Sample records for solar array capable

  1. Advanced photovoltaic solar array design assessment

    NASA Technical Reports Server (NTRS)

    Stella, Paul; Scott-Monck, John

    1987-01-01

    The Advanced Photovoltaic Solar Array (APSA) program seeks to bring to flight readiness a solar array that effectively doubles the specific power of the Solar Array Flight Experiment/Solar Electric Propulsion (SAFE/SEP) design that was successfully demonstrated during the Shuttle 41-D mission. APSA is a critical intermediate milestone in the effort to demonstrate solar array technologies capable of 300 W/kg and 300 W/square m at beginning of life (BOL). It is not unreasonable to anticipate the development of solar array designs capable of 300 W/kg at BOL for operational power levels approx. greater than 25 kW sub e. It is also quite reasonable to expect that high performance solar arrays capable of providing at least 200 W/kg at end of life for most orbits now being considered by mission planners will be realized in the next decade.

  2. Design of a 7kW power transfer solar array drive mechanism

    NASA Technical Reports Server (NTRS)

    Sheppard, J. G.

    1982-01-01

    With the availability of the Shuttle and the European launcher, Ariane, there will be a continuing trend towards large payload satellite missions requiring high-power, high-inertia, flexible solar arrays. The need arises for a solar array drive with a large power transfer capability which can rotate these solar arrays without disturbing the satellite body pointing. The modular design of such a Solar Array Drive Mechanism (SADM) which is capable of transferring 7kW of power or more is described. Total design flexibility has been achieved, enabling different spacecraft power requirements to be accommodated within the SADM design.

  3. Multi-kW solar arrays for Earth orbit applications

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The multi-kW solar array program is concerned with developing the technology required to enable the design of solar arrays required to power the missions of the 1990's. The present effort required the design of a modular solar array panel consisting of superstrate modules interconnected to provide the structural support for the solar cells. The effort was divided into two tasks: (1) superstrate solar array panel design, and (2) superstrate solar array panel-to-panel design. The primary objective was to systematically investigate critical areas of the transparent superstrate solar array and evaluate the flight capabilities of this low cost approach.

  4. GPM Solar Array Gravity Negated Deployment Testing

    NASA Technical Reports Server (NTRS)

    Penn, Jonathan; Johnson, Chris; Lewis, Jesse; Dear, Trevin; Stewart, Alphonso

    2014-01-01

    NASA Goddard Space Flight Center (GSFC) successfully developed a g-negation support system for use on the solar arrays of the Global Precipitation Measurement (GPM) Satellite. This system provides full deployment capability at the subsystem and observatory levels. In addition, the system provides capability for deployed configuration first mode frequency verification testing. The system consists of air pads, a support structure, an air supply, and support tables. The g-negation support system was used to support all deployment activities for flight solar array deployment testing.

  5. Solar array study for solar electric propulsion spacecraft for the Encke rendezvous mission

    NASA Technical Reports Server (NTRS)

    Sequeira, E. A.; Patterson, R. E.

    1974-01-01

    The work is described which was performed on the design, analysis and performance of a 20 kW rollup solar array capable of meeting the design requirements of a solar electric spacecraft for the 1980 Encke rendezvous mission. To meet the high power requirements of the proposed electric propulsion mission, solar arrays on the order of 186.6 sq m were defined. Because of the large weights involved with arrays of this size, consideration of array configurations is limited to lightweight, large area concepts with maximum power-to-weight ratios. Items covered include solar array requirements and constraints, array concept selection and rationale, structural and electrical design considerations, and reliability considerations.

  6. Laboratory 15 kV high voltage solar array facility

    NASA Technical Reports Server (NTRS)

    Kolecki, J. C.; Gooder, S. T.

    1976-01-01

    The laboratory high voltage solar array facility is a photoelectric power generating system. Consisting of nine modules with over 23,000 solar cells, the facility is capable of delivering more than a kilowatt of power. The physical and electrical characteristics of the facility are described.

  7. Review of biased solar arraay. Plasma interaction studies

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.

    1981-01-01

    The Solar Electric Propulsion System (SEPS) is proposed for a variety of space missions. Power for operating SEPS is obtained from large solar array wings capable of generating tens of kilowatts of power. To minimize resistive losses in the solar array bus lines, the array is designed to operate at voltages up to 400 volts. This use of high voltage can increase interactions between the biased solar cell interconnects and plasma environments. With thrusters operating, the system ground is maintained at space plasma potential which exposes large areas of the arrays at the operating voltages. This can increase interactions with both the natural and enhanced charged particle environments. Available data on interactions between biased solar array surfaces and plasma environments are summarized. The apparent relationship between collection phenomena and solar cell size and effects of array size on interactions are discussed. The impact of these interactions on SEPS performance is presented.

  8. The SCARLET{trademark} array for high power GEO satellites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spence, B.R.; Jones, P.A.; Eskenazi, M.I.

    1997-12-31

    The GEO satellite market is demanding increasingly capable spacecraft which, in turn, drives commercial spacecraft manufacturers to require significantly higher power solar arrays. As satellite capability increases the demand for high power array systems which are both cost and performance competitive becomes more crucial. Conventional rigid panel planar arrays, although suitable in the past, negatively impact spacecraft competitiveness for these new applications. The Solar Concentrator Array with Refractive Linear Element Technology (SCARLET{trademark}) represents an economically attractive solution for meeting these new high power requirements. When compared to conventional planar arrays, SCARLET provides substantially lower cost and higher deployed stiffness, competitivemore » mass, better producibility, and affordable use of high efficiency multijunction cells. This paper compares cost/performance characteristics of the SCARLET array to conventional planar arrays for high power GEO spacecraft applications. High power SCARLET array configurations are described, and inherent spacecraft and array level cost/performance benefits are presented.« less

  9. An IBM PC-based math model for space station solar array simulation

    NASA Technical Reports Server (NTRS)

    Emanuel, E. M.

    1986-01-01

    This report discusses and documents the design, development, and verification of a microcomputer-based solar cell math model for simulating the Space Station's solar array Initial Operational Capability (IOC) reference configuration. The array model is developed utilizing a linear solar cell dc math model requiring only five input parameters: short circuit current, open circuit voltage, maximum power voltage, maximum power current, and orbit inclination. The accuracy of this model is investigated using actual solar array on orbit electrical data derived from the Solar Array Flight Experiment/Dynamic Augmentation Experiment (SAFE/DAE), conducted during the STS-41D mission. This simulator provides real-time simulated performance data during the steady state portion of the Space Station orbit (i.e., array fully exposed to sunlight). Eclipse to sunlight transients and shadowing effects are not included in the analysis, but are discussed briefly. Integrating the Solar Array Simulator (SAS) into the Power Management and Distribution (PMAD) subsystem is also discussed.

  10. Photovoltaic solar array technology required for three wide scale generating systems for terrestrial applications: rooftop, solar farm, and satellite

    NASA Technical Reports Server (NTRS)

    Berman, P. A.

    1972-01-01

    Three major options for wide-scale generation of photovoltaic energy for terrestrial use are considered: (1) rooftop array, (2) solar farm, and (3) satellite station. The rooftop array would use solar cell arrays on the roofs of residential or commercial buildings; the solar farm would consist of large ground-based arrays, probably in arid areas with high insolation; and the satellite station would consist of an orbiting solar array, many square kilometers in area. The technology advancement requirements necessary for each option are discussed, including cost reduction of solar cells and arrays, weight reduction, resistance to environmental factors, reliability, and fabrication capability, including the availability of raw materials. The majority of the technology advancement requirements are applicable to all three options, making possible a flexible basic approach regardless of the options that may eventually be chosen. No conclusions are drawn as to which option is most advantageous, since the feasibility of each option depends on the success achieved in the technology advancement requirements specified.

  11. Interconnnect and bonding technologies for large flexible solar arrays

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Thermocompression bonding and conductive adhesive bonding are developed and evaluated as alternate methods of joining solar cells to their interconnect assemblies. Bonding materials and process controls applicable to fabrication of large, flexible substrate solar cell arrays are studied. The primary potential use of the techniques developed is on the solar array developed by NASA/MSFC and LMSC for solar electric propulsion (SEP) and shuttle payload applications. This array is made up of flexible panels approximately 0.7 by 3.4 meters. It is required to operate in space between 0.3 and 6 AU for 5 years with limited degradation. Materials selected must be capable of enduring this space environment, including outgassing and radiation.

  12. The 7.5 kW solar array simulator

    NASA Technical Reports Server (NTRS)

    Robson, R. R.

    1975-01-01

    A high power solar array simulator capable of providing the input power to simultaneously operate two 30 cm diameter ion thruster power processors was designed, fabricated, and tested. The maximum power point is set to between 150 and 7500 watts representing an open circuit voltage from 50 to 300 volts and a short circuit current from 4 to 36 amps. Illuminated solar cells are used as the control element to provide a true solar cell characteristic and permit the option of simulating changes in this characteristic due to variations in solar intensity and/or temperature of the solar array. This is accomplished by changing the illumination and/or temperature of the control cells. The response of the output to a step change in load closely approximates that of an actual solar array.

  13. Integrally regulated solar array demonstration using an Intel 8080 microprocessor

    NASA Technical Reports Server (NTRS)

    Petrik, E. J.

    1977-01-01

    A concept for regulating the voltage of a solar array by using a microprocessor to effect discrete voltage changes was demonstrated. Eight shorting switches were employed to regulate a simulated array at set-point voltages between 10,000 and 15,000 volts. The demonstration showed that the microprocessor easily regulated the solar array output voltage independently of whether or not the switched cell groups were binary sized in voltage. In addition, the microprocessor provided logic memory capability to perform additional tasks such as locating and insolating a faulty switch.

  14. Space Station Freedom Solar Array design development

    NASA Technical Reports Server (NTRS)

    Winslow, Cindy; Bilger, Kevin; Baraona, Cosmo R.

    1989-01-01

    The Space Station Freedom Solar Array Program is required to provide a 75 kW power module that uses eight solar array (SA) wings over a four-year period in low Earth orbit (LEO). Each wing will be capable of providing 23.4 kW at the 4-year design point. Lockheed Missles and Space Company, Inc. (LMSC) is providing the flexible substrate SAs that must survive exposure to the space environment, including atomic oxygen, for an operating life of fifteen years. Trade studies and development testing, important for evolving any design to maturity, are presently underway at LMSC on the flexible solar array. The trade study and development areas being investigated include solar cell module size, solar cell weld pads, panel stiffener frames, materials inherently resistant to atomic oxygen, and weight reduction design alternatives.

  15. Space Station Freedom solar array design development

    NASA Technical Reports Server (NTRS)

    Winslow, Cindy; Bilger, Kevin; Baraona, Cosmo

    1989-01-01

    The Space Station Freedom solar array program is required to provide a 75-kW power module that uses eight solar array (SA) wings over a four-year period in low earth orbit (LEO). Each wing will be capable of providing 23.4 kW at the 4-yr design point. The design of flexible-substrate SAs that must survive exposure to the space environment, including atomic oxygen, for an operating life of fifteen years is discussed. The tradeoff study and development areas being investigated include solar cell module size, solar cell weld pads, panel stiffener frames, materials inherently resistant to atomic oxygen, and weight reduction design alternatives.

  16. Low concentration ratio solar array for low Earth orbit multi-100kW application. Volume 2: Drawings

    NASA Technical Reports Server (NTRS)

    Nalbandian, S. J.; French, E. P.

    1982-01-01

    A preliminary design effort directed toward a low concentration ratio photovoltaic array system based on 1984 technology and capable of delivering multi-hundred kilowatts (300 kW to 100 kW range) in low Earth orbit. The array system consists of two or more array modules each capable of delivering between 113 kW to 175 kW using silicon solar cells or gallium arsenide solar cells, respectively. The array module deployed area is 1320 square meters and consists of 4356 pyramidal concentrator elements. The module, when stowed in the Space Shuttle's payload bay, has a stowage volume of a cube with 3.24 meters on a side. The concentrator elements are sized for a geometric concentration ratio (GCR) of six with an aperture area of 0.5 meters x 0.5 meters. Drawings for the preliminary design configuration and for the test hardware that was fabricated for design evaluation and test are provided.

  17. High voltage solar array experiments

    NASA Technical Reports Server (NTRS)

    Kennerud, K. L.

    1974-01-01

    The interaction between the components of a high voltage solar array and a simulated space plasma is studied to obtain data for the design of a high voltage solar array capable of 15kW at 2 to 16kV. Testing was conducted in a vacuum chamber 1.5-m long by 1.5-m diameter having a plasma source which simulated the plasma conditions existing in earth orbit between 400 nautical miles and synchronous altitude. Test samples included solar array segments pinholes in insulation covering high voltage electrodes, and plain dielectric samples. Quantitative data are presented in the areas of plasma power losses, plasma and high voltage induced damage, and dielectric properties. Limitations of the investigation are described.

  18. A Practical Guide To Solar Array Simulation And PCDU Test

    NASA Astrophysics Data System (ADS)

    Schmitz, Noah; Carroll, Greg; Clegg, Russell

    2011-10-01

    Solar arrays consisting of multiple photovoltaic segments provide power to satellites and charge internal batteries for use during eclipse. Solar arrays have unique I-V characteristics and output power which vary with environmental and operational conditions such as temperature, irradiance, spin, and eclipse. Therefore, specialty power solutions are needed to properly test the satellite on the ground, especially the Power Control and Distribution Unit (PCDU) and the Array Power Regulator (APR.) This paper explores some practical and theoretical considerations that should be taken into account when choosing a commercial, off-the-shelf solar array simulator (SAS) for verification of the satellite PCDU. An SAS is a unique power supply with I-V output characteristics that emulate the solar arrays used to power a satellite. It is important to think about the strengths and the limitations of this emulation capability, how closely the SAS approximates a real solar panel, and how best to design a system using SAS as components.

  19. Low concentration ratio solar array for low Earth orbit multi-100 kW application. Volume 1: Design, analysis and development tests

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A preliminary design effort directed toward a low concentration ratio photovoltaic array system capable of delivering multihundred kilowatts (300 kW to 1000 kW range) in low earth orbit is described. The array system consists of two or more array modules each capable of delivering between 113 kW to 175 kW using silicon solar cells or gallium arsenide solar cells, respectively. The array module deployed area is 1320 square meters and consists of 4356 pyramidal concentrator elements. The module, when stowed in the Space Shuttle's payload bay, has a stowage volume of a cube with 3.24 meters on a side. The concentrator elements are sized for a geometric concentration ratio (GCR) of six with an aperture area of .25 sq. m. The structural analysis and design trades leading to the baseline design are discussed. It describes the configuration, as well as optical, thermal and electrical performance analyses that support the design and overall performance estimates for the array are described.

  20. Low concentration ratio solar array for low Earth orbit multi-100 kW application

    NASA Technical Reports Server (NTRS)

    Nalbandian, S. J.

    1982-01-01

    An ongoing preliminary design effort directed toward a low-concentration-ratio photovoltaic array system based on 1984 technology and capable of delivering multi-hundred kilowatts (300 kW to 1000 kW range) in low earth orbit is described. The array system consists of two or more array modules each capable of delivering between 80 kW to 172 kW using silicon solar cells or gallium arsenide solar cells respectively. The array module deployed area is 1320 square meters and consists of 4356 pryamidal concentrator elements. The module, when stowed in the Space Shuttle's payload bay, has a stowage volume of a cube with 3.24 meters on a side. The concentrator elements are sized for a geometric concentration ratio (GCR) of six with an aperture area of 0.5 meters x 0.5 meters. The structural analysis and design trades leading to the baseline design are discussed. The configuration, as well as optical, thermal and electrical performance analyses that support the design and overall performance estimates for the array are described.

  1. Flight performance of the Pioneer Venus Orbiter solar array

    NASA Technical Reports Server (NTRS)

    Goldhammer, L. J.; Powe, J. S.; Smith, Marcie

    1987-01-01

    The Pioneer Venus Orbiter (PVO) solar panel power output capability has degraded much more severely than has the power output capability of solar panels that have operated in earth-orbiting spacecraft for comparable periods of time. The incidence of solar proton events recorded by the spacecraft's scientific instruments accounts for this phenomenon only in part. It cannot explain two specific forms of anomalous behavior observed: 1) a variation of output per spin with roll angle, and 2) a gradual degradation of the maximum output. Analysis indicates that the most probable cause of the first anomaly is that the solar cells underneath the spacecraft's magnetometer boom have been damaged by a reverse biasing of the cells that occurs during pulsed shadowing of the cells by the boom as the spacecraft rotates. The second anomaly might be caused by the effects on the solar array of substances from the upper atmosphere of Venus.

  2. Lightweight Integrated Solar Array and Transceiver. [Improving Electrical Power and Communication Capabilities in Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Carr, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Lightweight Integrated Solar Array and Transceiver (LISA-T) project will leverage several existing and on-going efforts at Marshall Space Flight Center (MSFC) for the design, development, fabrication, and test of a launch stowed, orbit deployed structure on which thin-film photovoltaics for power generation and antenna elements for communication, are embedded. Photovoltaics is a method for converting solar energy into electricity using semiconductor materials. The system will provide higher power generation with a lower mass, smaller stowage volume, and lower cost than the state of the art solar arrays, while simultaneously enabling deployable antenna concepts.

  3. Solar XUV Imaging and Non-dispersive Spectroscopy for Solar-C Enabled by Scientific CMOS APS Arrays

    NASA Astrophysics Data System (ADS)

    Stern, Robert A.; Lemen, J. R.; Shing, L.; Janesick, J.; Tower, J.

    2009-05-01

    Monolithic CMOS Advanced Pixel Sensor (APS) arrays are showing great promise as eventual replacements for the current workhorse of solar physics focal planes, the scientific CCD. CMOS APS devices have individually addressable pixels, increased radiation tolerance compared to CCDs, and require lower clock voltages, and thus lower power. However, commercially available CMOS chips, while suitable for use with intensifiers or fluorescent coatings, are generally not optimized for direct detection of EUV and X-ray photons. A high performance scientific CMOS array designed for these wavelengths will have significant new capabilities compared to CCDs, including the ability to read out small regions of the solar disk at high (sub sec) cadence, count single X-ray photons with Fano-limited energy resolution, and even operate at room temperature with good noise performance. Such capabilities will be crucial for future solar X-ray and EUV missions such as Solar-C. Sarnoff Corporation has developed scientific grade, monolithic CMOS arrays for X-ray imaging and photon counting. One prototype device, the "minimal" array, has 8 um pixels, is 15 to 25 um thick, is fabricated on high-resistivity ( 10 to 20 kohm-cm) Si wafers, and can be back-illuminated. These characteristics yield high quantum efficiency and high spatial resolution with minimal charge sharing among pixels, making it ideal for the detection of keV X-rays. When used with digital correlated double sampling, the array has demonstrated noise performance as low as 2 e, allowing single photon counting of X-rays over a range of temperatures. We report test results for this device in X-rays, and discuss the implications for future solar space missions.

  4. Performance, size, mass, and cost estimates for projected 1kW EOL Si, InP, and GaAs arrays

    NASA Technical Reports Server (NTRS)

    Slifer, Luther W., Jr.

    1991-01-01

    One method of evaluating the potential of emerging solar cell and array technologies is to compare their projected capabilities in space flight applications to those of established Si solar cells and arrays. Such an application-oriented comparison provides an integrated view of the elemental comparisons of efficiency, radiation resistance, temperature sensitivity, size, mass, and cost in combination. In addition, the assumptions necessary to make the comparisons provide insights helpful toward determining necessary areas of development or evaluation. Finally, as developments and evaluations progress, the results can be used in more precisely defining the overall potential of the new technologies in comparison to existing technologies. The projected capabilities of Si, InP, and GaAs cells and arrays are compared.

  5. A Robust Design Approach to Cost Estimation: Solar Energy for Marine Corps Expeditionary Operations

    DTIC Science & Technology

    2014-04-30

    areas as photovoltaic arrays for power harvesting, light emitting diodes (LED) for decreased energy consumption, and improved battery and smart power ...conversion system that allows Marines to power systems with solar energy. Each GREENS is comprised of eight photovoltaic array panels, four high-energy...Brandon Newell conducted an experiment where he assessed the capabilities of the HOMER model in forecasting the power output of a solar panel at the

  6. Photovoltaic options for solar electric propulsion

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Flood, Dennis J.

    1990-01-01

    During the past decade, a number of advances have occurred in solar cell and array technology. These advances have lead to performance improvement for both conventional space arrays and for advanced technology arrays. Performance enhancements have occurred in power density, specific power, and environmental capability. Both state-of-the-art and advanced development cells and array technology are discussed. Present technology will include rigid, rollout, and foldout flexible substrate designs, with silicon and GaAs solar cells. The use of concentrator array systems is also discussed based on both DOD and NASA efforts. The benefits of advanced lightweight array technology, for both near term and far term utilization, and of advanced high efficiency, thin, radiation resistant cells is examined. This includes gallium arsenide on germaniun substrates, indium phosphide, and thin film devices such as copper indium diselenide.

  7. Analysis and simulation tools for solar array power systems

    NASA Astrophysics Data System (ADS)

    Pongratananukul, Nattorn

    This dissertation presents simulation tools developed specifically for the design of solar array power systems. Contributions are made in several aspects of the system design phases, including solar source modeling, system simulation, and controller verification. A tool to automate the study of solar array configurations using general purpose circuit simulators has been developed based on the modeling of individual solar cells. Hierarchical structure of solar cell elements, including semiconductor properties, allows simulation of electrical properties as well as the evaluation of the impact of environmental conditions. A second developed tool provides a co-simulation platform with the capability to verify the performance of an actual digital controller implemented in programmable hardware such as a DSP processor, while the entire solar array including the DC-DC power converter is modeled in software algorithms running on a computer. This "virtual plant" allows developing and debugging code for the digital controller, and also to improve the control algorithm. One important task in solar arrays is to track the maximum power point on the array in order to maximize the power that can be delivered. Digital controllers implemented with programmable processors are particularly attractive for this task because sophisticated tracking algorithms can be implemented and revised when needed to optimize their performance. The proposed co-simulation tools are thus very valuable in developing and optimizing the control algorithm, before the system is built. Examples that demonstrate the effectiveness of the proposed methodologies are presented. The proposed simulation tools are also valuable in the design of multi-channel arrays. In the specific system that we have designed and tested, the control algorithm is implemented on a single digital signal processor. In each of the channels the maximum power point is tracked individually. In the prototype we built, off-the-shelf commercial DC-DC converters were utilized. At the end, the overall performance of the entire system was evaluated using solar array simulators capable of simulating various I-V characteristics, and also by using an electronic load. Experimental results are presented.

  8. ISS Solar Array Management

    NASA Technical Reports Server (NTRS)

    Williams, James P.; Martin, Keith D.; Thomas, Justin R.; Caro, Samuel

    2010-01-01

    The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations.

  9. FACT, Mega-ROSA, SOLAROSA

    NASA Technical Reports Server (NTRS)

    Spence, Brian; White, Steve; Schmid, Kevin; Douglas Mark

    2012-01-01

    The Flexible Array Concentrator Technology (FACT) is a lightweight, high-performance reflective concentrator blanket assembly that can be used on flexible solar array blankets. The FACT concentrator replaces every other row of solar cells on a solar array blanket, significantly reducing the cost of the array. The modular design is highly scalable for the array system designer, and exhibits compact stowage, good off-pointing acceptance, and mass/cost savings. The assembly s relatively low concentration ratio, accompanied by a large radiative area, provides for a low cell operating temperature, and eliminates many of the thermal problems inherent in high-concentration-ratio designs. Unlike other reflector technologies, the FACT concentrator modules function on both z-fold and rolled flexible solar array blankets, as well as rigid array systems. Mega-ROSA (Mega Roll-Out Solar Array) is a new, highly modularized and extremely scalable version of ROSA that provides immense power level range capability from 100 kW to several MW in size. Mega-ROSA will enable extremely high-power spacecraft and SEP-powered missions, including space-tug and largescale planetary science and lunar/asteroid exploration missions. Mega-ROSA's inherent broad power scalability is achieved while retaining ROSA s solar array performance metrics and missionenabling features for lightweight, compact stowage volume and affordability. This innovation will enable future ultra-high-power missions through lowcost (25 to 50% cost savings, depending on PV and blanket technology), lightweight, high specific power (greater than 200 to 400 Watts per kilogram BOL (beginning-of-life) at the wing level depending on PV and blanket technology), compact stowage volume (greater than 50 kilowatts per cubic meter for very large arrays), high reliability, platform simplicity (low failure modes), high deployed strength/stiffness when scaled to huge sizes, and high-voltage operation capability. Mega-ROSA is adaptable to all photovoltaic and concentrator flexible blanket technologies, and can readily accommodate standard multijunction and emerging ultra-lightweight IMM (inverted metamorphic) photovoltaic flexible blanket assemblies, as well as ENTECHs Stretched Lens Array (SLA) and DSSs (Deployable Space Systems) FACT, which allows for cost reduction at the array level.

  10. Reduction of solar vector magnetograph data using a microMSP array processor

    NASA Technical Reports Server (NTRS)

    Kineke, Jack

    1990-01-01

    The processing of raw data obtained by the solar vector magnetograph at NASA-Marshall requires extensive arithmetic operations on large arrays of real numbers. The objectives of this summer faculty fellowship study are to: (1) learn the programming language of the MicroMSP Array Processor and adapt some existing data reduction routines to exploit its capabilities; and (2) identify other applications and/or existing programs which lend themselves to array processor utilization which can be developed by undergraduate student programmers under the provisions of project JOVE.

  11. NASA Programs in Space Photovoltaics

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1992-01-01

    Highlighted here are some of the current programs in advanced space solar cell and array development conducted by NASA in support of its future mission requirements. Recent developments are presented for a variety of solar cell types, including both single crystal and thin film cells. A brief description of an advanced concentrator array capable of AM0 efficiencies approaching 25 percent is also provided.

  12. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, R. W.

    1986-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  13. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, Richard W.

    1986-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on Space Shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  14. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, Richard W.

    1987-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  15. Correlation of ISS Electric Potential Variations with Mission Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Minow, Joseph I.; Parker, Linda Neergaard

    2014-01-01

    Spacecraft charging on the International Space Station (ISS) is caused by a complex combination of the low Earth orbit plasma environment, space weather events, operations of the high voltage solar arrays, and changes in the ISS configuration and orbit parameters. Measurements of the ionospheric electron density and temperature along the ISS orbit and variations in the ISS electric potential are obtained from the Floating Potential Measurement Unit (FPMU) suite of four plasma instruments (two Langmuir probes, a Floating Potential Probe, and a Plasma Impedance Probe) on the ISS. These instruments provide a unique capability for monitoring the response of the ISS electric potential to variations in the space environment, changes in vehicle configuration, and operational solar array power manipulation. In particular, rapid variations in ISS potential during solar array operations on time scales of tens of milliseconds can be monitored due to the 128 Hz sample rate of the Floating Potential Probe providing an interesting insight into high voltage solar array interaction with the space plasma environment. Comparing the FPMU data with the ISS operations timeline and solar array data provides a means for correlating some of the more complex and interesting ISS electric potential variations with mission operations. In addition, recent extensions and improvements to the ISS data downlink capabilities have allowed more operating time for the FPMU than ever before. The FPMU was operated for over 200 days in 2013 resulting in the largest data set ever recorded in a single year for the ISS. In this paper we provide examples of a number of the more interesting ISS charging events observed during the 2013 operations including examples of rapid charging events due to solar array power operations, auroral charging events, and other charging behavior related to ISS mission operations.

  16. Correlation of ISS Electric Potential Variations with Mission Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Minow, Joseph I.; Parker, Linda Neergaard

    2014-01-01

    Spacecraft charging on the International Space Station (ISS) is caused by a complex mix of the low Earth orbit plasma environment, space weather events, operations of the high voltage solar arrays, and changes in the ISS configuration and orbit parameters. Measurements of the ionospheric electron density and temperature along the ISS orbit and variations in the ISS electric potential are obtained from the Floating Potential Measurement Unit (FPMU) suite of four plasma instruments (two Langmuir probes, a Floating Potential Probe, and a Plasma Impedance Probe) on the ISS. These instruments provide a unique capability for monitoring the response of the ISS electric potential to variations in the space environment, changes in vehicle configuration, and operational solar array power manipulation. In particular, rapid variations in ISS potential during solar array operations on time scales of tens of milliseconds can be monitored due to the 128 Hz sample rate of the Floating Potential Probe providing an interesting insight into high voltage solar array interaction with the space plasma environment. Comparing the FPMU data with the ISS operations timeline and solar array data provides a means for correlating some of the more complex and interesting ISS electric potential variations with mission operations. In addition, recent extensions and improvements to the ISS data downlink capabilities have allowed more operating time for the FPMU than ever before. The FPMU was operated for over 200 days in 2013 resulting in the largest data set ever recorded in a single year for the ISS. This presentation will provide examples of a number of the more interesting ISS charging events observed during the 2013 operations including examples of rapid charging events due to solar array power operations, auroral charging events, and other charging behavior related to ISS mission operations.

  17. Zarya Energy Balance Analysis: The Effect of Spacecraft Shadowing on Solar Array Performance

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Kolosov, Vladimir

    1999-01-01

    The first element of the International Space Station (ISS). Zarya, was funded by NASA and built by the Russian aerospace company Khrunichev State Research and Production Space Center (KhSC). NASA Glenn Research Center (GRC) and KhSC collaborated in performing analytical predictions of the on-orbit electrical performance of Zarya's solar arrays. GRC assessed the pointing characteristics of and shadow patterns on Zarya's solar arrays to determine the average solar energy incident on the arrays. KHSC used the incident energy results to determine Zarya's electrical power generation capability and orbit-average power balance. The power balance analysis was performed over a range of solar beta angles and vehicle operational conditions. This analysis enabled identification of problems that could impact the power balance for specific flights during ISS assembly and was also used as the primary means of verifying that Zarya complied with electrical power requirements. Analytical results are presented for select stages in the ISS assembly sequence along with a discussion of the impact of shadowing on the electrical performance of Zarya's solar arrays.

  18. Terrestrial solar cell module automated array assembly, task 4

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A cost effective design and manufacturing process which would produce solar cell modules capable of meeting qualification test criteria was developed. Emphasis was placed on the development of an aluminum paste back contact process.

  19. Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.

    2014-01-01

    Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.

  20. Laser beamed power - Satellite demonstration applications

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Westerlund, Larry H.

    1992-01-01

    Feasibility of using a ground-based laser to beam light to the solar arrays of orbiting satellites to a level sufficient to provide the operating power required is discussed. An example case of a GEO communications satellite near the end of life due to radiation damage of the solar arrays or battery failure is considered. It is concluded that the commercial satellite industry should be able to reap significant economic benefits through the use of power beaming which is capable of providing supplemental power for satellites with failing arrays, or primary power for failed batteries.

  1. Space Station Power Generation Investigated in Support of the Beta Gimbal Anomaly Resolution

    NASA Technical Reports Server (NTRS)

    Delleur, Ann M.; Propp, Timothy

    2004-01-01

    The International Space Station (ISS) is the largest and most complex spacecraft ever assembled and operated in orbit. The first U.S. photovoltaic module, containing two solar arrays, was launched, installed, and activated in early December 2000. After the first week of continuously rotating the U.S. solar arrays, engineering personnel in the ISS Mission Evaluation Room observed higher than expected electrical currents on the drive motor in one of the Beta Gimbal Assemblies (BGA), the mechanism used to maneuver a U.S. solar array (see the on-orbit photograph). The magnitude of the motor currents continued to increase over time on both BGAs, creating concerns about the ability of the gimbals to continue pointing the solar arrays towards the Sun, a function critical for continued assembly of the ISS. The BGA provides two critical capabilities to the ISS: (1) transfer of electrical power across a rotating joint and (2) positioning of the solar arrays. A number of engineering disciplines convened in May 2001 to address this on-orbit hardware anomaly. Over the course of a year, many scenarios were developed and used. Only two are discussed here: parked arrays and dual-angle mode.

  2. Morphology-controlled cactus-like branched anatase TiO2 arrays with high light-harvesting efficiency for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Wu-Qiang; Rao, Hua-Shang; Feng, Hao-Lin; Guo, Xin-Dong; Su, Cheng-Yong; Kuang, Dai-Bin

    2014-08-01

    The present work establishes a facile process for one-step hydrothermal growth of vertically aligned anatase cactus-like branched TiO2 (CBT) arrays on a transparent conducting oxide (TCO) substrate. Various CBT morphologies are obtained by adjusting the potassium titanium oxide oxalate (PTO) reactant concentration (from 0.05 M to 0.15 M) and this yields a morphologically-controllable branched TiO2 arrays geometry. The CBT arrays consist of a vertically oriented nanowire (NW) or nanosheet (NS) stem and a host of short nanorod (NR) branches. The hierarchical CBT arrays demonstrate their excellent candidatures as photoanodes, which are capable of exhibiting high light-harvesting efficiency in dye-sensitized solar cells (DSSCs). Consequently, DSSCs based on 7 μm long optimized CBT arrays (0.05 M PTO), which are assembled with high density and high aspect-ratio NR branches, exhibit an impressive power conversion efficiency of 6.43% under AM 1.5G one sun illumination. The high performance can be attributed to the prominent light-harvesting efficiency, resulting from larger surface area and superior light-scattering capability.

  3. An inverter/controller subsystem optimized for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Pickrell, R. L.; Merrill, W. C.; Osullivan, G.

    1978-01-01

    Conversion of solar array dc power to ac power stimulated the specification, design, and simulation testing of an inverter/controller subsystem tailored to the photovoltaic power source characteristics. This paper discusses the optimization of the inverter/controller design as part of an overall Photovoltaic Power System (PPS) designed for maximum energy extraction from the solar array. The special design requirements for the inverter/controller include: (1) a power system controller (PSC) to control continuously the solar array operating point at the maximum power level based on variable solar insolation and cell temperatures; and (2) an inverter designed for high efficiency at rated load and low losses at light loadings to conserve energy. It must be capable of operating connected to the utility line at a level set by an external controller (PSC).

  4. NASA Capabilities That Could Impact Terrestrial Smart Grids of the Future

    NASA Technical Reports Server (NTRS)

    Beach, Raymond F.

    2015-01-01

    Incremental steps to steadily build, test, refine, and qualify capabilities that lead to affordable flight elements and a deep space capability. Potential Deep Space Vehicle Power system characteristics: power 10 kilowatts average; two independent power channels with multi-level cross-strapping; solar array power 24 plus kilowatts; multi-junction arrays; lithium Ion battery storage 200 plus ampere-hours; sized for deep space or low lunar orbit operation; distribution120 volts secondary (SAE AS 5698); 2 kilowatt power transfer between vehicles.

  5. Deployable Propulsion and Power Systems for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Carr, John

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. The Near Earth Asteroid (NEA) Scout reconnaissance mission will demonstrate solar sail propulsion on a 6U CubeSat interplanetary spacecraft and lay the groundwork for their future use in deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Lightweight Integrated Solar Array and Transceiver (LISA-T) is a launch stowed, orbit deployed array on which thin-film photovoltaic and antenna elements are embedded. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between power, communications, and GN&C (guidance navigation and control) subsystems. This restricts payload capability and limits the value of these low-cost satellites. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft. The NEA Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the solar sail as its primary propulsion system, allowing it to survey and image one or more NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 sq m solar sail and will weigh less than 12 kilograms. NEA Scout will be launched on the first flight of the Space Launch System in 2018. Similar in concept to the NEA Scout solar sail, the LISA-T array is designed to fit into a very small volume and provide abundant power and omnidirectional communications in just about any deployment configuration. The technology is being proposed for flight validation as early as 2019 in a low earth orbit demonstration using a 3U cubesat, of which less than 1U will be devoted to the LISA-T power and propulsion system. By leveraging recent advancements in thin films, photovoltaics and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions.

  6. Space Station Freedom solar array panels plasma interaction test facility

    NASA Technical Reports Server (NTRS)

    Martin, Donald F.; Mellott, Kenneth D.

    1989-01-01

    The Space Station Freedom Power System will make extensive use of photovoltaic (PV) power generation. The phase 1 power system consists of two PV power modules each capable of delivering 37.5 KW of conditioned power to the user. Each PV module consists of two solar arrays. Each solar array is made up of two solar blankets. Each solar blanket contains 82 PV panels. The PV power modules provide a 160 V nominal operating voltage. Previous research has shown that there are electrical interactions between a plasma environment and a photovoltaic power source. The interactions take two forms: parasitic current loss (occurs when the currect produced by the PV panel leaves at a high potential point and travels through the plasma to a lower potential point, effectively shorting that portion of the PV panel); and arcing (occurs when the PV panel electrically discharges into the plasma). The PV solar array panel plasma interaction test was conceived to evaluate the effects of these interactions on the Space Station Freedom type PV panels as well as to conduct further research. The test article consists of two active solar array panels in series. Each panel consists of two hundred 8 cm x 8 cm silicon solar cells. The test requirements dictated specifications in the following areas: plasma environment/plasma sheath; outgassing; thermal requirements; solar simulation; and data collection requirements.

  7. Interim Feasibility Assessment Method for Solar Heating and Cooling of Army Buildings

    DTIC Science & Technology

    1976-05-01

    Solar Heating and Cooling System Diagram Conventional Flat-Plate Collector ...tank. The sunlight falling on the array warms a fluid (usually glycol and water), which is pumped through the solar collectors . The heat from this...the system an SYSTEM DIAGRAM auxiliary healer capable of supplying all or part of the heating or cooling demand. Solar Collectors The function

  8. Solar and Wind Forecasting | Grid Modernization | NREL

    Science.gov Websites

    and Wind Forecasting Solar and Wind Forecasting As solar and wind power become more common system operators. An aerial photo of the National Wind Technology Center's PV arrays. Capabilities value of accurate forecasting Wind power visualization to direct questions and feedback during industry

  9. Array automated assembly task low cost silicon solar array project, phase 2

    NASA Technical Reports Server (NTRS)

    Olson, C.

    1980-01-01

    Analyses of solar cell and module process steps for throughput rate, cost effectiveness, and reproductibility are reported. In addition to the concentration on cell and module processing sequences, an investigation was made into the capability of using microwave energy in the diffusion, sintering, and thick film firing steps of cell processing. Although the entire process sequence was integrated, the steps are treated individually with test and experimental data, conclusions, and recommendations.

  10. Hydrogen Generation Through Renewable Energy Sources at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony; Prokopius, Kevin

    2007-01-01

    An evaluation of the potential for generating high pressure, high purity hydrogen at the NASA Glenn Research Center (GRC) was performed. This evaluation was based on producing hydrogen utilizing a prototype Hamilton Standard electrolyzer that is capable of producing hydrogen at 3000 psi. The present state of the electrolyzer system was determined to identify the refurbishment requirements. The power for operating the electrolyzer would be produced through renewable power sources. Both wind and solar were considered in the analysis. The solar power production capability was based on the existing solar array field located at NASA GRC. The refurbishment and upgrade potential of the array field was determined and the array output was analyzed with various levels of upgrades throughout the year. The total available monthly and yearly energy from the array was determined. A wind turbine was also sized for operation. This sizing evaluated the wind potential at the site and produced an operational design point for the wind turbine. Commercially available wind turbines were evaluated to determine their applicability to this site. The system installation and power integration were also addressed. This included items such as housing the electrolyzer, power management, water supply, gas storage, cooling and hydrogen dispensing.

  11. The Lightweight Integrated Solar Array and Transceiver (LISA-T): Second Generation Advancements and the Future of SmallSat Power Generation

    NASA Technical Reports Server (NTRS)

    Carr, John A.; Boyd, Darren; Martinez, Armando; SanSoucie, Michael; Johnson, Les; Laue, Greg; Farmer, Brandon; Smith, Joseph C.; Robertson, Barrett; Johnson, Mark

    2016-01-01

    This paper describes the second generation advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. LISA-T is a launch stowed, orbit deployed array on which thin-film photovoltaic and antenna elements are embedded. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between power, communications, and GN&C (guidance navigation and control) subsystems. This restricts payload capability and limits the value of these low-cost satellites. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft. A matrix of options are in development, including planar (pointed) and omnidirectional (non-pointed) arrays. The former is seeking the highest performance possible while the latter is seeking GN&C simplicity. In both cases, power generation ranges from tens of watts to several hundred with an expected specific power >250W/kg and a stowed power density >200kW/m(sub 3). Options for leveraging both high performance, 'typical cost' triple junction thin-film solar cells as well as moderate performance, low cost cells are being developed. Alongside, both UHF (ultra high frequency) and S-band antennas are being integrated into the array to move their space claim away from the spacecraft and open the door for omnidirectional communications and electronically steered phase arrays.

  12. Analysis of shadowing effects on MIR photovoltaic and solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Fincannon, James

    1995-01-01

    The NASA Lewis Research Center is currently working with RSC-Energia, the Russian Space Agency, and Allied Signal in developing a flight demonstration solar dynamic power system. This type of power system is dependent upon solar flux that is reflected and concentrated into a thermal storage system to provide the thermal energy input to a closed-cycle Brayton heat engine. The solar dynamic unit will be flown on the Russian Mir space station in anticipation of use on the International Space Station Alpha. By the time the power system is launched, the Mir will be a spatially complex configuration which will have, in addition to the three-gimbaled solar dynamic unit, eleven solar array wings that are either fixed or track the Sun along one axis and a variety or repositionable habitation and experiment modules. The proximity of arrays to modules creates a situation which makes it highly probable that there will be varying solar flux due to shadowing on the solar dynamic unit and some of the arrays throughout the orbit. Shadowing causes fluctuations in the power output from the arrays and the solar dynamic power system, thus reducing the energy capabilities of the spacecraft. An assessment of the capabilities of the power system under these conditions is an important part in influencing the design and operations of the spacecraft and predicting its energy performance. This paper describes the results obtained from using the Orbiting Spacecraft Shadowing Analysis Station program that was integrated into the Station Power Analysis for Capability Evaluation (SPACE) electrical power system computer program. OSSA allows one to consider the numerous complex factors for analyzing the shadowing effects on the electrical power system including the variety of spacecraft hardware geometric configurations, yearly and daily orbital variations in the vehicle attitude and orbital maneuvers (for communications coverage, payload pointing requirements and rendezvous/docking with other vehicles). The geometric models of the MIR with a solar dynamic power unit that were used in performing shadowing analyses are described. Also presented in this paper are results for individual orbits for several flight attitude cases which include assessments of the shadowing impacts upon the solar dynamic unit and the solar arrays. These cases depict typical MIR flight attitudes likely to have shadowing impact. Because of the time varying nature of the Mir orientation with respect to the Sun and the lack of knowledge of the precise timing of the attitude changes, strategies must be devised to assess and depict the shadowing impacts on power generation throughout the year. To address this, the best, nominal and worst impacts of shadowing considering a wide possible range of parameter changes for typical mission operation period are shown.

  13. Analysis of shadowing effects on MIR photovoltaic and solar dynamic power systems

    NASA Astrophysics Data System (ADS)

    Fincannon, James

    1995-05-01

    The NASA Lewis Research Center is currently working with RSC-Energia, the Russian Space Agency, and Allied Signal in developing a flight demonstration solar dynamic power system. This type of power system is dependent upon solar flux that is reflected and concentrated into a thermal storage system to provide the thermal energy input to a closed-cycle Brayton heat engine. The solar dynamic unit will be flown on the Russian Mir space station in anticipation of use on the International Space Station Alpha. By the time the power system is launched, the Mir will be a spatially complex configuration which will have, in addition to the three-gimbaled solar dynamic unit, eleven solar array wings that are either fixed or track the Sun along one axis and a variety or repositionable habitation and experiment modules. The proximity of arrays to modules creates a situation which makes it highly probable that there will be varying solar flux due to shadowing on the solar dynamic unit and some of the arrays throughout the orbit. Shadowing causes fluctuations in the power output from the arrays and the solar dynamic power system, thus reducing the energy capabilities of the spacecraft. An assessment of the capabilities of the power system under these conditions is an important part in influencing the design and operations of the spacecraft and predicting its energy performance. This paper describes the results obtained from using the Orbiting Spacecraft Shadowing Analysis Station program that was integrated into the Station Power Analysis for Capability Evaluation (SPACE) electrical power system computer program. OSSA allows one to consider the numerous complex factors for analyzing the shadowing effects on the electrical power system including the variety of spacecraft hardware geometric configurations, yearly and daily orbital variations in the vehicle attitude and orbital maneuvers (for communications coverage, payload pointing requirements and rendezvous/docking with other vehicles). The geometric models of the MIR with a solar dynamic power unit that were used in performing shadowing analyses are described. Also presented in this paper are results for individual orbits for several flight attitude cases which include assessments of the shadowing impacts upon the solar dynamic unit and the solar arrays. These cases depict typical MIR flight attitudes likely to have shadowing impact. Because of the time varying nature of the Mir orientation with respect to the Sun and the lack of knowledge of the precise timing of the attitude changes, strategies must be devised to assess and depict the shadowing impacts on power generation throughout the year. To address this, the best, nominal and worst impacts of shadowing considering a wide possible range of parameter changes for typical mission operation period are shown.

  14. Automated solar module assembly line

    NASA Technical Reports Server (NTRS)

    Bycer, M.

    1980-01-01

    The solar module assembly machine which Kulicke and Soffa delivered under this contract is a cell tabbing and stringing machine, and capable of handling a variety of cells and assembling strings up to 4 feet long which then can be placed into a module array up to 2 feet by 4 feet in a series of parallel arrangement, and in a straight or interdigitated array format. The machine cycle is 5 seconds per solar cell. This machine is primarily adapted to 3 inch diameter round cells with two tabs between cells. Pulsed heat is used as the bond technique for solar cell interconnects. The solar module assembly machine unloads solar cells from a cassette, automatically orients them, applies flux and solders interconnect ribbons onto the cells. It then inverts the tabbed cells, connects them into cell strings, and delivers them into a module array format using a track mounted vacuum lance, from which they are taken to test and cleaning benches prior to final encapsulation into finished solar modules. Throughout the machine the solar cell is handled very carefully, and any contact with the collector side of the cell is avoided or minimized.

  15. Computer-Aided Modeling and Analysis of Power Processing Systems (CAMAPPS), phase 1

    NASA Technical Reports Server (NTRS)

    Kim, S.; Lee, J.; Cho, B. H.; Lee, F. C.

    1986-01-01

    The large-signal behaviors of a regulator depend largely on the type of power circuit topology and control. Thus, for maximum flexibility, it is best to develop models for each functional block a independent modules. A regulator can then be configured by collecting appropriate pre-defined modules for each functional block. In order to complete the component model generation for a comprehensive spacecraft power system, the following modules were developed: solar array switching unit and control; shunt regulators; and battery discharger. The capability of each module is demonstrated using a simplified Direct Energy Transfer (DET) system. Large-signal behaviors of solar array power systems were analyzed. Stability of the solar array system operating points with a nonlinear load is analyzed. The state-plane analysis illustrates trajectories of the system operating point under various conditions. Stability and transient responses of the system operating near the solar array's maximum power point are also analyzed. The solar array system mode of operation is described using the DET spacecraft power system. The DET system is simulated for various operating conditions. Transfer of the software program CAMAPPS (Computer Aided Modeling and Analysis of Power Processing Systems) to NASA/GSFC (Goddard Space Flight Center) was accomplished.

  16. Precision orbit raising trajectories. [solar electric propulsion orbital transfer program

    NASA Technical Reports Server (NTRS)

    Flanagan, P. F.; Horsewood, J. L.; Pines, S.

    1975-01-01

    A precision trajectory program has been developed to serve as a test bed for geocentric orbit raising steering laws. The steering laws to be evaluated have been developed using optimization methods employing averaging techniques. This program provides the capability of testing the steering laws in a precision simulation. The principal system models incorporated in the program are described, including the radiation environment, the solar array model, the thrusters and power processors, the geopotential, and the solar system. Steering and array orientation constraints are discussed, and the impact of these constraints on program design is considered.

  17. Space power technology 21: Photovoltaics

    NASA Astrophysics Data System (ADS)

    Wise, Joseph

    1989-04-01

    The Space Power needs for the 21st Century and the program in photovoltaics needed to achieve it are discussed. Workshops were conducted in eight different power disciplines involving industry and other government agencies. The Photovoltaics Workshop was conducted at Aerospace Corporation in June 1987. The major findings and recommended program from this workshop are discussed. The major finding is that a survivable solar power capability is needed in photovoltaics for critical Department of Defense missions including Air Force and Strategic Defense Initiative. The tasks needed to realize this capability are described in technical, not financial, terms. The second finding is the need for lightweight, moderately survivable planar solar arrays. High efficiency thin III-V solar cells can meet some of these requirements. Higher efficiency, longer life solar cells are needed for application to both future planar and concentrator arrays with usable life up to 10 years. Increasing threats are also anticipated and means for avoiding prolonged exposure, retraction, maneuvering and autonomous operation are discussed.

  18. The Murchison Widefield Array: solar science with the low frequency SKA Precursor

    NASA Astrophysics Data System (ADS)

    Tingay, S. J.; Oberoi, D.; Cairns, I.; Donea, A.; Duffin, R.; Arcus, W.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Bunton, J. D.; Cappallo, R. J.; Corey, B. E.; Deshpande, A.; deSouza, L.; Emrich, D.; Gaensler, B. M.; R, Goeke; Greenhill, L. J.; Hazelton, B. J.; Herne, D.; Hewitt, J. N.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kennewell, J. A.; Kincaid, B. B.; Koenig, R.; Kratzenberg, E.; Lonsdale, C. J.; Lynch, M. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Ord, S. M.; Pathikulangara, J.; Prabu, T.; Remillard, R. A.; Rogers, A. E. E.; Roshi, A.; Salah, J. E.; Sault, R. J.; Udaya-Shankar, N.; Srivani, K. S.; Stevens, J.; Subrahmanyan, R.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wyithe, J. S. B.

    2013-06-01

    The Murchison Widefield Array is a low frequency (80 - 300 MHz) SKA Precursor, comprising 128 aperture array elements (known as tiles) distributed over an area of 3 km diameter. The MWA is located at the extraordinarily radio quiet Murchison Radioastronomy Observatory in the mid-west of Western Australia, the selected home for the Phase 1 and Phase 2 SKA low frequency arrays. The MWA science goals include: 1) detection of fluctuations in the brightness temperature of the diffuse redshifted 21 cm line of neutral hydrogen from the epoch of reionisation; 2) studies of Galactic and extragalactic processes based on deep, confusion-limited surveys of the full sky visible to the array; 3) time domain astrophysics through exploration of the variable radio sky; and 4) solar imaging and characterisation of the heliosphere and ionosphere via propagation effects on background radio source emission. This paper concentrates on the capabilities of the MWA for solar science and summarises some of the solar science results to date, in advance of the initial operation of the final instrument in 2013.

  19. Application of a silicon photodiode array for solar edge tracking in the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Mauldin, L. E., III; Moore, A. S.; Stump, C. S.; Mayo, L. S.

    1985-01-01

    The optical and electronic design of the Halogen Occultation Experiment (HALOE) elevation sunsensor is described. This system uses a Galilean telescope to form a solar image on a linear silicon photodiode array. The array is a self-scanned, monolithic charge coupled device. The addresses of both solar edges imaged on the array are used by the control/pointing system to scan the HALOE science instantaneous-field-of-view (IFOV) across the vertical solar diameter during instrument calibration, and then maintain the science IFOV four arcmin below the top edge during the science data occultation event. Vertical resolution of 16 arcsec and a radiometric dynamic range of 100 are achieved at the 0.7 micrometer operating wavelength. The design provides for loss of individual photodiode elements without loss of angular tracking capability. The HALOE instrument is a gas correlation radiometer that is now being developed by NASA Langley Research Center for the Upper Atmospheric Research Satellite.

  20. High Altitude Long Endurance UAV Analysis Model Development and Application Study Comparing Solar Powered Airplane and Airship Station-Keeping Capabilities

    NASA Technical Reports Server (NTRS)

    Ozoroski, Thomas A.; Nickol, Craig L.; Guynn, Mark D.

    2015-01-01

    There have been ongoing efforts in the Aeronautics Systems Analysis Branch at NASA Langley Research Center to develop a suite of integrated physics-based computational utilities suitable for modeling and analyzing extended-duration missions carried out using solar powered aircraft. From these efforts, SolFlyte has emerged as a state-of-the-art vehicle analysis and mission simulation tool capable of modeling both heavier-than-air (HTA) and lighter-than-air (LTA) vehicle concepts. This study compares solar powered airplane and airship station-keeping capability during a variety of high altitude missions, using SolFlyte as the primary analysis component. Three Unmanned Aerial Vehicle (UAV) concepts were designed for this study: an airplane (Operating Empty Weight (OEW) = 3285 kilograms, span = 127 meters, array area = 450 square meters), a small airship (OEW = 3790 kilograms, length = 115 meters, array area = 570 square meters), and a large airship (OEW = 6250 kilograms, length = 135 meters, array area = 1080 square meters). All the vehicles were sized for payload weight and power requirements of 454 kilograms and 5 kilowatts, respectively. Seven mission sites distributed throughout the United States were selected to provide a basis for assessing the vehicle energy budgets and site-persistent operational availability. Seasonal, 30-day duration missions were simulated at each of the sites during March, June, September, and December; one-year duration missions were simulated at three of the sites. Atmospheric conditions during the simulated missions were correlated to National Climatic Data Center (NCDC) historical data measurements at each mission site, at four flight levels. Unique features of the SolFlyte model are described, including methods for calculating recoverable and energy-optimal flight trajectories and the effects of shadows on solar energy collection. Results of this study indicate that: 1) the airplane concept attained longer periods of on-site capability than either airship concept, and 2) the airship concepts can attain higher levels of energy collection and storage than the airplane concept; however, attaining these energy benefits requires adverse design trades of reduced performance (small airship) or excessive solar array area (large airship).

  1. Accuracy analysis of pointing control system of solar power station

    NASA Technical Reports Server (NTRS)

    Hung, J. C.; Peebles, P. Z., Jr.

    1978-01-01

    The first-phase effort concentrated on defining the minimum basic functions that the retrodirective array must perform, identifying circuits that are capable of satisfying the basic functions, and looking at some of the error sources in the system and how they affect accuracy. The initial effort also examined three methods for generating torques for mechanical antenna control, performed a rough analysis of the flexible body characteristics of the solar collector, and defined a control system configuration for mechanical pointing control of the array.

  2. In-Space Structural Validation Plan for a Stretched-Lens Solar Array Flight Experiment

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Woods-Vedeler, Jessica A.; Jones, Thomas W.

    2001-01-01

    This paper summarizes in-space structural validation plans for a proposed Space Shuttle-based flight experiment. The test article is an innovative, lightweight solar array concept that uses pop-up, refractive stretched-lens concentrators to achieve a power/mass density of at least 175 W/kg, which is more than three times greater than current capabilities. The flight experiment will validate this new technology to retire the risk associated with its first use in space. The experiment includes structural diagnostic instrumentation to measure the deployment dynamics, static shape, and modes of vibration of the 8-meter-long solar array and several of its lenses. These data will be obtained by photogrammetry using the Shuttle payload-bay video cameras and miniature video cameras on the array. Six accelerometers are also included in the experiment to measure base excitations and small-amplitude tip motions.

  3. The Design of Optical Sensor for the Pinhole/Occulter Facility

    NASA Technical Reports Server (NTRS)

    Greene, Michael E.

    1990-01-01

    Three optical sight sensor systems were designed, built and tested. Two optical lines of sight sensor system are capable of measuring the absolute pointing angle to the sun. The system is for use with the Pinhole/Occulter Facility (P/OF), a solar hard x ray experiment to be flown from Space Shuttle or Space Station. The sensor consists of a pinhole camera with two pairs of perpendicularly mounted linear photodiode arrays to detect the intensity distribution of the solar image produced by the pinhole, track and hold circuitry for data reduction, an analog to digital converter, and a microcomputer. The deflection of the image center is calculated from these data using an approximation for the solar image. A second system consists of a pinhole camera with a pair of perpendicularly mounted linear photodiode arrays, amplification circuitry, threshold detection circuitry, and a microcomputer board. The deflection of the image is calculated by knowing the position of each pixel of the photodiode array and merely counting the pixel numbers until threshold is surpassed. A third optical sensor system is capable of measuring the internal vibration of the P/OF between the mask and base. The system consists of a white light source, a mirror and a pair of perpendicularly mounted linear photodiode arrays to detect the intensity distribution of the solar image produced by the mirror, amplification circuitry, threshold detection circuitry, and a microcomputer board. The deflection of the image and hence the vibration of the structure is calculated by knowing the position of each pixel of the photodiode array and merely counting the pixel numbers until threshold is surpassed.

  4. Digital solar edge tracker for the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Mauldin, L. E., III; Moore, A. S.; Stump, C. W.; Mayo, L. S.

    1987-01-01

    The optical and electronic design of the Halogen Occultation Experiment (Haloe) elevation sun sensor is described. The Haloe instrument is a gas-correlation radiometer now being developed at NASA Langley for the Upper Atmosphere Research Satellite. The system uses a Galilean telescope to form a solar image on a linear silicon photodiode array. The array is a self-scanned monolithic CCD. The addresses of both solar edges imaged on the array are used by the control/pointing system to scan the Haloe science instantaneous field of view (IFOV) across the vertical solar diameter during instrument calibration and then to maintain the science IFOV 4 arcmin below the top edge during the science data occultation event. Vertical resolution of 16 arcsec and a radiometric dynamic range of 100 are achieved at the 700-nm operating wavelength. The design provides for loss of individual photodiode elements without loss of angular tracking capability.

  5. Recent results from advanced research on space solar cells at NASA

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1990-01-01

    The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 pm) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.

  6. Comparison of ISS Power System Telemetry with Analytically Derived Data for Shadowed Cases

    NASA Technical Reports Server (NTRS)

    Fincannon, H. James

    2002-01-01

    Accurate International Space Station (ISS) power prediction requires the quantification of solar array shadowing. Prior papers have discussed the NASA Glenn Research Center (GRC) ISS power system tool SPACE (System Power Analysis for Capability Evaluation) and its integrated shadowing algorithms. On-orbit telemetry has become available that permits the correlation of theoretical shadowing predictions with actual data. This paper documents the comparison of a shadowing metric (total solar array current) as derived from SPACE predictions and on-orbit flight telemetry data for representative significant shadowing cases. Images from flight video recordings and the SPACE computer program graphical output are used to illustrate the comparison. The accuracy of the SPACE shadowing capability is demonstrated for the cases examined.

  7. Heterostructured TiO2/NiTiO3 Nanorod Arrays for Inorganic Sensitized Solar Cells with Significantly Enhanced Photovoltaic Performance and Stability.

    PubMed

    Li, Yue-Ying; Wang, Jian-Gan; Sun, Huan-Huan; Wei, Bingqing

    2018-04-11

    Organic dyes used in the conventional dye-sensitized solar cells (DSSCs) suffer from poor light stability and high cost. In this work, we demonstrate a new inorganic sensitized solar cell based on ordered one-dimensional semiconductor nanorod arrays of TiO 2 /NiTiO 3 (NTO) heterostructures prepared via a facile two-step hydrothermal approach. The semiconductor heterostructure arrays are highly desirable and promising for DSSCs because of their direct charge transport capability and slow charge recombination rate. The low-cost NTO inorganic semiconductor possesses an appropriate band gap that matches well with TiO 2 , which behaves like a "dye" to enable efficient light harvesting and fast electron-hole separation. The solar cells constructed by the ordered TiO 2 /NTO heterostructure photoanodes show a significantly improved power conversion efficiency, high fill factor, and more promising, outstanding life stability. The present work will open up an avenue to design heterostructured inorganics for high-performance solar cells.

  8. The DS1 Mission and the Validation of the SCARLET Advanced Array

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Nieraeth, Donald G.; Murphy, David M.; Eskenazi, Michael I.

    2000-01-01

    On October 24, 1998, the first of the NASA New Millenium Spacecraft, DS1, was successfully launched into Space. The objectives for this spacecraft are to test advanced technologies that can reduce the cost or risk of future missions. One of these technologies is the SCARLET concentrating solar array. Although part of the advanced technology validation study, the array is also the spacecraft's power source. Funded by BMDO, the SCARLET concentrator solar array is the first application of a refractive lens concentrator designed for space applications. As part of the DS1 validation process, the amount of diagnostics data that will be acquired is more extensive than would be the norm for a more conventional solar array. These data include temperature measurements at numerous locations on the 2-wing, 4-panel per wing, solar array. For each panel, one 5-cell module in one of the circuit strings is wired so that a complete I-V curve can be obtained. This data is used to verify sun pointing accuracy and array output performance. In addition, the spacecraft power load can be varied in a number of discrete steps from a small fraction of the array total power capability, up to maximum power. For each of the power loads, array operating voltage can be measured along with the current output from each wing. Preliminary in-space measurements suggest SCARLET performance is within one (1) percent of predictions made from ground data. This paper will briefly discuss the SCARLET configuration and critical features. Emphasis will be given to the results of the in-space validation, including array performance as a function of changing solar distance and array performance compared to pre-launch predictions.

  9. SPS Energy Conversion Power Management Workshop

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Energy technology concerning photovoltaic conversion, solar thermal conversion systems, and electrical power distribution processing is discussed. The manufacturing processes involving solar cells and solar array production are summarized. Resource issues concerning gallium arsenides and silicon alternatives are reported. Collector structures for solar construction are described and estimates in their service life, failure rates, and capabilities are presented. Theories of advanced thermal power cycles are summarized. Power distribution system configurations and processing components are presented.

  10. Space Station Power Generation in Support of the Beta Gimbal Anomaly Resolution

    NASA Technical Reports Server (NTRS)

    Delleur, Ann M.; Propp, Timothy W.

    2003-01-01

    The International Space Station (ISS) is the largest and most complex spacecraft ever assembled and operated in orbit. The first U.S. photovoltaic (PV) module, containing two solar arrays, was launched, installed, and activated in early December 2000. After the first week of continuously rotating the U.S. solar arrays, engineering personnel in the ISS Mission Evaluation Room (MER) observed higher than expected electrical currents on the drive motor in one of the Beta Gimbal Assemblies (BGA), the mechanism used to maneuver a U.S. solar array. The magnitude of the motor currents continued to increase over time on both BGA's, creating concerns about the ability of the gimbals to continue pointing the solar arrays towards the sun, a function critical for continued assembly of the ISS. A number of engineering disciplines convened in May 2001 to address this on-orbit hardware anomaly. This paper reviews the ISS electrical power system (EPS) analyses performed to develop viable operational workarounds that would minimize BGA use while maintaining sufficient solar array power to continue assembly of the ISS. Additionally, EPS analyses performed in support of on-orbit BGA troubleshooting exercises is reviewed. EPS capability analyses were performed using SPACE, a computer code developed by NASA Glenn Research Center (GRC) for the ISS program office.

  11. Future mission opportunities and requirements for advanced space photovoltaic energy conversion technology

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1990-01-01

    The variety of potential future missions under consideration by NASA will impose a broad range of requirements on space solar arrays, and mandates the development of new solar cells which can offer a wide range of capabilities to mission planners. Major advances in performance have recently been achieved at several laboratories in a variety of solar cell types. Many of those recent advances are reviewed, the areas are examined where possible improvements are yet to be made, and the requirements are discussed that must be met by advanced solar cell if they are to be used in space. The solar cells of interest include single and multiple junction cells which are fabricated from single crystal, polycrystalline and amorphous materials. Single crystal cells on foreign substrates, thin film single crystal cells on superstrates, and multiple junction cells which are either mechanically stacked, monolithically grown, or hybrid structures incorporating both techniques are discussed. Advanced concentrator array technology for space applications is described, and the status of thin film, flexible solar array blanket technology is reported.

  12. Solar observations with the prototype of the Brazilian Decimetric Array

    NASA Astrophysics Data System (ADS)

    Sawant, H. S.; Ramesh, R.; Faria, C.; Cecatto, J. R.; Fernandes, F. C. R.; Madsen, F. H. R.; Subramanian, K. R.; Sundararajan, M. S.

    The prototype of the Brazilian Decimetric Array BDA consists of 5 element alt-az mounted parabolic mesh type dishes of 4-meter diameter having base lines up to 220 meters in the E--W direction The array was put into regular operation at Cachoeira Paulista Brazil longitude 45 r 00 20 W and latitude 22 r 41 19 S This array operates in the frequency range of 1 2 -- 1 7 GHz Solar observations are carried at sim 1 4 GHz in transit and tracking modes Spatial fine structures superimposed on the one dimensional brightness map of the sun associated with active regions and or with solar activity and their time evolution will be presented In the second phase of the project the frequency range will be increased to 1 2 - 1 7 2 8 and 5 6 GHz Central part of the array will consist of 26 antennas with 4-meter diameter laid out randomically in the square of 256 by 256 meter with minimum and maximum base lines of 8 and 256 meters respectively Details of this array with imaging capabilities in snap shot mode for solar observations and procedure of the phase and amplitude calibrations will be presented The development of instrument will be completed by the beginning of 2008

  13. Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture.

    PubMed

    Shen, Xiaojuan; Sun, Baoquan; Liu, Dong; Lee, Shuit-Tong

    2011-12-07

    Silicon nanowire arrays (SiNWs) on a planar silicon wafer can be fabricated by a simple metal-assisted wet chemical etching method. They can offer an excellent light harvesting capability through light scattering and trapping. In this work, we demonstrated that the organic-inorganic solar cell based on hybrid composites of conjugated molecules and SiNWs on a planar substrate yielded an excellent power conversion efficiency (PCE) of 9.70%. The high efficiency was ascribed to two aspects: one was the improvement of the light absorption by SiNWs structure on the planar components; the other was the enhancement of charge extraction efficiency, resulting from the novel top contact by forming a thin organic layer shell around the individual silicon nanowire. On the contrary, the sole planar junction solar cell only exhibited a PCE of 6.01%, due to the lower light trapping capability and the less hole extraction efficiency. It indicated that both the SiNWs structure and the thin organic layer top contact were critical to achieve a high performance organic/silicon solar cell. © 2011 American Chemical Society

  14. Solar Electric Propulsion Concepts for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Mcguire, Melissa L.; Oleson, Steven R.; Barrett, Michael J.

    2016-01-01

    Advances in solar array and electric thruster technologies now offer the promise of new, very capable space transportation systems that will allow us to cost effectively explore the solar system. NASA has developed numerous solar electric propulsion spacecraft concepts with power levels ranging from tens to hundreds of kilowatts for robotic and piloted missions to asteroids and Mars. This paper describes nine electric and hybrid solar electric/chemical propulsion concepts developed over the last 5 years and discusses how they might be used for human exploration of the inner solar system.

  15. Solar Electric Propulsion Concepts for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; McGuire, Melissa L.; Oleson, Steven R.; Barrett, Michael J.

    2015-01-01

    Advances in solar array and electric thruster technologies now offer the promise of new, very capable space transportation systems that will allow us to cost effectively explore the solar system. NASA has developed numerous solar electric propulsion spacecraft concepts with power levels ranging from tens to hundreds of kilowatts for robotic and piloted missions to asteroids and Mars. This paper describes nine electric and hybrid solar electric/chemical propulsion concepts developed over the last 5 years and discusses how they might be used for human exploration of the inner solar system.

  16. Multi-wire slurry wafering demonstrations. [slicing silicon ingots for solar arrays

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1978-01-01

    Ten slicing demonstrations on a multi-wire slurry saw, made to evaluate the silicon ingot wafering capabilities, reveal that the present sawing capabilities can provide usable wafer area from an ingot 1.05m/kg (e.g. kerf width 0.135 mm and wafer thickness 0.265 mm). Satisfactory surface qualities and excellent yield of silicon wafers were found. One drawback is that the add-on cost of producing water from this saw, as presently used, is considerably higher than other systems being developed for the low-cost silicon solar array project (LSSA), primarily because the saw uses a large quantity of wire. The add-on cost can be significantly reduced by extending the wire life and/or by rescue of properly plated wire to restore the diameter.

  17. Antireflective Paraboloidal Microlens Film for Boosting Power Conversion Efficiency of Solar Cells.

    PubMed

    Fang, Chaolong; Zheng, Jun; Zhang, Yaoju; Li, Yijie; Liu, Siyuan; Wang, Weiji; Jiang, Tao; Zhao, Xuesong; Li, Zhihong

    2018-06-21

    Microlens arrays can improve light transmittance in optical devices or enhance the photoelectrical conversion efficiency of photovoltaic devices. Their surface morphology (aspect ratio and packed density) is vital to photon management in solar cells. Here, we report a 100% packed density paraboloidal microlens array (PMLA), with a large aspect ratio, fabricated by direct-write UV laser photolithography coupled with soft imprint lithography. Optical characterization shows that the PMLA structure can remarkably decrease the front-side reflectance of solar cell device. The measured electrical parameters of the solar cell device clearly and consistently demonstrate that the PMLA film can considerably improve the photoelectrical conversion efficiency. In addition, the PMLA film has superhydrophobic properties, verified by measurement of a large water contact angle, and can enhance the self-cleaning capability of solar cell devices.

  18. Replacement Capability Options for the United States Space Shuttle

    DTIC Science & Technology

    2013-09-01

    extended periods, and to expand our knowledge of solar astronomy well beyond Earth-based observations.” During the Skylab missions, both the man...determined Skylab’s orbit was no longer stable due to higher than predicted solar activity. Therefore, Skylab had to be de-orbited earlier than...Module houses the oxygen, life support, power, communications, thermal control, and propulsions systems. The solar arrays for the Soyuz are also

  19. Conceptual approach study of a 200 watt per kilogram solar array

    NASA Technical Reports Server (NTRS)

    Stanhouse, R. W.; Fox, D.; Wilson, W.

    1976-01-01

    Solar array candidate configurations (flexible rollup, flexible flat-pact, semi-rigid panel, semi-rigid flat-pack) were analyzed with particular attention to the specific power (W/kg) requirement. Two of these configurations (flexible rollup and flexible flat-pack) are capable of delivering specific powers equal to or exceeding the baseline requirement of 200 W/kg. Only the flexible rollup is capable of in-flight retraction and subsequent redeployment. The wrap-around contact photovoltaic cell configuration has been chosen over the conventional cell. The demand for ultra high specific power forces the selection of ultra-thin cells and cover material. Based on density and mass range considerations, it was concluded that 13 micrometers of FEP Teflon is sufficient to protect the cell from a total proton fluency of 2(10 to the 12th power) particles/sq cm over a three-year interplanetary mission. The V-stiffened, lattice boom deployed, flexible substrate rollup array holds the greatest promise of meeting the baseline requirements set for this study.

  20. The Hughes HS601HP spacecraft power subsystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krummann, W.; Ayvazian, H.

    1998-07-01

    The introduction of the Hughes HS 601HP (high power) spacecraft product line continuous the highly successful HS601 three axis stabilized geosynchronus spacecraft with increased power capabilities for larger payload applications. The enhanced power capabilities of the HS 601HP are built upon the heritage of 29 HS601 spacecraft presently in operation. The HS 601HP accommodates payload power ranges of 3 to 7 kilowatts and provides a smooth transition from the lower power HS 601 spacecraft to the HS 702 spacecraft, which has a payload capability up to 13 kilowatts. The HS 601HP spacecraft is designed for a 15 year life withmore » minimal operator interaction. The HS 601HP power subsystem provides a regulated power bus with a voltage range of 52 to 53 volts during all operational phases. The power subsystem is tailored to the specific needs of the spacecraft by selecting standard products from the HS 601HP power catalog. The solar arrays, battery, power control electronics and power distribution electronics are all modular and configurable to the requirements of the spacecraft. The HS 601HP solar array is the primary power source for the spacecraft. The solar array is comprised of two sets of planar solar panels (solar wings) which track the sun in a single spacecraft axis. The solar cells are selected from three different types based upon the spacecraft power generation requirements; silicon, single junction gallium arsenide or dual junction gallium arsenide. The maximum power capability at end of life (15 years, summer solstice) ranges from 4 to 7.7 kilowatts for the three types of solar cells. The HS 601HP battery is the power source for the spacecraft during eclipse and peak sunlight power periods. The battery is comprised of four individual battery packs connected in series to produce a single battery. Each battery pack can accommodate a maximum of eight battery cells with a capacity of 350 ampere-hours. The battery pack also provides for mounting of all electronics utilized by the battery, such as cell bypassing. The power electronics for the HS 601HP spacecraft provide for a tightly regulated power bus whether in sunlight or eclipse (battery discharge) operation. The bus voltage during sunlight is maintained by two bus voltage limiters (BVL), located on the yoke of each solar wing. The BVL maintains the regulated power bus at 52.9 volts by shunting excess solar wing power when not required by the spacecraft. The bus voltage during eclipse is maintained by two battery power controllers (BPC) located on the spacecraft bus shelf. The BPC maintains the regulated power bus at 52.2 volts during battery discharge and also provides for battery charging when excess solar array power is available. The power from the solar array or battery is distributed to the spacecraft by bus and payload power distribution units (PDU). The HS 601HP spacecraft product line now has three spacecraft in orbit. The first was launched in early November of 1997 with the second and third launched in late November and early December of 1997, respectively. The power systems are performing as designed and correlate well with the predicted performance calculations. Several more HS 601HP are scheduled to launch during 1998.« less

  1. Flat-plate solar array project. Volume 5: Process development

    NASA Technical Reports Server (NTRS)

    Gallagher, B.; Alexander, P.; Burger, D.

    1986-01-01

    The goal of the Process Development Area, as part of the Flat-Plate Solar Array (FSA) Project, was to develop and demonstrate solar cell fabrication and module assembly process technologies required to meet the cost, lifetime, production capacity, and performance goals of the FSA Project. R&D efforts expended by Government, Industry, and Universities in developing processes capable of meeting the projects goals during volume production conditions are summarized. The cost goals allocated for processing were demonstrated by small volume quantities that were extrapolated by cost analysis to large volume production. To provide proper focus and coverage of the process development effort, four separate technology sections are discussed: surface preparation, junction formation, metallization, and module assembly.

  2. Development of a model of space station solar array

    NASA Technical Reports Server (NTRS)

    Bosela, Paul A.

    1990-01-01

    Space structures, such as the space station solar arrays, must be extremely lightweight, flexible structures. Accurate prediction of the natural frequencies and mode shapes is essential for determining the structural adequacy of components, and designing a control system. The tension preload in the blanket of photovoltaic solar collectors, and the free/free boundary conditions of a structure in space, causes serious reservations on the use of standard finite element techniques of solution. In particular, a phenomena known as grounding, or false stiffening, of the stiffness matrix occurs during rigid body rotation. The grounding phenomena is examined in detail. Numerous stiffness matrices developed by others are examined for rigid body rotation capability, and found lacking. Various techniques are used for developing new stiffness matrices from the rigorous solutions of the differential equations, including the solution of the directed force problem. A new directed force stiffness matrix developed by the author provides all the rigid body capabilities for the beam in space.

  3. Enhanced EOS photovoltaic power system capability with InP solar cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System (EOS), which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program which opens a new era in international cooperation to study the Earth's environment. Five large platforms are to be launched into polar orbit, two by NASA, two by ESA, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing five micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the advanced photovoltaic solar array the payload savings approaches 12 percent.

  4. Study of Automated Module Fabrication for Lightweight Solar Blanket Utilization

    NASA Technical Reports Server (NTRS)

    Gibson, C. E.

    1979-01-01

    Cost-effective automated techniques for accomplishing the titled purpose; based on existing in-house capability are described. As a measure of the considered automation, the production of a 50 kilowatt solar array blanket, exclusive of support and deployment structure, within an eight-month fabrication period was used. Solar cells considered for this blanket were 2 x 4 x .02 cm wrap-around cells, 2 x 2 x .005 cm and 3 x 3 x .005 cm standard bar contact thin cells, all welded contacts. Existing fabrication processes are described, the rationale for each process is discussed, and the capability for further automation is discussed.

  5. Solar panels for the International Space Station are uncrated and moved in the SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Solar panels for the International Space Station (ISS) are uncrated in the Space Station Processing Facility. They are the first set of U.S.-provided solar arrays and batteries for ISS, scheduled to be part of mission STS-97 in December 1999. The mission, fifth in the U.S. flights for construction of ISS, will build and enhance the capabilities of Space Station. It will deliver the solar panels as well as radiators to provide cooling. The Shuttle will spend 5 days docked to the station, which at that time will be staffed by the first station crew. Two space walks will be conducted to complete assembly operations while the arrays are attached and unfurled. A communications system for voice and telemetry also will be installed.

  6. Automated array assembly, phase 2

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.

    1980-01-01

    A manufacturing sequence which is capable of mass producing silicon solar cells is described. The sequence was arrived at after the evaluation of many processes and three related manufacturing sequences which are discussed.

  7. Mars Array Technology Experiment Developed to Test Solar Arrays on Mars

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2001-01-01

    Solar arrays will be the power supply for future missions to the planet Mars, including landers, rovers, and eventually human missions to explore the Martian surface. Until Mars Pathfinder landed in July 1997, no solar array had been used on the surface. The MATE package is intended to measure the solar energy reaching the surface, characterize the Martian environment to gather the baseline information required for designing power systems for long-duration missions, and to quantify the performance and degradation of advanced solar cells on the Martian surface. To measure the properties of sunlight reaching the Martian surface, MATE incorporates two radiometers and a visible/NIR spectrometer. The radiometers consist of multiple thermocouple junctions using thin-film technology. These devices generate a voltage proportional to the solar intensity. One radiometer measures the global broadband solar intensity, including both the direct and scattered sunlight, with a field of view of approximately 130. The second radiometer incorporates a slit to measure the direct (unscattered) intensity radiation. The direct radiometer can only be read once per day, with the Sun passing over the slit. The spectrometer measures the global solar spectrum with two 256-element photodiode arrays, one Si sensitive in the visible range (300 to 1100 nm), and a second InGaAs sensitive to the near infrared (900 to 1700 nm). This range covers 86 percent of the total energy from the Sun, with approximately 5-nm resolution. Each photodiode array has its own fiber-optic feed and grating. Although the purpose of the MATE is to gather data useful in designing solar arrays for Mars surface power systems, the radiometer and spectrometer measurements are expected to also provide important scientific data for characterizing the properties of suspended atmospheric dust. In addition to measuring the solar environment of Mars, MATE will measure the performance of five different individual solar cell types and two different solar cell strings, to qualify advanced solar cell types for future Mars missions. The MATE instrument, designed for the Mars-2001 Surveyor Lander mission, contains a capable suite of sensors that will provide both scientific information as well as important engineering data on the operation of solar power systems on Mars. MATE will characterize the intensity and spectrum of the solar radiation on Mars and measure the performance of solar arrays in the Mars environment. MATE flight hardware was built and tested at the NASA Glenn Research Center and is ready for flight.

  8. On the thermoelastic analysis of solar cell arrays and related material properties

    NASA Technical Reports Server (NTRS)

    Salama, M. A.; Bouquet, F. L.

    1976-01-01

    Accurate prediction of failure of solar cell arrays requires accuracy in the computation of thermally induced stresses. This was accomplished by using the finite element technique. Improved procedures for stress calculation were introduced together with failure criteria capable of describing a wide range of ductile and brittle material behavior. The stress distribution and associated failure mechanisms in the N-interconnect junction of two solar cell designs were then studied. In such stress and failure analysis, it is essential to know the thermomechanical properties of the materials involved. Measurements were made of properties of materials suitable for the design of lightweight arrays: microsheet-0211 glass material for the solar cell filter, and Kapton-H, Kapton F, Teflon, Tedlar, and Mica Ply PG-402 for lightweight substrates. The temperature-dependence of the thermal coefficient of expansion for these materials was determined together with other properties such as the elastic moduli, Poisson's ratio, and the stress-strain behavior up to failure.

  9. Thin film, concentrator, and multijunction space solar cells: Status and potential

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1991-01-01

    Recent, rapid advances in a variety of solar cell technologies offer the potential for significantly enhancing, or enabling entirely new, mission capabilities. Thin film solar cells are of particular interest. A review is provided of the status of those thin film cell technologies of interest for space applications, and the issues to be resolved before mission planners can consider them. A short summary of recent developments in concentrator and multijunction space solar cell and array technology is given.

  10. Thin film, concentrator and multijunction space solar cells: Status and potential

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1991-01-01

    Recent, rapid advances in a variety of solar cell technologies offer the potential for significantly enhancing, or enabling entirely new, mission capabilities. Thin film solar cells are of particular interest in that regard. A review is provided of the status of those thin film cell technologies of interest for space applications, and the issues to be resolved before mission planners can consider them. A short summary is also given of recent developments in concentrator and multijunction space solar cell and array technology.

  11. Photovoltaic power system for a lunar base

    NASA Astrophysics Data System (ADS)

    Karia, Kris

    An assessment is provided of the viability of using photovoltaic power technology for lunar base application during the initial phase of the mission. The initial user power demands were assumed to be 25 kW (daytime) and 12.5 kW (night time). The effect of lunar adverse environmental conditions were also considered in deriving the photovoltaic power system concept. The solar cell array was found to impose no more design constraints than those solar arrays currently being designed for spacecraft and the Space Station Freedom. The long lunar night and the need to store sufficient energy to sustain a lunar facility during this period was found to be a major design driver. A photovoltaic power system concept was derived using high efficiency thin GaAs solar cells on a deployable flexible Kapton blanket. The solar array design was sized to generate sufficient power for daytime use and for a regenerative fuel cell (RFC) energy storage system to provide power during the night. Solar array sun-tracking is also proposed to maximize the array power output capability. The system launch mass was estimated to be approximately 10 metric tons. For mission application of photovoltaic technology other issues have to be addressed including the constraints imposed by launch vehicle, safety, and cost. For the initial phase of the mission a photovoltaic power system offers a safe option.

  12. Ultralow-mass solar-array designs for Halley's comet rendezvous mission

    NASA Technical Reports Server (NTRS)

    Costogue, E. N.; Rayl, G.

    1978-01-01

    This paper describes the conceptual design study results of photovoltaic arrays capable of powering a Halley's comet rendezvous mission. This mission would be Shuttle-launched, employ a unique form of propulsion (ion drive) which requires high power levels for operation, and operate at distances between 0.6 and 4.5 AU. These requirements make it necessary to develop arrays with extremely high power-to-mass ratio (200 W/kg). In addition, the dual requirements of providing ion thruster power as well as housekeeping power leads to the development of unique methods for mode switching. Both planar and variable-concentrator-enhanced array concepts using ultrathin (50 micron) high-efficiency (up to 12.5%) silicon solar cells coupled with thin (75 micron) plastic encapsulants are considered. In order to satisfy the Shuttle launch environment it was necessary to provide novel methods of both storing and deploying these arrays.

  13. Monolithically Integrated Self-Charging Power Pack Consisting of a Silicon Nanowire Array/Conductive Polymer Hybrid Solar Cell and a Laser-Scribed Graphene Supercapacitor.

    PubMed

    Liu, Hanhui; Li, Mengping; Kaner, Richard B; Chen, Songyan; Pei, Qibing

    2018-05-09

    Owing to the need for portable and sustainable energy sources and the development trend for microminiaturization and multifunctionalization in the electronic components, the study of integrated self-charging power packs has attracted increasing attention. A new self-charging power pack consisting of a silicon nanowire array/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) hybrid solar cell and a laser-scribed graphene (LSG) supercapacitor has been fabricated. The Si nanowire array/PEDOT:PSS hybrid solar cell structure exhibited a high power conversion efficiency (PCE) of 12.37%. The LSG demonstrated excellent energy storage capability for the power pack, with high current density, energy density, and cyclic stability when compared to other supercapacitor electrodes such as active carbon and conducting polymers. The overall efficiency of the power unit is 2.92%.

  14. Space station systems analysis study. Part 3: Documentation. Volume 7: SCB alternate EPS evaluation, task 10

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Power levels up to 100 kWe average were baselined for the electrical power system of the space construction base, a long-duration manned facility capable of supporting manufacturing and large scale construction projects in space. Alternatives to the solar array battery systems discussed include: (1) solar concentrator/brayton; (2) solar concentrator/thermionic; (3) isotope/brayton; (4) nuclear/brayton; (5) nuclear thermoelectric; and (6) nuclear thermionic.

  15. Advanced power systems for EOS

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System, which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program. Five large platforms are to be launched into polar orbit: two by NASA, two by the European Space Agency, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing 5 micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the Advanced Photovoltaic Solar Array, the total additional payload capability approaches 12 percent.

  16. Point-Focus Concentration Compact Telescoping Array: Extreme Environments Solar Power Base Phase Final Report

    NASA Technical Reports Server (NTRS)

    McEachen, Michael E.; Murphy, Dave; Meinhold, Shen; Spink, Jim; Eskenazi, Mike; O'Neill, Mark

    2017-01-01

    Orbital ATK, in partnership with Mark ONeill LLC (MOLLC), has developed a novel solar array platform, PFC-CTA, which provides a significant advance in performance and cost reduction compared to all currently available space solar systems. PFC refers to the Point Focus Concentration of light provided by MOLLCs thin, flat Fresnel optics. These lenses focus light to a point of approximately 100 times the intensity of the ambient light, onto a solar cell of approximately 125th the size of the lens. CTA stands for Compact Telescoping Array, which is the solar array blanket structural platform originally devised by NASA and currently being advanced by Orbital ATK and partners under NASA and AFRL funding to a projected TRL 5+ by late-2018.The NASA Game Changing Development Extreme Environment Solar Power (EESP) Base Phase study has enabled Orbital ATK to refine component designs, perform component level and system performance analyses, and test prototype hardware of the key elements of PFC-CTA, and increased the TRL of PFC-specific technology elements to TRL 4. Key performance metrics currently projected are as follows: Scalability from 5 kW to 300 kW per wing (AM0); Specific Power 500 Wkg (AM0); Stowage Efficiency 100 kWm3; 5:1 margin on pointing tolerance vs. capability; 50 launched cost savings; Wide range of operability between Venus and Saturn by active andor passive thermal management.

  17. Automated Array Assembly, Phase 2. Low-cost Solar Array Project, Task 4

    NASA Technical Reports Server (NTRS)

    Lopez, M.

    1978-01-01

    Work was done to verify the technological readiness of a select process sequence with respect to satisfying the Low Cost Solar Array Project objectives of meeting the designated goals of $.50 per peak watt in 1986 (1975 dollars). The sequence examined consisted of: (1) 3 inches diameter as-sawn Czochralski grown 1:0:0 silicon, (2) texture etching, (3) ion implanting, (4) laser annealing, (5) screen printing of ohmic contacts and (6) sprayed anti-reflective coatings. High volume production projections were made on the selected process sequence. Automated processing and movement of hardware at high rates were conceptualized to satisfy the PROJECT's 500 MW/yr capability. A production plan was formulated with flow diagrams integrating the various processes in the cell fabrication sequence.

  18. Synthesis of molecular imprinted polymer modified TiO{sub 2} nanotube array electrode and their photoelectrocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Na; Chen Shuo; Wang Hongtao

    2008-10-15

    A tetracycline hydrochloride (TC) molecularly imprinted polymer (MIP) modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. Its surface was structured with surface voids and the nanotubes were open at top end with an average diameter of approximately 50 nm. The MIP-modified TiO{sub 2} nanotube array with anatase phase was identified by XRD and a distinguishable red shift in the absorption spectrum was observed. The MIP-modified electrode also exhibited a high adsorption capacity for TC due to its high surface area providing imprinted sites. Photocurrent was generated on the MIP-modified photoanode using the simulated solar spectrum andmore » increased with the increase of positive bias potential. Under simulated solar light irradiation, the MIP-modified TiO{sub 2} nanotube array electrode exhibited enhanced photoelectrocatalytic (PEC) activity with the apparent first-order rate constant being 1.2-fold of that with TiO{sub 2} nanotube array electrode. The effect of the thickness of the MIP layer on the PEC activity was also evaluated. - Graphical abstract: A tetracycline hydrochloride molecularly imprinted polymer modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. It showed improved response to simulated solar light and higher adsorption capability for tetracycline hydrochloride, thereby exhibiting increased PEC activity under simulated solar light irradiation. The apparent first-order rate constant was 1.2-fold of that on TiO{sub 2} nanotube array electrode.« less

  19. A computer model of solar panel-plasma interactions

    NASA Technical Reports Server (NTRS)

    Cooke, D. L.; Freeman, J. W.

    1980-01-01

    High power solar arrays for satellite power systems are presently being planned with dimensions of kilometers, and with tens of kilovolts distributed over their surface. Such systems face many plasma interaction problems, such as power leakage to the plasma, particle focusing, and anomalous arcing. These effects cannot be adequately modeled without detailed knowledge of the plasma sheath structure and space charge effects. Laboratory studies of 1 by 10 meter solar array in a simulated low Earth orbit plasma are discussed. The plasma screening process is discussed, program theory is outlined, and a series of calibration models is presented. These models are designed to demonstrate that PANEL is capable of accurate self consistant space charge calculations. Such models include PANEL predictions for the Child-Langmuir diode problem.

  20. Solar panels for the International Space Station are uncrated and moved in the SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, a worker (left) guides the lifting of solar panels for the International Space Station (ISS). The panels are the first set of U.S.-provided solar arrays and batteries for ISS, scheduled to be part of mission STS-97 in December 1999. The mission, fifth in the U.S. flights for construction of ISS, will build and enhance the capabilities of the Space Station. It will deliver the solar panels as well as radiators to provide cooling. The Shuttle will spend 5 days docked to the station, which at that time will be staffed by the first station crew. Two space walks will be conducted to complete assembly operations while the arrays are attached and unfurled. A communications system for voice and telemetry also will be installed.

  1. Solar panels for the International Space Station are uncrated and moved in the SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, workers on the floor watch as the overhead crane moves solar panels intended for the International Space Station (ISS). The panels are the first set of U.S.-provided solar arrays and batteries for ISS, scheduled to be part of mission STS-97 in December 1999. The mission, fifth in the U.S. flights for construction of ISS, will build and enhance the capabilities of the Space Station. It will deliver the solar panels as well as radiators to provide cooling. The Shuttle will spend five days docked to the station, which at that time will be staffed by the first station crew. Two space walks will be conducted to complete assembly operations while the arrays are attached and unfurled. A communications system for voice and telemetry also will be installed.

  2. Silicon material task - Low cost solar array project /JPL/DOE/

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1979-01-01

    The paper describes the silicon material task of the low-cost solar array project, which has the objective of establishing a silicon production capability equivalent to 500 mW per year at a price less than 10 dollars/kg (1975 dollars) in 1986. The task program is divided into four phases: technical feasibility, scale-up studies (the present phase), experimental process system development units, and implementation of large-scale production plants, and it involves the development of processes for two groups of materials, that is, semiconductor grade and solar cell grade. In addition, the effects of impurities on solar cell performance are being investigated. Attention is given to problem areas of the task program, such as environmental protection, material compatibility between the reacting chemicals and materials of construction of the equipment, and waste disposal.

  3. Science with the Expanded Owens Valley Solar Array

    NASA Astrophysics Data System (ADS)

    Nita, Gelu M.; Gary, Dale E.; Fleishman, Gregory D.; Chen, Bin; White, Stephen M.; Hurford, Gordon J.; McTiernan, James; Hickish, Jack; Yu, Sijie; Nelin, Kjell B.

    2017-08-01

    The Expanded Owens Valley Solar Array (EOVSA) is a solar-dedicated radio array that makes images and spectra of the full Sun on a daily basis. Our main science goals are to understand the basic physics of solar activity, such as how the Sun releases stored magnetic energy on timescales of seconds, and how that solar activity, in the form of solar flares and coronal mass ejections, influences the Earth and near-Earth space environment, through disruptions of communication and navigation systems, and effects on satellites and systems on the ground. The array, which is composed out of thirteen 2.1 m dishes and two 27 m dishes (used only for calibration), has a footprint of 1.1 km EW x 1.2 km NS and it is capable of producing, every second, microwave images at two polarizations and 500 science channels spanning the 1-18 GHz frequency range. Such ability to make multi-frequency images of the Sun in this broad range of frequencies, with a frequency dependent resolution ranging from ˜53” at 1 GHz to ˜3”at 18 GHz, is unique in the world. Here we present an overview of the EOVSA instrument and a first set of science-quality active region and solar flare images produced from data taken during April 2017.This research is supported by NSF grant AST-1615807 and NASA grant NNX14AK66G to New Jersey Institute of Technology.

  4. The Expanded Owens Valley Solar Array

    NASA Astrophysics Data System (ADS)

    Gary, Dale E.; Hurford, G. J.; Nita, G. M.; White, S. M.; Tun, S. D.; Fleishman, G. D.; McTiernan, J. M.

    2011-05-01

    The Expanded Owens Valley Solar Array (EOVSA) is now under construction near Big Pine, CA as a solar-dedicated microwave imaging array operating in the frequency range 1-18 GHz. The solar science to be addressed focuses on the 3D structure of the solar corona (magnetic field, temperature and density), on the sudden release of energy and subsequent particle acceleration, transport and heating, and on space weather phenomena. The project will support the scientific community by providing open data access and software tools for analysis of the data, to exploit synergies with on-going solar research in other wavelengths. The New Jersey Institute of Technology (NJIT) is expanding OVSA from its previous complement of 7 antennas to a total of 15 by adding 8 new antennas, and will reinvest in the existing infrastructure by replacing the existing control systems, signal transmission, and signal processing with modern, far more capable and reliable systems based on new technology developed for the Frequency Agile Solar Radiotelescope (FASR). The project will be completed in time to provide solar-dedicated observations during the upcoming solar maximum in 2013 and beyond. We provide an update on current status and our preparations for exploiting the data through modeling and data analysis tools. This research is supported by NSF grants AST-0908344, and AGS-0961867 and NASA grant NNX10AF27G to New Jersey Institute of Technology.

  5. Demonstrations of Deployable Systems for Robotic Precursor Missions

    NASA Technical Reports Server (NTRS)

    Dervan, J.; Johnson, L.; Lockett, T.; Carr, J.; Boyd, D.

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that serve as enabling technologies for exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, deployment systems, and miniaturized electronics, new mission-level capabilities will be demonstrated aboard small spacecraft enabling a new generation of frequent, inexpensive, and highly capable robotic precursor missions with goals extensible to future human exploration. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication as demonstrated by recent advances on the Near Earth Asteroid (NEA) Scout and Lightweight Integrated Solar Array and anTenna (LISA-T) projects.

  6. Solar photovoltaic power stations

    NASA Technical Reports Server (NTRS)

    Chowaniec, C. R.; Pittman, P. F.; Ferber, R. R.; Marshall, B. W.

    1977-01-01

    The subsystems of a solar photovoltaic central power system are identified and the cost of major components are estimated. The central power system, which would have a peak power capability in the range of 50 to 1000 MW, utilizes two types of subsystems - a power conditioner and a solar array. Despite differences in costs of inverters, the overall cost of the total power conditioning subsystem is about the same for all approaches considered. A combination of two inverters operating from balanced dc buses as a pair of 6-pulse groups is recommended. A number of different solar cell modules and tracking array structures were analyzed. It is concluded that when solar cell costs are high (greater than $500/kW), high concentration modules are more cost effective than those with low concentration. Vertical-axis tracking is the most effective of the studied tracking modes. For less expensive solar cells (less than $400/kW), fixed tilt collector/reflector modules are more cost effective than those which track.

  7. Recent Advances in Solar Cell Technology

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Piszczor, Michael F., Jr.

    1996-01-01

    The advances in solar cell efficiency, radiation tolerance, and cost over the last decade are reviewed. Potential performance of thin-film solar cells in space are discussed, and the cost and the historical trends in production capability of the photovoltaics industry are considered with respect to the requirements of space power systems. Concentrator cells with conversion efficiency over 30%, and nonconcentrating solar cells with efficiency over 25% are now available, and advanced radiation-tolerant cells and lightweight, thin-film arrays are both being developed. Nonsolar applications of solar cells, including thermophotovoltaics, alpha- and betavoltaics, and laser power receivers, are also discussed.

  8. Development of lightweight aluminum hollowcore solar cell array technology

    NASA Technical Reports Server (NTRS)

    Carlson, J. A.

    1971-01-01

    A baseline configuration for a three section folding array, with retraction capability, was developed which would utilize electroformed aluminum hollowcore substrates and beryllium frames. The three section array was not fabricated because of difficulties with impurities in the aluminum electroforming bath. A procedure was developed for etching the copper mandrel from virtually any size of aluminum hollowcore panel in approximately one hour. Procedures were developed for analyzing the content of peroxide, water, total aluminum, and lithium-aluminum-hydride in an aluminum electroforming solution.

  9. Integrated dynamic analysis simulation of space stations with controllable solar array

    NASA Technical Reports Server (NTRS)

    Heinrichs, J. A.; Fee, J. J.

    1972-01-01

    A methodology is formulated and presented for the integrated structural dynamic analysis of space stations with controllable solar arrays and non-controllable appendages. The structural system flexibility characteristics are considered in the dynamic analysis by a synthesis technique whereby free-free space station modal coordinates and cantilever appendage coordinates are inertially coupled. A digital simulation of this analysis method is described and verified by comparison of interaction load solutions with other methods of solution. Motion equations are simulated for both the zero gravity and artificial gravity (spinning) orbital conditions. Closed loop controlling dynamics for both orientation control of the arrays and attitude control of the space station are provided in the simulation by various generic types of controlling systems. The capability of the simulation as a design tool is demonstrated by utilizing typical space station and solar array structural representations and a specific structural perturbing force. Response and interaction load solutions are presented for this structural configuration and indicate the importance of using an integrated type analysis for the predictions of structural interactions.

  10. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.; Phillips, Brandon S.

    2015-01-01

    CubeSats, Communication Satellites, and Outer Planet Science Satellites all share one thing in common: Mission success depends on maintaining power in the harsh space environment. For a vast majority of satellites, spacecraft power is sourced by a photovoltaic (PV) array system. Built around PV cells, the array systems also include wiring, substrates, connectors, and protection diodes. Each of these components must function properly throughout the mission in order for power production to remain at nominal levels. Failure of even one component can lead to a crippling loss of power. To help ensure PV array systems do not suffer failures on-orbit due to the space environment, NASA's Marshall Space Flight Center (MSFC) has developed a wide ranging test and evaluation capability. Key elements of this capability include: Testing: a. Ultraviolet (UV) Exposure b. Charged Particle Radiation (Electron and Proton) c. Thermal Cycling d. Plasma and Beam Environments Evaluation: a. Electrostatic Discharge (ESD) Screening b. Optical Inspection and easurement c. PV Power Output including Large Area Pulsed Solar Simulator (LAPSS) measurements This paper will describe the elements of the space environment which particularly impact PV array systems. MSFC test capabilities will be described to show how the relevant space environments can be applied to PV array systems in the laboratory. A discussion of MSFC evaluation capabilities will also be provided. The sample evaluation capabilities offer test engineers a means to quantify the effects of the space environment on their PV array system or component. Finally, examples will be shown of the effects of the space environment on actual PV array materials tested at MSFC.

  11. An innovative deployable solar panel system for Cubesats

    NASA Astrophysics Data System (ADS)

    Santoni, Fabio; Piergentili, Fabrizio; Donati, Serena; Perelli, Massimo; Negri, Andrea; Marino, Michele

    2014-02-01

    One of the main Cubesat bus limitations is the available on-board power. The maximum power obtained using body mounted solar panels and advanced triple junction solar cells on a triple unit Cubesat is typically less than 10 W. The Cubesat performance and the mission scenario opened to these small satellite systems could be greatly enhanced by an increase of the available power. This paper describes the design and realization of a modular deployable solar panel system for Cubesats, consisting of a modular hinge and spring system that can be potentially used on-board single (1U), double(2U), triple (3U) and six units (6U) Cubesats. The size of each solar panels is the size of a lateral Cubesat surface. The system developed is the basis for a SADA (Solar Array Drive Assembly), in which a maneuvering capability is added to the deployed solar array in order to follow the apparent motion of the sun. The system design trade-off is discussed, comparing different deployment concepts and architectures, leading to the final selection for the modular design. A prototype of the system has been realized for a 3U Cubesat, consisting of two deployable solar panel systems, made of three solar panels each, for a total of six deployed solar panels. The deployment system is based on a plastic fiber wire and thermal cutters, guaranteeing a suitable level of reliability. A test-bed for the solar panel deployment testing has been developed, supporting the solar array during deployment reproducing the dynamical situation in orbit. The results of the deployment system testing are discussed, including the design and realization of the test-bed, the mechanical stress given to the solar cells by the deployment accelerations and the overall system performance. The maximum power delivered by the system is about 50.4 W BOL, greatly enhancing the present Cubesat solar array performance.

  12. System design of ELITE power processing unit

    NASA Astrophysics Data System (ADS)

    Caldwell, David J.

    The Electric Propulsion Insertion Transfer Experiment (ELITE) is a space mission planned for the mid 1990s in which technological readiness will be demonstrated for electric orbit transfer vehicles (EOTVs). A system-level design of the power processing unit (PPU), which conditions solar array power for the arcjet thruster, was performed to optimize performance with respect to reliability, power output, efficiency, specific mass, and radiation hardness. The PPU system consists of multiphased parallel switchmode converters, configured as current sources, connected directly from the array to the thruster. The PPU control system includes a solar array peak power tracker (PPT) to maximize the power delivered to the thruster regardless of variations in array characteristics. A stability analysis has been performed to verify that the system is stable despite the nonlinear negative impedance of the PPU input and the arcjet thruster. Performance specifications are given to provide the required spacecraft capability with existing technology.

  13. Analysis of Roll Steering for Solar Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Pederson, Dylan, M.; Hojnicki, Jeffrey, S.

    2012-01-01

    Nothing is more vital to a spacecraft than power. Solar Electric Propulsion (SEP) uses that power to provide a safe, reliable, and, most importantly, fuel efficient means to propel a spacecraft to its destination. The power performance of an SEP vehicle s solar arrays and electrical power system (EPS) is largely influenced by the environment in which the spacecraft is operating. One of the most important factors that determines solar array power performance is how directly the arrays are pointed to the sun. To get the most power from the solar arrays, the obvious solution is to point them directly at the sun at all times. Doing so is not a problem in deep space, as the environment and pointing conditions that a spacecraft faces are fairly constant and are easy to accommodate, if necessary. However, large and sometimes rapid variations in environmental and pointing conditions are experienced by Earth orbiting spacecraft. SEP spacecraft also have the additional constraint of needing to keep the thrust vector aligned with the velocity vector. Thus, it is important to analyze solar array power performance for any vehicle that spends an extended amount of time orbiting the Earth, and to determine how much off-pointing can be tolerated to produce the required power for a given spacecraft. This paper documents the benefits and drawbacks of perfectly pointing the solar arrays of an SEP spacecraft spiraling from Earth orbit, and how this might be accomplished. Benefits and drawbacks are defined in terms of vehicle mass, power, volume, complexity, and cost. This paper will also look at the application of various solar array pointing methods to future missions. One such pointing method of interest is called roll steering . Roll steering involves rolling the entire vehicle twice each orbit. Roll steering, combined with solar array gimbal tracking, is used to point the solar arrays perfectly towards the sun at all points in the orbit, while keeping the vehicle thrusters aligned in the velocity direction. Roll steering is particularly attractive for a recently proposed mission that involves a spiral trajectory from low Earth orbit (LEO) to the Earth-Moon Lagrange Point 1 (E-M L1). During the spiral, the spacecraft will spend over 300 days experiencing the full spectrum of near-earth environments and solar array pointing conditions. An extensive study of the application of SEP (and roll steering) to this spiral mission is included, highlighting the ultimate goal of reduced vehicle cost and mass. Tools used for this analysis include the Systems Power Analysis for Capability Evaluation (Refs. 1 and 2) (SPACE) electrical power systems code, and SEP trajectory simulation tools developed at NASA Glenn Research Center.

  14. Significant Science at Jupiter Using Solar Power

    NASA Technical Reports Server (NTRS)

    Reitsema, H. J.; Smith, E. J.; Spilker, T.; Reinert, R.

    2001-01-01

    Missions to the Outer Planets are challenging for a number of reasons, primary of which is the low output of solar arrays at large heliocentric distances. The INSIDE Jupiter mission is a Discovery concept for a science investigation at Jupiter that is capable of producing major studies of the Jovian internal structure and ionospheric-magnetospheric coupling. Additional information is contained in the original extended abstract.

  15. DET/MPS - The GSFC Energy Balance Programs

    NASA Technical Reports Server (NTRS)

    Jagielski, J. M.

    1994-01-01

    Direct Energy Transfer (DET) and MultiMission Spacecraft Modular Power System (MPS) computer programs perform mathematical modeling and simulation to aid in design and analysis of DET and MPS spacecraft power system performance in order to determine energy balance of subsystem. DET spacecraft power system feeds output of solar photovoltaic array and nickel cadmium batteries directly to spacecraft bus. MPS system, Standard Power Regulator Unit (SPRU) utilized to operate array at array's peak power point. DET and MPS perform minute-by-minute simulation of performance of power system. Results of simulation focus mainly on output of solar array and characteristics of batteries. Both packages limited in terms of orbital mechanics, they have sufficient capability to calculate data on eclipses and performance of arrays for circular or near-circular orbits. DET and MPS written in FORTRAN-77 with some VAX FORTRAN-type extensions. Both available in three versions: GSC-13374, for DEC VAX-series computers running VMS. GSC-13443, for UNIX-based computers. GSC-13444, for Apple Macintosh computers.

  16. Operational performance of a low cost, air mass 2 solar simulator

    NASA Technical Reports Server (NTRS)

    Yass, K.; Curtis, H. B.

    1975-01-01

    Modifications and improvements on a low cost air mass 2 solar simulator are discussed. The performance characteristics of total irradiance, uniformity of irradiance, spectral distribution, and beam subtense angle are presented. The simulator consists of an array of tungsten halogen lamps hexagonally spaced in a plane. A corresponding array of plastic Fresnel lenses shapes the output beam such that the simulator irradiates a 1.2 m by 1.2 m area with uniform collimated irradiance. Details are given concerning individual lamp output measurements and placement of the lamps. Originally, only the direct component of solar irradiance was simulated. Since the diffuse component may affect the performance of some collectors, the capability to simulate it is being added. An approach to this diffuse addition is discussed.

  17. KSC-98pc1854

    NASA Image and Video Library

    1998-12-15

    In the Space Station Processing Facility, a worker (left) guides the lifting of solar panels for the International Space Station (ISS). The panels are the first set of U.S.-provided solar arrays and batteries for ISS, scheduled to be part of mission STS-97 in December 1999. The mission, fifth in the U.S. flights for construction of ISS, will build and enhance the capabilities of the Space Station. It will deliver the solar panels as well as radiators to provide cooling. The Shuttle will spend 5 days docked to the station, which at that time will be staffed by the first station crew. Two space walks will be conducted to complete assembly operations while the arrays are attached and unfurled. A communications system for voice and telemetry also will be installed

  18. KSC-98pc1855

    NASA Image and Video Library

    1998-12-15

    In the Space Station Processing Facility, workers on the floor watch as the overhead crane moves solar panels intended for the International Space Station (ISS). The panels are the first set of U.S.-provided solar arrays and batteries for ISS, scheduled to be part of mission STS-97 in December 1999. The mission, fifth in the U.S. flights for construction of ISS, will build and enhance the capabilities of the Space Station. It will deliver the solar panels as well as radiators to provide cooling. The Shuttle will spend five days docked to the station, which at that time will be staffed by the first station crew. Two space walks will be conducted to complete assembly operations while the arrays are attached and unfurled. A communications system for voice and telemetry also will be installed

  19. Future Trends in Solar Radio Astronomy and Coronal Magnetic-Field Measurements

    NASA Astrophysics Data System (ADS)

    Fleishman, Gregory; Nita, Gelu; Gary, Dale

    Solar radio astronomy has an amazingly rich, but yet largely unexploited, potential for probing the solar corona and chromosphere. Radio emission offers multiple ways of detecting and tracking electron beams, studying chromospheric and coronal thermal structure, plasma processes, particle acceleration, and measuring magnetic fields. To turn the mentioned potential into real routine diagnostics, two major components are needed: (1) well-calibrated observations with high spatial, spectral, and temporal resolutions and (2) accurate and reliable theoretical models and fast numerical tools capable of recovering the emission source parameters from the radio data. This report gives a brief overview of the new, expanded, and planned radio facilities, such as Expanded Owens Valley Solar Array (EOVSA), Jansky Very Large Array (JVLA), Chinese Solar Radio Heliograph (CSRH), Upgraded Siberian Solar Radio Telescope (USSRT), and Frequency Agile Solar Radiotelescope (FASR) with the emphasis on their ability to measure the coronal magnetic fields in active regions and flares. In particular, we emphasize the new tools for 3D modeling of the radio emission and forward fitting tools in development needed to derive the magnetic field data from the radio measurements.

  20. A Raster Based Approach To Solar Pressure Modeling

    NASA Technical Reports Server (NTRS)

    Wright, Theodore

    2014-01-01

    The impact of photons upon a spacecraft introduces small forces and moments. The magnitude and direction of the forces depend on the material properties of the spacecraft components being illuminated. Which components are being lit depends on the orientation of the craft with respect to the Sun as well as the gimbal angles for any significant moving external parts (solar arrays, typically). Some components may shield others from the Sun.To determine solar pressure in the presence overlapping components, a 3D model can be used to determine which components are illuminated. A view (image) of the model as seen from the Sun shows the only contributors to solar pressure. This image can be decomposed into pixels, each of which can be treated as a non-overlapping flat plate as far as solar pressure calculations are concerned. The sums of the pressures and moments on these plates approximate the solar pressure and moments on the entire vehicle.The image rasterization technique can also be used to compute other spacecraft attributes that are dependent on attitude and geometry, including solar array power generation capability and free molecular flow drag.

  1. The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard; Parker, J. Morgan

    2015-01-01

    The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a subsequent human-crewed mission. The ion propulsion subsystem must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as an enabling element of an affordable beyond low-earth orbit human-crewed exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, a status on the NASA in-house thruster and power processing is provided, and an update on acquisition for flight provided.

  2. KSC-2011-5986

    NASA Image and Video Library

    2011-07-28

    CAPE CANAVERAL, Fla. -- Testing of the solar arrays on NASA's Gravity Recovery and Interior Laboratory-A, or GRAIL-A, spacecraft is under way in Astrotech Space Operation's payload processing facility in Titusville, Fla., to ensure that they will function as planned during the mission. The electrical power subsystem on each of GRAIL's twin spacecraft includes two solar arrays and a lithium ion battery. Each solar array is capable of producing no less than 700 watts. They will be deployed shortly after separation from the launch vehicle and remain fixed throughout the mission. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Frankie Martin

  3. KSC-2011-5983

    NASA Image and Video Library

    2011-07-28

    CAPE CANAVERAL, Fla. -- A Lockheed Martin technician in Astrotech Space Operation's payload processing facility in Titusville, Fla., tests the solar arrays on NASA's Gravity Recovery and Interior Laboratory-A, or GRAIL-A, spacecraft to ensure that they will function as planned during the mission. The electrical power subsystem on each of GRAIL's twin spacecraft includes two solar arrays and a lithium ion battery. Each solar array is capable of producing no less than 700 watts. They will be deployed shortly after separation from the launch vehicle and remain fixed throughout the mission. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Frankie Martin

  4. KSC-2011-5985

    NASA Image and Video Library

    2011-07-28

    CAPE CANAVERAL, Fla. -- Lockheed Martin technicians in Astrotech Space Operation's payload processing facility in Titusville, Fla., test the solar arrays on NASA's Gravity Recovery and Interior Laboratory-A, or GRAIL-A, spacecraft to ensure that they will function as planned during the mission. The electrical power subsystem on each of GRAIL's twin spacecraft includes two solar arrays and a lithium ion battery. Each solar array is capable of producing no less than 700 watts. They will be deployed shortly after separation from the launch vehicle and remain fixed throughout the mission. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Frankie Martin

  5. KSC-2011-5988

    NASA Image and Video Library

    2011-07-28

    CAPE CANAVERAL, Fla. -- Testing of the solar arrays on NASA's Gravity Recovery and Interior Laboratory-A, or GRAIL-A, spacecraft is under way in Astrotech Space Operation's payload processing facility in Titusville, Fla., to ensure that they will function as planned during the mission. The electrical power subsystem on each of GRAIL's twin spacecraft includes two solar arrays and a lithium ion battery. Each solar array is capable of producing no less than 700 watts. They will be deployed shortly after separation from the launch vehicle and remain fixed throughout the mission. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Frankie Martin

  6. KSC-2011-5982

    NASA Image and Video Library

    2011-07-28

    CAPE CANAVERAL, Fla. -- A Lockheed Martin technician in Astrotech Space Operation's payload processing facility in Titusville, Fla., tests the solar arrays on NASA's Gravity Recovery and Interior Laboratory-A, or GRAIL-A, spacecraft to ensure that they will function as planned during the mission. The electrical power subsystem on each of GRAIL's twin spacecraft includes two solar arrays and a lithium ion battery. Each solar array is capable of producing no less than 700 watts. They will be deployed shortly after separation from the launch vehicle and remain fixed throughout the mission. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Frankie Martin

  7. KSC-2011-5980

    NASA Image and Video Library

    2011-07-28

    CAPE CANAVERAL, Fla. -- Lockheed Martin technicians in Astrotech Space Operation's payload processing facility in Titusville, Fla., prepare to test the solar arrays on NASA's Gravity Recovery and Interior Laboratory-A, or GRAIL-A, spacecraft to ensure that they will function as planned during the mission. The electrical power subsystem on each of GRAIL's twin spacecraft includes two solar arrays and a lithium ion battery. Each solar array is capable of producing no less than 700 watts. They will be deployed shortly after separation from the launch vehicle and remain fixed throughout the mission. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Frankie Martin

  8. KSC-2011-5989

    NASA Image and Video Library

    2011-07-28

    CAPE CANAVERAL, Fla. -- Lockheed Martin technicians in Astrotech Space Operation's payload processing facility in Titusville, Fla., test the solar arrays on NASA's Gravity Recovery and Interior Laboratory-A, or GRAIL-A, spacecraft to ensure that they will function as planned during the mission. The electrical power subsystem on each of GRAIL's twin spacecraft includes two solar arrays and a lithium ion battery. Each solar array is capable of producing no less than 700 watts. They will be deployed shortly after separation from the launch vehicle and remain fixed throughout the mission. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Frankie Martin

  9. Effective light absorption and its enhancement factor for silicon nanowire-based solar cell.

    PubMed

    Duan, Zhiqiang; Li, Meicheng; Mwenya, Trevor; Fu, Pengfei; Li, Yingfeng; Song, Dandan

    2016-01-01

    Although nanowire (NW) antireflection coating can enhance light trapping capability, which is generally used in crystal silicon (CS) based solar cells, whether it can improve light absorption in the CS body depends on the NW geometrical shape and their geometrical parameters. In order to conveniently compare with the bare silicon, two enhancement factors E(T) and E(A) are defined and introduced to quantitatively evaluate the efficient light trapping capability of NW antireflective layer and the effective light absorption capability of CS body. Five different shapes (cylindrical, truncated conical, convex conical, conical, and concave conical) of silicon NW arrays arranged in a square are studied, and the theoretical results indicate that excellent light trapping does not mean more light can be absorbed in the CS body. The convex conical NW has the best light trapping, but the concave conical NW has the best effective light absorption. Furthermore, if the cross section of silicon NW is changed into a square, both light trapping and effective light absorption are enhanced, and the Eiffel Tower shaped NW arrays have optimal effective light absorption.

  10. Design of coated standing nanowire array solar cell performing beyond the planar efficiency limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Yang; Ye, Qinghao; Shen, Wenzhong, E-mail: wzshen@sjtu.edu.cn

    2016-05-28

    The single standing nanowire (SNW) solar cells have been proven to perform beyond the planar efficiency limits in both open-circuit voltage and internal quantum efficiency due to the built-in concentration and the shifting of the absorption front. However, the expandability of these nano-scale units to a macro-scale photovoltaic device remains unsolved. The main difficulty lies in the simultaneous preservation of an effective built-in concentration in each unit cell and a broadband high absorption capability of their array. Here, we have provided a detailed theoretical guideline for realizing a macro-scale solar cell that performs furthest beyond the planar limits. The keymore » lies in a complementary design between the light-trapping of the single SNWs and that of the photonic crystal slab formed by the array. By tuning the hybrid HE modes of the SNWs through the thickness of a coaxial dielectric coating, the optimized coated SNW array can sustain an absorption rate over 97.5% for a period as large as 425 nm, which, together with the inherited carrier extraction advantage, leads to a cell efficiency increment of 30% over the planar limit. This work has demonstrated the viability of a large-size solar cell that performs beyond the planar limits.« less

  11. Self-organized nitrogen and fluorine co-doped titanium oxide nanotube arrays with enhanced visible light photocatalytic performance.

    PubMed

    Li, Qi; Shang, Jian Ku

    2009-12-01

    Self-organized nitrogen and fluorine co-doped titanium oxide (TiONF) nanotube arrays were created by anodizing titanium foil in a fluoride and ammoniate-based electrolyte, followed by calcination of the amorphous nanotube arrays under a nitrogen protective atmosphere for crystallization. TiONF nanotube arrays were found to have enhanced visible light absorption capability and photodegradation efficiency on methylene blue under visible light illumination over the TiO(2) nanotube arrays. The enhancement was dependent on both the nanotube structural architecture and the nitrogen and fluorine co-doping effect. TiONF nanotube arrays promise a wide range of technical applications, especially for environmental applications and solar cell devices.

  12. ISRU Reactant, Fuel Cell Based Power Plant for Robotic and Human Mobile Exploration Applications

    NASA Technical Reports Server (NTRS)

    Baird, Russell S.; Sanders, Gerald; Simon, Thomas; McCurdy, Kerri

    2003-01-01

    Three basic power generation system concepts are generally considered for lander, rover, and Extra-Vehicular Activity (EVA) assistant applications for robotic and human Moon and Mars exploration missions. The most common power system considered is the solar array and battery system. While relatively simple and successful, solar array/battery systems have some serious limitations for mobile applications. For typical rover applications, these limitations include relatively low total energy storage capabilities, daylight only operating times (6 to 8 hours on Mars), relatively short operating lives depending on the operating environment, and rover/lander size and surface use constraints. Radioisotope power systems are being reconsidered for long-range science missions. Unfortunately, the high cost, political controversy, and launch difficulties that are associated with nuclear-based power systems suggests that the use of radioisotope powered landers, rovers, and EVA assistants will be limited. The third power system concept now being considered are fuel cell based systems. Fuel cell power systems overcome many of the performance and surface exploration limitations of solar array/battery power systems and the prohibitive cost and other difficulties associated with nuclear power systems for mobile applications. In an effort to better understand the capabilities and limitations of fuel cell power systems for Moon and Mars exploration applications, NASA is investigating the use of in-Situ Resource Utilization (ISRU) produced reactant, fuel cell based power plants to power robotic outpost rovers, science equipment, and future human spacecraft, surface-excursion rovers, and EVA assistant rovers. This paper will briefly compare the capabilities and limitations of fuel cell power systems relative to solar array/battery and nuclear systems, discuss the unique and enhanced missions that fuel cell power systems enable, and discuss the common technology and system attributes possible for robotic and human exploration to maximize scientific return and minimize cost and risk to both. Progress made to date at the Johnson Space Center on an ISRU producible reactant, Proton Exchange Membrane (PEM) fuel cell based power plant project to demonstrate the concept in conjunction with rover applications will be presented in detail.

  13. ISRU Reactant, Fuel Cell Based Power Plant for Robotic and Human Mobile Exploration Applications

    NASA Astrophysics Data System (ADS)

    Baird, Russell S.; Sanders, Gerald; Simon, Thomas; McCurdy, Kerri

    2003-01-01

    Three basic power generation system concepts are generally considered for lander, rover, and Extra-Vehicular Activity (EVA) assistant applications for robotic and human Moon and Mars exploration missions. The most common power system considered is the solar array and battery system. While relatively simple and successful, solar array/battery systems have some serious limitations for mobile applications. For typical rover applications, these limitations include relatively low total energy storage capabilities, daylight only operating times (6 to 8 hours on Mars), relatively short operating lives depending on the operating environment, and rover/lander size and surface use constraints. Radioisotope power systems are being reconsidered for long-range science missions. Unfortunately, the high cost, political controversy, and launch difficulties that are associated with nuclear-based power systems suggests that the use of radioisotope powered landers, rovers, and EVA assistants will be limited. The third power system concept now being considered are fuel cell based systems. Fuel cell power systems overcome many of the performance and surface exploration limitations of solar array/battery power systems and the prohibitive cost and other difficulties associated with nuclear power systems for mobile applications. In an effort to better understand the capabilities and limitations of fuel cell power systems for Moon and Mars exploration applications. NASA is investigating the use of In-Situ Resource Utilization (ISRU) produced reactant, fuel cell based power plants to power robotic outpost rovers, science equipment, and future human spacecraft, surface-excursion rovers, and EVA assistant rovers. This paper will briefly compare the capabilities and limitations of fuel cell power systems relative to solar array/battery and nuclear systems, discuss the unique and enhanced missions that fuel cell power systems enable, and discuss the common technology and system attributes possible for robotic and human exploration to maximize scientific return and minimize cost and risk to both. Progress made to date at the Johnson Space Center on an ISRU producible reactant. Proton Exchange Membrane (PEM) fuel cell based power plant project for use in the first demonstration of this concept in conjunction with rover applications will be presented in detail.

  14. Advanced Power System Analysis Capabilities

    NASA Technical Reports Server (NTRS)

    1997-01-01

    As a continuing effort to assist in the design and characterization of space power systems, the NASA Lewis Research Center's Power and Propulsion Office developed a powerful computerized analysis tool called System Power Analysis for Capability Evaluation (SPACE). This year, SPACE was used extensively in analyzing detailed operational timelines for the International Space Station (ISS) program. SPACE was developed to analyze the performance of space-based photovoltaic power systems such as that being developed for the ISS. It is a highly integrated tool that combines numerous factors in a single analysis, providing a comprehensive assessment of the power system's capability. Factors particularly critical to the ISS include the orientation of the solar arrays toward the Sun and the shadowing of the arrays by other portions of the station.

  15. The Stretched Lens Array SquareRigger (SLASR) for Space Power

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; O'Neill, Mark J.; Eskenazi, Michael I.; Brandhorst, Henry W.

    2006-01-01

    For the past three years, our team has been developing, refining, and maturing a unique solar array technology known as Stretched Lens Array SquareRigger (SLASR). SLASR offers an unprecedented portfolio of state-of-the-art performance metrics, including areal power density, specific power, stowed power density, high-voltage capability, radiation hardness, modularity, scalability, mass-producibility, and cost-effectiveness. SLASR is particularly well suited to high-power space missions, including solar electric propulsion (SEP) space tugs, major exploration missions to the Moon and Mars, and power-intensive military spacecraft. SLASR is also very well suited to high-radiation missions, since the cell shielding mass penalty is 85% less for the SLASR concentrator array than for one-sun planar arrays. The paper describes SLASR technology and presents significant results of developments to date in a number of key areas, from advances in the key components to full-scale array hardware fabrication and evaluation. A summary of SLASR s unprecedented performance metrics, both near-term and longer term, will be presented. Plans for future SLASR developments and near-term space applications will also be outlined.

  16. Modular, Reconfigurable, High-Energy Systems Stepping Stones

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Carrington, Connie K.; Mankins, John C.

    2005-01-01

    Modular, Reconfigurable, High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure strategically located in space to support a variety of exploration scenarios. Abundant renewable energy at lunar or L1 locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, and electric propulsion. It would also provide a power-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper presents a preliminary design concept for a 100-kWe solar-powered satellite with the capability to flight-demonstrate a variety of payload experiments and to utilize electric propulsion. State-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging make the 100-kW satellite feasible for launch on one existing launch vehicle. Higher voltage arrays and power management and distribution (PMAD) systems reduce or eliminate the need for massive power converters, and could enable direct- drive of high-voltage solar electric thrusters.

  17. Outer Planet Science Missions enabled by Solar Power

    NASA Astrophysics Data System (ADS)

    Kaplan, M.; Klaus, K.; Smith, D. B.

    2009-12-01

    Our studies demonstrate that New Frontiers-class science missions to the Jupiter and Saturn systems are possible with commercial solar powered space craft. These spacecraft are flight proven with more than 60 years of in-space operation and are equipped with highly efficient solar arrays capable of up to 25kW in low earth orbit. Such a vehicle could generate nearly 1kW in the Jovian System. Our analysis shows substantially greater power at the end of mission with this solar array system than the system that is planned for use in the Europa Jupiter System Flagship mission study. In the next few years, a new solar array technology will be developed and demonstrated by DARPA that will provide even higher power. DARPA’s Fast Access Space Testbed (FAST) program objective is to develop a revolutionary approach to spacecraft high power generation. This high power generation Subsystem, when combined with electric propulsion, will form the technological basis for a light weight, high power, highly mobile spacecraft platform. The FAST program will demonstrate the implementation of solar concentrators and high flux solar cells in conjunction with high specific impulse electric propulsion, to produce a high performance, lightweight power and propulsion system. A basic FAST spacecraft design provides about 60 kW in LEO, which scales to > 2 kW at 5 AU, or a little less than 1 kW at 10 AU. In principle, higher power levels (120 kW or even 180kW at 1 AU) could be accommodated with this technology. We envision missions using this FAST array and NASA’s NEXT engines for solar electric propulsion (SEP) Jovian and Saturn system maneuvers. We envision FAST arrays to cost in the tens of millions, making this an affordable, plutonium-free way to do outer planets science. Continued funding will mean flight experiments conducted in the 2012 timeframe that could make this technology flight proven for the New Frontiers 4 opportunity.

  18. Integrated Antenna/Solar Array Cell (IA/SAC) System for Flexible Access Communications

    NASA Technical Reports Server (NTRS)

    Lee, Ricard Q.; Clark, Eric B.; Pal, Anna Maria T.; Wilt, David M.; Mueller, Carl H.

    2004-01-01

    Present satellite communications systems normally use separate solar cells and antennas. Since solar cells generally account for the largest surface area of the spacecraft, co-locating the antenna and solar cells on the same substrate opens the possibility for a number of data-rate-enhancing communications link architecture that would have minimal impact on spacecraft weight and size. The idea of integrating printed planar antenna and solar array cells on the same surface has been reported in the literature. The early work merely attempted to demonstrate the feasibility by placing commercial solar cells besides a patch antenna. Recently, Integrating multiple antenna elements and solar cell arrays on the same surface was reported for both space and terrestrial applications. The application of photovoltaic solar cell in a planar antenna structure where the radiating patch antenna is replaced by a Si solar cell has been demonstrated in wireless communication systems (C. Bendel, J. Kirchhof and N. Henze, 3rd Would Photovotaic Congress, Osaka, Japan, May 2003). Based on a hybrid approach, a 6x1 slot array with circularly polarized crossdipole elements co-located on the same surface of the solar cells array has been demonstrated (S. Vaccaro, J. R. Mosig and P. de Maagt, IEEE Trans. Ant. and Propag., Vol. 5 1, No. 8, Aug. 2003). Amorphous silicon solar cells with about 5-10% efficiency were used in these demonstrations. This paper describes recent effort to integrate advanced solar cells with printed planar antennas. Compared to prior art, the proposed WSAC concept is unique in the following ways: 1) Active antenna element will be used to achieve dynamic beam steering; 2) High efficiency (30%) GaAs multi-junction solar cells will be used instead of Si, which has an efficiency of about 15%; 3) Antenna and solar cells are integrated on a common GaAs substrate; and 4) Higher data rate capability. The IA/SAC is designed to operate at X-band (8-12 GH) and higher frequencies Higher operating frequencies enable greater bandwidth and thus higher data transfer rates. The first phase of the effort involves the development of GaAs solar cell MIMs (Monolithically Integrated Module) with a single patch antenna on the opposite side of the substrate. Subsequent work will involve the integration of MIMs and antennas on the same side of the substrate. Results from the phase one efforts will be presented.

  19. Expanded Owens Valley Solar Array Science and Data Products

    NASA Astrophysics Data System (ADS)

    Gary, Dale E.; Hurford, G. J.; Nita, G. M.; Fleishman, G. D.; McTiernan, J. M.

    2010-05-01

    The Owens Valley Solar Array (OVSA) has been funded for major expansion, to create a university-based facility serving a broad scientific community, to keep the U.S. competitive in the field of solar radio physics. The project, funded by the National Science Foundation through the MRI-Recovery and Reinvestment program, will result in a world-class facility for scientific research at microwave radio frequencies (1-18 GHz) in solar and space weather physics. The project also includes an exciting program of targeted astronomical science. The solar science to be addressed focuses on the magnetic structure of the solar corona, on transient phenomena resulting from magnetic interactions, including the sudden release of energy and subsequent particle acceleration and heating, and on space weather phenomena. The project will support the scientific community by providing open data access and software tools for analysis of the data, to exploit synergies with on-going solar research in other wavelength bands. The New Jersey Institute of Technology (NJIT) will upgrade OVSA from its current complement of 7 antennas to a total of 15 by adding 8 new antennas, and will reinvest in the existing infrastructure by replacing the existing control systems, signal transmission, and signal processing with modern, far more capable and reliable systems based on new technology developed for the Frequency Agile Solar Radiotelescope (FASR). The project will be completed in time to provide solar-dedicated observations during the upcoming solar maximum in 2013 and beyond. We will detail the new science addressed by the expanded array, and provide an overview of the expected data products.

  20. The Lightweight Integrated Solar Array and anTenna (LISA-T) Big Power for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Carr, John A.; Boyd, Darren

    2017-01-01

    NASA is developing a space power system using lightweight, flexible photovoltaic devices originally developed for use here on Earth to provide low cost power for spacecraft. The Lightweight Integrated Solar Array and anTenna (LISA-T) is a launch stowed, orbit deployed array on which thin-film photovoltaic and antenna elements are embedded. The LISA-T system is deployable, building upon NASA's expertise in developing thin-film deployable solar sails such the one being developed for the Near Earth Asteroid Scout project which will fly in 2018. One of the biggest challenges for the NEA Scout, and most other spacecraft, is power. There simply isn't enough of it available, thus limiting the range of operation of the spacecraft from the Sun (due to the small surface area available for using solar cells), the range of operation from the Earth (low available power with inherently small antenna sizes tightly constrain the bandwidth for communication), and the science (you can only power so many instruments with limited power). The LISA-T has the potential to mitigate each of these limitations, especially for small spacecraft. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between their need for power and robust communications with the requirements of the science or engineering payload they are developed to fly. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft and CubeSats. The problem is that these CubeSats can usually only generate between 7W and 50W of power. The power that can be generated by the LISA-T ranges from tens of watts to several hundred watts, at a much higher mass and stowage efficiency. A matrix of options are in development, including planar (pointed) and omnidirectional (non-pointed) arrays. The former is seeking the highest performance possible while the latter is seeking GN&C simplicity. Options for leveraging both high performance, 'typical cost' triple junction thin-film solar cells as well as moderate performance, low cost cells are being developed. Alongside, UHF (ultrahigh frequency), S-band, and X-band antennas are being integrated into the array to move their space claim away from the spacecraft and open the door for more capable multi-element antenna designs such as those needed for spherical coverage and electronically steered phase arrays.

  1. A dynamical approach in exploring the unknown mass in the Solar system using pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Guo, Y. J.; Lee, K. J.; Caballero, R. N.

    2018-04-01

    The error in the Solar system ephemeris will lead to dipolar correlations in the residuals of pulsar timing array for widely separated pulsars. In this paper, we utilize such correlated signals, and construct a Bayesian data-analysis framework to detect the unknown mass in the Solar system and to measure the orbital parameters. The algorithm is designed to calculate the waveform of the induced pulsar-timing residuals due to the unmodelled objects following the Keplerian orbits in the Solar system. The algorithm incorporates a Bayesian-analysis suit used to simultaneously analyse the pulsar-timing data of multiple pulsars to search for coherent waveforms, evaluate the detection significance of unknown objects, and to measure their parameters. When the object is not detectable, our algorithm can be used to place upper limits on the mass. The algorithm is verified using simulated data sets, and cross-checked with analytical calculations. We also investigate the capability of future pulsar-timing-array experiments in detecting the unknown objects. We expect that the future pulsar-timing data can limit the unknown massive objects in the Solar system to be lighter than 10-11-10-12 M⊙, or measure the mass of Jovian system to a fractional precision of 10-8-10-9.

  2. System Assessment of a High Power 3-U CubeSat

    NASA Technical Reports Server (NTRS)

    Shaw, Katie

    2016-01-01

    The Advanced eLectrical Bus (ALBus) CubeSat project is a technology demonstration mission of a 3-UCubeSat with an advanced, digitally controlled electrical power system capability and novel use of Shape Memory Alloy (SMA) technology for reliable deployable solar array mechanisms. The objective of the project is to, through an on orbit demonstration, advance the state of power management and distribution (PMAD) capabilities to enable future missions requiring higher power, flexible and reliable power systems. The goals of the mission include demonstration of: 100 Watt distribution to a target electrical load, efficient battery charging in the orbital environment, flexible power system distribution interfaces, adaptation of power system control on orbit, and reliable deployment of solar arrays and antennas utilizing re-settable SMA mechanisms. The power distribution function of the ALBus PMAD system is unique in the total power to target load capability of 100 W, the flexibility to support centralized or point-to-load regulation and ability to respond to fast transient power requirements. Power will be distributed from batteries at 14.8 V, 6.5 A to provide 100 W of power directly to a load. The deployable solar arrays utilize NASA Glenn Research Center superelastic and activated Nitinol(Nickel-Titanium alloy) Shape Memory Alloy (SMA) technology for hinges and a retention and release mechanism. The deployable solar array hinge design features utilization of the SMA material properties for dual purpose. The hinge uses the shape memory properties of the SMA to provide the spring force to deploy the arrays. The electrical conductivity properties of the SMA also enables the design to provide clean conduits for power transfer from the deployable arrays to the power management system. This eliminates the need for electrical harnesses between the arrays and the PMAD system in the ALBus system design. The uniqueness of the SMA retention and release mechanism design is the ability to reset the mechanism, allowing functional tests of the mechanisms prior to flight with no degradation of performance. The project is currently in preparation at the NASA Glenn Research Center for a launch in late calendar year of 2017. The 100 Watt power distribution and dual purpose, re-settable SMA mechanisms introduced several system level challenges due to the physical constraints in volume, mass and surface area of 3-U CubeSats. Several trade studies and design cycles have been completed to develop a system which supports the project objectives. This paper is a report on the results of the system level trade studies and assessments. The results include assessment of options for thermal control of 100 Watts of power dissipation, data from system analyses and engineering development tests, limitations of the 3-U system and extensibility to larger scale CubeSat missions.

  3. Factors Influencing Solar Electric Propulsion Vehicle Payload Delivery for Outer Planet Missions

    NASA Technical Reports Server (NTRS)

    Cupples, Michael; Green, Shaun; Coverstone, Victoria

    2003-01-01

    Systems analyses were performed for missions utilizing solar electric propulsion systems to deliver payloads to outer-planet destinations. A range of mission and systems factors and their affect on the delivery capability of the solar electric propulsion system was examined. The effect of varying the destination, the trip time, the launch vehicle, and gravity-assist boundary conditions was investigated. In addition, the affects of selecting propulsion system and power systems characteristics (including primary array power variation, number of thrusters, thruster throttling mode, and thruster Isp) on delivered payload was examined.

  4. Solar Electric Propulsion Technology Development for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Kerslake, Thomas W.; Scheidegger, Robert J.; Woodworth, Andrew A.; Lauenstein, Jean-Marie

    2015-01-01

    NASA is developing technologies to prepare for human exploration missions to Mars. Solar electric propulsion (SEP) systems are expected to enable a new cost effective means to deliver cargo to the Mars surface. Nearer term missions to Mars moons or near-Earth asteroids can be used to both develop and demonstrate the needed technology for these future Mars missions while demonstrating new capabilities in their own right. This presentation discusses recent technology development accomplishments for high power, high voltage solar arrays and power management that enable a new class of SEP missions.

  5. The Ion Propulsion System for the Asteroid Redirect Robotic Mission

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Sekerak, Michael J.

    2016-01-01

    The Asteroid Redirect Robotic Mission is a Solar Electric Propulsion Technology Demonstration Mission (ARRM) whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of NASA'a future beyond-low-Earth-orbit, human-crewed exploration plans. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. This paper presents the conceptual design of the ARRM ion propulsion system, the status of the NASA in-house thruster and power processing development activities, the status of the planned technology maturation for the mission through flight hardware delivery, and the status of the mission formulation and spacecraft acquisition.

  6. Effects of Solar Array Shadowing on the Power Capability of the Interim Control Module

    NASA Technical Reports Server (NTRS)

    Fincannon, James; Hojnicki, Jeffrey S.; Garner, James Christopher

    1999-01-01

    The Interim Control Module (ICM) is being built by the US Naval Research Laboratory (NRL) for NASA as a propulsion module for the International Space Station (ISS). Originally developed as a spinning spacecraft used to move payloads to their final orbit, for ISS, the ICM will be in a fixed orientation and location for long periods resulting in substantial solar panel shadowing. This paper describes the methods used to determine the incident energy incident energy on the ICM solar panels and the power capability of the electric power system (EPS). Applying this methodology has resulted in analyses and assessments used to identify ICM early design changes/options, placement and orientations that enable successful operation of the EPS under a wide variety of anticipated conditions.

  7. Electroluminescence Studies on Longwavelength Indium Arsenide Quantum Dot Microcavities Grown on Gallium Arsenide

    DTIC Science & Technology

    2011-12-01

    communication links using VCSEL arrays [1, 2], medical imaging using super luminescent diodes [3], and tunable lasers capable of remotely sensing...increase the efficiency of solar cells [6, 7, 8], vastly improve photo detector sensitivity [9], and provide optical memory storage densities predicted...semiconductor lasers” Applied Physics B: Lasers and Optics, Volume 90, Number 2, 2008, Pages 339-343. 6. Nozik, A.J. “Quantum dot solar cells

  8. An Integrated Approach to Modeling Solar Electric Propulsion Vehicles During Long Duration, Near-Earth Orbit Transfers

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Hojnicki, Jeffrey S.; Sjauw, Waldy K.

    2014-01-01

    Recent NASA interest in utilizing solar electronic propulsion (SEP) technology to transfer payloads, e.g. from low-Earth orbit (LEO) to higher energy geostationary-Earth orbit (GEO) or to Earth escape, has necessitated the development of high fidelity SEP vehicle models and simulations. These models and simulations need to be capable of capturing vehicle dynamics and sub-system interactions experienced during the transfer trajectories which are typically accomplished with continuous-burn (potentially interrupted by solar eclipse), long duration "spiral out" maneuvers taking several months or more to complete. This paper presents details of an integrated simulation approach achieved by combining a high fidelity vehicle simulation code with a detailed solar array model. The combined simulation tool gives researchers the functionality to study the integrated effects of various vehicle sub-systems (e.g. vehicle guidance, navigation and control (GN&C), electric propulsion system (EP)) with time varying power production. Results from a simulation model of a vehicle with a 50 kW class SEP system using the integrated tool are presented and compared to the results from another simulation model employing a 50 kW end-of-life (EOL) fixed power level assumption. These models simulate a vehicle under three degree of freedom dynamics (i.e. translational dynamics only) and include the effects of a targeting guidance algorithm (providing a "near optimal" transfer) during a LEO to near Earth escape (C (sub 3) = -2.0 km (sup 2) / sec (sup -2) spiral trajectory. The presented results include the impact of the fully integrated, time-varying solar array model (e.g. cumulative array degradation from traversing the Van Allen belts, impact of solar eclipses on the vehicle and the related temperature responses in the solar arrays due to operating in the Earth's thermal environment, high fidelity array power module, etc.); these are used to assess the impact on vehicle performance (i.e. propellant consumption) and transit times.

  9. Low cost solar array project. Task 1: Silicon material, gaseous melt replenishment system

    NASA Technical Reports Server (NTRS)

    Jewett, D. N.; Bates, H. E.; Hill, D. M.

    1979-01-01

    A system to combine silicon formation, by hydrogen reduction of trichlorosilane, with the capability to replenish a crystal growth system is described. A variety of process parameters to allow sizing and specification of gas handling system components was estimated.

  10. High-power, ultralow-mass solar arrays: FY-77 solar arrays technology readiness assessment report, volume 2

    NASA Technical Reports Server (NTRS)

    Costogue, E. N.; Young, L. E.; Brandhorst, H. W., Jr.

    1978-01-01

    Development efforts are reported in detail for: (1) a lightweight solar array system for solar electric propulsion; (2) a high efficiency thin silicon solar cell; (3) conceptual design of 200 W/kg solar arrays; (4) fluorocarbon encapsulation for silicon solar cell array; and (5) technology assessment of concentrator solar arrays.

  11. Energy conversion system

    DOEpatents

    Murphy, Lawrence M.

    1987-01-01

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

  12. Energy conversion system

    DOEpatents

    Murphy, L.M.

    1985-09-16

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

  13. The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Parker, J. Morgan

    2015-01-01

    The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. The ion propulsion system must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system being co-developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS0 thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, the status of the NASA in-house thruster and power processing activity, and an update on flight hardware.

  14. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  15. Solar Simulation for the CREST Preflight Thermal-Vacuum Test at B-2

    NASA Technical Reports Server (NTRS)

    Ziemke, Robert A.

    2012-01-01

    In June 2011, the multi-university sponsored Cosmic Ray Electron Synchrotron Telescope (CREST) has undergone thermal-vacuum qualification testing at the NASA Glenn Research Center (GRC), Plum Brook Station, Sandusky, Ohio. The testing was performed in the B-2 Space Propulsion Facility vacuum chamber. The CREST was later flown over the Antarctic region as the payload of a stratospheric balloon. Solar simulation was provided by a system of planar infrared lamp arrays specifically designed for CREST. The lamp arrays, in conjunction with a liquid-nitrogen-cooled cold wall, achieved the required thermal conditions for the qualification tests. The following slides accompanied the presentation of the report entitled Solar Simulation for the CREST Preflight Thermal-Vacuum Test at B-2, at the 27th Aerospace Testing Seminar, October 2012. The presentation described the test article, the test facility capability, the solar simulation requirements, the highlights of the engineering approach, and the results achieved. The presentation was intended to generate interest in the report and in the B-2 test facility.

  16. Solar panels for the International Space Station are uncrated and moved in the SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, the overhead crane slowly moves solar panels intended for the International Space Station (ISS). The panels are the first set of U.S.-provided solar arrays and batteries for ISS, scheduled to be part of mission STS-97 in December 1999. The mission, fifth in the U.S. flights for construction of ISS, will build and enhance the capabilities of the Space Station. It will deliver the solar panels as well as radiators to provide cooling. The Shuttle will spend 5 days docked to the station, which at that time will be staffed by the first station crew. Two space walks will be conducted to complete assembly operations while the arrays are attached and unfurled. A communications system for voice and telemetry also will be installed. At the left of the crane and panels is the Multipurpose Logistics Module (MPLM), the Leonardo A reusable logistics carrier, the MPLM is scheduled to be launched on Space Shuttle Mission STS-100, targeted for April 2000.

  17. Planned improvements to the Owens Valley frequency-agile interferometer

    NASA Technical Reports Server (NTRS)

    Hurford, Gordon J.; Gary, D. E.

    1988-01-01

    Three small antennas will be added to the OVRO interferometer to form a five-element solar-dedicated array. This would provide up to 7 or 10 baselines (compared to the present 1 or 3). This would be sufficient to apply microwave diagnostics to most active region and burst sources. By using frequency-synthesis it would also provide an imaging capability comparable to that of an approximately 100 baseline interferometer. Expansion of the array is discussed.

  18. SOLINS- SOLAR INSOLATION MODEL FOR COMPUTING AVAILABLE SOLAR ENERGY TO A SURFACE OF ARBITRARY ORIENTATION

    NASA Technical Reports Server (NTRS)

    Smith, J. H.

    1994-01-01

    This computer program, SOLINS, was developed to aid engineers and solar system designers in the accurate modeling of the average hourly solar insolation on a surface of arbitrary orientation. The program can be used to study insolation problems specific to residential and commercial applications where the amount of space available for solar collectors is limited by shadowing problems, energy output requirements, and costs. For tandem rack arrays, SOLINS will accommodate the use of augmentation reflectors built into the support structure to increase insolation values at the collector surface. As the use of flat plate solar collectors becomes more prevalent in the building industry, the engineer and designer must have the capability to conduct extensive sensitivity analyses on the orientation and location of solar collectors. SOLINS should prove to be a valuable aid in this area of engineering. SOLINS uses a modified version of the National Bureau of Standards model to calculate the direct, diffuse, and reflected components of total insolation on a tilted surface with a given azimuthal orientation. The model is based on the work of Liu and Jordan with corrections by Kusuda and Ishii to account for early morning and late afternoon errors. The model uses a parametric description of the average day solar climate to generate monthly average day profiles by hour of the insolation level on the collector surface. The model includes accommodation of user specified ground and landscape reflectivities at the collector site. For roof or ground mounted, tilted arrays, SOLINS will calculate insolation including the effects of shadowing and augmentation reflectors. The user provides SOLINS with data describing the array design, array orientation, the month, the solar climate parameter, the ground reflectance, and printout control specifications. For the specified array and environmental conditions, SOLINS outputs the hourly insolation the array will receive during an average day during the month specified, along with the total insolation the collector surface will receive over an average 24-hour period. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 computer with a central memory requirement of approximately 46K of 8 bit bytes. The SOLINS routines were developed in 1979.

  19. KSC-2011-5981

    NASA Image and Video Library

    2011-07-28

    CAPE CANAVERAL, Fla. -- NASA's twin Gravity Recovery and Interior Laboratory spacecraft are positioned side-by-side in Astrotech Space Operation's payload processing facility in Titusville, Fla. Lockheed Martin technicians are performing testing the solar arrays on GRAIL-A to ensure that they will function as planned during the mission. The electrical power subsystem on each of GRAIL's twin spacecraft includes two solar arrays and a lithium ion battery. Each solar array is capable of producing no less than 700 watts. They will be deployed shortly after separation from the launch vehicle and remain fixed throughout the mission. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Frankie Martin

  20. Product pricing in the Solar Array Manufacturing Industry - An executive summary of SAMICS

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.

    1978-01-01

    Capabilities, methodology, and a description of input data to the Solar Array Manufacturing Industry Costing Standards (SAMICS) are presented. SAMICS were developed to provide a standardized procedure and data base for comparing manufacturing processes of Low-cost Solar Array (LSA) subcontractors, guide the setting of research priorities, and assess the progress of LSA toward its hundred-fold cost reduction goal. SAMICS can be used to estimate the manufacturing costs and product prices and determine the impact of inflation, taxes, and interest rates, but it is limited by its ignoring the effects of the market supply and demand and an assumption that all factories operate in a production line mode. The SAMICS methodology defines the industry structure, hypothetical supplier companies, and manufacturing processes and maintains a body of standardized data which is used to compute the final product price. The input data includes the product description, the process characteristics, the equipment cost factors, and production data for the preparation of detailed cost estimates. Activities validating that SAMICS produced realistic price estimates and cost breakdowns are described.

  1. Recent developments in the economic modeling of photovoltaic module manufacturing

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.

    1979-01-01

    Recent developments in the solar array manufacturing industry costing standards (SAMICS) are described. Consideration is given to the added capability to handle arbitrary operating schedules and the revised procedure for calculation of one-time costs. The results of an extensive validation study are summarized.

  2. On-Orbit Reconfigurable Solar Array

    NASA Technical Reports Server (NTRS)

    Levy, Robert K. (Inventor)

    2017-01-01

    In one or more embodiments, the present disclosure teaches a method for reconfiguring a solar array. The method involves providing, for the solar array, at least one string of solar cells. The method further involves deactivating at least a portion of at least one of the strings of solar cells of the solar array when power produced by the solar array reaches a maximum power allowance threshold. In addition, the method involves activating at least a portion of at least one of the strings of the solar cells in the solar array when the power produced by the solar array reaches a minimum power allowance threshold.

  3. Heliophysical Explorers (HELEX): Solar Orbiter and Sentinels - Report of the Joint Science and Technology Definition Team (JSTDT)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Heliophysical Explorers (HELEX) brings together and augments the unique capabilities of ESA's Solar Orbiter mission (near-Sun and out-of-ecliptic in-situ plus remote-sensing observations) with those of NASA's Inner Heliospheric Sentinels (in-situ observations from multiple platforms arrayed at varying radial distances and azimuthal locations in the near-ecliptic plane)to investigate, characterize, and understand how the Sun determines the environment of the inner solar system and, more broadly, generates the heliosphere itself. This joint ESA-NASA science program offers a unique opportunity for coordinated, correlative measurements, resulting in a combined observational capability and science return that far outweighs that of either mission alone. Building on the knowledge gained from missions like Helios and Ulysses, and STEREO, HELEX will bring to bear the power of multipoint, in-situ measurements using previously unavailable instrumental capabilities in combination with remote-sensing observations from a new, inner heliospheric perspective to answer fundamental questions about the Sun-heliosphere linkage.

  4. Solar Array Sails: Possible Space Plasma Environmental Effects

    NASA Technical Reports Server (NTRS)

    Mackey, Willie R.

    2005-01-01

    An examination of the interactions between proposed "solar sail" propulsion systems with photovoltaic energy generation capabilities and the space plasma environments. Major areas of interactions ere: Acting from high voltage arrays, ram and wake effects, V and B current loops and EMI. Preliminary analysis indicates that arcing will be a major risk factor for voltages greater than 300V. Electron temperature enhancement in the wake will be produce noise that can be transmitted via the wake echo process. In addition, V and B induced potential will generate sheath voltages with potential tether like breakage effects in the thin film sails. Advocacy of further attention to these processes is emphasized so that plasma environmental mitigation will be instituted in photovoltaic sail design.

  5. Photovoltaic array: Power conditioner interface characteristics

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.

    1982-01-01

    The electrical output (power, current, and voltage) of flat plate solar arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as dc-to-ac power conditioners must be capable of accommodating widely varying input levels while maintaining operation at or near the maximum power point of the array. The array operating characteristics and extreme output limits necessary for the systematic design of array load interfaces under a wide variety of climatic conditions are studied. A number of interface parameters are examined, including optimum operating voltage, voltage energy, maximum power and current limits, and maximum open circuit voltage. The effect of array degradation and I-V curve fill factor or the array power conditioner interface is also discussed. Results are presented as normalized ratios of power conditioner parameters to array parameters, making the results universally applicable to a wide variety of system sizes, sites, and operating modes.

  6. Microsat and Lunar-Based Imaging of Radio Bursts

    NASA Technical Reports Server (NTRS)

    MacDowall, R. J.; Gopalswamy, N.; Kaiser, M. L.; Demaio, L. D.; Bale, S. D.; Kasper, J. C.; Lazarus, A. J.; Howard, R. E.; Jones, D. L.; Reiner, M. J.; hide

    2005-01-01

    No present or approved spacecraft mission has the capability to provide high angular resolution imaging of solar or magnetospheric radio bursts or of the celestial sphere at frequencies below the ionospheric cutoff. Here, we describe a MIDEX-class mission to perform such imaging in the frequency range approx. 30 kHz to 15 MHz. This mission, the Solar Imaging Radio Array (SIRA), is solar and exploration-oriented, with emphasis on improved understanding and application of radio bursts associated with solar energetic particle (SEP) events and on tracking shocks and other components of coronal mass ejections (CMEs). SIRA will require 12 to 16 micro-satellites to establish a sufficient number of baselines with separations on the order of kilometers. The constellation consists of microsats located quasi-randomly on a spherical shell, initially of approx. 10 km diameter. The baseline microsat is 3-axis stabilized with body-mounted solar arrays and an articulated, earth pointing high gain antenna. The constellation will likely be placed at L1, which is the preferred location for full-time solar observations. We also discuss briefly follow-on missions that would be lunar-based with of order 10,000 dipole antennas.

  7. Solar array technology evaluation program for SEPS (Solar Electrical Propulsion Stage)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An evaluation of the technology and the development of a preliminary design for a 25 kilowatt solar array system for solar electric propulsion are discussed. The solar array has a power to weight ratio of 65 watts per kilogram. The solar array system is composed of two wings. Each wing consists of a solar array blanket, a blanket launch storage container, an extension/retraction mast assembly, a blanket tensioning system, an array electrical harness, and hardware for supporting the system for launch and in the operating position. The technology evaluation was performed to assess the applicable solar array state-of-the-art and to define supporting research necessary to achieve technology readiness for meeting the solar electric propulsion system solar array design requirements.

  8. The Challenges of Low-Frequency Radio Polarimetry: Lessons from the Murchison Widefield Array

    NASA Astrophysics Data System (ADS)

    Lenc, E.; Anderson, C. S.; Barry, N.; Bowman, J. D.; Cairns, I. H.; Farnes, J. S.; Gaensler, B. M.; Heald, G.; Johnston-Hollitt, M.; Kaplan, D. L.; Lynch, C. R.; McCauley, P. I.; Mitchell, D. A.; Morgan, J.; Morales, M. F.; Murphy, Tara; Offringa, A. R.; Ord, S. M.; Pindor, B.; Riseley, C.; Sadler, E. M.; Sobey, C.; Sokolowski, M.; Sullivan, I. S.; O'Sullivan, S. P.; Sun, X. H.; Tremblay, S. E.; Trott, C. M.; Wayth, R. B.

    2017-09-01

    We present techniques developed to calibrate and correct Murchison Widefield Array low-frequency (72-300 MHz) radio observations for polarimetry. The extremely wide field-of-view, excellent instantaneous (u, v)-coverage and sensitivity to degree-scale structure that the Murchison Widefield Array provides enable instrumental calibration, removal of instrumental artefacts, and correction for ionospheric Faraday rotation through imaging techniques. With the demonstrated polarimetric capabilities of the Murchison Widefield Array, we discuss future directions for polarimetric science at low frequencies to answer outstanding questions relating to polarised source counts, source depolarisation, pulsar science, low-mass stars, exoplanets, the nature of the interstellar and intergalactic media, and the solar environment.

  9. International ultraviolet explorer solar array power degradation

    NASA Technical Reports Server (NTRS)

    Day, J. H., Jr.

    1983-01-01

    The characteristic electrical performance of each International Ultraviolet Explorer (IUE) solar array panel is evaluated as a function of several prevailing variables (namely, solar illumination, array temperature and solar cell radiation damage). Based on degradation in the current-voltage characteristics of the array due to solar cell damage accumulated over time by space charged particle radiations, the available IUE solar array power is determined for life goals up to 10 years. Best and worst case calculations are normalized to actual IUE flight data (available solar array power versus observatory position) to accurately predict the future IUE solar array output. It is shown that the IUE solar array can continue to produce more power than is required at most observatory positions for at least 5 more years.

  10. The Redox flow system for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Odonnell, P.; Gahn, R. F.

    1976-01-01

    A new method of storage was applied to a solar photovoltaic system. The storage method is a redox flow system which utilizes the oxidation-reduction capability of two soluble electrochemical redox couples for its storage capacity. The particular variant described separates the charging and discharging function of the system such that the electrochemical couples are simultaneously charged and discharged in separate parts of the system. The solar array had 12 solar cells; wired in order to give a range of voltages and currents. The system stored the solar energy so that a load could be run continually day and night. The main advantages of the redox system are that it can accept a charge in the low voltage range and produce a relatively constant output regardless of solar activity.

  11. Evaluation of solar cells and arrays for potential solar power satellite applications

    NASA Technical Reports Server (NTRS)

    Almgren, D. W.; Csigi, K.; Gaudet, A. D.

    1978-01-01

    Proposed solar array designs and manufacturing methods are evaluated to identify options which show the greatest promise of leading up to the develpment of a cost-effective SPS solar cell array design. The key program elements which have to be accomplished as part of an SPS solar cell array development program are defined. The issues focussed on are: (1) definition of one or more designs of a candidate SPS solar array module, using results from current system studies; (2) development of the necessary manufacturing requirements for the candidate SPS solar cell arrays and an assessment of the market size, timing, and industry infrastructure needed to produce the arrays for the SPS program; (3) evaluation of current DOE, NASA and DOD photovoltaic programs to determine the impacts of recent advances in solar cell materials, array designs and manufacturing technology on the candidate SPS solar cell arrays; and (4) definition of key program elements for the development of the most promising solar cell arrays for the SPS program.

  12. Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors.

    PubMed

    Xie, Chao; Nie, Biao; Zeng, Longhui; Liang, Feng-Xia; Wang, Ming-Zheng; Luo, Linbao; Feng, Mei; Yu, Yongqiang; Wu, Chun-Yan; Wu, Yucheng; Yu, Shu-Hong

    2014-04-22

    Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core-shell heterojunction photovoltaic device by directly coating Ag-assisted chemical-etched SiNW arrays with CQDs. The heterojunction with a barrier height of 0.75 eV exhibited excellent rectifying behavior with a rectification ratio of 10(3) at ±0.8 V in the dark and power conversion efficiency (PCE) as high as 9.10% under AM 1.5G irradiation. It is believed that such a high PCE comes from the improved optical absorption as well as the optimized carrier transfer and collection capability. Furthermore, the heterojunction could function as a high-performance self-driven visible light photodetector operating in a wide switching wavelength with good stability, high sensitivity, and fast response speed. It is expected that the present SiNW array/CQD core-shell heterojunction device could find potential applications in future high-performance optoelectronic devices.

  13. NASA advanced space photovoltaic technology-status, potential and future mission applications

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.; Piszczor, Michael, Jr.; Stella, Paul M.; Bennett, Gary L.

    1989-01-01

    The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 micrometer) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.

  14. Lean, Mean and Green: An Affordable Net Zero School

    ERIC Educational Resources Information Center

    Stanfield, Kenneth

    2010-01-01

    From its conception, Richardsville Elementary was designed to be an affordable net zero facility. The design team explored numerous energy saving strategies to dramatically reduce energy consumption. By reducing energy use to 19.31 kBtus annually, the net zero goal could be realized through the implementation of a solar array capable of producing…

  15. Light Trapping with Silicon Light Funnel Arrays

    PubMed Central

    Nissan, Yuval; Gabay, Tamir; Shalev, Gil

    2018-01-01

    Silicon light funnels are three-dimensional subwavelength structures in the shape of inverted cones with respect to the incoming illumination. Light funnel (LF) arrays can serve as efficient absorbing layers on account of their light trapping capabilities, which are associated with the presence of high-density complex Mie modes. Specifically, light funnel arrays exhibit broadband absorption enhancement of the solar spectrum. In the current study, we numerically explore the optical coupling between surface light funnel arrays and the underlying substrates. We show that the absorption in the LF array-substrate complex is higher than the absorption in LF arrays of the same height (~10% increase). This, we suggest, implies that a LF array serves as an efficient surface element that imparts additional momentum components to the impinging illumination, and hence optically excites the substrate by near-field light concentration, excitation of traveling guided modes in the substrate, and mode hybridization. PMID:29562685

  16. New Voltage and Current Thresholds Determined for Sustained Space Plasma Arcing

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Galofaro, Joel T.; Vayner, Boris V.

    2003-01-01

    It has been known for many years, based partly on NASA Glenn Research Center testing, that high-voltage solar arrays arc into the space plasma environment. Solar arrays are composed of solar cells in series with each other (a string), and the strings may be connected in parallel to produce the entire solar array power. Arcs on solar arrays can damage or destroy solar cells, and in the extreme case of sustained arcing, entire solar array strings, in a flash. In the case of sustained arcing (discovered at Glenn and applied to the design and construction of solar arrays on Space Systems/Loral (SS/Loral, Palo Alto, CA) satellites, Deep-Space 1, and Terra), an arc on one solar array string can couple to an adjacent string and continue to be powered by the solar array output until a permanent electrical short is produced. In other words, sustained arcs produced by arcs into the plasma (so-called trigger arcs) may turn into disastrous sustained arcs by involving other array strings.

  17. (abstract) Scaling Nominal Solar Cell Impedances for Array Design

    NASA Technical Reports Server (NTRS)

    Mueller, Robert L; Wallace, Matthew T.; Iles, Peter

    1994-01-01

    This paper discusses a task the objective of which is to characterize solar cell array AC impedance and develop scaling rules for impedance characterization of large arrays by testing single solar cells and small arrays. This effort is aimed at formulating a methodology for estimating the AC impedance of the Mars Pathfinder (MPF) cruise and lander solar arrays based upon testing single cells and small solar cell arrays and to create a basis for design of a single shunt limiter for MPF power control of flight solar arrays having very different inpedances.

  18. Integrated Phase Array Antenna/Solar Cell System for Flexible Access Communication (IA/SAC)

    NASA Technical Reports Server (NTRS)

    Clark, E. B.; Lee, R. Q.; Pal, A. T.; Wilt, D. M.; McElroy, B. D.; Mueller, C. H.

    2005-01-01

    This paper describes recent efforts to integrate advanced solar cells with printed planar antennas. Several previous attempts have been reported in the literature, but this effort is unique in several ways. It uses Gallium Arsenide (GaAs) multi-junction solar cell technology. The solar cells and antennas will be integrated onto a common GaAs substrate. When fully implemented, IA/SAC will be capable of dynamic beam steering. In addition, this program targets the X-band (8 - 12 GHz) and higher frequencies, as compared to the 2.2 - 2.9 GHz arrays targeted by other organizations. These higher operating frequencies enable a greater bandwidth and thus higher data transfer rates. The first phase of the effort involves the development of 2 x 2 cm GaAs Monolithically Integrated Modules (MIM) with integrated patch antennas on the opposite side of the substrate. Subsequent work will involve the design and development of devices having the GaAs MIMs and the antennas on the same side of the substrate. Results from the phase one efforts will be presented.

  19. Analysis Of Dynamic Interactions Between Solar Array Simulators And Spacecraft Power Conditioning And Distribution Units

    NASA Astrophysics Data System (ADS)

    Valdivia, V.; Barrado, A.; Lazaro, A.; Rueda, P.; Tonicello, F.; Fernandez, A.; Mourra, O.

    2011-10-01

    Solar array simulators (SASs) are hardware devices, commonly applied instead of actual solar arrays (SAs) during the design process of spacecrafts power conditioning and distribution units (PCDUs), and during spacecrafts assembly integration and tests. However, the dynamic responses between SASs and actual SAs are usually different. This fact plays an important role, since the dynamic response of the SAS may influence significantly the dynamic behaviour of the PCDU under certain conditions, even leading to instability. This paper deals with the dynamic interactions between SASs and PCDUs. Several methods for dynamic characterization of the SASs are discussed, and the response of commercial SASs widely applied in the space industry is compared to that of actual SAs. After that, the interactions are experimentally analyzed by using a boost converter connected to the aforementioned SASs, thus demonstrating their critical importance. The interactions are first tackled analytically by means of small-signal models, and finally a black-box modelling method of SASs is proposed as a useful tool to analyze the interactions by means of simulation. The capabilities of both the analytical method and the black- box model to predict the interactions are demonstrated.

  20. Managing PV Power on Mars - MER Rovers

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Chin, Keith; Wood, Eric; Herman, Jennifer; Ewell, Richard

    2009-01-01

    The MER Rovers have recently completed over 5 years of operation! This is a remarkable demonstration of the capabilities of PV power on the Martian surface. The extended mission required the development of an efficient process to predict the power available to the rovers on a day-to-day basis. The performance of the MER solar arrays is quite unlike that of any other Space array and perhaps more akin to Terrestrial PV operation, although even severe by that comparison. The impact of unpredictable factors, such as atmospheric conditions and dust accumulation (and removal) on the panels limits the accurate prediction of array power to short time spans. Based on the above, it is clear that long term power predictions are not sufficiently accurate to allow for detailed long term planning. Instead, the power assessment is essentially a daily activity, effectively resetting the boundary points for the overall predictive power model. A typical analysis begins with the importing of the telemetry from each rover's previous day's power subsystem activities. This includes the array power generated, battery state-of-charge, rover power loads, and rover orientation, all as functions of time. The predicted performance for that day is compared to the actual performance to identify the extent of any differences. The model is then corrected for these changes. Details of JPL's MER power analysis procedure are presented, including the description of steps needed to provide the final prediction for the mission planners. A dust cleaning event of the solar array is also highlighted to illustrate the impact of Martian weather on solar array performance

  1. Solar cell array design handbook - The principles and technology of photovoltaic energy conversion

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H. S.

    1980-01-01

    Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.

  2. Workshop on Heteroepitaxial InP Solar Cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Walters, R. W.

    1993-01-01

    In a generic sense, the justification for any sort of InP solar cell research applies, i.e. to take advantage of the inherently high radiation resistance and efficiency of InP solar cells. To be more specific, the approach is justified by its potential for significant cost reduction and the availability of greatly increased cell area afforded by substrates such as Si and Ge. The use of substrates, such as the latter two, would result in increased ruggedness, ease of handling, and improved manufacturability. The use of more rugged substrates would lead to a greatly increased capability for cell thinning leading to the desirable feature of reduced array weight.

  3. Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies.

    PubMed

    Yang, Ya; Zhang, Hulin; Zhu, Guang; Lee, Sangmin; Lin, Zong-Hong; Wang, Zhong Lin

    2013-01-22

    We report the first flexible hybrid energy cell that is capable of simultaneously or individually harvesting thermal, mechanical, and solar energies to power some electronic devices. For having both the pyroelectric and piezoelectric properties, a polarized poly(vinylidene fluoride) (PVDF) film-based nanogenerator (NG) was used to harvest thermal and mechanical energies. Using aligned ZnO nanowire arrays grown on the flexible polyester (PET) substrate, a ZnO-poly(3-hexylthiophene) (P3HT) heterojunction solar cell was designed for harvesting solar energy. By integrating the NGs and the solar cells, a hybrid energy cell was fabricated to simultaneously harvest three different types of energies. With the use of a Li-ion battery as the energy storage, the harvested energy can drive four red light-emitting diodes (LEDs).

  4. Solar panel thermal cycling testing by solar simulation and infrared radiation methods

    NASA Technical Reports Server (NTRS)

    Nuss, H. E.

    1980-01-01

    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  5. Overview - Flat-plate technology. [review of Low Cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Callaghan, W. T.

    1981-01-01

    Progress and continuing plans for the joint NASA/DoE program at the JPL to develop the technologies and industrial processes necessary for mass production of low-cost solar arrays (LSA) which produce electricity from solar cells at a cost of less than $0.70/W are reviewed. Attention is given to plans for a demonstration Si refinement plant capable of yielding 1000 MT/yr, and to a CVD process with chlorosilane, which will yield material at a cost of $21/kg. Ingot and shaped-sheet technologies, using either Czochralski growth and film fed growth methods have yielded AM1 15% efficient cells in an automated process. Encapsulation procedures have been lowered to $14/sq m, and robotics have permitted assembled cell production at a rate of 10 sec/cell. Standards are being defined for module safety features. It is noted that construction of a pilot Si purification plant is essential to achieving the 1986 $0.70/W cost goals.

  6. KSC-98pc1856

    NASA Image and Video Library

    1998-12-15

    In the Space Station Processing Facility, the overhead crane slowly moves solar panels intended for the International Space Station (ISS). The panels are the first set of U.S.-provided solar arrays and batteries for ISS, scheduled to be part of mission STS-97 in December 1999. The mission, fifth in the U.S. flights for construction of ISS, will build and enhance the capabilities of the Space Station. It will deliver the solar panels as well as radiators to provide cooling. The Shuttle will spend 5 days docked to the station, which at that time will be staffed by the first station crew. Two space walks will be conducted to complete assembly operations while the arrays are attached and unfurled. A communications system for voice and telemetry also will be installed. At the left of the crane and panels is the Multipurpose Logistics Module (MPLM), the Leonardo A reusable logistics carrier, the MPLM is scheduled to be launched on Space Shuttle Mission STS-100, targeted for April 2000

  7. Long-period comet impact risk mitigation with Earth-based laser arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Qicheng; Lubin, Philip M.; Hughes, Gary B.

    2017-09-01

    Long-period comets (LPCs) frequently transit the inner solar system, and like near-Earth asteroids (NEAs), pose a continued risk of impact with Earth. Unlike NEAs, LPCs follow nearly parabolic trajectories and approach from the distant outer solar system where they cannot be observed. An LPC on an Earth-impact trajectory is unlikely to be discovered more than a few years in advance of its arrival, even with significant advancements in sky survey detection capabilities, likely leaving insufficient time to develop and deliver an interception mission to deflect the comet. However, recent proposals have called for the development of one or more large ˜ 1 km laser arrays placed on or near Earth primarily as a means for photon propulsion of low-mass spacecraft at delta-v above what would be feasible by traditional chemical or ion propulsion methods. Such a laser array can also be directed to target and heat a threatening comet, sublimating its ices and activating jets of dust and vapor which alter the comet's trajectory in a manner similar to rocket propulsion. Simulations of directed energy comet deflection were previously developed from astrometric models of nongravitational orbital perturbations from solar heating, an analogous process that has been observed in numerous comets. These simulations are used together with the distribution of known LPC trajectories to evaluate the effect of an operational Earth-based laser array on the LPC impact risk.

  8. Small aperture seismic arrays for studying planetary interiors and seismicity

    NASA Astrophysics Data System (ADS)

    Schmerr, N. C.; Lekic, V.; Fouch, M. J.; Panning, M. P.; Siegler, M.; Weber, R. C.

    2017-12-01

    Seismic arrays are a powerful tool for understanding the interior structure and seismicity across objects in the Solar System. Given the operational constraints of ground-based lander investigations, a small aperture seismic array can provide many of the benefits of a larger-scale network, but does not necessitate a global deployment of instrumentation. Here we define a small aperture array as a deployment of multiple seismometers, with a separation between instruments of 1-1000 meters. For example, small aperture seismic arrays have been deployed on the Moon during the Apollo program, the Active Seismic Experiments of Apollo 14 and 16, and the Lunar Seismic Profiling Experiment deployed by the Apollo 17 astronauts. Both were high frequency geophone arrays with spacing of 50 meters that provided information on the layering and velocity structure of the uppermost kilometer of the lunar crust. Ideally such arrays would consist of instruments that are 3-axis short period or broadband seismometers. The instruments must have a sampling rate and frequency range sensitivity capable of distinguishing between waves arriving at each station in the array. Both terrestrial analogs and the data retrieved from the Apollo arrays demonstrate the efficacy of this approach. Future opportunities exist for deployment of seismic arrays on Europa, asteroids, and other objects throughout the Solar System. Here we will present both observational data and 3-D synthetic modeling results that reveal the sensing requirements and the primary advantages of a small aperture seismic array over single station approach. For example, at the smallest apertures of < 1 m, we constrain that sampling rates must exceed 500 Hz and instrument sensitivity must extend to 100 Hz or greater. Such advantages include the improved ability to resolve the location of the sources near the array through detection of backazimuth and differential timing between stations, determination of the small-scale structure (layering, scattering bodies, density and velocity variations) in the vicinity of the array, as well as the ability to improve the signal to noise ratio of distant body waves by additive methods such as stacking and velocity-slowness analysis. These results will inform future missions on the surfaces of objects throughout the Solar System.

  9. DSCOVR Satellite Deploy & Light Test

    NASA Image and Video Library

    2014-11-24

    Workers deploy the solar arrays on NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, in the Building 1 high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for early 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.

  10. DSCOVR Satellite Deploy & Light Test

    NASA Image and Video Library

    2014-11-24

    The solar arrays on NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, are unfurled in the Building 1 high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for early 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.

  11. LANDSAT-D flight segment operations manual, volume 2

    NASA Technical Reports Server (NTRS)

    Varhola, J.

    1981-01-01

    Functions, performance capabilities, modes of operation, constraints, redundancy, commands, and telemetry are described for the thematic mapper; the global positioning system; the direct access S-band; the multispectral scanner; the payload correction; the thermal control subsystem; the solar array retention, deployment, and jettison assembly; and the boom antenna retention, deployment, and jettison assembly for LANDSAT 4.

  12. High-Efficiency Nested Hall Thrusters for Robotic Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.

    2013-01-01

    This work describes the scaling and design attributes of Nested Hall Thrusters (NHT) with extremely large operational envelopes, including a wide range of throttleability in power and specific impulse at high efficiency (>50%). NHTs have the potential to provide the game changing performance, powerprocessing capabilities, and cost effectiveness required to enable missions that cannot otherwise be accomplished. NHTs were first identified in the electric propulsion community as a path to 100- kW class thrusters for human missions. This study aimed to identify the performance capabilities NHTs can provide for NASA robotic and human missions, with an emphasis on 10-kW class thrusters well-suited for robotic exploration. A key outcome of this work has been the identification of NHTs as nearly constant-efficiency devices over large power throttling ratios, especially in direct-drive power systems. NHT systems sized for robotic solar system exploration are predicted to be capable of high-efficiency operation over nearly their entire power throttling range. A traditional Annular Hall Thruster (AHT) consists of a single annular discharge chamber where the propellant is ionized and accelerated. In an NHT, multiple annular channels are concentrically stacked. The channels can be operated in unison or individually depending on the available power or required performance. When throttling an AHT, performance must be sacrificed since a single channel cannot satisfy the diverse design attributes needed to maintain high thrust efficiency. NHTs can satisfy these requirements by varying which channels are operated and thereby offer significant benefits in terms of thruster performance, especially under deep power throttling conditions where the efficiency of an AHT suffers since a single channel can only operate efficiently (>50%) over a narrow power throttling ratio (3:1). Designs for 10-kW class NHTs were developed and compared with AHT systems. Power processing systems were considered using either traditional Power Processing Units (PPU) or Direct Drive Units (DDU). In a PPU-based system, power from the solar arrays is transformed from the low voltage of the arrays to the high voltage needed by the thruster. In a DDU-based system, power from the solar arrays is fed to the thruster without conversion. DDU-based systems are attractive for their simplicity since they eliminate the most complex and expensive part of the propulsion system. The results point to the strong potential of NHTs operating with either PPUs or DDUs to benefit robotic and human missions through their unprecedented power and specific impulse throttling capabilities. NHTs coupled to traditional PPUs are predicted to offer high-efficiency (>50%) power throttling ratios 320% greater than present capabilities, while NHTs with direct-drive power systems (DDU) could exceed existing capabilities by 340%. Because the NHT-DDU approach is implicitly low-cost, NHT-DDU technology has the potential to radically reduce the cost of SEP-enabled NASA missions while simultaneously enabling unprecedented performance capability.

  13. Operational considerations to reduce solar array loads

    NASA Technical Reports Server (NTRS)

    Gerstenmaier, W.

    1992-01-01

    The key parameters associated with solar array plume loads are examined, and operational considerations aimed at minimizing the effect of the Shuttle plumes on the Space Station solar arrays are discussed. These include solar array pointing to reduce loads and restrictions on Shuttle piloting. Particular attention is given to the method used to obtain the forcing functions (thruster time firing histories) for solar array plume calculation.

  14. Microwave-Driven Multifunctional Capability of Membrane Structures

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Chu, Sang-Hyong; Song, Kyo D.; King, Glen C.

    2002-01-01

    A large, ultra lightweight space structure, such as solar sails and Gossamer spacecrafts, requires a distributed power source to alleviate wire networks, unlike the localized on-board power infrastructures typically found in most small spacecrafts. The concept of microwave-driven multifunctional capability for membrane structures is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry and on-board power infrastructures. A rectenna array based on a patch configuration for high voltage output was developed to drive membrane actuators, sensors, probes, or other devices. Networked patch rectenna array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is adopted for networking a rectenna/actuator patch array. The use of patch rectennas adds a significant amount of rigidity to membrane flexibility and they are relatively heavy. A dipole rectenna array (DRA) appears to be ideal for thin-film membrane structures, since DRA is flexible and light. Preliminary design and fabrication of PAD circuitry that consists of a few nodal elements were made for laboratory testing. The networked actuators were tested to correlate the network coupling effect, power allocation and distribution, and response time.

  15. Overview of Small and Large-Scale Space Solar Power Concepts

    NASA Technical Reports Server (NTRS)

    Potter, Seth; Henley, Mark; Howell, Joe; Carrington, Connie; Fikes, John

    2006-01-01

    An overview of space solar power studies performed at the Boeing Company under contract with NASA will be presented. The major concepts to be presented are: 1. Power Plug in Orbit: this is a spacecraft that collects solar energy and distributes it to users in space using directed radio frequency or optical energy. Our concept uses solar arrays having the same dimensions as ISS arrays, but are assumed to be more efficient. If radiofrequency wavelengths are used, it will necessitate that the receiving satellite be equipped with a rectifying antenna (rectenna). For optical wavelengths, the solar arrays on the receiving satellite will collect the power. 2. Mars Clipper I Power Explorer: this is a solar electric Mars transfer vehicle to support human missions. A near-term precursor could be a high-power radar mapping spacecraft with self-transport capability. Advanced solar electric power systems and electric propulsion technology constitute viable elements for conducting human Mars missions that are roughly comparable in performance to similar missions utilizing alternative high thrust systems, with the one exception being their inability to achieve short Earth-Mars trip times. 3. Alternative Architectures: this task involves investigating alternatives to the traditional solar power satellite (SPS) to supply commercial power from space for use on Earth. Four concepts were studied: two using photovoltaic power generation, and two using solar dynamic power generation, with microwave and laser power transmission alternatives considered for each. All four architectures use geostationary orbit. 4. Cryogenic Propellant Depot in Earth Orbit: this concept uses large solar arrays (producing perhaps 600 kW) to electrolyze water launched from Earth, liquefy the resulting hydrogen and oxygen gases, and store them until needed by spacecraft. 5. Beam-Powered Lunar Polar Rover: a lunar rover powered by a microwave or laser beam can explore permanently shadowed craters near the lunar poles to search for water ice and other frozen volatiles. Near such craters are mountain peaks and highlands that are in near permanent sunlight. Power can be beamed from a collector on a sunlit mountain or crater rim to a rover inside a crater. Near-term applications of space solar power technology can therefore pave the way toward large-scale commercial power from space.

  16. Glass fiber reinforced concrete for terrestrial photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Maxwell, H.

    1979-01-01

    The use of glass-fiber-reinforced concrete (GRC) as a low-cost structural substrate for terrestrial solar cell arrays is discussed. The properties and fabrication of glass-reinforced concrete structures are considered, and a preliminary design for a laminated solar cell assembly built on a GRC substrate is presented. A total cost for such a photovoltaic module, composed of a Korad acrylic plastic film front cover, an aluminum foil back cover, an ethylene/vinyl acetate pottant/adhesive and a cotton fabric electrical isolator in addition to the GRC substrate, of $9.42/sq m is projected, which is less than the $11.00/sq m cost goal set by the Department of Energy. Preliminary evaluations are concluded to have shown the design capabilities and cost effectiveness of GRC; however, its potential for automated mass production has yet to be evaluated.

  17. Torsional Buckling Tests of a Simulated Solar Array

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.

    1996-01-01

    Spacecraft solar arrays are typically large structures supported by long, thin deployable booms. As such, they may be particularly susceptible to abnormal structural behavior induced by mechanical and thermal loading. One example is the Hubble Space Telescope solar arrays which consist of two split tubes fit one inside the other called BiSTEMs. The original solar arrays on the Hubble Space Telescope were found to be severely twisted following deployment and later telemetry data showed the arrays were vibrating during daylight to night and night to daylight transition. The solar array twist however can force the BiSTEM booms to change in cross-section and cause tile solar arrays to react unpredictably to future loading. The solar arrays were redesigned to correct for tile vibration, however, upon redeployment they again twisted. To assess the influence of boom cross-sectional configuration, experiments were conducted on two types of booms, (1)booms with closed cross-sections, and (2) booms with open cross-sections. Both models were subjected to compressive loading and imposed tip deflections. An existing analytical model by Chung and Thornton was used to define the individual load ranges for each model solar array configuration. The load range for the model solar array using closed cross-section booms was 0-120 Newtons and 0-160 Newtons for the model solar array using open cross-section booms. The results indicate the model solar array with closed cross-section booms buckled only in flexure. However, the results of the experiment with open cross-section booms indicate the model solar array buckled only in torsion and with imposed tip deflections the cross section can degrade by rotation of the inner relative to the outer STEM. For tile Hubble Space Telescope solar arrays the results of these experiments indicate the twisting resulted from the initial mechanical loading of the open cross-section booms.

  18. Controlling Charging and Arcing on a Solar Powered Auroral Orbiting Spacecraft

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Rhee, Michael S.

    2008-01-01

    The Global Precipitation Measurement satellite (GPM) will be launched into a high inclination (65 degree) orbit to monitor rainfall on a global scale. Satellites in high inclination orbits have been shown to charge to high negative potentials, with the possibility of arcing on the solar arrays, when three conditions are met: a drop in plasma density below approximately 10,000 cm(exp -3), an injection of energetic electrons of energy more that 7-10 keV, and passage through darkness. Since all of these conditions are expected to obtain for some of the GPM orbits, charging calculations were done using first the Space Environment and Effects (SEE) Program Interactive Spacecraft Charging Handbook, and secondly the NASA Air-force Spacecraft Charging Analyzer Program (NASCAP-2k). The object of the calculations was to determine if charging was likely for the GPM configuration and materials, and specifically to see if choosing a particular type of thermal white paint would help minimize charging. A detailed NASCAP-2k geometrical model of the GPM spacecraft was built, with such a large number of nodes that it challenged the capability of NASCAP-2k to do the calculations. The results of the calculations were that for worst-case auroral charging conditions, charging to levels on the order of -120 to -230 volts could occur on GPM during night-time, with differential voltages on the solar arrays that might lead to solar array arcing. In sunlit conditions, charging did not exceed -20 V under any conditions. The night-time results were sensitive to the spacecraft surface materials chosen. For non-conducting white paints, the charging was severe, and could continue unabated throughout the passage of GPM through the auroral zone. Somewhat conductive (dissipative) white paints minimized the night-time charging to levels of -120 V or less, and thus were recommended for GPM thermal control. It is shown that the choice of thermal control paints is important to prevent arcing on high inclination orbiting spacecraft solar arrays as well as for GEO satellites, even for solar array designs chosen to minimize arcing.

  19. Modeling and reconfiguration of solar photovoltaic arrays under non-uniform shadow conditions

    NASA Astrophysics Data System (ADS)

    Nguyen, Dung Duc

    Mass production and use of electricity generated from solar energy has become very common recently because of the environmental threats arising from the production of electricity from fossil fuels and nuclear power. The obvious benefits of solar energy are clean energy production and infinite supply of daylight. The main disadvantage is the high cost. In these photovoltaic systems, semiconductor materials convert the solar light into electrical energy. Current versus voltage characteristics of the solar cells are nonlinear, thus leading to technical control challenges. In the first order approximation, output power of a solar array is proportional to the irradiance of sunlight. However, in many applications, such as solar power plants, building integrated photovoltaic or solar tents, the solar photovoltaic arrays might be illuminated non-uniformly. The cause of non-uniform illumination may be the shadow of clouds, the trees, booms, neighbor's houses, or the shadow of one solar array on the other, etc. This further leads to nonlinearities in characteristics. Because of the nature of the electrical characteristics of solar cells, the maximum power losses are not proportional to the shadow, but magnify nonlinearly [1]. Further, shadows of solar PV array can cause other undesired effects: (1) The power actually generated from the solar PV array is much less than designed. At some systems, the annual losses because of the shadow effects can be reached 10%. Thus, the probability for "loss of load" increases [2]. (2) The local hot spot in the shaded part of the solar PV array can damage the solar cells. The shaded solar cells may be work on the negative voltage region and become a resistive load and absorb power. Bypass diodes are sometimes connected parallel to solar cells to protect them from damage. However, in most cases, just one diode is connected in parallel to group of solar cells [3], and this hidden the potential power output of the array. This proposed research will focus on the development of an adaptable solar array that is able to optimize power output, reconfigure itself when solar cells are damaged and create controllable output voltages and currents. This study will be a technological advancement over the existing technology of solar PV. Presently solar arrays are fixed arrays that require external device to control their output. In this research, the solar array will be able to self-reconfigure, leading to the following advantages: (1) Higher efficiency because no external devices are used. (2) Can reach maximum possible output power that is much higher than the maximum power of fixed solar arrays by arranging the solar cells in optimized connections. (3) Elimination of the hot spot effects. The proposed research has the following goals: First, to create a modeling and computing algorithm, which is able to simulate and analyze the effects of non-uniform changing shadows on the output power of solar PV arrays. Our model will be able to determine the power losses in each solar cell and the collective hot spots of an array. Second, to propose new methods, which are able to predict the performance of solar PV arrays under shadow conditions for long term (days, months, years). Finally, to develop adaptive reconfiguration algorithms to reconfigure connections within solar PV arrays in real time, under shadow conditions, in order to optimize output power.

  20. Development of a Thin-Film Solar Cell Interconnect for the Powersphere Concept

    NASA Technical Reports Server (NTRS)

    Simburger, Edward J.; Matsumoto, James H.; Giants, Thomas W.; Garcia, Alexander, III; Liu, Simon; Rawal, Suraj P.; Perry, Alan R.; Marshall, Craig; Lin, John K.; Scarborough, Stephen E.

    2005-01-01

    Dual junction amorphous silicon (a-Si) solar cells produced on polyimide substrate have been selected as the best candidate to produce a lightweight solar array for the PowerSphere program. The PowerSphere concept features a space-inflatable, geodetic solar array approximately 0.6 meters in diameter and capable of generating about 20W of electrical power. Trade studies of various wiring concepts and connection methods led to an interconnect design with a copper contact that wraps around the edge, to the back of the solar cell. Applying Plasma Vapor Deposited (PVD) copper film to both sides and the edge of the solar cell produces the wrap around contact. This procedure results in a contact pad on the back of the solar cell, which is then laser welded to a flex circuit material. The flex circuit is constructed of copper in a custom designed routing pattern, and then sandwiched in a Kapton insulation layer. The flex circuit then serves as the primary power distribution system between the solar cells and the spacecraft. Flex circuit material is the best candidate for the wiring harness because it allows for low force deployment of the solar cells by the inflatable hinges on the PowerSphere. An additional frame structure, fabricated and assembled by ILC Dover, will reinforce the wrap around contact-flex blanket connection, thus providing a mechanically robust solar cell interconnect for the PowerSphere multifunctional program. The PowerSphere team will use the wraparound contact design approach as the primary solution for solar cell integration and the flex blanket for power distribution.

  1. Seven-panel solar wing deployment and on-orbit maneuvering analyses

    NASA Astrophysics Data System (ADS)

    Hwang, Earl

    2005-05-01

    BSS developed a new generation high power (~20kW) solar array to meet the customer demands. The high power solar array had the north and south solar wings of which designs were identical. Each side of the solar wing consists of three main conventional solar panels and the four-side panel swing-out new design. The fully deployed solar array surface area is 966 ft2. It was a quite challenging task to define the solar array's optimum design parameters and deployment scheme for such a huge solar array's successful deployment and on-orbit maneuvering. Hence, a deployable seven-flex-panel solar wing nonlinear math model and a fully deployed solar array/bus-payload math model were developed with the Dynamic Analysis and Design System (DADS) program codes utilizing the inherited and empirical data. Performing extensive parametric analyses with the math model, the optimum design parameters and the orbit maneuvering /deployment schemes were determined to meet all the design requirements, and for the successful solar wing deployment on-orbit.

  2. Low-cost silicon solar array project environmental hail model for assessing risk to solar collectors

    NASA Technical Reports Server (NTRS)

    Gonzalez, C.

    1977-01-01

    The probability of solar arrays being struck by hailstones of various sizes as a function of geographic location and service life was assessed. The study complements parallel studies of solar array sensitivity to hail damage, the final objective being an estimate of the most cost effective level for solar array hail protection.

  3. The New LASP Interactive Solar IRradiance Datacenter (LISIRD)

    NASA Astrophysics Data System (ADS)

    Baltzer, T.; Wilson, A.; Lindholm, D. M.; Snow, M. A.; Woodraska, D.; Pankratz, C. K.

    2017-12-01

    The New LASP Interactive Solar IRradiance Datacenter (LISIRD) The University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics (LASP) has a long history of providing state of the art Solar instrumentation and datasets to the community. In 2005, LASP created a web interface called LISIRD which provided plotting of and access to a number of Solar Irradiance measured and modeled datasets, and it has been used extensively by members of the community both within and outside of LASP. In August of 2017, LASP is set to release a new version of LISIRD for use by anyone interested in viewing and downloading the datasets it serves. This talk will describe the new LISIRD with emphasis on features enabled by it to include: New and more functional plotting interfaces Better dataset browse and search capabilities More datasets Easier to add datasets from a wider array of resources Cleaner interface with better use of screen real estate Much easier to update metadata describing each dataset Much of this capability is leveraged off new infrastructure that will also be touched upon.

  4. Impact of Solar Array Position on ISS Vehicle Charging

    NASA Technical Reports Server (NTRS)

    Alred, John; Mikatarian, Ronald; Koontz, Steve

    2006-01-01

    The International Space Station (ISS), because of its large structure and high voltage solar arrays, has a complex plasma interaction with the ionosphere in low Earth orbit (LEO). This interaction of the ISS US Segment photovoltaic (PV) power system with the LEO ionospheric plasma produces floating potentials on conducting elements of the ISS structure relative to the local plasma environment. To control the ISS floating potentials, two Plasma Contactor Units (PCUs) are installed on the Z1 truss. Each PCU discharges accumulated electrons from the Space Station structure, thus reducing the potential difference between the ISS structure and the surrounding charged plasma environment. Operations of the PCUs were intended to keep the ISS floating potential to 40 Volts (Reference 1). Exposed dielectric surfaces overlying conducting structure on the Space Station will collect an opposite charge from the ionosphere as the ISS charges. In theory, when an Extravehicular Activity (EVA) crewmember is tethered to structure via the crew safety tether or when metallic surfaces of the Extravehicular Mobility Unit (EMU) come in contact with conducting metallic surfaces of the ISS, the EMU conducting components, including the perspiration-soaked crewmember inside, can become charged to the Space Station floating potential. The concern is the potential dielectric breakdown of anodized aluminum surfaces on the EMU producing an arc from the EMU to the ambient plasma, or nearby ISS structure. If the EMU arcs, an electrical current of an unknown magnitude and duration may conduct through the EVA crewmember, producing an unacceptable condition. This electrical current may be sufficient to startle or fatally shock the EVA crewmember (Reference 2). Hence, as currently defined by the EVA community, the ISS floating potential for all nominal and contingency EVA worksites and translation paths must have a magnitude less than 40 volts relative to the local ionosphere at all times during EVA. Arcing from the EMU is classified as a catastrophic hazard, which requires two-failure tolerant controls, i.e., three hazard controls. Each PCU is capable of maintaining the ISS floating potential below the requirement during EVA. The two PCUs provide a single failure tolerant control of ISS floating potential. In the event of the failure of one or two PCUs, a combination of solar array shunting and turning the solar arrays into their own wakes will be used to supply control of the plasma hazard (Reference 3). The purpose of this paper is to present on-orbit information that shows that ISS solar array placement with respect to the ISS velocity vector can control solar array plasma charging, and hence, provide an operational control for the plasma hazard. Also, this paper will present on-orbit information that shows that shunting of the ISS solar arrays can control solar array plasma charging, and hence, provide an additional operational control for the plasma hazard.

  5. Solar water heating system for a lunar base

    NASA Technical Reports Server (NTRS)

    Somers, Richard E.; Haynes, R. Daniel

    1992-01-01

    An investigation of the feasibility of using a solar water heater for a lunar base is described. During the investigation, computer codes were developed to model the lunar base configuration, lunar orbit, and heating systems. Numerous collector geometries, orientation variations, and system options were identified and analyzed. The results indicate that the recommended solar water heater could provide 88 percent of the design load and would not require changes in the overall lunar base design. The system would give a 'safe-haven' water heating capability and use only 7 percent to 10 percent as much electricity as an electric heating system. As a result, a fixed position photovoltaic array can be reduced by 21 sq m.

  6. A Titan Explorer Mission Utilizing Solar Electric Propulsion and Chemical Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Cupples, Michael; Coverstone, Vicki

    2003-01-01

    Mission and Systems analyses were performed for a Titan Explorer Mission scenario utilizing medium class launch vehicles, solar electric propulsion system (SEPS) for primary interplanetary propulsion, and chemical propulsion for capture at Titan. An examination of a range of system factors was performed to determine their affect on the payload delivery capability to Titan. The effect of varying the launch vehicle, solar array power, associated number of SEPS thrusters, chemical propellant combinations, tank liner thickness, and tank composite overwrap stress factor was investigated. This paper provides a parametric survey of the aforementioned set of system factors, delineating their affect on Titan payload delivery, as well as discussing aspects of planetary capture methodology.

  7. Thermal/Dynamic Characterization Test of the Solar Array Panel for Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Jenkins, Kathleen; Hershfeld, Donald J.

    1999-01-01

    The Hubble Space Telescope has experienced a problem maintaining pointing accuracy during emergence of the spacecraft from the Earth's shadow. The problem has been attributed to the rapid thermal gradient that develops when the heat from the Sun strikes the cold solar arrays. The thermal gradient causes the solar arrays to deflect or bend and this motion is sufficient to disturb the pointing control system. In order to alleviate this problem, a new design for the solar arrays has been fabricated. These new solar arrays will replace the current solar arrays during a future Hubble servicing mission. The new solar arrays have been designed so that the effective net motion of the center of mass of each panel is essentially zero. Although the solar array thermal deflection problem has been studied extensively over a period of years, a full scale test of the actual flight panels was required in order to establish confidence in the analyses. This test was conducted in the JPL Solar Simulation Facility in April, 1999. This presentation will discuss the objectives and methods of the test and present some typical test data.

  8. Wafer-Scale Integration of Inverted Nanopyramid Arrays for Advanced Light Trapping in Crystalline Silicon Thin Film Solar Cells.

    PubMed

    Zhou, Suqiong; Yang, Zhenhai; Gao, Pingqi; Li, Xiaofeng; Yang, Xi; Wang, Dan; He, Jian; Ying, Zhiqin; Ye, Jichun

    2016-12-01

    Crystalline silicon thin film (c-Si TF) solar cells with an active layer thickness of a few micrometers may provide a viable pathway for further sustainable development of photovoltaic technology, because of its potentials in cost reduction and high efficiency. However, the performance of such cells is largely constrained by the deteriorated light absorption of the ultrathin photoactive material. Here, we report an efficient light-trapping strategy in c-Si TFs (~20 μm in thickness) that utilizes two-dimensional (2D) arrays of inverted nanopyramid (INP) as surface texturing. Three types of INP arrays with typical periodicities of 300, 670, and 1400 nm, either on front, rear, or both surfaces of the c-Si TFs, are fabricated by scalable colloidal lithography and anisotropic wet etch technique. With the extra aid of antireflection coating, the sufficient optical absorption of 20-μm-thick c-Si with a double-sided 1400-nm INP arrays yields a photocurrent density of 39.86 mA/cm(2), which is about 76 % higher than the flat counterpart (22.63 mA/cm(2)) and is only 3 % lower than the value of Lambertian limit (41.10 mA/cm(2)). The novel surface texturing scheme with 2D INP arrays has the advantages of excellent antireflection and light-trapping capabilities, an inherent low parasitic surface area, a negligible surface damage, and a good compatibility for subsequent process steps, making it a good alternative for high-performance c-Si TF solar cells.

  9. Synthesis and Characterization of Doped ZnO Nanomaterials: Potential Application in Third Generation Solar Cells

    NASA Astrophysics Data System (ADS)

    Adcock Smith, Echo D.

    ZnO nanomaterials are being incorporated into next-generation solar cell designs including dye-sensitized solar cells, multijunction solar cells, and quantum dot sensitized solar cells. ZnO nanorod (NR) arrays and nanoparticles (NP) used in these devices are typically fabricated using chemical vapor deposition and/or high-temperature reaction conditions. These methods are costly, require high energy, pressure or excessive time, but produce repeatable, defined growth that is capable of easily incorporating metal dopants. Less expensive methods of fabrication such as chemical bath deposition (CBD) eliminate the costly steps but can suffer from undefined growth, excessive waste and have a difficult time incorporating dopants into ZnO materials without additives or increased pH. This dissertation presents a novel method of growing cobalt and vanadium doped ZnO nanomaterials through microwave synthesis. The cobalt growth was compared to standard CBD and found to be faster, less wasteful, reproducible and better at incorporating cobalt ions into the ZnO lattice than typical oven CBD method. The vanadium doped ZnO microwave synthesis procedure was found to produce nanorods, nanorod arrays, and nanoparticles simultaneously. Neither the cobalt nor the vanadium growth required pH changes, catalysts or additives to assist in doping and therefore use less materials than traditional CBD. This research is important because it offers a simple, quick way to grow ZnO nanostructures and is the first to report on growing both cobalt and vanadium doped zinc oxide nanorod arrays using microwave synthesis. This synthesis method presented is a viable candidate for replacing conventional growth synthesis which will result in lowering the cost and time of production of photovoltaics while helping drive forward the development of next-generation solar cells.

  10. Developing an Inflatable Solar Array

    NASA Technical Reports Server (NTRS)

    Malone, Patrick K.; Jankowski, Francis J.; Williams, Geoffery T.; Vendura, George J., Jr.

    1992-01-01

    Viewgraphs describing the development of an inflatable solar array as part of the Inflatable Torus Solar Array Technology (ITSAT) program are presented. Program phases, overall and subsystem designs, and array deployment are addressed.

  11. Goddard Space Flight Center solar array missions, requirements and directions

    NASA Technical Reports Server (NTRS)

    Gaddy, Edward; Day, John

    1994-01-01

    The Goddard Space Flight Center (GSFC) develops and operates a wide variety of spacecraft for conducting NASA's communications, space science, and earth science missions. Some are 'in house' spacecraft for which the GSFC builds the spacecraft and performs all solar array design, analysis, integration, and test. Others are 'out of house' spacecraft for which an aerospace contractor builds the spacecraft and develops the solar array under direction from GSFC. The experience of developing flight solar arrays for numerous GSFC 'in house' and 'out of house' spacecraft has resulted in an understanding of solar array requirements for many different applications. This presentation will review those solar array requirements that are common to most GSFC spacecraft. Solar array technologies will be discussed that are currently under development and that could be useful to future GSFC spacecraft.

  12. FeatherSail - The Next Generation Nano-Class Sail Vehicle

    NASA Technical Reports Server (NTRS)

    Alhom, Dave C.

    2010-01-01

    Solar sail propulsion is a concept, which will soon become a reality. Solar sailing is a method of space flight propulsion, which utilizes the light photons to propel spacecrafts through the vacuum of space. Solar sail vehicles have generally been designed to have a very large area. This requires significant time and expenditures to develop, test and launch such a vehicle. Several notable solar propulsion missions and experiments have been performed and more are still in the development stage. This concept will be tested in the near future with the launch of the NanoSail-D satellite. NanoSail-D is a nano-class satellite, less than 10kg, which will deploy a thin lightweight sheet of reflective material used to propel the satellite in its low earth orbit. The NanoSail-D solar sail design is used for the basic design concept for the next generation of nanoclass solar sail vehicles. The FeatherSail project was started to develop a solar sail vehicle with the capability to perform attitude control via rotating or feathering the solar sails. In addition to using the robust deployment method of the NanoSail-D system, the FeatherSail design incorporates other novel technologies. These technologies include deployable thin film solar arrays and low power, low temperature Silicon-Germanium electronics. Together, these three technological advancements provide a starting point for smaller class sail vehicles. These smaller solar sail vehicles provide a capability for inexpensive missions to explore beyond the realms of low earth orbit.

  13. Micro-Vibration Performance Prediction of SEPTA24 Using SMeSim (RUAG Space Mechanism Simulator Tool)

    NASA Astrophysics Data System (ADS)

    Omiciuolo, Manolo; Lang, Andreas; Wismer, Stefan; Barth, Stephan; Szekely, Gerhard

    2013-09-01

    Scientific space missions are currently challenging the performances of their payloads. The performances can be dramatically restricted by micro-vibration loads generated by any moving parts of the satellites, thus by Solar Array Drive Assemblies too. Micro-vibration prediction of SADAs is therefore very important to support their design and optimization in the early stages of a programme. The Space Mechanism Simulator (SMeSim) tool, developed by RUAG, enhances the capability of analysing the micro-vibration emissivity of a Solar Array Drive Assembly (SADA) under a specified set of boundary conditions. The tool is developed in the Matlab/Simulink® environment throughout a library of blocks simulating the different components a SADA is made of. The modular architecture of the blocks, assembled by the user, and the set up of the boundary conditions allow time-domain and frequency-domain analyses of a rigid multi-body model with concentrated flexibilities and coupled- electronic control of the mechanism. SMeSim is used to model the SEPTA24 Solar Array Drive Mechanism and predict its micro-vibration emissivity. SMeSim and the return of experience earned throughout its development and use can now support activities like verification by analysis of micro-vibration emissivity requirements and/or design optimization to minimize the micro- vibration emissivity of a SADA.

  14. SMEX-Lite Modular Solar Array Architecture

    NASA Technical Reports Server (NTRS)

    Lyons, John W.; Day, John (Technical Monitor)

    2002-01-01

    The NASA Small Explorer (SMEX) missions have typically had three years between mission definition and launch. This short schedule has posed significant challenges with respect to solar array design and procurement. Typically, the solar panel geometry is frozen prior to going out with a procurement. However, with the SMEX schedule, it has been virtually impossible to freeze the geometry in time to avoid scheduling problems with integrating the solar panels to the spacecraft. A modular solar array architecture was developed to alleviate this problem. This approach involves procuring sufficient modules for multiple missions and assembling the modules onto a solar array framework that is unique to each mission. The modular approach removes the solar array from the critical path of the SMEX integration and testing schedule. It also reduces the cost per unit area of the solar arrays and facilitates the inclusion of experiments involving new solar cell or panel technologies in the SMEX missions.

  15. Solar Array Panels With Dust-Removal Capability

    NASA Technical Reports Server (NTRS)

    Dawson, Stephen; Mardesich, Nick; Spence, Brian; White, Steve

    2004-01-01

    It has been proposed to incorporate piezoelectric vibrational actuators into the structural supports of solar photovoltaic panels, for the purpose of occasionally inducing vibrations in the panels in order to loosen accumulated dust. Provided that the panels were tilted, the loosened dust would slide off under its own weight. Originally aimed at preventing obscuration of photovoltaic cells by dust accumulating in the Martian environment, the proposal may also offer an option for the design of solar photovoltaic panels for unattended operation at remote locations on Earth. The figure depicts a typical lightweight solar photovoltaic panel comprising a backside grid of structural spars that support a thin face sheet that, in turn, supports an array of photovoltaic cells on the front side. The backside structure includes node points where several spars intersect. According to the proposal, piezoelectric buzzers would be attached to the node points. The process of designing the panel would be an iterative one that would include computational simulation of the vibrations by use of finite- element analysis to guide the selection of the vibrational frequency of the actuators and the cross sections of the spars to maximize the agitation of dust.

  16. A knowledge-based system for monitoring the electrical power system of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Eddy, Pat

    1987-01-01

    The design and the prototype for the expert system for the Hubble Space Telescope's electrical power system are discussed. This prototype demonstrated the capability to use real time data from a 32k telemetry stream and to perform operational health and safety status monitoring, detect trends such as battery degradation, and detect anomalies such as solar array failures. This prototype, along with the pointing control system and data management system expert systems, forms the initial Telemetry Analysis for Lockheed Operated Spacecraft (TALOS) capability.

  17. Atomic Oxygen Durability Testing of an International Space Station Solar Array Validation Coupon

    NASA Technical Reports Server (NTRS)

    Forkapa, Mark J.; Stidham, Curtis; Banks, Bruce A.; Rutledge, Sharon K.; Ma, David H.; Sechkar, Edward A.

    1996-01-01

    An International Space Station solar array validation coupon was exposed in a directed atomic oxygen beam for space environment durability testing at the NASA Lewis Research Center. Exposure to atomic oxygen and intermittent tensioning of the solar array were conducted to verify the solar array#s durability to low Earth orbital atomic oxygen and to the docking threat of plume loading both of which are anticipated over its expected mission life of fifteen years. The validation coupon was mounted on a specially designed rotisserie. The rotisserie mounting enabled the solar and anti-solar facing side of the array to be exposed to directed atomic oxygen in a sweeping arrival process replicating space exposure. The rotisserie mounting also enabled tensioning, in order to examine the durability of the array and its hinge to simulated plume loads. Flash testing to verify electrical performance of the solar array was performed with a solar simulator before and after the exposure to atomic oxygen and tensile loading. Results of the flash testing indicated little or no degradation in the solar array#s performance. Photographs were also taken of the array before and after the durability testing and are included along with comparisons and discussions in this report. The amount of atomic oxygen damage appeared minor with the exception of a very few isolated defects. There were also no indications that the simulated plume loadings had weakened or damaged the array, even though there was some erosion of Kapton due to atomic oxygen attack. Based on the results of this testing, it is apparent that the International Space Station#s solar arrays should survive the low Earth orbital atomic oxygen environment and docking threats which are anticipated over its expected mission life.

  18. Photovoltaic module hot spot durability design and test methods

    NASA Technical Reports Server (NTRS)

    Arnett, J. C.; Gonzalez, C. C.

    1981-01-01

    As part of the Jet Propulsion Laboratory's Low-Cost Solar Array Project, the susceptibility of fat-plate modules to hot-spot problems is investigated. Hot-spot problems arise in modules when the cells become back-biased and operate in the negative-voltage quadrant, as a result of short-circuit current mismatch, cell cracking or shadowing. The details of a qualification test for determining the capability of modules of surviving field hot-spot problems and typical results of this test are presented. In addition, recommended circuit-design techniques for improving the module and array reliability with respect to hot-spot problems are presented.

  19. The Implementation of Advanced Solar Array Technology in Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; Kerslake, Thomas W.; Hoffman, David J.; White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan

    2003-01-01

    Advanced solar array technology is expected to be critical in achieving the mission goals on many future NASA space flight programs. Current PV cell development programs offer significant potential and performance improvements. However, in order to achieve the performance improvements promised by these devices, new solar array structures must be designed and developed to accommodate these new PV cell technologies. This paper will address the use of advanced solar array technology in future NASA space missions and specifically look at how newer solar cell technologies impact solar array designs and overall power system performance.

  20. Preliminary Low Temperature Electron Irradiation of Triple Junction Solar Cells

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mueller, Robert L.; Scrivner, Roy L.; Helizon, Roger S.

    2007-01-01

    For many years extending solar power missions far from the sun has been a challenge not only due to the rapid falloff in solar intensity (intensity varies as inverse square of solar distance) but also because some of the solar cells in an array may exhibit a LILT (low intensity low temperature) degradation that reduces array performance. Recent LILT tests performed on commercial triple junction solar cells have shown that high performance can be obtained at solar distances as great as approx. 5 AU1. As a result, their use for missions going far from the sun has become very attractive. One additional question that remains is whether the radiation damage experienced by solar cells under low temperature conditions will be more severe than when measured during room temperature radiation tests where thermal annealing may take place. This is especially pertinent to missions such as the New Frontiers mission Juno, which will experience cell irradiation from the trapped electron environment at Jupiter. Recent testing2 has shown that low temperature proton irradiation (10 MeV) produces cell degradation results similar to room temperature irradiations and that thermal annealing does not play a factor. Although it is suggestive to propose the same would be observed for low temperature electron irradiations, this has not been verified. JPL has routinely performed radiation testing on commercial solar cells and has also performed LILT testing to characterize cell performance under far sun operating conditions. This research activity was intended to combine the features of both capabilities to investigate the possibility of any room temperature annealing that might influence the measured radiation damage. Although it was not possible to maintain the test cells at a constant low temperature between irradiation and electrical measurements, it was possible to obtain measurements with the cell temperature kept well below room temperature. A fluence of 1E15 1MeV electrons was selected as representative of a moderately high dose that might be expected for a solar powered mission. Fluences much greater than this would require large increases in array area and mass, compromising the ability of PV to compete with non-solar alternatives.

  1. The automated array assembly task of the low-cost silicon solar array project, phase 2

    NASA Technical Reports Server (NTRS)

    Coleman, M. G.; Pryor, R. A.; Sparks, T. G.; Legge, R.; Saltzman, D. L.

    1980-01-01

    Several specific processing steps as part of a total process sequence for manufacturing silicon solar cells were studied. Ion implantation was identified as the preferred process step for impurity doping. Unanalyzed beam ion implantation was shown to have major cost advantages over analyzed beam implantation. Further, high quality cells were fabricated using a high current unanalyzed beam. Mechanically masked plasma patterning of silicon nitride was shown to be capable of forming fine lines on silicon surfaces with spacings between mask and substrate as great as 250 micrometers. Extensive work was performed on advances in plated metallization. The need for the thick electroless palladium layer was eliminated. Further, copper was successfully utilized as a conductor layer utilizing nickel as a barrier to copper diffusion into the silicon. Plasma etching of silicon for texturing and saw damage removal was shown technically feasible but not cost effective compared to wet chemical etching techniques.

  2. The New NASA-STD-4005 and NASA-HDBK-4006, Essentials for Direct-Drive Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    2007-01-01

    High voltage solar arrays are necessary for direct-drive solar electric propulsion, which has many advantages, including simplicity and high efficiency. Even when direct-drive is not used, the use of high voltage solar arrays leads to power transmission and conversion efficiencies in electric propulsion Power Management and Distribution. Nevertheless, high voltage solar arrays may lead to temporary power disruptions, through the so-called primary electrostatic discharges, and may permanently damage arrays, through the so-called permanent sustained discharges between array strings. Design guidance is needed to prevent these solar array discharges, and to prevent high power drains through coupling between the electric propulsion devices and the high voltage solar arrays. While most electric propulsion systems may operate outside of Low Earth Orbit, the plasmas produced by their thrusters may interact with the high voltage solar arrays in many ways similarly to Low Earth Orbit plasmas. A brief description of previous experiences with high voltage electric propulsion systems will be given in this paper. There are two new official NASA documents available free through the NASA Standards website to help in designing and testing high voltage solar arrays for electric propulsion. They are NASA-STD-4005, the Low Earth Orbit Spacecraft Charging Design Standard, and NASA-HDBK-4006, the Low Earth Orbit Spacecraft Charging Design Handbook. Taken together, they can both educate the high voltage array designer in the engineering and science of spacecraft charging in the presence of dense plasmas and provide techniques for designing and testing high voltage solar arrays to prevent electrical discharges and power drains.

  3. KSC-00pp1212

    NASA Image and Video Library

    2000-08-30

    Workers rise to the occasion on accordion lifts as they oversee the movement of solar array in front of them. The solar array will be installed onto the Integrated Equipment Assembly (IEA). A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  4. KSC-00pp1213

    NASA Image and Video Library

    2000-08-30

    An overhead crane in the Space Station Processing Facility lifts a solar array as workers stand by to help guide it. The solar array will be installed onto the Integrated Equipment Assembly (IEA). A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  5. Qualification of the Tropical Rainfall Measuring Mission Solar Array Deployment System

    NASA Technical Reports Server (NTRS)

    Lawrence, Jon

    1998-01-01

    The Tropical Rainfall Measuring Mission (TRMM) solar arrays are placed into orbital configuration by a complex deployment system. Its two wings each comprise twin seven square solar panels located by a twelve foot articulated boom. The four spring-driven hinge lines per wing are rate-limited by viscous dampers. The wings are stowed against the spacecraft kinematically, and released by five pyrotechnically-actuated mechanisms. Since deployment failure would be catastrophic, a total of 17 deployment tests were completed to qualify the system for the worst cast launch environment. This successful testing culminated in the flawless deployment of the solar arrays on orbit, 15 minutes after launch in November 1997. The custom gravity negation system used to perform deployment testing is modular to allow its setup in several locations, including the launch site in Japan. Both platform and height can be varied, to meet the requirements of the test configuration and the test facility. Its air pad floatation system meets tight packaging requirements, allowing installation while stowed against the spacecraft without breaking any flight interfaces, and avoiding interference during motion. This system was designed concurrently with the deployment system, to facilitate its installation, to aid in the integration of the flight system to the spacecraft, while demonstrating deployment capabilities. Critical parameters for successful testing were alignment of deployment axes and tables to gravity, alignment of table seams to minimize discontinuities, and minimizing pressure drops in the air supply system. Orbital performance was similar to that predicted by ground testing.

  6. Electrical insulation design requirements and reliability goals

    NASA Astrophysics Data System (ADS)

    Ross, R. G., Jr.

    1983-11-01

    The solar cells in a photovoltaic module which must be electrically isolated from module exterior surfaces to satisfy a variety of safety and operating considerations are discussed. The performance and reliability of the insulation system are examined. Technical requirements involve the capability of withstanding the differential voltage from the solar cells to the module frame. The maximum system voltage includes consideration of maximum open circuit array voltages achieved under low-temperature, high-irradiance conditions, and transient overvoltages due to system feedback of lightning transients. The latter is bounded by the characteristics of incorporated voltage limiting devices such as MOVs.

  7. DSCOVR Satellite Deploy & Light Test

    NASA Image and Video Library

    2014-11-24

    Workers conduct a light test on the solar arrays on NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, in the Building 1 high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for early 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.

  8. GPS-Like Phasing Control of the Space Solar Power System Transmission Array

    NASA Technical Reports Server (NTRS)

    Psiaki, Mark L.

    2003-01-01

    The problem of phasing of the Space Solar Power System's transmission array has been addressed by developing a GPS-like radio navigation system. The goal of this system is to provide power transmission phasing control for each node of the array that causes the power signals to add constructively at the ground reception station. The phasing control system operates in a distributed manner, which makes it practical to implement. A leader node and two radio navigation beacons are used to control the power transmission phasing of multiple follower nodes. The necessary one-way communications to the follower nodes are implemented using the RF beacon signals. The phasing control system uses differential carrier phase relative navigation/timing techniques. A special feature of the system is an integer ambiguity resolution procedure that periodically resolves carrier phase cycle count ambiguities via encoding of pseudo-random number codes on the power transmission signals. The system is capable of achieving phasing accuracies on the order of 3 mm down to 0.4 mm depending on whether the radio navigation beacons operate in the L or C bands.

  9. Skylab

    NASA Image and Video Library

    1970-01-01

    This is a photograph of a technician checking on a solar array wing for the Orbital Workshop as it is deployed. A solar array, consisting of two wings covered on one side with solar cells, was mounted outside the workshop to generate electrical power to augment the power generated by another solar array mounted on the solar observatory.

  10. Design and evaluation of a wing with embedded payloads for Small Unmanned Aerial System (SUAS) applications

    NASA Astrophysics Data System (ADS)

    Pearson, Roger A.

    Rapidly advancing technology has developed multiple thin filmed devices capable of expanding the abilities of Small Unmanned Aircraft Systems (SUAS). This research develops a viable solution for integrating thin film solar cells into a currently operational SUAS. A wing was designed and produced that was capable of replacing the existing wing while providing additional functionality with embedded solar arrays. The study investigates the challenges of meeting the original requirements of the original equipment manufacturer wing while adapting it to fully protect and support structurally embedded payloads. In total, seven complete wings were produced and tested. Combinations of functional and simulated payloads were fully integrated into two of these wings. The merits of these designs were quantified and validated through both ground testing and flight testing with the SUAS.

  11. Recent Developments in Transition-Edge Strip Detectors for Solar X-Rays

    NASA Technical Reports Server (NTRS)

    Rausch, Adam J.; Deiker, Steven W.; Hilton, Gene; Irwin, Kent D.; Martinez-Galarce, Dennis S.; Shing, Lawrence; Stern, Robert A.; Ullom, Joel N.; Vale, Leila R.

    2008-01-01

    LMSAL and NIST are developing position-sensitive x-ray strip detectors based on Transition Edge Sensor (TES) microcalorimeters optimized for solar physics. By combining high spectral (E/ delta E approximately equals 1600) and temporal (single photon delta t approximately equals 10 micro s) resolutions with imaging capabilities, these devices will be able to study high-temperature (>l0 MK) x-ray lines as never before. Diagnostics from these lines should provide significant new insight into the physics of both microflares and the early stages of flares. Previously, the large size of traditional TESs, along with the heat loads associated with wiring large arrays, presented obstacles to using these cryogenic detectors for solar missions. Implementing strip detector technology at small scales, however, addresses both issues: here, a line of substantially smaller effective pixels requires only two TESs, decreasing both the total array size and the wiring requirements for the same spatial resolution. Early results show energy resolutions of delta E(sub fwhm) approximately equals 30 eV and spatial resolutions of approximately 10-15 micron, suggesting the strip-detector concept is viable.

  12. The First Focused Hard X-Ray Images of the Sun with NuSTAR

    NASA Technical Reports Server (NTRS)

    Grefenstette, Brian W.; Glesener, Lindsay; Kruckner, Sam; Hudson, Hugh; Hannah, Iain G.; Smith, David M.; Vogel, Julia K.; White, Stephen M.; Madsen, Kristin K.; Marsh, Andrew J.; hide

    2016-01-01

    We present results from the first campaign of dedicated solar observations undertaken by the Nuclear Spectroscopic Telescope ARray (NuSTAR) hard X-ray (HXR) telescope. Designed as an astrophysics mission, NuSTAR nonetheless has the capability of directly imaging the Sun at HXR energies (3 keV) with an increase in sensitivity of at least two magnitude compared to current non-focusing telescopes. In this paper we describe the scientific areas where NuSTAR will make major improvements on existing solar measurements. We report on the techniques used to observe the Sun with NuSTAR, their limitations and complications, and the procedures developed to optimize solar data quality derived from our experience with the initial solar observations. These first observations are briefly described, including the measurement of the Fe K-shell lines in a decaying X-class flare, HXR emission from high in the solar corona, and full-disk HXR images of the Sun.

  13. The revised solar array synthesis computer program

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The Revised Solar Array Synthesis Computer Program is described. It is a general-purpose program which computes solar array output characteristics while accounting for the effects of temperature, incidence angle, charged-particle irradiation, and other degradation effects on various solar array configurations in either circular or elliptical orbits. Array configurations may consist of up to 75 solar cell panels arranged in any series-parallel combination not exceeding three series-connected panels in a parallel string and no more than 25 parallel strings in an array. Up to 100 separate solar array current-voltage characteristics, corresponding to 100 equal-time increments during the sunlight illuminated portion of an orbit or any 100 user-specified combinations of incidence angle and temperature, can be computed and printed out during one complete computer execution. Individual panel incidence angles may be computed and printed out at the user's option.

  14. Battery Resistance Analysis of ISS Power System

    NASA Technical Reports Server (NTRS)

    Newstadt, Gregory E.

    2004-01-01

    The computer package, SPACE (Systems Power Analysis for Capability Evaluation) was created by the members of LT-9D to perform power analysis and modeling of the electrical power system on the International Space Station (ISS). Written in FORTRAN, SPACE comprises thousands of lines of code and has been used profficiently in analyzing missions to the ISS. LT-9D has also used its expertise recently to investigate the batteries onboard the Hubble telescope. During the summer of 2004, I worked with the members of LT-9D, under the care of Dave McKissock. Solar energy will power the ISS through eight solar arrays when the ISS is completed, although only two arrays are currently connected. During the majority of the periods of sunlight, the solar arrays provide enough energy for the ISS. However, rechargeable Nickel-Hydrogen batteries are used during eclipse periods or at other times when the solar arrays cannot be used (at docking for example, when the arrays are turned so that they will not be damaged by the Shuttle). Thirty-eight battery cells are connected in series, which make up an ORU (Orbital Replacement Unit). An ISS "battery" is composed of two ORUs. a great deal of time into finding the best way to represent them in SPACE. During my internship, I investigated the resistance of the ISS batteries. SPACE constructs plots of battery charge and discharge voltages vs. time using a constant current. To accommodate for a time-varying current, the voltages are adjusted using the formula, DeltaV = DeltaI * Cell Resistance. To enhance our model of the battery resistance, my research concentrated on several topics: investigating the resistance of a qualification unit battery (using data gathered by LORAL), comparing the resistance of the qualification unit to SPACE, looking at the internal resistance and wiring resistance, and examining the impact of possible recommended changes to SPACE. The ISS batteries have been found to be very difficult to model, and LT-9D has dedicated

  15. The HEXITEC Hard X-Ray Pixelated CdTe Imager for Fast Solar Observations

    NASA Technical Reports Server (NTRS)

    Baumgartner, Wayne H.; Christe, Steven D.; Ryan, Daniel; Inglis, Andrew R.; Shih, Albert Y.; Gregory, Kyle; Wilson, Matt; Seller, Paul; Gaskin, Jessica; Wilson-Hodge, Colleen

    2016-01-01

    There is an increasing demand in solar and astrophysics for high resolution X-ray spectroscopic imaging. Such observations would present ground breaking opportunities to study the poorly understood high energy processes in our solar system and beyond, such as solar flares, X-ray binaries, and active galactic nuclei. However, such observations require a new breed of solid state detectors sensitive to high energy X-rays with fine independent pixels to sub-sample the point spread function (PSF) of the X-ray optics. For solar observations in particular, they must also be capable of handling very high count rates as photon fluxes from solar flares often cause pile up and saturation in present generation detectors. The Rutherford Appleton Laboratory (RAL) has recently developed a new cadmium telluride (CdTe) detector system, called HEXITEC (High Energy X-ray Imaging Technology). It is an 80 x 80 array of 250 micron independent pixels sensitive in the 2-200 keV band and capable of a high full frame read out rate of 10 kHz. HEXITEC provides the smallest independently read out CdTe pixels currently available, and are well matched to the few arcsecond PSF produced by current and next generation hard X-ray focusing optics. NASA's Goddard and Marshall Space Flight Centers are collaborating with RAL to develop these detectors for use on future space borne hard X-ray focusing telescopes. We show the latest results on HEXITEC's imaging capability, energy resolution, high read out rate, and reveal it to be ideal for such future instruments.

  16. A linear refractive photovoltaic concentrator solar array flight experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, P.A.; Murphy, D.M.; Piszczor, M.F.

    1995-12-31

    Concentrator arrays deliver a number of generic benefits for space including high array efficiency, protection from space radiation effects, and minimized plasma interactions. The line focus concentrator concept delivers two added advantages: (1) low-cost mass production of the lens material and, (2) relaxation of precise array tracking requirements to only a single axis. New array designs emphasize lightweight, high stiffness, stow-ability and ease of manufacture and assembly. The linear refractive concentrator can be designed to provide an essentially flat response over a wide range of longitudinal pointing errors for satellites having only single-axis tracking capability. In this paper the authorsmore » address the current status of the SCARLET linear concentrator program with special emphasis on hardware development of an array-level linear refractive concentrator flight experiment. An aggressive, 6-month development and flight validation program, sponsored by the Ballistic Missile Defense Organization (BMDO) and NASA Lewis Research Center, will quantify and verify SCARLET benefits with in-orbit performance measurements.« less

  17. TARDEC Annual Report 2011

    DTIC Science & Technology

    2012-01-01

    installing the Army’s first smart -charging microgrid at Wheeler Army Airfield in Hawaii. Aloha Microgrid 1 consists of a 25 kW solar power array, 200...in DoD’s Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) program, a joint capabilities technology...in the TACOM LCMC Small Business Fair in our attempts to begin partnerships with a growing number of small business technologists and entrepreneurs

  18. MILSTAR's flexible substrate solar array: Lessons learned, addendum

    NASA Technical Reports Server (NTRS)

    Gibb, John

    1990-01-01

    MILSTAR's Flexible Substrate Solar Array (FSSA) is an evolutionary development of the lightweight, flexible substrate design pioneered at Lockheed during the seventies. Many of the features of the design are related to the Solar Array Flight Experiment (SAFE), flown on STS-41D in 1984. FSSA development has created a substantial technology base for future flexible substrate solar arrays such as the array for the Space Station Freedom. Lessons learned during the development of the FSSA can and should be applied to the Freedom array and other future flexible substrate designs.

  19. Solar maximum: Solar array degradation

    NASA Technical Reports Server (NTRS)

    Miller, T.

    1985-01-01

    The 5-year in-orbit power degradation of the silicon solar array aboard the Solar Maximum Satellite was evaluated. This was the first spacecraft to use Teflon R FEP as a coverglass adhesive, thus avoiding the necessity of an ultraviolet filter. The peak power tracking mode of the power regulator unit was employed to ensure consistent maximum power comparisons. Telemetry was normalized to account for the effects of illumination intensity, charged particle irradiation dosage, and solar array temperature. Reference conditions of 1.0 solar constant at air mass zero and 301 K (28 C) were used as a basis for normalization. Beginning-of-life array power was 2230 watts. Currently, the array output is 1830 watts. This corresponds to a 16 percent loss in array performance over 5 years. Comparison of Solar Maximum Telemetry and predicted power levels indicate that array output is 2 percent less than predictions based on an annual 1.0 MeV equivalent election fluence of 2.34 x ten to the 13th power square centimeters space environment.

  20. Space solar array reliability: A study and recommendations

    NASA Astrophysics Data System (ADS)

    Brandhorst, Henry W., Jr.; Rodiek, Julie A.

    2008-12-01

    Providing reliable power over the anticipated mission life is critical to all satellites; therefore solar arrays are one of the most vital links to satellite mission success. Furthermore, solar arrays are exposed to the harshest environment of virtually any satellite component. In the past 10 years 117 satellite solar array anomalies have been recorded with 12 resulting in total satellite failure. Through an in-depth analysis of satellite anomalies listed in the Airclaim's Ascend SpaceTrak database, it is clear that solar array reliability is a serious, industry-wide issue. Solar array reliability directly affects the cost of future satellites through increased insurance premiums and a lack of confidence by investors. Recommendations for improving reliability through careful ground testing, standardization of testing procedures such as the emerging AIAA standards, and data sharing across the industry will be discussed. The benefits of creating a certified module and array testing facility that would certify in-space reliability will also be briefly examined. Solar array reliability is an issue that must be addressed to both reduce costs and ensure continued viability of the commercial and government assets on orbit.

  1. Space Plasma Shown to Make Satellite Solar Arrays Fail

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    1999-01-01

    In 1997, scientists and engineers of the Photovoltaic and Space Environments Branch of the NASA Lewis Research Center, Maxwell Technologies, and Space Systems/Loral discovered a new failure mechanism for solar arrays on communications satellites in orbit. Sustained electrical arcs, initiated by the space plasma and powered by the solar arrays themselves, were found to have destroyed solar array substrates on some Space Systems/Loral satellites, leading to array failure. The mechanism was tested at Lewis, and mitigation strategies were developed to prevent such disastrous occurrences on-orbit in the future. Deep Space 1 is a solar-electric-powered space mission to a comet, launched on October 24, 1998. Early in 1998, scientists at Lewis and Ballistic Missile Defense Organization (BMDO) realized that some aspects of the Deep Space 1 solar arrays were nearly identical to those that had led to the failure of solar arrays on Space Systems/Loral satellites. They decided to modify the Deep Space 1 arrays to prevent catastrophic failure in space. The arrays were suitably modified and are now performing optimally in outer space. Finally, the Earth Observing System (EOS) AM1, scheduled for launch in mid-1999, is a NASA mission managed by the Goddard Space Flight Center. Realizing the importance of Lewis testing on the Loral arrays, EOS-AM1 management asked Lewis scientists to test their solar arrays to show that they would not fail in the same way. The first phase of plasma testing showed that sustained arcing would occur on the unmodified EOS-AM1 arrays, so the arrays were removed from the spacecraft and fixed. Now, Lewis scientists have finished plasma testing of the modified array configuration to ensure that EOS-AM1 will have no sustained arcing problems on-orbit.

  2. Photogrammetric Assessment of the Hubble Space Telescope Solar Arrays During the Second Servicing Mission

    NASA Technical Reports Server (NTRS)

    Sapp, C. A.; Dragg, J. L.; Snyder, M. W.; Gaunce, M. T.; Decker, J. E.

    1998-01-01

    This report documents the photogrammetric assessment of the Hubble Space Telescope (HST) solar arrays conducted by the NASA c Center Image Science and Analysis Group during Second Servicing Mission 2 (SM-2) on STS-82 in February 1997. Two type solar array analyses were conducted during the mission using Space Shuttle payload bay video: (1) measurement of solar array motion due to induced loads, and (2) measurement of the solar array static or geometric twist caused by the cumulative array loading. The report describes pre-mission planning and analysis technique development activities conducted to acquire and analyze solar array imagery data during SM-2. This includes analysis of array motion obtained during SM-1 as a proof-of-concept of the SM-2 measurement techniques. The report documents the results of real-time analysis conducted during the mission and subsequent analysis conducted post-flight. This report also provides a summary of lessons learned on solar array imagery analysis from SM-2 and recommendations for future on-orbit measurements applicable to HST SM-3 and to the International Space Station. This work was performed under the direction of the Goddard Space Flight Center HST Flight Systems and Servicing Project.

  3. Power and Propulsion System Design for Near-Earth Object Robotic Exploration

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Randolph, Thomas M.; Landau, Damon F.; Bury, Kristen M.; Malone, Shane P.; Hickman, Tyler A.

    2011-01-01

    Near-Earth Objects (NEOs) are exciting targets for exploration; they are relatively easy to reach but relatively little is known about them. With solar electric propulsion, a vast number of interesting NEOs can be reached within a few years and with extensive flexibility in launch date. An additional advantage of electric propulsion for these missions is that a spacecraft can be small, enabling a fleet of explorers launched on a single vehicle or as secondary payloads. Commercial, flight-proven Hall thruster systems have great appeal based on their performance and low cost risk, but one issue with these systems is that the power processing units (PPUs) are designed for regulated spacecraft power architectures which are not attractive for small NEO missions. In this study we consider the integrated design of power and propulsion systems that utilize the capabilities of existing PPUs in an unregulated power architecture. Models for solar array and engine performance are combined with low-thrust trajectory analyses to bound spacecraft design parameters for a large class of NEO missions, then detailed array performance models are used to examine the array output voltage and current over a bounded mission set. Operational relationships between the power and electric propulsion systems are discussed, and it is shown that both the SPT-100 and BPT-4000 PPUs can perform missions over a solar range of 0.7 AU to 1.5 AU - encompassing NEOs, Venus, and Mars - within their operable input voltage ranges. A number of design trades to control the array voltage are available, including cell string layout, array offpointing during mission operations, and power draw by the Hall thruster system.

  4. Solar drum positioner mechanisms

    NASA Technical Reports Server (NTRS)

    Briggs, L. W.

    1982-01-01

    The need for additional power on spinning satellites required development of deployable solar arrays activated, as on a 3-axis vehicle, after separation from a booster or shuttle orbiter. Mechanisms were developed for telescopically extending a secondary 36.3 kg (80 lb.), 2.13 m (84 in.) diameter spinning solar drum for a distance of 2.0 m (80 in.) or more along the spin axis. After extension, the system has the capability of dynamically controlling the drum tilt angle about the spin axis to provide precision in-orbit balancing of the spacecraft. This approach was selected for the SBS, ANIK C, ANIK D, WESTAR B and PALAPA B satellites. It was successfully demonstrated during the in orbit deployment of the aft solar panels of the SBS F-3 and F-1 satellites, subsequent to the November 1980 and September 1981 launches.

  5. A 100 kW-Class Technology Demonstrator for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Carrington, Connie; Howell, Joe; Day, Greg

    2004-01-01

    A first step in the development of solar power from space is the flight demonstration of critical technologies. These fundamental technologies include efficient solar power collection and generation, power management and distribution, and thermal management. In addition, the integration and utilization of these technologies into a viable satellite bus could provide an energy-rich platform for a portfolio of payload experiments such as wireless power transmission (WPT). This paper presents the preliminary design of a concept for a 100 kW-class fiee-flying platform suitable for flight demonstration of technology experiments. Recent space solar power (SSP) studies by NASA have taken a stepping stones approach that lead to the gigawatt systems necessary to cost-effectively deliver power from space. These steps start with a 100 kW-class satellite, leading to a 500 kW and then a 1 MW-class platform. Later steps develop a 100 M W bus that could eventually lead to a 1-2 GW pilot plant for SSP. Our studies have shown that a modular approach is cost effective. Modular designs include individual laser-power-beaming satellites that fly in constellations or that are autonomously assembled into larger structures at geosynchronous orbit (GEO). Microwave power-beamed approaches are also modularized into large numbers of identical units of solar arrays, power converters, or supporting structures for arrays and microwave transmitting antennas. A cost-effective approach to launching these modular units is to use existing Earth-to-orbit (ETO) launch systems, in which the modules are dropped into low Earth orbit (LEO) and then the modules perform their own orbit transfer to GEO using expendable solar arrays to power solar electric thrusters. At GEO, the modules either rendezvous and are assembled robotically into larger platforms, or are deployed into constellations of identical laser power-beaming satellites. Since solar electric propulsion by the modules is cost-effective for both self-transport of the modules from LEO to GEO, and for on-orbit stationkeeping and repositioning capability during the satellite's lifetime, this technology is also critical in technology development for SSP. The 100 kW-class technology demonstrator will utilize advanced solar power collection and generation technologies, power management and distribution, advanced thermal management, and solar electric propulsion. State-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging make the 100 kW satellite feasible for launch on one existing launch vehicle. Early SSP studies showed that a major percentage of the on-orbit mass for power-beaming satellites was from massive power converters at the solar arrays, at the bus, at the power transmitter, or at combinations of these locations. Higher voltage mays and power management and distribution (PMAD) systems reduce or eliminate the need for many of these massive power converters, and could enable direct-drive of high-voltage solar electric thrusters. Lightweight, highly efficient thermal management systems are a critical technology that must be developed and flown for SSP feasibility. Large amounts of power on satellites imply that large amounts of waste heat will need to be managed. In addition, several of the more innovative lightweight configurations proposed for SSP satellites take advantage of solar concentrators that are intractable without advanced thermal management technologies for the solar arrays. These thermal management systems include efficient interfaces with the WPT systems or other high-power technology experiments, lightweight deployable radiators that can be easily integrated into satellite buses, and efficient reliable thermal distribution systems that can pipe heat from the technology experiments to the radiators. In addition to demonstrating the integration and use of these mission-ctical technologies, the 100 kw-class satellite will provide a large experiment deck for a portfolio of technology experiments. Current plans for this technology demonstrator allow 2000 kg of payload capability and up to 100 kW of power. The technology experiments could include one or more wireless power transmission demonstrations, either to the Earth s surface or to a suitable space-based receiver. Technology experiments to quantify the on-orbit performance of critical technologies for SSP or space exploration are welcomed. In addition, the technology experiments provide an opportunity for international cooperation, to advance technology readiness levels of SSP technologies that require flight demonstration. This paper will present the preliminary design for a 100 kW solar-powered satellite and a variety of technology experiments that may be suitable for flight demonstration. In addition, a space-to-Earth-surface WPT experiment will be discussed.

  6. Cost competitiveness of a solar cell array power source for ATS-6 educational TV terminal

    NASA Technical Reports Server (NTRS)

    Masters, R. M.

    1975-01-01

    A cost comparison is made between a terrestrial solar cell array power system and a variety of other power sources for the ATS-6 Satellite Instructional Television Experiment (SITE) TV terminals in India. The solar array system was sized for a typical Indian location, Lahore. Based on present capital and fuel costs, the solar cell array power system is a close competitor to the least expensive alternate power system. A feasibility demonstration of a terrestrial solar cell array system powering an ATS-6 receiver terminal at Cleveland, Ohio is described.

  7. The Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) yo-yo despin and solar array deployment mechanism

    NASA Technical Reports Server (NTRS)

    Kellogg, James W.

    1993-01-01

    The SAMPEX spacecraft, successfully launched in July 1992, carried a yo-yo despin system and deployable solar arrays. The despin and solar array mechanisms formed an integral system as the yo-yo cables held the solar array release mechanism in place. The SAMPEX design philosophy was to minimize size and weight through the use of a predominantly single string system. The design challenge was to build a system in a limited space, which was reliable with minimal redundancy. This paper covers the design and development of the SAMPEX yo-yo despin and solar array deployment mechanisms. The problems encountered during development and testing will also be discussed.

  8. The Upper Atmosphere Research Satellite In-Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.

    1997-01-01

    Upper Atmosphere Research Satellite flight data from the first 737 days after launch (September 1991) was used to investigate spacecraft disturbances and responses. The investigation included two in-flight dynamics experiments (approximately three orbits each). Orbital and configuration influences on spacecraft dynamic response were also examined. Orbital influences were due to temperature variation from crossing the Earth's terminator and variation of the solar incident energy as the orbit precessed. During the terminator crossing, the rapid ambient temperature change caused the spacecraft's two flexible appendages to experience thermal elastic bending (thermal snap). The resulting response was dependent upon the orientation of the solar array and the solar incident energy. Orbital influences were also caused by on-board and environmental disturbances and spacecraft configuration changes resulting in dynamic responses which were repeated each orbit. Configuration influences were due to solar array rotation changing spacecraft modal properties. The investigation quantified the spacecraft dynamic response produced by the solar array and high gain antenna harmonic drive disturbances. The solar array's harmonic drive output resonated two solar array modes. Friction in the solar array gear drive provided sufficient energy dissipation which prevented the solar panels from resonating catastrophically; however, the solar array vibration amplitude was excessively large. The resulting vibration had a latitude-specific pattern.

  9. Promising Results from Three NASA SBIR Solar Array Technology Development Programs

    NASA Technical Reports Server (NTRS)

    Eskenazi, Mike; White, Steve; Spence, Brian; Douglas, Mark; Glick, Mike; Pavlick, Ariel; Murphy, David; O'Neill, Mark; McDanal, A. J.; Piszczor, Michael

    2005-01-01

    Results from three NASA SBIR solar array technology programs are presented. The programs discussed are: 1) Thin Film Photovoltaic UltraFlex Solar Array; 2) Low Cost/Mass Electrostatically Clean Solar Array (ESCA); and 3) Stretched Lens Array SquareRigger (SLASR). The purpose of the Thin Film UltraFlex (TFUF) Program is to mature and validate the use of advanced flexible thin film photovoltaics blankets as the electrical subsystem element within an UltraFlex solar array structural system. In this program operational prototype flexible array segments, using United Solar amorphous silicon cells, are being manufactured and tested for the flight qualified UltraFlex structure. In addition, large size (e.g. 10 kW GEO) TFUF wing systems are being designed and analyzed. Thermal cycle and electrical test and analysis results from the TFUF program are presented. The purpose of the second program entitled, Low Cost/Mass Electrostatically Clean Solar Array (ESCA) System, is to develop an Electrostatically Clean Solar Array meeting NASA s design requirements and ready this technology for commercialization and use on the NASA MMS and GED missions. The ESCA designs developed use flight proven materials and processes to create a ESCA system that yields low cost, low mass, high reliability, high power density, and is adaptable to any cell type and coverglass thickness. All program objectives, which included developing specifications, creating ESCA concepts, concept analysis and trade studies, producing detailed designs of the most promising ESCA treatments, manufacturing ESCA demonstration panels, and LEO (2,000 cycles) and GEO (1,350 cycles) thermal cycling testing of the down-selected designs were successfully achieved. The purpose of the third program entitled, "High Power Platform for the Stretched Lens Array," is to develop an extremely lightweight, high efficiency, high power, high voltage, and low stowed volume solar array suitable for very high power (multi-kW to MW) applications. These objectives are achieved by combining two cutting edge technologies, the SquareRigger solar array structure and the Stretched Lens Array (SLA). The SLA SquareRigger solar array is termed SLASR. All program objectives, which included developing specifications, creating preliminary designs for a near-term SLASR, detailed structural, mass, power, and sizing analyses, fabrication and power testing of a functional flight-like SLASR solar blanket, were successfully achieved.

  10. KSC-00pp1219

    NASA Image and Video Library

    2000-08-30

    A solar array is nearly in place on the Integrated Equipment Assembly, next to Solar Array Wing-3, which is already installed. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  11. The Long Wavelength Array (LWA): A Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar

    DTIC Science & Technology

    2010-09-01

    adds an extra dimension to both IPS and other observations. The polarization of the CME synchrotron emission observed by [3] will be of great...base funding. 8. REFERENCES 1. Kassim et al., The 74 MHz System on the Very Large Array, The Astrophysical Journal Supplement Series, Vol. 172...The Long Wavelength Array (LWA): A Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar Namir E. Kassim Naval Research

  12. EVA 2 - old solar array installed in payload bay

    NASA Image and Video Library

    2002-03-05

    STS109-326-008 (5 March 2002) --- Astronaut Michael J. Massimino, mission specialist, works at the stowage area for the Hubble Space Telescope's port side solar array. Astronauts Massimino and James H. Newman removed the old port solar array and stowed it in Columbia’s payload bay for a return to Earth. They then went on to install a third-generation solar array and its associated electrical components. Two crew mates had accomplished the same feat with the starboard array on the previous day.

  13. Mars Solar Power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Kerslake, Thomas W.; Jenkins, Phillip P.; Scheiman, David A.

    2004-01-01

    NASA missions to Mars, both robotic and human, rely on solar arrays for the primary power system. Mars presents a number of challenges for solar power system operation, including a dusty atmosphere which modifies the spectrum and intensity of the incident solar illumination as a function of time of day, degradation of the array performance by dust deposition, and low temperature operation. The environmental challenges to Mars solar array operation will be discussed and test results of solar cell technology operating under Mars conditions will be presented, along with modeling of solar cell performance under Mars conditions. The design implications for advanced solar arrays for future Mars missions is discussed, and an example case, a Martian polar rover, are analyzed.

  14. Solar electric propulsion thruster interactions with solar arrays

    NASA Technical Reports Server (NTRS)

    Parks, D. E.; Katz, I.

    1977-01-01

    The effect of interactions of spacecraft-generated and naturally occurring plasmas with high voltage solar array components on an advanced solar electric propulsion system proposed for the Halley's Comet rendezvous mission was investigated. The spacecraft-generated plasma consists of mercury ions and neutralizing electrons resulting from the operation of ion thrusters (the charge-exchange plasma) and associated hollow cathode neutralizers. Quantitative results are given for the parasitic currents and power coupled into solar arrays with voltage fixed as a function of position on the array.

  15. Space Station Freedom Solar Array design development

    NASA Astrophysics Data System (ADS)

    Winslow, Cindy

    The SSF program's Electrical Power System supports a high-power bus with six solar-array wings in LEO; each solar array generates 30.8 kW at 161.1 V dc, with a deployed natural frequency of 0.1 Hz. Design challenges to the solar array, which must survive exposure for 15 years of operating life, include atomic oxygen, the thermal environment, and spacecraft propulsion plume-impingement loads. Tests thus far completed address cell UV-exposure effects, thermal cycling, and solar-cell deflection.

  16. A Parametric Assessment of the Mission Applicability of Thin-film Solar Arrays

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.

    2002-01-01

    Results are presented from a parametric assessment of the applicability and spacecraft-level impacts of very lightweight thin-film solar arrays with relatively large deployed areas for representative space missions. The most and least attractive features of thin-film solar arrays are briefly discussed. A calculation is then presented illustrating that from a solar array alone mass perspective, larger arrays with less efficient but lighter thin-film solar cells can weigh less than smaller arrays with more efficient but heavier crystalline cells. However, a spacecraft-level systems assessment must take into account the additional mass associated with solar array deployed area: the propellant needed to desaturate the momentum accumulated from area-related disturbance torques and to perform aerodynamic drag makeup reboost. The results for such an assessment are presented for a representative low Earth orbit (LEO) mission, as a function of altitude and mission life, and a geostationary Earth orbit (GEO) mission. Discussion of the results includes a list of specific mission types most likely to benefit from using thin-film arrays. The presentation concludes with a list of issues to be addressed prior to use of thin-film solar arrays in space and the observation that with their unique characteristics, very lightweight arrays using efficient, thin film cells on flexible substrates may become the best array option for a subset of Earth orbiting and deep space missions.

  17. Theory and applications for optimization of every part of a photovoltaic system

    NASA Technical Reports Server (NTRS)

    Redfield, D.

    1978-01-01

    A general method is presented for quantitatively optimizing the design of every part and fabrication step of an entire photovoltaic system, based on the criterion of minimum cost/Watt for the system output power. It is shown that no element or process step can be optimized properly by considering only its own cost and performance. Moreover, a fractional performance loss at any fabrication step within the cell or array produces the same fractional increase in the cost/Watt of the entire array, but not of the full system. One general equation is found to be capable of optimizing all parts of a system, although the cell and array steps are basically different from the power-handling elements. Applications of this analysis are given to show (1) when Si wafers should be cut to increase their packing fraction; and (2) what the optimum dimensions for solar cell metallizations are. The optimum shadow fraction of the fine grid is shown to be independent of metal cost and resistivity as well as cell size. The optimum thicknesses of both the fine grid and the bus bar are substantially greater than the values in general use, and the total array cost has a major effect on these values. By analogy, this analysis is adaptable to other solar energy systems.

  18. Low Power Ground-Based Laser Illumination for Electric Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.; Oleson, Steven R.

    1994-01-01

    A preliminary evaluation of low power, ground-based laser powered electric propulsion systems is presented. A review of available and near-term laser, photovoltaic, and adaptive optic systems indicates that approximately 5-kW of ground-based laser power can be delivered at an equivalent one-sun intensity to an orbit of approximately 2000 km. Laser illumination at the proper wavelength can double photovoltaic array conversion efficiencies compared to efficiencies obtained with solar illumination at the same intensity, allowing a reduction in array mass. The reduced array mass allows extra propellant to be carried with no penalty in total spacecraft mass. The extra propellant mass can extend the satellite life in orbit, allowing additional revenue to be generated. A trade study using realistic cost estimates and conservative ground station viewing capability was performed to estimate the number of communication satellites which must be illuminated to make a proliferated system of laser ground stations economically attractive. The required number of satellites is typically below that of proposed communication satellite constellations, indicating that low power ground-based laser beaming may be commercially viable. However, near-term advances in low specific mass solar arrays and high energy density batteries for LEO applications would render the ground-based laser system impracticable.

  19. Acceptance testing of the prototype electrometer for the SAMPIE flight experiment

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry

    1992-01-01

    The Solar Array Module Plasma Interaction Experiment (SAMPIE) has two key instruments at the heart of its data acquisition capability. One of these, the electrometer, is designed to measure both ion and electron current from most of the samples included in the experiment. The accuracy requirement, specified by the project's Principal Investigator, is for agreement within 10 percent with a calibrated laboratory instrument. Plasma chamber testing was performed to assess the capabilities of the prototype design. Agreement was determined to be within 2 percent for electron collection and within 3 percent for ion collection.

  20. SMEX-Lite Modular Solar Array Architecture

    NASA Technical Reports Server (NTRS)

    Lyons, John

    2002-01-01

    For the most part, Goddard solar arrays have been custom designs that are unique to each mission. The solar panel design has been frozen prior to issuing an RFP for their procurement. There has typically been 6-9 months between RFP release and contract award, followed by an additional 24 months for performance of the contract. For Small Explorer (SMEX) missions, with three years between mission definition and launch, this has been a significant problem. The SMEX solar panels have been sufficiently small that the contract performance period has been reduced to 12-15 months. The bulk of this time is used up in the final design definition and fabrication of flight solar cell assemblies. Even so, it has been virtually impossible to have the spacecraft design at a level of maturity sufficient to freeze the solar panel geometry and release the RFP in time to avoid schedule problems with integrating the solar panels to the spacecraft. With that in mind, the SMEX-Lite project team developed a modular architecture for the assembly of solar arrays to greatly reduce the cost and schedule associated with the development of a mission- specific solar array. In the modular architecture, solar cells are fabricated onto small substrate panels. This modular panel (approximately 8.5" x 17" in this case) becomes the building block for constructing solar arrays for multiple missions with varying power requirements and geometrical arrangements. The mechanical framework that holds these modules together as a solar array is the only mission-unique design, changing in size and shape as required for each mission. There are several advantages to this approach. First, the typical solar array development cycle requires a mission unique design, procurement, and qualification including a custom qualification panel. With the modular architecture, a single qualification of the SMEX-Lite modules and the associated mechanical framework in a typical configuration provided a qualification by similarity to multiple missions. It then becomes possible to procure solar array modules in advance of mission definition and respond quickly and inexpensively to a selected mission's unique requirements. The solar array modular architecture allows the procurement of solar array modules before the array geometry has been frozen. This reduces the effect of procurement lead-time on the mission integration and test flow by as much as 50%. Second, by spreading the non-recurring costs over multiple missions, the cost per unit area is also reduced. In the case of the SMEX-Lite procurement, this reduction was by about one third of the cost per unit area compared to previous SMEX mission-unique procurements. Third, the modular architecture greatly facilitates the infusion of new solar cell technologies into flight programs as these technologies become available. New solar cell technologies need only be fabricated onto a standard-sized module to be incorporated into the next available mission. The modular solar array can be flown in a mixed configuration with some new and some standard cell technologies. Since each module has its own wiring terminals, the array can be arranged as desired electrically with little impact to cost and schedule. The solar array modular architecture does impose some additional constraints on systems and subsystem engineers. First, they must work with discrete solar array modules rather than size the array to fit exactly within an available envelope. The array area is constrained to an integer multiple of the module area. Second, the modular design is optimized for space radiation and thermal environments not greatly different from a typical SMEX LEO environment. For example, a mission with a highly elliptical orbit (e.g., Polar, SMEX/FAST) would require thicker coverglasses to protect the solar cells from the more intense radiation environment.

  1. Theoretical models of Kapton heating in solar array geometries

    NASA Technical Reports Server (NTRS)

    Morton, Thomas L.

    1992-01-01

    In an effort to understand pyrolysis of Kapton in solar arrays, a computational heat transfer program was developed. This model allows for the different materials and widely divergent length scales of the problem. The present status of the calculation indicates that thin copper traces surrounded by Kapton and carrying large currents can show large temperature increases, but the other configurations seen on solar arrays have adequate heat sinks to prevent substantial heating of the Kapton. Electron currents from the ambient plasma can also contribute to heating of thin traces. Since Kapton is stable at temperatures as high as 600 C, this indicates that it should be suitable for solar array applications. There are indications that the adhesive sued in solar arrays may be a strong contributor to the pyrolysis problem seen in solar array vacuum chamber tests.

  2. PEP solar array definition study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The conceptual design of a large, flexible, lightweight solar array is presented focusing on a solar array overview assessment, solar array blanket definition, structural-mechanical systems definition, and launch/reentry blanket protection features. The overview assessment includes a requirements and constraints review, the thermal environment assessment on the design selection, an evaluation of blanket integration sequence, a conceptual blanket/harness design, and a hot spot analysis considering the effects of shadowing and cell failures on overall array reliability. The solar array blanket definition includes the substrate design, hinge designs and blanket/harness flexibility assessment. The structural/mechanical systems definition includes an overall loads and deflection assessment, a frequency analysis of the deployed assembly, a components weights estimate, design of the blanket housing and tensioning mechanism. The launch/reentry blanket protection task includes assessment of solar cell/cover glass cushioning concepts during ascent and reentry flight condition.

  3. KSC-00pp1214

    NASA Image and Video Library

    2000-08-30

    The overhead crane carrying a solar array turns on its axis to move the array to the Integrated Equipment Assembly (IEA) for installation. A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  4. Multijunction Solar Cell Technology for Mars Surface Applications

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mardesich, Nick; Ewell, Richard C.; Mueller, Robert L.; Endicter, Scott; Aiken, Daniel; Edmondson, Kenneth; Fetze, Chris

    2006-01-01

    Solar cells used for Mars surface applications have been commercial space qualified AM0 optimized devices. Due to the Martian atmosphere, these cells are not optimized for the Mars surface and as a result operate at a reduced efficiency. A multi-year program, MOST (Mars Optimized Solar Cell Technology), managed by JPL and funded by NASA Code S, was initiated in 2004, to develop tools to modify commercial AM0 cells for the Mars surface solar spectrum and to fabricate Mars optimized devices for verification. This effort required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and to develop and test commercial cells modified for the Mars surface spectrum. This paper discusses the program, including results for the initial modified cells. Simulated Mars surface measurements of MER cells and Phoenix Lander cells (2007 launch) are provided to characterize the performance loss for those missions. In addition, the performance of the MER rover solar arrays is updated to reflect their more than two (2) year operation.

  5. Progressing Deployment of Solar Photovoltaic Installations in the United States

    NASA Astrophysics Data System (ADS)

    Kwan, Calvin Lee

    2011-07-01

    This dissertation evaluates the likelihood of solar PV playing a larger role in national and state level renewable energy portfolios. I examine the feasibility of large-scale solar PV arrays on college campuses, the financials associated with large-scale solar PV arrays and finally, the influence of environmental, economic, social and political variables on the distribution of residential solar PV arrays in the United States. Chapter two investigates the challenges and feasibility of college campuses adopting a net-zero energy policy. Using energy consumption data, local solar insolation data and projected campus growth, I present a method to identify the minimum sized solar PV array that is required for the City College campus of the Los Angeles Community College District to achieve net-zero energy status. I document how current energy demand can be reduced using strategic demand side management, with remaining energy demand being met using a solar PV array. Chapter three focuses on the financial feasibility of large-scale solar PV arrays, using the proposed City College campus array as an example. I document that even after demand side energy management initiatives and financial incentives, large-scale solar PV arrays continue to have ROIs greater than 25 years. I find that traditional financial evaluation methods are not suitable for environmental projects such as solar PV installations as externalities are not taken into account and therefore calls for development of alternative financial valuation methods. Chapter four investigates the influence of environmental, social, economic and political variables on the distribution of residential solar PV arrays across the United States using ZIP code level data from the 2000 US Census. Using data from the National Renewable Energy Laboratory's Open PV project, I document where residential solar PVs are currently located. A zero-inflated negative binomial model was run to evaluate the influence of selected variables. Using the same model, predicted residential solar PV shares were generated and illustrated using GIS software. The results of this model indicate that solar insolation, state energy deregulation and cost of electricity are statistically significant factors positively correlated with the adoption of residential solar PV arrays. With this information, policymakers at the towns and cities level can establish effective solar PV promoting policies and regulations for their respective locations.

  6. Detecting photovoltaic solar panels using hyperspectral imagery and estimating solar power production

    NASA Astrophysics Data System (ADS)

    Czirjak, Daniel

    2017-04-01

    Remote sensing platforms have consistently demonstrated the ability to detect, and in some cases identify, specific targets of interest, and photovoltaic solar panels are shown to have a unique spectral signature that is consistent across multiple manufacturers and construction methods. Solar panels are proven to be detectable in hyperspectral imagery using common statistical target detection methods such as the adaptive cosine estimator, and false alarms can be mitigated through the use of a spectral verification process that eliminates pixels that do not have the key spectral features of photovoltaic solar panel reflectance spectrum. The normalized solar panel index is described and is a key component in the false-alarm mitigation process. After spectral verification, these solar panel arrays are confirmed on openly available literal imagery and can be measured using numerous open-source algorithms and tools. The measurements allow for the assessment of overall solar power generation capacity using an equation that accounts for solar insolation, the area of solar panels, and the efficiency of the solar panels conversion of solar energy to power. Using a known location with readily available information, the methods outlined in this paper estimate the power generation capabilities within 6% of the rated power.

  7. Electric Propulsion Upper-Stage for Launch Vehicle Capability Enhancement

    NASA Technical Reports Server (NTRS)

    Kemp, Gregory E.; Dankanich, John W.; Woodcock, Gordon R.; Wingo, Dennis R.

    2007-01-01

    The NASA In-Space Propulsion Technology Project Office initiated a preliminary study to evaluate the performance benefits of a solar electric propulsion (SEP) upper-stage with existing and near-term small launch vehicles. The analysis included circular and elliptical Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO) transfers, and LEO to Low Lunar Orbit (LLO) applications. SEP subsystem options included state-of-the-art and near-term solar arrays and electric thrusters. In-depth evaluations of the Aerojet BPT-4000 Hall thruster and NEXT gridded ion engine were conducted to compare performance, cost and revenue potential. Preliminary results indicate that Hall thruster technology is favored for low-cost, low power SEP stages, while gridded-ion engines are favored for higher power SEP systems unfettered by transfer time constraints. A low-cost point design is presented that details one possible stage configuration and outlines system limitations, in particular fairing volume constraints. The results demonstrate mission enhancements to large and medium class launch vehicles, and mission enabling performance when SEP system upper stages are mounted to low-cost launchers such as the Minotaur and Falcon 1. Study results indicate the potential use of SEP upper stages to double GEO payload mass capability and to possibly enable launch on demand capability for GEO assets. Transition from government to commercial applications, with associated cost/benefit analysis, has also been assessed. The sensitivity of system performance to specific impulse, array power, thruster size, and component costs are also discussed.

  8. Development of a microprocessor controller for stand-alone photovoltaic power systems

    NASA Technical Reports Server (NTRS)

    Millner, A. R.; Kaufman, D. L.

    1984-01-01

    A controller for stand-alone photovoltaic systems has been developed using a low power CMOS microprocessor. It performs battery state of charge estimation, array control, load management, instrumentation, automatic testing, and communications functions. Array control options are sequential subarray switching and maximum power control. A calculator keypad and LCD display provides manual control, fault diagnosis and digital multimeter functions. An RS-232 port provides data logging or remote control capability. A prototype 5 kW unit has been built and tested successfully. The controller is expected to be useful in village photovoltaic power systems, large solar water pumping installations, and other battery management applications.

  9. Powersail High Power Propulsion System Design Study

    NASA Astrophysics Data System (ADS)

    Gulczinski, Frank S., III

    2000-11-01

    A desire by the United States Air Force to exploit the space environment has led to a need for increased on-orbit electrical power availability. To enable this, the Air Force Research Laboratory Space Vehicles Directorate (AFRL/ VS) is developing Powersail: a two-phased program to demonstrate high power (100 kW to 1 MW) capability in space using a deployable, flexible solar array connected to the host spacecraft using a slack umbilical. The first phase will be a proof-of-concept demonstration at 50 kW, followed by the second phase, an operational system at full power. In support of this program, the AFRL propulsion Directorate's Spacecraft Propulsion Branch (AFRL/PRS ) at Edwards AFB has commissioned a design study of the Powersail High Power Propulsion System. The purpose of this study, the results of which are summarized in this paper, is to perform mission and design trades to identify potential full-power applications (both near-Earth and interplanetary) and the corresponding propulsion system requirements and design. The design study shall farther identify a suitable low power demonstration flight that maximizes risk reduction for the fully operational system. This propulsion system is expected to be threefold: (1) primary propulsion for moving the entire vehicle, (2) a propulsion unit that maintains the solar array position relative to the host spacecraft, and (3) control propulsion for maintaining proper orientation for the flexible solar array.

  10. Study program for encapsulation materials interface for low-cost solar array

    NASA Technical Reports Server (NTRS)

    Kaelble, D. H.; Mansfeld, F. B.; Kendig, M.; Leung, C.

    1981-01-01

    The service integrity of the bonded interface in solar cell modules used in solar arrays is addressed. The development of AC impedance as a nondestructive evaluation (NDE) methodology for solar arrays is reported along with development of corrosion models and materials selection criteria for corrosion resistant interfaces.

  11. A lightweight solar array study

    NASA Technical Reports Server (NTRS)

    Josephs, R. H.

    1977-01-01

    A sample module was assembled to model a portion of a flexible extendable solar array, a type that promises to become the next generation of solar array design. The resulting study of this module is intended to provide technical support to the array designer for lightweight component selection, specifications, and tests. Selected from available lightweight components were 127-micron-thick wrap-around contacted solar cells, 34- micron-thick sputtered glass covers, and as a substrate a 13-micron-thick polyimide film clad with a copper printed circuit. Each component displayed weaknesses. The thin solar cells had excessive breakage losses. Sputtered glass cover adhesion was poor, and the covered cell was weaker than the cell uncovered. Thermal stresses caused some cell delamination from the model solar array substrate.

  12. Roll-to-roll fabrication of large scale and regular arrays of three-dimensional nanospikes for high efficiency and flexible photovoltaics

    PubMed Central

    Leung, Siu-Fung; Gu, Leilei; Zhang, Qianpeng; Tsui, Kwong-Hoi; Shieh, Jia-Min; Shen, Chang-Hong; Hsiao, Tzu-Hsuan; Hsu, Chin-Hung; Lu, Linfeng; Li, Dongdong; Lin, Qingfeng; Fan, Zhiyong

    2014-01-01

    Three-dimensional (3-D) nanostructures have demonstrated enticing potency to boost performance of photovoltaic devices primarily owning to the improved photon capturing capability. Nevertheless, cost-effective and scalable fabrication of regular 3-D nanostructures with decent robustness and flexibility still remains as a challenging task. Meanwhile, establishing rational design guidelines for 3-D nanostructured solar cells with the balanced electrical and optical performance are of paramount importance and in urgent need. Herein, regular arrays of 3-D nanospikes (NSPs) were fabricated on flexible aluminum foil with a roll-to-roll compatible process. The NSPs have precisely controlled geometry and periodicity which allow systematic investigation on geometry dependent optical and electrical performance of the devices with experiments and modeling. Intriguingly, it has been discovered that the efficiency of an amorphous-Si (a-Si) photovoltaic device fabricated on NSPs can be improved by 43%, as compared to its planar counterpart, in an optimal case. Furthermore, large scale flexible NSP solar cell devices have been fabricated and demonstrated. These results not only have shed light on the design rules of high performance nanostructured solar cells, but also demonstrated a highly practical process to fabricate efficient solar panels with 3-D nanostructures, thus may have immediate impact on thin film photovoltaic industry. PMID:24603964

  13. Roll-to-roll fabrication of large scale and regular arrays of three-dimensional nanospikes for high efficiency and flexible photovoltaics.

    PubMed

    Leung, Siu-Fung; Gu, Leilei; Zhang, Qianpeng; Tsui, Kwong-Hoi; Shieh, Jia-Min; Shen, Chang-Hong; Hsiao, Tzu-Hsuan; Hsu, Chin-Hung; Lu, Linfeng; Li, Dongdong; Lin, Qingfeng; Fan, Zhiyong

    2014-03-07

    Three-dimensional (3-D) nanostructures have demonstrated enticing potency to boost performance of photovoltaic devices primarily owning to the improved photon capturing capability. Nevertheless, cost-effective and scalable fabrication of regular 3-D nanostructures with decent robustness and flexibility still remains as a challenging task. Meanwhile, establishing rational design guidelines for 3-D nanostructured solar cells with the balanced electrical and optical performance are of paramount importance and in urgent need. Herein, regular arrays of 3-D nanospikes (NSPs) were fabricated on flexible aluminum foil with a roll-to-roll compatible process. The NSPs have precisely controlled geometry and periodicity which allow systematic investigation on geometry dependent optical and electrical performance of the devices with experiments and modeling. Intriguingly, it has been discovered that the efficiency of an amorphous-Si (a-Si) photovoltaic device fabricated on NSPs can be improved by 43%, as compared to its planar counterpart, in an optimal case. Furthermore, large scale flexible NSP solar cell devices have been fabricated and demonstrated. These results not only have shed light on the design rules of high performance nanostructured solar cells, but also demonstrated a highly practical process to fabricate efficient solar panels with 3-D nanostructures, thus may have immediate impact on thin film photovoltaic industry.

  14. KSC-00pp1217

    NASA Image and Video Library

    2000-08-30

    In the Space Station Processing Facility, workers help guide a solar array into position for installation on the Integrated Equipment Assembly. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  15. KSC-00pp1215

    NASA Image and Video Library

    2000-08-30

    In the Space Station Processing Facility, the overhead crane carrying a solar array arrives at the Integrated Equipment Assembly (IEA) on which it will be installed. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  16. KSC-00pp1218

    NASA Image and Video Library

    2000-08-30

    Workers in the Space Station Processing Facility give close attention to the placement of a solar array on the Integrated Equipment Assembly. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  17. Reliability analysis method of a solar array by using fault tree analysis and fuzzy reasoning Petri net

    NASA Astrophysics Data System (ADS)

    Wu, Jianing; Yan, Shaoze; Xie, Liyang

    2011-12-01

    To address the impact of solar array anomalies, it is important to perform analysis of the solar array reliability. This paper establishes the fault tree analysis (FTA) and fuzzy reasoning Petri net (FRPN) models of a solar array mechanical system and analyzes reliability to find mechanisms of the solar array fault. The index final truth degree (FTD) and cosine matching function (CMF) are employed to resolve the issue of how to evaluate the importance and influence of different faults. So an improvement reliability analysis method is developed by means of the sorting of FTD and CMF. An example is analyzed using the proposed method. The analysis results show that harsh thermal environment and impact caused by particles in space are the most vital causes of the solar array fault. Furthermore, other fault modes and the corresponding improvement methods are discussed. The results reported in this paper could be useful for the spacecraft designers, particularly, in the process of redesigning the solar array and scheduling its reliability growth plan.

  18. Microprocessor control of multiple peak power tracking DC/DC converters for use with solar cell arrays

    NASA Technical Reports Server (NTRS)

    Frederick, Martin E. (Inventor); Jermakian, Joel (Inventor)

    1991-01-01

    A method and an apparatus is provided for efficiently controlling the power output of a solar cell array string or a plurality of solar cell array strings to achieve a maximum amount of output power from the strings under varying conditions of use. Maximum power output from a solar array string is achieved through control of a pulse width modulated DC/DC buck converter which transfers power from a solar array to a load or battery bus. The input voltage from the solar array to the converter is controlled by a pulse width modulation duty cycle, which in turn is controlled by a differential signal controller. By periodically adjusting the control voltage up or down by a small amount and comparing the power on the load or bus with that generated at different voltage values a maximum power output voltage may be obtained. The system is totally modular and additional solar array strings may be added to the system simply by adding converter boards to the system and changing some constants in the controller's control routines.

  19. The Lightweight Integrated Solar Array and anTenna (LISA-T) - Big Power for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Carr, John; Boyd, Darren

    2017-01-01

    NASA is developing a space power system using lightweight, flexible photovoltaic devices originally developed for use here on Earth to provide low cost power for spacecraft. The Lightweight Integrated Solar Array and anTenna (LISA-T) is a launch-stowed, orbit-deployed array on which thin-film photovoltaic and antenna elements are embedded. The LISA-T system is deployable, building upon NASA's expertise in developing thin-film deployable solar sails such the one being developed for the Near Earth Asteroid Scout project which will fly in 2018. One of the biggest challenges for the NEA Scout, and most other spacecraft, is power. There simply isn't enough of it available, thus limiting the range of operation of the spacecraft from the Sun (due to the small surface area available for using solar cells), the range of operation from the Earth (low available power with inherently small antenna sizes tightly constrain the bandwidth for communication), and the science (you can only power so many instruments with limited power). The LISA-T has the potential to mitigate each of these limitations. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between their need for power and robust communications with the requirements of the science or engineering payload they are developed to fly. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft and CubeSats. The problem is that these CubeSats can usually only generate between 7 watts and 50 watts of power. The power that can be generated by the LISA-T ranges from tens of watts to several hundred watts. A matrix of options are in development, including planar (pointed) and omnidirectional (non-pointed) arrays. The former is seeking the highest performance possible while the latter is seeking GN&C (Guidance, Navigation and Control) simplicity. In both cases, power generation ranges from tens of watts to several hundred with an expected specific power greater than 250 watts per kilogram and a stowed power density greater than 200 kilowatts per cubic meter. Options for leveraging both high performance, 'typical cost' triple junction thin-film solar cells as well as moderate performance, low cost cells are being developed. Alongside, both UHF (ultra high frequency) and S-band antennas are being integrated into the array to move their space claim away from the spacecraft and open the door for omnidirectional communications and electronically steered phase arrays.

  20. High-Altitude, Long-Endurance Airships for Coastal Surveillance

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Collozza, Anthony

    2005-01-01

    A high altitude solar powered airship provides the ability to carry large payloads to high altitudes and remain on station for extended periods of time. This study examines applications and background of this type of concept vehicle, reviews the history of high altitude flight and provides a point design analysis. The capabilities and limitations of the airship are demonstrated and possible solutions are proposed. Factors such as time of year, latitude, wind speeds, and payload are considered in establishing the capabilities of the airship. East and west coast operation is evaluated. The key aspect to success of this type of airship is the design and operation of the propulsion and power system. A preliminary propulsion/power system design was produced based on a regenerative fuel cell energy storage system and solar photovoltaic array for energy production. Results on power system requirements for year long operation is presented.

  1. A normative price for a manufactured product: The SAMICS methodology. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.

    1979-01-01

    A summary for the Solar Array Manufacturing Industry Costing Standards report contains a discussion of capabilities and limitations, a non-technical overview of the methodology, and a description of the input data which must be collected. It also describes the activities that were and are being taken to ensure validity of the results and contains an up-to-date bibliography of related documents.

  2. Utilizing Solar Power Technologies for On-Orbit Propellant Production

    NASA Technical Reports Server (NTRS)

    Fikes, John C.; Howell, Joe T.; Henley, Mark W.

    2006-01-01

    The cost of access to space beyond low Earth orbit may be reduced if vehicles can refuel in orbit. The cost of access to low Earth orbit may also be reduced by launching oxygen and hydrogen propellants in the form of water. To achieve this reduction in costs of access to low Earth orbit and beyond, a propellant depot is considered that electrolyzes water in orbit, then condenses and stores cryogenic oxygen and hydrogen. Power requirements for such a depot require Solar Power Satellite technologies. A propellant depot utilizing solar power technologies is discussed in this paper. The depot will be deployed in a 400 km circular equatorial orbit. It receives tanks of water launched into a lower orbit from Earth, converts the water to liquid hydrogen and oxygen, and stores up to 500 metric tons of cryogenic propellants. This requires a power system that is comparable to a large Solar Power Satellite capable of several 100 kW of energy. Power is supplied by a pair of solar arrays mounted perpendicular to the orbital plane, which rotates once per orbit to track the Sun. The majority of the power is used to run the electrolysis system. Thermal control is maintained by body-mounted radiators; these also provide some shielding against orbital debris. The propellant stored in the depot can support transportation from low Earth orbit to geostationary Earth orbit, the Moon, LaGrange points, Mars, etc. Emphasis is placed on the Water-Ice to Cryogen propellant production facility. A very high power system is required for cracking (electrolyzing) the water and condensing and refrigerating the resulting oxygen and hydrogen. For a propellant production rate of 500 metric tons (1,100,000 pounds) per year, an average electrical power supply of 100 s of kW is required. To make the most efficient use of space solar power, electrolysis is performed only during the portion of the orbit that the Depot is in sunlight, so roughly twice this power level is needed for operations in sunlight (slightly over half of the time). This power level mandates large solar arrays, using advanced Space Solar Power technology. A significant amount of the power has to be dissipated as heat, through large radiators. This paper briefly describes the propellant production facility and the requirements for a high power system capability. The Solar Power technologies required for such an endeavor are discussed.

  3. The interactions of solar arrays with electric thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Isaacson, G. C.; Domitz, S.

    1976-01-01

    The generation of a charge-exchange plasma by a thruster, the transport of this plasma to the solar array, and the interaction of the solar array with the plasma after it arrives are all described. The generation of this plasma can be described accurately from thruster geometry and operating conditions. The transport of the charge-exchange plasma was studied experimentally with a 15 cm thruster. A model was developed for simple thruster-array configurations. A variety of experiments were surveyed for the interaction of the plasma at the solar array.

  4. Flat-plate solar array progress and plans

    NASA Technical Reports Server (NTRS)

    Callaghan, W. T.

    1984-01-01

    The results of research into the technology of flat-plate solar arrays undertaken in the Flat-Plate Solar Array Project under the sponsorship of the U.S. Department of Energy are surveyed. Topics examined include Si refinement, ribbon-sheet substrate formation, module process sequences, environmental isolation, module engineering and testing, and photovoltaic-array economics.

  5. Measurement of high-voltage and radiation-damage limitations to advanced solar array performance

    NASA Technical Reports Server (NTRS)

    Guidice, D. A.; Severance, P. S.; Keinhardt, K. C.

    1991-01-01

    A description is given of the reconfigured Photovoltaic Array Space Power (PASP) Plus experiment: its objectives, solar-array complement, and diagnostic sensors. Results from a successful spaceflight will lead to a better understanding of high-voltage and radiation-damage limitations in the operation of new-technology solar arrays.

  6. Lightweight Solar Power for Small Satellites

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    The innovation targets small satellites or CubeSats for which conventional deployable arrays are not feasible due to their size, weight and complexity. This novel solar cell array includes a thin and flexible photovoltaic cell applied to an inflatable structure to create a high surface area array for collecting solar energy in a lightweight, simple and deployable structure. The inflatable array, with its high functional surface area, eliminates the need and the mechanisms required to point the system toward the sun. The power density achievable in these small arrays is similar to that of conventional high-power deployable/pointable arrays used on large satellites or space vehicles. Although inflatable solar arrays have been previously considered by others, the arrays involved the use of traditional rigid solar cells. Researchers are currently working with thin film photovoltaics from various suppliers so that the NASA innovation is not limited to any particular solar cell technology. NASA has built prototypes and tested functionality before and after inflation. As shown in the current-voltage currents below, deployment does not damage the cell performance.

  7. P6 Truss, Photovoltaic (PV) Solar Array Wing (SAW)

    NASA Image and Video Library

    2000-12-07

    STS097-376-019 (7 December 2000) --- A close-up view of the P6 solar array on the International Space Station (ISS), backdropped against the blackness of space and the Earth’s horizon. The P6 solar array is the first of eight sets of solar arrays that at the completion of the space station construction in 2006, will comprise the station’s electrical power system, converting sunlight to electricity.

  8. P6 Truss, Photovoltaic (PV) Solar Array Wing (SAW)

    NASA Image and Video Library

    2000-12-07

    STS097-376-006 (7 Dec 2000) --- A close-up view of the P6 solar array on the International Space Station (ISS), backdropped against the blackness of space and the Earth?s horizon. The P6 solar array is the first of eight sets of solar arrays that at the completion of the space station construction in 2006, will comprise the station?s electrical power system, converting sunlight to electricity.

  9. Deployment dynamics and control of large-scale flexible solar array system with deployable mast

    NASA Astrophysics Data System (ADS)

    Li, Hai-Quan; Liu, Xiao-Feng; Guo, Shao-Jing; Cai, Guo-Ping

    2016-10-01

    In this paper, deployment dynamics and control of large-scale flexible solar array system with deployable mast are investigated. The adopted solar array system is introduced firstly, including system configuration, deployable mast and solar arrays with several mechanisms. Then dynamic equation of the solar array system is established by the Jourdain velocity variation principle and a method for dynamics with topology changes is introduced. In addition, a PD controller with disturbance estimation is designed to eliminate the drift of spacecraft mainbody. Finally the validity of the dynamic model is verified through a comparison with ADAMS software and the deployment process and dynamic behavior of the system are studied in detail. Simulation results indicate that the proposed model is effective to describe the deployment dynamics of the large-scale flexible solar arrays and the proposed controller is practical to eliminate the drift of spacecraft mainbody.

  10. Options Studied for Managing Space Station Solar Array Electrical Hazards for Sequential Shunt Unit Replacement

    NASA Technical Reports Server (NTRS)

    Delleur, Ann M.; Kerslake, Thomas W.; Levy, Robert K.

    2004-01-01

    The U.S. solar array strings on the International Space Station are connected to a sequential shunt unit (SSU). The job of the SSU is to shunt, or short, the excess current from the solar array, such that just enough current is provided downstream to maintain the 160-V bus voltage while meeting the power load demand and recharging the batteries. Should an SSU fail on-orbit, it would be removed and replaced with the on-orbit spare during an astronaut space walk or extravehicular activity (EVA) (see the photograph). However, removing an SSU during an orbit Sun period with input solar array power connectors fully energized could result in substantial hardware damage and/or safety risk to the EVA astronaut. The open-circuit voltage of cold solar-array strings can exceed 320 V, and warm solar-array strings could feed a short circuit with a total current level exceeding 240 A.

  11. Ground-based Space Weather Monitoring with LOFAR

    NASA Astrophysics Data System (ADS)

    Wise, Michael; van Haarlem, Michiel; Lawrence, Gareth; Reid, Simon; Bos, Andre; Rawlings, Steve; Salvini, Stef; Mitchell, Cathryn; Soleimani, Manuch; Amado, Sergio; Teresa, Vital

    As one of the first of a new generation of radio instruments, the International LOFAR Telescope (ILT) will provide a number of unique and novel capabilities for the astronomical community. These include remote configuration and operation, dynamic real-time processing and system response, and the ability to provide multiple simultaneous streams of data to a community whose scientific interests run the gamut from lighting in the atmospheres of distant planets to the origins of the universe itself. The LOFAR (LOw Frequency ARray) system is optimized for a frequency range from 30-240 MHz and consists of multiple antenna fields spread across Europe. In the Netherlands, a total 36 LOFAR stations are nearing completion with an initial 8 international stations currently being deployed in Germany, France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR has the potential to achieve unparalleled sensitivity and spatial resolution in the low frequency radio regime. LOFAR will also be one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. As we discuss in this presentation, the same capabilities that make LOFAR a powerful tool for radio astronomy also provide an excellent platform upon which to build a ground-based monitoring system for space weather events. For example, the ability to monitor Solar activity in near real-time is one of the key scientific capabilities being developed for LOFAR. With only a fraction of its total observing capacity, LOFAR will be able to provide continuous monitoring of the Solar spectrum over the entire 10-240 MHz band down to microsecond timescales. Autonomous routines will scan these incoming spectral data for evidence of Solar flares and be capable of generating various responses including alerting external observatories or reallocating internal observing capacity to create short cadence (1-10 sec) images of the Sun. More uniquely, the core development, already invested by LOFAR to produce astronomical images of the sky, makes an excellent framework on which to build a near real-time ionospheric monitor and thereby study the effects of space weather events on our atmosphere. One of the key technical challenges to producing high quality scientific images in the low frequency radio regime are the effects of the active ionosphere over the detector array on signal propagation through the earth's atmosphere. To correct for these effects, the current LOFAR system includes an adaptive calibration employing both single and multi-layer phase screen models for the ionosphere. The output of this calibration automatically produces continuous ionospheric measurements with a data cadence in seconds. Although limited to the sky over the array, the resulting TEC maps can have vertical and horizontal resolutions down to 2m and relative accuracies of 0.001 TECU. The intent is to publish both Solar and ionospheric data-streams to the space weather community providing an excellent complement to existing space-based monitoring assets. In this presentation, we will describe the current and planned capabilities of the LOFAR system as well as show some first examples of the potential data products taken during the ongoing commissioning phase. We will also discuss plans to build upon the current LOFAR infrastructure and provide a source of near real-time monitoring data to the space weather community.

  12. Daytime Solar Heating of Photovoltaic Arrays in Low Density Plasmas

    NASA Technical Reports Server (NTRS)

    Galofaro, J.; Vayner, B.; Ferguson, D.

    2003-01-01

    The purpose of the current work is to determine the out-gassing rate of H2O molecules for a solar array placed under daytime solar heating (full sunlight) conditions typically encountered in a Low Earth Orbital (LEO) environment. Arc rates are established for individual arrays held at 14 C and are used as a baseline for future comparisons. Radiated thermal solar flux incident to the array is simulated by mounting a stainless steel panel equipped with resistive heating elements several centimeters behind the array. A thermal plot of the heater plate temperature and the array temperature as a function of heating time is then obtained. A mass spectrometer is used to record the levels of partial pressure of water vapor in the test chamber after each of the 5 heating/cooling cycles. Each of the heating cycles was set to time duration of 40 minutes to simulate the daytime solar heat flux to the array over a single orbit. Finally the array is cooled back to ambient temperature after 5 complete cycles and the arc rates of the solar arrays is retested. A comparison of the various data is presented with rather some unexpected results.

  13. Mariner 9 Solar Array Design, Manufacture, and Performance

    NASA Technical Reports Server (NTRS)

    Sequeira, E. A.

    1973-01-01

    The mission of Mariner 9, the first spacecraft to orbit another planet, was to make scientific observations of the surface of Mars. Throughout this unique mission, the Mariner 9 solar array successfully supported the power requirements of the spacecraft without experiencing anomalies. Basically, the design of the solar array was similar to those of Mariners 6 and 7; however, Mariner 9 had the additional flight operational requirement to perform in a Mars orbit environment mode. The array special tests provided information on the current-voltage characteristics and array space degradation. Tests indicated that total solar array current degradation was 3.5 percent, which could probably be attributed to the gradual degradation of the cover glass and/or the RTV 602 adhesive employed to cement the cover glass to the solar cell.

  14. KSC-00pp1194

    NASA Image and Video Library

    2000-08-18

    In the Space Station Processing Facility, Solar Array Wing-3, an element of the International Space Station, is lifted from a work stand to move it to the Integrated Electronic Assembly for testing. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  15. KSC-00pp1199

    NASA Image and Video Library

    2000-08-18

    In the Space Station Processing Facility, Solar Array Wing-3, a component of the International Space Station, is installed in the Integrated Electronic Assembly where it will be tested. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  16. KSC-00pp1193

    NASA Image and Video Library

    2000-08-18

    Workers in the Space Station Processing Facility get ready to move Solar Array Wing-3, a component of the International Space Station, for installation onto the Integrated Electronic Assembly. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  17. KSC-00pp1198

    NASA Image and Video Library

    2000-08-18

    In the Space Station Processing Facility, Solar Array Wing-3, a component of the International Space Station, is installed in the Integrated Electronic Assembly where it will be tested. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  18. KSC-00pp1195

    NASA Image and Video Library

    2000-08-18

    In the Space Station Processing Facility, Solar Array Wing-3 (at top), a component of the International Space Station, hovers above the Integrated Electronic Assembly where it will be installed for testing. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  19. In-Space Propulsion Technology Program Solar Electric Propulsion Technologies

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.

    2006-01-01

    NASA's In-space Propulsion (ISP) Technology Project is developing new propulsion technologies that can enable or enhance near and mid-term NASA science missions. The Solar Electric Propulsion (SEP) technology area has been investing in NASA s Evolutionary Xenon Thruster (NEXT), the High Voltage Hall Accelerator (HiVHAC), lightweight reliable feed systems, wear testing, and thruster modeling. These investments are specifically targeted to increase planetary science payload capability, expand the envelope of planetary science destinations, and significantly reduce the travel times, risk, and cost of NASA planetary science missions. Status and expected capabilities of the SEP technologies are reviewed in this presentation. The SEP technology area supports numerous mission studies and architecture analyses to determine which investments will give the greatest benefit to science missions. Both the NEXT and HiVHAC thrusters have modified their nominal throttle tables to better utilize diminished solar array power on outbound missions. A new life extension mechanism has been implemented on HiVHAC to increase the throughput capability on low-power systems to meet the needs of cost-capped missions. Lower complexity, more reliable feed system components common to all electric propulsion (EP) systems are being developed. ISP has also leveraged commercial investments to further validate new ion and hall thruster technologies and to potentially lower EP mission costs.

  20. The effect of atmospheric drag on the design of solar-cell power systems for low Earth orbit

    NASA Technical Reports Server (NTRS)

    Kyser, A. C.

    1983-01-01

    The feasibility of reducing the atmospheric drag of low orbit solar powered satellites by operating the solar-cell array in a minimum-drag attitude, rather than in the conventional Sun pointing attitude was determined. The weights of the solar array, the energy storage batteries, and the fuel required to overcome the drag of the solar array for a range of design life times in orbit were considered. The drag of the array was estimated by free molecule flow theory, and the system weights were calculated from unit weight estimates for 1990 technology. The trailing, minimum drag system was found to require 80% more solar array area, and 30% more battery capacity, the system weights for reasonable life times were dominated by the thruster fuel requirements.

  1. Solar Prominence Modelling and Plasma Diagnostics at ALMA Wavelengths

    NASA Astrophysics Data System (ADS)

    Rodger, Andrew; Labrosse, Nicolas

    2017-09-01

    Our aim is to test potential solar prominence plasma diagnostics as obtained with the new solar capability of the Atacama Large Millimeter/submillimeter Array (ALMA). We investigate the thermal and plasma diagnostic potential of ALMA for solar prominences through the computation of brightness temperatures at ALMA wavelengths. The brightness temperature, for a chosen line of sight, is calculated using the densities of electrons, hydrogen, and helium obtained from a radiative transfer code under non-local thermodynamic equilibrium (non-LTE) conditions, as well as the input internal parameters of the prominence model in consideration. Two distinct sets of prominence models were used: isothermal-isobaric fine-structure threads, and large-scale structures with radially increasing temperature distributions representing the prominence-to-corona transition region. We compute brightness temperatures over the range of wavelengths in which ALMA is capable of observing (0.32 - 9.6 mm), however, we particularly focus on the bands available to solar observers in ALMA cycles 4 and 5, namely 2.6 - 3.6 mm (Band 3) and 1.1 - 1.4 mm (Band 6). We show how the computed brightness temperatures and optical thicknesses in our models vary with the plasma parameters (temperature and pressure) and the wavelength of observation. We then study how ALMA observables such as the ratio of brightness temperatures at two frequencies can be used to estimate the optical thickness and the emission measure for isothermal and non-isothermal prominences. From this study we conclude that for both sets of models, ALMA presents a strong thermal diagnostic capability, provided that the interpretation of observations is supported by the use of non-LTE simulation results.

  2. KSC-00pp1210

    NASA Image and Video Library

    2000-08-30

    Workers in the Space Station Processing Facility help guide an overhead crane toward a workstand containing a solar array in order to move it for installation onto the Integrated Equipment Assembly (IEA). A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  3. KSC-00pp1216

    NASA Image and Video Library

    2000-08-30

    In the Space Station Processing Facility, the overhead crane carrying a solar array maneuvers its cargo into position on the Integrated Equipment Assembly on which it will be installed. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  4. Feasibility study of a 200 watt per kilogram lightweight solar array system. [for interplanetary spacecraft

    NASA Technical Reports Server (NTRS)

    Stanhouse, R.; Cokonis, J.; Rayl, G.

    1976-01-01

    Progress in an investigation of the feasibility of designing a lightweight solar array with a power-to-weight ratio of 200 watts per kilogram is described. This solar array will produce 10,000 watts of electrical power at 1 A.U. at its beginning of life (BOL), and degrade less than 20% over a three year period in interplanetary flight. A review of existing lightweight solar array system concepts is presented along with discussion pertaining to their applicable technology as it relates to a 200 watt/kilogram array. Also presented is a discussion of the candidate development solar cells being considered, and various deployable boom concepts under investigation.

  5. Using the sun analog sensor (SAS) data to investigate solar array yoke motion on the GOES-8 and -9 spacecraft

    NASA Astrophysics Data System (ADS)

    Phenneger, Milton; Knack, Jennifer L.

    1996-10-01

    The GOES-8 and -9 Sun analog sensor (SAS) flight data is analyzed to evaluate the attitude motion environment of payloads mounted on the solar array. The work was performed in part to extend analysis in progress to support the solar x-ray imager to be flown on the GOES-M. The SAS is a two axis sensor mounted on the x-ray sensor pointing (XRP) module to measure the east/west error angle between the SUn and the solar array normal and to provide a north south error angle for automatic solar pointing of the x-ray sensor by the XRP. The goal was to search for evidence of solar array vibrational modes in the 2 Hz and 0.5 Hz range and to test the predicted amplitudes. The results show that the solar array rotates at the rate of the mean Sun with unexpected oscillation periods of 5.6 minutes, 90 minutes, and 1440 minutes originating from the two 16.1 gear drive train stages between the solar array drive stepper motor and the solar array yoke. The higher frequency oscillations are detected as random noise at the 1/16 Hz telemetry sampling rate of the SAS. This supports the preflight predictions for the high frequency modes but provide s no detailed measurement of the frequency as expected for this data period. In addition to this the data indicates that the solar array is responding unexpectedly to GOES imager instrument blackbody calibration events.

  6. Cost study of solar cell space power systems

    NASA Technical Reports Server (NTRS)

    Bernatowicz, D. T.

    1972-01-01

    Historical costs for solar cell space power systems were evaluated. The study covered thirteen missions that represented a broad cross section of flight projects over the past decade. Fully burdened costs in terms of 1971 dollars are presented for the system and the solar array. The costs correlate reasonably well with array area and do not increase in proportion to array area. The trends for array costs support the contention that solar cell and module standardization reduce costs.

  7. Solar array maximum power tracking with closed-loop control of a 30-centimeter ion thruster

    NASA Technical Reports Server (NTRS)

    Gruber, R. P.

    1977-01-01

    A new solar array/ion thruster system control concept has been developed and demonstrated. An ion thruster beam load is used to automatically and continuously operate an unregulated solar array at its maximum power point independent of variations in solar array voltage and current. Preliminary tests were run which verified that this method of control can be implemented with a few, physically small, signal level components dissipating less than two watts.

  8. Boeing's High Voltage Solar Tile Test Results

    NASA Astrophysics Data System (ADS)

    Reed, Brian J.; Harden, David E.; Ferguson, Dale C.; Snyder, David B.

    2002-10-01

    Real concerns of spacecraft charging and experience with solar array augmented electrostatic discharge arcs on spacecraft have minimized the use of high voltages on large solar arrays despite numerous vehicle system mass and efficiency advantages. Boeing's solar tile (patent pending) allows high voltage to be generated at the array without the mass and efficiency losses of electronic conversion. Direct drive electric propulsion and higher power payloads (lower spacecraft weight) will benefit from this design. As future power demand grows, spacecraft designers must use higher voltage to minimize transmission loss and power cable mass for very large area arrays. This paper will describe the design and discuss the successful test of Boeing's 500-Volt Solar Tile in NASA Glenn's Tenney chamber in the Space Plasma Interaction Facility. The work was sponsored by NASA's Space Solar Power Exploratory Research and Technology (SERT) Program and will result in updated high voltage solar array design guidelines being published.

  9. Boeing's High Voltage Solar Tile Test Results

    NASA Technical Reports Server (NTRS)

    Reed, Brian J.; Harden, David E.; Ferguson, Dale C.; Snyder, David B.

    2002-01-01

    Real concerns of spacecraft charging and experience with solar array augmented electrostatic discharge arcs on spacecraft have minimized the use of high voltages on large solar arrays despite numerous vehicle system mass and efficiency advantages. Boeing's solar tile (patent pending) allows high voltage to be generated at the array without the mass and efficiency losses of electronic conversion. Direct drive electric propulsion and higher power payloads (lower spacecraft weight) will benefit from this design. As future power demand grows, spacecraft designers must use higher voltage to minimize transmission loss and power cable mass for very large area arrays. This paper will describe the design and discuss the successful test of Boeing's 500-Volt Solar Tile in NASA Glenn's Tenney chamber in the Space Plasma Interaction Facility. The work was sponsored by NASA's Space Solar Power Exploratory Research and Technology (SERT) Program and will result in updated high voltage solar array design guidelines being published.

  10. Low-frequency Radio Observatory on the Lunar Surface (LROLS)

    NASA Astrophysics Data System (ADS)

    MacDowall, Robert; Network for Exploration and Space Science (NESS)

    2018-06-01

    A radio observatory on the lunar surface will provide the capability to image solar radio bursts and other sources. Radio burst imaging will improve understanding of radio burst mechanisms, particle acceleration, and space weather. Low-frequency observations (less than ~20 MHz) must be made from space, because lower frequencies are blocked by Earth’s ionosphere. Solar radio observations do not mandate an observatory on the farside of the Moon, although such a location would permit study of less intense solar bursts because the Moon occults the terrestrial radio frequency interference. The components of the lunar radio observatory array are: the antenna system consisting of 10 – 100 antennas distributed over a square kilometer or more; the system to transfer the radio signals from the antennas to the central processing unit; electronics to digitize the signals and possibly to calculate correlations; storage for the data until it is down-linked to Earth. Such transmission requires amplification and a high-gain antenna system or possibly laser comm. For observatories on the lunar farside a satellite or other intermediate transfer system is required to direct the signal to Earth. On the ground, the aperture synthesis analysis is completed to display the radio image as a function of time. Other requirements for lunar surface systems include the power supply, utilizing solar arrays with batteries to maintain the system at adequate thermal levels during the lunar night. An alternative would be a radioisotope thermoelectric generator requiring less mass. The individual antennas might be designed with their own solar arrays and electronics to transmit data to the central processing unit, but surviving lunar night would be a challenge. Harnesses for power and data transfer from the central processing unit to the antennas are an alternative, but a harness-based system complicates deployment. The concept of placing the antennas and harnesses on rolls of polyimide and rolling them out may be a solution for solar radio observations, but it probably does not provide a sufficiently-uniform beam for other science targets.

  11. Tandem concentrator photovoltaic array applied to Space Station Freedom evolutionary power requirements

    NASA Technical Reports Server (NTRS)

    Fisher, Edward M., Jr.

    1991-01-01

    Additional power is required to support Space Station Freedom (SSF) evolution. Boeing Defense and Space Group, LeRC, and Entech Corporation have participated in the development of efficiency gallium arsenide and gallium antimonide solar cells make up the solar array tandem cell stacks. Entech's Mini-Dome Fresnel Lens Concentrators focus solar energy onto the active area of the solar cells at 50 times one solar energy flux. Development testing for a flight array, to be launched in Nov. 1992 is under way with support from LeRC. The tandem cells, interconnect wiring, concentrator lenses, and structure were integrated into arrays subjected to environmental testing. A tandem concentrator array can provide high mass and area specific power and can provide equal power with significantly less array area and weight than the baseline array design. Alternatively, for SSF growth, an array of twice the baseline power can be designed which still has a smaller drag area than the baseline.

  12. Evaluation of space station solar array technology

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The research concerning lightweight solar array assemblies since 1970 is reported. A bibliography of abstracts of documents used for reference during this period is included along with an evaluation of available solar array technology. A list of recommended technology programs is presented.

  13. Hubble Space Telescope solar cell module thermal cycle test

    NASA Technical Reports Server (NTRS)

    Douglas, Alexander; Edge, Ted; Willowby, Douglas; Gerlach, Lothar

    1992-01-01

    The Hubble Space Telescope (HST) solar array consists of two identical double roll-out wings designed after the Hughes flexible roll-up solar array (FRUSA) and was developed by the European Space Agency (ESA) to meet specified HST power output requirements at the end of 2 years, with a functional lifetime of 5 years. The requirement that the HST solar array remain functional both mechanically and electrically during its 5-year lifetime meant that the array must withstand 30,000 low Earth orbit (LEO) thermal cycles between approximately +100 and -100 C. In order to evaluate the ability of the array to meet this requirement, an accelerated thermal cycle test in vacuum was conducted at NASA's Marshall Space Flight Center (MSFC), using two 128-cell solar array modules which duplicated the flight HST solar array. Several other tests were performed on the modules. The thermal cycle test was interrupted after 2,577 cycles, and a 'cold-roll' test was performed on one of the modules in order to evaluate the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit. A posttest static shadow test was performed on one of the modules in order to analyze temperature gradients across the module. Finally, current in-flight electrical performance data from the actual HST flight solar array will be tested.

  14. Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard

    2012-01-01

    NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.

  15. Extremely Black Vertically Aligned Carbon Nanotube Arrays for Solar Steam Generation.

    PubMed

    Yin, Zhe; Wang, Huimin; Jian, Muqiang; Li, Yanshen; Xia, Kailun; Zhang, Mingchao; Wang, Chunya; Wang, Qi; Ma, Ming; Zheng, Quan-Shui; Zhang, Yingying

    2017-08-30

    The unique structure of a vertically aligned carbon nanotube (VACNT) array makes it behave most similarly to a blackbody. It is reported that the optical absorptivity of an extremely black VACNT array is about 0.98-0.99 over a large spectral range of 200 nm-200 μm, inspiring us to explore the performance of VACNT arrays in solar energy harvesting. In this work, we report the highly efficient steam generation simply by laminating a layer of VACNT array on the surface of water to harvest solar energy. It is found that under solar illumination the temperature of upper water can significantly increase with obvious water steam generated, indicating the efficient solar energy harvesting and local temperature rise by the thin layer of VACNTs. We found that the evaporation rate of water assisted by VACNT arrays is 10 times that of bare water, which is the highest ratio for solar-thermal-steam generation ever reported. Remarkably, the solar thermal conversion efficiency reached 90%. The excellent performance could be ascribed to the strong optical absorption and local temperature rise induced by the VACNT layer, as well as the ultrafast water transport through the VACNT layer due to the frictionless wall of CNTs. Based on the above, we further demonstrated the application of VACNT arrays in solar-driven desalination.

  16. Array Automated Assembly Task Low Cost Silicon Solar Array Project, Phase 2

    NASA Technical Reports Server (NTRS)

    Rhee, S. S.; Jones, G. T.; Allison, K. L.

    1978-01-01

    Progress in the development of solar cells and module process steps for low-cost solar arrays is reported. Specific topics covered include: (1) a system to automatically measure solar cell electrical performance parameters; (2) automation of wafer surface preparation, printing, and plating; (3) laser inspection of mechanical defects of solar cells; and (4) a silicon antireflection coating system. Two solar cell process steps, laser trimming and holing automation and spray-on dopant junction formation, are described.

  17. Interaction of a solar array with an ion thruster due to the charge-exchange plasma

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1976-01-01

    The generation of a charge exchange plasma by a thruster, the transport of this plasma to the solar array, and the interaction of the solar array with the plasma after it arrives are all described. The generation of this plasma is described accurately from thruster geometry and operating conditions. The transport of the charge exchange plasma was studied experimentally with a 15 cm thruster. A model was developed for simple thruster array configurations. A variety of experiments were surveyed for the interaction of the plasma at the solar array.

  18. Orbital construction demonstration study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A conceptual design and program plan for an Orbital Construction Demonstration Article (OCDA), that can be used for technology growth and verification, and as the construction facility for a variety of large structures is presented. The OCDA design includes a large work platform, a rotating manipulator boom, a 250 kw solar array, and a core module of subsystems with a total mass of 37,093 kg, that can be assembled in three shuttle flights. An analysis of OCDA continued utility potential indicates that a shuttle tended platform with 250 kW of power can effectively be used to construct highly beneficial antenna systems and large demonstration articles that advance solar power satellite technologies. The construction of 100 m parabolic reflectors for use as a radiometer for measuring soil moisture and water salinity was found to be within the capabilities of OCDA concept. With 252 fixed beams for high population centers, and 16 scanning beams for rural areas, the antenna has the potential to significantly improve U.S. space based communications systems. The OCDA, that is slightly increased in size, was found adequate to build a large 2 MW solar array which, when coupled to a transmit antenna, demonstrate power transfer from space to ground.

  19. The impact of solar cell technology on planar solar array performance

    NASA Technical Reports Server (NTRS)

    Mills, Michael W.; Kurland, Richard M.

    1989-01-01

    The results of a study into the potential impact of advanced solar cell technologies on the characteristics (weight, cost, area) of typical planar solar arrays designed for low, medium and geosynchronous altitude earth orbits are discussed. The study considered planar solar array substrate designs of lightweight, rigid-panel graphite epoxy and ultra-lightweight Kapton. The study proposed to answer the following questions: Do improved cell characteristics translate into array-level weight, size and cost improvements; What is the relative importance of cell efficiency, weight and cost with respect to array-level performance; How does mission orbital environment affect array-level performance. Comparisons were made at the array level including all mechanisms, hinges, booms, and harnesses. Array designs were sized to provide 5kW of array power (not spacecraft bus power, which is system dependent but can be scaled from given values). The study used important grass roots issues such as use of the GaAs radiation damage coefficients as determined by Anspaugh. Detailed costing was prepared, including cell and cover costs, and manufacturing attrition rates for the various cell types.

  20. Thin-Film Solar Array Earth Orbit Mission Applicability Assessment

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Kerslake, Thomas W.; Hepp, Aloysius F.; Raffaelle, Ryne P.

    2002-01-01

    This is a preliminary assessment of the applicability and spacecraft-level impact of using very lightweight thin-film solar arrays with relatively large deployed areas for representative Earth orbiting missions. The most and least attractive features of thin-film solar arrays are briefly discussed. A simple calculation is then presented illustrating that from a solar array alone mass perspective, larger arrays with less efficient but lighter thin-film solar cells can weigh less than smaller arrays with more efficient but heavier crystalline cells. However, a proper spacecraft-level systems assessment must take into account the additional mass associated with solar array deployed area: the propellant needed to desaturate the momentum accumulated from area-related disturbance torques and to perform aerodynamic drag makeup reboost. The results for such an assessment are presented for a representative low Earth orbit (LEO) mission, as a function of altitude and mission life, and a geostationary Earth orbit (GEO) mission. Discussion of the results includes a list of specific mission types most likely to benefit from using thin-film arrays. NASA Glenn's low-temperature approach to depositing thin-film cells on lightweight, flexible plastic substrates is also briefly discussed to provide a perspective on one approach to achieving this enabling technology. The paper concludes with a list of issues to be addressed prior to use of thin-film solar arrays in space and the observation that with their unique characteristics, very lightweight arrays using efficient, thin-film cells on flexible substrates may become the best array option for a subset of Earth orbiting missions.

  1. Plasma Interactions with High Voltage Solar Arrays for a Direct Drive Hall Effect Thruster System

    NASA Technical Reports Server (NTRS)

    Schneider, T.; Horvater, M. A.; Vaughn, J.; Carruth, M. R.; Jongeward, G. A.; Mikellides, I. G.

    2003-01-01

    The Environmental Effects Group of NASA s Marshall Space Flight Center (MSFC) is conducting research into the effects of plasma interaction with high voltage solar arrays. These high voltage solar arrays are being developed for a direct drive Hall Effect Thruster propulsion system. A direct drive system configuration will reduce power system mass by eliminating a conventional power-processing unit. The Environmental Effects Group has configured two large vacuum chambers to test different high-voltage array concepts in a plasma environment. Three types of solar arrays have so far been tested, an International Space Station (ISS) planar array, a Tecstar planar array, and a Tecstar solar concentrator array. The plasma environment was generated using a hollow cathode plasma source, which yielded densities between 10(exp 6) - 10(exp 7) per cubic centimeter and electron temperatures of 0.5-1 eV. Each array was positioned in this plasma and biased in the -500 to + 500 volt range. The current collection was monitored continuously. In addition, the characteristics of arcing, snap over, and other features, were recorded. Analysis of the array performance indicates a time dependence associated with the current collection as well as a tendency for "conditioning" over a large number of runs. Mitigation strategies, to reduce parasitic current collection, as well as arcing, include changing cover-glass geometry and layout as well as shielding the solar cell edges. High voltage performance data for each of the solar array types tested will be presented. In addition, data will be provided to indicate the effectiveness of the mitigation techniques.

  2. Study of solar array switching power management technology for space power system

    NASA Technical Reports Server (NTRS)

    Cassinelli, J. E.

    1982-01-01

    This report documents work performed on the Solar Array Switching Power Management Study. Mission characteristics for three missions were defined to the depth necessary to determine their power management requirements. Solar array switching concepts were identified that could safisfy the mission requirements. These switching concepts were compared with a conventional buck regulator system on the basis of cost, weight and volume, reliability, efficiency and thermal control. For the missions reviewed, solar array switching provided significant advantages in all areas of comparison.

  3. Preliminary space station solar array structural design study

    NASA Technical Reports Server (NTRS)

    Dorsey, J. T.; Bush, H. G.; Mikulas, M. M., Jr.

    1984-01-01

    Structurally efficient ways to support the large solar arrays (3,716 square meters which are currently considered for space station use) are examined. An erectable truss concept is presented for the on orbit construction of winged solar arrays. The means for future growth, maintenance, and repair are integrally designed into this concept. Results from parametric studies, which highlight the physical and structural differences between various configuration options are presented. Consideration is given to both solar blanket and hard panel arrays.

  4. Preliminary space station solar array structural design study

    NASA Astrophysics Data System (ADS)

    Dorsey, J. T.; Bush, H. G.; Mikulas, M. M., Jr.

    Structurally efficient ways to support the large solar arrays (3,716 square meters which are currently considered for space station use) are examined. An erectable truss concept is presented for the on orbit construction of winged solar arrays. The means for future growth, maintenance, and repair are integrally designed into this concept. Results from parametric studies, which highlight the physical and structural differences between various configuration options are presented. Consideration is given to both solar blanket and hard panel arrays.

  5. Study of solar array switching power management technology for space power system

    NASA Technical Reports Server (NTRS)

    Cassinelli, J. E.

    1982-01-01

    This report documents work performed on the Solar Array Switching Power Management Study. Mission characteristics for three missions were defined to the depth necessary to determine their power management requirements. Solar array switching concepts which could satisfy the mission requirements were identified. The switching concepts were compared with a conventional buck regulator system for cost, weight and volume, reliability, efficiency and thermal control. Solar array switching provided significant advantages in all areas of comparison for the reviewed missions.

  6. Development of the solar array deployment and drive system for the XTE spacecraft

    NASA Technical Reports Server (NTRS)

    Farley, Rodger; Ngo, Son

    1995-01-01

    The X-ray Timing Explorer (XTE) spacecraft is a NASA science low-earth orbit explorer-class satellite to be launched in 1995, and is an in-house Goddard Space Flight Center (GSFC) project. It has two deployable aluminum honeycomb solar array wings with each wing being articulated by a single axis solar array drive assembly. This paper will address the design, the qualification testing, and the development problems as they surfaced of the Solar Array Deployment and Drive System.

  7. KSC-00pp1196

    NASA Image and Video Library

    2000-08-18

    Workers in the Space Station Processing Facility watch closely as Solar Array Wing-3, a component of the International Space Station, is lowered toward the Integrated Electronic Assembly where it will be installed for testing. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  8. KSC-00pp1209

    NASA Image and Video Library

    2000-08-30

    Workers in the Space Station Processing Facility prepare an overhead crane they will use to move a solar array, a component of the International Space Station, for installation onto the Integrated Equipment Assembly. The solar array is the second one being installed. They are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  9. KSC-00pp1197

    NASA Image and Video Library

    2000-08-18

    Workers in the Space Station Processing Facility watch closely as Solar Array Wing-3, a component of the International Space Station, is moved toward the Integrated Electronic Assembly where it will be installed for testing. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station’s electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station

  10. Thermal cycle testing of Space Station Freedom solar array blanket coupons

    NASA Technical Reports Server (NTRS)

    Scheiman, David A.; Schieman, David A.

    1991-01-01

    Lewis Research Center is presently conducting thermal cycle testing of solar array blanket coupons that represent the baseline design for Space Station Freedom. Four coupons were fabricated as part of the Photovoltaic Array Environment Protection (PAEP) Program, NAS 3-25079, at Lockheed Missile and Space Company. The objective of the testing is to demonstrate the durability or operational lifetime of the solar array welded interconnect design within the durability or operational lifetime of the solar array welded interconnect design within a low earth orbit (LEO) thermal cycling environment. Secondary objectives include the observation and identification of potential failure modes and effects that may occur within the solar array blanket coupons as a result of thermal cycling. The objectives, test articles, test chamber, performance evaluation, test requirements, and test results are presented for the successful completion of 60,000 thermal cycles.

  11. Ultrasonic seam welding on thin silicon solar cells

    NASA Technical Reports Server (NTRS)

    Stofel, E. J.

    1982-01-01

    The ultrathin silicon solar cell has progressed to where it is a serious candidate for future light weight or radiation tolerant spacecraft. The ultrasonic method of producing welds was found to be satisfactory. These ultrathin cells could be handled without breakage in a semiautomated welding machine. This is a prototype of a machine capable of production rates sufficiently large to support spacecraft array assembly needs. For comparative purposes, this project also welded a variety of cells with thicknesses up to 0.23 mm as well as the 0.07 mm ultrathin cells. There was no electrical degradation in any cells. The mechanical pull strength of welds on the thick cells was excellent when using a large welding force. The mechanical strength of welds on thin cells was less since only a small welding force could be used without cracking these cells. Even so, the strength of welds on thin cells appears adequate for array application. The ability of such welds to survive multiyear, near Earth orbit thermal cycles needs to be demonstrated.

  12. Photovoltaics for high capacity space power systems

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1988-01-01

    The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays of storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.

  13. Photovoltaics for high capacity space power systems

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1988-01-01

    The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays or storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.

  14. Laser-zone growth in a Ribbon-To-Ribbon (RTR) process. Silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Gurtler, R. W.; Baghdadi, A.; Legge, R.; Sopori, B.; Ellis, R. J.

    1977-01-01

    The Ribbon-to-Ribbon (RTR) approach to silicon ribbon growth is investigated. An existing RTR apparatus is to be upgraded to its full capabilities and operated routinely to investigate and optimize the effects of various growth parameters on growth results. A new RTR apparatus was constructed to incorporate increased capabilities and improvements over the first apparatus and to be capable of continuous growth. New high power lasers were implemented and this led to major improvements in growth velocity -- 4 inch/min. growth has been demonstrated. A major step in demonstration of the full feasibility of the RTR process is reported in the demonstration of RTR growth from CVD polyribbon rather than sliced polyribbon ingots. Average solar cell efficiencies of greater than 9% and a best cell efficiency of 11.7% are reported. Processing was shown to provide a substantial improvement in material minority carrier diffusion length. An economic analysis is reported which treats both the polyribbon fabrication and RTR processes.

  15. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1985-01-01

    This is a view of a solar cell blanket deployed on a water table during the Solar Array deployment test. The Hubble Space Telescope (HST) Solar Arrays provide power to the spacecraft. The arrays are mounted on opposite sides of the HST, on the forward shell of the Support Systems Module. Each array stands on a 4-foot mast that supports a retractable wing of solar panels 40-feet (12.1-meters) long and 8.2-feet (2.5-meters) wide, in full extension. The arrays rotate so that the solar cells face the Sun as much as possible to harness the Sun's energy. The Space Telescope Operations Control Center at the Goddard Space Center operates the array, extending the panels and maneuvering the spacecraft to focus maximum sunlight on the arrays. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST Solar Array was designed by the European Space Agency and built by British Aerospace. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST.

  16. The first focused hard X-ray images of the sun with NuSTAR

    DOE PAGES

    Grefenstette, Brian W.; Glesener, Lindsay; Krucker, Sam; ...

    2016-07-18

    Here, we present results from the the first campaign of dedicated solar observations undertaken by the Nuclear Spectroscopic Telescope ARray (NuSTAR) hard X-ray (HXR) telescope. Designed as an astrophysics mission, NuSTAR nonetheless has the capability of directly imaging the Sun at HXR energies (>3 keV) with an increase in sensitivity of at least two magnitude compared to current non-focusing telescopes. In this paper we describe the scientific areas where NuSTAR will make major improvements on existing solar measurements. We report on the techniques used to observe the Sun with NuSTAR, their limitations and complications, and the procedures developed to optimizemore » solar data quality derived from our experience with the initial solar observations. These first observations are briefly described, including the measurement of the Fe K-shell lines in a decaying X-class flare, HXR emission from high in the solar corona, and full-disk HXR images of the Sun.« less

  17. Results of solar electric thrust vector control system design, development and tests

    NASA Technical Reports Server (NTRS)

    Fleischer, G. E.

    1973-01-01

    Efforts to develop and test a thrust vector control system TVCS for a solar-energy-powered ion engine array are described. The results of solar electric propulsion system technology (SEPST) III real-time tests of present versions of TVCS hardware in combination with computer-simulated attitude dynamics of a solar electric multi-mission spacecraft (SEMMS) Phase A-type spacecraft configuration are summarized. Work on an improved solar electric TVCS, based on the use of a state estimator, is described. SEPST III tests of TVCS hardware have generally proved successful and dynamic response of the system is close to predictions. It appears that, if TVCS electronic hardware can be effectively replaced by control computer software, a significant advantage in control capability and flexibility can be gained in future developmental testing, with practical implications for flight systems as well. Finally, it is concluded from computer simulations that TVCS stabilization using rate estimation promises a substantial performance improvement over the present design.

  18. The first focused hard X-ray images of the sun with NuSTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grefenstette, Brian W.; Glesener, Lindsay; Krucker, Sam

    Here, we present results from the the first campaign of dedicated solar observations undertaken by the Nuclear Spectroscopic Telescope ARray (NuSTAR) hard X-ray (HXR) telescope. Designed as an astrophysics mission, NuSTAR nonetheless has the capability of directly imaging the Sun at HXR energies (>3 keV) with an increase in sensitivity of at least two magnitude compared to current non-focusing telescopes. In this paper we describe the scientific areas where NuSTAR will make major improvements on existing solar measurements. We report on the techniques used to observe the Sun with NuSTAR, their limitations and complications, and the procedures developed to optimizemore » solar data quality derived from our experience with the initial solar observations. These first observations are briefly described, including the measurement of the Fe K-shell lines in a decaying X-class flare, HXR emission from high in the solar corona, and full-disk HXR images of the Sun.« less

  19. THE FIRST FOCUSED HARD X-RAY IMAGES OF THE SUN WITH NuSTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grefenstette, Brian W.; Madsen, Kristin K.; Forster, Karl

    We present results from the the first campaign of dedicated solar observations undertaken by the Nuclear Spectroscopic Telescope ARray ( NuSTAR ) hard X-ray (HXR) telescope. Designed as an astrophysics mission, NuSTAR nonetheless has the capability of directly imaging the Sun at HXR energies (>3 keV) with an increase in sensitivity of at least two magnitude compared to current non-focusing telescopes. In this paper we describe the scientific areas where NuSTAR will make major improvements on existing solar measurements. We report on the techniques used to observe the Sun with NuSTAR , their limitations and complications, and the procedures developedmore » to optimize solar data quality derived from our experience with the initial solar observations. These first observations are briefly described, including the measurement of the Fe K-shell lines in a decaying X-class flare, HXR emission from high in the solar corona, and full-disk HXR images of the Sun.« less

  20. Internationalization of the Space Station

    NASA Technical Reports Server (NTRS)

    Lottmann, R. V.

    1985-01-01

    Attention is given to the NASA Space Station system elements whose production is under consideration by potential foreign partners. The ESA's Columbus Program declaration encompasses studies of pressurized modules, unmanned payload carriers, and ground support facilities. Canada has expressed interest in construction and servicing facilities, solar arrays, and remote sensing facilities. Japanese studies concern a multipurpose experimental module concept. Each of these foreign investments would expand Space Station capabilities and lay the groundwork for long term partnerships.

  1. Assessing the Operational Robustness of the Homer Model for Marine Corps Use in Expeditionary Environments

    DTIC Science & Technology

    2014-06-01

    systems. It can model systems including both conventional, diesel powered generators and renewable power sources such as photovoltaic arrays and wind...conducted an experiment where he assessed the capabilities of the HOMER model in forecasting the power output of a solar panel at NPS [32]. In his ex...energy efficiency in expeditionary operations, the HOMER micropower optimization model provides potential to serve as a powerful tool for improving

  2. SPS silicon reference system

    NASA Technical Reports Server (NTRS)

    Woodcock, G. R.

    1980-01-01

    The design analysis of a silicon power conversion system for the solar power satellite (SPS) is summarized. The solar array, consisting of glass encapsulated 50 micrometer silicon solar cells, is described. The general scheme for power distribution to the array/antenna interface is described. Degradation by proton irradiation is considered. The interface between the solar array and the klystron equipped power transmitter is described.

  3. Comparison of candidate solar array maximum power utilization approaches. [for spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Costogue, E. N.; Lindena, S.

    1976-01-01

    A study was made of five potential approaches that can be utilized to detect the maximum power point of a solar array while sustaining operations at or near maximum power and without endangering stability or causing array voltage collapse. The approaches studied included: (1) dynamic impedance comparator, (2) reference array measurement, (3) onset of solar array voltage collapse detection, (4) parallel tracker, and (5) direct measurement. The study analyzed the feasibility and adaptability of these approaches to a future solar electric propulsion (SEP) mission, and, specifically, to a comet rendezvous mission. Such missions presented the most challenging requirements to a spacecraft power subsystem in terms of power management over large solar intensity ranges of 1.0 to 3.5 AU. The dynamic impedance approach was found to have the highest figure of merit, and the reference array approach followed closely behind. The results are applicable to terrestrial solar power systems as well as to other than SEP space missions.

  4. Plasma chamber testing of advanced photovoltaic solar array coupons

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry

    1994-01-01

    The solar array module plasma interactions experiment is a space shuttle experiment designed to investigate and quantify the high voltage plasma interactions. One of the objectives of the experiment is to test the performance of the Advanced Photovoltaic Solar Array (APSA). The material properties of array blanket are also studied as electric insulators for APSA arrays in high voltage conditions. Three twelve cell prototype coupons of silicon cells were constructed and tested in a space simulation chamber.

  5. VLF Radio Wave Propagation Across the Day/Night Terminator

    NASA Astrophysics Data System (ADS)

    Burch, H.; Moore, R. C.

    2016-12-01

    In May 2016, a new array of VLF radio receivers was deployed spanning the East Coast of the United States. We present preliminary observations from the array, which was designed in part to track the propagation of the narrowband VLF transmitter signal, NAA (24.0 kHz), down the coast from Cutler, Maine. Amplitude, phase, and polarization observations are compared over multiple days and at different times of year to investigate the dependence of VLF propagation characteristics on solar zenith angle. Measurements are compared to simulations using the Long Wave Propagation Capability code (LWPC) in order to evaluate the accuracy of LWPC's built-in ionosphere model. Efforts to improve the ionosphere model based on observations are discussed.

  6. By-Pass Diode Temperature Tests of a Solar Array Coupon under Space Thermal Environment Conditions

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie; Wu, Gordon

    2016-01-01

    By-Pass diodes are a key design feature of solar arrays and system design must be robust against local heating, especially with implementation of larger solar cells. By-Pass diode testing was performed to aid thermal model development for use in future array designs that utilize larger cell sizes that result in higher string currents. Testing was performed on a 56-cell Advanced Triple Junction solar array coupon provided by SSL. Test conditions were vacuum with cold array backside using discrete by-pass diode current steps of 0.25 A ranging from 0 A to 2.0 A.

  7. Development of an Ultraflex-Based Thin Film Solar Array for Space Applications

    NASA Technical Reports Server (NTRS)

    White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan; Piszczor, Michael F.

    2003-01-01

    As flexible thin film photovoltaic (FTFPV) cell technology is developed for space applications, integration into a viable solar array structure that optimizes the attributes of this cell technology is critical. An advanced version of ABLE'sS UltraFlex solar array platform represents a near-term, low-risk approach to demonstrating outstanding array performance with the implementation of FTFPV technology. Recent studies indicate that an advanced UltraFlex solar array populated with 15% efficient thin film cells can achieve over 200 W/kg EOL. An overview on the status of hardware development and the future potential of this technology is presented.

  8. Development of nanostructured and surface modified semiconductors for hybrid organic-inorganic solar cells.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Julia, W. P.

    2008-09-01

    Solar energy conversion is increasingly being recognized as one of the principal ways to meet future energy needs without causing detrimental environmental impact. Hybrid organic-inorganic solar cells (SCs) are attracting particular interest due to the potential for low cost manufacturing and for use in new applications, such as consumer electronics, architectural integration and light-weight sensors. Key materials advantages of these next generation SCs over conventional semiconductor SCs are in design opportunities--since the different functions of the SCs are carried out by different materials, there are greater materials choices for producing optimized structures. In this project, we explore the hybrid organic-inorganicmore » solar cell system that consists of oxide, primarily ZnO, nanostructures as the electron transporter and poly-(3-hexylthiophene) (P3HT) as the light-absorber and hole transporter. It builds on our capabilities in the solution synthesis of nanostructured semiconducting oxide arrays to this photovoltaic (PV) technology. The three challenges in this hybrid material system for solar applications are (1) achieving inorganic nanostructures with critical spacing that matches the exciton diffusion in the polymer, {approx} 10 nm, (2) infiltrating the polymer completely into the dense nanostructure arrays, and (3) optimizing the interfacial properties to facilitate efficient charge transfer. We have gained an understanding and control over growing oriented ZnO nanorods with sub-50 nm diameters and the required rod-to-rod spacing on various substrates. We have developed novel approaches to infiltrate commercially available P3HT in the narrow spacing between ZnO nanorods. Also, we have begun to explore ways to modify the interfacial properties. In addition, we have established device fabrication and testing capabilities at Sandia for prototype devices. Moreover, the control synthesis of ZnO nanorod arrays lead to the development of an efficient anti-reflection coating for multicrystalline Si solar cells. An important component of this project is the collaboration with Dr. Dave Ginley's group at NREL. The NREL efforts, which are funded by NREL's LDRD program, focus on measuring device performance, external quantum efficiency, photoconductance through highly specialized non-contact time-resolved microwave conductivity (TRMC) measurements, and vapor phase deposition of oxide materials. The close collaboration with NREL enables us to enter this competitive field in such short time. Joint publications and presentations have resulted from this fruitful collaboration. To this date, 5 referred journal papers have resulted from this project, with 2 more in preparation. Several invited talks and numerous contributed presentations in international conferences are also noted. Sandia has gained the reputation of being one of forefront research groups on nanostructured hybrid solar cells.« less

  9. An Advanced SAGE III Instrument on the International Space Station

    NASA Astrophysics Data System (ADS)

    McCormick, M. P.; Zawodny, J. M.

    2016-12-01

    An improved and more capable SAGE III instrument is scheduled to be launched in November 2016 to the International Space Station. It will combine the experience and capabilities of its successful predecessor satellite instruments SAM II, SAGE, SAGE II, and SAGE III-Meteor to measure aerosol, cloud, O3, H2O, and NO2 profiles from the upper troposphere through the stratosphere. In addition to solar and lunar occultation with vertical resolutions of about 1.0 km, SAGE III-ISS will make limb scattering measurements on the solar side of each orbit greatly expanding the measurement coverage per spacecraft orbit, and tying in the very high resolution and precise solar occultation measurements with the limb scattering measurements. The new design incorporates an array detector that enhances its measurement capability and should allow for experimental data products like BrO, and IO, and along with a single photodiode detector the measurement of larger aerosols. The wavelengths covered by SAGE III-ISS range from 280 to 1040 nm with 1 to 2 mm spectral resolution using a grating spectrometer. The single photodiode extends measurements to 1550 nm. This talk will describe the measurement capabilities of SAGE III, its additional modes and increased geographical coverage, its calibration and characterization, and data archival and validation approach. In addition, examples of past data products important to climate, and ozone recovery, will be discussed as will the expanded contributions from SAGE III-ISS.

  10. Hubble Space telescope thermal cycle test report for large solar array samples with BSFR cells (Sample numbers 703 and 704)

    NASA Technical Reports Server (NTRS)

    Alexander, D. W.

    1992-01-01

    The Hubble space telescope (HST) solar array was designed to meet specific output power requirements after 2 years in low-Earth orbit, and to remain operational for 5 years. The array, therefore, had to withstand 30,000 thermal cycles between approximately +100 and -100 C. The ability of the array to meet this requirement was evaluated by thermal cycle testing, in vacuum, two 128-cell solar cell modules that exactly duplicated the flight HST solar array design. Also, the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit was evaluated by performing a cold-roll test using one module.

  11. Space Station Freedom solar array containment box mechanisms

    NASA Technical Reports Server (NTRS)

    Johnson, Mark E.; Haugen, Bert; Anderson, Grant

    1994-01-01

    Space Station Freedom will feature six large solar arrays, called solar array wings, built by Lockheed Missiles & Space Company under contract to Rockwell International, Rocketdyne Division. Solar cells are mounted on flexible substrate panels which are hinged together to form a 'blanket.' Each wing is comprised of two blankets supported by a central mast, producing approximately 32 kW of power at beginning-of-life. During launch, the blankets are fan-folded and compressed to 1.5 percent of their deployed length into containment boxes. This paper describes the main containment box mechanisms designed to protect, deploy, and retract the solar array blankets: the latch, blanket restraint, tension, and guidewire mechanisms.

  12. Enhanced photovoltaic performance of an inclined nanowire array solar cell.

    PubMed

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2015-11-30

    An innovative solar cell based on inclined p-i-n nanowire array is designed and analyzed. The results show that the inclined geometry can sufficiently increase the conversion efficiency of solar cells by enhancing the absorption of light in the active region. By tuning the nanowire array density, nanowire diameter, nanowire length, as well as the proportion of intrinsic region of the inclined nanowire solar cell, a remarkable efficiency in excess of 16% can be obtained in GaAs. Similar results have been obtained in InP and Si nanowire solar cells, demonstrating the universality of the performance enhancement of inclined nanowire arrays.

  13. High voltage solar cell power generating system for regulated solar array development

    NASA Technical Reports Server (NTRS)

    Levy, E., Jr.; Hoffman, A. C.

    1973-01-01

    A laboratory solar power system regulated by on-panel switches has been delivered for operating high power (3 kw), high voltage (15,000 volt) loads (communication tubes, ion thrusters). The modular system consists of 26 solar arrays, each with an integral light source and cooling system. A typical array contains 2560 series-connected cells. Each light source consists of twenty 500 watt tungsten iodide lamps providing plus or minus 5 per cent uniformity at one solar constant. An array temperature of less than 40 C is achieved using an infrared filter, a water cooled plate, a vacuum hold-down system, and air flushing.

  14. Stretched Lens Array Photovoltaic Concentrator Technology Developed

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; O'Neill, Mark J.

    2004-01-01

    Solar arrays have been and continue to be the mainstay in providing power to nearly all commercial and government spacecraft. Light from the Sun is directly converted into electrical energy using solar cells. One way to reduce the cost of future space power systems is by minimizing the size and number of expensive solar cells by focusing the sunlight onto smaller cells using concentrator optics. The stretched lens array (SLA) is a unique concept that uses arched Fresnel lens concentrators to focus sunlight onto a line of high-efficiency solar cells located directly beneath. The SLA concept is based on the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) design that was used on NASA's New Millennium Deep Space 1 mission. The highly successful asteroid/comet rendezvous mission (1998 to 2001) demonstrated the performance and long-term durability of the SCARLET/SLA solar array design and set the foundation for further improvements to optimize its performance.

  15. Early commercial demonstration of space solar power using ultra-lightweight arrays

    NASA Astrophysics Data System (ADS)

    Reed, Kevin; Willenberg, Harvey J.

    2009-11-01

    Space solar power shows great promise for future energy sources worldwide. Most central power stations operate with power capacity of 1000 MW or greater. Due to launch size limitations and specific power of current, rigid solar arrays, the largest solar arrays that have flown in space are around 50 kW. Thin-film arrays offer the promise of much higher specific power and deployment of array sizes up to several MW with current launch vehicles. An approach to early commercial applications for space solar power to distribute power to charge hand-held, mobile battery systems by wireless power transmission (WPT) from thin-film solar arrays in quasi-stationary orbits will be presented. Four key elements to this prototype will be discussed: (1) Space and near-space testing of prototype wireless power transmission by laser and microwave components including WPT space to space and WPT space to near-space HAA transmission demonstrations; (2) distributed power source for recharging hand-held batteries by wireless power transmission from MW space solar power systems; (3) use of quasi-geostationary satellites to generate electricity and distribute it to targeted areas; and (4) architecture and technology for ultra-lightweight thin-film solar arrays with specific energy exceeding 1 kW/kg. This approach would yield flight demonstration of space solar power and wireless power transmission of 1.2 MW. This prototype system will be described, and a roadmap will be presented that will lead to still higher power levels.

  16. Validation of International Space Station Electrical Performance Model via On-orbit Telemetry

    NASA Technical Reports Server (NTRS)

    Jannette, Anthony G.; Hojnicki, Jeffrey S.; McKissock, David B.; Fincannon, James; Kerslake, Thomas W.; Rodriguez, Carlos D.

    2002-01-01

    The first U.S. power module on International Space Station (ISS) was activated in December 2000. Comprised of solar arrays, nickel-hydrogen (NiH2) batteries, and a direct current power management and distribution (PMAD) system, the electric power system (EPS) supplies power to housekeeping and user electrical loads. Modeling EPS performance is needed for several reasons, but primarily to assess near-term planned and off-nominal operations and because the EPS configuration changes over the life of the ISS. The System Power Analysis for Capability Evaluation (SPACE) computer code is used to assess the ISS EPS performance. This paper describes the process of validating the SPACE EPS model via ISS on-orbit telemetry. To accomplish this goal, telemetry was first used to correct assumptions and component models in SPACE. Then on-orbit data was directly input to SPACE to facilitate comparing model predictions to telemetry. It will be shown that SPACE accurately predicts on-orbit component and system performance. For example, battery state-of-charge was predicted to within 0.6 percentage points over a 0 to 100 percent scale and solar array current was predicted to within a root mean square (RMS) error of 5.1 Amps out of a typical maximum of 220 Amps. First, SPACE model predictions are compared to telemetry for the ISS EPS components: solar arrays, NiH2 batteries, and the PMAD system. Second, SPACE predictions for the overall performance of the ISS EPS are compared to telemetry and again demonstrate model accuracy.

  17. APSA - A new generation of photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Stella, P. M.; Kurland, R. M.

    1989-01-01

    This paper provides details on the Advanced Photovoltaic Solar Array (APSA) wing design, fabrication, and testing. The impact of array size change on performance and mechanical characteristics is discussed. Projections for future performance enhancements that may be expected through the use of advanced solar cells presently under development are examined.

  18. LSSA (Low-cost Silicon Solar Array) project

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Photovoltaic Conversion Program was established to find methods of economically generating enough electrical power to meet future requirements. Activities and progress in the following areas are discussed: silicon-refinement processes; silicon-sheet-growth techniques; encapsulants; manufacturing of off-the-shelf solar arrays; and procurement of semistandardized solar arrays.

  19. Cost study of solar cell space power systems.

    NASA Technical Reports Server (NTRS)

    Bernatowicz, D. T.

    1972-01-01

    A study of historical costs for solar cell space power systems was made by a NASA ad hoc study group. The study covered thirteen missions that represented a broad cross-section of flight projects over the past decade. Fully burdened costs in terms of 1971 dollars are presented for the system and the solar array. The costs correlate reasonably well with array area and do not increase in proportion to array area. The trends for array costs support the contention that solar cell and module standardization would reduce costs.

  20. Study of Power Options for Jupiter and Outer Planet Missions

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Fincannon, James

    2015-01-01

    Power for missions to Jupiter and beyond presents a challenging goal for photovoltaic power systems, but NASA missions including Juno and the upcoming Europa Clipper mission have shown that it is possible to operate solar arrays at Jupiter. This work analyzes photovoltaic technologies for use in Jupiter and outer planet missions, including both conventional arrays, as well as analyzing the advantages of advanced solar cells, concentrator arrays, and thin film technologies. Index Terms - space exploration, spacecraft solar arrays, solar electric propulsion, photovoltaic cells, concentrator, Fresnel lens, Jupiter missions, outer planets.

  1. Large area pulsed solar simulator

    NASA Technical Reports Server (NTRS)

    Kruer, Mark A. (Inventor)

    1999-01-01

    An advanced solar simulator illuminates the surface a very large solar array, such as one twenty feet by twenty feet in area, from a distance of about twenty-six feet with an essentially uniform intensity field of pulsed light of an intensity of one AMO, enabling the solar array to be efficiently tested with light that emulates the sun. Light modifiers sculpt a portion of the light generated by an electrically powered high power Xenon lamp and together with direct light from the lamp provide uniform intensity illumination throughout the solar array, compensating for the square law and cosine law reduction in direct light intensity, particularly at the corner locations of the array. At any location within the array the sum of the direct light and reflected light is essentially constant.

  2. Spacecraft Charging Current Balance Model Applied to High Voltage Solar Array Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Pour, Maria Z. A.

    2016-01-01

    Spacecraft charging induced by high voltage solar arrays can result in power losses and degradation of spacecraft surfaces. In some cases, it can even present safety issues for astronauts performing extravehicular activities. An understanding of the dominant processes contributing to spacecraft charging induced by solar arrays is important to current space missions, such as the International Space Station, and to any future space missions that may employ high voltage solar arrays. A common method of analyzing the factors contributing to spacecraft charging is the current balance model. Current balance models are based on the simple idea that the spacecraft will float to a potential such that the current collecting to the surfaces equals the current lost from the surfaces. However, when solar arrays are involved, these currents are dependent on so many factors that the equation becomes quite complicated. In order for a current balance model to be applied to solar array operations, it must incorporate the time dependent nature of the charging of dielectric surfaces in the vicinity of conductors1-3. This poster will present the factors which must be considered when developing a current balance model for high voltage solar array operations and will compare results of a current balance model with data from the Floating Potential Measurement Unit4 on board the International Space Station.

  3. The Impact of Solar Arrays on Arid Soil Hydrology: Some Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Berli, M.; Koonce, J.; Shillito, R.; Dijkema, J.; Ghezzehei, T. A.; Yu, Z.

    2016-12-01

    Hot deserts are prime locations for solar energy generation but also recognized as particularly fragile environments. Minimizing the impact of facility-scale solar installations on desert environments is therefore of increasing concern. This study focuses on the impact of photovoltaic solar arrays on the water balance of arid soil underneath the array. The goal was to explore whether concentrated rainwater infiltration along the solar panel drip lines would lead to deeper infiltration and an increase in soil water storage in the long term. A two-dimensional HYDRUS model was developed to simulate rainwater infiltration into the soil within a photovoltaic solar array. Results indicate that rainwater infiltrates deeper below the drip lines compared to the areas between solar panels but only for coarse textured soil. Finer-textured soils redistribute soil moisture horizontally and the concentrating effect of solar panels on rainwater infiltration appears to be small.

  4. Definition study for photovoltaic residential prototype system

    NASA Technical Reports Server (NTRS)

    Imamura, M. S.; Hulstrom, R. L.; Cookson, C.; Waldman, B. H.; Lane, R. A.

    1976-01-01

    A parametric sensitivity study and definition of the conceptual design is presented. A computer program containing the solar irradiance, solar array, and energy balance models was developed to determine the sensitivities of solar insolation and the corresponding solar array output at five sites selected for this study as well as the performance of several solar array/battery systems. A baseline electrical configuration was chosen, and three design options were recommended. The study indicates that the most sensitive parameters are the solar insolation and the inverter efficiency. The baseline PST selected is comprised of a 133 sg m solar array, 250 ampere hour battery, one to three inverters, and a full shunt regulator to limit the upper solar array voltage. A minicomputer controlled system is recommended to provide the overall control, display, and data acquisition requirements. Architectural renderings of two photovoltaic residential concepts, one above ground and the other underground, are presented. The institutional problems were defined in the areas of legal liabilities during and after installation of the PST, labor practices, building restrictions and architectural guides, and land use.

  5. KSC-2014-4580

    NASA Image and Video Library

    2014-11-24

    CAPE CANAVERAL, Fla. – Workers conduct a light test on the solar arrays on NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, in the Building 1 high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for early 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky

  6. KSC-2014-4578

    NASA Image and Video Library

    2014-11-24

    CAPE CANAVERAL, Fla. – The solar arrays on NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, are unfurled in the Building 1 high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for early 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky

  7. KSC-2014-4582

    NASA Image and Video Library

    2014-11-24

    CAPE CANAVERAL, Fla. – Workers conduct a light test on the solar arrays on NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, in the Building 1 high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for early 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky

  8. KSC-2014-4581

    NASA Image and Video Library

    2014-11-24

    CAPE CANAVERAL, Fla. – Workers conduct a light test on the solar arrays on NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, in the Building 1 high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for early 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky

  9. Mechanical and Electrical Properties of a Polyimide Film Significantly Enhanced by the Addition of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2005-01-01

    Single-wall carbon nanotubes have been shown to possess a combination of outstanding mechanical, electrical, and thermal properties. The use of carbon nanotubes as an additive to improve the mechanical properties of polymers and/or enhance their thermal and electrical conductivity has been a topic of intense interest. Nanotube-modified polymeric materials could find a variety of applications in NASA missions including large-area antennas, solar arrays, and solar sails; radiation shielding materials for vehicles, habitats, and extravehicular activity suits; and multifunctional materials for vehicle structures and habitats. Use of these revolutionary materials could reduce vehicle weight significantly and improve vehicle performance and capabilities.

  10. Predictive performance modeling framework for a novel enclosed particle receiver configuration and application for thermochemical energy storage

    DOE PAGES

    Martinek, Janna; Wendelin, Timothy; Ma, Zhiwen

    2018-04-05

    Concentrating solar power (CSP) plants can provide dispatchable power with a thermal energy storage capability for increased renewable-energy grid penetration. Particle-based CSP systems permit higher temperatures, and thus, potentially higher solar-to-electric efficiency than state-of-the-art molten-salt heat-transfer systems. This paper describes a detailed numerical analysis framework for estimating the performance of a novel, geometrically complex, enclosed particle receiver design. The receiver configuration uses arrays of small tubular absorbers to collect and subsequently transfer solar energy to a flowing particulate medium. The enclosed nature of the receiver design renders it amenable to either an inert heat-transfer medium, or a reactive heat-transfer medium that requires a controllable ambient environment. The numerical analysis framework described in this study is demonstrated for the case of thermal reduction of CaCr 0.1Mn 0.9O 3-more » $$\\delta$$ for thermochemical energy storage. The modeling strategy consists of Monte Carlo ray tracing for absorbed solar-energy distributions from a surround heliostat field, computational fluid dynamics modeling of small-scale local tubular arrays, surrogate response surfaces that approximately capture simulated tubular array performance, a quasi-two-dimensional reduced-order description of counter-flow reactive solids and purge gas, and a radiative exchange model applied to embedded-cavity structures at the size scale of the full receiver. In this work we apply the numerical analysis strategy to a single receiver configuration, but the framework can be generically applicable to alternative enclosed designs. In conclusion, we assess sensitivity of receiver performance to surface optical properties, heat-transfer coefficients, solids outlet temperature, and purge-gas feed rates, and discuss the significance of model assumptions and results for future receiver development.« less

  11. Predictive performance modeling framework for a novel enclosed particle receiver configuration and application for thermochemical energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinek, Janna; Wendelin, Timothy; Ma, Zhiwen

    Concentrating solar power (CSP) plants can provide dispatchable power with a thermal energy storage capability for increased renewable-energy grid penetration. Particle-based CSP systems permit higher temperatures, and thus, potentially higher solar-to-electric efficiency than state-of-the-art molten-salt heat-transfer systems. This paper describes a detailed numerical analysis framework for estimating the performance of a novel, geometrically complex, enclosed particle receiver design. The receiver configuration uses arrays of small tubular absorbers to collect and subsequently transfer solar energy to a flowing particulate medium. The enclosed nature of the receiver design renders it amenable to either an inert heat-transfer medium, or a reactive heat-transfer medium that requires a controllable ambient environment. The numerical analysis framework described in this study is demonstrated for the case of thermal reduction of CaCr 0.1Mn 0.9O 3-more » $$\\delta$$ for thermochemical energy storage. The modeling strategy consists of Monte Carlo ray tracing for absorbed solar-energy distributions from a surround heliostat field, computational fluid dynamics modeling of small-scale local tubular arrays, surrogate response surfaces that approximately capture simulated tubular array performance, a quasi-two-dimensional reduced-order description of counter-flow reactive solids and purge gas, and a radiative exchange model applied to embedded-cavity structures at the size scale of the full receiver. In this work we apply the numerical analysis strategy to a single receiver configuration, but the framework can be generically applicable to alternative enclosed designs. In conclusion, we assess sensitivity of receiver performance to surface optical properties, heat-transfer coefficients, solids outlet temperature, and purge-gas feed rates, and discuss the significance of model assumptions and results for future receiver development.« less

  12. Modular High-Energy Systems for Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Carrington, Connie K.; Marzwell, Neville I.; Mankins, John C.

    2006-01-01

    Modular High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure located in space to support a variety of exploration scenarios as well as provide a supplemental source of energy during peak demands to ground grid systems. Abundant renewable energy at lunar or other locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, electric propulsion, wireless avionics, autonomous in space rendezvous and docking, servicing, and robotic assembly. It would also provide an energy-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper summary a preliminary design concept for a 100-kWe solar-powered satellite system to demonstrate in-flight a variety of advanced technologies, each as a separate payload. These technologies include, but are not limited to state-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging to enable the 100-kW satellite feasible to launch on one existing launch vehicle. Higher voltage arrays and power distribution systems (PDS) reduce or eliminate the need for massive power converters, and could enable direct-drive of high-voltage solar electric thrusters.

  13. Silicon solar photovoltaic power stations

    NASA Technical Reports Server (NTRS)

    Chowaniec, C. R.; Ferber, R. R.; Pittman, P. F.; Marshall, B. W.

    1977-01-01

    Modular design of components and arrays, cost estimates for modules and support structures, and cost/performance analysis of a central solar photovoltaic power plant are discussed. Costs of collector/reflector arrays are judged the dominant element in the total capital investment. High-concentration solar tracking arrays are recommended as the most economic means for producing solar photovoltaic energy when solar cells costs are high ($500 per kW generated). Capital costs for power conditioning subsystem components are itemized and system busbar energy costs are discussed at length.

  14. Process of making solar cell module

    DOEpatents

    Packer, M.; Coyle, P.J.

    1981-03-09

    A process is presented for the manufacture of solar cell modules. A solution comprising a highly plasticized polyvinyl butyral is applied to a solar cell array. The coated array is dried and sandwiched between at last two sheets of polyvinyl butyral and at least two sheets of a rigid transparent member. The sandwich is laminated by the application of heat and pressure to cause fusion and bonding of the solar cell array with the rigid transparent members to produce a solar cell module.

  15. The Cryogenic AntiCoincidence detector for ATHENA X-IFU: a scientific assessment of the observational capabilities in the hard X-ray band

    NASA Astrophysics Data System (ADS)

    D'Andrea, M.; Lotti, S.; Macculi, C.; Piro, L.; Argan, A.; Gatti, F.

    2017-12-01

    ATHENA is a large X-ray observatory, planned to be launched by ESA in 2028 towards an L2 orbit. One of the two instruments of the payload is the X-IFU: a cryogenic spectrometer based on a large array of TES microcalorimeters, able to perform integral field spectrography in the 0.2-12 keV band (2.5 eV FWHM at 6 keV). The X-IFU sensitivity is highly degraded by the particle background expected in the L2 orbit, which is induced by primary protons of both galactic and solar origin, and mostly by secondary electrons. To reduce the particle background level and enable the mission science goals, the instrument incorporates a Cryogenic AntiCoincidence detector (CryoAC). It is a 4 pixel TES based detector, placed < 1 mm below the main array. In this paper we report a scientific assessment of the CryoAC observational capabilities in the hard X-ray band (E > 10 keV). The aim of the study has been to understand if the present detector design can be improved in order to enlarge the X-IFU scientific capability on an energy band wider than the TES array. This is beyond the CryoAC baseline, being this instrument aimed to operate as anticoincidence particle detector and not conceived to perform X-ray observations.

  16. High-Power Solar Electric Propulsion for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David; Hack, Kurt

    2014-01-01

    NASA has sought to utilize high-power solar electric propulsion as means of improving the affordability of in-space transportation for almost 50 years. Early efforts focused on 25 to 50 kilowatt systems that could be used with the Space Shuttle, while later efforts focused on systems nearly an order of magnitude higher power that could be used with heavy lift launch vehicles. These efforts never left the concept development phase in part because the technology required was not sufficiently mature. Since 2012 the NASA Space Technology Mission Directorate has had a coordinated plan to mature the requisite solar array and electric propulsion technology needed to implement a 30 to 50 kilowatt solar electric propulsion technology demonstration mission. Multiple solar electric propulsion technology demonstration mission concepts have been developed based on these maturing technologies with recent efforts focusing on an Asteroid Redirect Robotic Mission. If implemented, the Asteroid Redirect Vehicle will form the basis for a capability that can be cost-effectively evolved over time to provide solar electric propulsion transportation for a range of follow-on mission applications at power levels in excess of 100 kilowatts.

  17. Optical Analysis of Transparent Polymeric Material Exposed to Simulated Space Environment

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Finckenor, Miria M.

    2000-01-01

    Many innovations in spacecraft power and propulsion have been recently tested at NASA, particularly in non-chemical propulsion. One improvement in solar array technology is solar concentration using thin polymer film Fresnel lenses. Weight and cost savings were proven with the Solar Concentrator Arrays with Refractive Linear Element Technology (SCARLET)-II array on NASA's Deep Space I spacecraft. The Fresnel lens concentrates solar energy onto high-efficiency solar cells, decreasing the area of solar cells needed for power. Continued efficiency of this power system relies on the thin film's durability in the space environment and maintaining transmission in the 300 - 1000 nm bandwidth. Various polymeric materials have been tested for use in solar concentrators, including Lexan(TM), polyethylene terephthalate (PET), several formulations of Tefzel(Tm) and Teflon(TM), and DC 93-500, the material selected for SCARLET-II. Also tested were several innovative materials including Langley Research Center's CPI and CP2 polymers and atomic oxygen- resistant polymers developed by Triton Systems, Inc. The Environmental Effects Group of the Marshall Space Flight Center's Materials, Processes, and Manufacturing Department exposed these materials to simulated space environment and evaluated them for any change in optical transmission. Samples were exposed to a minimum of 1000 equivalent Sun hours of near-UV radiation (250 - 400 nm wavelength). Materials that appeared robust after near-UV exposure were then exposed to charged particle radiation equivalent to a five-year dose in geosynchronous orbit. These exposures were performed in MSFC's Combined Environmental Effects Test Chamber, a unique facility with the capability to expose materials simultaneously or sequentially to protons, low-energy electrons, high-energy electrons, near UV radiation and vacuum UV radiation. Reflectance measurements can be made on the samples in vacuum. Prolonged exposure to the space environment will decrease the polymer film's transmission and thus reduce the conversion efficiency. A method was developed to normalize the transmission loss and thus rank the materials according to their tolerance to space environmental exposure. Spectral results and the material ranking according to transmission loss are presented.

  18. Solar Hot Water Heater

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  19. Unbiased Sunlight-Driven Artificial Photosynthesis of Carbon Monoxide from CO2 Using a ZnTe-Based Photocathode and a Perovskite Solar Cell in Tandem.

    PubMed

    Jang, Youn Jeong; Jeong, Inyoung; Lee, Jaehyuk; Lee, Jinwoo; Ko, Min Jae; Lee, Jae Sung

    2016-07-26

    Solar fuel production, mimicking natural photosynthesis of converting CO2 into useful fuels and storing solar energy as chemical energy, has received great attention in recent years. Practical large-scale fuel production needs a unique device capable of CO2 reduction using only solar energy and water as an electron source. Here we report such a system composed of a gold-decorated triple-layered ZnO@ZnTe@CdTe core-shell nanorod array photocathode and a CH3NH3PbI3 perovskite solar cell in tandem. The assembly allows effective light harvesting of higher energy photons (>2.14 eV) from the front-side photocathode and lower energy photons (>1.5 eV) from the back-side-positioned perovskite solar cell in a single-photon excitation. This system represents an example of a photocathode-photovoltaic tandem device operating under sunlight without external bias for selective CO2 conversion. It exhibited a steady solar-to-CO conversion efficiency over 0.35% and a solar-to-fuel conversion efficiency exceeding 0.43% including H2 as a minor product.

  20. NREL Adds Solar Array Field to Help Inform Consumers | NREL

    Science.gov Websites

    PV modules at NREL's new solar array field. Workers install PV modules just north of the NREL parking be Added Each Year Once completed, the new solar array field will house four rows of PV modules. The the lifetime of a PV system, and that increases the per-kilowatt-hour cost of generating solar

  1. InSight Lander Solar Array Test

    NASA Image and Video Library

    2018-01-23

    The solar arrays on NASA's InSight Mars lander were deployed as part of testing conducted Jan. 23, 2018, at Lockheed Martin Space in Littleton, Colorado. Engineers and technicians evaluated the solar arrays and performed an illumination test to confirm that the solar cells were collecting power. The launch window for InSight opens May 5, 2018. A video is available at https://photojournal.jpl.nasa.gov/catalog/PIA22205

  2. Solar array flight experiment

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Emerging satellite designs require increasing amounts of electrical power to operate spacecraft instruments and to provide environments suitable for human habitation. In the past, electrical power was generated by covering rigid honeycomb panels with solar cells. This technology results in unacceptable weight and volume penalties when large amounts of power are required. To fill the need for large-area, lightweight solar arrays, a fabrication technique in which solar cells are attached to a copper printed circuit laminated to a plastic sheet was developed. The result is a flexible solar array with one-tenth the stowed volume and one-third the weight of comparably sized rigid arrays. An automated welding process developed to attack the cells to the printed circuit guarantees repeatable welds that are more tolerant of severe environments than conventional soldered connections. To demonstrate the flight readiness of this technology, the Solar Array Flight Experiment (SAFE) was developed and flown on the space shuttle Discovery in September 1984. The tests showed the modes and frequencies of the array to be very close to preflight predictions. Structural damping, however, was higher than anticipated. Electrical performance of the active solar panel was also tested. The flight performance and postflight data evaluation are described.

  3. Usable Electricity from the Sun.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This brochure gives an overview to solar photovoltaic energy production. Some of the topics discussed are: (1) solar cell construction; (2) parallel and series cell arrays; (3) effects of location on solar cell array performance; (4) solar economics; (5) space aplications of solar photovoltaic power; and (6) terrestrial applications of solar…

  4. NASA Solar Array Demonstrates Commercial Potential

    NASA Technical Reports Server (NTRS)

    Creech, Gray

    2006-01-01

    A state-of-the-art solar-panel array demonstration site at NASA's Dryden Flight Research Center provides a unique opportunity for studying the latest in high-efficiency solar photovoltaic cells. This five-kilowatt solar-array site (see Figure 1) is a technology-transfer and commercialization success for NASA. Among the solar cells at this site are cells of a type that was developed in Dryden Flight Research Center s Environmental Research Aircraft and Sensor Technology (ERAST) program for use in NASA s Helios solar-powered airplane. This cell type, now denoted as A-300, has since been transferred to SunPower Corporation of Sunnyvale, California, enabling mass production of the cells for the commercial market. High efficiency separates these advanced cells from typical previously commercially available solar cells: Whereas typical previously commercially available cells are 12 to 15 percent efficient at converting sunlight to electricity, these advanced cells exhibit efficiencies approaching 23 percent. The increase in efficiency is due largely to the routing of electrical connections behind the cells (see Figure 2). This approach to increasing efficiency originated as a solution to the problem of maximizing the degree of utilization of the limited space available atop the wing of the Helios airplane. In retrospect, the solar cells in use at this site could be used on Helios, but the best cells otherwise commercially available could not be so used, because of their lower efficiencies. Historically, solar cells have been fabricated by use of methods that are common in the semiconductor industry. One of these methods includes the use of photolithography to define the rear electrical-contact features - diffusions, contact openings, and fingers. SunPower uses these methods to produce the advanced cells. To reduce fabrication costs, SunPower continues to explore new methods to define the rear electrical-contact features. The equipment at the demonstration site includes two fixed-angle solar arrays and one single-axis Sun-tracking array. One of the fixed arrays contains typical less-efficient commercial solar cells and is being used as a baseline for comparison of the other fixed array, which contains the advanced cells. The Sun-tracking array tilts to follow the Sun, using an advanced, real-time tracking device rather than customary pre-programmed mechanisms. Part of the purpose served by the demonstration is to enable determination of any potential advantage of a tracking array over a fixed array. The arrays are monitored remotely on a computer that displays pertinent information regarding the functioning of the arrays.

  5. Solar power generation system for reducing leakage current

    NASA Astrophysics Data System (ADS)

    Wu, Jinn-Chang; Jou, Hurng-Liahng; Hung, Chih-Yi

    2018-04-01

    This paper proposes a transformer-less multi-level solar power generation system. This solar power generation system is composed of a solar cell array, a boost power converter, an isolation switch set and a full-bridge inverter. A unipolar pulse-width modulation (PWM) strategy is used in the full-bridge inverter to attenuate the output ripple current. Circuit isolation is accomplished by integrating the isolation switch set between the solar cell array and the utility, to suppress the leakage current. The isolation switch set also determines the DC bus voltage for the full-bridge inverter connecting to the solar cell array or the output of the boost power converter. Accordingly, the proposed transformer-less multi-level solar power generation system generates a five-level voltage, and the partial power of the solar cell array is also converted to AC power using only the full-bridge inverter, so the power efficiency is increased. A prototype is developed to validate the performance of the proposed transformer-less multi-level solar power generation system.

  6. Very Large Array Observations of the Sun with Related Observations Using the SMM (Solar Maximum Mission) Satellite

    DTIC Science & Technology

    1988-10-12

    white light sunspots (black dotsl but these regions are associated with intense radiation at 20 cm wave- material would, however, be invisible in X...spots. The intense , million degree radiation at 6 cm lies above sunspot umbrae in coronal regions where the longitudinal magnetic field strength Hi...capable of measuring the radio intensity and polarization with high angular and time resolution, thereby providing information about the preburst heating

  7. International Space Station Electric Power System Performance Code-SPACE

    NASA Technical Reports Server (NTRS)

    Hojnicki, Jeffrey; McKissock, David; Fincannon, James; Green, Robert; Kerslake, Thomas; Delleur, Ann; Follo, Jeffrey; Trudell, Jeffrey; Hoffman, David J.; Jannette, Anthony; hide

    2005-01-01

    The System Power Analysis for Capability Evaluation (SPACE) software analyzes and predicts the minute-by-minute state of the International Space Station (ISS) electrical power system (EPS) for upcoming missions as well as EPS power generation capacity as a function of ISS configuration and orbital conditions. In order to complete the Certification of Flight Readiness (CoFR) process in which the mission is certified for flight each ISS System must thoroughly assess every proposed mission to verify that the system will support the planned mission operations; SPACE is the sole tool used to conduct these assessments for the power system capability. SPACE is an integrated power system model that incorporates a variety of modules tied together with integration routines and graphical output. The modules include orbit mechanics, solar array pointing/shadowing/thermal and electrical, battery performance, and power management and distribution performance. These modules are tightly integrated within a flexible architecture featuring data-file-driven configurations, source- or load-driven operation, and event scripting. SPACE also predicts the amount of power available for a given system configuration, spacecraft orientation, solar-array-pointing conditions, orbit, and the like. In the source-driven mode, the model must assure that energy balance is achieved, meaning that energy removed from the batteries must be restored (or balanced) each and every orbit. This entails an optimization scheme to ensure that energy balance is maintained without violating any other constraints.

  8. A New Generation of Electrical Power Supply for Telecom Satellites

    NASA Astrophysics Data System (ADS)

    Bouhours, Gilles; Asplanato, Remi; Rebuffel, Christophe; Pasquet, Jean-Marie; Bardin, Bertrand; Deplus, Nicolas; Lempereur, Vincent

    2014-08-01

    This paper presents the main features of the new power subsystem generation for the Thales Alenia Space (TAS) Spacebus platforms.All its components (Solar Array, Solar Array Drive Mechanism, Power Conditioning Unit and Lithium-Ion batteries) have been upgraded, taking advantage of the latest available technologies. The modularity has been improved to perfectly match the sizing of each unit to the satellite power level requirement. These two improvements lead to optimal mass and cost over the whole power range.In addition, the customer benefits from a fully automatic operation of the subsystem, including redundancy, making the ground station workload negligible, even during eclipse periods. Finally, the capability to support any type of payload has been further improved, in terms of overall power level and operating modes. Payload pulsed operation capability has been especially increased to support all anticipated mission requirements. In parallel to the PCU hardware, a detailed electrical model has also been developed and correlated to analyse the regulation performance in any nominal or degraded mode. An extensive set of tests provides a verification of performances and interfaces, hardware as well as software.This paper will first describe the main requirements considered in this development. Then, the architecture will be detailed, showing how the requirements have been fulfilled. The design of each unit will be shortly presented, and finally the correlation between the regulation analysis model and the EQM measurements will be illustrated.

  9. Reliability analysis of the solar array based on Fault Tree Analysis

    NASA Astrophysics Data System (ADS)

    Jianing, Wu; Shaoze, Yan

    2011-07-01

    The solar array is an important device used in the spacecraft, which influences the quality of in-orbit operation of the spacecraft and even the launches. This paper analyzes the reliability of the mechanical system and certifies the most vital subsystem of the solar array. The fault tree analysis (FTA) model is established according to the operating process of the mechanical system based on DFH-3 satellite; the logical expression of the top event is obtained by Boolean algebra and the reliability of the solar array is calculated. The conclusion shows that the hinges are the most vital links between the solar arrays. By analyzing the structure importance(SI) of the hinge's FTA model, some fatal causes, including faults of the seal, insufficient torque of the locking spring, temperature in space, and friction force, can be identified. Damage is the initial stage of the fault, so limiting damage is significant to prevent faults. Furthermore, recommendations for improving reliability associated with damage limitation are discussed, which can be used for the redesigning of the solar array and the reliability growth planning.

  10. The arcing rate for a High Voltage Solar Array - Theory, experiment and predictions

    NASA Technical Reports Server (NTRS)

    Hastings, Daniel E.; Cho, Mengu; Kuninaka, Hitoshi

    1992-01-01

    All solar arrays have biased surfaces which can be exposed to the space environment. It has been observed that when the array bias is less than a few hundred volts negative then the exposed conductive surfaces may undergo arcing in the space plasma. A theory for arcing is developed on these high voltage solar arrays which ascribes the arcing to electric field runaway at the interface of the plasma, conductor and solar cell dielectric. Experiments were conducted in the laboratory for the High Voltage Solar Array (HVSA) experiment which will fly on the Japanese Space Flyer Unit (SFU) in 1994. The theory was compared in detail to the experiment and shown to give a reasonable explanation for the data. The combined theory and ground experiments were then used to develop predictions for the SFU flight.

  11. Arcing rates for High Voltage Solar Arrays - Theory, experiment, and predictions

    NASA Technical Reports Server (NTRS)

    Hastings, Daniel E.; Cho, Mengu; Kuninaka, Hitoshi

    1992-01-01

    All solar arrays have biased surfaces that can be exposed to the space environment. It has been observed that when the array bias is less than a few hundred volts negative, then the exposed conductive surfaces may undergo arcing in the space plasma. A theory for arcing is developed on these high voltage solar arrays that ascribes the arcing to electric field runaway at the interface of the plasma, conductor, and solar cell dielectric. Experiments were conducted in the laboratory for the High Voltage Solar Array experiment that will fly on the Japanese Space Flyer Unit (SFU) in 1994. The theory was compared in detail with the experiment and shown to give a reasonable explanation for the data. The combined theory and ground experiments were then used to develop predictions for the SFU flight.

  12. STS-74/MIR Photogrammetric Appendage Structural Dynamics Experiment Preliminary Data Analysis

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Welch, Sharon S.; Pappa, Richard S.; Demeo, Martha E.

    1997-01-01

    The Photogrammetric Appendage Structural Dynamics Experiment was designed, developed, and flown to demonstrate and prove measurement of the structural vibration response of a Russian Space Station Mir solar array using photogrammetric methods. The experiment flew on the STS-74 Space Shuttle mission to Mir in November 1995 and obtained video imagery of solar array structural response to various excitation events. The video imagery has been digitized and triangulated to obtain response time history data at discrete points on the solar array. This data has been further processed using the Eigensystem Realization Algorithm modal identification technique to determine the natural vibration frequencies, damping, and mode shapes of the solar array. The results demonstrate that photogrammetric measurement of articulating, nonoptically targeted, flexible solar arrays and appendages is a viable, low-cost measurement option for the International Space Station.

  13. The Solar Array Photovoltaic Assembly for the INSAT 4CR Spacecraft Design, Development and In-Orbit Performance

    NASA Astrophysics Data System (ADS)

    Thomas, Joseph; Sudhakar, M.; Agarwal, Anil; Sankaran, M.; Mudramachary, P.

    2008-09-01

    The INSAT 4CR spacecraft, the third in the INSAT 4 series of Indian Space Research Organization (ISRO)'s Communication satellite program, is a high power communication satellite in Geo- stationary Earth Orbit (GEO), configured using the ISRO I2K bus. The primary power is provided by two-wing sun tracking, deployable solar array and the eclipse load requirement is supported by two 70 Ah nickel hydrogen batteries. The power output of the solar array is regulated by Sequential Switching Shunt Regulators to 42V±0.5V. The salient feature of the solar array design is that it uses the new generation multi junction solar cells for all the four panels of size 2.54m x 1.525m to meet the higher power requirement with the available array area. The solar panel fabrication process with the Advanced Triple Junction (ATJ) solar cells from M/s. EMCORE, USA, has been demonstrated for the GEO life cycle through qualification coupon fabrication and testing.This paper describes the INSAT 4CR solar array photovoltaic assemblies design, layout optimization and realization of the Flight Model (FM) panels. It focuses on the power generation prediction, electrical performance measurement under Large Area Pulsed Sun Simulator (LAPSS) and verification of the ground level test results. The indigenously built Geostationary Launch Vehicle (GSLV F04) has successfully launched the INSAT 4CR spacecraft into the orbit on September 2nd, 2007. This paper also presents the analysis of telemetry data to validate the initial phase in-orbit performance of the solar array with prediction.

  14. Assessment of High-Voltage Photovoltaic Technologies for the Design of a Direct Drive Hall Effect Thruster Solar Array

    NASA Technical Reports Server (NTRS)

    Mikellides, I. G.; Jongeward, G. A.; Schneider, T.; Carruth, M. R.; Peterson, T.; Kerslake, T. W.; Snyder, D.; Ferguson, D.; Hoskins, A.

    2004-01-01

    A three-year program to develop a Direct Drive Hall-Effect Thruster system (D2HET) begun in 2001 as part of the NASA Advanced Cross-Enterprise Technology Development initiative. The system, which is expected to reduce significantly the power processing, complexity, weight, and cost over conventional low-voltage systems, will employ solar arrays that operate at voltages higher than (or equal to) 300 V. The lessons learned from the development of the technology also promise to become a stepping-stone for the production of the next generation of power systems employing high voltage solar arrays. This paper summarizes the results from experiments conducted mainly at the NASA Marshal Space Flight Center with two main solar array technologies. The experiments focused on electron collection and arcing studies, when the solar cells operated at high voltages. The tests utilized small coupons representative of each solar array technology. A hollow cathode was used to emulate parts of the induced environment on the solar arrays, mostly the low-energy charge-exchange plasma (1012-1013 m-3 and 0.5-1 eV). Results and conclusions from modeling of electron collection are also summarized. The observations from the total effort are used to propose a preliminary, new solar array design for 2 kW and 30-40 kW class, deep space missions that may employ a single or a cluster of Hall- Effect thrusters.

  15. Efficient structures for geosynchronous spacecraft solar arrays. Phase 1, 2 and 3

    NASA Astrophysics Data System (ADS)

    Adams, L. R.; Hedgepeth, J. M.

    1981-09-01

    Structural concepts for deploying and supporting lightweight solar-array blankets for geosynchronous electrical power are evaluated. It is recommended that the STACBEAM solar-array system should be the object of further study and detailed evaluation. The STACBEAM system provides high stiffness at low mass, and with the use of a low mass deployment mechanism, full structural properties can be maintained throughout deployment. The stowed volume of the STACBEAM is acceptably small, and its linear deployment characteristic allows periodic attachments to the solar-array blanket to be established in the stowed configuration and maintained during deployment.

  16. Efficient structures for geosynchronous spacecraft solar arrays. Phase 1, 2 and 3

    NASA Technical Reports Server (NTRS)

    Adams, L. R.; Hedgepeth, J. M.

    1981-01-01

    Structural concepts for deploying and supporting lightweight solar-array blankets for geosynchronous electrical power are evaluated. It is recommended that the STACBEAM solar-array system should be the object of further study and detailed evaluation. The STACBEAM system provides high stiffness at low mass, and with the use of a low mass deployment mechanism, full structural properties can be maintained throughout deployment. The stowed volume of the STACBEAM is acceptably small, and its linear deployment characteristic allows periodic attachments to the solar-array blanket to be established in the stowed configuration and maintained during deployment.

  17. Compact, semi-passive beam steering prism array for solar concentrators.

    PubMed

    Zheng, Cheng; Li, Qiyuan; Rosengarten, Gary; Hawkes, Evatt; Taylor, Robert A

    2017-05-10

    In order to maximize solar energy utilization in a limited space (e.g., rooftops), solar collectors should track the sun. As an alternative to rotational tracking systems, this paper presents a compact, semi-passive beam steering prism array which has been designed, analyzed, and tested for solar applications. The proposed prism array enables a linear concentrator system to remain stationary so that it can integrate with a variety of different solar concentrators, and which should be particularly useful for systems which require a low profile (namely rooftop-mounted systems). A case study of this prism array working within a specific rooftop solar collector demonstrates that it can boost the average daily optical efficiency of the collector by 32.7% and expand its effective working time from 6 h to 7.33 h. Overall, the proposed design provides an alternative way to "follow" the sun for a wide range of solar thermal and photovoltaic concentrator systems.

  18. Feasibility study of a 110 watt per kilogram lightweight solar array system

    NASA Technical Reports Server (NTRS)

    Shepard, N. F.; Stahle, C. V.; Hanson, K. L.; Schneider, A.; Blomstrom, L. E.; Hansen, W. T.; Kirpich, A.

    1973-01-01

    The feasibility of a 10,000 watt solar array panel which has a minimum power-to-mass ratio of 110 watt/kg is discussed. The application of this ultralightweight solar array to three possible missions was investigated. With the interplanetary mission as a baseline, the constraining requirements for a geosynchronous mission and for a manned space station mission are presented. A review of existing lightweight solar array system concepts revealed that changes in the system approach are necessary to achieve the specified 110 watt/kg goal. A comprehensive review of existing component technology is presented in the areas of thin solar cells, solar cell covers, welded interconnectors, substrates and deployable booms. Advances in the state-of-the-art of solar cell and deployable boom technology were investigated. System level trade studies required to select the optimum boom bending stiffness, system aspect ratio, bus voltage level, and solar cell circuit arrangement are reported. Design analysis tasks included the thermal analysis of the solar cell blanket, thermal stress analysis of the solar cell interconnectors/substrate, and the thermostructural loading of the deployed boom.

  19. Space satellite power system. [conversion of solar energy by photovoltaic solar cell arrays

    NASA Technical Reports Server (NTRS)

    Glaser, P. E.

    1974-01-01

    The concept of a satellite solar power station was studied. It is shown that it offers the potential to meet a significant portion of future energy needs, is pollution free, and is sparing of irreplaceable earth resources. Solar energy is converted by photovoltaic solar cell arrays to dc energy which in turn is converted into microwave energy in a large active phased array. The microwave energy is beamed to earth with little attenuation and is converted back to dc energy on the earth. Economic factors are considered.

  20. Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array

    NASA Astrophysics Data System (ADS)

    Lv, Zhibin; Yu, Jiefeng; Wu, Hongwei; Shang, Jian; Wang, Dan; Hou, Shaocong; Fu, Yongping; Wu, Kai; Zou, Dechun

    2012-02-01

    A type of highly efficient completely flexible fiber-shaped solar cell based on TiO2 nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm-2) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO2 nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies.A type of highly efficient completely flexible fiber-shaped solar cell based on TiO2 nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm-2) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO2 nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11532h

  1. Feasibility study of a 110 watt per kilogram lightweight solar array system

    NASA Technical Reports Server (NTRS)

    Shepard, N. F.; Stahle, C. V.; Schneider, A.; Hanson, K. L.

    1972-01-01

    An investigation of the feasibility of a solar array panel subsystem which will produce 10,000 watts of electrical output at 1 A.U. with an overall beginning-of-life power-to-weight ratio of at least 110 watt/kg is reported. A description of the current baseline configuration which meets these requirements is presented. A parametric analysis of the single boom, two blanket planar solar array system was performed to arrive at the optimum system aspect ratio. A novel concept for the stiffening of a lightweight solar array by canting the solar cell blankets at a small angle to take advantage of the inherent in-plane stiffness to increase the symmetric out-of-plane frequency is introduced along with a preliminary analysis of the stiffening effect. A comparison of welded and soldered solar cell interconnections leads to the conclusion that welding is required on this ultralightweight solar array. The use of a boron/aluminum composite material in a BI-STEM type deployable boom is investigated as a possible advancement in the state-of-the-art.

  2. P6 Truss solar array, SABB and PV Radiator seen during EVA 3

    NASA Image and Video Library

    2005-08-03

    Photograph documenting the P6 Truss Solar Array Wing (SAW), Mast Canisters, Photovoltaic (PV) Radiator and Solar Array Blanket Boxes (SABB) as seen by the STS-114 crew during the third of three Extravehicular Activities (EVAs) of the mission. Part of the orbiter Discovery's nosecone is visible in the upper right of the frame.

  3. A review of the solar array manufacturing industry costing standards

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The solar array manufacturing industry costing standards model is designed to compare the cost of producing solar arrays using alternative manufacturing processes. Constructive criticism of the methodology used is intended to enhance its implementation as a practical design tool. Three main elements of the procedure include workbook format and presentation, theoretical model validity and standard financial parameters.

  4. Design and development of a solar array drive. [a direct drive solar array pointing mechanism

    NASA Technical Reports Server (NTRS)

    Rees, T.; Standing, J. M.

    1977-01-01

    The design and development of a dry lubricated direct drive solar array pointing mechanism is discussed for use on the Orbital Test Satellite (OTS), MAROTS, European Communication Satellite (ECS), and others. Results of life testing the original prototype and the OTS mechanism are presented together with an appraisal of expected future development.

  5. Astronauts Akers and Thornton remove one of HST solar arrays during EVA

    NASA Image and Video Library

    1993-12-06

    STS061-95-075 (6 Dec 1993) --- Astronauts Kathryn C. Thornton and Thomas D. Akers work to remove one of the solar arrays on the Hubble Space Telescope (HST) on the second of five extravehicular activity?s (EVA). The two space walkers later replaced both solar array panels. Part of Australia is in the background.

  6. A 928 sq m (10000 sq ft) solar array

    NASA Technical Reports Server (NTRS)

    Lindberg, D. E.

    1972-01-01

    As the power requirements for space vehicles increases, the area of solar arrays that convert solar energy to usable electrical power increases. The requirements for a 928 sq m (10,000 sq ft) array, its design, and a full-scale demonstration of one quadrant (232 sq m (2500 sq ft)) deployed in a one-g field are described.

  7. MuSICa at GRIS: a prototype image slicer for EST at GREGOR

    NASA Astrophysics Data System (ADS)

    Calcines, A.; Collados, M.; López, R. L.

    2013-05-01

    This communication presents a prototype image slicer for the 4-m European Solar Telescope (EST) designed for the spectrograph of the 1.5-m GREGOR solar telescope (GRIS). The design of this integral field unit has been called MuSICa (Multi-Slit Image slicer based on collimator-Camera). It is a telecentric system developed specifically for the integral field, high resolution spectrograph of EST and presents multi-slit capability, reorganizing a bidimensional field of view of 80 arcsec^{2} into 8 slits, each one of them with 200 arcsec length × 0.05 arcsec width. It minimizes the number of optical components needed to fulfil this multi-slit capability, three arrays of mirrors: slicer, collimator and camera mirror arrays (the first one flat and the other two spherical). The symmetry of the layout makes it possible to overlap the pupil images associated to each part of the sliced entrance field of view. A mask with only one circular aperture is placed at the pupil position. This symmetric characteristic offers some advantages: facilitates the manufacturing process, the alignment and reduces the costs. In addition, it is compatible with two modes of operation: spectroscopic and spectro-polarimetric, offering a great versatility. The optical quality of the system is diffraction-limited. The prototype will improve the performances of GRIS at GREGOR and is part of the feasibility study of the integral field unit for the spectrographs of EST. Although MuSICa has been designed as a solar image slicer, its concept can also be applied to night-time astronomical instruments (Collados et al. 2010, Proc. SPIE, Vol. 7733, 77330H; Collados et al. 2012, AN, 333, 901; Calcines et al. 2010, Proc. SPIE, Vol. 7735, 77351X)

  8. Low-cost solar array project progress and plans

    NASA Technical Reports Server (NTRS)

    Callaghan, W. T.

    1981-01-01

    The considered project is part of the DOE Photovoltaic Technology and Market Development Program. This program is concerned with the development and the utilization of cost-competitive photovoltaic systems. The project has the objective to develop, by 1986, the national capability to manufacture low-cost, long-life photovoltaic arrays at production rates that will realize economies of scale, and at a price of less than $0.70/watt. The array performance objectives include an efficiency greater than 10% and an operating lifetime longer than 20 years. The objective of the silicon material task is to establish the practicality of processes for producing silicon suitable for terrestrial photovoltaic applications at a price of $14/kg. The large-area sheet task is concerned with the development of process technology for sheet formation. Low-cost encapsulation material systems are being developed in connection with the encapsulation task. Another project goal is related to the development of economical process sequences.

  9. Solar array stepping problems in satellites and solutions

    NASA Astrophysics Data System (ADS)

    Maharana, P. K.; Goel, P. S.

    1992-01-01

    The dynamics problems arising due to stepping motion of the solar arrays of spacecraft are studied. To overcome these problems, design improvements in the drive logic based on the phase plane analysis are suggested. The improved designs are applied to the Solar Array Drive Assembly (SADA) of IRS-1B and INSAT-2A satellites. In addition, an alternate torquing strategy for very successful slewing of the arrays, and with minimum excitation of flexible modes, is proposed.

  10. A simplified solar cell array modelling program

    NASA Technical Reports Server (NTRS)

    Hughes, R. D.

    1982-01-01

    As part of the energy conversion/self sufficiency efforts of DSN engineering, it was necessary to have a simplified computer model of a solar photovoltaic (PV) system. This article describes the analysis and simplifications employed in the development of a PV cell array computer model. The analysis of the incident solar radiation, steady state cell temperature and the current-voltage characteristics of a cell array are discussed. A sample cell array was modelled and the results are presented.

  11. Electrical Performance of the International Space Station U.S. Photovoltaic Array During Bifacial Illumination

    NASA Technical Reports Server (NTRS)

    Delleur, Ann M.; Kerslake, Thomas W.

    2002-01-01

    With the first United States (U.S.) photovoltaic array (PVA) activated on International Space Station (ISS) in December 2000, on-orbit data can now be compared to analytical predictions. Due to ISS operational constraints, it is not always possible to point the front side of the arrays at the Sun. Thus, in many cases, sunlight directly illuminates the backside of the PVA as well as albedo illumination on either the front or the back. During this time, appreciable power is produced since the solar cells are mounted on a thin, solar transparent substrate. It is important to present accurate predictions for both front and backside power generation for mission planning, certification of flight readiness for a given mission, and on-orbit mission support. To provide a more detailed assessment of the ISS power production capability, the authors developed a PVA electrical performance model applicable to generalized bifacial illumination conditions. On-orbit PVA performance data were also collected and analyzed. This paper describes the ISS PVA performance model, and the methods used to reduce orbital performance data. Analyses were performed using SPACE. a NASA-GRC developed computer code for the ISS program office. Results showed a excellent comparison of on-orbit performance data and analytical results.

  12. NASA Tech Briefs, March 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics covered include: 1) Advanced Signal Conditioners for Data-Acquisition Systems; 2) Downlink Data Multiplexer; 3) Viewing ISS Data in Real Time via the Internet; 4) Autonomous Environment-Monitoring Networks; 5) Readout of DSN Monitor Data; 6) Parallel-Processing Equalizers for Multi-Gbps Communications; 7) AIN-Based Packaging for SiC High-Temperature Electronics; 8) Software for Optimizing Quality Assurance of Other Software; 9) The TechSat 21 Autonomous Sciencecraft Experiment; 10) Software for Analyzing Laminar-to-Turbulent Flow Transitions; 11) Elastomer Filled With Single-Wall Carbon Nanotubes; 12) Modifying Ship Air-Wake Vortices for Aircraft Operations; 13) Strain-Gauge Measurement of Weight of Fluid in a Tank; 14) Advanced Docking System With Magnetic Initial Capture; 15) Blade-Pitch Control for Quieting Tilt-Rotor Aircraft; 16) Solar Array Panels With Dust-Removal Capability; 17) Aligning Arrays of Lenses and Single-Mode Optical Fibers; 18) Automatic Control of Arc Process for Making Carbon Nanotubes; 19) Curved-Focal-Plane Arrays Using Deformed-Membrane Photodetectors; 20) Role of Meteorology in Flights of a Solar-Powered Airplane; 21) Model of Mixing Layer With Multicomponent Evaporating Drops; 22) Solution-Assisted Optical Contacting; 23) Improved Discrete Approximation of Laplacian of Gaussian; 24) Utilizing Expert Knowledge in Estimating Future STS Costs; 25) Study of Rapid-Regression Liquefying Hybrid Rocket Fuels; and 26) More About the Phase-Synchronized Enhancement Method.

  13. An introduction to the Astro Edge solar array

    NASA Technical Reports Server (NTRS)

    Spence, B. R.; Marks, G. W.

    1994-01-01

    The Astro Edge solar array is a new and innovative low concentrator power generating system which has been developed for applications requiring high specific power, high stiffness, low risk, light modular construction which utilizes conventional materials and technology, and standard photovoltaic solar cells and laydown processes. Mechanisms, restraint/release devices, wiring harnesses, substrates, and support structures are designed to be simple, functional, lightweight, and modular. A brief overview of the Astro Edge solar array is discussed.

  14. Spraylon fluorocarbon encapsulation for silicon solar cell arrays

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A development program was performed for evaluating, modifying, and optimizing the Lockheed formulated liquid transparent filmforming Spraylon fluorocarbon protective coating for silicon solar cells and modules. The program objectives were designed to meet the requirements of the low-cost automated solar cell array fabrication process. As part of the study, a computer program was used to establish the limits of the safe working stress in the coated silicon solar cell array system under severe thermal shock.

  15. Evolutionary growth for Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Marshall, Matthew Fisk; Mclallin, Kerry; Zernic, Mike

    1989-01-01

    Over an operational lifetime of at least 30 yr, Space Station Freedom will encounter increased Space Station user requirements and advancing technologies. The Space Station electrical power system is designed with the flexibility to accommodate these emerging technologies and expert systems and is being designed with the necessary software hooks and hardware scars to accommodate increased growth demand. The electrical power system is planned to grow from the initial 75 kW up to 300 kW. The Phase 1 station will utilize photovoltaic arrays to produce the electrical power; however, for growth to 300 kW, solar dynamic power modules will be utilized. Pairs of 25 kW solar dynamic power modules will be added to the station to reach the power growth level. The addition of solar dynamic power in the growth phase places constraints in the initial Space Station systems such as guidance, navigation, and control, external thermal, truss structural stiffness, computational capabilities and storage, which must be planned-in, in order to facilitate the addition of the solar dynamic modules.

  16. Array automated assembly task, phase 2. Low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Rhee, S. S.; Jones, G. T.; Allison, K. T.

    1978-01-01

    Several modifications instituted in the wafer surface preparation process served to significantly reduce the process cost to 1.55 cents per peak watt in 1975 cents. Performance verification tests of a laser scanning system showed a limited capability to detect hidden cracks or defects, but with potential equipment modifications this cost effective system could be rendered suitable for applications. Installation of electroless nickel plating system was completed along with an optimization of the wafer plating process. The solder coating and flux removal process verification test was completed. An optimum temperature range of 500-550 C was found to produce uniform solder coating with the restriction that a modified dipping procedure is utilized. Finally, the construction of the spray-on dopant equipment was completed.

  17. The environment workbench: A design tool for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Jongeward, Gary A.; Kuharski, Robert A.; Rankin, Thomas V.; Wilcox, Katherine G.; Roche, James C.

    1991-01-01

    The environment workbench (EWB) is being developed for NASA by S-CUBED to provide a standard tool that can be used by the Space Station Freedom (SSF) design and user community for requirements verification. The desktop tool will predict and analyze the interactions of SSF with its natural and self-generated environments. A brief review of the EWB design and capabilities is presented. Calculations using a prototype EWB of the on-orbit floating potentials and contaminant environment of SSF are also presented. Both the positive and negative grounding configurations for the solar arrays are examined to demonstrate the capability of the EWB to provide quick estimates of environments, interactions, and system effects.

  18. Commerical (terrestrial) and modified solar array design studies for low cost, low power space applications

    NASA Technical Reports Server (NTRS)

    Kolecki, J. C.; Riley, T. J.

    1980-01-01

    The suitability of commercial (terrestrial) solar arrays for use in low Earth orbit is examined. It is shown that commercial solar arrays degrade under thermal cycling because of material flexure, and that certain types of silicones used in the construction of these arrays outgas severely. Based on the results, modifications were made. The modified array retains the essential features of typical commercial arrays and can be easily built by commercial fabrication techniques at low cost. The modified array uses a metal tray for containment, but eliminates the high outgassing potting materials and glass cover sheets. Cells are individually mounted with an adhesive and individually covered with glass cover slips, or clear plastic tape. The modified array is found to withstand severe thermal cycling for long intervals of time.

  19. Methods for utilizing maximum power from a solar array

    NASA Technical Reports Server (NTRS)

    Decker, D. K.

    1972-01-01

    A preliminary study of maximum power utilization methods was performed for an outer planet spacecraft using an ion thruster propulsion system and a solar array as the primary energy source. The problems which arise from operating the array at or near the maximum power point of its 1-V characteristic are discussed. Two closed loop system configurations which use extremum regulators to track the array's maximum power point are presented. Three open loop systems are presented that either: (1) measure the maximum power of each array section and compute the total array power, (2) utilize a reference array to predict the characteristics of the solar array, or (3) utilize impedance measurements to predict the maximum power utilization. The advantages and disadvantages of each system are discussed and recommendations for further development are made.

  20. Solar collector array

    DOEpatents

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  1. Quality assessment of solar UV irradiance measured with array spectroradiometers

    NASA Astrophysics Data System (ADS)

    Egli, L.; Gröbner, J.; Hülsen, G.; Bachmann, L.; Blumthaler, M.; Dubard, J.; Khazova, M.; Kift, R.; Hoogendijk, K.; Serrano, A.; Smedley, A. R. D.; Vilaplana, J.-M.

    2015-12-01

    The reliable quantification of ultraviolet (UV) radiation at the Earth's surface requires accurate measurements of spectral global solar UV irradiance in order to determine the UV exposure to human skin and to understand long-term trends in this parameter. Array spectroradiometers are small, light, robust and cost effective instruments and are increasingly used for spectral irradiance measurements. Within the European EMRP-ENV03 project "Solar UV", new devices, guidelines, and characterization methods have been developed to improve solar UV measurements with array spectroradiometers and support to the end-user community has been provided. In order to assess the quality of 14 end-user array spectroradiometers, a solar UV intercomparison was held on the measurement platform of the World Radiation Center (PMOD/WRC) in Davos, Switzerland, from 10 to 17 July 2014. The results of the intercomparison revealed that array spectroradiometers, currently used for solar UV measurements, show a large variation in the quality of their solar UV measurements. Most of the instruments overestimate the erythema weighted UV index - in particular at low solar zenith angles - due to stray light contribution in the UV-B range. The spectral analysis of global solar UV irradiance further supported the finding that the uncertainties in the UV-B range are very large due to stray light contribution in this wavelength range. In summary, the UV index may be detected by some commercially available array spectroradiometer within 5 % compared to the world reference spectroradiometer, if well characterized and calibrated, but only for a limited range or solar zenith angle. Generally, the tested instruments are not yet suitable for solar UV measurements for the entire range between 290 to 400 nm under all atmospheric conditions.

  2. 77 FR 17456 - Buy American Exception Under the American Recovery and Reinvestment Act of 2009

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ...,000.00 to Adon Construction for the construction of a 120kw photovoltaic solar array system to be built in eight 15kw sub-arrays at NIST's WWVH radio station in Kauai, HI. The objective of the solar... Recovery Act), for inverters necessary for the construction of a solar array system at NIST's WWVH radio...

  3. The concentration principle applied to spaceborne solar arrays. Application to the coorbiting platform mission: Studies synthesis

    NASA Astrophysics Data System (ADS)

    Laget, R.

    1986-01-01

    Studies that led to selection of the distributed concentration biplane concept for the solar cell generator to be flown on the coorbiting platform mission, and the major characteristics of such a spaceborne solar array are summarized. It is concluded that there is not a considerable interest in concentration either for array area reduction or cost reduction, although improvements of 15% for both domains are feasible. Only predevelopment activities to verify concentrator performances and system studies to assess respective importance of cost and area saving may increase the level of interest of concentrator solar arrays for this kind of mission.

  4. Novel anti-reflection technology for GaAs single-junction solar cells using surface patterning and Au nanoparticles.

    PubMed

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Kim, Sangin; Rotermund, Fabian; Lim, Hanjo; Lee, Jaejin

    2012-07-01

    Single-junction GaAs solar cell structures were grown by low-pressure MOCVD on GaAs (100) substrates. Micro-rod arrays with diameters of 2 microm, 5 microm, and 10 microm were fabricated on the surfaces of the GaAs solar cells via photolithography and wet chemical etching. The patterned surfaces were coated with Au nanoparticles using an Au colloidal solution. Characteristics of the GaAs solar cells with and without the micro-rod arrays and Au nanoparticles were investigated. The short-circuit current density of the GaAs solar cell with 2 microm rod arrays and Au nanoparticles increased up to 34.9% compared to that of the reference cell without micro-rod arrays and Au nanoparticles. The conversion efficiency of the GaAs solar cell that was coated with Au nanoparticles on the patterned surface with micro-rod arrays can be improved from 14.1% to 19.9% under 1 sun AM 1.5G illumination. These results show that micro-rod arrays and Au nanoparticle coating can be applied together in surface patterning to achieve a novel cost-effective anti-reflection technology.

  5. Pathfinder in flight over Hawaii

    NASA Image and Video Library

    1997-08-28

    Pathfinder, NASA's solar-powered, remotely-piloted aircraft is shown while it was conducting a series of science flights to highlight the aircraft's science capabilities while collecting imagery of forest and coastal zone ecosystems on Kauai, Hawaii. The flights also tested two new scientific instruments, a high spectral resolution Digital Array Scanned Interferometer (DASI) and a high spatial resolution Airborne Real-Time Imaging System (ARTIS). The remote sensor payloads were designed by NASA's Ames Research Center, Moffett Field, California, to support NASA's Mission to Planet Earth science programs.

  6. Pathfinder over runway in Hawaii

    NASA Image and Video Library

    1997-08-28

    Pathfinder, NASA's solar-powered, remotely-piloted aircraft is shown while it was conducting a series of science flights to highlight the aircraft's science capabilities while collecting imagery of forest and coastal zone ecosystems on Kauai, Hawaii. The flights also tested two new scientific instruments, a high-spectral-resolution Digital Array Scanned Interferometer (DASI) and a high-spatial-resolution Airborne Real-Time Imaging System (ARTIS). The remote sensor payloads were designed by NASA's Ames Research Center, Moffett Field, California, to support NASA's Mission to Planet Earth science programs.

  7. Eddy current damper

    NASA Technical Reports Server (NTRS)

    Ellis, R. C.; Fink, R. A.; Rich, R. W.

    1989-01-01

    A high torque capacity eddy current damper used as a rate limiting device for a large solar array deployment mechanism is discussed. The eddy current damper eliminates the problems associated with the outgassing or leaking of damping fluids. It also provides performance advantages such as damping torque rates, which are truly linear with respect to input speed, continuous 360 degree operation in both directions of rotation, wide operating temperature range, and the capability of convenient adjustment of damping rates by the user without disassembly or special tools.

  8. The mariner 9 power subsystem design and flight performance

    NASA Technical Reports Server (NTRS)

    Josephs, R. H.

    1973-01-01

    The design and flight performance of the Mariner Mars 1971 power subsystem are presented. Mariner 9 was the first spacecraft to orbit another planet, and some of the power management techniques employed to support an orbital mission far from earth with marginal sunlight for its photovoltaic-battery power source are described. The performance of its nickel-cadmium battery during repetitive sun occultation phases of the mission, and the results of unique tests in flight to assess the performance capability of its solar array are reported.

  9. Low cost solar array project: Experimental process system development unit for producing semiconductor-grade silicon using silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design, fabrication, and installation of an experimental process system development unit (EPSDU) were analyzed. Supporting research and development were performed to provide an information data base usable for the EPSDU and for technological design and economical analysis for potential scale-up of the process. Iterative economic analyses were conducted for the estimated product cost for the production of semiconductor grade silicon in a facility capable of producing 1000-MT/Yr.

  10. Landsat 7 Solar Array Testing Experiences

    NASA Technical Reports Server (NTRS)

    Helfrich, Daniel

    2000-01-01

    This paper covers the extensive Landsat 7 solar array flight qualification testing effort. Details of the mechanical design of the solar array and its retention/release system are presented. A testing chronology is provided beginning with the onset of problems encountered at the subsystem level and carrying through the third and final powered-spacecraft ground deployment test. Design fixes and other changes are explained in the same order as they became necessary to flight-qualify the array. Some interesting lessons learned are included along with key references.

  11. LSA Low-cost Solar Array project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Low-Cost Silicon Solar Array Project during the period October through December, 1977 are reported. The LSSA Project is assigned responsibility for advancing silicon solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.

  12. Thruster array design approaches for a solar electric propulsion Encke Flyby mission

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1973-01-01

    Design approaches are described and evaluated for a mercury electron-bombardment ion thruster array. Such an array might be used on a solar electric interplanetary spacecraft that obtains electrical energy from large solar panels. Thruster array designs are described and evaluated as they would apply to an Encke Flyby mission. Besides several well known approaches, a new concept utilizing individual two-axis gimbal actuators on each thruster is described and shown to have many structural and thermal advantages.

  13. Anti-static coat for solar arrays

    NASA Astrophysics Data System (ADS)

    Fellas, C. N.

    1982-06-01

    A Kapton based composite material, suitable as a substrate for flexible solar arrays, was designed, constructed and tested under electron energies ranging from 5 to 30 keV. The rear of the array under adverse eclipse conditions (-197 C) produced voltages well below the discharge threshold. An antistatic coat suitable as a front cover for solar arrays is also described. The thermal and optical transmission characteristics were tested and are satisfactory, but the UV and particle degradation of the Tedlar material needs to be evaluated.

  14. Highlighting the history of Japanese radio astronomy. 5: The 1950 Osaka solar grating array proposal

    NASA Astrophysics Data System (ADS)

    Wendt, Harry; Orchiston, Wayne; Ishiguro, Masato; Nakamura, Tsuko

    2017-04-01

    In November 1950, a paper was presented at the 5th Annual Assembly of the Physical Society of Japan that outlined the plan for a radio frequency grating array, designed to provide high-resolution observations of solar radio emission at 3.3 GHz. This short paper provides details of the invention of this array, which occurred independently of W.N. Christiansen's invention of the solar grating array in Australia at almost the same time.

  15. Low-cost Solar Array (LSA) project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Low-Cost Solar Array Project are described for the period April through June 1978. The Project is assigned responsibility for advancing solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.

  16. An approach for configuring space photovoltaic tandem arrays based on cell layer performance

    NASA Technical Reports Server (NTRS)

    Flora, C. S.; Dillard, P. A.

    1991-01-01

    Meeting solar array performance goals of 300 W/Kg requires use of solar cells with orbital efficiencies greater than 20 percent. Only multijunction cells and cell layers operating in tandem produce this required efficiency. An approach for defining solar array design concepts that use tandem cell layers involve the following: transforming cell layer performance at standard test conditions to on-orbit performance; optimizing circuit configuration with tandem cell layers; evaluating circuit sensitivity to cell current mismatch; developing array electrical design around selected circuit; and predicting array orbital performance including seasonal variations.

  17. Laboratory Simulations of CME-Solar Wind Interactions Using a Coaxial Gun and Background Plasma

    NASA Astrophysics Data System (ADS)

    Wallace, B. H.; Zhang, Y.; Fisher, D.; Gilmore, M.

    2016-12-01

    Understanding and predicting solar coronal mass ejections (CMEs) is of critical importance for mitigating their disruptive behavior on ground- and space-based technologies. While predictive models of CME propagation and evolution have relied primarily on sparse in-situ data along with ground and satellite images for validation purposes, emerging laboratory efforts have shown that CME-like events can be created with parameters applicable to the solar regime that may likewise aid in predictive modeling. A modified version of the coaxial plasma gun from the Plasma Bubble Expansion Experiment (PBEX) [A. G. Lynn, Y. Zhang, S. C. Hsu, H. Li, W. Liu, M. Gilmore, and C. Watts, Bull. Amer. Phys. Soc. 52, 53 (2007)] will be used in conjunction with the Helicon-Cathode (HelCat) basic plasma science device in order to observe the magnetic characteristics of CMEs as they propagate through the solar wind. The evolution of these interactions will be analyzed using a multi-tip Langmuir probe array, a 33-position B-dot probe array, and a high speed camera. The results of this investigation will be used alongside the University of Michigan's BATS-R-US 3-D MHD numerical code, which will be used to perform simulations of the coaxial plasma gun experiment. The results of these two approaches will be compared in order to validate the capabilities of the BATS-R-US code as well as to further our understanding of magnetic reconnection and other processes that take place as CMEs propagate through the solar wind. The details of the experimental setup as well as the analytical approach are discussed.

  18. Development of a polysilicon process based on chemical vapor deposition, phase 1 and phase 2

    NASA Technical Reports Server (NTRS)

    Plahutnik, F.; Arvidson, A.; Sawyer, D.; Sharp, K.

    1982-01-01

    High-purity polycrystalline silicon was produced in an experimental, intermediate and advanced CVD reactor. Data from the intermediate and advanced reactors confirmed earlier results obtained in the experimental reactor. Solar cells were fabricated by Westinghouse Electric and Applied Solar Research Corporation which met or exceeded baseline cell efficiencies. Feedstocks containing trichlorosilane or silicon tetrachloride are not viable as etch promoters to reduce silicon deposition on bell jars. Neither are they capable of meeting program goals for the 1000 MT/yr plant. Post-run CH1 etch was found to be a reasonably effective method of reducing silicon deposition on bell jars. Using dichlorosilane as feedstock met the low-cost solar array deposition goal (2.0 gh-1-cm-1), however, conversion efficiency was approximately 10% lower than the targeted value of 40 mole percent (32 to 36% achieved), and power consumption was approximately 20 kWh/kg over target at the reactor.

  19. Performance trade studies of a solar electric orbit transfer mission

    NASA Astrophysics Data System (ADS)

    Sutton, D. M.; McLain, M. G.; Kechichian, J. A.

    An analysis of several electric orbit transfer trade studies investigating the performance of a solar-powered electric orbit transfer vehicle (EOTV) is presented. One trade illustrates how the greatest payload capability for time-of-flight constrained transfers can be obtained by optimizing specific impulse. Various methods of reducing the accumulated fluence of charged particles during transit are evaluated in a second trade study. The reduction in fluence obtained by shaping the trajectory to avoid high radiation flux density regions is compared with reductions obtained by using a hybrid chemical/electric vehicle, by additional radiation-protective coverslide material added to the solar array, and by increasing the power of the vehicle. It is shown that a trajectory shaped to minimize fluence may be an advantage to the complete EOTV design. A final trade study shows how park orbit altitude influences the initial thrust-to-drag ratio of an EOTV.

  20. Solar electric propulsion for Mars transport vehicles

    NASA Technical Reports Server (NTRS)

    Hickman, J. M.; Curtis, H. B.; Alexander, S. W.; Gilland, J. H.; Hack, K. J.; Lawrence, C.; Swartz, C. K.

    1990-01-01

    Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed.

  1. A new pre-loaded beam geometric stiffness matrix with full rigid body capabilities

    NASA Astrophysics Data System (ADS)

    Bosela, P. A.; Fertis, D. G.; Shaker, F. J.

    1992-09-01

    Space structures, such as the Space Station solar arrays, must be extremely light-weight, flexible structures. Accurate prediction of the natural frequencies and mode shapes is essential for determining the structural adequacy of components, and designing a controls system. The tension pre-load in the 'blanket' of photovoltaic solar collectors, and the free/free boundary conditions of a structure in space, causes serious reservations on the use of standard finite element techniques of solution. In particular, a phenomenon known as 'grounding', or false stiffening, of the stiffness matrix occurs during rigid body rotation. The authors have previously shown that the grounding phenomenon is caused by a lack of rigid body rotational capability, and is typical in beam geometric stiffness matrices formulated by others, including those which contain higher order effects. The cause of the problem was identified as the force imbalance inherent in the formulations. In this paper, the authors develop a beam geometric stiffness matrix for a directed force problem, and show that the resultant global stiffness matrix contains complete rigid body mode capabilities, and performs very well in the diagonalization methodology customarily used in dynamic analysis.

  2. High performance hybrid silicon micropillar solar cell based on light trapping characteristics of Cu nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Yulong; Fan, Zhiqiang; Zhang, Weijia; Ma, Qiang; Jiang, Zhaoyi; Ma, Denghao

    2018-05-01

    High performance silicon combined structure (micropillar with Cu nanoparticles) solar cell has been synthesized from N-type silicon substrates based on the micropillar array. The combined structure solar cell exhibited higher short circuit current rather than the silicon miropillar solar cell, which the parameters of micropillar array are the same. Due to the Cu nanoparticles were decorated on the surface of silicon micropillar array, the photovoltaic properties of cells have been improved. In addition, the optimal efficiency of 11.5% was measured for the combined structure solar cell, which is better than the silicon micropillar cell.

  3. Solar Photovoltaic DC Systems: Basics and Safety: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNutt, Peter F; Sekulic, William R; Dreifuerst, Gary

    Solar Photovoltaic (PV) systems are common and growing with 42.4 GW installed capacity in U.S. (almost 15 GW added in 2016). This paper will help electrical workers, and emergency responders understand the basic operating principles and hazards of PV DC arrays. We briefly discuss the following aspects of solar photovoltaic (PV) DC systems: the effects of solar radiation and temperature on output power; PV module testing standards; common system configurations; a simple PV array sizing example; NEC guidelines and other safety features; DC array commissioning, periodic maintenance and testing; arc-flash hazard potential; how electrical workers and emergency responders can andmore » do work safely around PV arrays; do moonlight and artificial lighting pose a real danger; typical safe operating procedures; and other potential DC-system hazards to be aware of. We also present some statistics on PV DC array electrical incidents and injuries. Safe PV array operation is possible with a good understanding of PV DC arrays basics and having good safe operating procedures in place.« less

  4. Parametric analysis of ATM solar array.

    NASA Technical Reports Server (NTRS)

    Singh, B. K.; Adkisson, W. B.

    1973-01-01

    The paper discusses the methods used for the calculation of ATM solar array performance characteristics and provides the parametric analysis of solar panels used in SKYLAB. To predict the solar array performance under conditions other than test conditions, a mathematical model has been developed. Four computer programs have been used to convert the solar simulator test data to the parametric curves. The first performs module summations, the second determines average solar cell characteristics which will cause a mathematical model to generate a curve matching the test data, the third is a polynomial fit program which determines the polynomial equations for the solar cell characteristics versus temperature, and the fourth program uses the polynomial coefficients generated by the polynomial curve fit program to generate the parametric data.

  5. Flat-plate solar array project. Volume 8: Project analysis and integration

    NASA Technical Reports Server (NTRS)

    Mcguire, P.; Henry, P.

    1986-01-01

    Project Analysis and Integration (PA&I) performed planning and integration activities to support management of the various Flat-Plate Solar Array (FSA) Project R&D activities. Technical and economic goals were established by PA&I for each R&D task within the project to coordinate the thrust toward the National Photovoltaic Program goals. A sophisticated computer modeling capability was developed to assess technical progress toward meeting the economic goals. These models included a manufacturing facility simulation, a photovoltaic power station simulation and a decision aid model incorporating uncertainty. This family of analysis tools was used to track the progress of the technology and to explore the effects of alternative technical paths. Numerous studies conducted by PA&I signaled the achievement of milestones or were the foundation of major FSA project and national program decisions. The most important PA&I activities during the project history are summarized. The PA&I planning function is discussed and how it relates to project direction and important analytical models developed by PA&I for its analytical and assessment activities are reviewed.

  6. Scattering Effects of Solar Panels on Space Station Antenna Performance

    NASA Technical Reports Server (NTRS)

    Panneton, Robert J.; Ngo, John C.; Hwu, Shian U.; Johnson, Larry A.; Elmore, James D.; Lu, Ba P.; Kelley, James S.

    1994-01-01

    Characterizing the scattering properties of the solar array panels is important in predicting Space Station antenna performance. A series of far-field, near-field, and radar cross section (RCS) scattering measurements were performed at S-Band and Ku-Band microwave frequencies on Space Station solar array panels. Based on investigation of the measured scattering patterns, the solar array panels exhibit similar scattering properties to that of the same size aluminum or copper panel mockup. As a first order approximation, and for worse case interference simulation, the solar array panels may be modeled using perfect reflecting plates. Numerical results obtained using the Geometrical Theory of Diffraction (GTD) modeling technique are presented for Space Station antenna pattern degradation due to solar panel interference. The computational and experimental techniques presented in this paper are applicable for antennas mounted on other platforms such as ship, aircraft, satellite, and space or land vehicle.

  7. Planetary and deep space requirements for photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Bennett, R. B.; Stella, P. M.

    1995-01-01

    In the past 25 years, the majority of interplanetary spacecraft have been powered by nuclear sources. However, as the emphasis on smaller, low cost missions gains momentum, the majority of missions now being planned will use photovoltaic solar arrays. This will present challenges to the solar array builders, inasmuch as planetary requirements usually differ from earth orbital requirements. In addition, these requirements often differ greatly, depending on the specific mission; for example, inner planets vs. outer planets, orbiters vs. flybys, spacecraft vs. landers, and so on. Also, the likelihood of electric propulsion missions will influence the requirements placed on solar array developers. The paper will discuss representative requirements for a range of planetary missions now in the planning stages. Insofar as inner planets are concerned, a Mercury orbiter is being studied with many special requirements. Solar arrays would be exposed to high temperatures and a potentially high radiation environment, and will need to be increasingly pointed off sun as the vehicle approaches Mercury. Identification and development of cell materials and arrays at high incidence angles will be critical to the design. Missions to the outer solar system that have been studied include a Galilean orbiter and a flight to the Kuiper belt. While onboard power requirements would be small (as low as 10 watts), the solar intensity will require relatively large array areas. As a result, such missions will demand extremely compact packaging and low mass structures to conform to launch vehicle constraints. In turn, the large are, low mass designs will impact allowable spacecraft loads. Inflatable array structures, with and without concentration, and multiband gap cells will be considered if available. In general, the highest efficiency cell technologies operable under low intensity, low temperature conditions are needed. Solar arrays will power missions requiring as little as approximately 100 watts, up to several kilowatts (at Earth) in the case of solar electric propulsion missions. Thus, mass and stowage volume minimization will be required over a range of array sizes. Concentrator designs, inflatable structures, and the combination of solar arrays with the telecommunications system have been proposed. Performance, launch vehicle constraints, an cost will be the principal parameters in the design trade space. Other special applications will also be discussed, including requirements relating to planetary landers and probes. In those cases, issues relating to shock loads on landing, operability in (possibly dusty) atmospheres, and extreme temperature cycles must be considered, in addition to performance, stowed volume, and costs.

  8. Effect of wind speed on performance of a solar-pv array

    USDA-ARS?s Scientific Manuscript database

    Thousands of solar photovoltaic (PV) arrays have been installed over the past few years, but the effect of wind speed on the predicted performance of PV arrays is not usually considered by installers. An increase in wind speed will cool the PV array, and the electrical power of the PV modules will ...

  9. Telescoping Solar Array Concept for Achieving High Packaging Efficiency

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff

    2015-01-01

    Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.

  10. Integrated dynamic analysis simulation of space stations with controllable solar arrays (supplemental data and analyses)

    NASA Technical Reports Server (NTRS)

    Heinrichs, J. A.; Fee, J. J.

    1972-01-01

    Space station and solar array data and the analyses which were performed in support of the integrated dynamic analysis study. The analysis methods and the formulated digital simulation were developed. Control systems for space station altitude control and solar array orientation control include generic type control systems. These systems have been digitally coded and included in the simulation.

  11. Spoked wheels to deploy large surfaces in space-weight estimates for solar arrays

    NASA Technical Reports Server (NTRS)

    Crawford, R. F.; Hedgepeth, J. M.; Preiswerk, P. R.

    1975-01-01

    Extensible booms were used to deploy and support solar cell arrays of varying areas. Solar cell array systems were built with one or two booms to deploy and tension a blanket with attached cells and bussing. A segmented and hinged rim supported by spokes joined to a common hub is described. This structure can be compactly packaged and deployed.

  12. Solar Arrays for Low-Irradiance Low-Temperature and High-Radiation Environments

    NASA Technical Reports Server (NTRS)

    Boca, Andreea (Principal Investigator); Stella, Paul; Kerestes, Christopher; Sharps, Paul

    2017-01-01

    This is the Base Period final report DRAFT for the JPL task 'Solar Arrays for Low-Irradiance Low-Temperature and High-Radiation Environments', under Task Plan 77-16518 TA # 21, for NASA's Extreme Environments Solar Power (EESP) project. This report covers the Base period of performance, 7/18/2016 through 5/2/2017.The goal of this project is to develop an ultra-high efficiency lightweight scalable solar array technology for low irradiance, low temperature and high-radiation (LILT/Rad) environments. The benefit this technology will bring to flight systems is a greater than 20 reduction in solar array surface area, and a six-fold reduction in solar array mass and volume. The EESP project objectives are summarized in the 'NRA Goal' column of Table 1. Throughout this report, low irradiance low temperature (LILT) refers to 5AU -125 C test conditions; beginning of life (BOL) refers to the cell state prior to radiation exposure; and end of life (EOL) refers to the test article condition after exposure to a radiation dose of 4e15 1MeV e(-)/cm(exp 2).

  13. Solar Array Structures for 300 kW-Class Spacecraft

    NASA Technical Reports Server (NTRS)

    Pappa, Richard; Rose, Geoff; Mann, Troy O.; Warren, Jerry E.; Mikulas, Martin M., Jr.; Kerslake, Tom; Kraft, Tom; Banik, Jeremy

    2013-01-01

    State-of-the-art solar arrays for spacecraft provide on the order of 20 kW of electrical power, and they usually consist of 3J solar cells bonded to hinged rigid panels about 1 inch in thickness. This structural construction allows specific mass and packaging volumes of up to approximately 70 W/kg and 15 kW/m3 to be achieved. Significant advances in solar array structures are required for future very-high-power spacecraft (300+ kW), such as those proposed for pre-positioning heavy cargo on or near the Moon, Mars, or asteroids using solar electric propulsion. These applications will require considerable increases in both W/kg and kW/m3, and will undoubtedly require the use of flexible-substrate designs. This presentation summarizes work sponsored by NASA's Game Changing Development Program since Oct. 2011 to address the challenge of developing 300+ kW solar arrays. The work is primarily being done at NASA Langley, NASA Glenn, and two contractor teams (ATK and DSS), with technical collaboration from AFRL/Kirtland. The near-tem objective of the project is design, analysis, and testing of 30-50 kW solar array designs that are extensible to the far-term objective of 300+ kW. The work is currently focused on three designs: the MegaFlex concept by ATK, the Mega-ROSA concept by DSS, and an in-house 300-kW Government Reference Array concept. Each of these designs will be described in the presentation. Results obtained to date by the team, as well as future work plans, for the design, analysis, and testing of these large solar array structures will be summarized.

  14. Beam-Forming Concentrating Solar Thermal Array Power Systems

    NASA Technical Reports Server (NTRS)

    Hoppe, Daniel J. (Inventor); Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  15. Evaluation of materials for high performance solar arrays

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F.; Smith, C. F., Jr.; Peacock, C. L., Jr.; Little, S. A.

    1978-01-01

    A program has been underway to evaluate materials for advanced solar arrays which are required to provide power to weight ratios up to 100 W/kg. Severe mission environments together with the lack of knowledge of space environmental materials degradation rates require the generation of irradiation and outgassing engineering data for use in the initial design phase of the flight solar arrays. Therefore, approximately 25 candidate array materials were subjected to selected mission environments of vacuum, UV, and particle irradiation, and their mechanical and/or optical properties were determined where appropriate.

  16. Surface voltage gradient role in high voltage solar array-plasma interaction: Center Director's discretionary fund

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.

    1985-01-01

    A large amount of experimental and analytical effort has been directed toward understanding the plasma sheath growth and discharge phenomena which lead to high voltage solar array-space plasma interactions. An important question which has not been addressed is how the surface voltage gradient on such an array may affect these interactions. The results of this study indicate that under certain conditions, the voltage gradient should be taken into account when evaluating the effect on a solar array operating in a plasma environment.

  17. Impact of LDEF photovoltaic experiment findings upon spacecraft solar array design and development requirements

    NASA Technical Reports Server (NTRS)

    Young, Leighton E.

    1993-01-01

    Photovoltaic cells (solar cells) and other solar array materials were flown in a variety of locations on the Long Duration Exposure Facility (LDEF). With respect to the predicted leading edge, solar array experiments were located at 0 degrees (row 9), 30 degrees (row 8) and 180 degrees (row 3). Postflight estimates of location of the experiments with respect to the velocity vector add 8.1 degrees to these values. Experiments were also located on the Earth end of the LDEF longitudinal axis. Types and magnitudes of detrimental effects differ between the locations with some commonality. Postflight evaluation of the solar array experiments reveal that some components/materials are very resistant to the environment to which they were exposed while others need protection, modification, or replacement. Interaction of materials with atomic oxygen (AO), as an area of major importance, was dramatically demonstrated by LDEF results. Information gained from the LDEF flight allows array developers to set new requirements for on-going and future technology and flight component development.

  18. Solar Power for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    2014-01-01

    An overview of NASA missions and technology development efforts are discussed. Future spacecraft will need higher power, higher voltage, and much lower cost solar arrays to enable a variety of missions. One application driving development of these future arrays is solar electric propulsion.

  19. Preliminary Results from the Flight of the Solar Array Module Plasma Interactions Experiment (SAMPIE)

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Hillard, G. Barry

    1994-01-01

    SAMPIE, the Solar Array Module Plasma Interactions Experiment, flew in the Space Shuttle Columbia payload bay as part of the OAST-2 mission on STS-62, March, 1994. SAMPIE biased samples of solar arrays and space power materials to varying potentials with respect to the surrounding space plasma, and recorded the plasma currents collected and the arcs which occurred, along with a set of plasma diagnostics data. A large set of high quality data was obtained on the behavior of solar arrays and space power materials in the space environment. This paper is the first report on the data SAMPIE telemetered to the ground during the mission. It will be seen that the flight data promise to help determine arcing thresholds, snapover potentials and floating potentials for arrays and spacecraft in LEO.

  20. Review of biased solar array - Plasma interaction studies

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.

    1981-01-01

    Possible high voltage surface interactions on the Solar Electric Propulsion System (SEPS) are examined, with particular regard for potential effects on SEPS performance. The SEPS is intended for use for geosynchronous and planetary missions, and derives power from deployed solar cell arrays which are susceptible to collecting ions and electrons from the charged and thermal particle environment of space. The charge exchange plasma which provides the thrust force can also enhance the natural charged particle environment and increase interactions between the thrust system and the biased solar array surface. Tests of small arrays have shown that snapover, where current collection becomes proportional to the panel area, can be avoided by larger cell sizes. Arcing is predicted to diminish with larger array sizes, while the problems of efflux environments are noted to be as yet undefined and require further study.

  1. Evaluation of concentrated space solar arrays using computer modeling. [for spacecraft propulsion and power supplies

    NASA Technical Reports Server (NTRS)

    Rockey, D. E.

    1979-01-01

    A general approach is developed for predicting the power output of a concentrator enhanced photovoltaic space array. A ray trace routine determines the concentrator intensity arriving at each solar cell. An iterative calculation determines the cell's operating temperature since cell temperature and cell efficiency are functions of one another. The end result of the iterative calculation is that the individual cell's power output is determined as a function of temperature and intensity. Circuit output is predicted by combining the individual cell outputs using the single diode model of a solar cell. Concentrated array characteristics such as uniformity of intensity and operating temperature at various points across the array are examined using computer modeling techniques. An illustrative example is given showing how the output of an array can be enhanced using solar concentration techniques.

  2. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell.

    PubMed

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-02-23

    An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.

  3. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell

    NASA Astrophysics Data System (ADS)

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-02-01

    An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.

  4. Enhanced performance of a structured cyclo olefin copolymer-based amorphous silicon solar cell

    NASA Astrophysics Data System (ADS)

    Zhan, Xinghua; Chen, Fei; Gao, Mengyu; Tie, Shengnian; Gao, Wei

    2017-07-01

    The submicron array was fabricated onto a cyclo olefin copolymer (COC) film by a hot embossing method. An amorphous silicon p-i-n junction and transparent conductive layers were then deposited onto it through a plasma enhanced chemical vapor deposition (PECVD) and magnetron sputtering. The efficiency of the fabricated COC-based solar cell was measured and the result demonstrated 18.6% increase of the solar cell efficiency when compared to the sample without array structure. The imprinted polymer solar cells with submicron array indeed increase their efficiency.

  5. InSight Lander Solar Array Test

    NASA Image and Video Library

    2018-01-23

    While in the landed configuration for the last time before arriving on Mars, NASA's InSight lander was commanded to deploy its solar arrays to test and verify the exact process that it will use on the surface of the Red Planet. During the test on Jan. 23, 2018 from the Lockheed Martin clean room in Littleton, Colorado, engineers and technicians evaluated that the solar arrays fully deployed and conducted an illumination test to confirm that the solar cells were collecting power. A video is available at https://photojournal.jpl.nasa.gov/catalog/PIA22200

  6. InSight Lander Solar Array Test

    NASA Image and Video Library

    2018-01-23

    While in the landed configuration for the last time before arriving on Mars, NASA's InSight lander was commanded to deploy its solar arrays to test and verify the exact process that it will use on the surface of the Red Planet. During the test on Jan. 23, 2018 from the Lockheed Martin clean room in Littleton, Colorado, engineers and technicians evaluated that the solar arrays fully deployed and conducted an illumination test to confirm that the solar cells were collecting power. A video is available at https://photojournal.jpl.nasa.gov/catalog/PIA22203

  7. InSight Lander Solar Array Test

    NASA Image and Video Library

    2018-01-23

    While in the landed configuration for the last time before arriving on Mars, NASA's InSight lander was commanded to deploy its solar arrays to test and verify the exact process that it will use on the surface of the Red Planet. During the test on Jan. 23, 2018 from the Lockheed Martin clean room in Littleton, Colorado, engineers and technicians evaluated that the solar arrays fully deployed and conducted an illumination test to confirm that the solar cells were collecting power. A video is available at https://photojournal.jpl.nasa.gov/catalog/PIA22202

  8. InSight Lander Solar Array Test

    NASA Image and Video Library

    2018-01-23

    While in the landed configuration for the last time before arriving on Mars, NASA's InSight lander was commanded to deploy its solar arrays to test and verify the exact process that it will use on the surface of the Red Planet. During the test on Jan. 23, 2018 from the Lockheed Martin clean room in Littleton, Colorado, engineers and technicians evaluated that the solar arrays fully deployed and conducted an illumination test to confirm that the solar cells were collecting power. A video is available at https://photojournal.jpl.nasa.gov/catalog/PIA22201

  9. InSight Lander Solar Array Test

    NASA Image and Video Library

    2018-01-23

    While in the landed configuration for the last time before arriving on Mars, NASA's InSight lander was commanded to deploy its solar arrays to test and verify the exact process that it will use on the surface of the Red Planet. During the test on Jan. 23, 2018 from the Lockheed Martin clean room in Littleton, Colorado, engineers and technicians evaluated that the solar arrays fully deployed and conducted an illumination test to confirm that the solar cells were collecting power. A video is available at https://photojournal.jpl.nasa.gov/catalog/PIA22204

  10. Space Station Freedom Solar Array tension mechanism development

    NASA Technical Reports Server (NTRS)

    Allmon, Curtis; Haugen, Bert

    1994-01-01

    A tension mechanism is used to apply a tension force to the Space Station Freedom Solar Array Blanket. This tension is necessary to meet the deployed frequency requirement of the array as well as maintain the flatness of the flexible substrate solar cell blanket. The mechanism underwent a series of design iterations before arriving at the final design. This paper discusses the design and testing of the mechanism.

  11. LSSA (Low-cost Silicon Solar Array) project

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Methods are explored for economically generating electrical power to meet future requirements. The Low-Cost Silicon Solar Array Project (LSSA) was established to reduce the price of solar arrays by improving manufacturing technology, adapting mass production techniques, and promoting user acceptance. The new manufacturing technology includes the consideration of new silicon refinement processes, silicon sheet growth techniques, encapsulants, and automated assembly production being developed under contract by industries and universities.

  12. DTO 1118 - Damaged Spektr solar array

    NASA Image and Video Library

    1998-03-04

    S89-E-5190 (25 Jan 1998) --- This Electronic Still Camera (ESC) image shows the Russian Mir Space Station's damaged solar array panel. The solar array panel was damaged as a result of an impact with an unmanned Progress re-supply ship which collided with the Mir on June 25, 1997, causing the Spektr Module to depressurize. This ESC view was taken on January 25, 1998 at 16:56:30 GMT.

  13. JUNO Photovoltaic Power at Jupiter

    NASA Technical Reports Server (NTRS)

    Dawson, Stephen F.; Stella, Paul; McAlpine, William; Smith, Brian

    2012-01-01

    This paper summarizes the Juno modeling team work on predicting the Juno solar array performance at critical mission points including Juno Orbit Insertion (JOI) and End of Mission (EOM). This report consists of background on Juno solar array design, a summary of power estimates, an explanation of the modeling approach used by Aerospace, a detailed discussion of loss factors and performance predictions, a thermal analysis, and a review of risks to solar array performance

  14. Observations of Transient ISS Floating Potential Variations During High Voltage Solar Array Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Minow, Joseph I.; Parker, Linda N.; Pour, Maria Z. A.; Swenson, Charles; Nishikawa, Ken-ichi; Krause, Linda Habash

    2016-01-01

    The International Space Station (ISS) continues to be a world-class space research laboratory after over 15 years of operations, and it has proven to be a fantastic resource for observing spacecraft floating potential variations related to high voltage solar array operations in Low Earth Orbit (LEO). Measurements of the ionospheric electron density and temperature along the ISS orbit and variations in the ISS floating potential are obtained from the Floating Potential Measurement Unit (FPMU). In particular, rapid variations in ISS floating potential during solar array operations on time scales of tens of milliseconds can be recorded due to the 128 Hz sample rate of the Floating Potential Probe (FPP) pro- viding interesting insight into high voltage solar array interaction with the space plasma environment. Comparing the FPMU data with the ISS operations timeline and solar array data provides a means for correlating some of the more complex and interesting transient floating potential variations with mission operations. These complex variations are not reproduced by current models and require further study to understand the underlying physical processes. In this paper we present some of the floating potential transients observed over the past few years along with the relevant space environment parameters and solar array operations data.

  15. Small- Geo Solar Array: New Generation Of Solar Arrays For Commercial Telecom Satellites For Power Ranges Between 2,5 KW And 7,5 KW

    NASA Astrophysics Data System (ADS)

    Paarmann, Carola; Muller, Jens; Mende, Thomas; Borner, Carsten; Mascher, Rolf

    2011-10-01

    In the frame of the ESA supported Artes 11 program a new generation of GEO telecommunication satellites is under development. This platform will cover the power range from 2 to 5 kW. ASTRIUM GmbH is contracted to develop and design the Solar Array for this platform. Furthermore the manufacturing and the qualification of a PFM wing for the first flight model is foreseen. The satellite platform, called Small-GEO, is developed under the responsibility of OHB System. This first Small-GEO satellite is designated to be delivered to HISPASAT for operation. The concept of ASTRIUM GmbH is to use all the experiences from the very successful EUROSTAR 2000+, EUROSTAR-3000 and the ALPHABUS platform and to adapt the technologies to the Small- GEO Solar Array. With the benefit of the huge in-orbit heritage of these programs, the remaining risks for the Small-GEO Solar Array can be minimized. The development of the Small-GEO Solar Array extends the ASTRIUM GmbH product portfolio by covering now the complete power range between 2 kW and 31 kW. This paper provides an overview of the different configurations, their main design features and parameters.

  16. Colorful solar selective absorber integrated with different colored units.

    PubMed

    Chen, Feiliang; Wang, Shao-Wei; Liu, Xingxing; Ji, Ruonan; Li, Zhifeng; Chen, Xiaoshuang; Chen, Yuwei; Lu, Wei

    2016-01-25

    Solar selective absorbers are the core part for solar thermal technologies such as solar water heaters, concentrated solar power, solar thermoelectric generators and solar thermophotovoltaics. Colorful solar selective absorber can provide new freedom and flexibility beyond energy performance, which will lead to wider utilization of solar technologies. In this work, we present a monolithic integration of colored solar absorber array with different colors on a single substrate based on a multilayered structure of Cu/TiN(x)O(y)/TiO(2)/Si(3)N(4)/SiO(2). A colored solar absorber array with 16 color units is demonstrated experimentally by using combinatorial deposition technique via changing the thickness of SiO(2) layer. The solar absorptivity and thermal emissivity of all the color units is higher than 92% and lower than 5.5%, respectively. The colored solar selective absorber array can have colorful appearance and designable patterns while keeping high energy performance at the same time. It is a new candidate for a number of solar applications, especially for architecture integration and military camouflage.

  17. High Voltage Solar Array ARC Testing for a Direct Drive Hall Effect Thruster System

    NASA Technical Reports Server (NTRS)

    Schneider, T.; Vaughn, J.; Carruth, M. R.; Mikellides, I. G.; Jongeward, G. A.; Peterson, T.; Kerslake, T. W.; Snyder, D.; Ferguson, D.; Hoskins, A.

    2003-01-01

    The deleterious effects of spacecraft charging are well known, particularly when the charging leads to arc events. The damage that results from arcing can severely reduce system lifetime and even cause critical system failures. On a primary spacecraft system such as a solar array, there is very little tolerance for arcing. Motivated by these concerns, an experimental investigation was undertaken to determine arc thresholds for a high voltage (200-500 V) solar array in a plasma environment. The investigation was in support of a NASA program to develop a Direct Drive Hall-Effect Thruster (112HET) system. By directly coupling the solar array to a Hall-effect thruster, the D2HET program seeks to reduce mass, cost and complexity commonly associated with the power processing in conventional power systems. In the investigation, multiple solar array technologies and configurations were tested. The cell samples were biased to a negative voltage, with an applied potential difference between them, to imitate possible scenarios in solar array strings that could lead to damaging arcs. The samples were tested in an environment that emulated a low-energy, HET-induced plasma. Short duration "trigger" arcs as well as long duration "sustained" arcs were generated. Typical current and voltage waveforms associated with the arc events are presented. Arc thresholds are also defined in terms of vo!tage, (current and power. The data will be used to propose a new, high-voltage (>300 V) solar array design for which the likelihood of damage from arcing is minimal.

  18. High Voltage Solar Array Arc Testing for a Direct Drive Hall Effect Thruster System

    NASA Technical Reports Server (NTRS)

    Schneider, Todd; Carruth, M. R., Jr.; Vaughn, J. A.; Jongeward, G. A.; Mikellides, I. G.; Ferguson, D.; Kerslake, T. W.; Peterson, T.; Snyder, D.; Hoskins, A.

    2004-01-01

    The deleterious effects of spacecraft charging are well known, particularly when the charging leads to arc events. The damage that results from arcing can severely reduce system lifetime and even cause critical system failures. On a primary spacecraft system such as a solar array, there is very little tolerance for arcing. Motivated by these concerns, an experimental investigation was undertaken to determine arc thresholds for a high voltage (200-500 V) solar array in a plasma environment. The investigation was in support of a NASA program to develop a Direct Drive Hall-Effect Thruster (D2HET) system. By directly coupling the solar array to a Hall-effect thruster, the D2HET program seeks to reduce mass, cost and complexity commonly associated with the power processing in conventional power systems. In the investigation, multiple solar array technologies and configurations were tested. The cell samples were biased to a negative voltage, with an applied potential difference between them, to imitate possible scenarios in solar array strings that could lead to damaging arcs. The samples were tested in an environment that emulated a low-energy, HET-induced plasma. Short duration trigger arcs as well as long duration sustained arcs were generated. Typical current and voltage waveforms associated with the arc events are presented. Arc thresholds are also defined in terms of voltage, current and power. The data will be used to propose a new, high-voltage (greater than 300 V) solar array design for which the likelihood of damage from arcing is minimal.

  19. The Meteosat Second Generation (MSG) power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haines, J.E.; Levins, D.; Robben, A.

    1997-12-31

    Under the direction of the European Meteorological Satellite Organization (EUMETSAT) and the European Space Agency (ESA), space industries within Europe are in the process of developing a new series of larger and more performant geostationary weather satellites. The initial three spacecraft within this new series, which are known by the name of Meteosat Second Generation (MSG), are due to be progressively launched from the year 2000 onwards. The major objective of this mission is the continuation of the European weather watch and space borne atmospheric sensing services provided by the present series of Meteosat spacecraft. To satisfy this mission requirement,more » the payload compliment to be supported by MSG will consist of a comprehensive earth viewing instrument capable of operating in both the infra-red and visible spectrum, an earth radiation measurement system and a search and rescue facility. In furnishing the power needs for these payloads, the power generating element on the spin stabilized MSG spacecraft consists of a body mounted solar array, capable of providing 628 watts of electrical power at the end of seven years of geosynchronous orbital lifetime. The energy storage elements for the spacecraft consists of two, 29 ampere-hour batteries, while centralized power management is achieved by the Power Control Unit (PCU), which satisfies the payload and battery re-charge demands by controlling the available solar array power. Power distribution for the spacecraft electrical loads and heaters is achieved by the Power Distribution Unit (PDU) and for the pyrotechnic devices by the Pyrotechnic Release Unit.« less

  20. Parametric study of two planar high power flexible solar array concepts

    NASA Technical Reports Server (NTRS)

    Garba, J. A.; Kudija, D. A.; Zeldin, B.; Costogue, E. N.

    1978-01-01

    The design parameters examined were: frequency, aspect ratio, packaging constraints, and array blanket flatness. Specific power-to-mass ratios for both solar arrays as a function of array frequency and array width were developed and plotted. Summaries of the baseline design data, developed equations, the computer program operation, plots of the parameters, and the process for using the information as a design manual are presented.

  1. SAGE III on the International Space Station

    NASA Astrophysics Data System (ADS)

    McCormick, M. P.; Damadeo, R. P.; Hill, C. A.

    2017-12-01

    A much-improved Stratospheric Aerosol and Gas Experiment (SAGE III) instrument was launched on February 19, 2017 from NASA's Kennedy Space Center aboard the SpaceX CRS-10 Dragon Spacecraft. It subsequently docked with the International Space Station (ISS), completed commissioning on July 1, 2017, and is now in its Mission Operations phase. SAGE III-ISS will combine the experience and capabilities of its successful predecessor satellite instruments SAM II, SAGE, SAGE II, and SAGE III-Meteor-3M to measure aerosol, cloud, O3, H2O, and NO2 profiles from the upper troposphere through the stratosphere. In addition to solar and lunar occultation with vertical resolutions of about 1.0 km, SAGE III-ISS will make limb scattering measurements on the solar side of each orbit greatly expanding the measurement coverage per spacecraft orbit, and tie the very high resolution and precise solar occultation measurements with the limb scattering measurements. The programmable readout array detector enhances its measurement capability and should allow for experimental data products like BrO, and IO, and along with a single photodiode detector, the measurement of larger aerosols. The wavelengths covered by SAGE III-ISS range from 280 to 1050 nm with 1 to 2 nm spectral resolution using a grating spectrometer. The single photodiode extends measurements to 1550 nm. This talk will describe the measurement capabilities of SAGE III, and include early data and validation examples, its additional modes and increased geographical coverage, its calibration and characterization, and data archival and validation approach.

  2. Gallium arsenide (GaAs) power conversion concept

    NASA Technical Reports Server (NTRS)

    Nussberger, A. A.

    1980-01-01

    A summary design analysis of a GaAs power conversion system for the solar power satellite (SPS) is presented. Eight different satellite configuration options for the solar arrays are compared. Solar cell annealing effects after proton irradiation are considered. Mass estimates for the SPS and the effect of solar cell parameters on SPS array design are discussed.

  3. A SEP Mission to Jupiter Using the Stretched Lens Array

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W.; Rodiek, Julie A.; Ferguson, Dale C.; O'Neill, Mark J.; Piszczor, Michael F.; Oleson, Steve

    2008-01-01

    As space exploration continues to be a primary focus of NASA, solar electric propulsion (SEP) becomes a forerunner in the mode of transportation to reach other planets in our solar system. Several critical issues emerge as potential barriers to this approach such as reducing solar array radiation damage, operating the array at high voltage (>300 V) for extended times for Hall or ion thrusters, and designing an array that will be resistant to micrometeoroid impacts and the differing environmental conditions as the vehicle travels further into space. It is also of great importance to produce an array that is light weight to preserve payload mass fraction and to do this at a cost that is lower than today's arrays. This paper will describe progress on an array that meets all these requirements and will detail its use in a solar electric mission to Jupiter. From 1998-2001, NASA flew the Deep Space 1 mission that validated the use of ion propulsion for extended space missions. This highly successful two-year mission also used a novel SCARLET solar array that concentrated sunlight eight-fold onto small area solar cells. This array performed flawlessly and within 2% of its projected performance over the entire mission. That design has evolved into the Stretched Lens Array (SLA) shown in figure 1. The primary difference between SCARLET and the SLA is that no additional glass cover is used over the silicone lens. This has led to significant mass, cost and complexity reductions. The module shown in figure 1 is the latest version of the design. This design leads to a specific power exceeding 300 W/kg at voltages exceeding 300 V. In addition, this module has been tested to voltages over 1000 V while under hypervelocity particle impact in a plasma environment with no arcing. Furthermore array segments are under test for corona breakdown that can become a critical issue for long term, high voltage missions.

  4. Investigating the Spatial Structure of HCN Emission in Comet C/2012 F6 (Lemmon)

    NASA Astrophysics Data System (ADS)

    Booth, Shawn; Burkhardt, Andrew; Corby, Joanna; Dollhopf, Niklaus; Rawlings, Mark; Remijan, Anthony

    2015-11-01

    Comets are of particular interest in the field of Astrochemistry as they can be used as a direct probe of formation chemistry of the Solar System. Originating in the Oort Cloud reservoir, these long period objects experience relatively limited solar influence. The majority of cometary material (water, methane and ammonia ices) has remained in the same state as when it formed. These ices are precursors to more complex molecules which have been shown to form amino acids that are crucial for the development of life. HCN, or hydrogen cyanide, is of particular interest because it can form the nucleobase adenine (C5H5N5). The goals of this project are to map the HCN distribution of Comet C/2012 F6 (Lemmon) and to show the simultaneous observation capabilities of the Atacama Large Millimeter/Submillimeter Array (ALMA), which allows the extraction of 7-m array, 12-m array and single dish observation data. On UT 2013 May 11, Comet Lemmon was observed using ALMA. The Cycle 1 configuration was used with the Band 6 receivers, with a 1.5 GHz range centered on the HCN transition at 265.86 GHz, which gave a spectral resolution of 0.07 km/s. We show that Comet Lemmon has both a compact HCN region (found with the 12-m array) and also an extended component, forming a tail-like structure in the anti-motion direction (found with the 7-m array). We were also able to extract the autocorrelation data (single dish) and show that it is viable. This project was supported and funded by NRAO in conjunction with the National Science Foundation (NSF), with special thanks to the Astronomy Department at University of Virginia.

  5. SIMS prototype system 4: Design data brochure

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A pre-package prototype unit having domestic hot water and room solar heating capability that uses air as the collector fluid is described. This system is designed to be used with a small single-family dwelling where a roof mounted collector array is not feasible. The prototype unit is an assemble containing 203 square feet of effective collector surface with 113 cubic feet of rock storage. The design of structure and storage is modular, which permits expansion and reduction of the collector array and storage bed in 68 square feet and 37 cubic feet increments respectively. The system is designed to be transportable. This permitted assemble and certification testing in one area and installation in another area without tear down and reassemble. Design, installation, operation, performance and maintenance of this system are described.

  6. Advanced photovoltaic solar array development

    NASA Technical Reports Server (NTRS)

    Kurland, Richard M.; Stella, Paul

    1989-01-01

    Phase 2 of the Advanced Photovoltaic Solar Array (APSA) program, started in mid-1987, is currently in progress to fabricate prototype wing hardware that will lead to wing integration and testing in 1989. The design configuration and key details are reviewed. A status of prototype hardware fabricated to date is provided. Results from key component-level tests are discussed. Revised estimates of array-level performance as a function of solar cell device technology for geosynchronous missions are given.

  7. General formula for the incidence factor of a solar heliostat receiver system.

    PubMed

    Wei, L Y

    1980-09-15

    A general formula is derived for the effective incidence factor of an array of heliostat mirrors for solar power collection. The formula can be greatly simplified for arrays of high symmetry and offers quick computation of the performance of the array. It shows clearly how the mirror distribution and locations affect the overall performance and thus provide a useful guidance for the design of a solar heliostat receiver system.

  8. Concentrator enhanced solar arrays design study

    NASA Technical Reports Server (NTRS)

    Lott, D. R.

    1978-01-01

    The analysis and preliminary design of a 25 kW concentrator enhanced lightweight flexible solar array are presented. The study was organized into five major tasks: (1) assessment and specification of design requirements; (2) mechanical design; (3) electric design; (4) concentrator design; and (5) cost projection. The tasks were conducted in an iterative manner so as to best derive a baseline design selection. The objectives of the study are discussed and comparative configurations and mass data on the SEP (Solar Electric Propulsion) array design, concentrator design options and configuration/mass data on the selected concentrator enhanced solar array baseline design are presented. Design requirements supporting design analysis and detailed baseline design data are discussed. The results of the cost projection analysis and new technology are also discussed.

  9. Design and analysis considerations for deployment mechanisms in a space environment

    NASA Technical Reports Server (NTRS)

    Vorlicek, P. L.; Gore, J. V.; Plescia, C. T.

    1982-01-01

    On the second flight of the INTELSAT V spacecraft the time required for successful deployment of the north solar array was longer than originally predicted. The south solar array deployed as predicted. As a result of the difference in deployment times a series of experiments was conducted to locate the cause of the difference. Deployment rate sensitivity to hinge friction and temperature levels was investigated. A digital computer simulation of the deployment was created to evaluate the effects of parameter changes on deployment. Hinge design was optimized for nominal solar array deployment time for future INTELSAT V satellites. The nominal deployment times of both solar arrays on the third flight of INTELSAT V confirms the validity of the simulation and design optimization.

  10. Discussion on the solar concentrating thermoelectric generation using micro-channel heat pipe array

    NASA Astrophysics Data System (ADS)

    Li, Guiqiang; Feng, Wei; Jin, Yi; Chen, Xiao; Ji, Jie

    2017-11-01

    Heat pipe is a high efficient tool in solar energy applications. In this paper, a novel solar concentrating thermoelectric generation using micro-channel heat pipe array (STEG-MCHP) was presented. The flat-plate micro-channel heat pipe array not only has a higher heat transfer performance than the common heat pipe, but also can be placed on the surface of TEG closely, which can further reduce the thermal resistance between the heat pipe and the TEG. A preliminary comparison experiment was also conducted to indicate the advantages of the STEG-MCHP. The optimization based on the model verified by the experiment was demonstrated, and the concentration ratio and selective absorbing coating area were also discussed. In addition, the cost analysis was also performed to compare between the STEG-MCHP and the common solar concentrating TEGs in series. The outcome showed that the solar concentrating thermoelectric generation using micro-channel heat pipe array has the higher electrical efficiency and lower cost, which may provide a suitable way for solar TEG applications.

  11. Attitude maneuvers of a solar-powered electric orbital transfer vehicle

    NASA Astrophysics Data System (ADS)

    Jenkin, Alan B.

    1992-08-01

    Attitude maneuver requirements of a solar-powered electric orbital transfer vehicle have been studied in detail. This involved evaluation of the yaw, pitch, and roll profiles and associated angular accelerations needed to simultaneously steer the vehicle thrust vector and maintain the solar array pointed toward the sun. Maintaining the solar array pointed exactly at the sun leads to snap roll maneuvers which have very high (theoretically unbounded) accelerations, thereby imposing large torque requirements. The problem is exacerbated by the large solar arrays which are needed to generate the high levels of power needed by electric propulsion devices. A method of eliminating the snap roll maneuvers is presented. The method involves the determination of relaxed roll profiles which approximate a forced transition between alternate exact roll profiles and incur only small errors in solar array pointing. The method makes it feasible to perform the required maneuvers using currently available attitude control technology such as reaction wheels, hot gas jets, or gimballed main engines.

  12. A simple method for verifying the deployment of the TOMS-EP solar arrays

    NASA Technical Reports Server (NTRS)

    Koppersmith, James R.; Ketchum, Eleanor

    1995-01-01

    The Total Ozone Mapping Spectrometer-Earth Probe (TOMS-EP) mission relies upon a successful deployment of the spacecraft's solar arrays. Several methods of verification are being employed to ascertain the solar array deployment status, with each requiring differing amounts of data. This paper describes a robust attitude-independent verification method that utilizes telemetry from the coarse Sun sensors (CSS's) and the three-axis magnetometers (TAM's) to determine the solar array deployment status - and it can do so with only a few, not necessarily contiguous, points of data. The method developed assumes that the solar arrays are deployed. Telemetry data from the CSS and TAM are converted to the Sun and magnetic field vectors in spacecraft body coordinates, and the angle between them is calculated. Deployment is indicated if this angle is within a certain error tolerance of the angle between the reference Sun and magnetic field vectors. Although several other methods can indicate a non-deployed state, with this method there is a 70% confidence level in confirming deployment as well as a nearly 100% certainty in confirming a non-deployed state. In addition, the spacecraft attitude (which is not known during the first orbit after launch) is not needed for this algorithm because the angle between the Sun and magnetic field vectors is independent of the spacecraft attitude. This technique can be applied to any spacecraft with a TAM and with CSS's mounted on the solar array(s).

  13. The systems impact of a concentrated solar array on a Jupiter orbiter

    NASA Technical Reports Server (NTRS)

    Rockey, D. E.; Bamford, R.; Hollars, M. G.; Klemetson, R. W.; Koerner, T. W.; Marsh, E. L.; Price, H.; Uphoff, C.

    1981-01-01

    Results of a study are presented suggesting that a Galileo Jupiter orbiting mission could be performed with a concentrated solar array power source. A baseline spacecraft design using concentrated arrays is given, and the overall spacecraft implications for attitude control, propulsion, power conditioning and the resultant spacecraft mass are examined. It is noted that while the concentrated array concept still requires extensive development effort, no insurmountable system level barriers preclude the use of a concentrated solar array on this difficult mission, with its stressing radiation environment, its lengthy periods of spacecraft shadowing as it passes behind Jupiter, and, finally, its large delta v burn required for orbital insertion.

  14. Solar array electrical performance assessment for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Smith, Bryan K.; Brisco, Holly

    1993-01-01

    Electrical power for Space Station Freedom will be generated by large Photovoltaic arrays with a beginning of life power requirement of 30.8 kW per array. The solar arrays will operate in a Low Earth Orbit (LEO) over a design life of fifteen years. This paper provides an analysis of the predicted solar array electrical performance over the design life and presents a summary of supporting analysis and test data for the assigned model parameters and performance loss factors. Each model parameter and loss factor is assessed based upon program requirements, component analysis, and test data to date. A description of the LMSC performance model, future test plans, and predicted performance ranges are also given.

  15. Operating manual: Fast response solar array simulator

    NASA Technical Reports Server (NTRS)

    Vonhatten, R.; Weimer, A.; Zerbel, D. W.

    1971-01-01

    The fast response solar array simulator (FRSAS) is a universal solar array simulator which features an AC response identical to that of a real array over a large range of DC operating points. In addition, short circuit current (I sub sc) and open circuit voltage (V sub oc) are digitally programmable over a wide range for use not only in simulating a wide range of array sizes, but also to simulate (I sub sc) and (V sub oc) variations with illumination and temperature. A means for simulation of current variations due to spinning is available. Provisions for remote control and monitoring, automatic failure sensing and warning, and a load simulator are also included.

  16. Solar array electrical performance assessment for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Smith, Bryan K.; Brisco, Holly

    1993-01-01

    Electrical power for Space Station Freedom will be generated by large photovoltaic arrays with a beginning of life power requirement of 30.8 kW per array. The solar arrays will operate in a Low Earth Orbit (LEO) over a design life of fifteen years. This paper provides an analysis of the predicted solar array electrical performance over the design life and presents a summary of supporting analysis and test data for the assigned model parameters and performance loss factors. Each model parameter and loss factor is assessed based upon program requirements, component analysis and test data to date. A description of the LMSC performance model future test plans and predicted performance ranges are also given.

  17. Optical Design of Segmented Hexagon Array Solar Mirror

    NASA Technical Reports Server (NTRS)

    Huegele, Vince

    2000-01-01

    A segmented array of mirrors was designed for a solar concentrator test stand at MSFC for firing solar thermal propulsion engines. The 144 mirrors each have a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The mirror segments are aluminum hexagons that had the surface diamond turned and quartz coated. The array focuses sunlight reflected from a heliostat to a 4 inch diameter spot containing 10 kw of power at the 15-foot focal point. The derivation of the surface figure for the respective mirror elements is shown. The alignment process of the array is discussed and test results of the system's performance is given.

  18. Rapid thermal cycling of new technology solar array blanket coupons

    NASA Technical Reports Server (NTRS)

    Scheiman, David A.; Smith, Bryan K.; Kurland, Richard M.; Mesch, Hans G.

    1990-01-01

    NASA Lewis Research Center is conducting thermal cycle testing of a new solar array blanket technologies. These technologies include test coupons for Space Station Freedom (SSF) and the advanced photovoltaic solar array (APSA). The objective of this testing is to demonstrate the durability or operational lifetime of the solar array interconnect design and blanket technology within a low earth orbit (LEO) or geosynchronous earth orbit (GEO) thermal cycling environment. Both the SSF and the APSA array survived all rapid thermal cycling with little or no degradation in peak performance. This testing includes an equivalent of 15 years in LEO for SSF test coupons and 30 years of GEO plus ten years of LEO for the APSA test coupon. It is concluded that both the parallel gap welding of the SSF interconnects and the soldering of the APSA interconnects are adequately designed to handle the thermal stresses of space environment temperature extremes.

  19. Preliminary results from the flight of the Solar Array Module Plasma Interactions Experiment (SAMPIE)

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Hillard, G. Barry

    1994-01-01

    SAMPIE, the Solar Array Module Plasma Interactions Experiment, flew in the Space Shuttle Columbia payload bay as part of the Office of Aeronautics and Space Technology-2 (OAST-2) mission on STS-62, March, 1994. SAMPIE biased samples of solar arrays and space power materials to varying potentials with respect to the surrounding space plasma, and recorded the plasma currents collected and the arcs which occurred, along with a set of plasma diagnostics data. A large set of high quality data was obtained on the behavior of solar arrays and space power materials in the space environment. This paper is the first report on the data SAMPIE telemetered to the ground during the mission. It will be seen that the flight data promise to help determine arcing thresholds, snapover potentials, and floating potentials for arrays and spacecraft in LEO.

  20. Concept Definition Study for In-Space Structural Characterization of a Lightweight Solar Array

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Pappa, Richard S.; Jones, Thomas W.; Spellman, Regina; Scott, Willis; Mockensturm, Eric M.; Liddle, Donn; Oshel, Ed; Snyder, Michael

    2002-01-01

    A Concept Definition Study (CDS) was conducted to develop a proposed "Lightweight High-Voltage Stretched-Lens Concentrator Solar Array Experiment" under NASA's New Millennium Program Space Technology-6 (NMP ST-6) activity. As part of a multi-organizational team, NASA Langley Research Center's role in this proposed experiment was to lead Structural Characterization of the solar array during the flight experiment. In support of this role, NASA LaRC participated in the CDS to de.ne an experiment for static, dynamic, and deployment characterization of the array. In this study, NASA LaRC traded state-of-the-art measurement approaches appropriate for an in-space, STS-based flight experiment, provided initial analysis and testing of the lightweight solar array and lens elements, performed a lighting and photogrammetric simulation in conjunction with JSC, and produced an experiment concept definition to meet structural characterization requirements.

Top