Science.gov

Sample records for solar activity influences

  1. Influence of solar activity on Jupiter's atmosphere

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2016-05-01

    The influx of solar energy to different latitudes while Jupiter's orbital motion around the Sun varies significantly. This leads to a change in the optical and physical characteristics of its atmosphere. Analysis of the data for 1850-1991 on determination of the integral magnitude Mj Jupiter in the V filter, and a comparison with the changes of the Wolf numbers W, characterizing the variations of solar activity (SA) - showed that the change of Mj in maxima of the SA - has minima for odd, and maximums - for the even of SA cycles. That is, changing of the Jupiter brightness in visible light is much evident 22.3-year magnetic cycle, and not just about the 11.1-year cycle of solar activity. Analysis of the obtained in 1960-2015 data on the relative distribution of brightness along the central meridian of Jupiter, for which we calculated the ratio of the brightness Aj of northern to the southern part of the tropical and temperate latitudinal zones, allowed to approximate the change of Aj by sinusoid with a period of 11.91±0.07 earth years. Comparison of time variation of Aj from changes in the index of SA R, and the movement of the planet in its orbit - indicates the delay of response of the visible cloud layer in the atmosphere of the Sun's exposure mode for 6 years. This value coincides with the radiative relaxation of the hydrogen-helium atmosphere

  2. Solar activity influence on air temperature regimes in caves

    NASA Astrophysics Data System (ADS)

    Stoeva, Penka; Mikhalev, Alexander; Stoev, Alexey

    Cave atmospheres are generally included in the processes that happen in the external atmosphere as circulation of the cave air is connected with the most general circulation of the air in the earth’s atmosphere. Such isolated volumes as the air of caves are also influenced by the variations of solar activity. We discuss cave air temperature response to climate and solar and geomagnetic activity for four show caves in Bulgaria studied for a period of 46 years (1968 - 2013). Everyday noon measurements in Ledenika, Saeva dupka, Snezhanka and Uhlovitsa cave have been used. Temperatures of the air in the zone of constant temperatures (ZCT) are compared with surface temperatures recorded at meteorological stations situated near about the caves - in the towns of Vratsa, Lovech, Peshtera and Smolyan, respectively. For comparison, The Hansen cave, Middle cave and Timpanogos cave from the Timpanogos Cave National Monument, Utah, USA situated nearly at the same latitude have also been examined. Our study shows that the correlation between cave air temperature time series and sunspot number is better than that between the cave air temperature and Apmax indices; that t°ZCT is rather connected with the first peak in geomagnetic activity, which is associated with transient solar activity (CMEs) than with the second one, which is higher and connected with the recurrent high speed streams from coronal holes. Air temperatures of all examined show caves, except the Ledenika cave, which is ice cave show decreasing trends. On the contrary, measurements at the meteorological stations show increasing trends in the surface air temperatures. The trend is decreasing for the Timpanogos cave system, USA. The conclusion is that surface temperature trends depend on the climatic zone, in which the cave is situated, and there is no apparent relation between temperatures inside and outside the caves. We consider possible mechanism of solar cosmic rays influence on the air temperatures in caves

  3. Solar Cycle Influence on Ionospheric Outflows and Implications for Geomagnetic Activity

    NASA Astrophysics Data System (ADS)

    Lotko, W.; Brambles, O. J.; Zhang, B.; Wiltberger, M. J.

    2011-12-01

    Global simulations have shown that the presence of ionospheric ions in the magnetosphere has a major influence on geospace dynamics including, among other effects, modifications of the ionospheric potential and currents, inflation of the magnetosphere, intensification of the ring current and development of sawtooth oscillations. The hemispheric fluence of ionospheric outflows changes during the solar cycle in two fundamental ways. First and most importantly for superthermal outflows, the fluence increases with geomagnetic activity, which itself exhibits complex solar cycle dependence. Thus enhanced geomagnetic activity induced by the stronger solar wind driving prevalent around solar maximum increases ion outflow and mass loading of the magnetosphere. Second and perhaps more importantly for thermal outflows, an increase in solar EUV flux at solar maximum causes the underlying thermosphere and ionosphere to expand. The result is an increase, on average, in both the dayside flux and the hemispheric fluence of ionospheric outflows, especially O+, at solar maximum. Aspects of these influences are demonstrated in global simulations. When outflows driven by Alfvénic Poynting fluxes flowing toward the ionosphere are included in the simulations, weak to moderate solar wind driving typical of solar minimum (e.g., as measured by the Vasyliunas et al. (1982) SW-M coupling parameter) tends to produce steady magnetospheric convection states and isolated substorms. Moderate to strong solar driving more typical of solar maximum tends to promote more intense substorms and sawtooth oscillations. It is difficult based on the current state-of-the-art global simulations that include the effects of ionospheric outflows to fully systematize the solar cycle dependence of the impacts of ionospheric outflows on magnetospheric dynamics because the effects of the outflow depend on its flux and bulk properties, e.g., composition, field-aligned velocity and thermal energy, and the

  4. Influence of solar activity on the state of the wheat market in medieval England

    NASA Astrophysics Data System (ADS)

    Pustil'Nik, Lev A.; Din, Gregory Yom

    2004-09-01

    The database of professor Rogers (1887), which includes wheat prices in England in the Middle Ages, was used to search for a possible influence of solar activity on the wheat market. Our approach was based on the following: (1) Existence of the correlation between cosmic ray flux entering the terrestrial atmosphere and cloudiness of the atmosphere. (2) Cosmic ray intensity in the solar system changes with solar activity, (3) Wheat production depends on weather conditions as a nonlinear function with threshold transitions. (4) A wheat market with a limited supply (as it was in medieval England) has a highly nonlinear sensitivity to variations in wheat production with boundary states, where small changes in wheat supply could lead to bursts of prices or to prices falling. We present a conceptual model of possible modes for sensitivity of wheat prices to weather conditions, caused by solar cycle variations, and compare expected price fluctuations with price variations recorded in medieval England. We compared statistical properties of the intervals between wheat price bursts during the years 1249-1703 with statistical properties of the intervals between the minima of solar cycles during the years 1700-2000. We show that statistical properties of these two samples are similar, both for characteristics of the distributions and for histograms of the distributions. We analyze a direct link between wheat prices and solar activity in the 17th century, for which wheat prices and solar activity data (derived from 10Be isotope) are available. We show that for all 10 time moments of the solar activity minima the observed prices were higher than prices for the corresponding time moments of maximal solar activity (100% sign correlation, on a significance level < 0.2%). We consider these results a direct evidence of the causal connection between wheat prices bursts and solar activity.

  5. Influence of solar activity on the occurrence of Central European weather types from 1763 to 2009

    NASA Astrophysics Data System (ADS)

    Schwander, Mikhaël; Brönnimann, Stefan; Rohrer, Marco; Malik, Abdul; Delaygue, Gilles; Auchmann, Renate; Brugnara, Yuri

    2017-04-01

    A new time series of daily weather types is used to analyse the impact of solar activity on European tropospheric weather. For this we apply a unique weather type classification which is a reconstruction of an existing classification (CAP9, cluster analysis of principal component) used by MeteoSwiss and computed from 1957 onward using the ERA-40 and ERA-Interim reanalyses dataset. For the reconstruction a new method was applied using early instrumental data. The new classification (CAP7) contains 7 types and covers the period 1763-2009. It allows us to analyse the European climate variability over almost 250 years. We use this dataset to study the influence of the 11-year solar cycle on late winter Central European weather patterns. The CAP7 classification and the sunspot number time series allow us to analyse changes in the occurrence of weather types linked to solar variability over 247 years. The solar activity is divided in 3 classes (low, moderate, high) for January, February and March using subjective thresholds (33rd and 66th percentiles). The days in the 3 solar activity classes are then classified according to the CAP7 weather types. The results show a reduction in the occurrence of westerly and west south-westerly types under low solar activity for the period 1763-2009. We observe also a higher frequency of easterly, northerly and high pressure types. Under high solar activity the occurrence of westerly and west south-westerly types increases. A look on different periods over the 250 years shows a high variability in the occurrences and the solar signal varies over the time for most of the types. Only the reduction in the occurrence of westerly and west south-westerly types under low solar activity is visible over the whole time series. The within-type differences are also investigated with composites computed with ERA-40/-Interim from 1958 to 2009. The zonal flow over Europe is reduced under low solar activity relative to high activity with an increase

  6. Solar flare acceleration of solar wind: influence of active region magnetic field.

    PubMed

    Lundstedt, H; Wilcox, J M; Scherrer, P H

    1981-06-26

    The direction of the photospheric magnetic field at the site of a solar flare is a good predictor of whether the flare will accelerate solar wind plasma. If the field has a southward component, high-speed solar wind plasma is usually observed near the earth about 4 days later. If the field has a northward component, such high-speed solar wind is almost never observed. Southward-field flares may then be expected to have much larger terrestrial effects than northward flares.

  7. Influence of solar activity on fibrinolysis and fibrinogenolysis. [statistical correlation between solar flare and blood coagulation indices

    NASA Technical Reports Server (NTRS)

    Marchenko, V. I.

    1974-01-01

    During periods of high solar activity fibrinolysis and fibrinogenolysis are increased. A direct correlative relationship is established between the indices of fibrinolysis, fibrinogenolysis and solar flares which were recorded two days before the blood was collected for analysis.

  8. Influence of solar activity on fibrinolysis and fibrinogenolysis. [statistical correlation between solar flare and blood coagulation indices

    NASA Technical Reports Server (NTRS)

    Marchenko, V. I.

    1974-01-01

    During periods of high solar activity fibrinolysis and fibrinogenolysis are increased. A direct correlative relationship is established between the indices of fibrinolysis, fibrinogenolysis and solar flares which were recorded two days before the blood was collected for analysis.

  9. Physical Model of Solar Activity Influence on Climate Characteristics of Troposphere.

    NASA Astrophysics Data System (ADS)

    Molodykh, S. I.; Zherebtsov, G. A.; Kovalenko, V. A.

    2009-10-01

    A new model of solar activity influence on the parameters of the terrestrial climate system is discussed. The main points of the model of solar activity effect on the terrestrial climate system are presented. The key conception of this model is the influence of heliogeophysical disturbances on the terrestrial climate system parameters controlling the energy flux going from the Earth to the space in polar regions. The model is based on the physical mechanism of the influence of heliogeophysical factors on climate characteristics and atmospheric circulation in high-latitude troposphere through atmospheric electricity. According to this model, the growth of solar activity results in the decrease of radiative cooling in high-latitude regions, increase of temperature of lower and middle troposphere, reorganization of the thermobaric field, decrease of the mean meridional gradient of temperature between polar and equatorial regions, which determine the meridional transportation of heat. The decrease of heat flow-out from low-latitude regions results in temperature increase in lower and middle latitude regions, and increase of heat content of the ocean and climate system. Some observational data are presented that confirm the proposed model.

  10. No evidence for planetary influence on solar activity 330 000 years ago

    NASA Astrophysics Data System (ADS)

    Cauquoin, A.; Raisbeck, G. M.; Jouzel, J.; Bard, E.

    2014-01-01

    Context. Abreu et al. (2012, A&A. 548, A88) have recently compared the periodicities in a 14C - 10Be proxy record of solar variability during the Holocene and found a strong similarity with the periodicities predicted on the basis of a model of the time-dependent torque exerted by the planets on the sun's tachocline. If verified, this effect would represent a dramatic advance not only in the basic understanding of the Sun's variable activity, but also in the potential influence of this variability on the Earth's climate. Cameron and Schussler (2013, A&A. 557, A83) have seriously criticized the statistical treatment used by Abreu et al. to test the significance of the coincidences between the periodicities of their model with the Holocene proxy record. Aims: If the Abreu et al. hypothesis is correct, it should be possible to find the same periodicities in the records of cosmogenic nuclides at earlier times. Methods: We present here a high-resolution record of 10Be in the EPICA Dome C (EDC) ice core from Antarctica during the Marine Interglacial Stage 9.3 (MIS 9.3), 325-336 kyr ago, and investigate its spectral properties. Results: We find very limited similarity with the periodicities seen in the proxy record of solar variability during the Holocene, or with that of the model of Abreu et al. Conclusions: We find no support for the hypothesis of a planetary influence on solar activity, and raise the question of whether the centennial periodicities of solar activity observed during the Holocene are representative of solar activity variability in general.

  11. Solar activity

    NASA Astrophysics Data System (ADS)

    Rust, D. M.

    1983-03-01

    The increased data base and scope of the theoretical models for solar flares are reviewed. Data have been gathered from the Skylab instrumentation, the Solar Maximum Mission, and the Very Large Array. Skylab X ray images revealed regularly spaced bright spots on the solar surface. Studies have also been performed on the emergence of magnetic fields, the coronal structures defined by magnetic fields above active regions, and the behavior and composition of post-flare loops. It has been found that coronal transients are associated with eruptive prominences with and without flares up to 70 pct of the time. Two classes of solar flares have been identified, i.e., small volume, low altitude with a short rise time, and long decay events with a larger coronal loop structure. Evidence for thermal and nonthermal causes for the electron velocity distribution in the flares is discussed. Finally, SMM data has shown chromospheric reactions to magnetic field variations in the photosphere and the response of the interplanetary medium to coronal transients.

  12. Statistical analyses of influence of solar and geomagnetic activities on car accident events

    NASA Astrophysics Data System (ADS)

    Alania, M. V.; Gil, A.; Wieliczuk, R.

    2001-01-01

    Statistical analyses of the influence of Solar and geomagnetic activity, sector structure of the interplanetary magnetic field and galactic cosmic ray Forbush effects on car accident events in Poland for the period of 1990-1999 have been carried out. Using auto-correlation, cross-correlation, spectral analyses and superposition epochs methods it has been shown that there are separate periods when car accident events have direct correlation with Ap index of the geomagnetic activity, sector structure of the interplanetary magnetic field and Forbush decreases of galactic cosmic rays. Nevertheless, the single-valued direct correlation is not possible to reveal for the whole period of 1990-1999. Periodicity of 7 days and its second harmonic (3.5 days) has been reliably revealed in the car accident events data in Poland for the each year of the period 1990-1999. It is shown that the maximum car accident events take place in Poland on Friday and practically does not depend on the level of solar and geomagnetic activities.

  13. The influence of solar active region evolution on solar wind streams, coronal hole boundaries and geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Gold, R. E.; Dodson-Prince, H. W.; Hedeman, E. R.; Roelof, E. C.

    Solar and interplanetary data are examined, taking into account the identification of the heliographic longitudes of the coronal source regions of high speed solar wind (SW) streams by Nolte and Roelof (1973). Nolte and Roelof have 'mapped' the velocities measured near earth back to the sun using the approximation of constant radial velocity. The 'Carrington carpet' for rotations 1597-1616 is shown in a graph. Coronal sources of high speed streams appear in the form of solid black areas. The contours of the stream sources are laid on 'evolutionary charts' of solar active region histories for the Southern and Northern Hemispheres. Questions regarding the interplay of active regions and solar wind are investigated, giving attention to developments during the years 1973, 1974, and 1975.

  14. The influence of solar active region evolution on solar wind streams, coronal hole boundaries and geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Gold, R. E.; Dodson-Prince, H. W.; Hedeman, E. R.; Roelof, E. C.

    1982-01-01

    Solar and interplanetary data are examined, taking into account the identification of the heliographic longitudes of the coronal source regions of high speed solar wind (SW) streams by Nolte and Roelof (1973). Nolte and Roelof have 'mapped' the velocities measured near earth back to the sun using the approximation of constant radial velocity. The 'Carrington carpet' for rotations 1597-1616 is shown in a graph. Coronal sources of high speed streams appear in the form of solid black areas. The contours of the stream sources are laid on 'evolutionary charts' of solar active region histories for the Southern and Northern Hemispheres. Questions regarding the interplay of active regions and solar wind are investigated, giving attention to developments during the years 1973, 1974, and 1975.

  15. Analyzing the combined influence of solar activity and El Niño on streamflow across southern Canada

    NASA Astrophysics Data System (ADS)

    Fu, Congsheng; James, April L.; Wachowiak, Mark P.

    2012-05-01

    It is well known that the spatial and temporal patterns in streamflow can be correlated with many teleconnections, e.g., solar activity and climatic phenomena such as El Niño. However, fewer studies have attempted to analyze both the influence of solar activity and large scale climatic phenomena on natural processes, particularly hydrological processes. In this study we examine long term records of solar activity and El Niño for their combined influence on streamflow across southern Canada. Data used in the analysis include sunspot number, sea surface temperature anomaly in Niño region 3.4, and annual mean streamflow from 50 Canadian Reference Hydrometric Basin Network (RHBN) stations with record lengths ≥50 years (14 of them ≥90 years). Analysis is performed using Fourier spectrum analysis (FSA), continuous wavelet transform (CWT), and cross wavelet transform coherence analysis (WTC). Results of FSA show that for almost all the 14 RHBN stations with record lengths of ≥90 years, streamflow exhibits periodicities of approximately 11 and 22 years (which is in accordance with solar activity), as well as shorter term periodicities consistent with El Niño (2-7 years). WTC analysis confirms the correlation between these periodicities (2-7 years, 11 years, 22 years) in streamflow with solar activity and El Niño records. Both solar activity and El Niño's influences on annual mean streamflow in 18-32 year bands are common, while the influence of El Nino is more extensive in the 2-7 and ˜11 year bands. Through examination of correlations between solar activity and streamflow, El Niño and streamflow, and finally El Niño and solar activity, WTC analysis has identified that solar activity affects El Niño first, and this influence is then transferred by El Niño to streamflow. This study expands on earlier efforts examining linkages between El Niño and streamflow across southern Canada to an examination of linkages between solar activity, El Niño, and

  16. Dependence of the Sunspot-Group Size on the Level of Solar Activity and its Influence on the Calibration of Solar Observers

    NASA Astrophysics Data System (ADS)

    Usoskin, I. G.; Kovaltsov, G. A.; Chatzistergos, T.

    2016-12-01

    We study the distribution of the sunspot-group size (area) and its dependence on the level of solar activity. We show that the fraction of small groups is not constant but decreases with the level of solar activity so that high solar activity is mainly defined by large groups. We analyze the possible influence of solar activity on the ability of a realistic observer to see and report the daily number of sunspot groups. It is shown that the relation between the number of sunspot groups as seen by different observers with different observational acuity thresholds is strongly nonlinear and cannot be approximated by the traditionally used linear scaling (k-factors). The observational acuity threshold [A_{th}] is considered to quantify the quality of each observer, instead of the traditional relative k-factor. A nonlinear c-factor based on A_{th} is proposed, which can be used to correct each observer to the reference conditions. The method is tested on a pair of principal solar observers, Wolf and Wolfer, and it is shown that the traditional linear correction, with the constant k-factor of 1.66 to scale Wolf to Wolfer, leads to an overestimate of solar activity around solar maxima.

  17. Influence of short-term changes in solar activity on baric field perturbations in the stratosphere and troposphere

    NASA Astrophysics Data System (ADS)

    Gabis, I. P.; Troshichev, O. A.

    2000-06-01

    Influence of short-term changes in solar activity on baric (pressure) field perturbations is studied using such characteristics as the Sazonov index (IS), describing the intensity of meridional transfer, the Blinova index (IB), describing the intensity of zonal transfer, and `vorticity area index' (VAI) describing the tropospheric cyclonic perturbations. The epoch superposition method is used to reveal effects of the solar central meridian (CM) passage of active regions, the Forbush decreases (FD) in galactic cosmic rays, and the solar proton (SP) events. The results of the analysis show that influence of short-term changes in the solar activity on baric field perturbations is the most evident in the stratosphere (30 mbar-level). The meridional circulation in case of the FD and SP events begin to increase about 5-7 days before the key date, reaches maximum nearby the key date and decays after the key date. The meridional circulation in case of the solar CM passage of active regions starts to increase after the key date and reaches the maximum by 5-6 days. Fluctuations of baric field within periods of 5-7 days typical of meridional and zonal transfers in troposphere (500 mbar-level) are evidently connected with internal dynamics of the atmosphere, not with the effects of solar activity. VAI characterizing cyclonic activity in the troposphere, shows the striking correspondence to changes of the meridional circulation in the stratosphere. Comparison of changes in the stratospheric perturbations with behavior of the UV irradiance in course of the FD and SP events show their full correspondence at the initial stage of these processes. The conclusion is made that growth of baric perturbations observed in the stratosphere in associations with the FD and SP events before the key date is caused by the solar UV irradiance increase, whereas decay of the baric perturbations after the key date is related to direct influence of the solar energetic corpuscular fluxes on the

  18. Solar influences on global change

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Monitoring of the Sun and the Earth has yielded new knowledge essential to this debate. There is now no doubt that the total radiative energy from the Sun that heats the Earth's surface changes over decadal time scales as a consequence of solar activity. Observations indicate as well that changes in ultraviolet radiation and energetic particles from the Sun, also connected with the solar activity, modulate the layer of ozone that protects the biosphere from the solar ultraviolet radiation. This report reassesses solar influences on global change in the light of this new knowledge of solar and atmospheric variability. Moreover, the report considers climate change to be encompassed within the broader concept of global change; thus the biosphere is recognized to be part of a larger, coupled Earth system. Implementing a program to continuously monitor solar irradiance over the next several decades will provide the opportunity to estimate solar influences on global change, assuming continued maintenance of observations of climate and other potential forcing mechanisms. In the lower atmosphere, an increase in solar radiation is expected to cause global warming. In the stratosphere, however, the two effects produce temperature changes of opposite sign. A monitoring program that would augment long term observations of tropospheric parameters with similar observations of stratospheric parameters could separate these diverse climate perturbations and perhaps isolate a greenhouse footprint of climate change. Monitoring global change in the troposphere is a key element of all facets of the United States Global Change Research Program (USGCRP), not just of the study of solar influences on global change. The need for monitoring the stratosphere is also important for global change research in its own right because of the stratospheric ozone layer.

  19. Solar Influence on Future Climate

    NASA Astrophysics Data System (ADS)

    Arsenovic, Pavle; Stenke, Andrea; Rozanov, Eugene; Peter, Thomas

    2015-04-01

    Global warming is one of the main threats to mankind. There is growing evidence that anthropogenic greenhouse gases have become the dominant factor, however natural factors such as solar variability cannot be neglected. Sun is a variable star; its activity varies in regular 11-years solar cycles. Longer periods of decreased solar activity are called Grand Solar Minima, which have stronger impact on terrestrial climate. Another natural factor related with solar activity are energetic particles. They can ionize neutral molecules in upper atmosphere and produce NOx and HOx which deplete ozone. We investigate the effect of proposed Grand Solar Minimum in 21st and 22nd century on terrestrial climate and ozone layer. The simulations are performed with different solar forcing scenarios for period of 200 years (2000-2200) using global chemistry-climate model coupled with ocean model (SOCOL-MPIOM). We also deal with problem of representation of middle range energy electrons (30-300 keV) in the model and investigation of their influence on climate.

  20. Influence of Photospheric Magnetic Conditions on the Catastrophic Behaviors of Flux Ropes in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Zhang, Quanhao; Wang, Yuming; Hu, Youqiu; Liu, Rui; Liu, Jiajia

    2017-02-01

    Since only the magnetic conditions at the photosphere can be routinely observed in current observations, it is of great significance to determine the influences of photospheric magnetic conditions on solar eruptive activities. Previous studies about catastrophe indicated that the magnetic system consisting of a flux rope in a partially open bipolar field is subject to catastrophe, but not if the bipolar field is completely closed under the same specified photospheric conditions. In order to investigate the influence of the photospheric magnetic conditions on the catastrophic behavior of this system, we expand upon the 2.5-dimensional ideal magnetohydrodynamic model in Cartesian coordinates to simulate the evolution of the equilibrium states of the system under different photospheric flux distributions. Our simulation results reveal that a catastrophe occurs only when the photospheric flux is not concentrated too much toward the polarity inversion line and the source regions of the bipolar field are not too weak; otherwise no catastrophe occurs. As a result, under certain photospheric conditions, a catastrophe could take place in a completely closed configuration, whereas it ceases to exist in a partially open configuration. This indicates that whether the background field is completely closed or partially open is not the only necessary condition for the existence of catastrophe, and that the photospheric conditions also play a crucial role in the catastrophic behavior of the flux rope system.

  1. Influence of the Solar Activity on the Variability of Water Isotopes over Europe during the Late Holocene

    NASA Astrophysics Data System (ADS)

    Dietrich, S.; Werner, M.; Lohmann, G.

    2012-04-01

    Numerous European proxy archives demonstrate strong decadal to millennial scale variability in the δ18O signal during the Mid- to Late Holocene. The origin of this variability and its climatic forcing is however not well defined. Many of these records provide consistent evidence that solar grand minima/maxima affect climate. Reconstructions of the total solar irradiance during the Holocene imply a grand solar maximum (minimum) approximately 5,000 (6,000) years ago. Here, we apply an atmosphere general circulation model (ECHAM5-wiso) that allows the explicit simulation of the water isotopes to investigate the influence of solar activity on the stable water isotope distribution signal for these Mid-Holocene periods. The simulations are driven by changes in orbital configuration, greenhouse gases, and changes in total solar irradiance due to solar activity. Dynamical downscaling is obtained by the high horizontal resolution of T106 (approx. 1x1°) to provide suitable results for model-data comparison. Following this approach, present-day simulations of the distribution of stable water isotopes are in very good agreement with meteorological observations. In this study the effect of solar activity is marked out from climatic changes driven by the variability of orbital parameters during the Mid-Holocene. For the evaluation of the influence forced by orbital parameter changes a first set of simulations is performed. Here, prescribed fields of sea surface temperatures (SST) and sea ice concentrations (SIC) are derived from a transient run using an earth system model with coupled atmosphere and ocean circulation. To account for solar induced effects originating in the stratosphere a second set of simulations is performed using anomalies in the prescribed SST and SIC. For each time slice externally derived SST/SIC anomalies for the two different modes of solar activity (high/low solar activity in comparison to a mean solar activity) are added to the boundary fields of the

  2. Analyzing the influence of solar activity and El Niño on stream flow across southern Canada

    NASA Astrophysics Data System (ADS)

    Fu, C.; James, A. L.

    2011-12-01

    It is well known that the spatial and temporal patterns in streamflow can be correlated with many teleconnections, e.g. solar activity and climatic phenomena (i.e. El Niño). However, fewer studies have attempted to analyze both the impacts of solar activity and large scale climatic phenomena on natural processes, particularly hydrological processes. In this study, we examine long term records of solar activity and El Niño for their combined influence on streamflow across southern Canada. Data used in the analysis include Sunspot Number, Sea Surface Temperature Anomaly in Niño region 3.4 and annual mean streamflow from 52 RHBN stations from across Canada with record lengths ≥ 50 yrs (14 of them ≥ 90 yrs). Analysis is performed using Fourier spectrum analysis and cross wavelet coherence analysis (WTC). Fourier spectrum analysis shows that for almost all of the 14 RHBN >90 yrs stations streamflow exhibits periodicities of ~11 and ~22 yrs (in accordance with solar activity) as well as shorter term periodicities consistent with El Niño (2-7 yrs). The WTC analysis confirms the correlation between these periodicities (2-7 yrs, 11 yrs, 22 yrs) in streamflow with solar activity and El Niño records. Although all three periodicities can be found in streamflow across Canada, their appearances vary spatially and temporally. The 22 yrs periodicity due to solar activity and El Niño's impacts is common. Analysis of the additional 38 RHBN stations with > 50 yrs records shows the 2-7 yrs and 11 yrs periods to be more spatially expansive across Canada. The WTC analysis has identified, through examination of correlations between solar activity and streamflow, El Niño and streamflow, and finally El Niño and solar activity, that solar activity affects El Niño first, and this impact is then transferred by El Niño to streamflow. This study expands on earlier efforts examining linkages between El Niño and streamflow in Canada to an examination of linkages between solar

  3. Influence of solar activity on the precipitation in the North-central China

    NASA Astrophysics Data System (ADS)

    Zhai, Qian

    2017-02-01

    The time series of sunspot number and the precipitation in the north-central China (108° ∼ 115° E, 33° ∼ 41° N) over the past 500 years (1470-2002) are investigated, through periodicity analysis, cross wavelet transform and ensemble empirical mode decomposition analysis. The results are as follows: the solar activity periods are determined in the precipitation time series of weak statistical significance, but are found in decomposed components of the series with statistically significance; the Quasi Biennial Oscillation (QBO) is determined to significantly exist in the time series, and its action on precipitation is opposite to the solar activity; the sun is inferred to act on precipitation in two ways, with one lagging the other by half of the solar activity period.

  4. Ninth Workshop 'Solar Influences on the Magnetosphere, Ionosphere and Atmosphere'

    NASA Astrophysics Data System (ADS)

    Georgieva, Kayta; Kirov, Boian; Danov, Dimitar

    2017-08-01

    The 9th Workshop "Solar Influences on the Magnetosphere, Ionosphere and Atmosphere" is an international forum for scientists working in the fields of: Sun and solar activity, Solar wind-magnetosphere-ionosphere interactions, Solar influences on the lower atmosphere and climate, Solar effects in the biosphere, Instrumentation for space weather monitoring and Data processing and modelling.

  5. Influence of solar activity on red sprites and on vertical coupling in the system stratosphere-mesosphere

    NASA Astrophysics Data System (ADS)

    Tonev, Peter T.; Velinov, Peter I. Y.

    2016-04-01

    The positive downward propagating streamers of sprites are considered as factors of vertical coupling in middle atmosphere. Sprites are initiated in the lower ionosphere (at 75-85 km) and their streamers propagate in the mesosphere and upper stratosphere where the solar activity (SA) can have significant influence. The problem considered by us is whether sprites are sensitive to the solar activity. Different possible ways of such influence are considered. They concern: i) relations between solar activity and the occurrence of sprite-producing lightning discharges; ii) sensitivity of streamer inception to solar variability; iii) 11-year variations of conductivity in the night-time mesosphere and stratosphere during solar cycle due to modulation of the galactic cosmic ray flux by solar activity, which can lead to changes in sprite-driving electric fields, and therefore, in sprites. Accounting for the effects of sprites on minor constituents (in particular NOx), a link between SA level and the che^mical balance in the mesosphere and stratosphere is considered, as well. With respect to this we study by modeling the response of the sprite-driving electric fields to SA variations with the account to a complex of parameters of sprite-producing lightning discharges and atmospheric conductivity. The lightning-driven electric fields needed for streamer propagation show minor dependence on conductivity changes caused by variations in cosmic ray flux during a solar cycle. The long-term changes in sprite's lower boundary by different parameters of lightning discharges and atmospheric conductivity parameters are estimated. During solar minimum, of the vertical dimension of sprites increases by up to 1.5 km than those during solar maximum. We estimate also the effect of the reduction of conductivity in thunderclouds with respect to the adjacent air. Reduction of cloud conductivity by a factor of 5-10 leads to larger vertical dimension of sprites due to descending of the sprite

  6. Solar Activity and TECHNOSPHERE

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. D.

    2017-05-01

    A review of solar activity factors impacting on the near-Earth space and technosphere are given. Solar activity in the form of enhanced fluxes of hard electromagnetic and corpuscular radiation, solar wind streams and mass ejections is considered as a principal source of space weather creating the dangerous for the astronauts, satellites, International Space Station and for the ground technical systems. The examples of effects of solar activity on the space and ground technosphere are given.

  7. Variability of solar/stellar activity and magnetic field and its influence on planetary atmosphere evolution

    NASA Astrophysics Data System (ADS)

    Lammer, Helmut; Güdel, Manuel; Kulikov, Yuri; Ribas, Ignasi; Zaqarashvili, Teimuraz V.; Khodachenko, Maxim L.; Kislyakova, Kristina G.; Gröller, Hannes; Odert, Petra; Leitzinger, Martin; Fichtinger, Bibiana; Krauss, Sandro; Hausleitner, Walter; Holmström, Mats; Sanz-Forcada, Jorge; Lichtenegger, Herbert I. M.; Hanslmeier, Arnold; Shematovich, Valery I.; Bisikalo, Dmitry; Rauer, Heike; Fridlund, Malcolm

    2012-02-01

    It is shown that the evolution of planetary atmospheres can only be understood if one recognizes the fact that the radiation and particle environment of the Sun or a planet's host star were not always on the same level as at present. New insights and the latest observations and research regarding the evolution of the solar radiation, plasma environment and solar/stellar magnetic field derived from the observations of solar proxies with different ages will be given. We show that the extreme radiation and plasma environments of the young Sun/stars have important implications for the evolution of planetary atmospheres and may be responsible for the fact that planets with low gravity like early Mars most likely never build up a dense atmosphere during the first few 100 Myr after their origin. Finally we present an innovative new idea on how hydrogen clouds and energetic neutral atom (ENA) observations around transiting Earth-like exoplanets by space observatories such as the WSO-UV, can be used for validating the addressed atmospheric evolution studies. Such observations would enhance our understanding on the impact on the activity of the young Sun on the early atmospheres of Venus, Earth, Mars and other Solar System bodies as well as exoplanets.

  8. What are the evidences of solar activity influence on coronary heart disease?

    NASA Astrophysics Data System (ADS)

    Gurfinkel, Yury; Breus, Tamara

    Researches of last two decades have shown that the cardiovascular system represents the most probable target for influence of helio - and geomagnetic activity. Both cardiovascular system and blood connect very closely: one system cannot exist without another. For the same reason the effects perceived by one system, are easily transferred to another. Laboratory tests as blood coagulation, platelet aggregation, and capillary blood velocity performed in our hospital in patients suffering from coronary heart disease (CHD) revealed a high their dependence on a level of geomagnetic activity (Gurfinkel et al., 1995, 1998). Later Gmitrov and Ohkubo (2002) in experiments on animals also found a significant negative correlation between geomagnetic field disturbances and capillary blood velocity. The analyzing data collected by the Moscow ambulance services covering more then one million observations over three years, cleaned up by seasonal effects of meteorological and social causes, showed that the number of cases of myocardial infarction increased during geomagnetic storms (Breus et al., 1995). During 14 years we collected more than 25000 cases of acute myocardial infarction and brain stroke at seven medical hospitals located in Russia, China and some other countries. We used only cases with established date of acute attack of diseases. Undated cases were excluded from the analysis. Average numbers of patients on geomagnetic active days and days with quiet geomagnetic condition were compared. It was shown statistically that during geomagnetic disturbances the frequency of myocardial infarction and brain stroke cases increased on the average by a factor of two in comparison with quiet geomagnetic conditions. These results are close to results obtained by (Stoupel, 1999), for patients suffering with acute cardiological pathology. Our recent study (with L.Parfeonova) revealed the relation between heart ventricular ectopic activity (VEA) and geomagnetic conditions in patients

  9. The Change Indices of Solar and Geomagnetic Activity and Their Influence on the Dynamics of Drag of Artificial Satellite

    NASA Astrophysics Data System (ADS)

    Komendant, V. H.; Koshkin, N. I.; Ryabov, M. I.; Sukharev, A. L.

    2016-12-01

    The time-frequency and multiple regression analysis of the orbital parameter characterizing the drag of satellites on circular and elliptical orbits with different perigees and orbital inclinations in the atmosphere of the Earth was being conducted in 23-24 cycles of solar activity. Among the factors influencing braking dynamics of satellites were taken: W - Wolf numbers; Sp - the total area of sunspot groups of the northern and southern hemispheres of the Sun, F10.7 - the solar radio flux at 10,7 cm; E - electron flux with energies more than 0,6 MeV è 2 MeV; planetary, high latitude and middle latitude geomagnetic index Ap. In the atmospheric drag dynamics of satellites, the following periods were detected: 6-year, 2.1-year, annual, semi-annual, 27-days, 13- and 11-days. Similar periods are identified in indexes of solar and geomagnetic activity. Dependence of the periods of satellites motion on extremes of solar activities and space weather conditions was conducted.

  10. Seasons on Saturn. II. Influence of solar activity on variation of methane absorption

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2015-10-01

    Methane and ammonia in the atmosphere of Saturn are in the form of impurities at the level of less than tenths of a percentage. They take part in photochemical processes, the main products of which are hydrocarbons and ammonia NH3. Polyacetylenes absorb sunlight almost to 400 nm, and hydrocarbons <180 nm. Therefore, the solar activity cycle, the slope of the equator to the plane of the orbit, the orbital motion and the presence of the rings induce change in composition of the upper atmosphere. Radiation constants in the atmosphere depend on the physical and chemical conditions, decreasing from ~10 years at the visible clouds level, to months in tropopause, and days in stratosphere. The observed seasonal effects may be associated also with condensation and convection, and the dynamic time scale may be only tens of hours. The data analysis on the methane absorption distribution over the disk of Saturn for 1964-2012 showed a significant seasonal changes in the levels of visible clouds and above clouds haze. Changes of methane absorption along the meridian in the equinox 1966 and 1995, had the opposite course to the results in equinox 1980. But the expected differences in the change of methane absorption at the equinox 2009, similar to 1980, did not happen. Although all the physical and orbital characteristics of Saturn at equinoxes in these moments repeated, but the response to them were received various. A few years before the equinox in 1966, 1980 and 1995, the number of R, characterizing solar activity, varied from 40 to 180. Before equinox 2009 the Sun has minimal activity and the R value was practically zero. According to observations at the time of equinox 2009, convection in the Saturn's atmosphere stayed at a minimal level. After exiting of rings shadows in winter northern hemisphere deep cloud layer was "frozen" at the same low level at absence of active processes on the Sun. This allowed easily to register a thick layer of methane and ammonia gas. So how

  11. Solar Wind-Magnetosphere Coupling Influences on Pseudo-Breakup Activity

    NASA Technical Reports Server (NTRS)

    Fillingim, M. O.; Brittnacher, M.; Parks, G. K.; Germany, G. A.; Spann, J. F.

    1998-01-01

    Pseudo-breakups are brief, localized aurora[ arc brightening, which do not lead to a global expansion, are historically observed during the growth phase of substorms. Previous studies have demonstrated that phenomenologically there is very little difference between substorm onsets and pseudo-breakups except for the degree of localization and the absence of a global expansion phase. A key open question is what physical mechanism prevents a pseudo-breakup form expanding globally. Using Polar Ultraviolet Imager (UVI) images, we identify periods of pseudo-breakup activity. Foe the data analyzed we find that most pseudo-breakups occur near local midnight, between magnetic local times of 21 and 03, at magnetic latitudes near 70 degrees, through this value may change by several degrees. While often discussed in the context of substorm growth phase events, pseudo-breakups are also shown to occur during prolonged relatively inactive periods. These quiet time pseudo-breakups can occur over a period of several hours without the development of a significant substorm for at least an hour after pseudo-breakup activity stops. In an attempt to understand the cause of quiet time pseudo-breakups, we compute the epsilon parameter as a measure of the efficiency of solar wind-magnetosphere coupling. It is noted that quiet time pseudo-breakups occur typically when epsilon is low; less than about 50 GW. We suggest that quiet time pseudo-breakups are driven by relatively small amounts of energy transferred to the magnetosphere by the solar wind insufficient to initiate a substorm expansion onset.

  12. Influence of solar and geomagnetic activity in Gymnodinium catenatum (Dinophyceae) cultures.

    PubMed

    Vale, Paulo

    2017-01-01

    Laboratory cultures of the paralytic shellfish poisoning producing microalga Gymnodinium catenatum were subjected to a hypo-osmotic shock and changes in cell concentration were observed in two separate experiments of 8 and 24 hours duration, respectively. The increase in geomagnetic activity (GMA), radio and X-ray fluxes and solar X-ray flares were negatively correlated with cell numbers. Cell losses were observed in the short experiment, but not in the longest one. GMA action was related to the course of the experimental period, while electromagnetic radiation (EMR) was only significantly related when the previous hours before the experiments were considered. The differential action windows might be indicative of two differential disruptive mechanisms: EMR might act on DNA synthesis and mitosis phases of the cell cycle (taking place in the dark period) and GMA might be more disruptive at the end of mytosis or cytokinesis phases taking place in the light period. Formation of long chains (> 4 cells/chain) was reduced with salinity and with temperatures above 27ºC but increased with EMR and GMA, particularly when grown at the highest temperatures recorded during the study period (≥28ºC).

  13. Solar activity influences on atmospheric electricity and on some structures in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Reiter, Reinhold

    1989-01-01

    Only processes in the troposphere and the lower stratosphere are reviewed. General aspects of global atmospheric electricity are summarized in Chapter 3 of NCR (1986); Volland (1984) has outlined the overall problems of atmospheric electrodynamics; and Roble and Hays (1982) published a summary of solar effects on the global circuit. The solar variability and its atmospheric effects (overview by Donelly et al, 1987) and the solar-planetary relationships (survey by James et al. 1983) are so extremely complex that only particular results and selected papers of direct relevance or historical importance are compiled herein.

  14. Response of the PC index to the solar wind influence and it's availability for nowcasting of storm and substorm activity

    NASA Astrophysics Data System (ADS)

    Troshichev, O. A.

    2003-04-01

    The PC index has been put forward with a general aim to find a key parameter that (1) would estimate the current state of the global magnetospheric activity, and (2) would be readily calculated from routine ground-based measurements. The PC index has been derived as the dimensionless quantity parameterized by season, UT, and hemisphere, and calculated for interplanetary electric field coupling with the magnetosphere (Em). Response of the PC index to the solar wind influence is examined using the data on solar wind parameters observed by ACE spacecraft in the point of libration L1. It is shown that the PC index in range PC=0-12 is proportional to value of the interplanetary electric field Em and, correspondingly, to the polar cap voltage and the polar cap ionospheric electric field Ei. If the magnetic activity within the polar cap is extremely high (PC>12), the interplanetary and ionospheric electric fields tend to approach an asymptotic (effect of electric field saturation). In these conditions, apart from the interplanetary electric field Em determining the regular level of the antisunward convection in the polar cap, the PC index is affected either by (1) unusual enhancement of the ionospheric conductivity in the polar cap in association with bombardment of the ionosphere by solar protons (E=1-10 MeV) in time of strong polar cap absorption events, or by (2) the solar wind pressure pulses those strongly enhance the antisunward convection (positive PC) under Bz<0, and sunward convection (negative PC) under Bz>0. It means that the PC index adequately estimates the solar wind energy coming into the high-latitude magnetosphere and, therefore, can be used to evaluate the current state of the magnetosphere. It is shown that sharp increase of the PC index indicates conclusively that the auroral substorm will be developed in a matter of minutes. Correlation between the PC index and AE indices turned out to be much higher in absence of Dst variation (R=0.74) than in course

  15. Activities for Teaching Solar Energy.

    ERIC Educational Resources Information Center

    Mason, Jack Lee; Cantrell, Joseph S.

    1980-01-01

    Plans and activities are suggested for teaching elementary children about solar energy. Directions are included for constructing a flat plate collector and a solar oven. Activities for a solar field day are given. (SA)

  16. Influence of geomagnetic activity and atmospheric pressure on human arterial pressure during the solar cycle 24

    NASA Astrophysics Data System (ADS)

    Azcárate, T.; Mendoza, B.; Levi, J. R.

    2016-11-01

    We performed a study of the systolic (SBP) and diastolic (DBP) arterial blood pressure behavior under natural variables such as the atmospheric pressure (AtmP) and the horizontal geomagnetic field component (H). We worked with a sample of 304 healthy normotense volunteers, 152 men and 152 women, with ages between 18 and 84 years in Mexico City during the period 2008-2014, corresponding to the minimum, ascending and maximum phases of the solar cycle 24. The data was divided by gender, age and day/night cycle. We studied the time series using three methods: Correlations, bivariate and superposed epochs (within a window of three days around the day of occurrence of a geomagnetic storm) analysis, between the SBP and DBP and the natural variables (AtmP and H). The correlation analysis indicated correlation between the SBP and DBP and AtmP and H, being the largest during the night. Furthermore, the correlation and bivariate analysis showed that the largest correlations are between the SBP and DBP and the AtmP. The superposed epoch analysis found that the largest number of significant SBP and DBP changes occurred for women. Finally, the blood pressure changes are larger during the solar minimum and ascending solar cycle phases than during the solar maximum; the storms of the minimum were more intense than those of the maximum and this could be the reason of behavior of the blood pressure changes along the solar cycle.

  17. Investigating possible influence of solar activity on some reported seismic-induced ionospheric precursors via VLF wave propagation in Earth-ionosphere waveguide

    NASA Astrophysics Data System (ADS)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip Kumar; Sasmal, Sudipta; Ray, Suman

    2016-07-01

    The diurnal propagation characteristic of VLF radio signal have been widely used to study pre-seismic ionospheric anomalies, some of which are often reported to be associated with the event. On the other hand, Solar particle events and geomagnetic activity also drive changes in the magnetosphere, which modify ionospheric parameters through the Earth's magnetic field. There are also effects originating from planetary and tidal waves, thermospheric tides and stratospheric warming. Distinguishing or separating seismically induced ionospheric fluctuations from those of other origin remain vital and challenging. In this work, we investigated the influence of solar and geomagnetic origin on some reported 'seismic ionospheric precursors' before a few major earthquakes. We also investigated anomalies in VLF day-length signal during period of low solar and geomagnetic activity (in relation to seismic activity), to understand the occurrence of VLF anomaly that are unrelated to seismicity and solar activity.

  18. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1973-01-01

    Some evidence that the weather is influenced by solar activity is reviewed. It appears that the solar magnetic sector structure is related to the circulation of the earth's atmosphere during local winter. About 31/2 days after the passage of a sector boundary the maximum effect is seen: apparently the height of all pressure surfaces increases in high latitudes leading to anticyclogenesis, whereas at midlatitudes the height of the pressure surfaces decreases leading to low pressure systems or to deepening of existing systems. This later effect is clearly seen as an increase in the area of the base of air with absolute vorticity exceeding a given threshold. Since the increase of geomagnetic activity generally is small at a sector boundary, it is speculated that geomagnetic activity as such is not the cause of the response to the sector structure, but that both weather and geomagnetic activity are influenced by the same (unknown) mechanism.

  19. Physics of solar activity

    NASA Technical Reports Server (NTRS)

    Sturrock, Peter A.

    1993-01-01

    The aim of the research activity was to increase our understanding of solar activity through data analysis, theoretical analysis, and computer modeling. Because the research subjects were diverse and many researchers were supported by this grant, a select few key areas of research are described in detail. Areas of research include: (1) energy storage and force-free magnetic field; (2) energy release and particle acceleration; (3) radiation by nonthermal electrons; (4) coronal loops; (5) flare classification; (6) longitude distributions of flares; (7) periodicities detected in the solar activity; (8) coronal heating and related problems; and (9) plasma processes.

  20. Influence of Solar Cycles on Earthquakes

    NASA Astrophysics Data System (ADS)

    Tavares, M.

    2011-12-01

    This research inspects possible influence of solar cycles on earthquakes through of statistical analyses. We also discussed the mechanism that would drive the occurrence of increasing of earthquakes during solar maxima. The study was based on worldwide earthquakes events during approximately four hundred years (1600-2010). The increase of earthquakes events followed the Maxima of Solar cycle, and also depends on the tectonic plate location. From 1600 until 1645 events increased during the Maxima in some of the tectonic plates as Pacific, Arabian and South America. The earthquakes analyzed during two grand solar minima, the Maunder (1645-1720) and the Dalton (1790-1820) showed a decrease in the number of earthquakes and the solar activity. It was observed during these minima a significant number of events at specific geological features. After the last minima (Dalton) the earthquakes pattern increased with solar maxima. The calculations showed that events increasing during solar maxima most in the Pacific, South America or Arabian until 1900. Since there were few records during these three centuries we needed additional analysis on modern data. We took the last four solar cycles events (1950-2010) and made similar calculations. The results agreed with the former calculations. It might be that the mechanism for the Sun-Earth connection relies on the solar wind speed. In both records (1600-1900) and (1950-2010) the results showed a significant increase in earthquakes events in some of the tectonic plates linked to solar maxima. The Solar wind energy striking the Earth's magnetosphere affects the entire environment because the pressure on the region increases and the magnetosphere shrinks sometimes four Earth's radii. This sudden compression causes earthquakes in specific plates. During the times of solar minima the pressure from the solar wind on the earth decreases, then the magnetosphere expands and earthquakes happen in a different pattern according to the

  1. Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia; Schrijver, Carolus J.; Klimchuk, James A.; Charbonneau, Paul; Fletcher, Lyndsay; Hasan, S. Sirajul; Hudson, Hugh S.; Kusano, Kanya; Mandrini, Cristina H.; Peter, Hardi; Vršnak, Bojan; Yan, Yihua

    2012-04-01

    Commission 10 of the International Astronomical Union has more than 650 members who study a wide range of activity phenomena produced by our nearest star, the Sun. Solar activity is intrinsically related to solar magnetic fields and encompasses events from the smallest energy releases (nano- or even picoflares) to the largest eruptions in the Solar System, coronal mass ejections (CMEs), which propagate into the Heliosphere reaching the Earth and beyond. Solar activity is manifested in the appearance of sunspot groups or active regions, which are the principal sources of activity phenomena from the emergence of their magnetic flux through their dispersion and decay. The period 2008-2009 saw an unanticipated extended solar cycle minimum and unprecedentedly weak polar-cap and heliospheric field. Associated with that was the 2009 historical maximum in galactic cosmic rays flux since measurements begun in the middle of the 20th Century. Since then Cycle 24 has re-started solar activity producing some spectacular eruptions observed with a fleet of spacecraft and ground-based facilities. In the last triennium major advances in our knowledge and understanding of solar activity were due to continuing success of space missions as SOHO, Hinode, RHESSI and the twin STEREO spacecraft, further enriched by the breathtaking images of the solar atmosphere produced by the Solar Dynamic Observatory (SDO) launched on 11 February 2010 in the framework of NASA's Living with a Star program. In August 2012, at the time of the IAU General Assembly in Beijing when the mandate of this Commission ends, we will be in the unique position to have for the first time a full 3-D view of the Sun and solar activity phenomena provided by the twin STEREO missions about 120 degrees behind and ahead of Earth and other spacecraft around the Earth and ground-based observatories. These new observational insights are continuously posing new questions, inspiring and advancing theoretical analysis and

  2. Influence of solar activity on the development of calcareous nannofossils from a Middle Holocene costal paleo-ria (SW Portugal)

    NASA Astrophysics Data System (ADS)

    Hernández, Armand; Cachão, Mário; Trigo, Ricardo M.; Conceição Freitas, M.

    2015-04-01

    periodogram unveils only one significant periodicity (228-yrs). Phases with oceanic influence (downwelling) would be related to 450, 350 and 236-yrs frequencies and the phase with coastal influence (upwelling) would be linked to 228-yrs periodicity. These periodicities fit with previous solar activity reconstructions at millennial-to-centennial scale based on different proxies (Bond et al. 2001, Vaquero et al. 2002, Solanki et al. 2004), which, in turn, are conditioning the earth's climate system. Finally, performed time-frequency analyses on F1 and F2 scores show a higher activity of the 228-yrs periodicity during the whole studied period (spanning between 8.8k and 4.8k cal yr BP) with maximum values between 8k to 7k cal yr BP and 6k to 5k cal yr BP. By contrast, higher periodicities (450, 350 and 236-yrs) would be mainly confined to prior 7.5k cal yrs BP. These results highlight the possibility to use the calcareous nannofossils as indirect proxies of solar activity in cases of ultra-high resolution (centennial) sedimentary sequences. References Alday et al., Estuar Coast Shelf S, 66, 532 (2006). Bond et al., Science, 294, 2130 (2001). Solanki et al., Nature, 431, 1084 (2004). Vaquero et al., Geophys Res Lett, 29, 1997 (2002).

  3. Solar Energy Project, Activities: General Solar Topics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of activities which introduce students to concepts and issues relating to solar energy. Lessons frequently presented in the context of solar energy as it relates to contemporary energy problems. Each unit presents an introduction; objectives; necessary skills and knowledge; materials; method;…

  4. [Influence of both solar activity and the global warming on the variation trend of occurrence of sudden deafness].

    PubMed

    Li, Kejun; Feng, Wen

    2013-08-01

    To investigate relationship of the long-term variation trend of the occurrence of sudden deafness respectively with solar activity and the global warming. We utilized the empirical mode decomposition, cross-correlation, and the statistical test methods to analyze the yearly percent rate (PR) of sudden deafness patients at the second affiliated hospital of Xian Jiangtong University, the yearly mean sunspot number (SSN), and the temperature series (T) in Xi'an district during the years of 1980 to 2009. The trend component of T was highly correlated to the trend component of PR, and the IMF (intrinsic mode function) component of SSN was highly correlated to the IMF component of PR. The occurrence of sudden deafness is indeed statistically affected by solar activity and temperature. The trend component of PR is inferred to be probably caused by the trend component of T, and it is solar activity (SSN), especially its periodical wavelike component that should probably give rise to the wavelike component of the occurrence (PR) of sudden deafness. Some explanation has been given to issue the found relationship. Also given is the plausible mechanism of solar activity and temperature acting on occurrence of sudden deafness.

  5. Influence of the Earth s Corotation Field on the Atmospheric Electricity: Latitudinal Variation and Response to the Solar Activity

    NASA Astrophysics Data System (ADS)

    Dumin, Y.

    Influence of the magnetospheric convection field on the atmospheric electricity is widely studied, both theoretically and experimentally, from the early 1970s. On the other hand, a considerably less attention was paid to the effects of plasmaspheric corotation field, since it was usually believed that the electric field of corotation of the solid Earth is fitted smoothly to the corotation field of plasmasphere, so that no potential difference is formed between them in the lower atmosphere. A conjecture on the important role of corotation field in the global atmospheric-electric circuit was done a few years ago in [P.A. Bespalov, Yu.V. Chugunov, J. Atmos. Terr. Phys., 1996, v.58, p.601] and several subsequent works. Unfortunately, because of using an oversimplified model of plasmasphere (in the form of a spherically-symmetric envelope with isotropic conductivity and rigid-body rotation), no reliable numerical estimates were derived, and no comparison with experimental distributions of the atmospheric electric field could be conducted. The main aim of the present report is to study the corotation effects in the framework of a considerably more realistic analytical model, where conductivity of the plasmasphere is strongly anisotropic, and the magnetic field lines are substantially distorted (stretched to "infinity") in the polar regions. Escape of polarization electric charges along the distorted field lines results in appreciable decrease (by 10-15 V/m) in the average atmospheric electric field at high latitudes. Such phenomenon was experimentally discovered as early as the International Geophysical Year (1957-1958) but was not quantitatively explained by now. Yet another interesting effect following from our model is changing the high-latitude electric field due to variations in the degree of distortion of the magnetic field lines at different levels of the solar activity. These transient changes in the atmospheric electricity should be symmetric about the noon

  6. Activation of solar flares

    SciTech Connect

    Cargill, P.J.; Migliuolo, S.; Hood, A.W.

    1984-11-01

    The physics of the activation of two-ribbon solar flares via the MHD instability of coronal arcades is presented. The destabilization of a preflare magnetic field is necessary for a rapid energy release, characteristic of the impulsive phase of the flare, to occur. The stability of a number of configurations are examined, and the physical consequences and relative importance of varying pressure profiles and different sets of boundary conditions (involving field-line tying) are discussed. Instability modes, driven unstable by pressure gradients, are candidates for instability. Shearless vs. sheared equilibria are also discussed. (ESA)

  7. Influence of anatase and rutile phase in TiO2 upon the photocatalytic degradation of methylene blue under solar irradiation in presence of activated carbon.

    PubMed

    Matos, J; Montaña, R; Rivero, E; Escudero, A; Uzcategui, D

    2014-01-01

    The influence of activated carbon (AC) on the photocatalytic activity of different crystalline TiO2 phases was verified in the photocatalytic degradation of methylene blue under UV and solar irradiation. The results showed a volcano trend with a maximum photoactivity for the crystalline phase ratio of anatase:rutile equal to 80:20 both under UV or solar irradiation. By contrast, in presence of AC the photocatalytic activity of the binary materials of TiO2/AC followed an exponential trend, increasing as a function of the increase in anatase proportion in the TiO2 framework. The increase in the photoactivity of the binary material TiO2/AC relative to neat TiO2 was up to 22 and about 17 times higher under UV and visible irradiation, respectively. The present results suggest that AC interacts more efficiently with anatase phase than with rutile phase.

  8. Geomagnetic response to solar activity.

    NASA Technical Reports Server (NTRS)

    Mead, G. D.

    1972-01-01

    The relationship between solar activity and geomagnetic variations is discussed in the light of spacecraft data obtained during the last decade. The effects of centers of solar activity responsible for producing geomagnetic activity on earth are believed to be transmitted through the solar wind, and there is usually a delay of two or three days before the onset of magnetic activity. Attempts to make a one-to-one correspondence between specific solar events and specific magnetic storms, however, are usually unsuccessful, because of the complex and indirect processes linking the two phenomena. Normally, only statistical tendencies can be shown.

  9. Solar activity forcing of terrestrial hydrological phenomena

    NASA Astrophysics Data System (ADS)

    Mauas, Pablo J. D.; Buccino, Andrea P.; Flamenco, Eduardo

    2017-10-01

    Recently, the study of the influence of solar activity on the Earth's climate received strong attention, mainly due to the possibility, proposed by several authors, that global warming is not anthropogenic, but is due to an increase in solar activity. Although this possibility has been ruled out, there are strong evidences that solar variability has an influence on Earth's climate, in regional scales. Here we review some of these evidences, focusing in a particular aspect of climate: atmospheric moisture and related quantities like precipitation. In particular, we studied the influence of activity on South American precipitations during centuries. First, we analyzed the stream flow of the Paraná and other rivers of the region, and found a very strong correlation with Sunspot Number in decadal time scales. We found a similar correlation between Sunspot Number and tree-ring chronologies, which allows us to extend our study to cover the last two centuries.

  10. Possible influence of climate factors on the reconstruction of the cosmogenic isotope 14C production rate in the earth's atmosphere and solar activity in past epochs

    NASA Astrophysics Data System (ADS)

    Kuleshova, A. I.; Dergachev, V. A.; Kudryavtsev, I. V.; Nagovitsyn, Yu. A.; Ogurtsov, M. G.

    2015-12-01

    The paper considers the probable influence of variations of the global temperature and carbon dioxide concentration in the Earth's atmosphere on the results of reconstruction of the production rate of the cosmogenic isotope 14C in the terrestrial atmosphere for the period from the early 15th to the mid 19th century. This time interval covers the Spörer, Maunder, and Dalton minima of solar activity, as well as the Little Ice Age. It was shown that the climate changes that occurred during the Little Ice Age should be taken into account. In the Maunder and Spörer minima of solar activity, the 14C generation rate may be comparable to the values for the Dalton minimum, while exclusion of the climate effect yields extremely large values of the 14C production rate for these grand minima. In the solar activity reconstruction for past epochs, this circumstance should be taken into consideration via measurements of the 14C concentration on a long time scale.

  11. Bacterial Active Community Cycling in Response to Solar Radiation and Their Influence on Nutrient Changes in a High-Altitude Wetland

    PubMed Central

    Molina, Verónica; Hernández, Klaudia; Dorador, Cristina; Eissler, Yoanna; Hengst, Martha; Pérez, Vilma; Harrod, Chris

    2016-01-01

    Microbial communities inhabiting high-altitude spring ecosystems are subjected to extreme changes in solar irradiance and temperature throughout the diel cycle. Here, using 16S rRNA gene tag pyrosequencing (cDNA) we determined the composition of actively transcribing bacteria from spring waters experimentally exposed through the day (morning, noon, and afternoon) to variable levels of solar radiation and light quality, and evaluated their influence on nutrient recycling. Solar irradiance, temperature, and changes in nutrient dynamics were associated with changes in the active bacterial community structure, predominantly by Cyanobacteria, Verrucomicrobia, Proteobacteria, and 35 other Phyla, including the recently described Candidate Phyla Radiation (e.g., Parcubacteria, Gracilibacteria, OP3, TM6, SR1). Diversity increased at noon, when the highest irradiances were measured (3.3–3.9 H′, 1125 W m-2) compared to morning and afternoon (0.6–2.8 H′). This shift was associated with a decrease in the contribution to pyrolibraries by Cyanobacteria and an increase of Proteobacteria and other initially low frequently and rare bacteria phyla (< 0.5%) in the pyrolibraries. A potential increase in the activity of Cyanobacteria and other phototrophic groups, e.g., Rhodobacterales, was observed and associated with UVR, suggesting the presence of photo-activated repair mechanisms to resist high levels of solar radiation. In addition, the percentage contribution of cyanobacterial sequences in the afternoon was similar to those recorded in the morning. The shifts in the contribution by Cyanobacteria also influenced the rate of change in nitrate, nitrite, and phosphate, highlighted by a high level of nitrate accumulation during hours of high radiation and temperature associated with nitrifying bacteria activity. We did not detect ammonia or nitrite oxidizing bacteria in situ, but both functional groups (Nitrosomona and Nitrospira) appeared mainly in pyrolibraries generated from

  12. Bacterial Active Community Cycling in Response to Solar Radiation and Their Influence on Nutrient Changes in a High-Altitude Wetland.

    PubMed

    Molina, Verónica; Hernández, Klaudia; Dorador, Cristina; Eissler, Yoanna; Hengst, Martha; Pérez, Vilma; Harrod, Chris

    2016-01-01

    Microbial communities inhabiting high-altitude spring ecosystems are subjected to extreme changes in solar irradiance and temperature throughout the diel cycle. Here, using 16S rRNA gene tag pyrosequencing (cDNA) we determined the composition of actively transcribing bacteria from spring waters experimentally exposed through the day (morning, noon, and afternoon) to variable levels of solar radiation and light quality, and evaluated their influence on nutrient recycling. Solar irradiance, temperature, and changes in nutrient dynamics were associated with changes in the active bacterial community structure, predominantly by Cyanobacteria, Verrucomicrobia, Proteobacteria, and 35 other Phyla, including the recently described Candidate Phyla Radiation (e.g., Parcubacteria, Gracilibacteria, OP3, TM6, SR1). Diversity increased at noon, when the highest irradiances were measured (3.3-3.9 H', 1125 W m(-2)) compared to morning and afternoon (0.6-2.8 H'). This shift was associated with a decrease in the contribution to pyrolibraries by Cyanobacteria and an increase of Proteobacteria and other initially low frequently and rare bacteria phyla (< 0.5%) in the pyrolibraries. A potential increase in the activity of Cyanobacteria and other phototrophic groups, e.g., Rhodobacterales, was observed and associated with UVR, suggesting the presence of photo-activated repair mechanisms to resist high levels of solar radiation. In addition, the percentage contribution of cyanobacterial sequences in the afternoon was similar to those recorded in the morning. The shifts in the contribution by Cyanobacteria also influenced the rate of change in nitrate, nitrite, and phosphate, highlighted by a high level of nitrate accumulation during hours of high radiation and temperature associated with nitrifying bacteria activity. We did not detect ammonia or nitrite oxidizing bacteria in situ, but both functional groups (Nitrosomona and Nitrospira) appeared mainly in pyrolibraries generated from dark

  13. Influence of the atmospheric blocking on the hydrometeorological variables from the Danube basin and possible response to the solar/geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Mares, Ileana; Dobrica, Venera; Demetrescu, Crisan; Mares, Constantin

    2015-04-01

    In order to test the large-scale atmospheric circulation influence on the hydrometeorological variables from the Danube basin, four blocking indices were considered for the regions: Greenland (GBI), Atlantic-European (AEBI), Atlantic (ABI) and Europe (EBI). In addition, an index for Greenland-Balkan Oscillation (GBOI) was introduced. For the Danube basin were analyzed: precipitation and temperatures at 15 stations and the Danube discharge at Orsova. Also, for each station were calculated four indices of Palmer type and a simple drought index (TPPI). Solar activity was represented by Wolf numbers and 10.7cm solar flux and the geomagnetic activity by the aa index. The time series of temperatures and precipitation were represented by the first principal component (PC1) of the development in empirical orthogonal functions (EOFs) and the four Palmer indices were analyzed by the PC1 of the development in multivariate EOFs (MEOFs). Cross correlations, power spectra and filters were performed. The analyses were achieved for two periods, 1901-2000 and 1948-2000, separately for each season. Concerning the simultaneous connections, for spring, the most significant results with a high confidence level (99%) were obtained for GBOI and EBI, which influence the discharge and the other hydrometeorological variables. Signals of solar or geomagnetic activity have been found only in EBI at level of 95%. For the summertime, the results are weaker. It is noted however, the significant influence of GBOI on the variables in the Danube basin, mainly on precipitation, and of EBI signal on temperatures. Solar signal is statistical significant (90% - 95%) in the GBI. Autumn, GBI, GBOI and EBI have a clear influence on all hydrometeorological fields. Signals statistically significant of aa index and 10.7 cm flux, were found in ABI and AEBI respectively. Winter, atmospheric circulation, quantified by GBI, EBI and GBOI, has an impact simultaneous on temperatures, precipitation and on the Orsova

  14. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.

    1975-01-01

    The attempts during the past century to establish a connection between solar activity and the weather are discussed; some critical remarks about the quality of much of the literature in this field are given. Several recent investigations are summarized. Use of the solar/interplanetary magnetic sector structure in future investigations is suggested to add an element of cohesiveness and interaction to these investigations.

  15. Manifestations of Influence of Solar Activity and Cosmic Ray Intensity on the Wheat Price in the Medieval England (1259-1703 Years)

    NASA Astrophysics Data System (ADS)

    Pustil'Nik, Lev A.; Dorman, L. I.; Yom Din, G.

    2003-07-01

    The database of Professor Rogers, with wheat prices in England in the Middle Ages (1249-1703) was used to search for possible manifestations of solar activity and cosmic ray variations. The main object of the statistical analysis is investigation of bursts of prices. We present a conceptual model of possible modes for sensitivity of wheat prices to weather conditions, caused by solar cycle variations in cosmic rays, and compare the expected price fluctuations with wheat price variations recorded in the Medieval England. We compared statistical properties of the intervals between price bursts with statistical properties of the intervals between extremes (minimums) of solar cycles during the years 1700-2000. Statistical properties of these two samples are similar both in averaged/median values of intervals and in standard deviation of this values. We show that histogram of intervals distribution for price bursts and solar minimums are coincidence with high confidence level. We analyzed direct links between wheat prices and solar activity in the th 17 Century, for which wheat prices and solar activity data as well as cosmic ray intensity (from 10 Be isotop e) are available. We show that for all seven solar activity minimums the observed prices were higher than prices for the nine intervals of maximal solar activity proceed preceding to the minimums. This result, combined with the conclusion on similarity of statistical properties of the price bursts and solar activity extremes we consider as direct evidence of a causal connection between wheat prices bursts and solar activity.

  16. Solar activity and myocardial infarction.

    PubMed

    Szczeklik, E; Mergentaler, J; Kotlarek-Haus, S; Kuliszkiewicz-Janus, M; Kucharczyk, J; Janus, W

    1983-01-01

    The correlation between the incidence of myocardial infarction, sudden cardiac death, the solar activity and geomagnetism in the period 1969-1976 was studied, basing on Wrocław hospitals material registered according to WHO standards; sudden death was assumed when a person died within 24 hours after the onset of the disease. The highest number of infarctions and sudden deaths was detected for 1975, which coincided with the lowest solar activity, and the lowest one for the years 1969-1970 coinciding with the highest solar activity. Such an inverse, statistically significant correlation was not found to exist between the studied biological phenomena and geomagnetism.

  17. Correlation analysis of solar constant, solar activity and cosmic ray

    NASA Astrophysics Data System (ADS)

    Utomo, Y. S.

    2017-04-01

    Actually, solar constant is not constant but fluctuated by ±1.5% of their average value. Solar constant indicates that the value is not constant but varies with time. Such variation is correlated with solar activity and cosmic ray. Correlation analysis shows a strong correlation between solar activity and cosmic ray and between solar activity and solar constant. Solar activity indicates by sunspot number. Correlations between solar constant variations and sunspot number variations were found to be higher than ones between variations in cosmic ray and solar constant. It was also found a positive correlation between solar constant and sunspot number, with correlation coefficient about +0.77/month and +0.95/year. In other hand, negative correlation between solar constant and cosmic ray flux i.e. -0.50/month and -0.62/year were found for monthly and yearly data respectively. A similar result was also found for the relationship between solar activity and cosmic ray flux with a negative correlation, i.e. -0.61/month and -0.69/year. When solar activities decrease, the clouds cover rate increase due to secondary ions produced by cosmic rays. The increase in the cloud cover rate causes the decrease in solar constant value and solar radiation on the earth’s surface. Solar constant plays an important role in the planning and technical analysis of equipment utilizing solar energy.

  18. General overview of the solar activity effects on the lower ionosphere

    NASA Technical Reports Server (NTRS)

    Danilov, A. D.

    1989-01-01

    Solar activity influences the ionospheric D region. That influence manifests itself both in the form of various solar induced disturbances and in the form of the D region dependence on solar activity parameters (UV-flux, interplanetary magnetic field, solar wind etc.) in quiet conditions. Relationship between solar activity and meteorological control of the D region behavior is considered in detail and examples of strong variations of aeronomical parameters due to solar or meteorological events are given.

  19. Solar activity and explosive transient eruptions

    NASA Astrophysics Data System (ADS)

    Ambastha, Ashok

    2016-07-01

    We discuss active and explosive behavior of the Sun observable in a wide range of wavelengths (or energies) and spatio-temporal scales that are not possible for any other star. On the longer time scales, the most notable form of solar activity is the well known so called 11-year solar activity cycle. On the other hand, at shorter time scales of a few minutes to several hours, spectacular explosive transient events, such as, solar flares, prominence eruptions, and coronal mass ejections (CMEs) occur in the outer layers of solar atmosphere. These solar activity cycle and explosive phenomena influence and disturb the space between the Sun and planets. The state of the interplanetary medium, including planetary and terrestrial surroundings, or "the space weather", and its forecasting has important practical consequences. The reliable forecasting of space weather lies in continuously observing of the Sun. We present an account of the recent developments in our understanding of these phenomena using both space-borne and ground-based solar observations.

  20. Solar wind influence on Jupiter's aurora

    NASA Astrophysics Data System (ADS)

    Gyalay, Szilard; Vogt, Marissa F.; Withers, Paul; Bunce, Emma J.

    2016-10-01

    Jupiter's main auroral emission is driven by a system of corotation enforcement currents that arises to speed up outflowing Iogenic plasma and is not due to the magnetosphere-solar wind interaction like at Earth. The solar wind is generally expected to have only a small influence on Jupiter's magnetosphere and aurora compared to the influence of rotational stresses due to the planet's rapid rotation. However, there is considerable observational evidence that the solar wind does affect the magnetopause standoff distance, auroral radio emissions, and the position and brightness of the UV auroral emissions. Using the Michigan Solar Wind Model (mSWiM) to predict the solar wind conditions upstream of Jupiter we have identified intervals of high and low solar wind dynamic pressure in the Galileo dataset, and use this information to quantify how a magnetospheric compression affects the magnetospheric field configuration. We have developed separate spatial fits to the compressed and nominal magnetic field data, accounting for variations with radial distance and local time. These two fits can be used to update the flux equivalence mapping model of Vogt et al. (2011), which links auroral features to source regions in the middle and outer magnetosphere. The updated version accounts for changing solar wind conditions and provides a way to quantify the expected solar wind-induced variability in the ionospheric mapping of the main auroral emission, satellite footprints, and other auroral features. Our results are highly relevant to interpretation of the new auroral observations from the Juno mission.

  1. Moisture variability in the Danube lower basin: an analysis based on the Palmer drought indices and the solar/geomagnetic activity influence

    NASA Astrophysics Data System (ADS)

    Mares, Ileana; Dobrica, Venera; Demetrescu, Crisan; Mares, Constantin

    2014-05-01

    reveal quasi-periodicities of 7-8 years found in the PC1-TPP series also in the Kp. Regarding solar activity, expressed by the Wolf numbers, its influence is significant only for the spring season, highlighted by a cycle of approximate of 11-year in the principal component (PC1) of the drought estimated by temperatures and precipitation (TPP) in Danube lower basin. These preliminary results will be completed with new investigations for the entire Danube basin, considering longer time series and a discriminate analysis by taking into consideration the occurrence of the maxima and minima in the solar/ geomagnetic activity.

  2. Solar active region magnetic complexity

    NASA Astrophysics Data System (ADS)

    Nikbakhsh, Shabnam; Tanskanen, Eija; Hackman, Thomas

    2017-04-01

    We have studied the Mount Wilson Classification of solar Active Regions (ARs) for the period from 1996 to 2015. Sunspots are visual indicators of ARs where the solar magnetic field is disturbed. Major manifestations of solar magnetic activity, such as solar flares and Coronal Mass Ejections (CMEs), are associated with solar ARs. There has been so many attempts to classify solar ARs based on their magnetic complexity as a measure of their acitivity. For this study we applied the Mount Wilson Classification which groups ARs in terms of their magnetic complexity from the least complex alpha to the most complex one beta-gamma-delta. We compared the magnetic complexity data to two sets of sunspot number: 1- International Sunspot Number (ISSN) 2- NOAA sunspot number We have been found that the number of more complex structures reach its maximum two years after solar maximum. We also compared the result to our identified geomagnetic storm list. The results showed the more complex ARs are responsible for the strongest geomagnetic storms.

  3. Solar activity prediction

    NASA Technical Reports Server (NTRS)

    Slutz, R. J.; Gray, T. B.; West, M. L.; Stewart, F. G.; Leftin, M.

    1971-01-01

    A statistical study of formulas for predicting the sunspot number several years in advance is reported. By using a data lineup with cycle maxima coinciding, and by using multiple and nonlinear predictors, a new formula which gives better error estimates than former formulas derived from the work of McNish and Lincoln is obtained. A statistical analysis is conducted to determine which of several mathematical expressions best describes the relationship between 10.7 cm solar flux and Zurich sunspot numbers. Attention is given to the autocorrelation of the observations, and confidence intervals for the derived relationships are presented. The accuracy of predicting a value of 10.7 cm solar flux from a predicted sunspot number is dicussed.

  4. Enhanced solar activity influence on the summer temperature variability of the southeast margin of the Qinghai-Tibetan Plateau in the late Holocene

    NASA Astrophysics Data System (ADS)

    Chang, Jie; Zhang, Enlou; Liu, Enfeng; Shulmeister, James

    2017-04-01

    We present two quantitative chironomid-based Holocene summer temperature records from the southeast margin of the Qinghai-Tibetan Plateau (QTP). The records are from two alpine lakes (Tiancai and Heihai) located at the elevation of close to 4000 m above sea level from Yunnan Province. The mean July temperatures were quantified by applying a transfer function model (r2 = 0.63, RMSEP = 2.3 °C) developed based on a 100-lake modern calibration dataset of south-west China. The results were validated using standard reconstruction diagnostics. Both records show that the total summer temperature variation is within 2.5 °C. The records also show that the overall pattern broadly matches the declining trend of the summer insolation at 30°N and the Asian Summer Monsoon records. The general declining trend is punctuated by a few warm and cool intervals on the centennial scale. We observed a periodicity pattern in the mean July temperature variability and these fluctuations are possibly related to both the solar irradiance and the summer monsoon changes. Solar activity may have played an enhanced role on the highland summer temperature changes in the late Holocene when the monsoon influence to south-western China is generally weakened. More comprehensive investigations are needed to clarify the relationship between solar activity, the East Asian and Indian Ocean summer monsoons and the response of alpine climate in order to disentangle these or the combined effects on the climate change in the broad region of south-western China.

  5. An influence of solar activity on latitudinal distribution of atmospheric ozone and temperature in 2-D radiative-photochemical model

    NASA Technical Reports Server (NTRS)

    Dyominov, I. G.

    1989-01-01

    On the basis of the 2-D radiative-photochemical model of the ozone layer at heights 0 to 60 km in the Northern Hemisphere there are revealed and analyzed in detail the characteristic features of the season-altitude-latitude variations of ozone and temperature due to changes of the solar flux during the 11 year cycle, electron and proton precipitations.

  6. Space weather influence on the agriculture technology and wheat prices in the medieval England (1259-1703) through cosmic ray/solar activity cycle variations

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Pustil'Nik, L. A.; Yom Din, G.

    2003-04-01

    The database of Professor Rogers (1887), which includes wheat prices in England in the Middle Ages (1249-1703) was used to search for possible manifestations of solar activity and cosmic ray intensity variations. The main object of our statistical analysis is investigation of bursts of prices. Our study shows that bursts and troughs of wheat prices take place at extreme states (maximums or minimums) of solar activity cycles. We present a conceptual model of possible modes for sensitivity of wheat prices to weather conditions, caused by cosmic ray intensity solar cycle variations, and compare the expected price fluctuations with wheat price variations recorded in the Medieval England. We compared statistical properties of the intervals between price bursts with statistical properties of the intervals between extremes (minimums) of solar cycles during the years 1700-2000. The medians of both samples have the values of 11.00 and 10.7 years; standard deviations are 1.44 and 1.53 years for prices and for solar activity, respectively. The hypothesis that the frequency distributions are the same for both of the samples have significance level >95%. In the next step we analyzed direct links between wheat prices and cosmic ray cycle variations in the 17th Century, for which both wheat prices and cosmic ray intensity (derived from Be-10 isotope data) are available. We show that for all seven solar activity minimums (cosmic ray intensity maximums) the observed prices were higher than prices for the seven intervals of maximal solar activity (100% sign correlation). This result, combined with the conclusion of similarity of statistical properties of the price and solar activity extremes can be considered as direct evidence of a causal connection between wheat prices bursts and solar activity/cosmic ray intensity extremes.

  7. Influence of Solar Irradiance on Polar Ionospheric Convection

    NASA Astrophysics Data System (ADS)

    Burrell, A. G.; Yeoman, T. K.; Stephen, M.; Lester, M.

    2016-12-01

    Plasma convection over the poles shows the result of direct interactions between the terrestrial atmosphere, magnetosphere, and the sun. The paths that the ionospheric plasma takes in the polar cap form a variety of patterns, which have been shown to depend strongly on the direction of the Interplanetary Magnetic Field (IMF) and the reconnection rate. While the IMF and level of geomagnetic activity clearly alter the plasma convection patterns, the influence of changing solar irradiance is also important. The solar irradiance and magnetospheric particle precipitation regulate the rate of plasma production, and thus the ionospheric conductivity. Previous work has demonstrated how season alters the convection patterns observed over the poles, demonstrating the importance that solar photoionisation has on plasma convection. This study investigates the role of solar photoionisation on convection more directly, using measurements of ionospheric convection made by the Super Dual Auroral Radar Network (SuperDARN) and solar irradiance observations made by the Solar EUV Experiment (SEE) to explore the influence of the solar cycle on ionospheric convection, and the implications this may have on magnetosphere-ionosphere coupling.

  8. Relationship between global seismicity and solar activities

    NASA Astrophysics Data System (ADS)

    Zhang, Gui-Qing

    1998-07-01

    The relations between sunspot numbers and earthquakes (M≧6), solar 10.7 cm radio flux and earthquakes, solar proton events and earthquakes have been analyzed in this paper. It has been found that: (1) Earthquakes occur frequently around the minimum years of solar activity. Generally, the earthquake activities are relatively less during the peak value years of solar activity, some say, around the period when magnetic polarity in the solar polar regions is reversed. (2) the earthquake frequency in the minimum period of solar activity is closely related to the maximum annual means of sunspot numbers, the maximum annual means of solar 10.7 cm radio flux and solar proton events of a whole solar cycle, and the relation between earthquake and solar proton events is closer than others. (3) As judged by above interrelationship, the period from 1995 to 1997 will be the years while earthquake activities are frequent. In the paper, the simple physical discussion has been carried out.

  9. Solar active region display system

    NASA Astrophysics Data System (ADS)

    Golightly, M.; Raben, V.; Weyland, M.

    2003-04-01

    The Solar Active Region Display System (SARDS) is a client-server application that automatically collects a wide range of solar data and displays it in a format easy for users to assimilate and interpret. Users can rapidly identify active regions of interest or concern from color-coded indicators that visually summarize each region's size, magnetic configuration, recent growth history, and recent flare and CME production. The active region information can be overlaid onto solar maps, multiple solar images, and solar difference images in orthographic, Mercator or cylindrical equidistant projections. Near real-time graphs display the GOES soft and hard x-ray flux, flare events, and daily F10.7 value as a function of time; color-coded indicators show current trends in soft x-ray flux, flare temperature, daily F10.7 flux, and x-ray flare occurrence. Through a separate window up to 4 real-time or static graphs can simultaneously display values of KP, AP, daily F10.7 flux, GOES soft and hard x-ray flux, GOES >10 and >100 MeV proton flux, and Thule neutron monitor count rate. Climatologic displays use color-valued cells to show F10.7 and AP values as a function of Carrington/Bartel's rotation sequences - this format allows users to detect recurrent patterns in solar and geomagnetic activity as well as variations in activity levels over multiple solar cycles. Users can customize many of the display and graph features; all displays can be printed or copied to the system's clipboard for "pasting" into other applications. The system obtains and stores space weather data and images from sources such as the NOAA Space Environment Center, NOAA National Geophysical Data Center, the joint ESA/NASA SOHO spacecraft, and the Kitt Peak National Solar Observatory, and can be extended to include other data series and image sources. Data and images retrieved from the system's database are converted to XML and transported from a central server using HTTP and SOAP protocols, allowing

  10. Solar Energy Project, Activities: Biology.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of biology experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher information…

  11. Stratospheric ozone, solar activity and volcanism

    NASA Astrophysics Data System (ADS)

    Komitov, Boris; Stoychev, Konstantin

    The aim of this study is to investigate the long-term (multiannual) variations of the total ozone content (TOC) on the base of TOMS instrument measurements on the board of Nimbus-7 satellite for the period 1979 -- 1993 AD. The total effects of the solar activity influence over stratosphere ozone has been investigated by using multiple regression analysis. The monthly radio-index F10.7, the cosmic rays neutron flux, the geomagnetic index Ap and the number of GOES x-ray X-class flares have been used as solar or solar-modulated parameters as predictors in the model. The global mean-monthly TOC-parameter has been used as a predictant. It has been found that the coefficient of correlation of the model between TOC and above-mentioned solar and geomagnetic factors is about 0.544. Thus the corresponding factor variance is about 37%. The results calculated by the model have been removed from the original TOC data. It has been found out that during the first 12 years since 1979 the downward trend is predominantly caused by the solar and solar-modulated processes. However during the remaining 3 years after 1990 the slope of the negative trend has been essentially increased. This phenomenon could only be explained by some catastrophic event. Most probably such one is the Pinatubo volcano eruption in June, 1991. An evidence for the possibility that the last one is caused by trigger effect from the extremely high solar flare activity in May -- June 1991, is given.

  12. Physical mechanisms of solar variability influence on weather and climate

    NASA Astrophysics Data System (ADS)

    Avakyan, Sergei

    2010-05-01

    Numerous researches into correlation of weather and climate characteristics with solar and geomagnetic activity confirm that such correlation does exist. However there is some uncertainty in interpretation of the Sun-weather-climate relations. The paper considers the main causes of this uncertainty which are as follows - the lack of permanent monitoring data on ionizing solar EUV/X-ray radiation including periods of flares; and also the data on electron fluxes of keV energy precipitating from radiation belts first of all during geomagnetic storms; - multiplicity of Sun-weather-climate links; - the lack of understanding what are the mechanisms of solar-geomagnetic activity (flares and storms) influence on weather and climate characteristics; By now mainly the research on galactic cosmic rays (GSR) including Forbush effects and solar cosmic rays (SCR) influences on atmosphere transparence characteristics and further on climate-weather characteristics have been carried out. The GCR flux increase causes the growth of low (usually optically thick) cloudness and therefore produces in generally cooling effect on the mean surface air temperature. The appearance of SCR causes the reduction of stratospheric and tropospheric transparence and produces also usually cooling effect However these events are rare and corresponding variations of fluxes energy are small. At the same time such strong and frequent manifestations of solar activity as flares and magnetic storms are not so far taken into account since it is not known what physical mechanisms could be responsible for energy transfer from solar flares and magnetic storms to the lower atmosphere. The paper describes a novel radio-optical mechanism responsible for the solar-terrestrial links which acts as a three-stage trigger and which could be useful for solving the problem "Sun- weather-climate". This physical mechanism is based on taking into account the excitation of Rydberg states of atoms and molecules in generation of

  13. Seismic Forecasting of Solar Activity

    NASA Technical Reports Server (NTRS)

    Braun, Douglas; Lindsey, Charles

    2001-01-01

    We have developed and improved helioseismic imaging techniques of the far-side of the Sun as part of a synoptic monitor of solar activity. In collaboration with the MIDI team at Stanford University we are routinely applying our analysis to images within 24 hours of their acquisition by SOHO. For the first time, real-time seismic maps of large active regions on the Sun's far surface are publicly available. The synoptic images show examples of active regions persisting for one or more solar rotations, as well as those initially detected forming on the solar far side. Until recently, imaging the far surface of the Sun has been essentially blind to active regions more than about 50 degrees from the antipode of disk center. In a paper recently accepted for publication, we have demonstrated how acoustic travel-time perturbations may be mapped over the entire hemisphere of the Sun facing away from the Earth, including the polar regions. In addition to offering significant improvements to ongoing space weather forecasting efforts, the procedure offers the possibility of local seismic monitoring of both the temporal and spatial variations in the acoustic properties of the Sun over the entire far surface.

  14. [Influences of solar and geomagnetic activity on health status of people with various nosological forms of diseases].

    PubMed

    Gadzhiev, G D; Rakhmatulin, R A

    2013-01-01

    Statistical analysis of correlation between heliogeophysical factors and a symptom of the various forms of diseases (based on statistical data on disease of the personnel of Irkutsk Scientific Centre, RAS) has been studied. It is shown that geomagnetic storms influence vegetative regulation of a cardiac rhythm and vascular tone. The most serious consequences of such influence can mainly be observed in the persons suffering from diseases of the cardiovascular system (consequences of myocardium attack, brain strokes, cardiac rhythm disorders); being in a condition of additional stress, mainly with vegetovascular and hypertensic crises; having mental diseases; and subject to aggravations of general diseases (chronic inflammatory diseases of gynecological, musculoskeletal, urinary excretory, bronchopulmonary systems, and systems of digestive organs).

  15. Solar activity variations of the ionospheric peak electron density

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Wan, Weixing; Ning, Baiqi; Pirog, O. M.; Kurkin, V. I.

    2006-08-01

    The daily averaged Solar EUV Monitor (SEM)/Solar Heliospheric Observatory (SOHO) EUV measurements, solar proxies, and foF2 data at 20 ionosonde stations in the east Asia/Australia sector are collected to investigate the solar activity dependences of the ionospheric peak electron density (NmF2). The intensities of solar EUV from the SEM/SOHO measurements from 1996 to 2005 show a nonlinear relationship with F107, and the SEM/SOHO EUV can be better represented by a solar activity factor P = (F107 + F107A)/2. Seasonal and latitudinal dependences are found in the solar activity variation of NmF2 in the east Asia/Australian sector. The slope of NmF2 with P in the linear segment further shows similar annual variations as the background electron densities at moderate solar activity. Observations show a nonlinear dependence of NmF2 on solar EUV (the saturation effect of NmF2 for high solar EUV). On the basis of a simple model of photochemistry, taking the neutral atmospheric consequences into account, calculations at fixed height simulate the saturation effect of NmF2, but the observed change rate of NmF2 with P is inadequately reproduced. Calculations taking into account the influence of dynamics (via a simple model of the solar EUV dependence of the ionospheric height) tend to reproduce the observed change rate of NmF2. Results indicate that besides solar EUV changes, the influence of dynamics and the atmospheric consequences should substantially contribute to the solar activity variations of NmF2.

  16. Solar irradiance modulation by active regions from 1969 through 1980

    SciTech Connect

    Schatten, K.H.; Miller, N.; Sofia, S.; Oster, L.

    1982-01-01

    The solar irradiance variations resulting from sunspot deficits and facular excesses in emission have been calculated from 1969 through 1980. Agreement appears to exist between our calculations and the major features seen with the Nimbus 7 cavity pyrheliometer and with both the major and minor features detected by The Solar Maximum Mission ACRIM experiment. The 12-year irradiance variations we calculate suggest a larger variance with increased solar activity, and little change in the average irradiance with solar activity. The largest excursions over these 12 years show a 0.4% variation. Removal of the activity influences upon solar irradiance during the numerous rocket experiments observing the solar ''constant'' may allow a better value for this quantity to be determined.

  17. Influence of chemically p-type doped active organic semiconductor on the film thickness versus performance trend in cyanine/C60 bilayer solar cells

    PubMed Central

    Jenatsch, Sandra; Geiger, Thomas; Heier, Jakob; Kirsch, Christoph; Nüesch, Frank; Paracchino, Adriana; Rentsch, Daniel; Ruhstaller, Beat; C Véron, Anna; Hany, Roland

    2015-01-01

    Simple bilayer organic solar cells rely on very thin coated films that allow for effective light absorption and charge carrier transport away from the heterojunction at the same time. However, thin films are difficult to coat on rough substrates or over large areas, resulting in adverse shorting and low device fabrication yield. Chemical p-type doping of organic semiconductors can reduce Ohmic losses in thicker transport layers through increased conductivity. By using a Co(III) complex as chemical dopant, we studied doped cyanine dye/C60 bilayer solar cell performance for increasing dye film thickness. For films thicker than 50 nm, doping increased the power conversion efficiency by more than 30%. At the same time, the yield of working cells increased to 80%. We addressed the fate of the doped cyanine dye, and found no influence of doping on solar cell long term stability. PMID:27877804

  18. Influence of chemically p-type doped active organic semiconductor on the film thickness versus performance trend in cyanine/C60 bilayer solar cells.

    PubMed

    Jenatsch, Sandra; Geiger, Thomas; Heier, Jakob; Kirsch, Christoph; Nüesch, Frank; Paracchino, Adriana; Rentsch, Daniel; Ruhstaller, Beat; C Véron, Anna; Hany, Roland

    2015-06-01

    Simple bilayer organic solar cells rely on very thin coated films that allow for effective light absorption and charge carrier transport away from the heterojunction at the same time. However, thin films are difficult to coat on rough substrates or over large areas, resulting in adverse shorting and low device fabrication yield. Chemical p-type doping of organic semiconductors can reduce Ohmic losses in thicker transport layers through increased conductivity. By using a Co(III) complex as chemical dopant, we studied doped cyanine dye/C60 bilayer solar cell performance for increasing dye film thickness. For films thicker than 50 nm, doping increased the power conversion efficiency by more than 30%. At the same time, the yield of working cells increased to 80%. We addressed the fate of the doped cyanine dye, and found no influence of doping on solar cell long term stability.

  19. Influence of solar flares on behavior of solar neutrino flux

    NASA Astrophysics Data System (ADS)

    Boyarkin, O. M.; Boyarkina, G. G.

    2016-12-01

    Limiting ourselves to two flavor approximation the motion of the neutrino flux in the solar matter and twisting magnetic field is considered. For the neutrino system described by the 4-component wave function ΨT =(νeL ,νXL ,νbareL ,νbarXL) , where X = μ , τ , an evolution equation is found. Our consideration carries general character, that is, it holds for any SM extensions with massive neutrinos. The resonance transitions of the electron neutrinos are investigated. Factors which influence on the electron neutrino flux, crossing a region of solar flares (SF) are defined. When the SF is absent a terrestrial detector records the electron neutrino flux weakened at the cost both of vacuum oscillations and of the MSW resonance conversion only. On the other hand, the electron neutrino flux passed the SF region in preflare period proves to be further weakened in so far as it undergoes one (Majorana neutrino) or two (Dirac neutrino) additional resonance conversions, apart from the MSW resonance and vacuum oscillations. The hypothesis of the νe-induced decays which states that decreasing the beta decay rates of some elements of the periodic table is caused by reduction of the solar neutrino flux is discussed as well.

  20. Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    2007-01-01

    A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.

  1. Solar Influence on Ionosphere and Radio Communications

    NASA Astrophysics Data System (ADS)

    Reddy, B. M.

    2006-11-01

    When we are discussing solar influence on Ionosphere, it will be helpful to remember that less than one-thousandth of the solar energy being intercepted by the planet Earth is responsible for its production and dynamics. This includes the solar wind energy intercepted by a much larger magnetosphere. But it is this small fraction of energy (in the X-rays, EUV and solar wind) that undergoes violent fluctuations during the course of a solar cycle and during such solar events as flares and Coronal Mass Ejections (CMEs).The consequences of these events are now generically dubbed as “Space Weather”. The problems created by extreme space weather events encompass a wide variety of applications of human interest. These include difficulties to satellite operations, ionosphere-reflected H.F Communications, GPS operations and even power grids and gas pipelines. I will restrict my presentation to H.F communications and to certain science elements such as anomalous plasma temperature variations measured by satellites. Particular attention will be given to increases in electron temperatures during magnetic storms in the night time when there is no photo-electron heat input. As this has a bearing on the present theory of electron thermal conduction associated with increase in neutral densities during storms, a detailed analysis will be presented using satellite data. Also the presentation will include examples of H.F communication failures especially at night time, contrary to what is expected at low latitudes. This has serious implications to the communication scenario in India in view of the high Atmospheric Radio Noise at the lower bands of the H.F. Spectrum.

  2. Solar Influence On ENSO And The Tropics?

    NASA Astrophysics Data System (ADS)

    Cane, M. A.; Emile-Geay, J. B.; Seager, R.; Clement, A. C.; Mann, M. E.

    2004-12-01

    We consider the possibility that variations in solar irradiance have a significant impact on the climate of the tropics, including the El Niño-Southern Oscillation (ENSO) cycle. It is well known that ENSO has a large impact on regional climates worldwide, with subsequent impacts on ecosystems and society. Very recent work (Schubert et al. 2004; Seager et al. 2004) has shown that a prime cause of the Dust Bowl droughts of the 1930s is a La Niña-like pattern of decadal mean sea surface temperature anomalies in the Pacific. These anomalies were very small amplitude (<0.5°C everywhere). Decadal anomalies of similar size in the tropical West Pacific and Indian Oceans have been shown to impact the North Atlantic sector (Hoerling et al., 2001); other small amplitude anomalies throughout the tropical Indian and Pacific Oceans appear to be responsible for widespread midlatitude droughts from 1998-2002 (Hoerling and Kumar, 2003). Our recent work (Mann et al. 2004) has shown that coupled ocean-atmosphere interactions in the tropical Pacific generate a significant response to solar and volcanic radiative forcing over the past 1000 years. Here we focus on solar variations. While they are unlikely to have much effect on individual El Niño-Southern Oscillation (ENSO) events, they may influence characteristics of the ENSO cycle by changing the background state. Shifts in the ENSO cycle or the background state of the tropical Pacific could help explain persistent climate anomalies around the world over the last 1000 years. Noise or chaos internal to the climate system clearly is responsible for much of the decade to decade variation in the ENSO cycle, which has caused droughts such as those of the 1930s. But does solar variability also play a role? What is the impact of solar variability on the tropical climate in general, on timescales from decades to millennia?

  3. The influence of solar system oscillation on the variability of the total solar irradiance

    NASA Astrophysics Data System (ADS)

    Yndestad, Harald; Solheim, Jan-Erik

    2017-02-01

    Total solar irradiance (TSI) is the primary quantity of energy that is provided to the Earth. The properties of the TSI variability are critical for understanding the cause of the irradiation variability and its expected influence on climate variations. A deterministic property of TSI variability can provide information about future irradiation variability and expected long-term climate variation, whereas a non-deterministic variability can only explain the past. This study of solar variability is based on an analysis of two TSI data series, one since 1700 A.D. and one since 1000 A.D.; a sunspot data series since 1610 A.D.; and a solar orbit data series from 1000 A.D. The study is based on a wavelet spectrum analysis. First, the TSI data series are transformed into a wavelet spectrum. Then, the wavelet spectrum is transformed into an autocorrelation spectrum to identify stationary, subharmonic and coincidence periods in the TSI variability. The results indicate that the TSI and sunspot data series have periodic cycles that are correlated with the oscillations of the solar position relative to the barycenter of the solar system, which is controlled by gravity force variations from the large planets Jupiter, Saturn, Uranus and Neptune. A possible explanation for solar activity variations is forced oscillations between the large planets and the solar dynamo. We find that a stationary component of the solar variability is controlled by the 12-year Jupiter period and the 84-year Uranus period with subharmonics. For TSI and sunspot variations, we find stationary periods related to the 84-year Uranus period. Deterministic models based on the stationary periods confirm the results through a close relation to known long solar minima since 1000 A.D. and suggest a modern maximum period from 1940 to 2015. The model computes a new Dalton-type sunspot minimum from approximately 2025 to 2050 and a new Dalton-type period TSI minimum from approximately 2040 to 2065.

  4. [Solar activity and cardiovascular diseases].

    PubMed

    Smirnova, A V; Naumcheva, N N

    2008-01-01

    Many-year research into biological effects caused by solar activity has proved that the response of biological objects, including human organism, to heliogeomagnetic disturbances presents an adaptive stress reaction. This response can be irreversible only in organisms whose adaptive system works improperly due to a pathological condition or overstress. Studies dedicated to the role of melatonin--an epiphysial hormone--in human and animal stress protection, are of interest. The application of physiological doses of melatonin as an anti-stress agent is based on its adaptogenic effects and its role as an endogenous biological rhythm synchronizer.

  5. Decay of Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Choudhary, Debi Prasad

    2005-01-01

    We examine the record of sunspot group areas observed over a period of 100 years to determine the rate of decay of solar active regions. We exclude observations of groups when they are more than 60deg in longitude from the central meridian and only include data when at least three days of observations are available following the date of maximum area for a spot group's disk passage. This leaves data for some 24,000 observations of active region decay. We find that the decay rate is a constant 20 microHem/day for spots smaller than about 200 microHem (about the size of a supergranule). This decay rate increases linearly to about 90 microHem/day for spots with areas of 1000 microHem. We find no evidence for significant variations in active region decay from one solar cycle to another. However, we do find that the decay rate is slower at lower latitudes. This gives a slower decay rate during the declining phase of sunspot cycles.

  6. Decay of Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Choudhary, Debi Prasad

    2005-01-01

    We examine the record of sunspot group areas observed over a period of 100 years to determine the rate of decay of solar active regions. We exclude observations of groups when they are more than 60deg in longitude from the central meridian and only include data when at least three days of observations are available following the date of maximum area for a spot group's disk passage. This leaves data for some 24,000 observations of active region decay. We find that the decay rate is a constant 20 microHem/day for spots smaller than about 200 microHem (about the size of a supergranule). This decay rate increases linearly to about 90 microHem/day for spots with areas of 1000 microHem. We find no evidence for significant variations in active region decay from one solar cycle to another. However, we do find that the decay rate is slower at lower latitudes. This gives a slower decay rate during the declining phase of sunspot cycles.

  7. Solar, geomagnetic and seismic activity

    NASA Astrophysics Data System (ADS)

    Mazzarella, A.; Palumbo, A.

    1988-08-01

    An 11-yr modulation of large Italian earthquakes has been successfully identified and found to be positively linked to sunspot activity. The seismic activity appears to be modulated by the 11-yr sunspot cycle through the coherent variation of geomagnetic activity. It is proposed that the two phenomena are linked by the influence of a magnetostriction process on stresses in the crust. An implication of this model is that geomagnetic storms may directly trigger large earthquakes.

  8. Geomagnetic responses to the solar wind and the solar activity

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1975-01-01

    Following some historical notes, the formation of the magnetosphere and the magnetospheric tail is discussed. The importance of electric fields is stressed and the magnetospheric convection of plasma and magnetic field lines under the influence of large-scale magnetospheric electric fields is outlined. Ionospheric electric fields and currents are intimately related to electric fields and currents in the magnetosphere and the strong coupling between the two regions is discussed. The energy input of the solar wind to the magnetosphere and upper atmosphere is discussed in terms of the reconnection model where interplanetary magnetic field lines merge or connect with the terrestrial field on the sunward side of the magnetosphere. The merged field lines are then stretched behind earth to form the magnetotail so that kinetic energy from the solar wind is converted into magnetic energy in the field lines in the tail. Localized collapses of the crosstail current, which is driven by the large-scale dawn/dusk electric field in the magnetosphere, divert part of this current along geomagnetic field lines to the ionosphere, causing substorms with auroral activity and magnetic disturbances. The collapses also inject plasma into the radiation belts and build up a ring current. Frequent collapses in rapid succession constitute the geomagnetic storm.

  9. Solar influence on terrestrial weather and global lightning patterns via cosmic ray modulations

    NASA Technical Reports Server (NTRS)

    Ely, J. T. A.

    1984-01-01

    A series of cosmic ray neutron monitor data which were used in three analyses: (1) solar activity influence on ionization of the upper troposphere and tropopause; (2) solar activity influence on Canadian high stratus in winter; and (3) the S3-4 satellite study of IMF/GMF magnetic coupling effects are reported. The magnetic coupling model of solar activity influence on atmospheric processes were investigated. The magnetic coupling model is used to explain a number of seemingly diverse studies lightning incidence is emphasized.

  10. Solar neutrino flux, cosmic rays, and the solar activity cycle

    NASA Astrophysics Data System (ADS)

    Raychaudhuri, P.

    1986-04-01

    It is suggested that the experimental data on the solar neutrino flux as measured by Davis et al. (1983) from 1970 to 1982 vary with the solar activity cycle to a very high level of statistical significance for all the available tests of the hypothesis (e.g., t-test, run test, Wilcoxon-Mann-Whitney test) when the solar neutrino flux data are computed from the weighted moving averages of order 5. The above tests have also been applied to the data that have been generated by the Monte Carlo simulation with production rate and background rate parameters that are typical of those in the actual experiment. It is shown that the Monte Carlo simulated data do not indicate a variation within the solar cycle. Thus the moving-average data strongly favor the variation within the solar activity cycle.

  11. Workshop on Solar Activity, Solar Wind, Terrestrial Effects, and Solar Acceleration

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A summary of the proceedings from the workshop are presented. The areas covered were solar activity, solar wind, terrestrial effects, and solar acceleration. Specific topics addressed include: (1) solar cycle manifestations, both large and small scale, as well as long-term and short-term changes, including transients such as flares; (2) sources of solar wind, as identified by interplanetary observations including coronal mass ejections (CME's) or x-ray bright points, and the theory for and evolution of large-scale and small-scale structures; (3) magnetosphere responses, as observed by spacecraft, to variable solar wind and transient energetic particle emissions; and (4) origin and propagation of solar cosmic rays as related to solar activity and terrestrial effects, and solar wind coronal-hole relationships and dynamics.

  12. Analysis of regression methods for solar activity forecasting

    NASA Technical Reports Server (NTRS)

    Lundquist, C. A.; Vaughan, W. W.

    1979-01-01

    The paper deals with the potential use of the most recent solar data to project trends in the next few years. Assuming that a mode of solar influence on weather can be identified, advantageous use of that knowledge presumably depends on estimating future solar activity. A frequently used technique for solar cycle predictions is a linear regression procedure along the lines formulated by McNish and Lincoln (1949). The paper presents a sensitivity analysis of the behavior of such regression methods relative to the following aspects: cycle minimum, time into cycle, composition of historical data base, and unnormalized vs. normalized solar cycle data. Comparative solar cycle forecasts for several past cycles are presented as to these aspects of the input data. Implications for the current cycle, No. 21, are also given.

  13. Analysis of regression methods for solar activity forecasting

    NASA Technical Reports Server (NTRS)

    Lundquist, C. A.; Vaughan, W. W.

    1979-01-01

    The paper deals with the potential use of the most recent solar data to project trends in the next few years. Assuming that a mode of solar influence on weather can be identified, advantageous use of that knowledge presumably depends on estimating future solar activity. A frequently used technique for solar cycle predictions is a linear regression procedure along the lines formulated by McNish and Lincoln (1949). The paper presents a sensitivity analysis of the behavior of such regression methods relative to the following aspects: cycle minimum, time into cycle, composition of historical data base, and unnormalized vs. normalized solar cycle data. Comparative solar cycle forecasts for several past cycles are presented as to these aspects of the input data. Implications for the current cycle, No. 21, are also given.

  14. Solar irradiance measurements - Minimum through maximum solar activity

    NASA Technical Reports Server (NTRS)

    Lee, R. B., III; Gibson, M. A.; Shivakumar, N.; Wilson, R.; Kyle, H. L.; Mecherikunnel, A. T.

    1991-01-01

    The Earth Radiation Budget Satellite (ERBS) and the NOAA-9 spacecraft solar monitors were used to measure the total solar irradiance during the period October 1984 to December 1989. Decreasing trends in the irradiance measurements were observed as sunspot activity decreased to minimum levels in 1986; after 1986, increasing trends were observed as sunspot activity increased. The magnitude of the irradiance variability was found to be approximately 0.1 percent between sunspot minimum and maximum (late 1989). When compared with the 1984 to 1989 indices of solar magnetic activity, the irradiance trends appear to be in phase with the 11-year sunspot cycle. Both irradiance series yielded 1,365/sq Wm as the mean value of the solar irradiance, normalized to the mean earth/sun distance. The monitors are electrical substitution, active-cavity radiometers with estimated measurement precisions and accuracies of less than 0.02 and 0.2 percent, respectively.

  15. Solar irradiance measurements - Minimum through maximum solar activity

    NASA Technical Reports Server (NTRS)

    Lee, R. B., III; Gibson, M. A.; Shivakumar, N.; Wilson, R.; Kyle, H. L.; Mecherikunnel, A. T.

    1991-01-01

    The Earth Radiation Budget Satellite (ERBS) and the NOAA-9 spacecraft solar monitors were used to measure the total solar irradiance during the period October 1984 to December 1989. Decreasing trends in the irradiance measurements were observed as sunspot activity decreased to minimum levels in 1986; after 1986, increasing trends were observed as sunspot activity increased. The magnitude of the irradiance variability was found to be approximately 0.1 percent between sunspot minimum and maximum (late 1989). When compared with the 1984 to 1989 indices of solar magnetic activity, the irradiance trends appear to be in phase with the 11-year sunspot cycle. Both irradiance series yielded 1,365/sq Wm as the mean value of the solar irradiance, normalized to the mean earth/sun distance. The monitors are electrical substitution, active-cavity radiometers with estimated measurement precisions and accuracies of less than 0.02 and 0.2 percent, respectively.

  16. Solar Activities and Space Weather Hazards

    NASA Astrophysics Data System (ADS)

    Hady, Ahmed A.

    2013-03-01

    Geomagnetic storms have a good correlation with solar activity and solar radiation variability. Many proton events and geomagnetic storms have occurred during solar cycles21, 22, and 23. The solar activities during the last three cycles, gave us a good indication of the climatic change and its behavior during the 21st century. High energetic eruptive flares were recorded during the decline phase of the last three solar cycles. The appearances of the second peak on the decline phase of solar cycles have been detected. Halloween storms during Nov. 2003 and its effects on the geomagnetic storms have been studied analytically. The data of amplitude and phase of most common indicators of geomagnetic activities during solar cycle 23 have been analyzed.

  17. The Solar Dynamics Observatory, Studying the Sun and Its Influence on Other Bodies in the Solar System

    NASA Technical Reports Server (NTRS)

    Chamberlin, P. C.

    2011-01-01

    The solar photon output, which was once thought to be constant, varies over all time scales from seconds during solar flares to years due to the solar cycle. These solar variations cause significant deviations in the Earth and space environments on similar time scales, such as affecting the atmospheric densities and composition of particular atoms, molecules, and ions in the atmospheres of the Earth and other planets. Presented and discussed will be examples of unprecedented observations from NASA's new solar observatory, the Solar Dynamics Observatory (SDO). Using three specialized instruments, SDO measures the origins of solar activity from inside the Sun, though its atmosphere, then accurately measuring the Sun's radiative output in X-ray and EUV wavelengths (0.1-121 nm). Along with the visually appealing observations will be discussions of what these measurements can tell us about how the plasma motions in all layers of the Sun modifies and strengthens the weak solar dipole magnetic field to drive large energy releases in solar eruptions. Also presented will be examples of how the release of the Sun's energy, in the form of photons and high energy particles, physically influence other bodies in the solar system such as Earth, Mars, and the Moon, and how these changes drive changes in the technology that we are becoming dependent upon. The presentation will continuously emphasize how SDO, the first satellite in NASA's Living with a Star program, improving our understanding of the variable Sun and its Heliospheric influence.

  18. Modeling of the atmospheric response to a strong decrease of the solar activity

    NASA Astrophysics Data System (ADS)

    Rozanov, Eugene V.; Egorova, Tatiana A.; Shapiro, Alexander I.; Schmutz, Werner K.

    2012-07-01

    We estimate the consequences of a potential strong decrease of the solar activity using the model simulations of the future driven by pure anthropogenic forcing as well as its combination with different solar activity related factors: total solar irradiance, spectral solar irradiance, energetic electron precipitation, solar protons and galactic cosmic rays. The comparison of the model simulations shows that introduced strong decrease of solar activity can lead to some delay of the ozone recovery and partially compensate greenhouse warming acting in the direction opposite to anthropogenic effects. The model results also show that all considered solar forcings are important in different atmospheric layers and geographical regions. However, in the global scale the solar irradiance variability can be considered as the most important solar forcing. The obtained results constitute probably the upper limit of the possible solar influence. Development of the better constrained set of future solar forcings is necessary to address the problem of future climate and ozone layer with more confidence.

  19. Solar wind control of auroral zone geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Clauer, C. R.; Mcpherron, R. L.; Searls, C.; Kivelson, M. G.

    1981-01-01

    Solar wind magnetosphere energy coupling functions are analyzed using linear prediction filtering with 2.5 minute data. The relationship of auroral zone geomagnetic activity to solar wind power input functions are examined, and a least squares prediction filter, or impulse response function is designed from the data. Computed impulse response functions are observed to have characteristics of a low pass filter with time delay. The AL index is found well related to solar wind energy functions, although the AU index shows a poor relationship. High frequency variations of auroral indices and substorm expansions are not predictable with solar wind information alone, suggesting influence by internal magnetospheric processes. Finally, the epsilon parameter shows a poorer relationship with auroral geomagnetic activity than a power parameter, having a VBs solar wind dependency.

  20. Solar activity and oscillation frequency splittings

    NASA Technical Reports Server (NTRS)

    Woodard, M. F.; Libbrecht, K. G.

    1993-01-01

    Solar p-mode frequency splittings, parameterized by the coefficients through order N = 12 of a Legendre polynomial expansion of the mode frequencies as a function of m/L, were obtained from an analysis of helioseismology data taken at Big Bear Solar Observatory during the 4 years 1986 and 1988-1990 (approximately solar minimum to maximum). Inversion of the even-index splitting coefficients confirms that there is a significant contribution to the frequency splittings originating near the solar poles. The strength of the polar contribution is anti correlated with the overall level or solar activity in the active latitudes, suggesting a relation to polar faculae. From an analysis of the odd-index splitting coefficients we infer an uppor limit to changes in the solar equatorial near-surface rotatinal velocity of less than 1.9 m/s (3 sigma limit) between solar minimum and maximum.

  1. Solar activity and oscillation frequency splittings

    NASA Technical Reports Server (NTRS)

    Woodard, M. F.; Libbrecht, K. G.

    1993-01-01

    Solar p-mode frequency splittings, parameterized by the coefficients through order N = 12 of a Legendre polynomial expansion of the mode frequencies as a function of m/L, were obtained from an analysis of helioseismology data taken at Big Bear Solar Observatory during the 4 years 1986 and 1988-1990 (approximately solar minimum to maximum). Inversion of the even-index splitting coefficients confirms that there is a significant contribution to the frequency splittings originating near the solar poles. The strength of the polar contribution is anti correlated with the overall level or solar activity in the active latitudes, suggesting a relation to polar faculae. From an analysis of the odd-index splitting coefficients we infer an uppor limit to changes in the solar equatorial near-surface rotatinal velocity of less than 1.9 m/s (3 sigma limit) between solar minimum and maximum.

  2. Solar neutrinos, solar flares, solar activity cycle and the proton decay

    NASA Technical Reports Server (NTRS)

    Raychaudhuri, P.

    1985-01-01

    It is shown that there may be a correlation between the galactic cosmic rays and the solar neutrino data, but it appears that the neutrino flux which may be generated during the large solar cosmic ray events cannot in any way effect the solar neutrino data in Davis experiment. Only initial stage of mixing between the solar core and solar outer layers after the sunspot maximum in the solar activity cycle can explain the higher (run number 27 and 71) of solar neutrino data in Davis experiment. But solar flare induced atmospheric neutrino flux may have effect in the nucleon decay detector on the underground. The neutrino flux from solar cosmic rays may be a useful guide to understand the background of nucleon decay, magnetic monopole search, and the detection of neutrino flux in sea water experiment.

  3. Sustainable Buildings. Using Active Solar Power

    SciTech Connect

    Sharp, M. Keith; Barnett, Russell

    2015-04-20

    The objective of this project is to promote awareness and knowledge of active solar energy technologies by installing and monitoring the following demonstration systems in Kentucky: 1) Pool heating system, Churchill Park School, 2) Water heating and daylighting systems, Middletown and Aiken Road Elementary Schools, 3) Photovoltaic street light comparison, Louisville Metro, 4) up to 25 domestic water heating systems across Kentucky. These tasks will be supported by outreach activities, including a solar energy installer training workshop and a Kentucky Solar Energy Conference.

  4. Climate: how unusual is today's solar activity?

    PubMed

    Muscheler, Raimund; Joos, Fortunat; Müller, Simon A; Snowball, Ian

    2005-07-28

    To put global warming into context requires knowledge about past changes in solar activity and the role of the Sun in climate change. Solanki et al. propose that solar activity during recent decades was exceptionally high compared with that over the preceding 8,000 years. However, our extended analysis of the radiocarbon record reveals several periods during past centuries in which the strength of the magnetic field in the solar wind was similar to, or even higher than, that of today.

  5. Probing relation between solar activities and seismicity

    NASA Astrophysics Data System (ADS)

    Nikouravan, Bijan; Rawa, J. J.; Sharifi, Rahman; Nikkhah, Mahmoud

    2012-06-01

    In this paper, we studied the relationship between sunspots numbers (SNs), solar 10.7 cm radio flux(SRF), solar irradiance (SI), solar proton events (SPEs) and local earthquakes. The location of the study is selected in Iran area and all earthquakes data chosen for 4 from 1970 to 2010. The study reveals the following conclusions: (i) The total number of local earthquakes in maximum years of solar activities is greater than the minimum years of solar activities from 1964 to 2010, (ii) The total local earthquakes frequency (EF) in the maximum period of solar activities is very close to the maximum annual means of sunspots numbers, (iii) The total local EF in the maximum period of solar activity is very close to the maximum annual means of SPE with negative correlation coefficient, (iv) The local earthquakes in the minimum period of solar activities is very close to the minimum annual means of sunspots numbers with negative correlation and (v) The local earthquake in the minimum period of solar activities is very near to SRF with negative correlation.

  6. The solar activity by wavelet-based multifractal analysis

    NASA Astrophysics Data System (ADS)

    Maruyama, Fumio

    2016-12-01

    The interest in the relation between the solar activity and climate change is increasing. As for the solar activity, a fractal property of the sunspot series was studied by many works. In general, a fractal property was observed in the time series of dynamics of complex systems. The purposes of this study were to investigate the relationship between the sunspot number, solar radio flux at 10.7 cm (F10.7 cm) and total ozone from a view of multifractality. To detect the changes of multifractality, we examined the multifractal analysis on the time series of the solar activity and total ozone indices. The changes of fractality of the sunspot number and F10.7 cm are very similar. When the sunspot number becomes maximum, the fractality of the F10.7 cm changes from multifractality to monofractality. The changes of fractality of the F10.7 cm and the total ozone are very similar. When the sunspot number becomes maximum, the fractality of the total ozone changes from multifractality to monofractality. A change of fractality of the F10.7 cm and total ozone was observed when the solar activity became maximum. The influence of the solar activity on the total ozone was shown by the wavelet coherence, phase and the similarity of the change of fractality. These findings will contribute to the research of the relationship between the solar activity and climate.

  7. Longitudinal variations of the solar activity influence on the annual and semiannual oscillations of the prevailing wind in the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Guryanov, Vladimir

    The study is based on daily Northern and Southern Hemisphere UK Met Office data of zonal and meridional winds at 25 pressure levels for the period 1992-2013 (pressure range 1000-0.316 hPa). For each year of the period, (two solar cycles) set the amplitude of annual and semiannual oscillations of the zonal and meridional winds. The amplitude was used to determine correlations with Wolf numbers. Significant positive and negative correlations were found. Character correlations for zonal and meridional wind differ and depend on the period of oscillations, geographical location and altitude. Found steady negative correlation of solar activity with semiannual oscillations of zonal wind in the tropical zone both hemispheres in the upper stratosphere. For the meridional wind there are positive correlations in the extra-tropical latitudes in the lower and middle stratosphere, especially in the Southern Hemisphere.

  8. Dynamo theory prediction of solar activity

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1988-01-01

    The dynamo theory technique to predict decadal time scale solar activity variations is introduced. The technique was developed following puzzling correlations involved with geomagnetic precursors of solar activity. Based upon this, a dynamo theory method was developed to predict solar activity. The method was used successfully in solar cycle 21 by Schatten, Scherrer, Svalgaard, and Wilcox, after testing with 8 prior solar cycles. Schatten and Sofia used the technique to predict an exceptionally large cycle, peaking early (in 1990) with a sunspot value near 170, likely the second largest on record. Sunspot numbers are increasing, suggesting that: (1) a large cycle is developing, and (2) that the cycle may even surpass the largest cycle (19). A Sporer Butterfly method shows that the cycle can now be expected to peak in the latter half of 1989, consistent with an amplitude comparable to the value predicted near the last solar minimum.

  9. Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.

    ERIC Educational Resources Information Center

    Longe, Karen M.; McClelland, Michael J.

    Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…

  10. Solar Activity Predictions Based on Solar Dynamo Theories

    NASA Astrophysics Data System (ADS)

    Schatten, Kenneth H.

    2009-05-01

    We review solar activity prediction methods, statistical, precursor, and recently the Dikpati and the Choudhury groups’ use of numerical flux-dynamo methods. Outlining various methods, we compare precursor techniques with weather forecasting. Precursors involve events prior to a solar cycle. First started by the Russian geomagnetician Ohl, and then Brown and Williams; the Earth's field variations near solar minimum was used to predict the next solar cycle, with a correlation of 0.95. From the standpoint of causality, as well as energetically, these relationships were somewhat bizarre. One index used was the "number of anomalous quiet days,” an antiquated, subjective index. Scientific progress cannot be made without some suspension of disbelief; otherwise old paradigms become tautologies. So, with youthful naïveté, Svalgaard, Scherrer, Wilcox and I viewed the results through rose-colored glasses and pressed ahead searching for understanding. We eventually fumbled our way to explaining how the Sun could broadcast the state of its internal dynamo to Earth. We noted one key aspect of the Babcock-Leighton Flux Dynamo theory: the polar field at the end of a cycle serves as a seed for the next cycle's growth. Near solar minimum this field usually bathes the Earth, and thereby affects geomagnetic indices then. We found support by examining 8 previous solar cycles. Using our solar precursor technique we successfully predicted cycles 21, 22 and 23 using WSO and MWSO data. Pesnell and I improved the method using a SODA (SOlar Dynamo Amplitude) Index. In 2005, nearing cycle 23's minimum, Svalgaard and I noted an unusually weak polar field, and forecasted a small cycle 24. We discuss future advances: the flux-dynamo methods. As far as future solar activity, I shall let the Sun decide; it will do so anyhow.

  11. Do Solar Activities Cause Local Earthquakes?

    NASA Astrophysics Data System (ADS)

    Nikouravan, Bijan

    2012-06-01

    The relationships between solar activities (sunspots, solar 10.7cm radio flux, solar irradiance, and solar proton events) and local earthquakes investigated in this paper. The geographical location of study is New Zealand area. All earthquakes data have been chosen for M ≥ 4, from first of 1970 to Jun 2012. The study reveals the following conclusions: 1) The total numbers of earthquakes strongly show annually an increasing in number of earthquakes in New Zealand from 42 years ago. 2) The maximum earthquakes occur frequently around the minimum years of solar activities, 3) The maximum earthquakes occurs in minimum years of sunspots number with a good correlation coefficient. 4) The maximum earthquakes occur in the minimum solar 10.7 cm radio flux with strong correlation coefficient.

  12. Influence of the 11-Year Solar Cycle on Variations of Cosmic Ray Intensity

    NASA Astrophysics Data System (ADS)

    Ma, L. H.; Han, Y. B.; Yin, Z. Q.

    2009-03-01

    The monthly cosmic ray intensity (CRI) time series from Climax, Huancayo, Moscow, Kiel, and Calgary are used to investigate the presence of the 11-year periodic component with special attention paid to the solar influence on these variations. The results show obvious 11-year temporal characteristics in CRI variations. We also find a close anticorrelation between the 11-year solar cycle and CRI variations and time delays of the CRI relative to solar activity.

  13. Magnetic activity of seismic solar analogs

    NASA Astrophysics Data System (ADS)

    Salabert, D.; García, R. A.; Beck, P. G.

    2016-12-01

    We present our latest results on the solar-stellar connection by studying 18 solar analogs that we identified among the Kepler seismic sample tep{salabert16a}. We measured their magnetic activity properties using observations collected by the Kepler satellite and the ground-based, high-resolution HERMES spectrograph. The photospheric (S{_ph}) and chromospheric (S) magnetic activity proxies of these seismic solar analogs are compared in relation to solar activity. We show that the activity of the Sun is actually comparable to the activity of the seismic solar analogs. Furthermore, we report on the discovery of temporal variability in the acoustic frequencies of the young (1 Gyr-old) solar analog KIC 10644253 with a modulation of about 1.5 years, which agrees with the derived photospheric activity tep{salabert16b}. It could actually be the signature of the short-period modulation, or quasi-biennal oscillation, of its magnetic activity as observed in the Sun and the 1-Gyr-old solar analog HD 30495. In addition, the lithium abundance and the chromospheric activity estimated from HERMES confirms that KIC 10644253 is a young and more active star than the Sun.

  14. Annual DOE Active Solar Heating and Cooling Contractors Review meeting

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Ninety three project summaries dicussing the following aspects of active solar heating and cooling are presented: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology.

  15. New improved reconstruction of solar activity over 3 millennia: Evidence for distinct solar dynamo modes

    NASA Astrophysics Data System (ADS)

    Usoskin, Ilya; Kovaltsov, Gennady; Hulot, Gauthier.; Gallet, Yves; Roth, Raphael; Licht, Alexis; Joos, Fortunat; Th, E.; Khokhlov, A.; Kovaltsov, Gennady A.

    The solar magnetic dynamo can operate in distinct modes - a main general mode, a Grand minimum mode corresponding to an inactive Sun, and a possible Grand maximum mode corresponding to an unusually active Sun, as e.g., observed recently. The reality of such mode separation has recently been the subject of much debate, with different theoretical speculations discussed. Here we present the first adjustment-free physical reconstruction of solar activity over the past three millennia, using the latest carbon cycle, (14) C production and archeomagnetic field models. This new improved reconstruction shows that the solar dynamo process indeed switches between different modes, either corresponding to different regimes of the dynamo or to changes in the driving parameters. These results provide important constraints for both dynamo models of Sun-like stars and investigations of possible solar influence on Earth’s climate.

  16. About the Solar Activity Rotation Periods

    NASA Astrophysics Data System (ADS)

    Mouradian, Zadig

    2007-03-01

    The purpose of this paper is to evidence, from a statistical point of view, the different periods of solar activity. The well known period is that of 150-160 days, but many others were detected between 9 and 4750 days (length of solar cycle). We tabulated 49 articles revealing 231 periods. In order to explain them, different hypotheses were suggested.

  17. Sources of solar wind over the solar activity cycle

    PubMed Central

    Poletto, Giannina

    2012-01-01

    Fast solar wind has been recognized, about 40 years ago, to originate in polar coronal holes (CHs), that, since then, have been identified with sources of recurrent high speed wind streams. As of today, however, there is no general consensus about whether there are, within CHs, preferential locations where the solar wind is accelerated. Knowledge of slow wind sources is far from complete as well. Slow wind observed in situ can be traced back to its solar source by backward extrapolation of magnetic fields whose field lines are streamlines of the outflowing plasma. However, this technique often has not the necessary precision for an indisputable identification of the region where wind originates. As the Sun progresses through its activity cycle, different wind sources prevail and contribute to filling the heliosphere. Our present knowledge of different wind sources is here summarized. Also, a Section addresses the problem of wind acceleration in the low corona, as inferred from an analysis of UV data, and illustrates changes between fast and slow wind profiles and possible signatures of changes along the solar cycle. A brief reference to recent work about the deep roots of solar wind and their changes over different solar cycles concludes the review. PMID:25685421

  18. Sources of solar wind over the solar activity cycle.

    PubMed

    Poletto, Giannina

    2013-05-01

    Fast solar wind has been recognized, about 40 years ago, to originate in polar coronal holes (CHs), that, since then, have been identified with sources of recurrent high speed wind streams. As of today, however, there is no general consensus about whether there are, within CHs, preferential locations where the solar wind is accelerated. Knowledge of slow wind sources is far from complete as well. Slow wind observed in situ can be traced back to its solar source by backward extrapolation of magnetic fields whose field lines are streamlines of the outflowing plasma. However, this technique often has not the necessary precision for an indisputable identification of the region where wind originates. As the Sun progresses through its activity cycle, different wind sources prevail and contribute to filling the heliosphere. Our present knowledge of different wind sources is here summarized. Also, a Section addresses the problem of wind acceleration in the low corona, as inferred from an analysis of UV data, and illustrates changes between fast and slow wind profiles and possible signatures of changes along the solar cycle. A brief reference to recent work about the deep roots of solar wind and their changes over different solar cycles concludes the review.

  19. Science Activities in Energy: Solar Energy II.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Included in this science activities energy package are 14 activities related to solar energy for secondary students. Each activity is outlined on a single card and is introduced by a question such as: (1) how much solar heat comes from the sun? or (2) how many times do you have to run water through a flat-plate collector to get a 10 degree rise in…

  20. Gap between active and passive solar heating

    SciTech Connect

    Balcomb, J.D.

    1985-01-01

    The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

  1. Solar activity cycle - History and predictions

    SciTech Connect

    Withbroe, G.L. )

    1989-12-01

    The solar output of short-wavelength radiation, solar wind, and energetic particles depends strongly on the solar cycle. These energy outputs from the sun control conditions in the interplanetary medium and in the terrestrial magnetosphere and upper atmosphere. Consequently, there is substantial interest in the behavior of the solar cycle and its effects. This review briefly discusses historical data on the solar cycle and methods for predicting its further behavior, particularly for the current cycle, which shows signs that it will have moderate to exceptionally high levels of activity. During the next few years, the solar flux of short-wavelength radiation and particles will be more intense than normal, and spacecraft in low earth orbit will reenter earlier than usual. 46 refs.

  2. History and Forecast of Solar Activity

    NASA Astrophysics Data System (ADS)

    Mikushina, O. V.; Klimenko, V. V.; Dovgalyuk, V. V.

    From a new reconstruction of the radiocarbon production rate in the atmosphere we obtain a long history of maximum Wolf sunspot numbers. Based on this reconstruction as well as on the history of other indicators of solar activity (10Be, aurora borealis), we derive a long-period trend which together with the results of spectral analysis of maximum Wolf numbers series (1506-1993) form a basis for prediction of solar activity up to 2100. The resulting trigonometric trend points to an essential decrease in solar activity in the coming decades.

  3. Linear and Non-Linear Forecasts of Solar Activity

    NASA Astrophysics Data System (ADS)

    Warren, H.

    2016-12-01

    Variations in thermospheric density play a major role in perturbing the orbits of objects in low Earth orbit. These variations are strongly influenced by changes in the solar irradiance at extreme ultraviolet (EUV) wavelengths that are ultimately driven by changing levels of solar magnetic activity. Thus predicting the conjunction of operational satellites with orbital debris requires accurate forecasts of solar activity. Current operational models rely on forecasts of proxies for solar activity based on simple linear extrapolation methods. In this poster we present a systematic study of these methods applied to the 10.7 cm solar radio flux, a composite Mg core-to-wing ratio, the total unsigned solar magnetic flux, and the He II 304 irradiance observed by the EVE instrument on the Solar Dynamics Observatory. We find that although RMS errors in these forecasts appear to be small, the corresponding errors in very simple models, such as the persistence of the last measurement, are also small, and the formal skill scores are relatively modest. The use of these proxies and measurements in non-linear methods, such Gaussian process regression and recurrent neural networks, will also be discussed.

  4. Solar collector manufacturing activity, 1992

    SciTech Connect

    Not Available

    1993-11-09

    This report presents data provided by US-based manufacturers and importers of solar collectors. Summary data on solar thermal collector shipments are presented for the years 1974 through 1992. Summary data on photovoltaic cell and module shipments are presented for the years 1982 through 1992. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1992. Appendix A describes the survey methodology. Appendix B contains the 1992 survey forms and instructions. Appendices C and D list the companies that responded to the 1992 surveys and granted permission for their names and addresses to appear in the report. Appendix E provides selected tables from this report with data shown in the International System of Units (SI) metric units. Appendix F provides an estimate of installed capacity and energy production from solar collectors for 1992.

  5. Solar influences on climate over the Atlantic / European sector

    NASA Astrophysics Data System (ADS)

    Gray, Lesley J.; Ball, Will; Misios, Stergios

    2017-02-01

    There is growing evidence that variability associated with the 11-year solar cycle has an impact at the Earth's surface and influences its weather and climate. Although the direct response to the Sun's variability is extremely small, a number of different mechanisms have been suggested that could amplify the signal, resulting in regional signals that are much larger than expected. In this paper the observed solar cycle signal at the Earth's surface is described, together with proposed mechanisms that involve modulation via the total incoming solar irradiance and via modulation of the ultra-violet part of the solar spectrum that influences ozone production in the stratosphere.

  6. Are cold winters in Europe associated with low solar activity?

    NASA Astrophysics Data System (ADS)

    Lockwood, M.; Harrison, R. G.; Woollings, T.; Solanki, S. K.

    2010-04-01

    Solar activity during the current sunspot minimum has fallen to levels unknown since the start of the 20th century. The Maunder minimum (about 1650-1700) was a prolonged episode of low solar activity which coincided with more severe winters in the United Kingdom and continental Europe. Motivated by recent relatively cold winters in the UK, we investigate the possible connection with solar activity. We identify regionally anomalous cold winters by detrending the Central England temperature (CET) record using reconstructions of the northern hemisphere mean temperature. We show that cold winter excursions from the hemispheric trend occur more commonly in the UK during low solar activity, consistent with the solar influence on the occurrence of persistent blocking events in the eastern Atlantic. We stress that this is a regional and seasonal effect relating to European winters and not a global effect. Average solar activity has declined rapidly since 1985 and cosmogenic isotopes suggest an 8% chance of a return to Maunder minimum conditions within the next 50 years (Lockwood 2010 Proc. R. Soc. A 466 303-29): the results presented here indicate that, despite hemispheric warming, the UK and Europe could experience more cold winters than during recent decades.

  7. The risk characteristics of solar and geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Podolska, Katerina

    2016-04-01

    The main aim of this contribution is a deeper analysis of the influence of solar activity which is expected to have an impact on human health, and therefore on mortality, in particular civilization and degenerative diseases. We have constructed the characteristics that represent the risk of solar and geomagnetic activity on human health on the basis of our previous analysis of association between the daily numbers of death on diseases of the nervous system and diseases of the circulatory system and solar and geomagnetic activity in the Czech Republic during the years 1994 - 2013. We used long period daily time series of numbers of deaths by cause, long period time series of solar activity indices (namely R and F10.7), geomagnetic indicies (Kp planetary index, Dst) and ionospheric parameters (foF2 and TEC). The ionospheric parameters were related to the geographic location of the Czech Republic and adjusted for middle geographic latitudes. The risk characteristics were composed by cluster analysis in time series according to the phases of the solar cycle resp. the seasonal insolation at mid-latitudes or the daily period according to the impact of solar and geomagnetic activity on mortality by cause of death from medical cause groups of death VI. Diseases of the nervous system and IX. Diseases of the circulatory system mortality by 10th Revision of International Classification of Diseases WHO (ICD-10).

  8. Solar activities and Climate change hazards

    NASA Astrophysics Data System (ADS)

    Hady, A. A., II

    2014-12-01

    Throughout the geological history of Earth, climate change is one of the recurrent natural hazards. In recent history, the impact of man brought about additional climatic change. Solar activities have had notable effect on palaeoclimatic changes. Contemporary, both solar activities and building-up of green-house gases effect added to the climatic changes. This paper discusses if the global worming caused by the green-house gases effect will be equal or less than the global cooling resulting from the solar activities. In this respect, we refer to the Modern Dalton Minimum (MDM) which stated that starting from year 2005 for the next 40 years; the earth's surface temperature will become cooler than nowadays. However the degree of cooling, previously mentioned in old Dalton Minimum (c. 210 y ago), will be minimized by building-up of green-house gases effect during MDM period. Regarding to the periodicities of solar activities, it is clear that now we have a new solar cycle of around 210 years. Keywords: Solar activities; solar cycles; palaeoclimatic changes; Global cooling; Modern Dalton Minimum.

  9. A history of solar activity over millennia

    NASA Astrophysics Data System (ADS)

    Usoskin, Ilya G.

    2017-03-01

    Presented here is a review of present knowledge of the long-term behavior of solar activity on a multi-millennial timescale, as reconstructed using the indirect proxy method. The concept of solar activity is discussed along with an overview of the special indices used to quantify different aspects of variable solar activity, with special emphasis upon sunspot number. Over long timescales, quantitative information about past solar activity can only be obtained using a method based upon indirect proxies, such as the cosmogenic isotopes ^{14}C and ^{10}Be in natural stratified archives (e.g., tree rings or ice cores). We give an historical overview of the development of the proxy-based method for past solar-activity reconstruction over millennia, as well as a description of the modern state. Special attention is paid to the verification and cross-calibration of reconstructions. It is argued that this method of cosmogenic isotopes makes a solid basis for studies of solar variability in the past on a long timescale (centuries to millennia) during the Holocene. A separate section is devoted to reconstructions of strong solar energetic-particle (SEP) events in the past, that suggest that the present-day average SEP flux is broadly consistent with estimates on longer timescales, and that the occurrence of extra-strong events is unlikely. Finally, the main features of the long-term evolution of solar magnetic activity, including the statistics of grand minima and maxima occurrence, are summarized and their possible implications, especially for solar/stellar dynamo theory, are discussed.

  10. Hinode Captures Images of Solar Active Region

    NASA Image and Video Library

    In these images, Hinode's Solar Optical Telescope (SOT) zoomed in on AR 11263 on August 4, 2011, five days before the active region produced the largest flare of this cycle, an X6.9. We show images...

  11. Science Activities in Energy: Solar Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 12 activities relating to solar energy. Activities are simple, concrete experiments for fourth, fifth, and sixth grades, which illustrate principles and problems relating to energy. Each activity is outlined on a single card which is introduced by a question. A teacher's supplement…

  12. Science Activities in Energy: Solar Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 12 activities relating to solar energy. Activities are simple, concrete experiments for fourth, fifth, and sixth grades, which illustrate principles and problems relating to energy. Each activity is outlined on a single card which is introduced by a question. A teacher's supplement…

  13. Relationships between solar activity and climate change

    NASA Technical Reports Server (NTRS)

    Roberts, W. O.

    1975-01-01

    The relationship between recurrent droughts in the High Plains of the United States and the double sunspot cycle is discussed in detail. It is suggested that high solar activity is generally related to an increase in meridional circulation and blocking patterns at high and intermediate latitudes, especially in winter, and the effect is related to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.

  14. Low Latitude Aurora: Index of Solar Activity

    NASA Astrophysics Data System (ADS)

    Bekli, M. R.; Aissani, D.; Chadou, I.

    2010-10-01

    Observations of aurora borealis at low latitudes are rare, and are clearly associated with high solar activity. In this paper, we analyze some details of the solar activity during the years 1769-1792. Moreover, we describe in detail three low latitude auroras. The first event was reported by ash-Shalati and observed in North Africa (1770 AD). The second and third events were reported by l'Abbé Mann and observed in Europe (1770 and 1777 AD).

  15. Volcanic eruptions and solar activity

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  16. Volcanic eruptions and solar activity

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  17. 11 -year planetary index of solar activity

    NASA Astrophysics Data System (ADS)

    Okhlopkov, Victor

    In papers [1,2] introduced me parameter - the average difference between the heliocentric longitudes of planets ( ADL ) , which was used for comparison with solar activity. The best connection of solar activity ( Wolf numbers used ) was obtained for the three planets - Venus, Earth and Jupiter. In [1,2] has been allocated envelope curve of the minimum values ADL which has a main periodicity for 22 years and describes well the alternating series of solar activity , which also has a major periodicity of 22. It was shown that the minimum values of the envelope curve extremes ADL planets Venus, Earth and Jupiter are well matched with the 11- year solar activity cycle In these extremes observed linear configuration of the planets Venus, Earth and Jupiter both in their location on one side of the Sun ( conjunctions ) and at the location on the opposite side of the Sun ( three configurations ) This work is a continuation of the above-mentioned , and here for minimum ADL ( planets are in conjunction ) , as well as on the minimum deviation of the planets from a line drawn through them and Sun at the location of the planets on opposite sides of the Sun , compiled index (denoted for brevity as JEV ) that uniquely describes the 11- year solar cycle A comparison of the index JEV with solar activity during the time interval from 1000 to 2013 conducted. For the period from 1000 to 1699 used the Schove series of solar activity and the number of Wolf (1700 - 2013 ) During the time interval from 1000 to 2013 and the main periodicity of the solar activity and the index ADL is 11.07 years. 1. Okhlopkov V.P. Cycles of Solar Activity and the Configurations of Planets // Moscow University Physics Bulletin, 2012 , Vol. 67 , No. 4 , pp. 377-383 http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.3103/S0027134912040108. 2 Okhlopkov VP, Relationship of Solar Activity Cycles to Planetary Configurations // Bulletin of the Russian Academy of Sciences. Physics, 2013 , Vol. 77 , No. 5

  18. An Analysis of Solar Global Activity

    NASA Astrophysics Data System (ADS)

    Mouradian, Zadig

    2013-02-01

    This article proposes a unified observational model of solar activity based on sunspot number and the solar global activity in the rotation of the structures, both per 11-year cycle. The rotation rates show a variation of a half-century period and the same period is also associated to the sunspot amplitude variation. The global solar rotation interweaves with the observed global organisation of solar activity. An important role for this assembly is played by the Grand Cycle formed by the merging of five sunspot cycles: a forgotten discovery by R. Wolf. On the basis of these elements, the nature of the Dalton Minimum, the Maunder Minimum, the Gleissberg Cycle, and the Grand Minima are presented.

  19. Is Solar Activity Once More Fainting?

    NASA Astrophysics Data System (ADS)

    Mares Aguilar, C. E.; Schröder, K.-P.; Song, G.

    2013-04-01

    After an anomalously long and deep minimum, will the Sun now once again reach a period of weaker activity cycles, which would affect northern hemisphere winter climate? We here discuss the current state and outlook of solar activity, and we propose to monitor the solar Ca II K line emission “as a star”, as part of the regular observing schedule of the Hamburg robotic telescope, which is bound to move to Guanajuato this year (2012). In fact, the chromospheric Ca II K line emission is a good proxy for the solar far-ultraviolet flux, as both are generated at about the same plasma temperatures (12-15,000 K) and both originate from the same active regions (plages). The solar ultraviolet flux, in turn, warms the stratosphere by photo dissociation of ozone and other molecules and, consequently, affects the strength of the North Atlantic Oscillation (NOA).

  20. Solar events and their influence on the interplanetary medium

    NASA Astrophysics Data System (ADS)

    Joselyn, Joann

    1987-09-01

    Aspects of a workshop on Solar events and their influence on the interplanetary medium, held in September 1986, are reviewed, the goal of which was to foster interactions among colleagues, leading to an improved understanding of the unified relationship between solar events and interplanetary disturbances. The workshop consisted of three working groups: (1) flares, eruptives, and other near-Sun activity; (2) coronal mass ejections; and (3) interplanetary events. Each group discussed topics distributed in advance. The flares-eruptives group members agreed that pre-event energy is stored in stressed/sheared magnetic fields, but could not agree that flares and other eruptive events (e.g., eruptive solar prominences) are aspects of the same physical phenomenon. In the coronal mass ejection group, general agreement was reached on the presence of prominences in CMEs, and that they have a significant three-dimensional structure. Some topics identified for further research were the aftermath of CMEs (streamer deflections, transient coronal holes, possible disconnections), identification of the leading edge of CMEs, and studies of the range and prevalence of CME mass sizes and energies.

  1. Solar events and their influence on the interplanetary medium

    NASA Technical Reports Server (NTRS)

    Joselyn, Joann

    1987-01-01

    Aspects of a workshop on Solar events and their influence on the interplanetary medium, held in September 1986, are reviewed, the goal of which was to foster interactions among colleagues, leading to an improved understanding of the unified relationship between solar events and interplanetary disturbances. The workshop consisted of three working groups: (1) flares, eruptives, and other near-Sun activity; (2) coronal mass ejections; and (3) interplanetary events. Each group discussed topics distributed in advance. The flares-eruptives group members agreed that pre-event energy is stored in stressed/sheared magnetic fields, but could not agree that flares and other eruptive events (e.g., eruptive solar prominences) are aspects of the same physical phenomenon. In the coronal mass ejection group, general agreement was reached on the presence of prominences in CMEs, and that they have a significant three-dimensional structure. Some topics identified for further research were the aftermath of CMEs (streamer deflections, transient coronal holes, possible disconnections), identification of the leading edge of CMEs, and studies of the range and prevalence of CME mass sizes and energies.

  2. Solar Influences on Geomagnetic and Related Phenomena

    NASA Technical Reports Server (NTRS)

    Vestine, E. H.

    1961-01-01

    A discussion of the geomagnetic effects of streams of electromagnetic and particular radiation from the sun. The interplay of forces between the geomagnetic field and solar streams is outlined; and the theoretical relationship between these, the solar storms, the trapped Van Allen radiations, the polar aurora, and geomagnetic field distortion are presented.

  3. Some problems in coupling solar activity to meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.

    1975-01-01

    The development of a theory of coupling of solar activity to meteorological phenomena is hindered by the difficulties of devising a mechanism that can modify the behavior of the troposphere while employing only a negligible amount of energy compared with the energy necessary to drive the normal meteorological system, and determining how such a mechanism can effectively couple some relevant magnetospheric process into the troposphere in such a way as to influence the weather. A clue to the nature of the interaction between the weather and solar activity might be provided by the fact that most solar activity undergoes a definite 11-yr cycle, and meteorological phenomena undergo either no closely correlated variation, an 11-yr variation, or a 22-yr variation.

  4. Some problems in coupling solar activity to meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.

    1974-01-01

    The development of a theory of coupling of solar activity to meteorological phenomena has to date foundered on the two difficulties of (1) devising a mechanism that can modify the behavior of the troposphere while employing only a negligible amount of energy compared with the energy necessary to drive the normal meteorological system; and (2) determining how such a mechanism can effectively couple some relevant magnetospheric process into the troposphere in such a way as to influence the weather. A clue to the nature of the interaction between the weather and solar activity might be provided by the fact that most solar activity undergoes a definite 11-year cycle, while meteorological phenomena undergo either no closely correlated variation, or an 11-year variation, or a 22-year variation.

  5. Solar Activity Heading for a Maunder Minimum?

    NASA Astrophysics Data System (ADS)

    Schatten, K. H.; Tobiska, W. K.

    2003-05-01

    Long-range (few years to decades) solar activity prediction techniques vary greatly in their methods. They range from examining planetary orbits, to spectral analyses (e.g. Fourier, wavelet and spectral analyses), to artificial intelligence methods, to simply using general statistical techniques. Rather than concentrate on statistical/mathematical/numerical methods, we discuss a class of methods which appears to have a "physical basis." Not only does it have a physical basis, but this basis is rooted in both "basic" physics (dynamo theory), but also solar physics (Babcock dynamo theory). The class we discuss is referred to as "precursor methods," originally developed by Ohl, Brown and Williams and others, using geomagnetic observations. My colleagues and I have developed some understanding for how these methods work and have expanded the prediction methods using "solar dynamo precursor" methods, notably a "SODA" index (SOlar Dynamo Amplitude). These methods are now based upon an understanding of the Sun's dynamo processes- to explain a connection between how the Sun's fields are generated and how the Sun broadcasts its future activity levels to Earth. This has led to better monitoring of the Sun's dynamo fields and is leading to more accurate prediction techniques. Related to the Sun's polar and toroidal magnetic fields, we explain how these methods work, past predictions, the current cycle, and predictions of future of solar activity levels for the next few solar cycles. The surprising result of these long-range predictions is a rapid decline in solar activity, starting with cycle #24. If this trend continues, we may see the Sun heading towards a "Maunder" type of solar activity minimum - an extensive period of reduced levels of solar activity. For the solar physicists, who enjoy studying solar activity, we hope this isn't so, but for NASA, which must place and maintain satellites in low earth orbit (LEO), it may help with reboost problems. Space debris, and other

  6. Forecasting Solar Activity and Cycle 23 Outlook

    NASA Astrophysics Data System (ADS)

    Schatten, K.; Sofia, S.

    1996-12-01

    "Precursor Techniques" have, in general, been fairly successful at predicting solar activity for a few solar cycles. These early precursors were based upon examining geomagnetic fluctuations features near solar minimum to ascertain the level of the next cycle's solar activity. In the 70's, the case was made that for these techniques to work, there would need to be a "connection" to the solar dynamo, and it was suggested that the precursors were "measuring" the Sun's polar field. Using proxies for the Sun's polar field, and the polar field itself, this "dynamo precursor method" successfully predicted the last two solar cycles. We will discuss the physical bases for these methods. We also shall present a generalization to a "SODA" (SOlar Dynamo Amplitude) index, which is used to estimate the amount of magnetism below the Sun's surface. This SODA index provides a measure of the amount of "magnetic fizz" below the Sun's surface, and also the state of the Sun's dynamo. Using these methods we predict cycle 23 will peak near 180 +/- 30 in smoothed F10.7 Radio Flux, and near 130 +/- 30 in smoothed Sunspot number in the year 2000.

  7. Global water cycle and solar activity variations

    NASA Astrophysics Data System (ADS)

    Al-Tameemi, Muthanna A.; Chukin, Vladimir V.

    2016-05-01

    The water cycle is the most active and most important component in the circulation of global mass and energy in the Earth system. Furthermore, water cycle parameters such as evaporation, precipitation, and precipitable water vapour play a major role in global climate change. In this work, we attempt to determine the impact of solar activity on the global water cycle by analyzing the global monthly values of precipitable water vapour, precipitation, and the Solar Modulation Potential in 1983-2008. The first object of this study was to calculate global evaporation for the period 1983-2008. For this purpose, we determined the water cycle rate from satellite data, and precipitation/evaporation relationship from 10 years of Planet Simulator model data. The second object of our study was to investigate the relationship between the Solar Modulation Potential (solar activity index) and the evaporation for the period 1983-2008. The results showed that there is a relationship between the solar modulation potential and the evaporation values for the period of study. Therefore, we can assume that the solar activity has an impact on the global water cycle.

  8. The solar activity measurements experiments (SAMEX) for improved scientific understanding of solar activity

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Solar Activity Measurements Experiments (SAMEX) mission is described. It is designed to provide a look at the interactions of magnetic fields and plasmas that create flares and other explosive events on the sun in an effort to understand solar activity and the nature of the solar magnetic field. The need for this mission, the instruments to be used, and the expected benefits of SAMEX are discussed.

  9. Resonance of about-weekly human heart rate rhythm with solar activity change.

    PubMed

    Cornelissen, G; Halberg, F; Wendt, H W; Bingham, C; Sothern, R B; Haus, E; Kleitman, E; Kleitman, N; Revilla, M A; Revilla, M; Breus, T K; Pimenov, K; Grigoriev, A E; Mitish, M D; Yatsyk, G V; Syutkina, E V

    1996-12-01

    In several human adults, certain solar activity rhythms may influence an about 7-day rhythm in heart rate. When no about-weekly feature was found in the rate of change in sunspot area, a measure of solar activity, the double amplitude of a circadian heart rate rhythm, approximated by the fit of a 7-day cosine curve, was lower, as was heart rate corresponds to about-weekly features in solar activity and/or relates to a sunspot cycle.

  10. Prediciting Solar Activity: Today, Tomorrow, Next Year

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean

    2008-01-01

    Fleets of satellites circle the Earth collecting science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to space weather effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less fuel can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory. Energetic events at the Sun can produce crippling radiation storms. Predicting those events that will affect our assets in space includes a solar prediction and how the radiation will propagate through the solar system. I will talk our need for solar activity predictions and anticipate how those predictions could be made more accurate in the future.

  11. Solar wind influence on Jupiter's magnetosphere and aurora

    NASA Astrophysics Data System (ADS)

    Vogt, Marissa; Gyalay, Szilard; Withers, Paul

    2016-04-01

    Jupiter's magnetosphere is often said to be rotationally driven, with strong centrifugal stresses due to large spatial scales and a rapid planetary rotation period. For example, the main auroral emission at Jupiter is not due to the magnetosphere-solar wind interaction but is driven by a system of corotation enforcement currents that arises to speed up outflowing Iogenic plasma. Additionally, processes like tail reconnection are also thought to be driven, at least in part, by processes internal to the magnetosphere. While the solar wind is generally expected to have only a small influence on Jupiter's magnetosphere and aurora, there is considerable observational evidence that the solar wind does affect the magnetopause standoff distance, auroral radio emissions, and the position and brightness of the UV auroral emissions. We will report on the results of a comprehensive, quantitative study of the influence of the solar wind on various magnetospheric data sets measured by the Galileo mission from 1996 to 2003. Using the Michigan Solar Wind Model (mSWiM) to predict the solar wind conditions upstream of Jupiter, we have identified intervals of high and low solar wind dynamic pressure. We can use this information to quantify how a magnetospheric compression affects the magnetospheric field configuration, which in turn will affect the ionospheric mapping of the main auroral emission. We also consider whether there is evidence that reconnection events occur preferentially during certain solar wind conditions or that the solar wind modulates the quasi-periodicity seen in the magnetic field dipolarizations and flow bursts.

  12. Properties of solar activity and ionosphere for solar cycle 25

    NASA Astrophysics Data System (ADS)

    Deminov, M. G.; Nepomnyashchaya, E. V.; Obridko, V. N.

    2016-11-01

    Based on the known forecast of solar cycle 25 amplitude ( Rz max ≈ 50), the first assessments of the shape and amplitude of this cycle in the index of solar activity F10.7 (the magnitude of solar radio flux at the 10.7 cm wavelength) are given. It has been found that ( F10.7)max ≈ 115, which means that it is the lowest solar cycle ever encountered in the history of regular ionospheric measurements. For this reason, many ionospheric parameters for cycle 25, including the F2-layer peak height and critical frequency ( hmF2 and foF2), will be extremely low. For example, at middle latitudes, typical foF2 values will not exceed 8-10 MHz, which makes ionospheric heating ineffective in the area of upper hybrid resonance at frequencies higher than 10 MHz. The density of the atmosphere will also be extremely low, which significantly extends the lifetime of low-orbit satellites. The probability of F-spread will be increased, especially during night hours.

  13. Asymmetric behavior of different solar activity features over solar cycles 20-23

    NASA Astrophysics Data System (ADS)

    Bankoti, Neeraj Singh; Joshi, Navin Chandra; Pande, Bimal; Pande, Seema; Uddin, Wahab; Pandey, Kavita

    2011-07-01

    This paper presents the study of normalized north-south asymmetry, cumulative normalized north-south asymmetry and cumulative difference indices of sunspot areas, solar active prominences (at total, low (⩽40°) and high (⩾50°) latitudes) and H α solar flares from 1964 to 2008 spanning the solar cycles 20-23. Three different statistical methods are used to obtain the asymmetric behavior of different solar activity features. Hemispherical distribution of activity features shows the dominance of activities in northern hemisphere for solar cycle 20 and in southern hemisphere for solar cycles 21-23 excluding solar active prominences at high latitudes. Cumulative difference index of solar activity features in each solar cycle is observed at the maximum of the respective solar cycle suggesting a cyclic behavior of approximately one solar cycle length. Asymmetric behavior of all activity features except solar active prominences at high latitudes hints at the long term periodic trend of eight solar cycles. North-south asymmetries of SAP (H) express the specific behavior of solar activity at high solar latitudes and its behavior in long-time scale is distinctly opposite to those of other activity features. Our results show that in most cases the asymmetry is statistically highly significant meaning thereby that the asymmetries are real features in the N-S distribution of solar activity features.

  14. Wavelet-based multifractal analysis on a time series of solar activity and PDO climate index

    NASA Astrophysics Data System (ADS)

    Maruyama, Fumio; Kai, Kenji; Morimoto, Hiroshi

    2017-09-01

    There is increasing interest in finding the relation between solar activity and climate change. In general, fractal properties may be observed in the time series of the dynamics of complex systems, such as solar activity and climate. This study investigates the relations among solar activity, geomagnetic activity, and climatic regime shift by performing a multifractal analysis. To investigate the change in multifractality, we apply a wavelet transform to time series. The change in fractality of the sunspot number (SSN) correlates closely with that of the solar polar field strength. For the SSN and solar polar field strength, a weak multifractality or monofractality is present at the maximum SSN, minimum SSN, and maximum solar polar field strength. A strong multifractality is present two years before the maximum SSN. The climatic regime shift occurs when the SSN increases and the disturbance of the geomagnetic activity is large. At the climatic regime shift, the changes in the fractality of the Pacific Decadal Oscillation (PDO) index and changes in that of the solar activity indices corresponded with each other. From the fractals point of view, we clarify the relations among solar activity, geomagnetic activity, and climatic regime shift. The formation of the magnetic field of the sunspots is correlated with the solar polar field strength. The solar activity seems to influence the climatic regime shift. These findings will contribute to investigating the relation between solar activity and climate change.

  15. Cosmic rays, solar activity, magnetic coupling, and lightning incidence

    NASA Technical Reports Server (NTRS)

    Ely, J. T. A.

    1984-01-01

    A theoretical model is presented and described that unifies the complex influence of several factors on spatial and temporal variation of lightning incidence. These factors include the cosmic radiation, solar activity, and coupling between geomagnetic and interplanetary (solar wind) magnetic fields. Atmospheric electrical conductivity in the 10 km region was shown to be the crucial parameter altered by these factors. The theory reconciles several large scale studies of lightning incidence previously misinterpreted or considered contradictory. The model predicts additional strong effects on variations in lightning incidence, but only small effects on the morphology and rate of thunderstorm development.

  16. Initiation of non-tropical thunderstorms by solar activity

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Goldberg, R. A.

    1976-01-01

    Correlative evidence accumulating since 1926 suggests that there must be some physical coupling mechanism between solar activity and thunderstorm occurrence in middle to high latitudes. Such a link may be provided by alteration of atmospheric electric parameters through the combined influence of high-energy solar protons and decreased cosmic ray intensities, both of which are associated with active solar events. The protons produce excess ionization near and above 20km, while the Forbush decreases a lowered conductivity and enhanced fair-weather atmospheric electric field below that altitude. Consequent effects ultimately lead to a charge distribution similar to that found in thunderclouds, and then other cloud physics processes take over to generate the intense electric fields required for lightning discharge.

  17. Influence of solar variability on the occurrence of central European weather types from 1763 to 2009

    NASA Astrophysics Data System (ADS)

    Schwander, Mikhaël; Rohrer, Marco; Brönnimann, Stefan; Malik, Abdul

    2017-09-01

    The impact of solar variability on weather and climate in central Europe is still not well understood. In this paper we use a new time series of daily weather types to analyse the influence of the 11-year solar cycle on the tropospheric weather of central Europe. We employ a novel, daily weather type classification over the period 1763-2009 and investigate the occurrence frequency of weather types under low, moderate, and high solar activity level. Results show a tendency towards fewer days with westerly and west-southwesterly flow over central Europe under low solar activity. In parallel, the occurrence of northerly and easterly types increases. For the 1958-2009 period, a more detailed view can be gained from reanalysis data. Mean sea level pressure composites under low solar activity also show a reduced zonal flow, with an increase of the mean blocking frequency between Iceland and Scandinavia. Weather types and reanalysis data show that the 11-year solar cycle influences the late winter atmospheric circulation over central Europe with colder (warmer) conditions under low (high) solar activity.

  18. Solar Energy Education. Home economics: student activities. Field test edition

    SciTech Connect

    Not Available

    1981-03-01

    A view of solar energy from the standpoint of home economics is taken in this book of activities. Students are provided information on solar energy resources while performing these classroom activities. Instructions for the construction of a solar food dryer and a solar cooker are provided. Topics for study include window treatments, clothing, the history of solar energy, vitamins from the sun, and how to choose the correct solar home. (BCS)

  19. The Influence of Solar Proton Events in Solar Cycle 23 on the Neutral Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; vonKonig, Miriam; Anderson, John; Roble, Raymond G.; McPeters, Richard D.; Fleming, Eric L.; Russell, James M.

    2004-01-01

    Solar proton events (SPEs) can cause changes in constituents in the Earth's middle atmosphere. The highly energetic protons cause ionizations, excitations, dissociations, and dissociative ionizations of the background constituents, which lead to the production of HO(x) (H, OH, HO2) and NO(y) (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, BrONO2). The HO(x) increases lead to short-lived ozone decreases in the mesosphere and upper stratosphere due to the short lifetimes of the HO, constituents. The NO(x) increases lead to long-lived stratospheric ozone changes because of the long lifetime of NO(y) constituents in this region. Solar cycle 23 was quite active with SPEs and very large fluxes of high energy protons occurred in July and November 2000, November 200 1, and April 2002. Smaller, but still substantial, proton fluxes impacted the Earth during other months in the 1997-2003 time period. The impact of the very large SPEs on the neutral middle atmosphere during solar cycle 23 will be discussed, including the HO(x), NO(y), ozone variations and induced atmospheric transport changes. Two multi-dimensional models, the Goddard Space Flight Center (GSFC) Two-dimensional (2D) Model and the Thermosphere Ionosphere Mesosphere Electrodynamic General Circulation Model (TIME-GCM), were used in computing the influence of the SPEs. The results of the GSFC 2D Model and the TIME-GCM will be shown along with comparisons to the Upper Atmosphere Research Satellite (UARS) Halogen Occultation Experiment (HALOE) and Solar Backscatter Ultraviolet 2 (SBUV/2) instruments.

  20. The solar wind effect on cosmic rays and solar activity

    NASA Technical Reports Server (NTRS)

    Fujimoto, K.; Kojima, H.; Murakami, K.

    1985-01-01

    The relation of cosmic ray intensity to solar wind velocity is investigated, using neutron monitor data from Kiel and Deep River. The analysis shows that the regression coefficient of the average intensity for a time interval to the corresponding average velocity is negative and that the absolute effect increases monotonously with the interval of averaging, tau, that is, from -0.5% per 100km/s for tau = 1 day to -1.1% per 100km/s for tau = 27 days. For tau 27 days the coefficient becomes almost constant independently of the value of tau. The analysis also shows that this tau-dependence of the regression coefficiently is varying with the solar activity.

  1. The relation between solar and seismic activity based on satellite and ground-based data

    NASA Astrophysics Data System (ADS)

    Kirov, B.; Georgieva, K.; Atanasov, D.; Haiakawa, M.

    It has been noted that a significant correlation exists between solar and seismic activity on different time-scales, from centennial (Gleissberg) to the 11-year solar cycle, however the solar activity agent and the mechanism for this influence remained unclear. As two well expressed maxima of the number of earthquakes are observed in the 11-year solar cycle, one coinciding with sunspot maximum, and the other with solar coronal holes maximum, it has been supposed that the agent triggering seismic activity could be the high-speed solar wind. Data from numerous spacecraft monitoring solar wind parameters have been used compiled in OMNI data-base, and it has been found that the number of earthquakes in the days of the arrival of high speed solar wind and the days following right after them is significantly greater than in all other days. Further, we use data for the Earth rotation rate from the International Earth Rotation Service, and for the atmospheric circulation from meteorological stations worldwide. We find that they are both related to seismic activity, and discuss a possible mechanism of solar activity influences on the number of earthquakes through solar wind influences on the Earth and atmospheric dynamics.

  2. Solar activity, magnetic clouds, and geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1987-01-01

    Associational aspects of magnetic clouds and solar activity, and of magnetic clouds and geomagentic storms are described. For example, recent research has shown associations to exist between the launch of magnetic clouds directed Earthward from the Sun and, in particular, two forms of solar activity: flare-related, type II metric radio bursts and disappearing filaments (prominences). Furthermore, recent research has shown an association to exist between the onset of magnetic clouds on Earth and the initiation of geomagnetic storms. Based on these findings, STIP Intervals XV-XIX are examined for possible occurrences of Earthward-directed magnetic clouds.

  3. Online educative activities for solar ultraviolet radiation based on measurements of cloud amount and solar exposures.

    PubMed

    Parisi, A V; Downs, N; Turner, J; Amar, A

    2016-09-01

    A set of online activities for children and the community that are based on an integrated real-time solar UV and cloud measurement system are described. These activities use the functionality of the internet to provide an educative tool for school children and the public on the influence of cloud and the angle of the sun above the horizon on the global erythemal UV or sunburning UV, the diffuse erythemal UV, the global UVA (320-400nm) and the vitamin D effective UV. Additionally, the units of UV exposure and UV irradiance are investigated, along with the meaning and calculation of the UV index (UVI). This research will help ensure that children and the general public are better informed about sun safety by improving their personal understanding of the daily and the atmospheric factors that influence solar UV radiation and the solar UV exposures of the various wavebands in the natural environment. The activities may correct common misconceptions of children and the public about UV irradiances and exposure, utilising the widespread reach of the internet to increase the public's awareness of the factors influencing UV irradiances and exposures in order to provide clear information for minimizing UV exposure, while maintaining healthy, outdoor lifestyles. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Magnetosheath influence on solar wind - magnetosphere coupling

    NASA Astrophysics Data System (ADS)

    Pulkkinen, Tuija; Kilpua, Emilia; Dimmock, Andrew; Myllys, Minna; Osmane, Adnane; Nykyri, Katariina; Lakka, Antti

    2016-07-01

    We have shown that the solar wind - magnetosphere - ionosphere coupling is different during due northward IMF from that during due southward IMF, and that the Poynting flux at the magnetopause is not a simple function of the upstream solar wind conditions upstream of the bow shock. These results are indicative of multiple transport processes taking place on various temporal and spatial scales, and therefore more detailed analysis is required to identify these mechanisms and quantify their contributions to solar wind - magnetosphere coupling. We combine the OMNI, IMAGE and THEMIS observations to statistically examine the properties incident at the magnetopause in the quasi-perpendicular and quasi-parallel shock sides separately. We use local and global MHD simulations to examine the energy and plasma transport properties across the bow shock, in the magnetosheath, and across the magnetopause. We focus especially on the anomalously quiet period during the deep solar minimum in 2008-2010, comparing the results with steady but stronger drivers during magnetic cloud events.

  5. Short-term solar activity forecasting

    NASA Technical Reports Server (NTRS)

    Xie-Zhen, C.; Ai-Di, Z.

    1979-01-01

    A method of forecasting the level of activity of every active region on the surface of the Sun within one to three days is proposed in order to estimate the possibility of the occurrence of ionospheric disturbances and proton events. The forecasting method is a probability process based on statistics. In many of the cases, the accuracy in predicting the short term solar activity was in the range of 70%, although there were many false alarms.

  6. Variations of solar UV irradiance related to short-term and medium-term changes of solar activity

    NASA Astrophysics Data System (ADS)

    Troshichev, O. A.; Gabis, I. P.

    1998-09-01

    Index of variability of the solar ultraviolet (UV) radiation, the composite Mg II core-to-wing ratio, has been used to study relationship between the short-term (τ<27days) changes of solar activity and solar UV irradiance. Such manifestations of the solar activity have been examined, as the solar central meridian passage of active regions, the solar proton events, and the central meridian passage of hypothetical regions responsible for the Forbush decrease in the galactic cosmic rays. Our results show that all these short-term changes of the solar activity are accompanied by an increase of the solar UV irradiance. The interplanetary magnetic field sector structure is also related to changes in the UV irradiance. After a proper adjustment of the dates of the sector boundary occurrence for the solar disk, the irradiance was found to be maximal on the toward/away boundary and minimal on the away/toward boundary. It has been found that the UV irradiance undergoes quasi-biennial periodicity (QBP), reaching maximum in years of the east QBP phase and decreasing in years of the west QBP phase. Superposition of the quasi-biennial periodicity and effects connected with short-term variations in the solar activity account for the change of the Mg II index up to 2% of the mean level. Thus a new very important agent was found to be responsible for a short-term and medium-term influence of the solar activity upon atmospheric processes and hence on the weather and climate.

  7. Solar Energy Project, Activities: Earth Science.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of earth science experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; method; questions; recommendations for further study; and a teacher information sheet. The teacher…

  8. Solar Energy Project, Activities: Chemistry & Physics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of chemistry and physics experiments. Each unit presents an introduction to the unit; objectives; required skills and knowledge; materials; method; questions; recommendations for further work; and a teacher information sheet.…

  9. Solar Energy Project, Activities: Junior High Science.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of the junior high science curriculum. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher…

  10. Influence of Diffused Solar Radiation on the Solar Concentrating System of a Plant Shoot Configuration

    NASA Astrophysics Data System (ADS)

    Obara, Shin'ya

    Investigation of a plant shoot configuration is used to obtain valuable information concerning the received light system. Additionally, analysis results concerning a plant shoot configuration interaction with direct solar radiation were taken from a past study. However, in order to consider a plant shoot as a received sunlight system, it is necessary to understand the received light characteristics of both direct solar radiation and diffused solar radiation. Under a clear sky, the ratio of direct solar radiation to diffused solar radiation is large. However, under a clouded sky, the amount of diffused solar radiation becomes larger. Therefore, in this paper, we investigate the received light characteristics of a plant shoot configuration under the influence of diffused solar radiation. As a result, we clarify the relationship between the amount of diffused solar radiation and the amount of received light as a function of the characteristics of the plant shoot configuration. In order to obtain diffused solar radiation, it is necessary to correspond to the radiation of the multi-directions. In the analysis, the characteristic of the difference in arrangement of the top leaf and the other leaf was obtained. Therefore, in analysis, leaves other than the top were distributed in the wide range.

  11. Environmental factors influence for pho-voltaic solar energy efficiency

    NASA Astrophysics Data System (ADS)

    Hassanpour Adeh, E.; Higgins, C. W.

    2016-12-01

    Solar energy is the fastest growing renewable energy, thus it is critical that we understand design solar production efficiencies and how they are modified by local environmental factors. A small change in efficiency can have dramatic economic consequences. While the current optimized designs for efficiency of the solar arrays largely ignore environmental factors and focus on the PV panel temperature. In this research, the influence of these microclimatological variables on solar energy productivity was investigated with an in-field study at the Rabbit Hills solar arrays near Oregon State University. The acquired data included temperature, relative humidity, wind speed, wind direction, solar radiation, and energy output. A nondimensionalized approach was used to synthesize the data. The preliminary results confirm that the efficiency of the solar array is directly affected by the environmental temperature (expected). However, the efficiency is more impacted by the wind speed which suggests that there is an optimal panel elevation, economically. Other factors such as relative humidity play smaller roles on the solar panel efficiency.

  12. Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind.

    PubMed

    Sakao, Taro; Kano, Ryouhei; Narukage, Noriyuki; Kotoku, Jun'ichi; Bando, Takamasa; Deluca, Edward E; Lundquist, Loraine L; Tsuneta, Saku; Harra, Louise K; Katsukawa, Yukio; Kubo, Masahito; Hara, Hirohisa; Matsuzaki, Keiichi; Shimojo, Masumi; Bookbinder, Jay A; Golub, Leon; Korreck, Kelly E; Su, Yingna; Shibasaki, Kiyoto; Shimizu, Toshifumi; Nakatani, Ichiro

    2007-12-07

    The Sun continuously expels a huge amount of ionized material into interplanetary space as the solar wind. Despite its influence on the heliospheric environment, the origin of the solar wind has yet to be well identified. In this paper, we report Hinode X-ray Telescope observations of a solar active region. At the edge of the active region, located adjacent to a coronal hole, a pattern of continuous outflow of soft-x-ray-emitting plasmas was identified emanating along apparently open magnetic field lines and into the upper corona. Estimates of temperature and density for the outflowing plasmas suggest a mass loss rate that amounts to approximately 1/4 of the total mass loss rate of the solar wind. These outflows may be indicative of one of the solar wind sources at the Sun.

  13. Seismic Holography of Solar Activity

    NASA Technical Reports Server (NTRS)

    Lindsey, Charles

    2000-01-01

    The basic goal of the project was to extend holographic seismic imaging techniques developed under a previous NASA contract, and to incorporate phase diagnostics. Phase-sensitive imaging gives us a powerful probe of local thermal and Doppler perturbations in active region subphotospheres, allowing us to map thermal structure and flows associated with "acoustic moats" and "acoustic glories". These remarkable features were discovered during our work, by applying simple acoustic power holography to active regions. Included in the original project statement was an effort to obtain the first seismic images of active regions on the Sun's far surface.

  14. Relationship of The Tropical Cyclogenesis With Solar and Magnetospheric Activities

    NASA Astrophysics Data System (ADS)

    Vishnevsky, O.; Pankov, V.; Erokhine, N.

    Formation of tropical cyclones is a badly studied period in their life cycle even though there are many papers dedicated to analysis of influence of different parameters upon cyclones occurrence frequency (see e.g., Gray W.M.). Present paper is dedicated to study of correlation of solar and magnetospheric activity with the appearance of tropi- cal cyclones in north-west region of Pacific ocean. Study of correlation was performed by using both classical statistical methods (including maximum entropy method) and quite modern ones, for example multifractal analysis. Information about Wolf's num- bers and cyclogenesis intensity in period of 1944-2000 was received from different Internet databases. It was shown that power spectra maximums of Wolf's numbers and appeared tropical cyclones ones corresponds to 11-year period; solar activity and cyclogenesis processes intensity are in antiphase; maximum of mutual correlation co- efficient ( 0.8) between Wolf's numbers and cyclogenesis intensity is in South-China sea. There is a relation of multifractal characteristics calculated for both time series with the mutual correlation function that is another indicator of correlation between tropical cyclogenesis and solar-magnetospheric activity. So, there is the correlation between solar-magnetospheric activity and tropical cyclone intensity in this region. Possible physical mechanisms of such correlation including anomalous precipitations charged particles from the Earth radiation belts and wind intensity amplification in the troposphere are discussed.

  15. Relationship of The Tropical Cyclogenesis With Solar and Magnetospheric Activities

    NASA Astrophysics Data System (ADS)

    Vishnevsky, O. V.; Pankov, V. M.; Erokhine, N. S.

    Formation of tropical cyclones is a badly studied period in their life cycle even though there are many papers dedicated to analysis of influence of different parameters upon cyclones occurrence frequency (see e.g., Gray W.M.). Present paper is dedicated to study of correlation of solar and magnetospheric activity with the appearance of tropical cyclones in north-west region of Pacific ocean. Study of correlation was performed by using both classical statistical methods (including maximum entropy method) and quite modern ones, for example multifractal analysis. Information about Wolf's numbers and cyclogenesis intensity in period of 1944-2000 was received from different Internet databases. It was shown that power spectra maximums of Wolf's numbers and appeared tropical cyclones ones corresponds to 11-year period; solar activity and cyclogenesis processes intensity are in antiphase; maximum of mutual correlation coefficient (~ 0.8) between Wolf's numbers and cyclogenesis intensity is in South-China sea. There is a relation of multifractal characteristics calculated for both time series with the mutual correlation function that is another indicator of correlation between tropical cyclogenesis and solar-magnetospheric activity. So, there is the correlation between solar-magnetospheric activity and tropical cyclone intensity in this region. Possible physical mechanisms of such correlation including anomalous precipitations charged particles from the Earth radiation belts and wind intensity amplification in the troposphere are discussed.

  16. Catawba Science Center solar activities. Final report

    SciTech Connect

    1983-01-01

    Two demonstration solar water heaters were built. One was to be used at the Science Center and the other with traveling programs. This was completed and both units are being used for these programs which continue. We were able to build a library of 99 solar energy books and booklets that are available to the public for reference. We also conducted programs for 683 students of all ages. The culminating activity was the planned Energy Awareness Festival. This was held on September 26, 1981 and attracted 450 area citizens. We offered free exhibit space and hosted 17 exhibitors.

  17. Dynamics of Minor Solar Activity \

    NASA Astrophysics Data System (ADS)

    Cauzzi, G.; Vial, J. C.; Falciani, R.; Falchi, A.; Smaldone, L. A.

    We present a program for coordinated observations between ground based observatories, mainly NSO/Sacramento Peak, and several instruments onboard SOHO (primarily SUMER). The scientific goal is the study of small activity phenomena, at high spatial and temporal resolution.

  18. Division II: Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia; Scrijver, Karel J.; Klimchuk, James A.; Charbonneau, Paul; Fletcher, Lyndsay; Hasan, S. Sirajul; Hudson, Hugh S.; Kusano, Kanya; Mandrini, Cristina H.; Peter, Hardi; Vršnak, Bojan; Yan, Yihua

    2015-08-01

    The Business Meeting of Commission 10 was held as part of the Business Meeting of Division II (Sun and Heliosphere), chaired by Valentin Martínez-Pillet, the President of the Division. The President of Commission 10 (C10; Solar activity), Lidia van Driel-Gesztelyi, took the chair for the business meeting of C10. She summarised the activities of C10 over the triennium and the election of the incoming OC.

  19. Evidence for Solar Influences on Nuclear Decay Rates

    DTIC Science & Technology

    2010-07-01

    influenced by the Sun, perhaps via neutrinos . Here we present evidence for the existence of an additional periodicity that appears to be related to...GALLEX neutrino data and ACRIM irradiance data.14,15 This leads us to adopt a search band of 11 to 12.5 yr−1 for a synodic rotation frequency, which...periodicity is due to an r-mode oscillation, and to indicate that such an oscillation occurs in the solar core, influencing the solar neutrino flux and

  20. Magnetic modulation of solar luminosity by photospheric activity

    SciTech Connect

    Foukal, P.; Lean, J.

    1988-05-01

    The behavior of slow changes in solar irradiance S is studied using measurements obtained with radiometers on the SMM and Nimbus 7 spacecraft. The general downtrend in the radiometer readings is examined by removing the influence of sunspot blocking and comparing the residual irradiance variations with changes in facular and network radiation as indicated by the He I 10830 and CaK indices. The time-integrated sunspot and facular contributions to irradiance variation and its implications for active region energetics are considered. The magnetic activity modulation of S over solar cycle 21 from daily data on sunspot blocking and the He I index are simulated, and this simulated irradiance variation is compared to radiometry since 1978. Other recent evidence for an irradiance modulation by magnetic activity is discussed. 38 references.

  1. Magnetic modulation of solar luminosity by photospheric activity

    NASA Technical Reports Server (NTRS)

    Foukal, P.; Lean, J.

    1988-01-01

    The behavior of slow changes in solar irradiance S is studied using measurements obtained with radiometers on the SMM and Nimbus 7 spacecraft. The general downtrend in the radiometer readings is examined by removing the influence of sunspot blocking and comparing the residual irradiance variations with changes in facular and network radiation as indicated by the He I 10830 and CaK indices. The time-integrated sunspot and facular contributions to irradiance variation and its implications for active region energetics are considered. The magnetic activity modulation of S over solar cycle 21 from daily data on sunspot blocking and the He I index are simulated, and this simulated irradiance variation is compared to radiometry since 1978. Other recent evidence for an irradiance modulation by magnetic activity is discussed.

  2. Different Responses of Solar Wind and Geomagnetism to Solar Activity during Quiet and Active Periods

    NASA Astrophysics Data System (ADS)

    Kim, Roksoon; Park, J.-Y.; Baek, J.-H.; Kim, B.-G.

    2017-08-01

    It is well known that there are good relations of coronal hole (CH) parameters such as the size, location, and magnetic field strength to the solar wind conditions and the geomagnetic storms. Especially in the minimum phase of solar cycle, CHs in mid- or low-latitude are one of major drivers for geomagnetic storms, since they form corotating interaction regions (CIRs). By adopting the method of Vrsnak et al. (2007), the Space Weather Research Center (SWRC) in Korea Astronomy and Space Science Institute (KASI) has done daily forecast of solar wind speed and Dst index from 2010. Through years of experience, we realize that the geomagnetic storms caused by CHs have different characteristics from those by CMEs. Thus, we statistically analyze the characteristics and causality of the geomagnetic storms by the CHs rather than the CMEs with dataset obtained during the solar activity was very low. For this, we examine the CH properties, solar wind parameters as well as geomagnetic storm indices. As the first result, we show the different trends of the solar wind parameters and geomagnetic indices depending on the degree of solar activity represented by CH (quiet) or sunspot number (SSN) in the active region (active) and then we evaluate our forecasts using CH information and suggest several ideas to improve forecasting capability.

  3. Influence of a solar eclipse on twilight.

    PubMed

    Geyer, E H; Hoffmann, M; Volland, H

    1994-07-20

    The morning twilight of the presunrise sky was measured at the Hoher-List Observatory during the total eclipse of 22 July 1990. The location of observation was far away from the central eclipse zone. The luminance showed a deep minimum in twilight during the main phase of the solar eclipse compared with normal conditions. A first order scattering model explains the observations reasonably well and shows that the sky radiation during the first phase of twilight at a location far away from the central umbra depends primarily on the height profile of the air pressure between ~ 100 and 200 km.

  4. 20 March 2015 solar eclipse influence on sporadic E layer

    NASA Astrophysics Data System (ADS)

    Pezzopane, M.; Pietrella, M.; Pignalberi, A.; Tozzi, R.

    2015-11-01

    This paper shows how the solar eclipse occurred on 20 March 2015 influenced the sporadic E (Es) layer as recorded by the Advanced Ionospheric Sounder by Istituto Nazionale di Geofisica e Vulcanologia (AIS-INGV) ionosondes installed at Rome (41.8°N, 12.5°E) and Gibilmanna (37.9°N, 14.0°E), Italy. In these locations, the solar eclipse was only partial, with the maximum area of the solar disk obscured by the Moon equal to ∼54% at Rome and ∼45% at Gibilmanna. Nevertheless, it is shown that the strong thermal gradients that usually accompany a solar eclipse, have significantly influenced the Es phenomenology. Specifically, the solar eclipse did not affect the Es layer in terms of its maximum intensity, which is comparable with that of the previous and next day, but rather in terms of its persistence. In fact, both at Rome and Gibilmanna, contrary to what typically happens in March, the Es layer around the solar eclipse time is always present. On the other hand, this persistence is also confirmed by the application of the height-time-intensity (HTI) technique. A detailed analysis of isoheight ionogram plots suggests that traveling ionospheric disturbances (TIDs) likely caused by gravity wave (GW) propagation have played a significant role in causing the persistence of the Es layer.

  5. Influence of Solar Variability on the North Atlantic / European Sector.

    NASA Astrophysics Data System (ADS)

    Gray, L. J.

    2016-12-01

    The 11year solar cycle signal in December-January-February averaged mean-sea-level pressure and Atlantic/European blocking frequency is examined using multilinear regression with indices to represent variability associated with the solar cycle, volcanic eruptions, the El Nino - Southern Oscillation (ENSO) and the Atlantic Multidecadal Oscillation (AMO). Results from a previous 11-year solar cycle signal study of the period 1870-2010 (140 years; 13 solar cycles) that suggested a 3-4 year lagged signal in SLP over the Atlantic are confirmed by analysis of a much longer reconstructed dataset for the period 1660-2010 (350 years; 32 solar cycles). Apparent discrepancies between earlier studies are resolved and stem primarily from the lagged nature of the response and differences between early- and late-winter responses. Analysis of the separate winter months provide supporting evidence for two mechanisms of influence, one operating via the atmosphere that maximises in late winter at 0-2 year lags and one via the mixd-layer ocean that maximises in early winter at 3-4 year lags. Corresponding analysis of DJF-averaged Atlantic / European blocking frequency shows a highly statistically significant signal at 1-year lag that originates promarily from the late winter response. The 11-year solar signal in DJF blocking frequency is compared with other known influences from ENSO and the AMO and found to be as large in amplitude and have a larger region of statistical significance.

  6. Quasi-biennial modulation of solar neutrino flux: connections with solar activity

    NASA Astrophysics Data System (ADS)

    Vecchio, A.; Laurenza, M.; D'alessi, L.; Carbone, V.; Storini, M.

    2011-12-01

    A quasi-biennial periodicity has been recently found (Vecchio et al., 2010) in the solar neutrino flux, as detected at the Homestake experiment, as well as in the flux of solar energetic protons, by means of the Empirical Modes Decomposition technique. Moreover, both fluxes have been found to be significantly correlated at the quasi-biennial timescale, thus supporting the hypothesis of a connection between solar neutrinos and solar activity. The origin of this connection is investigated, by modeling how the standard Mikheyev-Smirnov-Wolfenstein (MSW) effect (the process for which the well-known neutrino flavor oscillations are modified in passing through the material) could be influenced by matter fluctuations. As proposed by Burgess et al., 2004, by introducing a background magnetic field in the helioseismic model, density fluctuations can be excited in the radiative zone by the resonance between helioseismic g-modes and Alfvén waves. In particular, with reasonable values of the background magnetic field (10-100 kG), the distance between resonant layers could be of the same order of neutrino oscillation length. We study the effect over this distance of a background magnetic field which is variable with a ~2 yr period, in agreement with typical variations of solar activity. Our findings suggest that the quasi-biennial modulation of the neutrino flux is theoretically possible as a consequence of the magnetic field variations in the solar interior. A. Vecchio, M. Laurenza, V. Carbone, M. Storini, The Astrophysical Journal Letters, 709, L1-L5 (2010). C. Burgess, N. S. Dzhalilov, T. I. Rashba, V., B.Semikoz, J. W. F. Valle, Mon. Not. R. Astron. Soc., 348, 609-624 (2004).

  7. Forecasts of solar and geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Joselyn, Joann

    1987-01-01

    Forecasts of solar and geomagnetic activity are critical since these quantities are such important inputs to the thermospheric density models. At this time in the history of solar science there is no way to make such a forecast from first principles. Physical theory applied to the Sun is developing rapidly, but is still primitive. Techniques used for forecasting depend upon the observations over about 130 years, which is only twelve solar cycles. It has been noted that even-numbered cycles systematically tend to be smaller than the odd-numbered ones by about 20 percent. Another observation is that for the last 12 cycle pairs, an even-numbered sunspot cycle looks rather like the next odd-numbered cycle, but with the top cut off. These observations are examples of approximate periodicities that forecasters try to use to achieve some insight into the nature of an upcoming cycle. Another new and useful forecasting aid is a correlation that has been noted between geomagnetic indices and the size of the next solar cycle. Some best estimates are given concerning both activities.

  8. The Heliosphere Through the Solar Activity Cycle

    NASA Technical Reports Server (NTRS)

    Balogh, A.; Lanzerotti, L. J.; Suess, S. T.

    2006-01-01

    Understanding how the Sun changes though its 11-year sunspot cycle and how these changes affect the vast space around the Sun the heliosphere has been one of the principal objectives of space research since the advent of the space age. This book presents the evolution of the heliosphere through an entire solar activity cycle. The last solar cycle (cycle 23) has been the best observed from both the Earth and from a fleet of spacecraft. Of these, the joint ESA-NASA Ulysses probe has provided continuous observations of the state of the heliosphere since 1990 from a unique vantage point, that of a nearly polar orbit around the Sun. Ulysses results affect our understanding of the heliosphere from the interior of the Sun to the interstellar medium - beyond the outer boundary of the heliosphere. Written by scientists closely associated with the Ulysses mission, the book describes and explains the many different aspects of changes in the heliosphere in response to solar activity. In particular, the authors describe the rise in solar ESA and NASA have now unamiously agreed a third extension to operate the highly successful Ulysses spacecraft until March 2008 and, in 2007 and 2008, the European-built space probe will fly over the poles of the Sun for a third time. This will enable Ulysses to add an important chapter to its survey of the high-latitude heliosphere and this additional material would be included in a 2nd edition of this book.

  9. Coronal Activity and Extended Solar Cycles

    NASA Astrophysics Data System (ADS)

    Altrock, R. C.

    2012-12-01

    Wilson et al. (1988, Nature 333, 748) discussed a number of solar parameters, which appear at high latitudes and gradually migrate towards the equator, merging with the sunspot "butterfly diagram". They found that this concept had been identified by earlier investigators extending back to 1957. They named this process the "Extended Solar Cycle" (ESC). Altrock (1997, Solar Phys. 170, 411) found that this process continued in Fe XIV 530.3 nm emission features. In cycles 21 - 23 solar maximum occurred when the number of Fe XIV emission regions per day > 0.19 (averaged over 365 days and both hemispheres) first reached latitudes 18°, 21° and 21°, for an average of 20° ± 1.7°. Other recent studies have shown that Torsional Oscillation (TO) negative-shear zones are co-located with the ESC from at least 50° down to the equator and also in the zones where the Rush to the Poles occur. These phenomena indicate that coronal activity occurring up to 50° and higher latitudes is related to TO shear zones, another indicator that the ESC is an important solar process. Another high-latitude process, which appears to be connected with the ESC, is the "Rush to the Poles" ("Rush") of polar crown prominences and their associated coronal emission, including Fe XIV. The Rush is is a harbinger of solar maximum (cf. Altrock, 2003, Solar Phys. 216, 343). Solar maximum in cycles 21 - 23 occurred when the center line of the Rush reached a critical latitude. These latitudes were 76°, 74° and 78°, respectively, for an average of 76° ± 2°. Applying the above conclusions to Cycle 24 is difficult due to the unusual nature of this cycle. Cycle 24 displays an intermittent "Rush" that is only well-defined in the northern hemisphere. In 2009 an initial slope of 4.6°/yr was found in the north, compared to an average of 9.4 ± 1.7 °/yr in the previous three cycles. This early fit to the Rush would have reached 76° at 2014.6. However, in 2010 the slope increased to 7.5°/yr (an increase

  10. Comparison of Solar Active Region Complexity Andgeomagnetic Activity from 1996 TO 2014

    NASA Astrophysics Data System (ADS)

    Tanskanen, E. I.; Nikbakhsh, S.; Perez-Suarez, D.; Hackman, T.

    2015-12-01

    We have studied the influence of magnetic complexity of solar Active Regions (ARs)on geomagnetic activity from 1996 to 2014. Sunspots are visual indicators of ARswhere the solar magnetic field is disturbed. We have used International, American,Space Environment Service Center (SESC) and Space Weather Prediction Center(SWPC) sunspot numbers to examine ARs. Major manifestations of solar magneticactivity, such as flares and Coronal Mass Ejections (CMEs), are associated withARs. For this study we chose the Mount Wilson scheme. It classifies ARs in terms oftheir magnetic topology from the least complex (?) to the most complex one ( ?).Several cases have been found where the more complex structures produce strongerflares and CMEs than the less complex ones. We have a list of identified substormsavailable with different phases and their durations. This will be compared to ourmagnetic complexity data to analyse the effects of active region magnetic complexityto the magnetic activity on the vicinity of the Earth.

  11. Division E Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Fletcher, Lyndsay; van Driel-Gesztelyi, Lidia; Asai, Ayumi; Cally, Paul S.; Charbonneau, Paul; Gibson, Sarah E.; Gomez, Daniel; Hasan, Siraj S.; Veronig, Astrid M.; Yan, Yihua

    2016-04-01

    After more than half a century of community support related to the science of ``solar activity'', IAU's Commission 10 was formally discontinued in 2015, to be succeeded by C.E2 with the same area of responsibility. On this occasion, we look back at the growth of the scientific disciplines involved around the world over almost a full century. Solar activity and fields of research looking into the related physics of the heliosphere continue to be vibrant and growing, with currently over 2,000 refereed publications appearing per year from over 4,000 unique authors, publishing in dozens of distinct journals and meeting in dozens of workshops and conferences each year. The size of the rapidly growing community and of the observational and computational data volumes, along with the multitude of connections into other branches of astrophysics, pose significant challenges; aspects of these challenges are beginning to be addressed through, among others, the development of new systems of literature reviews, machine-searchable archives for data and publications, and virtual observatories. As customary in these reports, we highlight some of the research topics that have seen particular interest over the most recent triennium, specifically active-region magnetic fields, coronal thermal structure, coronal seismology, flares and eruptions, and the variability of solar activity on long time scales. We close with a collection of developments, discoveries, and surprises that illustrate the range and dynamics of the discipline.

  12. An influence of solar variability on the stratosphere and troposphere

    NASA Technical Reports Server (NTRS)

    Feynman, J.; Ruzmaikin, A.

    2003-01-01

    We have found that the excitation of the North Annular Mode (NAM) of the wintertime geopotential height anomalies between 10 hPa and 1000 hPa is influenced by solar cycle changes and the effect is highly statistically significant.

  13. An influence of solar variability on the stratosphere and troposphere

    NASA Technical Reports Server (NTRS)

    Feynman, J.; Ruzmaikin, A.

    2003-01-01

    We have found that the excitation of the North Annular Mode (NAM) of the wintertime geopotential height anomalies between 10 hPa and 1000 hPa is influenced by solar cycle changes and the effect is highly statistically significant.

  14. Cosmic rays, solar activity and the climate

    NASA Astrophysics Data System (ADS)

    Sloan, T.; Wolfendale, A. W.

    2013-12-01

    Although it is generally believed that the increase in the mean global surface temperature since industrialization is caused by the increase in green house gases in the atmosphere, some people cite solar activity, either directly or through its effect on cosmic rays, as an underestimated contributor to such global warming. In this letter a simplified version of the standard picture of the role of greenhouse gases in causing the global warming since industrialization is described. The conditions necessary for this picture to be wholly or partially wrong are then introduced. Evidence is presented from which the contributions of either cosmic rays or solar activity to this warming is deduced. The contribution is shown to be less than 10% of the warming seen in the twentieth century.

  15. Solar activities at Sandia National Laboratories

    SciTech Connect

    Klimas, P.C.; Hasti, D.E.

    1994-03-01

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth`s present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing and deploying many of these technologies over the last two decades. A common but special aspect of all of these activities is that they are all conducted in cooperation with various types of partners. Some of these partners have an interest in seeing these systems grow in the marketplace, while others are primarily concerned with economic benefits that can come from immediate use of these renewable energy systems. This paper describes solar thermal and photovoltaic technology activities at Sandia that are intended to accelerate the commercialization of these solar systems.

  16. Patterns of helicity in solar active regions

    NASA Technical Reports Server (NTRS)

    Pevtsov, Alexei A.; Canfield, Richard C.; Metcalf, Thomas R.

    1994-01-01

    Using 46 vector magnetograms from the Stokes Polarimeter of Mees Solar Observatory (MSO), we studied patterns of local helicity in three diverse solar active regions. From these magnetograms we computed maps of the local helicity parameter alpha = J(sub z)/B(sub z). Although such maps are noisy, we found patterns at the level approximately 2 to 3 sigma(sub J(sub z)), which repeat in successive magnetograms for up to several days. Typically, the alpha maps of any given active region contain identifiable patches with both positive and negative values of alpha. Even within a single sunspot complex, several such alpha patches can often be seen. We followed 68 alpha patches that could be identified on at least two successive alpha maps. We found that the persistence fraction of such patches decrease exponentially, with a characteristic time approximately 27 hr.

  17. The Little Ice Age and Solar Activity

    NASA Astrophysics Data System (ADS)

    Velasco Herrera, Victor Manuel; Leal Silva, C. M. Carmen; Velasco Herrera, Graciela

    We analyze the ice winter severity index on the Baltic region since 1501-1995. We found that the variability of this index is modulated among other factors by the secular solar activity. The little ice ages that have appeared in the North Hemisphere occurred during periods of low solar activity. Seemingly our star is experiencing a new quiet stage compared with Maunder or Dalton minimum, this is important because it is estimated that even small changes in weather can represent a great impact in ice index. These results are relevant since ice is a very important element in the climate system of the Baltic region and it can affect directly or indirectly many of the oceanographic, climatic, eco-logical, economical and cultural patterns.

  18. What do the solar activity indices represent?

    NASA Astrophysics Data System (ADS)

    Li , K. J.; Kong, D. F.; Liang, H. F.; Feng, W.

    Sunspot number, sunspot area, and radio flux at 10.7 cm are the indices which are most frequently used to describe the long-term solar activity. The data of the daily solar full-disk magnetograms measured at Mount Wilson Observatory from 19 January 1970 to 31 December 2012 are utilized together with the daily observations of the three indices to probe the relationship of the full-disk magnetic activity respectively with the indices. Cross correlation analyses of the daily magnetic field measurements at Mount Wilson observatory are taken with the daily observations of the three indices, and the statistical significance of the difference of the obtained correlation coefficients is investigated. The following results are obtained: (1) The sunspot number should be preferred to represent/reflect the full-disk magnetic activity of the Sun to which the weak magnetic fields (outside of sunspots) mainly contribute, the sunspot area should be recommended to represent the strong magnetic activity of the Sun (in sunspots), and the 10.7 cm radio flux should be preferred to represent the full-disk magnetic activity of the Sun (both the weak and strong magnetic fields) to which the weak magnetic fields mainly contribute. (2) On the other hand, the most recommendable index that could be used to represent/reflect the weak magnetic activity is the 10.7 cm radio flux, the most recommendable index that could be used to represent the strong magnetic activity is the sunspot area, and the most recommendable index that could be used to represent the full-disk magnetic activity of the Sun is the 10.7 cm radio flux. Additionally, the cycle characteristics of the magnetic field strengths on the solar disk are given.

  19. Shuttle program. Solar activity prediction of sunspot numbers, predicted solar radio flux

    NASA Technical Reports Server (NTRS)

    Johnson, G. G.; Newman, S. R.

    1980-01-01

    A solar activity prediction technique for monthly mean sunspot numbers over a period of approximately ten years from February 1979 to January 1989 is presented. This includes the predicted maximum epoch of solar cycle 21, approximately January 1980, and the predicted minimum epoch of solar cycle 22, approximately March 1987. Additionally, the solar radio flux 10.7 centimeter smooth values are included for the same time frame using a smooth 13 month empirical relationship. The incentive for predicting solar activity values is the requirement of solar flux data as input to upper atmosphere density models utilized in mission planning satellite orbital lifetime studies.

  20. Solar Eruptions Initiated in Sigmoidal Active Regions

    NASA Astrophysics Data System (ADS)

    Savcheva, Antonia

    2016-07-01

    active regions that have been shown to possess high probability for eruption. They present a direct evidence of the existence of flux ropes in the corona prior to the impulsive phase of eruptions. In order to gain insight into their eruptive behavior and how they get destabilized we need to know their 3D magnetic field structure. First, we review some recent observations and modeling of sigmoidal active regions as the primary hosts of solar eruptions, which can also be used as useful laboratories for studying these phenomena. Then, we concentrate on the analysis of observations and highly data-constrained non-linear force-free field (NLFFF) models over the lifetime of several sigmoidal active regions, where we have captured their magnetic field structure around the times of major flares. We present the topology analysis of a couple of sigmoidal regions pointing us to the probable sites of reconnection. A scenario for eruption is put forward by this analysis. We demonstrate the use of this topology analysis to reconcile the observed eruption features with the standard flare model. Finally, we show a glimpse of how such a NLFFF model of an erupting region can be used to initiate a CME in a global MHD code in an unprecedented realistic manner. Such simulations can show the effects of solar transients on the near-Earth environment and solar system space weather.

  1. The Magnetic Origins of Solar Activity

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.

    2012-01-01

    The defining physical property of the Sun's corona is that the magnetic field dominates the plasma. This property is the genesis for all solar activity ranging from quasi-steady coronal loops to the giant magnetic explosions observed as coronal mass ejections/eruptive flares. The coronal magnetic field is also the fundamental driver of all space weather; consequently, understanding the structure and dynamics of the field, especially its free energy, has long been a central objective in Heliophysics. The main obstacle to achieving this understanding has been the lack of accurate direct measurements of the coronal field. Most attempts to determine the magnetic free energy have relied on extrapolation of photospheric measurements, a notoriously unreliable procedure. In this presentation I will discuss what measurements of the coronal field would be most effective for understanding solar activity. Not surprisingly, the key process for driving solar activity is magnetic reconnection. I will discuss, therefore, how next-generation measurements of the coronal field will allow us to understand not only the origins of space weather, but also one of the most important fundamental processes in cosmic and laboratory plasmas.

  2. Solar irradiance variations due to active regions

    SciTech Connect

    Oster, L.; Schatten, K.H.; Sofia, S.

    1982-05-15

    We have been able to reproduce the variations of the solar irradiance observed by ACRIM to an accuracy of better than +- 0.4 W m/sup -2/, assuming that during the 6 month observation period in 1980 the solar luminosity was constant. The improvement over previous attempts is primarily due to the inclusion of faculae. The reproduction scheme uses simple geometrical data on spot and facula areas, and conventional parameters for the respective fluxes and angular dependencies. The quality of reproduction is not very sensitive to most of the details of these parameters; nevertheless, there conventional parameters cannot be very different from their actual values in the solar atmosphere. It is interesting that the time average of the integrated excess emission (over directions) of the faculae cancels out the integrated deficit produced by the spots, within an accuracy of about 10%. If this behavior were maintained over longer periods of time, say, on the order of an activity cycle, active regions could be viewed as a kind of lighthouse where the energy deficit near the normal direction, associated with the spots, is primarily reemitted close to the tangential directions by the faculae. The currently available data suggest that energy ''storage'' associated with the redirection of flux near active regions on the Sun is comparable to the lifetime of the faculae.

  3. Solar Energy Education. Renewable energy activities for earth science

    SciTech Connect

    Not Available

    1980-01-01

    A teaching manual is provided to aid teachers in introducing renewable energy topics to earth science students. The main emphasis is placed on solar energy. Activities for the student include a study of the greenhouse effect, solar gain for home heating, measuring solar radiation, and the construction of a model solar still to obtain fresh water. Instructions for the construction of apparatus to demonstrate a solar still, the greenhouse effect and measurement of the altitude and azimuth of the sun are included. (BCS)

  4. Role of solar influences on geomagnetosphere and upper atmosphere

    NASA Astrophysics Data System (ADS)

    Kumar Tripathi, Arvind

    The Earth's magnetosphere and upper atmosphere can be greatly perturbed by variations in the solar luminosity caused by disturbances on the solar surface. The state of near-Earth space environment is governed by the Sun and is very dynamic on all spatial and temporal scale. The geomagnetic field which protects the Earth from solar wind and cosmic rays is also essential to the evolution of life; its variations can have either direct or indirect effect on human physiology and health state even if the magnitude of the disturbance is small. Geomagnetic disturbances are seen at the surface of the Earth as perturbations in the components of the geomagnetic field, caused by electric currents flowing in the magnetosphere and upper atmosphere. Ionospheric and thermospheric storms also result from the redistribution of particles and fields. Global thermospheric storm winds and composition changes are driven by energy injection at high latitudes. These storm effects may penetrate downwards to the lower thermosphere and may even perturb the mesosphere. Many of the ionospheric changes at mid-latitude can be understood as a response to thermospheric perturbations. The transient bursts of solar energetic particles, often associated with large solar transients, have been observed to have effects on the Earth's middle and lower atmosphere, including the large-scale destruction of polar stratospheric and tropospheric ozone. In the present, we have discussed effect of solar influences on earth's magnetosphere and upper atmosphere that are useful to space weather and global warming, on the basis of various latest studies.

  5. Influences of misprediction costs on solar flare prediction

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Wang, HuaNing; Dai, XingHua

    2012-10-01

    The mispredictive costs of flaring and non-flaring samples are different for different applications of solar flare prediction. Hence, solar flare prediction is considered a cost sensitive problem. A cost sensitive solar flare prediction model is built by modifying the basic decision tree algorithm. Inconsistency rate with the exhaustive search strategy is used to determine the optimal combination of magnetic field parameters in an active region. These selected parameters are applied as the inputs of the solar flare prediction model. The performance of the cost sensitive solar flare prediction model is evaluated for the different thresholds of solar flares. It is found that more flaring samples are correctly predicted and more non-flaring samples are wrongly predicted with the increase of the cost for wrongly predicting flaring samples as non-flaring samples, and the larger cost of wrongly predicting flaring samples as non-flaring samples is required for the higher threshold of solar flares. This can be considered as the guide line for choosing proper cost to meet the requirements in different applications.

  6. Correlative Aspects of the Solar Electron Neutrino Flux and Solar Activity

    NASA Astrophysics Data System (ADS)

    Wilson, Robert M.

    2000-12-01

    Between 1970 and 1994, the Homestake Solar Neutrino Detector obtained 108 observations of the solar electron neutrino flux (greater than 0.814 MeV). The ``best fit'' values derived from these observations suggest an average daily production rate of about 0.485 37Ar atom per day, a rate equivalent to about 2.6 SNU (solar neutrino units) or about a factor of 3 below the expected rate from the standard solar model. In order to explain, at least, a portion of this discrepancy, many researchers have speculated that the flux of solar neutrinos is variable, possibly being correlated with certain markers of the solar cycle (specifically, sunspot number and the Ap index). Indeed, previous studies, on the basis of shorter time intervals or data averaged in particular ways, often found evidence supportive for preferential behavior between the solar neutrino flux and solar activity. In this paper, using the larger ``standard data set'' and run-length-adjusted averages, the notion of preferential behavior between solar electron neutrino flux and solar activity is reexamined. The results clearly show that no statistically meaningful associations exist between the solar electron neutrino flux and any of the usual markers of solar activity, including sunspot number, the Ap index, the Deep River neutron monitor counts (cosmic rays), solar irradiance, and the number or size of solar energetic events (flares).

  7. Contrast analysis between the trajectory of the planetary system and the periodicity of solar activity

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Wang, Jian; Chen, JinRu; Wang, Ying; Yu, GuangMing; Xu, XianHai

    2017-05-01

    The relationship between the periodic movement of the planetary system and its influence on solar activity is currently a serious topic in research. The kinematic index of the planet juncture index has been developed to find the track and variation of the Sun around the centroid of the solar system and the periodicity of solar activity. In the present study, the kinematic index of the planetary system's heliocentric longitude, developed based on the orbital elements of planets in the solar system, and it is used to investigate the periodic movement of the planetary system. The kinematic index of the planetary system's heliocentric longitude and that of the planet juncture index are simulated and analyzed. The numerical simulation of the two kinematic indexes shows orderly orbits and disorderly orbits of 49.9 and 129.6 years, respectively. Two orderly orbits or two disorderly orbits show a period change rule of 179.5 years. The contrast analysis between the periodic movement of the planetary system and the periodicity of solar activity shows that the two phenomena exhibit a period change rule of 179.5 years. Moreover, orderly orbits correspond to high periods of solar activity and disorderly orbits correspond to low periods of solar activity. Therefore, the relative movement of the planetary system affects solar activity to some extent. The relationship provides a basis for discussing the movement of the planetary system and solar activity.

  8. Results From the Study of Solar and Geomagnetic Activities

    NASA Astrophysics Data System (ADS)

    Nneka, F. N.; Okpala, K. C.; Onwuneme, S. E.; Okoro, E. C.; Isikwue, B. C.

    2007-12-01

    Some intense geomagnetic storm activities during the past four solar cycles, 1957-2001 have been analyzed. It was discovered that these selected geomagnetic storm events analyzed, have stronger intensity during the maximum solar activity cycle and the intensity is weaker during the minimum solar activity. It is evident from our results that the yearly intense geomagnetic storm, strongly correlate with the 11-year sunspot cycle. The monthly variations of sunspots during the maximum and minimum solar activity depict no strong correlation between the two phases. It was suggested that most of these geomagnetic storms analyzed were associated with Coronal Mass Ejections (CMEs). It is also noted that variation of large storm events depicts a kind of variation which peaks around June and September for maximum solar activity and peaks around same June and October for minimum solar activity. It was concluded that solar and geomagnetic activities are very important factors in planning and managing space missions.

  9. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme

  10. Solar-stratosphere-troposphere interaction as a mechanism of solar influence on climate

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, A.

    2003-01-01

    We will briefly review recent studies showing that stratospheric disturbances propagate to the troposphere and that UV variability affects the atmospheric circulation in the stratosphere and troposphere in a coherent fashion. We will outline a mechanism by which solar-stratosphere-troposphere interaction may influence climate and discuss a simple model that includes the basic elements of this mechanism.

  11. Tsunami related to solar and geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2016-04-01

    The authors of this study wanted to verify the existence of a correlation between earthquakes of high intensity capable of generating tsunami and variations of solar and Earth's geomagnetic activity. To confirming or not the presence of this kind of correlation, the authors analyzed the conditions of Spaceweather "near Earth" and the characteristics of the Earth's geomagnetic field in the hours that preceded the four earthquakes of high intensity that have generated tsunamis: 1) Japan M9 earthquake occurred on March 11, 2011 at 05:46 UTC; 2) Japan M7.1 earthquake occurred on October 25, 2013 at 17:10 UTC; 3) Chile M8.2 earthquake occurred on April 1, 2014 at 23:46 UTC; 4) Chile M8.3 earthquake occurred on September 16, 2015 at 22:54 UTC. The data relating to the four earthquakes were provided by the United States Geological Survey (USGS). The data on ion density used to realize the correlation study are represented by: solar wind ion density variation detected by ACE (Advanced Composition Explorer) Satellite, in orbit near the L1 Lagrange point, at 1.5 million of km from Earth, in direction of the Sun. The instrument used to perform the measurement of the solar wind ion density is the Electron, Proton, and Alpha Monitor (EPAM) instrument, equipped on the ACE Satellite. To conduct the study, the authors have taken in consideration the variation of the solar wind protons density of three different energy fractions: differential proton flux 1060-1900 keV (p/cm^2-sec-ster-MeV); differential proton flux 761-1220 keV (p/cm^2-sec-ster-MeV); differential proton flux 310-580 keV (p/cm^2-sec-ster-MeV). Geomagnetic activity data were provided by Tromsø Geomagnetic Observatory (TGO), Norway; by Scoresbysund Geomagnetic Observatory (SCO), Greenland, Denmark and by Space Weather Prediction Center of Pushkov Institute of terrestrial magnetism, ionosphere and radio wave propagation (IZMIRAN), Troitsk, Moscow Region. The results of the study, in agreement with what already

  12. Solar Flare Forecasting

    NASA Astrophysics Data System (ADS)

    Bai, T.; Murdin, P.

    2000-11-01

    Like weather forecasting, solar flare forecasting (or forecasting solar activity in general) is motivated by pragmatic needs. Solar flares, coronal mass ejections, solar winds and other solar activity intimately influence the near-Earth space environment. All kinds of spacecraft including weather and communication satellites are orbiting Earth, and their performance and lifetimes are greatly infl...

  13. Evidence of active region imprints on the solar wind structure

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.

    1995-01-01

    A common descriptive framework for discussing the solar wind structure in the inner heliosphere uses the global magnetic field as a reference: low density, high velocity solar wind emanates from open magnetic fields, with high density, low speed solar wind flowing outward near the current sheet. In this picture, active regions, underlying closed magnetic field structures in the streamer belt, leave little or no imprint on the solar wind. We present evidence from interplanetary scintillation measurements of the 'disturbance factor' g that active regions play a role in modulating the solar wind and possibly contribute to the solar wind mass output. Hence we find that the traditional view of the solar wind, though useful in understanding many features of solar wind structure, is oversimplified and possibly neglects important aspects of solar wind dynamics

  14. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    NASA Astrophysics Data System (ADS)

    Yizengaw, Endawoke; Carter, Brett A.

    2017-04-01

    It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ). The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998-2014) of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian) have been analyzed. All observations performed during magnetically active periods (Kp>3) have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  15. A Forecast of Reduced Solar Activity and Its Implications for NASA

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth; Franz, Heather

    2005-01-01

    The "Solar Dynamo" method of solar activity forecasting is reviewed. Known generically as a 'precursor" method, insofar as it uses observations which precede solar activity generation, this method now uses the Solar Dynamo Amplitude (SODA) Index to estimate future long-term solar activity. The peak amplitude of the next solar cycle (#24), is estimated at roughly 124 in terms of smoothed F10.7 Radio Flux and 74 in terms of the older, more traditional smoothed international or Zurich Sunspot number (Ri or Rz). These values are significantly smaller than the amplitudes of recent solar cycles. Levels of activity stay large for about four years near the peak in smoothed activity, which is estimated to occur near the 2012 timeflame. Confidence is added to the prediction of low activity by numerous examinations of the Sun s weakened polar field. Direct measurements are obtained by the Mount Wilson Solar Observatory and the Wilcox Solar Observatory. Further support is obtained by examining the Sun s polar faculae (bright features), the shape of coronal soft X-ray "holes," and the shape of the "source surface" - a calculated coronal feature which maps the large scale structure of the Sun s field. These features do not show the characteristics of well-formed polar coronal holes associated with typical solar minima. They show stunted polar field levels, which are thought to result in stunted levels of solar activity during solar cycle #24. The reduced levels of solar activity would have concomitant effects upon the space environment in which satellites orbit. In particular, the largest influences would affect orbit determination of satellites in LEO (Low Earth Orbit), based upon the altered thermospheric and exospheric densities. A decrease in solar activity would result in smaller satellite decay rates, as well as fewer large solar events that can destroy satellite electronic functions. Other effects of reduced solar activity upon the space environment include enhanced

  16. MASC: Magnetic Activity of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Auchere, Frederic; Fineschi, Silvano; Gan, Weiqun; Peter, Hardi; Vial, Jean-Claude; Zhukov, Andrei; Parenti, Susanna; Li, Hui; Romoli, Marco

    We present MASC, an innovative payload designed to explore the magnetic activity of the solar corona. It is composed of three complementary instruments: a Hard-X-ray spectrometer, a UV / EUV imager, and a Visible Light / UV polarimetric coronagraph able to measure the coronal magnetic field. The solar corona is structured in magnetically closed and open structures from which slow and fast solar winds are respectively released. In spite of much progress brought by two decades of almost uninterrupted observations from several space missions, the sources and acceleration mechanisms of both types are still not understood. This continuous expansion of the solar atmosphere is disturbed by sporadic but frequent and violent events. Coronal mass ejections (CMEs) are large-scale massive eruptions of magnetic structures out of the corona, while solar flares trace the sudden heating of coronal plasma and the acceleration of electrons and ions to high, sometimes relativistic, energies. Both phenomena are most probably driven by instabilities of the magnetic field in the corona. The relations between flares and CMEs are still not understood in terms of initiation and energy partition between large-scale motions, small-scale heating and particle acceleration. The initiation is probably related to magnetic reconnection which itself results magnetic topological changes due to e.g. flux emergence, footpoints motions, etc. Acceleration and heating are also strongly coupled since the atmospheric heating is thought to result from the impact of accelerated particles. The measurement of both physical processes and their outputs is consequently of major importance. However, despite its fundamental importance as a driver for the physics of the Sun and of the heliosphere, the magnetic field of our star’s outer atmosphere remains poorly understood. This is due in large part to the fact that the magnetic field is a very difficult quantity to measure. Our knowledge of its strength and

  17. Energy Flow Continuity in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.

    1984-01-01

    The models for sunspots are combined into an active region model with consideration for the energy flow beneath active regions. An apparent average energy balance exists between the sunspot deficit and the facular excess, i.e., no 11 year variations in solar luminosity associated with the activity centers. This is seen as a consequence of the upper convection zone's inability to store these significant amounts of energy for periods greatly in excess of weeks. This view is supported by observed active region behavior and detailed numerical modelling. Increases in facular and spot brightness are nearly commensurate, with the faculae outlasting the spots on time scales of the order of weeks to a couple of months. Foukal finds the radiation (deficit from a sunspot blocking model) recovers slowly on a timescale of approximately 83 days.

  18. Solar and stellar activity - The theoretical approach

    NASA Astrophysics Data System (ADS)

    Belvedere, G.

    1985-10-01

    The unified approach to understanding solar and stellar activity is examined. Stellar activity observations have stimulated theoretical work, mostly within the framework of the alpha-omega dynamo theory. A number of uncertainties and intrinsic limits in dynamo theory do still exist, and these are discussed together with alternative or complementary suggestions. The relevance is stressed of nonlinear problems in dynamo theory - magnetoconvection, growth and stability of flux tubes against magnetic buoyancy, hydromagnetic global dynamos - to improve the understanding of both small and large scale interaction of rotation, turbulent convection and magnetic fields, and the transition from the linear to the nonlinear regime. Recent dynamo models of stellar activity are critically reviewed regarding the dependence of activity indexes and cycles on rotation rate and spectral type. Open problems to be solved by future work are outlined.

  19. Nanoflare activity in the solar chromosphere

    SciTech Connect

    Jess, D. B.; Mathioudakis, M.; Keys, P. H.

    2014-11-10

    We use ground-based images of high spatial and temporal resolution to search for evidence of nanoflare activity in the solar chromosphere. Through close examination of more than 1 × 10{sup 9} pixels in the immediate vicinity of an active region, we show that the distributions of observed intensity fluctuations have subtle asymmetries. A negative excess in the intensity fluctuations indicates that more pixels have fainter-than-average intensities compared with those that appear brighter than average. By employing Monte Carlo simulations, we reveal how the negative excess can be explained by a series of impulsive events, coupled with exponential decays, that are fractionally below the current resolving limits of low-noise equipment on high-resolution ground-based observatories. Importantly, our Monte Carlo simulations provide clear evidence that the intensity asymmetries cannot be explained by photon-counting statistics alone. A comparison to the coronal work of Terzo et al. suggests that nanoflare activity in the chromosphere is more readily occurring, with an impulsive event occurring every ∼360 s in a 10,000 km{sup 2} area of the chromosphere, some 50 times more events than a comparably sized region of the corona. As a result, nanoflare activity in the chromosphere is likely to play an important role in providing heat energy to this layer of the solar atmosphere.

  20. Solar and stellar activity: diagnostics and indices

    NASA Astrophysics Data System (ADS)

    Judge, Philip G.; Thompson, Michael J.

    2012-07-01

    We summarize the fifty-year concerted effort to place the ``activity'' of the Sun in the context of the stars. As a working definition of solar activity in the context of stars, we adopt those globally-observable variations on time scales below thermal time scales, of ~105 yr for the convection zone. So defined, activity is dominated by magnetic-field evolution, including the 22-year Hale cycle, the typical time it takes for the quasi-periodic reversal in which the global magnetic-field takes place. This is accompanied by sunspot variations with 11 year periods, known since the time of Schwabe, as well as faster variations due to rotation of active regions and flaring. ``Diagnostics and indices'' are terms given to the indirect signatures of varying magnetic-fields, including the photometric (broad-band) variations associated with the sunspot cycle, and variations of the accompanying heated plasma in higher layers of stellar atmospheres seen at special optical wavelengths, and UV and X-ray wavelengths. Our attention is also focussed on the theme of the Symposium by examining evidence for deep and extended minima of stars, and placing the 70-year long solar Maunder Minimum into a stellar context.

  1. Periodogram Analysis on Solar Activities Based on El Campo Solar Radar Observation Data

    NASA Astrophysics Data System (ADS)

    Lin, Ye; Zhi-ning, Qu; Min, Wang; Guan-nan, Gao; Jun, Lin; Zhi-chun, Duan

    2016-10-01

    Solar radar can transmit radar waves toward the Sun actively at a specific waveband and receive the reflected waves. By analyzing the echoes, we can obtain the information of motion, magnetic field, and other properties of the solar atmosphere. The El Campo solar radar has done regular observations on the solar corona for 8 years from 1961 to 1969, to trace the variation of solar activities. We have made a periodicity analysis on the obtained data with the Lomb-Scargle periodogram algorithm, and found that there are the 200 day and 540 day periods existed in the variation of the measured solar radar cross section. In addition, we have selected the larger radar cross sections (≥ 20σ⊙) to compare with the Dst indexes. Finally, we have summarized the El Campo solar radar experiment and give a prospect for the future development of the solar radar observation.

  2. Research on Magnetic Evolution in Solar Active Regions and Related Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Yan, X. L.

    2014-07-01

    Research on sunspot activity and solar eruptions is one of the key and difficult issues in solar physics. The relationship between sunspot formation and its magnetic field evolution, and solar eruptions is not well understood. Magnetic emergence, magnetic cancellation, and sunspot motion can greatly affect the upper solar atmosphere, and even produce flares, coronal mass ejections (CMEs), filament eruptions, surges, and so on. Especially, large solar eruptions toward the earth can exert a huge influence on the Sun-Earth space weather. The observations of the Sun have been developed from those at a single wavelength based on the ground station to those at multi-wavelengths based on both the ground and space stations. In particular, from the launch of rockets in 1940s---1950s to the launch of the current spacecraft, the great achievements have been made based on the multi-wavelength and high resolution observations. This thesis is dedicated to the study of the evolution of active regions and related solar eruptions, especially the exploration on the origin of solar activities by using a great many data obtained by space and ground-based telescopes. Chapter 1 introduces the basic knowledge of sunspots (formation, fine-structure, magnetic field, material flow, and periodicity), filaments (formation, theoretical models, and triggering mechanisms), flares (classification, and theoretical models), and CMEs (structures, and physical models). In chapter 2, we investigate the relationship between magnetic emergence, magnetic cancellation, flares, CMEs, and filament eruptions in active regions by using ground and space observational data. Half of filament eruptions in active regions in our examples are accompanied by CMEs. The occurrence and speed of CMEs have a close relationship with the associated flares accompanied by filament eruptions. The halo CMEs are associated with large flares (≥ M-class flares). Magnetic emergence and cancellation often appear in the active

  3. Magnetic helicity in emerging solar active regions

    SciTech Connect

    Liu, Y.; Hoeksema, J. T.; Bobra, M.; Hayashi, K.; Sun, X.; Schuck, P. W.

    2014-04-10

    Using vector magnetic field data from the Helioseismic and Magnetic Imager instrument aboard the Solar Dynamics Observatory, we study magnetic helicity injection into the corona in emerging active regions (ARs) and examine the hemispheric helicity rule. In every region studied, photospheric shearing motion contributes most of the helicity accumulated in the corona. In a sample of 28 emerging ARs, 17 follow the hemisphere rule (61% ± 18% at a 95% confidence interval). Magnetic helicity and twist in 25 ARs (89% ± 11%) have the same sign. The maximum magnetic twist, which depends on the size of an AR, is inferred in a sample of 23 emerging ARs with a bipolar magnetic field configuration.

  4. Solar Energy Education. Industrial arts: student activities. Field test edition

    SciTech Connect

    Not Available

    1981-02-01

    In this teaching manual several activities are presented to introduce students to information on solar energy through classroom instruction. Wind power is also included. Instructions for constructing demonstration models for passive solar systems, photovoltaic cells, solar collectors and water heaters, and a bicycle wheel wind turbine are provided. (BCS)

  5. Solar-terrestrial predictions proceedings. Volume 4: Prediction of terrestrial effects of solar activity

    NASA Technical Reports Server (NTRS)

    Donnelly, R. E. (Editor)

    1980-01-01

    Papers about prediction of ionospheric and radio propagation conditions based primarily on empirical or statistical relations is discussed. Predictions of sporadic E, spread F, and scintillations generally involve statistical or empirical predictions. The correlation between solar-activity and terrestrial seismic activity and the possible relation between solar activity and biological effects is discussed.

  6. The Relation between Extreme Weather Events and the Solar Activity

    NASA Astrophysics Data System (ADS)

    Battinelli, P.; di Fazio, A.; Torelli, M.

    The oscillating part of the solar irradiance drives the cyclic component of the variations of the terrestrial atmosphere's thermodynamic state. In particular, the average temperature, and thus the turbulent atmospheric fuxes, are influenced. Reliable temperature data exist from ~220,000 years, while accurate solar irradiance space measurements (not affected by the atmosphere's absorption) are available only since 1979. Actually, there is a rather long data-set regarding solar activity, indicated by the Wolf number, which is found to be well correlated with the total solar flux. Thus, we use the Wolf number as a quantitative proxy of the incident flux, even in the interval before the space-based measurements. The fraction of solar energy trapped in the atmosphere due to the re-absorption of the infrared radiation by the greenhouse gases is an increasing function of time (in the latter 150-160 years). Over this interval, we spectrally analyzed the time series of both the Wolf number and the frequencies of extreme meteorological events, isolating and removing in the latter the cyclic components due to the periodic part of the radiative forcing exherted by the Sun. We were thus able to determine the time trend in the data regarding the observed frequencies of the U.S. continental tornadoes (National Center for Atmospheric Research) and of the global cyclones (hurricanes and tropical storms on all ocean basins, National Ocean and Atmospheric Administration). We find, for both the data sets an exponential behaviour, with e-folding times: for the cyclones tau ~= 110 years, and for the tornadoes tau ~= 70 years. We are happy to have given --through this work-- a contribution to the interdisciplinary scientific process coordinated by the IPCC (Intergovernmental Panel on Climate Change) through the ICSU (International Council of Scientific Unions) which takes place a latere of the international negotiations under the United Nations Framework Convention on Climate Change.

  7. Long-term persistence of solar activity

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, Alexander; Feynman, Joan; Robinson, Paul

    1994-01-01

    We examine the question of whether or not the non-periodic variations in solar activity are caused by a white-noise, random process. The Hurst exponent, which characterizes the persistence of a time series, is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD. We find a constant Hurst exponent, suggesting that solar activity in the frequency range from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process and that it is the same type of process over a wide range of time interval lengths.

  8. Long-term persistence of solar activity

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, Alexander; Feynman, Joan; Robinson, Paul

    1994-01-01

    We examine the question of whether or not the non-periodic variations in solar activity are caused by a white-noise, random process. The Hurst exponent, which characterizes the persistence of a time series, is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD. We find a constant Hurst exponent, suggesting that solar activity in the frequency range from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process and that it is the same type of process over a wide range of time interval lengths.

  9. The evolution of solar ultraviolet luminosity. [influence on planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Zahnle, K. J.; Walker, J. C. G.

    1982-01-01

    Astronomical observations of stars analogous to the sun are used to construct a tentative account of the evolution of solar UV luminosity. Evidence exists that the young sun was a much more powerful source of energetic particles and radiation than it is today, and while on the main sequence, solar activity has declined as an inverse power law of age as a consequence of angular momentum loss to the solar wind. Observations of pre-main sequence stars indicate that before the sun reached the main sequence, it may have emitted as much as ten thousand times the amount of ultraviolet radiation that it does today. The impact of the results on knowledge of photochemistry and escape of constituents of primordial planetary atmospheres is discussed.

  10. Prominences: The Key to Understanding Solar Activity

    NASA Technical Reports Server (NTRS)

    Karpen, Judy T.

    2011-01-01

    Prominences are spectacular manifestations of both quiescent and eruptive solar activity. The largest examples can be seen with the naked eye during eclipses, making prominences among the first solar features to be described and catalogued. Steady improvements in temporal and spatial resolution from both ground- and space-based instruments have led us to recognize how complex and dynamic these majestic structures really are. Their distinguishing characteristics - cool knots and threads suspended in the hot corona, alignment along inversion lines in the photospheric magnetic field within highly sheared filament channels, and a tendency to disappear through eruption - offer vital clues as to their origin and dynamic evolution. Interpreting these clues has proven to be contentious, however, leading to fundamentally different models that address the basic questions: What is the magnetic structure supporting prominences, and how does so much cool, dense plasma appear in the corona? Despite centuries of increasingly detailed observations, the magnetic and plasma structures in prominences are poorly known. Routine measurements of the vector magnetic field in and around prominences have become possible only recently, while long-term monitoring of the underlying filament-channel formation process also remains scarce. The process responsible for prominence mass is equally difficult to establish, although we have long known that the chromosphere is the only plausible source. As I will discuss, however, the motions and locations of prominence material can be used to trace the coronal field, thus defining the magnetic origins of solar eruptions. A combination of observations, theory, and numerical modeling must be used to determine whether any of the competing theories accurately represents the physics of prominences. I will discuss the criteria for a successful prominence model, compare the leading models, and present in detail one promising, comprehensive scenario for

  11. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings

    PubMed Central

    Steinhilber, Friedhelm; Beer, Jürg; Brunner, Irene; Christl, Marcus; Fischer, Hubertus; Heikkilä, Ulla; Kubik, Peter W.; Mann, Mathias; McCracken, Ken G.; Miller, Heinrich; Miyahara, Hiroko; Oerter, Hans

    2012-01-01

    Understanding the temporal variation of cosmic radiation and solar activity during the Holocene is essential for studies of the solar-terrestrial relationship. Cosmic-ray produced radionuclides, such as 10Be and 14C which are stored in polar ice cores and tree rings, offer the unique opportunity to reconstruct the history of cosmic radiation and solar activity over many millennia. Although records from different archives basically agree, they also show some deviations during certain periods. So far most reconstructions were based on only one single radionuclide record, which makes detection and correction of these deviations impossible. Here we combine different 10Be ice core records from Greenland and Antarctica with the global 14C tree ring record using principal component analysis. This approach is only possible due to a new high-resolution 10Be record from Dronning Maud Land obtained within the European Project for Ice Coring in Antarctica in Antarctica. The new cosmic radiation record enables us to derive total solar irradiance, which is then used as a proxy of solar activity to identify the solar imprint in an Asian climate record. Though generally the agreement between solar forcing and Asian climate is good, there are also periods without any coherence, pointing to other forcings like volcanoes and greenhouse gases and their corresponding feedbacks. The newly derived records have the potential to improve our understanding of the solar dynamics and to quantify the solar influence on climate. PMID:22474348

  12. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings.

    PubMed

    Steinhilber, Friedhelm; Abreu, Jose A; Beer, Jürg; Brunner, Irene; Christl, Marcus; Fischer, Hubertus; Heikkilä, Ulla; Kubik, Peter W; Mann, Mathias; McCracken, Ken G; Miller, Heinrich; Miyahara, Hiroko; Oerter, Hans; Wilhelms, Frank

    2012-04-17

    Understanding the temporal variation of cosmic radiation and solar activity during the Holocene is essential for studies of the solar-terrestrial relationship. Cosmic-ray produced radionuclides, such as (10)Be and (14)C which are stored in polar ice cores and tree rings, offer the unique opportunity to reconstruct the history of cosmic radiation and solar activity over many millennia. Although records from different archives basically agree, they also show some deviations during certain periods. So far most reconstructions were based on only one single radionuclide record, which makes detection and correction of these deviations impossible. Here we combine different (10)Be ice core records from Greenland and Antarctica with the global (14)C tree ring record using principal component analysis. This approach is only possible due to a new high-resolution (10)Be record from Dronning Maud Land obtained within the European Project for Ice Coring in Antarctica in Antarctica. The new cosmic radiation record enables us to derive total solar irradiance, which is then used as a proxy of solar activity to identify the solar imprint in an Asian climate record. Though generally the agreement between solar forcing and Asian climate is good, there are also periods without any coherence, pointing to other forcings like volcanoes and greenhouse gases and their corresponding feedbacks. The newly derived records have the potential to improve our understanding of the solar dynamics and to quantify the solar influence on climate.

  13. Influence of solar wind ions on photoemission charging of dust

    NASA Astrophysics Data System (ADS)

    Nouzak, Libor; Richterova, Ivana; Pavlu, Jiri; Safrankova, Jana; Nemecek, Zdenek

    2016-04-01

    The lunar surface covered by a layer of dust grains is exposed to solar wind particles and photons coming from the Sun on the sunlit side. Solar wind ions cause sputtering of dust grains or can be implanted into grains. We suppose that as a consequence of ion implantation, an additional energy is transferred to grains, more valence band electrons are excited, and the photoelectron yield is increased. An increase of the photoelectron current causes the enhanced density of electrons that form a sheet above the illuminated lunar surface. Thus, an influence of solar wind ions on the Debye length and photoelectron sheet formation is expected. We present laboratory estimations of work functions and photoelectron yields of a single micron-sized silica grain before and after ion implantation. The silica grain used as a lunar simulant is caught in the electrodynamic trap. Grain's specific charge is evaluated by an analysis of the grain motion within the trap, while its work function is determined from observations of a time evolution of the charge-to-mass ratio when the grain is irradiated by photons of different emission lines. By comparison of the photoelectron current (from grain) with photon flux (from UV source), we establish the photoelectron yield of the trapped object. The influence of ion implantation is thoroughly analyzed and discussed.

  14. Solar activity at birth predicted infant survival and women's fertility in historical Norway.

    PubMed

    Skjærvø, Gine Roll; Fossøy, Frode; Røskaft, Eivin

    2015-02-22

    Ultraviolet radiation (UVR) can suppress essential molecular and cellular mechanisms during early development in living organisms and variations in solar activity during early development may thus influence their health and reproduction. Although the ultimate consequences of UVR on aquatic organisms in early life are well known, similar studies on terrestrial vertebrates, including humans, have remained limited. Using data on temporal variation in sunspot numbers and individual-based demographic data (N = 8662 births) from Norway between 1676 and 1878, while controlling for maternal effects, socioeconomic status, cohort and ecology, we show that solar activity (total solar irradiance) at birth decreased the probability of survival to adulthood for both men and women. On average, the lifespans of individuals born in a solar maximum period were 5.2 years shorter than those born in a solar minimum period. In addition, fertility and lifetime reproductive success (LRS) were reduced among low-status women born in years with high solar activity. The proximate explanation for the relationship between solar activity and infant mortality may be an effect of folate degradation during pregnancy caused by UVR. Our results suggest that solar activity at birth may have consequences for human lifetime performance both within and between generations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. The solar atmosphere and the structure of active regions. [aircraft accidents, weather

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.

    1975-01-01

    Numerical analyses of solar activities are presented. The effect of these activities on aircraft and weather conditions was studied. Topics considered are: (1) solar flares; (2) solar X-rays; and (3) solar magnetic fields (charts are shown).

  16. The Long-term Middle Atmospheric Influence of Very Large Solar Proton Events

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Marsh, Daniel R.; Vitt, Francis M.; Garcia, Rolando R.; Randall, Cora E.; Fleming, Eric L.; Frith, Stacey M.

    2008-01-01

    Long-term variations in ozone have been caused by both natural and humankind related processes. The humankind or anthropogenic influence on ozone originates from the chlorofluorocarbons and halons (chlorine and bromine) and has led to international regulations greatly limiting the release of these substances. Certain natural ozone influences are also important in polar regions and are caused by the impact of solar charged particles on the atmosphere. Such natural variations have been studied in order to better quantify the human influence on polar ozone. Large-scale explosions on the Sun near solar maximum lead to emissions of charged particles (mainly protons and electrons), some of which enter the Earth's magnetosphere and rain down on the polar regions. "Solar proton events" have been used to describe these phenomena since the protons associated with these solar events sometimes create a significant atmospheric disturbance. We have used the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM) to study the long-term (> few months) influences of solar proton events from 1963 through 2004 on stratospheric ozone and temperature. There were extremely large solar proton events in 1972, 1989,2000,2001, and 2003. These events caused very distinctive polar changes in layers of the Earth's atmosphere known as the stratosphere (12-50 km; -7-30 miles) and mesosphere (50-90 km; 30-55 miles). The solar protons connected with these events created hydrogen- and nitrogen-containing compounds, which led to the polar ozone destruction. The nitrogen-containing compounds, called odd nitrogen, lasted much longer than the hydrogen-containing compounds and led to long-lived stratospheric impacts. An extremely active period for these events occurred in the five-year period, 2000- 2004, and caused increases in odd nitrogen which lasted for several months after individual events. Associated stratospheric ozone decreases of >lo% were calculated

  17. Possible helio-geomagnetic activity influence on cardiological cases

    NASA Astrophysics Data System (ADS)

    Katsavrias, Christos

    Eruptive solar events as flares and coronal mass ejections (CMEs) occur during solar activ-ity periods. Energetic particles, fast solar wind plasma and electromagnetic radiation pass through interplanetary space, arrive on Earth's ionosphere-magnetosphere and produce various disturbances. It is well known the negative influence of geomagnetic substorms on the human technological applications on geospace. During the last 25 years, many studies concerning the possible influence on the human health are published. Increase of the Acute Coronary Syn-dromes and disorders of the Cardiac Rhythm, increase of accidents as well as neurological and psychological disorders (e.g. increase of suicides) during or near to the geomagnetic storms time interval are reported. In this study, we research the problem in Greece, focusing on patients with Acute Myocardial Infraction, hospitalized in the 2nd Cardiological Department of the General Hospital of Nikaea (Piraeus City), for the time interval 1997-2007 (23rd solar cycle) and also to the arrival of emergency cardiological cases to Emergency Department of two greek hospitals, the General Hospital of Lamia City and the General Hospital of Veria City during the selected months, with or without helio-geomagnetic activity, of the 23rd solar cycle. Increase of cases is recorded during the periods with increase helio-geomagnetic activity. The necessity of continuing the research for a longer period and with a bigger sample is high; so as to exact more secure conclusions.

  18. Solar Activity Studies using Microwave Imaging Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    We report on the status of solar cycle 24 based on polar prominence eruptions (PEs) and microwave brightness enhancement (MBE) information obtained by the Nobeyama radioheliograph. The north polar region of the Sun had near-zero field strength for more than three years (2012-2015) and ended only in September 2015 as indicated by the presence of polar PEs and the lack of MBE. The zero-polar-field condition in the south started only around 2013, but it ended by June 2014. Thus the asymmetry in the times of polarity reversal switched between cycle 23 and 24. The polar MBE is a good proxy for the polar magnetic field strength as indicated by the high degree of correlation between the two. The cross-correlation between the high- and low-latitude MBEs is significant for a lag of approximately 5.5 to 7.3 years, suggesting that the polar field of one cycle indicates the sunspot number of the next cycle in agreement with the Babcock-Leighton mechanism of solar cycles. The extended period of near-zero field in the north-polar region should result in a weak and delayed sunspot activity in the northern hemisphere in cycle 25.

  19. Geoeffective and Climate-Influencing Solar and Interplanetary Conditions

    NASA Astrophysics Data System (ADS)

    Baranyi, T.; Ludmány, A.

    Several connections have been detected and demonstrated between solar magnetic conditions and climatic responses which hint at a highly complicated mechanism of sun-climate relations through plasma streams. The present contribution overviews our results about the possible factors of this mechanism. The main factor is the negative value of the interplanetary magnetic B_z component which exhibits a fairly complex behaviour. Its strength is influenced by the solar dipole cycle, the nature of ejected plasma (CME or fast stream), the magnetic topology of the CME and the position of the Earth (Rosenberg-Coleman and Russell-McPherron effects). The persistence of the negative B_z is also effective. The impacts of these features can be pointed out in the climatic responses.

  20. Solar Influence on Medieval Megadroughts in the Greater Near East

    NASA Astrophysics Data System (ADS)

    Kushnir, Y.; Stein, M.

    2014-12-01

    Recent surveys of medieval era chronicles provide calendar accurate information of years of unusual, extreme weather and climate events in areas surrounding the eastern Mediterranean, between the mid-A.D. 10th century and end of the 11th century. Put together, these documents show that the region was simultaneously afflicted by unprecedented sever and persistent droughts in Egypt's Nile Valley and by unusually cold and dry winters associated with crop failure and loss of pasture areas in present-day Iraq and Iran, and in historical Khurasan. We show that this documentary information is consistent with the annually dated Nile summer flood record as measured at the Cairo Nilometer site and within acceptable dating accuracies with much more coarsely resolved regional paleoclimate proxies. We furthermore note that the timing of these events coincided with the Oort Grand Solar Minimum that reached its peak between A.D. 1040 and 1080. Given the scientific evidence for the impact of solar minima on sea surface temperatures in the equatorial Pacific and how the latter affect the intensity of the African summer monsoon, we argue that the Oort Solar Minimum forced the frequent failure of the Nile summer floods resulting in dearth and famine in Egypt. Furthermore, the simultaneous cold and dry winters in the northern Near East are also consistent with the hypothesized solar minimum influence on the North Atlantic Oscillation and on the intensity of the Siberian High. This interpretation underscores the sensitivity of the climate system to variations in solar irradiance, particularly on multi-decadal time scales, to their role in regional processes, and their impact on human history and may help understand other rapid Mediterranean cooling events that occured during the Holocene.

  1. Spatial structure of connection between the troposphere heat content and variations in solar and geomagnetic activities

    NASA Astrophysics Data System (ADS)

    Vasil'eva, L. A.; Molodykh, S. I.; Kovalenko, V. A.

    2016-03-01

    We have carried out correlation analysis of connection between the heat content of different tropospheric layers and variations of solar (F10.7cm) and geomagnetic activity (AA index) in 1950-2007. The heat content response to effects of solar and geomagnetic activity has been found to have an explicit spatial structure. The heat content of the most of the troposphere correlates with solar and geomagnetic activity; however, we have observed significant anticorrelation in some regions. The degree of connection between the tropospheric heat content change and variations of solar and geomagnetic activity have been shown to depend on the time scale (time averaging period). The time averaging period increasing from 5 to 7 years, the correlation coefficient grows in most regions (up to 0.6-0.7), but if the increase continues, only weaker growth is observed. This time-scale dependence can be explained by the fact that the majority of variations in tropospheric heat content on the time-scale of less than 5 years are affected by processes having no connection with solar or geomagnetic activity. We have performed analysis of the influence of atmospheric circulation on connection between the tropospheric heat content change and variations of solar and geomagnetic activity. The heat content change in regions that are frequently occupied by the cyclones is shown to have practically no connection with variations of solar and geomagnetic activity.

  2. The influence of solar variability past, present and future, on North Atlantic climate.

    NASA Astrophysics Data System (ADS)

    Dunstone, Nick; Scaife, Adam; Ineson, Sarah; Gray, Lesley; Knight, Jeff; Lockwood, Mike; Maycock, Amanda

    2014-05-01

    There has long existed observational evidence for a link between solar activity (both the semi-regular 11-yr cycle and longer term variability) and regional climate variability. In the last few years progress is starting to be made in understanding such observational correlations from physical mechanistic viewpoint. Firstly, new observations of solar spectral irradiance from the SORCE satellite have raised the possibility of much larger variability in the UV than previously appreciated. Secondly, state of the art computer climate models now explicitly resolve the Earth's stratosphere allowing the influence of solar variability to be simulated here. By driving such climate models with the larger solar UV variability implied by the latest satellite observations, surface climate impacts have been shown in the Northern Hemisphere winter that are consistent with late 20th century climate data. Low solar activity is associated with the negative phase of the North Atlantic Oscillation (NAO) and hence colder winters over northern Europe and the USA. We discuss the implications for seasonal/decadal climate prediction. Further work has examined the role of ocean feedbacks in amplifying this tropospheric response. There is robust statistical evidence that such a feedback operates in the observations and gives a lag of 3-4 years for the maximum tropospheric response after the maximum solar forcing. This lag does not generally appear to be reproduced by current climate models. We discuss how this observational evidence may be a valuable way of assessing the relative strength of ocean-atmosphere coupling in the present generation of climate models. The prolonged solar minimum during the transition between solar cycles 23 & 24, combined with the relatively low maximum activity of cycle 24, have increased suggestions that we may be coming to the end of the grand solar maximum which dominated the 20th century. A return to Maunder Minimum like solar activity is therefore a possible

  3. Solar Activity Forecasting for use in Orbit Prediction

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth

    2001-01-01

    Orbital prediction for satellites in low Earth orbit (LEO) or low planetary orbit depends strongly on exospheric densities. Solar activity forecasting is important in orbital prediction, as the solar UV and EUV inflate the upper atmospheric layers of the Earth and planets, forming the exosphere in which satellites orbit. Geomagnetic effects also relate to solar activity. Because of the complex and ephemeral nature of solar activity, with different cycles varying in strength by more than 100%, many different forecasting techniques have been utilized. The methods range from purely numerical techniques (essentially curve fitting) to numerous oddball schemes, as well as a small subset, called 'Precursor techniques.' The situation can be puzzling, owing to the numerous methodologies involved, somewhat akin to the numerous ether theories near the turn of the last century. Nevertheless, the Precursor techniques alone have a physical basis, namely dynamo theory, which provides a physical explanation for why this subset seems to work. I discuss this solar cycle's predictions, as well as the Sun's observed activity. I also discuss the SODA (Solar Dynamo Amplitude) index, which provides the user with the ability to track the Sun's hidden, interior dynamo magnetic fields. As a result, one may then update solar activity predictions continuously, by monitoring the solar magnetic fields as they change throughout the solar cycle. This paper ends by providing a glimpse into what the next solar cycle (#24) portends.

  4. Diagnostics of a cause-effect relation between solar activity and the Earth's global surface temperature

    NASA Astrophysics Data System (ADS)

    Mokhov, I. I.; Smirnov, D. A.

    2008-06-01

    The influence of solar activity on the Earth’s global surface temperature (GST) was quantified. The method for estimation of the Granger causality was used, with analysis of the improvement of the prediction of one process by using data from another process as compared to autoprediction. Two versions of reconstructions of the solar flux variations associated with solar activity were used, according to Hoyt et al. [1997] for 1680 1992 (data H) and according to Lean et al. [2005] for 1610 2005 (data L). In general, the estimation results for the two reconstructions are reasonably well consistent. A significant influence of solar activity on GST with a positive sign was found for two periods, from the late 19th century to the late 1930s and from the latter half of the 1940s to the early 1990s, with no inertia or time delay. In these periods, up to 8 and 25% of the variance of the GST change, respectively, can be attributed to solar activity variations. The solar influence increased in the 1980s to the early 1990s according to data H and began to decrease in the latter half of the 1980s according to data L.

  5. Influence of the solar wind/interplanetary medium on Saturnian kilometric radiation

    NASA Technical Reports Server (NTRS)

    Rucker, Helmut O.; Desch, M. D.

    1990-01-01

    Previous studies on the periodicities of the Saturnian kilometric radiation (SKR) suggested a considerable solar wind influence on the occurrence of SKR, so it was obvious to investigate the relationship between parameters of the solar wind/interplanetary medium and this Saturnian radio component. Voyager 2 data from the Plasma Science experiment, the Magnetometer experiment and the Planetary Radio Astronomy experiment were used to analyze the external control of SKR. Out of the examined quantities known to be important in controlling magnetospheric processes this investigation yielded a dominance of the solar wind momentum, ram pressure and kinetic energy flux, in stimulating SKR and controlling its activity and emitted energy, and confirmed the results of the Voyager 1 analysis.

  6. Solar and QBO Influences on the Madden-Julian Oscillation

    NASA Astrophysics Data System (ADS)

    Hood, L. L.

    2016-12-01

    The Madden-Julian Oscillation (MJO), also known as the 30-60 day oscillation, is the strongest of the intraseasonal climate oscillations and consists of an eastward propagating pattern of alternately intense and weak tropical convection and precipitation. It has significant derivative effects on extratropical circulation and intraseasonal climate. Both the stratospheric quasi-biennial wind oscillation (QBO) and direct solar forcing of the upper stratosphere produce a change in tropical upwelling rate in the lower stratosphere, which results in a temperature change in the upper troposphere / lower stratosphere (UTLS). The solar- and QBO-induced temperature changes modify the static stability, which can affect the intensity of deep tropical convection. Temperature increases (during the QBO east phase at 50 hPa and during solar maxima) tend to decrease tropical convection intensity; the resulting reduced cloud heights produce a positive feedback in the form of increased outgoing longwave radiation, which further heats the UTLS. The opposite occurs during the QBO west phase (QBOW) and during solar minima (SMIN). Here, thirty-six years of Madden-Julian Oscillation (MJO) amplitude and phase data covering the 1980-2015 period produced by the Japan Meteorological Agency (http://ds.data.jma.go.jp/tcc/tcc/products/clisys/mjo/figs/olr0-sst1_1980-2010/rmm8.csv) are analyzed to investigate the dependence of MJO occurrence rate on the phases of the QBO, the 11-year solar cycle (SC), and the solar rotational cycle (SRC). It is found that an MJO event with amplitude > 1.0 occurs about 10% more often under QBOW conditions than under QBOE conditions ( 17% in DJF; 13% in MAM; -5% in JJA; 16% in SON). The occurrence rate is 18% more often under QBOW/SMIN conditions than under QBOE/SMAX conditions ( 26% in DJF; 15% in MAM; -1% in JJA; 26% in SON). Superposed on this is an influence of peaks and minima of the SRC under solar maximum conditions on the occurrence rate of the MJO in the

  7. On the statistical relationship between solar activity and spontaneous social processes

    NASA Astrophysics Data System (ADS)

    Rodkin, M. V.; Kharin, E. P.

    2014-12-01

    The starting times of mass spontaneous social movements have been compared with temporal changes in solar activity (Wolf numbers) and in the Aa index of geomagnetic activity. It is shown that relatively high values of solar and, hence, geomagnetic activity are typical (on average) of a set of years when social cataclysms began. In addition, the relationship between social activity and geomagnetic activity is expressed somewhat more strongly than with solar activity. Heliogeomagnetic activity itself is not, however, the cause of social conflicts, as is evidenced by the weakness of the statistical relationship and the fact that the time intervals of an extremely large number of social conflicts (the decades of the 1800s, 1910s, and 1990s) occur during periods of a reduced mean level of solar and geomagnetic activity. From an averaged statistical model of the solar-geomagnetic influence on social activity and the current status and forecast of the 24th solar cycle, we can assume that heliogeomagnetic factors will contribute to an increased level of sociopolitical activity at least until the end of 2014 and, possibly, a little longer.

  8. Revisiting the question: Does high-latitude solar activity lead low-latitude solar activity in time phase?

    SciTech Connect

    Kong, D. F.; Qu, Z. N.; Guo, Q. L.

    2014-05-01

    Cross-correlation analysis and wavelet transform methods are used to investigate whether high-latitude solar activity leads low-latitude solar activity in time phase or not, using the data of the Carte Synoptique solar filaments archive from 1919 March to 1989 December. From the cross-correlation analysis, high-latitude solar filaments have a time lead of 12 Carrington solar rotations with respect to low-latitude ones. Both the cross-wavelet transform and wavelet coherence indicate that high-latitude solar filaments lead low-latitude ones in time phase. Furthermore, low-latitude solar activity is better correlated with high-latitude solar activity of the previous cycle than with that of the following cycle, which is statistically significant. Thus, the present study confirms that high-latitude solar activity in the polar regions is indeed better correlated with the low-latitude solar activity of the following cycle than with that of the previous cycle, namely, leading in time phase.

  9. Long-term variation of solar activity: recent progress

    NASA Astrophysics Data System (ADS)

    Vaquero, J. M.

    2017-03-01

    The concept of solar activity is a common term nowadays. However, it is not straight-forwardly interpreted and it is ambiguously defined. A review of our knowledge of the long-term behavior of solar activity in the past is presented, as reconstructed using the indirect proxy method (millennial time scale) and the direct historical observations (secular time scale). The latest international efforts to obtain a series of sunspot numbers of the last four centuries are reviewed. Observations of sunspots during the Maunder minimum (1645–1715) are particularly interesting and they show the solar cycle during this period of Grand Minimum of solar activity.

  10. Active Vibration Damping of Solar Arrays

    NASA Astrophysics Data System (ADS)

    Reinicke, Gunar; Baier, Horst; Grillebeck, Anton; Scharfeld, Frank; Hunger, Joseph; Abou-El-Ela, A.; Lohberg, Andreas

    2012-07-01

    Current generations of large solar array panels are lightweight and flexible constructions to reduce net masses. They undergo strong vibrations during launch. The active vibration damping is one convenient option to reduce vibration responses and limit stresses in facesheets. In this study, two actuator concepts are used for vibration damping. A stack interface actuator replaces a panel hold down and is decoupled from bending moments and shear forces. Piezoelectric patch actuators are used as an alternative, where the number, position and size of actuators are mainly driven by controllability analyses. Linear Quadratic Gaussian control is used to attenuate vibrations of selected mode shapes with both actuators. Simulations as well as modal and acoustic tests show the feasibility of selected actuator concepts.

  11. Solar activity affects avian timing of reproduction

    PubMed Central

    Visser, Marcel E.; Sanz, Juan José

    2009-01-01

    Avian timing of reproduction is strongly affected by ambient temperature. Here we show that there is an additional effect of sunspots on laying date, from five long-term population studies of great and blue tits (Parus major and Cyanistes caeruleus), demonstrating for the first time that solar activity not only has an effect on population numbers but that it also affects the timing of animal behaviour. This effect is statistically independent of ambient temperature. In years with few sunspots, birds initiate laying late while they are often early in years with many sunspots. The sunspot effect may be owing to a crucial difference between the method of temperature measurements by meteorological stations (in the shade) and the temperatures experienced by the birds. A better understanding of the impact of all the thermal components of weather on the phenology of ecosystems is essential when predicting their responses to climate change. PMID:19574283

  12. Solar-terrestrial influences on weather and climate; Proceedings of the Symposium, Ohio State University, Columbus, Ohio, August 24-28, 1978

    NASA Technical Reports Server (NTRS)

    Mccormac, B. M. (Editor); Seliga, T. A.

    1979-01-01

    The book contains most of the invited papers and contributions presented at the symposium/workshop on solar-terrestrial influences on weather and climate. Four main issues dominate the activities of the symposium: whether solar variability relationships to weather and climate is a fundamental scientific question to which answers may have important implications for long-term weather and climate prediction; the sun-weather relationships; other potential solar influences on weather including the 11-year sunspot cycle, the 27-day solar rotation, and special solar events such as flares and coronal holes; and the development of practical use of solar variability as a tool for weather and climatic forecasting, other than through empirical approaches. Attention is given to correlation topics; solar influences on global circulation and climate models; lower and upper atmospheric coupling, including electricity; planetary motions and other indirect factors; experimental approaches to sun-weather relationships; and the role of minor atmospheric constituents.

  13. Solar-terrestrial influences on weather and climate; Proceedings of the Symposium, Ohio State University, Columbus, Ohio, August 24-28, 1978

    NASA Technical Reports Server (NTRS)

    Mccormac, B. M. (Editor); Seliga, T. A.

    1979-01-01

    The book contains most of the invited papers and contributions presented at the symposium/workshop on solar-terrestrial influences on weather and climate. Four main issues dominate the activities of the symposium: whether solar variability relationships to weather and climate is a fundamental scientific question to which answers may have important implications for long-term weather and climate prediction; the sun-weather relationships; other potential solar influences on weather including the 11-year sunspot cycle, the 27-day solar rotation, and special solar events such as flares and coronal holes; and the development of practical use of solar variability as a tool for weather and climatic forecasting, other than through empirical approaches. Attention is given to correlation topics; solar influences on global circulation and climate models; lower and upper atmospheric coupling, including electricity; planetary motions and other indirect factors; experimental approaches to sun-weather relationships; and the role of minor atmospheric constituents.

  14. Solar air-conditioning-active, hybrid and passive

    SciTech Connect

    Yellott, J. I.

    1981-04-01

    After a discussion of summer air conditioning requirements in the United States, active, hybrid, and passive cooling systems are defined. Active processes and systems include absorption, Rankine cycle, and a small variety of miscellaneous systems. The hybrid solar cooling and dehumidification technology of desiccation is covered as well as evaporative cooling. The passive solar cooling processes covered include convective, radiative and evaporative cooling. Federal and state involvement in solar cooling is then discussed. (LEW)

  15. Solar Irradiance Variations on Active Region Time Scales

    NASA Technical Reports Server (NTRS)

    Labonte, B. J. (Editor); Chapman, G. A. (Editor); Hudson, H. S. (Editor); Willson, R. C. (Editor)

    1984-01-01

    The variations of the total solar irradiance is an important tool for studying the Sun, thanks to the development of very precise sensors such as the ACRIM instrument on board the Solar Maximum Mission. The largest variations of the total irradiance occur on time scales of a few days are caused by solar active regions, especially sunspots. Efforts were made to describe the active region effects on total and spectral irradiance.

  16. Evidence for a Solar Influence on Gamma Radiation from Radon

    NASA Astrophysics Data System (ADS)

    Sturrock, P. A.; Steinitz, G.; Fischbach, E.; Javorsek, D.; Jenkins, J.

    2012-12-01

    We have analyzed 29,000 measurements of gamma radiation associated with the decay of radon confined to an airtight vessel at the Geological Survey of Israel (GSI) Laboratory in Jerusalem between January 28 2007 and May 10 2010. These measurements exhibit strong variations in time of year and time of day, which may be due in part to environmental influences. However, time-series analysis reveals a number of strong periodicities, including two at approximately 11.2 year-1 and 12.5 year-1. We consider it significant that these same oscillations have previously been detected in nuclear-decay data acquired at the Brookhaven National Laboratory and at the Physiklisch-Technische Bundesanstalt. We have suggested that these oscillations are due to some form of solar radiation (possibly neutrinos) that has its origin in the deep solar interior. A curious property of the GSI data is that the annual oscillation is much stronger in daytime data than in nighttime data, but the opposite is true for all other oscillations. Time-frequency analysis also yields quite different results from daytime and nighttime data. These procedures have also been applied to data collected from subsurface geological sites in Israel, Tenerife, and Italy, which have a variety of geological and geophysical scenarios, different elevations, and depths below the surface ranging from several meters to 1000 meters. In view of these results, and in view of the fact that there is at present no clear understanding of the behavior of radon in its natural environment, there would appear to be a need for multi-disciplinary research. Investigations that clarify the nature and mechanisms of solar influences may help clarify the nature and mechanisms of geological influences.

  17. Influence of solar magnetic sector structure on terrestrial atmosphere vorticity

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.; Scherrer, P. H.; Svalgaard, L.; Roberts, W. O.; Olson, R. H.; Jenne, R. L.

    1973-01-01

    The solar magnetic sector structure has a sizable and reproducible influence on tropospheric and lower stratospheric vorticity. The average vorticity during winter in the Northhern Hemisphere north of 20 deg N latitude reaches a minimum approximately one day after the passing of a sector boundary, and then increases during the following two or three days. The effect is found at all heights within the troposphere, but is not prominent in the stratosphere, except at the lower levels. No single longitudinal interval appears to dominate the effect.

  18. Change of solar cell element properties influenced by adsorbed atoms

    NASA Astrophysics Data System (ADS)

    Livshits, A. I.; Romanovskij, Y. A.; Zavilopulo, A. N.; Zhukov, A. I.; Snegurskij, A. V.

    A series of experimental studies on the influence of alkali and alkaline-earth metal films on electro-physical properties of solar elements used for spacecraft energy supply was carried out. Metal films of different thicknesses were deposited using an effusion source, the mass of the film was calculated using measured atomic beam density. The Mg film thickness was determined by means of microscopic technique. The dynamics of current-to-voltage characteristic variation was studied for different film thickness and chemical composition in vacuum and in oxygen atmosphere.

  19. Growth and Decay of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Dobias, J. J.; Chapman, G. A.; Cookson, A. M.; Preminger, D. G.; Walton, S. R.

    2002-05-01

    We report here on a study of growth and decay rates of sunspot and facular areas of solar active regions. The data used in this project come from an ongoing program of daily photometric observations of the sun with the Cartesian Full Disk Telescope No. 1 (CFDT1) at the San Fernando Observatory (SFO). Sunspot regions are determined from images taken with a red filter centered at 672.3 nm with a bandpass of 9.7 nm, while images taken with a Ca II K line filter, centered at 393.4 nm and with a bandpass of only 1nm, are used to find facular areas. Before any areas can be found on any observed images, they have to be calibrated then flattened by removing limb darkening thus producing contrast images. Sunspot areas are then determined from any pixel with contrast of -8.5% or less, while any pixel on a K line contrast image with a contrast of +4.8%/μ or higher, where μ is the cosine of the heliocentric angle, is considered to be a facular pixel. To identify the areas as clearly as possible, studied active regions were usually observed on the sun with relatively low activity; that means that each region is either alone on the sun's disk or with only very few other active regions present. Furthermore, to obtain growth and decay patterns of the areas as reliably as possible, only such active regions must be chosen for which there is as complete observational coverage as possible. At the present time studies have been finished for only a few active regions, but analysis of several others is on going. Obtained results will be presented at the meeting. This work is supported by NSF grant ATM-9912132 and NASA grants NAG5-7191 and NAG5-7778.

  20. Monthly variations of the Caspian sea level and solar activity.

    NASA Astrophysics Data System (ADS)

    Romanchuk, P. R.; Pasechnik, M. N.

    The connection between 11-year cycle of solar activity and the Caspian sea level is investigated. Seasonal changes of the Caspian sea level and annual variations of the sea level with variations of solar activity are studied. The results of the verifications of the sea level forecasts obtained with application of the rules discovered by the authors are given.

  1. Correlative Aspects of the Solar Electron Neutrino Flux and Solar Activity

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2000-01-01

    Between 1970 and 1994, the Homestake Solar Neutrino Detector obtained 108 observations of the solar electron neutrino flux (less than 0.814 MeV). The "best fit" values derived from these observations suggest an average daily production rate of about 0.485 Ar-37 atom per day, a rate equivalent to about 2.6 SNU (solar neutrino units) or about a factor of 3 below the expected rate from the standard solar model. In order to explain, at least, a portion of this discrepancy, some researchers have speculated that the flux of solar neutrinos is variable, possibly being correlated with various markers of the solar cycle (e.g., sunspot number, the Ap index, etc.). In this paper, using the larger "standard data set," the issue of correlative behavior between solar electron neutrino flux and solar activity is re-examined. The results presented here clearly indicate that no statistically significant association exists between any of the usual markers of solar activity and the solar electron neutrino flux.

  2. Solar Coronal Jets in Active Regions

    NASA Astrophysics Data System (ADS)

    Sterling, A. C.; Moore, R. L.; Martinez, F.; Falconer, D. A.

    2016-12-01

    Solar coronal jets are common in both coronal holes and in active regions. Recently, Sterling et al. (2015, Nature 523, 437), using data from Hinode/XRT and SDO/AIA, found that coronal jets originating in polar coronal holes result from the eruption of small-scale filaments (minifilaments). The jet bright point (JBP) seen in X-rays and hotter EUV channels off to one side of the base of the jet's spire develops at the location where the minifilament erupts, consistent with the JBPs being miniature versions of typical solar flares that occur in the wake of large-scale filament eruptions. Here we consider whether active region coronal jets also result from the same minifilament-eruption mechanism, or whether they instead result from a different process, such as emerging flux. Here we present observations of NOAA active region 12259, over 13-20 Jan 2015, using observations from Hinode/XRT, and from SDO/AIA and HMI. We focused on 13 standout jets that we identified from an initial survey of the XRT X-ray images, and we found many more jets in the AIA data set, which have higher cadence and more continuous coverage than our XRT data. All 13 jets originated from identifiable magnetic neutral lines; we further found magnetic flux cancelation to be occurring at essentially all of these neutral lines. At least 6 of those 13 jets were homologous, developing with similar morphology from nearly the same location, and in fact there were many more jets in the homologous sequence apparent in the higher-fidelity AIA data. Each of these homologous jets was consistent with minifilament-like ejections at the start of the jets. Other jets displayed a variety of morphologies, at least some of which were consistent with minifilament eruptions. For other jets however we have not yet clearly deciphered the driving mechanism. Our overall conclusions are similar to those of our earlier study of active region jets (Sterling et al. 2016, ApJ, 821, 100), where we found: some jets clearly to

  3. Evidence of solar induced cycles of high seismic activity

    NASA Astrophysics Data System (ADS)

    Duma, G.

    2010-12-01

    In the past century, several observational results and corresponding publications indicate a systematic seismic performance with respect to the time of day and seasons as well. Such effects could be caused only by solar or lunar influence. In addition, a possible relation with the solar cycles was discussed in some papers, too. Intensive studies on these topics have also been performed at the Central Institute for Meteorology and Geodynamics (ZAMG), Vienna, Austria. They strongly confirm the above mentioned effects. In order to verify a solar influence on earthquake activity correlations were performed between the three-hour magnetic index Kp and the energy release of earthquakes in the long term. Kp characterizes the magnetic field disturbances which are mainly caused by the solar particle radiation, the solar wind. Kp is determined on a routine basis from magnetic records of 13 observatories worldwide and is continuously published by ISGI, France. Three regions of continental size were investigated, using the USGS (PDE) earthquake catalogue data, from 1974 on: N-America, S-America and Eurasia. The statistic analyses reveal that from 1974 to 2009 the index Kp varies in cycles with periods between 9 and 12 years, somewhat different to the sunspot number cycles (no. 21, 22, 23) of 11 years. As to the seismic energy release, the sqrt (energy E) of an event is taken as measure, which relates to the ‘strain release’ due to the earthquake (Benioff). For Kp the monthly averages were computed, for the strain release the monthly sums of sqrt(E), hereinafter referred to as STR. From the statistic estimates of the relation Kp-STR for all the three regions N-America, S-America and Eurasia it becomes evident, that the correlation is highly significant: earthquake activity, quantified by the monthly STR, follows the Kp cycles with high coincidence. A quantitative analysis reveals that on an annual basis, the sum of released energy by earthquakes changes by a factor up to

  4. Multi-wavelength solar activity complexes evolution from Solar Dynamic Observatory (SDO)

    NASA Astrophysics Data System (ADS)

    Korolkova, Olga; Benevolenskaya, Elena

    The main problem of the solar physics is to understand a nature of the solar magnetic activity. New space missions and background observations provide us by data describing solar activity with a good space and time resolution. Space missions data observe the solar activity in multi-wavelength emissions come from photosphere to corona. The complex of the solar activity has roots in inte-rior and extends to the solar corona. Thus, modern data give an opportunity to study the activity on the Sun at different levels simultaneously. Solar Dynamics Observatory (SDO) [1] which launched at the beginning of 2010, looks at Sun in different wavelengths such as coronal lines 171Å & 335Å. Also SDO measures photospheric magnetic flux (line-of-sight component of the magnetic field strength) and gives images in continuum. We have studied a stable complexes of the solar activity (about 30 com-plexes) during 6 hours from 10 March 2013 to 14 October 2013 using 720s ca-dence of HMI (Helioseismic and Magnetic Imager) [2] and AIA (Atmospheric Imaging Assembly) [3] instruments of SDO. We have found a good relationship between the magnetic flux and coronal emissions. Here we discuss properties of the complexes in the different levels from photosphere to corona. References 1. W. Dean Pesnell, B.J. Thompson, P.C. Chamberlin // Solar Phys., v. 275, p. 3-15, (2012). 2. P.H. Scherrer, J. Schou, R.I. Bush et al. // Solar Phys., v. 275, p. 207-227, (2012). 3. James R. Lemen • Alan M. Title • David J. Akin et al. // Solar Phys., v. 275, p. 17-40, (2012).

  5. Solar wind influences on atmospheric electricity variables in polar regions

    NASA Astrophysics Data System (ADS)

    Michnowski, Stanisław

    The measurement techniques applied in magnetospheric and ionospheric research enable detection of strong, intrinsic effects of solar wind on ionospheric electrical potential distribution and conductivity of the atmosphere. These manifestations of the solar wind interaction with the magnetosphere and ionosphere are especially evident at high latitudes. The possibility of observing there the response of the atmospheric electricity variables to solar wind has been questioned for a long time despite the fact that the atmospheric electric field and current variations at the ground are physically linked with electric potential of the ionosphere and conductivity of the lower atmosphere. The serious doubts were mainly due to the generally accepted opinion that the highly conducting ionosphere is an almost ideal equipotential electric screen that separates the weakly conductive lower atmosphere of the influence from space. This assumption could not be further upheld in view of the new findings. They have been provided for some time by ground-based atmospheric electric field and current measurements (AEMs) with simultaneous upper atmosphere observations and by corresponding balloon measurements. Recent ground-based AEMs in polar regions, i.e., in the near-subauroral, auroral, and polar cap high-latitude regions, have detected considerable influence of solar wind on the lower-atmosphere electric variables. However, the use of atmospheric electric observations in studying solar-terrestrial relations is still limited. The main reason is difficulty in separating various local meteorological effects, anthropogenic effects, and the effects of the global electric current circuit which affect simultaneously the measured quantities. Transmission of the electric signals through the lower atmosphere can also introduce troublesome disturbances. The paper outlines these problems and hints how the difficulties involved might be partly overcome in a feasible way. The needs and possible

  6. Initiation of non-tropical thunderstorms by solar activity

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Goldberg, R. A.

    1978-01-01

    A theory of thunderstorm initiation is proposed to account for the statistical correlation between solar activity and thunderstorm occurrence in middle to high latitudes. It is suggested that cosmic ray decreases and/or high-energy solar protons associated with active solar events enhance the electric field at low heights so that, if appropriate meteorological conditions are present during a solar event, the atmospheric electric field enhancement may be sufficient to trigger thunderstorm development. Statistical correlations and atmospheric electric effects are described. The theory could be tested if the possible forcing functions and the responding atmospheric electrical and ionic species' characteristics were measured.

  7. Recent Perplexing Behavior in Solar Activity Indices

    NASA Astrophysics Data System (ADS)

    Lopresto, James C.

    1997-05-01

    Calcium K and Hα and SOHO He II UV plage and sunspot ara have been monitored using images on the INTERNET since November of 1992. The purpose of the project is to determine the degree of correlation between changing plage area and solar irradiance changes (also obtained via the INTERNET). Also the project provides a low cost process to involve undergraduates in astronomy research. When using weighted weekly averages for both spot Hα plage pixel counts, we see the expected decline from the last maximum. The activity continues to decline, or at best, has flattened out over the past several months. In contrast, the K-line plage pixel count from both Big Bear and Sacramento Peak show an upswing since mid-1995 or earlier. The k2 measurments from both Kitt Peak and Sacramento Peak are in general agreement with the spot and Hα behavior, indicating wer are in, or barely passed minimum. Images high in the chromosphere, detailing the magnetic network, may be more senstive to smaller field changes. This might be a partial explanation for the earlier upswing in K line and He 304 activity, which are receiving radiation near or at the top of the chromosphere.

  8. Decadal variability of European sea level extremes in relation to the solar activity

    NASA Astrophysics Data System (ADS)

    Martínez-Asensio, Adrián.; Tsimplis, Michael N.; Calafat, Francisco Mir

    2016-11-01

    This study investigates the relationship between decadal changes in solar activity and sea level extremes along the European coasts and derived from tide gauge data. Autumn sea level extremes vary with the 11 year solar cycle at Venice as suggested by previous studies, but a similar link is also found at Trieste. In addition, a solar signal in winter sea level extremes is also found at Venice, Trieste, Marseille, Ceuta, Brest, and Newlyn. The influence of the solar cycle is also evident in the sea level extremes derived from a barotropic model with spatial patterns that are consistent with the correlations obtained at the tide gauges. This agreement indicates that the link to the solar cycle is through modulation of the atmospheric forcing. The only atmospheric regional pattern that showed variability at the 11 year period was the East Atlantic pattern.

  9. Ionospheric effects of the extreme solar activity of February 1986

    NASA Technical Reports Server (NTRS)

    Boska, J.; Pancheva, D.

    1989-01-01

    During February 1986, near the minimum of the 11 year Solar sunspot cycle, after a long period of totally quiet solar activity (R sub z = 0 on most days in January) a period of a suddenly enhanced solar activity occurred in the minimum between solar cycles 21 and 22. Two proton flares were observed during this period. A few other flares, various phenomena accompanying proton flares, an extremely severe geomagnetic storm and strong disturbances in the Earth's ionosphere were observed in this period of enhanced solar activity. Two active regions appeared on the solar disc. The flares in both active regions were associated with enhancement of solar high energy proton flux which started on 4 February of 0900 UT. Associated with the flares, the magnetic storm with sudden commencement had its onset on 6 February 1312 UT and attained its maximum on 8 February (Kp = 9). The sudden enhancement in solar activity in February 1986 was accompanied by strong disturbances in the Earth's ionosphere, SIDs and ionospheric storm. These events and their effects on the ionosphere are discussed.

  10. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    SciTech Connect

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  11. On the Relationship Between Solar Wind Speed, Geomagnetic Activity, and the Solar Cycle Using Annual Values

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    The aa index can be decomposed into two separate components: the leading sporadic component due to solar activity as measured by sunspot number and the residual or recurrent component due to interplanetary disturbances, such as coronal holes. For the interval 1964-2006, a highly statistically important correlation (r = 0.749) is found between annual averages of the aa index and the solar wind speed (especially between the residual component of aa and the solar wind speed, r = 0.865). Because cyclic averages of aa (and the residual component) have trended upward during cycles 11-23, cyclic averages of solar wind speed are inferred to have also trended upward.

  12. Analysis of Solar Influence on Tropospheric Weather Using a New Time Series of Weather Types

    NASA Astrophysics Data System (ADS)

    Schwander, Mikhaël; Brönnimann, Stefan

    2016-04-01

    A new daily weather types time series is used to analyse the influence of solar activity on European weather patterns. This new weather type classification is a reconstruction of an existing classification (CAP). MeteoSwiss have computed daily weather types for the Alpine Region from 1957 onward using ERA-40 and ERA-Interim reanalyses dataset with the CAP method (cluster analysis of principal components). Our new method uses early instrumental data from European weather stations to reconstruct the CAP9 classification. The new classification contains 7 types and covers the period 1763-2009. This new time series is used to study the impact of the 11-year cycle on European tropospheric weather. For this, changes in the frequency of occurrence of the weather types are analysed. The sunspot number time series allows us to analyse changes in weather types over almost 250 years. We divide the solar activity in 3 classes (low, moderate, high) for January, February and March using subjective thresholds (33rd and 66th percentiles). The days in the 3 classes are then classified according to the new weather types. The first results show a tendency to have more days with an easterly or northerly flow over Europe under low solar activity. On the other hand, there is a higher occurrence of westerly types under high solar activity. This differences are more pronounced during the 1958-2009 period. The within types differences are also investigated with composites computed with ERA-40/-Interim from 1958 to 2009. The mean sea level pressure tends to be lower over the North Atlantic under high solar activity. This study shows a change in the frequency of occurrence of weather types as well as change in the mean sea level pressure. The reasons of these changes will be further investigated.

  13. Properties and Surprises of Solar Activity XXIII Cycle

    NASA Astrophysics Data System (ADS)

    Ishkov, V. N.

    2010-12-01

    The main properties of the 23rd cycle match almost completely those of average-magnitude solar cycles, and some of the features of the cycle may indicate a change in the generation mode of magnetic fields in the solar convection zone. If this is the case, the Sun enters a period of intermediate and weak cycles of solar activity (SA) in terms of the Wolf number, which may last for 3 to 6 solar cycles. The main development stages of solar cycle 23 are the following: minimum of solar cycle 22: April 1996 (W* = 8.0); maximum of the smoothed relative sunspot number: April 2000; global polarity reversal of the general solar magnetic field: July to December 2000; secondary maximum of the relative sunspot number: November 2001; maximum of the 10.7-cm radio flux: February 2002; phase of the cycle maximum: October 1999 to June 2002; beginning of the decrease phase: July 2002; the point of minimum of the current SA cycle: December 2008. Solar cycle 23 has presented two powerful flare-active sunspot groups, in September 2005 and December 2006 (+5.5 and +6.6 years from the maximum) which by flare potential occupy 4th and 20th place among the most flare-active regions for the last four solar cycles. The unprecedented duration of the relative sunspot numbers fall that has led to already record duration of the last solar cycle among authentic cycles (since 1849) became the next surprise of development of solar activity during the last cycle. The phase of the minimum began in May 2005 and lasted for 4.5 years. Thus, the new solar cycle 24 has begun in January 2009.

  14. Heliospheric Consecuences of Solar Activity In Several Interplanetary Phenomena

    NASA Astrophysics Data System (ADS)

    Valdés-Galicia, J. F.; Mendoza, B.; Lara, A.; Maravilla, D.

    We have done an analysis of several phenomena related to solar activity such as the total magnetic flux, coronal hole area and sunspots, investigated its long trend evolu- tion over several solar cycles and its possible relationships with interplanetary shocks, sudden storm commencements at earth and cosmic ray variations. Our results stress the physical connection between the solar magnetic flux emergence and the interplan- etary medium dynamics, in particular the importance of coronal hole evolution in the structuring of the heliosphere.

  15. Bayesian Infernce for Indentifying Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Pap, Judit; Turmon, Michael; Mukhtar, Saleem

    1997-01-01

    The solar chromosphere consists of three classes-- plage, network, background -- which contribute differently to ultraviolet radiation reaching the earth. Solar physicists are interested in relating plage area and intensity to UV irradiance, as well as understanding the spatial and temporal evolution of plage shapes.

  16. Representing Solar Active Regions with Triangulations

    NASA Technical Reports Server (NTRS)

    Turmon, M. J.; Mukhtar, S.

    1998-01-01

    The solar chromosphere consists of three classes which contribute differently to ultraviolet radiation reaching the earth. We describe a data set of solar images, means of segmenting the images into the constituent classes, and novel high-level representation for compact objects based on a triangulation spatial 'membership function'.

  17. A comment on the suspected solar neutrino -- solar activity connection

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1994-01-01

    Recently, it has been proposed that there exists a highly statistically significant (at greater than or equal to 98% level of confidence) relationship between Ar-37 production rate (namely, solar neutrinos) and the Ap geomagnetic index (namely, solar particles), based on the chi-square goodness-of-fit test and correlation analysis, for the interval 1970-1990. While a relationship between the two parameters, indeed, seems to be discernible, the strength of the relationship has been overstated. Instead of being significant at the afore-mentioned level of confidence, the relationship is found to be significant at only greater than or equal to 95% level of confidence, based on Yates' modification to the chi-square test for 2 x 2 contingency tables. Likewise, while correlation analysis yields a value of r = 0.2691, it is important to note that such a value suggests that only about 7% of the variance can be 'explained' by the inferred correlation and that the remaining 93% of the variance must be attributed to other sources.

  18. Recent perspectives in solar physics - Elemental composition, coronal structure and magnetic fields, solar activity

    NASA Technical Reports Server (NTRS)

    Newkirk, G., Jr.

    1975-01-01

    Elemental abundances in the solar corona are studied. Abundances in the corona, solar wind and solar cosmic rays are compared to those in the photosphere. The variation in silicon and iron abundance in the solar wind as compared to helium is studied. The coronal small and large scale structure is investigated, emphasizing magnetic field activity and examining cosmic ray generation mechanisms. The corona is observed in the X-ray and EUV regions. The nature of coronal transients is discussed with emphasis on solar-wind modulation of galactic cosmic rays. A schematic plan view of the interplanetary magnetic field during sunspot minimum is given showing the presence of magnetic bubbles and their concentration in the region around 4-5 AU by a fast solar wind stream.

  19. Department of Energy solar process heat program: FY 1991 solar process heat prefeasibility studies activity

    NASA Astrophysics Data System (ADS)

    Hewett, R.

    1992-11-01

    During fiscal year (FY) 1991, the US Department of Energy (DOE) Solar Process Heat Program implemented a Solar Process Heat Prefeasibility Studies activity. For Program purposes, a prefeasibility study is an engineering assessment that investigates the technical and economic feasibility of a solar system for a specific application for a specific end-user. The study includes an assessment of institutional issues (e.g., financing, availability of insurance, etc.) that impact the feasibility of the proposed solar project. Solar process heat technology covers solar thermal energy systems (utilizing flat plate or concentrating solar collectors) for water heating, water preheating, cooling/refrigeration, steam generation, ventilation air heating/preheating, etc., for applications in industry, commerce, and government. The studies are selected for funding through a competitive solicitation. For FY-91, six projects were selected for funding. As of 31 Aug. 1992, three teams had completed their studies. This paper describes the prefeasibility studies activity, presents the results from the study performed by United Solar Technologies, and summarizes the conclusions from the studies that have been completed to date and their implications for the Solar Process Heat Program.

  20. DOE Solar Process Heat Program: FY1991 Solar Process Heat Prefeasibility Studies activity

    SciTech Connect

    Hewett, R.

    1992-11-01

    During fiscal year (FY) 1991, the US Department of Energy (DOE) Solar Process Heat Program implemented a Solar Process Heat Prefeasibility Studies activity. For Program purposes, a prefeasibility study is an engineering assessment that investigates the technical and economic feasibility of a solar system for a specific application for a specific end-user. The study includes an assessment of institutional issues (e.g., financing, availability of insurance, etc.) that impact the feasibility of the proposed solar project. Solar process heat technology covers solar thermal energy systems (utilizing flat plate or concentrating solar Collectors) for water heating, water preheating, cooling/refrigeration, steam generation, ventilation air heating/preheating, etc. for applications in industry, commerce, and government. The studies are selected for funding through a competitive solicitation. For FY 1991, six projects were selected for funding. As of August 31, 1992, three teams had completed their studies. This paper describes the prefeasibility studies activity, presents the results from the study performed by United Solar Technologies, and summarizes the conclusions from the studies that have been completed to date and their implications for the Solar Process Heat Program.

  1. The 3-D solar radioastronomy and the structure of the corona and the solar wind. [solar probes of solar activity

    NASA Technical Reports Server (NTRS)

    Steinberg, J. L.; Caroubalos, C.

    1976-01-01

    The mechanism causing solar radio bursts (1 and 111) is examined. It is proposed that a nonthermal energy source is responsible for the bursts; nonthermal energy is converted into electromagnetic energy. The advantages are examined for an out-of-the-ecliptic solar probe mission, which is proposed as a means of stereoscopically viewing solar radio bursts, solar magnetic fields, coronal structure, and the solar wind.

  2. The ancient Egyptian civilization: maximum and minimum in coincidence with solar activity

    NASA Astrophysics Data System (ADS)

    Shaltout, M.

    It is proved from the last 22 years observations of the total solar irradiance (TSI) from space by artificial satellites, that TSI shows negative correlation with the solar activity (sunspots, flares, and 10.7cm Radio emissions) from day to day, but shows positive correlations with the same activity from year to year (on the base of the annual average for each of them). Also, the solar constant, which estimated fromth ground stations for beam solar radiations observations during the 20 century indicate coincidence with the phases of the 11- year cycles. It is known from sunspot observations (250 years) , and from C14 analysis, that there are another long-term cycles for the solar activity larger than 11-year cycle. The variability of the total solar irradiance affecting on the climate, and the Nile flooding, where there is a periodicities in the Nile flooding similar to that of solar activity, from the analysis of about 1300 years of the Nile level observations atth Cairo. The secular variations of the Nile levels, regularly measured from the 7 toth 15 century A.D., clearly correlate with the solar variations, which suggests evidence for solar influence on the climatic changes in the East African tropics The civilization of the ancient Egyptian was highly correlated with the Nile flooding , where the river Nile was and still yet, the source of the life in the Valley and Delta inside high dry desert area. The study depends on long -time historical data for Carbon 14 (more than five thousands years), and chronical scanning for all the elements of the ancient Egyptian civilization starting from the firs t dynasty to the twenty six dynasty. The result shows coincidence between the ancient Egyptian civilization and solar activity. For example, the period of pyramids building, which is one of the Brilliant periods, is corresponding to maximum solar activity, where the periods of occupation of Egypt by Foreign Peoples corresponding to minimum solar activity. The decline

  3. Coronal Hole Sources of Solar Wind Over ~Three Solar Activity Cycles

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Li, Y.; Arge, C. N.; Gazis, P. R.; Ulrich, R.

    2001-05-01

    Levine (Solar Physics v.79, 1982) was one of the first to use potential field source surface models of the coronal magnetic field, based on photospheric field observations, to infer the origins of the solar wind outflows reaching the ecliptic. Here we adopt and extend that approach to the last \\sim three solar cycles using the long archive of Mt. Wilson Observatory full-disk magnetograms. By tracing coronal field lines from within 20 degrees north and south of the source surface equator (at 2.5 Rs) to the Sun, we allow for variations due to the solar rotation axis tilt with respect to ecliptic north, and the still uncertain effects of the coronal/heliospheric currents on the divergence of coronal hole field lines. The results illustrate the modification of the polar hole source of near-ecliptic solar wind by the appearance of mid-latitude active regions in the rising phase of the solar cycle. As additional active regions emerge, midlatitude coronal holes associated with them rather abruptly take over as the dominant source through the solar maximum. While this result is not surprising, the long MWO record and continuous model display provide illuminating visualizations of coronal hole sources of the solar wind experienced by the planets through the solar cycle. Credence is lent to the results by favorable comparisons between average low heliolatitude magnetic field and solar wind velocity inferred from the source surface model and the Wang and Sheeley (Ap.J. v.355, 1990) approach, respectively, and observations near the earth. The alternate dominance of polar hole and active region sources, giving rise to differently phased interplanetary field and velocity cycles, explains how some trends in space weather are related to the solar magnetic cycle.

  4. Solar Activity, Different Geomagnetic Activity Levels and Acute Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Dimitrova, Svetla; Jordanova, Malina; Stoilova, Irina; Taseva, Tatiana; Maslarov, Dimitar

    Results on revealing a possible relationship between solar activity (SA) and geomagnetic activity (GMA) and acute myocardial infarction (AMI) morbidity are presented. Studies were based on medical data covering the period from 1.12.1995 to 31.12.2004 and concerned daily distribution of patients with AMI diagnose (in total 1192 cases) from Sofia region on the day of admission at the hospital. Analysis of variance (ANOVA) was applied to check the significance of GMA intensity effect and the type of geomagnetic storms, those caused by Magnetic Clouds (MC) and by High Speed Solar Wind Streams (HSSWS), on AMI morbidity. Relevant correlation coefficients were calculated. Results revealed statistically significant positive correlation between considered GMA indices and AMI. ANOVA revealed that AMI number was signifi- cantly increased from the day before (-1st) till the day after (+1st) geomagnetic storms with different intensities. Geomagnetic storms caused by MC were related to significant increase of AMI number in comparison with the storms caused by HSSWS. There was a trend for such different effects even on -1st and +1st day.

  5. Complex Network for Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Daei, Farhad; Safari, Hossein; Dadashi, Neda

    2017-08-01

    In this paper we developed a complex network of solar active regions (ARs) to study various local and global properties of the network. The values of the Hurst exponent (0.8-0.9) were evaluated by both the detrended fluctuation analysis and the rescaled range analysis applied on the time series of the AR numbers. The findings suggest that ARs can be considered as a system of self-organized criticality (SOC). We constructed a growing network based on locations, occurrence times, and the lifetimes of 4227 ARs recorded from 1999 January 1 to 2017 April 14. The behavior of the clustering coefficient shows that the AR network is not a random network. The logarithmic behavior of the length scale has the characteristics of a so-called small-world network. It is found that the probability distribution of the node degrees for undirected networks follows the power law with exponents of about 3.7-4.2. This indicates the scale-free nature of the AR network. The scale-free and small-world properties of the AR network confirm that the system of ARs forms a system of SOC. Our results show that the occurrence probability of flares (classified by GOES class C> 5, M, and X flares) in the position of the AR network hubs takes values greater than that obtained for other nodes.

  6. Understanding Measures of Magnetic Activity Using Physics-based Models of the Solar Interior and Atmosphere

    NASA Astrophysics Data System (ADS)

    Abbett, W. P.; Luhmann, J. G.

    2014-12-01

    Substantial progress has been made over the past decade in the effort to better understand how magnetic flux and energy is generated in the convective interior of the Sun, how it emerges into the solar atmosphere, and how manifestations of solar magnetic activity (such as sunspots, coronal mass ejections, and flares) are connected within a dynamic magnetic environment spanning the solar convection zone-to-corona system. Here, we present a brief overview of recent efforts to model the evolution of active region magnetic fields and sunspots over a range of physical conditions and spatial and temporal scales. We will focus on how dynamic, physics-based numerical models can be used to better understand observed relationships between different measures of solar activity as a function of time (e.g., sunspot activity and morphologies, unsigned magnetic flux measured at the photosphere, coronal X-ray emissivity). We will determine whether local physics-based models of active region evolution can be used to better constrain proxies of solar activity such as the sunspot number, which remains the only direct record available to trace the very long-term influence of the solar dynamo on the earth's environment.

  7. Active-region evolution and solar rotation variations in solar UV irradiance, total solar irradiance, and soft X rays

    NASA Technical Reports Server (NTRS)

    Donnelly, R. F.; Heath, D. F.; Lean, J. L.

    1982-01-01

    Variations in the total solar irradiance, solar UV spectral irradiance, and solar soft X-ray emission caused by active region evolution and solar rotation are analyzed by using concurrent measurements from the NIMBUS 7 and GOES satellites. The observations are interpreted by using simple empirical models that relate ground-based observations of the size and location of sunspots and plages to the full-disk temporal variations. It is found that the major dips in the photospheric total solar irradiance S, which are evident in both satellite measurements and model predictions, are usually not accompanied by outstanding enhancements in the chromospheric and upper photospheric UV spectral irradiance or coronal X rays. The main cause of this difference between the variability of S and of the UV flux is that the total chromospheric plage enhancements are not outstanding at those times when the total sunspot are outstanding. X rays are even more variable because of a much wider CMD sensitivity.

  8. A Solar Cycle Dependence of Nonlinearity in Magnetospheric Activity

    SciTech Connect

    Johnson, Jay R; Wing, Simon

    2005-03-08

    The nonlinear dependencies inherent to the historical K(sub)p data stream (1932-2003) are examined using mutual information and cumulant based cost as discriminating statistics. The discriminating statistics are compared with surrogate data streams that are constructed using the corrected amplitude adjustment Fourier transform (CAAFT) method and capture the linear properties of the original K(sub)p data. Differences are regularly seen in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time of solar maximum. These results suggest that the dynamics of the magnetosphere tend to be more linear at solar maximum than at solar minimum. The strong nonlinear dependencies tend to peak on a timescale around 40-50 hours and are statistically significant up to one week. Because the solar wind driver variables, VB(sub)s and dynamical pressure exhibit a much shorter decorrelation time for nonlinearities, the results seem to indicate that the nonlinearity is related to internal magnetospheric dynamics. Moreover, the timescales for the nonlinearity seem to be on the same order as that for storm/ring current relaxation. We suggest that the strong solar wind driving that occurs around solar maximum dominates the magnetospheric dynamics suppressing the internal magnetospheric nonlinearity. On the other hand, in the descending phase of the solar cycle just prior to solar minimum, when magnetospheric activity is weaker, the dynamics exhibit a significant nonlinear internal magnetospheric response that may be related to increased solar wind speed.

  9. A new perspective on solar active regions

    NASA Technical Reports Server (NTRS)

    Strong, K. T.; Bruner, M. E.

    1996-01-01

    A flood of new observations of the solar corona have been made with high spatial resolution, good temporal coverage and resolution, and large linear dynamic range by the Soft X-ray Telescope (SXT) on Yohkoh. These data are changing our fundamental understanding of how solar magnetic fields emerge, interact, and dissipate. This paper reviews some of the results from Yohkoh in the context of earlier results from the Solar Maximum Mission (SMM) and in comjunction with ground-based optical and radio observations.

  10. A new perspective on solar active regions

    NASA Astrophysics Data System (ADS)

    Strong, K. T.; Bruner, M. E.

    A flood of new observations of the solar corona have been made with high spatial resolution, good temporal coverage and resolution, and large linear dynamic range by the Soft X-ray Telescope (SXT) on Yohkoh. These data are changing our fundamental understanding of how solar magnetic fields emerge, interact, and dissipate. This paper reviews some of the results from Yohkoh in the context of earlier results from the Solar Maximum Mission (SMM) and in comjunction with ground-based optical and radio observations.

  11. A new perspective on solar active regions

    NASA Technical Reports Server (NTRS)

    Strong, K. T.; Bruner, M. E.

    1996-01-01

    A flood of new observations of the solar corona have been made with high spatial resolution, good temporal coverage and resolution, and large linear dynamic range by the Soft X-ray Telescope (SXT) on Yohkoh. These data are changing our fundamental understanding of how solar magnetic fields emerge, interact, and dissipate. This paper reviews some of the results from Yohkoh in the context of earlier results from the Solar Maximum Mission (SMM) and in comjunction with ground-based optical and radio observations.

  12. Solar-collector manufacturing activity, July through December, 1981

    SciTech Connect

    1982-03-01

    Solar thermal collector and solar cell manufacturing activity is both summarized and tabulated. Data are compared for three survey periods (July through December, 1981; January through June, 1981; and July through December, 1980). Annual totals are also provided for the years 1979 through 1981. Data include total producer shipments, end use, market sector, imports and exports. (LEW)

  13. Solar energy education. Renewable energy activities for general science

    SciTech Connect

    Not Available

    1985-01-01

    Renewable energy topics are integrated with the study of general science. The literature is provided in the form of a teaching manual and includes such topics as passive solar homes, siting a home for solar energy, and wind power for the home. Other energy topics are explored through library research activities. (BCS)

  14. Solar Energy Education. Renewable energy activities for biology

    SciTech Connect

    Not Available

    1982-01-01

    An instructional aid for teachers is presented that will allow biology students the opportunity to learn about renewable energy sources. Some of the school activities include using leaves as collectors of solar energy, solar energy stored in wood, and a fuel value test for green and dry woods. A study of organic wastes as a source of fuel is included. (BCS)

  15. The forecasting center of Meudon, France. [solar activity forecasting

    NASA Technical Reports Server (NTRS)

    Simon, P.

    1979-01-01

    Main features of solar activity are described in relation to solar and geophysical forecasting. Spectroheliograms, radio and X-ray data, white light coronal observations, particles data, photospheric images, and photospheric magnetic fields are among the types of data used to identify the active centers and flares of the Sun. Forecasting and identification of geomagnetic activity is also discussed. The forecasting technique is described along with the types of users.

  16. The Nitrate Content of Greenland Ice and Solar Activity

    NASA Astrophysics Data System (ADS)

    Kocharov, G. E.; Kudryavtsev, I. V.; Ogurtsov, M. G.; Sonninen, E.; Jungner, H.

    2000-12-01

    Past solar activity is studied based on analysis of data on the nitrate content of Greenland ice in the period from 1576 1991. Hundred-year (over the entire period) and quasi-five-year (in the middle of the 18th century) variations in the nitrate content are detected. These reflect the secular solar-activity cycle and cyclicity in the flare activity of the Sun.

  17. Possible relationships between solar activity and atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Roosen, R. G.; Angione, R. J.

    1974-01-01

    The large body of data on solar variations and atmospheric constituents collected between 1902 and 1953 by the Astrophysical Observatory of the Smithsonian Institution (APO) is examined. Short term variations in amounts of atmospheric aerosols and water vapor due to seasonal changes, volcanic activity, air pollution, and frontal activity are discussed. Preliminary evidence indicates that increased solar activity is at times associated with a decrease in attenuation due to airborne particulates.

  18. Possible relationships between solar activity and atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Roosen, R. G.; Angione, R. J.

    1975-01-01

    The large body of data on solar variations and atmospheric constituents collected between 1902 and 1953 by the Astrophysical Observatory of the Smithsonian Institution (APO) was examined. Short-term variations in amounts of atmospheric aerosols and water vapor due to seasonal changes, volcanic activity, air pollution, and frontal activity are discussed. Preliminary evidence indicates that increased solar activity is at times associated with a decrease in attenuation due to airborne particulates.

  19. Automatic Recognition of Solar Features for Developing Data Driven Prediction Models of Solar Activity and Space Weather

    DTIC Science & Technology

    2013-05-01

    Aschwanden, M. J. 2005, Physics of the Solar Corona . An Introduction with Problems and Solutions (2nd edition), ed. Aschwanden, M. J. Balasubramaniam, K...AFRL-OSR-VA-TR-2013-0020 Automatic Recognition of Solar Features for Developing Data Driven Prediction Models of Solar Activity...Automatic Recognition of Solar Features for Developing Data Driven Prediction Models of Solar Activity and Space Weather 5a. CONTRACT NUMBER FA9550-09

  20. On statistical relationship of solar, geomagnetic and human activities.

    PubMed

    Alania, M V; Gil, A; Modzelewska, R

    2004-01-01

    Data of galactic cosmic rays, solar and geomagnetic activities and solar wind parameters on the one side and car accident events (CAE) in Poland on the other have been analyzed in order to reveal the statistical relationships among them for the period of 1990-2001. Cross correlation and cross spectrum of the galactic cosmic ray intensity, the solar wind (SW) velocity, Kp index of geomagnetic activity and CAE in Poland have been carried out. It is shown that in some epochs of the above-mentioned period there is found a reliable relationship between CAE and solar and geomagnetic activities parameters in the range of the different periodicities, especially, 7 days. The periodicity of 7 days revealed in the data of the CAE has the maximum on Friday without any exception for the minimum and maximum epochs of solar activity. However, the periodicity of 7 days is reliably revealed in other parameters characterizing galactic cosmic rays, SW, solar and geomagnetic activities, especially for the minimum epoch of solar activity. The periodicity of 3.5 days found in the series of CAE data more or less can be completely ascribed to the social effects, while the periodicity of 7 days can be ascribed to the social effect or/to the processes on the Sun, in the interplanetary space and in the Earth's magnetosphere and atmosphere.

  1. The influence of interplanetary shocks on solar protons measured in the stratosphere.

    PubMed

    Bazilevskaya, G A; Stozhkov YuI; Struminsky, A B

    1994-10-01

    Since the beginning of the 22nd solar cycle twenty solar proton events were observed by the regular balloon measurements of cosmic rays. Temporal changes of intensities and energy spectra of solar protons with energy 100-500 MeV were obtained. The strong influence of interplanetary shock waves on the proton flux characteristics near the Earth was observed. Possible effects of solar proton transport in the vicinity of shock fronts are discussed to explain the observational data.

  2. Solar Thermal Propulsion Investigation Activities in NAL

    NASA Astrophysics Data System (ADS)

    Sahara, Hironori; Shimizu, Morio

    2004-03-01

    We successfully developed the ultra-light single shell paraboloidal concentrators made of a sheet of aluminized or silvered polymer membrane, formed via plastic deformation due to stress relaxation under high temperature condition by means of Straight Formation Method. Furthermore, we improved the precision of the concentrators by taking the elastic deformation of residual stress into consideration, and obtained the best concentration performance equivalent to a highly precise paraboloidal glass mirror. In solar concentration, the diameter of solar focal image via the single shell polymer concentrator is almost equal to that via the glass mirror and they are twice as large as that of the theoretical. The ultra-light single shell polymer concentrators are very useful for the concentrator in solar thermal propulsion system and solar power station in particular, and also promising item for beamed energy propulsion.

  3. Features of the Solar Active Cycles

    NASA Astrophysics Data System (ADS)

    Li, Kejun

    Characteristics of the sunspot cycle described by the international sunspot numbers are investigated based on the results obtained by Hathaway, Wilson, and Reichmann (1994). A long period of about 90 years is found to possibly exist for the sunspot number time series. Cycles that take less time to rise from minimum to maximum of cycle amplitude tend to have large amplitude, and those that have small maximum amplitude tend to run a long time to get ended. The sum of the sunspot numbers during the rising time of a solar cycle is almost equal to the total of the rest part of the solar cycle in spite of that the rising time of the solar cycle, or the cycle length is long or short. It is also found in this paper that the more recent cycles are larger in amplitude and shorter both in cycle length and the rising time of solar cycle than the earlier ones.

  4. Solar activity as driver for the Dark Age Grand Solar Minimum

    NASA Astrophysics Data System (ADS)

    Neuhäuser, Ralph; Neuhäuser, Dagmar

    2017-04-01

    We will discuss the role of solar activity for the temperature variability from AD 550 to 840, roughly the last three centuries of the Dark Ages. This time range includes the so-called Dark Age Grand Solar Minimum, whose deep part is dated to about AD 650 to 700, which is seen in increased radiocarbon, but decreased aurora observations (and a lack of naked-eye sunspot sightings). We present historical reports on aurorae from all human cultures with written reports including East Asia, Near East (Arabia), and Europe. To classify such reports correctly, clear criteria are needed, which are also discussed. We compare our catalog of historical aurorae (and sunspots) as well as C-14 data, i.e. solar activity proxies, with temperature reconstructions (PAGES). After increased solar activity until around AD 600, we see a dearth of aurorae and increased radiocarbon production in particular in the second half of the 7th century, i.e. a typical Grand Solar Minimum. Then, after about AD 690 (the maximum in radiocarbon, the end of the Dark Age Grand Minimum), we see increased auroral activity, decreasing radiocarbon, and increasing temperature until about AD 775. At around AD 775, we see the well-known strong C-14 variability (solar activity drop), then immediately another dearth of aurorae plus high C-14, indicating another solar activity minimum. This is consistent with a temperature depression from about AD 775 on into the beginning of the 9th century. Very high solar activity is then seen in the first four decades with four aurora clusters and three simultaneous sunspot clusters, and low C-14, again also increasing temperature. The period of increasing solar activity marks the end of the so-called Dark Ages: While auroral activity increases since about AD 793, temperature starts to increase quite exactly at AD 800. We can reconstruct the Schwabe cycles with aurorae and C-14 data. In summary, we can see a clear correspondence of the variability of solar activity proxies and

  5. Pre- and main-sequence evolution of solar activity

    NASA Technical Reports Server (NTRS)

    Walter, Frederick M.; Barry, Don C.

    1991-01-01

    The magnetic activity on single solarlike stars declines with stellar age. This has important consequences for the influence of the sun on the early solar system. What is meant by stellar activity, and how it is measured, is reviewed. Stellar activity on the premain-sequence phase of evolution is discussed; the classical T Tauri stars do not exhibit solarlike activity, while the naked T Tauri stars do. The emission surface fluxes of the naked T Tauri stars are similar to those of the youngest main-sequence G stars. The best representation for solarlike stars is a decay proportional to exp(A x t exp 0.5), where A is a function of line excitation temperature. From these decay laws, one can determine the interdependences of the activity, age, and rotation periods. The fluxes of ionizing photons at the earth early in its history are discussed; there was sufficient fluence to account for the observed isotopic ratios of the noble gases.

  6. Manifestation of the solar activity in price of composite unite of consumable for Medieval England

    NASA Astrophysics Data System (ADS)

    Pustil'Nik, L. A.; Yom Din, G.

    We present in this work development of our previous approach to search of the solar activity manifestation in wheat price dynamics, reported in COSPAR 2002 [1]. In this work we investigate dynamics of prices of composite unite of consumable for medieval time in southern England. We show that like to wheat price these price of consumable show burst-type component in its variations. We investigate statistics of time interval between consumable price bursts and show that these intervals have statistical properties similar the same as for time intervals between extremes (minimums) of solar activity (sunspot number) both in estimated mean and standard deviation of the intervals duration and for distribution of intervals. We consider this similarity as caused by high sensitivity of consumables price to price of wheat, main component of consumables in that time. We analyze asymmetry for prices in phase of minimum and maximum of sunspots as additional test of causality between solar activity and price level. We discuss possible physical explanation of discovered connection, in particular solar activity-space weather-cosmic ray-cloudiness-agriculture chain. [1] Lev A. Pustilnik, Gregory Yom Din, 2003, Influence of Solar Activity on State of Wheat Market in Medieval England, astro-ph/, 0312244, Solar Physics (in print)

  7. Solar activity dependence of the topside ionosphere at low latitudes

    NASA Astrophysics Data System (ADS)

    Chen, Yiding; Liu, Libo; Wan, Weixing; Yue, Xinan; Su, Shin-Yi

    2009-08-01

    We investigated the solar activity dependence of the topside ionosphere with ROCSAT-1 observations. The distribution of the plasma density at 600 km altitude shows features with considerable local time, season, and solar activity differences. In the daytime, plasma density peaks around the dip equator. This peak is more distinct in equinoxes and weaker in May-July, and it enhances with solar activity in all seasons. The seasonal behavior of this peak is primarily controlled by the seasonal variations of neutral density and E × B vertical drift. The enhancement of the peak with solar activity is related to the effect of E × B vertical drift. Around sunset, double peaks are found in the latitudinal distribution of plasma density in solar maximum equinoxes and December solstice, which are mainly attributed to the effects of strong prereversal enhancement (PRE) vertical drift. Moreover, the plasma density at 600 km altitude strongly depends on the solar proxy P = (F 107 + F 107A)/2. At higher altitudes, e.g., 800 km, the amplification trend prevails in the solar activity variations of plasma density. In contrast, the plasma density at 600 km altitude presents three kinds of patterns (linear, amplification, and saturation), which has not been reported. Saturation effect is found at equinox sunset around the dip equator. This saturation effect is attributed to the increase in the PRE vertical drift with solar activity. Solar activity effects of ROCSAT-1 plasma density are argued to be the combined effects induced by the changes in the peak height, the scale height, and the peak electron density, respectively. Among these factors, the rise of the F 2 peak is more important for the equatorial plasma density at 600 km altitude.

  8. Intraocular pressure (IOP) in relation to four levels of daily geomagnetic and extreme yearly solar activity

    NASA Astrophysics Data System (ADS)

    Stoupel, E.; Goldenfeld, M.; Shimshoni, M.; Siegel, R.

    1993-03-01

    The link between geomagnetic field activity (GMA), solar activity and intraocular pressure (IOP) in healthy individuals was investigated. The IOP of 485 patients (970 eyes) was recorded over three nonconsecutive years (1979, 1986, 1989) which were characterized by maximal solar activity (1979, 1989) or minimal solar activity (1986). The measurements were also correlated with four categories of GMA activity: quiet (level I0), unsettled (II0), active (III0), and stormy (IV0). Participants were also differentiated by age and sex. We found that IOP was lowest on days of level IV0 (stormy) GMA. The drop in IOP concomitant with a decrease in GMA level was more significant during periods of low solar activity and in persons over 65 years of age. There was a trend towards higher IOP values on days of levels II0 and IV0 GMA in years of high solar activity. Differences between the sexes and among individuals younger than 65 years were not significant. Our results show an interesting aspect of environmental influence on the healthy population.

  9. Atmospheric Renewable Energy Research, Volume 3: Solar-Power Microgrids and Atmospheric Influences

    DTIC Science & Technology

    2016-09-01

    ARL-TR-7797 ● SEP 2016 US Army Research Laboratory Atmospheric Renewable Energy Research, Volume 3: Solar-Power Microgrids and...Research Laboratory Atmospheric Renewable Energy Research, Volume 3: Solar-Power Microgrids and Atmospheric Influences by Gail Vaucher and...AND SUBTITLE Atmospheric Renewable Energy Research, Volume 3: Solar-Power Microgrids and Atmospheric Influences 5a. CONTRACT NUMBER 5b. GRANT

  10. Search for possible solar influences in Ra-226 decays

    NASA Astrophysics Data System (ADS)

    Stancil, Daniel D.; Balci Yegen, Sümeyra; Dickey, David A.; Gould, Chris R.

    Measurements of Ra-226 activity from eight HPGe gamma ray detectors at the NC State University PULSTAR Reactor were analyzed for evidence of periodic variations, with particular attention to annual variations. All measurements were made using the same reference source, and data sets were of varying length taken over the time period from September 1996 through August 2014. Clear evidence of annual variations was observed in data from four of the detectors. Short time periodograms from the data sets suggest temporal variability of both the amplitude and frequency of these variations. The annual variations in two of the data sets show peak values near the first of February, while surprisingly, the annual variations in the other two are roughly out of phase with the first two. Three of the four detectors exhibited annual variations over approximately the same time period. A joint statistic constructed by combining spectra from these three shows peaks approximating the frequencies of solar r-mode oscillations with νR = 11.74 cpy, m = 1, and l = 3, 5, 6. The fact that similar variations were not present in all detectors covering similar time periods rules out variations in activity as the cause, and points to differing sensitivities to unspecified environmental parameters instead. In addition to seasonal variations, the modulation of environmental parameters by solar processes remains a possible explanation of periodogram features, but without requiring new physics.

  11. The Influence of the Solar Cycle on Plasmasphere Refilling

    NASA Astrophysics Data System (ADS)

    Krall, J.; Huba, J.

    2015-12-01

    During refilling, ionospheric plasma streams into the inner magnetosphere from both the northern and southern hemispheres. Plasmasphere refilling rates depend on both the ionospheric sources and on the thermalization of streaming ions. We use the NRL SAMI3 ionosphere/plasmasphere code[1] coupled to the NRLMSIS empirical atmosphere model and the HWM14 empirical wind model, to simulate H+, He+ and O+ populations in the plasmasphere. The SAMI3 ionosphere code includes 7 ion species (H+, He+, O+, N+, O2+, N2+, NO+), each treated as a separate fluid, with temperature equations being solved for H+, He+, O+ and e. Measurements show that refilling rates decrease with increasing solar activity, an effect reproduced by SAMI3 and its two-dimensional cousin, SAMI2. We find that the refilling rate and the resulting the plasmasphere electron content are sensitive to the thermospheric composition and temperature, as well as photoelectron heating and photoproduction rates. Depending on conditions, simulations suggest that the plasmaspheric contribution to the total electron content can either increase or decrease with solar activity, as represented by the daily and 81-day-average F10.7 indices. [1] Huba, J. and J. Krall, 2013, ``Modeling the plasmasphere with SAMI3'', Geophys. Res. Lett. 40, 6--10, doi:10.1029/2012GL054300 Research supported by NRL base funds and the NASA HSR program.

  12. Investigation of X-ray and optical solar flare activities during solar cycles 22 and 23

    NASA Astrophysics Data System (ADS)

    Akimov, L. A.; Belkina, I. L.; Bushueva, T. P.

    2003-02-01

    Daily X-ray flare indices (XFI) for the interval from January 1986 till June 2002 were calculated. The XFI behaviour during solar cycles 22 and 23 was studied. We compare the daily XFI with the daily optical flare indices (OFI) and with the International Relative Sunspot Numbers. The energy emitted by X-ray flares during 77 months of solar cycle 22 is shown to be about five times larger than the analogous value for the present solar cycle. We revealed statistically significant maxima in power spectra of the XFI and OFI. They correspond to periods of 25.5, 36.5, 73, 116, and 150d which presumably are appropriate to characteristic frequencies of the solar flare activity. A hypothesis on an possible effect of Mercury's variable electric charge on the origin of solar flares is proposed and corresponding estimates were made.

  13. Preliminary design activities for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information on the development of solar heating and cooling systems is presented. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities.

  14. Observed Helicity of Active Regions in Solar Cycle 21

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Pevtsov, A. A.; Blehm, Z.; Smith, J. E.; Six, Frank (Technical Monitor)

    2003-01-01

    We report the results of a study of helicity in solar active regions during the peak of activity in solar cycle 21 from observations with the Marshall Space Flight Center's solar vector magnetograph. Using the force-free parameter alpha as the proxy for helicity, we calculated an average value of alpha for each of 60 active regions from a total of 449 vector magnetograms that were obtained during the period 1980 March to November. The signs of these average values of alpha were correlated with the latitude of the active regions to test the hemispheric rule of helicity that has been proposed for solar magnetic fields: negative helicity predominant in northern latitudes, positive in the southern ones. We have found that of the 60 regions that were observed, 30 obey the hemispheric rule and 30 do not.

  15. Effects of Low Activity Solar Cycle on Orbital Debris Lifetime

    NASA Technical Reports Server (NTRS)

    Cable, Samual B.; Sutton, Eric K.; Lin, chin S.; Liou, J.-C.

    2011-01-01

    Long duration of low solar activity in the last solar minimum has an undesirable consequence of extending the lifetime of orbital debris. The AFRL TacSat-2 satellite decommissioned in 2008 has finally re-entered into the atmosphere on February 5th after more than one year overdue. Concerning its demise we have monitored its orbital decay and monthly forecasted Tacsat-2 re-entry since September 2010 by using the Orbital Element Prediction (OEP) model developed by the AFRL Orbital Drag Environment program. The model combines estimates of future solar activity with neutral density models, drag coefficient models, and an orbit propagator to predict satellite lifetime. We run the OEP model with solar indices forecast by the NASA Marshall Solar Activity Future Estimation model, and neutral density forecast by the MSIS-00 neutral density model. Based on the two line elements in 2010 up to mid September, we estimated at a 50% confidence level TacSat-2's re-entry time to be in early February 2011, which turned out to be in good agreement with Tacsat-2's actual re-entry date. The potential space weather effects of the coming low activity solar cycle on satellite lifetime and orbital debris population are examined. The NASA long-term orbital debris evolutionary model, LEGEND, is used to quantify the effects of solar flux on the orbital debris population in the 200-600 km altitude environment. The results are discussed for developing satellite orbital drag application product.

  16. Solar activity dependence of nightside aurora in winter conditions

    NASA Astrophysics Data System (ADS)

    Zhou, Su; Luan, Xiaoli; Dou, Xiankang

    2016-02-01

    The dependence of the nightside (21:00-03:00 MLT; magnetic local time) auroral energy flux on solar activity was quantitatively studied for winter/dark and geomagnetically quiet conditions. Using data combined from Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Global Ultraviolet Imager and Defense Meteorological Satellite Program/Special Sensor Ultraviolet Spectrographic Imager observations, we separated the effects of geomagnetic activity from those of solar flux on the nightside auroral precipitation. The results showed that the nightside auroral power was reduced by ~42% in solar maximum (F10.7 = 200 sfu; solar flux unit 1 sfu = 10-22 W m-2 Hz-1) with respect to that under solar minimum (F10.7 = 70 sfu) for the Kp = 1 condition, and this change rate became less (~21%) for the Kp = 3 condition. In addition, the solar cycle dependence of nightside auroral power was similar with that from both the premidnight (21:00-23:00 MLT) and postmidnight (01:00-03:00 MLT) sectors. These results indicated that as the ionospheric ionization increases with the enhanced auroral and geomagnetic activities, the solar activity dependences of nightside auroral power become weaker, at least under geomagnetically quiet conditions.

  17. Influence of External Pressure on the Performance of Quantum Dot Solar Cells.

    PubMed

    Kim, Jaehoon; Jeong, Byeong Guk; Roh, Heebum; Song, Jiyun; Park, Myeongjin; Lee, Doh C; Bae, Wan Ki; Lee, Changhee

    2016-09-14

    We report the influence of post-treatment via the external pressure on the device performance of quantum dot (QD) solar cells. The structural analysis together with optical and electrical characterization on QD solids reveal that the external pressure compacts QD active layers by removing the mesoscopic voids and enhances the charge carrier transport along QD solids, leading to significant increase in JSC of QD solar cells. Increasing the external pressure, by contrast, accompanies reduction in FF and VOC, yielding the trade-off relationship among JSC and FF and VOC in PCE of devices. Optimization at the external pressure in the present study at 1.4-1.6 MPa enables us to achieve over 10% increase in PCE of QD solar cells. The approach and results show that the control over the organization of QDs is the key for the charge transport properties in ensemble and also offer simple yet effective mean to enhance the electrical performance of transistors and solar cells using QDs.

  18. The influence of cloud cover index on the accuracy of solar irradiance model estimates

    NASA Astrophysics Data System (ADS)

    Martins, F. R.; Silva, S. A. B.; Pereira, E. B.; Abreu, S. L.

    2008-04-01

    Cloud cover index ( CCI) obtained from satellite images contains information on cloud amount and their optical thickness. It is the chief climate data for the assessment of solar energy resources in most radiative transfer models, particularly for the model BRASIL-SR that is currently operational at CPTEC. The wide range of climate environments in Brazil turns CCI determination into a challenging activity and great effort has been directed to develop new methods and procedures to improve the accuracy of these estimations from satellite images (Martins 2001; Martins et al. 2003a; Ceballos et al. 2004). This work demonstrates the influence of CCI determination methods on estimates of surface solar irradiances obtained by the model BRASIL-SR comparing deviations among ground data and model results. Three techniques using visible and/or thermal infrared images of GOES-8 were employed to generate the CCI for input into the model BRASIL-SR. The ground-truth data was provided by the solar radiation station located at Caicó/PE, in Brazilian Northeast region, which is part of the UNEP/GEF project SWERA (Solar and Wind Energy Resources Assessment). Results have shown that the application of the bi-spectral techniques have reduced mean bias error up to 66% and root mean square error up to 50% when compared to the usual technique for CCI determination based on the straightforward determination of month-by-month extremes for maximum and minimum cloud states.

  19. On the timing of the next great solar activity minimum

    NASA Astrophysics Data System (ADS)

    Tlatov, A. G.; Pevtsov, A. A.

    2017-09-01

    The long-term variations in solar activity are studied using the dataset comprised of sunspot number and 14C radioisotope timeseries. We use a novel S200 index to identify possible past Grand Minima (GM). The Maunder, Oort, Wolf and Spörer Minima fall in phase with the minimum of S200 index. We also show GM develop in clusters, with a separation of about 400-600 years between individual GM. Extending these found similarities to modern solar activity, it is predicted that next grand solar minimum may occur in about ∼ 2090 ± 20 .

  20. Development of a complex of activity in the solar corona

    NASA Technical Reports Server (NTRS)

    Howard, R.; Svestka, Z.

    1977-01-01

    Using Skylab observations of soft solar X-rays, the development of a complex of activity in the solar corona during its whole lifetime of seven solar rotations is studied. The basic components of the activity complex were determined to be permanently interconnected through sets of magnetic field lines, which suggests similar connections also below the photosphere. The visibility of individual loops in these connections, however, was greatly variable and typically shorter than one day. Each brightening of a coronal loop in X-rays seems to be related to a variation in the photospheric magnetic field near its footprint.

  1. Parameters influencing the performance and stability of CdSe MIS solar cells

    SciTech Connect

    Rickus, E.

    1982-09-01

    CdSe MIS solar cells with ZnSe as ''I-layer'' are very insensitive to oxidative ambients and to humidity even in the unsealed state. They show lower sensitivity to ''I-film'' thickness-variations than native-oxide devices. The use of wide-bandgap semiconductor as ''I-film'' opens new ways to influence the energetic position of the potential barrier caused by the ''I-layer''. Expecially doping of the ZnSe-film results in a distinct enhancement of the fill factor. AM 1-efficiencies of 6.6 percent on 1 cm/sup 2/ active area have been achieved with relatively low effort. Further optimizations will enhance the efficiency of this simple, economic solar cell.

  2. Igneous activity in the early solar system

    NASA Technical Reports Server (NTRS)

    Hewins, R. H.; Newsom, H. E.

    1988-01-01

    Although the main emphasis of this book is on what can be learned about the early solar system from material that has escaped secondary processing, the study of differentiated meteorites can provide unique insights into the processes of basalt generation and core formation. Such processes would have been of fundamental importance during the evolution of planetary objects, including the terrestrial planets, early in solar-system history. The properties of igneous meteorites are studied with attention given to the howardite-eucrite-diogenite (HED) suite. Geochemical and petrologic trends in those meteorites are discussed with the objective of defining the thermal and chemical evolution of the HED parent body. A major issue is the nature of the dominant source of heat in the early solar system.

  3. The influence of solar variability and the quasi-biennial oscillation on sea level pressure

    NASA Astrophysics Data System (ADS)

    Roy, I.; Haigh, J. D.

    2010-12-01

    We investigate an apparent inconsistency between two published results concerning the temperature of the winter polar stratosphere and its dependence on the state of the Sun and the phase of the Quasi-Biennial Oscillation (QBO). We find that the differences can be explained by the use of the authors of different pressure levels to define the phase of the QBO. We identify QBO and solar cycle signals in sea level pressure (SLP) data using a multiple linear regression approach. First we used a standard QBO time series dating back to 1953. In the SLP observations dating back to that time we find at high latitudes that individually the solar and QBO signals are weak but that a temporal index representing the combined effects of the Sun and the QBO shows a significant signal. This is such that combinations of low solar activity with westerly QBO and high solar activity with easterly QBO are both associated with a strengthening in the polar modes; while the opposite combinations coincide with a weakening. This result is true irrespective of the choice of QBO pressure level. By employing a QBO dataset reconstructed back to 1900, we extended the analysis and also find a robust signal in the surface SAM; though weaker for surface NAM. Our results suggest that solar variability, modulated by the phase of QBO, influences zonal mean temperatures at high latitudes in the lower stratosphere and subsequently affect sea level pressure near the poles. Thus a knowledge of the state of the Sun, and the phase of the QBO might be useful in surface climate prediction.

  4. Observations of hysteresis in solar cycle variations among seven solar activity indicators

    NASA Technical Reports Server (NTRS)

    Bachmann, Kurt T.; White, Oran R.

    1994-01-01

    We show that smoothed time series of 7 indices of solar activity exhibit significant solar cycle dependent differences in their relative variations during the past 20 years. In some cases these observed hysteresis patterns start to repeat over more than one solar cycle, giving evidence that this is a normal feature of solar variability. Among the indices we study, we find that the hysteresis effects are approximately simple phase shifts, and we quantify these phase shifts in terms of lag times behind the leading index, the International Sunspot Number. Our measured lag times range from less than one month to greater than four months and can be much larger than lag times estimated from short-term variations of these same activity indices during the emergence and decay of major active regions. We argue that hysteresis represents a real delay in the onset and decline of solar activity and is an important clue in the search for physical processes responsible for changing solar emission at various wavelengths.

  5. Observations of hysteresis in solar cycle variations among seven solar activity indicators

    NASA Technical Reports Server (NTRS)

    Bachmann, Kurt T.; White, Oran R.

    1994-01-01

    We show that smoothed time series of 7 indices of solar activity exhibit significant solar cycle dependent differences in their relative variations during the past 20 years. In some cases these observed hysteresis patterns start to repeat over more than one solar cycle, giving evidence that this is a normal feature of solar variability. Among the indices we study, we find that the hysteresis effects are approximately simple phase shifts, and we quantify these phase shifts in terms of lag times behind the leading index, the International Sunspot Number. Our measured lag times range from less than one month to greater than four months and can be much larger than lag times estimated from short-term variations of these same activity indices during the emergence and decay of major active regions. We argue that hysteresis represents a real delay in the onset and decline of solar activity and is an important clue in the search for physical processes responsible for changing solar emission at various wavelengths.

  6. Influence of Atmospheric Solar Radiation Absorption on Photodestruction of Ions at D-Region Altitudes of the Ionosphere

    NASA Astrophysics Data System (ADS)

    Pavlov, A. V.

    2016-07-01

    The influence of atmospheric solar radiation absorption on the photodetachment, dissociative photodetachment, and photodissociation rate coefficients (photodestruction rate coefficients) of O-, Cl-, O2 -, O3 -, OH-, NO2 -, NO3 -, O4 -, OH-(H2O), CO3 -, CO4 -, ONOO-, HCO3 -, CO3 -(H2O), NO3 -(H2O), O2 +(H2O), O4 +, N4 +, NO+(H2O), NO+(H2O)2, H+(H2O) n for n = 2-4, NO+(N2), and NO+(CO2) at D-region altitudes of the ionosphere is studied. A numerical one-dimensional time-dependent neutral atmospheric composition model has been developed to estimate this influence. The model simulations are carried out for the geomagnetically quiet time period of 15 October 1998 at moderate solar activity over the Boulder ozonesonde. If the solar zenith angle is not more than 90° then the strongest influence of atmospheric solar radiation absorption on photodestruction of ions is found for photodissociation of CO4 - ions when CO3 - ions are formed. It follows from the calculations that decreases in the photodestruction rate coefficients of ions under consideration caused by this influence are less than 2 % at 70 km altitude and above this altitude if the solar zenith angle does not exceed 90°.

  7. Cycles and Anti-Cycles of Solar Activity

    NASA Astrophysics Data System (ADS)

    Ryabov, M. I.

    Currently representation of solar cycles on average monthly data and smoothed values on various indexes from the full solar disk is generally accepted. Such representation creates an illusion of monotone change and perceptions of simultaneity of manifestations of solar activity for all solar disc. At the same time, daily monitoring data reveal the presence of discrete properties of manifestations of solar cycle. They are associated with absence of spots on the Sun in the northern and southern hemispheres at different intervals. This phenomenon is defined as anti-cycle of solar activity. Properties of discreteness of anti-cycles are presented in this paper on "spotless days' periods". On their basis the appropriate monthly and annual data was received. The basic characteristics of the manifestations of the discreteness of activity anti-cycles had been determined. It noted the "switch effect" of the existence of the solar dynamo. It manifests itself in the rapid transition from a regime of "spotless days" to the regime of continuous generation.

  8. Active solar heating and cooling information user study

    SciTech Connect

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-01-01

    The results of a series of telephone interviews with groups of users of information on active solar heating and cooling (SHAC). An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from 19 SHAC groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Manufacturers (4 groups), Distributors, Installers, Architects, Builders, Planners, Engineers (2 groups), Representatives of Utilities, Educators, Cooperative Extension Service County Agents, Building Owners/Managers, and Homeowners (2 groups). The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  9. Solar p-mode frequencies and their dependence on solar activity recent results from the BISON network

    NASA Astrophysics Data System (ADS)

    Elsworth, Y.; Howe, R.; Isaak, G. R.; McLeod, C. P.; Miller, B. A.; New, R.; Speake, C. C.; Wheeler, S. J.

    1994-10-01

    We present here high-accuracy determinations of the frequencies of low-l solar p-modes and their solar-cycle dependence. The data were obtained using the Birmingham network of solar spectrometers (BISON). The precision of the measurements is discussed. Our previously published results of a significant frequency shift between solar minimum and solar maximum, apparently independent of l and similar to that found by other workers for intermediate-l modes, is confirmed and extended. This suggests that at most only a small fraction of the variation is due to the solar core. Sets of frequencies at high and low solar activity, and an average corrected for solar-activity effects, are presented. There is now evidence that the solar-activity dependence of the frequencies varies across the 5 minute spectrum.

  10. Self-similar signature of the active solar corona within the inertial range of solar-wind turbulence.

    PubMed

    Kiyani, K; Chapman, S C; Hnat, B; Nicol, R M

    2007-05-25

    We quantify the scaling of magnetic energy density in the inertial range of solar-wind turbulence seen in situ at 1 AU with respect to solar activity. At solar maximum, when the coronal magnetic field is dynamic and topologically complex, we find self-similar scaling in the solar wind, whereas at solar minimum, when the coronal fields are more ordered, we find multifractality. This quantifies the solar-wind signature that is of direct coronal origin and distinguishes it from that of local MHD turbulence, with quantitative implications for coronal heating of the solar wind.

  11. Recent contributions to solar activity theory

    NASA Astrophysics Data System (ADS)

    Schuessler, M.

    1980-10-01

    The current status of the theory of photospheric magnetic fields and the solar cycle theory is reviewed. Some new observations concerning the photospheric magnetic fields, the bright X-ray spots, and the ratio of the umbra radius to the penumbra radius are discussed, and their importance for these theories and their further development is examined.

  12. Influence of the solar wind variability on atmospheric processes in the southern polar region

    NASA Astrophysics Data System (ADS)

    Troshichev, O.; Egorova, L.; Vovk, V.

    Fluxes of galactic cosmic rays altered by solar wind and spikes of solar cosmic rays are usually examined as one possible mechanism of solar activity influencing the Earth's atmosphere. To study effects of the solar wind variability the daily data of aerological sounding carried out at the Antarctic station Vostok ( = 78°27S,= 106°52E) have been examined in the analysis. Vostok station is located at the ice flat homogeneous plain at height of 3.5 km, inland 1500 km from the coast, and is not subjected to local atmospheric vortices. The catabatic type of atmospheric circulation (i.e. vertical type of circulation) is typical of the central part of Antarctic, where the stratosphere cold air masses go down to ice dome and then flow along the dome surface toward the cost. All of these circumstances allow the Vostok station location act like a window into the nature of the nighttime middle atmosphere where solar influences are stronger than in the lower atmosphere. The detail analysis of the Vostok data for 1978-1992 made it possible to conclude that dramatic changes of the troposphere temperature, observed in the Southern near-pole region in relation to the interplanetary shocks, accompanying Forbush decreases (FD) and solar protons events (SPE), are caused, in actuality, by sharp changes of the IMF Bz component typical of interplanetary shocks, and by the corresponding fluctuations of the interplanetary electric field (ESW ). The warming is observed at altitudes h<5 km and cooling at h>10 km when changes in the IMF B Z component are negative and ESW increases. The regularity is especially supported by the fact that opposite temperature deviations are observed in relation with the northward BZ leaps. There is a linear relationship between the value ofE SW and ground temperature at Vostok station: the larger leap in the E W the stronger is temperature deviation. The effect reachesS maximum within one day and is damped equally quickly. It is suggested that electric

  13. Solar Transients Disturbing the Mid Latitude Ionosphere during the High Solar Activity

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Shivangi; Khan, Parvaiz A.; Atulkar, Roshni; Malvi, Bhupendra; Mansoori, Azad Ahmad; Purohit, P. K.

    2016-10-01

    We investigate the effect of solar transients on the mid latitude ionosphere during the high solar activity period of solar cycle 23 i.e 2003 and 2004. A mid latitude station, Guangzhou (23.1N, 113.4E) was selected to carry out the investigation. The ionospheric behaviour at the selected station is characterized by considering the critical frequency of F2 layer (foF2) obtained by using the ground based Ionosonde observations. Then we selected two types of solar transients viz. solar flares and Coronal Mass Ejections (CMEs). To quantify the effect of solar flares we have considered the X-ray flux (1-8 Å) and EUV flux (26-34nm). Similarly to quantify the effect of CMEs, we have considered the geomagnetic storms, because during high solar activity the geomagnetic storms are caused by CMEs. From our analysis we conclude that during the geomagnetic storms the value of foF2 decreases as compared to quiet days thereby showing a negative effect. On the contrary we found that during solar flares there is sudden and intense increase in foF2. We also performed a correlation analysis to access the magnitude of association between changes in flux values and peak values of Dst during flares and storms with the corresponding changes and peak values of foF2. We found that a strong correlation exists between the enhancements/decrements in foF2 and enhancements in flux values and Dst. We conclude, while geomagnetic activity suppresses ionospheric activity the flares enhance the same.

  14. Solar activity, the QBO, and tropospheric responses

    NASA Technical Reports Server (NTRS)

    Tinsley, Brian A.; Brown, Geoffrey M.; Scherrer, Philip H.

    1989-01-01

    The suggestion that galactic cosmic rays (GCR) as modulated by the solar wind are the carriers of the component of solar variability that affects weather and climate has been discussed in the literature for 30 years, and there is now a considerable body of evidence that supports it. Variations of GCR occur with the 11 year solar cycle, matching the time scale of recent results for atmospheric variations, as modulated by the quasibiennial oscillation of equatorial stratospheric winds (the QBO). Variations in GCR occur on the time scale of centuries with a well defined peak in the coldest decade of the little ice age. New evidence is presented on the meteorological responses to GCR variations on the time scale of a few days. These responses include changes in the vertical temperature profile in the troposphere and lower stratosphere in the two days following solar flare related high speed plasma streams and associated GCR decreases, and in decreases in Vorticity Area Index (VAI) following Forbush decreases of GCR. The occurrence of correlations of GCR and meteorological responses on all three time scales strengthens the hypothesis of GCR as carriers of solar variability to the lower atmosphere. Both short and long term tropospheric responses are understandable as changes in the intensity of cyclonic storms initiated by mechanisms involving cloud microphysical and cloud electrification processes, due to changes in local ion production from changes in GCR fluxes and other high energy particles in the MeV to low GeV range. The nature of these mechanisms remains undetermined. Possible stratospheric wind (particularly QBO) effects on the transport of HNO3 and other constituents incorporated in cluster ions and possible condensation and freezing nuclei are considered as relevant to the long term variations.

  15. Solar Activity and Climate - in Light of the Decay of the Dipole

    NASA Astrophysics Data System (ADS)

    Friis-Christensen, E.

    2003-12-01

    The geological history shows that climate has always been changing. The climate is the result of very complex interactions between various atmospheric processes, which are not well understood. Variations in solar activity seem to have a significant - but not simple - effect on climate. Recently it has been suggested that solar activity modulation of cosmic rays influences the formation and properties of clouds and thereby the radiation balance of the Earth. This topic was selected as one of six 'Areas to Watch in 2003' in the 20th December 2002 edition of Science. Since the Earth's magnetic field also has a modulating effect on the cosmic ray flux into the atmosphere, one might expect an effect on climate as well. A review of solar activity variations and climate changes will be given with emphasis on those aspects that may be affected by the varying geomagnetic field.

  16. Models of the quiet and active solar atmosphere from Harvard OSO data.

    NASA Technical Reports Server (NTRS)

    Noyes, R. W.

    1971-01-01

    Review of some Harvard Observatory programs aimed at defining the physical conditions in quiet and active solar regions on the basis of data obtained from the OSO-IV and OSO-VI spacecraft. The spectral range covered is from 300 A to 1400 A. This spectral range consists of emission lines and continua from abundant elements such as hydrogen, helium, carbon, nitrogen, oxygen, silicon, magnesium, aluminum, neon, iron, and calcium in various ionization states ranging from neutral to 15 times ionized. The structure is discussed of the quiet solar atmosphere as deduced from center-to-limb behavior of spectral lines and continua formed in the chromosphere and corona. In reviewing investigations of solar active regions, it is shown that the structure of these regions varies in a complicated manner from point to point. The local structure is influenced by factors such as the magnetic field configuration within the active region and the age or evolutionary state of the region.

  17. Investigation of relationships between parameters of solar nano-flares and solar activity

    NASA Astrophysics Data System (ADS)

    Safari, Hossein; Javaherian, Mohsen; Kaki, Bardia

    2016-07-01

    Solar flares are one of the important coronal events which are originated in solar magnetic activity. They release lots of energy during the interstellar medium, right after the trigger. Flare prediction can play main role in avoiding eventual damages on the Earth. Here, to interpret solar large-scale events (e.g., flares), we investigate relationships between small-scale events (nano-flares) and large-scale events (e.g., flares). In our method, by using simulations of nano-flares based on Monte Carlo method, the intensity time series of nano-flares are simulated. Then, the solar full disk images taken at 171 angstrom recorded by SDO/AIA are employed. Some parts of the solar disk (quiet Sun (QS), coronal holes (CHs), and active regions (ARs)) are cropped and the time series of these regions are extracted. To compare the simulated intensity time series of nano-flares with the intensity time series of real data extracted from different parts of the Sun, the artificial neural networks is employed. Therefore, we are able to extract physical parameters of nano-flares like both kick and decay rate lifetime, and the power of their power-law distributions. The procedure of variations in the power value of power-law distributions within QS, CH is similar to AR. Thus, by observing the small part of the Sun, we can follow the procedure of solar activity.

  18. A Time-Frequency Analysis of the Effects of Solar Activities on Tropospheric Thermodynamics

    NASA Technical Reports Server (NTRS)

    Kiang, Richard K.; Kyle, H. Lee; Wharton, Stephen W. (Technical Monitor)

    2001-01-01

    Whether the Sun has significantly influenced the climate during the last century has been under extensive debates for almost two decades. Since the solar irradiance varies very little in a solar cycle, it is puzzling that some geophysical parameters show proportionally large variations which appear to be responding to the solar cycles. For example, variation in low altitude clouds is shown correlated with solar cycle, and the onset of Forbush decrease is shown correlated with the reduction of the vorticity area index. A possible sun-climate connection is that galactic cosmic rays modulated by solar activities influence cloud formation. In this paper, we apply wavelet transform to satellite and surface data to examine this hypothesis. Data analyzed include the time series for solar irradiance, sunspots, UV index, temperature, cloud coverage, and neutron counter measurements. The interactions among the elements in the Earth System under the external and internal forcings give out very complex signals.The periodicity of the forcings or signals could range widely. Since wavelet transforms can analyze multi-scale phenomena that are both localized in frequency and time, it is a very useful technique for detecting, understanding and monitoring climate changes.

  19. THE MAGNETIC CLASSIFICATION OF SOLAR ACTIVE REGIONS 1992–2015

    SciTech Connect

    Jaeggli, S. A.; Norton, A. A.

    2016-03-20

    The purpose of this Letter is to address a blindspot in our knowledge of solar active region (AR) statistics. To the best of our knowledge, there are no published results showing the variation of the Mount Wilson magnetic classifications as a function of solar cycle based on modern observations. We show statistics for all ARs reported in the daily Solar Region Summary from 1992 January 1 to 2015 December 31. We find that the α and β class ARs (including all sub-groups, e.g., βγ, βδ) make up fractions of approximately 20% and 80% of the sample, respectively. This fraction is relatively constant during high levels of activity; however, an increase in the α fraction to about 35% and and a decrease in the β fraction to about 65% can be seen near each solar minimum and are statistically significant at the 2σ level. Over 30% of all ARs observed during the years of solar maxima were appended with the classifications γ and/or δ, while these classifications account for only a fraction of a percent during the years near the solar minima. This variation in the AR types indicates that the formation of complex ARs may be due to the pileup of frequent emergence of magnetic flux during solar maximum, rather than the emergence of complex, monolithic flux structures.

  20. Influence of solar UV irradiance on quasi-biennial oscillations in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Gabis, I.; Troshichev, O.

    2004-01-01

    A study of relationships between variations in the solar ultraviolet (UV) irradiance and quasi-biennial oscillations (QBO) of mean zonal wind in the Earth's equatorial stratosphere has been carried out with use of the composite MgII index as a proxy for the solar UV irradiance. The middle-term changes in the UV-irradiation have been separated after removing the long-term (≈11 years) and short-term (≈27 days) variations. The results of the analysis show that the average UV irradiance tends to be higher for east QBO-phase and lower for west phase. The detail analysis of rotation in the stratospheric wind profiles reveals that the quiet periods alternate with active periods, characterizing by strong disturbing winds. Some of these stages occur only in certain seasons, which implies that they are guided by the internal atmospheric mechanisms. Duration of active stages can be affected by level of the UV irradiance. Conclusion is made that variability of the QBO-phase duration in the equatorial stratosphere can be interpreted if influence of the solar UV medium-term variation on basic stratospheric processes is taken into account.

  1. Microbial solar cells: applying photosynthetic and electrochemically active organisms.

    PubMed

    Strik, David P B T B; Timmers, Ruud A; Helder, Marjolein; Steinbusch, Kirsten J J; Hamelers, Hubertus V M; Buisman, Cees J N

    2011-01-01

    Microbial solar cells (MSCs) are recently developed technologies that utilize solar energy to produce electricity or chemicals. MSCs use photoautotrophic microorganisms or higher plants to harvest solar energy, and use electrochemically active microorganisms in the bioelectrochemical system to generate electrical current. Here, we review the principles and performance of various MSCs in an effort to identify the most promising systems, as well as the bottlenecks and potential solutions, for "real-life" MSC applications. We present an outlook on future applications based on the intrinsic advantages of MSCs, specifically highlighting how these living energy systems can facilitate the development of an electricity-producing green roof.

  2. Physical mechanisms of solar activity effects in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Ebel, A.

    1989-01-01

    A great variety of physical mechanisms of possibly solar induced variations in the middle atmosphere has been discussed in the literature during the last decades. The views which have been put forward are often controversial in their physical consequences. The reason may be the complexity and non-linearity of the atmospheric response to comparatively weak forcing resulting from solar activity. Therefore this review focuses on aspects which seem to indicate nonlinear processes in the development of solar induced variations. Results from observations and numerical simulations are discussed.

  3. Active power control of solar PV generation for large interconnection frequency regulation and oscillation damping

    SciTech Connect

    Liu, Yong; Zhu, Lin; Zhan, Lingwei; Gracia, Jose R.; King, Thomas Jr.; Liu, Yilu

    2015-06-23

    Because of zero greenhouse gas emission and decreased manufacture cost, solar photovoltaic (PV) generation is expected to account for a significant portion of future power grid generation portfolio. Because it is indirectly connected to the power grid via power electronic devices, solar PV generation system is fully decoupled from the power grid, which will influence the interconnected power grid dynamic characteristics as a result. In this study, the impact of solar PV penetration on large interconnected power system frequency response and inter-area oscillation is evaluated, taking the United States Eastern Interconnection (EI) as an example. Furthermore, based on the constructed solar PV electrical control model with additional active power control loops, the potential contributions of solar PV generation to power system frequency regulation and oscillation damping are examined. The advantages of solar PV frequency support over that of wind generator are also discussed. Finally, simulation results demonstrate that solar PV generations can effectively work as ‘actuators’ in alleviating the negative impacts they bring about.

  4. Active power control of solar PV generation for large interconnection frequency regulation and oscillation damping

    DOE PAGES

    Liu, Yong; Zhu, Lin; Zhan, Lingwei; ...

    2015-06-23

    Because of zero greenhouse gas emission and decreased manufacture cost, solar photovoltaic (PV) generation is expected to account for a significant portion of future power grid generation portfolio. Because it is indirectly connected to the power grid via power electronic devices, solar PV generation system is fully decoupled from the power grid, which will influence the interconnected power grid dynamic characteristics as a result. In this study, the impact of solar PV penetration on large interconnected power system frequency response and inter-area oscillation is evaluated, taking the United States Eastern Interconnection (EI) as an example. Furthermore, based on the constructedmore » solar PV electrical control model with additional active power control loops, the potential contributions of solar PV generation to power system frequency regulation and oscillation damping are examined. The advantages of solar PV frequency support over that of wind generator are also discussed. Finally, simulation results demonstrate that solar PV generations can effectively work as ‘actuators’ in alleviating the negative impacts they bring about.« less

  5. Effect of solar activity on the frequency of occurrence of major anomalies in the Arctic. [weather forecasting

    NASA Technical Reports Server (NTRS)

    Bolotinskaya, M. S.

    1978-01-01

    Major air pressure and temperature anomalies in certain arctic regions were studied with a view toward predicting their occurrence. Correlations are sought between the frequency of arctic anomalies and solar activity, or specifically the Wolf number and the index of geomagnetic disturbance. Graphic techniques are used to show that solar activity has a definite influence on the frequency of occurrence of major anomalies of pressure and temperature in the Arctic.

  6. Study of solar activity and cosmic ray modulation during solar cycle 24 in comparison to previous solar cycle

    NASA Astrophysics Data System (ADS)

    Mishra, V. K.; Mishra, A. P.

    2016-12-01

    Based on the monthly data of sunspot numbers (SSN), sunspot area of full disc (SSA) and cosmic ray intensity (CRI) observed by neutron monitors (NM) located at Oulu (Cut off Rigidity = 0.8 GV) and Moscow (Cut off Rigidity = 2.3 GV), the trend of solar activity variation and cosmic ray modulation has been studied during the cycles 23 & 24. The SSN have maintained its minimum level exceptionally for a long period (July 2008-Aug. 2009) of time. The intensity of galactic cosmic rays measured by ground based detectors is the highest ever recorded by Oulu NM since April 1964 during the recent solar minimum. Furthermore, the maximum value of SSN is found to be very low in the present cycle in comparison to previous solar cycles (19-23). The correlation coefficient between SSN and CRI without and with time-lag as well as regression analysis during the solar cycle 24 (Jan. 2008-Dec. 2015) has been estimated and compared with previous solar cycle. Based on the maximum value of correlation coefficient, the time-lag during present solar cycle is found to be 4 and 10 months for both the stations, while it is 13-14 months during cycle 23. The behaviour of running cross correlation function has also been examined during present solar cycle and it is found that it attains its maximum value -0.8 to -0.9 for a long duration in comparison to previous cycles. The variation of SSN and SSA has also been compared and found that they are highly correlated to each other (r > .92) for both the cycles. In the light of exceptional behaviour of solar cycle 24, the trend of cosmic ray modulation has been discussed and compared with earlier cycles.

  7. Possible relationships between solar activity and meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Bandeen, W. R. (Editor); Maran, S. P. (Editor)

    1975-01-01

    A symposium was conducted in which the following questions were discussed: (1) the evidence concerning possible relationships between solar activity and meteorological phenomena; (2) plausible physical mechanisms to explain these relationships; and (3) kinds of critical measurements needed to determine the nature of solar/meteorological relationships and/or the mechanisms to explain them, and which of these measurements can be accomplished best from space.

  8. Influence of Solar Proton Events on the Middle Atmosphere

    NASA Astrophysics Data System (ADS)

    Kilifarska, Nataliya

    Do particle precipitations during solar proton events really affect the chemical and thermodynamical state of the middle atmosphere? - is still an open question. This study investigates the changes in the ozone mixing ratio, temperature and wind profiles during and immediately after solar proton event on 20 January 2005. Analysis is based on the data from Microwave Limb Sounder (MLS) on board the AURA satellite, GOES 11 satellite and ground based radiosondes measurements. MLS data for ozone, temperature and pressure profiles - taken at 500 N, within the longitudinal range of 0.2÷400 E - are compared with radiosondes measurements from several stations within the same region. We select six energy intervals for proton fluxes measured on GOES 11 (E=0.8 - 4 MeV, E=9 - 15 MeV, E=15 - 40 MeV, E=40 - 80 MeV, E=80 - 165 MeV and E=165 - 500 MeV) and analyzed their effect on the ozone mixing ratio and temperature at seven atmospheric levels (15.45 ˆ` 18.54 ˆ` 24.72 ˆ` 30.90 ˆ` 37.08 ˆ` eı, eı, eı, eı, eı, 43.26 ˆ` and 46.35 km). eı Ozone and temperature at each level are regressed onto all energetic proton bands, solar activity and atmospheric indexes QBO (quasibiennial oscillations) and AO (arctic oscillations), characterizing the background atmospheric conditions. Preliminary analysis shows that the effectiveness of the low energetic protons for enhancement of ozone in the whole middle and low stratosphere is much greater than those of high energetic, but with low intensity, protons. Temperature response on the increased particle precipitation is positive in the middle stratosphere and negative in the lower stratosphere. The temperatures increase in the middle stratosphere possibly due to the O3 heating effect at these altitudes, because it almost exactly coincides with ozone enhancement layer. The depletion of the temperature into the lower stratosphere may be related to the shielding effect of the enhanced O3 mixing ratio in the upper levels.

  9. QBO as Potential Amplifier of Solar Cycle Influence

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Mangel, John G.; Wolff, Charles L.; Porter, Hayden S.

    2006-01-01

    The solar cycle (SC) effect in the lower atmosphere has been linked observationally to the quasi-biennial oscillation (QBO) of the zonal circulation. Salby and Callaghan (2000) in particular analyzed the QBO covering more than 40 years and found that it contains a large SC signature at 20 km. We discuss a 3D study in which we simulate the QBO under the influence of the SC. For a SC period of 10 years, the relative amplitude of radiative forcing is taken to vary with height: 0.2% (surface), 2% (50 km), 20% (100 km and above). This model produces in the lower stratosphere a relatively large modulation of the QBO, which appears to come from the SC and qualitatively agrees with the observations. The modulation of the QBO, with constant phase relative to the SC, is shown to persist at least for 50 years, and it is induced by a SC modulated annual oscillation that is hemispherically symmetric and confined to low latitudes.

  10. Influence of flexible solar arrays on vibration isolation platform of control moment gyroscopes

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Zhang, Jing-Rui; Xu, Shi-Jie

    2012-10-01

    A high-performance vibration isolation platform (VIP) has been developed for a cluster of control moment gyroscopes (CMGs). CMGs have long been used for satellite attitude control. In this paper, the influence of flexible solar arrays on a passive multi-strut VIP of CMGs for a satellite is analyzed. The reasonable parameters design of flexible solar arrays is discussed. Firstly, the dynamic model of the integrated satellite with flexible solar arrays, the VIP and CMGs is conducted by Newton-Euler method. Then based on reasonable assumptions, the transmissibility matrix of the VIP is derived. Secondly, the influences of the flexible solar arrays on both the performance of the VIP and the stability of closed-loop control systems are analyzed in detail. The parameter design limitation of these solar arrays is discussed. At last, by selecting reasonable parameters for both the VIP and flexible solar arrays, the attitude stabilization performance with vibration isolation system is predicted via simulation.

  11. Short-term changes in solar oscillation frequencies and solar activity

    NASA Technical Reports Server (NTRS)

    Woodard, M. F.; Libbrecht, K. G.; Kuhn, J. R.; Murray, N.

    1991-01-01

    It is shown that the frequencies of solar rho-mode oscillations change significantly over periods as short as one month. These changes correlate significantly with variations in the strength of surface solar activity as measured by the average, over the sun's visible surface, of the magnitude of the line-of-sight magnetic field component from magnetograms. The frequency and mean magnetic variations are found to obey a linear relationship. It is seen that the mean frequency shift at any time depends on the history of solar activity over an interval of, at most, several months prior to the measurement and conclude that the dominant mechanism of the frequency shift is correlated with surface magnetic activity.

  12. Short-term changes in solar oscillation frequencies and solar activity

    NASA Technical Reports Server (NTRS)

    Woodard, M. F.; Libbrecht, K. G.; Kuhn, J. R.; Murray, N.

    1991-01-01

    It is shown that the frequencies of solar rho-mode oscillations change significantly over periods as short as one month. These changes correlate significantly with variations in the strength of surface solar activity as measured by the average, over the sun's visible surface, of the magnitude of the line-of-sight magnetic field component from magnetograms. The frequency and mean magnetic variations are found to obey a linear relationship. It is seen that the mean frequency shift at any time depends on the history of solar activity over an interval of, at most, several months prior to the measurement and conclude that the dominant mechanism of the frequency shift is correlated with surface magnetic activity.

  13. CHEMI-IONIZATION IN SOLAR PHOTOSPHERE: INFLUENCE ON THE HYDROGEN ATOM EXCITED STATES POPULATION

    SciTech Connect

    Mihajlov, Anatolij A.; Ignjatovic, Ljubinko M.; Sreckovic, Vladimir A.; Dimitrijevic, Milan S. E-mail: mihajlov@ipb.ac.rs

    2011-03-15

    In this paper, the influence of chemi-ionization processes in H*(n {>=} 2) + H(1s) collisions, as well as the influence of inverse chemi-recombination processes on hydrogen atom excited-state populations in solar photosphere, are compared with the influence of concurrent electron-atom and electron-ion ionization and recombination processes. It has been found that the considered chemi-ionization/recombination processes dominate over the relevant concurrent processes in almost the whole solar photosphere. Thus, it is shown that these processes and their importance for the non-local thermodynamic equilibrium modeling of the solar atmosphere should be investigated further.

  14. The possible effects of the solar and geomagnetic activity on multiple sclerosis.

    PubMed

    Papathanasopoulos, Panagiotis; Preka-Papadema, Panagiota; Gkotsinas, Anastasios; Dimisianos, Nikolaos; Hillaris, Alexandros; Katsavrias, Christos; Antonakopoulos, Gregorios; Moussas, Xenophon; Andreadou, Elisabeth; Georgiou, Vasileios; Papachristou, Pinelopi; Kargiotis, Odysseas

    2016-07-01

    Increasing observational evidence on the biological effects of Space Weather suggests that geomagnetic disturbances may be an environmental risk factor for multiple sclerosis (MS) relapses. In the present study, we aim to investigate the possible effect of geomagnetic disturbances on MS activity. MS patient admittance rates were correlated with the solar and geophysical data covering an eleven-year period (1996-2006, 23rd solar cycle). We also examined the relationship of patterns of the solar flares, the coronal mass ejections (CMEs) and the solar wind with the recorded MS admission numbers. The rate of MS patient admittance due to acute relapses was found to be associated with the solar and geomagnetic events. There was a "primary" peak in MS admittance rates shortly after intense geomagnetic storms followed by a "secondary" peak 7-8 months later. We conclude that the geomagnetic and solar activity may represent an environmental health risk factor for multiple sclerosis and we discuss the possible mechanisms underlying this association. More data from larger case series are needed to confirm these preliminary results and to explore the possible influence of Space Weather on the biological and radiological markers of the disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Cross correlation and cross spectral analyses of solar activity and solar wind parameters and car accident events in Poland for last 11-year period

    NASA Astrophysics Data System (ADS)

    Alania, M.; Gil, A.

    Data of solar and geomagnetic activities, solar wind parameters and g lactic cosmica ray intensity on the one side and car accident events in Poland on the other have been analyzed in order to reveal the statistical relationships between them for the period of 1990-2001. First of all the cross correlation and cross spectrum of the relative sunspots numbers, sunspots areas, solar wind velocities, the strength of the interplanetary magnetic field, galactic cosmic ray intensity and car accident events have been carried out. It is shown that in some epochs of the above-mentioned period there is found a reliable relationship between car accident events and solar and geomagnetic activities parameters in the region of the different periodicities, 27 - days, 7-9 days and 3-5 days. At the same time there are found epochs where hardly could be stated about any kind of the reasonable relationships. The superposition method has been used to find the influences of the outstanding phenomena -solar and geomagnetic storms and Forbush effects of galactic cosmic rays on the car accident events. There are found the cases when during the solar and geomagnetic storms and Forbush effects of galactic cosmic rays the number of car accidents increases, even about 15 percents, but in parallel there are found cases when to reveal the explicit relationship is practically impossible. It is concluded that in many cases the significant meteorological and social effects masquerade an existing relationship of the car accident evens with the solar and geomagnetic activities.

  16. Solar activity: The Sun as an X-ray star

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1981-01-01

    The existence and constant activity of the Sun's outer atmosphere are thought to be due to the continual emergence of magnetic fields from the Solar interior and the stressing of these fields at or near the surface layers of the Sun. The structure and activity of the corona are thus symptomatic of the underlying magnetic dynamo and the existence of an outer turbulent convective zone on the Sun. A sufficient condition for the existence of coronal activity on other stars would be the existence of a magnetic dynamo and an outer convective zone. The theoretical relationship between magnetic fields and coronal activity can be tested by Solar observations, for which the individual loop structures can be resolved. A number of parameters however, which enter into the alternative theoretical formulations remain fixed in all Solar observations. To determine whether these are truly parameters of the theory observations need to be extended to nearby stars on which suitable conditions may occur.

  17. Solar activity: The Sun as an X-ray star

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1981-01-01

    The existence and constant activity of the Sun's outer atmosphere are thought to be due to the continual emergence of magnetic fields from the Solar interior and the stressing of these fields at or near the surface layers of the Sun. The structure and activity of the corona are thus symptomatic of the underlying magnetic dynamo and the existence of an outer turbulent convective zone on the Sun. A sufficient condition for the existence of coronal activity on other stars would be the existence of a magnetic dynamo and an outer convective zone. The theoretical relationship between magnetic fields and coronal activity can be tested by Solar observations, for which the individual loop structures can be resolved. A number of parameters however, which enter into the alternative theoretical formulations remain fixed in all Solar observations. To determine whether these are truly parameters of the theory observations need to be extended to nearby stars on which suitable conditions may occur.

  18. Influence of the solar UV-radiation intensity on the 630-nm nightglow emission in the 23rd solar cycle

    NASA Astrophysics Data System (ADS)

    Ievenko, I. B.; Alekseev, V. N.; Parnikov, S. G.

    2011-10-01

    It is well known that the 630-nm nightglow emission intensity in midlatitudes increases by more than a factor of 2 during a sunspot maximum. It has been assumed that the phenomenon is caused by variations in solar UV radiation during a solar cycle (Fishkova, 1983). We present the results of photometric measurements of the nightglow 630.0 nm emission intensity at a latitude of 63° E and longitude of 130° E (Yakutsk) in 1990-2007. The dependence of the 630-nm emission intensity on solar activity on magnetically quiet days in the 22nd and 23rd solar cycles is shown. The close relationship between the 630-nm nightglow intensity and the intensity of extreme UV (EUV) with a correlation coefficient of 0.8-0.9 in 1997-2007 is ascertained from the SOHO/SEM data. The dominance of solar EUV in the excitation of nightglow 630-nm emission has thus been experimentally proved.

  19. The influence of solar ultraviolet variability on climate

    NASA Technical Reports Server (NTRS)

    Chamberlain, J. W.

    1982-01-01

    Changes in the solar u.v. flux and its wavelength distribution could affect the climate both directly and through the greenhouse effect of the ozone shield. Indeed, the ozone content of the stratosphere is highly sensitive to the relative intensity of two broad spectral regions in the solar u.v. The observed amplitude for global-ozone variation of a few percent at most over the solar cycle is compatible with a variation of solar u.v. flux of no more than about 20%.

  20. Forecast for solar cycle 23 activity: a progress report

    NASA Astrophysics Data System (ADS)

    Ahluwalia, H. S.

    2001-08-01

    At the 25th International Cosmic Ray Conference (ICRC) at Durban, South Africa, I announced the discovery of a three cycle quasi-periodicity in the ion chamber data string assembled by me, for the 1937 to 1994 period (Conf. Pap., v. 2, p. 109, 1997). It corresponded in time with a similar quasi-periodicity observed in the dataset for the planetary index Ap. At the 26th ICRC at Salt Lake City, UT, I reported on our analysis of the Ap data to forecast the amplitude of solar cycle 23 activity (Conf. Pap., v. 2, pl. 260, 1999). I predicted that cycle 23 will be moderate (a la cycle 17), notwithstanding the early exuberant forecasts of some solar astronomers that cycle 23, "may be one of the greatest cycles in recent times, if not the greatest." Sunspot number data up to April 2001 indicate that our forecast appears to be right on the mark. We review the solar, interplanetary and geophysical data and describe the important lessons learned from this experience. 1. Introduction Ohl (1971) was the first to realize that Sun may be sending us a subliminal message as to its intent for its activity (Sunspot Numbers, SSN) in the next cycle. He posited that the message was embedded in the geomagnetic activity (given by sum Kp). Schatten at al (1978) suggested that Ohl hypothesis could be understood on the basis of the model proposed by Babcock (1961) who suggested that the high latitude solar poloidal fields, near a minimum, emerge as the toroidal fields on opposite sides of the solar equator. This is known as the Solar Dynamo Model. One can speculate that the precursor poloidal solar field is entrained in the high speed solar wind streams (HSSWS) from the coronal holes which are observed at Earth's orbit during the descending phase of the previous cycle. The interaction

  1. Solar activity variations of ionospheric peak electron density at nighttime

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Chen, Yiding; Wan, Weixing; Ning, Baiqi

    The solar activity variation of the ionosphere is a key issue in the ionospheric physics and related applications. In this report, the monthly median values of the maximum electron density of the F2-layer observed at Japanese Okinawa, Yamagawa, Kokubunji, and Wakkanai stations have been collected to investigate the solar activity dependence of the ionosphere at nighttime. The result shows that there are seasonal and local time behaviors at nighttime, which are of similarities and differences as compared with that by daytime. In equinoctial months, nighttime electron density increases with solar proxy F107 linearly; in summer solstice month (June), it tends to saturate with F107 increasing; and an amplification trend in winter solstice month (December). The seasonal and local time dependences in the solar cycle dependence of the ionosphere manifest the roles of the dynamics and chemical processes. With peak height of the F2-layer and NRLMSISE00 model, the nighttime recombination rate around the F2 peak has been evaluated at different solar activity levels, which are also found of a seasonal dependence. This investigation suggests that the seasonal differences of the solar activity variations of both thermospheric parameters (neutral density, temperature and vibrational excited nitrogen) and the peak height of the ionosphere play important roles in causing the seasonal difference of the solar activity variation of recombination process around the F2 peak. ACKNOWLEDGMENTS The ionosonde data are provided by NICT, Japan. This research was supported by National Natural Science Foundation of China (40725014, 40674090), and National Important Basic Research Project (2006CB806306).

  2. Relation Between Myocardial Infarction Deaths and Solar Activity in Mexico

    NASA Astrophysics Data System (ADS)

    Diaz-Sandoval, R.

    2002-05-01

    We study the daily incidence of myocardial infarction deaths in Mexico for 4 years (1996-99) with a total of 129 917 cases in all the country, collected at the General Directorate of Epidemiology (National Ministry of Health). We divided the cases by sex and age and perform two kinds of analysis. First, we did an spectral analysis using the Maximum Entropy Method, considering the complete period, and minimum and maximum epochs of solar activity. The results show that the most persistent periodicity at higher frequencies in the myocardial infarction death occurrence is that of seven days. Considering the solar cycle phases, we found that during solar minimum times some frequencies are not detectable compared with solar maximum epochs, particularly that of seven days. Biological rhythms close to seven days, the circaseptans, are in general thought to be only the result of the social organization of life. However, this cannot be the only explanation, because the 7-days periodicity has been encountered in lower organisms not related with our rhythms of life. Thus, it has been proposed that biological rhythms could be evolutionary adaptations to environmental conditions, particularly, solar activity. In the second analysis we compared two solar activity-related phenomena: the Forbush decreases of cosmic rays and the geomagnetic index Ap for various levels of geomagnetic perturbations. The results show that during decreases of cosmic ray fluxes, for most cases there is a higher average myocardial infarction deaths occurrence, compared with the average incidence in days of no decreases. For geomagnetic activity we find the same situation in most cases. Furthermore, this behavior is more pronounced as the level of the perturbation increases and in times of maximum solar activity.

  3. [Fluctuations in biophysical measurements as a result of variations in solar activity].

    PubMed

    Peterson, T F

    1995-01-01

    A theory is proposed to explain variations in the net electrical charge of biological substances at the Earth's surface. These are shown to occur in association with changes in the solar wind and geomagnetic field. It is suggested that a liquid dielectric's net volume charge will imitate pH effects, influence chemical reaction rates, and alter ion transfer mechanisms in biophysical systems. An experiment is described which measures dielectric volume charge, or non-neutrality, to allow correlation of this property with daily, 28-day, and 11-year fluctuation patterns in geophysical and satellite data associated with solar activity and the interplanetary magnetic field.

  4. Improved Power Conversion Efficiency of Inverted Organic Solar Cells by Incorporating Au Nanorods into Active Layer.

    PubMed

    He, Yeyuan; Liu, Chunyu; Li, Jinfeng; Zhang, Xinyuan; Li, Zhiqi; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2015-07-29

    This Research Article describes a cooperative plasmonic effect on improving the performance of organic solar cells. When Au nanorods(NRs) are incorporated into the active layers, the designed project shows superior enhanced light absorption behavior comparing with control devices, which leads to the realization of organic solar cell with power conversion efficiency of 6.83%, accounting for 18.9% improvement. Further investigations unravel the influence of plasmonic nanostructures on light trapping, exciton generation, dissociation, and charge recombination and transport inside the thin films devices. Moreover, the introduction of high-conductivity Au NRs improves electrical conductivity of the whole device, which contributes to the enhanced fill factor.

  5. North Atlantic sea surface temperature, solar activity and the climate of Northern Fennoscandia

    NASA Astrophysics Data System (ADS)

    Ogurtsov, M.; Lindholm, M.; Jalkanen, R.; Veretenenko, S. V.

    2017-02-01

    Seven proxies of summer temperature in Northern Fennoscandia, sea surface temperature in the North Atlantic and solar activity were analyzed over AD 1567-1986. A stable and significant positive correlation between summer temperatures in Northern Fennoscandia and sea surface temperature in the North Atlantic is shown to exist during the entire time interval. In addition, a significant correlation between solar activity and (a) summer temperature in Northern Fennoscandia as well as (b) surface temperature in the North Atlantic was found during AD 1715-1986. Throughout 1567-1715 correlation is less significant and has an opposite sign. Thus we show that the variation of sea surface temperature in the North Atlantic could be a physical agent, which transferred solar influence on Northern Fennoscandian temperature at least during AD 1715-1986.

  6. Do solar cycles influence giant cell arteritis and rheumatoid arthritis incidence?

    SciTech Connect

    Wing, Simon; Rider, Lisa G.; Johnson, Jay R.; Miller, Federick W.; Matteson, Eric L.; Crowson, C. S.; Gabriel, S. E.

    2015-05-15

    Our objective was to examine the influence of solar cycle and geomagnetic effects on the incidence of giant cell arteritis (GCA) and rheumatoid arthritis (RA). Methods: We used data from patients with GCA (1950-2004) and RA (1955-2007) obtained from population-based cohorts. Yearly trends in age-adjusted and sex-adjusted incidence were correlated with the F10.7 index (solar radiation at 10.7 cm wavelength, a proxy for the solar extreme ultraviolet radiation) and AL index (a proxy for the westward auroral electrojet and a measure of geomagnetic activity). Fourier analysis was performed on AL, F10.7, and GCA and RA incidence rates. Results: The correlation of GCA incidence with AL is highly significant: GCA incidence peaks 0-1 year after the AL reaches its minimum (ie, auroral electrojet reaches a maximum). The correlation of RA incidence with AL is also highly significant. RA incidence rates are lowest 5-7 years after AL reaches maximum. AL, GCA and RA incidence power spectra are similar: they have a main peak (periodicity) at about 10 years and a minor peak at 4-5 years. However, the RA incidence power spectrum main peak is broader (8-11 years), which partly explains the lower correlation between RA onset and AL. The auroral electrojets may be linked to the decline of RA incidence more strongly than the onset of RA. The incidences of RA and GCA are aligned in geomagnetic latitude. Conclusions: AL and the incidences of GCA and RA all have a major periodicity of about 10 years and a secondary periodicity at 4-5 years. Geomagnetic activity may explain the temporal and spatial variations, including east-west skewness in geographic coordinates, in GCA and RA incidence, although the mechanism is unknown. Lastly, the link with solar, geospace and atmospheric parameters need to be investigated. These novel findings warrant examination in other populations and with other autoimmune diseases.

  7. Features of the solar active cycles.

    NASA Astrophysics Data System (ADS)

    Li, Kejun

    1999-12-01

    Characteristics of the sunspot cycle described by the international sunspot numbers are investigated based on the results obtained by Hathaway, Wilson, and Reichmann (1994). A long period of about 90 years is found to possibly exist for the sunspot number time series. Cycles that take less time to rise from minimum to maximum of cycle amplitude tend to have large amplitude, and those that have small maximum amplitude tend to run a long time to get ended. It is also found that the more recent cycles are larger in amplitude and shorter both in cycle length and the rising time of solar cycle than the earlier ones.

  8. Development of Solar Activity Cycle 24: Some Comments

    NASA Astrophysics Data System (ADS)

    Ahluwalia, H. S.

    Our forecast for the development phase of the solar cycle 23 turned out to be right on the mark; one of the very few to have acquired this status out of nearly 40 forecasts made for cycle 23. This is the first time in the 400 year history of the sunspot observations that a forecast was made for a solar cycle, it was defended against a severe peer criticism and came out true. We review the details of our actual forcast and how they fared as the events unfolded during cycle 23. We then consider the present status of the solar wind, the geomagnetic planetary indices, and the recovery of the galactic cosmic rays from cycle 23 modulation. Next, we draw inferences as to what to expect for the development phase of solar cycle 24. We are aware that several forecasts have already been made for the development of solar cycle 24 activity. They cover all possible scenarios, ranging from the most active to the quietest ever cycle. Clearly, some of these forecasts are unlikely to materialize. We discuss emerging details of the physical link between the observations and the workings of the solar dynamo.

  9. Engineering principles and concepts for active solar systems

    NASA Astrophysics Data System (ADS)

    Hunn, B. D.; Carlisle, N.; Franta, G.; Kolar, W.

    1987-07-01

    This publication is a much refined and updated version of a solar design handbook originally prepared in 1978 to accompany a series of week-long courses conducted in support of the Solar Federal Buildings Program. The 1978 material was published in 1981 as the Solar Design Workbook (SERI/SP-62-308). This current document represents the culmination of an eight-year effort to compile a comprehensive state-of-the-art reference and instructional tool for practicing design professionals, architects, and engineers. It is intended to cover all phases of the design and installation of active solar energy systems for buildings. Although it contains many design guidelines, the emphasis is on providing sufficient knowledge of how these systems work to allow an engineer or architect to make well-informed decisions. It is aimed primarily at commercial building applications, but most of the material is also applicable to residential buildings.

  10. Solar wind influence on the Jovian inner magnetosphere observed by Hisaki/EXCEED

    NASA Astrophysics Data System (ADS)

    Murakami, G.; Yoshioka, K.; Yamazaki, A.; Tsuchiya, F.; Kimura, T.; Tao, C.; Kagitani, M.; Sakanoi, T.; Uemizu, K.; Kasaba, Y.; Yoshikawa, I.; Fujimoto, M.

    2015-12-01

    The dawn-dusk asymmetry of the Io plasma torus has been seen by several observations [e.g., Sandel and Broadfoot, 1982; Steffl et al., 2004]. Ip and Goertz [1983] explained this asymmetry can be caused by a dawn-to-dusk electric field in the Jupiter's inner magnetosphere. However, the question what physical process can impose such an electric field deep inside the strong magnetosphere still remains. The long-term monitoring of the Io plasma torus is a key observation to answer this question. The extreme ultraviolet (EUV) spectrometer EXCEED onboard the Hisaki satellite observed the Io plasma torus continuously during the two periods: from December 2013 to March 2014 and from November 2014 to May 2015. We found clear responses of the dawn-dusk asymmetry to rapid increases of the solar wind dynamic pressure. We statistically analyzed the relations between solar wind and IPT response. Furthermore, we investigated the influence of Io's volcanic activity, detected by Hisaki in January 2015, on the solar wind response of Jovian inner magnetosphere. We will report the initial results of this study.

  11. Evidence for Solar Cycle Influence on the Infrared Energy Budget and Radiative Cooling of the Thermosphere

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.; Martin-Torres, F. Javier; Marshall, B. Thomas; Thompson, R. Earl; Williams, Joshua; Turpin, TImothy; Kratz, D. P.; Russell, James M.; Woods, Tom; Gordley, Larry L.

    2007-01-01

    We present direct observational evidence for solar cycle influence on the infrared energy budget and radiative cooling of the thermosphere. By analyzing nearly five years of data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, we show that the annual mean infrared power radiated by the nitric oxide (NO) molecule at 5.3 m has decreased by a factor of 2.9. This decrease is correlated (r = 0.96) with the decrease in the annual mean F10.7 solar index. Despite the sharp decrease in radiated power (which is equivalent to a decrease in the vertical integrated radiative cooling rate), the variability of the power as given in the standard deviation of the annual means remains approximately constant. A simple relationship is shown to exist between the infrared power radiated by NO and the F10.7 index, thus providing a fundamental relationship between solar activity and the thermospheric cooling rate for use in thermospheric models. The change in NO radiated power is also consistent with changes in absorbed ultraviolet radiation over the same time period.

  12. Caught in the Solar Wind: A Study of Space Weather and its Influence on Earth

    NASA Astrophysics Data System (ADS)

    Hill, R.; Chuckran, A.; Erickson, P. J.

    2007-12-01

    Space weather is a phenomenon that is becoming more familiar to the general public. As people are increasingly reliant on 21st century technology, the potential for disruption to their daily lives also rises. As the sun approaches its next solar maximum in 2011 or 2012, the peak of Cycle 24 is expected to be the highest of the satellite age, perhaps surpassing that of Cycle 19 in 1957-58. In this teaching unit, we have attempted to create a series of lessons that sheds light on the concept of space weather and the sun's influences on earth's magnetic field and upper atmosphere. Within this unit, we have provided ample opportunities for students to access and interpret real scientific data from a variety of sources. The main location is the web site www.spaceweather.com , which has near real time data from satellites such as SOHO, STEREO, ACE and POES. This data is easily viewed and explained within the site, and with appropriate instruction, students can regularly gather data, make predictions, and draw conclusions based on the current behavior of the sun. Examples include sunspot number and development, speed and density of solar wind, orientation and strength of the interplanetary magnetic field, location of coronal holes, planetary K index and X-ray solar flares. Depending on the level of the students, some or all of this data can be compiled over a period of time to better understand the behavior of the sun as well as its influence on Earth. The goal of this unit is to provide a vehicle for students to understand how data is used by scientists. Once they have the base knowledge, students may be able to construct their own questions and follow through with research. An inquiry-based approach is incorporated whenever possible. With the onset of a potentially active solar cycle in the near future, teachers have the opportunity to make a dramatic connection between the natural world and their daily lives. Solar storms can cause disruption to telephone communication

  13. The Influence of Extremely Large Solar Proton Events in a Changing Stratosphere. Stratospheric Influence of Solar Proton Events

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Fleming, Eric L.; Vitt, Francis M.

    1999-01-01

    Two periods of extremely large solar proton events (SPEs) occurred in the past thirty years, which forced significant long-term polar stratospheric changes. The August 2-10, 1972 and October 19-27, 1989 SPEs happened in stratospheres that were quite different chemically. The stratospheric chlorine levels were relatively small in 1972 (approximately 1.2 ppbv) and were fairly substantial in 1989 at about (approximately 3 ppbv). Although these SPEs produced both HO(x) and NO(y) constituents in the mesosphere and stratosphere, only the NO(y) constituents had lifetimes long enough to affect ozone for several months to years past the events. Our recently improved two-dimensional chemistry and transport atmospheric model was used to compute the effects of these gigantic SPEs in a changing stratosphere. Significant upper stratospheric ozone depletions > 10% are computed to last for a few months past these SPEs. The long-lived SPE-produced NO(y) constituents were transported to lower levels during winter after these huge SPEs and caused impacts in the middle and lower stratosphere. During periods of high halogen loading these impacts resulted in interference with the chlorine and bromine loss cycles for ozone destruction. The chemical state of the atmosphere, including the stratospheric sulfate aerosol density, substantially affected the predicted stratospheric influence of these extremely large SPEs.

  14. SOLERAS solar active cooling field test operations

    NASA Astrophysics Data System (ADS)

    Williamson, J.; Martin, R.

    Four small-scale commercial size solar cooling systems being tested in Arizona as part of the SOLERAS program are described, together with 1981 performance summaries. A 63 kW air-cooled Rankine cycle system powered by parabolic troughs is used to cool a one-story office building. The system has both hot and cold storage tanks and uses R-11 fluid. A 49 kW Rankine cycle system driven by 218.5 sq m of evacuated tube collectors features direct expansion cooling of part of an office building, as well as part-time electrical generation for the grid. A water-absorption cycle system with 53 kW of power from 133.8 sq m of tracking parabolic trough receivers is employed to cool a warehouse office area. The system includes a hot storage tank and ground-mounted solar energy collection. Computer room cooling is provided by the fourth system, a 35 kW air-cooled absorption system system featuring 89.2 sq m of Fresnel lens collectors mounted roof-top. Design simplicity has been found to be mandatory for performance optimization, thereby ruling out cogeneration. Alsi, the use of both hot and cold storage has proven beneficial from cost and operational points of view

  15. Helium Line Formation and Abundance in a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Mauas, P. J. D.; Andretta, V.; Falchi, A.; Falciani, R.; Teriaca, L.; Cauzzi, G.

    2005-01-01

    An observing campaign (SOHO JOP 139), coordinated between ground-based and Solar and Heliospheric Observatory (SOHO) instruments, has been planned to obtain simultaneous spectroheliograms of the same active region in several spectral lines. The chromospheric lines Ca II K, Hα, and Na I D, as well as He I 10830, 5876, 584, and He II 304 Å lines have been observed. The EUV radiation in the range λ<500 Å and in the range 260<λ<340 Å has also been measured at the same time. These simultaneous observations allow us to build semiempirical models of the chromosphere and low transition region of an active region, taking into account the estimated total number of photoionizing photons impinging on the target active region and their spectral distribution. We obtained a model that matches very well all the observed line profiles, using a standard value for the He abundance ([He]=0.1) and a modified distribution of microturbulence. For this model we study the influence of the coronal radiation on the computed helium lines. We find that, even in an active region, the incident coronal radiation has a limited effect on the UV He lines, while it is of fundamental importance for the D3 and 10830 Å lines. Finally, we build two more models, assuming values of He abundance [He]=0.07 and 1.5, only in the region where temperatures are >1×104 K. This region, between the chromosphere and transition region, has been indicated as a good candidate for processes that might be responsible for strong variations of [He]. The set of our observables can still be well reproduced in both cases, changing the atmospheric structure mainly in the low transition region. This implies that, to choose between different values of [He], it is necessary to constrain the transition region with different observables, independent of the He lines.

  16. Solar Eruptive Activity at Mars' Orbit and its Potential Impacts

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Lee, C. O.; Curry, S.; Hara, T.; Halekas, J. S.; Li, Y.; Dong, C.; Ma, Y.; Lillis, R. J.; Dunn, P.; Gruesbeck, J.; Espley, J. R.; Brain, D.; Connerney, J. E. P.; Larson, D. E.; Jakosky, B. M.; Russell, C. T.

    2016-12-01

    While a number of studies exist relating to ICME signatures at Venus (PVO and VEX) and Mercury (Helios and Messenger), relatively few analyses exist for Mars' orbit. Nevertheless plasma and field signatures of ICMEs have been observed in the space near Mars by Phobos-2, Mars Global Surveyor (MGS), Mars Express (MEX), and now MAVEN. Of these, MAVEN is arguably best-instrumented, space weather-wise, to characterize such events. However, the weak solar activity over the past decade has limited what MAVEN, whose mission is to study Mars' atmospheric response to solar activity, including escape to space, has been able to observe. While the major October 1989 event, that produced at Earth one of the largest geomagnetic storms on record, occurred during the short Phobos-2 mission, and the notable series of Halloween 2003 storms occurred during the MGS mission, MAVEN has detected only moderate solar eruptive activity-related interplanetary disturbances at Mars. We compare the largest ICME observed by MAVEN with some of these other more extreme activity episodes for perspective. These comparisons hint at the potential impact of the magnitude of solar eruptions on what is experienced at Mars orbit, and on our ability to investigate planetary responses over the full range -when missions are at the mercy of what the solar cycle produces during their lifetimes.

  17. SOLAR MAGNETIC ACTIVITY CYCLES, CORONAL POTENTIAL FIELD MODELS AND ERUPTION RATES

    SciTech Connect

    Petrie, G. J. D.

    2013-05-10

    We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the National Solar Observatory's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun vector spectro-magnetograph, the spectro-magnetograph and the 512-channel magnetograph instruments, and from Stanford University's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Polar field changes are found to be well correlated with active fields over most of the period studied, except between 2003 and 2006 when the active fields did not produce significant polar field changes. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the activity cycle. All non-axisymmetric multipole strengths are well correlated with the activity cycle. The tilt of the solar dipole is therefore almost entirely due to active-region fields. The axial dipole and octupole are the largest contributors to the global field except while the polar fields are reversing. This influence of the polar fields extends to modulating eruption rates. According to the Computer Aided CME Tracking, Solar Eruptive Event Detection System, and Nobeyama radioheliograph prominence eruption catalogs, the rate of solar eruptions is found to be systematically higher for active years between 2003 and 2012 than for those between 1997 and 2002. This behavior appears to be connected with the weakness of the late-cycle 23 polar fields as suggested by Luhmann. We see evidence that the process of cycle 24 field reversal is well advanced at both poles.

  18. The influence of Yb, B, and Ga-doped Er3+:Y3Al5O12 on solar light photocatalytic activity of TiO2 in degradation of organic dyes

    NASA Astrophysics Data System (ADS)

    Wang, J.; Li, Y.; Wang, J.; Zhang, L.; Gao, J. Q.; Wang, B. X.; Yang, Q.; Fan, P.

    2014-01-01

    Five up-conversion luminescence agents (Er3+:Y3Al5O12, Er3+:Yb n Y3 - n Al5O12, Er3+:Y3B a Al5 - a O12, Er3+:Y3Ga b Al5 - b O12, and Er3+:Yb n Y3 - n B a Ga b Al5 - a - b O12) were synthesized using sol-gel method and then the corresponding coated composites (Er3+:Y3Al5O12/TiO2, Er3+:Yb n Y3- n Al5O12/TiO2, Er3+:Y3B a Al5 - a O12/TiO2, Er3+:Y3Ga b Al5 - b O12/TiO2, and Er3+:Yb n Y3 - n B a Ga b Al5 - a - b O12/TiO2) as photocatalysts were prepared by sol-gel coating process. The XRD and SEM were used to confirm the crystalline phase and surface morphology. The UV-vis absorption and fluorescence-emission spectra were used to research the effect of doping category and amount on the up-conversion emission ability. The photocatalytic activities were detected through the degradation of Acid Red B dye in aqueous solution. Some key parameters of catalyst amount and initial concentration of organic dye on solar light photocatalytic degradation were also examined. The extensive feasibility of prepared photocatalysts in solar light degradation was detected by other organic dyes. The results suggest that the photocatalysts can be widely used in sewage treatment.

  19. IS THE CURRENT LACK OF SOLAR ACTIVITY ONLY SKIN DEEP?

    SciTech Connect

    Broomhall, A.-M.; Chaplin, W. J.; Elsworth, Y.; Fletcher, S. T.; New, R. E-mail: wjc@bison.ph.bham.ac.uk E-mail: S.Fletcher@shu.ac.uk

    2009-08-01

    The Sun is a variable star whose magnetic activity and total irradiance vary on a timescale of approximately 11 years. The current activity minimum has attracted considerable interest because of its unusual duration and depth. This raises the question: what might be happening beneath the surface where the magnetic activity ultimately originates? The surface activity can be linked to the conditions in the solar interior by the observation and analysis of the frequencies of the Sun's natural seismic modes of oscillation-the p modes. These seismic frequencies respond to changes in activity and are probes of conditions within the Sun. The Birmingham Solar-Oscillations Network (BiSON) has made measurements of p-mode frequencies over the last three solar activity cycles, and so is in a unique position to explore the current unusual and extended solar minimum. We show that the BiSON data reveal significant variations of the p-mode frequencies during the current minimum. This is in marked contrast to the surface activity observations, which show little variation over the same period. The level of the minimum is significantly deeper in the p-mode frequencies than in the surface observations. We observe a quasi-biennial signal in the p-mode frequencies, which has not previously been observed at mid- and low-activity levels. The stark differences in the behavior of the frequencies and the surface activity measures point to activity-related processes occurring in the solar interior, which are yet to reach the surface, where they may be attenuated.

  20. Temporal Variations of Solar UV Spectral Irradiance Caused by Solar Rotation and Active Region Evolution

    NASA Technical Reports Server (NTRS)

    Donnelly, R. F.; Heath, D. F.; Lean, J. L.; Rottman, G. J.

    1984-01-01

    Variations in the solar 100 to 400 nm UV spectral irradiance caused by solar rotation and active region evolution, are discussed as a function of UV wavelength, CMD dependence, and in relation to the temporal variations in the total solar irradiance, 10.7 cm radio flux, sunspot number and Ca K plage data. Active region radiation at cm wavelengths includes a component proportional to the magnetic field. Active region evolution involves a more rapid growth, peak and decay of sunspots and their strong magnetic fields than the Ca K plages and their related UV enhancements. Major plages often last a rotation or more longer than the active region's sunspots. Large active regions, including those associated with major dips in the total solar irradiance, tend to produce the strongest peaks in 10.7 cm and sunspot numbers on their first rotation, while the Ca K plages and UV enhancements peak on the next rotation and decay more slowly on subsequent rotations. Differences in CMD dependencies cause temporal differences including the stronger presence of 13 day variations in the UV flux.

  1. How calibration and reference spectra affect the accuracy of absolute soft X-ray solar irradiance measured by the SDO/EVE/ESP during high solar activity

    NASA Astrophysics Data System (ADS)

    Didkovsky, Leonid

    2016-10-01

    The Extreme ultraviolet Spectrophotometer (ESP), one of the channels of SDO’s Extreme ultraviolet Variability Experiment (EVE), measures solar irradiance in several EUV and soft x-ray (SXR) bands isolated using thin-film filters and a transmission diffraction grating, and includes a quad-diode detector positioned at the grating zeroth-order to observe in a wavelength band from about 0.1 to 7.0 nm. The quad diode signal also includes some contribution from shorter wavelength in the grating’s first-order and the ratio of zeroth-order to first-order signal depends on both source geometry, and spectral distribution. For example, radiometric calibration of the ESP zeroth-order at the NIST SURF BL-2 with a near-parallel beam provides a different zeroth-to-first-order ratio than modeled for solar observations. The relative influence of “uncalibrated” first-order irradiance during solar observations is a function of the solar spectral irradiance and the locations of large Active Regions or solar flares. We discuss how the “uncalibrated” first-order “solar” component and the use of variable solar reference spectra affect determination of absolute SXR irradiance which currently may be significantly overestimated during high solar activity.

  2. SOLAR SPECTRAL IRRADIANCE, SOLAR ACTIVITY, AND THE NEAR-ULTRA-VIOLET

    SciTech Connect

    Fontenla, J. M.; Stancil, P. C.; Landi, E. E-mail: stancil@physast.uga.edu

    2015-08-20

    The previous calculations of the Solar Spectral Irradiance (SSI) by the Solar Radiation Physical Modeling, version 2 system, are updated in this work by including new molecular photodissociation cross-sections of important species, and many more levels and lines in its treatment of non-LTE radiative transfer. The current calculations including the new molecular photodissociation opacities produce a reduced over-ionizaton of heavy elements in the lower chromosphere and solve the problems with prior studies of the UV SSI in the wavelength range 160–400 nm and now reproduce the available observations with much greater accuracy. Calculations and observations of the near-UV at 0.1 nm resolution and higher are compared. The current set of physical models includes four quiet-Sun and five active-region components, from which radiance is computed for ten observing angles. These radiances are combined with images of the solar disk to obtain the SSI and Total Solar Irradiance and their variations. The computed SSI is compared with measurements from space at several nm resolution and agreement is found within the accuracy level of these measurements. An important result is that the near-UV SSI increase with solar activity is significant for the photodissociation of ozone in the terrestrial atmosphere because a number of highly variable upper chromospheric lines overlap the ozone Hartley band.

  3. Multi-scale statistical analysis of coronal solar activity

    DOE PAGES

    Gamborino, Diana; del-Castillo-Negrete, Diego; Martinell, Julio J.

    2016-07-08

    Multi-filter images from the solar corona are used to obtain temperature maps that are analyzed using techniques based on proper orthogonal decomposition (POD) in order to extract dynamical and structural information at various scales. Exploring active regions before and after a solar flare and comparing them with quiet regions, we show that the multi-scale behavior presents distinct statistical properties for each case that can be used to characterize the level of activity in a region. Information about the nature of heat transport is also to be extracted from the analysis.

  4. More Solar Activities for Astro 101

    NASA Astrophysics Data System (ADS)

    West, M. L.

    2002-12-01

    For many astronomy students the sun is not only the brightest astronomical object they can observe but also the most interesting since it has an immediate effect on their daily lives. Students enjoy analyzing their own observations using a Sunspotter, or images from archives such as the RBSE CD-ROM (1999, 2000, T. Rector), or current images found on the Internet. They can measure each sunspot's latitude, longitude, and approximate surface area by transparent Stonyhurst grids and fine graph paper, or NIH Image or Scion Image tools. Graphing latitude vs. time shows its near constancy. Longitude increases linearly with time and allows a measure of the sun's rotation period. Area vs. time increases for some spot groups, decreases for others, and fades but revives for others. This behavior elicits a lot of questions, hypotheses, and plans for more observations. The variation of solar rotation period with latitude can be tested. Does the sun's rotation period change with month and year also? One of the oldest calendar markers is the sun's altitude at local noon. It can be measured easily with a paper scale attached to the cradle of a Sunspotter. Noticing the civil time at local noon allows one to understand the analemma. What do sunspots correlate with? Students have investigated the correlation of sunspot numbers or areas with radio bursts, visible light or x-ray flares, solar wind speed, density, or magnetic field, aurorae, geomagnetic storms, the Earth's ozone layer, aircraft flight safety, ultraviolet light, global average temperature, local daily temperature variations, power grid outages, disruptions of Earth orbiting satellites or interplanetary spacecraft, earthquakes, hurricanes, tornadoes, or other natural disasters,

  5. The Solar System Ballet: A Kinesthetic Spatial Astronomy Activity

    NASA Astrophysics Data System (ADS)

    Heyer, Inge; Slater, T. F.; Slater, S. J.; Astronomy, Center; Education ResearchCAPER, Physics

    2011-05-01

    The Solar System Ballet was developed in order for students of all ages to learn about the planets, their motions, their distances, and their individual characteristics. To teach people about the structure of our Solar System can be revealing and rewarding, for students and teachers. Little ones (and some bigger ones, too) often cannot yet grasp theoretical and spatial ideas purely with their minds. Showing a video is better, but being able to learn with their bodies, essentially being what they learn about, will help them understand and remember difficult concepts much more easily. There are three segments to this activity, which can be done together or separately, depending on time limits and age of the students. Part one involves a short introductory discussion about what students know about the planets. Then students will act out the orbital motions of the planets (and also moons for the older ones) while holding a physical model. During the second phase we look at the structure of the Solar System as well as the relative distances of the planets from the Sun, first by sketching it on paper, then by recreating a scaled version in the class room. Again the students act out the parts of the Solar System bodies with their models. The third segment concentrates on recreating historical measurements of Earth-Moon-Sun system. The Solar System Ballet activity is suitable for grades K-12+ as well as general public informal learning activities.

  6. DASL-Data and Activities for Solar Learning

    NASA Technical Reports Server (NTRS)

    Jones, Harrison P.; Henney, Carl; Hill, Frank; Gearen, Michael; Pompca, Stephen; Stagg, Travis; Stefaniak, Linda; Walker, Connie

    2004-01-01

    DASL-Data and Activities for Solar Learning Data and Activities for Solar Learning (DASL) provides a classroom learning environment based on a twenty-five year record of solar magnetograms from the National Solar Observatory (NSO) at Kitt Peak, AZ. The data, together with image processing software for Macs or PCs, can be used to learn basic facts about the Sun and astronomy at the middle school level. At the high school level, students can study properties of the Sun's magnetic cycle with classroom exercises emphasizing data and error analysis and can participate in a new scientific study, Research in Active Solar Longitudes (RASL), in collaboration with classrooms throughout the country and scientists at NSO and NASA. We present a half-day course to train teachers in the scientific content of the project and its classroom use. We will provide a compact disc with the data and software and will demonstrate software installation and use, classroom exercises, and participation in RASL with computer projection.

  7. DASL-Data and Activities for Solar Learning

    NASA Technical Reports Server (NTRS)

    Jones, Harrison P.; Henney, Carl; Hill, Frank; Gearen, Michael; Pompca, Stephen; Stagg, Travis; Stefaniak, Linda; Walker, Connie

    2004-01-01

    DASL-Data and Activities for Solar Learning Data and Activities for Solar Learning (DASL) provides a classroom learning environment based on a twenty-five year record of solar magnetograms from the National Solar Observatory (NSO) at Kitt Peak, AZ. The data, together with image processing software for Macs or PCs, can be used to learn basic facts about the Sun and astronomy at the middle school level. At the high school level, students can study properties of the Sun's magnetic cycle with classroom exercises emphasizing data and error analysis and can participate in a new scientific study, Research in Active Solar Longitudes (RASL), in collaboration with classrooms throughout the country and scientists at NSO and NASA. We present a half-day course to train teachers in the scientific content of the project and its classroom use. We will provide a compact disc with the data and software and will demonstrate software installation and use, classroom exercises, and participation in RASL with computer projection.

  8. Influence of base pressure and atmospheric contaminants on a-Si:H solar cell properties

    SciTech Connect

    Woerdenweber, J.; Schmitz, R.; Mueck, A.; Zastrow, U.; Niessen, L.; Gordijn, A.; Carius, R.; Beyer, W.; Rau, U.; Merdzhanova, T.; Stiebig, H.

    2008-11-01

    The influence of atmospheric contaminants oxygen and nitrogen on the performance of thin-film hydrogenated amorphous silicon (a-Si:H) solar cells grown by plasma-enhanced chemical vapor deposition at 13.56 MHz was systematically investigated. The question is addressed as to what degree of high base pressures (up to 10{sup -4} Torr) are compatible with the preparation of good quality amorphous silicon based solar cells. The data show that for the intrinsic a-Si:H absorber layer exists critical oxygen and nitrogen contamination levels (about 2x10{sup 19} atoms/cm{sup 3} and 4x10{sup 18} atoms/cm{sup 3}, respectively). These levels define the minimum impurity concentration that causes a deterioration in solar cell performance. This critical concentration is found to depend little on the applied deposition regime. By enhancing, for example, the flow of process gases, a higher base pressure (and leak rate) can be tolerated before reaching the critical contamination level. The electrical properties of the corresponding films show that increasing oxygen and nitrogen contamination results in an increase in dark conductivity and photoconductivity, while activation energy and photosensitivity are decreased. These effects are attributed to nitrogen and oxygen induced donor states, which cause a shift of the Fermi level toward the conduction band and presumably deteriorate the built-in electric field in the solar cells. Higher doping efficiencies are observed for nitrogen compared to oxygen. Alloying effects (formation of SiO{sub x}) are observed for oxygen contaminations above 10{sup 20} atoms/cm{sup 3}, leading to an increase in the band gap.

  9. Proton activity of the Sun in current solar cycle 24

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Miroshnichenko, Leonty I.; Fang, Cheng

    2015-07-01

    We present a study of seven large solar proton events in the current solar cycle 24 (from 2009 January up to the current date). They were recorded by the GOES spacecraft with the highest proton fluxes being over 200 pfu for energies >10 MeV. In situ particle measurements show that: (1) The profiles of the proton fluxes are highly dependent on the locations of their solar sources, namely flares or coronal mass ejections (CMEs), which confirms the “heliolongitude rules” associated with solar energetic particle fluxes; (2) The solar particle release (SPR) times fall in the decay phase of the flare emission, and are in accordance with the times when the CMEs travel to an average height of 7.9 solar radii; and (3) The time differences between the SPR and the flare peak are also dependent on the locations of the solar active regions. The results tend to support the scenario of proton acceleration by the CME-driven shock, even though there exists a possibility of particle acceleration at the flare site, with subsequent perpendicular diffusion of accelerated particles in the interplanetary magnetic field. We derive the integral time-of-maximum spectra of solar protons in two forms: a single power-law distribution and a power law roll-over with an exponential tail. It is found that the unique ground level enhancement that occurred in the event on 2012 May 17 displays the hardest spectrum and the largest roll-over energy which may explain why this event could extend to relativistic energies. Supported by the National Natural Science Foundation of China.

  10. Variations of solar irradiance due to magnetic activity

    NASA Astrophysics Data System (ADS)

    Chapman, G. A.

    The variability of the solar luminosity (as detected by the SMM Active Cavity Irradiance Monitor and by the Nimbus-7 Earth Radiation Budget experiment) and its relation to magnetic activity on the sun are discussed, reviewing the results of recent investigations. Topics addressed include the use of indirect (area-type and magnetic) luminosity measurements, direct photometry of active regions, observing programs and instrumentation, and theoretical models. Diagrams, graphs, and photographs are provided.

  11. Periodogram analysis of sunspot numbers and the relation with solar activities

    NASA Technical Reports Server (NTRS)

    Hady, Ahmed A.

    1995-01-01

    The time series of average monthly sunspot numbers during 1900-1992 is studied by using power spectral analysis. This prediction method is used to study the sunspot periodicities relations between its, and with the other periodicities by solar activities. There are periodicities (between few days and 5 years) overwhelm on the mean solar cycle. ( 11 year cycle). These periodicities have the same relation with variations of solar constant and solar radiation reaching the Earth's atmosphere in the last solar cycle. These periods are related to the solar magnetic activity and to the modulation of solar features due to solar rotation.

  12. Periodogram analysis of sunspot numbers and the relation with solar activities

    NASA Technical Reports Server (NTRS)

    Hady, Ahmed A.

    1995-01-01

    The time series of average monthly sunspot numbers during 1900-1992 is studied by using power spectral analysis. This prediction method is used to study the sunspot periodicities relations between its, and with the other periodicities by solar activities. There are periodicities (between few days and 5 years) overwhelm on the mean solar cycle. ( 11 year cycle). These periodicities have the same relation with variations of solar constant and solar radiation reaching the Earth's atmosphere in the last solar cycle. These periods are related to the solar magnetic activity and to the modulation of solar features due to solar rotation.

  13. Studies of synoptic solar activity using Kodaikanal Ca K data

    NASA Astrophysics Data System (ADS)

    Raju, K. P.

    2017-10-01

    The chromospheric network, the bright emission network seen in the chromospheric lines such as Ca ii K and Hα, outline the supergranulation cells. The Ca images are dominated by the chromospheric network and plages which are good indicators of solar activity. Further, the Ca line is a good proxy to the UV irradiance which is particularly useful in the pre-satellite era where UV measurements are not available. The Ca spectroheliograms of the Sun from Kodaikanal have a data span of about 100 years and covers over 9 solar cycles. The archival data is now available in the digitized form. Programs have been developed to obtain the activity indices and the length scales of the chromospheric network from the data. The preliminary results from the analysis are reported here. It is shown that the Ca ii K intensity and the network boundary width are dependent on the solar cycle.

  14. The reconstruction of solar activity in the context of solar dynamo modeling

    NASA Astrophysics Data System (ADS)

    Sokoloff, D.

    2017-01-01

    We discuss problems of interpretation of sunspot data for use in solar dynamo modelling. The variety of the current sunspot reconstructions of archival data creates substantial difficulties for such an endeavour. We suggest a possible strategy to avoid these problems. The point is that we have to accept the possibility of several solar activity reconstructions that are contradictory in detail, and have to compare several possible reconstructions with dynamo models. The point is that a given reconstruction may not cover all the time interval of interest because this reconstruction requires information unavailable at earlier or later times.

  15. Solar Active Longitudes from Kodaikanal White-light Digitized Data

    NASA Astrophysics Data System (ADS)

    Mandal, Sudip; Chatterjee, Subhamoy; Banerjee, Dipankar

    2017-01-01

    The study of solar active longitudes has generated great interest in recent years. In this work we have used a unique, continuous sunspot data series obtained from the Kodaikanal observatory and revisited the problem. An analysis of the data shows a persistent presence of active longitudes during the whole 90 years of data. We compared two well-studied analysis methods and presented their results. The separation between the two most active longitudes is found be roughly 180° for the majority of time. Additionally, we also find a comparatively weaker presence of separations at 90° and 270°. The migration pattern of these active longitudes as revealed by our data is found to be consistent with the solar differential rotation curve. We also study the periodicities in the active longitudes and found two dominant periods of ≈1.3 and ≈2.2 years. These periods, also found in other solar proxies, indicate their relation with the global solar dynamo mechanism.

  16. Effects of long-period solar activity fluctuation on temperature and pressure of the terrestrial atmosphere

    NASA Technical Reports Server (NTRS)

    Rubashev, B. M.

    1978-01-01

    The present state of research on the influence of solar sunspot activity on tropospheric temperature and pressure is reviewed. The existence of an 11-year temperature cycle of 5 different types is affirmed. A cyclic change in atmospheric pressure, deducing characteristic changes between 11-year cycles is discussed. The existence of 80-year and 5-to-6-year cycles of temperature is established, and physical causes for birth are suggested.

  17. Influence of crystal tilt on solar irradiance of cirrus clouds.

    PubMed

    Klotzsche, Susann; Macke, Andreas

    2006-02-10

    The single and multiple scattering and absorption properties of hexagonal ice columns with different degrees of particle orientation are modeled in the solar spectral range by means of a ray-tracing single-scattering code and a Monte Carlo radiative-transfer code. The scattering properties are most sensitive to particle orientation for the solar zenith angles of 50 degrees (asymmetry parameter) and 90 degrees (single-scattering albedo). Provided that the ice columns are horizontally oriented, the usual assumption of random orientation leads to an overestimation (underestimation) of the reflected (transmitted) solar broadband radiation at high Sun elevation and to an underestimation (overestimation) at medium solar zenith angles. The orientation effect is more (less) pronounced in scattering and transmission (absorption) for smaller ice crystals.

  18. Modelling the influence of photospheric turbulence on solar flare statistics

    NASA Astrophysics Data System (ADS)

    Mendoza, M.; Kaydul, A.; de Arcangelis, L.; Andrade, J. S., Jr.; Herrmann, H. J.

    2014-09-01

    Solar flares stem from the reconnection of twisted magnetic field lines in the solar photosphere. The energy and waiting time distributions of these events follow complex patterns that have been carefully considered in the past and that bear some resemblance with earthquakes and stockmarkets. Here we explore in detail the tangling motion of interacting flux tubes anchored in the plasma and the energy ejections resulting when they recombine. The mechanism for energy accumulation and release in the flow is reminiscent of self-organized criticality. From this model, we suggest the origin for two important and widely studied properties of solar flare statistics, including the time-energy correlations. We first propose that the scale-free energy distribution of solar flares is largely due to the twist exerted by the vorticity of the turbulent photosphere. Second, the long-range temporal and time-energy correlations appear to arise from the tube-tube interactions. The agreement with satellite measurements is encouraging.

  19. Modelling the influence of photospheric turbulence on solar flare statistics.

    PubMed

    Mendoza, M; Kaydul, A; de Arcangelis, L; Andrade, J S; Herrmann, H J

    2014-09-23

    Solar flares stem from the reconnection of twisted magnetic field lines in the solar photosphere. The energy and waiting time distributions of these events follow complex patterns that have been carefully considered in the past and that bear some resemblance with earthquakes and stockmarkets. Here we explore in detail the tangling motion of interacting flux tubes anchored in the plasma and the energy ejections resulting when they recombine. The mechanism for energy accumulation and release in the flow is reminiscent of self-organized criticality. From this model, we suggest the origin for two important and widely studied properties of solar flare statistics, including the time-energy correlations. We first propose that the scale-free energy distribution of solar flares is largely due to the twist exerted by the vorticity of the turbulent photosphere. Second, the long-range temporal and time-energy correlations appear to arise from the tube-tube interactions. The agreement with satellite measurements is encouraging.

  20. Statistical analysis of solar energetic particle events and related solar activity

    NASA Astrophysics Data System (ADS)

    Dierckxsens, Mark; Patsou, Ioanna; Tziotziou, Kostas; Marsh, Michael; Lygeros, Nik; Crosby, Norma; Dalla, Silvia; Malandraki, Olga

    2013-04-01

    The FP7 COMESEP (COronal Mass Ejections and Solar Energetic Particles: forecasting the space weather impact) project is developing tools for forecasting geomagnetic storms and solar energetic particle (SEP) radiation storms. Here we present preliminary results on a statistical analysis of SEP events and their parent solar activity during Solar Cycle 23. The work aims to identify correlations between solar events and SEP events relevant for space weather, as well as to quantify SEP event probabilities for use within the COMESEP alert system. The data sample covers the SOHO era and is based on the SEPEM reference event list [http://dev.sepem.oma.be/]. Events are subdivided if separate enhancements are observed in higher energy channels as defined for the list of Cane et al (2010). Energetic Storm Particle (ESP) enhancements during these events are identified by associating ESP-like increases in the proton channels with shocks detected in ACE and WIND data. Their contribution has been estimated and subtracted from the proton fluxes. Relationships are investigated between solar flare parameters such as X-ray intensity and heliographic location on the one hand, and the probability of occurrence and strength of energetic proton flux increases on the other hand. The same exercise is performed using the velocity and width of coronal mass ejections to examine their SEP productiveness. Relationships between solar event characteristics and SEP event spectral indices and fluences are also studied, as well as enhancements in heavy ion fluxes measured by the SIS instrument on board the ACE spacecraft during the same event periods. This work has received funding from the European Commission FP7 Project COMESEP (263252).

  1. Ancient cellular structures and modern humans: change of survival strategies before prolonged low solar activity period

    NASA Astrophysics Data System (ADS)

    Ragulskaya, Mariya; Rudenchik, Evgeniy; Gromozova, Elena; Voychuk, Sergei; Kachur, Tatiana

    The study of biotropic effects of modern space weather carries the information about the rhythms and features of adaptation of early biological systems to the outer space influence. The influence of cosmic rays, ultraviolet waves and geomagnetic field on early life has its signs in modern biosphere processes. These phenomena could be experimentally studied on present-day biological objects. Particularly inorganic polyphosphates, so-called "fossil molecules", attracts special attention as the most ancient molecules which arose in inanimate nature and have been accompanying biological objects at all stages of evolution. Polyphosphates-containing graves of yeast's cells of Saccharomyces cerevisiae strain Y-517, , from the Ukrainian Collection of Microorganisms was studied by daily measurements during 2000-2013 years. The IZMIRAN daily data base of physiological parameters dynamics during 2000-2013 years were analyzed simultaneously (25 people). The analysis showed significant simultaneous changes of the statistical parameters of the studied biological systems in 2004 -2006. The similarity of simultaneous changes of adaptation strategies of human organism and the cell structures of Saccharomyces cerevisiae during the 23-24 cycles of solar activity are discussed. This phenomenon could be due to a replacement of bio-effective parameters of space weather during the change from 23rd to 24th solar activity cycle and nonstandard geophysical peculiarities of the 24th solar activity cycle. It could be suggested that the observed similarity arose as the optimization of evolution selection of the living systems in expectation of probable prolonged period of low solar activity (4-6 cycles of solar activity).

  2. Evidence of plasma heating in solar microflares during the minimum of solar activity

    NASA Astrophysics Data System (ADS)

    Kirichenko, Alexey; Bogachev, Sergey

    We present a statistical study of 80 solar microflares observed during the deep minimum of solar activity between 23 and 24 solar cycles. Our analysis covers the following characteristics of the flares: thermal energy of flaring plasma, its temperature and its emission measure in soft X-rays. The data were obtained during the period from April to July of 2009, which was favorable for observations of weak events because of very low level of solar activity. The most important part of our analysis was an investigation of extremely weak microflares corresponding to X-ray class below A1.0. We found direct evidence of plasma heating in more than 90% of such events. Temperature of flaring plasma was determined under the isothermal approximation using the data of two solar instruments: imaging spectroheliometer MISH onboard Coronas-Photon spacecraft and X-ray spectrophotometer SphinX operating in energy range 0.8 - 15 keV. The main advantage of MISH is the ability to image high temperature plasma (T above 4 MK) without a low-temperature background. The SphinX data was selected due to its high sensitivity, which makes available the registration of X-ray emission from extremely weak microflares corresponding GOES A0.1 - A0.01 classes. The temperature we obtained lies in the range from 2.6 to 13.6 MK, emission measure, integrated over the range 1 - 8 Å - 2.7times10(43) - 4.9times10(47) cm (-3) , thermal energy of flaring region - 5times10(26) - 1.6times10(29) erg. We compared our results with the data obtained by Feldman et. al. 1996 and Ryan et. al. 2012 for solar flares with X-ray classes above A2.0 and conclude that the relation between X-ray class of solar flare and its temperature is strongly different for ordinary flares (above A2.0) and for weak microflares (A0.01 - A2.0). Our result supports the idea that weak solar events (microflares and nanoflares) may play significant a role in plasma heating in solar corona.

  3. Indonesia Stratosphere and Troposphere Response to Solar Activity Variations

    NASA Astrophysics Data System (ADS)

    Sinambela, Wilson; Muh, La Ode; Musafar, K.; Sutastio, Heri

    2000-10-01

    Tropospheric and stratospheric response of Indonesia to the solar activity was analyzed based on the stratospheric total ozone concentrations above Watukosek station (07,6 deg S, 112,5 deg E) from 1979 to 1992, and tropospheric temperature at tropopause geopotential height, 500 mBar, 700 mbar above Cengkareng - Jakarta station (06 deg) 07 min 37 sec S, 106 deg 39 min 28 sec E) from 1986 to 1992, and ground surface air temperature above Polonia Median (03 deg 34 sec N, 98 deg 41 min E) and Kemayoran - Jakarta station (06 deg 09 min S 106 deg 51 min E) from 1979 - 1989. By using the moving average analysis of monthly average this tropospheric and stratospheric variable, were found that the behavior of the time series of the stratospheric ozone concentration, tropospheric temperature at geopotential height tropopause, 500 mBar, 700 mBar and ground surface air temperature above Indonesia showed a tendency to vary with a period of about 22 - 32 months. This is so - called " Quasi Biennial" (Q B 0). The behavior of the relative sunspot numbers and / or F 10,7 Cm solar radio flux as the measure of the solar activity also showed a tendency to vary Quasi - Biennially with a period about 27 - 30 months which was superimposed to the eleven - year solar cycle variations. The source of the variations was predicted from the inside of the sun, since the experiment showed that the neutrino flux from the sun varies with a period almost equal to the Quasi - Biennial variations of the solar activity. The Quasi - Biennial variations of the solar activity seems produce a similar variations on the earth atmospheric phenomena such as the stratospheric total ozone concentrations, mean tropospheric temperature at geopotential tropopause height, 500 mBar, 700 mBar, and mean ground surface air temperature above Indonesia.

  4. E region electric field dependence of the solar activity

    NASA Astrophysics Data System (ADS)

    Denardini, C. M.; Moro, J.; Resende, L. C. A.; Chen, S. S.; Schuch, N. J.; Costa, J. E. R.

    2015-10-01

    We have being studying the zonal and vertical E region electric field components inferred from the Doppler shifts of type 2 echoes (gradient drift irregularities) detected with the 50 MHz backscatter coherent radar set at São Luis, Brazil (SLZ, 2.3°S, 44.2°W) during the solar cycle 24. In this report we present the dependence of the vertical and zonal components of this electric field with the solar activity, based on the solar flux F10.7. For this study we consider the geomagnetically quiet days only (Kp ≤ 3+). A magnetic field-aligned-integrated conductivity model was developed for proving the conductivities, using the IRI-2007, the MISIS-2000, and the IGRF-11 models as input parameters for ionosphere, neutral atmosphere, and Earth magnetic field, respectively. The ion-neutron collision frequencies of all the species are combined through the momentum transfer collision frequency equation. The mean zonal component of the electric field, which normally ranged from 0.19 to 0.35 mV/m between the 8 and 18 h (LT) in the Brazilian sector, show a small dependency with the solar activity. Whereas the mean vertical component of the electric field, which normally ranges from 4.65 to 10.12 mV/m, highlights the more pronounced dependency of the solar flux.

  5. Solar activity and its evolution across the corona: recent advances

    NASA Astrophysics Data System (ADS)

    Zuccarello, Francesca; Balmaceda, Laura; Cessateur, Gael; Cremades, Hebe; Guglielmino, Salvatore L.; Lilensten, Jean; Dudok de Wit, Thierry; Kretzschmar, Matthieu; Lopez, Fernando M.; Mierla, Marilena; Parenti, Susanna; Pomoell, Jens; Romano, Paolo; Rodriguez, Luciano; Srivastava, Nandita; Vainio, Rami; West, Matt; Zuccarello, Francesco P.

    2013-04-01

    Solar magnetism is responsible for the several active phenomena that occur in the solar atmosphere. The consequences of these phenomena on the solar-terrestrial environment and on Space Weather are nowadays clearly recognized, even if not yet fully understood. In order to shed light on the mechanisms that are at the basis of the Space Weather, it is necessary to investigate the sequence of phenomena starting in the solar atmosphere and developing across the outer layers of the Sun and along the path from the Sun to the Earth. This goal can be reached by a combined multi-disciplinary, multi-instrument, multi-wavelength study of these phenomena, starting with the very first manifestation of solar active region formation and evolution, followed by explosive phenomena (i.e., flares, erupting prominences, coronal mass ejections), and ending with the interaction of plasma magnetized clouds expelled from the Sun with the interplanetary magnetic field and medium. This wide field of research constitutes one of the main aims of COST Action ES0803: Developing Space Weather products and services in Europe. In particular, one of the tasks of this COST Action was to investigate the Progress in Scientific Understanding of Space Weather. In this paper we review the state of the art of our comprehension of some phenomena that, in the scenario outlined above, might have a role on Space Weather, focusing on the researches, thematic reviews, and main results obtained during the COST Action ES0803.

  6. The QBO and weak external forcing by solar activity: A three dimensional model study

    NASA Technical Reports Server (NTRS)

    Dameris, M.; Ebel, A.

    1989-01-01

    A better understanding is attempted of the physical mechanisms leading to significant correlations between oscillations in the lower and middle stratosphere and solar variability associated with the sun's rotation. A global 3-d mechanistic model of the middle atmosphere is employed to investigate the effects of minor artificially induced perturbations. The aim is to explore the physical mechanisms of the dynamical response especially of the stratosphere to weak external forcing as it may result from UV flux changes due to solar rotation. First results of numerical experiments dealing about the external forcing of the middle atmosphere by solar activity were presented elsewhere. Different numerical studies regarding the excitation and propagation of weak perturbations have been continued since then. The model calculations presented are made to investigate the influence of the quasi-biennial oscillation (QBO) on the dynamical response of the middle atmosphere to weak perturbations by employing different initial wind fields which represent the west and east phase of the QBO.

  7. Are Solar Activity Variations Amplified by the QBO: A Modeling Study

    NASA Technical Reports Server (NTRS)

    Mengel, J. G.; Mayr, H. G.; Drob, D. P.; Porter, H. S.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Solar cycle activity effects (SCAE) in the lower and middle atmosphere, reported in several studies, are difficult to explain on the basis of the small changes in solar radiation that accompany the 11-year cycle. It is therefore natural to speculate that dynamical processes may come into play to produce a leverage. Such a leverage may be provided by the Quasi-Biennial Oscillation (QBO) in the zonal circulation of the stratosphere, which has been linked to solar activity variations. Driven primarily by wave mean flow interaction, the QBO period and its amplitude are variable but are also strongly influenced by the seasonal cycle in the solar radiation. This influence extends to low altitudes and is referred to as 'downward control'. Small changes in the solar radiative forcing may produce small changes in the period and phase of the QBO, but these in turn may produce measurable differences in the wind field. Thus, the QBO may be an amplifier of solar activity variations and a natural conduit of these variations to lower altitudes. To test this hypothesis, we conducted experiments with a 2D version of our Numerical Spectral Model that incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). Solar cycle radiance variations (SCRV) are accounted for by changing the radiative heating rate on a logarithmic scale from 0.1% at the surface to 1% at 50 km to 10% at 100 km. With and without SCRV, but with the same GW flux, we then conduct numerical experiments to evaluate the magnitude of the SCAE in the zonal circulation. The numerical results indicate that, under certain conditions, the SCAE is significant and can extend to lower altitudes where the SCRV is small. For a modeled QBO period of 30 months, we find that the seasonal cycle in the solar forcing acts as a strong pacemaker to lock up the phase and period of the QBO. The SCAE then shows up primarily as a distinct but relatively weak amplitude modulation. But with a different QBO period

  8. Are Solar Activity Variations Amplified by the QBO: A Modeling Study

    NASA Technical Reports Server (NTRS)

    Mengel, J. G.; Mayr, H. G.; Drob, D. P.; Porter, H. S.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Solar cycle activity effects (SCAE) in the lower and middle atmosphere, reported in several studies, are difficult to explain on the basis of the small changes in solar radiation that accompany the 11-year cycle. It is therefore natural to speculate that dynamical processes may come into play to produce a leverage. Such a leverage may be provided by the Quasi-Biennial Oscillation (QBO) in the zonal circulation of the stratosphere, which has been linked to solar activity variations. Driven primarily by wave mean flow interaction, the QBO period and its amplitude are variable but are also strongly influenced by the seasonal cycle in the solar radiation. This influence extends to low altitudes and is referred to as 'downward control'. Small changes in the solar radiative forcing may produce small changes in the period and phase of the QBO, but these in turn may produce measurable differences in the wind field. Thus, the QBO may be an amplifier of solar activity variations and a natural conduit of these variations to lower altitudes. To test this hypothesis, we conducted experiments with a 2D version of our Numerical Spectral Model that incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). Solar cycle radiance variations (SCRV) are accounted for by changing the radiative heating rate on a logarithmic scale from 0.1% at the surface to 1% at 50 km to 10% at 100 km. With and without SCRV, but with the same GW flux, we then conduct numerical experiments to evaluate the magnitude of the SCAE in the zonal circulation. The numerical results indicate that, under certain conditions, the SCAE is significant and can extend to lower altitudes where the SCRV is small. For a modeled QBO period of 30 months, we find that the seasonal cycle in the solar forcing acts as a strong pacemaker to lock up the phase and period of the QBO. The SCAE then shows up primarily as a distinct but relatively weak amplitude modulation. But with a different QBO period

  9. GLOBAL DYNAMICS OF SUBSURFACE SOLAR ACTIVE REGIONS

    SciTech Connect

    Jouve, L.; Brun, A. S.

    2013-01-01

    We present three-dimensional numerical simulations of a magnetic loop evolving in either a convectively stable or unstable rotating shell. The magnetic loop is introduced into the shell in such a way that it is buoyant only in a certain portion in longitude, thus creating an {Omega}-loop. Due to the action of magnetic buoyancy, the loop rises and develops asymmetries between its leading and following legs, creating emerging bipolar regions whose characteristics are similar to those of observed spots at the solar surface. In particular, we self-consistently reproduce the creation of tongues around the spot polarities, which can be strongly affected by convection. We further emphasize the presence of ring-shaped magnetic structures around our simulated emerging regions, which we call 'magnetic necklace' and which were seen in a number of observations without being reported as of today. We show that those necklaces are markers of vorticity generation at the periphery and below the rising magnetic loop. We also find that the asymmetry between the two legs of the loop is crucially dependent on the initial magnetic field strength. The tilt angle of the emerging regions is also studied in the stable and unstable cases and seems to be affected both by the convective motions and the presence of a differential rotation in the convective cases.

  10. Intermittency of the Solar Magnetic Field and Solar Magnetic Activity Cycle

    NASA Astrophysics Data System (ADS)

    Shibalova, A. S.; Obridko, V. N.; Sokoloff, D. D.

    2017-03-01

    Small-scale solar magnetic fields demonstrate features of fractal intermittent behavior, which requires quantification. For this purpose we investigate how the observational estimate of the solar magnetic flux density B depends on resolution D in order to obtain the scaling ln BD = - k ln D +a in a reasonably wide range. The quantity k demonstrates cyclic variations typical of a solar activity cycle. In addition, k depends on the magnetic flux density, i.e. the ratio of the magnetic flux to the area over which the flux is calculated, at a given instant. The quantity a demonstrates some cyclic variation, but it is much weaker than in the case of k. The scaling obtained generalizes previous scalings found for the particular cycle phases. The scaling is typical of fractal structures. In our opinion, the results obtained trace small-scale action in the solar convective zone and its coexistence with the conventional large-scale solar dynamo based on differential rotation and mirror-asymmetric convection.

  11. Seismic Holography of the Solar Interior near the Maximum and Minimum of Solar Activity

    NASA Astrophysics Data System (ADS)

    Díaz Alfaro, M.; Pérez Hernández, F.; González Hernández, I.; Hartlep, T.

    2016-05-01

    The base of the convection zone and the tachocline play a major role in the study of the dynamics of the Sun, especially in the solar dynamo. Here, we present a phase-sensitive helioseismic holography method to infer changes in the sound-speed profile of the solar interior. We test the technique using numerically simulated data by Zhao et al. ( Astrophys. J. 702, 1150, 2009) with sound-speed perturbations at 0.7 R_{⊙}. The technique adequately recovers the perturbed sound-speed profile and is seen to be capable of detecting changes in the sound speed as low as 0.05 %. We apply the method to two GONG solar time series of approximately one year, each comprising 13 Bartels rotations, BR2295-BR2307 and BR2387-BR2399, near the maximum and at a minimum of solar activity, respectively. We successfully recover a sound-speed variation with respect to a standard solar model, consistent with previous results. However, we fail to recover a realistic sound-speed variation between maximum and minimum.

  12. A Solar Station for Education and Research on Solar Activity at a National University in Peru

    NASA Astrophysics Data System (ADS)

    Ishitsuka, J. K.

    2006-11-01

    pepe@geo.igp.gob.pe Beginning in 1937, the Carnegie Institution of Washington made active regional observations with a spectro-helioscope at the Huancayo Observatory. In 1957, during the celebration of the International Geophysical Year Mutsumi Ishitsuka arrived at the Geophysical Institute of Peru and restarted solar observations from the Huancayo Observatory. Almost 69 years have passed and many contributions for the geophysical and solar sciences have been made. Now the Instituto Geofisico del Peru (IGP), in cooperation with the Faculty of Sciences of the Universidad Nacional San Luis Gonzaga de Ica (UNICA), and with the support of the National Astronomical Observatory of Japan, are planning to construct a solar station refurbishing a coelostat that worked for many years at the Huancayo Observatory. A 15 cm refractor telescope is already installed at the university, for the observation of sunspots. A solar Flare Monitor Telescope (FMT) from Hida Observatory of Kyoto University could be sent to Peru and installed at the solar station at UNICA. As the refurbished coelostat, FMT will become a good tool to improve education and research in sciences.

  13. An astro-comb calibrated solar telescope to study solar activity and search for the radial velocity signature of Venus

    NASA Astrophysics Data System (ADS)

    Phillips, David; HARPS-N Collaboration

    2017-01-01

    We recently demonstrated sub-m/s sensitivity in measuring the radial velocity (RV) between the Earth and Sun using a simple solar telescope feeding the HARPS-N spectrograph at the Italian National Telescope, which is calibrated with a laser frequency comb calibrator optimized for calibrating high resolution spectrographs and referred to as an astro-comb. We are using the solar telescope to characterize the effects of stellar (solar) RV jitter due to activity on the solar surface over the course of many hours every clear day. With the help of solar satellites such as the Solar Dynamics Observatory (SDO), we are characterizing the correlation between observed RV and detailed imaging of the solar photosphere. We plan to use these tools to mitigate the effects of stellar jitter with the goal of the detection of Venus from its solar RV signature, thus showing the potential of the RV technique to detect true Earth-twins.

  14. Long-Range Solar Activity Predictions: A Reprieve from Cycle #24's Activity

    NASA Technical Reports Server (NTRS)

    Richon, K.; Schatten, K.

    2003-01-01

    We discuss the field of long-range solar activity predictions and provide an outlook into future solar activity. Orbital predictions for satellites in Low Earth Orbit (LEO) depend strongly on exospheric densities. Solar activity forecasting is important in this regard, as the solar ultra-violet (UV) and extreme ultraviolet (EUV) radiations inflate the upper atmospheric layers of the Earth, forming the exosphere in which satellites orbit. Rather than concentrate on statistical, or numerical methods, we utilize a class of techniques (precursor methods) which is founded in physical theory. The geomagnetic precursor method was originally developed by the Russian geophysicist, Ohl, using geomagnetic observations to predict future solar activity. It was later extended to solar observations, and placed within the context of physical theory, namely the workings of the Sun s Babcock dynamo. We later expanded the prediction methods with a SOlar Dynamo Amplitude (SODA) index. The SODA index is a measure of the buried solar magnetic flux, using toroidal and poloidal field components. It allows one to predict future solar activity during any phase of the solar cycle, whereas previously, one was restricted to making predictions only at solar minimum. We are encouraged that solar cycle #23's behavior fell closely along our predicted curve, peaking near 192, comparable to the Schatten, Myers and Sofia (1996) forecast of 182+/-30. Cycle #23 extends from 1996 through approximately 2006 or 2007, with cycle #24 starting thereafter. We discuss the current forecast of solar cycle #24, (2006-2016), with a predicted smoothed F10.7 radio flux of 142+/-28 (1-sigma errors). This, we believe, represents a reprieve, in terms of reduced fuel costs, etc., for new satellites to be launched or old satellites (requiring reboosting) which have been placed in LEO. By monitoring the Sun s most deeply rooted magnetic fields; long-range solar activity can be predicted. Although a degree of uncertainty

  15. Analysis of Solar Magnetic Activity with the Wavelet Coherence Method

    NASA Astrophysics Data System (ADS)

    Velasco, V. M.; Perez-Peraza, J. A.; Mendoza, B. E.; Valdes-Galicia, J. F.; Sosa, O.; Alvarez-Madrigal, M.

    2007-05-01

    The origin, behavior and evolution of the solar magnetic field is one of the main challenges of observational and theoretical solar physics. Up to now the Dynamo theory gives us the best approach to the problem. However, it is not yet able to predict many features of the solar activity, which seems not to be strictly a periodical phenomenon. Among the indicators of solar magnetic variability there is the 11-years cycle of sunspots, as well as the solar magnetic cycle of 22 years (the Hale cycle). In order to provide more elements to the Dynamo theory that could help it in the predicting task, we analyze here the plausible existence of other periodicities associated with the solar magnetic field. In this preliminary work we use historical data (sunspots and aurora borealis), proxies (Be10 and C14) and modern instrumental data (Coronal Holes, Cosmic Rays, sunspots, flare indexes and solar radio flux at 10.7 cm). To find relationships between different time-frequency series we have employed the t Wavelet Coherence technique: this technique indicates if two time-series of solar activity have the same periodicities in a given time interval. If so, it determines whether such relation is a linear one or not. Such a powerful tool indicates that, if some periodicity at a given frequency has a confidence level below 95%, it appears very lessened or does not appear in the Wavelet Spectral Analysis, such periodicity does not exist . Our results show that the so called Glaisberg cycle of 80-90 years and the periodicity of 205 years (the Suess cycle) do not exist . It can be speculated that such fictitious periodicities hav been the result of using the Fourier transform with series with are not of stationary nature, as it is the case of the Be10 and C14 series. In contrast we confirm the presence of periodicities of 1.3, 1.7, 3.5, 5.5, 7, 60, 120 and 240 years. The concept of a Glaisberg cycle falls between those of 60 and 120 years. We conclude that the periodicity of 120 years

  16. Optimisation of concentrating solar cell systems with passive and active cooling

    NASA Astrophysics Data System (ADS)

    Blumenberg, J.

    This paper reports on solar cell systems with concentrating mirrors. With silicon-solar-cells, a concentration of the solar radiation is suitable only for missions far from the Sun. With gallium-ansenide solar-cells concentration is suitable by all means. Active cooling of solar cell systems with concentrated solar radiation does not result in improved optimum specific masses of the system against passive cooling.

  17. Stratospheric condensation nuclei variations may relate to solar activity

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.

    1982-01-01

    Observations of increases of stratospheric condensation nuclei suggest a photo-initiated sulphuric acid vapour formation process in spring in polar regions. It is proposed that the sulphuric acid rapidly forms condensation nuclei through attachment to negatively charged multi-ion complexes and that the process may be modulated through variations in solar activity.

  18. Chromospheric Magnetic Field of Exploding Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Choudhary, Debi P.

    2013-07-01

    How changes in the three-dimensional magnetic field of solar active region are related to Coronal Mass Ejections (CME) is an important question for contemporary solar physics. Complex active regions are the predominant source of powerful high-speed CMEs, which can result in strong geomagnetic storms. In this paper we present the properties of chromospheric magnetic field of active regions that produced solar flares and CMEs using observations of the Synoptic Optical Long-term Investigations of the Sun (SOLIS) facility operated by the National Solar Observatory. Currently, the SOLIS Vector Spectromagnetograph (VSM) is the only instrument that is capable of obtaining full Stokes profiles in both the photospheric Fe I λ630.2 nm and chromospheric Ca II λ854.2 nm lines on a daily basis. VSM also has the capability of making rapid scans covering an area sufficiently large to contain an active region. We shall present the Stokes profile characteristics of photospheric and chromospheric lines of few CME source regions.

  19. Chromospheric Magnetic Field of Exploding Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Choudhary, Debi Prasad

    How changes in the three-dimensional magnetic field of solar active region are related to Coronal Mass Ejections (CME) is an important question for contemporary solar physics. Complex active regions are the predominant source of powerful high-speed CMEs, which can result in strong geomagnetic storms. In this paper we present the properties of chromospheric magnetic field of active regions that produced solar flares and CMEs using observations of the Synoptic Optical Long-term Investigations of the Sun (SOLIS) facility operated by the National Solar Observatory. Currently, the SOLIS Vector Spectromagnetograph (VSM) is the only instrument that is capable of obtaining full Stokes profiles in both the photospheric Fe I 630.2 nm and chromospheric Ca II 854.2 nm lines on a daily basis. VSM also has the capability of making rapid scans covering an area sufficiently large to contain an active region. We shall present the Stokes profile characteristics of photospheric and chromospheric lines of few CME source regions.

  20. Stratospheric condensation nuclei variations may relate to solar activity

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.

    1982-01-01

    Observations of increases of stratospheric condensation nuclei suggest a photo-initiated sulphuric acid vapour formation process in spring in polar regions. It is proposed that the sulphuric acid rapidly forms condensation nuclei through attachment to negatively charged multi-ion complexes and that the process may be modulated through variations in solar activity.

  1. A solar cycle timing predictor - The latitude of active regions

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1990-01-01

    A 'Spoerer butterfly' method is used to examine solar cycle 22. It is shown from the latitude of active regions that the cycle can now be expected to peak near November 1989 + or - 8 months, basically near the latter half of 1989.

  2. A solar cycle timing predictor - The latitude of active regions

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1990-01-01

    A 'Spoerer butterfly' method is used to examine solar cycle 22. It is shown from the latitude of active regions that the cycle can now be expected to peak near November 1989 + or - 8 months, basically near the latter half of 1989.

  3. Connection between solar activity cycles and grand minima generation

    NASA Astrophysics Data System (ADS)

    Vecchio, A.; Lepreti, F.; Laurenza, M.; Alberti, T.; Carbone, V.

    2017-03-01

    Aims: The revised dataset of sunspot and group numbers (released by WDC-SILSO) and the sunspot number reconstruction based on dendrochronologically dated radiocarbon concentrations have been analyzed to provide a deeper characterization of the solar activity main periodicities and to investigate the role of the Gleissberg and Suess cycles in the grand minima occurrence. Methods: Empirical mode decomposition (EMD) has been used to isolate the time behavior of the different solar activity periodicities. A general consistency among the results from all the analyzed datasets verifies the reliability of the EMD approach. Results: The analysis on the revised sunspot data indicates that the highest energy content is associated with the Schwabe cycle. In correspondence with the grand minima (Maunder and Dalton), the frequency of this cycle changes to longer timescales of 14 yr. The Gleissberg and Suess cycles, with timescales of 60-120 yr and 200-300 yr, respectively, represent the most energetic contribution to sunspot number reconstruction records and are both found to be characterized by multiple scales of oscillation. The grand minima generation and the origin of the two expected distinct types of grand minima, Maunder and longer Spörer-like, are naturally explained through the EMD approach. We found that the grand minima sequence is produced by the coupling between Gleissberg and Suess cycles, the latter being responsible for the most intense and longest Spörer-like minima (with typical duration longer than 80 yr). Finally, we identified a non-solar component, characterized by a very long scale oscillation of 7000 yr, and the Hallstatt cycle ( 2000 yr), likely due to the solar activity. Conclusions: These results provide new observational constraints on the properties of the solar cycle periodicities, the grand minima generation, and thus the long-term behavior of the solar dynamo.

  4. Solar activity variations of nighttime ionospheric peak electron density

    NASA Astrophysics Data System (ADS)

    Chen, Yiding; Liu, Libo; Le, Huijun

    2008-11-01

    Monthly median NmF2 (maximum electron density of the F2-layer) data at Okinawa, Yamagawa, Kokubunji, and Wakkanai have been collected to investigate the solar activity dependence of the nighttime ionosphere. The result shows that there are seasonal and latitudinal differences of the solar activity variation of nighttime NmF2. The main seasonal effects are as follows: nighttime NmF2 increases with F107 linearly in equinoctial months (March and September), and it tends to saturate with F107 increasing in summer solstice month (June). What is peculiar is that there is an amplification trend of nighttime NmF2 with F107 in winter solstice month (December). The latitudinal difference is mainly displayed by the evolvement course of the variation trend between NmF2 and F107. Using hmF2 (peak height of the F2-layer) data and the NRLMSISE00 model, we estimated the recombination loss around the F2-peak at different solar activity levels. We found that the solar activity variation of the recombination processes around the F2-peak also shows seasonal dependence, which can explain the variation trends of nighttime NmF2 with F107 qualitatively, and field-aligned plasma influx plays an important role in the equatorial ionization anomaly (EIA) crest region. During the first several hours following sunset in December, there are faster recombination processes around the F2-peak at medium solar activity level in mid-latitude regions. This feature is suggested to be responsible for inducing the amplification trend in winter. In virtue of the calculation of neutral parameters at 300-km altitude and hmF2 data, the variation trend of the recombination processes around the F2-peak with F107 can be explained. It shows that both the solar activity variations of hmF2 and neutral parameters (neutral temperature, density, and vibrational excited N2) are important for the variation trend of nighttime NmF2 with F107. Furthermore, the obvious uplift of hmF2 at low solar activity level following

  5. Interplanetary proton flux and solar wind conditions for different solar activities interacting with spacecraft and astronauts in space

    NASA Astrophysics Data System (ADS)

    Nejat, Cyrus

    2014-01-01

    The goal of this research is to determine the interplanetary proton flux and solar wind conditions by using data from several satellites such as Advanced Composition Explorer (ACE), Geostationary Operational Environmental Satellites (GOES) in particular GOES 9, GOES 11, GOES 12, GOES 13, and Solar Heliospheric Observatory (SOHO) to determine proton flux in different solar wind conditions. The data from above satellites were used to determine space weather conditions in which the goals are to evaluate proton fluxes for four periods of solar cycle activity: a solar cycle 23/24 minimum (2008), close to a solar cycle 22/23 minimum (1997), with intermediate activity (2011) and for about maximum activity for the cycle 23 (2003), to compare data of two period of solar cycle in 2003 and 2008 (Max vs. Min), to compare data of two period of solar cycle in 1997 and 2008 (Min vs. Min), to compare soft X-ray flux from SOHO with proton 1-10 MeV flux from GOES 9 for strong flare in 1997. To conclude the above evaluations are being used to determine the interaction between the space weather conditions and the following consequences of these conditions important for astronautics and everyday human activity: 1- Satellite and Spacecraft charging, 2-Dangerous conditions for onboard electronics and astronauts during strong solar flare events, and 3- Total Electron Content (TEC), Global Positioning System (GPS), and radio communication problems related to solar activity.

  6. Hot spots and active longitudes: Organization of solar activity as a probe of the interior

    NASA Technical Reports Server (NTRS)

    Bai, Taeil; Hoeksema, J. Todd; Scherrer, Phil H.

    1995-01-01

    In order to investigate how solar activity is organized in longitude, major solar flares, large sunspot groups, and large scale photospheric magnetic field strengths were analyzed. The results of these analyses are reported. The following results are discussed: hot spots, initially recognized as areas of high concentration of major flares, are the preferred locations for the emergence of big sunspot groups; double hot spots appear in pairs that rotate at the same rate separated by about 180 deg in longitude, whereas, single hot spots have no such companions; the northern and southern hemispheres behave differently in organizing solar activity in longitude; the lifetime of hot spots range from one to several solar cycles; a hot spot is not always active throughout its lifetime, but goes through dormant periods; and hot spots with different rotational periods coexist in the same hemisphere during the same solar cycle.

  7. Periodicities in the north-south asymmetry of solar activity

    NASA Astrophysics Data System (ADS)

    Vizoso, G.; Ballester, J. L.

    1989-09-01

    A Blackman-Tukey power spectrum is performed on the values of the north-south asymmetry in the sudden disappearance of solar prominences, and the results are reported. The findings confirm the proposed existence of a periodicity of around 11 years and fails to confirm another short periodicity of around 2.3 years. The results of the power spectrum performed using values of the flare number and flare index north-south asymmetry provide a significant peak of 3.1-3.2 years. This short periodicity could be related to those found by Ramanuja Rao (1973) in several indices of solar activity.

  8. MSFC solar activity predictions for satellite orbital lifetime estimation

    NASA Technical Reports Server (NTRS)

    Fuler, H. C.; Lundquist, C. A.; Vaughan, W. W.

    1979-01-01

    The procedure to predict solar activity indexes for use in upper atmosphere density models is given together with an example of the performance. The prediction procedure employs a least square linear regression model to generate the predicted smoothed vinculum R sub 13 and geomagnetic vinculum A sub p(13) values. Linear regression equations are then employed to compute corresponding vinculum F sub 10.7(13) solar flux values from the predicted vinculum R sub 13 values. The output is issued principally for satellite orbital lifetime estimations.

  9. Magnetic field variations and seismicity of solar active regions

    NASA Astrophysics Data System (ADS)

    Martínez-Oliveros, J. C.; Donea, A.-C.

    2009-05-01

    Dynamical changes in the solar corona have proven to be very important in inducing seismic waves into the photosphere. Different mechanisms for their generation have been proposed. In this work, we explore the magnetic field forces as plausible mechanisms to generate sunquakes as proposed by Hudson, Fisher & Welsch. We present a spatial and temporal analysis of the line-of-sight magnetic field variations induced by the seismically active 2003 October 29 and 2005 January 15 solar flares and compare these results with other supporting observations.

  10. Migration and Extension of Solar Active Longitudinal Zones

    NASA Astrophysics Data System (ADS)

    Gyenge, N.; Baranyi, T.; Ludmány, A.

    2014-02-01

    Solar active longitudes show a characteristic migration pattern in the Carrington coordinate system if they can be identified at all. By following this migration, the longitudinal activity distribution around the center of the band can be determined. The half-width of the distribution is found to be varying in Cycles 21 - 23, and in some time intervals it was as narrow as 20 - 30 degrees. It was more extended around a maximum but it was also narrow when the activity jumped to the opposite longitude. Flux emergence exhibited a quasi-periodic variation within the active zone with a period of about 1.3 years. The path of the active-longitude migration does not support the view that it might be associated with the 11-year solar cycle. These results were obtained for a limited time interval of a few solar cycles and, bearing in mind uncertainties of the migration-path definition, are only indicative. For the major fraction of the dataset no systematic active longitudes were found. Sporadic migration of active longitudes was identified only for Cycles 21 - 22 in the northern hemisphere and Cycle 23 in the southern hemisphere.

  11. Influence of solar heating on the performance of integrated solar cell microstrip patch antennas

    SciTech Connect

    Roo-Ons, M.J.; Shynu, S.V.; Ammann, M.J.; Seredynski, M.; McCormack, S.J.; Norton, B.

    2010-09-15

    The integration of microstrip patch antennas with photovoltaics has been proposed for applications in autonomous wireless communication systems located on building facades. Full integration was achieved using polycrystalline silicon solar cells as both antenna ground plane and direct current power generation in the same device. An overview of the proposed photovoltaic antenna designs is provided and the variation characterised of the electromagnetic properties of the device with temperature and solar radiation. Measurements for both copper and solar antennas are reported on three different commercial laminates with contrasting values for thermal coefficient of the dielectric constant. (author)

  12. No link between the solar activity cycle and the diameter

    NASA Astrophysics Data System (ADS)

    Dame, L.; Cugnet, D.

    We do not understand the physical mechanisms responsible for the solar irradiance cycle. Measurements of small variations in the solar diameter could have been a critical probe of the Sun 's interior stratification, telling us how and where the solar luminosity is gated or stored. We have reanalyzed the 7 years of filtregrams data (150 000 photograms and magnetograms) of the SOHO/MDI experiment. We used the maximum possible sampling compatible with full frame recording, carefully avoiding any suspicious filtregram. Going further than the previous analysis of 2 years of data by Emilio et al. (Ap. J. 543,1007, 2000), we better corrected for changes in optical aberrations and, along Turmon et al. (Ap. J., 568, 396, 2002), we reduced radius measurement errors by identifying active regions and avoiding radius measurements herein. We found that, within the limit of our noise level uncertainties (2 mas), the solar diameter could be constant over the half cycle investigated. Our results confirm the recent reanalysis of the 7 years of MDI data made by Antia (Ap. J. 590, 567, 2003), with a completely different method since using the ultra-precise frequency variation of the f-modes (fundamental modes linked to the diameter). He found (carefully removing the yearly Earth induced variations and avoiding the SOHO data gap of 1999) that the diameter is constant over the half solar cycle (radius variation are less than 0.6 km, 0.8 mas - nothing over noise level). Along Antia, we can conclude that: "If a careful analysis is performed, then it turns out that there is no evidence for any variation in the solar radius." There were no theoretical reasons for large solar radius variations and there is no observational evidence for them with consistent space observations. If changes exit, they are to be very small.

  13. Using the SDO Atmospheric Imaging Assembly to Study Solar Activity

    NASA Astrophysics Data System (ADS)

    Lemen, James

    2014-01-01

    The Atmospheric Imaging Assembly (AIA) is one of the instruments on board NASA’s flagship Solar Dynamics Observatory (SDO) mission that was launched in February 2010. AIA achieves 1.5 arcsec spatial resolution of the entire solar corona with 12-second temporal resolution in seven extreme ultraviolet (EUV) band passes centered on specific lines: Fe XVIII (94 Å), Fe VIII, XXI (131 Å), Fe IX (171 Å), Fe XII, XXIV (193 Å), Fe XIV (211 Å), He II (304 Å) and Fe XVI (335 Å) one band pass observes C IV (near 1600 Å). In the past 3 years AIA has produced over 77M images and 1,200 Tbytes of data that have challenged and clarified our understanding of the solar corona, specifically how the solar magnetic field drives coronal evolution on various scales. Multi-temperature, low-noise, full-Sun observations have captured solar eruptions and flares, coronal field oscillations (in loops and filaments), fast-mode waves (up to 2,000 km/s), plasma instabilities, and a rare view of comet interactions with the corona. Comparison with data from other instruments, such as SDO EUV Variability Experiment (EVE), and with numerical models, provides the ability to develop a comprehensive understanding of solar activity and evolution. And the comparison of the information-rich spatial content of the AIA observations with EVE spectra is instructive for similar studies of stellar targets. The NASA heliophysics open-data policy enables wide-scale participation by the international community. As the time base of AIA observations and magnetic data obtained from the companion SDO Helioseismic and Magnetic Imager (HMI) increases to a good fraction of the solar dynamo cycle time scale, we anticipate that the value of the SDO data will be similarly magnified. We present highlights that have been gleaned from this already exceptional mission. http://sdowww.lmsal.com

  14. An Alternative Measure of Solar Activity from Detailed Sunspot Datasets

    NASA Astrophysics Data System (ADS)

    Muraközy, J.; Baranyi, T.; Ludmány, A.

    2016-11-01

    The sunspot number is analyzed by using detailed sunspot data, including aspects of observability, sunspot sizes, and proper identification of sunspot groups as discrete entities of solar activity. The tests show that in addition to the subjective factors there are also objective causes of the ambiguities in the series of sunspot numbers. To introduce an alternative solar-activity measure, the physical meaning of the sunspot number has to be reconsidered. It contains two components whose numbers are governed by different physical mechanisms and this is one source of the ambiguity. This article suggests an activity index, which is the amount of emerged magnetic flux. The only long-term proxy measure is the detailed sunspot-area dataset with proper calibration to the magnetic flux. The Debrecen sunspot databases provide an appropriate source for the establishment of the suggested activity index.

  15. Photospheric Magnetic Free Energy Density of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Zhang, Hongqi

    2016-12-01

    We present the photospheric energy density of magnetic fields in two solar active regions (one of them recurrent) inferred from observational vector magnetograms, and compare it with other available differently defined energy parameters of magnetic fields in the photosphere. We analyze the magnetic fields in Active Regions NOAA 6580-6619-6659 and 11158. The quantity 1/4π{B}n\\cdot{B}p is an important energy parameter that reflects the contribution of magnetic shear to the difference between the potential (Bp) and the non-potential magnetic field (Bn), and also the contribution to the free magnetic energy near the magnetic neutral lines in the active regions. It is found that the photospheric mean magnetic energy density shows clear changes before the powerful solar flares in Active Region NOAA 11158, which is consistent with the change in magnetic fields in the flaring lower atmosphere.

  16. Photometric observations of the energetics of small solar active regions

    SciTech Connect

    Lawrence, J.K.; Chapman, G.A. )

    1990-10-01

    The energetics of small solar active regions was investigated using for the analysis the photometric solar images taken from July 29 to September 6, 1984 with the San Fernando Observatory's 28-cm vacuum telescope, vacuum spectroheliograph, and dual 512 element Reticon linear diode arrays. Ten small newly formed regions were observed, whose entire sunspot evolution apparently occurred within the observed disk crossing. Seven of these showed a net energy excess of a few times 10 to the 33th ergs during this time. These results are discussed in connection with the 0.1 percent decline in solar irradiance observed by the SMM/ACRIM and Nimbus 7/ERB radiometers between 1980 and 1986. 35 refs.

  17. A Detailed Reconstruction of Solar Activity During the Maunder Minimum

    NASA Astrophysics Data System (ADS)

    Munoz-Jaramillo, A.; Sanchez-Carrasco, V.; Vaquero, J. M.

    2016-12-01

    Besides its decadal modulation, the solar cycle presents long-term secular changes in the amplitude of adjacent cycles that drive long-term changes in the heliospheric environment and have been suggested to drive long-term changes in terrestrial seasonal weather. The best well known of these secular changes is the Maunder Minimum (1645-1715), which coincided with an interval of very cold winters in Europe. Unfortunately, this period is characterized by a significant lack of telescopic observations and thus suffers from a very high level of observational uncertainty. In this presentation we will discuss recent efforts to increase the observational reliability of observations during the Maunder Minimum, by taking advantage of observational redundance, the analysis of these observations to place strict constraints on solar activity during the Maunder Minimum, by comparing with modern observations, and the implications these results have for our understanding of the solar dynamo.

  18. Overview of solar detoxification activities in the United States

    SciTech Connect

    Mehos, M; Williams, T; Turchi, C

    1994-10-01

    The U.S. Department of Energy, through the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories, has been investigating a process that uses solar energy to destroy hazardous wastes in air and water. The process, photocatalytic oxidation, uses ultraviolet light in conjunction with the semiconductor titanium dioxide to generate highly reactive hydroxyl radicals. Early research and development activities have demonstrated that photocatalysis may be cost effective for some applications. The Department of Energy is currently working to establish a commercial industry that uses solar energy to destroy hazardous wastes in air, water, and soil. To achieve this objective, NREL and Sandia are bringing together environmental firms, solar manufacturers, and organizations that have waste or remediation problems.

  19. High solar activity predictions through an artificial neural network

    NASA Astrophysics Data System (ADS)

    Orozco-Del-Castillo, M. G.; Ortiz-Alemán, J. C.; Couder-Castañeda, C.; Hernández-Gómez, J. J.; Solís-Santomé, A.

    The effects of high-energy particles coming from the Sun on human health as well as in the integrity of outer space electronics make the prediction of periods of high solar activity (HSA) a task of significant importance. Since periodicities in solar indexes have been identified, long-term predictions can be achieved. In this paper, we present a method based on an artificial neural network to find a pattern in some harmonics which represent such periodicities. We used data from 1973 to 2010 to train the neural network, and different historical data for its validation. We also used the neural network along with a statistical analysis of its performance with known data to predict periods of HSA with different confidence intervals according to the three-sigma rule associated with solar cycles 24-26, which we found to occur before 2040.

  20. Background magnetic fields during last three cycles of solar activity

    NASA Astrophysics Data System (ADS)

    Andryeyeva, O. A.; Stepanian, N. N.

    2008-07-01

    This paper describes our studies of evolution of the solar magnetic field with different sign and field strength in the range from -100 G to 100 G. The structure and evolution of large-scale magnetic fields on the Sun during the last 3 cycles of solar activity is investigated using magnetograph data from the Kitt Peak Solar Observatory. This analysis reveals two groups of the large-scale magnetic fields evolving differently during the cycles. The first group is represented by relatively weak background fields, and is best observed in the range of 3-10 Gauss. The second group is represented by stronger fields of 75-100 Gauss. The spatial and temporal properties of these groups are described and compared with the total magnetic flux. It is shown that the anomalous behaviour of the total flux during the last cycle can be found only in the second group

  1. Major geomagnetic storm due to solar activity (2006-2013).

    NASA Astrophysics Data System (ADS)

    Tiwari, Bhupendra Kumar

    Major geomagnetic storm due to solar activity (2006-2013). Bhupendra Kumar Tiwari Department of Physics, A.P.S.University, Rewa(M.P.) Email: - btiwtari70@yahoo.com mobile 09424981974 Abstract- The geospace environment is dominated by disturbances created by the sun, it is observed that coronal mass ejection (CME) and solar flare events are the causal link to solar activity that produces geomagnetic storm (GMS).CMEs are large scale magneto-plasma structures that erupt from the sun and propagate through the interplanetary medium with speeds ranging from only a few km/s to as large as 4000 km/s. When the interplanetary magnetic field associated with CMEs impinges upon the earth’s magnetosphere and reconnect occur geomagnetic storm. Based on the observation from SOHO/LASCO spacecraft for solar activity and WDC for geomagnetism Kyoto for geomagnetic storm events are characterized by the disturbance storm time (Dst) index during the period 2006-2013. We consider here only intense geomagnetic storm Dst <-100nT, are 12 during 2006-2013.Geomagnetic storm with maximum Dst< -155nT occurred on Dec15, 2006 associated with halo CME with Kp-index 8+ and also verify that halo CME is the main cause to produce large geomagnetic storms.

  2. Connecting Coronal Mass Ejections to their Solar Active Region Sources

    NASA Astrophysics Data System (ADS)

    Murray, Sophie; Gallagher, Peter; Carley, Eoin; Zucca, Pietro

    2017-04-01

    Severe space weather events have the potential to significantly impact a range of vital technologies on Earth and in near-Earth space. Understanding the processes involved in the solar eruptions that cause these events is imperative to provide accurate space weather forecasts. Coronal mass ejections (CMEs) and other solar eruptive phenomena can be physically linked by combining data from a multitude of ground-based and space-based instruments as well as models, however this can be challenging for automated operational systems. The EU FP7 HELCATS project provides data from heliospheric imaging onboard the two NASA/STEREO spacecraft in order to track the evolution of CMEs in the inner heliosphere. From a catalogue of nearly 2,000 CME events, an automated algorithm has been developed to connect the CMEs observed by STEREO to any corresponding solar flares and active region sources on the solar surface. CME kinematic properties, such as speed and angular width, are compared with active region magnetic field properties, such as magnetic flux, area, and polarity line characteristics. This large database provides insight into the link between CME and flare events, as well as characteristics of eruptive active regions. The automated method may prove useful for future operational CME forecasting efforts.

  3. Static and Dynamic Modeling of a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Warren, Harry P.; Winebarger, Amy R.

    2007-09-01

    Recent hydrostatic simulations of solar active regions have shown that it is possible to reproduce both the total intensity and the general morphology of the high-temperature emission observed at soft X-ray wavelengths using static heating models. These static models, however, cannot account for the lower temperature emission. In addition, there is ample observational evidence that the solar corona is highly variable, indicating a significant role for dynamical processes in coronal heating. Because they are computationally demanding, full hydrodynamic simulations of solar active regions have not been considered previously. In this paper we make first application of an impulsive heating model to the simulation of an entire active region, AR 8156 observed on 1998 February 16. We model this region by coupling potential field extrapolations to full solutions of the time-dependent hydrodynamic loop equations. To make the problem more tractable we begin with a static heating model that reproduces the emission observed in four different Yohkoh Soft X-Ray Telescope (SXT) filters and consider impulsive heating scenarios that yield time-averaged SXT intensities that are consistent with the static case. We find that it is possible to reproduce the total observed soft X-ray emission in all of the SXT filters with a dynamical heating model, indicating that nanoflare heating is consistent with the observational properties of the high-temperature solar corona. At EUV wavelengths the simulated emission shows more coronal loops, but the agreement between the simulation and the observation is still not acceptable.

  4. Data Assimilation Approach for Forecast of Solar Activity Cycles

    NASA Astrophysics Data System (ADS)

    Kitiashvili, Irina N.

    2016-11-01

    Numerous attempts to predict future solar cycles are mostly based on empirical relations derived from observations of previous cycles, and they yield a wide range of predicted strengths and durations of the cycles. Results obtained with current dynamo models also deviate strongly from each other, thus raising questions about criteria to quantify the reliability of such predictions. The primary difficulties in modeling future solar activity are shortcomings of both the dynamo models and observations that do not allow us to determine the current and past states of the global solar magnetic structure and its dynamics. Data assimilation is a relatively new approach to develop physics-based predictions and estimate their uncertainties in situations where the physical properties of a system are not well-known. This paper presents an application of the ensemble Kalman filter method for modeling and prediction of solar cycles through use of a low-order nonlinear dynamo model that includes the essential physics and can describe general properties of the sunspot cycles. Despite the simplicity of this model, the data assimilation approach provides reasonable estimates for the strengths of future solar cycles. In particular, the prediction of Cycle 24 calculated and published in 2008 is so far holding up quite well. In this paper, I will present my first attempt to predict Cycle 25 using the data assimilation approach, and discuss the uncertainties of that prediction.

  5. Solar neutrinos and the influence of radiative opacities on solar models

    NASA Technical Reports Server (NTRS)

    Carson, T. R.; Ezer, D.; Stothers, R.

    1973-01-01

    Use of new radiative opacities based on the hot Thomas-Fermi model of the atom yields a predicted solar neutrino flux which is still considerably larger than the flux observed in Davis's Cl-37 experiment.

  6. Depth of origin of solar active regions

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1984-01-01

    Observations show that the individual bipolar magnetic regions on the sun remain confined during their decay phase, with much of the magnetic field pulling back under the surface, in reverse of the earlier emergence. This suggests that the magnetic field is held on a short rein by subsurface forces, for otherwise the region would decay entirely by dispersing across the face of the sun. With the simple assumption that the fields at the surface are controlled from well-defined anchor points at a depth h, it is possible to relate the length l of the bipolar region at the surface to the depth h, with h about equal to l. The observed dimensions l about equal to 100,000 km for normal active regions, and l about equal to 10,000 km for the ephemeral active regions, indicate comparable depths of origin. More detailed observational studies of the active regions may be expected to shed further light on the problem.

  7. Hinode: A Decade of Success in Capturing Solar Activity

    NASA Technical Reports Server (NTRS)

    Savage, S.; Elrod, S.; Deluca, E.; Doschek, G.; Tarbell, T.

    2017-01-01

    As the present solar cycle passes into its minimum phase, the Hinode mission marks its tenth year of investigating solar activity. Hinode's decade of successful observations have provided us with immeasurable insight into the solar processes that invoke space weather and thereby affect the interplanetary environment in which we reside. The mission's complementary suite of instruments allows us to probe transient, high energy events alongside long-term, cycle-dependent phenomena from magnetic fields at the Sun's surface out to highly thermalized coronal plasma enveloping active regions (ARs). These rich data sets have already changed the face of solar physics and will continue to provoke exciting research as new observational paradigms are pursued. Hinode was launched as part of the Science Mission Directorate's (SMD) Solar Terrestrial Probes Program in 2006. It is a sophisticated spacecraft equipped with a Solar Optical Telescope (SOT), an Extreme-ultraviolet Imaging Spectrometer (EIS), and an X-Ray Telescope (XRT) (see x 4). With high resolution and sensitivity, Hinode serves as a microscope for the Sun, providing us with unique capabilities for observing magnetic fields near the smallest scales achievable, while also rendering full-Sun coronal context in the highest thermal regimes. The 2014 NASA SMD strategic goals objective to "Understand the Sun and its interactions with the Earth and the solar system, including space weather" forms the basis of three underlying Heliophysics Science Goals. While Hinode relates to all three, the observatory primarily addresses: Explore the physical processes in the space environment from the Sun to the Earth and through the solar system. Within the NASA National Research Council (NRC) Decadal Survey Priorities, Hinode targets: (a) Determine the origins of the Sun's activity and predict the variations of the space environment and (d) Discover and characterize fundamental processes that occur both within the heliosphere and

  8. Comparing the influence of sunspot activity and geomagnetic activity on winter surface climate

    NASA Astrophysics Data System (ADS)

    Maliniemi, Ville; Mursula, Kalevi; Roy, Indrani; Asikainen, Timo

    2017-04-01

    We compare here the effect of geomagnetic activity (using the aa index) and sunspot activity on surface climate using sea level pressure dataset from Hadley centre during northern winter. Previous studies using the multiple linear regression method have been limited to using sunspots as a solar activity predictor. Sunspots and total solar irradiance indicate a robust positive influence around the Aleutian Low. This is valid up to a lag of one year. However, geomagnetic activity yields a positive NAM pattern at high to polar latitudes and a positive signal around Azores High pressure region. Interestingly, while there is a positive signal around Azores High for a 2-year lag in sunspots, the strongest signal in this region is found for aa index at 1-year lag. There is also a weak but significant negative signature present around central Pacific for both sunspots and aa index. The combined influence of geomagnetic activity and Quasi Biannual Oscillation (QBO 30 hPa) produces a particularly strong response at mid to polar latitudes, much stronger than the combined influence of sunspots and QBO, which was mostly studied in previous studies so far. This signal is robust and insensitive to the selected time period during the last century. Our results provide a useful way for improving the prediction of winter weather at middle to high latitudes of the northern hemisphere.

  9. Comparing the influence of sunspot activity and geomagnetic activity on winter surface climate

    NASA Astrophysics Data System (ADS)

    Roy, I.; Asikainen, T.; Maliniemi, V.; Mursula, K.

    2016-11-01

    We compare here the effect of geomagnetic activity (using the aa index) and sunspot activity on surface climate using sea level pressure dataset from Hadley centre during northern winter. Previous studies using the multiple linear regression method have been limited to using sunspots as a solar activity predictor. Sunspots and total solar irradiance indicate a robust positive influence around the Aleutian Low. This is valid up to a lag of one year. However, geomagnetic activity yields a positive NAM pattern at high to polar latitudes and a positive signal around Azores High pressure region. Interestingly, while there is a positive signal around Azores High for a 2-year lag in sunspots, the strongest signal in this region is found for aa index at 1-year lag. There is also a weak but significant negative signature present around central Pacific for both sunspots and aa index. The combined influence of geomagnetic activity and Quasi Biannual Oscillation (QBO 30 hPa) produces a particularly strong response at mid to polar latitudes, much stronger than the combined influence of sunspots and QBO, which was mostly studied in previous studies so far. This signal is robust and insensitive to the selected time period during the last century. Our results provide a useful way for improving the prediction of winter weather at middle to high latitudes of the northern hemisphere.

  10. Study of seismic activity during the ascending and descending phases of solar activity

    NASA Astrophysics Data System (ADS)

    Sukma, Indriani; Abidin, Zamri Zainal

    2017-06-01

    The study of the solar cycle and geomagnetic index associated with the seismic activity from the year 1901 to the end of 2015 has been done for an area that covers the majority of China and its bordering countries. Data of sunspot number, solar wind speed, daily storm time index and earthquake number are collected from NOAA, NASA, WDC, OMNI and USGS databases and websites. The earthquakes are classified into small (M < 5) and large (M ≥ 5) magnitudes (in Richter scale). We investigated the variation of earthquake activities with the geomagnetic storm index due to the solar wind. We focused on their variation in the ascending and descending phases of solar cycle. From our study, we conclude that there is a correlation between the phases' geomagnetic index and solar wind speed. We have also suggested that there is a certain degree of correlation between solar activity and seismicity in these phases. For every solar cycle, we find that there is a trend for earthquakes to occur in greater numbers during the descending phase. This can be explained by the increment in the solar wind speed and geomagnetic storm index during this phase.

  11. Study of seismic activity during the ascending and descending phases of solar activity

    NASA Astrophysics Data System (ADS)

    Sukma, Indriani; Abidin, Zamri Zainal

    2016-12-01

    The study of the solar cycle and geomagnetic index associated with the seismic activity from the year 1901 to the end of 2015 has been done for an area that covers the majority of China and its bordering countries. Data of sunspot number, solar wind speed, daily storm time index and earthquake number are collected from NOAA, NASA, WDC, OMNI and USGS databases and websites. The earthquakes are classified into small (M < 5) and large (M ≥ 5) magnitudes (in Richter scale). We investigated the variation of earthquake activities with the geomagnetic storm index due to the solar wind. We focused on their variation in the ascending and descending phases of solar cycle. From our study, we conclude that there is a correlation between the phases' geomagnetic index and solar wind speed. We have also suggested that there is a certain degree of correlation between solar activity and seismicity in these phases. For every solar cycle, we find that there is a trend for earthquakes to occur in greater numbers during the descending phase. This can be explained by the increment in the solar wind speed and geomagnetic storm index during this phase.

  12. Is there a relationship between solar activity and earthquakes?

    NASA Astrophysics Data System (ADS)

    L'Huissier, P.; Dominguez, M.; Gallo, N.; Tapia, M.; Pinto, V. A.; Moya, P. S.; Stepanova, M. V.; Munoz, V.; Rogan, J.; Valdivia, J. A.

    2012-12-01

    Several statistical studies have suggested a connection between solar and geomagnetic activity, and seismicity. Some studies claim there are global effects, relating solar activity, for instance, with earthquake occurrence on the Earth. Other studies intend to find effects on a local scale, where perturbations in the geomagnetic activity are followed by seismic events. We intend to investigate this issue by means of a surrogates method. First, we analyze the statistical validity of reported correlations between the number of sunspots and the annual number of earthquakes during the last century. On the other hand, in relation to local geomagnetic variations prior to an important earthquake, we carry out a study of the magnetic field fluctuations using the SAMBA array in a window of two years centered in the February 27th, 2010 M = 8.8 earthquake at Chile. We expect these studies to be useful in order to find measurable precursors before an important seismic event.

  13. The Impact of Level of Solar Activity on Mortality by Cause in Longtime Period

    NASA Astrophysics Data System (ADS)

    Podolska, Katerina

    2014-05-01

    The aim of this presentation is to show the dependence of the intensity of mortality in the Czech Republic, according to the chosen causes of death according to ICD-10, on the solar activity during the increasing and decreasing phase of the solar cycle No.23 in the period 1994-2011. We use the methods of multivariate statistical analysis. The typology of time profiles for the causes of death is identified with the help of cluster analysis using time. The solar activity is represented by the indices R, Kp, F10.7 and Dst, and also by the height of the F2 layer and TEC for the Czech Republic. There are investigated groups of causes of death according to ICD-10 II. Neoplasms, VI. Diseases of the nervous system, XII. Diseases of the skin and subcutaneous tissue and XVII. Congenital malformations, deformations and chromosomal abnormalities. The correlation between the intensity of mortality from cardiovascular disease e.g. I21 (acute myocardial infarction) and I64 (stroke) and birth defect e.g. Q91 (Edwards' and Pataus' syndrom) and the solar activity parameters is discovered, as well as a stronger dependence on the height of the F2 layer and TEC. We also explored the influence of the above parameters on mortality by causes on degenerative diseases. Typology of time profiles for these causes of death are identified by cluster analysis using time and have found large differences between diagnoses.

  14. Solar activity variations of nocturnal thermospheric meridional winds over Indian longitude sector

    NASA Astrophysics Data System (ADS)

    Madhav Haridas, M. K.; Manju, G.; Arunamani, T.

    2016-09-01

    The night time F-layer base height information from ionosondes located at two equatorial stations Trivandrum (TRV 8.5°N, 77°E) and Sriharikota (SHAR 13.7°N, 80.2°E) spanning over two decades are used to derive the climatology of equatorial nocturnal Thermospheric Meridional Winds (TMWs) prevailing during High Solar Activity (HSA) and Low Solar Activity (LSA) epochs. The important inferences from the analysis are 1) Increase in mean equatorward winds observed during LSA compared to HSA during pre midnight hours; 25 m/s for VE (Vernal Equinox) and 20 m/s for SS (Summer Solstice), AE (autumnal Equinox) and WS (Winter Solstice). 2) Mean wind response to Solar Flux Unit (SFU) is established quantitatively for all seasons for pre-midnight hours; rate of increase is 0.25 m/s/SFU for VE, 0.2 m/s/SFU for SS and WS and 0.08 m/s/SFU for AE. 3) Theoretical estimates of winds for the two epochs are performed and indicate the role of ion drag forcing as a major factor influencing TMWs. 4) Observed magnitude of winds and rate of flux dependencies are compared to thermospheric wind models. 5) Equinoctial asymmetry in TMWs is observed for HSA at certain times, with more equatorward winds during AE. These observations lend a potential to parameterize the wind components and effectively model the winds, catering to solar activity variations.

  15. Glacial Influences on Solar Radiation in a Subarctic Sea.

    EPA Science Inventory

    Understanding macroscale processes controlling solar radia­tion in marine systems will be important in interpreting the potential effects of global change from increasing ultraviolet radiation (UV) and glacial retreat. This study provides the first quantitative assessment of UV i...

  16. Glacial Influences on Solar Radiation in a Subarctic Sea.

    EPA Science Inventory

    Understanding macroscale processes controlling solar radia­tion in marine systems will be important in interpreting the potential effects of global change from increasing ultraviolet radiation (UV) and glacial retreat. This study provides the first quantitative assessment of UV i...

  17. Summary of solar activity observed at the Mauna Loa Solar Observatory: 1980-1983. Technical note

    SciTech Connect

    Rock, K.; Fisher, R.; Garcia, C.; Yasukawa, E.

    1983-11-01

    The following technical note summarizes solar activity observed during the first four years operation of the experiment systems of the Coronal Dynamics Project, which are located at the Mauna Loa Solar Observatory. This short report has been produced with the general aim of providing users of Mauna Loa observations with a summary of data for specific events. So that this table might be as useful as possible, a comprehensive review of three sources was performed. The plain language logs, identified as the so-called observer's logs, the now-discontinued activity logs, and the prominence monitor quality control logs were the sources from which the information in the following tables was obtained. It is expected that this review will be of particular use to those investigators who intend to use both the K-coronameter data base and the SMM Coronagraph-Polarimeter data for the study of coronal transient events.

  18. Heliophysics: Evolving Solar Activity and the Climates of Space and Earth

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Siscoe, George L.

    2012-01-01

    Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.

  19. Heliophysics: Evolving Solar Activity and the Climates of Space and Earth

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Siscoe, George L.

    2010-09-01

    Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.

  20. Long-term persistence of solar activity. [Abstract only

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, Alexander; Feynman, Joan; Robinson, Paul

    1994-01-01

    The solar irradiance has been found to change by 0.1% over the recent solar cycle. A change of irradiance of about 0.5% is required to effect the Earth's climate. How frequently can a variation of this size be expected? We examine the question of the persistence of non-periodic variations in solar activity. The Huerst exponent, which characterizes the persistence of a time series (Mandelbrot and Wallis, 1969), is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD (Stuiver and Pearson, 1986). We find a constant Huerst exponent, suggesting that solar activity in the frequency range of from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately equal to 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process (Ruzmaikin et al., 1992), and that is is the same type of process over a wide range of time interval lengths. We conclude that the time period over which an irradiance change of 0.5% can be expected to occur is significantly shorter than that which would be expected for variations produced by a white-noise process.

  1. Long-term persistence of solar activity. [Abstract only

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, Alexander; Feynman, Joan; Robinson, Paul

    1994-01-01

    The solar irradiance has been found to change by 0.1% over the recent solar cycle. A change of irradiance of about 0.5% is required to effect the Earth's climate. How frequently can a variation of this size be expected? We examine the question of the persistence of non-periodic variations in solar activity. The Huerst exponent, which characterizes the persistence of a time series (Mandelbrot and Wallis, 1969), is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD (Stuiver and Pearson, 1986). We find a constant Huerst exponent, suggesting that solar activity in the frequency range of from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately equal to 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process (Ruzmaikin et al., 1992), and that is is the same type of process over a wide range of time interval lengths. We conclude that the time period over which an irradiance change of 0.5% can be expected to occur is significantly shorter than that which would be expected for variations produced by a white-noise process.

  2. Starspot activity and superflares on solar-type stars

    NASA Astrophysics Data System (ADS)

    Maehara, Hiroyuki; Notsu, Yuta; Notsu, Shota; Namekata, Kosuke; Honda, Satoshi; Ishii, Takako T.; Nogami, Daisaku; Shibata, Kazunari

    2017-06-01

    We analyze the correlation between starspots and superflares on solar-type stars using observations from the Kepler mission. The analysis shows that the observed fraction of stars with superflares decreases as the rotation period increases and as the amplitude of photometric variability associated with rotation decreases. We found that the fraction of stars with superflares among the stars showing large-amplitude rotational variations, which are thought to be the signature of the large starspots, also decreases as the rotation period increases. The small fraction of superflare stars among the stars with large starspots in the longer-period regime suggests that some of the stars with large starspots show a much lower flare activity than the superflare stars with the same spot area. Assuming simple relations between spot area and lifetime and between spot temperature and photospheric temperature, we compared the size distribution of large starspot groups on slowly rotating solar-type stars with that of sunspot groups. The size distribution of starspots shows the power-law distribution and the size distribution of larger sunspots lies on this power-law line. We also found that frequency-energy distributions for flares originating from spots with different sizes are the same for solar-type stars with superflares and the Sun. These results suggest that the magnetic activity we observe on solar-type stars with superflares and on the Sun is caused by the same physical processes.

  3. Density and Temperature Measurements in a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Warren, Harry P.; Winebarger, Amy R.

    2003-10-01

    We present electron density and temperature measurements from an active region observed above the limb with the Solar Ultraviolet Measurements of Emitted Radiation spectrometer on the Solar and Heliospheric Observatory. Density-sensitive line ratios from Si VIII and S X indicate densities greater than 108 cm-3 as high as 200" (or 145 Mm) above the limb. At these heights, static, uniformly heated loop models predict densities close to 107 cm-3. Differential emission measure analysis shows that the observed plasma is nearly isothermal with a mean temperature of about 1.5 MK and a dispersion of about 0.2 MK. Both the differential emission measure and the Si XI/Si VIII line ratios indicate only small variations in the temperature at the heights observed. These measurements confirm recent observations from the Transition Region and Coronal Explorer of ``overdense'' plasma at temperatures near 1 MK in solar active regions. Time-dependent hydrodynamic simulations suggest that impulsive heating models can account for the large densities, but they have a difficult time reproducing the narrow range of observed temperatures. The observations of overdense, nearly isothermal plasma in the solar corona provide a significant challenge to theories of coronal heating.

  4. A correlative study of SSC's, interplanetary shocks, and solar activity

    NASA Technical Reports Server (NTRS)

    Chao, J. K.; Lepping, R. P.

    1973-01-01

    A total of 93 SSC's were examined during the four year period from 1968 to 1971 at and near the peak of the solar activity cycle. Of the 93 SSC's 81 could be associated with solar activity, such as solar flares and radio bursts of Type II and Type IV. The mean propagation speeds of these flare-associated events ranged from 400 to 1000 km/sec with an average speed of 600-700 km/sec. Disturbances associated with 48 of the SSC's have been studied in detail using the corresponding interplanetary (IP) magnetic field, and plasma data when they were available. It was found that 41 of the 48 disturbances corresponded to IP shock waves, and the remaining seven events were tangential discontinuities. Thirty percent of the IP shocks had thick structure (i.e. the magnetic field jump across the shock occurred over a distance much greater than 50 proton Larmor radii). Also given is a statistical study of the gross geometry of a typical or average shock surface based on multiple spacecraft sightings and their relative orientation with respect to the solar flare. It is suggested that a typical shock front propagating out from the sun at l AU has a radius of curvature on the order of l AU. Also given are some general properties of oblique IP flare-shocks.

  5. Influence of growth conditions on the performance of InP nanowire solar cells

    NASA Astrophysics Data System (ADS)

    Cavalli, Alessandro; Cui, Yingchao; Kölling, Sebastian; Verheijen, Marcel A.; Plissard, Sebastien R.; Wang, Jia; Koenraad, Paul M.; Haverkort, Jos E. M.; Bakkers, Erik P. A. M.

    2016-11-01

    Nanowire based solar cells have attracted great attention due to their potential for high efficiency and low device cost. Photovoltaic devices based on InP nanowires now have characteristics comparable to InP bulk solar cells. A detailed and direct correlation of the influence of growth conditions on performance is necessary to improve efficiency further. We explored the effects of the growth temperature, and of the addition of HCl during growth, on the efficiency of nanowire array based solar cell devices. By increasing HCl, the saturation dark current was reduced, and thereby the nanowire solar cell efficiency was enhanced from less than 1% to 7.6% under AM 1.5 illumination at 1 sun. At the same time, we observed that the solar cell efficiency decreased by increasing the tri-methyl-indium content, strongly suggesting that these effects are carbon related.

  6. Influence of growth conditions on the performance of InP nanowire solar cells.

    PubMed

    Cavalli, Alessandro; Cui, Yingchao; Kölling, Sebastian; Verheijen, Marcel A; Plissard, Sebastien R; Wang, Jia; Koenraad, Paul M; Haverkort, Jos E M; Bakkers, Erik P A M

    2016-11-11

    Nanowire based solar cells have attracted great attention due to their potential for high efficiency and low device cost. Photovoltaic devices based on InP nanowires now have characteristics comparable to InP bulk solar cells. A detailed and direct correlation of the influence of growth conditions on performance is necessary to improve efficiency further. We explored the effects of the growth temperature, and of the addition of HCl during growth, on the efficiency of nanowire array based solar cell devices. By increasing HCl, the saturation dark current was reduced, and thereby the nanowire solar cell efficiency was enhanced from less than 1% to 7.6% under AM 1.5 illumination at 1 sun. At the same time, we observed that the solar cell efficiency decreased by increasing the tri-methyl-indium content, strongly suggesting that these effects are carbon related.

  7. Solar activity impact on the Earth's upper atmosphere

    NASA Astrophysics Data System (ADS)

    Kutiev, Ivan; Tsagouri, Ioanna; Perrone, Loredana; Pancheva, Dora; Mukhtarov, Plamen; Mikhailov, Andrei; Lastovicka, Jan; Jakowski, Norbert; Buresova, Dalia; Blanch, Estefania; Andonov, Borislav; Altadill, David; Magdaleno, Sergio; Parisi, Mario; Miquel Torta, Joan

    2013-02-01

    The paper describes results of the studies devoted to the solar activity impact on the Earth's upper atmosphere and ionosphere, conducted within the frame of COST ES0803 Action. Aim: The aim of the paper is to represent results coming from different research groups in a unified form, aligning their specific topics into the general context of the subject. Methods: The methods used in the paper are based on data-driven analysis. Specific databases are used for spectrum analysis, empirical modeling, electron density profile reconstruction, and forecasting techniques. Results: Results are grouped in three sections: Medium- and long-term ionospheric response to the changes in solar and geomagnetic activity, storm-time ionospheric response to the solar and geomagnetic forcing, and modeling and forecasting techniques. Section 1 contains five subsections with results on 27-day response of low-latitude ionosphere to solar extreme-ultraviolet (EUV) radiation, response to the recurrent geomagnetic storms, long-term trends in the upper atmosphere, latitudinal dependence of total electron content on EUV changes, and statistical analysis of ionospheric behavior during prolonged period of solar activity. Section 2 contains a study of ionospheric variations induced by recurrent CIR-driven storm, a case-study of polar cap absorption due to an intense CME, and a statistical study of geographic distribution of so-called E-layer dominated ionosphere. Section 3 comprises empirical models for describing and forecasting TEC, the F-layer critical frequency foF2, and the height of maximum plasma density. A study evaluates the usefulness of effective sunspot number in specifying the ionosphere state. An original method is presented, which retrieves the basic thermospheric parameters from ionospheric sounding data.

  8. Solar optics-based active panel for solar energy storage and disinfection of greywater.

    PubMed

    Lee, W; Song, J; Son, J H; Gutierrez, M P; Kang, T; Kim, D; Lee, L P

    2016-09-01

    Smart city and innovative building strategies are becoming increasingly more necessary because advancing a sustainable building system is regarded as a promising solution to overcome the depleting water and energy. However, current sustainable building systems mainly focus on energy saving and miss a holistic integration of water regeneration and energy generation. Here, we present a theoretical study of a solar optics-based active panel (SOAP) that enables both solar energy storage and photothermal disinfection of greywater simultaneously. Solar collector efficiency of energy storage and disinfection rate of greywater have been investigated. Due to the light focusing by microlens, the solar collector efficiency is enhanced from 25% to 65%, compared to that without the microlens. The simulation of greywater sterilization shows that 100% disinfection can be accomplished by our SOAP for different types of bacteria including Escherichia coli. Numerical simulation reveals that our SOAP as a lab-on-a-wall system can resolve the water and energy problem in future sustainable building systems.

  9. Solar Activity and its Impact on Earth's Climate

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.

    2004-01-01

    The Sun's activity is now approaching an expected 2006 minimum, following the dramatic maximum of Solar Cycle 23, that included events such as the 2001 "Bastille Day" Coronal Mass Ejection, and the record-setting Oct-Nov 2003 solar flares, with their associated sunspots and variations in Total Solar Irradiance, or TSI. On Nov 4,2003 the largest X-ray flare ever detected (X-28) was observed in detail. We discuss recent satellite measurements of TSI by ACRIM 2 and 3 and Virgo, and new precision observations of TSI and SSI (Solar Spectral Irradiance) from the SORCE mission, that launched on January 25,2003. TSI variations recorded during the June 8,2004 transit of Venus show the unprecedented precision of the SORCE Total Irradiance Monitor (TIM) instrument, the first of its kind to employ phase-sensitive detection. The SORCE spectral instruments, XPS, Solstice, and SIM, record the Sun's changes over a wide range of wavelengths, from 1 to more than 2000 nanometers, for the first time covering the peak of the solar spectrum, including spectral components that provide energy inputs to key components of the climate system - ultraviolet (UV) into the upper atmospheric ozone layer, infrared (IR) into the lower atmosphere and clouds, and Visible into the Oceans and biosphere. Succeeding satellite missions are planned to monitor both TSI and SSI through Cycle 24. We summarize current ideas about decadal and longer solar variability, and associated potential impacts on Earth's climate on time scales from decades to centuries, especially highlighting the role of feedbacks in the climate system.

  10. Centennial Scale Variations in Lake Productivity Linked to Solar Activity

    NASA Astrophysics Data System (ADS)

    Englebrecht, A.; Bhattacharyya, S.; Guilderson, T. P.; Ingram, L.; Byrne, R.

    2012-12-01

    Solar variations on both decadal and centennial timescales have been associated with climate phenomena (van Loon et al., 2004; Hodell et al., 2001; White et al., 1997). The energy received by the Earth at the peak of the solar cycle increases by <0.1%; so the question has remained of how this could be amplified to produce an observable climate response. Recent modeling shows that the response of the Earth's climate system to the 11-year solar cycle may be amplified through stratosphere and ocean feedbacks and has the potential to impact climate variability on a multidecadal to centennial timescales (Meehl et al., 2009). Here, we report a 1000-year record of changes in the stratigraphy and carbon isotope composition of varved lake sediment from Isla Isabela (22°N, 106°W) in the subtropical northeast Pacific. Stable carbon isotopes and carbonate stratigraphy can be used to infer surface productivity in the lake. Our analysis shows variations in primary productivity on centennial timescales and suggests that solar activity may be an important component of Pacific climate variability. A possible response during solar maxima acts to keep the eastern equatorial Pacific cooler and drier than usual, producing conditions similar to a La Niña event. In the region around Isla Isabela peak solar years were characterized by decreased surface temperatures and suppressed precipitation (Meehl et al., 2009), which enhance productivity at Isabela (Kienel et al. 2011). In the future, we plan to analyze the data using advanced time series analysis techniques like the wavelets together with techniques to handle irregularly spaced time series data. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-571672

  11. Study of Distribution and Asymmetry of Solar Active Prominences during Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Joshi, Navin Chandra; Bankoti, Neeraj Singh; Pande, Seema; Pande, Bimal; Pandey, Kavita

    2009-12-01

    In this article we present the results of a study of the spatial distribution and asymmetry of solar active prominences (SAP) for the period 1996 through 2007 (solar cycle 23). For more meaningful statistical analysis we analyzed the distribution and asymmetry of SAP in two subdivisions viz. Group1 (ADF, APR, DSF, CRN, CAP) and Group2 (AFS, ASR, BSD, BSL, DSD, SPY, LPS). The North - South (N - S) latitudinal distribution shows that the SAP events are most prolific in the 21° to 30° slice in the Northern and Southern Hemispheres; the East - West (E - W) longitudinal distribution study shows that the SAP events are most prolific (best observable) in the 81° to 90° slice in the Eastern and Western Hemispheres. It was found that the SAP activity during this cycle is low compared to previous solar cycles. The present study indicates that during the rising phase of the cycle the number of SAP events are roughly equal in the Northern and Southern Hemispheres. However, activity in the Southern Hemisphere has been dominant since 1999. Our statistical study shows that the N - S asymmetry is more significant then the E - W asymmetry.

  12. On the probability of solar CR fluency during SEP event in dependence of the level of solar activity and position in solar cycle

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Pustil'Nik, L. A.

    For determining of the probability of real radiation hazard for space probes in the interplanetary space on different distances from the Sun, for astronauts and satellites in the Earth's magnetosphere on different orbits, for crew and passengers of regular air-plane lines on different altitudes and at different cut off rigidities, for people and technology on the ground in dependence of geographical position and air pressure is very important to know the probability of dangerous fluency of solar CR not only averaged for many years (it is necessary for the first approximation), but also in dependence on the level of solar activity, as well as in dependence of the investigated time position relative to maximum and minimum of solar activity cycle. These probabilities we determine on the basis of available data on ground and satellite direct measurements of solar CR fluencies for the last several solar cycles as well as available nitrate data in the Greenland's ice on solar CR fluencies for more than 30 solar cycles. The obtained probabilities of solar CR fluencies in dependence of fluency value averaged for solar cycle and for sunspot number intervals 0-40, 40-80, 80-120, 120-160, 160-200 and more than 200 as well as for special time intervals before, during and after solar maximum and minimum, - we try to approximate by analytical formulas. These formulas will be convenient for practical using for estimation of the probability of the solar energetic particle (SEP) event and expected radiation hazard expected for different objects in space, in magnetosphere, and on the ground in dependence of the object's position, level of solar activity and time relative to the maximum and minimum of solar activity cycle. This research is in the frame of program INTAS 0810 and new Project COST 724.

  13. Impacts of multi-scale solar activity on climate. Part I: Atmospheric circulation patterns and climate extremes

    NASA Astrophysics Data System (ADS)

    Weng, Hengyi

    2012-07-01

    The impacts of solar activity on climate are explored in this two-part study. Based on the principles of atmospheric dynamics, Part I propose an amplifying mechanism of solar impacts on winter climate extremes through changing the atmospheric circulation patterns. This mechanism is supported by data analysis of the sunspot number up to the predicted Solar Cycle 24, the historical surface temperature data, and atmospheric variables of NCEP/NCAR Reanalysis up to the February 2011 for the Northern Hemisphere winters. For low solar activity, the thermal contrast between the low- and high-latitudes is enhanced, so as the mid-latitude baroclinic ultra-long wave activity. The land-ocean thermal contrast is also enhanced, which amplifies the topographic waves. The enhanced mid-latitude waves in turn enhance the meridional heat transport from the low to high latitudes, making the atmospheric "heat engine" more efficient than normal. The jets shift southward and the polar vortex is weakened. The Northern Annular Mode (NAM) index tends to be negative. The mid-latitude surface exhibits large-scale convergence and updrafts, which favor extreme weather/climate events to occur. The thermally driven Siberian high is enhanced, which enhances the East Asian winter monsoon (EAWM). For high solar activity, the mid-latitude circulation patterns are less wavy with less meridional transport. The NAM tends to be positive, and the Siberian high and the EAWM tend to be weaker than normal. Thus the extreme weather/climate events for high solar activity occur in different regions with different severity from those for low solar activity. The solar influence on the midto high-latitude surface temperature and circulations can stand out after removing the influence from the El Niño-Southern Oscillation. The atmospheric amplifying mechanism indicates that the solar impacts on climate should not be simply estimated by the magnitude of the change in the solar radiation over solar cycles when it is

  14. The environmental magnetic record of palaeoenvironmental variations during the past 3100 years: A possible solar influence?

    NASA Astrophysics Data System (ADS)

    Sandeep, K.; Shankar, R.; Warrier, Anish K.; Weijian, Z.; Xuefeng, Lu

    2015-07-01

    Sediments from Pookot Lake (PK) in southern India have provided a record of local environmental changes and catchment processes during the past 3100 cal. years B.P. Variations in the rock magnetic parameters (χlf, χfd, χARM and IRM's at different field strengths) of sediments from two AMS 14C-dated cores reflect climate-induced changes in the catchment of Pookot Lake. Assuming that rainfall is most likely the dominant driving mechanism behind the rock magnetic variations of PK sediments, the environmental history of the site has been reconstructed. Rock magnetic parameters exhibit significant variations during the past 3100 years. The palaeoenvironmental history of the Pookot Lake region may be divided into three phases. During the first phase (~ 3100 to 2500 cal. years B.P.), catchment erosion and detrital influx were high, indicating a strong monsoon. The second phase, which lasted from 2500 to 1000 cal. years B.P., was characterised by low and steady rainfall, resulting in a low and uniform catchment erosion and detrital influx. Phase 2 was interspersed with brief intervals of strong monsoon and characterised by frequent drying up of the lake. During Phase 3 (~ 1000 cal. years B.P. to the present), catchment erosion was high, indicating a shift to strong monsoonal conditions. It appears that monsoonal rainfall in the region is influenced by solar activity, with periods of high total solar irradiance being characterised by high rainfall and vice versa; it was relatively low during the Little Ice Age and high during the Medieval Warm Period. The magnetic susceptibility (χlf) data exhibit a number of periodicities which might have a solar origin. The χlf record exhibits similarities with other continental and marine palaeoclimatic records from the region, indicating that regional trends in the monsoon during the Late Holocene are broadly similar.

  15. Can we understand time scales of solar activity?

    NASA Astrophysics Data System (ADS)

    Kremliovsky, M. N.

    1994-05-01

    The dynamo theory of the solar cycle faces numerous difficulties in regard to an explanation of the observed behavior of sunspot activity. In particular, there is an essential irregularity in the sequence of 11(22)-year cycles. In this paper we want to show how the complicated long-term evolution of solar activity can be understood within the framework of a simple model demonstrating low-dimensional chaotic behavior. According to this description we are able to give a definition for the periods of low activity (Global Minima), to describe how the transition to (from) a Global Minimum occurs and to show the role of the 11(22)-year cycle and its phase catastrophe. The explanations of the origin of the Gleissberg cycle and thousand-year variations of solar activity are given. In summary, the independence of the proposed scenario from the particular choice of model is shown. Thus one can formulate dynamics in the language of generalized instabilities which can aid the search for the underlying physical processes.

  16. Do solar cycles influence giant cell arteritis and rheumatoid arthritis incidence?

    PubMed Central

    Wing, Simon; Rider, Lisa G; Johnson, Jay R; Miller, Federick W; Matteson, Eric L; Gabriel, Sherine E

    2015-01-01

    Objective To examine the influence of solar cycle and geomagnetic effects on the incidence of giant cell arteritis (GCA) and rheumatoid arthritis (RA). Methods We used data from patients with GCA (1950–2004) and RA (1955–2007) obtained from population-based cohorts. Yearly trends in age-adjusted and sex-adjusted incidence were correlated with the F10.7 index (solar radiation at 10.7 cm wavelength, a proxy for the solar extreme ultraviolet radiation) and AL index (a proxy for the westward auroral electrojet and a measure of geomagnetic activity). Fourier analysis was performed on AL, F10.7, and GCA and RA incidence rates. Results The correlation of GCA incidence with AL is highly significant: GCA incidence peaks 0–1 year after the AL reaches its minimum (ie, auroral electrojet reaches a maximum). The correlation of RA incidence with AL is also highly significant. RA incidence rates are lowest 5–7 years after AL reaches maximum. AL, GCA and RA incidence power spectra are similar: they have a main peak (periodicity) at about 10 years and a minor peak at 4–5 years. However, the RA incidence power spectrum main peak is broader (8–11 years), which partly explains the lower correlation between RA onset and AL. The auroral electrojets may be linked to the decline of RA incidence more strongly than the onset of RA. The incidences of RA and GCA are aligned in geomagnetic latitude. Conclusions AL and the incidences of GCA and RA all have a major periodicity of about 10 years and a secondary periodicity at 4–5 years. Geomagnetic activity may explain the temporal and spatial variations, including east-west skewness in geographic coordinates, in GCA and RA incidence, although the mechanism is unknown. The link with solar, geospace and atmospheric parameters need to be investigated. These novel findings warrant examination in other populations and with other autoimmune diseases. PMID:25979866

  17. Do solar cycles influence giant cell arteritis and rheumatoid arthritis incidence?

    DOE PAGES

    Wing, Simon; Rider, Lisa G.; Johnson, Jay R.; ...

    2015-05-15

    Our objective was to examine the influence of solar cycle and geomagnetic effects on the incidence of giant cell arteritis (GCA) and rheumatoid arthritis (RA). Methods: We used data from patients with GCA (1950-2004) and RA (1955-2007) obtained from population-based cohorts. Yearly trends in age-adjusted and sex-adjusted incidence were correlated with the F10.7 index (solar radiation at 10.7 cm wavelength, a proxy for the solar extreme ultraviolet radiation) and AL index (a proxy for the westward auroral electrojet and a measure of geomagnetic activity). Fourier analysis was performed on AL, F10.7, and GCA and RA incidence rates. Results: The correlationmore » of GCA incidence with AL is highly significant: GCA incidence peaks 0-1 year after the AL reaches its minimum (ie, auroral electrojet reaches a maximum). The correlation of RA incidence with AL is also highly significant. RA incidence rates are lowest 5-7 years after AL reaches maximum. AL, GCA and RA incidence power spectra are similar: they have a main peak (periodicity) at about 10 years and a minor peak at 4-5 years. However, the RA incidence power spectrum main peak is broader (8-11 years), which partly explains the lower correlation between RA onset and AL. The auroral electrojets may be linked to the decline of RA incidence more strongly than the onset of RA. The incidences of RA and GCA are aligned in geomagnetic latitude. Conclusions: AL and the incidences of GCA and RA all have a major periodicity of about 10 years and a secondary periodicity at 4-5 years. Geomagnetic activity may explain the temporal and spatial variations, including east-west skewness in geographic coordinates, in GCA and RA incidence, although the mechanism is unknown. Lastly, the link with solar, geospace and atmospheric parameters need to be investigated. These novel findings warrant examination in other populations and with other autoimmune diseases.« less

  18. Prediction of solar activity from solar background magnetic field variations in cycles 21-23

    SciTech Connect

    Shepherd, Simon J.; Zharkov, Sergei I.; Zharkova, Valentina V. E-mail: s.zharkov@hull.ac.uk

    2014-11-01

    A comprehensive spectral analysis of both the solar background magnetic field (SBMF) in cycles 21-23 and the sunspot magnetic field in cycle 23 reported in our recent paper showed the presence of two principal components (PCs) of SBMF having opposite polarity, e.g., originating in the northern and southern hemispheres, respectively. Over a duration of one solar cycle, both waves are found to travel with an increasing phase shift toward the northern hemisphere in odd cycles 21 and 23 and to the southern hemisphere in even cycle 22. These waves were linked to solar dynamo waves assumed to form in different layers of the solar interior. In this paper, for the first time, the PCs of SBMF in cycles 21-23 are analyzed with the symbolic regression technique using Hamiltonian principles, allowing us to uncover the underlying mathematical laws governing these complex waves in the SBMF presented by PCs and to extrapolate these PCs to cycles 24-26. The PCs predicted for cycle 24 very closely fit (with an accuracy better than 98%) the PCs derived from the SBMF observations in this cycle. This approach also predicts a strong reduction of the SBMF in cycles 25 and 26 and, thus, a reduction of the resulting solar activity. This decrease is accompanied by an increasing phase shift between the two predicted PCs (magnetic waves) in cycle 25 leading to their full separation into the opposite hemispheres in cycle 26. The variations of the modulus summary of the two PCs in SBMF reveals a remarkable resemblance to the average number of sunspots in cycles 21-24 and to predictions of reduced sunspot numbers compared to cycle 24: 80% in cycle 25 and 40% in cycle 26.

  19. Reconstruction of solar activity variations in the past by measurement of cosmogenic radioisotopes in meteorites

    NASA Astrophysics Data System (ADS)

    Taricco, C.; Bhandari, N.; Colombetti, P.; Romero, A.; Verma, N.; Vivaldo, G.

    Many reconstructions of solar activity variations in the past are based on the measurement of cosmogenic isotopes (such as 14C and 10Be) stored in terrestrial archives. The concentration of these isotopes is however influenced by terrestrial phenomena. In order to avoid this problem our group is studying cosmogenic radioisotopes in meteorites at the underground laboratory of Monte dei Cappuccini in Torino (Italy). Measurement of 44Ti decay activity in 21 meteorites has revealed a centennial oscillation superimposed on a decreasing trend of the cosmic ray flux in the last 235 years. The decreasing trend is consistent with some models based on solar open magnetic field variations. We show some preliminary results obtained using a new acquisition system we have recently developed and set up in order to enhance selectivity of 44Ti detection.

  20. ASSESSING THE INFLUENCE OF THE SOLAR ORBIT ON TERRESTRIAL BIODIVERSITY

    SciTech Connect

    Feng, F.; Bailer-Jones, C. A. L.

    2013-05-10

    The terrestrial record shows a significant variation in the extinction and origination rates of species during the past half-billion years. Numerous studies have claimed an association between this variation and the motion of the Sun around the Galaxy, invoking the modulation of cosmic rays, gamma rays, and comet impact frequency as a cause of this biodiversity variation. However, some of these studies exhibit methodological problems, or were based on coarse assumptions (such as a strict periodicity of the solar orbit). Here we investigate this link in more detail, using a model of the Galaxy to reconstruct the solar orbit and thus a predictive model of the temporal variation of the extinction rate due to astronomical mechanisms. We compare these predictions as well as those of various reference models with paleontological data. Our approach involves Bayesian model comparison, which takes into account the uncertainties in the paleontological data as well as the distribution of solar orbits consistent with the uncertainties in the astronomical data. We find that various versions of the orbital model are not favored beyond simpler reference models. In particular, the distribution of mass extinction events can be explained just as well by a uniform random distribution as by any other model tested. Although our negative results on the orbital model are robust to changes in the Galaxy model, the Sun's coordinates, and the errors in the data, we also find that it would be very difficult to positively identify the orbital model even if it were the true one. (In contrast, we do find evidence against simpler periodic models.) Thus, while we cannot rule out there being some connection between solar motion and biodiversity variations on the Earth, we conclude that it is difficult to give convincing positive conclusions of such a connection using current data.

  1. GRAND MINIMA AND NORTH-SOUTH ASYMMETRY OF SOLAR ACTIVITY

    SciTech Connect

    Olemskoy, S. V.; Kitchatinov, L. L.

    2013-11-01

    A solar-type dynamo model in a spherical shell is developed with allowance for random dependence of the poloidal field generation mechanism on time and latitude. The model shows repeatable epochs of a strongly decreased amplitude of magnetic cycles similar to the Maunder minimum of solar activity. Random dependence of dynamo parameters on latitude breaks the equatorial symmetry of generated fields. The model shows the correlation of the occurrence of grand minima with deviations in the dynamo field from dipolar parity. An increased north-south asymmetry of magnetic activity can, therefore, be an indicator of transitions to grand minima. Qualitative interpretation of this correlation is suggested. Statistics of grand minima in the model are close to the Poisson random process, indicating that the onset of a grand minimum is statistically independent of preceding minima.

  2. Prediction of Solar Activity Based on Neuro-Fuzzy Modeling

    NASA Astrophysics Data System (ADS)

    Attia, Abdel-Fattah; Abdel-Hamid, Rabab; Quassim, Maha

    2005-03-01

    This paper presents an application of the neuro-fuzzy modeling to analyze the time series of solar activity, as measured through the relative Wolf number. The neuro-fuzzy structure is optimized based on the linear adapted genetic algorithm with controlling population size (LAGA-POP). Initially, the dimension of the time series characteristic attractor is obtained based on the smallest regularity criterion (RC) and the neuro-fuzzy model. Then the performance of the proposed approach, in forecasting yearly sunspot numbers, is favorably compared to that of other published methods. Finally, a comparison predictions for the remaining part of the 22nd and the whole 23rd cycle of the solar activity are presented.

  3. Contribution of solar radiation and geomagnetic activity to global structure of 27-day variation of ionosphere

    NASA Astrophysics Data System (ADS)

    Yao, Yibin; Zhai, Changzhi; Kong, Jian; Liu, Lei

    2017-04-01

    Twenty-seven-day variation caused by solar rotation is one of the main periodic effects of solar radiation influence on the ionosphere, and there have been many studies on this periodicity using peak electron density N_{mF2} and solar radio flux index F10.7. In this paper, the global electron content (GEC) and observation of Solar EUV Monitor (SEM) represent the whole ionosphere and solar EUV flux, respectively, to investigate the 27-day variation. The 27-day period components of indices (GEC_{27}, SEM_{27}, F10.7_{27}, Ap_{27}) are obtained using Chebyshev band-pass filter. The comparison of regression results indicates that the index SEM has higher coherence than F10.7 with 27-day variation of the ionosphere. The regression coefficients of SEM_{27 } varied from 0.6 to 1.4 and the coefficients of Ap_{27} varied from - 0.6 to 0.3, which suggests that EUV radiation seasonal variations are the primary driver for the 27-day variations of the ionosphere for most periods. TEC map grid points on three meridians where IGS stations are dense are selected for regression, and the results show that the contribution of solar EUV radiation is positive at all geomagnetic latitudes and larger than geomagnetic activity in most latitudes. The contribution of geomagnetic activity is negative at high geomagnetic latitude, increasing with decreasing geomagnetic latitudes, and positive at low geomagnetic latitudes. The global structure of 27-day variation of ionosphere is presented and demonstrates that there are two zonal anomaly regions along with the geomagnetic latitudes lines and two peaks in the north of Southeast Asia and the Middle Pacific where TEC_{27} magnitude values are notably larger than elsewhere along zonal anomaly regions.

  4. Automatic Recognition of Solar Features for Developing Data Driven Prediction Models of Solar Activity and Space Weather

    DTIC Science & Technology

    2012-07-06

    Ephemeral Brightening,” 2nd ATST – East Workshop In Solar Physics: Magnetic Fields From The Photosphere To The Corona , Washington D.C., Mar 2012. [6...AFRL-RV-PS- AFRL-RV-PS- TR-2012-0133 TR-2012-0133 AUTOMATIC RECOGNITION OF SOLAR FEATURES FOR DEVELOPING DATA DRIVEN PREDICTION MODELS OF... SOLAR ACTIVITY AND SPACE WEATHER Jason Jackiewicz New Mexico State University Department of Astronomy PO Box 30001, MSC 4500 Las

  5. Solar activity and climate change during the 1750 A.D. solar minimum

    NASA Astrophysics Data System (ADS)

    Bard, Edouard; Baroni, Mélanie; Aster Team

    2015-04-01

    The number of sunspots and other characteristics have been widely used to reconstruct the solar activity beyond the last three decades of accurate satellite measurements. It has also been possible to reconstruct the long-term solar behavior by measuring the abundance on Earth of cosmogenic nuclides such as carbon 14 and beryllium 10. These isotopes are formed by the interaction of galactic cosmic rays with atmospheric molecules. Accelerator mass spectrometry is used to measure the abundance of these isotopes in natural archives such as polar ice (for 10Be), tree rings and corals (for 14C). Over the last millennium, the solar activity has been dominated by alternating active and quiet periods, such as the Maunder Minimum, which occurred between 1645 and 1715 A.D. The climate forcing of this solar variability is the subject of intense research, both because the exact scaling in terms of irradiance is still a matter of debate and because other solar variations may have played a role in amplifying the climatic response. Indeed, the past few decades of accurate solar measurements do not include conditions equivalent to an extended solar minimum. A further difficulty of the analysis lies in the presence of other climate forcings during the last millennium, which are superimposed on the solar variations. Finally, the inherent precision of paleotemperature proxies are close to the signal amplitude retrieved from various paleoclimate archives covering the last millennium. Recent model-data comparisons for the last millennium have led to the conclusion that the solar forcing during this period was minor in comparison to volcanic eruptions and greenhouse gas concentrations (e.g. Schurer et al. 2013 J. Clim., 2014 Nat. Geo.). In order to separate the different forcings, it is useful to focus on a temperature change in phase with a well-documented solar minimum so as to maximize the response to this astronomical forcing. This is the approach followed by Wagner et al. (2005 Clim

  6. Magnetic observations during the recent declining phase of solar activity

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    Changes in the heliospheric magnetic field during the recent declining phase in solar activity are reviewed and compared with observations during past sunspot cycles. The study is based principally on data obtained by IMP-8 and Ulysses. The field magnitude is found to have increased during the declining phase until it reached a maximum value of 11.5nT in approximately 1991.5, approximately two years after sunspot maximum. The field of the sun's south pole became negative after a reversal in early 1990. The sector structure disappeared at Ulysses in April 1993 when the latitude of the spacecraft was -30 deg revealing a low inclination of the heliospheric current sheet. A large outburst of solar activity in March 1991 caused four Coronal Mass Ejections (CMEs) and numerious shocks at the location of Ulysses. Following a delay of more than a year, a series of recurrent high speed streams and Corotating Interaction Regions commenced in July 1992 which were observed by IMP-8, Ulysses and Voyager 2. In all these respects, the behavior of the magnetic field mimics that seen in the two earlier sunspot cycles. The comprehensive data set suggests a correlation between the absolute value of B and sunspot number. The major solar cycle variations in the radial component (and magnitude) of the field have been successfully reproduced by a recent model consisting of a tilted solar dipole, whose strength and tilt undergo characteristic changes over the sunspot cycle, and the heliospheric current sheet. The large outbursts of activity in mid-1972, mid-1982 and the first quarter of 1991 may represent a characteristic last 'gasp' of solar activity before the sun evolves to a different state. The recurrent high speed streams in 1973, 1984 and 1992 accompany the developemnt of large asymetrical polar coronal holes and the growth in intensity of the polar cap fields. After they endure for about one year, the polar coronal holes recede and the high speed streams are replaced by weaker

  7. Forecasting the Peak of the Present Solar Activity Cycle

    NASA Astrophysics Data System (ADS)

    Hamid, Rabab; Marzouk, Beshir

    2016-07-01

    Solar forecasting of the level of sun Activity is very important subject for all space programs. Most predictions are based on the physical conditions prevailing at or before the solar cycle minimum preceding the maximum in question. Our aim is to predict the maximum peak of cycle 24 using precursor techniques in particular those using spotless event, geomagnetic aa min. index and solar flux F10.7. Also prediction of exact date of the maximum (Tr) is taken in consideration. A study of variation over previous spotless event for cycles 7-23 and that for even cycles (8-22) are carried out for the prediction. Linear correlation between RM and spotless event around the preceding minimum gives RM24t = 101.9with rise time Tr = 4.5 Y. For the even cycles RM24e = 108.3 with rise time Tr = 3.9 Y. Based on the average aa min. index for the year of sunspot minimum cycles (13 - 23), we estimate the expected amplitude for cycle 24 to be RMaa = 116.5 for both the total and even cycles. Application of the data of solar flux F10.7 which cover only cycles (19-23) was taken in consideration and gives predicted maximum amplitude R24 10.7 = 146, which are over estimation. Our result indicating a somewhat weaker cycle 24 as compared to cycles 21-23.

  8. Coronal mass ejection activity during solar cycle 23

    NASA Astrophysics Data System (ADS)

    Gopalswamy, Nat; Lara, Alejandro; Yashiro, Seiji; Nunes, Steven; Howard, Russell A.

    2003-09-01

    We studied the solar cycle varition of various properties of coronal mass ejections (CMEs), such as daily CME rate, mean and median speeds, and the latitude of solar sources for cycle 23 (1996-2002). We find that (1) there is an order of magnitude increase in CME rate from the solar minimum (0.5/day) to maximum (6/day), (2) the maximum rate is significantly higher than previous estimates, (3) the mean and median speeds of CMEs also increase from minimum to maximum by a factor of 2, (4) the number of metric type II bursts (summed over CR) tracks CME rate, but the CME speed seems to be only of secondary importance, (5) for type II bursts originating farther from the Sun the CME speed is important, (6) the latitude distribution of CMEs separate the prominence-associated (high-latitude) and active-region associated CMEs, and (7) the rate of high-latitude CMEs shows north-south asymmetry and the cessation eruptions in the north and south roughly mark the polarity reversals. We compared the rates of the fast-and-wide CMEs, major solar flares, interplanetary (IP) shocks, long-wavelength type II bursts and large SEP events. This comparison revealed that the number of major flares is generally too large compared to all the other numbers. In other words, fast-and-wide CMEs, long-wavelength type II bursts, large SEP events, and IP shocks have a close physical relationship.

  9. Dayside Auroral Activity During Solar Maximum and Minimum Periods

    NASA Astrophysics Data System (ADS)

    Rawie, M.; Fasel, G. J.; Flicker, J.; Angelo, A.; Bender, S.; Alyami, M.; Sibeck, D. G.; Sigernes, F.; Lorentzen, D. A.; Green, D.

    2014-12-01

    It is well documented that the dayside auroral oval shifts equatorward when the interplanetary magnetic field (IMF) Bz-component turns southward [Burch, 1973; Akasofu, 1977; Horwitz and Akasofu, 1977; Sandholt et al., 1986, 1988]. During these periods of oval expansion dayside transients are observed to move away from the poleward edge of the auroral oval and drift poleward. These poleward-moving auroral forms are believed to be ionospheric signatures of dayside merging. The dayside auroral oval usually begins to contract when the interplanetary magnetic field turns sharply northward, Bz>0. Eighteen years of meridian scanning photometer (MSP) data from the Kjell Henriksen Observatory in Longyearbyen, Norway are analyzed. During the boreal winter the Sun is several degrees below the horizon. This permits optical observations throughout the daytime period. The MSP Data is selected two hours before and after local noon in Longyearbeyn. Solar wind data (solar wind pressure and speed, along with the IMF Bx, By, Bz components) are collected for each interval and combined with the MSP observations. This data is then separated using solar maximum and minimum periods. Auroral activity (oval expansions and contractions along with the frequency and number of poleward-moving auroral forms) is documented for both solar maximum and minimum periods.

  10. SOLAR ROTATION RATE DURING THE CYCLE 24 MINIMUM IN ACTIVITY

    SciTech Connect

    Antia, H. M.; Basu, Sarbani E-mail: sarbani.basu@yale.ed

    2010-09-01

    The minimum of solar cycle 24 is significantly different from most other minima in terms of its duration as well as its abnormally low levels of activity. Using available helioseismic data that cover epochs from the minimum of cycle 23 to now, we study the differences in the nature of the solar rotation between the minima of cycles 23 and 24. We find that there are significant differences between the rotation rates during the two minima. There are differences in the zonal-flow pattern too. We find that the band of fast rotating region close to the equator bifurcated around 2005 and recombined by 2008. This behavior is different from that during the cycle 23 minimum. By autocorrelating the zonal-flow pattern with a time shift, we find that in terms of solar dynamics, solar cycle 23 lasted for a period of 11.7 years, consistent with the result of Howe et al. (2009). The autocorrelation coefficient also confirms that the zonal-flow pattern penetrates through the convection zone.

  11. Relativistic electrons in the magnetospheric tail during solar activity minima

    NASA Astrophysics Data System (ADS)

    Daibog, Elena; Kecskemety, Karoly; Logachev, Yurii

    Measurements of energetic particle fluxes in the Earth magnetosphere at large distances from the Earth (10 Re and more) are still sparse, and registering instruments usually have high background, that does not permit to determine low particle fluxes accurately, in particular those of subrelativistic electrons. Information on these fluxes and their dynamics are very important for understanding the structure of the magnetosphere, direction of particle drifts, mechanisms of the penetration of solar particles into the magnetosphere and other details of particle-field interaction. The orbit and instrumentation of the Earth satellite IMP-8 allows to fill up this gap to some extent. IMP-8 had a nearly circular orbit with a radius of about 35 Re. The orbital period was 12 days, of which 4 days was spent in the magnetospheric tail. The fluxes of 0.2-10 MeV electrons between 1974 and 2001 are analyzed in different parts of the IMP-8 orbit: at the entrance-exit from the magnetosphere, outside of the magnetosphere and in the near- magnetospheric space. It is shown that during quite periods of solar activity, even during solar minima, electron flux enhancements in the magnetospheric tail were observed due to acceleration mechanisms in the magnetosphere, penetration of solar particles and electrons from the Jovian magnetosphere.

  12. Solar activity, revolutions and cultural prime in the history of mankind.

    PubMed

    Mikulecký, Miroslav

    2007-12-01

    Russian astronomer A.L. Tchijevsky published in the twenties of 20th century a study comparing the approximately 11-year cycling of "sunspot activity" and "historical process", analyzed globally since the 5th century B.C. to the 19th century A.D. According to him, phenomena of societal "excitation", as revolutions, occurred synchronously with the solar maxima, and, oppositely, those of peaceful activities of masses, as science and arts, with the solar minima. Recently, Slovak philosopher E. Páles describes periodic fluctuation of historical events in mutually distant geographic areas during more than three millennia. The period lengths, however, are longer, one of the most pronounced being around 500 years. THE QUESTION was therefore posed: does a similar correlation with sunspot activity, as found for 11-year cycles, exist also in the 500-year cycling? The historical data consisted of two time series concerning revolutions in Europe and China, and of eight time series from activities in science and arts registered from five geographic areas. For the comparison, parallel time series of sunspot (Wolf) numbers, available since IInd century B.C., were constructed. Using periodic regression function, the times of peaking were estimated for each data set. In agreement with Tchijevsky's hypothesis, revolutions culminated near to solar maxima while cultural flourishing usually distinctly near to solar minima. This conclusion is based on the level of statistical significance alpha=0.05. Solar impact on geomagnetic field could be one of elucidating mechanisms. Recently, electromagnetic influencing of brain function has been realized artificially.

  13. Simultaneous Solar Maximum Mission (SMM) and Very Large Array (VLA) observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Willson, Robert F.

    1991-01-01

    Very Large Array observations at 20 cm wavelength can detect the hot coronal plasma previously observed at soft x ray wavelengths. Thermal cyclotron line emission was detected at the apex of coronal loops where the magnetic field strength is relatively constant. Detailed comparison of simultaneous Solar Maximum Mission (SMM) Satellite and VLA data indicate that physical parameters such as electron temperature, electron density, and magnetic field strength can be obtained, but that some coronal loops remain invisible in either spectral domain. The unprecedent spatial resolution of the VLA at 20 cm wavelength showed that the precursor, impulsive, and post-flare components of solar bursts originate in nearby, but separate loops or systems of loops.. In some cases preburst heating and magnetic changes are observed from loops tens of minutes prior to the impulsive phase. Comparisons with soft x ray images and spectra and with hard x ray data specify the magnetic field strength and emission mechanism of flaring coronal loops. At the longer 91 cm wavelength, the VLA detected extensive emission interpreted as a hot 10(exp 5) K interface between cool, dense H alpha filaments and the surrounding hotter, rarefield corona. Observations at 91 cm also provide evidence for time-correlated bursts in active regions on opposite sides of the solar equator; they are attributed to flare triggering by relativistic particles that move along large-scale, otherwise-invisible, magnetic conduits that link active regions in opposite hemispheres of the Sun.

  14. INFLUENCE OF THE AMBIENT SOLAR WIND FLOW ON THE PROPAGATION BEHAVIOR OF INTERPLANETARY CORONAL MASS EJECTIONS

    SciTech Connect

    Temmer, Manuela; Rollett, Tanja; Moestl, Christian; Veronig, Astrid M.; Vrsnak, Bojan; Odstrcil, Dusan

    2011-12-20

    We study three coronal mass ejection (CME)/interplanetary coronal mass ejection (ICME) events (2008 June 1-6, 2009 February 13-18, and 2010 April 3-5) tracked from Sun to 1 AU in remote-sensing observations of Solar Terrestrial Relations Observatory Heliospheric Imagers and in situ plasma and magnetic field measurements. We focus on the ICME propagation in interplanetary (IP) space that is governed by two forces: the propelling Lorentz force and the drag force. We address the question: which heliospheric distance range does the drag become dominant and the CME adjust to the solar wind flow. To this end, we analyze speed differences between ICMEs and the ambient solar wind flow as a function of distance. The evolution of the ambient solar wind flow is derived from ENLIL three-dimensional MHD model runs using different solar wind models, namely, Wang-Sheeley-Arge and MHD-Around-A-Sphere. Comparing the measured CME kinematics with the solar wind models, we find that the CME speed becomes adjusted to the solar wind speed at very different heliospheric distances in the three events under study: from below 30 R{sub Sun }, to beyond 1 AU, depending on the CME and ambient solar wind characteristics. ENLIL can be used to derive important information about the overall structure of the background solar wind, providing more reliable results during times of low solar activity than during times of high solar activity. The results from this study enable us to obtain greater insight into the forces acting on CMEs over the IP space distance range, which is an important prerequisite for predicting their 1 AU transit times.

  15. NASDA activities in space solar power system research, development and applications

    NASA Technical Reports Server (NTRS)

    Matsuda, Sumio; Yamamoto, Yasunari; Uesugi, Masato

    1993-01-01

    NASDA activities in solar cell research, development, and applications are described. First, current technologies for space solar cells such as Si, GaAs, and InP are reviewed. Second, future space solar cell technologies intended to be used on satellites of 21st century are discussed. Next, the flight data of solar cell monitor on ETS-V is shown. Finally, establishing the universal space solar cell calibration system is proposed.

  16. Bi-decadal solar influence on climate, mediated by near tropopause ozone

    NASA Astrophysics Data System (ADS)

    Kilifarska, N. A.

    2015-12-01

    The Sun's contribution to climate variations was highly questioned recently. In this paper we show that bi-decadal variability of solar magnetic field, modulating the intensity of galactic cosmic ray (GCR) at the outer boundary of heliosphere, could be easily tracked down to the Earth's surface. The mediator of this influence is the lower stratospheric ozone, while the mechanism of signal translation consists of: (i) GCR impact on the lower stratospheric ozone balance; (ii) modulation of temperature and humidity near the tropopause by the ozone variations; (iii) increase or decrease of the greenhouse effect, depending on the sign of the humidity changes. The efficiency of such a mechanism depends critically on the level of maximum secondary ionisation created by GCR (i.e. the Pfotzer maximum) - determined in turn by heterogeneous Earth's magnetic field. Thus, the positioning of the Pfotzer max in the driest lowermost stratosphere favours autocatalytic ozone production in the extra-tropical Northern Hemisphere (NH), while in the SH- no suitable conditions for activation of this mechanism exist. Consequently, the geomagnetic modulation of precipitating energetic particles - heterogeneously distributed over the globe - is imprinted on the relation between ozone and humidity in the lower stratosphere (LS). The applied test for causality reveals that during the examined period 1957-2012 there are two main centres of action in the winter NH, with tight and almost stationary winter ozone control on the near tropopause humidity. Being indirectly influenced by the solar protons, the variability of the SH lower stratospheric ozone, however, is much weaker. As a consequence, the causality test detects that the ozone dominates in the interplay with ULTS humidity only in the summer extra-tropics.

  17. Active other worlds in the Solar System and beyond

    NASA Astrophysics Data System (ADS)

    Forget, François

    2016-04-01

    Over the past decades, space exploration has moved planetology from the field of astronomy to the disciplines of geosciences. A fleet of spacecrafts have discovered and study tens of worlds in our solar system and beyond. Everywhere, we have been surprised by the diversity and the vigour of the geophysical activity, from volcanic eruptions to plasma waves... Every scientists present at EGU could -and should- be interested in the extraterrestrial processes that are discovered and analyzed elsewhere. In our solar system, a variety of clouds and fluid dynamical phenomena can be studied in six terrestrial atmospheres and on four giant planets. Active glaciers are found on Mars and Pluto. R