Solar Access: Issues and Policy Options | State, Local, and Tribal
: approximately 2,580 megawatts (MW) of new residential solar photovoltaic (PV) capacity was brought online in home with rooftop solar Figure 1. Example of a residential solar PV system. NREL 00565 The existing Governments | NREL Solar Access: Issues and Policy Options Solar Access: Issues and Policy
NASA Astrophysics Data System (ADS)
Fox, P.; McGuinness, D.; Cinquini, L.; West, P.; Garcia, J.; Zednik, S.; Benedict, J.
2008-05-01
This presentation will demonstrate how users and other data providers can utilize the Virtual Solar-Terrestrial Observatory (VSTO) to find, access and use diverse data holdings from the disciplines of solar, solar-terrestrial and space physics. VSTO provides a web portal, web services and a native applications programming interface for various levels of users. Since these access methods are based on semantic web technologies and refer to the VSTO ontology, users also have the option of taking advantage of value added services when accessing and using the data. We present example of both conventional use of VSTO as well as the advanced semantics use. Finally, we present our future directions for VSTO and semantic data frameworks in general.
NASA Astrophysics Data System (ADS)
Fox, P.
2007-05-01
This presentation will demonstrate how users and other data providers can utilize the Virtual Solar-Terrestrial Observatory (VSTO) to find, access and use diverse data holdings from the disciplines of solar, solar-terrestrial and space physics. VSTO provides a web portal, web services and a native applications programming interface for various levels of users. Since these access methods are based on semantic web technologies and refer to the VSTO ontology, users also have the option of taking advantage of value added services when accessing and using the data. We present example of both conventional use of VSTO as well as the advanced semantics use. Finally, we present our future directions for VSTO and semantic data frameworks in general.
The LASP Interactive Solar IRradiance Datacenter (LISIRD)
NASA Astrophysics Data System (ADS)
Pankratz, C. K.; Lindholm, D. M.; Snow, M.; Knapp, B.; Woodraska, D.; Templeman, B.; Woods, T. N.; Eparvier, F. G.; Fontenla, J.; Harder, J.; McClintock, W. E.
2007-12-01
The Laboratory for Atmospheric and Space Physics (LASP) has been making space-based measurements of solar irradiance for many decades, and thus has established an extensive catalog of past and ongoing space- based solar irradiance measurements. In order to maximize the accessibility and usability of solar irradiance data and information from multiple missions, LASP is developing the LASP Interactive Solar IRradiance Datacenter (LISIRD) to better serve the needs of researchers, educators, and the general public. This data center is providing interactive and direct access to a comprehensive set of solar spectral irradiance measurements from the soft X-ray (XUV) at 0.1 nm up to the near infrared (NIR) at 2400 nm, as well as state-of-the-art measurements of Total Solar Irradiance (TSI). LASP researchers are also responsible for an extensive set of solar irradiance models and historical solar irradiance reconstructions, which will also be accessible via this data center over time. LISIRD currently provides access to solar irradiance data sets from the SORCE, TIMED-SEE, UARS-SOLSTICE, and SME instruments, spanning 1981 to the present, as well as a Lyman Alpha composite that is available from 1947 to the present. LISIRD also provides data products of interest to the space weather community, whose needs demand high time cadence and near real-time data delivery. This poster provides an overview of the LISIRD system, summarizes the data sets currently available, describes future plans and capabilities, and provides details on how to access solar irradiance data through LISIRD's various interfaces.
Solar in Your Community Challenge Fact Sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The SunShot Prize: Solar in Your Community Challenge is a $5 million prize competition funded by the U.S. Department of Energy SunShot Initiative that aims to expand solar electricity access to low-and moderate-income (LMI) households and community organizations that haven’t been able to take advantage of the booming solar market. Because of rooftop limitations, lack of a strong credit history, or inability to utilize tax incentives, over 50% of Americans don’t have access to solar electricity. Offering $5 million in cash prizes and technical assistance over 18 months, the challenge supports teams across the country as they develop and demonstratemore » replicable projects or programs that expand solar access to underserved groups.« less
The National Solar Observatory Digital Library - a resource for space weather studies
NASA Astrophysics Data System (ADS)
Hill, F.; Erdwurm, W.; Branston, D.; McGraw, R.
2000-09-01
We describe the National Solar Observatory Digital Library (NSODL), consisting of 200GB of on-line archived solar data, a RDBMS search engine, and an Internet HTML-form user interface. The NSODL is open to all users and provides simple access to solar physics data of basic importance for space weather research and forecasting, heliospheric research, and education. The NSODL can be accessed at the URL www.nso.noao.edu/diglib.
Solar Week: Learning from Experience
NASA Astrophysics Data System (ADS)
Alexander, D.; Hauck, K.
2003-12-01
Solar Week is a week-long set of games and activities allowing students to interact directly with solar science and solar scientists. Solar Week was developed as a spin-off of the highly successful Yohkoh Public Outreach Project (YPOP). While YPOP provided access to solar images, movies and activities, the main goal of Solar Week was to enhance the participation of women, who are under-represented in the physical sciences. Solar Week achieves this by providing young women, primarily in grades 6-8, with access to role models in the sciences. The scientists participating in Solar Week are women from a variety of backgrounds and with a variety of scientific expertise. In this paper, our aim is to provide some insight into developing activity-based space science for the web and to discuss the lessons-learned from tailoring to a specific group of participants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stukel, Laura; Hoen, Ben; Adomatis, Sandra
Capturing the Sun: A Roadmap for Navigating Data-Access Challenges and Auto-Populating Solar Home Sales Listings supports a vision of solar photovoltaic (PV) advocates and real estate advocates evolving together to make information about solar homes more accessible to home buyers and sellers and to simplify the process when these homes are resold. The Roadmap is based on a concept in the real estate industry known as automatic population of fields. Auto-population (also called auto-pop in the industry) is the technology that allows data aggregated by an outside industry to be matched automatically with home sale listings in a multiple listingmore » service (MLS).« less
Can solar access rights be protected by a revival of the doctrine of ancient lights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, R.B.
A review of the history of solar access rights from their origin in 13th Century England's Doctrine of Ancient Lights to the present state of the law in both England and the US discusses how solar access law developed and possible solutions to the current US problem through the use of federal and state legislation. To compensate for the inadequacy of the Doctrine of Ancient Lights, the author offers model legislation which recognizes the right to receive sunlight for the purpose of providing energy as a property right, and which prohibits acts which deprive an individual of that right. Themore » model bill specifically prohibits construction which interferes with sunlight necessary for solar energy equipment. 71 references.« less
Aklin, Michaël; Bayer, Patrick; Harish, S P; Urpelainen, Johannes
2017-05-01
This article assesses the socioeconomic effects of solar microgrids. The lack of access to electricity is a major obstacle to the socioeconomic development of more than a billion people. Off-grid solar technologies hold potential as an affordable and clean solution to satisfy basic electricity needs. We conducted a randomized field experiment in India to estimate the causal effect of off-grid solar power on electricity access and broader socioeconomic development of 1281 rural households. Within a year, electrification rates in the treatment group increased by 29 to 36 percentage points. Daily hours of access to electricity increased only by 0.99 to 1.42 hours, and the confidence intervals are wide. Kerosene expenditure on the black market decreased by 47 to 49 rupees per month. Despite these strong electrification and expenditure effects, we found no systematic evidence for changes in savings, spending, business creation, time spent working or studying, or other broader indicators of socioeconomic development.
Aklin, Michaël; Bayer, Patrick; Harish, S. P.; Urpelainen, Johannes
2017-01-01
This article assesses the socioeconomic effects of solar microgrids. The lack of access to electricity is a major obstacle to the socioeconomic development of more than a billion people. Off-grid solar technologies hold potential as an affordable and clean solution to satisfy basic electricity needs. We conducted a randomized field experiment in India to estimate the causal effect of off-grid solar power on electricity access and broader socioeconomic development of 1281 rural households. Within a year, electrification rates in the treatment group increased by 29 to 36 percentage points. Daily hours of access to electricity increased only by 0.99 to 1.42 hours, and the confidence intervals are wide. Kerosene expenditure on the black market decreased by 47 to 49 rupees per month. Despite these strong electrification and expenditure effects, we found no systematic evidence for changes in savings, spending, business creation, time spent working or studying, or other broader indicators of socioeconomic development. PMID:28560328
Solar Irradiance Data Products at the LASP Interactive Solar IRradiance Datacenter (LISIRD)
NASA Astrophysics Data System (ADS)
Lindholm, D. M.; Ware DeWolfe, A.; Wilson, A.; Pankratz, C. K.; Snow, M. A.; Woods, T. N.
2011-12-01
The Laboratory for Atmospheric and Space Physics (LASP) has developed the LASP Interactive Solar IRradiance Datacenter (LISIRD, http://lasp.colorado.edu/lisird/) web site to provide access to a comprehensive set of solar irradiance measurements and related datasets. Current data holdings include products from NASA missions SORCE, UARS, SME, and TIMED-SEE. The data provided covers a wavelength range from soft X-ray (XUV) at 0.1 nm up to the near infrared (NIR) at 2400 nm, as well as Total Solar Irradiance (TSI). Other datasets include solar indices, spectral and flare models, solar images, and more. The LISIRD web site features updated plotting, browsing, and download capabilities enabled by dygraphs, JavaScript, and Ajax calls to the LASP Time Series Server (LaTiS). In addition to the web browser interface, most of the LISIRD datasets can be accessed via the LaTiS web service interface that supports the OPeNDAP standard. OPeNDAP clients and other programming APIs are available for making requests that subset, aggregate, or filter data on the server before it is transported to the user. This poster provides an overview of the LISIRD system, summarizes the datasets currently available, and provides details on how to access solar irradiance data products through LISIRD's interfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heckeroth, S.; McLees, C.
1997-12-31
Land use planning is often no more than a strategy for getting the most economic value from a given piece of land while attempting to minimize the expense of mitigating environmental impacts. Because conventional fuels are currently inexpensive, development takes place with little consideration for energy efficiency or solar access. By identifying sites with solar access now, planners and building designers can assure that the south facing roofs and walls of future buildings will receive the solar energy necessary to satisfy the energy needs of their occupants. Planner Ian McHarg outlined scientific methods to map natural determinants including geology, hydrology,more » wildlife, soils, climate, as well as social determinants like population density, energy consumption, and transportation patterns in the late 60s. Overlays of these hand plotted maps gave planners a method of finding the most suitable sites for identified needs but were cost prohibitive for most projects. The affordability of studies done on high speed computers now allows general application of McHargian planning methods. At the time McHarg was developing his planning theory photovoltaics were so expensive their use was restricted to government projects. The low cost of heating with fossil fuels made solar heating expensive by comparison. Today advances in solar technology have made solar electricity and heating competitive with non-renewable energy resources. This paper will show how McHargian planning methods can be effectively used in conjunction with Geographic Information Systems (GIS) to include efficiency and renewable energy access in land use decision making.« less
GRID Alternatives: Solar Programs in Underserved Communities
Introduces GRID Alternatives: Solar Programs in Underserved Communities, a program that partners with a variety of organizations to help low-income communities access the benefits of solar technology.
Analysis of Solar Census Remote Solar Access Value Calculation Methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nangle, J.; Dean, J.; Van Geet, O.
2015-03-01
The costs of photovoltaic (PV) system hardware (PV panels, inverters, racking, etc.) have fallen dramatically over the past few years. Nonhardware (soft) costs, however, have failed to keep pace with the decrease in hardware costs, and soft costs have become a major driver of U.S. PV system prices. Upfront or 'sunken' customer acquisition costs make up a portion of an installation's soft costs and can be addressed through software solutions that aim to streamline sales and system design aspects of customer acquisition. One of the key soft costs associated with sales and system design is collecting information on solar accessmore » for a particular site. Solar access, reported in solar access values (SAVs), is a measurement of the available clear sky over a site and is used to characterize the impacts of local shading objects. Historically, onsite shading studies have been required to characterize the SAV of the proposed array and determine the potential energy production of a photovoltaic system.« less
Solar Access to Public Capital (SAPC) Mock Securitization Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendelsohn, Michael; Lowder, Travis; Rottman, Mary
In late 2012, the National Renewable Energy Laboratory (NREL) initiated the Solar Access to Public Capital (SAPC) working group. Backed by a three-year funding facility from the U.S. Department of Energy (DOE), NREL set out to organize the solar, legal, banking, capital markets, engineering, and other relevant stakeholder communities in order to open lower-cost debt investment for solar asset deployment. SAPC engaged its members to standardize contracts, develop best practices, and comprehend how the rating agencies perceive solar project portfolios as an investment asset class. Rating agencies opine on the future creditworthiness of debt obligations. Issuers often seek investment-grade ratingsmore » from the rating agencies in order to satisfy the desires of their investors. Therefore, for the solar industry to access larger pools of capital at a favorable cost, it is critical to increase market participants' understanding of solar risk parameters. The process provided valuable information to address rating agency perceptions of risk that, without such information, could require costly credit enhancement or higher yields to attract institutional investors. Two different securities were developed--one for a hypothetical residential solar portfolio and one for a hypothetical commercial solar portfolio. Five rating agencies (Standard and Poor's, Moody's, KBRA, Fitch, and DBRS) participated and provided extensive feedback, some through conversations that extended several months. The findings represented in this report are a composite summary of that feedback and do not indicate any specific feedback from any single rating agency.« less
Income generation for women with renewable energy technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, L.
1996-10-01
70% of the world`s poor are women. The poverty that is especially hard hitting for rural women throughout the world has many causes. The lack of access to education, credit and new technologies make it almost impossible for women to earn an income. Yet, when women earn an income, it not only improves their lives, but also improves the lives of their children and their communities. Solar energy technologies, along with access to credit, can help rural women improve the quality of their lives through income generating enterprises. The technologies discussed are solar cooking, solar food drying, solar blenders, andmore » photovoltaics.« less
NASA Astrophysics Data System (ADS)
Ware Dewolfe, A.; Wilson, A.; Lindholm, D. M.; Pankratz, C. K.; Snow, M.; Woods, T. N.
2009-12-01
The Laboratory for Atmospheric and Space Physics (LASP) is enhancing the LASP Interactive Solar IRradiance Datacenter (LISIRD) to provide access to a comprehensive set of solar spectral irradiance measurements. LISIRD has recently been updated to serve many new datasets and models, including sunspot index, photometric sunspot index, Lyman-alpha, and magnesium-II core-to-wing ratio. A new user interface emphasizes web-based interactive visualizations, allowing users to explore and compare this data before downloading it for analysis. The data provided covers a wavelength range from soft X-ray (XUV) at 0.1 nm up to the near infrared (NIR) at 2400 nm, as well as wavelength-independent Total Solar Irradiance (TSI). Combined data from the SORCE, TIMED-SEE, UARS-SOLSTICE, and SME instruments provide almost continuous coverage from 1981 to the present, while Hydrogen Lyman-alpha (121.6 nm) measurements / models date from 1947 to the present. This poster provides an overview of the LISIRD system, summarizes the data sets currently available, describes future plans and capabilities, and provides details on how to access solar irradiance data through LISIRD interfaces at http://lasp.colorado.edu/lisird/.
Decision Support | Solar Research | NREL
informed solar decision making with credible, objective, accessible, and timely resources. Solar Energy Decision Support Decision Support NREL provides technical and analytical support to support provide unbiased information on solar policies and issues for state and local government decision makers
An XML-based Generic Tool for Information Retrieval in Solar Databases
NASA Astrophysics Data System (ADS)
Scholl, Isabelle F.; Legay, Eric; Linsolas, Romain
This paper presents the current architecture of the `Solar Web Project' now in its development phase. This tool will provide scientists interested in solar data with a single web-based interface for browsing distributed and heterogeneous catalogs of solar observations. The main goal is to have a generic application that can be easily extended to new sets of data or to new missions with a low level of maintenance. It is developed with Java and XML is used as a powerful configuration language. The server, independent of any database scheme, can communicate with a client (the user interface) and several local or remote archive access systems (such as existing web pages, ftp sites or SQL databases). Archive access systems are externally described in XML files. The user interface is also dynamically generated from an XML file containing the window building rules and a simplified database description. This project is developed at MEDOC (Multi-Experiment Data and Operations Centre), located at the Institut d'Astrophysique Spatiale (Orsay, France). Successful tests have been conducted with other solar archive access systems.
77 FR 4989 - Turning Point Solar LLC: Notice of Availability of an Environmental Assessment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-01
... constructing a 49.9 megawatt (MW) ground- mounted solar photovoltaic generating facility in Noble County, Ohio... monocrystalline photovoltaic panels mounted on fixed solar racking equipment and the construction of access roads... DEPARTMENT OF AGRICULTURE Rural Utilities Service Turning Point Solar LLC: Notice of Availability...
78 FR 38705 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-27
.... Applicants: Copper Mountain Solar 1, LLC, Copper Mountain Solar 2, LLC, Energia Sierra Juarez U.S., LLC, Mesquite Power, LLC, Mesquite Solar 1, LLC, San Diego Gas & Electric Company, Sempra Generation... Analysis for the Southwest Region of Copper Mountain Solar 1, LLC, et al. Filed Date: 6/19/13. Accession...
Space Solar Power Satellite Technology Development at the Glenn Research Center: An Overview
NASA Technical Reports Server (NTRS)
Dudenhoefer, James E.; George, Patrick J.
2000-01-01
NASA Glenn Research Center (GRC). is participating in the Space Solar Power Exploratory Research and Technology program (SERT) for the development of a solar power satellite concept. The aim of the program is to provide electrical power to Earth by converting the Sun's energy and beaming it to the surface. This paper will give an overall view of the technologies being pursued at GRC including thin film photovoltaics, solar dynamic power systems, space environmental effects, power management and distribution, and electric propulsion. The developmental path not only provides solutions to gigawatt sized space power systems for the future, but provides synergistic opportunities for contemporary space power architectures. More details of Space Solar Power can be found by reading the references sited in this paper and by connecting to the web site http://moonbase.msfc.nasa.gov/ and accessing the "Space Solar Power" section "Public Access" area.
Energy Justice and the Stakeholders Involved: A Case Study of Solar Power in Rural Haiti
NASA Astrophysics Data System (ADS)
Romulus, Elijah Rey Asse
This paper explores and analyzes energy justice and the stakeholders involved. Energy insecurity, specifically the lack of access to electricity effects over 1.3 billion people worldwide and energy justice is a way to address it. This paper is supported by a case study with data collected in the southern rural regions of Haiti regarding energy justice communities. Three cities were studied: Les Cayes, Anse-a-Veau, and Les Anglais. It examines how solar businesses can aid energy justice communities seeking access to electricity. Stakeholders such as the communities themselves, solar businesses, and nonprofits in the region are studied and analyzed. The paper concludes solar businesses are helping said communities but needs participation from other stakeholders to be successful. Finally, there are five recommendations to build capacity, develop infrastructure in the region, explore the possibility of solar cooperatives, strengthen the solar economy in Haiti, and demand reparations.
The Virtual Solar Observatory: Progress and Diversions
NASA Astrophysics Data System (ADS)
Gurman, Joseph B.; Bogart, R. S.; Amezcua, A.; Hill, Frank; Oien, Niles; Davey, Alisdair R.; Hourcle, Joseph; Mansky, E.; Spencer, Jennifer L.
2017-08-01
The Virtual Solar Observatory (VSO) is a known and useful method for identifying and accessing solar physics data online. We review current "behind the scenes" work on the VSO, including the addition of new data providers and the return of access to data sets to which service was temporarily interrupted. We also report on the effect on software development efforts when government IT “security” initiatives impinge on finite resoruces. As always, we invite SPD members to identify data sets, services, and interfaces they would like to see implemented in the VSO.
77 FR 25131 - Turning Point Solar LLC: Notice of Finding of No Significant Impact
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-27
... monocrystalline photovoltaic panels mounted on fixed solar racking equipment and the construction of access roads... DEPARTMENT OF AGRICULTURE Rural Utilities Service Turning Point Solar LLC: Notice of Finding of No... Environmental Assessment (EA) associated with a solar generation project. The EA was prepared in accordance with...
Rooftop Solar Technical Potential for Low-to-Moderate Income Households in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigrin, Benjamin O; Mooney, Meghan E
This report presents a first-of-kind assessment of the technical potential of rooftop solar for low and moderate-income households, as well as providing insight on the distribution of solar potential by tenure, income, and other building characteristics. We find that a substantial fraction of the national rooftop solar potential is located on LMI buildings and, for all incomes, a substantial fraction on multi-family and renter-occupied buildings. We also find that rooftop solar can significantly contribute to long-term penetration targets established by the U.S. DOE, though to do so requires deployment on multi-family and renter-occupied buildings. Traditional deployment models have insufficiently enabledmore » access to solar for these income groups and building types. Without innovation either in regulatory, market, or policy factors, a large fraction of the U.S. potential is unlikely to be addressed, as well as leading to inequalities in solar access. Ironically, potential electric bill savings from rooftop solar would have the greatest material impact on the lives of low-income households as compared to their high-income counterparts.« less
Rooftop Solar Technical Potential for Low-to-Moderate Income (LMI) Households
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigrin, Benjamin O
This report presents a first-of-kind assessment of the technical potential of rooftop solar for low and moderate-income households, as well as providing insight on the distribution of solar potential by tenure, income, and other building characteristics. We find that a substantial fraction of the national rooftop solar potential is located on LMI buildings and, for all incomes, a substantial fraction on multi-family and renter-occupied buildings. We also find that rooftop solar can significantly contribute to long-term penetration targets established by the U.S. DOE, though to do so requires deployment on multi-family and renter-occupied buildings. Traditional deployment models have insufficiently enabledmore » access to solar for these income groups and building types. Without innovation either in regulatory, market, or policy factors, a large fraction of the U.S. potential is unlikely to be addressed, as well as leading to inequalities in solar access. Ironically, potential electric bill savings from rooftop solar would have the greatest material impact on the lives of low-income households as compared to their high-income counterparts.« less
Solar-terrestrial data access distribution and archiving
NASA Technical Reports Server (NTRS)
1984-01-01
It is recommended that a central data catalog and data access network (CDC/DAN) for solar-terrestrial research be established, initially as a NASA pilot program. The system is envisioned to be flexible and to evolve as funds permit, starting from a catalog to an access network for high-resolution data. The report describes the various functional requirements for the CDC/DAN, but does not specify the hardware and software architectures as these are constantly evolving. The importance of a steering committee, working with the CDC/DAN organization, to provide scientific guidelines for the data catalog and for data storage, access, and distribution is also stressed.
This discussion paper describes the linkage between the need for solar access for some sites, the mechanism of community solar and the opportunities for using formerly contaminated lands, landfills and mine sites for renewable energy.
National Community Solar Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rupert, Bart
This project was created to provide a National Community Solar Platform (NCSP) portal known as Community Solar Hub, that is available to any entity or individual who wants to develop community solar. This has been done by providing a comprehensive portal to make CEC’s solutions, and other proven community solar solutions, externally available for everyone to access – making the process easy through proven platforms to protect subscribers, developers and utilities. The successful completion of this project provides these tools via a web platform and integration APIs, a wide spectrum of community solar projects included in the platform, multiple groupsmore » of customers (utilities, EPCs, and advocates) using the platform to develop community solar, and open access to anyone interested in community solar. CEC’s Incubator project includes web-based informational resources, integrated systems for project information and billing systems, and engagement with customers and users by community solar experts. The combined effort externalizes much of Clean Energy Collective’s industry-leading expertise, allowing third parties to develop community solar without duplicating expensive start-up efforts. The availability of this platform creates community solar projects that are cheaper to build and cheaper to participate in, furthering the goals of DOE’s SunShot Initiative. Final SF 425 Final SF 428 Final DOE F 2050.11 Final Report Narrative« less
Helioviewer.org: Simple Solar and Heliospheric Data Visualization
NASA Astrophysics Data System (ADS)
Hughitt, V. K.; Ireland, J.; Mueller, D.
2011-12-01
Helioviewer.org is a free and open-source web application for exploring solar physics data in a simple and intuitive manner. Over the past several years, Helioviewer.org has enabled thousands of users from across the globe to explore the inner heliosphere, providing access to over ten million images from the SOHO, SDO, and STEREO missions. While Helioviewer.org has seen a surge in use by the public in recent months, it is still ultimately a science tool. The newest version of Helioviewer.org provides access to science-quality data for all available images through the Virtual Solar Observatory (VSO). In addition to providing a powerful platform for browsing heterogeneous sets of solar data, Helioviewer.org also seeks to be as flexible and extensible as possible, providing access to much of its functionality via a simple Application Programming Interface (API). Recently, the Helioviewer.org API was used for two such applications: a Wordpress plugin, and a Python library for solar physics data analysis (SunPy). These applications are discussed and examples of API usage are provided. Finally, Helioviewer.org is undergoing continual development, with new features being added on a regular basis. Recent updates to Helioviewer.org are discussed, along with a preview of things to come.
Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan,
2018-05-30
In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.
Solar System Science with the Twinkle Space Mission
NASA Astrophysics Data System (ADS)
Bowles, N.; Lindsay, S.; Tessenyi, M.; Tinetti, G.; Savini, G.; Tennyson, J.; Pascale, E.; Jason, S.; Vora, A.
2017-09-01
Twinkle is a space-based telescope mission designed for the spectroscopic observation (0.4 to 4.5 μm) of exoplanet atmospheres and Solar System objects. The system design and mission implementation are based on existing, well studied concepts pioneered by Surrey Satellite Technology Ltd for low-Earth orbit Earth Observation satellites, supported by a novel international access model to allow facility access to researchers worldwide. Whilst Twinkle's primary science goal is the observation of exoplanet atmospheres its wide spectroscopic range and photometric stability also make it a unique platform for the observation of Solar system objects.
Line drawing titled 'TDRS Spacecraft On-Orbit Configuration'
NASA Technical Reports Server (NTRS)
1988-01-01
Line drawing titled 'TDRS Spacecraft On-Orbit Configuration' identifies the various tracking and data relay satellite (TDRS) components (solar arrays, C-Band antenna, K-Band antenna, space ground link (SGL) antenna, single access antennas, multiple access antenna, omni antenna, solar sail). A TDRS will be deployed during the STS-26 mission. Including the space shuttle, the TDRS will be equipped to support up to 26 user spacecraft simultaneously. It will provide two types of service: 1) multiple access which can relay data from as many as 20 low data rate (100 bits per second to 50 kilobits per second) user satellites simultaneously and; 2) single access which will provide two high data rate (to 300 megabits per second) communication relays. The TDRS is three-axis stabilizrd with the body fixed antennas pointing constantly at the Earth while the solar arrays track the Sun. TDR satellites do no processing of user traffic in either direction. Rather, they operate as 'bent pipe' repeaters,
The Virtual Solar Observatory: What Are We Up To Now?
NASA Technical Reports Server (NTRS)
Gurman, J. B.; Hill, F.; Suarez-Sola, F.; Bogart, R.; Amezcua, A.; Martens, P.; Hourcle, J.; Hughitt, K.; Davey, A.
2012-01-01
In the nearly ten years of a functional Virtual Solar Observatory (VSO), http://virtualsolar.org/ we have made it possible to query and access sixty-seven distinct solar data products and several event lists from nine spacecraft and fifteen observatories or observing networks. We have used existing VSO technology, and developed new software, for a distributed network of sites caching and serving SDO HMI and/ or AlA data. We have also developed an application programming interface (API) that has enabled VSO search and data access capabilities in IDL, Python, and Java. We also have quite a bit of work yet to do, including completion of the implementation of access to SDO EVE data, and access to some nineteen other data sets from space- and ground-based observatories. In addition, we have been developing a new graphic user interface that will enable the saving of user interface and search preferences. We solicit advice from the community input prioritizing our task list, and adding to it
NASA Technical Reports Server (NTRS)
Johnson, Les
2009-01-01
Solar sailing is a topic of growing technical and popular interest. Solar sail propulsion will make space exploration more affordable and offer access to destinations within (and beyond) the solar system that are currently beyond our technical reach. The lecture will describe solar sails, how they work, and what they will be used for in the exploration of space. It will include a discussion of current plans for solar sails and how advanced technology, such as nanotechnology, might enhance their performance. Much has been accomplished recently to make solar sail technology very close to becoming an engineering reality and it will soon be used by the world s space agencies in the exploration of the solar system and beyond. The first part of the lecture will summarize state-of-the-art space propulsion systems and technologies. Though these other technologies are the key to any deep space exploration by humans, robots, or both, solar-sail propulsion will make space exploration more affordable and offer access to distant and difficult destinations. The second part of the lecture will describe the fundamentals of space solar sail propulsion and will describe the near-, mid- and far-term missions that might use solar sails as a propulsion system. The third part of the lecture will describe solar sail technology and the construction of current and future sailcraft, including the work of both government and private space organizations.
76 FR 54754 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-02
.... Applicants: Bellevue Solar, LLC. Description: Notice of Self-Certification of Exempt Wholesale Generator Status of Bellevue Solar, LLC. Filed Date: 08/24/2011. Accession Number: 20110824-5081. Comment Date: 5 p... Solar, LLC. Description: Notice of Self-Certification of Exempt Wholesale Generator Status of Yamhill...
Virtual Solar Observatory Distributed Query Construction
NASA Technical Reports Server (NTRS)
Gurman, J. B.; Dimitoglou, G.; Bogart, R.; Davey, A.; Hill, F.; Martens, P.
2003-01-01
Through a prototype implementation (Tian et al., this meeting) the VSO has already demonstrated the capability of unifying geographically distributed data sources following the Web Services paradigm and utilizing mechanisms such as the Simple Object Access Protocol (SOAP). So far, four participating sites (Stanford, Montana State University, National Solar Observatory and the Solar Data Analysis Center) permit Web-accessible, time-based searches that allow browse access to a number of diverse data sets. Our latest work includes the extension of the simple, time-based queries to include numerous other searchable observation parameters. For VSO users, this extended functionality enables more refined searches. For the VSO, it is a proof of concept that more complex, distributed queries can be effectively constructed and that results from heterogeneous, remote sources can be synthesized and presented to users as a single, virtual data product.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-28
... to allow its affiliate, EGP Solar 1, LLC, to construct and maintain a 2.2 megawatt solar photovoltaic... solar array would be constructed on both sides of Heather Lane (the project's access road), but public... be used for the solar array is currently devoid of trees, although some grading and tree cutting is...
A System for Web-based Access to the HSOS Database
NASA Astrophysics Data System (ADS)
Lin, G.
Huairou Solar Observing Station's (HSOS) magnetogram and dopplergram are world-class instruments. Access to their data has opened to the world. Web-based access to the data will provide a powerful, convenient tool for data searching and solar physics. It is necessary that our data be provided to users via the Web when it is opened to the world. In this presentation, the author describes general design and programming construction of the system. The system will be generated by PHP and MySQL. The author also introduces basic feature of PHP and MySQL.
NASA Technical Reports Server (NTRS)
Rapp, D.
1981-01-01
The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.
78 FR 29127 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-17
...-000. Applicants: Solar Star California XIX, LLC. Description: Self-Certification of EWG Status of Solar Star California XIX, LLC. Filed Date: 5/9/13. Accession Number: 20130509-5024. Comments Due: 5 p.m. ET 5/30/13. Docket Numbers: EG13-34-000. Applicants: Solar Star California XX, LLC. Description: Self...
High throughput parallel backside contacting and periodic texturing for high-efficiency solar cells
Daniel, Claus; Blue, Craig A.; Ott, Ronald D.
2014-08-19
Disclosed are configurations of long-range ordered features of solar cell materials, and methods for forming same. Some features include electrical access openings through a backing layer to a photovoltaic material in the solar cell. Some features include textured features disposed adjacent a surface of a solar cell material. Typically the long-range ordered features are formed by ablating the solar cell material with a laser interference pattern from at least two laser beams.
76 FR 2363 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-13
... Time on Tuesday, January 4, 2011. Docket Numbers: ER11-2365-000. Applicants: Paradise Solar Urban Renewal, L.L.C. Description: Paradise Solar Urban Renewal, L.L.C. submits tariff filing per 35.12: Paradise Solar Urban Renewal, L.L.C. to be effective 12/15/2010. Filed Date: 12/14/2010. Accession Number...
76 FR 37106 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-24
...-000. Applicants: Hatch Solar Energy Center I, LLC. Description: Notice of Self-Certification of Exempt Wholesale Generator Status of Hatch Solar Energy Center I, LLC. Filed Date: 06/17/2011. Accession Number...
A New High-sensitivity solar X-ray Spectrophotometer SphinX:early operations and databases
NASA Astrophysics Data System (ADS)
Gburek, Szymon; Sylwester, Janusz; Kowalinski, Miroslaw; Siarkowski, Marek; Bakala, Jaroslaw; Podgorski, Piotr; Trzebinski, Witold; Plocieniak, Stefan; Kordylewski, Zbigniew; Kuzin, Sergey; Farnik, Frantisek; Reale, Fabio
The Solar Photometer in X-rays (SphinX) is an instrument operating aboard Russian CORONAS-Photon satellite. A short description of this unique instrument will be presented and its unique capabilities discussed. SphinX is presently the most sensitive solar X-ray spectrophotometer measuring solar spectra in the energy range above 1 keV. A large archive of SphinX mea-surements has already been collected. General access to these measurements is possible. The SphinX data repositories contain lightcurves, spectra, and photon arrival time measurements. The SphinX data cover nearly continuously the period since the satellite launch on January 30, 2009 up to the end-of November 2009. Present instrument status, data formats and data access methods will be shown. An overview of possible new science coming from SphinX data analysis will be discussed.
2016-03-21
ORIGINAL PAPER Silicon solar cell efficiency improvement employing the photoluminescent, down-shifting effects of carbon and CdTe quantum dots Elias...smaller influence on solar cell performance, they are con- sidered to be a more attractive option due to their afford- ability and minimal impact in the...Photovoltaics Solar cells Introduction There is a generalized trend to demonstrate higher solar cell efficiency with more affordable devices to promote
NASA Technical Reports Server (NTRS)
Pankratz, Chris; Beland, Stephane; Craft, James; Baltzer, Thomas; Wilson, Anne; Lindholm, Doug; Snow, Martin; Woods, Thomas; Woodraska, Don
2018-01-01
The Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado in Boulder, USA operates the Solar Radiation and Climate Experiment (SORCE) NASA mission, as well as several other NASA spacecraft and instruments. Dozens of Solar Irradiance data sets are produced, managed, and disseminated to the science community. Data are made freely available to the scientific immediately after they are produced using a variety of data access interfaces, including the LASP Interactive Solar Irradiance Datacenter (LISIRD), which provides centralized access to a variety of solar irradiance data sets using both interactive and scriptable/programmatic methods. This poster highlights the key technological elements used for the NASA SORCE mission ground system to produce, manage, and disseminate data to the scientific community and facilitate long-term data stewardship. The poster presentation will convey designs, technological elements, practices and procedures, and software management processes used for SORCE and their relationship to data quality and data management standards, interoperability, NASA data policy, and community expectations.
Lunar Solar Origins Exploration (LunaSOX)
NASA Technical Reports Server (NTRS)
Cooper, John F.; King, Joseph H.; Papitashvili, Natasha; Lipatov, Alexander S.; Sittler, Edward C.; Hartle, Richard E.
2011-01-01
The Moon offers a unique vantage point from which to investigate the Sun and its interaction via the solar wind magnetic fields, plasma, and energetic particles with the geospace system including the Moon itself. The lunar surface and exosphere provide in part a record of solar coronal plasma material input and resultant space weathering over billions of years. The structure and dynamics of solar wind interactions with the Moon provide an accessible near-Earth laboratory environment for study of general solar wind interactions with the vast multitude of airless asteroidal bodies of the inner solar system. Spacecraft in lunar orbit have the often simultaneous opportunity, except when in the Earth's magnetosphere, to make in-situ compositional measurements of the solar wind plasma and to carry out remote observations from the Moon of the solar corona, potentially enabled by lunar limb occultation of the solar disk. The LunaSOX project at NASA Goddard Space Flight Center is addressing these heliophysical science objectives from and of the Moon with support from NASA's Lunar Advanced Science and Exploration Research (LASER) program: (1) specify history of solar wind parameters at and sunward of the Moon through enhanced access (http://lunasox.gsfc.nasa.gov/) to legacy and operational mission data products from the Apollo era to the present, (2) model field and plasma interactions with the lunar surface, exosphere, and wake, as constrained by the available data, through hybrid kinetic code simulations, and (3) advance mission concepts for heliophysics from and of the Moon.
Identifying Accessible Near-Earth Objects For Crewed Missions With Solar Electric Propulsion
NASA Technical Reports Server (NTRS)
Smet, Stijn De; Parker, Jeffrey S.; Herman, Jonathan F. C.; Aziz, Jonathan; Barbee, Brent W.; Englander, Jacob A.
2015-01-01
This paper discusses the expansion of the Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) with Solar Electric Propulsion (SEP). The research investigates the existence of new launch seasons that would have been impossible to achieve using only chemical propulsion. Furthermore, this paper shows that SEP can be used to significantly reduce the launch mass and in some cases the flight time of potential missions as compared to the current, purely chemical trajectories identified by the NHATS project.
Toward a Virtual Solar Observatory: Starting Before the Petabytes Fall
NASA Technical Reports Server (NTRS)
Gurman, Joseph; Fisher, Richard R. (Technical Monitor)
2001-01-01
Although a few, large, space- and groundbased solar physics databases exist at selected locations, there is as yet only limited standardization or interoperability. I describe the outline of a plan to facilitate access to a distributed network of online solar data archives, both large and small. The underlying principle is that the user need not know where- the data are, only how to specify which data are desired. At the least, such an approach could considerably simplify the scientific user's access to the enormous amount of solar physics data to be obtained in the next decade. At best, it might mean the withering away of traditional data centers, and all the bureaucracy they entail. This work is supported by the Sun-Earth Connections Division of NASA Office of Space Science, thanks to an anomalous act of largess on the part of the 2001 SEC Senior Review.
Toward a Virtual Solar Observatory: Starting Before the Petabytes Fall
NASA Astrophysics Data System (ADS)
Gurman, J. B.
2001-12-01
Although a few, large, space- and groundbased solar physics databases exist at selected locations, there is as yet only limited standardization or interoperability. I describe the outline of a plan to facilitate access to a distributed network of online solar data archives, both large and small. The underlying principle is that the user need not know where the data are, only how to specify which data are desired. At the least, such an approach could considerably simplify the scientific user's access to the enormous amount of solar physics data to be obtained in the next decade. At best, it might mean the withering away of traditional data centers, and all the bureaucracy they entail. This work is supported by the Sun-Earth Connections Division of NASA Office of Space Science, thanks to an anomalous act of largess on the part of the 2001 SEC Senior Review.
Solar-terrestrial models and application software
NASA Technical Reports Server (NTRS)
Bilitza, Dieter
1990-01-01
The empirical models related to solar-terrestrial sciences are listed and described which are available in the form of computer programs. Also included are programs that use one or more of these models for application specific purposes. The entries are grouped according to the region of the solar-terrestrial environment to which they belong and according to the parameter which they describe. Regions considered include the ionosphere, atmosphere, magnetosphere, planets, interplanetary space, and heliosphere. Also provided is the information on the accessibility for solar-terrestrial models to specify the magnetic and solar activity conditions.
Efficient use of land to meet sustainable energy needs
NASA Astrophysics Data System (ADS)
Hernandez, Rebecca R.; Hoffacker, Madison K.; Field, Christopher B.
2015-04-01
The deployment of renewable energy systems, such as solar energy, to achieve universal access to electricity, heat and transportation, and to mitigate climate change is arguably the most exigent challenge facing humans today. However, the goal of rapidly developing solar energy systems is complicated by land and environmental constraints, increasing uncertainty about the future of the global energy landscape. Here, we test the hypothesis that land, energy and environmental compatibility can be achieved with small- and utility-scale solar energy within existing developed areas in the state of California (USA), a global solar energy hotspot. We found that the quantity of accessible energy potentially produced from photovoltaic (PV) and concentrating solar power (CSP) within the built environment (`compatible’) exceeds current statewide demand. We identify additional sites beyond the built environment (`potentially compatible’) that further augment this potential. Areas for small- and utility-scale solar energy development within the built environment comprise 11,000-15,000 and 6,000 TWh yr-1 of PV and CSP generation-based potential, respectively, and could meet the state of California’s energy consumptive demand three to five times over. Solar energy within the built environment may be an overlooked opportunity for meeting sustainable energy needs in places with land and environmental constraints.
2009-03-01
18 December 2007). 19. HAARP , The Hgh Frequency Actve Auroral Research Program. Glossary of Solar and Geophysical Terms. Avalable at...www.haarp.alaska.edu/ haarp /glos.html (accessed: 4 September 2007). 13 20. IZMIRAN. Pushkov Insttute of Terrestral Mag- netsm, Ionosphere and Radowave
Solar Irradiance Data Products at the LASP Interactive Solar IRradiance Datacenter (LISIRD)
NASA Astrophysics Data System (ADS)
Ware Dewolfe, A.; Wilson, A.; Lindholm, D. M.; Pankratz, C. K.; Snow, M. A.; Woods, T. N.
2010-12-01
The Laboratory for Atmospheric and Space Physics (LASP) has developed the LASP Interactive Solar IRradiance Datacenter (LISIRD) to provide access to a comprehensive set of solar irradiance measurements. LISIRD has recently been updated to serve many new datasets and models, including data from SORCE, UARS-SOLSTICE, SME, and TIMED-SEE, and model data from the Flare Irradiance Spectral Model (FISM). The user interface emphasizes web-based interactive visualizations, allowing users to explore and compare this data before downloading it for analysis. The data provided covers a wavelength range from soft X-ray (XUV) at 0.1 nm up to the near infrared (NIR) at 2400 nm, as well as wavelength-independent Total Solar Irradiance (TSI). Combined data from the SORCE, TIMED-SEE, UARS-SOLSTICE, and SME instruments provide continuous coverage from 1981 to the present, while Lyman-alpha measurements, FISM daily data, and TSI models date from the 1940s to the present. LISIRD will also host Glory TSI data as part of the SORCE data system. This poster provides an overview of the LISIRD system, summarizes the data sets currently available, describes future plans and capabilities, and provides details on how to access solar irradiance data through LISIRD’s interfaces.
Designing Solar Data Archives: Practical Considerations
NASA Astrophysics Data System (ADS)
Messerotti, M.
The variety of new solar observatories in space and on the ground poses the stringent problem of an efficient storage and archiving of huge datasets. We briefly address some typical architectures and consider the key point of data access and distribution through networking.
75 FR 6178 - Mission Statement
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-08
... geothermal, biomass, hydropower, wind, solar, and energy efficiency sectors. The mission will focus on... offers potential growth, barriers still exist that prevent U.S. companies from accessing the market and... additional opportunities in solar, biomass, ``clean coal'' technology such as gasification or wet coal...
A SOAP Web Services Interface to ACE Data
NASA Astrophysics Data System (ADS)
Davis, A. J.; Hamell, G. R.
2005-05-01
Since early in 1998, NASA's Advanced Composition Explorer (ACE) spacecraft has provided continuous measurements of solar wind and energetic particle activity from L1, located approximately 0.01 AU sunward of Earth. ACE data from nine instruments are being used to measure and compare the elemental and isotopic composition of the solar corona, the nearby interstellar medium, and the Galaxy, and to study particle acceleration processes that occur in a wide range of environments. The spacecraft has enough fuel to stay in orbit about L1 until at least 2020. The ACE Science Center (ASC) provides access to ACE data, and performs level 1 and browse data processing for the science instruments. Available on-line are solar wind, solar energetic particle, and galactic cosmic ray intensity and composition data, as well as solar wind and magnetic field parameters on a variety of time scales. We describe our recent efforts to provide enhanced access to ACE data via a SOAP Web Services interface. The interface utilizes the Space Physics Archive Search and Extract (SPASE) dictionary, and will be compatible with emerging virtual observatories.
Nashville Solar-Water-Heater Demonstration Project. Monitoring-data analysis
NASA Astrophysics Data System (ADS)
1982-03-01
Field monitoring data which were collected for the Nashville Solar Water Heater Demonstration Project from September through November of 1981 are presented. Twenty-six solar domestic water heaters were monitored during September, 35 during October, and 37 during November. Homeowners were audited to assure adequate solar access, and each selected a solar water heating system from an approved list. Two tank and one tank systems are included. The monitoring sample technique and monitoring system are described. Data are analyzed by computer to produce daily and monthly total summaries for each site. The performance of each site was assessed to compare total energy saved by the solar system, solar system savings percentage, and the energy multiplier.
The Value of Transparency in Distributed Solar PV Markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
OShaughnessy, Eric J; Zamzam, Ahmed S
Market transparency refers to the degree of customer awareness of product options and fair market prices for a given good. In The Value of Transparency in Distributed Solar PV Markets, we use residential solar photovoltaic (PV) quote data to study the value of transparency in distributed solar PV markets. We find that improved market transparency results in lower installation offer prices. Further, the results of this study suggest that PV customers benefit from gaining access to more PV quotes.
Radial velocity observations of the sun at night
NASA Technical Reports Server (NTRS)
Mcmillan, R. S.; Moore, T. L.; Perry, M. L.; Smith, P. H.
1993-01-01
The ability to detect planets orbiting stars has been evaluated through solar-spectrum Doppler shift measurements for 5 years, using the sunlit surface of the moon to furnish nighttime access to the solar spectrum integrated over the solar disk as though the sun were being observed at stellar distance. These lunar observations have indicated that the Doppler shift of the integrated solar photosphere disk in violet absorption lines has varied less that +/- 4 m/sec over the 1987-1992 interval studied.
NASA Astrophysics Data System (ADS)
Azoumah, Y.; Yamegueu, D.; Py, X.
2012-02-01
Access to energy is known as a key issue for poverty reduction. The electrification rate of sub Saharan countries is one of the lowest among the developing countries. However this part of the world has natural energy resources that could help raising its access to energy, then its economic development. An original "flexy energy" concept of hybrid solar pv/diesel/biofuel power plant, without battery storage, is developed in order to not only make access to energy possible for rural and peri-urban populations in Africa (by reducing the electricity generation cost) but also to make the electricity production sustainable in these areas. Some experimental results conducted on this concept prototype show that the sizing of a pv/diesel hybrid system by taking into account the solar radiation and the load/demand profile of a typical area may lead the diesel generator to operate near its optimal point (70-90 % of its nominal power). Results also show that for a reliability of a PV/diesel hybrid system, the rated power of the diesel generator should be equal to the peak load. By the way, it has been verified through this study that the functioning of a pv/Diesel hybrid system is efficient for higher load and higher solar radiation.
Heering, Peter
2008-09-01
Solar microscopes and their techniques attracted particular attention in the second half of the eighteenth century. This paper investigates the grounds for this interest. After a general introduction to the solar microscope, it discusses the use of original instruments to gain access to the visual culture of solar microscopes and the issues raised by these reenactments. Experiences involved in this process serve as a basis for reassessing the original source materials. Thence emerges a different account of the meaning of the solar microscope in the eighteenth century and possible reasons for its popularity.
Nimbus-7 ERB Solar Analysis Tape (ESAT) user's guide
NASA Technical Reports Server (NTRS)
Major, Eugene; Hickey, John R.; Kyle, H. Lee; Alton, Bradley M.; Vallette, Brenda J.
1988-01-01
Seven years and five months of Nimbus-7 Earth Radiation Budget (ERB) solar data are available on a single ERB Solar Analysis Tape (ESAT). The period covered is November 16, 1978 through March 31, 1986. The Nimbus-7 satellite performs approximately 14 orbits per day and the ERB solar telescope observes the sun once per orbit as the satellite crosses the southern terminator. The solar data were carefully calibrated and screened. Orbital and daily mean values are given for the total solar irradiance plus other spectral intervals (10 solar channels in all). In addition, selected solar activity indicators are included on the ESAT. The ESAT User's Guide is an update of the previous ESAT User's Guide (NASA TM 86143) and includes more detailed information on the solar data calibration, screening procedures, updated solar data plots, and applications to solar variability. Details of the tape format, including source code to access ESAT, are included.
NASA Technical Reports Server (NTRS)
Houts, Michael G.
2012-01-01
Fission power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system.
NASA Technical Reports Server (NTRS)
Collier, Michael R.; Snowden, S. L.; Sarantos, M.; Benna, M.; Carter, J. A.; Cravens, T. E.; Farrell, W. M.; Fatemi, S.; Hills, H. Kent; Hodges, R. R.;
2014-01-01
We analyze the Rontgen satellite (ROSAT) position sensitive proportional counter soft X-ray image of the Moon taken on 29 June 1990 by examining the radial profile of the surface brightness in three wedges: two 19 deg wedges (one north and one south) 13-32 deg off the terminator toward the dark side and one wedge 38 deg wide centered on the antisolar direction. The radial profiles of both the north and the south wedges show significant limb brightening that is absent in the 38 deg wide antisolar wedge. An analysis of the soft X-ray intensity increase associated with the limb brightening shows that its magnitude is consistent with that expected due to solar wind charge exchange (SWCX) with the tenuous lunar atmosphere based on lunar exospheric models and hybrid simulation results of solar wind access beyond the terminator. Soft X-ray imaging thus can independently infer the total lunar limb column density including all species, a property that before now has not been measured, and provide a large-scale picture of the solar wind-lunar interaction. Because the SWCX signal appears to be dominated by exospheric species arising from solar wind implantation, this technique can also determine how the exosphere varies with solar wind conditions. Now, along with Mars, Venus, and Earth, the Moon represents another solar system body at which SWCX has been observed.
NASA Astrophysics Data System (ADS)
Freeland, S.; Hurlburt, N.
2005-12-01
The SolarSoft system (SSW) is a set of integrated software libraries, databases, and system utilities which provide a common programming and data analysis environment for solar physics. The system includes contributions from a large community base, representing the efforts of many NASA PI team MO&DA teams,spanning many years and multiple NASA and international orbital and ground based missions. The SSW general use libraries include Many hundreds of utilities which are instrument and mission independent. A large subset are also SOLAR independent, such as time conversions, digital detector cleanup, time series analysis, mathematics, image display, WWW server communications and the like. PI teams may draw on these general purpose libraries for analysis and application development while concentrating efforts on instrument specific calibration issues rather than reinvention of general use software. By the same token, PI teams are encouraged to contribute new applications or enhancements to existing utilities which may have more general interest. Recent areas of intense evolution include space weather applications, automated distributed data access and analysis, interfaces with the ongoing Virtual Solar Observatory efforts, and externalization of SolarSoft power through Web Services. We will discuss the current status of SSW web services and demonstrate how this facilitates accessing the underlying power of SolarSoft in more abstract terms. In this context, we will describe the use of SSW services within the Collaborative Sun Earth Connector environment.
77 FR 23707 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-20
...-000. Applicants: NRG Solar Alpine LLC. Description: NRG Solar Alpine, LLC Notice of Self Certification...-000. Applicants: Exelon Corporation. Description: Notice of Material Change in Facts of Exelon... are accessible in the Commission's eLibrary system by clicking on the links or querying the docket...
Manufacturing Analysis | Energy Analysis | NREL
, state, and community levels. Solar photovoltaic manufacturing cost analysis Examining the regional competitiveness of solar photovoltaic manufacturing points to access to capital as a critical component for scale of rare material-based photovoltaic PV technology deployment may influence the United States
VALIDATING the Accuracy of Sighten's Automated Shading Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solar companies - including installers, financiers, and distributors - leverage Sighten software to deliver accurate shading calculations and solar proposals. Sighten recently partnered with Google Project Sunroof to provide automated remote shading analysis directly within the Sighten platform. The National Renewable Energy Laboratory (NREL), in partnership with Sighten, independently verified the accuracy of Sighten's remote-shading solar access values (SAVs) on an annual basis for locations in Los Angeles, California, and Denver, Colorado.
The Sunnel: Engaging Visitors in Solar Research via a Tunnel Through the Sun
NASA Astrophysics Data System (ADS)
DeMuth, Nora H.; Walker, C. E.
2006-12-01
The publicly accessible hallway space inside the McMath-Pierce Solar Telescope building on Kitt Peak has great untapped potential to house a display that would be relevant and understandable to KPNO visitors without the need for mediation or further explanation. An effective display would unite background content on solar physics and astronomy, and information on current solar research techniques and results in an accessible way that would excite and engage visitors. Considering these requirements, we created a concept currently dubbed the Sunnel (for “Sun-tunnel”). The Sunnel consists of two 95by 13-foot murals of the layers of the Sun stretching down the visitor hallway in the McMath-Pierce Solar Telescope. Temperatures of the layers are represented by the colors of the peak in the corresponding black-body curves, and solar features such as sunspots and pressure waves are represented by abstract designs flowing along the walls. A photon path will be laid on the floor using tiles, and several posters highlighting current solar research and background science content relevant to solar research will be displayed on one wall. An audio tour featuring interviews with solar researchers guides visitors along the Sunnel, engaging them and supporting deeper appreciation of the solar research. Installation of the murals is scheduled for early 2007, just in time to celebrate the International Heliophysical Year. DeMuth's research was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation through Scientific Program Order No. 3 (AST-0243875) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.
Advancements in solar stills for enhanced flow rate
NASA Astrophysics Data System (ADS)
Mishra, Sourav; Dubey, Maneesh; Raghuwanshi, Jitendra; Sharma, Vipin
2018-05-01
All over the world there is a scarcity of water and it is difficult to access potable water. Due to this most of the people are affected by diseases that are caused due to drinking of polluted water. There are technologies through which we can purify polluted water but the only problem is these technologies uses electrical energy. Since solar energy is abundant in nature therefore we can use solar as an energy source in solar stills for water distillation. Solar stills can be used in village areas where there is no electricity. It is simple and also economic in construction. This article addresses advancement in solar distillation and usage of nanofluids for enhancement in flow rate.
76 FR 34072 - Environmental Impacts Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-10
.... 20110178, Draft EIS, NRC, FL, Generic--License Renewal of Nuclear Plants Regarding Crystal River Unit 3.... 20110182, Final EIS, WAPA, CA, Rice Solar Energy Project, Proposed 150 megawatt Solar Energy Generating..., Access, Wildlife, Fisheries, Soil and Water, Idaho Panhandle National Forest, St. Joe Ranger District...
77 FR 24481 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-24
... Power North, LLC. Description: Silver State Solar Power North LLC Baseline Tariff Amendment to be... Market Power Update of CPV Batesville, LLC. Filed Date: 3/21/12. Accession Number: 20120321-5067...: ER12-799-000. Applicants: Nevada Solar One, LLC. Description: Supplement to Request for Determination...
76 FR 64082 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-17
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Combined Notice of Filings 1 Take notice...-000. Applicants: Agua Caliente Solar, LLC. Description: Agua Caliente Solar, LLC Notice of Self... effective 9/12/2011. Filed Date: 10/04/2011. Accession Number: 20111004-5178. Comment Date: 5 p.m. Eastern...
Effects of particle drifts on the solar modulation of galactic cosmic rays
NASA Technical Reports Server (NTRS)
Jokipii, J. R.; Levy, E. H.
1977-01-01
Gradient and curvature drifts in an Archimedean-spiral magnetic field are shown to produce a significant effect on the modulation of galactic cosmic rays by the solar wind. The net modulation, heliocentric radial gradient, and average energy change of particles which reach the inner solar system are significantly reduced. The effects of drifts are due to the fact that cosmic rays for which the drift velocity is comparable to the wind velocity or larger, have more rapid access to the inner solar system than in the absence of drifts.
Utilizing Fission Technology to Enable Rapid and Affordable Access to any Point in the Solar System
NASA Technical Reports Server (NTRS)
Houts, Mike; Bonometti, Joe; Morton, Jeff; Hrbud, Ivana; Bitteker, Leo; VanDyke, Melissa; Godfroy, T.; Pedersen, K.; Dobson, C.; Patton, B.;
2000-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation systems can build on over 45 years of US and international space fission system technology development to minimize cost.
Nuclear Energy for Space Exploration
NASA Technical Reports Server (NTRS)
Houts, Michael G.
2010-01-01
Nuclear power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system. Fusion and antimatter systems may also be viable in the future
78 FR 36180 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-17
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Combined Notice of Filings 1 Take notice... Solar 1, LLC. Description: Imperial Valley Solar 1, LLC submit a revised horizontal market power.... Accession Number: 20130610-5000. Comments Due: 5 p.m. ET 7/1/13. Docket Numbers: ER13-1648-000. Applicants...
77 FR 13121 - Solar Energy Industries Association: Notice of Petition for Rulemaking
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-05
... its small generator interconnection rules and procedures \\1\\ for solar electric generation. \\1\\ Standardization of Small Generator Interconnection Agreements and Procedures, Order No. 2006, FERC Stats. & Regs... First Street NE., Washington, DC 20426. This filing is accessible on-line at http://www.ferc.gov , using...
Data Visualization and Geospatial Tools | Geospatial Data Science | NREL
renewable resources are available in a specific areas. General Analysis Renewable Energy Atlas View the geographic distribution of wind, solar, geothermal, hydropower, and biomass resources in the United States . Solar and Wind Energy Resource Assessment (SWERA) Model Access international renewable energy resource
77 FR 20017 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-03
...-000. Applicants: Silver State Solar Power North, LLC. Description: Notice of Self-Certification as an EWG of Silver State Solar Power North, LLC. Filed Date: 3/22/12. Accession Number: 20120322-5064...-1318-000. Applicants: First Point Power, LLC. Description: FPP MBR Filing to be effective 3/25/2012...
77 FR 59920 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-01
.... Description: Compliance Filing for Service Agreement No. 324, Foothills Solar LGIA to be effective 8/30/2012... Solar Project to be effective 9/25/2012. Filed Date: 9/24/12. Accession Number: 20120924-5056. Comments... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Combined Notice of Filings 1 Take notice...
Comparison and Analysis of Energy Performance of Baseline and Enhanced Temporary Army Shelters
2015-09-01
modeling .................................................................................................... 37 4.4 Predicted vs. field- measured data...with remote access capability ......................... 35 4-2 Direct normal solar radiation measured at weather station and estimated with the... Measured global horizontal radiation and EnergyPlus calculated incident solar radiation on a horizontal surface
Optical Waveguide Solar Energy System for Lunar Materials Processing
NASA Technical Reports Server (NTRS)
Nakamura, T.; Case, J. A.; Senior, C. L.
1997-01-01
This paper discusses results of our work on development of the Optical Waveguide (OW) Solar Energy System for Lunar Materials Processing. In the OW system as shown, solar radiation is collected by the concentrator which transfers the concentrated solar radiation to the OW transmission line consisting of low-loss optical fibers. The OW line transmits the solar radiation to the thermal reactor of the lunar materials processing plant. The feature of the OW system are: (1) Highly concentrated solar radiation (up to 104 suns) can be transmitted via flexible OW lines directly into the thermal reactor for materials processing: (2) Solar radiation intensity or spectra can be tailored to specific materials processing steps; (3) Provide solar energy to locations or inside of enclosures that would not otherwise have an access to solar energy; and (4) The system can be modularized and can be easily transported to and deployed at the lunar base.
Plant engineers solar energy handbook. [Includes glossaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-01-21
This handbook is to provide plant engineers with factual information on solar energy technology and on the various methods for assessing the future potential of this alternative energy source. The following areas are covered: solar components and systems (collectors, storage, service hot-water systems, space heating with liquid and air systems, space cooling, heat pumps and controls); computer programs for system optimization local solar and weather data; a description of buildings and plants in the San Francisco Bay Area applying solar technology; current Federal and California solar legislation; standards, codes, and performance testing information; a listing of manufacturers, distributors, and professionalmore » services that are available in Northern California; and information access. Finally, solar design checklists are provided for those engineers who wish to design their own systems. (MHR)« less
Infra-red photoresponse of mesoscopic NiO-based solar cells sensitized with PbS quantum dot
Raissi, Mahfoudh; Pellegrin, Yann; Jobic, Stéphane; Boujtita, Mohammed; Odobel, Fabrice
2016-01-01
Sensitized NiO based photocathode is a new field of investigation with increasing scientific interest in relation with the development of tandem dye-sensitized solar cells (photovoltaic) and dye-sensitized photoelectrosynthetic cells (solar fuel). We demonstrate herein that PbS quantum dots (QDs) represent promising inorganic sensitizers for NiO-based quantum dot-sensitized solar cells (QDSSCs). The solar cell sensitized with PbS quantum dot exhibits significantly higher photoconversion efficiency than solar cells sensitized with a classical and efficient molecular sensitizer (P1 dye = 4-(Bis-{4-[5-(2,2-dicyano-vinyl)-thiophene-2-yl]-phenyl}-amino)-benzoic acid). Furthermore, the system features an IPCE (Incident Photon-to-Current Efficiency) spectrum that spreads into the infra-red region, reaching operating wavelengths of 950 nm. The QDSSC photoelectrochemical device works with the complexes tris(4,4′-ditert-butyl-2,2′-bipyridine)cobalt(III/II) redox mediators, underscoring the formation of a long-lived charge-separated state. The electrochemical impedance spectrocopy measurements are consistent with a high packing of the QDs upon the NiO surface, the high density of which limits the access of the electrolyte and results in favorable light absorption cross-sections and a significant hole lifetime. These notable results highlight the potential of NiO-based photocathodes sensitized with quantum dots for accessing and exploiting the low-energy part of the solar spectrum in photovoltaic and photocatalysis applications. PMID:27125454
NASA Technical Reports Server (NTRS)
1990-01-01
Objectives of the Solar Optical Telescope are to study the physics of the Sun on the scale at which many of the important physical processes occur and to attain a resolution of 73km on the Sun or 0.1 arc seconds of angular resolution. Topics discussed in this overview of the Solar Optical Telescope include: why is the Solar Optical Telescope needed; current picture of the Sun's atmosphere and convection zone; scientific problems for the Solar Optical Telescope; a description of the telescope; the facility - science management, contamination control, and accessibility to the instruments; the scientific instruments - a coordinated instrument package for unlocking the Sun's secrets; parameters of the coordinated instrument package; science operations from the Space Shuttle; and the dynamic solar atmosphere.
Utilizing Solar Power Technologies for On-Orbit Propellant Production
NASA Technical Reports Server (NTRS)
Fikes, John C.; Howell, Joe T.; Henley, Mark W.
2006-01-01
The cost of access to space beyond low Earth orbit may be reduced if vehicles can refuel in orbit. The cost of access to low Earth orbit may also be reduced by launching oxygen and hydrogen propellants in the form of water. To achieve this reduction in costs of access to low Earth orbit and beyond, a propellant depot is considered that electrolyzes water in orbit, then condenses and stores cryogenic oxygen and hydrogen. Power requirements for such a depot require Solar Power Satellite technologies. A propellant depot utilizing solar power technologies is discussed in this paper. The depot will be deployed in a 400 km circular equatorial orbit. It receives tanks of water launched into a lower orbit from Earth, converts the water to liquid hydrogen and oxygen, and stores up to 500 metric tons of cryogenic propellants. This requires a power system that is comparable to a large Solar Power Satellite capable of several 100 kW of energy. Power is supplied by a pair of solar arrays mounted perpendicular to the orbital plane, which rotates once per orbit to track the Sun. The majority of the power is used to run the electrolysis system. Thermal control is maintained by body-mounted radiators; these also provide some shielding against orbital debris. The propellant stored in the depot can support transportation from low Earth orbit to geostationary Earth orbit, the Moon, LaGrange points, Mars, etc. Emphasis is placed on the Water-Ice to Cryogen propellant production facility. A very high power system is required for cracking (electrolyzing) the water and condensing and refrigerating the resulting oxygen and hydrogen. For a propellant production rate of 500 metric tons (1,100,000 pounds) per year, an average electrical power supply of 100 s of kW is required. To make the most efficient use of space solar power, electrolysis is performed only during the portion of the orbit that the Depot is in sunlight, so roughly twice this power level is needed for operations in sunlight (slightly over half of the time). This power level mandates large solar arrays, using advanced Space Solar Power technology. A significant amount of the power has to be dissipated as heat, through large radiators. This paper briefly describes the propellant production facility and the requirements for a high power system capability. The Solar Power technologies required for such an endeavor are discussed.
Connective power: Solar electrification and social change in Kenya
NASA Astrophysics Data System (ADS)
Jacobson, Arne Edward
Household solar photovoltaic systems have emerged as a key alternative to grid-based rural electrification in many developing countries. This may seem a victory for appropriate technology advocates, but my research indicates that the social significance of solar electrification in Kenya, which is among the largest developing country solar markets per capita, is far removed from the classic "small is beautiful" neo-populist vision of building small-scale alternatives to global capitalism. Instead, solar electrification is more closely connected to neo-liberal goals of market-based service provision and economic integration. In this study I combine quantitative and qualitative methods, including surveys, intra-household energy allocation studies, and historical analysis, to analyze the social significance of solar electrification in Kenya. I find that "connective" applications, including television, radio, and cellphones, are centrally important. Television is especially notable; the expansion of TV broadcasting to rural areas was a key condition for solar market development. Solar electricity is also used for lighting. In Kenya, income and work related uses of solar lighting are modest, while education uses are more significant. However, in many households, especially those with small systems, intra-household dynamics constrain key social uses (e.g. children's studying), as the energy is allocated to other uses. Social use patterns combine with access dynamics in Kenya's unsubsidized market to shape the social significance of solar electrification. Solar ownership is dominated by the rural upper and middle classes. Thus, productivity and education uses make small contributions to differentiation and middle class formation. Additionally, solar electrification's role in supporting rural television and radio use improves business advertisers' ability to expand consumer goods markets. These findings link solar electrification to important processes of rural development and social change. Mainstream policy makers have sought to expand the market through credit-based sales. However, my analysis indicates that, without subsidies, credit-based sales are unlikely to deepen access beyond levels established in the existing cash market. Thus, while solar electrification may potentially contribute to sustainable development, concerns about equity and other social issues indicate a need for careful attention to the implications of policy choices and processes that influence the social use possibilities of the technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phadke, Amol A.; Jacobson, Arne; Park, Won Young
Highly efficient direct current (DC) appliances have the potential to dramatically increase the affordability of off-grid solar power systems used for rural electrification in developing countries by reducing the size of the systems required. For example, the combined power requirement of a highly efficient color TV, four DC light emitting diode (LED) lamps, a mobile phone charger, and a radio is approximately 18 watts and can be supported by a small solar power system (at 27 watts peak, Wp). Price declines and efficiency advances in LED technology are already enabling rapidly increased use of small off-grid lighting systems in Africamore » and Asia. Similar progress is also possible for larger household-scale solar home systems that power appliances such as lights, TVs, fans, radios, and mobile phones. When super-efficient appliances are used, the total cost of solar home systems and their associated appliances can be reduced by as much as 50%. The results vary according to the appliances used with the system. These findings have critical relevance for efforts to provide modern energy services to the 1.2 billion people worldwide without access to the electrical grid and one billion more with unreliable access. However, policy and market support are needed to realize rapid adoption of super-efficient appliances.« less
Village Green Project: Web-accessible Database
The purpose of this web-accessible database is for the public to be able to view instantaneous readings from a solar-powered air monitoring station located in a public location (prototype pilot test is outside of a library in Durham County, NC). The data are wirelessly transmitte...
Solar Power Generation for ICT and Sustainable Development in Emerging Economies
ERIC Educational Resources Information Center
Paul, Damasen I.; Uhomoibhi, James
2012-01-01
Purpose: The purpose of this paper is to systematically examine and draw attention to the potential benefits of solar power generation for access to and use of information and communication technologies (ICT) aimed at sustainable development in emerging economies. Design/methodology/approach: Electricity plays a crucial role in the development and…
Expeditionary Mobile Operations Center (EMOC)
2014-09-01
use of solar panels and wind turbines (Barreto 2011) to contribute to operating power. Testing and evaluation of the EOC-2’s power requirements reveals...environments to reduce the consumption of fossil fuels. Once these technologies (for example, solar panels and wind turbines ) are identified and...64 b. Encryption and Wireless Access Point ..................... 64 c. Server System
Design of a Solar Tracking Interactive Kiosk
ERIC Educational Resources Information Center
Greene, Nathaniel R.; Brunskill, Jeffrey C.
2017-01-01
A two-axis solar tracker and its interactive kiosk were designed by an interdisciplinary team of students and faculty. The objective was to develop a publicly accessible kiosk that would facilitate the study of energy usage and production on campus. Tracking is accomplished by an open-loop algorithm, microcontroller, and ham radio rotator. Solar…
Teaching the Teacher--Solar Energy in Your Community.
ERIC Educational Resources Information Center
McCabe, Joseph
1996-01-01
Details a program sponsored by the Potomac Region Solar Energy Association (PREA) that provides local high school students with access to photovoltaic kits and encourages them to learn more about photovoltaics through a design competition. The purpose of this article is to inspire groups in other communities to initiate similar projects. (DDR)
The Dimensions of the Solar System
ERIC Educational Resources Information Center
Schneider, Stephen E.; Davis, Kathleen S.
2007-01-01
A few new wrinkles have been added to the popular activity of building a scale model of the solar system. Students can learn about maps and scaling using easily accessible online resources that include satellite images. This is accomplished by taking advantage of some of the special features of Google Earth. This activity gives students a much…
6 News Releases Access news stories about the laboratory and renewable energy and energy efficiency Facility Slashes Energy Use by 66 Percent - (10/3/96) Agreement Moves Nevada Solar Plant Step Closer to Converter Wins National Award - (7/25/96) Solar Energy to Help Heat Major Commercial Facility - (6/21/96
Nimbus-7 Earth Radiation Budjet compact solar data set user's guide
NASA Technical Reports Server (NTRS)
Kyle, H. Lee; Penn, Lanning M.; Hoyt, Douglas; Love, Douglas; Vemury, Sastri; Vallette, Brenda J.
1994-01-01
Nimbus-7 Earth Radiation Budget (ERB) solar measurements extend from November 16, 1978, to December 13, 1993, but with data gaps in 1992 and 1993. The measurements include the total solar irradiance plus six broadband spectral components. The Channel 10c total irradiance data appears very stable, and the calibration, well done. A number of characterization problems remain in the spectral measurements. In the original program, the solar and Earth flux measurements were intermixed and spread over about 170 computer tapes. For easier access, the solar data have been collected into two compact data sets. All of the data are collected into 14 Summary Solar Tapes (SST's). In addition, two Channel 10c Solar Tapes (CST's) give a separate listing of the stable total solar irradiance measurements. Channel 10c calibration and orbital irradiance values are given on separate PC disks. This document gives data descriptions and formats, together with quality control and calibration procedures.
Observations of an Eruptive Solar Flare in the Extended EUV Solar Corona
NASA Astrophysics Data System (ADS)
Seaton, Daniel B.; Darnel, Jonathan M.
2018-01-01
We present observations of a powerful solar eruption, accompanied by an X8.2 solar flare, from NOAA Active Region 12673 on 2017 September 10 by the Solar Ultraviolet Imager (SUVI) on the GOES-16 spacecraft. SUVI is noteworthy for its relatively large field of view, which allows it to image solar phenomena to heights approaching 2 solar radii. These observations include the detection of an apparent current sheet associated with magnetic reconnection in the wake of the eruption, and evidence of an extreme-ultraviolet wave at some of the largest heights ever reported. We discuss the acceleration of the nascent coronal mass ejection to approximately 2000 km s‑1 at about 1.5 solar radii. We compare these observations with models of eruptions and eruption-related phenomena. We also describe the SUVI data and discuss how the scientific community can access SUVI observations of the event.
Solar heavy ion Heinrich fluence spectrum at low earth orbit.
Croley, D R; Spitale, G C
1998-01-01
Solar heavy ions from the JPL Solar Heavy Ion Model have been transported into low earth orbit using the Schulz cutoff criterion for L-shell access by ions of a specific charge to mass ratio. The NASA Brouwer orbit generator was used to get L values along the orbit at 60 second time intervals. Heavy ion fluences of ions 2 < or = Z < or = 92 have been determined for the LET range 1 to 130 MeV-cm2/mg by 60, 120 or 250 mils of aluminum over a period of 24 hours in a 425 km circular orbit inclined 51 degrees. The ion fluence is time dependent in the sense that the position of the spacecraft in the orbit at the flare onset time fixes the relationship between particle flux and spacecraft passage through high L-values where particles have access to the spacecraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doyle, C.; Truitt, A.; Inda, D.
The following Photovoltaics Installation Best Practices Guide is one of several work products developed by the Solar Access to Public Capital (SAPC) working group, which works to open capital market investment. SAPC membership includes over 450 leading solar developers, financiers and capital managers, law firms, rating agencies, accounting and engineering firms, and other stakeholders engaged in solar asset deployment. SAPC activities are directed toward foundational elements necessary to pool project cash flows into tradable securities: standardization of power purchase and lease contracts for residential and commercial end customers; development of performance and credit data sets to facilitate investor due diligencemore » activities; comprehension of risk perceived by rating agencies; and the development of best practice guides for PV system installation and operations and maintenance (O&M) in order to encourage high-quality system deployment and operation that may improve lifetime project performance and energy production. This PV Installation Best Practices Guide was developed through the SAPC Installation Best Practices subcommittee, a subgroup of SAPC comprised of a wide array of solar industry leaders in numerous fields of practice. The guide was developed over roughly one year and eight months of direct engagement by the subcommittee and two working group comment periods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doyle, Chris; Loomans, Len; Truitt, Andrew
2015-12-29
This Best Practices in Commercial and Industrial Solar Photovoltaic System Installation Guide is the second of a series of guides designed to standardize and improve solar asset transparency for investors and rating agencies, provide an industry framework for quality management, and reduce transaction costs in the solar asset securitization process. The Best Practices in C&I PV System Installation Guide is intended to outline the minimum requirements for commercial and industrial solar project developments. Adherence to the guide is voluntary. Providers that adhere to the guide are responsible for self-certifying that they have fulfilled the guide requirements. Investors and rating agenciesmore » should verify compliance.« less
Sensitivity of Rooftop PV Projections in the SunShot Vision Study to Market Assumptions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drury, E.; Denholm, P.; Margolis, R.
2013-01-01
The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The SolarDS model was used to simulate rooftop PV demand for this study, based on several PV market assumptions--future electricity rates, customer access to financing, and others--in addition to the SunShot PV price projections. This paper finds that modeled PV demand is highly sensitive to several non-price market assumptions, particularly PV financing parameters.
Solar Orbiter: Exploring the Sun-Heliosphere Connection
NASA Technical Reports Server (NTRS)
Mueller, D.; Marsden, R. G.; St.Cyr, O. C.; Gilbert, H. R.
2013-01-01
The heliosphere represents a uniquely accessible domain of space, where fundamental physical processes common to solar, astrophysical and laboratory plasmas can be studied under conditions impossible to reproduce on Earth and unfeasible to observe from astronomical distances. Solar Orbiter, the first mission of ESA's Cosmic Vision 2015 - 2025 programme, will address the central question of heliophysics: How does the Sun create and control the heliosphere? In this paper, we present the scientific goals of the mission and provide an overview of the mission implementation.
Three computer codes to read, plot and tabulate operational test-site recorded solar data
NASA Technical Reports Server (NTRS)
Stewart, S. D.; Sampson, R. S., Jr.; Stonemetz, R. E.; Rouse, S. L.
1980-01-01
Computer programs used to process data that will be used in the evaluation of collector efficiency and solar system performance are described. The program, TAPFIL, reads data from an IBM 360 tape containing information (insolation, flowrates, temperatures, etc.) from 48 operational solar heating and cooling test sites. Two other programs, CHPLOT and WRTCNL, plot and tabulate the data from the direct access, unformatted TAPFIL file. The methodology of the programs, their inputs, and their outputs are described.
NASA Technical Reports Server (NTRS)
Gupta, A.; Coulbert, C.
1978-01-01
An actinometer has been developed to measure outdoor irradiance in the range 295-400 nm. Actinometric measurements of radiation are based on determination of photochemical reaction rates for reactions of known quantum efficiency. Actinometers have the advantage of providing irradiance data over surfaces of difficult accessibility; in addition, actinometrically determined irradiance data are wavelength weighted and therefore provide a useful means of assessing the degradation rates of polymers employed in solar energy systems.
Solar Orbiter Exploring the Sun-Heliosphere Connection
NASA Technical Reports Server (NTRS)
Mueller, Daniel; Marsden, Richard George; Cyr, O. C. St.; Gilbert, Holly Robin
2012-01-01
The heliosphere represents a uniquely accessible domain of space, where fundamental physical processes common to solar, astrophysical and laboratory plasmas can be studied under conditions impossible to reproduce on Earth and unfeasible to observe from astronomical distances. Solar Orbiter, the first mission of ESA's Cosmic Vision 2015 - 2025 programme, will address the central question of heliophysics: How does the Sun create and control the heliosphere? In this paper, we present the scientific goals of the mission and provide an overview of the mission implementation.
3D Visualization of Solar Data: Preparing for Solar Orbiter and Parker Solar Probe
NASA Astrophysics Data System (ADS)
Mueller, D.; Nicula, B.; Felix, S.; Verstringe, F.; Bourgoignie, B.; Csillaghy, A.; Berghmans, D.; Jiggens, P.; Ireland, J.; Fleck, B.
2017-12-01
Solar Orbiter and Parker Solar Probe will focus on exploring the linkage between the Sun and the heliosphere. These new missions will collect unique data that will allow us to study, e.g., the coupling between macroscopic physical processes to those on kinetic scales, the generation of solar energetic particles and their propagation into the heliosphere and the origin and acceleration of solar wind plasma. Combined with the several petabytes of data from NASA's Solar Dynamics Observatory, the scientific community will soon have access to multidimensional remote-sensing and complex in-situ observations from different vantage points, complemented by petabytes of simulation data. Answering overarching science questions like "How do solar transients drive heliospheric variability and space weather?" will only be possible if the community has the necessary tools at hand. In this contribution, we will present recent progress in visualizing the Sun and its magnetic field in 3D using the open-source JHelioviewer framework, which is part of the ESA/NASA Helioviewer Project.
NASA Astrophysics Data System (ADS)
Schoneberg, Johannes; Ohland, Jörg; Eraerds, Patrick; Dalibor, Thomas; Parisi, Jürgen; Richter, Michael
2018-04-01
We present a one-dimensional simulation model for high efficiency Cu(In,Ga)(Se,S)2 solar cells with a novel band alignment at the hetero-junction. The simulation study is based on new findings about the doping concentration of the InxSy:Na buffer and i-ZnO layers as well as comprehensive solar cell characterization by means of capacitance, current voltage, and external quantum efficiency measurements. The simulation results show good agreement with the experimental data over a broad temperature range, suggesting the simulation model with an interface-near region (INR) of approximately 100 nm around the buffer/absorber interface that is of great importance for the solar cell performance. The INR exhibits an inhomogeneous doping and defect density profile as well as interface traps at the i-layer/buffer and buffer/absorber interfaces. These crucial parameters could be accessed via their opposing behavior on the simulative reconstruction of different measurement characteristics. In this work, we emphasize the necessity to reconstruct the results of a set of experimental methods by means of simulation to find the most appropriate model for the solar cell. Lowly doped buffer and intrinsic window layers in combination with a high space charge at the front of the absorber lead to a novel band alignment in the simulated band structure of the solar cell. The presented insights may guide the strategy of further solar cell optimization including (alkali-) post deposition treatments.
LISIRD: Where to go for Solar Irradiance Data
NASA Astrophysics Data System (ADS)
Wilson, A.; Pankratz, C. K.; Lindholm, D. M.; Snow, M.; Knapp, B.; Woodraska, D.; Templeman, B.; Woods, T.; Eparvier, F.; Fontenla, J.; Harder, J.; Bill, M.
2008-12-01
LASP, the Laboratory for Atmospheric and Space Physics, has been providing web access to solar irradiance measurements, reference spectra, composites and model data covering the solar spectrum from .1 to 2400 nm through LISIRD, the LASP Interactive Solar IRradiance Datacenter. No single instrument can measure the solar spectral irradiance from X-rays to the IR, but the ensemble of LASP instruments can. LISIRD uses a single interface to provide easy, logical access to a variety of mission data, merged in time and wavelength. Daily space weather measurements are available, including total solar irradiance (TSI), Lyman Alpha (121 nm), Magnesium II Index (280 nm), He II (30.4 nm), FE XVI (33.5 nm), and the FUV continuum (145 to 165 nm). More recently, LISIRD has recently added the Whole Heliosphere Interval (WHI) Solar Irradiance time series, which provides a quiet sun reference spectra for the period of April 10-16 of 2008. LISIRD also recently added a composite solar spectral irradiance product over the range of 120 to 400 nm for the time period from November 8, 1978 to August 1, 2005. This product, created by Mathew Deland at SSAI, merges data from six different satellites into a single SSI product. And, we are currently adding a time series for daily solar spectral irradiance from 1950 to 2006, created by Judith Lean of the Naval Research Lab. This product adjusts observed irradiance for a given wavelength with parameters that represent known sources of variability at that wavelength. LISIRD remains committed to improving data access in a variety of ways. We are planning and developing a means for the broader community of scientists to easily determine data availability for a particular date range without having to know mission or instrument details. Improved data subsetting will allow users to request only the time range or spectra that users need, making data management generally easier. We expect to continue to enhance our data offerings. Future vision for LISIRD also includes integration of improved data visualization and analysis tools. We welcome contributions from solar science community members who wish to share data and tools they have developed. We also expect to integrate LISIRD with the Virtual Solar Observatory (VSO) and other relevant Virtual Observatories (VOs) for a more integrated and complete user experience. We are actively seeking input and feedback to improve LISIRD from interested users of this data. Towards this end we have provided a survey at our website and to AGU attendees. Those who use LISIRD and provide feedback will have the opportunity to help steer LISIRD development. Let us know what you would like to see and we will try to make it happen!
Solar Week 2000: Using role models to encourage an interest in science
NASA Astrophysics Data System (ADS)
Alexander, D.
2000-12-01
Solar Week 2000 is a week-long set of games and activities allowing students to interact directly with solar science and solar scientists. The main goal of Solar Week was to provide young women, primarily in grades 6-8, with access to role models in the sciences. The scientists participating in Solar Week are women from a variety of backgrounds and with a variety of scientific expertise. An online bulletin board was used to foster discussion between the students and the scientists about both science and career issues. In this presentation I will discuss the successes and failures of the first run of Solar Week which occurred on 9-13 October 2000. Our aim is to provide some insight into doing activity-based space science on the web and to discuss the lessons-learned from tailoring to a specific group of participants.
Solar Stimulus: Perceptions of banks and credit unions towards solar loans in Massachusetts
NASA Astrophysics Data System (ADS)
Bahirwani, Suveer
Access to finance for residential solar photovoltaic systems (PV) is an essential element of the clean energy economy. Perceptions about solar PV and solar loans among lenders at banks and credit unions shape the availability of lending products for residential solar PV. In March 2015, interviews were carried out among select informants and subsequently, between April and May 2015, a survey was conducted to gauge the perceptions of lenders in Massachusetts. Lenders have a range of concerns with the market and the provision of solar loans. These concerns can be grouped around risk, market size or viability and policy uncertainty. In summary, lending for this segment is not a priority for banks and credit unions in Massachusetts at this time. Recommendations are offered for the lending community and policymakers to improve adoption. Questions for further research are also presented.
Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication
Gao, Zan; Bumgardner, Clifton; Song, Ningning; Zhang, Yunya; Li, Jingjing; Li, Xiaodong
2016-01-01
With rising energy concerns, efficient energy conversion and storage devices are required to provide a sustainable, green energy supply. Solar cells hold promise as energy conversion devices due to their utilization of readily accessible solar energy; however, the output of solar cells can be non-continuous and unstable. Therefore, it is necessary to combine solar cells with compatible energy storage devices to realize a stable power supply. To this end, supercapacitors, highly efficient energy storage devices, can be integrated with solar cells to mitigate the power fluctuations. Here, we report on the development of a solar cell-supercapacitor hybrid device as a solution to this energy requirement. A high-performance, cotton-textile-enabled asymmetric supercapacitor is integrated with a flexible solar cell via a scalable roll-to-roll manufacturing approach to fabricate a self-sustaining power pack, demonstrating its potential to continuously power future electronic devices. PMID:27189776
NASA Astrophysics Data System (ADS)
Heynderickx, Daniel
2012-07-01
The main objective of the SEPServer project (EU FP7 project 262773) is to produce a new tool, which greatly facilitates the investigation of solar energetic particles (SEPs) and their origin: a server providing SEP data, related electromagnetic (EM) observations and analysis methods, a comprehensive catalogue of the observed SEP events, and educational/outreach material on solar eruptions. The project is coordinated by the University of Helsinki. The project will combine data and knowledge from 11 European partners and several collaborating parties from Europe and US. The datasets provided by the consortium partners are collected in a MySQL database (using the ESA Open Data Interface under licence) on a server operated by DH Consultancy, which also hosts a web interface providing browsing, plotting and post-processing and analysis tools developed by the consortium, as well as a Solar Energetic Particle event catalogue. At this stage of the project, a prototype server has been established, which is presently undergoing testing by users inside the consortium. Using a centralized database has numerous advantages, including: homogeneous storage of the data, which eliminates the need for dataset specific file access routines once the data are ingested in the database; a homogeneous set of metadata describing the datasets on both a global and detailed level, allowing for automated access to and presentation of the various data products; standardised access to the data in different programming environments (e.g. php, IDL); elimination of the need to download data for individual data requests. SEPServer will, thus, add value to several space missions and Earth-based observations by facilitating the coordinated exploitation of and open access to SEP data and related EM observations, and promoting correct use of these data for the entire space research community. This will lead to new knowledge on the production and transport of SEPs during solar eruptions and facilitate the development of models for predicting solar radiation storms and calculation of expected fluxes/fluences of SEPs encountered by spacecraft in the interplanetary medium.
NASA Astrophysics Data System (ADS)
Haney, Michael W.
2015-12-01
The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.
Land-Use Requirements for Solar Power Plants in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ong, S.; Campbell, C.; Denholm, P.
2013-06-01
This report provides data and analysis of the land use associated with utility-scale ground-mounted solar facilities, defined as installations greater than 1 MW. We begin by discussing standard land-use metrics as established in the life-cycle assessment literature and then discuss their applicability to solar power plants. We present total and direct land-use results for various solar technologies and system configurations, on both a capacity and an electricity-generation basis. The total area corresponds to all land enclosed by the site boundary. The direct area comprises land directly occupied by solar arrays, access roads, substations, service buildings, and other infrastructure. As ofmore » the third quarter of 2012, the solar projects we analyze represent 72% of installed and under-construction utility-scale PV and CSP capacity in the United States.« less
ERIC Educational Resources Information Center
Technology Teacher, 1991
1991-01-01
These three learning activities are on measuring accessible distances, designing a wind powered generator, and designing a hot dog heater using solar energy. Each activity includes description of context, objectives, list of materials and equipment, challenge to students, and evaluation questions. (SK)
Direct Solar Wind Proton Access into Permanently Shadowed Lunar Polar Craters
NASA Technical Reports Server (NTRS)
Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.
2011-01-01
Recent analyses of Lunar Prospector neutron spectrometer (LPNS) data have suggested that high abundances of hydrogen exist within cold traps at the lunar poles, and it has often been assumed that hydrogen-bearing volatiles sequestered in permanent shadow are topographically shielded from sputtering by solar wind protons. However, recent simulation results are presented showing that solar wind protons clearly access the floor of an idealized, shadowed lunar crater through a combination of thermal and ambipolar processes, in effect creating a plasma "miniwake". These simulations are the first to model the mini-wake environment in two spatial dimensions with a self-consistent lunar surface-plasma interaction. Progress is reported on constraining the nonzero particle fluxes and energies incident on kilometer-scale shadowed topography, such as a small crater embedded within a larger one. The importance of direct solar wind proton bombardment is discussed within the context of understanding the stability and inventory of hydrogen-bearing volatiles in shadow at the lunar poles. The support of the National Lunar Science institute, the DREAM institute, LPROPS, and the NASA Postdoctoral Program at NASA Goddard Space Flight Center administered by ORAU are gratefully acknowledged.
Spatial Searching for Solar Physics Data
NASA Astrophysics Data System (ADS)
Hourcle, Joseph; Spencer, J. L.; The VSO Team
2013-07-01
The Virtual Solar Observatory allows searching across many collections of solar physics data, but does not yet allow a researcher to search based on the location and extent of the observation, other than by selecting general categories such as full disk or off limb. High resolution instruments that observe only a portion of the the solar disk require greater specificity than is currently available. We believe that finer-grained spatial searching will allow for improved access to data from existing instruments such as TRACE, XRT and SOT, and well as from upcoming missions such as ATST and IRIS. Our proposed solution should also help scientists to search on the field of view of full-disk images that are out of the Sun-Earth line, such as STEREO/EUVI and obserations from the upcoming Solar Orbiter and Solar Probe Plus missions. We present our current work on cataloging sub field images for spatial searching so that researchers can more easily search for observations of a given feature of interest, with the intent of soliciting information about researcher's requirements and recommendations for further improvements.Abstract (2,250 Maximum Characters): The Virtual Solar Observatory allows searching across many collections of solar physics data, but does not yet allow a researcher to search based on the location and extent of the observation, other than by selecting general categories such as full disk or off limb. High resolution instruments that observe only a portion of the the solar disk require greater specificity than is currently available. We believe that finer-grained spatial searching will allow for improved access to data from existing instruments such as TRACE, XRT and SOT, and well as from upcoming missions such as ATST and IRIS. Our proposed solution should also help scientists to search on the field of view of full-disk images that are out of the Sun-Earth line, such as STEREO/EUVI and obserations from the upcoming Solar Orbiter and Solar Probe Plus missions. We present our current work on cataloging sub field images for spatial searching so that researchers can more easily search for observations of a given feature of interest, with the intent of soliciting information about researcher's requirements and recommendations for further improvements.
Observing the 2017 Total Solar Eclipse from the Pisgah Astronomical Research Institute
NASA Astrophysics Data System (ADS)
Kirwan, Sean Matthew; Cline, J. Donald; Krochmal, Mark; Donald Cline, Mark Krochmal
2017-01-01
The Pisgah Astronomical Research Institute (PARI) is located directly under the path of totality of next year’s solar eclipse and possesses two 26m radio telescopes capable of interferometry at simultaneously at 2.3 GHz and 8.4 GHZ. PARI is preparing these radio telescopes for use by the astronomical community to observe solar eclipse. We will present the status of PARI’s radio telescopes and information on access for the eclipse. We will also present the status and availability of several optical telescopes.
Eclipse Soundscapes Project: Making the August 21, 2017 Total Solar Eclipse Accessible to Everyone
NASA Astrophysics Data System (ADS)
Winter, H. D., III
2017-12-01
The Eclipse Soundscapes Project delivered a multisensory experience that allowed the blind and visually impaired to engage with the August 21, 2017 total solar eclipse along with their sighted peers in a way that would not have been possible otherwise. The project, from the Smithsonian Astrophysical Observatory and NASA's Heliophysics Education Consortium, includes illustrative audio descriptions of the eclipse in real time, recordings of the changing environmental sounds during the eclipse, and an interactive "rumble map" app that allows users to experience the eclipse through touch and sound. The Eclipse Soundscapes Project is working with organizations such as the National Parks Service (NPS), Science Friday, and Brigham Young University and by WGBH's National Center for Accessible Media (NCAM) to bring the awe and wonder of the total solar eclipse and other astronomical phenomena to a segment of the population that has been excluded from and astronomy and astrophysics for far too long, while engaging all learners in new and exciting ways.
NASA Technical Reports Server (NTRS)
Russell, C. T.; Metzger, A.; Pieters, C.; Elphic, R. C.; McCord, T.; Head, J.; Abshire, J.; Philips, R.; Sykes, M.; A'Hearn, M.;
1994-01-01
After many years of development, solar electric propulsion is now a practical low cost alternative for many planetary missions. In response to the recent Discovery AO, we and a number of colleagues have examined the scientific return from a missioon to map the Moon and then rendezvous with a small body. In planning this mission, we found that solar electric propulsion was quite affordable under the Discovery guidelines, that many targets could be reached more rapidly with solar electric propulsion than chemical propulsion, that a large number of planetary bodies were accessible with modest propulsion systems, and that such missions were quite adaptable, with generous launch windows which minimized mission risks. Moreover, solar electric propulsion is ideally suited for large payloads requiring a large amount of power.
Polar rain: Solar coronal electrons in the Earth's magnetosphere
NASA Technical Reports Server (NTRS)
Fairfield, D. H.; Scudder, J. D.
1984-01-01
Low energy electron measurements collected by ISEE 1 reveal the frequent presence of field-aligned fluxes of few hundred eV electrons in he geomagnetic tail lobes. In the northern tail lobe these electrons are most prominent when the interplanetary magnetic field is directed away from the Sun. This characteristic helps identify the electrons as polar rain electrons. By mapping the tail lobe velocity distribution function into the solar wind, previous suggestions that the polar rain is indeed of solar wind origin and is due to the access of electrons to the magnetotail lobe were confirmed. It was demonstrated that the moe energetic component of the polar rain is composed of electrons from the solar wind strahl - a field-aligned component of the solar wind which is difficult to measure but which is thought to be caused by the collisionless transit of hundred eV electrons from the inner solar corona to 1 AU.
New Thematic Solar System Exploration Products for Scientists and Educators
NASA Technical Reports Server (NTRS)
Lowes, Lesile; Wessen, Alice; Davis, Phil; Lindstrom, Marilyn
2004-01-01
The next several years are an exciting time in the exploration of the solar system. NASA and its international partners have a veritable armada of spaceships heading out to the far reaches of the solar system. We'll send the first spacecraft beyond our solar system into interstellar space. We'll launch our first mission to Pluto and the Kuiper Belt and just our second to Mercury (the first in 30 years). We'll continue our intensive exploration of Mars and begin our detailed study of Saturn and its moons. We'll visit asteroids and comets and bring home pieces of the Sun and a comet. This is truly an unprecedented period of exploration and discovery! To facilitate access to information and to provide the thematic context for these missions NASA s Solar System Exploration Program and Solar System Exploration Education Forum have developed several products.
Intracellular mechanisms of solar water disinfection
NASA Astrophysics Data System (ADS)
Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar
2016-12-01
Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.
Intracellular mechanisms of solar water disinfection
Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar
2016-01-01
Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection. PMID:27909341
Intracellular mechanisms of solar water disinfection.
Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar
2016-12-02
Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.
Probing the magnetic topologies of magnetic clouds by means of solar energetic particles
NASA Technical Reports Server (NTRS)
Kahler, S. W.; Reames, D. V.
1991-01-01
Solar energetic particles (SEPs) have been used as probes of magnetic cloud topologies. The rapid access of SEPs to the interiors of many clouds indicates that the cloud field lines extend back to the sun and hence are not plasmoids. The small modulation of galactic cosmic rays associated with clouds also suggests that the magnetic fields of clouds are not closed.
Ionizing Electrons on the Martian Nightside: Structure and Variability
NASA Astrophysics Data System (ADS)
Lillis, Robert J.; Mitchell, David L.; Steckiewicz, Morgane; Brain, David; Xu, Shaosui; Weber, Tristan; Halekas, Jasper; Connerney, Jack; Espley, Jared; Benna, Mehdi; Elrod, Meredith; Thiemann, Edward; Eparvier, Frank
2018-05-01
The precipitation of suprathermal electrons is the dominant external source of energy deposition and ionization in the Martian nightside upper atmosphere and ionosphere. We investigate the spatial patterns and variability of ionizing electrons from 115 to 600 km altitude on the Martian nightside, using CO2 electron impact ionization frequency (EIIF) as our metric, examining more than 3 years of data collected in situ by the Mars Atmosphere and Volatile EvolutioN spacecraft. We characterize the behavior of EIIF with respect to altitude, solar zenith angle, solar wind pressure, and the geometry and strength of crustal magnetic fields. EIIF has a complex and correlated dependence on these factors, but we find that it generally increases with altitude and solar wind pressure, decreases with crustal magnetic field strength and does not depend detectably on solar zenith angle past 115°. The dependence is governed by (a) energy degradation and backscatter by collisions with atmospheric neutrals below 220 km and (b) magnetic field topology that permits or retards electron access to certain regions. This field topology is dynamic and varies with solar wind conditions, allowing greater electron access at higher altitudes where crustal fields are weaker and also for higher solar wind pressures, which result in stronger draped magnetic fields that push closed crustal magnetic field loops to lower altitudes. This multidimensional electron flux behavior can in the future be parameterized in an empirical model for use as input to global simulations of the nightside upper atmosphere, which currently do not account for this important source of energy.
AP-8 trapped proton environment for solar maximum and solar minimum. [Computer accessible models
NASA Technical Reports Server (NTRS)
Sawyer, D. M.; Vette, J. I.
1976-01-01
Data sets from Ov-3 and Azur indicate a need for improvement in models of the stably trapped proton flux with energies between 0.1 and 400 MeV. Two computer accessible models are described: AP8MAX and AP8MIN. The models are presented in the form of nomographs, B-L plots, R-lambda plots, and equatorial radial profiles. Nomographs of the orbit-integrated fluxes are also discussed. The models are compared with each other, with the data, and with previous AP models. Requirements for future improvements include more complete data coverage and periodic comparisons with new data sets as they become available. The machine-sensible format in which the models are available are described.
NASA Astrophysics Data System (ADS)
Alstone, Peter Michael
This work explores the intersections of information technology and off-grid electricity deployment in the developing world with focus on a key instance: the emergence of pay-as-you-go (PAYG) solar household-scale energy systems. It is grounded in detailed field study by my research team in Kenya between 2013-2014 that included primary data collection across the solar supply chain from global businesses through national and local distribution and to the end-users. We supplement the information with business process and national survey data to develop a detailed view of the markets, technology systems, and individuals who interact within those frameworks. The findings are presented in this dissertation as a series of four chapters with introductory, bridging, and synthesis material between them. The first chapter, Decentralized Energy Systems for Clean Electricity Access, presents a global view of the emerging off-grid power sector. Long-run trends in technology create "a unique moment in history" for closing the gap between global population and access to electricity, which has stubbornly held at 1-2 billion people without power since the initiation of the electric utility business model in the late 1800's. We show the potential for widespread near-term adoption of off-grid solar, which could lead to ten times less inequality in access and also ten times lower household-level climate impacts. Decentralized power systems that replace fuel-based incumbent lighting can advance the causes of climate stabilization, economic and social freedom and human health. Chapters two and three are focused on market and institutional dynamics present circa 2014 in for off-grid solar with a focus on the Kenya market. Chapter 2, "Off-grid Power and Connectivity", presents our findings related to the widespread influence of information technology across the supply chain for solar and in PAYG approaches. Using digital financing and embedded payment verification technology, PAYG businesses can help overcome key barriers to adoption of off-grid energy systems. The framework provides financing (or energy service payment structures) for users of off-grid solar, and we show is also instrumental for building trust in off-grid solar technology, facilitating supply chain coordination, and creating mechanisms and incentives for after-sales service. Chapter 3, Quality Communication, delves into detail on the information channels (both incumbent and ICT-based) that link retailers with regional and global markets for solar goods. In it we uncover the linked structure of physical distribution networks and the pathway for information about product characteristics (including, critically, the quality of products). The work shows that a few key decisions about product purchasing at the wholesale level, in places like Nairobi (the capital city for Kenya) create the bulk of the choice set for retail buyers, and show how targeting those wholesale purchasers is critically important for ensuring good-quality products are available. Chapter 4, the last in this dissertation, is titled Off-grid solar energy services enabled and evaluated through information technology and presents an analytic framework for using remote monitoring data from PAYG systems to assess the joint technological and behavioral drivers for energy access through solar home systems. Using large-scale (n ~ 1,000) data from a large PAYG business in Kenya (M-KOPA), we show that people tend to co-optimize between the quantity and reliability of service, using 55% of the energy technically possible but with only 5% system down time. Half of the users move their solar panel frequently (in response to concerns about theft, for the most part) and these users experienced 20% lower energy service quantities. The findings illustrate the implications of key trends for off-grid power: evolving system component technology architectures, opportunities for improved support to markets, and the use of background data from business and technology systems. (Abstract shortened by ProQuest.).
Potential of Securitization in Solar PV Finance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowder, Travis; Mendelsohn, Michael
This report aims to demonstrate, hypothetically and at a high level, what volumes of solar deployment could be supported given solar industry access to the capital markets in the form of security issuance. Securitization is not anticipated to replace tax equity in the near- to mid-term, but it could provide an additional source of funds that would be comparatively inexpensive and could reduce the weighted average cost of capital for a given solar project or portfolio. Thus, the potential to securitize solar assets and seek financing in the capital markets could help to sustain the solar industry when the investmentmore » tax credit (ITC) -- one of the federal incentives that has leveraged billions of dollars of private capital in the solar industry -- drops from 30% to 10% at the close of 2016. The report offers analysis on the size of the U.S. third-party financed solar market, as well as on the volumes (in MW) of solar asset origination possible through a $100 million securitization fund (assuming no overcollateralization). It also provides data on the size of the relevant securities markets and how the solar asset class may fit into these markets.« less
JHelioviewer. Time-dependent 3D visualisation of solar and heliospheric data
NASA Astrophysics Data System (ADS)
Müller, D.; Nicula, B.; Felix, S.; Verstringe, F.; Bourgoignie, B.; Csillaghy, A.; Berghmans, D.; Jiggens, P.; García-Ortiz, J. P.; Ireland, J.; Zahniy, S.; Fleck, B.
2017-09-01
Context. Solar observatories are providing the world-wide community with a wealth of data, covering wide time ranges (e.g. Solar and Heliospheric Observatory, SOHO), multiple viewpoints (Solar TErrestrial RElations Observatory, STEREO), and returning large amounts of data (Solar Dynamics Observatory, SDO). In particular, the large volume of SDO data presents challenges; the data are available only from a few repositories, and full-disk, full-cadence data for reasonable durations of scientific interest are difficult to download, due to their size and the download rates available to most users. From a scientist's perspective this poses three problems: accessing, browsing, and finding interesting data as efficiently as possible. Aims: To address these challenges, we have developed JHelioviewer, a visualisation tool for solar data based on the JPEG 2000 compression standard and part of the open source ESA/NASA Helioviewer Project. Since the first release of JHelioviewer in 2009, the scientific functionality of the software has been extended significantly, and the objective of this paper is to highlight these improvements. Methods: The JPEG 2000 standard offers useful new features that facilitate the dissemination and analysis of high-resolution image data and offers a solution to the challenge of efficiently browsing petabyte-scale image archives. The JHelioviewer software is open source, platform independent, and extendable via a plug-in architecture. Results: With JHelioviewer, users can visualise the Sun for any time period between September 1991 and today; they can perform basic image processing in real time, track features on the Sun, and interactively overlay magnetic field extrapolations. The software integrates solar event data and a timeline display. Once an interesting event has been identified, science quality data can be accessed for in-depth analysis. As a first step towards supporting science planning of the upcoming Solar Orbiter mission, JHelioviewer offers a virtual camera model that enables users to set the vantage point to the location of a spacecraft or celestial body at any given time.
U.S. Department of Energy Solar Decathlon Visitors Guide 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-09-03
The U.S. Department of Energy 2015 Visitors Guide is a free, hard-copy publication distributed free to those attending the Solar Decathlon event. The publications' objectives are to serve as the primary information resource for those in attendance, and to deliver a compelling message about the Solar Decathlon's success as a proven workforce development program and its role in educating students and the public about clean energy products and design solutions. The U.S. Department of Energy 2015 Visitors Guide SD15 Visitors Guide goals are to guide attendees through the Solar Decathlon village; List and explain the 10 contests; educate attendees aboutmore » the participating teams and their competition houses; provide access to more information on the Solar Decathlon website through the use of QR codes; and acknowledge the support of all event sponsors.« less
Search for Primitive Matter in the Solar System
NASA Technical Reports Server (NTRS)
Libourel, G.; Michel, P.; Delbo, M.; Ganino, C.; Recio-Blanco, A.; de Laverny, P.; Zolensky, M. E.; Krot, A. N.
2017-01-01
Recent astronomical observations and theoretical modeling led to a consensus regarding the global scenario of the formation of young stellar objects (YSO) from a cold molecular cloud of interstellar dust (organics and minerals) and gas that, in some cases, leads to the formation of a planetary system. In the case of our Solar System, which has already evolved for approximately 4567 Ma, the quest is to access, through the investigation of planets, moons, cometary and asteroidal bodies, meteorites, micrometeorites, and interplanetary dust particles, the primitive material that contains the key information about the early Solar System processes and its evolution. However, laboratory analyses of extraterrestrial samples, astronomical observations and dynamical models of the Solar System evolution have not brought yet any conclusive evidence on the nature and location of primitive matter in the Solar System, preventing a clear understanding of its early stages.
VizieR Online Data Catalog: Quasi-periodic pulsations in solar flares (Inglis+, 2016)
NASA Astrophysics Data System (ADS)
Inglis, A. R.; Ireland, J.; Dennis, B. R.; Hayes, L.; Gallagher, P.
2018-04-01
We have used data from the Geostationary Operational Environmental Satellite (GOES) instrument series, and from Fermi/Gamma-ray Burst Monitor (GBM). For this reason, we choose the interval 2011 February 1 - 2015 December 31, as it not only coincides with the availability of GOES-15 satellite data, but also includes regular solar observations by GBM. GOES satellites are equipped with solar X-ray detectors that record the incident flux in the 0.5-4Å and 1-8Å wavelength ranges. Solar X-ray data from the most recent satellite, GOES-15, has been available since 2010 at a nominal 2s cadence. To access the GOES catalog, we use the Heliophysics Event Knowledgebase (HEK). Fermi/GBM operates in the 8keV-40MeV range and regularly observes emission from solar flares, with a solar duty cycle of ~60%, similar to the solar-dedicated Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). To accumulate the database of Fermi/GBM events, we use the GBM trigger catalog produced by the instrument team, selecting all events marked as flares. (2 data files).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keating, T. J.; Walker, A.; Ardani, K.
2015-03-01
This PV O&M Best Practices Guide is designed to improve solar asset transparency for investors and rating agencies, provide an industry framework for quality management, and reduce transaction costs in the solar asset securitization process. The PV O&M Best Practices Guide is intended to outline the minimum requirements for third-party ownership providers (“Providers”). Adherence to the guide is voluntary. Providers that adhere to the guide are responsible for selfcertifying that they have fulfilled the guide requirements.
NASA Astrophysics Data System (ADS)
Trompet, L.; Geunes, Y.; Ooms, T.; Mahieux, A.; Wilquet, V.; Chamberlain, S.; Robert, S.; Thomas, I. R.; Erard, S.; Cecconi, B.; Le Sidaner, P.; Vandaele, A. C.
2018-01-01
Venus Express SOIR profiles of pressure, temperature and number densities of different constituents of the mesosphere and lower thermosphere of Venus are the only experimental data covering the 60 km to 220 km range of altitudes at the terminator of Venus. This unique dataset is now available in the open access VESPA infrastructure. This paper describes the content of these data products and provides some use cases.
THE Role OF Anisotropy AND Intermittency IN Solar Wind/Magnetosphere Coupling
NASA Astrophysics Data System (ADS)
Jankovicova, D.; Voros, Z.
2006-12-01
Turbulent fluctuations are common in the solar wind as well as in the Earth's magnetosphere. The fluctuations of both magnetic field and plasma parameters exhibit non-Gaussian statistics. Neither the amplitude of these fluctuations nor their spectral characteristics can provide a full statistical description of multi-scale features in turbulence. It substantiates a statistical approach including the estimation of experimentally accessible statistical moments. In this contribution, we will directly estimate the third (skewness) and the fourth (kurtosis) statistical moments from the available time series of magnetic measurements in the solar wind (ACE and WIND spacecraft) and in the Earth's magnetosphere (SYM-H index). Then we evaluate how the statistical moments change during strong and weak solar wind/magnetosphere coupling intervals.
NASA Astrophysics Data System (ADS)
Zouganelis, Y.; Mueller, D.; St Cyr, O. C.; Gilbert, H. R.
2016-12-01
Solar Orbiter, the first mission of ESA's Cosmic Vision 2015-2025 programme, promises to deliver groundbreaking science with previously unavailable observational capabilities provided by a suite of in-situ and remote-sensing instruments in a unique orbit. The mission will address the central question of heliophysics: How does the Sun create and control the heliosphere? The heliosphere represents a uniquely accessible domain of space, where fundamental physical processes common to solar, astrophysical and laboratory plasmas can be studied under conditions impossible to reproduce on Earth and unfeasible to observe from astronomical distances. In this talk, we highlight the scientific goals of Solar Orbiter, address the synergy between this joint ESA/NASA mission and other new space and ground-based observatories, and present the mission's development status.
Leveraging the Polar Cap: Ground-Based Measurements of the Solar Wind
NASA Astrophysics Data System (ADS)
Urban, K. D.; Gerrard, A. J.; Weatherwax, A. T.; Lanzerotti, L. J.; Patterson, J. D.
2016-12-01
In this study, we look at and identify relationships between solar wind quantities that have previously been shown to have direct access into the very high-latitude polar cap as measured by ground-based riometers and magnetometers in Antarctica: ultra-low frequency (ULF) power in the interplanetary magnetic field (IMF) Bz component and solar energetic proton (SEP) flux (Urban [2016] and Patterson et al. [2001], respectively). It is shown that such solar wind and ground-based observations can be used to infer the hydromagnetic structure and magnetospheric mapping of the polar cap region in a data-driven manner, and that high-latitude ground-based instrumentation can be used to infer concurrent various state parameters of the geospace environment.
NASA Astrophysics Data System (ADS)
Shekoyan, V.; Dehipawala, S.; Liu, Ernest; Tulsee, Vivek; Armendariz, R.; Tremberger, G.; Holden, T.; Marchese, P.; Cheung, T.
2012-10-01
Digital solar image data is available to users with access to standard, mass-market software. Many scientific projects utilize the Flexible Image Transport System (FITS) format, which requires specialized software typically used in astrophysical research. Data in the FITS format includes photometric and spatial calibration information, which may not be useful to researchers working with self-calibrated, comparative approaches. This project examines the advantages of using mass-market software with readily downloadable image data from the Solar Dynamics Observatory for comparative analysis over with the use of specialized software capable of reading data in the FITS format. Comparative analyses of brightness statistics that describe the solar disk in the study of magnetic energy using algorithms included in mass-market software have been shown to give results similar to analyses using FITS data. The entanglement of magnetic energy associated with solar eruptions, as well as the development of such eruptions, has been characterized successfully using mass-market software. The proposed algorithm would help to establish a publicly accessible, computing network that could assist in exploratory studies of all FITS data. The advances in computer, cell phone and tablet technology could incorporate such an approach readily for the enhancement of high school and first-year college space weather education on a global scale. Application to ground based data such as that contained in the Baryon Oscillation Spectroscopic Survey is discussed.
Impact of a rural solar electrification project on the level and structure of women’s empowerment
NASA Astrophysics Data System (ADS)
Burney, Jennifer; Alaofè, Halimatou; Naylor, Rosamond; Taren, Douglas
2017-09-01
Although development organizations agree that reliable access to energy and energy services—one of the 17 Sustainable Development Goals—is likely to have profound and perhaps disproportionate impacts on women, few studies have directly empirically estimated the impact of energy access on women’s empowerment. This is a result of both a relative dearth of energy access evaluations in general and a lack of clarity on how to quantify gender impacts of development projects. Here we present an evaluation of the impacts of the Solar Market Garden—a distributed photovoltaic irrigation project—on the level and structure of women’s empowerment in Benin, West Africa. We use a quasi-experimental design (matched-pair villages) to estimate changes in empowerment for project beneficiaries after one year of Solar Market Garden production relative to non-beneficiaries in both treatment and comparison villages (n = 771). To create an empowerment metric, we constructed a set of general questions based on existing theories of empowerment, and then used latent variable analysis to understand the underlying structure of empowerment locally. We repeated this analysis at follow-up to understand whether the structure of empowerment had changed over time, and then measured changes in both the levels and likelihood of empowerment over time. We show that the Solar Market Garden significantly positively impacted women’s empowerment, particularly through the domain of economic independence. In addition to providing rigorous evidence for the impact of a rural renewable energy project on women’s empowerment, our work lays out a methodology that can be used in the future to benchmark the gender impacts of energy projects.
Hera - an ESA M-class Saturn Entry Probe Mission Proposal
NASA Astrophysics Data System (ADS)
Atkinson, D. H.; Mousis, O.; Spilker, T. R.; Venkatapathy, E.; Poncy, J.; Coustenis, A.; Reh, K. R.
2015-12-01
A fundamental goal of solar system exploration is to understand the origin of the solar system, the initial stages, conditions, and processes by which the solar system formed, how the formation process was initiated, and the nature of the interstellar seed material from which the solar system was born. Key to understanding solar system formation and subsequent dynamical and chemical evolution is the origin and evolution of the giant planets and their atmospheres. Additionally, the atmospheres of the giant planets serve as laboratories to better understand the atmospheric chemistries, dynamics, processes, and climates on all planets in the solar system including Earth, offer a context and provide a ground truth for exoplanets and exoplanetary systems, and have long been thought to play a critical role in the development of potentially habitable planetary systems. Remote sensing observations are limited when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the value of in situ measurements is provided by measurements of Jupiter's noble gas abundances and helium mixing ratio by the Galileo probe. In situ measurements provide direct access to atmospheric regions that are beyond the reach of remote sensing, enabling the dynamical, chemical and aerosol-forming processes at work from the thermosphere to the troposphere below the cloud decks to be studied. Studies for a newly proposed Saturn atmospheric entry probe mission named Hera is being prepared for the upcoming European Space Agency Medium Class (M5) mission announcement of opportunity. A solar powered mission, Hera will take approximately 8 years to reach Saturn and will carry instruments to measure the composition, structure, and dynamics of Saturn's atmosphere. In the context of giant planet science provided by the Galileo, Juno, and Cassini missions to Jupiter and Saturn, the Hera Saturn probe will provide critical measurements of composition, structure, and processes that are not accessible by remote sensing. The results of Hera will help test competing theories of solar system and giant planet origin, chemical, and dynamical evolution.
New Suborbital Flight Opportunities and Funding
NASA Astrophysics Data System (ADS)
Saltman, Alexander
2013-07-01
New opportunities for suborbital research are on the horizon. Reusable suborbital vehicles will offer immediate and routine space access for scientific payloads, provide access to altitudes around 100 kilometers, create opportunities for low-cost monitoring of upper atmospheric phenomena, as well as small scale solar observation. Reduced operational cost and quick turn-around will enable equipment to be flown opportunistically, in response to specific solar activity, or in continuous test and improvement cycles. Suborbital test flights will also provide opportunities to test prospective satellite instruments in an extended microgravity environment before being launched to orbit, raising the technology readiness level (TRL) of flight hardware and reducing the risk of anomalies during missions. I discuss the capabilities of emerging suborbital vehicles, payload and integration requirements, and funding opportunities for suborbital flights at NASA.
The value of price transparency in residential solar photovoltaic markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Shaughnessy, Eric; Margolis, Robert
Installed prices for residential solar photovoltaic (PV) systems have declined significantly in recent years. However price dispersion and limited customer access to PV quotes prevents some prospective customers from obtaining low price offers. This study shows that improved customer access to prices - also known as price transparency - is a potential policy lever for further PV price reductions. We use customer search and strategic pricing theory to show that PV installation companies face incentives to offer lower prices in markets with more price transparency. We test this theoretical framework using a unique residential PV quote dataset. Our results showmore » that installers offer lower prices to customers that are expected to receive more quotes. Our study provides a rationale for policies to improve price transparency in residential PV markets.« less
The value of price transparency in residential solar photovoltaic markets
O'Shaughnessy, Eric; Margolis, Robert
2018-04-05
Installed prices for residential solar photovoltaic (PV) systems have declined significantly in recent years. However price dispersion and limited customer access to PV quotes prevents some prospective customers from obtaining low price offers. This study shows that improved customer access to prices - also known as price transparency - is a potential policy lever for further PV price reductions. We use customer search and strategic pricing theory to show that PV installation companies face incentives to offer lower prices in markets with more price transparency. We test this theoretical framework using a unique residential PV quote dataset. Our results showmore » that installers offer lower prices to customers that are expected to receive more quotes. Our study provides a rationale for policies to improve price transparency in residential PV markets.« less
Functionally Graded Materials Database
NASA Astrophysics Data System (ADS)
Kisara, Katsuto; Konno, Tomomi; Niino, Masayuki
2008-02-01
Functionally Graded Materials Database (hereinafter referred to as FGMs Database) was open to the society via Internet in October 2002, and since then it has been managed by the Japan Aerospace Exploration Agency (JAXA). As of October 2006, the database includes 1,703 research information entries with 2,429 researchers data, 509 institution data and so on. Reading materials such as "Applicability of FGMs Technology to Space Plane" and "FGMs Application to Space Solar Power System (SSPS)" were prepared in FY 2004 and 2005, respectively. The English version of "FGMs Application to Space Solar Power System (SSPS)" is now under preparation. This present paper explains the FGMs Database, describing the research information data, the sitemap and how to use it. From the access analysis, user access results and users' interests are discussed.
Electronic digital display watch having solar and geographical functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salah, I.M.
1984-10-30
In order to provide easily accessible knowledge of the correlations between time, the geographical locale and the solar positions, the watch in question in addition to time-keeping means capable of displaying the current time also provides means capable of storing, processing in a microprocessor mode and displaying in a particular panel mode data of solar elevation and azimuth as well as date data, a computer performing correlating operations between these various values. Pushbuttons (BPH', BPM', BPB') allow using this watch in various operational and correction situations, and other pushbuttons (BPH, BPM, BPB) allow more specific commands for correction, for searchmore » operations regarding date and place based on the solar data, for storage and call from memory of the various processed data. This watch can easily be implemented as a small wrist watch. It will be advantageously used by those interested in knowing the solar positions, by solar facility engineers, architects, airline pilots, believers in the Moslem faith etc.« less
On the history of the solar wind discovery
NASA Astrophysics Data System (ADS)
Obridko, V. N.; Vaisberg, O. L.
2017-03-01
The discovery of the solar wind has been an outstanding achievement in heliophysics and space physics. The solar wind plays a crucial role in the processes taking place in the Solar System. In recent decades, it has been recognized as the main factor that controls the terrestrial effects of space weather. The solar wind is an unusual plasma laboratory of giant scale with a fantastic diversity of parameters and operating modes, and devoid of influence from the walls of laboratory plasma systems. It is also the only kind of stellar wind accessible for direct study. The history of this discovery is quite dramatic. Like many remarkable discoveries, it had several predecessors. However, the honor of a discovery usually belongs to a scientist who was able to more fully explain the phenomenon. Such a man is deservedly considered the US theorist Eugene Parker, who discovered the solar wind, as we know it today, almost "with the point of his pen". In 2017, we will celebrate the 90th anniversary birthday of Eugene Parker.
NASA Technical Reports Server (NTRS)
Stackouse, Paul W., Jr.; Renne, D.; Beyer, H.-G.; Wald, L.; Meyers, R.; Perez, R.; Suri, M.
2006-01-01
The GEOSS strategic plan specifically targets the area of improved energy resource management due to the importance of these to the economic and social viability of every nation of the world. With the world s increasing demand for energy resources, the need for new alternative energy resources grows. This paper overviews a new initiative within the International Energy Agency that addresses needs to better manage and develop solar energy resources worldwide. The goal is to provide the solar energy industry, the electricity sector, governments, and renewable energy organizations and institutions with the most suitable and accurate information of the solar radiation resources at the Earth's surface in easily-accessible formats and understandable quality metrics. The scope of solar resource assessment information includes historic data sets and currently derived data products using satellite imagery and other means. Thus, this new task will address the needs of the solar energy sector while at the same time will serve as a model that satisfies GEOSS objectives and goals.
Solar Avoided Cost Solution SunShot 6 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, John; Danziger, Eric
2014-01-29
The core objectives of this project were two separate but integrated products, collectively providing game-changing Avoided Cost capabilities. The first was a kit of avoided cost tools and data that any solar provider can use a-lacarte or as a whole. It’s open and easily accessible nature allows the rapid and accurate calculation of avoided cost in whatever context and software that make sense (“Typical and Avoided Cost Tools”). This kit includes a dataset of typical energy rates, costs and usage that can be used for solar prospecting, lead generation and any situation where data about an opportunity is missing ormore » imperfect. The second is a web application and related APIs specifically built for solar providers to radically streamline their lead-to-sale process (“Solar Provider Module”). The typical and Avoided Cost tools are built directly into this, and allow for solar providers to track their opportunities, collaborate with their installers and financiers, and close more sales faster.« less
High-energy solar flare observations at the Y2K maximum
NASA Astrophysics Data System (ADS)
Emslie, A. Gordon
2000-04-01
Solar flares afford an opportunity to observe processes associated with the acceleration and propagation of high-energy particles at a level of detail not accessible in any other astrophysical source. I will review some key results from previous high-energy solar flare observations, including those from the Compton Gamma-Ray Observatory, and the problems that they pose for our understanding of energy release and particle acceleration processes in the astrophysical environment. I will then discuss a program of high-energy observations to be carried out during the upcoming 2000-2001 solar maximum that is aimed at addressing and resolving these issues. A key element in this observational program is the High Energy Solar Spectroscopic Imager (HESSI) spacecraft, which will provide imaging spectroscopic observations with spatial, temporal, and energy resolutions commensurate with the physical processes believed to be operating, and will in addition provide the first true gamma-ray spectroscopy of an astrophysical source. .
Subsurface Zonal and Meridional Flows from SDO/HMI
NASA Astrophysics Data System (ADS)
Komm, Rudolf; Howe, Rachel; Hill, Frank
2016-10-01
We study the solar-cycle variation of the zonal and meridional flows in the near-surface layers of the solar convection zone from the surface to a depth of about 16 Mm. The flows are determined from SDO/HMI Dopplergrams using the HMI ring-diagram pipeline. The zonal and meridional flows vary with the solar cycle. Bands of faster-than-average zonal flows together with more-poleward-than-average meridional flows move from mid-latitudes toward the equator during the solar cycle and are mainly located on the equatorward side of the mean latitude of solar magnetic activity. Similarly, bands of slower-than-average zonal flows together with less-poleward-than-average meridional flows are located on the poleward side of the mean latitude of activity. Here, we will focus on the variation of these flows at high latitudes (poleward of 50 degree) that are now accessible using HMI data. We will present the latest results.
An Analysis of Eruptions Detected by the LMSAL Eruption Patrol
NASA Astrophysics Data System (ADS)
Hurlburt, N. E.; Higgins, P. A.; Jaffey, S.
2014-12-01
Observations of the solar atmosphere reveals a wide range of real and apparent motions, from small scale jets and spicules to global-scale coronal mass ejections. Identifying and characterizing these motions are essential to advance our understanding the drivers of space weather. Automated and visual identifications are used in identifying CMEs. To date, the precursors to these — eruptions near the solar surface — have been identified primarily by visual inspection. Here we report on an analysis of the eruptions detected by the Eruption Patrol, a data mining module designed to automatically identify eruptions from data collected by Solar Dynamics Observatory's Atmospheric Imaging Assembly (SDO/AIA). We describe the module and use it both to explore relations with other solar events recorded in the Heliophysics Event Knowledgebase and to identify and access data collected by the Interface Region Imaging Spectrograph (IRIS) and Solar Optical Telescope (SOT) on Hinode for further analysis.
The Virtual Space Physics Observatory: Quick Access to Data and Tools
NASA Technical Reports Server (NTRS)
Cornwell, Carl; Roberts, D. Aaron; McGuire, Robert E.
2006-01-01
The Virtual Space Physics Observatory (VSPO; see http://vspo.gsfc.nasa.gov) has grown to provide a way to find and access about 375 data products and services from over 100 spacecraft/observatories in space and solar physics. The datasets are mainly chosen to be the most requested, and include most of the publicly available data products from operating NASA Heliophysics spacecraft as well as from solar observatories measuring across the frequency spectrum. Service links include a "quick orbits" page that uses SSCWeb Web Services to provide a rapid answer to questions such as "What spacecraft were in orbit in July 1992?" and "Where were Geotail, Cluster, and Polar on 2 June 2001?" These queries are linked back to the data search page. The VSPO interface provides many ways of looking for data based on terms used in a registry of resources using the SPASE Data Model that will be the standard for Heliophysics Virtual Observatories. VSPO itself is accessible via an API that allows other applications to use it as a Web Service; this has been implemented in one instance using the ViSBARD visualization program. The VSPO will become part of the Space Physics Data Facility, and will continue to expand its access to data. A challenge for all VOs will be to provide uniform access to data at the variable level, and we will be addressing this question in a number of ways.
Max '91 Workshop 2: Developments in Observations and Theory for Solar Cycle 22
NASA Technical Reports Server (NTRS)
Winglee, Robert M. (Editor); Dennis, Brian R. (Editor)
1989-01-01
Papers and observatory reports presented at the second workshop of the Max '91 program are compiled along with discussion group summaries and invited reviews. The four discussion groups addressed the following subjects: high-energy flare physics; coordinated magnetograph observations; flare theory and modeling; and Max '91 communications and coordination. A special session also took place on observations of Active Region 5395 and the associated flares of March 1989. Other topics covered during the workshop include the scientific objectives of solar gamma ray observations, the solar capabilities of each of the four instruments on the Gamma Ray Observatory, and access to Max '91 information.
76 FR 21721 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-18
... Edison Company. Description: Cancellation of letter agreement with First Solar for 150 MW Desert Sunlight PV 1 Project by Southern California Edison Company. Filed Date: 04/05/2011. Accession Number...
ERIC Educational Resources Information Center
Braza, Peter A.
2006-01-01
Accurate and accessible expressions for the probability of having a matching birthday are obtained by using Stirling's formula and Taylor series. For interest, the results are applied to the planets of our solar system.
Solar Opportunity and Local Access Rights Act
Rep. Cardoza, Dennis A. [D-CA-18
2011-04-15
House - 05/02/2011 Referred to the Subcommittee on Insurance, Housing and Community Opportunity. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
NASA Astrophysics Data System (ADS)
Arregui, Iñigo
2018-01-01
In contrast to the situation in a laboratory, the study of the solar atmosphere has to be pursued without direct access to the physical conditions of interest. Information is therefore incomplete and uncertain and inference methods need to be employed to diagnose the physical conditions and processes. One of such methods, solar atmospheric seismology, makes use of observed and theoretically predicted properties of waves to infer plasma and magnetic field properties. A recent development in solar atmospheric seismology consists in the use of inversion and model comparison methods based on Bayesian analysis. In this paper, the philosophy and methodology of Bayesian analysis are first explained. Then, we provide an account of what has been achieved so far from the application of these techniques to solar atmospheric seismology and a prospect of possible future extensions.
EPO for the NASA SDO Extreme Ultraviolet Variability Experiment (EVE) Learning Suite for Educators
NASA Astrophysics Data System (ADS)
Kellagher, Emily; Scherrer, D. K.
2013-07-01
EVE Education and Public Outreach (EPO) promotes an understanding of the process of science and concepts within solar science and sun-earth connections. EVE EPO also features working scientists, current research and career awareness. One of the highlights for of this years projects is the digitization of solar lessons and the collaboration with the other instrument teams to develop new resources for students and educators. Digital lesson suite: EVE EPO has taken the best solar lessons and reworked then to make then more engaging, to reflect SDO data and made them SMARTboard compatible. We are creating a website that Students and teachers can access these lesson and use them online or download them. Project team collaboration: The SDO instruments (EVE, AIA and HMI) teams have created a comic book series for upper elementary and middle school students with the SDO mascot Camilla. These comics may be printed or read on mobile devices. Many teachers are looking for resources to use with their students via the Ipad so our collaboration helps supply teachers with a great resource that teachers about solar concepts and helps dispel solar misconceptions.Abstract (2,250 Maximum Characters): EVE Education and Public Outreach (EPO) promotes an understanding of the process of science and concepts within solar science and sun-earth connections. EVE EPO also features working scientists, current research and career awareness. One of the highlights for of this years projects is the digitization of solar lessons and the collaboration with the other instrument teams to develop new resources for students and educators. Digital lesson suite: EVE EPO has taken the best solar lessons and reworked then to make then more engaging, to reflect SDO data and made them SMARTboard compatible. We are creating a website that Students and teachers can access these lesson and use them online or download them. Project team collaboration: The SDO instruments (EVE, AIA and HMI) teams have created a comic book series for upper elementary and middle school students with the SDO mascot Camilla. These comics may be printed or read on mobile devices. Many teachers are looking for resources to use with their students via the Ipad so our collaboration helps supply teachers with a great resource that teachers about solar concepts and helps dispel solar misconceptions.
Recent Advances in Solar Sail Propulsion at NASA
NASA Technical Reports Server (NTRS)
Johnson, Les; Young, Roy M.; Montgomery, Edward E., IV
2006-01-01
Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing solar sail propulsion for use in robotic science and exploration of the solar system. Solar sail propulsion will provide longer on-station operation, increased scientific payload mass fraction, and access to previously inaccessible orbits for multiple potential science missions. Two different 20-meter solar sail systems were produced and successfully completed functional vacuum testing last year in NASA Glenn's Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by ATK Space Systems and L'Garde, respectively. These sail systems consist of a central structure with four deployable booms that support the sails. This sail designs are robust enough for deployments in a one atmosphere, one gravity environment, and are scalable to much larger solar sails-perhaps as much as 150 meters on a side. In addition, computation modeling and analytical simulations have been performed to assess the scalability of the technology to the large sizes (>150 meters) required for first generation solar sails missions. Life and space environmental effects testing of sail and component materials are also nearly complete. This paper will summarize recent technology advancements in solar sails and their successful ambient and vacuum testing.
SELCO: A model for solar rural electrification in India
NASA Astrophysics Data System (ADS)
Hande, H. Harish
1999-11-01
The following thesis presents the concept of a Rural Energy Service Company in India, known as SELCO. The model is being set up as a sustainable proposition for the implementation of solar photovoltaics as a viable alternative to provide reliable home lighting in the rural areas of India. The SELCO approach has already achieved noteworthy social and commercial results. Institutional, policy and operational problems have long plagued the rural electrification programs in India, resulting in thousands of villages without access to electricity. SELCO is a solar energy service company operating in Southern India since 1995, focusing on the enormous untapped market for home lighting where thousands of households have no access to electricity and severe power shortages face those already connected to the electric grid. The Company has installed nearly 2,000 solar home lighting systems. From a modest two employees company in 1995, it has grown to 35 in 1997 and from one office to eight. The hypothesis to be tested in this study is that in rural India, in a market not subsidized by the government, a solar service company with available loans from local banks and cooperatives and with sales, installation, and maintenance personnel in the villages can be successful in introducing photovoltaic systems to provide basic amenities such as lighting and water pumping for the improvement of the quality of life, public health, and the environment. The initial success of SELCO lends considerable evidence to the acceptance of the hypothesis. To accomplish its mission, SELCO works with commercial, retail, and rural development banks with large rural branch networks to stimulate loans to SELCO's customers based on a standard set of attractive financing terms. SELCO through its successful model has convinced the policy makers that a way to increase rural families' access to consumer financing for solar home lighting systems is through the existing financial network available in the country. Private investments, loans, and conditional grants totaling approximately US$ 650,000 have provided the working capital to date. A successful SELCO project would serve as a model for the world. The project would serve as a model not only for the Indian Government, the State Electricity Boards, and other Indian companies, but for the bulk of the world's utilities that are finding it difficult to electrify the vast majority of their rural service territories.
Solar Demon: near real-time solar eruptive event detection on SDO/AIA images
NASA Astrophysics Data System (ADS)
Kraaikamp, Emil; Verbeeck, Cis
Solar flares, dimmings and EUV waves have been observed routinely in extreme ultra-violet (EUV) images of the Sun since 1996. These events are closely associated with coronal mass ejections (CMEs), and therefore provide useful information for early space weather alerts. The Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) generates such a massive dataset that it becomes impossible to find most of these eruptive events manually. Solar Demon is a set of automatic detection algorithms that attempts to solve this problem by providing both near real-time warnings of eruptive events and a catalog of characterized events. Solar Demon has been designed to detect and characterize dimmings, EUV waves, as well as solar flares in near real-time on SDO/AIA data. The detection modules are running continuously at the Royal Observatory of Belgium on both quick-look data and synoptic science data. The output of Solar Demon can be accessed in near real-time on the Solar Demon website, and includes images, movies, light curves, and the numerical evolution of several parameters. Solar Demon is the result of collaboration between the FP7 projects AFFECTS and COMESEP. Flare detections of Solar Demon are integrated into the COMESEP alert system. Here we present the Solar Demon detection algorithms and their output. We will focus on the algorithm and its operational implementation. Examples of interesting flare, dimming and EUV wave events, and general statistics of the detections made so far during solar cycle 24 will be presented as well.
The AIA Solar Learning Center: Taking Inquiry-based EPO Online
NASA Astrophysics Data System (ADS)
Wills-Davey, Meredith; Attrill, G. D. R.; Engell, A.
2009-05-01
The observations of the Atmospheric Imaging Assembly aboard the Solar Dynamics Observatory (SDO-AIA) are expected to be groundbreaking within the field of heliophysics. To properly promote and explain the data produced by AIA, it is important that an innovative EPO effort be put forth. This has led to the development of "The AIA Solar Learning Center” (SLC), an inquiry-based educational website geared towards teaching about AIA and the Sun in general. The goal of the SLC is to provide K-12 students, teachers, parents, and homeschoolers with information and education about the Sun, primarily through hands-on activity modules that explain different aspects of our nearest star and the methods of observing it. While each module ultimately aims to impart information about the Sun or some related physical process, the activities also range across a host of different disciplines, including geology, chemistry, history, music, and art. In order to make the content applicable and accessible, activities are tailored to multiple difficulty levels, catering to different age groups. There is also a strong push towards facilitating teachers; activities are designed to fulfill specific teaching standards, and a host of additional teaching material is provided, including lesson plans and powerpoint presentations. Ultimately, the SLC aims to make science and the Sun inviting and accessible. The "Meet the Scientists” page will provide pictures and personal bios of participating scientists. Students will have the opportunity to interactively ask solar-related questions. There is even a host of lighter fare, such as a solar music playlist and links to relevant Facebook pages.
Data mining and visualization from planetary missions: the VESPA-Europlanet2020 activity
NASA Astrophysics Data System (ADS)
Longobardo, Andrea; Capria, Maria Teresa; Zinzi, Angelo; Ivanovski, Stavro; Giardino, Marco; di Persio, Giuseppe; Fonte, Sergio; Palomba, Ernesto; Antonelli, Lucio Angelo; Fonte, Sergio; Giommi, Paolo; Europlanet VESPA 2020 Team
2017-06-01
This paper presents the VESPA (Virtual European Solar and Planetary Access) activity, developed in the context of the Europlanet 2020 Horizon project, aimed at providing tools for analysis and visualization of planetary data provided by space missions. In particular, the activity is focused on minor bodies of the Solar System.The structure of the computation node, the algorithms developed for analysis of planetary surfaces and cometary comae and the tools for data visualization are presented.
Assessing the techno-economics of modular hybrid solar thermal systems
NASA Astrophysics Data System (ADS)
Lim, Jin Han; Chinnici, Alfonso; Dally, Bassam; Nathan, Graham
2017-06-01
A techno-economic assessment was performed on modular hybrid solar thermal (in particular, solar power tower) systems with combustion from natural gas as backup to provide a continuous supply of electricity. Two different configurations were compared, i.e. a Hybrid Solar Receiver Combustor (HSRC), in which the functions of a solar cavity receiver and a combustor are integrated into a single device, and a Solar Gas Hybrid (SGH), which is a reference hybrid solar thermal system with a standalone solar-only cavity receiver and a backup boiler. The techno-economic benefits were assessed by varying the size of the modular components, i.e. the heliostat field and the solar receivers. It was found that for modularization to be cost effective requires more than the increased learning from higher production of a larger number of smaller units, such as access to alternative, lower-cost manufacturing methods and/or the use of a low melting point Heat Transfer Fluid (HTF) such as sodium to reduce parasitic losses. In particular, for a plant with 30 units of 1MWth modules, the Levelized Cost of Electricity is competitive compared with a single unit of 30MWth after ˜100 plants are installed for both the HSRC and SGH if the systems employ the use of sodium as the heat transfer fluid.
GOES-R Space Weather Data: Products and Data Access
NASA Astrophysics Data System (ADS)
Tilton, M.; Rowland, W. F.; Codrescu, S.; Denig, W. F.; Seaton, D. B.
2016-12-01
In November 2016 NOAA launched the first in the "R" series of Geostationary Operational Environmental Satellites (GOES-R). GOES-R continues a tradition of almost 40 years of continuous space and solar observations at geostationary orbit. Compared to its predecessors, the GOES-R satellite provides improved in situ measurements of charged particle and magnetic field environments. The satellite also offers enhanced remote sensing of the sun through ultraviolet (UV) imagery and X-ray/UV irradiance. After the spacecraft completes early-orbit checkout and calibration, GOES-R space weather data and derived products will be used for operations within NOAA's Space Weather Prediction Center and publicly released through the National Centers for Environmental Information (NCEI). This presentation will provide an overview of GOES-R space weather data ranging from direct measurements (L0 data) to higher level science (L2+) products developed by NCEI scientists. We will also present planned data access and distribution features. We emphasize our strategy to ensure data discoverability and accessibility, including our participation in NOAA's OneStop project and potential partnerships with NASA's Virtual Solar Observatory and projects like Helioviewer.
77 FR 42716 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-20
... San Bernardino Fuel Cell Proj to be effective 7/12/2012. Filed Date: 7/11/12. Accession Number.... Applicants: NV Energy, Inc. Description: Service Agreement No. 10-01250 Amended and Restated Tonopah Solar...
77 FR 30520 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-23
.... Applicants: Imperial Valley Solar Company (IVSC) 1, LLC. Description: Amendment to Market-Based Rate Tariff... of Succession to be effective 5/16/2012. Filed Date: 5/15/12. Accession Number: 20120515-5179...
2003-11-07
In the Payload Hazardous Servicing Facility, the lander petals of the Mars Exploration Rover 2 MER-2 have been reopened and its solar panels deployed to allow technicians access to the spacecraft to remove one of its circuit boards.
Planetary Surface Visualization and Analytics
NASA Astrophysics Data System (ADS)
Law, E. S.; Solar System Treks Team
2018-04-01
An introduction and update of the Solar System Treks Project which provides a suite of interactive visualization and analysis tools to enable users (engineers, scientists, public) to access large amounts of mapped planetary data products.
Solar Opportunity and Local Access Rights Act
Rep. Cardoza, Dennis A. [D-CA-18
2009-06-16
House - 06/17/2009 Referred to the Subcommittee on Economic Development, Public Buildings and Emergency Management. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Can developing countries leapfrog the centralized electrification paradigm?
Levin, Todd; Thomas, Valerie M.
2016-02-04
Due to the rapidly decreasing costs of small renewable electricity generation systems, centralized power systems are no longer a necessary condition of universal access to modern energy services. Developing countries, where centralized electricity infrastructures are less developed, may be able to adopt these new technologies more quickly. We first review the costs of grid extension and distributed solar home systems (SHSs) as reported by a number of different studies. We then present a general analytic framework for analyzing the choice between extending the grid and implementing distributed solar home systems. Drawing upon reported grid expansion cost data for three specificmore » regions, we demonstrate this framework by determining the electricity consumption levels at which the costs of provision through centralized and decentralized approaches are equivalent in these regions. We then calculate SHS capital costs that are necessary for these technologies provide each of five tiers of energy access, as defined by the United Nations Sustainable Energy for All initiative. Our results suggest that solar home systems can play an important role in achieving universal access to basic energy services. The extent of this role depends on three primary factors: SHS costs, grid expansion costs, and centralized generation costs. Given current technology costs, centralized systems will still be required to enable higher levels of consumption; however, cost reduction trends have the potential to disrupt this paradigm. Furthermore, by looking ahead rather than replicating older infrastructure styles, developing countries can leapfrog to a more distributed electricity service model.« less
Solar Demon: near real-time Flare, Dimming and EUV wave monitoring
NASA Astrophysics Data System (ADS)
Kraaikamp, Emil; Verbeeck, Cis
Dimmings and EUV waves have been observed routinely in EUV images since 1996. They are closely associated with coronal mass ejections (CMEs), and therefore provide useful information for early space weather alerts. On the one hand, automatic detection and characterization of dimmings and EUV waves can be used to gain better understanding of the underlying physical mechanisms. On the other hand, every dimming and EUV wave provides extra information on the associated front side CME, and can improve estimates of the geo-effectiveness and arrival time of the CME. Solar Demon has been designed to detect and characterize dimmings, EUV waves, as well as solar flares in near real-time on Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) data. The detection modules are running continuously at the Royal Observatory of Belgium on both quick-look data, as well as synoptic science data. The output of Solar Demon can be accessed in near real-time on the Solar Demon website, and includes images, movies, light curves, and the numerical evolution of several parameters. Solar Demon is the result of collaboration between the FP7 projects AFFECTS and COMESEP. Flare detections of Solar Demon are integrated into the COMESEP alert system. Here we present the Solar Demon detection algorithms and their output. We will show several interesting flare, dimming and EUV wave events, and present general statistics of the detections made so far during solar cycle 24.
Applying Nyquist's method for stability determination to solar wind observations
NASA Astrophysics Data System (ADS)
Klein, Kristopher G.; Kasper, Justin C.; Korreck, K. E.; Stevens, Michael L.
2017-10-01
The role instabilities play in governing the evolution of solar and astrophysical plasmas is a matter of considerable scientific interest. The large number of sources of free energy accessible to such nearly collisionless plasmas makes general modeling of unstable behavior, accounting for the temperatures, densities, anisotropies, and relative drifts of a large number of populations, analytically difficult. We therefore seek a general method of stability determination that may be automated for future analysis of solar wind observations. This work describes an efficient application of the Nyquist instability method to the Vlasov dispersion relation appropriate for hot, collisionless, magnetized plasmas, including the solar wind. The algorithm recovers the familiar proton temperature anisotropy instabilities, as well as instabilities that had been previously identified using fits extracted from in situ observations in Gary et al. (2016). Future proposed applications of this method are discussed.
Design and development of a solar powered mobile laboratory
NASA Astrophysics Data System (ADS)
Jiao, L.; Simon, A.; Barrera, H.; Acharya, V.; Repke, W.
2016-08-01
This paper describes the design and development of a solar powered mobile laboratory (SPML) system. The SPML provides a mobile platform that schools, universities, and communities can use to give students and staff access to laboratory environments where dedicated laboratories are not available. The lab includes equipment like 3D printers, computers, and soldering stations. The primary power source of the system is solar PV which allows the laboratory to be operated in places where the grid power is not readily available or not sufficient to power all the equipment. The main system components include PV panels, junction box, battery, charge controller, and inverter. Not only is it used to teach students and staff how to use the lab equipment, but it is also a great tool to educate the public about solar PV technologies.
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Altstatt, Richard L.; Skipworth, William C.
2007-01-01
The Genesis spacecraft launched on 8 August 2001 sampled solar wind environments at L1 from 2001 to 2004. After the Science Capsule door was opened, numerous foils and samples were exposed to the various solar wind environments during periods including slow solar wind from the streamer belts, fast solar wind flows from coronal holes, and coronal mass ejections. The Survey and Examination of Eroded Returned Surfaces (SEERS) program led by NASA's Space Environments and Effects program had initiated access for the space materials community to the remaining Science Capsule hardware after the science samples had been removed for evaluation of materials exposure to the space environment. This presentation will describe the process used to generate a reference radiation Genesis Radiation Environment developed for the SEERS program for use by the materials science community in their analyses of the Genesis hardware.
ERIC Educational Resources Information Center
Gilbert, George L., Ed.
1980-01-01
Presented is a Corridor Demonstration which can be set up in readily accessible areas such as hallways or lobbies. Equipment is listed for a display of three cells (solar cells, fuel cells, and storage cells) which develop electrical energy. (CS)
Atmospheric Science Data Center
2018-04-04
Description: Obtain Surface meteorology and Solar Energy (SSE) data Available for locations, global/regional areas, ... Provided for 1° latitude by 1° longitude grid cells over the 22-year period July 1983 through June 2005 ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrayer, David
2017-08-22
DOE awarded funds to support a demonstration project to illustrate how access to solar power and green roof systems could improve building performance and long-term outcomes for the building owner and multiple nonprofit tenants housed in the building. Since being placed in service the solar PV system has saved approximately $1,000 per month in energy costs. The green roof has added to this benefit by naturally cooling the building and has helped reduce local road flooding by retaining storm water. These elements have improved the quality of life in the low-income community in which the building is located by allowingmore » social service organizations to focus more of their resources on programs and job creation.« less
Development of the prototype data management system of the solar H-alpha full disk observation
NASA Astrophysics Data System (ADS)
Wei, Ka-Ning; Zhao, Shi-Qing; Li, Qiong-Ying; Chen, Dong
2004-06-01
The Solar Chromospheric Telescope in Yunnan Observatory generates about 2G bytes fits format data per day. Huge amounts of data will bring inconvenience for people to use. Hence, data searching and sharing are important at present. Data searching, on-line browsing, remote accesses and download are developed with a prototype data management system of the solar H-alpha full disk observation, and improved by the working flow technology. Based on Windows XP operating system and MySQL data management system, a prototype system of browse/server model is developed by JAVA and JSP. Data compression, searching, browsing, deletion need authority and download in real-time have been achieved.
Lunar and Planetary Science XXXV: Education Programs Demonstrations
NASA Technical Reports Server (NTRS)
2004-01-01
Reports from the session on Education Programs Demonstration include:Hands-On Activities for Exploring the Solar System in K-14; Formal Education and Informal Settings;Making Earth and Space Science and Exploration Accessible; New Thematic Solar System Exploration Products for Scientists and Educators Engaging Students of All Ages with Research-related Activities: Using the Levers of Museum Reach and Media Attention to Current Events; Astronomy Village: Use of Planetary Images in Educational Multimedia; ACUMEN: Astronomy Classes Unleashed: Meaningful Experiences for Neophytes; Unusual Guidebook to Terrestrial Field Work Studies: Microenvironmental Studies by Landers on Planetary Surfaces (New Atlas in the Series of the Solar System Notebooks on E tv s University, Hungary); and The NASA ADS: Searching, Linking and More.
2000-11-30
A rising sun illuminates the coastal waters beyond Space Shuttle Endeavour, poised for launch on Nov. 30 at about 10:06 p.m. EST on mission STS-97. On the left, extending toward the orbiter, is the orbiter access arm. The mission to the International Space Station carries the P6 Integrated Truss Segment containing solar arrays and batteries that will be temporarily installed to the Unity connecting module by the Z1 truss, recently delivered to and installed on the Station on mission STS-92. The two solar arrays are each more than 100 feet long. They will capture energy from the sun and convert it to power for the Station. Two spacewalks will be required to install the solar array connections
Toward a Virtual Solar Observatory: Starting Before the Petabytes Fall
NASA Technical Reports Server (NTRS)
Gurman, J. B.; Fisher, Richard R. (Technical Monitor)
2002-01-01
NASA is currently engaged in the study phase of a modest effort to establish a Virtual Solar Observatory (VSO). The VSO would serve ground- and space-based solar physics data sets from a distributed network of archives through a small number of interfaces to the scientific community. The basis of this approach, as of all planned virtual observatories, is the translation of metadata from the various sources via source-specific dictionaries so the user will not have to distinguish among keyword usages. A single Web interface should give access to all the distributed data. We present the current status of the VSO, its initial scope, and its relation to the European EGSO effort.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goltz, G.; Weiner, H.
A computer program has been developed for designing and analyzing the performance of solar array/battery power systems for the U. S. Coast Guard Navigational Aids. This program is called the Design Synthesis/Performance Analysis (DSPA) Computer Program. The basic function of the Design Synthesis portion of the DSPA program is to evaluate functional and economic criteria to provide specifications for viable solar array/battery power systems. The basic function of the Performance Analysis portion of the DSPA program is to simulate the operation of solar array/battery power systems under specific loads and environmental conditions. This document provides all the information necessary tomore » access the DSPA programs, to input required data and to generate appropriate Design Synthesis or Performance Analysis Output.« less
Measurements of Raman crystallinity profiles in thin-film microcrystalline silicon solar cells
NASA Astrophysics Data System (ADS)
Choong, G.; Vallat-Sauvain, E.; Multone, X.; Fesquet, L.; Kroll, U.; Meier, J.
2013-06-01
Wedge-polished thin film microcrystalline silicon solar cells are prepared and used for micro-Raman measurements. Thereby, the variations of the Raman crystallinity with depth are accessed easily. Depth resolution limits of the measurement set-up are established and calculations evidencing the role of optical limits are presented. Due to this new technique, Raman crystallinity profiles of two microcrystalline silicon cells give first hints for the optimization of the profile leading to improved electrical performance of such devices.
1990-02-14
gamma rays, the interplanetary propagation of the particles to Earth, the access of these particles to the magnetosphere and the changes initiatcd in...geomagnetic disturbances on the availability and quality of !ong range, short wave radio communication is perhaps the best known of the solar effects. With...1987. (14) "Low Energy Protons at the Equator," presented by M. A. Miah at the Chapman Conference on Plasma Waves and Instabilities in Magnetospheres
Coronal Abundances and Their Variation
NASA Technical Reports Server (NTRS)
Saba, Julia L. R.
1996-01-01
This contract supported the investigation of elemental abundances in the solar corona, principally through analysis of high-resolution soft X-ray spectra from the Flat Crystal Spectrometer on NASA's Solar Maximum Mission. The goals of the study were a characterization of the mean values of relative abundances of elements accessible in the FCS data, and information on the extent and circumstances of their variability. This is the Final Report, summarizing the data analysis and reporting activities which occurred during the period of performance, June 1993 - December 1996.
NASA Astrophysics Data System (ADS)
Choi, C. S.; Macknick, J.; Ravi, S.
2017-12-01
Recently, co-locating the production of agricultural crops or biofuels with solar photovoltaics (PV) installations has been studied as a possible strategy to mitigate the environmental impacts and the high cost of solar PV in arid and semi-arid regions. Co-located PV and agricultural systems can provide multiple benefits in these areas related to water savings, erosion control, energy access, and rural economic development. However, such studies have been rare for water-rich, land-limited tropical countries, where ideal agricultural growing conditions can be substantially different from those in arid regions. We consider a case study in Indonesia to address this research gap. As the fourth most populous nation with an ever-growing energy demand and high vulnerability to the effects of climate change, Indonesia is being prompted to develop means to electrify approximately one-fifth of its population that still lacks access to the grid without incurring increases in its carbon footprint. We address the following questions to explore the feasibility and the benefits of co-location of solar PV with patchouli cultivation and essential oil production: i) How do the lifetime carbon, water, and energy footprints per unit land area of co-located solar PV/patchouli compare to those of standalone diesel microgrid, solar PV or patchouli cultivation? ii) Does energy production from standalone solar PV, diesel/solar PV microgrid, or co-located solar PV/patchouli systems satisfy energy demands of a typical rural Indonesian village? iii) How does the net economic return of the co-located system compare to each standalone land use? iv) How can surplus energy from the co-located system benefit rural socioeconomics? To answer these questions, life cycle assessment and economic analysis are performed for each of the standalone and the co-located land uses utilizing known values and data collected from a field visit to the island of Java in Indonesia. Then, sensitivity analyses and Monte Carlo simulations are performed to examine the range of possible economic outcomes and net carbon, water, and energy footprints per unit area. Interviews and existing case studies are used to examine the rural socioeconomic outcomes and opportunities of the surplus energy.
The McIntosh Archive: A solar feature database spanning four solar cycles
NASA Astrophysics Data System (ADS)
Gibson, S. E.; Malanushenko, A. V.; Hewins, I.; McFadden, R.; Emery, B.; Webb, D. F.; Denig, W. F.
2016-12-01
The McIntosh Archive consists of a set of hand-drawn solar Carrington maps created by Patrick McIntosh from 1964 to 2009. McIntosh used mainly H-alpha, He-1 10830 and photospheric magnetic measurements from both ground-based and NASA satellite observations. With these he traced coronal holes, polarity inversion lines, filaments, sunspots and plage, yielding a unique 45-year record of the features associated with the large-scale solar magnetic field. We will present the results of recent efforts to preserve and digitize this archive. Most of the original hand-drawn maps have been scanned, a method for processing these scans into digital, searchable format has been developed and streamlined, and an archival repository at NOAA's National Centers for Environmental Information (NCEI) has been created. We will demonstrate how Solar Cycle 23 data may now be accessed and how it may be utilized for scientific applications. In addition, we will discuss how this database of human-recognized features, which overlaps with the onset of high-resolution, continuous modern solar data, may act as a training set for computer feature recognition algorithms.
NASA Astrophysics Data System (ADS)
Laurenceau, A.; Aboudarham, J.; Renié, C.
2015-04-01
Between 1928 and 2003, the Observatoire de Paris published solar activity maps and their corresponding data tables, first in the Annals of the Meudon Observatory, then in the Synoptic Maps of the Solar Chromosphere. These maps represent the main solar structures in a single view and spread out on a complete Carrington rotation as well as tables of associated data, containing various information on these structures such as positions, length, morphological characteristics, and behavior. Since 2003, these maps and data tables have not been released in print, as they are only published on the online BASS2000 database, the solar database maintained by LESIA (Laboratory for space studies and astrophysical instruments). In order to make the first 80 years of observations which were available only in paper accessible and usable, the LESIA and the Library of the Observatory have started a project to digitize the publications, enter the data with the assistance of a specialized company, and then migrate the files obtained in BASS2000 and in the Heliophysics Features Catalog created in the framework of the European project HELIO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoffel, Tom
Site-specific, long-term, continuous, and high-resolution measurements of solar irradiance are important for developing renewable resource data. These data are used for several research and development activities consistent with the NREL mission: Equipment will be used by Jackson State University for solar radiation data monitoring. This is a continuing effort of the Historically Black Colleges and Universities Solar Measurement Network; Provide high quality ground-truth data for satellite remote sensing validation; Support development of radiative transfer models for estimating solar irradiance from available meteorological observations; Provide solar resource information needed for technology deployment and operations. Data acquired under this agreement will bemore » available to the public through NREL's Measurement & Instrumentation Data Center (MIDC) (www.nrel.gov/midc) or the Renewable Resource Data Center (RReDC ) (http://rredc.nrel.gov). The MIDC offers a variety of standard data display, access, and analysis tools designed to address the needs of a wide user audience (e.g., industry, academia, and government interests.« less
NASA Astrophysics Data System (ADS)
Castellazzi, Bernhard; Biberacher, Markus
2016-04-01
Many European cities nowadays offer their citizens Web-GIS applications to access data about solar potentials for specific buildings. However, the actual benefit of such solar systems can only be investigated, if their generation is not considered singularly, but in combination with information about temporal appearance of energy demand (heat, electricity), type of primary heating system, hourly internal consumption of photovoltaic power, feed-in power and other important financial and ecological aspects. Hence, the presented application addresses citizens, who are interested in the integration of solar power in buildings and would like to have an extended view on related impacts. Based on user inputs on building parameters and energy use, as well as high spatial and temporal resolved solar data for individual roof areas, financial and ecological effects of solar thermal installations and PV are estimated. Also interactions between heat and power generation are considered in the implemented approach. The tool was developed within the Central Europe project „Cities on Power" and is being realized for the cities Torino, Warsaw, Dresden, Klagenfurt and Ravenna.
NASA Technical Reports Server (NTRS)
Gurman, J. B.; Dimitoglou, G.; Bogart, R.; Tian, K. Q.; Hill, F.; Wampler, S.; Martens, P. C.; Davey, A. R.
2002-01-01
In order to meet the challenge of developing a new system science, we will need to employ technology that enables researchers to access data from fields with which they are at least initially unfamiliar as well as from sources they use more regularly. At the same time, the quantity of data to be obtained by missions such as the Solar Dynamics Observatory demands ease and simplicity of data access. These competing demands must in turn fit within severely constrained funding for data analysis in such projects. Based on experience in only a single discipline but with a diversity of data types and sources, we will give examples of technology that have made a significant difference in the way people do science. Similarly, we will show how adoption of a well-documented data format has made it easier for one community to search, reduce, and analyze data. We will also describe a community-supported data reduction and analysis software tree with useful features. We will attempt to generalize the lessons learned in these instances to features the broader, solar-terrestrial community might find compelling, while avoiding overdesign of a common data environment.
JHelioviewer: Open-Source Software for Discovery and Image Access in the Petabyte Age (Invited)
NASA Astrophysics Data System (ADS)
Mueller, D.; Dimitoglou, G.; Langenberg, M.; Pagel, S.; Dau, A.; Nuhn, M.; Garcia Ortiz, J. P.; Dietert, H.; Schmidt, L.; Hughitt, V. K.; Ireland, J.; Fleck, B.
2010-12-01
The unprecedented torrent of data returned by the Solar Dynamics Observatory is both a blessing and a barrier: a blessing for making available data with significantly higher spatial and temporal resolution, but a barrier for scientists to access, browse and analyze them. With such staggering data volume, the data is bound to be accessible only from a few repositories and users will have to deal with data sets effectively immobile and practically difficult to download. From a scientist's perspective this poses three challenges: accessing, browsing and finding interesting data while avoiding the proverbial search for a needle in a haystack. To address these challenges, we have developed JHelioviewer, an open-source visualization software that lets users browse large data volumes both as still images and movies. We did so by deploying an efficient image encoding, storage, and dissemination solution using the JPEG 2000 standard. This solution enables users to access remote images at different resolution levels as a single data stream. Users can view, manipulate, pan, zoom, and overlay JPEG 2000 compressed data quickly, without severe network bandwidth penalties. Besides viewing data, the browser provides third-party metadata and event catalog integration to quickly locate data of interest, as well as an interface to the Virtual Solar Observatory to download science-quality data. As part of the Helioviewer Project, JHelioviewer offers intuitive ways to browse large amounts of heterogeneous data remotely and provides an extensible and customizable open-source platform for the scientific community.
Theoretical Technology Research for ISTP/SOLARMAX
NASA Technical Reports Server (NTRS)
Ashour-Abdalla, Maha; Acuna, Mario (Technical Monitor)
2000-01-01
During the last decade, we have been developing theoretical tools to support the scientific objectives of the International Solar Terrestrial Physics (ISTP) program. Results from our mission-oriented theory program have contributed significantly to the development of predictive capabilities by using real upstream solar wind conditions as input to our models and forecasting events observed downstream near Earth. We also developed the capability to unravel the complex information contained in ion velocity distribution functions measured near the Earth to determine their origin and energization process. During solar maximum, solar flares and coronal mass ejections (CMEs) dominate the sun's activity. It is now widely accepted that the impact of CMEs (or magnetic clouds) with the Earth's magnetosphere is the cause of most magnetic storms during solar maximum. One important aspect of a CME is the occurrence of solar energetic particle (SEP) events. During these events, protons, electrons, and heavy ions of solar origin are accelerated to very high energies by shock waves driven out from the sun. We carried out a series of large-scale kinetic (LSK) simulations to model the effect of SEPs on the near-Earth environment and the accessibility of these high-energy particles to the inner magnetosphere. We present the results of these studies.
Some thoughts on Mercurian resources
NASA Astrophysics Data System (ADS)
Gillett, Stephen L.
Virtually all scenarios on Solar System development ignore Mercury, but such inattention is probably undeserved. Once viable lunar and (probably) asteroidal facilities are established in the next century, Mercury warrants further investigation. Mercury's high solar energy density is a major potential advantage for space-based industries. Indeed, despite its higher gravity, Mercury is roughly twice as easy to leave as the Moon if the additional solar flux is taken into account. Moreover, with solar-driven technologies such as solar sails or electric propulsion, its depth in the Sun's gravity well is less important. Because Mercury is airless and almost certainly waterless, it will be an obvious place to export lunar technology, which will have been developed to deal with very similar conditions. Methods for extracting resources from anhydrous silicates will be particularly germane. Even without solar-powered propulsion, the discovery of low-delta-V access via multiple Venus and Earth encounters makes the planet easier to reach than had been thought. Technology developed for multi-year missions to asteroids and Mars should be readily adaptable to such Mercurian missions. Mercury will not be our first outpost in the Solar System. Nonetheless, as facilities are established in cis-Earth space, it probably merits attention as a next step for development.
NASA Technical Reports Server (NTRS)
1999-01-01
Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This image, taken during the test, depicts the light being concentrated into the focal point inside the vacuum chamber. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.
1999-11-01
Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph shows a fully assembled solar thermal engine placed inside the vacuum chamber at the test facility prior to testing. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move theNation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.
Solar Thermal Propulsion Test Facility at MSFC
NASA Technical Reports Server (NTRS)
1999-01-01
This photograph shows an overall view of the Solar Thermal Propulsion Test Facility at the Marshall Space Flight Center (MSFC). The 20-by 24-ft heliostat mirror, shown at the left, has dual-axis control that keeps a reflection of the sunlight on an 18-ft diameter concentrator mirror (right). The concentrator mirror then focuses the sunlight to a 4-in focal point inside the vacuum chamber, shown at the front of concentrator mirror. Researchers at MSFC have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than chemical a combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propell nt. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.
Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody.
Zhu, Linxiao; Raman, Aaswath P; Fan, Shanhui
2015-10-06
A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. Here we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. When placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities.
NASA Technical Reports Server (NTRS)
Mondt, Jack F.; Zubrin, Robert M.
1996-01-01
The vision for the future of the planetary exploration program includes the capability to deliver 'constellations' or 'fleets' of microspacecraft to a planetary destination. These fleets will act in a coordinated manner to gather science data from a variety of locations on or around the target body, thus providing detailed, global coverage without requiring development of a single large, complex and costly spacecraft. Such constellations of spacecraft, coupled with advanced information processing and visualization techniques and high-rate communications, could provide the basis for development of a 'virtual presence' in the solar system. A goal could be the near real-time delivery of planetary images and video to a wide variety of users in the general public and the science community. This will be a major step in making the solar system accessible to the public and will help make solar system exploration a part of the human experience on Earth.
Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody
Zhu, Linxiao; Raman, Aaswath P.; Fan, Shanhui
2015-01-01
A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. Here we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. When placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities. PMID:26392542
ULF/ELF Waves in Near-Moon Space
NASA Astrophysics Data System (ADS)
Nakagawa, Tomoko
2016-02-01
The reflection of the solar wind protons is equivalent to a beam injection against the solar wind flow. It is expected to produce a ring beam with a 3D distribution function in many cases. The reflected protons are responsible for the generation of ultra-low-frequency (ULF) waves at ˜0.01 Hz and narrowband waves at ˜1 Hz in the extremely low frequency (ELF) range through resonant interaction with magnetohydrodynamic waves and whistler mode waves in the solar wind, respectively. This chapter discusses these commonly observed waves in the near-Moon space. The sinusoidal waveforms and sharp spectra of the monochromatic ELF waves are impressive, but commonly observed are non-monochromatic waves in the ELF range ˜0.03-10 Hz. Some of the solar wind protons reflected by the dayside lunar surface or crustal magnetic field gyrate around the solar wind magnetic field and can access the center of the wake owing to the large Larmour radius.
Systematic measurements of ion-proton differential streaming in the solar wind.
Berger, L; Wimmer-Schweingruber, R F; Gloeckler, G
2011-04-15
The small amount of heavy ions in the highly rarefied solar wind are sensitive tracers for plasma-physics processes, which are usually not accessible in the laboratory. We have analyzed differential streaming between heavy ions and protons in the solar wind at 1 AU. 3D velocity vector and magnetic field measurements from the Solar Wind Electron Proton Alpha Monitor and the Magnetometer aboard the Advanced Composition Explorer were used to reconstruct the ion-proton difference vector v(ip) = v(i) - v(p) from the 12 min 1D Solar Wind Ion Composition Spectrometer observations. We find that all 44 analyzed heavy ions flow along the interplanetary magnetic field at velocities which are smaller than, but comparable to, the local Alfvén speed C(A). The flow speeds of 35 of the 44 ion species lie within the range of ±0.15C(A) around 0.55C(A), the flow speed of He(2+).
Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody
Zhu, Linxiao; Raman, Aaswath P.; Fan, Shanhui
2015-09-21
A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. In this paper, we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. Whenmore » placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Lastly, our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities.« less
Solar Energy Systems for Ohioan Residential Homeowners
NASA Astrophysics Data System (ADS)
Luckett, Rickey D.
Dwindling nonrenewable energy resources and rising energy costs have forced the United States to develop alternative renewable energy sources. The United States' solar energy industry has seen an upsurge in recent years, and photovoltaic holds considerable promise as a renewable energy technology. The purpose of this case study was to explore homeowner's awareness of the benefits of solar energy. Disruptive-innovation theory was used to explore marketing strategies for conveying information to homeowners about access to new solar energy products and services. Twenty residential homeowners were interviewed face-to-face to explore (a) perceived benefits of solar energy in their county in Ohio, and (b) perceptions on the rationale behind the marketing strategy of solar energy systems sold for residential use. The study findings used inductive analyses and coding interpretation to explore the participants' responses that revealed 3 themes: the existence of environmental benefits for using solar energy systems, the expensive cost of equipment associated with government incentives, and the lack of marketing information that is available for consumer use. The implications for positive social change include the potential to enable corporate leaders, small business owners, and entrepreneurs to develop marketing strategies for renewable energy systems. These strategies may promote use of solar energy systems as a clean, renewable, and affordable alternative electricity energy source for the 21st century.
Focal Point Inside the Vacuum Chamber for Solar Thermal Propulsion
NASA Technical Reports Server (NTRS)
1999-01-01
Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has dual-axis control that keeps a reflection of the sunlight on an 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This photograph is a close-up view of a 4-in focal point inside the vacuum chamber at the MSFC Solar Thermal Propulsion Test facility. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.
Solar Thermal Propulsion Test Facility
NASA Technical Reports Server (NTRS)
1999-01-01
Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph shows a fully assembled solar thermal engine placed inside the vacuum chamber at the test facility prior to testing. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move theNation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.
Solar Thermal Propulsion Test Facility
NASA Technical Reports Server (NTRS)
1999-01-01
Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph, taken at MSFC's Solar Thermal Propulsion Test Facility, shows a concentrator mirror, a combination of 144 mirrors forming this 18-ft diameter concentrator, and a vacuum chamber that houses the focal point. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-foot diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.
NASA Astrophysics Data System (ADS)
Acuña, M.
The International Solar Terrestrial Physics Program (ISTP) evolved from the individual plans of US, Japanese and European countries to develop space missions to expand our knowledge of the Sun-Earth connection as a "system". Previous experience with independent missions amply illustrated the critical need for coordinated and simultaneous observations in key regions of Sun-Earth space in order to resolve time-space ambiguities and cause-effect relationships. Mission studies such as the US Origins of Plasmas in the Earth's Neighborhood (OPEN), Geotail in Japan, the Solar Heliospheric Observatory in Europe and the Regatta and other magnetospheric missions in the former Soviert Union, formed the early conceptual elements that eventually led to the ISTP program. The coordinating role developed by the Inter-Agency-Consultative-Group (IACG) integrated by NASA, ESA, ISAS and IKI and demonstrated during the comet Halley apparition in 1986, was continued to include solar-terrestrial research and the mission elements described above. In addition to the space elements, a most important component of the coordination effort was the inclusion of data networks, analysis and planning tools as well as globally accessible data sets by the scientific community at large. This approach enabled the active and direct participation of scientists in developing countries in one of the most comprehensive solar-terrestrial research programs implemented to date. The creation of multiple ISTP data repositories throughout the world has enabled a large number of scientists in developing countries to have direct access to the latest spacecraft observations and a most fruitful interaction with fellow researchers throughout the world. This paper will present a review of the evolution of the ISTP program, its products, analysis tools, data bases, infrastructure and lessons learned applicable to future international collaborative programs.
Jiang, Youyu; Xiao, Shengqiang; Xu, Biao; Zhan, Chun; Mai, Liqiang; Lu, Xinhui; You, Wei
2016-05-11
Herein, a successful application of V2O5·nH2O film as hole transporting layer (HTL) instead of PSS in polymer solar cells is demonstrated. The V2O5·nH2O layer was spin-coated from V2O5·nH2O sol made from melting-quenching sol-gel method by directly using vanadium oxide powder, which is readily accessible and cost-effective. V2O5·nH2O (n ≈ 1) HTL is found to have comparable work function and smooth surface to that of PSS. For the solar cell containing V2O5·nH2O HTL and the active layer of the blend of a novel polymer donor (PBDSe-DT2PyT) and the acceptor of PC71BM, the PCE was significantly improved to 5.87% with a 30% increase over 4.55% attained with PSS HTL. Incorporation of V2O5·nH2O as HTL in the polymer solar cell was found to enhance the crystallinity of the active layer, electron-blocking at the anode and the light-harvest in the wavelength range of 400-550 nm in the cell. V2O5·nH2O HTL improves the charge generation and collection and suppress the charge recombination within the PBDSe-DT2PyT:PC71BM solar cell, leading to a simultaneous enhancement in Voc, Jsc, and FF. The V2O5·nH2O HTL proposed in this work is envisioned to be of great potential to fabricate highly efficient PSCs with low-cost and massive production.
78 FR 59662 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-27
... Partners II, LLC, Solar Partners VIII, LLC, Sun City Project LLC, Vienna Power LLC. Description: Notice of... between Desert Sunlight 250, 300, and Holdings to be effective 10/1/2013. Filed Date: 9/19/13. Accession...
The development of an EDSS: Lessons learned and implications for DSS research
El-Gayar, O.; Deokar, A.; Michels, L.; Fosnight, G.
2011-01-01
The Solar and Wind Energy Resource Assessment (SWERA) project is focused on providing renewable energy (RE) planning resources to the public. Examples include wind, solar, and hydro assessments. SWERA DSS consists of three major components. First, SWERA 'Product Archive' provides for a discovery DSS upon which users can find and access renewable energy data and supporting models. Second, the 'Renewable Resource EXplorer' (RREX) component serves as a web-based, GIS analysis tool for viewing RE resource data available through the SWERA Product Archive. Third, the SWERA web service provides computational access to the data available in the SWERA spatial database through a location based query, and is also utilized in the RREX component. We provide a discussion of various design decisions used in the construction of this EDSS, followed by project experiences and implications for EDSS and broader DSS research. ?? 2011 IEEE.
The volatile composition of comets
NASA Technical Reports Server (NTRS)
Weaver, H. A.
1988-01-01
Comets may be our best probes of the physical and chemical conditions in the outer regions of the solar nebula during that crucial period when the planets formed. The volatile composition of cometary nuclei can be used to decide whether comets are the product of a condensation sequence similar to that invoked to explain the compositions of the planets and asteroids, or if comets are simply agglomerations of interstellar grains which have been insignificantly modified by the events that shaped the other bodies in the solar system. Although cometary nuclei are not generally accessible to observation, observations of cometary comae can illuminate at least some of the mysteries of the nuclei provided one has a detailed knowledge of the excitation conditions in the coma and also has access to basic atomic and molecular data on the many species present in comets. Examined here is the status of our knowledge of the volatile composition of cometary nuclei and how these data are obtained.
Solar-wind proton access deep into the near-Moon wake
NASA Astrophysics Data System (ADS)
Nishino, M. N.; Fujimoto, M.; Maezawa, K.; Saito, Y.; Yokota, S.; Asamura, K.; Tanaka, T.; Tsunakawa, H.; Matsushima, M.; Takahashi, F.; Terasawa, T.; Shibuya, H.; Shimizu, H.
2009-08-01
We study solar wind (SW) entry deep into the near-Moon wake using SELENE (KAGUYA) data. It has been known that SW protons flowing around the Moon access the central region of the distant lunar wake, while their intrusion deep into the near-Moon wake has never been expected. We show that SW protons sneak into the deepest lunar wake (anti-subsolar region at ˜100 km altitude), and that the entry yields strong asymmetry of the near-Moon wake environment. Particle trajectory calculations demonstrate that these SW protons are once scattered at the lunar dayside surface, picked-up by the SW motional electric field, and finally sneak into the deepest wake. Our results mean that the SW protons scattered at the lunar dayside surface and coming into the night side region are crucial for plasma environment in the wake, suggesting absorption of ambient SW electrons into the wake to maintain quasi-neutrality.
Peng, Yuelin; Govindaraju, Gokul V; Lee, Dong Ki; Choi, Kyoung-Shin; Andrew, Trisha L
2017-07-12
We report an unassisted solar water splitting system powered by a diketopyrrolopyrrole (DPP)-containing semitransparent organic solar cell. Two major merits of this fullerene-free solar cell enable its integration with a BiVO 4 photoanode. First is the high open circuit voltage and high fill factor displayed by this single junction solar cell, which yields sufficient power to effect water splitting when serially connected to an appropriate electrode/catalyst. Second, the wavelength-resolved photoaction spectrum of the DPP-based solar cell has minimal overlap with that of the BiVO 4 photoanode, thus ensuring that light collection across these two components can be optimized. The latter feature enables a new water splitting device configuration wherein the solar cell is placed first in the path of incident light, before the BiVO 4 photoanode, although BiVO 4 has a wider bandgap. This configuration is accessed by replacing the reflective top electrode of the standard DPP-based solar cell with a thin metal film and an antireflection layer, thus rendering the solar cell semitransparent. In this configuration, incident light does not travel through the aqueous electrolyte to reach the solar cell or photoanode, and therefore, photon losses due to the scattering of water are reduced. Moreover, this new configuration allows the BiVO 4 photoanode to be back-illuminated, i.e., through the BiVO 4 /back contact interface, which leads to higher photocurrents compared to front illumination. The combination of a semitransparent single-junction solar cell and a BiVO 4 photoanode coated with oxygen evolution catalysts in a new device configuration yielded an unassisted solar water splitting system with a solar-to-hydrogen conversion efficiency of 2.2% in water.
JPEG2000 Image Compression on Solar EUV Images
NASA Astrophysics Data System (ADS)
Fischer, Catherine E.; Müller, Daniel; De Moortel, Ineke
2017-01-01
For future solar missions as well as ground-based telescopes, efficient ways to return and process data have become increasingly important. Solar Orbiter, which is the next ESA/NASA mission to explore the Sun and the heliosphere, is a deep-space mission, which implies a limited telemetry rate that makes efficient onboard data compression a necessity to achieve the mission science goals. Missions like the Solar Dynamics Observatory (SDO) and future ground-based telescopes such as the Daniel K. Inouye Solar Telescope, on the other hand, face the challenge of making petabyte-sized solar data archives accessible to the solar community. New image compression standards address these challenges by implementing efficient and flexible compression algorithms that can be tailored to user requirements. We analyse solar images from the Atmospheric Imaging Assembly (AIA) instrument onboard SDO to study the effect of lossy JPEG2000 (from the Joint Photographic Experts Group 2000) image compression at different bitrates. To assess the quality of compressed images, we use the mean structural similarity (MSSIM) index as well as the widely used peak signal-to-noise ratio (PSNR) as metrics and compare the two in the context of solar EUV images. In addition, we perform tests to validate the scientific use of the lossily compressed images by analysing examples of an on-disc and off-limb coronal-loop oscillation time-series observed by AIA/SDO.
The Expanded Owens Valley Solar Array
NASA Astrophysics Data System (ADS)
Gary, Dale E.; Hurford, G. J.; Nita, G. M.; White, S. M.; Tun, S. D.; Fleishman, G. D.; McTiernan, J. M.
2011-05-01
The Expanded Owens Valley Solar Array (EOVSA) is now under construction near Big Pine, CA as a solar-dedicated microwave imaging array operating in the frequency range 1-18 GHz. The solar science to be addressed focuses on the 3D structure of the solar corona (magnetic field, temperature and density), on the sudden release of energy and subsequent particle acceleration, transport and heating, and on space weather phenomena. The project will support the scientific community by providing open data access and software tools for analysis of the data, to exploit synergies with on-going solar research in other wavelengths. The New Jersey Institute of Technology (NJIT) is expanding OVSA from its previous complement of 7 antennas to a total of 15 by adding 8 new antennas, and will reinvest in the existing infrastructure by replacing the existing control systems, signal transmission, and signal processing with modern, far more capable and reliable systems based on new technology developed for the Frequency Agile Solar Radiotelescope (FASR). The project will be completed in time to provide solar-dedicated observations during the upcoming solar maximum in 2013 and beyond. We provide an update on current status and our preparations for exploiting the data through modeling and data analysis tools. This research is supported by NSF grants AST-0908344, and AGS-0961867 and NASA grant NNX10AF27G to New Jersey Institute of Technology.
NASA Astrophysics Data System (ADS)
Austin, A.; Ballare, C. L.; Méndez, M. S.
2015-12-01
Plant litter decomposition is an essential process in the first stages of carbon and nutrient turnover in terrestrial ecosystems, and together with soil microbial biomass, provide the principal inputs of carbon for the formation of soil organic matter. Photodegradation, the photochemical mineralization of organic matter, has been recently identified as a mechanism for previously unexplained high rates of litter mass loss in low rainfall ecosystems; however, the generality of this process as a control on carbon cycling in terrestrial ecosystems is not known, and the indirect effects of photodegradation on biotic stimulation of carbon turnover have been debated in recent studies. We demonstrate that in a wide range of plant species, previous exposure to solar radiation, and visible light in particular, enhanced subsequent biotic degradation of leaf litter. Moreover, we demonstrate that the mechanism for this enhancement involves increased accessibility for microbial enzymes to plant litter carbohydrates due to a reduction in lignin content. Photodegradation of plant litter reduces the structural and chemical bottleneck imposed by lignin in secondary cell walls. In litter from woody plant species, specific interactions with ultraviolet radiation obscured facilitative effects of solar radiation on biotic decomposition. The generalized positive effect of solar radiation exposure on subsequent microbial activity is mediated by increased accessibility to cell wall polysaccharides, which suggests that photodegradation is quantitatively important in determining rates of mass loss, nutrient release and the carbon balance in a broad range of terrestrial ecosystems.
The Mission Accessible Near-Earth Object Survey (MANOS)
NASA Astrophysics Data System (ADS)
Moskovitz, N.; Manos Team
2014-07-01
Near-Earth objects (NEOs) are essential to understanding the origin of the Solar System through their compositional links to meteorites. As tracers of various regions within the Solar System they can provide insight to more distant, less accessible populations. Their relatively small sizes and complex dynamical histories make them excellent laboratories for studying ongoing Solar System processes such as space weathering, planetary encounters, and non-gravitational dynamics. Knowledge of their physical properties is essential to impact hazard assessment. Finally, the proximity of NEOs to Earth make them favorable targets for robotic and human exploration. However, in spite of their scientific importance, only the largest (km-scale) NEOs have been well studied and a representative sample of physical characteristics for sub-km NEOs does not exist. To address these issues we are conducting the Mission Accessible Near-Earth Object Survey (MANOS), a fully allocated multi-year survey of sub-km NEOs that will provide a large, uniform catalog of physical properties including light curves, spectra, and astrometry. From this comprehensive catalog, we will derive global properties of the NEO population, as well as identify individual targets that are of potential interest for exploration. We will accomplish these goals for approximately 500 mission-accessible NEOs across the visible and near-infrared ranges using telescope assets in both the northern and southern hemispheres. MANOS has been awarded large survey status by NOAO to employ Gemini-N, Gemini-S, SOAR, the Kitt Peak 4 m, and the CTIO 1.3 m. Access to additional facilities at Lowell Observatory (DCT 4.3 m, Perkins 72'', Hall 42'', LONEOS), the University of Hawaii, and the Catalina Sky Survey provide essential complements to this suite of telescopes. Targets for MANOS are selected based on three primary criteria: mission accessibility (i.e. Δ v < 7 km/s), size (H > 20), and observability. Our telescope assets allow us to obtain rotational light curves for objects down to V˜22, visible spectra down to V˜21, and near-IR spectra down to V˜19. MANOS primarily focuses on targets that are recently discovered. We employ a regular cadence of remote and queue observations to enable follow-up characterization within days or weeks after a target of interest is discovered. We will present a MANOS status report with an emphasis on noteworthy observations and ongoing efforts to achieve fully transparency by making target lists and data products publicly available online.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrows, Clayton P.; Katz, Jessica R.; Cochran, Jaquelin M.
The Republic of the Philippines is home to abundant solar, wind, and other renewable energy (RE) resources that contribute to the national government's vision to ensure sustainable, secure, sufficient, accessible, and affordable energy. Because solar and wind resources are variable and uncertain, significant generation from these resources necessitates an evolution in power system planning and operation. To support Philippine power sector planners in evaluating the impacts and opportunities associated with achieving high levels of variable RE penetration, the Department of Energy of the Philippines (DOE) and the United States Agency for International Development (USAID) have spearheaded this study along withmore » a group of modeling representatives from across the Philippine electricity industry, which seeks to characterize the operational impacts of reaching high solar and wind targets in the Philippine power system, with a specific focus on the integrated Luzon-Visayas grids.« less
Degradation-Free Spectrometers for Solar EUV Measurements: A Progress Report
NASA Astrophysics Data System (ADS)
Wieman, S. R.; Judge, D. L.; Didkovsky, L. V.
2009-12-01
Solar EUV observations will be made using two new degradation-free EUV spectrometers on a sounding rocket flight scheduled for Summer 2010. The two instruments, a rare gas photoionization-based Optics-Free Spectrometer (OFS) and a Dual Grating Spectrometer (DGS), are filter-free and optics-free. OFS can measure the solar EUV spectrum with a spectral resolution comparable to that of grating-based EUV spectrometers. The DGS is designed to provide solar irradiance at Lyman-alpha and He II to overlap EUV observations from SOHO/SEM and SDO/EVE. Electronic and mechanical designs for the flight prototype instruments and results of tests performed with the instruments in the laboratory are reported. The spectrometers are being developed and demonstrated as part of the Degradation Free Spectrometers (DFS) project under NASA’s Low Cost Access to Space (LCAS) program and are supported by NASA Grant NNX08BA12G.
WebGL-enabled 3D visualization of a Solar Flare Simulation
NASA Astrophysics Data System (ADS)
Chen, A.; Cheung, C. M. M.; Chintzoglou, G.
2016-12-01
The visualization of magnetohydrodynamic (MHD) simulations of astrophysical systems such as solar flares often requires specialized software packages (e.g. Paraview and VAPOR). A shortcoming of using such software packages is the inability to share our findings with the public and scientific community in an interactive and engaging manner. By using the javascript-based WebGL application programming interface (API) and the three.js javascript package, we create an online in-browser experience for rendering solar flare simulations that will be interactive and accessible to the general public. The WebGL renderer displays objects such as vector flow fields, streamlines and textured isosurfaces. This allows the user to explore the spatial relation between the solar coronal magnetic field and the thermodynamic structure of the plasma in which the magnetic field is embedded. Plans for extending the features of the renderer will also be presented.
Can developing countries leapfrog the centralized electrification paradigm?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, Todd; Thomas, Valerie M.
Due to the rapidly decreasing costs of small renewable electricity generation 'systems, centralized power systems are no longer a necessary condition of universal access to modern energy services. Developing countries, where centralized electricity infrastructures are less developed, may be able to adopt these new technologies more quickly. We first review the costs of grid extension and distributed solar home systems (SHSs) as reported by a number of different studies. We then present a general analytic framework for analyzing the choice between extending the grid and implementing distributed solar home systems. Drawing upon reported grid expansion cost data for three specificmore » regions, we demonstrate this framework by determining the electricity consumption levels at which the costs of provision through centralized and decentralized approaches are equivalent in these regions. We then calculate SHS capital costs that are necessary for these technologies provide each of five tiers of energy access, as defined by the United Nations Sustainable Energy for All initiative. Our results suggest that solar home systems can play an important role in achieving universal access to basic energy services. The extent of this role depends on three primary factors: SHS costs, grid expansion costs, and centralized generation costs. Given current technology costs, centralized systems will still be required to enable higher levels of consumption; however, cost reduction trends have the potential to disrupt this paradigm. By looking ahead rather than replicating older infrastructure styles, developing countries can leapfrog to a more distributed electricity service model. (C) 2016 International Energy Initiative. Published by Elsevier Inc. All rights reserved.« less
Space Weather Research in Armenia
NASA Astrophysics Data System (ADS)
Chilingarian, A. A.
DVIN for ASEC (Data Visualization interactive Network for Aragats Space Environmental Center) is product for accessing and analysis the on-line data from Solar Monitors located at high altitude research station on Mt. Aragats in Armenia. Data from ASEC monitors is used worldwide for scientific purposes and for monitoring of severe solar storms in progress. Alert service, based on the automatic analysis of variations of the different species of cosmic ray particles is available for subscribers. DVIN advantages: DVIN is strategically important as a scientific application to help develop space science and to foster global collaboration in forecasting potential hazards of solar storms. It precisely fits with the goals of the new evolving information society to provide long-term monitoring and collection of high quality scientific data, and enables adequate dialogue between scientists, decision makers, and civil society. The system is highly interactive and exceptional information is easily accessible online. Data can be monitored and analyzed for desired time spans in a fast and reliable manner. The ASEC activity is an example of a balance between the scientific independence of fundamental research and the needs of civil society. DVIN is also an example of how scientific institutions can apply the newest powerful methods of information technologies, such as multivariate data analysis, to their data and also how information technologies can provide convenient and reliable access to this data and to new knowledge for the world-wide scientific community. DVIN provides very wide possibilities for sharing data and sending warnings and alerts to scientists and other entities world-wide, which have fundamental and practical interest in knowing the space weather conditions.
The Focusing Optics Solar X-ray Imager (FOXSI)
NASA Astrophysics Data System (ADS)
Christe, Steven; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S.; Takahashi, T.; Tajima, H.
2010-05-01
The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The FOXSI project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.
The Focusing Optics X-ray Solar Imager (FOXSI)
NASA Astrophysics Data System (ADS)
Krucker, Sam; Christe, Steven; Glesener, Lindsay; McBride, Steve; Turin, Paul; Glaser, David; Saint-Hilaire, Pascal; Delory, Gregory; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; Terada, Yukikatsu; Ishikawa, Shin-Nosuke; Kokubun, Motohide; Saito, Shinya; Takahashi, Tadayuki; Watanabe, Shin; Nakazawa, Kazuhiro; Tajima, Hiroyasu; Masuda, Satoshi; Minoshima, Takashi; Shomojo, Masumi
2009-08-01
The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The FOXSI project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.
The Focusing Optics Solar X-ray Imager (FOXSI)
NASA Astrophysics Data System (ADS)
Christe, S.; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S.; Takahashi, T.
2009-12-01
The Focusing Optics x-ray Solar Imager is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager provides excellent spatial (2 arcseconds) and spectral (1~keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The foxsi project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.
JHelioviewer: Open-Source Software for Discovery and Image Access in the Petabyte Age
NASA Astrophysics Data System (ADS)
Mueller, D.; Dimitoglou, G.; Garcia Ortiz, J.; Langenberg, M.; Nuhn, M.; Dau, A.; Pagel, S.; Schmidt, L.; Hughitt, V. K.; Ireland, J.; Fleck, B.
2011-12-01
The unprecedented torrent of data returned by the Solar Dynamics Observatory is both a blessing and a barrier: a blessing for making available data with significantly higher spatial and temporal resolution, but a barrier for scientists to access, browse and analyze them. With such staggering data volume, the data is accessible only from a few repositories and users have to deal with data sets effectively immobile and practically difficult to download. From a scientist's perspective this poses three challenges: accessing, browsing and finding interesting data while avoiding the proverbial search for a needle in a haystack. To address these challenges, we have developed JHelioviewer, an open-source visualization software that lets users browse large data volumes both as still images and movies. We did so by deploying an efficient image encoding, storage, and dissemination solution using the JPEG 2000 standard. This solution enables users to access remote images at different resolution levels as a single data stream. Users can view, manipulate, pan, zoom, and overlay JPEG 2000 compressed data quickly, without severe network bandwidth penalties. Besides viewing data, the browser provides third-party metadata and event catalog integration to quickly locate data of interest, as well as an interface to the Virtual Solar Observatory to download science-quality data. As part of the ESA/NASA Helioviewer Project, JHelioviewer offers intuitive ways to browse large amounts of heterogeneous data remotely and provides an extensible and customizable open-source platform for the scientific community. In addition, the easy-to-use graphical user interface enables the general public and educators to access, enjoy and reuse data from space missions without barriers.
NASA's SPICE System Models the Solar System
NASA Technical Reports Server (NTRS)
Acton, Charles
1996-01-01
SPICE is NASA's multimission, multidiscipline information system for assembling, distributing, archiving, and accessing space science geometry and related data used by scientists and engineers for mission design and mission evaluation, detailed observation planning, mission operations, and science data analysis.
77 FR 20016 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-03
... Cancellation of LtrAgmt SCE-GBU for 1901 CA St Redlands Roof Top Solar to be effective 1/31/2012. Filed Date: 3... Facilities Agreement & DSA with Green Power Partners (WDT035). Filed Date: 3/26/12. Accession Number...
76 FR 62801 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-11
... Pseudo PGA with Mesquite Solar 1 to be effective 11/1/2011. Filed Date: 09/30/2011. Accession Number... Electric Company submits tariff filing per 35.13(a)(2)(iii: Western USBR TFA for Red Bluff Pumping Plant to...
2017-07-31
as it is one faced every day as power systems engineers try to integrate batteries, solar panels, and wind turbines onto the already existing...Amendment-OOO l.ashx. [Accessed 10 Dec 2013] (7) "Copper Wire Resistance and Inductance Calculator", Ampbooks.com, 20 I 7. [Online]. Available: https...ampbooks.com/home/amplifier-calcu lators/ wire -inductance/. [Accessed: 21- May- 2017). (8) "What is Transient Voltage? - E lectronic Products
Still Virtual After All These Years: Recent Developments in the Virtual Solar Observatory
NASA Astrophysics Data System (ADS)
Gurman, J. B.; Bogart, R. S.; Davey, A. R.; Hill, F.; Martens, P. C.; Zarro, D. M.; Team, T. v.
2008-05-01
While continuing to add access to data from new missions, including Hinode and STEREO, the Virtual Solar Observatory is also being enhanced as a research tool by the addition of new features such as the unified representation of catalogs and event lists (to allow joined searches in two or more catalogs) and workable representation and manipulation of large numbers of search results (as are expected from the Solar Dynamics Observatory database). Working with our RHESSI colleagues, we have also been able to improve the performance of IDL-callable vso_search and vso_get functions, to the point that use of those routines is a practical alternative to reproducing large subsets of mission data on one's own LAN.
The Value of Transparency in Distributed Solar PV Markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
OShaughnessy, Eric J.; Margolis, Robert M.
Distributed solar photovoltaic (PV) markets are relatively non-transparent: PV price and product information is not readily available, searching for this information is costly (in terms of time and effort), and customers are mostly unfamiliar with the new technology. Quote aggregation, where third-party companies collect PV quotes on behalf of customers, may be one way to increase PV market transparency. In this paper, quote aggregation data are analyzed to study the value of transparency for distributed solar PV markets. The results suggest that easier access to more quotes results in lower prices. We find that installers tend to offer lower pricesmore » in more competitive market environments. We supplement the empirical analysis with key findings from interviews of residential PV installers.« less
Still Virtual After All These Years: Recent Developments in the Virtual Solar Observatory
NASA Technical Reports Server (NTRS)
Gurman, Joseph B.; Bogart; Davey; Hill; Masters; Zarro
2008-01-01
While continuing to add access to data from new missions, including Hinode and STEREO, the Virtual Solar Observatory is also being enhanced as a research tool by the addition of new features such as the unified representation of catalogs and event lists (to allow joined searches in two or more catalogs) and workable representation and manipulation of large numbers of search results (as are expected from the Solar Dynamics Observatory database). Working with our RHESSI colleagues, we have also been able to improve the performance of IDL-callable vso_search and vso_get functions, to the point that use of those routines is a practical alternative to reproducing large subsets of mission data on one's own LAN.
NASA Astrophysics Data System (ADS)
Venner, L.
2008-12-01
The US Goal for the IYA2009 is: To offer an engaging astronomy experience to every person in the country, nurture existing partnerships, and build new connections to sustain public interest. NASAís commitment to the IYA2009 US goal is demonstrated by their support of accessible programming and materials developed to reach every person in the country including differently-abled individuals. The members of NASAís Jet Propulsion Laboratory Solar System Ambassador Program have been utilizing these accessible programs and materials in schools and science centers in addition to offering accessible star parties to the public. This paper will present some of the materials and techniques used by Ambassadors to bring astronomy to every person. Accessible programming will ensure that the next generation of explorers will include diverse individuals from all walks of life.
Return to the Moon: NASA's LCROSS AND LRO Missions
NASA Technical Reports Server (NTRS)
Morales, Lester
2012-01-01
NASA s goals include objectives for robotic and human spaceflight: a) Implement a sustained and affordable human and robotic program to explore the solar system and beyond; b) Extend human presence across the solar system, starting with a human return to the Moon by the year 2020, in preparation for human exploration of Mars and other destinations; c) A lunar outpost is envisioned. Site Considerations: 1) General accessibility of landing site (orbital mechanics) 2) Landing site safety 3) Mobility 4) Mars analog 5) Power 6) Communications 7) Geologic diversity 8) ISRU considerations
Fission Technology for Exploring and Utilizing the Solar System
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbub, Ivana; Schmidt, George R. (Technical Monitor)
2000-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation space systems will build on over 45 years of US and international space fission system technology development to minimize cost,
The Astronomy Spacelab Payloads Study: Executive volume
NASA Technical Reports Server (NTRS)
1975-01-01
The progress of the Astronomy Spacelab Payloads Project at the Goddard Space Flight Center is reported. Astronomical research in space, using the Spacelab in conjunction with the Space Shuttle, is described. The various fields of solar astronomy or solar physics, ultraviolet and optical astronomy, and high energy astrophysics are among the topics discussed. These fields include scientific studies of the sun and its dynamical processes, of the stars in wavelength regions not accessible to ground based observations, and the exciting new fields of X-ray, gamma ray, and particle astronomy.
NASA Technical Reports Server (NTRS)
Lebofsky, L. A.; Jones, T. D.; Herbert, F.
1989-01-01
Asteroids appear in light of telescopic and meteority studies to be the most accessible repositories of early solar system history available. In the cooler regions of the outer asteroid belt, apparently unaffected by severe heating, the C, P, and D populations appear to harbor significant inventories of volatiles; the larger primordial belt population may have had an even greater percentage of volatile-rich, low-albedo asteroids, constituting a potent asteroid for veneering early terrestrial planet atmospheres. The volatile-rich asteroids contain carbon, structurally bound and adsorbed water, as well as remnants of interstellar material predating the solar system.
A Novel Approach to Exploring the Mars Polar Caps
NASA Technical Reports Server (NTRS)
Brophy, John R.; Carsey, Frank D.; Rodgers, David H.; Soderblom, L. A.; Wilcox, Brian H.
2000-01-01
The Martian polar caps contain some of the most important scientific sites on the planet. There is much interest in exploring them with a view to understanding their role in the Mars climate system. By gaining access to the stratigraphy of the polar terrain, it is probable that one can access the climate history of the planet. Additionally, investigations aimed at localizing subsurface water--liquid or solid--are not only of great scientific interest but are also germane to the long-term interests of the manned space flight program. A major difficulty with polar exploration is access. Current techniques using chemical propulsion, Holman transfers, and direct-entry landers with aeroshells have limited capability to access the polar terrain. For the near term the authors propose a new approach to solving this transportation issue by using Solar Electric Propulsion (SEP), recently flight demonstrated on NASA's DS1 Mission to an asteroid and a comet. For a longer-term approach there are additional ways in which access to Mars, as well as other planets, can be significantly improved. These include the use of Chaos orbit theory to enable transportation between LaGrange points in the solar system, gossamer structures enabling very low-mass mobility, and advanced ascent vehicles. In this paper the authors describe how a 1000-kG payload can be transported to the surface of Mars and a polar sample obtained and returned to Earth in less than five years using SEP. A vision of how this approach can be integrated into a long-term Mars exploration strategy building toward the future is also discussed.
A Novel Approach to Exploring the Mars Polar Caps
NASA Astrophysics Data System (ADS)
Brophy, John R.; Carsey, Frank D.; Rodgers, David H.; Soderblom, L. A.; Wilcox, Brian H.
2000-08-01
The Martian polar caps contain some of the most important scientific sites on the planet. There is much interest in exploring them with a view to understanding their role in the Mars climate system. By gaining access to the stratigraphy of the polar terrain, it is probable that one can access the climate history of the planet. Additionally, investigations aimed at localizing subsurface water--liquid or solid--are not only of great scientific interest but are also germane to the long-term interests of the manned space flight program. A major difficulty with polar exploration is access. Current techniques using chemical propulsion, Holman transfers, and direct-entry landers with aeroshells have limited capability to access the polar terrain. For the near term the authors propose a new approach to solving this transportation issue by using Solar Electric Propulsion (SEP), recently flight demonstrated on NASA's DS1 Mission to an asteroid and a comet. For a longer-term approach there are additional ways in which access to Mars, as well as other planets, can be significantly improved. These include the use of Chaos orbit theory to enable transportation between LaGrange points in the solar system, gossamer structures enabling very low-mass mobility, and advanced ascent vehicles. In this paper the authors describe how a 1000-kG payload can be transported to the surface of Mars and a polar sample obtained and returned to Earth in less than five years using SEP. A vision of how this approach can be integrated into a long-term Mars exploration strategy building toward the future is also discussed.
Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope
Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin
2016-01-01
Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere’s response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80–200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics. PMID:27071459
1999-08-01
Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has dual-axis control that keeps a reflection of the sunlight on an 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This photograph is a close-up view of a 4-in focal point inside the vacuum chamber at the MSFC Solar Thermal Propulsion Test facility. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.
1999-08-01
Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph, taken at MSFC's Solar Thermal Propulsion Test Facility, shows a concentrator mirror, a combination of 144 mirrors forming this 18-ft diameter concentrator, and a vacuum chamber that houses the focal point. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-foot diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.
Automated Feature and Event Detection with SDO AIA and HMI Data
NASA Astrophysics Data System (ADS)
Davey, Alisdair; Martens, P. C. H.; Attrill, G. D. R.; Engell, A.; Farid, S.; Grigis, P. C.; Kasper, J.; Korreck, K.; Saar, S. H.; Su, Y.; Testa, P.; Wills-Davey, M.; Savcheva, A.; Bernasconi, P. N.; Raouafi, N.-E.; Delouille, V. A.; Hochedez, J. F..; Cirtain, J. W.; Deforest, C. E.; Angryk, R. A.; de Moortel, I.; Wiegelmann, T.; Georgouli, M. K.; McAteer, R. T. J.; Hurlburt, N.; Timmons, R.
The Solar Dynamics Observatory (SDO) represents a new frontier in quantity and quality of solar data. At about 1.5 TB/day, the data will not be easily digestible by solar physicists using the same methods that have been employed for images from previous missions. In order for solar scientists to use the SDO data effectively they need meta-data that will allow them to identify and retrieve data sets that address their particular science questions. We are building a comprehensive computer vision pipeline for SDO, abstracting complete metadata on many of the features and events detectable on the Sun without human intervention. Our project unites more than a dozen individual, existing codes into a systematic tool that can be used by the entire solar community. The feature finding codes will run as part of the SDO Event Detection System (EDS) at the Joint Science Operations Center (JSOC; joint between Stanford and LMSAL). The metadata produced will be stored in the Heliophysics Event Knowledgebase (HEK), which will be accessible on-line for the rest of the world directly or via the Virtual Solar Observatory (VSO) . Solar scientists will be able to use the HEK to select event and feature data to download for science studies.
After the Fall: The RHESSI Legacy Archive
NASA Astrophysics Data System (ADS)
Schwartz, Richard A.; Zarro, Dominic M.; Tolbert, Anne K.
2017-08-01
Launched in 2002 the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) continues to observe the Sun with a nearly 50% duty cycle. During that time the instrument has recorded ~100,000 solar flares in energies from 4 keV to over 10 MeV.with durations of 10s to 1000s of seconds. However, for the reasons of the decline of the solar cycle, possible failure of the instrument, or the absence of funding, our operational phase will end someday. We describe here our plans to continue to serve this dataset in raw, processed, and analyzed forms to the worldwide solar community to continue our legacy of a stream of rich scientific results.We have and are providing a stream of quicklook lightcurves, spectra, and images that we mainly serve through a web interface as well as the data in raw form to be fully analyzed within our own branch of Solar Software written in IDL. We are in the process of creating higher quality images for flares in multiple energy bands on relevant timescales for those whose needs can be met without further processing. For users with IDL licenses we expect this software to be available far into the unknowable future. Together with a database of AIA cutouts during all SDO-era flares, along with software to recover saturated images by using the AIA diffraction fringes, these will be a highly used resource.We also are developing additional tools and databases that will increase the utility of RHESSI data to members of the community with and without either IDL licenses or full access to the RHESSI database. We will provide a database of RHESSI x-ray visibilities obtained during flares at a >4 second cadence over a broad range of detectable energies. With our IDL software those can be rendered as images for times and energies of nearly the analysts's choosing. And going beyond that we are converting our imaging procedures to the Python language to eliminate the need for an IDL license. We are also developing methods to allow the customization of these visibilities in time and energy by access from a non-local server which has full access to all of the IDL software and database files.
Graphics interfaces and numerical simulations: Mexican Virtual Solar Observatory
NASA Astrophysics Data System (ADS)
Hernández, L.; González, A.; Salas, G.; Santillán, A.
2007-08-01
Preliminary results associated to the computational development and creation of the Mexican Virtual Solar Observatory (MVSO) are presented. Basically, the MVSO prototype consists of two parts: the first, related to observations that have been made during the past ten years at the Solar Observation Station (EOS) and at the Carl Sagan Observatory (OCS) of the Universidad de Sonora in Mexico. The second part is associated to the creation and manipulation of a database produced by numerical simulations related to solar phenomena, we are using the MHD ZEUS-3D code. The development of this prototype was made using mysql, apache, java and VSO 1.2. based GNU and `open source philosophy'. A graphic user interface (GUI) was created in order to make web-based, remote numerical simulations. For this purpose, Mono was used, because it is provides the necessary software to develop and run .NET client and server applications on Linux. Although this project is still under development, we hope to have access, by means of this portal, to other virtual solar observatories and to be able to count on a database created through numerical simulations or, given the case, perform simulations associated to solar phenomena.
1999-03-01
Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This image, taken during the test, depicts the light being concentrated into the focal point inside the vacuum chamber. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.
1999-11-01
This photograph shows an overall view of the Solar Thermal Propulsion Test Facility at the Marshall Space Flight Center (MSFC). The 20-by 24-ft heliostat mirror, shown at the left, has dual-axis control that keeps a reflection of the sunlight on an 18-ft diameter concentrator mirror (right). The concentrator mirror then focuses the sunlight to a 4-in focal point inside the vacuum chamber, shown at the front of concentrator mirror. Researchers at MSFC have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than chemical a combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propell nt. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.
The FOXSI solar sounding rocket campaigns
NASA Astrophysics Data System (ADS)
Glesener, Lindsay; Krucker, Säm.; Christe, Steven; Ishikawa, Shin-nosuke; Buitrago-Casas, Juan Camilo; Ramsey, Brian; Gubarev, Mikhail; Takahashi, Tadayuki; Watanabe, Shin; Takeda, Shin'ichiro; Courtade, Sasha; Turin, Paul; McBride, Stephen; Shourt, Van; Hoberman, Jane; Foster, Natalie; Vievering, Juliana
2016-07-01
The Focusing Optics X-ray Solar Imager (FOXSI) is, in its initial form, a sounding rocket experiment designed to apply the technique of focusing hard X-ray (HXR) optics to the study of fundamental questions about the high-energy Sun. Solar HXRs arise via bremsstrahlung from energetic electrons and hot plasma produced in solar flares and thus are one of the most direct diagnostics of are-accelerated electrons and the impulsive heating of the solar corona. Previous missions have always been limited in sensitivity and dynamic range by the use of indirect (Fourier) imaging due to the lack of availability of direct focusing optics, but technological advances now make direct focusing accessible in the HXR regime (as evidenced by the NuSTAR spacecraft and several suborbital missions). The FOXSI rocket experiment develops and optimizes HXR focusing telescopes for the unique scientific requirements of the Sun. To date, FOXSI has completed two successful flights on 2012 November 02 and 2014 December 11 and is funded for a third flight. This paper gives a brief overview of the experiment, which is sensitive to solar HXRs in the 4-20 keV range, describes its first two flights, and gives a preview of plans for FOXSI-3.
Harnessing the sun: Developing capacity to sustain local solar energy systems
NASA Astrophysics Data System (ADS)
Olarewaju, Olufemi
2011-12-01
Use of solar photovoltaic (PV) and other renewable sources to meet rising electricity demand by a growing world population has gained traction in many countries in recent years. In rural Sub-Saharan Africa, where 86 percent of the populace has no access to electricity, solar energy systems represent partial solutions to demand, especially in support of rural development initiatives to supply potable water, health care services and education. Unfortunately, development of human and organizational capacity to maintain solar technology has not kept pace with the rate of installation, causing many to fall into disrepair and disuse. This has stimulated interest in capacity development processes required to make solar systems sustainable. To cast light on the practical meanings and challenges of capacity development for solar energy, this study compares the experiences of two rural projects, one in Lagos State (Nigeria) that disregarded the importance of capacity development, and the other in Texas (United States) that, in contrast, made such development the centerpiece of its operations. Based largely on interviews with 60 key actors, findings underscore the crucial importance of sustained investment in capacity development to assurance of durable power supply from renewable sources.
The FOXSI Solar Sounding Rocket Campaigns
NASA Technical Reports Server (NTRS)
Glesener, Lindsay; Krucker, Sam; Christe, Steven; Ishikawa, Shin-Nosuke; Buitrago-Casas, Juan Camilo; Ramsey, Brian; Gubarev, Mikhail; Takahashi, Tadayuki; Watanabe, Shin; Takeda, Shin'ichiro;
2016-01-01
The Focusing Optics X-ray Solar Imager (FOXSI) is, in its initial form, a sounding rocket experiment designed to apply the technique of focusing hard X-ray (HXR) optics to the study of fundamental questions about the high-energy Sun. Solar HXRs arise via bremsstrahlung from energetic electrons and hot plasma produced in solar flares and thus are one of the most direct diagnostics of flare-accelerated electrons and the impulsive heating of the solar corona. Previous missions have always been limited in sensitivity and dynamic range by the use of indirect (Fourier) imaging due to the lack of availability of direct focusing optics, but technological advances now make direct focusing accessible in the HXR regime (as evidenced by the NuSTAR spacecraft and several suborbital missions). The FOXSI rocket experiment develops and optimizes HXR focusing telescopes for the unique scientific requirements of the Sun. To date, FOXSI has completed two successful flights on 2012 November 02 and 2014 December 11 and is funded for a third flight. This paper gives a brief overview of the experiment, which is sensitive to solar HXRs in the 4-20 keV range, describes its first two flights, and gives a preview of plans for FOXSI-3.
An Introduction to the Solar System
NASA Astrophysics Data System (ADS)
McBride, Neil; Gilmour, Iain
2004-02-01
Compiled by a team of experts, this textbook has been designed for introductory university courses in planetary science. It starts with a tour of the Solar System and an overview of its formation. The composition, internal structure, surface morphology and atmospheres of the terrestrial planets are then described. This leads naturally to a discussion of the giant planets and why they are compositionally different. Minor bodies are reviewed and the book concludes with a discussion of the origin of the Solar System and the evidence from meteorites. Written in an accessible style that avoids complex mathematics, and illustrated in colour throughout, this book is suitable for self-study and will appeal to amateur enthusiasts as well as undergraduate students. It contains numerous helpful learning features such as boxed summaries, student exercises with full solutions, and a glossary of terms. The book is also supported by a website hosting further teaching materials. Written by a team of experts in an accessible style that avoids complex mathematics, and illustrated in colour throughout Contains numerous pedagogical features including boxed summaries, brief biographies of pioneering astronomers, bulleted questions and answers throughout, over 90 exercises with full solutions, and a glossary of terms Supported by a website hosting additional teaching materials including illustrations, further exercises and links to other Internet resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curcija, Dragan Charlie; Zhu, Ling; Czarnecki, Stephen
WINDOW features include: - Microsoft Windows TM interface - algorithms for the calculation of total fenestration product U-values and Solar Heat Gain Coefficient consistent with ASHRAE SPC 142, ISO 15099, and the National Fenestration Rating Council - a Condensation Resistance Index in accordance with the NFRC 500 Standard - and integrated database of properties - imports data from other LBNL window analysis software: - Import THERM file into the Frame Library - Import records from IGDB and OPtics5 into the Glass Library for the optical properties of coated and uncoated glazings, laminates, and applied films. Program Capabilities WINDOW 7.2 offersmore » the following features: The ability to analyze products made from any combination of glazing layers, gas layers, frames, spacers, and dividers under any environmental conditions and at any tilt; The ability to model complex glazing systems such as venetian blinds and roller shades. Directly accessible libraries of window system components, (glazing systems, glazing layers, gas fills, frame and divider elements), and environmental conditions; The choice of working in English (IP), or Systeme International (SI) units; The ability to specify the dimensions and thermal properties of each frame element (header, sills, jamb, mullion) in a window; A multi-band (wavelength-by-wavelength) spectral model; A Glass Library which can access spectral data files for many common glazing materials from the Optics5database; A night-sky radiative model; A link with the DOE-2.1E and Energy Plus building energy analysis program. Performance Indices and Other Results For a user-defined fenestration system and user-defined environmental conditions, WINDOW calculates: The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the complete window system; The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the glazing system (center-of-glass values); The U-values of the frame and divider elements and corresponding edge-of-glass areas (based on generic correlations); The total solar and visible transmittance and reflectances of the glazing system. Color properties, i.e. L*, a*, and b* color coordinates, dominant wavelength, and purity for transmitted and reflected (outdoor) solar radiation; The damage-weighted transmittance of the glazing system between 0.3 an 0.38 microns; The angular dependence of the solar and visible transmittances, solar and visible reflectances, solar absorptance, and solar heat gain coefficient of the glazing system; The percent relative humidity of the inside and outside air for which condensation will occur on the interior and exterior glazing surfaces respectively; The center-of-glass temperature distribution.« less
Making YOHKOH SXT Images Available to the Public: The YOHKOH Public Outreach Project
NASA Astrophysics Data System (ADS)
Larson, M. B.; McKenzie, D.; Slater, T.; Acton, L.; Alexander, D.; Freeland, S.; Lemen, J.; Metcalf, T.
1999-05-01
The NASA funded Yohkoh Public Outreach Project (YPOP) provides public access to high quality Yohkoh SXT data via the World Wide Web. The products of this effort are available to the scientific research community, K-12 schools, and informal education centers including planetaria, museums, and libraries. The project utilizes the intrinsic excitement of the SXT data, and in particular the SXT movies, to develop science learning tools and classroom activities. The WWW site at URL: http://solar.physics.montana.edu/YPOP/ uses a movie theater theme to highlight available Yohkoh movies in a format that is entertaining and inviting to non-scientists. The site features informational tours of the Sun as a star, the solar magnetic field, the internal structure and the Sun's general features. The on-line Solar Classroom has proven very popular, showcasing hand-on activities about image filtering, the solar cycle, satellite orbits, image processing, construction of a model Yohkoh satellite, solar rotation, measuring sunspots and building a portable sundial. The YPOP Guestbook has been helpful in evaluating the usefulness of the site with over 300 detailed comments to date.
NASA Technical Reports Server (NTRS)
Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.
2012-01-01
As the solar wind is incident upon the lunar surface, it will occasionally encounter lunar crustal remanent magnetic fields. These magnetic fields are small-scale, highly non-dipolar, have strengths up to hundreds of nanotesla, and typically interact with the solar wind in a kinetic fashion. Simulations, theoretical analyses, and spacecraft observations have shown that crustal fields can reflect solar wind protons via a combination of magnetic and electrostatic reflection; however, analyses of surface properties have suggested that protons may still access the lunar surface in the cusp regions of crustal magnetic fields. In this first report from a planned series of studies, we use a 1 1/2-dimensional, electrostatic particle-in-cell code to model the self-consistent interaction between the solar wind, the cusp regions of lunar crustal remanent magnetic fields, and the lunar surface. We describe the self-consistent electrostatic environment within crustal cusp regions and discuss the implications of this work for the role that crustal fields may play regulating space weathering of the lunar surface via proton bombardment.
The dye-sensitized solar cell database.
Venkatraman, Vishwesh; Raju, Rajesh; Oikonomopoulos, Solon P; Alsberg, Bjørn K
2018-04-03
Dye-sensitized solar cells (DSSCs) have garnered a lot of attention in recent years. The solar energy to power conversion efficiency of a DSSC is influenced by various components of the cell such as the dye, electrolyte, electrodes and additives among others leading to varying experimental configurations. A large number of metal-based and metal-free dye sensitizers have now been reported and tools using such data to indicate new directions for design and development are on the rise. DSSCDB, the first of its kind dye-sensitized solar cell database, aims to provide users with up-to-date information from publications on the molecular structures of the dyes, experimental details and reported measurements (efficiencies and spectral properties) and thereby facilitate a comprehensive and critical evaluation of the data. Currently, the DSSCDB contains over 4000 experimental observations spanning multiple dye classes such as triphenylamines, carbazoles, coumarins, phenothiazines, ruthenium and porphyrins. The DSSCDB offers a web-based, comprehensive source of property data for dye sensitized solar cells. Access to the database is available through the following URL: www.dyedb.com .
Thompson, Michelle L.; Mzilikazi, Nomakwezi; Bennett, Nigel C.; McKechnie, Andrew E.
2015-01-01
Many small mammals bask in the sun during rewarming from heterothermy, but the implications of this behaviour for their energy balance remain little understood. Specifically, it remains unclear whether solar radiation supplements endogenous metabolic thermogenesis (i.e., rewarming occurs through the additive effects of internally-produced and external heat), or whether solar radiation reduces the energy required to rewarm by substituting (i.e, replacing) metabolic heat production. To address this question, we examined patterns of torpor and rewarming rates in eastern rock elephant shrews (Elephantulus myurus) housed in outdoor cages with access to either natural levels of solar radiation or levels that were experimentally reduced by means of shade cloth. We also tested whether acclimation to solar radiation availability was manifested via phenotypic flexibility in basal metabolic rate (BMR), non-shivering thermogenesis (NST) capacity and/or summit metabolism (Msum). Rewarming rates varied significantly among treatments, with elephant shrews experiencing natural solar radiation levels rewarming faster than conspecifics experiencing solar radiation levels equivalent to approximately 20% or 40% of natural levels. BMR differed significantly between individuals experiencing natural levels of solar radiation and conspecifics experiencing approximately 20% of natural levels, but no between-treatment difference was evident for NST capacity or Msum. The positive relationship between solar radiation availability and rewarming rate, together with the absence of acclimation in maximum non-shivering and total heat production capacities, suggests that under the conditions of this study solar radiation supplemented rather than substituted metabolic thermogenesis as a source of heat during rewarming from heterothermy. PMID:25853244
Thompson, Michelle L; Mzilikazi, Nomakwezi; Bennett, Nigel C; McKechnie, Andrew E
2015-01-01
Many small mammals bask in the sun during rewarming from heterothermy, but the implications of this behaviour for their energy balance remain little understood. Specifically, it remains unclear whether solar radiation supplements endogenous metabolic thermogenesis (i.e., rewarming occurs through the additive effects of internally-produced and external heat), or whether solar radiation reduces the energy required to rewarm by substituting (i.e, replacing) metabolic heat production. To address this question, we examined patterns of torpor and rewarming rates in eastern rock elephant shrews (Elephantulus myurus) housed in outdoor cages with access to either natural levels of solar radiation or levels that were experimentally reduced by means of shade cloth. We also tested whether acclimation to solar radiation availability was manifested via phenotypic flexibility in basal metabolic rate (BMR), non-shivering thermogenesis (NST) capacity and/or summit metabolism (Msum). Rewarming rates varied significantly among treatments, with elephant shrews experiencing natural solar radiation levels rewarming faster than conspecifics experiencing solar radiation levels equivalent to approximately 20% or 40% of natural levels. BMR differed significantly between individuals experiencing natural levels of solar radiation and conspecifics experiencing approximately 20% of natural levels, but no between-treatment difference was evident for NST capacity or Msum. The positive relationship between solar radiation availability and rewarming rate, together with the absence of acclimation in maximum non-shivering and total heat production capacities, suggests that under the conditions of this study solar radiation supplemented rather than substituted metabolic thermogenesis as a source of heat during rewarming from heterothermy.
Exploiting absorption-induced self-heating in solar cells (Conference Presentation)
NASA Astrophysics Data System (ADS)
Ullbrich, Sascha; Fischer, Axel; Erdenebileg, Enkhtur; Koerner, Christian; Reineke, Sebastian; Leo, Karl; Vandewal, Koen
2017-04-01
Absorption of light inevitably leads to a self-heating of each type of solar cell, either due to the excess energy of absorbed photons or non-radiative recombination of charge carriers. Although the effect of temperature on solar cell parameters such as the open-circuit voltage are well known, it is often ignored in Suns-Voc measurements [1]. This measurement technique enables direct access to the diode ideality factor without an influence by series resistance. A frequently seen decrease of the ideality factor or a saturation of the open-circuit voltage at high illumination intensities is often attributed solely to surface recombination [2], the shape of the density of states (DOS) [3], or the quality of the back contact in inorganic solar cells [4]. In this work, we present an analytical model for taking into account absorption induced self-heating in Suns-Voc measurements and validate it for various solar cell technologies such as small molecule organic solar cells, perovskite solar cells, and inorganic solar cells. Furthermore, with an adapted Suns-Voc technique, we are able to not only correctly determine the ideality factor, but also the relevant energy gap of the solar cell, which is especially of interest in the field of novel solar cell technologies. [1] R.A. Sinton and A. Cuevas, EU PVSEC, 1152-1155 (2000) [2] K. Tvingstedt and C. Deibel, Adv. Energy Mater. 6, 1502230 (2016) [3] T. Kirchartz and J. Nelson, Phys. Rev. B 86, 165201 (2012) [4] S. Glunz, J. Nekarda, H. Maeckel et al., EU PVSEC, 849-853 (2007)
Expanded Owens Valley Solar Array Science and Data Products
NASA Astrophysics Data System (ADS)
Gary, Dale E.; Hurford, G. J.; Nita, G. M.; Fleishman, G. D.; McTiernan, J. M.
2010-05-01
The Owens Valley Solar Array (OVSA) has been funded for major expansion, to create a university-based facility serving a broad scientific community, to keep the U.S. competitive in the field of solar radio physics. The project, funded by the National Science Foundation through the MRI-Recovery and Reinvestment program, will result in a world-class facility for scientific research at microwave radio frequencies (1-18 GHz) in solar and space weather physics. The project also includes an exciting program of targeted astronomical science. The solar science to be addressed focuses on the magnetic structure of the solar corona, on transient phenomena resulting from magnetic interactions, including the sudden release of energy and subsequent particle acceleration and heating, and on space weather phenomena. The project will support the scientific community by providing open data access and software tools for analysis of the data, to exploit synergies with on-going solar research in other wavelength bands. The New Jersey Institute of Technology (NJIT) will upgrade OVSA from its current complement of 7 antennas to a total of 15 by adding 8 new antennas, and will reinvest in the existing infrastructure by replacing the existing control systems, signal transmission, and signal processing with modern, far more capable and reliable systems based on new technology developed for the Frequency Agile Solar Radiotelescope (FASR). The project will be completed in time to provide solar-dedicated observations during the upcoming solar maximum in 2013 and beyond. We will detail the new science addressed by the expanded array, and provide an overview of the expected data products.
75 FR 11161 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-10
... Generator Interconnection Agreement among SES Solar One, LLC et al. Filed Date: 02/25/2010. Accession Number... System Operator Inc. Description: New York Independent System Operator, Inc submits proposed revisions to... Independent Transmission System Operator Inc. Description: Midwest Independent Transmission System Operator...
76 FR 65509 - Environmental Impact Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-21
... (MW) Concentrated Solar Thermal Power Plant and Ancillary Facilities on 3,702 Areas, Right-of- Way... Protect Essential Ecosystem Functions and Values, Implementation, Humboldt-Toiyabe National Forest... Access Roads Associated with the Echanis Wind Energy Project, Authorizing Right-of-Way Grant, Harney...
Accessing eSDO Solar Image Processing and Visualization through AstroGrid
NASA Astrophysics Data System (ADS)
Auden, E.; Dalla, S.
2008-08-01
The eSDO project is funded by the UK's Science and Technology Facilities Council (STFC) to integrate Solar Dynamics Observatory (SDO) data, algorithms, and visualization tools with the UK's Virtual Observatory project, AstroGrid. In preparation for the SDO launch in January 2009, the eSDO team has developed nine algorithms covering coronal behaviour, feature recognition, and global / local helioseismology. Each of these algorithms has been deployed as an AstroGrid Common Execution Architecture (CEA) application so that they can be included in complex VO workflows. In addition, the PLASTIC-enabled eSDO "Streaming Tool" online movie application allows users to search multi-instrument solar archives through AstroGrid web services and visualise the image data through galleries, an interactive movie viewing applet, and QuickTime movies generated on-the-fly.
Lightweight Integrated Solar Array (LISA): Providing Higher Power to Small Spacecraft
NASA Technical Reports Server (NTRS)
Johnson, Les; Carr, John; Fabisinski, Leo; Lockett, Tiffany Russell
2015-01-01
Affordable and convenient access to electrical power is essential for all spacecraft and is a critical design driver for the next generation of smallsats, including CubeSats, which are currently extremely power limited. The Lightweight Integrated Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space. This flexible technology has many wide-ranging applications from serving small satellites to providing abundant power to large spacecraft in GEO and beyond. By using very thin, ultraflexible solar arrays adhered to an inflatable or deployable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume.
Sir William Herschel's notebooks - Abstracts of solar observations
NASA Technical Reports Server (NTRS)
Hoyt, Douglas V.; Schatten, Kenneth H.
1992-01-01
An introduction to the background of Sir William Herschel's notebooks and the historical context within which his observations were made are provided. The observations have relevance in reconstructing solar behavior, as discussed in a separate analysis paper by Hoyt and Schatten (1992), and in understanding active features on the sun such as faculae. The text of Herschel's notebooks with modern terms used throughout forms the body of this paper. The complete text has not previously been published and is not easily accessible to scholars. Herschel used different words for solar features than are used today, and thus, for clarity, his terminology is changed on two occasions. A glossary explains the terminology changed. In the text of the notebooks, several contemporaries are mentioned; a brief description of Herschel's colleagues is provided.
1997-02-01
Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. This photograph shows components for the thermal propulsion engine being laid out prior to assembly. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.
Interactive Learning During Solar Maximum
NASA Technical Reports Server (NTRS)
Ashour-Abdalla, Maha; Curtis, Steven (Technical Monitor)
2001-01-01
The goal of this project is to develop and distribute e-educational material for space science during times of solar activity that emphasizes underlying basic science principles of solar disturbances and their effects on Earth. This includes materials such as simulations, animations, group projects and other on-line materials to be used by students either in high school or at the introductory college level. The on-line delivery tool originally intended to be used is known as Interactive Multimedia Education at a Distance (IMED), which is a web-based software system used at UCLA for interactive distance learning. IMED is a password controlled system that allows students to access text, images, bulletin boards, chat rooms, animation, simulations and individual student web sites to study science and to collaborate on group projects.
Integrated Access to Solar Observations With EGSO
NASA Astrophysics Data System (ADS)
Csillaghy, A.
2003-12-01
{\\b Co-Authors}: J.Aboudarham (2), E.Antonucci (3), R.D.Bentely (4), L.Ciminiera (5), A.Finkelstein (4), J.B.Gurman(6), F.Hill (7), D.Pike (8), I.Scholl (9), V.Zharkova and the EGSO development team {\\b Institutions}: (2) Observatoire de Paris-Meudon (France); (3) INAF - Istituto Nazionale di Astrofisica (Italy); (4) University College London (U.K.); (5) Politecnico di Torino (Italy), (6) NASA Goddard Space Flight Center (USA); (7) National Solar Observatory (USA); (8) Rutherford Appleton Lab. (U.K.); (9) Institut d'Astrophysique Spatial, Universite de Paris-Sud (France) ; (10) University of Bradford (U.K) {\\b Abstract}: The European Grid of Solar Observations is the European contribution to the deployment of a virtual solar observatory. The project is funded under the Information Society Technologies (IST) thematic programme of the European Commission's Fifth Framework. EGSO started in March 2002 and will last until March 2005. The project is categorized as a computer science effort. Evidently, a fair amount of issues it addresses are general to grid projects. Nevertheless, EGSO is also of benefit to the application domains, including solar physics, space weather, climate physics and astrophysics. With EGSO, researchers as well as the general public can access and combine solar data from distributed archives in an integrated virtual solar resource. Users express queries based on various search parameters. The search possibilities of EGSO extend the search possibilities of traditional data access systems. For instance, users can formulate a query to search for simultaneous observations of a specific solar event in a given number of wavelengths. In other words, users can search for observations on the basis of events and phenomena, rather than just time and location. The software architecture consists of three collaborating components: a consumer, a broker and a provider. The first component, the consumer, organizes the end user interaction and controls requests submitted to the grid. The consumer is thus in charge of tasks such as request handling, request composition, data visualization and data caching. The second component, the provider, is dedicated to data providing and processing. It links the grid to individual data providers and data centers. The third component, the broker, collects information about providers and allows consumers to perform the searches on the grid. Each component can exist in multiple instances. This follows a basic grid concept: The failure or unavailability of a single component will not generate a failure of the whole system, as other systems will take over the processing of requests. The architecture relies on a global data model for the semantics. The data model is in some way the brains of the grid. It provides a description of the information entities available within the grid, as well as a description of their relationships. EGSO is now in the development phase. A demonstration (www.egso.org/demo) is provided to get an idea about how the system will function once the project is completed. The demonstration focuses on retrieving data needed to determine the energy released in the solar atmosphere during the impulsive phase of flares. It allows finding simultaneous observations in the visible, UV, Soft X-rays, hard X-rays, gamma-rays, and radio. The types of observations that can be specified are images at high space and time resolutions as well as integrated emission and spectra from a yet limited set of instruments, including the NASA spacecraft TRACE, SOHO, RHESSI, and the ground-based observatories Phoenix-2 in Switzerland and Meudon Observatory in France
New Tools to Search for Data in the European Space Agency's Planetary Science Archive
NASA Astrophysics Data System (ADS)
Grotheer, E.; Macfarlane, A. J.; Rios, C.; Arviset, C.; Heather, D.; Fraga, D.; Vallejo, F.; De Marchi, G.; Barbarisi, I.; Saiz, J.; Barthelemy, M.; Docasal, R.; Martinez, S.; Besse, S.; Lim, T.
2016-12-01
The European Space Agency's (ESA) Planetary Science Archive (PSA), which can be accessed at http://archives.esac.esa.int/psa, provides public access to the archived data of Europe's missions to our neighboring planets. These datasets are compliant with the Planetary Data System (PDS) standards. Recently, a new interface has been released, which includes upgrades to make PDS4 data available from newer missions such as ExoMars and BepiColombo. Additionally, the PSA development team has been working to ensure that the legacy PDS3 data will be more easily accessible via the new interface as well. In addition to a new querying interface, the new PSA also allows access via the EPN-TAP and PDAP protocols. This makes the PSA data sets compatible with other archive-related tools and projects, such as the Virtual European Solar and Planetary Access (VESPA) project for creating a virtual observatory.
SAGE III L2 Solar Event Species Profiles (Binary)
Atmospheric Science Data Center
2016-06-14
... Search and Order: Earthdata Search FTP Access: Data Pool V3 | Data Pool V4 Parameters: Aerosol ... Data Additional Info: Data Format: Big Endian/IEEE Binary; Avg Size in MB: 0.044 SCAR-B Block: ...
78 FR 11635 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-19
... that the Commission received the following electric corporate filings: Docket Numbers: EC13-71-000... for Expedited Consideration, Waivers and Confidential Treatment. Filed Date: 2/6/13. Accession Number... following electric rate filings: Docket Numbers: ER13-675-001. Applicants: Catalina Solar, LLC. Description...
NASA Astrophysics Data System (ADS)
Zorzano, M.-P.; Martín-Torres, J.; Mathanlal, T.; Vakkada Ramachandran, A.; Ramirez-Luque, J.-A.
2018-04-01
The purpose of this work is to demonstrate the operability of a network of small-sized detectors of the PACKMAN instrument, operated simultaneously to provide real time cosmic ray and solar activity monitoring over the entire planet.
Toward large-scale solar energy systems with peak concentrations of 20,000 suns
NASA Astrophysics Data System (ADS)
Kribus, Abraham
1997-10-01
The heliostat field plays a crucial role in defining the achievable limits for central receiver system efficiency and cost. Increasing system efficiency, thus reducing the reflective area and system cost, can be achieved by increasing the concentration and the receiver temperature. The concentration achievable in central receiver plants, however, is constrained by current heliostat technology and design practices. The factors affecting field performance are surface and tracking errors, astigmatism, shadowing, blocking and dilution. These are geometric factors that can be systematically treated and reduced. We present improvements in collection optics and technology that may boost concentration (up to 20,000 peak), achievable temperature (2,000 K), and efficiency in solar central receiver plants. The increased performance may significantly reduce the cost of solar energy in existing applications, and enable solar access to new ultra-high-temperature applications, such as: future gas turbines approaching 60% combined cycle efficiency; high-temperature thermo-chemical processes; and gas-dynamic processes.
Intermittent Solar Ammonia Absorption Cycle (ISAAC) refrigeration for lesser developed countries
NASA Astrophysics Data System (ADS)
Erickson, Donald C.
1990-02-01
The Intermittent Solar Ammonia Absorption Cycle (ISAAC) refrigerator is a solar thermal technology which provides low cost, efficient, reliable ice-making to areas without ready access to electricity. An ISAAC refrigeration system consists of a compound parabolic solar collector, two pressure vessels, a condenser, a cold box or refrigerated space, and simple connective piping -- no moving parts or electrical components. Most parts are simple construction or plumbing grade materials, locally available in many remote areas. This technology has numerous potential benefits in lesser developed countries both by providing a cheap, reliable source of ice, and, since manufacture requires only semi-skilled labor, a source of employment to the local economy. Applications include vaccine storage for health care clinics; fish, meat, and dairy product storage; and personal consumption. Importantly, this technology increases the quality of life for people in lesser developed countries without depleting fossil fuel resources or increasing the release of greenhouse gases such as CO2 and chlorofluorocarbons.
Microgrid Utilities for Rural Electrification in East Africa: Challenges and Opportunities
NASA Astrophysics Data System (ADS)
Williams, Nathaniel J.
Expanding access to electricity is central to development in East Africa but massive increases in investment are required to achieve universal access. Private sector participation in electrification is essential to meeting electricity access targets. Policy makers have acknowledged that grid extension in many remote rural areas is not as cost effective as decentralized alternatives such as microgrids. Microgrid companies have been unable to scale beyond pilot projects due in part to challenges in raising capital for a business model that is perceived to be risky. This thesis aims to identify and quantify the primary sources of investment risk in microgrid utilities and study ways to mitigate these risks to make these businesses more viable. Two modeling tools have been developed to this end. The Stochastic Techno-Economic Microgrid Model (STEMM) models the technical and financial performance of microgrid utilities using uncertain and dynamic inputs to permit explicit modeling of financial risk. This model is applied in an investment risk assessment and case study in Rwanda. Key findings suggest that the most important drivers of risk are fuel prices, foreign exchange rates, demand for electricity, and price elasticity of demand for electricity. The relative importance of these factors is technology dependent with demand uncertainty figuring stronger for solar and high solar penetration hybrid systems and fuel prices driving risk in diesel power and low solar penetration hybrid systems. Considering uncertainty in system sizing presents a tradeoff whereby a decrease in expected equity return decreases downside risk. High solar penetration systems are also found to be more attractive to lenders. The second modeling tool leverages electricity consumption and demographic data from four microgrids in Tanzania to forecast demand for electricity in newly electrified communities. Using statistical learning techniques, improvements in prediction performance was achieved over the historical mean baseline. I have also identified important predictors in estimating electricity consumption of newly connected customers. These include tariff structures and prices, pre- connection sources of electricity and lighting, levels of spending on electricity services and airtime, and pre-connection appliance ownership. Prior exposure to electricity, disposable income, and price are dominant factors in estimating demand.
The Focusing Optics X-ray Solar Imager (FOXSI)
NASA Astrophysics Data System (ADS)
Krucker, Säm; Christe, Steven; Glesener, Lindsay; Ishikawa, Shin-nosuke; McBride, Stephen; Glaser, David; Turin, Paul; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; Saito, Shinya; Tanaka, Yasuyuki; Takahashi, Tadayuki; Watanabe, Shin; Tanaka, Takaaki; Tajima, Hiroyasu; Masuda, Satoshi
2011-09-01
The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray (HXR) focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar HXR instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of an indirect imaging system, the derived images have a low dynamic range (typically <10) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the particle acceleration processes which occur there. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding impulsive energy release on the Sun. The FOXSI project is led by the Space Sciences Laboratory at the University of California, Berkeley. The NASA Marshall Space Flight Center is responsible for the grazingincidence optics, while the Astro-H team at JAXA/ISAS has provided double-sided silicon strip detectors. FOXSI is a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.
High-temperature solar receiver integrated with a short-term storage system
NASA Astrophysics Data System (ADS)
Giovannelli, Ambra; Bashir, Muhammad Anser; Archilei, Erika Maria
2017-06-01
Small-Scale Concentrated Solar Power Plants could have a potential market for off-grid applications in rural contexts with limited access to the electrical grid and favorable environmental characteristics. Some Small-Scale plants have already been developed, like the 25-30 kWe Dish-Stirling engine. Other ones are under development as, for example, plants based on Parabolic Trough Collectors coupled with Organic Rankine Cycles. Furthermore, the technological progress achieved in the development of new small high-temperature solar receiver, makes possible the development of interesting systems based on Micro Gas Turbines coupled with Dish collectors. Such systems could have several advantages in terms of costs, reliability and availability if compared with Dish-Stirling plants. In addition, Dish-Micro Gas Turbine systems are expected to have higher performance than Solar Organic Rankine Cycle plants. The present work focuses the attention on some challenging aspects related to the design of small high-temperature solar receivers for Dish-Micro Gas Turbine systems. Natural fluctuations in the solar radiation can reduce system performance and damage seriously the Micro Gas Turbine. To stabilize the system operation, the solar receiver has to assure a proper thermal inertia. Therefore, a solar receiver integrated with a short-term storage system based on high-temperature phase-change materials is proposed in this paper. Steady-state and transient analyses (for thermal storage charge and discharge phases) have been carried out using the commercial CFD code Ansys-Fluent. Results are presented and discussed.
The Focusing Optics X-Ray Solar Imager: FOXSI
NASA Technical Reports Server (NTRS)
Krucker, Saem; Christe, Steven; Glesener, Lindsay; Ishikawa, Shin-nosuke; McBride, Stephen; Glaser, David; Turin, Paul; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian;
2011-01-01
The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray (HXR) focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar HXR instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of an indirect imaging system, the derived images have a low dynamic range (typically <10) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the particle acceleration processes which occur there. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding impulsive energy release on the Sun. The FOXSI project is led by the Space Sciences Laboratory at the University of California, Berkeley. The NASA Marshall Space Flight Center is responsible for the grazing-incidence optics, while the Astro-H team at JAXA/ISAS has provided double-sided silicon strip detectors. FOXSI is a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.
Solar System Exploration, 1995-2000
NASA Technical Reports Server (NTRS)
Squyres, S.; Varsi, G.; Veverka, J.; Soderblom, L.; Black, D.; Stern, A.; Stetson, D.; Brown, R. A.; Niehoff, J.; Squibb, G.
1994-01-01
Goals for planetary exploration during the next decade include: (1) determine how our solar system formed, and understand whether planetary systems are a common phenomenon through out the cosmos; (2) explore the diverse changes that planets have undergone throughout their history and that take place at present, including those that distinguish Earth as a planet; (3) understand how life might have formed on Earth, whether life began anywhere else in the solar system, and whether life (including intelligent beings) might be a common cosmic phenomenon; (4) discover and investigate natural phenomena that occur under conditions not realizable in laboratories; (5) discover and inventory resources in the solar system that could be used by human civilizations in the future; and (6) make the solar system a part of the human experience in the same way that Earth is, and hence lay the groundwork for human expansion into the solar system in the coming century. The plan for solar system exploration is motivated by these goals as well as the following principle: The solar system exploration program will conduct flight programs and supporting data analysis and scientific research commensurate with United States leadership in space exploration. These programs and research must be of the highest scientific merit, they must be responsive to public excitement regarding planetary exploration, and they must contribute to larger national goals in technology and education. The result will be new information, which is accessible to the public, creates new knowledge, and stimulates programs of education to increase the base of scientific knowledge in the general public.
Global distribution of moisture, evaporation-precipitation, and diabatic heating rates
NASA Technical Reports Server (NTRS)
Christy, John R.
1989-01-01
Global archives were established for ECMWF 12-hour, multilevel analysis beginning 1 January 1985; day and night IR temperatures, and solar incoming and solar absorbed. Routines were written to access these data conveniently from NASA/MSFC MASSTOR facility for diagnostic analysis. Calculations of diabatic heating rates were performed from the ECMWF data using 4-day intervals. Calculations of precipitable water (W) from 1 May 1985 were carried out using the ECMWF data. Because a major operational change on 1 May 1985 had a significant impact on the moisture field, values prior to that date are incompatible with subsequent analyses.
GAP: yet another image processing system for solar observations.
NASA Astrophysics Data System (ADS)
Keller, C. U.
GAP is a versatile, interactive image processing system for analyzing solar observations, in particular extended time sequences, and for preparing publication quality figures. It consists of an interpreter that is based on a language with a control flow similar to PASCAL and C. The interpreter may be accessed from a command line editor and from user-supplied functions, procedures, and command scripts. GAP is easily expandable via external FORTRAN programs that are linked to the GAP interface routines. The current version of GAP runs on VAX, DECstation, Sun, and Apollo computers. Versions for MS-DOS and OS/2 are in preparation.
The total solar eclipse of 2010 July 11
NASA Astrophysics Data System (ADS)
McGee, H.; James, N.; Mason, J.
2010-08-01
The solar eclipse of 2010 July 11 always promised to be a logistical nightmare to observe. The Moon's shadow first touched the Earth in the southern Pacific, encountering land at Mangaia in the Cook Islands only after 1450km of open ocean. The narrow track of totality then swung northeast, passing tantalisingly close to the islands of Tahiti and Moorea, which experienced a 98% partial eclipse. Beyond Tahiti the track crossed the Tuamotu archipelago of French Polynesia - thousands of tiny coral atolls, of which very few are inhabited, and even fewer have airstrips that make them accessible to visitors.
NASA Astrophysics Data System (ADS)
Strein, Elisabeth
The work in this dissertation aims to improve the ability of hybrid polymer/quantum dot solar cells to harvest and utilize sunlight by contributing mechanistic insights into photocurrent generation. The mechanisms of charge transfer and energy transfer are explored spectroscopically in chapter three and both are found to contribute to photocurrent. Chapter four looks at excitation energy in excess of the bandgap and finds a rise in polaron yield which correlates with excess photon energy. Chapter two discusses details of the experimental techniques used to access the data discussed in the chapters that follow.
NASA Astrophysics Data System (ADS)
Berthier, J.; Carry, B.; Vachier, F.; Eggl, S.; Santerne, A.
2016-05-01
All the fields of the extended space mission Kepler/K2 are located within the ecliptic. Many Solar system objects thus cross the K2 stellar masks on a regular basis. We aim at providing to the entire community a simple tool to search and identify Solar system objects serendipitously observed by Kepler. The sky body tracker (SkyBoT) service hosted at Institut de mécanique céleste et de calcul des éphémérides provides a Virtual Observatory compliant cone search that lists all Solar system objects present within a field of view at a given epoch. To generate such a list in a timely manner, ephemerides are pre-computed, updated weekly, and stored in a relational data base to ensure a fast access. The SkyBoT web service can now be used with Kepler. Solar system objects within a small (few arcminutes) field of view are identified and listed in less than 10 s. Generating object data for the entire K2 field of view (14°) takes about a minute. This extension of the SkyBoT service opens new possibilities with respect to mining K2 data for Solar system science, as well as removing Solar system objects from stellar photometric time series.
NASA Astrophysics Data System (ADS)
Siam, M. S.; Alqatari, S.; Ibrahim, H. D.; AlAloula, R. A.; Alrished, M.; AlSaati, A.; Eltahir, E. A. B.
2016-12-01
Increasing water demand in Saudi Arabia due to rapid population growth has forced the rapid expansion of seawater desalination plants in order to meet both current and future freshwater needs. Saudi Arabia has a huge potential for solar energy, hence, solar-powered desalination plants provide an opportunity to sustainably address the freshwater demand in the kingdom without relying on fossil fuels energy. However, the desert climate of Saudi Arabia and limited access to the open ocean imposes several challenges to the expansion and sustainability of solar-powered desalination plants. For example, the frequent and intense dust storms that occur in the region can degrade solar panels and significantly reduce their efficiency. Moreover, the high salinity Arabian Gulf is both the source of feedwater and sink of hypersaline discharge (brine) for many plants in the east of the Kingdom, and the brine may alter the salinity, temperature and movement of the water thereby reducing the quality of the feedwater to the desalination plants. Here, we propose a framework to investigate the different interactions between climate, dust, solar power generation and seawater desalination in order to identify optimal parameters such as locations of solar panels and seawater intake for sustainable implementation of solar-powered desalination plants. This framework integrates several numerical models including regional climate, hydrodynamics, Photovoltaics (PV) and Photovoltaic-Reverse Osmosis (PV-RO) models that are used to investigate these interactions for a solar-powered desalination plant at AlKhafji on the Northeastern coast of Saudi Arabia.
SOLAR ROTATION: A Laboratory Exercise from Project CLEA and the GONG Project
NASA Astrophysics Data System (ADS)
Marschall, L. A.; Sudol, J. J.; Snyder, G. A.
2002-12-01
Digital images from the GONG Project provide a nearly continuous record of sunspots that are ideal for determining the rate of rotation of the Sun. A new laboratory exercise from Project CLEA provides students with the capability to access an archive of 368 images of the Sun obtained at GONG solar telescopes between January 1, 2002 and April 30, 2002, during a period near solar maximum when large numbers of spots were daily visible on the sun. The resolution of each image is about 2.5 arcsec per pixel (or about 0.25 degree in longitude and latitude at the center of the solar disk). Because these images have such exquisite spatial and temporal resolution, they are the best images to date from which students can determine the solar rotation rate. CLEA software for this exercise allows students to select images by date and time, to overlay a coordinate grid on the image, and to record the latitudes and longitudes of sunspots. This data can be tabulated and analyzed with the software to determine solar rotation rates. The expected precision in the solar rotation rates is +/- 3 hours. Students will also have the ability to combine their chosen images into a digital movie showing the solar rotation. The exercise includes a student workbook and a technical manual, as well as a CD-rom of the data and the software. This exercise was produced with funding from the National Science Foundation and Gettysburg College and with the support of the GONG Project at the National Solar Observatory.
SPHEREx: Science Opportunities for Solar System Astronomy
NASA Astrophysics Data System (ADS)
Lisse, Carey Michael; SPHEREx Science Team
2018-01-01
SPHEREx, a mission in NASA's Medium Explorer (MIDEX) program that was selected for Phase A study in August 2017, will perform an all-sky near-infrared spectral survey between 0.75 - 5.0 µm in R = 41 filters, and with R = 135 coverage from 4.2 - 5.0 µm, reaching L ~ 19 (5-sigma).SPHEREx has high potential for solar system science. The 96-band survey will cover the entire sky 4 times over the course of 2 years, including thousands of foreground solar system asteroids, comets, Trojans, and KBOs. By canvassing the entire solar system for 2 years, SPHEREx has the potential not only to achieve a relatively complete sensitivity limited survey of the solar system's bodies, but also some capability to search for variation in these bodies over time.For example, the large legacy dataset of SPHEREx will update the WISE catalogue of asteroid sizes and albedos by providing a spectral survey of tens of thousands of bodies. It will provide spectral classification of hundreds of Trojan asteroids, allowing for direct comparison to the asteroid results. It will extend optical surveys of comet composition by dynamical type to hundreds of objects in the NIR, while determining water/dust/CO/CO2 activity vs distance. SPHEREx will also map in great temporal and spatial detail the zodiacal dust debris disk cloud that these bodies produce, providing an unprecedented level of information concerning the sources and sinks of this material.In this paper, we discuss the data release schedule and some example science studies the planetary astronomy community will be able to access using the SPHEREx database. We also outline existing plans within the SPHEREx team to develop software tools to enable easy access to the data and to conduct catalog searches, and ways in which the community can provide input to the SPHEREx Science Team on scientific studies and data/software requirements for those studies, enabling a large number of scientific studies while finding interesting targets for follow-up observations with Hubble, JWST, ALMA, etc.
Building a Virtual Solar Observatory: I Look Around and There's a Petabyte Following Me
NASA Technical Reports Server (NTRS)
Gurman, J. B.; Bogart, R.; Hill. F.; Martens, P.; Oergerle, William (Technical Monitor)
2002-01-01
The 2001 July NASA Senior Review of Sun-Earth Connections missions and data centers directed the Solar Data Analysis Center (SDAC) to proceed in studying and implementing a Virtual Solar Observatory (VSO) to ease the identification of and access to distributed archives of solar data. Any such design (cf. the National Virtual Observatory and NASA's Planetary Data System) consists of three elements: the distributed archives, a "broker" facility that translates metadata from all partner archives into a single standard for searches, and a user interface to allow searching, browsing, and download of data. Three groups are now engaged in a six-month study that will produce a candidate design and implementation roadmap for the VSO. We hope to proceed with the construction of a prototype VSO in US fiscal year 2003, with fuller deployment dependent on community reaction to and use of the capability. We therefore invite as broad as possible public comment and involvement, and invite interested parties to a "birds of a feather" session at this meeting. VSO is partnered with the European Grid of Solar Observations (EGSO), and if successful, we hope to be able to offer the VSO as the basis for the solar component of a Living With a Star data system.
Solar-powered oxygen delivery: proof of concept.
Turnbull, H; Conroy, A; Opoka, R O; Namasopo, S; Kain, K C; Hawkes, M
2016-05-01
A resource-limited paediatric hospital in Uganda. Pneumonia is a leading cause of child mortality worldwide. Access to life-saving oxygen therapy is limited in many areas. We designed and implemented a solar-powered oxygen delivery system for the treatment of paediatric pneumonia. Proof-of-concept pilot study. A solar-powered oxygen delivery system was designed and piloted in a cohort of children with hypoxaemic illness. The system consisted of 25 × 80 W photovoltaic solar panels (daily output 7.5 kWh [range 3.8-9.7kWh]), 8 × 220 Ah batteries and a 300 W oxygen concentrator (output up to 5 l/min oxygen at 88% [±2%] purity). A series of 28 patients with hypoxaemia were treated with solar-powered oxygen. Immediate improvement in peripheral blood oxygen saturation was documented (median change +12% [range 5-15%], P < 0.0001). Tachypnoea, tachycardia and composite illness severity score improved over the first 24 h of hospitalisation (P < 0.01 for all comparisons). The case fatality rate was 6/28 (21%). The median recovery times to sit, eat, wean oxygen and hospital discharge were respectively 7.5 h, 9.8 h, 44 h and 4 days. Solar energy can be used to concentrate oxygen from ambient air and oxygenate children with respiratory distress and hypoxaemia in a resource-limited setting.
Composition of Coronal Mass Ejections
NASA Technical Reports Server (NTRS)
Zurbuchen, T. H.; Weberg, M.; von Steiger, R.; Mewaldt, R. A.; Lepri, S. T.; Antiochos, S. K.
2016-01-01
We analyze the physical origin of plasmas that are ejected from the solar corona. To address this issue, we perform a comprehensive analysis of the elemental composition of interplanetary coronal mass ejections (ICMEs) using recently released elemental composition data for Fe, Mg, Si, S, C, N, Ne, and He as compared to O and H. We find that ICMEs exhibit a systematic abundance increase of elements with first ionization potential (FIP) less than 10 electronvolts, as well as a significant increase of Ne as compared to quasi-stationary solar wind. ICME plasmas have a stronger FIP effect than slow wind, which indicates either that an FIP process is active during the ICME ejection or that a different type of solar plasma is injected into ICMEs. The observed FIP fractionation is largest during times when the Fe ionic charge states are elevated above Q (sub Fe) is greater than 12.0. For ICMEs with elevated charge states, the FIP effect is enhanced by 70 percent over that of the slow wind. We argue that the compositionally hot parts of ICMEs are active region loops that do not normally have access to the heliosphere through the processes that give rise to solar wind. We also discuss the implications of this result for solar energetic particles accelerated during solar eruptions and for the origin of the slow wind itself.
Bioinspired fractal electrodes for solar energy storages.
Thekkekara, Litty V; Gu, Min
2017-03-31
Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10 -3 Whcm -3 . In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10 -1 Whcm -3 - more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications.
Bioinspired fractal electrodes for solar energy storages
Thekkekara, Litty V.; Gu, Min
2017-01-01
Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10−3 Whcm−3. In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10−1 Whcm−3- more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications. PMID:28361924
Composition of Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Zurbuchen, T. H.; Weberg, M.; von Steiger, R.; Mewaldt, R. A.; Lepri, S. T.; Antiochos, S. K.
2016-07-01
We analyze the physical origin of plasmas that are ejected from the solar corona. To address this issue, we perform a comprehensive analysis of the elemental composition of interplanetary coronal mass ejections (ICMEs) using recently released elemental composition data for Fe, Mg, Si, S, C, N, Ne, and He as compared to O and H. We find that ICMEs exhibit a systematic abundance increase of elements with first ionization potential (FIP) < 10 eV, as well as a significant increase of Ne as compared to quasi-stationary solar wind. ICME plasmas have a stronger FIP effect than slow wind, which indicates either that an FIP process is active during the ICME ejection or that a different type of solar plasma is injected into ICMEs. The observed FIP fractionation is largest during times when the Fe ionic charge states are elevated above Q Fe > 12.0. For ICMEs with elevated charge states, the FIP effect is enhanced by 70% over that of the slow wind. We argue that the compositionally hot parts of ICMEs are active region loops that do not normally have access to the heliosphere through the processes that give rise to solar wind. We also discuss the implications of this result for solar energetic particles accelerated during solar eruptions and for the origin of the slow wind itself.
A large-scale dataset of solar event reports from automated feature recognition modules
NASA Astrophysics Data System (ADS)
Schuh, Michael A.; Angryk, Rafal A.; Martens, Petrus C.
2016-05-01
The massive repository of images of the Sun captured by the Solar Dynamics Observatory (SDO) mission has ushered in the era of Big Data for Solar Physics. In this work, we investigate the entire public collection of events reported to the Heliophysics Event Knowledgebase (HEK) from automated solar feature recognition modules operated by the SDO Feature Finding Team (FFT). With the SDO mission recently surpassing five years of operations, and over 280,000 event reports for seven types of solar phenomena, we present the broadest and most comprehensive large-scale dataset of the SDO FFT modules to date. We also present numerous statistics on these modules, providing valuable contextual information for better understanding and validating of the individual event reports and the entire dataset as a whole. After extensive data cleaning through exploratory data analysis, we highlight several opportunities for knowledge discovery from data (KDD). Through these important prerequisite analyses presented here, the results of KDD from Solar Big Data will be overall more reliable and better understood. As the SDO mission remains operational over the coming years, these datasets will continue to grow in size and value. Future versions of this dataset will be analyzed in the general framework established in this work and maintained publicly online for easy access by the community.
Zhang, Lulu; Xing, Jun; Wen, Xinglin; Chai, Jianwei; Wang, Shijie; Xiong, Qihua
2017-09-14
Passive solar evaporation represents a promising and environmentally benign method of water purification/desalination. Plasmonic nanoparticles have been demonstrated as an effective approach for enhancing solar steam generation through a plasmonic heating effect, nonetheless the efficiency is constrained by unnecessary bulk heating of the entire liquid volume, while the noble metals commonly used are not cost-effective in terms of availability and their sophisticated preparation. Herein, a paper-like plasmonic device consisting of a microporous membrane and indium nanoparticles (In NPs/MPM) is fabricated through a simple thermal evaporation method. Due to the light-weight and porous nature of the device, the broadband light absorption properties, and theoretically the excellent plasmonic heating effect from In NP which could be even higher than gold, silver and aluminium nanoparticles, our device can effectively enhance solar water evaporation by floating on the water surface and its utility has been demonstrated in the solar desalination of a real seawater sample. The durability of the device in solar seawater desalination has also been investigated over multiple cycles with stable performances. This portable device could provide a solution for individuals to do water/seawater purification in under-developed areas with limited/no access to electricity or a centralized drinking water supply.
76 FR 73611 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-29
... that the Commission received the following electric corporate filings: Docket Numbers: EC12-35-000... and Confidential Treatment of Arizona Solar One LLC. Filed Date: 11/18/11. Accession Number: 20111118... Section 203 of the Federal Power Act, and for Expedited Consideration, Confidential Treatment and Waivers...
ERIC Educational Resources Information Center
Hurst, Anna; Plummer, Julia; Gurton, Suzanne; Schatz, Dennis
2017-01-01
On August 21, 2017, sky gazers all across North America will experience a total solar eclipse, arguably the most breathtaking of all astronomical phenomena. The August eclipse is an ideal astronomical event to observe with young children because it allows them to observe a powerful and easily accessible astronomical phenomenon. Observing…
Easy Attachment Of Panels To A Truss
NASA Technical Reports Server (NTRS)
Thomson, Mark; Gralewski, Mark
1992-01-01
Conceptual antenna dish, solar collector, or similar structure consists of hexagonal panels supported by truss erected in field. Truss built in increments to maintain access to panel-attachment nodes. Each panel brought toward truss at angle and attached to two nodes. Panel rotated into attachment at third node.
Renewable Energy Zones for Balancing Siting Trade-offs in India
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshmukh, Ranjit; Wu, Grace C.; Phadke, Amol
India’s targets of 175 GW of renewable energy capacity by 2022, and 40% generation capacity from non-fossil fuel sources by 2030 will require a rapid and dramatic increase in solar and wind capacity deployment and overcoming its associated economic, siting, and power system challenges. The objective of this study was to spatially identify the amount and quality of wind and utility-scale solar resource potential in India, and the possible siting-related constraints and opportunities for development of renewable resources. Using the Multi-criteria Analysis for Planning Renewable Energy (MapRE) methodological framework, we estimated several criteria valuable for the selection of sites formore » development for each identified potential "zone", such as the levelized cost of electricity, distance to nearest substation, capacity value (or the temporal matching of renewable energy generation to demand), and the type of land cover. We find that high quality resources are spatially heterogeneous across India, with most wind and solar resources concentrated in the southern and western states, and the northern state of Rajasthan. Assuming India's Central Electricity Regulatory Commission's norms, we find that the range of levelized costs of generation of wind and solar PV resources overlap, but concentrated solar power (CSP) resources can be approximately twice as expensive. Further, the levelized costs of generation vary much more across wind zones than those across solar zones because of greater heterogeneity in the quality of wind resources compared to that of solar resources. When considering transmission accessibility, we find that about half of all wind zones (47%) and two-thirds of all solar PV zones (66%) are more than 25 km from existing 220 kV and above substations, suggesting potential constraints in access to high voltage transmission infrastructure and opportunities for preemptive transmission planning to scale up RE development. Additionally and importantly, we find that about 84% of all wind zones are on agricultural land, which provide opportunities for multiple-uses of land but may also impose constraints on land availability. We find that only 29% of suitable solar PV sites and 15% of CSP sites are within 10 km of a surface water body suggesting water availability as a significant siting constraint for solar plants. Availability of groundwater resources was not analyzed as part of this study. Lastly, given the possible economic benefits of transmission extensions or upgrades that serve both wind and solar generators, we quantified the co-location opportunities between the two technologies and find that about a quarter (28%) of all solar PV zones overlap with wind zones. Using the planning tools made available as part of this study, these multiple siting constraints and opportunities can be systematically compared and weighted to prioritize development that achieves a particular technology target. Our results are limited by the uncertainties associated with the input datasets, in particular the geospatial wind and solar resource, transmission, and land use land cover datasets. As input datasets get updated and improved, the methodology and tools developed through this study can be easily adapted and applied to these new datasets to improve upon the results presented in this study. India is on a path to significantly decarbonize its electricity grid through wind and solar development. A stakeholder-driven, systematic, and integrated planning approach using data and tools such as those highlighted in this study is essential to not only meet the country's RE targets, but to meet them in a cost-effective, and socially and environmentally sustainable way.« less
The Kanzelhöhe Online Data Archive
NASA Astrophysics Data System (ADS)
Pötzi, W.; Hirtenfellner-Polanec, W.; Temmer, M.
The Kanzelhöhe Observatory provides high-cadence full-disk observations of solar activity phenomena like sunspots, flares and prominence eruptions on a regular basis. The data are available for download from the KODA (Kanzelhöhe Observatory Data Archive) which is freely accessible. The archive offers sunspot drawings back to 1950 and high cadence H-α data back to 1973. Images from other instruments, like white-light and CaIIK, are available since 2007 and 2010, respectively. In the following we describe how to access the archive and the format of the data.
How Mars is losing its atmosphere on This Week @NASA – November 6, 2015
2015-11-06
New findings by NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) mission indicate that solar wind is currently stripping away the equivalent of about 1/4 pound of gas every second from the Martian atmosphere. MAVEN tracked a series of dramatic solar storms passing through the Martian atmosphere in March and found the loss was accelerated. This could suggest that violent solar activity in the distant past may have played a key role in the transition of the Martian climate from an early, warm and wet environment that might have supported surface life, to the cold, arid planet Mars is today. Also, 15 Years on space station, and counting!, Spacewalk for space station maintenance, NASA seeking future astronauts, Commercial Crew access tower progress and First SLS flight engine placed for testing!
STEREO/Waves Education and Public Outreach
NASA Astrophysics Data System (ADS)
MacDowall, R. J.; Bougeret, J.; Bale, S. D.; Goetz, K.; Kaiser, M. L.
2005-05-01
We present the education and public outreach plan and activities of the STEREO Waves (aka SWAVES) investigation. SWAVES measures radio emissions from the solar corona, interplanetary medium, and terrestrial magnetosphere, as well as in situ waves in the solar wind. In addition to the web site components that display stereo/multi-spacecraft data in a graphical form and explain the science and instruments, we will focus on the following three areas of EPO: class-room demonstrations using models of the STEREO spacecraft with battery powered radio receivers (and speakers) to illustrate spacecraft radio direction finding, teacher developed and tested class-room activities using SWAVES solar radio observations to motivate geometry and trigonometry, and sound-based delivery of characteristic radio and plasma wave events from the SWAVES web site for accessibility and esthetic reasons. Examples of each element will be demonstrated.
NASA Astrophysics Data System (ADS)
Bonnin, X.; Aboudarham, J.; Fuller, N.; Renie, C.; Perez-Suarez, D.; Gallagher, P.; Higgins, P.; Krista, L.; Csillaghy, A.; Bentley, R.
2011-12-01
In the frame of the European project HELIO, the Observatoire de Paris-Meudon is in charge of the Heliophysics Feature Catalogue (HFC), a service which provides access to existing solar and heliospheric feature data. In order to create a catalogue as exhaustive as possible, recognition codes are developed to automatically detect and track features. At the time, HFC contains data of filaments, active regions, coronal holes, sunspots and type III radio bursts for a full solar cycle. The insertion of prominences and type II radio bursts should be done in the short term. We present here an overview of some of the algorithms used to populate HFC. The development of such fast and robust techniques also addresses the needs of the Space Weather community in terms of near real-time monitoring capabilities.
NASA Technical Reports Server (NTRS)
Evans, L. C.
1972-01-01
A summary is provided of all proton events observed with OGO/4 and observed flux profiles for several events. Pertinent data are indicated relating to the orientation of the interplanetary magnetic field. The events whose profiles are presented are divided into three classes: EDP events (normally associated with co-rotating features), solar flare events, and events having characteristics of both EDP events and flare events (class C events). A description of these classes of events and the criteria used to distinguish between EDP events and flare events are discussed. In addition, the 1 December 1967 EDP event and the 2 November 1967 solar flare event are discussed in some detail. Accompanying the profiles of each event is a brief list of notable observational features of the event. Events are presented chronologically.
Study of Proton cutoffs during geomagnetically disturbed times
NASA Astrophysics Data System (ADS)
Kanekal, S. G.; Looper, M. D.; Baker, D. N.; Blake, J. B.
Solar energetic particles SEP are currently classified into impulsive and gradual events The former are understood be accelerated at solar flares and the latter at interplanetary shocks driven by coronal mass ejections CMEs It is well known that CMEs also cause intense geomagnetic storms during which the geomagnetic field can be highly distorted During these times SEP fluxes penetrate the terrestrial magnetosphere and reach regions which may not be normally accessible to them The SEP access is of course controlled by the geomagnetic field configuration The cutoff latitude is a well defined latitude below which a charged particle of a given rigidity momentum per unit charge arriving from a given direction cannot penetrate SEPs constitute a radiation hazard to spacecraft and humans and measurement and prediction of the cutoff location are an important aspect of space weather This paper reports on the measurements of solar energetic proton cutoffs made by two satellites SAMPEX and Polar during geomagnetically disturbed times We study select SEP events occuring during the period 1996 to 2005 when both SAMPEX and Polar provide high quality data We will compare our measurements with cutoffs calculated by a charged particle tracing code which utilizes several currently used models of the geomagnetic field The measured SEP proton cutoffs cover a range of rigidities and are obtained at high-altitudes by the HIST detector onboard Polar and at low-altitudes by the PET and HILT detctors onboard SAMPEX
Phase 1 Space Fission Propulsion System Design Considerations
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Carter, Robert; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems operating at 80 kWe or above could enhance or enable numerous robotic outer solar system missions of interest. At these power levels it is possible to develop safe, affordable systems that meet mission performance requirements. In selecting the system design to pursue, seven evaluation criteria were identified: safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of three potential concepts was performed: an SP-100 based pumped liquid lithium system, a direct gas cooled system, and a heatpipe cooled system. For power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the heatpipe system has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the heatpipe approach. Successful development and utilization of a "Phase 1" fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system.
Phase 1 space fission propulsion system design considerations
NASA Astrophysics Data System (ADS)
Houts, Mike; van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Carter, Robert
2002-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems operating at 80 kWe or above could enhance or enable numerous robotic outer solar system missions of interest. At these power levels it is possible to develop safe, affordable systems that meet mission performance requirements. In selecting the system design to pursue, seven evaluation criteria were identified: safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of three potential concepts was performed: an SP-100 based pumped liquid lithium system, a direct gas cooled system, and a heatpipe cooled system. For power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the heatpipe system has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the heatpipe approach. Successful development and utilization of a ``Phase 1'' fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system. .
NASA Astrophysics Data System (ADS)
Pankratz, C. K.; Baker, D. N.; Jaynes, A. N.; Elkington, S. R.; Baltzer, T.; Sanchez, F.
2017-12-01
Society's growing reliance on complex and highly interconnected technological systems makes us increasingly vulnerable to the effects of space weather events - maybe more than for any other natural hazard. An extreme solar storm today could conceivably impact hundreds of the more than 1400 operating Earth satellites. Such an extreme storm could cause collapse of the electrical grid on continental scales. The effects on navigation, communication, and remote sensing of our home planet could be devastating to our social functioning. Thus, it is imperative that the scientific community address the question of just how severe events might become. At least as importantly, it is crucial that policy makers and public safety officials be informed by the facts on what might happen during extreme conditions. This requires essentially real-time alerts, warnings, and also forecasts of severe space weather events, which in turn demands measurements, models, and associated data products to be available via the most effective data discovery and access methods possible. Similarly, advancement in the fundamental scientific understanding of space weather processes is also vital, requiring that researchers have convenient and effective access to a wide variety of data sets and models from multiple sources. The space weather research community, as with many scientific communities, must access data from dispersed and often uncoordinated data repositories to acquire the data necessary for the analysis and modeling efforts that advance our understanding of solar influences and space physics on the Earth's environment. The Laboratory for Atmospheric and Space Physics (LASP), as a leading institution in both producing data products and advancing the state of scientific understanding of space weather processes, is well positioned to address many of these issues. In this presentation, we will outline the motivating factors for effective space weather data access, summarize the various data and models that are available, and present methods for meeting the data management and access needs of the disparate communities who require low-latency space weather data and information.
Tandem Solar Cells from Accessible Low Band-Gap Polymers Using an Efficient Interconnecting Layer.
Bag, Santanu; Patel, Romesh J; Bunha, Ajaykumar; Grand, Caroline; Berrigan, J Daniel; Dalton, Matthew J; Leever, Benjamin J; Reynolds, John R; Durstock, Michael F
2016-01-13
Tandem solar cell architectures are designed to improve device photoresponse by enabling the capture of wider range of solar spectrum as compared to single-junction device. However, the practical realization of this concept in bulk-heterojunction polymer systems requires the judicious design of a transparent interconnecting layer compatible with both polymers. Moreover, the polymers selected should be readily synthesized at large scale (>1 kg) and high performance. In this work, we demonstrate a novel tandem polymer solar cell that combines low band gap poly isoindigo [P(T3-iI)-2], which is easily synthesized in kilogram quantities, with a novel Cr/MoO3 interconnecting layer. Cr/MoO3 is shown to be greater than 80% transparent above 375 nm and an efficient interconnecting layer for P(T3-iI)-2 and PCDTBT, leading to 6% power conversion efficiencies under AM 1.5G illumination. These results serve to extend the range of interconnecting layer materials for tandem cell fabrication by establishing, for the first time, that a thin, evaporated layer of Cr/MoO3 can work as an effective interconnecting layer in a tandem polymer solar cells made with scalable photoactive materials.
NASA Astrophysics Data System (ADS)
Herman, Aline; Sarrazin, Michaël; Deparis, Olivier
2014-01-01
The incoherence of sunlight has long been suspected to have an impact on solar cell energy conversion efficiency, although the extent of this is unclear. Existing computational methods used to optimize solar cell efficiency under incoherent light are based on multiple time-consuming runs and statistical averaging. These indirect methods show limitations related to the complexity of the solar cell structure. As a consequence, complex corrugated cells, which exploit light trapping for enhancing the efficiency, have not yet been accessible for optimization under incoherent light. To overcome this bottleneck, we developed an original direct method which has the key advantage that the treatment of incoherence can be totally decoupled from the complexity of the cell. As an illustration, surface-corrugated GaAs and c-Si thin-films are considered. The spectrally integrated absorption in these devices is found to depend strongly on the degree of light coherence and, accordingly, the maximum achievable photocurrent can be higher under incoherent light than under coherent light. These results show the importance of taking into account sunlight incoherence in solar cell optimization and point out the ability of our direct method to deal with complex solar cell structures.
Space Environment Information System (SPENVIS)
NASA Astrophysics Data System (ADS)
Kruglanski, M.; Messios, N.; de Donder, E.; Gamby, E.; Calders, S.; Hetey, L.; Evans, H.
2009-04-01
SPENVIS is an ESA operational software developed and maintained at BIRA-IASB since 1996. It provides standardized access to most of the recent models of the hazardous space environment, through a user-friendly Web interface (http://www.spenvis.oma.be/). The system allows spacecraft engineers to perform a rapid analysis of environmental problems related to natural radiation belts, solar energetic particles, cosmic rays, plasmas, gases, magnetic fields and micro-particles. Various reporting and graphical utilities and extensive help facilities are included to allow engineers with relatively little familiarity to produce reliable results. SPENVIS also contains an active, integrated version of the ECSS Space Environment Standard and access to in-flight data on the space environment. Although SPENVIS in the first place is designed to help spacecraft engineers, it is also used by technical universities in their educational programs. At present more than 4000 users are registered. With SPENVIS, one can generate a spacecraft trajectory or a coordinate grid and then calculate: geomagnetic coordinates; trapped proton and electron fluxes; solar proton fluences; cosmic ray fluxes; radiation doses (ionising and non-ionising) for simple geometries; a sectoring analysis for dose calculations in more complex geometries; damage equivalent fluences for Si, GaAs and multi-junction solar cells; Geant4 Monte Carlo analysis for doses and pulse height rates in planar and spherical shields; ion LET and flux spectra and single event upset rates; trapped proton flux anisotropy; atmospheric and ionospheric densities and temperatures; atomic oxygen erosion depths; surface and internal charging characteristics; solar array current collections and power losses; wall damage. The new version of SPENVIS (to be released in January 2009) also allows mission analysis for Mars and Jupiter.
Effects of Electrostatic Environment on Charged Particle Transport near Lunar Holes
NASA Astrophysics Data System (ADS)
Miyake, Y.; Nishino, M. N.
2017-12-01
The Moon has neither dense atmosphere nor intrinsic magnetic field, and solar wind interactions with lunar surfaces are one of major plasma processes. The near-surface, dayside electrostatic environment is governed mainly by volume charges of solar wind plasma and photoelectrons as well as charged lunar surfaces. In fact, the electric environment strongly depends on surface topologies, as it will produce a shaded region, the electric environment of which can be very different from that in a sunlit condition. As one of high-profile terrains on the Moon, we have been focusing on the lunar vertical holes (or lunar pits), identified by the KAGUYA satellite and the Lunar Reconnaissance Orbiter. In order to model the distinctive electric and dust environments near the holes, we have started three-dimensional particle simulation analysis. The present study addresses the plasma environment of a lunar hole that is accompanied with a subsurface cavern. Besides the topographical effect of having a cavern, an investigation is focused on the following points. The first point is how deeply the solar wind protons are accessible into the hole and cavern. This point is relevant not only to an electric environment but also to possible existence of volatiles at permanently shaded regions of the hole. In order to examine the possibility, we implemented a proton scattering process at lunar surfaces into the simulation model. The other is the role of some minor current components such as secondary electrons, scattered protons, and charged dust grains at the lunar surface. Such minor currents become important for the charging of shaded surfaces, as major current components (solar wind plasma and photoelectrons) are not accessible there. We address these points based on kinetic model descriptions.
SOLAR PASTEURIZER WITH INTEGRAL HEAT EXCHANGER FOR TREATING WATER IN RURAL AREAS
According to the WHO/UNICEF Joint Monitoring Programme for Water Supply and Sanitation there are currently 1.1 billion people without access to safe water on the planet. Every year more than five million people die from the lack of safe water and improper sanitation. Child...
SOLAR PHOTOVOLTAIC SYSTEM DESIGN FOR A REMOTE COMMUNITY IN PANAMA
Santo Domingo, Panama, is a rural town of 100, located in the Colon province within Chagres National Park. The town’s inhabitants are small-scale farmers and ranchers. The town is only accessible via rugged roads and has neither electric nor phone lines. Since the town i...
SHEDDING LIGHT ON CORALS HEALTH: INTERACTIONS OF CLIMATE CHANGE AND SOLAR RADIATION WITH BLEACHING
Coral bleaching and declines in coral reef health in recent years have been attributed in part to processes driven by UV and/or visible light. For coral assemblages, exposure to UV light is often an unavoidable consequence of having access to visible (photosynthetically active) ...
On the Performance of Multi-Instrument Solar Flare Observations During Solar Cycle 24
NASA Astrophysics Data System (ADS)
Milligan, Ryan O.; Ireland, Jack
2018-02-01
The current fleet of space-based solar observatories offers us a wealth of opportunities to study solar flares over a range of wavelengths. Significant advances in our understanding of flare physics often come from coordinated observations between multiple instruments. Consequently, considerable efforts have been, and continue to be, made to coordinate observations among instruments ( e.g. through the Max Millennium Program of Solar Flare Research). However, there has been no study to date that quantifies how many flares have been observed by combinations of various instruments. Here we describe a technique that retrospectively searches archival databases for flares jointly observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), Solar Dynamics Observatory (SDO)/ EUV Variability Experiment (EVE - Multiple EUV Grating Spectrograph (MEGS)-A and -B, Hinode/( EUV Imaging Spectrometer, Solar Optical Telescope, and X-Ray Telescope), and Interface Region Imaging Spectrograph (IRIS). Out of the 6953 flares of GOES magnitude C1 or greater that we consider over the 6.5 years after the launch of SDO, 40 have been observed by 6 or more instruments simultaneously. Using each instrument's individual rate of success in observing flares, we show that the numbers of flares co-observed by 3 or more instruments are higher than the number expected under the assumption that the instruments operated independently of one another. In particular, the number of flares observed by larger numbers of instruments is much higher than expected. Our study illustrates that these missions often acted in cooperation, or at least had aligned goals. We also provide details on an interactive widget ( Solar Flare Finder), now available in SSWIDL, which allows a user to search for flaring events that have been observed by a chosen set of instruments. This provides access to a broader range of events in order to answer specific science questions. The difficulty in scheduling coordinated observations for solar-flare research is discussed with respect to instruments projected to begin operations during Solar Cycle 25, such as the Daniel K. Inouye Solar Telescope, Solar Orbiter, and Parker Solar Probe.
Analysis of AC and DC Lighting Systems with 150-Watt Peak Solar Panel in Denpasar Based on NASA Data
NASA Astrophysics Data System (ADS)
Narottama, A. A. N. M.; Amerta Yasa, K.; Suwardana, I. W.; Sapteka, A. A. N. G.; Priambodo, P. S.
2018-01-01
Solar energy on the Earth’s surface has different magnitudes on every longitude and latitude. National Aeronautics and Space Administration (NASA) provides surface meteorology and solar energy database which can be accessed openly online. This database delivers information about Monthly Averaged Insolation Incident On A Horizontal Surface, Monthly Averaged Insolation Incident On A Horizontal Surface At Indicated GMT Times and also data about Equivalent Number Of No-Sun Or Black Days for any latitude and longitude. Therefore, we investigate the lighting systems with 150-Watt peak solar panel in Denpasar City, the capital province of Bali. Based on NASA data, we analyse the received wattage by a unit of 150-Watt peak solar panel in Denpasar City and the sustainability of 150-Watt peak solar panel to supply energy for 432-Watt hour/day AC and 360-Watt hour/day DC lighting systems using 1.2 kWh battery. The result shows that the maximum received wattage by a unit of 150-Watt peak solar panel is 0.76 kW/day in October. We concluded that the 1.2 kWh installed battery has higher capacity than the battery capacity needed in March, the month with highest no-sun days, for both AC and DC lighting systems. We calculate that the installed battery can be used to store the sustainable energy from sun needed by AC and DC lighting system for about 2.78 days and 3.51 days, consecutively.
NASA Astrophysics Data System (ADS)
Walker, R. J.; Beebe, R. F.
2017-12-01
One of the basic problems the NASA Science Mission Directorate (SMD) faces when dealing with preservation of scientific data is the variety of the data. This stems from the fact that NASA's involvement in the sciences spans a broad range of disciplines across the Science Mission Directorate: Astrophysics, Earth Sciences, Heliophysics and Planetary Science. As the ability of some missions to produce large data volumes has accelerated, the range of problems associated with providing adequate access to the data has demanded diverse approaches for data access. Although mission types, complexity and duration vary across the disciplines, the data can be characterized by four characteristics: velocity, veracity, volume, and variety. The rate of arrival of the data (velocity) must be addressed at the individual mission level, validation and documentation of the data (veracity), data volume and the wide variety of data products present huge challenges as the science disciplines strive to provide transparent access to their available data. Astrophysics, supports an integrated system of data archives based on frequencies covered (UV, visible, IR, etc.) or subject areas (extrasolar planets, extra galactic, etc.) and is accessed through the Astrophysics Data Center (https://science.nasa.gov/astrophysics/astrophysics-data-centers/). Earth Science supports the Earth Observing System (https://earthdata.nasa.gov/) that manages the earth science satellite data. The discipline supports 12 Distributed Active Archive Centers. Heliophysics provides the Space Physics Data Facility (https://spdf.gsfc.nasa.gov/) that supports the heliophysics community and Solar Data Analysis Center (https://umbra.nascom.nasa.gov/index.html) that allows access to the solar data. The Planetary Data System (https://pds.nasa.gov) is the main archive for planetary science data. It consists of science discipline nodes (Atmospheres, Geosciences, Cartography and Imaging Sciences, Planetary Plasma Interactions, Ring-Moon Systems, and Small Bodies) and supporting nodes (Engineering and the Navigation and Ancillary Information Facility). This presentation will address current efforts by the disciplines to face the demands of providing user access in the era of Big Data.
2000-10-31
Space Shuttle Endeavour finally rests on Launch Pad 39B after its rollout was stalled several hours to fix a broken cleat on the crawler-transporter. At the far left is the Rotating Service Structure. From the Fixed Service Structure, the Orbiter Access Arm is already extended to the orbiter. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections
2000-10-31
Space Shuttle Endeavour finally rests on Launch Pad 39B after its rollout was stalled several hours to fix a broken cleat on the crawler-transporter. To the left is the Rotating Service Structure. The Orbiter Access Arm is already extended from the Fixed Service Structure to the orbiter. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections
Accessing SDO data in a pipeline environment using the VSO WSDL/SOAP interface
NASA Astrophysics Data System (ADS)
Suarez Sola, F. I.; Hourcle, J. A.; Amezcua, A.; Bogart, R.; Davey, A. R.; Gurman, J. B.; Hill, F.; Hughitt, V. K.; Martens, P. C.; Spencer, J.; Vso Team
2010-12-01
As part of the Virtual Solar Observatory (VSO) effort to support the Solar Dynamics Observatory (SDO) data, the VSO has worked on bringing up to date its WSDL document and SOAP interface to make it compatible with most widely used web services core engines. (E.g. axis2, jws, etc.) In this presentation we will explore the possibilities available for searching and/or fetching data within pipeline code. We will explain some of the WSDL/VSO-SDO interface intricacies and show how the vast amount of data that is available via the VSO can be tapped via IDL, Java, Perl or C in an uncomplicated way.
Photonic Potential of Haloarchaeal Pigment Bacteriorhodopsin for Future Electronics: A Review.
Ashwini, Ravi; Vijayanand, S; Hemapriya, J
2017-08-01
Haloarchaea are known for its adaptation in extreme saline environment. Halophilic archaea produces carotenoid pigments and proton pumps to protect them from extremes of salinity. Bacteriorhodopsin (bR) is a light-driven proton pump that resides in the membrane of haloarchaea Halobacterium salinarum. The photocycle of Bacteriorhodopsin passes through several states from K to O, finally liberating ATP for host's survival. Extensive studies on Bacteriorhodopsin photocycle has provided in depth knowledge on their sequential mechanism of converting solar energy into chemical energy inside the cell. This ability of Bacteriorhodopsin to harvest sunlight has now been experimented to exploit the unexplored and extensively available solar energy in various biotechnological applications. Currently, bacteriorhodopsin finds its importance in dye-sensitized solar cell (DSSC), logic gates (integrated circuits, IC's), optical switching, optical memories, storage devices (random access memory, RAM), biosensors, electronic sensors and optical microcavities. This review deals with the optical and electrical applications of the purple pigment Bacteriorhodopsin.
Interplay between transparency and efficiency in dye sensitized solar cells.
Tagliaferro, Roberto; Colonna, Daniele; Brown, Thomas M; Reale, Andrea; Di Carlo, Aldo
2013-02-11
In this paper we analyze the interplay between transparency and efficiency in dye sensitized solar cells by varying fabrication parameters such as the thickness of the nano-crystalline TiO(2) layer, the dye loading and the dye type. Both transparency and efficiency show a saturation trend when plotted versus dye loading. By introducing the transparency-efficiency plot, we show that the relation between transparency and efficiency is linear and is almost independent on the TiO(2) thickness for a certain thickness range. On the contrary, the relation between transparency and efficiency depends strongly on the type of the dye. Moreover, we show that co-sensitization techniques can be effectively used to access regions of the transparency-efficiency space that are forbidden for single dye sensitization. The relation found between transparency and efficiency (T&E) can be the general guide for optimization of Dye Solar Cells in building integration applications.
NASA Technical Reports Server (NTRS)
Allton, J. H.; Calaway, M. J.; Nyquist, L. E.; Jurewicz, A. J. G.; Burnett, D. S.
2018-01-01
Final Paper and not the abstract is attached. Introduction: Planetary material and cosmochemistry research using Genesis solar wind samples (including the development and implementation of cleaning and analytical techniques) has matured sufficiently that compilations on several topics, if made publically accessible, would be beneficial for researchers and reviewers. We propose here three compendia based on content, organization and source of documents (e.g. published peer-reviewed, published, internal memos, archives). For planning purposes, suggestions are solicited from potential users of Genesis solar wind samples for the type of science content and/or organizational style that would be most useful to them. These compendia are proposed as living documents, periodically updated. Similar to the existing compendia described below, the curation compendia are like library or archival finding aids, they are guides to published or archival documents and should not be cited as primary sources.
Nanophotonics-enabled solar membrane distillation for off-grid water purification.
Dongare, Pratiksha D; Alabastri, Alessandro; Pedersen, Seth; Zodrow, Katherine R; Hogan, Nathaniel J; Neumann, Oara; Wu, Jinjian; Wang, Tianxiao; Deshmukh, Akshay; Elimelech, Menachem; Li, Qilin; Nordlander, Peter; Halas, Naomi J
2017-07-03
With more than a billion people lacking accessible drinking water, there is a critical need to convert nonpotable sources such as seawater to water suitable for human use. However, energy requirements of desalination plants account for half their operating costs, so alternative, lower energy approaches are equally critical. Membrane distillation (MD) has shown potential due to its low operating temperature and pressure requirements, but the requirement of heating the input water makes it energy intensive. Here, we demonstrate nanophotonics-enabled solar membrane distillation (NESMD), where highly localized photothermal heating induced by solar illumination alone drives the distillation process, entirely eliminating the requirement of heating the input water. Unlike MD, NESMD can be scaled to larger systems and shows increased efficiencies with decreased input flow velocities. Along with its increased efficiency at higher ambient temperatures, these properties all point to NESMD as a promising solution for household- or community-scale desalination.
Follow the plume: the habitability of Enceladus.
McKay, Christopher P; Anbar, Ariel D; Porco, Carolyn; Tsou, Peter
2014-04-01
The astrobiological exploration of other worlds in our Solar System is moving from initial exploration to more focused astrobiology missions. In this context, we present the case that the plume of Enceladus currently represents the best astrobiology target in the Solar System. Analysis of the plume by the Cassini mission indicates that the steady plume derives from a subsurface liquid water reservoir that contains organic carbon, biologically available nitrogen, redox energy sources, and inorganic salts. Furthermore, samples from the plume jetting out into space are accessible to a low-cost flyby mission. No other world has such well-studied indications of habitable conditions. Thus, the science goals that would motivate an Enceladus mission are more advanced than for any other Solar System body. The goals of such a mission must go beyond further geophysical characterization, extending to the search for biomolecular evidence of life in the organic-rich plume. This will require improved in situ investigations and a sample return.
The Solar Development Corporation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, C.E.
1997-12-01
This paper describes a proposed stand alone company, the Solar Development Corporation (SDC), to be a business development and financing entity for photovoltaic operations with the potential to be commercially sustainable. SDC will have a fully integrated policy advocacy link to the World Bank. SDC will define target countries where the potential exists for significant early market expansion. In those countries it will provide: market and business development services that will accelerate the growth of private firms and deepen the penetration of Solar Home Systems (SHS) and other rural PV applications in the market; and access to pre-commercial and parallelmore » financing for private firms to (1) expand their capability in PV distribution businesses, and (2) strengthen their ability to provide credit to end users. SDC itself will not engage in direct financing of the final consumer. It is intended that as far as possible SDC`s finance will be provided in parallel with financing from Financial Intermediaries.« less
Nanophotonics-enabled solar membrane distillation for off-grid water purification
Dongare, Pratiksha D.; Alabastri, Alessandro; Pedersen, Seth; Zodrow, Katherine R.; Hogan, Nathaniel J.; Neumann, Oara; Wu, Jinjian; Wang, Tianxiao; Deshmukh, Akshay; Elimelech, Menachem; Li, Qilin; Nordlander, Peter; Halas, Naomi J.
2017-01-01
With more than a billion people lacking accessible drinking water, there is a critical need to convert nonpotable sources such as seawater to water suitable for human use. However, energy requirements of desalination plants account for half their operating costs, so alternative, lower energy approaches are equally critical. Membrane distillation (MD) has shown potential due to its low operating temperature and pressure requirements, but the requirement of heating the input water makes it energy intensive. Here, we demonstrate nanophotonics-enabled solar membrane distillation (NESMD), where highly localized photothermal heating induced by solar illumination alone drives the distillation process, entirely eliminating the requirement of heating the input water. Unlike MD, NESMD can be scaled to larger systems and shows increased efficiencies with decreased input flow velocities. Along with its increased efficiency at higher ambient temperatures, these properties all point to NESMD as a promising solution for household- or community-scale desalination. PMID:28630307
Coronal Magnetism and Forward Solarsoft Idl Package
NASA Astrophysics Data System (ADS)
Gibson, S. E.
2014-12-01
The FORWARD suite of Solar Soft IDL codes is a community resource for model-data comparison, with a particular emphasis on analyzing coronal magnetic fields. FORWARD may be used both to synthesize a broad range of coronal observables, and to access and compare to existing data. FORWARD works with numerical model datacubes, interfaces with the web-served Predictive Science Inc MAS simulation datacubes and the Solar Soft IDL Potential Field Source Surface (PFSS) package, and also includes several analytic models (more can be added). It connects to the Virtual Solar Observatory and other web-served observations to download data in a format directly comparable to model predictions. It utilizes the CHIANTI database in modeling UV/EUV lines, and links to the CLE polarimetry synthesis code for forbidden coronal lines. FORWARD enables "forward-fitting" of specific observations, and helps to build intuition into how the physical properties of coronal magnetic structures translate to observable properties.
Lan, Xinzheng; Voznyy, Oleksandr; García de Arquer, F Pelayo; Liu, Mengxia; Xu, Jixian; Proppe, Andrew H; Walters, Grant; Fan, Fengjia; Tan, Hairen; Liu, Min; Yang, Zhenyu; Hoogland, Sjoerd; Sargent, Edward H
2016-07-13
Colloidal quantum dot (CQD) solar cells are solution-processed photovoltaics with broad spectral absorption tunability. Major advances in their efficiency have been made via improved CQD surface passivation and device architectures with enhanced charge carrier collection. Herein, we demonstrate a new strategy to improve further the passivation of CQDs starting from the solution phase. A cosolvent system is employed to tune the solvent polarity in order to achieve the solvation of methylammonium iodide (MAI) and the dispersion of hydrophobic PbS CQDs simultaneously in a homogeneous phase, otherwise not achieved in a single solvent. This process enables MAI to access the CQDs to confer improved passivation. This, in turn, allows for efficient charge extraction from a thicker photoactive layer device, leading to a certified solar cell power conversion efficiency of 10.6%, a new certified record in CQD photovoltaics.
MESSENGER Observations of Extreme Space Weather in Mercury's Magnetosphere
NASA Astrophysics Data System (ADS)
Slavin, J. A.
2013-09-01
Increasing activity on the Sun is allowing MESSENGER to make its first observations of Mercury's magnetosphere under extreme solar wind conditions. At Earth interplanetary shock waves and coronal mass ejections produce severe "space weather" in the form of large geomagnetic storms that affect telecommunications, space systems, and ground-based power grids. In the case of Mercury the primary effect of extreme space weather in on the degree to which this it's weak global magnetic field can shield the planet from the solar wind. Direct impact of the solar wind on the surface of airless bodies like Mercury results in space weathering of the regolith and the sputtering of atomic species like sodium and calcium to high altitudes where they contribute to a tenuous, but highly dynamic exosphere. MESSENGER observations indicate that during extreme interplanetary conditions the solar wind plasma gains access to the surface of Mercury through three main regions: 1. The magnetospheric cusps, which fill with energized solar wind and planetary ions; 2. The subsolar magnetopause, which is compressed and eroded by reconnection to very low altitudes where the natural gyro-motion of solar wind protons may result in their impact on the surface; 3. The magnetotail where hot plasma sheet ions rapidly convect sunward to impact the surface on the nightside of Mercury. The possible implications of these new MESSENGER observations for our ability to predict space weather at Earth and other planets will be described.
Solar research with ALMA: Czech node of European ARC as your user-support infrastructure
NASA Astrophysics Data System (ADS)
Bárta, M.; Skokić, I.; Brajša, R.; Czech ARC Node Team
2017-08-01
ALMA (Atacama Large Millimeter/sub-millimeter Array) is by far the largest project of current ground-based observational facilities in astronomy and astrophysics. It is built and operated in the world-wide cooperation (ESO, NRAO, NAOJ) at altitude of 5000m in the desert of Atacama, Chile. Because of its unprecedented capabilities, ALMA is considered as a cutting-edge research device in astrophysics with potential for many breakthrough discoveries in the next decade and beyond. In spite it is not exclusively solar-research dedicated instrument, science observations of the Sun are now possible and has recently started in the observing Cycle 4 (2016-2017). In order to facilitate user access to this top-class, but at the same moment very complicated device to researchers lacking technical expertise, a network of three ALMA Regional Centers (ARCs) has been formed in Europe, North America, and East Asia as a user-support infrastructure and interface between the observatory and users community. After short introduction to ALMA the roles of ARCs and hint how to utilize their services will be presented, with emphasis to the specific (and in Europe unique) mission of the Czech ARC node in solar research with ALMA. Finally, peculiarities of solar observations that demanded the development of the specific Solar ALMA Observing Modes will be discussed and the results of Commissioning and Science Verification observing campaigns (solar ALMA maps) will be shown.
The New LASP Interactive Solar IRradiance Datacenter (LISIRD)
NASA Astrophysics Data System (ADS)
Baltzer, T.; Wilson, A.; Lindholm, D. M.; Snow, M. A.; Woodraska, D.; Pankratz, C. K.
2017-12-01
The New LASP Interactive Solar IRradiance Datacenter (LISIRD) The University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics (LASP) has a long history of providing state of the art Solar instrumentation and datasets to the community. In 2005, LASP created a web interface called LISIRD which provided plotting of and access to a number of Solar Irradiance measured and modeled datasets, and it has been used extensively by members of the community both within and outside of LASP. In August of 2017, LASP is set to release a new version of LISIRD for use by anyone interested in viewing and downloading the datasets it serves. This talk will describe the new LISIRD with emphasis on features enabled by it to include: New and more functional plotting interfaces Better dataset browse and search capabilities More datasets Easier to add datasets from a wider array of resources Cleaner interface with better use of screen real estate Much easier to update metadata describing each dataset Much of this capability is leveraged off new infrastructure that will also be touched upon.
Organic and perovskite solar cells: Working principles, materials and interfaces.
Marinova, Nevena; Valero, Silvia; Delgado, Juan Luis
2017-02-15
In the last decades organic solar cells (OSCs) have been considered as a promising photovoltaic technology with the potential to provide reasonable power conversion efficiencies combined with low cost and easy processability. Unexpectedly, Perovskite Solar Cells (PSCs) have experienced unprecedented rise in Power Conversion Efficiency (PCE) thus emerging as a highly efficient photovoltaic technology. OSCs and PSCs are two different kind of devices with distinct charge generation mechanism, which however share some similarities in the materials processing, thus standard strategies developed for OSCs are currently being employed in PSCs. In this article, we recapitulate the main processes in these two types of photovoltaic technologies with an emphasis on interfacial processes and interfacial modification, spotlighting the materials and newest approaches in the interfacial engineering. We discuss on the relevance of well-known materials coming from the OSCs field, which are now being tested in the PSCs field, while maintaining a focus on the importance of the material design for highly efficient, stable and accessible solar cells. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Munoz-Jaramillo, Andres
2016-05-01
The arrival of a highly interconnected digital age with practically limitless data storage capacity has brought with it a significant shift in which scientific data is stored and distributed (i.e. from being in the hands of a small group of scientists to being openly and freely distributed for anyone to use). However, the vertiginous speed at which hardware, software, and the nature of the internet changes has also sped up the rate at which data is lost due to formatting obsolescence and loss of access.This poster is meant to advertise the creation of a highly permanent data repository (within the context of Harvard's Dataverse), curated to contain datasets of high relevance for the study, and prediction of the solar dynamo, solar cycle, and long-term solar variability. This repository has many advantages over traditional data storage like the assignment of unique DOI identifiers for each database (making it easier for scientist to directly cite them), and the automatic versioning of each database so that all data are able to attain salvation.
Integrated Phase Array Antenna/Solar Cell System for Flexible Access Communication (IA/SAC)
NASA Technical Reports Server (NTRS)
Clark, E. B.; Lee, R. Q.; Pal, A. T.; Wilt, D. M.; McElroy, B. D.; Mueller, C. H.
2005-01-01
This paper describes recent efforts to integrate advanced solar cells with printed planar antennas. Several previous attempts have been reported in the literature, but this effort is unique in several ways. It uses Gallium Arsenide (GaAs) multi-junction solar cell technology. The solar cells and antennas will be integrated onto a common GaAs substrate. When fully implemented, IA/SAC will be capable of dynamic beam steering. In addition, this program targets the X-band (8 - 12 GHz) and higher frequencies, as compared to the 2.2 - 2.9 GHz arrays targeted by other organizations. These higher operating frequencies enable a greater bandwidth and thus higher data transfer rates. The first phase of the effort involves the development of 2 x 2 cm GaAs Monolithically Integrated Modules (MIM) with integrated patch antennas on the opposite side of the substrate. Subsequent work will involve the design and development of devices having the GaAs MIMs and the antennas on the same side of the substrate. Results from the phase one efforts will be presented.
Solar thermal polymerase chain reaction for smartphone-assisted molecular diagnostics.
Jiang, Li; Mancuso, Matthew; Lu, Zhengda; Akar, Gunkut; Cesarman, Ethel; Erickson, David
2014-02-20
Nucleic acid-based diagnostic techniques such as polymerase chain reaction (PCR) are used extensively in medical diagnostics due to their high sensitivity, specificity and quantification capability. In settings with limited infrastructure and unreliable electricity, however, access to such devices is often limited due to the highly specialized and energy-intensive nature of the thermal cycling process required for nucleic acid amplification. Here we integrate solar heating with microfluidics to eliminate thermal cycling power requirements as well as create a simple device infrastructure for PCR. Tests are completed in less than 30 min, and power consumption is reduced to 80 mW, enabling a standard 5.5 Wh iPhone battery to provide 70 h of power to this system. Additionally, we demonstrate a complete sample-to-answer diagnostic strategy by analyzing human skin biopsies infected with Kaposi's Sarcoma herpesvirus (KSHV/HHV-8) through the combination of solar thermal PCR, HotSHOT DNA extraction and smartphone-based fluorescence detection. We believe that exploiting the ubiquity of solar thermal energy as demonstrated here could facilitate broad availability of nucleic acid-based diagnostics in resource-limited areas.
The Focusing Optics X-ray Solar Imager (FOXSI)
NASA Astrophysics Data System (ADS)
Christe, Steven; Glesener, L.; Krucker, S.; Ramsey, B.; Takahashi, T.; Lin, R.
2009-05-01
The Focusing Optics X-ray Solar Imager (FOXSI) is a NASA Low Cost Access to Space sounding rocket payload scheduled for launch late 2010. FOXSI will provide imaging spectroscopy with high sensitivity ( 50 times RHESSI) and high dynamic range ( 100) in hard X-rays (HXR) up to 15 keV. For the first time, it will be possible to search for nonthermal emission of thermal network flares occurring in the quiet corona in order to determine whether they are similar to active region flares. Additionally, FOXSI will extend the active-region flare distribution to events two orders of magnitude smaller than previously observed and determine their contribution to coronal heating. FOXSI is able to achieve this unprecendeted advance in solar HXR observations through the combination of nested HXR optics developped by the Marshall Space Flight Center and novel silicon strip detectors provided by ISAS Japan. The FOXSI mission will provide HXR spectroscopic imaging with an angular resolution of 12" (FWHM) and 1 keV energy resolution. FOXSI will be a pathfinder for the future generation of solar HXR spectroscopic imagers.
Solar thermal polymerase chain reaction for smartphone-assisted molecular diagnostics
NASA Astrophysics Data System (ADS)
Jiang, Li; Mancuso, Matthew; Lu, Zhengda; Akar, Gunkut; Cesarman, Ethel; Erickson, David
2014-02-01
Nucleic acid-based diagnostic techniques such as polymerase chain reaction (PCR) are used extensively in medical diagnostics due to their high sensitivity, specificity and quantification capability. In settings with limited infrastructure and unreliable electricity, however, access to such devices is often limited due to the highly specialized and energy-intensive nature of the thermal cycling process required for nucleic acid amplification. Here we integrate solar heating with microfluidics to eliminate thermal cycling power requirements as well as create a simple device infrastructure for PCR. Tests are completed in less than 30 min, and power consumption is reduced to 80 mW, enabling a standard 5.5 Wh iPhone battery to provide 70 h of power to this system. Additionally, we demonstrate a complete sample-to-answer diagnostic strategy by analyzing human skin biopsies infected with Kaposi's Sarcoma herpesvirus (KSHV/HHV-8) through the combination of solar thermal PCR, HotSHOT DNA extraction and smartphone-based fluorescence detection. We believe that exploiting the ubiquity of solar thermal energy as demonstrated here could facilitate broad availability of nucleic acid-based diagnostics in resource-limited areas.
Design of a solar tracking interactive kiosk
NASA Astrophysics Data System (ADS)
Greene, Nathaniel R.; Brunskill, Jeffrey C.
2017-01-01
A two-axis solar tracker and its interactive kiosk were designed by an interdisciplinary team of students and faculty. The objective was to develop a publicly accessible kiosk that would facilitate the study of energy usage and production on campus. Tracking is accomplished by an open-loop algorithm, microcontroller, and ham radio rotator. Solar panel output is monitored in real time and displayed to the public with lights and digits that can be read by the casual passersby. While maximum power point tracking is the most accurate means of quantifying the output power of a photovoltaic panel, simplicity and design constraints dictated the use of short-circuit current as a proxy for power. A touchscreen display allows kiosk visitors to compare two solar panels, an automatic tracker that faces the sun, and an identical panel whose elevation and azimuth can be controlled with a virtual joystick. This project was a capstone experience for students in physics/engineering, computer science, and instructional technology. We discuss technical challenges and design choices, as well as the educational goals of the kiosk.
Simplifying the Analysis of Data from Multiple Heliophysics Instruments and Missions
NASA Astrophysics Data System (ADS)
Bazell, D.; Vandegriff, J. D.
2014-12-01
Understanding the intertwined plasma, particles and fields connecting the Sun and the Earth requires combining data from many diverse sources, but there are still many technological barriers that complicate the merging of data from different instruments and missions. We present an emerging data serving capability that provides a uniform way to access heterogeneous and distributed data. The goal of our data server is to provide a standardized data access mechanism that is identical for data of any format and layout (CDF, custom binary, FITS, netCDF, CSV and other flavors of ASCII, etc). Data remain in their original format and location (i.e., at instrument team sites or existing data centers), and our data server delivers a dynamically reformatted view of the data. Scientists can then use tools (clients that talk to the server) that offer a single interface for browsing, analyzing or downloading many different contemporary and legacy heliophysics data sets. Our current server accesses many CDF data resources at CDAWeb, as well as multiple other instrument team sites. Our webservice will be deployed on the Amazon Cloud at http://datashop.elasticbeanstalk.com/. Two basic clients will also be demonstrated: one in Java and one in IDL. Python, Perl, and Matlab clients are also planned. Complex missions such as Solar Orbiter and Solar Probe Plus will benefit greatly from tools that enable multi-instrument and multi-mission data comparison.
ERIC Educational Resources Information Center
Merino, Barbara J.; Hammond, Lorie
1998-01-01
Describes the Bilingual Integrated Curriculum Project (BICOMP), an approach to multicultural science education that uses activities that minority communities are familiar with and feel comfortable with as the basis for teaching English and grade-level concepts as parents share traditional knowledge and primary language skills. Examples illustrate…
2015-03-27
Regulator Board ................................................................................. 3 Figure 4 Lithium Ion Battery ...Figure 4 Lithium Ion Battery The team used these cells and combined them into packs for environmental testing. Each pack had six cells as shown in... lithium + ion + battery ; 27 February, 2015. [9] The MMA Corporation’s High Watts per Kilogram array; accessed online: http://www.mmadesignllc.com/products
78 FR 21926 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-12
... Service Agreements with Expressway Solar A and B LLC to be effective 6/4/2013. Filed Date: 4/4/13...: ER13-1245-000. Applicants: Southern California Edison Company. Description: LGIA with Rising Tree Wind Farm LLC for Rising Tree Wind Farm Project to be effective 4/5/2013. Filed Date: 4/4/13. Accession...
Data Products | Energy Analysis | NREL
Project Finance Provides information on the Solar Access to Public Capital working group, Market Insights in the NSRDB Viewer. Open EI (Open Energy Information) OpenEI is a knowledge sharing online community efficiency. The Open PV Project A collaborative effort between government, industry, and the public to
NASA Astrophysics Data System (ADS)
Purwati, F. G.; Ekawanti, N.; Luthfiandari; Premadi, P. W.
2016-11-01
The Total Solar Eclipse (TSE) on the 9th March 2016 received a huge attention from the mass media. Some of them intensively write articles about it even months before the TSE day. As we know media plays strategic role not only in raising public awareness but also interest. The aim of this project is to study the relation between the number of accesses to the media information and how well public learned the information delivered by the media. We prepared questionnaire consisting of seven semi-multiple choices on how public got information about TSE. We gave them choices of what they had heard to measure their basic understanding of TSE. Furthermore we add two “wrong” choices in the last questions to identify less serious respondents. We analyze 60 respondents of Palembang who visited Ampera bridge area. Our result shows no correlation between the number of information access and the level of understanding about TSE. We also found that local media did not provide the scientific content of TSE as well as the national media.
National Utility Rate Database: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ong, S.; McKeel, R.
2012-08-01
When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.
The Mission Accessible Near-Earth Object Survey (MANOS) -- Science Highlights
NASA Astrophysics Data System (ADS)
Moskovitz, Nicholas; Thirouin, Audrey; Binzel, Richard; Burt, Brian; Christensen, Eric; DeMeo, Francesca; Endicott, Thomas; Hinkle, Mary; Mommert, Michael; Person, Michael; Polishook, David; Siu, Hosea; Thomas, Cristina; Trilling, David; Willman, Mark
2015-08-01
Near-Earth objects (NEOs) are essential to understanding the origin of the Solar System through their compositional links to meteorites. As tracers of other parts of the Solar System they provide insight to more distant populations. Their small sizes and complex dynamical histories make them ideal laboratories for studying ongoing processes of planetary evolution. Knowledge of their physical properties is essential to impact hazard assessment. And the proximity of NEOs to Earth make them favorable targets for a variety of planetary mission scenarios. However, in spite of their importance, only the largest NEOs are well studied and a representative sample of physical properties for sub-km NEOs does not exist.MANOS is a multi-year physical characterization survey, originally awarded survey status by NOAO. MANOS is targeting several hundred mission-accessible, sub-km NEOs across visible and near-infrared wavelengths to provide a comprehensive catalog of physical properties (astrometry, light curves, spectra). Accessing these targets is enabled through classical, queue, and target-of-opportunity observations carried out at 1- to 8-meter class facilities in the northern and southern hemispheres. Our observing strategy is designed to rapidly characterize newly discovered NEOs before they fade beyond observational limits.Early progress from MANOS includes: (1) the de-biased taxonomic distribution of spectral types for NEOs smaller than ~100 meters, (2) the distribution of rotational properties for approximately 100 previously unstudied NEOs, (3) detection of the fastest known rotation period of any minor planet in the Solar System, (4) an investigation of the influence of planetary encounters on the rotational properties of NEOs, (5) dynamical models for the evolution of the overall NEO population over the past 0.5 Myr, and (6) development of a new set of online tools at asteroid.lowell.edu that will enable near realtime public dissemination of our data products while providing a portal to facilitate observation planning and coordination within the small body observer community. We will present highlights of these early MANOS science results.
Evaluation of Arctic broadband surface radiation measurements
NASA Astrophysics Data System (ADS)
Matsui, N.; Long, C. N.; Augustine, J.; Halliwell, D.; Uttal, T.; Longenecker, D.; Niebergall, O.; Wendell, J.; Albee, R.
2012-02-01
The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW) and thermal infrared, or longwave (LW), radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that keep sensors and shading devices trained on the sun along its diurnal path. High quality measurements require striking a balance between locating stations in a pristine undisturbed setting free of artificial blockage (such as from buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data in the Arctic include solar tracker malfunctions, rime/frost/snow deposition on the protective glass domes of the radiometers and operational problems due to limited operator access in extreme weather conditions. In this study, comparisons are made between the global and component sum (direct [vertical component] + diffuse) SW measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of arctic radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both SW and LW measurements. Solutions to these operational problems that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols are proposed.
Evaluation of arctic broadband surface radiation measurements
NASA Astrophysics Data System (ADS)
Matsui, N.; Long, C. N.; Augustine, J.; Halliwell, D.; Uttal, T.; Longenecker, D.; Nievergall, O.; Wendell, J.; Albee, R.
2011-08-01
The Arctic is a challenging environment for making in-situ radiation measurements. A standard suite of radiation sensors is typically designed to measure the total, direct and diffuse components of incoming and outgoing broadband shortwave (SW) and broadband thermal infrared, or longwave (LW) radiation. Enhancements can include various sensors for measuring irradiance in various narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that rotate sensors and shading devices that track the sun. High quality measurements require striking a balance between locating sensors in a pristine undisturbed location free of artificial blockage (such as buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data include solar tracker malfunctions, rime/frost/snow deposition on the instruments and operational problems due to limited operator access in extreme weather conditions. In this study, a comparison is made between the global and component sum (direct [vertical component] + diffuse) shortwave measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both shortwave and longwave measurements. Solutions to these operational problems are proposed that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols.
Fully Kinetic 3D Simulations of the Interaction of the Solar Wind with Mercury
NASA Astrophysics Data System (ADS)
Amaya, J.; Deca, J.; Lembege, B.; Lapenta, G.
2015-12-01
The planet Mercury has been studied by the space mission Mariner 10, in the 1970's, and by the MESSENGER mission launched in 2004. Interest in the first planet of the Solar System has now been renewed by the launch in 2017 of the BepiColombo mission. MESSENGER and BepiColombo give access to information about the local conditions of the magnetosphere of Mercury. This data must be evaluated in the context of the global interaction between the solar wind and the planet's magnetosphere. Global scale simulations of the planet's environment are necessary to fully understand the data gathered from in-situ measurements. We use three-dimensional simulations to support the scientific goals of the two missions. In contrast with the results based on MHD (Kabin et al., 2000) and hybrid codes (Kallio et Janhumen, 2003; Travnicek et al., 2007, 2010; Richer et al., 2012), the present work is based on the implicit moment Particle-in-Cell (PiC) method, which allows to use large time and space steps, while granting access to the dynamics of the smaller electron scales in the plasma. The purpose of these preliminary PIC simulations is to retrieve the top-level features of Mercury's magnetosphere and its frontiers. We compare the results obtained with the implicit moment PiC method against 3D hybrid simulations. We perform simulations of the global plasma environment of Mercury using the solar wind conditions measured by MESSENGER. We show that complex flows form around the planet, including the development of Kelvin-Helmoltz instabilities at the flanks. We evaluate the dynamics of the shock, magnetosheath, magnetopause, the reconnection areas, the formation of plasma sheet and magnetotail, and the variation of ion/electron plasma flows when crossing these frontiers. The simulations also give access to detailed information about the particle dynamics and their velocity distribution at locations that can be used for comparison with data from MESSENGER and later on with the forthcoming BepiColombo. A particular emphasis is given on the new information gathered from the electron dynamics, which is unaccessible with any other kind of simulations. The research reported here received support by the European Commission via the DEEP and DEEP-ER projects and by the computational infrastructure of the VSC (Belgium).
About infrared scanning of photovoltaic solar plant
NASA Astrophysics Data System (ADS)
Kauppinen, T.; Panouillot, P.-E.; Siikanen, S.; Athanasakou, E.; Baltas, P.; Nikopoulous, B.
2015-05-01
The paper is discussing about infrared scanning of PV solar plants. It is important that the performance of each solar panel and cell is verified. One new possibility compared to traditional ground-based scanning (handheld camera) is the utilization of UAV (Unmanned Aerial Vehicle). In this paper results from a PV solar Plant in Western Greece are introduced. The nominal power of the solar plants were 0, 9 MW and 2 MW and they were scanned both by a ground-controlled drone and by handheld equipment. It is essential to know all the factors effecting to results and also the time of scanning is important. The results done from the drone and from ground-based scanning are compared; also results from various altitudes and time of day are discussed. The UAV (Unmanned Aerial Vehicle/RPAS (Remote Piloted Aircraft Systems) will give an excellent opportunity to monitor various targets which are impossible or difficult to access from the ground. Compared to fixed-wing and helicopter-based platforms it will give advantages but also this technology has limitations. One limitation is the weight of the equipment and the short operational range and short flight time. Also valid procedures must be created for different solutions in the future. The most important thing, as in all infrared thermography applications, is the proper interpretation of results.
Solar powered wrist worn acquisition system for continuous photoplethysmogram monitoring.
Dieffenderfer, James P; Beppler, Eric; Novak, Tristan; Whitmire, Eric; Jayakumar, Rochana; Randall, Clive; Qu, Weiguo; Rajagopalan, Ramakrishnan; Bozkurt, Alper
2014-01-01
We present a solar-powered, wireless, wrist-worn platform for continuous monitoring of physiological and environmental parameters during the activities of daily life. In this study, we demonstrate the capability to produce photoplethysmogram (PPG) signals using this platform. To adhere to a low power budget for solar-powering, a 574 nm green light source is used where the PPG from the radial artery would be obtained with minimal signal conditioning. The system incorporates two monocrystalline solar cells to charge the onboard 20 mAh lithium polymer battery. Bluetooth Low Energy (BLE) is used to tether the device to a smartphone that makes the phone an access point to a dedicated server for long term continuous storage of data. Two power management schemes have been proposed depending on the availability of solar energy. In low light situations, if the battery is low, the device obtains a 5-second PPG waveform every minute to consume an average power of 0.57 mW. In scenarios where the battery is at a sustainable voltage, the device is set to enter its normal 30 Hz acquisition mode, consuming around 13.7 mW. We also present our efforts towards improving the charge storage capacity of our on-board super-capacitor.
Solar research with ALMA: Czech node of European ARC as your user-support infrastructure
NASA Astrophysics Data System (ADS)
Bárta, M.; Skokić, I.; Brajša, R.; Czech ARC Node Team
2017-08-01
ALMA (Atacama Large Millimeter/sub-millimeter Array) is by far the largest project of current ground-based observational facilities in astronomy and astrophysics. It is built and operated in the world-wide cooperation (ESO, NRAO, NAOJ) at altitude of 5000m in the desert of Atacama, Chile. Because of its unprecedented capabilities, ALMA is considered as a cutting-edge research device in astrophysics with potential for many breakthrough discoveries in the next decade and beyond. In spite it is not exclusively solar-research dedicated instrument, science observations of the Sun are now possible and has recently started in the observing Cycle 4 (2016-2017). In order to facilitate user access to this top-class, but at the same moment very complicated device to researchers lacking technical expertise, a network of three ALMA Regional Centers (ARCs) has been formed in Europe, North America, and East Asia as a user-support infrastructure and interface between the observatory and users community. After short introduction to ALMA the roles of ARCs and hint how to utilize their services will be presented, with emphasis to the specific (and in Europe unique) mission of the Czech ARC node in solar research with ALMA. Finally, peculiarities of solar observations that demanded the development of the specific Solar ALMA Observing Modes will be discuss
Spectral atlases of the Sun from 3980 to 7100 Å at the center and at the limb
NASA Astrophysics Data System (ADS)
Fathivavsari, H.; Ajabshirizadeh, A.; Koutchmy, S.
2014-10-01
In this work, we present digital and graphical atlases of spectra of both the solar disk-center and of the limb near the Solar poles using data taken at the UTS-IAP & RIAAM (the University of Tabriz Siderostat, telescope and spectrograph jointly developed with the Institut d'Astrophysique de Paris and Research Institute for Astronomy and Astrophysics of Maragha). High resolution and high signal-to-noise ratio (SNR) CCD-slit spectra of the sun for 2 different parts of the disk, namely for μ=1.0 (solar center) & for μ=0.3 (solar limb) are provided and discussed. While there are several spectral atlases of the solar disk-center, this is the first spectral atlas ever produced for the solar limb at this spectral range. The resolution of the spectra is about R˜70 000 (Δ λ˜0.09 Å) with the signal-to-noise ratio (SNR) of 400-600. The full atlas covers the 3980 to 7100 Å spectral regions and contains 44 pages with three partial spectra of the solar spectrum put on each page to make it compact. The difference spectrum of the normalized solar disk-center and the solar limb is also included in the graphic presentation of the atlas to show the difference of line profiles, including far wings. The identification of the most significant solar lines is included in the graphic presentation of the atlas. Telluric lines are producing a definite signature on the difference spectra which is easy to notice. At the end of this paper we present only two sample pages of the whole atlas while the graphic presentation of the whole atlas along with its ASCII file can be accessed via the ftp server of the CDS in Strasbourg via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via this link: http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/other/ApSS.
Integrated Antenna/Solar Array Cell (IA/SAC) System for Flexible Access Communications
NASA Technical Reports Server (NTRS)
Lee, Ricard Q.; Clark, Eric B.; Pal, Anna Maria T.; Wilt, David M.; Mueller, Carl H.
2004-01-01
Present satellite communications systems normally use separate solar cells and antennas. Since solar cells generally account for the largest surface area of the spacecraft, co-locating the antenna and solar cells on the same substrate opens the possibility for a number of data-rate-enhancing communications link architecture that would have minimal impact on spacecraft weight and size. The idea of integrating printed planar antenna and solar array cells on the same surface has been reported in the literature. The early work merely attempted to demonstrate the feasibility by placing commercial solar cells besides a patch antenna. Recently, Integrating multiple antenna elements and solar cell arrays on the same surface was reported for both space and terrestrial applications. The application of photovoltaic solar cell in a planar antenna structure where the radiating patch antenna is replaced by a Si solar cell has been demonstrated in wireless communication systems (C. Bendel, J. Kirchhof and N. Henze, 3rd Would Photovotaic Congress, Osaka, Japan, May 2003). Based on a hybrid approach, a 6x1 slot array with circularly polarized crossdipole elements co-located on the same surface of the solar cells array has been demonstrated (S. Vaccaro, J. R. Mosig and P. de Maagt, IEEE Trans. Ant. and Propag., Vol. 5 1, No. 8, Aug. 2003). Amorphous silicon solar cells with about 5-10% efficiency were used in these demonstrations. This paper describes recent effort to integrate advanced solar cells with printed planar antennas. Compared to prior art, the proposed WSAC concept is unique in the following ways: 1) Active antenna element will be used to achieve dynamic beam steering; 2) High efficiency (30%) GaAs multi-junction solar cells will be used instead of Si, which has an efficiency of about 15%; 3) Antenna and solar cells are integrated on a common GaAs substrate; and 4) Higher data rate capability. The IA/SAC is designed to operate at X-band (8-12 GH) and higher frequencies Higher operating frequencies enable greater bandwidth and thus higher data transfer rates. The first phase of the effort involves the development of GaAs solar cell MIMs (Monolithically Integrated Module) with a single patch antenna on the opposite side of the substrate. Subsequent work will involve the integration of MIMs and antennas on the same side of the substrate. Results from the phase one efforts will be presented.
There's An App For That: Planning Ahead for the Solar Eclipse in August 2017
NASA Astrophysics Data System (ADS)
Chizek Frouard, Malynda R.; Lesniak, Michael V.; Bell, Steve
2017-01-01
With the total solar eclipse of 2017 August 21 over the continental United States approaching, the U.S. Naval Observatory (USNO) on-line Solar Eclipse Computer can now be accessed via an Android application, available on Google Play.Over the course of the eclipse, as viewed from a specific site, several events may be visible: the beginning and ending of the eclipse (first and fourth contacts), the beginning and ending of totality (second and third contacts), the moment of maximum eclipse, sunrise, or sunset. For each of these events, the USNO Solar Eclipse 2017 Android application reports the time, Sun's altitude and azimuth, and the event's position and vertex angles. The app also lists the duration of the total phase, the duration of the eclipse, the magnitude of the eclipse, and the percent of the Sun obscured for a particular eclipse site.All of the data available in the app comes from the flexible USNO Solar Eclipse Computer Application Programming Interface (API), which produces JavaScript Object Notation (JSON) that can be incorporated into third-party Web sites or custom applications. Additional information is available in the on-line documentation (http://aa.usno.navy.mil/data/docs/api.php).For those who prefer using a traditional data input form, the local circumstances can still be requested at http://aa.usno.navy.mil/data/docs/SolarEclipses.php.In addition the 2017 August 21 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2017.php) consolidates all of the USNO resources for this event, including a Google Map view of the eclipse track designed by Her Majesty's Nautical Almanac Office (HMNAO).Looking further ahead, a 2024 April 8 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2024.php) is also available.
Teaching and sharing about the Sun in the United States and with Spanish language resources
NASA Astrophysics Data System (ADS)
Peticolas, L. M.; Craig, N.; Hawkins, I.; Walker, C.
2007-05-01
The United States has many different scientific agencies that fund research on solar science, including the National Aeronautics and Space Agency (NASA) and the National Science Foundation (NSF). Because there is a large population of Spanish-speaking people in the US, some of the resources developed by the education components of research projects take into account broader cultural perspectives on science and are developed in Spanish. We will describe the education and outreach programs of three solar programs funded by NASA and NSF, the Solar TErrestrial RElations Observatory (STEREO) program, the "We Are One Under the Sun" Program, and the National Optical Astronomy Observatory (NOAO) education program. The STEREO program aims to teach about the Sun through different venues including teacher workshops and courses, teacher materials, turning solar data from STEREO into sound, working with museums, and creating solar posters, CDs, DVDs, and lenticulars. The "We are One Under the Sun" program focuses on Native Americans and Hispanics of Native heritage. It works by merging culture, ancient observatories, and the latest NASA solar science to engage children, youth, and the general public in science and technology through solar traditions in their own indigenous culture. The NOAO Educational Outreach Program was established to make the science and scientists of NOAO more accessible to the K-12 and college-level communities. We will focus on the NOAO solar projects and Spanish-Language Astronomy Materials Educational Center program, which provides multiple types of Spanish- language materials for teachers. These programs have had different levels of outreach in Spanish-speaking countries, namely Mexico (STEREO and "We are One Under the Sun") and Chile (NOAO). We will describe these efforts and give links to the Spanish and English resources available to learn and teach about the Sun.
DynAstVO : a Europlanet database of NEA orbits
NASA Astrophysics Data System (ADS)
Desmars, J.; Thuillot, W.; Hestroffer, D.; David, P.; Le Sidaner, P.
2017-09-01
DynAstVO is a new orbital database developed within the Europlanet 2020 RI and the Virtual European Solar and Planetary Access (VESPA) frameworks. The database is dedicated to Near-Earth asteroids and provide parameters related to orbits: osculating elements, observational information, ephemeris through SPICE kernel, and in particular, orbit uncertainty and associated covariance matrix. DynAstVO is daily updated on a automatic process of orbit determination on the basis of the Minor Planet Electronic Circulars that reports new observations or the discover of a new asteroid. This database conforms to EPN-TAP environment and is accessible through VO protocols and on the VESPA portal web access (http://vespa.obspm.fr/). A comparison with other classical databases such as Astorb, MPCORB, NEODyS and JPL is also presented.
Interplanetary space science data base and access/display tool on the NSSDC heliospheric CD-ROM
NASA Technical Reports Server (NTRS)
Papitashvili, N. E.; King, J. H.
1995-01-01
The National Space Science Data Center (NSSDC) has accumulated a rich archive of heliospheric, magnetospheric, and ionospheric data, as well as data from most other NASA-involved science disciplines. To facilitate access to and use of these data, NSSDC has begun to put selected data onto CD-ROM's. This paper describes one such CD-ROM, and the access and display software developed at NSSDC to support its use. The data on the CD-ROM consist primarily of hourly solar wind magnetic field and plasma data from many near-Earth spacecraft (OMNI) and deep space spacecraft (Voyagers, Pioneers, Helios, Pioneer Venus Orbiter). In addition, 5-minute resolution IMP-8 and ISEE-3 magnetic field and plasma data are also included. Data are stored in both ASCII and CDF formats.
The PACA Project Observing Campaigns: From Comets to the Sun
NASA Astrophysics Data System (ADS)
Yanamandra-Fisher, Padma A.; PACA Project
2017-10-01
The Pro-Am Collaborative Astronomy (PACA) project evolved from the observational campaign of C/2012 S1 or C/ISON in 2013, and has expanded to pro-am observing campaigns of planets, polarimetric exploration and recently, polarization of the inner solar corona during the 2017 US Continental Total Solar Eclipse (TSE). The evolving need for individual customized observing campaigns has been incorporated into the evolution of PACA portal: supporting observing campaigns of current comets, legacy data, historical comets, planets, solar corona, interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers. Given the volume of data generated for each campaign, new ways of rapid data analysis, mining access and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers: (1) the establishment of a network of astronomers and related professionals, that can be galvanized into action on short notice to support observing campaigns; (2) assist in various science investigations pertinent to the campaign; (3) provide an alert-sounding mechanism should the need arise; (4) immediate outreach and dissemination of results via our media/blogger members; (5) provide a forum for discussions between the imagers and modelers to help strategize the observing campaign for maximum benefit. Some recent PACA campaigns of note are: C/2013 A1 (C/SidingSpring) ; 67P/Churyumov-Gerasimenko (CG), target for ESA/Rosetta mission; PACA_Jupiter (and for other planets Mars, Saturn, Uranus and Neptune); polarimetry and current campaign PACA_PolNet, a multi-site polarimetric network to be implemented in August 2017, in partnership with the project Citizen CATE. I will highlight key aspects of various PACA campaigns, especially the current PACA_PolNet for the 2017 Total Solar Eclipse and the proposed collaboration for the next Total Solar Eclipse of 2024. The integration of science, observations by professional and amateur astronomers, and various social media provides a dynamic and evolving collective collaborative partnership.
South Carolina Solar Development - Tracking the Effects of Act 236 (2014-2017)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, E.; Edwards, Thomas B.; Drory, Michael D.
Since 2014, the installed solar capacity in South Carolina (SC) has mushroomed from 5.5 megawatts to more than 354 megawatts today. Concurrently, the number of customer-sited, load-centered solar generation was expected to grow from less than 600 statewide to as many over 10,000 today. This growth was the direct result of a landmark state policy initiative, Act 236, passed by the SC General Assembly and signed into law by the Governor in June of 2014. Local policy makers in SC were ill-equipped to handle the onslaught of solar permitting and zoning requests expected by 2021. Similarly, the state’s building inspectors,more » first responders, and tax assessors know little about photovoltaic (PV) technology and best practices. Finally, SC’s workforce and workforce trainers were underprepared to benefit from the tremendous opportunity created by the passage of Act 236. Each of these deficits in knowledge of and preparedness for solar PV translated into higher “soft costs” of installed solar PV in SC. The Savannah River National Laboratory (SRNL), together with almost a dozen electricity stakeholders in the Southeast, has studied the ability of Act 236 to serve as replicable model for solar PV cost reduction. In 2015, this study began with a focus on the effects of Act 236 to offer a unique perspective and understanding of the actual impact of rapidly integrating solar energy into the electric grid. This study would analyze the impact of starting at a solar PV penetration of 0.1% and increasing to over 2%, while expanding access, developing regional specific training and educational materials, and developing datasets to support expanding solar markets. Through targeted tracking and analysis, the team developed a baseline of the current market, identified the major obstacles in soft cost reduction, and cooperatively developed stakeholder-centric strategies. This work has enabled us to directly track and report on the growth and effects of recently enacted solar legislation on the industry. This report marks the final in a series of reports examining the effects of Act 236 on the solar economy in SC since 2014.« less
Solar Energy and the Western Asian Countries
NASA Astrophysics Data System (ADS)
De Morais Mendonca Teles, Antonio
2016-07-01
The Western Asian countries receive the most abundant solar radiation of the world. They also have enormous reserves of oil and natural gas. But the world reserves of those fuels will certainly diminish greatly as the worldwide demand for energy will increase steadily in the coming decades. And the suppliers of energy will have to contend with public concerns about the polluting effects of those fuels and the possible dangers of nuclear energy. Clearly a power source based on an non exhaustible and non-polluting fuel could be expected to find a role. It now appears that such a source is at hand in the solar energy. Here in this paper, under the principles in the United Nations' Agenda 21, we suggest to Western Asian countries, the study and own development of the following technologies based on solar energy; and comment about them: *photo-voltaic solar cell power plants - in the future, its cost per kilowatt-hour will probably be competitive as to other sources of electrical energy. A new technique, the solar non-imaging concentrator, with amorphous silicon-based thin films solar cells at the focus of the concentrators, can collect and intensify solar radiation far better than conventional concentrators do, thus reducing much more the cost; *bio-gas - using biological gas to produce energy and for heating/cooling purposes; *wind generation of electricity - it's nowadays, a non-expensive technique; *water pump for irrigation and human consuming, driving their power from photovoltaic cells; *and the study and own development of solar lasers for peaceful scientific studies. In this new kind of laser, the external necessary pumping energy comes from the high intensity of sunlight, produced with non-imaging concentrators. Solar lasers can give unexpected new great uses for mankind. Those achievements will require international cooperation and transfer of information, sustained research and development work, and some initial subsides by independent governments. Solar energy is in disposition of all human beings for their social and economical better development - in particular of the Western Asian countries - and for the energetic auto-sufficiency of all peoples of our home planet. So, the use of solar energy must be accessible to all peoples on Earth.
NASA Astrophysics Data System (ADS)
Ko, Y. K.; Vourlidas, A.; Korendyke, C.; Laming, J. M.
2016-12-01
The LOCKYER mission is designed to uncover the physical processes of acceleration and heating of the quiescent and transient solar wind. It builds on the success of the Ultraviolet Coronagraph Spectrometer (UVCS) on SOHO with a massive increase in effective area at Lyman-alpha (200x larger than UVCS), thanks to a modern optical design and the use of a 4m boom. The larger effective area enables spectral line observations from many ions, including He II (at 1640 Å), allowing us to access the region where the coronal plasma transitions from fluid to kinetic behavior. In addition, a visible light channel provides simultaneous high-resolution coronagraphic images for the global coronal structure and dynamics creating a greatly-expanded UVCS-LASCO `hybrid' instrument within the tight constraints of a SMEX mission. The LOCKYER mission aims to answer the following questions: 1) What are the physical processes responsible for the heating and acceleration of the primary (proton, electron, helium) and secondary (minor ion) plasma components of the fast and slow solar wind? 2) How are CMEs heated and accelerated? LOCKYER would greatly advance our knowledge of how and where the solar wind is formed, and how the variations in coronal microphysics impact the solar wind and heliosphere. The LOCKYER measurements are highly complementary to the Solar Probe Plus and Solar Orbiter measurements and provide detailed empirical descriptions of the coronal plasma at heights where the primary energy and momentum addition occur.
The Philosophy of User Interfaces in HELIO and the Importance of CASSIS
NASA Astrophysics Data System (ADS)
Bonnin, X.; Aboudarham, J.; Renié, C.; Csillaghy, A.; Messerotti, M.; Bentley, R. D.
2012-09-01
HELIO is a European project funded under FP7 (Project No. 238969). One of its goals as a Heliospheric Virtual Observatory is to provide an easy access to many datasets scattered all over the world, in the fields of Solar physics, Heliophysics, and Planetary magnetospheres. The efficiency of such a tool is very much related to the quality of the user interface. HELIO infrastructure is based on a Service Oriented Architecture (SOA), regrouping a network of standalone components, which allows four main types of interfaces: - HELIO Front End (HFE) is a browser-based user interface, which offers a centralized access to the HELIO main functionalities. Especially, it provides the possibility to reach data directly, or to refine selection by determination of observing characteristics, such as which instrument was observing at that time, which instrument was at this location, etc. - Many services/components provide their own standalone graphical user interface. While one can directly access individually each of these interfaces, they can also be connected together. - Most services also provide direct access for any tools through a public interface. A small java library, called Java API, simplifies this access by providing client stubs for services and shields the user from security, discovery and failover issues. - Workflows capabilities are available in HELIO, allowing complex combination of queries over several services. We want the user to be able to navigate easily, at his needs, through the various interfaces, and possibly use a specific one in order to make much-dedicated queries. We will also emphasize the importance of the CASSIS project (Coordination Action for the integration of Solar System Infrastructure and Science) in encouraging the interoperability necessary to undertake scientific studies that span disciplinary boundaries. If related projects follow the guidelines being developed by CASSIS then using external resources with HELIO will be greatly simplified.
Low-cost high performance distributed data storage for multi-channel observations
NASA Astrophysics Data System (ADS)
Liu, Ying-bo; Wang, Feng; Deng, Hui; Ji, Kai-fan; Dai, Wei; Wei, Shou-lin; Liang, Bo; Zhang, Xiao-li
2015-10-01
The New Vacuum Solar Telescope (NVST) is a 1-m solar telescope that aims to observe the fine structures in both the photosphere and the chromosphere of the Sun. The observational data acquired simultaneously from one channel for the chromosphere and two channels for the photosphere bring great challenges to the data storage of NVST. The multi-channel instruments of NVST, including scientific cameras and multi-band spectrometers, generate at least 3 terabytes data per day and require high access performance while storing massive short-exposure images. It is worth studying and implementing a storage system for NVST which would balance the data availability, access performance and the cost of development. In this paper, we build a distributed data storage system (DDSS) for NVST and then deeply evaluate the availability of real-time data storage on a distributed computing environment. The experimental results show that two factors, i.e., the number of concurrent read/write and the file size, are critically important for improving the performance of data access on a distributed environment. Referring to these two factors, three strategies for storing FITS files are presented and implemented to ensure the access performance of the DDSS under conditions of multi-host write and read simultaneously. The real applications of the DDSS proves that the system is capable of meeting the requirements of NVST real-time high performance observational data storage. Our study on the DDSS is the first attempt for modern astronomical telescope systems to store real-time observational data on a low-cost distributed system. The research results and corresponding techniques of the DDSS provide a new option for designing real-time massive astronomical data storage system and will be a reference for future astronomical data storage.
The Hera Entry Probe Mission to Saturn, an ESA M-class mission proposal
NASA Astrophysics Data System (ADS)
Mousis, O.; Atkinson, D. H.; Spilker, T.; Venkatapathy, E.; Poncy, J.; Coustenis, A.; Reh, K.
2015-10-01
A fundamental goal of solar system exploration is to understand the origin of the solar system, the initial stages, conditions, and processes by which the solar system formed, how the formation process was initiated, and the nature of the interstellar seed material from which the solar system was born. Key to understanding solar system formation and subsequent dynamical and chemical evolution is the origin and evolution of the giant planets and their atmospheres. Additionally, the atmospheres of the giant planets serve as laboratories to better understand the atmospheric chemistries, dynamics, processes, and climates on all planets in the solar system including Earth, offer a context and provide a ground truth for exoplanets and exoplanetary systems,and have long been thought to play a critical role in the development of potentially habitable planetary systems. Remote sensing observations are limited when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the value of in situ probe measurements is illustrated by the exploration of Jupiter, where key measurements such as noble gases abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. Representing the only method providing ground-truth to connect the remote sensing inferences with physical reality, in situ measurements have only been accomplished twice in the history of outer solar system exploration, via the Galileo probe for Jupiter and the Huygens probe for Titan. In situ measurements provide access to atmospheric regions that are beyond the reach of remote sensing, enabling the dynamical, chemical and aerosol-forming processes at work from the thermosphere to the troposphere below the cloud decks to be studied. A proposal for a Saturn entry probe mission named Hera was recently submitted to the European Space Agency Medium Class mission announcement of opportunity. Hera comprises a single entry probe carried by a flyby spacecraft that will also act as a relay station to receive the probe science telemetry for recording and later transmission to Earth. A solar powered mission, Hera will take approximately 8 years to reach Saturn and will descend under a sequence of parachutes to depths of at least 10 bars in approximately 75 minutes. The Hera probe will carry a Mass Spectrometer to measure the composition of Saturn's atmosphere, an Atmospheric Structure Instrument to measure atmospheric pressures and temperatures, and a Doppler Wind Experiment to measure the dynamics of Saturn's atmosphere. Other possible instruments in the Hera scientific payload include a Net Flux Radiometer to measure the energy balance of the Saturn atmosphere and a Nephelometer to measure cloud locations and densities. In the context of giant planet science provided by the Galileo, Juno, and Cassini missions to Jupiter and Saturn, the Hera Saturn probe will provide critical measurements of composition, structure, and processes that are not accessible by remote sensing. The results of Hera will help test competing theories of solar system and giant planet origin, chemical, and dynamical evolution.
Space Weather Studies Using Ground-based Experimental Complex in Kazakhstan
NASA Astrophysics Data System (ADS)
Kryakunova, O.; Yakovets, A.; Monstein, C.; Nikolayevskiy, N.; Zhumabayev, B.; Gordienko, G.; Andreyev, A.; Malimbayev, A.; Levin, Yu.; Salikhov, N.; Sokolova, O.; Tsepakina, I.
2015-12-01
Kazakhstan ground-based experimental complex for space weather study is situated near Almaty. Results of space environment monitoring are accessible via Internet on the web-site of the Institute of Ionosphere (http://www.ionos.kz/?q=en/node/21) in real time. There is a complex database with hourly data of cosmic ray intensity, geomagnetic field intensity, and solar radio flux at 10.7 cm and 27.8 cm wavelengths. Several studies using those data are reported. They are an estimation of speed of a coronal mass ejection, a study of large scale traveling distrubances, an analysis of geomagnetically induced currents using the geomagnetic field data, and a solar energetic proton event on 27 January 2012.
NASA Technical Reports Server (NTRS)
Foing, B. H. (Editor)
1994-01-01
The goal of the conference was to assess the moon as a base for conducting astronomy, solar system observations, and space sciences. The lunar vacuum allows a complete opening of the electromagnetic window and distortion-free measurements at the highest angular resolution, precision, and temporal stability. The moon is perfect for continuous monitoring of the Sun, Solar System targets, and for deep observations of galactic and extragalactic objects. It is an in-situ laboratory for selenophysics, chemistry, and exobiology. The moon contains useful resources and is accessible from Earth for installation, operations maintenance, robotics, and human activities.
2000-10-31
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour finally rests on Launch Pad 39B after its rollout was delayed several hours to fix a broken cleat on the crawler-transporter. At the far left is the Rotating Service Structure. From the Fixed Service Structure, the Orbiter Access Arm is already extended to the orbiter. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections
2000-10-31
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour finally rests on Launch Pad 39B after its rollout was delayed several hours to fix a broken cleat on the crawler-transporter. At the far left is the Rotating Service Structure. From the Fixed Service Structure, the Orbiter Access Arm is already extended to the orbiter. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections
Soalr cooking in developing countries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, L.
1994-11-01
Solar cooking must overcome a number of obstacles to realize its potential to improve the lives of women in developing countries. Unlike historical interest in solar cooking, current interest derives from vital environmental and human needs. Deforestation and reliance on wood for cooking lead to many hardships, especially for women, and women in developing countries need access to technology and funding. If the woman builds the oven herself, it notonly makes her more willing to use it but the process empower her with new knowledge and kills. The physical design of the oven must be adapted to local conditions andmore » materials for the oven should be inexpensive and locally available.« less
2009-07-15
CAPE CANAVERAL, Fla. – Engineers at Astrotech Space Operations in Titusville, Fla., lower the high-gain antenna on the Solar Dynamics Observatory to gain access to the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller
2009-07-15
CAPE CANAVERAL, Fla. – Engineers at Astrotech Space Operations in Titusville, Fla., begin lowering the high-gain antenna on the Solar Dynamics Observatory to gain access to the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller
2009-07-15
CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., the lowered high-gain antenna on the Solar Dynamics Observatory will allow engineers access to the battery compartment in order to install the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller
2009-07-15
CAPE CANAVERAL, Fla. – Engineers at Astrotech Space Operations in Titusville, Fla., lower the high-gain antenna on the Solar Dynamics Observatory to gain access to the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller
Coronal abundances and their variation
NASA Technical Reports Server (NTRS)
Saba, Julia L. R.
1994-01-01
This contract supports the investigation of elemental abundances in the solar corona, principally through analysis of high-resolution software X-ray spectra from the Flat Crystal Spectrometer on NASA's Solar Maximum Mission. The goals of the study are a characterization of the mean values of relative abundances of elements accessible in the FCS data, and information on the extent and circumstances of their variability. This report is a summation of the data analysis and reporting activities which occurred since the last report, submitted two months early, in April 1994, to facilitate evaluation of the first year's progress for contract renewal. Hence this report covers the period 15 April 1994 - 15 December 1994. A list of publications resulting from this research is included.
Solar g-mode oscillations: Comparison of SMM-ACRIM and ground-based observations
NASA Technical Reports Server (NTRS)
Scherrer, Philip H.
1989-01-01
Progress was made in access to data and in developing programs for its analysis. The difficulties in completing the work in the planned time can be traced to several factors. The correction of the Stanford oscillation using gridded intensity data was not successful. It was concluded that due to poor continuity of the 1985 and 1986 data due to clouds, that a joint analysis with the ACRIM data (best solar oscillation data to date) on the summer 1987 observations should be performed. The 1988 Stanford oscillation data are being examined and the cross comparison of the ACRIM spectrum with the Standford spectrum for 1987 in the g-mode regime will shortly begin.
76 FR 77222 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-12
... Generator Status of Blackwell Wind, LLC under EG12-17. Filed Date: 12/5/11. Accession Number: 20111205-5060... Creek Wind Energy, LLC, Cedar Creek II, LLC, Flat Ridge Wind Energy, LLC, Fowler Ridge II Wind Farm LLC, Fowler Ridge III Wind Farm LLC, Fowler Ridge Wind Farm LLC, Goshen Phase II, LLC, Long Island Solar Farm...
Solar Radiation: Harnessing the Power
ERIC Educational Resources Information Center
Rowland, Teri; Chambers, Lin; Holzer, Missy; Moore, Susan
2009-01-01
My NASA Data (Chambers et al. 2008) is a teaching tool available on NASA's website that offers microsets of real data in an easily accessible, user-friendly format. In this article, the authors describe a lesson plan based on an activity from My NASA Data, in which students explore parts of the United States where they would want to live if they…
New STEM Schools Target Underrepresented Groups
ERIC Educational Resources Information Center
Robelen, Erik W.
2011-01-01
Few Americans may know about the Grand Challenges for Engineering--from making solar energy affordable to ensuring access to clean water--but the students at a new school on the campus of North Carolina State University are getting to know them firsthand. The set of 21st-century challenges, devised by the National Academy of Engineering, serves as…
LANDSAT-D flight segment operations manual, volume 2
NASA Technical Reports Server (NTRS)
Varhola, J.
1981-01-01
Functions, performance capabilities, modes of operation, constraints, redundancy, commands, and telemetry are described for the thematic mapper; the global positioning system; the direct access S-band; the multispectral scanner; the payload correction; the thermal control subsystem; the solar array retention, deployment, and jettison assembly; and the boom antenna retention, deployment, and jettison assembly for LANDSAT 4.
Solar Decathlon 2015 - Indigo Pine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blouin, Vincent
The Solar Decathlon competition challenges students across the country to design and build a net-zero, market ready solar powered home. The bi-annual competition consists of ten contests that seek to balance the home on a scale of innovation. The ten contests were selected by to organizers to address all aspects of housing, including architecture, market appeal, engineering, communication, affordability, comfort, appliances, home life, commuting, and energy balance. Along with the criteria associated with the contests, the competition includes several design constraints that mirror those found in practical housing applications: including (but certainly not limited to) lot lines, building height, andmore » ADA accessibility. The Solar Decathlon 2015 was held at the Orange Country Great Park in Irvine, CA. The 2015 competition was Clemson University’s first entry into the Solar Decathlon and was a notable milestone in the continued development of a home, called Indigo Pine. From the beginning, the team reconsidered the notion of sustainability as related to both the design of a home and the competition itself. The designing and building process for the home reflects a process which seamlessly moves between thinking and making to develop a comprehensive design with a method and innovations that challenge the conventions of residential construction. This report is a summary of the activities of the Clemson University team during the two-year duration of the project leading to the participation in the 2015 Solar Decathlon competition in Irvine California.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
García, I.; Instituto de Energía Solar, Universidad Politécnica de Madrid, Avda Complutense s/n, 28040 Madrid; Kearns-McCoy, C. F.
Photon management has been shown to be a fruitful way to boost the open circuit voltage and efficiency of high quality solar cells. Metal or low-index dielectric-based back reflectors can be used to confine the reemitted photons and enhance photon recycling. Gaining access to the back of the solar cell for placing these reflectors implies having to remove the substrate, with the associated added complexity to the solar cell manufacturing. In this work, we analyze the effectiveness of a single-layer reflector placed at the back of on-substrate solar cells, and assess the photon recycling improvement as a function of themore » refractive index of this layer. Al{sub 2}O{sub 3}-based reflectors, created by lateral oxidation of an AlAs layer, are identified as a feasible choice for on-substrate solar cells, which can produce a V{sub oc} increase of around 65% of the maximum increase attainable with an ideal reflector. The experimental results obtained using prototype GaAs cell structures show a greater than two-fold increase in the external radiative efficiency and a V{sub oc} increase of ∼2% (∼18 mV), consistent with theoretical calculations. For GaAs cells with higher internal luminescence, this V{sub oc} boost is calculated to be up to 4% relative (36 mV), which directly translates into at least 4% higher relative efficiency.« less
Solar Eclipse Computer API: Planning Ahead for August 2017
NASA Astrophysics Data System (ADS)
Bartlett, Jennifer L.; Chizek Frouard, Malynda; Lesniak, Michael V.; Bell, Steve
2016-01-01
With the total solar eclipse of 2017 August 21 over the continental United States approaching, the U.S. Naval Observatory (USNO) on-line Solar Eclipse Computer can now be accessed via an application programming interface (API). This flexible interface returns local circumstances for any solar eclipse in JavaScript Object Notation (JSON) that can be incorporated into third-party Web sites or applications. For a given year, it can also return a list of solar eclipses that can be used to build a more specific request for local circumstances. Over the course of a particular eclipse as viewed from a specific site, several events may be visible: the beginning and ending of the eclipse (first and fourth contacts), the beginning and ending of totality (second and third contacts), the moment of maximum eclipse, sunrise, or sunset. For each of these events, the USNO Solar Eclipse Computer reports the time, Sun's altitude and azimuth, and the event's position and vertex angles. The computer also reports the duration of the total phase, the duration of the eclipse, the magnitude of the eclipse, and the percent of the Sun obscured for a particular eclipse site. On-line documentation for using the API-enabled Solar Eclipse Computer, including sample calls, is available (http://aa.usno.navy.mil/data/docs/api.php). The same Web page also describes how to reach the Complete Sun and Moon Data for One Day, Phases of the Moon, Day and Night Across the Earth, and Apparent Disk of a Solar System Object services using API calls.For those who prefer using a traditional data input form, local circumstances can still be requested that way at http://aa.usno.navy.mil/data/docs/SolarEclipses.php. In addition, the 2017 August 21 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2017.php) consolidates all of the USNO resources for this event, including a Google Map view of the eclipse track designed by Her Majesty's Nautical Almanac Office (HMNAO). Looking further ahead, a 2024 April 8 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2024.php) is also available.
High-quality weather data for grid integration studies
NASA Astrophysics Data System (ADS)
Draxl, C.
2016-12-01
As variable renewable power penetration levels increase in power systems worldwide, renewable integration studies are crucial to ensure continued economic and reliable operation of the power grid. In this talk we will shed light on requirements for grid integration studies as far as wind and solar energy are concerned. Because wind and solar plants are strongly impacted by weather, high-resolution and high-quality weather data are required to drive power system simulations. Future data sets will have to push limits of numerical weather prediction to yield these high-resolution data sets, and wind data will have to be time-synchronized with solar data. Current wind and solar integration data sets will be presented. The Wind Integration National Dataset (WIND) Toolkit is the largest and most complete grid integration data set publicly available to date. A meteorological data set, wind power production time series, and simulated forecasts created using the Weather Research and Forecasting Model run on a 2-km grid over the continental United States at a 5-min resolution is now publicly available for more than 126,000 land-based and offshore wind power production sites. The Solar Integration National Dataset (SIND) is available as time synchronized with the WIND Toolkit, and will allow for combined wind-solar grid integration studies. The National Solar Radiation Database (NSRDB) is a similar high temporal- and spatial resolution database of 18 years of solar resource data for North America and India. Grid integration studies are also carried out in various countries, which aim at increasing their wind and solar penetration through combined wind and solar integration data sets. We will present a multi-year effort to directly support India's 24x7 energy access goal through a suite of activities aimed at enabling large-scale deployment of clean energy and energy efficiency. Another current effort is the North-American-Renewable-Integration-Study, with the aim of providing a seamless data set across borders for a whole continent, to simulate and analyze the impacts of potential future large wind and solar power penetrations on bulk power system operations.
NASA Astrophysics Data System (ADS)
Edgar, L. A.; Anderson, R. B.; Gaither, T. A.; Milazzo, M. P.; Vaughan, R. G.; Rubino-Hare, L.; Clark, J.; Ryan, S.
2017-12-01
"Water in the Solar System" is an out-of-school time (OST) science education activity for middle school students that was developed as part of the Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) project. The PLANETS project was selected in support of the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice, with the goal of developing and disseminating OST curriculum and related professional development modules that integrate planetary science, technology, and engineering. "Water in the Solar System" is a science activity that addresses the abundance and availability of water in the solar system. The activity consists of three exercises based on the following guiding questions: 1) How much water is there on the Earth? 2) Where can you find water in the solar system? and 3) What properties affect whether or not water can be used by astronauts? The three exercises involve a scaling relationship demonstration about the abundance of useable water on Earth, a card game to explore where water is found in the solar system, and a hands-on exercise to investigate pH and salinity. Through these activities students learn that although there is a lot of water on Earth, most of it is not in a form that is accessible for humans to use. They also learn that most water in the solar system is actually farther from the sun, and that properties such as salinity and pH affect whether water can be used by humans. In addition to content for students, the activity includes background information for educators, and links to in-depth descriptions of the science content. "Water in the Solar System" was developed through collaboration between subject matter experts at the USGS Astrogeology Science Center, and curriculum and professional development experts in the Center for Science Teaching and Learning at Northern Arizona University. Here we describe our process of curriculum development, education objectives of "Water in the Solar System" and lessons learned.
Getting a Feel for Eclipses: A Tactile Discovery of an Awe-inspiring Celestial Event
NASA Astrophysics Data System (ADS)
Runyon, C. R.; Hall, C.; Hurd, D.; Minafra, J.; Williams, M. N.; Quinn, K.
2017-12-01
Solar eclipses provide a unique viewing opportunity for people across the world. August 21, 2017 was no exception. From Oregon to South Carolina, viewers were able to witness this remarkable phenomenon as the Moon comes between the Sun and Earth, casting a shadow on Earth. From a personal social / emotional standpoint seeing a total solar eclipse is indescribable and unforgettable. For the sighted, such an event is experienced through a combination of multiple senses, not just sight. For those people who are Blind / visually impaired (B/VI), the experience is different. While they may sense changes in the intensity of the sunlight, temperature, and animal noises, they are unable to "see" what is happening. How might this remarkable experience be brought to life for the B/VI? The NASA Solar System Exploration Research Virtual Institute Center for Lunar and Asteroid Surface Science (SSERVI CLASS) education/public engagement team developed a tactile book to do just this. The tactile book, Getting a Feel for Eclipses, provides users who are B/VI a means to see and experience the total solar eclipse through their fingertips. The unique, hand-made, tactile graphics are created from various textured materials such that each feature is readily identified. A QR code associated with the book provides access to digital content describing each tactile. Through this delivery mechanism, users who are B/VI, or even sighted may access the content with any smart device. Distributed to Schools for the Blind, national organizations for the Blind, Libraries, Museums and Science Centers across the country, the book helped bring a rare event to life for thousands of people who may not have otherwise been able to experience the eclipse. We look forward to 2024 when the U.S. will once again host the "path of totality." Until then, Getting a Feel for Eclipses will continue to serve as a guide to those interested, and an updated eclipse path map will continue to make the book pertinent.
Lightweight Innovative Solar Array (LISA): Providing Higher Power to Small Spacecraft
NASA Technical Reports Server (NTRS)
Johnson, Les; Carr, John; Fabisinski, Leo; Russell,Tiffany; Smith, Leigh
2015-01-01
Affordable and convenient access to electrical power is essential for all spacecraft and is a critical design driver for the next generation of smallsats, including cubesats, which are currently extremely power limited. The Lightweight Innovative Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space. This flexible technology has many wide-ranging applications from serving small satellites to providing abundant power to large spacecraft in GEO and beyond. By using very thin, ultra-flexible solar arrays adhered to an inflatable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume. The LISA array comprises a launch-stowed, orbit-deployed structure on which lightweight photovoltaic devices and, potentially, transceiver elements are embedded. The system will provide a 2.5 to 5 fold increase in specific power generation (Watts/kilogram) coupled with a >2x enhancement of stowed volume (Watts/cubic-meter) and a decrease in cost (dollars/Watt) when compared to state-of-the-art solar arrays.
MAGNETIC FLUX TRANSPORT AND THE LONG-TERM EVOLUTION OF SOLAR ACTIVE REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ugarte-Urra, Ignacio; Upton, Lisa; Warren, Harry P.
2015-12-20
With multiple vantage points around the Sun, Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory imaging observations provide a unique opportunity to view the solar surface continuously. We use He ii 304 Å data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infermore » the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active region's magnetic field strength and distribution at peak flux is available. Finally, we illustrate how 304 Å images can be used as a proxy for magnetic flux measurements when magnetic field data is not accessible.« less
Augmented Visual Experience of Simulated Solar Phenomena
NASA Astrophysics Data System (ADS)
Tucker, A. O., IV; Berardino, R. A.; Hahne, D.; Schreurs, B.; Fox, N. J.; Raouafi, N.
2017-12-01
The Parker Solar Probe (PSP) mission will explore the Sun's corona, studying solar wind, flares and coronal mass ejections. The effects of these phenomena can impact the technology that we use in ways that are not readily apparent, including affecting satellite communications and power grids. Determining the structure and dynamics of corona magnetic fields, tracing the flow of energy that heats the corona, and exploring dusty plasma near the Sun to understand its influence on solar wind and energetic particle formation requires a suite of sensors on board the PSP spacecraft that are engineered to observe specific phenomena. Using models of these sensors and simulated observational data, we can visualize what the PSP spacecraft will "see" during its multiple passes around the Sun. Augmented reality (AR) technologies enable convenient user access to massive data sets. We are developing an application that allows users to experience environmental data from the point of view of the PSP spacecraft in AR using the Microsoft HoloLens. Observational data, including imagery, magnetism, temperature, and density are visualized in 4D within the user's immediate environment. Our application provides an educational tool for comprehending the complex relationships of observational data, which aids in our understanding of the Sun.
Solar thermal polymerase chain reaction for smartphone-assisted molecular diagnostics
Jiang, Li; Mancuso, Matthew; Lu, Zhengda; Akar, Gunkut; Cesarman, Ethel; Erickson, David
2014-01-01
Nucleic acid-based diagnostic techniques such as polymerase chain reaction (PCR) are used extensively in medical diagnostics due to their high sensitivity, specificity and quantification capability. In settings with limited infrastructure and unreliable electricity, however, access to such devices is often limited due to the highly specialized and energy-intensive nature of the thermal cycling process required for nucleic acid amplification. Here we integrate solar heating with microfluidics to eliminate thermal cycling power requirements as well as create a simple device infrastructure for PCR. Tests are completed in less than 30 min, and power consumption is reduced to 80 mW, enabling a standard 5.5 Wh iPhone battery to provide 70 h of power to this system. Additionally, we demonstrate a complete sample-to-answer diagnostic strategy by analyzing human skin biopsies infected with Kaposi's Sarcoma herpesvirus (KSHV/HHV-8) through the combination of solar thermal PCR, HotSHOT DNA extraction and smartphone-based fluorescence detection. We believe that exploiting the ubiquity of solar thermal energy as demonstrated here could facilitate broad availability of nucleic acid-based diagnostics in resource-limited areas. PMID:24553130
NASA Astrophysics Data System (ADS)
Sharma, Swati; Sharma, R. P.; Gaur, Nidhi
2016-01-01
Space provides a vast medium to study turbulence and is accessible to detailed in situ measurements. Alfvén waves (AW) are ubiquitous in space and a main component of magnetohydrodynamic turbulence in heliosphere. The wave interaction with the density fluctuations is considered to be an important driver of nonlinear processes in space plasmas. Present study involves the nonlinear coupling, on the account of the ponderomotive nonlinearity, of the parallel propagating circularly polarized dispersive Alfvén wave (DAW) with the density fluctuations associated with magnetosonic wave propagating in the direction perpendicular to ambient magnetic field. The localization of DAW electric field intensity and the corresponding power spectra has been studied for the case of solar wind at 1 A.U. A breakpoint in power spectrum is seen around ion inertial length and spectra goes steeper at smaller scales which is consistent with the observations reported by CLUSTER in context of solar wind turbulence. Thus nonlinear interaction of DAW with transverse fluctuations causes the transfer of wave energy from larger scales to the smaller scales and may contribute in providing the energy needed to accelerate the solar wind.
Data Integration Using SOAP in the VSO
NASA Astrophysics Data System (ADS)
Tian, K. Q.; Bogart, R. S.; Davey, A.; Dimitoglou, G.; Gurman, J. B.; Hill, F.; Martens, P. C.; Wampler, S.
2003-05-01
The Virtual Solar Observatory (VSO) project has implemented a time interval search for all four participating data archives. The back-end query services are implemented as web services, and are accessible via SOAP. SOAP (Simple Object Access Protocol) defines an RPC (Remote Procedure Call) mechanism that employs HTTP as its transport and encodes the client-server interactions (request and response messages) in XML (eXtensible Markup Language) documents. In addition to its core function of identifying relevant datasets in the local archive, the SOAP server at each data provider acts as a "wrapper" that maps descriptions in an abstract data model to those in the provider-specific data model, and vice versa. It is in this way that VSO integrates heterogeneous data services and allows access to them using a common interface. Our experience with SOAP has been fruitful. It has proven to be a better alternative to traditional web access methods, namely POST and GET, because of its flexibility and interoperability.
NASA Technical Reports Server (NTRS)
Evans, L. C.
1972-01-01
The access of 1.2 to 40 MeV protons and 0.4 to 1.0 MeV electrons from interplanetary space to the polar cap regions was investigated with an experiment on board a low altitude, polar-orbiting satellite (0G0 4). A total of 333 quiet time observations of the electron polar cap boundary give a mapping of the boundary between open and closed geomagnetic field lines. Observations of events associated with co-rotating regions of enhanced proton flux in interplanetary space were used to establish the characteristics of the 1.2 to 40 MeV proton access windows. The results were compared to particle access predictions of the distant geomagnetic tail configurations. The role played by interplanetary anisotropies in the observation of persistent polar cap features is discussed. Special emphasis is given to the problem of nonadiabatic particle entry through regions where the magnetic field is changing direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bird, L.; Reger, A.; Heeter, J.
Based on lessons from recent program experience, this report explores best practices for designing and implementing incentives for small and mid-sized residential and commercial distributed solar energy projects. The findings of this paper are relevant to both new incentive programs as well as those undergoing modifications. The report covers factors to consider in setting and modifying incentive levels over time, differentiating incentives to encourage various market segments, administrative issues such as providing equitable access to incentives and customer protection. It also explores how incentive programs can be designed to respond to changing market conditions while attempting to provide a longer-termmore » and stable environment for the solar industry. The findings are based on interviews with program administrators, regulators, and industry representatives as well as data from numerous incentive programs nationally, particularly the largest and longest-running programs. These best practices consider the perspectives of various stakeholders and the broad objectives of reducing solar costs, encouraging long-term market viability, minimizing ratepayer costs, and protecting consumers.« less
Development of coring procedures applied to Si, CdTe, and CIGS solar panels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moutinho, H. R.; Johnston, S.; To, B.
Most of the research on the performance and degradation of photovoltaic modules is based on macroscale measurements of device parameters such as efficiency, fill factor, open-circuit voltage, and short-circuit current. Our goal is to develop the capabilities to allow us to study the degradation of these parameters in the micro- and nanometer scale and to relate our results to performance parameters. To achieve this objective, the first step is to be able to access small samples from specific areas of the solar panels without changing the properties of the material. In this paper, we describe two coring procedures that wemore » developed and applied to Si, CIGS, and CdTe solar panels. In the first procedure, we cored full samples, whereas in the second we performed a partial coring that keeps the tempered glass intact. The cored samples were analyzed by different analytical techniques before and after coring, at the same locations, and no damage during the coring procedure was observed.« less
NASA Astrophysics Data System (ADS)
Davis, A. J.; Kanekal, S. G.; Looper, M. D.; Mason, G. M.; Mewaldt, R. A.
2006-12-01
The SAMPEX Resident Archive is currently under construction, and will be co-hosted at Caltech with the ACE Science Center. With SAMPEX in low earth orbit, and ACE at L1, and a suite of instruments on each spacecraft, the combined data cover a very broad range in species, energy, location, and time. The data include solar wind, solar energetic particle, and galactic cosmic ray intensity and composition data, as well as solar wind and magnetic field parameters on a variety of time scales. We describe our recent efforts to provide enhanced access to these data via the emerging virtual observatory system, including work with the Space Physics Archive Search and Extract (SPASE) Consortium to ensure that the ACE and SAMPEX data can be adequately described using the SPASE data model, development of a SOAP web services interface between the ACE Science Center and the virtual observatories, and ideas for combining the ACE and SAMPEx data in useful ways.
Space, our next frontier; Proceedings of the conference, Dallas, TX, June 7, 8, 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musgrave, G.
1985-01-01
The present conference on space development encompasses space commercialization, legislative, legal, and insurance-related factors in current space programs, political aspects of space militarization and governmental control, the military future uses of space and their consequences, command and control issues arising in space, economic influences on space policy, and recent developments in space solar power generation concepts. Attention is given to public opinion surveys concerning the scientific, military, and economic uses of space, the Leasecraft orbital industrial infrastructure concept, capitalism and democracy in space development, the current status of space law on commercialization topics, the nature of Ballistic Missile Defense, themore » Soviet Space threat, the High Frontier concept for space defense, lunar solar power systems, solar power satellites, and the utilization of lunar resources for the reduction of lunar base construction costs. Such specific technical issues as microgravity crystal growth and directional solidification, electrophoresis operations for pharmaceuticals, and technical barriers to commercial access to space, are also noted.« less
Development of coring procedures applied to Si, CdTe, and CIGS solar panels
Moutinho, H. R.; Johnston, S.; To, B.; ...
2018-01-04
Most of the research on the performance and degradation of photovoltaic modules is based on macroscale measurements of device parameters such as efficiency, fill factor, open-circuit voltage, and short-circuit current. Our goal is to develop the capabilities to allow us to study the degradation of these parameters in the micro- and nanometer scale and to relate our results to performance parameters. To achieve this objective, the first step is to be able to access small samples from specific areas of the solar panels without changing the properties of the material. In this paper, we describe two coring procedures that wemore » developed and applied to Si, CIGS, and CdTe solar panels. In the first procedure, we cored full samples, whereas in the second we performed a partial coring that keeps the tempered glass intact. The cored samples were analyzed by different analytical techniques before and after coring, at the same locations, and no damage during the coring procedure was observed.« less
Arcing in LEO: Does the Whole Array Discharge?
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T.; Hillard, G. Barry
2005-01-01
The conventional wisdom about solar array arcing in LEO is that only the parts of the solar array that are swept over by the arc-generated plasma front are discharged in the initial arc. This limits the amount of energy that can be discharged. Recent work done at the NASA Glenn Research Center has shown that this idea is mistaken. In fact, the capacitance of the entire solar array may be discharged, which for large arrays leads to very large and possibly debilitating arcs, even if no sustained arc occurs. We present the laboratory work that conclusively demonstrates this fact by using a grounded plate that prevents the arc-plasma front from reaching certain array strings. Finally, we discuss the dependence of arc strength and arc pulse width on the capacitance that is discharged, and provide a physical mechanism for discharge of the entire array, even when parts of the array are not accessible to the arc-plasma front. Mitigation techniques are also presented.
NASA Astrophysics Data System (ADS)
Cooper, John F.; Papitashvili, Natalia E.; Johnson, Rita C.; Lal, Nand; McGuire, Robert E.
2015-04-01
NASA now has a large collection of solar, heliospheric, and local interstellar (Voyager 1) cosmic ray particle data sets that can be accessed through the data system services of the NASA Virtual Energetic Particle Observatory (VEPO) in collaboration with the NASA Space Physics Data Facility SPDF), respectively led by the first and last authors. The VEPO services were developed to enhance the long-existing OMNIWeb solar wind and energetic particle services of SPDF for on-line browse, correlative, and statistical analysis of NASA and ESA mission fields, plasma, and energetic particle data. In this presentation we take of tour through VEPO and SPDF of SEP reservoir events, the outer heliosphere earlier surveyed by the Pioneer, Voyager, and Ulysses spacecraft and now being probed by New Horizons, and the heliosheath-heliopause-interstellar regions now being explored by the Voyagers and IBEX. Implications of the latter measurements are also considered for the flux spectra of low to high energy cosmic rays in interstellar space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendelsohn, Michael; Urdanick, Marley; Joshi, John
2015-02-01
Credit enhancements represent a variety of financial support structures that are designed to reduce risk to those holding the debt, including debt raised via a securitization process, and thus lower the required yield associated with the security. The purpose of all forms of credit enhancement is to increase the collateral against which notes are secured (Lin,1999). The following section evaluates is not guaranteed. Perceived risks of the solar asset class--including those related to technology, offtaker creditworthiness, and regulatory policy--can increase the required yield, increase probability of investor loss of interest and/or principal, or both. In many cases, this is amore » cyclical phenomenon: risk perception is fed by lack of historical knowledge, which is in turn fed by risk perception. Therefore, successful access to capital market investment in order to spur low-cost solar deployment depends on the success of this initial fledgling period.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-11
... CAISO's interpretation of its Generator Interconnection Procedures and pro forma Large Generator...., Washington, DC 20426. This filing is accessible on-line at http://www.ferc.gov , using the ``eLibrary'' link and is available for review in the Commission's Public Reference Room in Washington, DC. There is an...
Contamination and Micropropulsion Technology
2012-07-01
23, 027101 (2011) Evaluation of active flow control applied to wind turbine blade section J. Renewable Sustainable Energy 2, 063101 (2010) Effect...field lines at high latitudes where solar wind electrons can readily access the upper atmosphere. The electron energy distribution in the auroral... slip behavior of n-hexadecane in large amplitude oscillatory shear flow via nonequilibrium molecular dynamic simulation J. Chem. Phys. 136, 104904
ERIC Educational Resources Information Center
Downs, Nathan; Parisi, Alfio V.; Galligan, Linda; Turner, Joanna; Amar, Abdurazaq; King, Rachel; Ultra, Filipina; Butler, Harry
2016-01-01
A short series of practical classroom mathematics activities employing the use of a large and publicly accessible scientific data set are presented for use by students in years 9 and 10. The activities introduce and build understanding of integral calculus and trigonometric functions through the presentation of practical problem solving that…
Problems and strategy of the first flight to the comets
NASA Technical Reports Server (NTRS)
Davydov, V. D.
1980-01-01
Substantiation is given for the urgency of using space equipment to study comets in order to work out the basic problem of the origin and evolution of the solar system. The potentialities and advantages of selecting ballistically-accessible objects among the newly discovered comets are shown (as a preliminary study). The technique of early detection of such objects is discussed.
Astronomy sortie mission definition study. Addendum: Follow-on analyses
NASA Technical Reports Server (NTRS)
1973-01-01
Results of design analyses, trade studies, and planning data of the Astronomy Sortie Mission Definition Study are presented. An in-depth analysis of UV instruments, nondeployed solar payload, and on-orbit access is presented. Planning data are considered, including the cost and schedules associated with the astronomy instruments and/or support hardware. Costs are presented in a parametric fashion.
Impact of the titania nanostructure on charge transport and its application in hybrid solar cells
NASA Astrophysics Data System (ADS)
Koffman-Frischknecht, Alejandro; Gonzalez, Fernando; Plá, Juan; Violi, Ianina; Soler-Illia, Galo J. A. A.; Perez, M. Dolores
2018-02-01
Porous titania films are widely studied in a number of optoelectronic applications due to its favorable optical and electronic characteristics. Mesoporous titania thin films (MTTFs) with tunable pore size, pore order, accessibility and crystallinity are of interest in electronic devices due to the potential for optimization of the desired characteristics for charge separation and carrier transport. In this work, several MTTFs were prepared by sol-gel chemistry with different structural properties tuned by post-synthesis thermal treatment. The effect of the structural properties (pore diameter, order and accessibility) on the electrical properties of the material was studied by films fabrication onto a transparent conducting electrode, ITO, such that it enables optoelectronic applications. The performance as photoanode was explored by the fabrication of hybrid polymer (P3HT): titania solar cells. Not only does structural properties affect polymer impregnation inside the titania pores as expected and hence impacts charge separation at the interface, but also the thermal treatment affects crystallinity and the films electronic properties. A more complete picture about the electronic properties of the different MTTFs prepared in this work was studied by mobility measurement by space charge limited current and impedance spectroscopy.
VESPA: Developing the Planetary Science Virtual Observatory in H2020
NASA Astrophysics Data System (ADS)
Erard, S.; Cecconi, B.; Le Sidaner, P.; Capria, T.; Rossi, A. P.; Schmitt, B.; André, N.; Vandaele, A.-C.; Scherf, M.; Hueso, R.; Maattanen, A.; Thuillot, W.; Achilleos, N.; Marmo, C.; Santolik, O.; Benson, K.; Bollard, Ph.
2015-10-01
The Europlanet H2020 programme will develop a research infrastructure in Horizon 2020. The programme includes a follow-on to the FP7 activity aimed at developing the Planetary Science Virtual Observatory (VO). This activity is called VESPA, which stands for Virtual European Solar and Planetary Access. Building on the IDIS activity of Europlanet FP7, VESPA will distribute more data, will improve the connected tools and infrastructure, and will help developing a community of both users and data providers. One goal of the Europlanet FP7 programme was to set the basis for a European Virtual Observatory in Planetary Science. A prototype has been set up during FP7, most of the activity being dedicated to the definition of standards to handle data in this field. The aim was to facilitate searches in big archives as well as sparse databases, to make on-line data access and visualization possible, and to allow small data providers to make their data available in an interoperable environment with minimum effort. This system makes intensive use of studies and developments led in Astronomy (IVOA), Solar Science (HELIO), plasma physics (SPASE), and space archive services (IPDA). It remains consistent with extensions of IVOA standards.
VESPA: developing the planetary science Virtual Observatory in H2020
NASA Astrophysics Data System (ADS)
Erard, Stéphane; Cecconi, Baptiste; Le Sidaner, Pierre; Capria, Teresa; Rossi, Angelo Pio
2016-04-01
The Europlanet H2020 programme will develop a research infrastructure in Horizon 2020. The programme includes a follow-on to the FP7 activity aimed at developing the Planetary Science Virtual Observatory (VO). This activity is called VESPA, which stands for Virtual European Solar and Planetary Access. Building on the IDIS activity of Europlanet FP7, VESPA will distribute more data, will improve the connected tools and infrastructure, and will help developing a community of both users and data providers. One goal of the Europlanet FP7 programme was to set the basis for a European Virtual Observatory in Planetary Science. A prototype has been set up during FP7, most of the activity being dedicated to the definition of standards to handle data in this field. The aim was to facilitate searches in big archives as well as sparse databases, to make on-line data access and visualization possible, and to allow small data providers to make their data available in an interoperable environment with minimum effort. This system makes intensive use of studies and developments led in Astronomy (IVOA), Solar Science (HELIO), plasma physics (SPASE), and space archive services (IPDA). It remains consistent with extensions of IVOA standards.
Phase 1 Space Fission Propulsion Energy Source Design
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Carter, Robert; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems with a specific mass at or below 50 kg/kWjet could enhance or enable numerous robotic outer solar system missions of interest. At the required specific mass, it is possible to develop safe, affordable systems that meet mission requirements. To help select the system design to pursue, eight evaluation criteria were identified: system integration, safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of four potential concepts was performed: a Testable, Passive, Redundant Reactor (TPRR), a Testable Multi-Cell In-Core Thermionic Reactor (TMCT), a Direct Gas Cooled Reactor (DGCR), and a Pumped Liquid Metal Reactor.(PLMR). Development of any of the four systems appears feasible. However, for power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the TPRR has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the TPRR approach. Successful development and utilization of a "Phase I" fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system.
Homing Pigeons Respond to Time-Compensated Solar Cues Even in Sight of the Loft
Armstrong, Chris; Wilkinson, Helen; Meade, Jessica; Biro, Dora; Freeman, Robin; Guilford, Tim
2013-01-01
The sun has long been thought to guide bird navigation as the second step in a two-stage process, in which determining position using a map is followed by course setting using a compass, both over unfamiliar and familiar terrain. The animal’s endogenous clock time-compensates the solar compass for the sun’s apparent movement throughout the day, and this allows predictable deflections in orientation to test for the compass’ influence using clock-shift manipulations. To examine the influence of the solar compass during a highly familiar navigational task, 24 clock-shifted homing pigeons were precision-tracked from a release site close to and in sight of their final goal, the colony loft. The resulting trajectories displayed significant partial deflection from the loft direction as predicted by either fast or slow clock-shift treatments. The partial deflection was also found to be stable along the entire trajectory indicating regular updating of orientation via input from the solar compass throughout the final approach flight to the loft. Our results demonstrate that time-compensated solar cues are deeply embedded in the way birds orient during homing flight, are accessed throughout the journey and on a remarkably fine-grained scale, and may be combined effectively simultaneously with direct guidance from familiar landmarks, even when birds are flying towards a directly visible goal. PMID:23717401
Demonstration of solar echoes using the Air Force OTH-B radar
NASA Technical Reports Server (NTRS)
Pizzo, V. J.; Hildner, E.; Georges, T.; Fraser-Smith, A.; Kelly, F.
1995-01-01
From the late 50s to early 70s, attempts were made by at least two different groups to obtain information on physical conditions in the corona by means of active radar soundings. While echoes from the Sun were unquestionably detected. difficulties in their interpretation led to inconclusive results. A major hindrance to these efforts was the limited understanding of the day-to-day structure of the corona then available (e.g., pioneering work in solar wind studies were just underway. and coronal holes had not yet been discovered). With the end of the Cold War, the very large over-the-horizon (OTH) radars operated by the Air Force have been opened up to basic science research through the end of the fiscal year. In light of advances made in coronal physics and in signal processing technology since these early experiments were undertaken. access to the state-of-the art OTH-B radar offers a rare opportunity to gauge anew the scientific potential for radar sounding of the Sun. In principle, it should be possible to obtain useful data on plasma densities and motions over a range of heights in the corona near 0.5R(solar mass) above the solar surface We report here the preliminary findings from a sequence of observations taken over the course of a solar rotation.
Stoffel, T.; Andreas, A.
1981-07-15
The SRRL was established at the Solar Energy Research Institute (now NREL) in 1981 to provide continuous measurements of the solar resources, outdoor calibrations of pyranometers and pyrheliometers, and to characterize commercially available instrumentation. The SRRL is an outdoor laboratory located on South Table Mountain, a mesa providing excellent solar access throughout the year, overlooking Denver. Beginning with the basic measurements of global horizontal irradiance, direct normal irradiance and diffuse horizontal irradiance at 5-minute intervals, the SRRL Baseline Measurement System now produces more than 130 data elements at 1-min intervals that are available from the Measurement & Instrumentation Data Center Web site. Data sources include global horizontal, direct normal, diffuse horizontal (from shadowband and tracking disk), global on tilted surfaces, reflected solar irradiance, ultraviolet, infrared (upwelling and downwelling), photometric and spectral radiometers, sky imagery, and surface meteorological conditions (temperature, relative humidity, barometric pressure, precipitation, snow cover, wind speed and direction at multiple levels). Data quality control and assessment include daily instrument maintenance (M-F) with automated data quality control based on real-time examinations of redundant instrumentation and internal consistency checks using NREL's SERI-QC methodology. Operators are notified of equipment problems by automatic e-mail messages generated by the data acquisition and processing system. Radiometers are recalibrated at least annually with reference instruments traceable to the World Radiometric Reference (WRR).
NASA Astrophysics Data System (ADS)
Alidaei, Maryam; Izadifard, Morteza; Ghazi, Mohammad E.; Ahmadi, Vahid
2018-01-01
Perovskite solar cells have been heavily investigated due to their unique properties such as high power conversion efficiency (PCE), low-cost fabrication by solution processes, high diffusion length, large absorption coefficient, and direct and tunable band gap. PCE of perovskite devices is strongly dependent on the absorber layer properties such as morphology, crystallinity, and compactness, which are required to be optimized. In this work, the CH3NH3PbI3 (170-480 nm) absorber layers with various methylammonium iodine (MAI) concentrations (7, 10, 20 and 40 mg ml-1) and perovskite solar cells with the fluorine-doped tin oxide (400 nm)/C-TiO2 (30 nm)/Meso-TiO2 (400 nm)/CH3NH3PbI3 (170-480 nm)/P3HT (30 nm)/Au (100 nm) structure were fabricated. A two-step solution process was used for deposition of the CH3NH3PbI3 absorber layers. The morphology, crystal structure, and optical properties of the perovskite layer grown on glass and also the photovoltaic properties of the fabricated solar cells were studied. The results obtained showed that by controlling the deposition conditions, due to the reduction in charge recombination, PCE enhancement of the perovskite solar cell (up to 11.6%) was accessible.
Rooftop Energy Potential of Low Income Communities in America REPLICA
Mooney, Meghan (ORCID:0000000309406958); Sigrin, Ben
1970-01-01
The Rooftop Energy Potential of Low Income Communities in America REPLICA data set provides estimates of residential rooftop solar technical potential at the tract-level with emphasis on estimates for Low and Moderate Income LMI populations. In addition to technical potential REPLICA is comprised of 10 additional datasets at the tract-level to provide socio-demographic and market context. The model year vintage of REPLICA is 2015. The LMI solar potential estimates are made at the tract level grouped by Area Median Income AMI income tenure and building type. These estimates are based off of LiDAR data of 128 metropolitan areas statistical modeling and ACS 2011-2015 demographic data. The remaining datasets are supplemental datasets that can be used in conjunction with the technical potential data for general LMI solar analysis planning and policy making. The core dataset is a wide-format CSV file seeds_ii_replica.csv that can be tagged to a tract geometry using the GEOID or GISJOIN fields. In addition users can download geographic shapefiles for the main or supplemental datasets. This dataset was generated as part of the larger NREL-led SEEDSII Solar Energy Evolution and Diffusion Studies project and specifically for the NREL technical report titled Rooftop Solar Technical Potential for Low-to-Moderate Income Households in the United States by Sigrin and Mooney 2018. This dataset is intended to give researchers planners advocates and policy-makers access to credible data to analyze low-income solar issues and potentially perform cost-benefit analysis for program design. To explore the data in an interactive web mapping environment use the NREL SolarForAll app.
Lucock, Mark; Glanville, Tracey; Yates, Zoë; Walker, James; Furst, John; Simpson, Nigel
2012-08-01
Folate, a key periconceptional nutrient, is ultraviolet light (UV-R) sensitive. We therefore hypothesise that a relationship exists between sunspot activity, a proxy for total solar irradiance (particularly UV-R) reaching Earth, and the occurrence of folate-sensitive, epigenomic-related neonatal genotypes during the first trimester of pregnancy. Limited data is provided to support the hypothesis that the solar cycle predicts folate-related human embryo loss: 379 neonates born at latitude 54°N between 1998 and 2000 were examined for three folate-sensitive, epigenome-related polymorphisms, with solar activity for trimester one accessed via the Royal Greenwich Observatory-US Air force/National Oceanic and Atmospheric Administration Sunspot Database (34,110 total observation days). Logistic regression showed solar activity predicts C677T-methylenetetrahydrofolate reductase (C677T-MTHFR) and A66G-methionine synthase reductase (A66G-MSR) genotype at discrete phases of trimester one. Total and maximal sunspot activity predicts C677T-MTHFR genotype for days 31-60 of trimester one (p=0.0181 and 0.0366, respectively) and A66G-MSR genotype for days 61-90 of trimester one (p=0.0072 and 0.0105, respectively). Loss of UV-R sensitive folate associated with the sunspot cycle might therefore interact with variant folate genes to perturb DNA methylation and/or elaboration of the primary base sequence (thymidylate synthesis), as well as increase embryo-toxic homocysteine. We hypothesise that this may influence embryo viability leading to 677CC-MTHFR and 66GG-MSR embryo loss at times of increased solar activity. This provides an interesting and plausible link between well recognised 'folate gene originated developmental disorders' and 'solar activity/seasonality modulated developmental disorders'. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Istvan Etesi, Laszlo; Tolbert, K.; Schwartz, R.; Zarro, D.; Dennis, B.; Csillaghy, A.
2010-05-01
In our project "Extending the Virtual Solar Observatory (VSO)” we have combined some of the features available in Solar Software (SSW) to produce an integrated environment for data analysis, supporting the complete workflow from data location, retrieval, preparation, and analysis to creating publication-quality figures. Our goal is an integrated analysis experience in IDL, easy-to-use but flexible enough to allow more sophisticated procedures such as multi-instrument analysis. To that end, we have made the transition from a locally oriented setting where all the analysis is done on the user's computer, to an extended analysis environment where IDL has access to services available on the Internet. We have implemented a form of Cloud Computing that uses the VSO search and a new data retrieval and pre-processing server (PrepServer) that provides remote execution of instrument-specific data preparation. We have incorporated the interfaces to the VSO search and the PrepServer into an IDL widget (SHOW_SYNOP) that provides user-friendly searching and downloading of raw solar data and optionally sends search results for pre-processing to the PrepServer prior to downloading the data. The raw and pre-processed data can be displayed with our plotting suite, PLOTMAN, which can handle different data types (light curves, images, and spectra) and perform basic data operations such as zooming, image overlays, solar rotation, etc. PLOTMAN is highly configurable and suited for visual data analysis and for creating publishable figures. PLOTMAN and SHOW_SYNOP work hand-in-hand for a convenient working environment. Our environment supports a growing number of solar instruments that currently includes RHESSI, SOHO/EIT, TRACE, SECCHI/EUVI, HINODE/XRT, and HINODE/EIS.
A Large-scale Plume in an X-class Solar Flare
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleishman, Gregory D.; Nita, Gelu M.; Gary, Dale E.
Ever-increasing multi-frequency imaging of solar observations suggests that solar flares often involve more than one magnetic fluxtube. Some of the fluxtubes are closed, while others can contain open fields. The relative proportion of nonthermal electrons among those distinct loops is highly important for understanding energy release, particle acceleration, and transport. The access of nonthermal electrons to the open field is also important because the open field facilitates the solar energetic particle (SEP) escape from the flaring site, and thus controls the SEP fluxes in the solar system, both directly and as seed particles for further acceleration. The large-scale fluxtubes aremore » often filled with a tenuous plasma, which is difficult to detect in either EUV or X-ray wavelengths; however, they can dominate at low radio frequencies, where a modest component of nonthermal electrons can render the source optically thick and, thus, bright enough to be observed. Here we report the detection of a large-scale “plume” at the impulsive phase of an X-class solar flare, SOL2001-08-25T16:23, using multi-frequency radio data from Owens Valley Solar Array. To quantify the flare’s spatial structure, we employ 3D modeling utilizing force-free-field extrapolations from the line of sight SOHO /MDI magnetograms with our modeling tool GX-Simulator. We found that a significant fraction of the nonthermal electrons that accelerated at the flare site low in the corona escapes to the plume, which contains both closed and open fields. We propose that the proportion between the closed and open fields at the plume is what determines the SEP population escaping into interplanetary space.« less
Development of the remote diagnosis system of the solar radio telescope
NASA Astrophysics Data System (ADS)
Kawashima, Susumu; Shinohara, Noriyuki; Sekiguchi, Hideaki
2005-04-01
"The remote diagnosis system" which we have developed is the one to monitor the operation conditions of two systems of solar radio observation (Nobeyama Radioheliograph and Nobeyama Radio Polarimeters) from the remote place. Under the condition of very limited human power, it is necessary to minimize the load of observers without degrading data quality. Thereupon, we have mulled measures to alleviate the load of observers, and worked out "the remote diagnosis system" which enables us to monitor the operation conditions and detect troubles, if any, in early stages, even if we are away from the observatory building where control system are concentrated. The plan was materialized by adopting an access through the INTERNET to the section where needed information for diagnosis is gathered.
Solar Synthesis: Prospects in Visible Light Photocatalysis
Schultz, Danielle M.; Yoon, Tehshik P.
2015-01-01
Chemists have long aspired to synthesize molecules the way that plants do — using sunlight to facilitate the construction of complex molecular architectures. Nevertheless, the use of visible light in photochemical synthesis is fundamentally challenging because organic molecules tend not to interact with the wavelengths of visible light that are most strongly emitted in the solar spectrum. Recent research has begun to leverage the ability of visible light absorbing transition metal complexes to catalyze a broad range of synthetically valuable reactions. In this review, we highlight how an understanding of the mechanisms of photocatalytic activation available to these transition metal complexes, and of the general reactivity patterns of the intermediates accessible via visible light photocatalysis, has accelerated the development of this diverse suite of reactions. PMID:24578578
X-ray Flares from Young Stars and the Sun: Bridging the Gap with Chandra+NuSTAR
NASA Astrophysics Data System (ADS)
Canizares, Claude
2017-09-01
It is widely accepted that the coronae of pre-MS stars constitute scaled-up versions of the solar corona. However, the potential hard (>10 keV) non-thermal emission components of pre-MS flares, and the link between such emission and the softer thermal emission accessible to Chandra and XMM, remain unstudied. We propose joint HETG and NuStar observations of V773 Tau, one of the brightest and most energetically flaring pre-MS X-ray sources. By elucidating the connection between hard, non-thermal X-ray emission and softer, thermal emission, these observations will provide an essential test of models invoking scaled-up solar magnetic activity to explain X-ray emission from pre-MS stars.
Solar synthesis: prospects in visible light photocatalysis.
Schultz, Danielle M; Yoon, Tehshik P
2014-02-28
Chemists have long aspired to synthesize molecules the way that plants do-using sunlight to facilitate the construction of complex molecular architectures. Nevertheless, the use of visible light in photochemical synthesis is fundamentally challenging because organic molecules tend not to interact with the wavelengths of visible light that are most strongly emitted in the solar spectrum. Recent research has begun to leverage the ability of visible light-absorbing transition metal complexes to catalyze a broad range of synthetically valuable reactions. In this review, we highlight how an understanding of the mechanisms of photocatalytic activation available to these transition metal complexes, and of the general reactivity patterns of the intermediates accessible via visible light photocatalysis, has accelerated the development of this diverse suite of reactions.
NASA Technical Reports Server (NTRS)
Petrinec, S. M.; Burch, J. L.; Fuselier, S. A.; Gomez, R. G.; Lewis, W.; Trattner, K. J.; Ergun, R.; Mauk, B.; Pollock, C. J.; Schiff, C.;
2016-01-01
Magnetic reconnection at the Earths magnetopause is the primary process by which solar wind plasma and energy gains access to the magnetosphere. One indication that magnetic reconnection is occurring is the observation of accelerated plasma as a jet tangential to the magnetopause. The direction of ion jets along the magnetopause surface as observed by the Fast Plasma Instrument (FPI) and the Hot Plasma Composition Analyzer (HPCA) instrument on board the recently launched Magnetospheric Multiscale (MMS) set of spacecraft is examined. For those cases where ion jets are clearly discerned, the direction of origin compares well statistically with the predicted location of magnetic reconnection using convected solar wind observations in conjunction with the Maximum Magnetic Shear model.
2009-07-15
CAPE CANAVERAL, Fla. – Engineers at Astrotech Space Operations in Titusville, Fla., begin work to lower the high-gain antenna on the Solar Dynamics Observatory. Lowering the antenna will provide access to the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller
2009-07-15
CAPE CANAVERAL, Fla. – The Solar Dynamics Observatory sits on a stand at Astrotech Space Operations in Titusville, Fla. Engineers will lower the high-gain antenna to access the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller
2009-07-15
CAPE CANAVERAL, Fla. – Engineers at Astrotech Space Operations in Titusville, Fla., work to lower the high-gain antenna on the Solar Dynamics Observatory. Lowering the antenna will provide access to the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller
2009-07-15
CAPE CANAVERAL, Fla. – Engineers at Astrotech Space Operations in Titusville, Fla., begin work to lower the high-gain antenna on the Solar Dynamics Observatory. Lowering the antenna will provide access to the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller
Aguas, Yelitza; Hincapie, Margarita; Fernández-Ibáñez, Pilar; Polo-López, María Inmaculada
2017-12-31
The interest in developing alternative water disinfection methods that increase the access to irrigation water free of pathogens for agricultural purposes is increasing in the last decades. Advanced Oxidation Processes (AOPs) have been demonstrated to be very efficient for the abatement of several kind of pathogens in contaminated water. The purpose of the current study was to evaluate and compare the capability of several solar AOPs for the inactivation of resistant spores of agricultural fungi. Solar photoassisted H 2 O 2 , solar photo-Fenton at acid and near-neutral pH, and solar heterogeneous photocatalysis using TiO 2, with and without H 2 O 2 , have been studied for the inactivation of spores of Curvularia sp., a phytopathogenic fungi worldwide found in soils and crops. Different concentrations of reagents and catalysts were evaluated at bench scale (solar vessel reactors, 200mL) and at pilot plant scale (solar Compound Parabolic Collector-CPC reactor, 20L) under natural solar radiation using distilled water (DW) and real secondary effluents (SE) from a municipal wastewater treatment plant. Inactivation order of Curvularia sp. in distilled water was determined, i.e. TiO 2 /H 2 O 2 /sunlight (100/50mgL -1 )>H 2 O 2 /sunlight (40mgL -1 )>TiO 2 /sunlight (100mgL -1 )>photo-Fenton with 5/10mgL -1 of Fe 2+ /H 2 O 2 at pH3 and near-neutral pH. For the case of SE, at near neutral pH, the most efficient solar process was H 2 O 2 /Solar (60mgL -1 ); nevertheless, the best Curvularia sp. inactivation rate was obtained with photo-Fenton (10/20mgL -1 of Fe 2+ /H 2 O 2 ) requiring a previous water adicification to pH3, within 300 and 210min of solar treatment, respectively. These results show the efficiency of solar AOPs as a feasible option for the inactivation of resistant pathogens in water for crops irrigation, even in the presence of organic matter (average Dissolved Organic Carbon (DOC): 24mgL -1 ), and open a window for future wastewater reclamation and irrigation use. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wadhwa, M.
2016-12-01
The last few decades have seen revolutionary advances in the planetary sciences through remote observations (by spacecraft and Earth-based observatories) of many Solar System destinations and, in more recent years, even exoplanets around other stars. In parallel with this, ground-breaking developments in analytical capabilities and access to a greater variety of Solar System materials (through systematic and sustained meteorite collection programs as well as sample return missions) have led to significant insights that are complementary to those from remote observations and measurements. I will discuss two examples where the combination of remote observations and sample analyses has the potential to provide a more holistic picture of Solar System formation and evolution: 1) High-precision analyses of radiogenic isotopes in primitive and differentiated meteoritic materials, which are yielding a detailed high-resolution chronology of the first 10 million years of Solar System history. Such investigations are providing the chronological framework for the formation and evolution of small bodies (including comets, asteroids and Kuiper Belt Objects) in our Solar System that are the targets of recent spacecraft missions such as NASA's Dawn and New Horizons missions and ESA's Rosetta mission. 2) In-situ analyses of hydrogen isotope compositions and H2O abundances in meteorites from Mars and Vesta, which are giving constraints on the inventory and source of water and other volatiles in these planetary bodies. These studies are providing insights complementary to those about Mars from NASA's Mars Science Laboratory and Mars Atmosphere and Volatile Evolution (MAVEN) missions, and about Vesta from NASA's Dawn mission.
NASA Astrophysics Data System (ADS)
Croley, D. R.; Garrett, H. B.; Murphy, G. B.; Garrard, T. L.
1995-10-01
The three large solar particle events, beginning on October 19, 1989 and lasting approximately six days, were characterized by high fluences of solar protons and heavy ions at 1 AU. During these events, an abnormally large number of upsets (243) were observed in the random access memory of the attitude control system (ACS) control processing electronics (CPE) on-board the geosynchronous TDRS-1 (Telemetry and Data Relay Satellite). The RAR I unit affected was composed of eight Fairchild 93L422 memory chips. The Galileo spacecraft, launched on October 18, 1989 (one day prior to the solar particle events) observed the fluxes of heavy ions experienced by TDRS-1. Two solid-state detector telescopes on-board Galileo designed to measure heavy ion species and energy, were turned on during time periods within each of the three separate events. The heavy ion data have been modeled and the time history of the events reconstructed to estimate heavy ion fluences. These fluences were converted to effective LET spectra after transport through the estimated shielding distribution around the TDRS-1 ACS system. The number of single event upsets (SEU) expected was calculated by integrating the measured cross section for the Fairchild 93L422 memory chip with average effective LET spectrum. The expected number of heavy ion induced SEUs calculated was 176. GOES-7 proton data, observed during the solar particle events, were used to estimate the number of proton-induced SEUs by integrating the proton fluence spectrum incident on the memory chips, with the two-parameter Bendel cross section for proton SEUs.
Outer Planet Science Missions enabled by Solar Power
NASA Astrophysics Data System (ADS)
Kaplan, M.; Klaus, K.; Smith, D. B.
2009-12-01
Our studies demonstrate that New Frontiers-class science missions to the Jupiter and Saturn systems are possible with commercial solar powered space craft. These spacecraft are flight proven with more than 60 years of in-space operation and are equipped with highly efficient solar arrays capable of up to 25kW in low earth orbit. Such a vehicle could generate nearly 1kW in the Jovian System. Our analysis shows substantially greater power at the end of mission with this solar array system than the system that is planned for use in the Europa Jupiter System Flagship mission study. In the next few years, a new solar array technology will be developed and demonstrated by DARPA that will provide even higher power. DARPA’s Fast Access Space Testbed (FAST) program objective is to develop a revolutionary approach to spacecraft high power generation. This high power generation Subsystem, when combined with electric propulsion, will form the technological basis for a light weight, high power, highly mobile spacecraft platform. The FAST program will demonstrate the implementation of solar concentrators and high flux solar cells in conjunction with high specific impulse electric propulsion, to produce a high performance, lightweight power and propulsion system. A basic FAST spacecraft design provides about 60 kW in LEO, which scales to > 2 kW at 5 AU, or a little less than 1 kW at 10 AU. In principle, higher power levels (120 kW or even 180kW at 1 AU) could be accommodated with this technology. We envision missions using this FAST array and NASA’s NEXT engines for solar electric propulsion (SEP) Jovian and Saturn system maneuvers. We envision FAST arrays to cost in the tens of millions, making this an affordable, plutonium-free way to do outer planets science. Continued funding will mean flight experiments conducted in the 2012 timeframe that could make this technology flight proven for the New Frontiers 4 opportunity.
NASA Astrophysics Data System (ADS)
Beatty, J. Kelly; Collins Petersen, Carolyn; Chaikin, Andrew
1999-01-01
As the definitive guide for the armchair astronomer, The New Solar System has established itself as the leading book on planetary science and solar system studies. Incorporating the latest knowledge of the solar system, a distinguished team of researchers, many of them Principal Investigators on NASA missions, explain the solar system with expert ease. The completely-revised text includes the most recent findings on asteroids, comets, the Sun, and our neighboring planets. The book examines the latest research and thinking about the solar system; looks at how the Sun and planets formed; and discusses our search for other planetary systems and the search for life in the solar system. In full-color and heavily-illustrated, the book contains more than 500 photographs, portrayals, and diagrams. An extensive set of tables with the latest characteristics of the planets, their moon and ring systems, comets, asteroids, meteorites, and interplanetary space missions complete the text. New to this edition are descriptions of collisions in the solar system, full scientific results from Galileo's mission to Jupiter and its moons, and the Mars Pathfinder mission. For the curious observer as well as the student of planetary science, this book will be an important library acquisition. J. Kelly Beatty is the senior editor of Sky & Telescope, where for more than twenty years he has reported the latest in planetary science. A renowned science writer, he was among the first journalists to gain access to the Soviet space program. Asteroid 2925 Beatty was named on the occasion of his marriage in 1983. Carolyn Collins Petersen is an award-winning science writer and co-author of Hubble Vision (Cambridge 1995). She has also written planetarium programs seen at hundreds of facilities around the world. Andrew L. Chaikin is a Boston-based science writer. He served as a research geologist at the Smithsonian Institution's Center for Earth and Planetary Studies. He is a contributing editor to Popular Science and writes frequently for other publications.
Long-Term Preservation of NASA Heliophysics Data and Access: Where We Were and Where We're Going
NASA Technical Reports Server (NTRS)
McGuire, Robert E.
2011-01-01
The importance of ensuring preservation and useful access to the unique science potential of past, present and future NASA solar and space physics (i.e. heliophysics) data has been recognized since the inception of NASA but remains challenging. In this talk, I will briefly review the history of this topic and and then discuss the present NASA model for heliophysics science data management, including key current resources for finding and using data projects like the Space Physics Data Facility. I will highlight expected future directions, building on working elements of the present program and exploiting new technology, to further improve the data environment, address existing issues and anticipate emerging challenges.
An Ontology Driven Information Architecture for Interoperable Disparate Data Sources
NASA Technical Reports Server (NTRS)
Hughes, J. Steven; Crichton, Dan; Hardman, Sean; Joyner, Ronald; Mattmann, Chris; Ramirez, Paul; Kelly, Sean; Castano, Rebecca
2011-01-01
The mission of the Planetary Data System is to facilitate achievement of NASA's planetary science goals by efficiently collecting, archiving, and making accessible digital data produced by or relevant to NASA's planetary missions, research programs, and data analysis programs. The vision is: (1) To gather and preserve the data obtained from exploration of the Solar System by the U.S. and other nations (2) To facilitate new and exciting discoveries by providing access to and ensuring usability of those data to the worldwide community (3) To inspire the public through availability and distribution of the body of knowledge reflected in the PDS data collection PDS is a federation of heterogeneous nodes including science and support nodes
Durán, A; Monteagudo, J M; San Martín, I; Merino, S
2018-03-15
The aim of this work was to evaluate the performance of a novel self-autonomous reactor technology (capable of working with solar irradiation and artificial UV light) for water treatment using aniline as model compound. This new reactor design overcomes the problems of the external mass transfer effect and the accessibility to photons occurring in traditional reaction systems. The UV-light source is located inside the rotating quartz drums (where TiO 2 is immobilized), allowing light to easily reach the water and the TiO 2 surface. Several processes (UV, H 2 O 2 , Solar, TiO 2 , Solar/TiO 2 , Solar/TiO 2 /H 2 O 2 and UV/Solar/H 2 O 2 /TiO 2 ) were tested. The synergy between Solar/H 2 O 2 and Solar/TiO 2 processes was quantified to be 40.3% using the pseudo-first-order degradation rate. The apparent photonic efficiency, ζ, was also determined for evaluating light utilization. For the Solar/TiO 2 /H 2 O 2 process, the efficiency was found to be practically constant (0.638-0.681%) when the film thickness is in the range of 1.67-3.87 μm. However, the efficiency increases up to 2.67% when artificial UV light was used in combination, confirming the efficient design of this installation. Thus, if needed, lamps can be switched on during cloudy days to improve the degradation rate of aniline and its mineralization. Under the optimal conditions selected for the Solar/TiO 2 /H 2 O 2 process ([H 2 O 2 ] = 250 mg/L; pH = 4, [TiO 2 ] = 0.65-1.25 mg/cm 2 ), 89.6% of aniline is degraded in 120 min. If the lamps are switched on, aniline is completely degraded in 10 min, reaching 85% of mineralization in 120 min. TiO 2 was re-used during 5 reaction cycles without apparent loss in activity (<2%). Quantification of hydroxyl radicals and dissolved oxygen allows a chemical-based explanation of the process. Finally, the UV/Solar/TiO 2 /H 2 O 2 process was found to have lower operation costs than other systems described in literature (0.67 €/m 3 ). Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cooper, J. F.; Papitashvili, N. E.
2016-12-01
The surfaces of Mercury, the Moon, the moons of Mars, the asteroids, and other small bodies of the inner solar system have been directly weathered for millions to billions of years by solar wind, energetic particle, and solar ultraviolet irradiation. Surface regolith layers to meters in depth are formed by impacts of smaller bodies and micrometeoroids. Sample return missions to small bodies, such as Osiris-REx to the asteroid Bennu, are intended to recover information on the early history of solar system formation, but must contend with the long-term space weathering effects that perturb the original structure and composition of the affected bodies. Solar wind plasma ions at keV energies penetrate only to sub-micron depths, while more energetic solar & heliospheric particles up to MeV energies reach centimeter depths, and higher-energy galactic cosmic rays to GeV energies fully penetrate through the impact regolith. The weathering effects vary with energy and penetration depth from ion implantation and erosive sputtering at solar wind energies to chemical and structural evolution driven by MeV - GeV particles. The energy versus depth dependence of such effects is weighted by the differential flux distributions of the incident particles as measured near the orbits of the affected bodies over long periods of time. Our Virtual Energetic Particle Observatory (http://vepo.gsfc.nasa.gov/) enables simultaneous access to multiple data sets from 1973 through the present in the form of differential flux spectral plots and downloadable data tables. The most continuous VEPO coverage exists for geospace data sources at 1 AU from the Interplanetary Monitoring Platform 8 (IMP-8), launched in 1973, through the present 1-AU constellation including the ACE, WIND, SOHO, and Stereo-A/B spacecraft. Other mission data, e.g. more occasionally from Pioneer-10/11, Helios-1/2, Voyager-1/2, and Ulysses, extend heliospheric coverage from the orbit of Mercury to that of Mars, the asteroid belt, and beyond. Using data from the VEPO services, we show the time-averaged spectra of protons and helium during 1973 - 2016 from Mercury to Mars. The main contributors on solar cycle time scales at keV to MeV energies are large solar flare and ICME events. These time-averaged spectra can then be used for space weathering models of the inner solar system.
The Mission Accessible Near-Earth Objects Survey (MANOS)
NASA Technical Reports Server (NTRS)
Abell, Paul; Moskovitz, Nicholas; DeMeo, Francesca; Endicott, Thomas; Busch, Michael; Roe, Henry; Trilling, David; Thomas, Cristina; Willman, Mark; Grundy, Will;
2013-01-01
Near-Earth objects (NEOs) are essential to understanding the origin of the Solar System. Their relatively small sizes and complex dynamical histories make them excellent laboratories for studying ongoing Solar System processes. The proximity of NEOs to Earth makes them favorable targets for space missions. In addition, knowledge of their physical properties is crucial for impact hazard assessment. However, in spite of their importance to science, exploration, and planetary defense, a representative sample of physical characteristics for sub-km NEOs does not exist. Here we present the Mission Accessible Near-Earth Objects Survey (MANOS), a multi-year survey of subkm NEOs that will provide a large, uniform catalog of physical properties (light curves + colors + spectra + astrometry), representing a 100-fold increase over the current level of NEO knowledge within this size range. This survey will ultimately characterize more than 300 mission-accessible NEOs across the visible and near-infrared ranges using telescopes in both the northern and southern hemispheres. MANOS has been awarded 24 nights per semester for the next three years on NOAO facilities including Gemini North and South, the Kitt Peak Mayall 4m, and the SOAR 4m. Additional telescopic assets available to our team include facilities at Lowell Observatory, the University of Hawaii 2.2m, NASA's IRTF, and the Magellan 6.5m telescopes. Our focus on sub-km sizes and mission accessibility (dv < 7 km/s) is a novel approach to physical characterization studies and is possible through a regular cadence of observations designed to access newly discovered NEOs within days or weeks of first detection before they fade beyond observational limits. The resulting comprehensive catalog will inform global properties of the NEO population, advance scientific understanding of NEOs, produce essential data for robotic and spacecraft exploration, and develop a critical knowledge base to address the risk of NEO impacts. We intend to conduct this survey with complete transparency, publicly sharing our target lists and survey progress. We invite collaborative uses for these data as a way to broaden the scientific impact of this survey.
VOYAGE!, a Scale Model of the Solar System on the National Mall
NASA Astrophysics Data System (ADS)
Bennett, J. O.; Schoemer, J.; Goldstein, J. J.
1994-12-01
The Laboratory for Astrophysics (LfA) at the National Air and Space Museum (NASM) is proposing a new exhibit: an outdoor model of the Solar System on the National Mall, dedicated to the Spirit of Human Exploration. At one ten- billionth of the size of the actual Solar System, the model would provide a unique educational tool to illustrate the vast distances that characterize our local corner of the universe. Mounted on pedestals along a gravel walkway between the U.S. Capitol and the Washington Monument for 0.6 kilometers (an easy walk for over 10 million visitors a year), plaques would tactilely depict the scaled sizes and distances of the Sun, the planets, and their larger satellites in polished bronze. Porcelain enamel insets in the bronze would display color photographs, language-independent educational pictograms, and an international pictoral listing of spacecraft that have visited these bodies. Designed for a multi-cultural audience of varied ages and educational backgrounds, and with easy access to persons with disabilities, the model would celebrate humanity's long and ongoing relationship with Earth's nearest neighbors. Ideally, this exhibit will be supported by teacher-activity packets, self-guided tours, exportable models, computer software, and multi-lingual audio programs. This proposal is being partially funded by the NASA Solar Systems division.
NASA Astrophysics Data System (ADS)
Stevens, M. L.; Kasper, J. C.; Case, A. W.; Korreck, K. E.; Szabo, A.; Biesecker, D. A.; Prchlik, J.
2017-12-01
At this moment in time, four observatories with similar instrumentation- Wind, ACE, DSCOVR, and SoHO- are stationed directly upstream of the Earth and making continuous observations. They are separated by drift-time baselines of seconds to minutes, timescales on which MHD instabilities in the solar wind are known to grow and evolve, and spatial baselines of tens to 200 earth radii, length scales relevant to the Earth's magnetosphere. By comparing measurements of matched solar wind structures from the four vantage points, the form of structures and associated dynamics on these scales is illuminated. Our targets include shocks and MHD discontinuities, stream fronts, locii of reconnection and exhaust flow boundary layers, plasmoids, and solitary structures born of nonlinear instability. We use the tetrahedral quality factors and other conventions adopted for Cluster to identify periods where the WADS constellation is suitably non-degenerate and arranged in such a way as to enable specific types of spatial, temporal, or spatiotemporal inferences. We present here an overview of the geometries accessible to the L1 constellation and timing-based and plasma-based observations of solar wind structures from 2016-17. We discuss the unique potential of the constellation approach for space physics and space weather forecasting at 1 AU.
Liu, Zhejun; Song, Haomin; Ji, Dengxin; Li, Chenyu; Cheney, Alec; Liu, Youhai; Zhang, Nan; Zeng, Xie; Chen, Borui; Gao, Jun; Li, Yuesheng; Liu, Xiang; Aga, Diana; Jiang, Suhua; Yu, Zongfu
2017-01-01
Passive solar vapor generation represents a promising and environmentally benign method of water purification/desalination. However, conventional solar steam generation techniques usually rely on costly and cumbersome optical concentration systems and have relatively low efficiency due to bulk heating of the entire liquid volume. Here, an efficient strategy using extremely low‐cost materials, i.e., carbon black (powder), hydrophilic porous paper, and expanded polystyrene foam is reported. Due to the excellent thermal insulation between the surface liquid and the bulk volume of the water and the suppressed radiative and convective losses from the absorber surface to the adjacent heated vapor, a record thermal efficiency of ≈88% is obtained under 1 sun without concentration, corresponding to the evaporation rate of 1.28 kg (m2 h)−1. When scaled up to a 100 cm2 array in a portable solar water still system and placed in an outdoor environment, the freshwater generation rate is 2.4 times of that of a leading commercial product. By simultaneously addressing both the need for high‐efficiency operation as well as production cost limitations, this system can provide an approach for individuals to purify water for personal needs, which is particularly suitable for undeveloped regions with limited/no access to electricity. PMID:28616256
The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS)
NASA Astrophysics Data System (ADS)
Winebarger, A. R.; Savage, S. L.; Kobayashi, K.; Champey, P. R.; McKenzie, D. E.; Golub, L.; Testa, P.; Reeves, K.; Cheimets, P.; Cirtain, J. W.; Walsh, R. W.; Bradshaw, S. J.; Warren, H.; Mason, H. E.; Del Zanna, G.
2017-12-01
For over four decades, X-ray, EUV, and UV spectral observations have been used to measure physical properties of the solar atmosphere. At wavelengths below 10 nm, however, observations of the solar corona with simultaneous spatial and spectral resolution are limited, and not since the late 1970's have spatially resolved solar X-ray spectra been measured. Because the soft X-ray regime is dominated by emission lines formed at high temperatures, X-ray spectroscopic techniques yield insights to fundamental physical processes that are not accessible by any other means. Using a novel implementation of corrective optics, the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) will measure, for the first time, the solar spectrum from 0.6- 2.4 nm with a 6 arcsec resolution over an 8 arcmin slit. The MaGIXS mission will address on of the fundamental problems of coronal physics: the nature of coronal heating. There are several observables in the MaGIXS wavelength range that will constrain the heating frequency and hence discriminate between competing coronal heating theories. In this presentation, we will present the MaGIXS scientific motivation and provide an update on instrument development. MaGIXS will be launched from White Sands Missile Range in the summer of 2019.
Liu, Zhejun; Song, Haomin; Ji, Dengxin; Li, Chenyu; Cheney, Alec; Liu, Youhai; Zhang, Nan; Zeng, Xie; Chen, Borui; Gao, Jun; Li, Yuesheng; Liu, Xiang; Aga, Diana; Jiang, Suhua; Yu, Zongfu; Gan, Qiaoqiang
2017-02-27
Passive solar vapor generation represents a promising and environmentally benign method of water purification/desalination. However, conventional solar steam generation techniques usually rely on costly and cumbersome optical concentration systems and have relatively low efficiency due to bulk heating of the entire liquid volume. Here, an efficient strategy using extremely low-cost materials, i.e., carbon black (powder), hydrophilic porous paper, and expanded polystyrene foam is reported. Due to the excellent thermal insulation between the surface liquid and the bulk volume of the water and the suppressed radiative and convective losses from the absorber surface to the adjacent heated vapor, a record thermal efficiency of ≈88% is obtained under 1 sun without concentration, corresponding to the evaporation rate of 1.28 kg (m 2 h) -1 . When scaled up to a 100 cm 2 array in a portable solar water still system and placed in an outdoor environment, the freshwater generation rate is 2.4 times of that of a leading commercial product. By simultaneously addressing both the need for high-efficiency operation as well as production cost limitations, this system can provide an approach for individuals to purify water for personal needs, which is particularly suitable for undeveloped regions with limited/no access to electricity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, R.; Collier, R.
Non-potable drinking water is a major problem for much of the world`s population. It has been estimated that from 15 to 20 million children under the age of 5 die from diarrheal conditions brought on by infected drinking water every year. This is equivalent to a fully-loaded DC-10 crashing every ten minutes of every day, 365 days a year. Heat is one of the most effective methods of disinfecting drinking water. Using conventional means of heating water (heating on an open-flamed stove) results in an extremely energy-intensive process. The main obstacle is that for areas of the world where potablemore » water is a problem, fuel supplies are either too expensive, not available, or the source of devastating environmental problems (deforestation). The apparatus described is a solar-powered water disinfection device that can overcome most if not all of the barriers that presently limit technological solutions to drinking water problems. It uses a parabolic trough solar concentrator with a receiver tube that is also a counterflow heat exchanger. The system is totally self-contained utilizing a photovoltaic-powered water pump, and a standard automotive thermostat for water flow control. The system is designed for simplicity, reliability and the incorporation of technology readily accessible in most areas of the world. Experiments at the Florida Solar Energy Center have demonstrated up to 2,500 liters of safe drinking water per day with 28 square meters of solar concentrator.« less
The National Solar Radiation Data Base (NSRDB)
Sengupta, Manajit; Xie, Yu; Lopez, Anthony; ...
2018-03-19
The National Solar Radiation Data Base (NSRDB), consisting of solar radiation and meteorological data over the United States and regions of the surrounding countries, is a publicly open dataset that has been created and disseminated during the last 23 years. This paper briefly reviews the complete package of surface observations, models, and satellite data used for the latest version of the NSRDB as well as improvements in the measurement and modeling technologies deployed in the NSRDB over the years. The current NSRDB provides solar irradiance at a 4-km horizontal resolution for each 30-min interval from 1998 to 2016 computed bymore » the National Renewable Energy Laboratory's (NREL's) Physical Solar Model (PSM) and products from the National Oceanic and Atmospheric Administration's (NOAA's) Geostationary Operational Environmental Satellite (GOES), the National Ice Center's (NIC's) Interactive Multisensor Snow and Ice Mapping System (IMS), and the National Aeronautics and Space Administration's (NASA's) Moderate Resolution Imaging Spectroradiometer (MODIS) and Modern Era Retrospective analysis for Research and Applications, version 2 (MERRA-2). The NSRDB irradiance data have been validated and shown to agree with surface observations with mean percentage biases within 5% and 10% for global horizontal irradiance (GHI) and direct normal irradiance (DNI), respectively. The data can be freely accessed via https://nsrdb.nrel.gov or through an application programming interface (API). During the last 23 years, the NSRDB has been widely used by an ever-growing group of researchers and industry both directly and through tools such as NREL's System Advisor Model.« less
The National Solar Radiation Data Base (NSRDB)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Manajit; Xie, Yu; Lopez, Anthony
The National Solar Radiation Data Base (NSRDB), consisting of solar radiation and meteorological data over the United States and regions of the surrounding countries, is a publicly open dataset that has been created and disseminated during the last 23 years. This paper briefly reviews the complete package of surface observations, models, and satellite data used for the latest version of the NSRDB as well as improvements in the measurement and modeling technologies deployed in the NSRDB over the years. The current NSRDB provides solar irradiance at a 4-km horizontal resolution for each 30-min interval from 1998 to 2016 computed bymore » the National Renewable Energy Laboratory's (NREL's) Physical Solar Model (PSM) and products from the National Oceanic and Atmospheric Administration's (NOAA's) Geostationary Operational Environmental Satellite (GOES), the National Ice Center's (NIC's) Interactive Multisensor Snow and Ice Mapping System (IMS), and the National Aeronautics and Space Administration's (NASA's) Moderate Resolution Imaging Spectroradiometer (MODIS) and Modern Era Retrospective analysis for Research and Applications, version 2 (MERRA-2). The NSRDB irradiance data have been validated and shown to agree with surface observations with mean percentage biases within 5% and 10% for global horizontal irradiance (GHI) and direct normal irradiance (DNI), respectively. The data can be freely accessed via https://nsrdb.nrel.gov or through an application programming interface (API). During the last 23 years, the NSRDB has been widely used by an ever-growing group of researchers and industry both directly and through tools such as NREL's System Advisor Model.« less
Hard X-Ray Emission from Partially Occulted Solar Flares: RHESSI Observations in Two Solar Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Effenberger, Frederic; Costa, Fatima Rubio da; Petrosian, Vahé
2017-02-01
Flares close to the solar limb, where the footpoints are occulted, can reveal the spectrum and structure of the coronal looptop source in X-rays. We aim at studying the properties of the corresponding energetic electrons near their acceleration site, without footpoint contamination. To this end, a statistical study of partially occulted flares observed with Reuven Ramaty High-Energy Solar Spectroscopic Imager is presented here, covering a large part of solar cycles 23 and 24. We perform detailed spectra, imaging, and light curve analyses for 116 flares and include contextual observations from SDO and STEREO when available, providing further insights into flaremore » emission that were previously not accessible. We find that most spectra are fitted well with a thermal component plus a broken power-law, non-thermal component. A thin-target kappa distribution model gives satisfactory fits after the addition of a thermal component. X-ray imaging reveals small spatial separation between the thermal and non-thermal components, except for a few flares with a richer coronal source structure. A comprehensive light curve analysis shows a very good correlation between the derivative of the soft X-ray flux (from GOES ) and the hard X-rays for a substantial number of flares, indicative of the Neupert effect. The results confirm that non-thermal particles are accelerated in the corona and estimated timescales support the validity of a thin-target scenario with similar magnitudes of thermal and non-thermal energy fluxes.« less
Solar Urban Neighborhood (SUN). Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellertson, J.
1984-07-10
The Solar Urban Neighborhood (SUN) project was conceived to demonstrate a widely applicable cooperative procedure for low and moderate income urban residents to conserve energy and promote neighborhood revitalization through installing affordable energy conservation and solar retrofit measures on their homes. The self-help retrofit systems demonstrated fan-assisted air panels for walls and a mansard roof as well as vented Trombe wall and a sunspace. Building upon a strong tradition of cooperation within their neighborhood (security watches, community gardening, bartering of skills for do-it-yourself projects), these Roxbury neighbors were able to use the DOE grant as a catalyst for doing amore » far more ambitious undertaking. Additionally, the project used elements of a private-public partnership since the project director was also an energy retrofit contractor with specialized equipment and skills to share, wholesale purchase access, etc. Countervailing negative forces which impeded the progress of the project were the very ambitiousness of the solar retrofit itself, the delays in receiving the initial start up grant advance and in overcoming zoning restrictions which required design modifications; and discovery of building defects (dry rot, carpenter ants) within the structures at the time of retrofit. Nevertheless, the SUN project did have a wide impact through formal and informal outreach; through an associated project, SUN-TECH, which promoted solar retrofit awareness and involvement of City of Boston building, energy, and housing officials; and through evolvement of a grass roots level public-private partnership.« less
The Heliophysics Integrated Observatory
NASA Astrophysics Data System (ADS)
Csillaghy, A.; Bentley, R. D.
2009-12-01
HELIO is a new Europe-wide, FP7-funded distributed network of services that will address the needs of a broad community of researchers in heliophysics. This new research field explores the “Sun-Solar System Connection” and requires the joint exploitation of solar, heliospheric, magnetospheric and ionospheric observations. HELIO will provide the most comprehensive integrated information system in this domain; it will coordinate access to the distributed resources needed by the community, and will provide access to services to mine and analyse the data. HELIO will be designed as a Service-oriented Architecture. The initial infrastructure will include services based on metadata and data servers deployed by the European Grid of Solar Observations (EGSO). We will extend these to address observations from all the disciplines of heliophysics; differences in the way the domains describe and handle the data will be resolved using semantic mapping techniques. Processing and storage services will allow the user to explore the data and create the products that meet stringent standards of interoperability. These capabilities will be orchestrated with the data and metadata services using the Taverna workflow tool. HELIO will address the challenges along the FP7 I3 activities model: (1) Networking: we will cooperate closely with the community to define new standards for heliophysics and the required capabilities of the HELIO system. (2) Services: we will integrate the services developed by the project and other groups to produce an infrastructure that can easily be extended to satisfy the growing and changing needs of the community. (3) Joint Research: we will develop search tools that span disciplinary boundaries and explore new types of user-friendly interfaces HELIO will be a key component of a worldwide effort to integrate heliophysics data and will coordinate closely with international organizations to exploit synergies with complementary domains.
Spectral mapping of comet 67P/Churyumov-Gerasimenko with VLT/MUSE and SINFONI
NASA Astrophysics Data System (ADS)
Guilbert-Lepoutre, Aurelie; Besse, Sebastien; Snodgrass, Colin; Yang, Bin
2016-10-01
Comets are supposedly the most primitive objects in the solar system, preserving the earliest record of material from the nebula out of which our Sun and planets were formed, and thus holding crucial clues on the early phases of the solar system formation and evolution. For most small bodies in the solar system we can only access the surface properties, whereas active comet nuclei lose material from their subsurface, so that understanding cometary activity represents an unique opportunity to assess their internal composition, and by extension the composition, the temperature and pressure conditions of the protoplanetary disk at their place of formation.The ESA/Rosetta mission is performing the most thorough investigation of a comet ever made. Rosetta is measuring properties of comet 67P/Churyumov-Gerasimenko at distances between 5 and hundreds of km from the nucleus. However, it is unable to make any measurement over the thousands of km of the rest of the coma. Fortunately, the outer coma is accessible from the ground. In addition, we currently lack an understanding of how the very detailed information gathered from space-based observations can be extrapolated to the many ground-based observations that we can potentially perform. Combining parallel in situ observations with observations from the ground therefore gives us a great opportunity, not only to understand the behavior of 67P, but also to other comets observed exclusively from Earth. As part of the many observations taken from the ground, we have performed a spectral mapping of 67's coma using two IFU instruments mounted on the VLT: MUSE in the visible, and SINFONI in the near-infrared. The observations, carried out in March 2016, will be presented and discussed.
Data Discovery and Access via the Heliophysics Events Knowledgebase (HEK)
NASA Astrophysics Data System (ADS)
Somani, A.; Hurlburt, N. E.; Schrijver, C. J.; Cheung, M.; Freeland, S.; Slater, G. L.; Seguin, R.; Timmons, R.; Green, S.; Chang, L.; Kobashi, A.; Jaffey, A.
2011-12-01
The HEK is a integrated system which helps direct scientists to solar events and data from a variety of providers. The system is fully operational and adoption of HEK has been growing since the launch of NASA's SDO mission. In this presentation we describe the different components that comprise HEK. The Heliophysics Events Registry (HER) and Heliophysics Coverage Registry (HCR) form the two major databases behind the system. The HCR allows the user to search on coverage event metadata for a variety of instruments. The HER allows the user to search on annotated event metadata for a variety of instruments. Both the HCR and HER are accessible via a web API which can return search results in machine readable formats (e.g. XML and JSON). A variety of SolarSoft services are also provided to allow users to search the HEK as well as obtain and manipulate data. Other components include - the Event Detection System (EDS) continually runs feature finding algorithms on SDO data to populate the HER with relevant events, - A web form for users to request SDO data cutouts for multiple AIA channels as well as HMI line-of-sight magnetograms, - iSolSearch, which allows a user to browse events in the HER and search for specific events over a specific time interval, all within a graphical web page, - Panorama, which is the software tool used for rapid visualization of large volumes of solar image data in multiple channels/wavelengths. The user can also easily create WYSIWYG movies and launch the Annotator tool to describe events and features. - EVACS, which provides a JOGL powered client for the HER and HCR. EVACS displays the searched for events on a full disk magnetogram of the sun while displaying more detailed information for events.
2009-07-27
CAPE CANAVERAL, Fla. – At the Astrotech Payload Processing Facility in Titusville, Fla., the Solar Dynamics Observatory is moved across the floor toward the Ransome table in the background. The table will be used to rotate the spacecraft in various directions for access to different areas of the spacecraft. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller
The solar power satellite concepts: The past decade and the next decade
NASA Technical Reports Server (NTRS)
Kraft, C. C., Jr.
1979-01-01
Results of studies on the solar power satellite concept are summarized. The basic advantages are near continuous access to sunlight and freedom from atmospheric effects and cloud cover. The systems definition studies consider photovoltaic and thermal energy conversion systems and find both to be technically feasible, with the photovoltaic approach preferred. A microwave test program is under way which will provide quantitative data on critical parameters, including beam forming and steering accuracy. Ballistic and winged launch vehicles are defined for the transportation of construction materials, with the shuttle expected to provide low cost transportation to and from space. A reference system is outlined for evaluating the concept in terms of environmental and other considerations. Preliminary estimates of natural resource requirements and energy payback intervals are encouraging.
The Solar Stormwatch CME catalogue: Results from the first space weather citizen science project
NASA Astrophysics Data System (ADS)
Barnard, L.; Scott, C.; Owens, M.; Lockwood, M.; Tucker-Hood, K.; Thomas, S.; Crothers, S.; Davies, J. A.; Harrison, R.; Lintott, C.; Simpson, R.; O'Donnell, J.; Smith, A. M.; Waterson, N.; Bamford, S.; Romeo, F.; Kukula, M.; Owens, B.; Savani, N.; Wilkinson, J.; Baeten, E.; Poeffel, L.; Harder, B.
2014-12-01
Solar Stormwatch was the first space weather citizen science project, the aim of which is to identify and track coronal mass ejections (CMEs) observed by the Heliospheric Imagers aboard the STEREO satellites. The project has now been running for approximately 4 years, with input from >16,000 citizen scientists, resulting in a data set of >38,000time-elongation profiles of CME trajectories, observed over 18 preselected position angles. We present our method for reducing this data set into a CME catalogue. The resulting catalogue consists of 144 CMEs over the period January 2007 to February 2010, of which 110 were observed by STEREO-A and 77 were observed by STEREO-B. For each CME, the time-elongation profiles generated by the citizen scientists are averaged into a consensus profile along each position angle that the event was tracked. We consider this catalogue to be unique, being at present the only citizen science-generated CME catalogue, tracking CMEs over an elongation range of 4° out to a maximum of approximately 70°. Using single spacecraft fitting techniques, we estimate the speed, direction, solar source region, and latitudinal width of each CME. This shows that at present, the Solar Stormwatch catalogue (which covers only solar minimum years) contains almost exclusively slow CMEs, with a mean speed of approximately 350 km s-1. The full catalogue is available for public access at www.met.reading.ac.uk/~spate/solarstormwatch. This includes, for each event, the unprocessed time-elongation profiles generated by Solar Stormwatch, the consensus time-elongation profiles, and a set of summary plots, as well as the estimated CME properties.
Predicting solar radiation based on available weather indicators
NASA Astrophysics Data System (ADS)
Sauer, Frank Joseph
Solar radiation prediction models are complex and require software that is not available for the household investor. The processing power within a normal desktop or laptop computer is sufficient to calculate similar models. This barrier to entry for the average consumer can be fixed by a model simple enough to be calculated by hand if necessary. Solar radiation modeling has been historically difficult to predict and accurate models have significant assumptions and restrictions on their use. Previous methods have been limited to linear relationships, location restrictions, or input data limits to one atmospheric condition. This research takes a novel approach by combining two techniques within the computational limits of a household computer; Clustering and Hidden Markov Models (HMMs). Clustering helps limit the large observation space which restricts the use of HMMs. Instead of using continuous data, and requiring significantly increased computations, the cluster can be used as a qualitative descriptor of each observation. HMMs incorporate a level of uncertainty and take into account the indirect relationship between meteorological indicators and solar radiation. This reduces the complexity of the model enough to be simply understood and accessible to the average household investor. The solar radiation is considered to be an unobservable state that each household will be unable to measure. The high temperature and the sky coverage are already available through the local or preferred source of weather information. By using the next day's prediction for high temperature and sky coverage, the model groups the data and then predicts the most likely range of radiation. This model uses simple techniques and calculations to give a broad estimate for the solar radiation when no other universal model exists for the average household.
Effectiveness of a Littoral Combat Ship as a Major Node in a Wireless Mesh Network
2017-03-01
17 Figure 6. Cloud Relay Groups . Source: Persistent Systems (2014a). .......................18 Figure 7. SolarWinds Network Performance Monitor...CIG Commander’s Initiative Group CLI Command Line Interface CN Core Network CODA Common Optical Digital Architecture CPS Cyber-Physical Systems...CSBA Center for Strategic and Budgetary CSG Carrier Strike Group DAMA Demand Assigned Multiple Access DDG Guided Missile Destroyer DL Distributed
2014-03-01
38 2. Mobile Ad Hoc Networks ..................................................................39 3. Wireless Ad Hoc Sensor Networks...59 Figure 32. RENEWS with WiMAX and Wave Relay AP at C-IED Site.............................59 Figure 33. RENEWS Wind Turbine and Solar Panels at Hat...worldwide interoperability for microwave access WSN wireless sensor network xv ACKNOWLEDGMENTS We would like to express our sincerest gratitude
Development of an Airborne High Resolution TV System (AHRTS)
1975-11-01
GOVT ACCESSION NO READ INSTRUCTIONS BEFORE COMPLETING FORM JP RECIPIENT’S CATALOG NUMBER DEVELOPMENT OF AN ^IRBORNE HIGH JESOLUTION TV SYSTEM...c. Sytem Elements The essential Airborne Subsystem elements of camera, video tape recorder, transmitter and antennas are required to have...The camera operated over the 3000:1 light change as required. A solar shutter was Incorporated to protect the vidicon from damage from direct view
NASA Astrophysics Data System (ADS)
Hilton, J. L.
2012-12-01
In September 2010 IAU Commission 4, Ephemerides, organized a working group to provide a recommendation for a preferred format for solar system ephemerides. The purpose of this recommendation is to provide easy access to a wide range of solar system ephemerides for users. The working group, chaired by Hilton, includes representatives from each of the major planetary ephemeris groups and representatives from the satellite and asteroid ephemeris communities. The working group has tentatively decided to recommend the SPK format developed by the Jet Propulsion Laboratory's Navigation and Ancillary Information Facility for use with its SPICE Toolkit. Certain details, however, must still be resolved before a final recommendation is made by the working group. An update is also provided to ongoing analysis comparing the three high accuracy planetary ephemerides, DE421, EPM2008, and INPOP10a. The principal topics of this update are: replacing the INPOP08 ephemeris with the INPOP10a ephemeris, making the comparisons with respect to DE421 rather than DE405, and comparing the TT - TDB values determined in EPM2008 and INPOP10a with the Fairhead & Bretagnon (1990, A&A, 229, 240) model used in DE421 as T_eph.
Ishihara, Hidetaka; Chen, Yen-Chang; De Marco, Nicholas; ...
2016-12-07
The tantalizing prospect of harnessing the unique properties of graphene crumpled nanostructures continues to fuel tremendous interest in energy storage and harvesting applications. However, the paper ball-like, hard texture, and closed-sphere morphology of current 3D graphitic nanostructure production not only constricts the conductive pathways but also limits the accessible surface area. Here, we report new insights into electrohydrodynamically-generated droplets as colloidal nanoreactors in that the stimuli-responsive nature of reduced graphene oxide can lead to the formation of crumpled nanostructures with a combination of open structures and doubly curved, saddle-shaped edges. In particular, the crumpled nanostructures dynamically adapt to non-spherical, polyhedralmore » shapes under continuous deposition, ultimately assembling into foam-like microstructures with a highly accessible surface area and spatially interconnected transport pathways. The implementation of such crumpled nanostructures as three-dimensional rear contacts for solar conversion applications realize benefits of a high aspect ratio, electrically addressable and energetically favorable interfaces, and substantial enhancement of both short-circuit currents and fill-factors compared to those made of planar graphene counterparts. Further, the 3D crumpled nanostructures may shed lights onto the development of effective electrocatalytic electrodes due to their open structure that simultaneously allows for efficient water flow and hydrogen escape.« less
Interoperability at ESA Heliophysics Science Archives: IVOA, HAPI and other implementations
NASA Astrophysics Data System (ADS)
Martinez-Garcia, B.; Cook, J. P.; Perez, H.; Fernandez, M.; De Teodoro, P.; Osuna, P.; Arnaud, M.; Arviset, C.
2017-12-01
The data of ESA heliophysics science missions are preserved at the ESAC Science Data Centre (ESDC). The ESDC aims for the long term preservation of those data, which includes missions such as Ulysses, Soho, Proba-2, Cluster, Double Star, and in the future, Solar Orbiter. Scientists have access to these data through web services, command line and graphical user interfaces for each of the corresponding science mission archives. The International Virtual Observatory Alliance (IVOA) provides technical standards that allow interoperability among different systems that implement them. By adopting some IVOA standards, the ESA heliophysics archives are able to share their data with those tools and services that are VO-compatible. Implementation of those standards can be found in the existing archives: Ulysses Final Archive (UFA) and Soho Science Archive (SSA). They already make use of VOTable format definition and Simple Application Messaging Protocol (SAMP). For re-engineered or new archives, the implementation of services through Table Access Protocol (TAP) or Universal Worker Service (UWS) will leverage this interoperability. This will be the case for the Proba-2 Science Archive (P2SA) and the Solar Orbiter Archive (SOAR). We present here which IVOA standards were already used by the ESA Heliophysics archives in the past and the work on-going.
Ishihara, Hidetaka; Chen, Yen-Chang; De Marco, Nicholas; Lin, Oliver; Huang, Chih-Meng; Limsakoune, Vipawee; Chou, Yi-Chia; Yang, Yang; Tung, Vincent
2016-12-07
The tantalizing prospect of harnessing the unique properties of graphene crumpled nanostructures continues to fuel tremendous interest in energy storage and harvesting applications. However, the paper ball-like, hard texture, and closed-sphere morphology of current 3D graphitic nanostructure production not only constricts the conductive pathways but also limits the accessible surface area. Here, we report new insights into electrohydrodynamically-generated droplets as colloidal nanoreactors in that the stimuli-responsive nature of reduced graphene oxide can lead to the formation of crumpled nanostructures with a combination of open structures and doubly curved, saddle-shaped edges. In particular, the crumpled nanostructures dynamically adapt to non-spherical, polyhedral shapes under continuous deposition, ultimately assembling into foam-like microstructures with a highly accessible surface area and spatially interconnected transport pathways. The implementation of such crumpled nanostructures as three-dimensional rear contacts for solar conversion applications realize benefits of a high aspect ratio, electrically addressable and energetically favorable interfaces, and substantial enhancement of both short-circuit currents and fill-factors compared to those made of planar graphene counterparts. Further, the 3D crumpled nanostructures may shed lights onto the development of effective electrocatalytic electrodes due to their open structure that simultaneously allows for efficient water flow and hydrogen escape.
DC-based smart PV-powered home energy management system based on voltage matching and RF module
Hasan, W. Z. W.
2017-01-01
The main tool for measuring system efficiency in homes and offices is the energy monitoring of the household appliances’ consumption. With the help of GUI through a PC or smart phone, there are various applications that can be developed for energy saving. This work describes the design and prototype implementation of a wireless PV-powered home energy management system under a DC-distribution environment, which allows remote monitoring of appliances’ energy consumptions and power rate quality. The system can be managed by a central computer, which obtains the energy data based on XBee RF modules that access the sensor measurements of system components. The proposed integrated prototype framework is characterized by low power consumption due to the lack of components and consists of three layers: XBee-based circuit for processing and communication architecture, solar charge controller, and solar-battery-load matching layers. Six precise analogue channels for data monitoring are considered to cover the energy measurements. Voltage, current and temperature analogue signals were accessed directly from the remote XBee node to be sent in real time with a sampling frequency of 11–123 Hz to capture the possible surge power. The performance shows that the developed prototype proves the DC voltage matching concept and is able to provide accurate and precise results. PMID:28934271
Ishihara, Hidetaka; Chen, Yen-Chang; De Marco, Nicholas; Lin, Oliver; Huang, Chih-Meng; Limsakoune, Vipawee; Chou, Yi-Chia; Yang, Yang; Tung, Vincent
2016-01-01
The tantalizing prospect of harnessing the unique properties of graphene crumpled nanostructures continues to fuel tremendous interest in energy storage and harvesting applications. However, the paper ball-like, hard texture, and closed-sphere morphology of current 3D graphitic nanostructure production not only constricts the conductive pathways but also limits the accessible surface area. Here, we report new insights into electrohydrodynamically-generated droplets as colloidal nanoreactors in that the stimuli-responsive nature of reduced graphene oxide can lead to the formation of crumpled nanostructures with a combination of open structures and doubly curved, saddle-shaped edges. In particular, the crumpled nanostructures dynamically adapt to non-spherical, polyhedral shapes under continuous deposition, ultimately assembling into foam-like microstructures with a highly accessible surface area and spatially interconnected transport pathways. The implementation of such crumpled nanostructures as three-dimensional rear contacts for solar conversion applications realize benefits of a high aspect ratio, electrically addressable and energetically favorable interfaces, and substantial enhancement of both short-circuit currents and fill-factors compared to those made of planar graphene counterparts. Further, the 3D crumpled nanostructures may shed lights onto the development of effective electrocatalytic electrodes due to their open structure that simultaneously allows for efficient water flow and hydrogen escape. PMID:27924857
DC-based smart PV-powered home energy management system based on voltage matching and RF module.
Sabry, Ahmad H; Hasan, W Z W; Ab Kadir, Mza; Radzi, M A M; Shafie, S
2017-01-01
The main tool for measuring system efficiency in homes and offices is the energy monitoring of the household appliances' consumption. With the help of GUI through a PC or smart phone, there are various applications that can be developed for energy saving. This work describes the design and prototype implementation of a wireless PV-powered home energy management system under a DC-distribution environment, which allows remote monitoring of appliances' energy consumptions and power rate quality. The system can be managed by a central computer, which obtains the energy data based on XBee RF modules that access the sensor measurements of system components. The proposed integrated prototype framework is characterized by low power consumption due to the lack of components and consists of three layers: XBee-based circuit for processing and communication architecture, solar charge controller, and solar-battery-load matching layers. Six precise analogue channels for data monitoring are considered to cover the energy measurements. Voltage, current and temperature analogue signals were accessed directly from the remote XBee node to be sent in real time with a sampling frequency of 11-123 Hz to capture the possible surge power. The performance shows that the developed prototype proves the DC voltage matching concept and is able to provide accurate and precise results.
NASA Astrophysics Data System (ADS)
Samson, Philippe
2005-05-01
The constant evolution of the satellite market is asking for better technical performances and reliability for a reduced cost. Solar array is in front line of this challenge.This can be achieved by present technologies progressive improvement in cost reduction or by technological breakthrough.To reach an effective End Of Live performance100 W/kg of solar array is not so easy, even if you suppose that the mass of everything is nothing!Thin film cells are potential candidate to contribute to this challenge with certain confidence level and consequent development plan validation and qualification on ground and flight.Based on a strong flight heritage in flexible Solar Array design, the work has allowed in these last years, to pave the way on road map of thin film technologies . This is encouraged by ESA on many technological contracts put in concurrent engineering.CISG was selected cell and their strategy of design, contributions and results will be presented.Trade-off results and Design to Cost solutions will discussed.Main technical drivers, system design constraints, market access, key technologies needed will be detailed in this paper and the resulting road-map and development plan will be presented.
NASA Technical Reports Server (NTRS)
Pryor, Wayne
1999-01-01
Dr. Wayne Pryor worked on three projects this summer. These were: 1) Inertial Electrostatic Confinement; 2) The Laser Elevator; and 3) Solar System Survey for Propellants Abstract. We Assisted Jon Nadler from Richland Community College in assembling and operating a table-top nuclear fusion reactor. We successfully demonstrated neutron production in a deuterium plasma. Pryor also obtained basic spectroscopic information on the atomic and molecular emissions in the plasma. The second project consisted of the completion of a paper on a novel propulsion concept (due to Tom Meyer of Colorado, the first author): a laser sail that bounces light back to the laser source. Recycling the photons from source to sail perhaps 100-1000 times dramatically improves the energy efficiency of this system, which may become very important for high-velocity missions in the future. Lastly, we compiled a very basic inventory of solar system propellant resources, their locations, and their accessibility. This initial inventory concentrates on sunlight availability, water availability, and the difficulty (delta-velocity requirement and radiation environment) in getting there.
Catalog of solar wind events identified from observations by ISTP spacecraft
NASA Technical Reports Server (NTRS)
Peredo, M.; Berdichevsky, D.; Byrnes, J.; Lepping, R. P.; Ogilvie, K.; Lazarus, A. J.; Paularena, K. I.; Steinberg, J. T.
1995-01-01
The ISTP Science Planning and Operations Facility (SPOF), in collaboration with ISTP investigators, is developing a catalog of solar wind events and features. The catalog is primarily based on plasma and magnetic field observations from the WIND and IMP-8 spacecraft. Interplanetary events that may trigger magnetospheric activity are included as well as features of interest for using the solar wind as a plasma laboratory. Catalog coverage begins on September 8, 1992, the start of ISTP science data collection. The catalog is based on Key Parameter data sets (preliminary summary data at approximately 1 min time resolution produced quickly for survey purposes) and as such has limited citability in formal scientific work. Its primary intent is to serve as a reference for identifying candidate periods for further study, such as may be the focus of coordinated data analysis efforts during ISTP and/or IACG Science Campaigns. To facilitate access by members of the ISTP and wider space physics communities, the catalog will be available on the World Wide Web. The contents of the catalog will be described, and samples of catalog information will be presented.
Boccard, Mathieu; Battaglia, Corsin; Hänni, Simon; Söderström, Karin; Escarré, Jordi; Nicolay, Sylvain; Meillaud, Fanny; Despeisse, Matthieu; Ballif, Christophe
2012-03-14
The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to efficiently extract them to the electrical circuit. For thin-film solar cells, all these tasks rely heavily on the transparent front electrode. Here we present a multiscale electrode architecture that allows us to achieve efficiencies as high as 14.1% with a thin-film silicon tandem solar cell employing only 3 μm of silicon. Our approach combines the versatility of nanoimprint lithography, the unusually high carrier mobility of hydrogenated indium oxide (over 100 cm(2)/V/s), and the unequaled light-scattering properties of self-textured zinc oxide. A multiscale texture provides light trapping over a broad wavelength range while ensuring an optimum morphology for the growth of high-quality silicon layers. A conductive bilayer stack guarantees carrier extraction while minimizing parasitic absorption losses. The tunability accessible through such multiscale electrode architecture offers unprecedented possibilities to address the trade-off between cell optical and electrical performance. © 2012 American Chemical Society
The Road to IRIS data products
NASA Astrophysics Data System (ADS)
Hurlburt, N. E.; Title, A. M.; De Pontieu, B.; Lemen, J. R.; Wuelser, J.; Tarbell, T. D.; Wolfson, C. J.; Schrijver, C. J.; Golub, L.; DeLuca, E. E.; Kankelborg, C. C.; Hansteen, V. H.; Carlsson, M.; Bush, R. I.
2013-12-01
The Interface Region Imaging Spectrograph generates a complex set of data products that the IRIS team has strived to deliver to the community in forms that are easy to find and use. We review the results of these efforts and invite the community to explore the data and tools. All standard IRIS data products are based on calibrated images are corrected for a variety of instrumental effects. The resulting products are incorporated into the Heliophysics Event Knowledgebase (HEK) as annotated data sets accessible through the HEK Coverage Registry (HCR). Annotations include descriptions of the data products themselves (pointing, field of view, cadence...) as well as references to coordinated observations from the Hinode mission and other observatories, and to solar events identified in the HEK Event Registry (HER). IRIS data products are available at the LMSAL and Stanford (JSOC) data centers in Palo Alto and the Hinode Data Center in Oslo. Portals that can help users to select data products include the LMSAL iSolsearch, the Virtual Solar Observatory and Helioviewer. Supporting analysis software is available in the IRIS branch of SolarSoft.
NASA Astrophysics Data System (ADS)
Schrijver, K.; Knoelker, M.
1999-05-01
The NASA Sun-Earth Connections Program is currently revising its Roadmap, the long-range plan for science goals, technology development, and missions between 2000 and 2040. From the interior dynamics of the Sun, to the interactions of plasma, fields, and radiation in the photosphere and solar atmosphere, to the heating and structure of the corona, to the acceleration, structure, and evolution of the solar wind, to the interactions of the heliosphere with the interstellar medium, to the processes of solar, stellar, and solar system evolution - progress in each of these domains will help us understand how the Sun impacts our home in space. The Roadmap Committee is seeking to refine and extend the SEC's vision and identify the milestone missions for the future. During this session, an outline of the current draft Roadmap will be presented, and further community involvement will be solicited to ensure the strongest possible concensus on the revised Roadmap. The National Academy of Sciences' Space Science Board has appointed a committee to perform a Decadal Survey of Astronomy and Astrophysics, which is surveying the field of space- and ground-based astronomy and astrophysics, recommending priorities for the most important new initiatives of the decade 2000-2010. The prioritization delivered by the earlier Decadal Surveys has played an important role in guiding the funding agencies in setting their priorities for astronomy and astrophysics. Therefore it will be of crucial importance for solar physics to contribute a strong case for its own set of future projects to be incorpoprated into the survey. The solar physics of the next decade will be characterized by its increasing societal relevance in the context of the National Space Weather Program and related issues, as well as its classical importance as a ``base" for many astrophysical questions. The presentation and subsequent discussion at the Chicago meeting is intended to solicit further community input, to achieve optimal representation for solar physics in the Decadal Survey. The Roadmap Committee and the Decadal Survey's solar panel encourage the whole solar physics community to contact them prior to the meeting. The list of the committee/panel members and their e-mail addresses, as well as related information, can be accessed via their websites at http://www.lmsal.com/sec/ and http://www.nas.edu/bpa/projects/astrosurvey/solar/ , respectively.
Virtual Planetary Space Weather Services offered by the Europlanet H2020 Research Infrastructure
NASA Astrophysics Data System (ADS)
André, N.; Grande, M.; Achilleos, N.; Barthélémy, M.; Bouchemit, M.; Benson, K.; Blelly, P.-L.; Budnik, E.; Caussarieu, S.; Cecconi, B.; Cook, T.; Génot, V.; Guio, P.; Goutenoir, A.; Grison, B.; Hueso, R.; Indurain, M.; Jones, G. H.; Lilensten, J.; Marchaudon, A.; Matthiä, D.; Opitz, A.; Rouillard, A.; Stanislawska, I.; Soucek, J.; Tao, C.; Tomasik, L.; Vaubaillon, J.
2018-01-01
Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. PSWS will make twelve new services accessible to the research community, space agencies, and industrial partners planning for space missions. These services will in particular be dedicated to the following key planetary environments: Mars (in support of the NASA MAVEN and European Space Agency (ESA) Mars Express and ExoMars missions), comets (building on the outstanding success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUpiter ICy moon Explorer mission), and one of these services will aim at predicting and detecting planetary events like meteor showers and impacts in the Solar System. This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather as well as to space situational awareness in the tools and models available within the partner institutes. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. PSWS will provide the additional research and tailoring required to apply them for these purposes. PSWS will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end of 2017. To achieve its objectives PSWS will use a few tools and standards developed for the Astronomy Virtual Observatory (VO). This paper gives an overview of the project together with a few illustrations of prototype services based on VO standards and protocols.
Jones, M; Aptaker, P S; Cox, J; Gardiner, B A; McDonald, P J
2012-05-01
This paper presents the design of the 'Tree Hugger', an open access, transportable, 1.1 MHz (1)H nuclear magnetic resonance imaging system for the in situ analysis of living trees in the forest. A unique construction employing NdFeB blocks embedded in a reinforced carbon fibre frame is used to achieve access up to 210 mm and to allow the magnet to be transported. The magnet weighs 55 kg. The feasibility of imaging living trees in situ using the 'Tree Hugger' is demonstrated. Correlations are drawn between NMR/MRI measurements and other indicators such as relative humidity, soil moisture and net solar radiation. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Klise, G. T.; Tidwell, V. C.; Macknick, J.; Reno, M. D.; Moreland, B. D.; Zemlick, K. M.
2013-12-01
In the Southwestern United States, there are many large utility-scale solar photovoltaic (PV) and concentrating solar power (CSP) facilities currently in operation, with even more under construction and planned for future development. These are locations with high solar insolation and access to large metropolitan areas and existing grid infrastructure. The Bureau of Land Management, under a reasonably foreseeable development scenario, projects a total of almost 32 GW of installed utility-scale solar project capacity in the Southwest by 2030. To determine the potential impacts to water resources and the potential limitations water resources may have on development, we utilized methods outlined by the Bureau of Land Management (BLM) to determine potential water use in designated solar energy zones (SEZs) for construction and operations & maintenance (O&M), which is then evaluated according to water availability in six Southwestern states. Our results indicate that PV facilities overall use less water, however water for construction is high compared to lifetime operational water needs. There is a transition underway from wet cooled to dry cooled CSP facilities and larger PV facilities due to water use concerns, though some water is still necessary for construction, operations, and maintenance. Overall, ten watersheds, 9 in California, and one in New Mexico were identified as being of particular concern because of limited water availability. Understanding the location of potentially available water sources can help the solar industry determine locations that minimize impacts to existing water resources, and help understand potential costs when utilizing non-potable water sources or purchasing existing appropriated water. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
What is Swanson's Law & why Should you Care?
NASA Astrophysics Data System (ADS)
Hansen, S. F.; Partain, L.; Hansen, R. T.
2015-12-01
For 40 years the cost of Solar Photovoltaics (PV) has decreased by a factor of 2 for every 10X increase in its cumulative-installed electric-generating capacity (CC). The straight line, log-log, experimental and historical data fit of cost versus CC is called Swanson's Law for its accurate fit of the rapid decrease in cost over 6 orders of magnitude increase in CC with time. Now Solar PV is cost competitive with coal and natural gas in some regions and provides 1% of the world's electric generating capacity. The Law can next be tested to predict the future. With 2 more orders of magnitude increase in CC, Solar PV could provide 10% and then 100% of the world's current electric capacity, as the Law projects costs falling by another factor of 4. For the last 10 years CC has doubled every 2 years under strong public policy support. If this doubling and policy support are extended, an order-of-magnitude increase (10X) will occur every 6.6 yrs and installed solar PV capacity could reach 100% of the current world's consumption in 13 years or by 2028. The world's solar resource, accessible indefinitely and yearly to PV, is over 1000 times current consumption while coal, uranium, petroleum and natural gas are finite, limited resources, destined to be depleted within our lifetimes or the lives of our children or grandchildren. In 2015 a 56 MW fossil fueled power plant was shut down at Stanford University and replaced with Solar PV and geothermal to save money and eliminate greenhouse gas emissions. If more such shut downs could follow this same 2 year doubling time as Solar PV, then the replacements could exceed 14,000 within 26 years or by 2041, including all 7000 current coal-fired plants plus an equivalent number fueled by uranium, petroleum and natural gas. These shut-downs, including all current fossil-fueled-power plants, could start reversing the human-generated, greenhouse-gas-induced, global climate changes by 2041.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyson, Anna
Intelligent Facades for High Performance Green Buildings: Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, we have undertaken a high-performance building- integrated combined-heat andmore » power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring on- site solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high- quality resource that can be applied to building demands such as heating, cooling, dehumidification, domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic building envelope. The advantage of being able to use the entire solar spectrum for active and passive benefits, along with the potential savings of avoiding transmission losses through direct current (DC) transfer to all buildings systems directly from the site of solar conversion, gives the system a compounded economic viability within the commercial and institutional building markets.« less
Continuous-flow solar UVB disinfection reactor for drinking water.
Mbonimpa, Eric Gentil; Vadheim, Bryan; Blatchley, Ernest R
2012-05-01
Access to safe, reliable sources of drinking water is a long-standing problem among people in developing countries. Sustainable solutions to these problems often involve point-of-use or community-scale water treatment systems that rely on locally-available resources and expertise. This philosophy was used in the development of a continuous-flow, solar UVB disinfection system. Numerical modeling of solar UVB spectral irradiance was used to define temporal variations in spectral irradiance at several geographically-distinct locations. The results of these simulations indicated that a solar UVB system would benefit from incorporation of a device to amplify ambient UVB fluence rate. A compound parabolic collector (CPC) was selected for this purpose. Design of the CPC was based on numerical simulations that accounted for the shape of the collector and reflectance. Based on these simulations, a prototype CPC was constructed using materials that would be available and inexpensive in many developing countries. A UVB-transparent pipe was positioned in the focal area of the CPC; water was pumped through the pipe to allow exposure of waterborne microbes to germicidal solar UVB radiation. The system was demonstrated to be effective for inactivation of Escherichia coli, and DNA-weighted UV dose was shown to govern reactor performance. The design of the reactor is expected to scale linearly, and improvements in process performance (relative to results from the prototype) can be expected by use of larger CPC geometry, inclusion of better reflective materials, and application in areas with greater ambient solar UV spectral irradiance than the location of the prototype tests. The system is expected to have application for water treatment among communities in (developing) countries in near-equatorial and tropical locations. It may also have application for disaster relief or military field operations, as well as in water treatment in areas of developed countries that receive relatively intense solar UVB radiation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Modeling Planetary Atmospheric Energy Deposition By Energetic Ions
NASA Astrophysics Data System (ADS)
Parkinson, Christopher; Bougher, Stephen; Gronoff, Guillaume; Barthelemy, Mathieu
2016-07-01
The structure, dynamics, chemistry, and evolution of planetary upper atmospheres are in large part determined by the available sources of energy. In addition to the solar EUV flux, the solar wind and solar energetic particle (SEP) events are also important sources. Both of these particle populations can significantly affect an atmosphere, causing atmospheric loss and driving chemical reactions. Attention has been paid to these sources from the standpoint of the radiation environment for humans and electronics, but little work has been done to evaluate their impact on planetary atmospheres. At unmagnetized planets or those with crustal field anomalies, in particular, the solar wind and SEPs of all energies have direct access to the atmosphere and so provide a more substantial energy source than at planets having protective global magnetic fields. Additionally, solar wind and energetic particle fluxes should be more significant for planets orbiting more active stars, such as is the case in the early history of the solar system for paleo-Venus and Mars. Therefore quantification of the atmospheric energy input from the solar wind and SEP events is an important component of our understanding of the processes that control their state and evolution. We have applied a full Lorentz motion particle transport model to study the effects of particle precipitation in the upper atmospheres of Mars and Venus. Such modeling has been previously done for Earth and Mars using a guiding center precipitation model. Currently, this code is only valid for particles with small gyroradii in strong uniform magnetic fields. There is a clear necessity for a Lorentz formulation, hence, a systematic study of the ionization, excitation, and energy deposition has been conducted, including a comparison of the influence relative to other energy sources (namely EUV photons). The result is a robust examination of the influence of energetic ion transport on the Venus and Mars upper atmosphere which will be discussed in this presentation.
An open platform for promoting interoperability in solar system sciences
NASA Astrophysics Data System (ADS)
Csillaghy, André; Aboudarham, Jean; Berghmans, David; Jacquey, Christian
2013-04-01
The European coordination project CASSIS is promoting the creation of an integrated data space that will facilitate science across community boundaries in solar system sciences. Many disciplines may need to use the same data set to support scientific research, although the way they are used may depend on the project and on the particular piece of science. Often, access is hindered because of differences in the way the different communities describe, store their data, as well as how they make them accessible. Working towards this goal, we have set up an open collaboration platform, www.explorespace.eu, that can serve as a hub for discovering and developing interoperability resources in the communities involved. The platform is independent of the project and will be maintained well after the end of the funding. As a first step, we have captured the description of services already provided by the community. The openness of the collaboration platform should allow to discuss with all stakeholders ways to make key types of metadata and derived products more complete and coherent and thus more usable across the domain boundaries. Furthermore, software resources and discussions should help facilitating the development of interoperable services. The platform, along with the database of services, address the following questions, which we consider crucial for promoting interoperability: • Current extent of the data space coverage: What part of the common data space is already covered by the existing interoperable services in terms of data access. In other words, what data, from catalogues as well as from raw data, can be reached by an application through standard protocols today? • Needed extension of the data space coverage: What would be needed to extend the data space coverage? In other words, how can the currently accessible data space be extended by adding services? • Missing services: What applications / services are still missing and need to be developed? This is not a trivial question, as the generation of the common data space in itself creates new requirements on overarching applications that might be necessary to provide a unified access to all the services. As an example, one particular aspect discussed in the platform is the design of web services. Applications of today are mainly human centred while interoperability must happen one level below and the back ends (databases) must be generic, i.e. independent from the applications. We intent our effort to provide to developers resources that disentangle user interfaces from data services. Many activities are challenging and we hope they will be discussed on our platform. In particular, the quality of the services, the data space and the needs of interdisciplinary approaches are serious concerns for instruments such as ATST and EST or the ones onboard SDO and, in the future, Solar Orbiter. We believe that our platform might be useful as a kind of guide that would allow groups of not having to reinvent the wheel for each new instrument.
Stellar Atmospheric Modelling for the ACCESS Program
NASA Astrophysics Data System (ADS)
Morris, Matthew; Kaiser, Mary Elizabeth; Bohlin, Ralph; Kurucz, Robert; ACCESS Team
2018-01-01
A goal of the ACCESS program (Absolute Color Calibration Experiment for Standard Stars) is to enable greater discrimination between theoretical astrophysical models and observations, where the comparison is limited by systematic errors associated with the relative flux calibration of the targets. To achieve these goals, ACCESS has been designed as a sub-orbital rocket borne payload and ground calibration program, to establish absolute flux calibration of stellar targets at <1 % precision, with a resolving power of 500 across the 0.35 to 1.7 micron bandpass.In order to obtain higher resolution spectroscopy in the optical and near-infrared range than either the ACCESS payload or CALSPEC observations provide, the ACCESS team has conducted a multi-instrument observing program at Apache Point Observatory. Using these calibrated high resolution spectra in addition to the HST/CALSPEC data, we have generated stellar atmosphere models for ACCESS flight candidates, as well as a selection of A and G stars from the CALSPEC database. Stellar atmosphere models were generated using Atlas 9 and Atlas 12 Kurucz stellar atmosphere software. The effective temperature, log(g), metallicity, and redenning were varied and the chi-squared statistic was minimized to obtain a best-fit model. A comparison of these models and the results from interpolation between grids of existing models will be presented. The impact of the flexibility of the Atlas 12 input parameters (e.g. solar metallicity fraction, abundances, microturbulent velocity) is being explored.
Small Aerostationary Telecommunications Orbiter Concept for Mars in the 2020s
NASA Technical Reports Server (NTRS)
Lock, Robert E.; Edwards, Charles D., Jr.; Nicholas, Austin; Woolley, Ryan; Bell, David J.
2016-01-01
Current Mars science orbiters carry UHF proximity payloads to provide limited access and data services to landers and rovers on Mars surface. In the era of human spaceflight to Mars, very high rate and reliable relay services will be needed to serve a large number of supporting vehicles, habitats, and orbiters, as well as astronaut EVAs. These will likely be provided by a robust network of orbiting assets in very high orbits, such as areostationary orbits. In the decade leading to that era, telecommunications orbits can be operated at areostationary orbit that can support a significant population of robotic precursor missions and build the network capabilities needed for the human spaceflight era. Telecommunications orbiters of modest size and cost, delivered by Solar Electric Propulsion to areostationary orbit, can provide continuous access at very high data rates to users on the surface and in Mars orbit.In the era of human spaceflight to Mars very high rate andreliable relay services will be needed to serve a largenumber of supporting vehicles, habitats, and orbiters, aswell as astronaut EVAs. These could be provided by arobust network of orbiting assets in very high orbits. In thedecade leading to that era, telecommunications orbiterscould be operated at areostationary orbit that could support asignificant population of robotic precursor missions andbuild the network capabilities needed for the humanspaceflight era. These orbiters could demonstrate thecapabilities and services needed for the future but withoutthe high bandwidth and high reliability requirements neededfor human spaceflight.Telecommunications orbiters of modest size and cost,delivered by Solar Electric Propulsion to areostationaryorbit, could provide continuous access at very high datarates to users on the surface and in Mars orbit. Twoexamples highlighting the wide variety of orbiter deliveryand configuration options were shown that could providehigh-performance service to users.
IMP-8. Volume 2: Scientific section. [Bibliography
NASA Technical Reports Server (NTRS)
1980-01-01
Results of the analysis of the IMP-8 data, which was collected during the first six and one-half years after launch of the IMP-8 spacecraft are presented. The plasma wave experiment data were processed and are available in an easily accessible summary form. These data continue to provide a valuable source for comparative studies with plasma wave experiments on other spacecraft operating in the solar wind and within the Earth's magnetosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannon, E.; Miranda, A.L.
1990-08-01
The market survey covers the renewable energy resources market in the Philippines. Sub-sectors covered include biomass, solar energy, photovoltaic cells, windmills, and mini-hydro systems. The analysis contains statistical and narrative information on projected market demand, end-users; receptivity of Philippine consumers to U.S. products; the competitive situation, and market access (tariffs, non-tariff barriers, standards, taxes, distribution channels). It also contains key contact information.
Mini, Micro, and Swarming Unmanned Aerial Vehicles: A Baseline Study
2006-11-01
Hunter was being flown by the Belgian military to observe automobile traffic and crowds as part of the European peacekeeping force EUFOR Congo in support... automobile traffic, borders, floods, forests, ice, pipelines, pollution, ports, snow packs, soil moisture, solar radiation, weather, wetlands, and wild...MIGnews.com.ua Web site, October 24, 2006 <http://mignews.com.ua/en/articles/213361.html> (Accessed October 2006). Williams, Sally. “Welsh Team Plans Pilotless
2015-01-01
environ- mentally friendly power -producing and -saving technolo- gies on physical ATONs; using photovoltaic cells as supple- mental power sources, such...ATON positioning, solar power , and self-contained LED lanterns. And, as technological advancements have made accessing and transiting the MTS more...Atmospheric Administration (NOAA) charts up to date. However, with the vast increase in com- puting power and system interconnectivity, there is a rec
Manufacturing and fabrication, part 3. [extraterrestrial resources
NASA Technical Reports Server (NTRS)
Sastri, Sankar; Duke, Michael B.; Haskin, Larry A.
1992-01-01
The accessibility of material and energy off the Earth and the leverage that these nonterrestrial resources can exert on the space transportation system are important influences on the long-term goal of exploring the solar system. Research on separation of lunar materials and manufacturing of useful products from them is in its infancy. A few possible processes and products are described in this report. Specific attention is given to oxygen, metal, and silicate products.
NASA Astrophysics Data System (ADS)
Ghezzi, Iván; Ruggles, Clive L. N.
A line of thirteen rectangular towers, built along a north-south hilltop ridge within a ceremonial complex in coastal Peru dating to c. 300 BC, appears to represent the oldest known solar observation device in the Americas. The fact that this device functions throughout the seasonal year, and still functions today, makes it unique on the planet. The broader archaeological evidence suggests that observations of sunrise and sunset against the thirteen towers served to regulate a social and ritual calendar while reinforcing a solar cult that helped to lend legitimacy and authority to a rising warrior elite. Recent archaeoastronomical work has identified a wider range of potentially significant alignments, possibly including some lunar ones, visible from publicly accessible places rather than just by a few high-status individuals. The site and its interpretation also illustrate some fundamental issues of archaeoastronomical methodology and practice that are of broader significance.
NASA Astrophysics Data System (ADS)
Scherrer, D. K.; Rabello-Soares, M. C.; Morrow, C.
2006-08-01
Stanford's Solar Center, Electrical Engineering Department, and local educators have developed inexpensive Space Weather Monitors that students around the world can use to track solar-induced changes to the Earth's ionosphere. Through the United Nations Basic Space Science Initiative (UNBSSI) and the IHY Education and Public Outreach Program, our Monitors are being deployed to 191 countries for the International Heliophysical Year, 2007. In partnership with Chabot Space and Science Center, we are designing and developing classroom and educator support materials to accompany the distribution. Materials will be culturally sensitive and will be translated into the six official languages of the United Nations (Arabic, Chinese, English, French, Russian, and Spanish). Monitors will be provided free of charge to developing nations and can be set up anywhere there is access to power.
The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory
NASA Astrophysics Data System (ADS)
Gurman, J. B.; Hourclé, J. A.; Bogart, R. S.; Tian, K.; Hill, F.; Suàrez-Sola, I.; Zarro, D. M.; Davey, A. R.; Martens, P. C.; Yoshimura, K.; Reardon, K. M.
2006-12-01
The Virtual Solar Observatory (VSO) has survived its infancy and provides metadata search and data identification for measurements from 45 instrument data sets held at 12 online archives, as well as flare and coronal mass ejection (CME) event lists. Like any toddler, the VSO is good at getting into anything and everything, and is now extending its grasp to more data sets, new missions, and new access methods using its application programming interface (API). We discuss and demonstrate recent changes, including developments for STEREO and SDO, and an IDL-callable interface for the VSO API. We urge the heliophysics community to help civilize this obstreperous youngster by providing input on ways to make the VSO even more useful for system science research in its role as part of the growing cluster of Heliophysics Virtual Observatories.
2009-07-27
CAPE CANAVERAL, Fla. – At the Astrotech Payload Processing Facility in Titusville, Fla., technicians check the Solar Dynamics Observatory after it was lifted from its work stand. The spacecraft is being moved onto a Ransome table that will allow it to be rotated in various directions for access to different areas of the spacecraft. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller