infrared absorption bands, and test the applicability of this approach for the case of nearly Doppler pressure regime via comparisons with recently recorded experimental intensities. J.V. Buldyreva and L. Bonamy, Phys. Rev. A 60(1), 370-376 (1999). J. Buldyreva and L. Daneshvar, J. Chem. Phys. 139, 164107 (2013). L. Daneshvar, T. Földes, J. Buldyreva, J. Vander Auwera, J. Quant. Spectrosc. Radiat. Transfer 2014 (to be submitted).

  16. SYNCHROTRON POLARIZATION AND SYNCHROTRON SELF-ABSORPTION SPECTRA FOR A POWER-LAW PARTICLE DISTRIBUTION WITH FINITE ENERGY RANGE

    SciTech Connect

    Fouka, M.; Ouichaoui, S. E-mail: souichaoui@usthb.dz

    2011-12-10

    We have derived asymptotic forms for the degree of polarization of the optically thin synchrotron and for synchrotron self-absorption (SSA) spectra assuming a power-law particle distribution of the form N({gamma}) {approx} {gamma}{sup -p} with {gamma}{sub 1} < {gamma} < {gamma}{sub 2}, especially for a finite high-energy limit, {gamma}{sub 2}, in the case of an arbitrary pitch angle. The new results inferred concern more especially the high-frequency range x >> {eta}{sup 2} with parameter {eta} = {gamma}{sub 2}/{gamma}{sub 1}. The calculated SSA spectra concern instantaneous photon emission where cooling effects are not considered. They have been obtained by also ignoring likely effects such as Comptonization, pair creation and annihilation, as well as magnetic photon splitting. To that aim, in addition to the two usual absorption frequencies, a third possible one has been derived and expressed in terms of the Lambert W function based on the analytical asymptotic form of the absorption coefficient, {alpha}{sub {nu}}, for the high-frequency range {nu} >> {nu}{sub 2} (with {nu}{sub 2} the synchrotron frequency corresponding to {gamma}{sub 2}). We have shown that the latter frequency may not have realistic applications in astrophysics, except in the case of an adequate set of parameters allowing one to neglect Comptonization effects. More detailed calculations and discussions are presented.

  17. Synchrotron Polarization and Synchrotron Self-absorption Spectra for a Power-law Particle Distribution with Finite Energy Range

    NASA Astrophysics Data System (ADS)

    Fouka, M.; Ouichaoui, S.

    2011-12-01

    We have derived asymptotic forms for the degree of polarization of the optically thin synchrotron and for synchrotron self-absorption (SSA) spectra assuming a power-law particle distribution of the form N(γ) ~ γ-p with γ1 < γ < γ2, especially for a finite high-energy limit, γ2, in the case of an arbitrary pitch angle. The new results inferred concern more especially the high-frequency range x Gt η2 with parameter η = γ2/γ1. The calculated SSA spectra concern instantaneous photon emission where cooling effects are not considered. They have been obtained by also ignoring likely effects such as Comptonization, pair creation and annihilation, as well as magnetic photon splitting. To that aim, in addition to the two usual absorption frequencies, a third possible one has been derived and expressed in terms of the Lambert W function based on the analytical asymptotic form of the absorption coefficient, αν, for the high-frequency range ν Gt ν2 (with ν2 the synchrotron frequency corresponding to γ2). We have shown that the latter frequency may not have realistic applications in astrophysics, except in the case of an adequate set of parameters allowing one to neglect Comptonization effects. More detailed calculations and discussions are presented.

  18. Vibrational absorption spectra from vibrational coupled cluster damped linear response functions calculated using an asymmetric Lanczos algorithm

    NASA Astrophysics Data System (ADS)

    Thomsen, Bo; Hansen, Mikkel Bo; Seidler, Peter; Christiansen, Ove

    2012-03-01

    We report the theory and implementation of vibrational coupled cluster (VCC) damped response functions. From the imaginary part of the damped VCC response function the absorption as function of frequency can be obtained, requiring formally the solution of the now complex VCC response equations. The absorption spectrum can in this formulation be seen as a matrix function of the characteristic VCC Jacobian response matrix. The asymmetric matrix version of the Lanczos method is used to generate a tridiagonal representation of the VCC response Jacobian. Solving the complex response equations in the relevant Lanczos space provides a method for calculating the VCC damped response functions and thereby subsequently the absorption spectra. The convergence behaviour of the algorithm is discussed theoretically and tested for different levels of completeness of the VCC expansion. Comparison is made with results from the recently reported [P. Seidler, M. B. Hansen, W. Györffy, D. Toffoli, and O. Christiansen, J. Chem. Phys. 132, 164105 (2010)] vibrational configuration interaction damped response function calculated using a symmetric Lanczos algorithm. Calculations of IR spectra of oxazole, cyclopropene, and uracil illustrate the usefulness of the new VCC based method.

  19. Study on the interaction between fluoroquinolones and erythrosine by absorption, fluorescence and resonance Rayleigh scattering spectra and their application

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Liu, Zhongfang; Liu, Jiangtao; Liu, Shaopu; Shen, Wei

    2008-03-01

    In pH 4.4-4.5 Britton-Robinson (BR) buffer solution, fluoroquinolone antibiotics (FLQs) including ciprofloxacin (CIP), norfloxacin (NOR), levofloxacin (LEV) and lomefloxacin (LOM) could react with erythrosine (Ery) to form 1:1 ion-association complexes, which not only resulted in the changes of the absorption spectra and the quenching of fluorescence, but also resulted in the great enhancement of resonance Rayleigh scattering (RRS). These offered some indications of the determination of fluoroquinolone antibiotics by spectrophotometric, fluorescence and resonance Rayleigh scattering methods. The detection limits for fluoroquinolone antibiotics were in the range of 0.097-0.265 μg/mL for absorption methods, 0.022-0.100 μg/mL for fluorophotometry and 0.014-0.027 μg/mL for RRS method, respectively. Among them, the RRS method had the highest sensitivity. In this work, the spectral characteristics of the absorption, fluorescence and RRS, the optimum conditions of the reactions and the properties of the analytical chemistry were investigated. The methods have been successfully applied to determination of some fluoroquinolone antibiotics in human urine samples and tablets. Taking CIP-Ery system as an example, the charge distribution, the enthalpy of formation and the mean polarizability were calculated by density function theory (DFT) method. In addition, the reasons for the enhancement of scattering spectra were discussed.

  20. Vibrational absorption spectra from vibrational coupled cluster damped linear response functions calculated using an asymmetric Lanczos algorithm.

    PubMed

    Thomsen, Bo; Hansen, Mikkel Bo; Seidler, Peter; Christiansen, Ove

    2012-03-28

    We report the theory and implementation of vibrational coupled cluster (VCC) damped response functions. From the imaginary part of the damped VCC response function the absorption as function of frequency can be obtained, requiring formally the solution of the now complex VCC response equations. The absorption spectrum can in this formulation be seen as a matrix function of the characteristic VCC Jacobian response matrix. The asymmetric matrix version of the Lanczos method is used to generate a tridiagonal representation of the VCC response Jacobian. Solving the complex response equations in the relevant Lanczos space provides a method for calculating the VCC damped response functions and thereby subsequently the absorption spectra. The convergence behaviour of the algorithm is discussed theoretically and tested for different levels of completeness of the VCC expansion. Comparison is made with results from the recently reported [P. Seidler, M. B. Hansen, W. Györffy, D. Toffoli, and O. Christiansen, J. Chem. Phys. 132, 164105 (2010)] vibrational configuration interaction damped response function calculated using a symmetric Lanczos algorithm. Calculations of IR spectra of oxazole, cyclopropene, and uracil illustrate the usefulness of the new VCC based method.